

TwoScoops ofDjango3.x
Best Practices for the Django Web Frame-
work

Daniel Feldroy
Audrey Feldroy

Two Scoops of Django 3.x: Best Practices for the Django Web Framework
Fifth Edition, 2021-02-01

by Daniel Feldroy and Audrey Feldroy

Copyright © 2013-2020 Daniel Feldroy, Audrey Feldroy, and Two Scoops Press.

All rights reserved. This book may not be reproduced in any form, in whole or in part, without written permission
from the authors, except in the case of brief quotations embodied in articles or reviews.

Limit of Liability and Disclaimer of Warranty: The authors have used their best efforts in preparing this book,
and the information provided herein “as is.” The information provided is sold without warranty, either express or
implied. Neither the authors nor Cartwheel Web will be held liable for any damages to be caused either directly
or indirectly by the contents of this book.

Trademarks: Rather than indicating every occurrence of a trademarked name as such, this book uses the names
only in an editorial fashion and to the benefit of the trademark owner with no intention of infringement of the
trademark.

The only authorized vendor or distributor for Two Scoops of Django are Feldroy, Inc and the vendors or distributors
listed on https://feld.to/authorized-vendors. Support this book by only purchasing or getting it from
https://feld.to/authorized-vendors.

First Printing, May 2020, Version 2021-02-01-alpha

For more information, visit https://feldroy.com.

https://feld.to/authorized-vendors
https://feld.to/authorized-vendors
https://feldroy.com

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues iii

https://github.com/feldroy/two-scoops-of-django-3.x/issues

iv Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Dedication

For Malcolm Tredinnick
1971-2013

We miss you.

feldroy.com/pages/malcolm-tredinnick-memorial

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues v

https://www.feldroy.com/pages/malcolm-tredinnick-memorial
https://github.com/feldroy/two-scoops-of-django-3.x/issues

About the Dedication
Malcolm Tredinnick wasn’t just a Django core developer and reviewer of “Two Scoops of
Django: Best Practices for Django 1.5.” To us, he was much, much more.

Daniel had worked with Malcolm Tredinnick in the summer of 2010, but we first met him
in person at DjangoCon 2010. He was funny and charming, sharply opinionated but always
a gentleman; we instantly became close friends.

In 2012, when we co-organized the first PyCon Philippines, as soon as we told him about
it, Malcolm instantly declared he was coming. He gave two memorable talks and ran an
impromptu all-day Django tutorial. He also pushed and encouraged the local community
to work on Filipino language translations for Django, including Tagalog, Tausug, Cebuano,
and more.

After the conference, we started working on a book about Django best practices. We gath-
ered friends and colleagues to help us as technical reviewers. Malcolm Tredinnick became
the most active of them. He was our mentor and forced us to dig deeper and work harder.
He did this while working a day job as the leader of a combined Rails and Haskell team;
Malcolm was a true programming language polyglot.

For our book, he provided so much assistance and guidance we tried to figure out a way
to include him in the author credits. When we told him about our dilemma, he laughed it
off saying, “For a book called ‘Two Scoops’, you can’t have three authors.” We suggested he
share credit with us on a second book, and he refused, saying he preferred to just comment
on our work. He said that he wanted people to have proper references, and for him, simply
reviewing our work was contributing to the greater good. Eventually the two of us quietly
planned to somehow coerce him into being a co-author on a future work.

After months of effort, we released the first iteration on January 17th, 2013. Malcolm
stepped back from Two Scoops of Django, but we stayed in touch. Since Malcolm was
unable to attend PyCon US 2013 we weren’t sure when we would meet him again.

Two months later, on March 17th, 2013, Malcolm passed away.

We knew Malcolm for less than three years and yet he made an incredible difference in our
lives. We’ve heard many similar stories in the community about Malcolm; he was a friend
and mentor to countless others around the world. His last lesson to us went beyond code or
writing, he taught us to never take for granted friends, family, mentors, and teachers.

Contents

Dedication v
About the Dedication . vi

Forward by William Vincent xxv

Authors’ Notes xxvii
A Few Words From Daniel Feldroy . xxvii
A Few Words From Audrey Feldroy . xxvii

Introduction xxix
A Word About Our Recommendations . xxix
Why Two Scoops of Django? . xxx
Before You Begin . xxxi

This Book Is Intended for Django 3.x and Python 3.8 or 3.9 xxxi
Each Chapter Stands On Its Own . xxxi

Conventions Used in This Book . xxxi
Core Concepts . xxxii

Keep It Simple, Stupid . xxxii
Fat Models, Utility Modules, Thin Views, Stupid Templates xxxiii
Start With Django By Default . xxxiii
Be Familiar with Django’s Design Philosophies xxxiv
The Twelve-Factor App . xxxiv

Our Writing Concepts . xxxiv
Provide the Best Material . xxxiv
Stand on the Shoulders of Giants . xxxiv
Listen to Our Readers and Reviewers xxxv
Publish Errata . xxxv

1 Coding Style 1
1.1 The Importance of Making Your Code Readable 1
1.2 PEP 8 . 2

1.2.1 The 79-Character Limit . 3

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues vii

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Contents

1.3 The Word on Imports . 4
1.4 Understand Explicit Relative Imports 5
1.5 Avoid Using Import * . 6

1.5.1 Other Python Naming Collisions 7
1.6 Django Coding Style . 7

1.6.1 Consider the Django Coding Style Guidelines 8
1.6.2 Use Underscores in URL Pattern Names Rather Than Dashes . . 8
1.6.3 Use Underscores in Template Block Names Rather Than Dashes 9

1.7 Choose JS, HTML, and CSS Style Guides 9
1.7.1 JavaScript Style Guides . 9
1.7.2 HTML and CSS Style Guides 10

1.8 Never Code to the IDE (Or Text Editor) 10
1.9 Summary . 10

2 The Optimal Django Environment Setup 11
2.1 Use the Same Database Engine Everywhere 11

2.1.1 You Can’t Examine an Exact Copy of Production Data Locally . 11
2.1.2 Different Databases Have Different Field Types/Constraints . . 11
2.1.3 Fixtures Are Not a Magic Solution 12

2.2 Use Pip and (Virtualenv or venv) . 13
2.2.1 virtualenvwrapper . 15

2.3 Install Django and Other Dependencies via Pip 16
2.4 Use Git For Version Control . 17
2.5 Optional: Identical Environments . 17

2.5.1 Docker . 18
2.6 Summary . 18

3 How to Lay Out Django Projects 19
3.1 Django 3’s Default Project Layout . 19
3.2 Our Preferred Project Layout . 20

3.2.1 Top Level: Repository Root . 20
3.2.2 Second Level: Django Project Root 21
3.2.3 Second Level: Configuration Root 21

3.3 Sample Project Layout . 22
3.4 What About the Virtualenv? . 24

3.4.1 Listing Current Dependencies 26
3.5 Going Beyond startproject . 26

3.5.1 Generating Project Boilerplate With Cookiecutter 27
3.5.2 Generating a Starting Project With Cookiecutter Django 27

3.6 Other Alternatives to startproject 28

viii Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Contents

3.7 Summary . 29

4 Fundamentals of Django App Design 31
4.1 The Golden Rule of Django App Design 32

4.1.1 A Practical Example of Apps in a Project 32
4.2 What to Name Your Django Apps . 34
4.3 When in Doubt, Keep Apps Small . 34
4.4 What Modules Belong in an App? . 35

4.4.1 Common App Modules . 35
4.4.2 Uncommon App Modules . 36

4.5 Alternative: Ruby on Rails-Style Approaches 37
4.5.1 Service Layers . 37
4.5.2 The Large Single App Project 40

4.6 Summary . 41

5 Settings and Requirements Files 43
5.1 Avoid Non-Versioned Local Settings 43
5.2 Using Multiple Settings Files . 45

5.2.1 A Development Settings Example 47
5.2.2 Multiple Development Settings 48

5.3 Separate Configuration From Code . 49
5.3.1 A Caution Before Using Environment Variables for Secrets . . . 50
5.3.2 How to Set Environment Variables Locally 51
5.3.3 How to Unset Environment Variables Locally 52
5.3.4 How to Set Environment Variables in Production 52
5.3.5 Handling Missing Secret Key Exceptions 53

5.4 When You Can’t Use Environment Variables 55
5.4.1 Using JSON Files . 56
5.4.2 Using .env, Config, YAML, and XML File Formats 57

5.5 Using Multiple Requirements Files . 57
5.5.1 Installing From Multiple Requirements Files 58

5.6 Handling File Paths in Settings . 59
5.7 Summary . 62

6 Model Best Practices 63
6.1 Basics . 63

6.1.1 Break Up Apps With Too Many Models 63
6.1.2 Be Careful With Model Inheritance 64
6.1.3 Model Inheritance in Practice: The TimeStampedModel 65

6.2 Database Migrations . 67

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues ix

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Contents

6.2.1 Tips for Creating Migrations 67
6.2.2 Adding Python Functions and Custom SQL to Migrations . . . 67

6.3 Overcoming Common Obstacles of RunPython 68
6.3.1 Getting Access to a Custom Model Manager’s Methods 68
6.3.2 Getting Access to a Custom Model Method 68
6.3.3 Use RunPython.noop to Do Nothing 68
6.3.4 Deployment and Management of Migrations 70

6.4 Django Model Design . 70
6.4.1 Start Normalized . 71
6.4.2 Cache Before Denormalizing 71
6.4.3 Denormalize Only if Absolutely Needed 71
6.4.4 When to Use Null and Blank 71
6.4.5 When to Use BinaryField . 72
6.4.6 Try to Avoid Using Generic Relations 74
6.4.7 Make Choices and Sub-Choices Model Constants 75
6.4.8 Using Enumeration Types for Choices 76
6.4.9 PostgreSQL-Specific Fields: When to Use Null and Blank . . . 77

6.5 The Model _meta API . 77
6.6 Model Managers . 78
6.7 Understanding Fat Models . 80

6.7.1 Model Behaviors a.k.a Mixins 81
6.7.2 Stateless Helper Functions . 81
6.7.3 Model Behaviors vs Helper Functions 81

6.8 Additional Resources . 81
6.9 Summary . 82

7 Queries and the Database Layer 83
7.1 Use get_object_or_404() for Single Objects 83
7.2 Be Careful With Queries That Might Throw Exceptions 84

7.2.1 ObjectDoesNotExist vs. DoesNotExist 84
7.2.2 When You Just Want One Object but Get Three Back 84

7.3 Use Lazy Evaluation to Make Queries Legible 85
7.3.1 Chaining Queries for Legibility 86

7.4 Lean on Advanced Query Tools . 87
7.4.1 Query Expressions . 88
7.4.2 Database Functions . 89

7.5 Don’t Drop Down to Raw SQL Until It’s Necessary 90
7.6 Add Indexes as Needed . 91
7.7 Transactions . 92

x Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Contents

7.7.1 Wrapping Each HTTP Request in a Transaction 92
7.7.2 Explicit Transaction Declaration 94
7.7.3 django.http.StreamingHttpResponse and Transactions 96
7.7.4 Transactions in MySQL . 96
7.7.5 Django ORM Transaction Resources 96

7.8 Summary . 97

8 Function- And Class-Based Views 99
8.1 When to Use FBVs or CBVs . 99
8.2 Keep View Logic Out of URLConfs 100
8.3 Stick to Loose Coupling in URLConfs 102

8.3.1 What if We Aren’t Using CBVs? 104
8.4 Use URL Namespaces . 104

8.4.1 Makes for Shorter, More Intuitive, and Don’t Repeat Yourself
URL Names . 106

8.4.2 Increases Interoperability With Third-Party Libraries 106
8.4.3 Easier Searches, Upgrades, and Refactors 108
8.4.4 Allows for More App and Template Reverse Tricks 108

8.5 Try to Keep Business Logic Out of Views 108
8.6 Django Views Are Functions . 108

8.6.1 The Simplest Views . 109
8.7 Don’t Use locals() as Views Context 110
8.8 Summary . 111

9 Best Practices for Function-Based Views 113
9.1 Advantages of FBVs . 113
9.2 Passing the HttpRequest Object . 113
9.3 Decorators Are Sweet . 116

9.3.1 Be Conservative With Decorators 119
9.3.2 Additional Resources on Decorators 119

9.4 Passing the HttpResponse Object . 119
9.5 Additional Resources for Function-Based Views 119
9.6 Summary . 119

10 Best Practices for Class-Based Views 121
10.1 Guidelines When Working With CBVs 121
10.2 Using Mixins With CBVs . 122
10.3 Which Django GCBV Should Be Used for What Task? 123
10.4 General Tips for Django CBVs . 125

10.4.1 Constraining Django CBV/GCBV Access to Authenticated Users 125

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues xi

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Contents

10.4.2 Performing Custom Actions on Views With Valid Forms 126
10.4.3 Performing Custom Actions on Views With Invalid Forms . . . 127
10.4.4 Using the View Object . 128

10.5 How GCBVs and Forms Fit Together 130
10.5.1 Views + ModelForm Example 130
10.5.2 Views + Form Example . 134

10.6 Using Just django.views.generic.View 136
10.7 Additional Resources . 138
10.8 Summary . 139

11 Asynchronous Views 141
11.1 Notes from Analyzing Django 3.1a Pre-Release Async Views 141
11.2 Resources . 142

12 Common Patterns for Forms 143
12.1 Pattern 1: Simple ModelForm With Default Validators 143
12.2 Pattern 2: Custom Form Field Validators in ModelForms 144
12.3 Pattern 3: Overriding the Clean Stage of Validation 149
12.4 Pattern 4: Hacking Form Fields (2 CBVs, 2 Forms, 1 Model) 152
12.5 Pattern 5: Reusable Search Mixin View 156
12.6 Summary . 158

13 Form Fundamentals 159
13.1 Validate All Incoming Data With Django Forms 159
13.2 Use the POST Method in HTML Forms 162
13.3 Always Use CSRF Protection With HTTP Forms That Modify Data . . 162

13.3.1 Posting Data via AJAX . 163
13.4 Understand How to Add Django Form Instance Attributes 163
13.5 Know How Form Validation Works . 165

13.5.1 ModelForm Data Is Saved to the Form, Then the Model Instance 166
13.6 Add Errors to Forms With Form.add_error() 167

13.6.1 Other Useful Form Methods 168
13.7 Fields Without Pre-Made Widgets . 168
13.8 Customizing Widgets . 169

13.8.1 Overriding the HTML of Built-In Widgets 169
13.8.2 Creating New Custom Widgets 169

13.9 Additional Resources . 170
13.10 Summary . 171

14 Templates: Best Practices 173

xii Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Contents

14.1 Keep Templates Mostly in templates/ 173
14.2 Template Architecture Patterns . 174

14.2.1 2-Tier Template Architecture Example 174
14.2.2 3-Tier Template Architecture Example 174
14.2.3 Flat Is Better Than Nested . 175

14.3 Limit Processing in Templates . 176
14.3.1 Gotcha 1: Aggregation in Templates 178
14.3.2 Gotcha 2: Filtering With Conditionals in Templates 180
14.3.3 Gotcha 3: Complex Implied Queries in Templates 182
14.3.4 Gotcha 4: Hidden CPU Load in Templates 183
14.3.5 Gotcha 5: Hidden REST API Calls in Templates 183

14.4 Don’t Bother Making Your Generated HTML Pretty 184
14.5 Exploring Template Inheritance . 185
14.6 block.super Gives the Power of Control 188
14.7 Useful Things to Consider . 189

14.7.1 Avoid Coupling Styles Too Tightly to Python Code 190
14.7.2 Common Conventions . 190
14.7.3 Use Implicit and Named Explicit Context Objects Properly . . . 190
14.7.4 Use URL Names Instead of Hardcoded Paths 191
14.7.5 Debugging Complex Templates 191

14.8 Error Page Templates . 192
14.9 Follow a Minimalist Approach . 193
14.10 Summary . 193

15 Template Tags and Filters 195
15.1 Filters Are Functions . 195

15.1.1 Filters Are Easy to Test . 196
15.1.2 Filters and Code Reuse . 196
15.1.3 When to Write Filters . 196

15.2 Custom Template Tags . 197
15.2.1 Template Tags Are Harder to Debug 197
15.2.2 Template Tags Make Code Reuse Harder 197
15.2.3 The Performance Cost of Template Tags 197
15.2.4 When to Write Template Tags 197

15.3 Naming Your Template Tag Libraries 198
15.4 Loading Your Template Tag Modules 199

15.4.1 Watch Out for This Anti-Pattern 199
15.5 Summary . 200

16 Django Templates and Jinja2 201

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues xiii

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Contents

16.1 What’s the Syntactical Difference? . 201
16.2 Should I Switch? . 201

16.2.1 Advantages of DTL . 202
16.2.2 Advantages of Jinja2 . 202
16.2.3 Which One Wins? . 202

16.3 Considerations When Using Jinja2 With Django 203
16.3.1 CSRF and Jinja2 . 203
16.3.2 Using Template Tags in Jinja2 Templates 203
16.3.3 Using Django-Style Template Filters in Jinja2 Templates 203
16.3.4 The Jinja2 Environment Object Should Be Considered Static . . 205

16.4 Resources . 206
16.5 Summary . 206

17 Building REST APIs With Django REST Framework 207
17.1 Fundamentals of Basic REST API Design 208
17.2 Illustrating Design Concepts With a Simple API 209
17.3 REST API Architecture . 214

17.3.1 Use Consistent API Module Naming 214
17.3.2 Code for a Project Should Be Neatly Organized 215
17.3.3 Code for an App Should Remain in the App 215
17.3.4 Try to Keep Business Logic Out of API Views 216
17.3.5 Grouping API URLs . 217
17.3.6 Test Your API . 219
17.3.7 Version Your API . 219
17.3.8 Be Careful With Customized Authentication Schemes 219

17.4 When DRF Gets in the Way . 220
17.4.1 Remote Procedure Calls vs REST APIs 220
17.4.2 Problems With Complex Data 222
17.4.3 Simplify! Go Atomic! . 223

17.5 Shutting Down an External API . 224
17.5.1 Step #1: Notify Users of Pending Shut Down 224
17.5.2 Step #2: Replace API With 410 Error View 224

17.6 Rate-Limiting Your API . 225
17.6.1 Unfettered API Access Is Dangerous 225
17.6.2 REST Frameworks Must Come With Rate Limiting 226
17.6.3 Rate Limiting Can Be a Business Plan 226

17.7 Advertising Your REST API . 227
17.7.1 Documentation . 227
17.7.2 Provide Client SDKs . 227

xiv Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Contents

17.8 Additional Reading . 228
17.9 Other Approaches for Crafting APIs 228

17.9.1 CBV Approach: JsonResponse with View 228
17.9.2 FBV approach: django-jsonview 229
17.9.3 django-tastypie . 229

17.10 Summary . 229

18 Building GraphQL APIs With Django 231
18.1 Dispelling the Performance Myth . 231
18.2 GraphQL API Architecture . 233

18.2.1 Don’t Use Sequential Keys as Public Identifiers 233
18.2.2 Use Consistent API Module Naming 233
18.2.3 Try to Keep Business Logic Out of API Views 234
18.2.4 Test Your API . 235
18.2.5 Version Your API . 235
18.2.6 Be Careful With Customized Authentication Schemes 235

18.3 Shutting Down an External API . 235

19 JavaScript and Django 237
19.1 Popular JavaScript Approaches . 237

19.1.1 Building Single Page Apps When Multi-Page Apps Suffice . . . 239
19.1.2 Upgrading Legacy Sites . 239
19.1.3 Not Writing Tests . 240
19.1.4 Not Understanding JavaScript Memory Management 240
19.1.5 Storing Data in the DOM When It’s Not jQuery 240

19.2 Consuming Django-served APIs with JavaScript 240
19.2.1 Learn How to Debug the Client 240
19.2.2 When Possible, Use JavaScript-Powered Static Asset Preprocessors 241

19.3 Real-Time Woes a.k.a. Latency . 242
19.3.1 Solution: Mask the Latency With Animations 242
19.3.2 Solution: Fake Successful Transactions 242
19.3.3 Solution: Geographically Based Servers 242
19.3.4 Solution: Restrict Users Geographically 243
19.3.5 AJAX and the CSRF Token 243

19.4 Using JavaScript with Templates Served by Django 244
19.4.1 JavaScript Can Go In the Header Again 244
19.4.2 Use JSON Encoding for Data Consumed by JavaScript 244

19.5 Strengthening JavaScript Skills . 244
19.5.1 Learn More JavaScript! . 245

19.6 Follow JavaScript Coding Standards 245

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues xv

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Contents

19.7 Summary . 245

20 Tradeoffs of Replacing Core Components 247
20.1 The Temptation to Build FrankenDjango 248
20.2 Non-Relational Databases vs. Relational

Databases . 248
20.2.1 Not All Non-Relational Databases Are ACID Compliant 248
20.2.2 Don’t Use Non-Relational Databases for Relational Tasks 250
20.2.3 Ignore the Hype and Do Your Own Research 250
20.2.4 How We Use Non-Relational Databases With Django 251

20.3 What About Replacing the Django Template Language? 251
20.4 Summary . 251

21 Working With the Django Admin 253
21.1 It’s Not for End Users . 253
21.2 Admin Customization vs. New Views 254
21.3 Viewing String Representations of Objects 254

21.3.1 Using __str__() . 255
21.3.2 Using list_display . 256

21.4 Adding Callables to ModelAdmin Classes 256
21.5 Be Aware of the Complications of Multiuser Environments 258
21.6 Django’s Admin Documentation Generator 259
21.7 Using Custom Skins With the Django Admin 259

21.7.1 Evaluation Point: Documentation is Everything 260
21.7.2 Write Tests for Any Admin Extensions You Create 260

21.8 Secure the Django Admin . 261
21.8.1 Change the Default Admin URL 261
21.8.2 Use django-admin-honeypot 261
21.8.3 Only Allow Admin Access via HTTPS 261
21.8.4 Limit Admin Access Based on IP 262

21.9 Securing the Admin Docs . 262
21.10 Summary . 262

22 Dealing With the User Model 263
22.1 Use Django’s Tools for Finding the User Model 263

22.1.1 Use settings.AUTH_USER_MODEL for Foreign Keys to User 263
22.1.2 Don’t Use get_user_model() for Foreign Keys to User 264

22.2 Custom User Fields for Django Projects 265
22.2.1 Option 1: Subclass AbstractUser 265
22.2.2 Option 2: Subclass AbstractBaseUser 266

xvi Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Contents

22.2.3 Option 3: Linking Back From a Related Model 266
22.3 Handling Multiple User Types . 268

22.3.1 Add a User Type Field . 268
22.3.2 Add a User Type Field Plus Proxy Models 269
22.3.3 Adding Extra Data Fields . 271
22.3.4 Additional Resources on Multiple User Types 273

22.4 Summary . 273

23 Django’s Secret Sauce: Third-Party Packages 275
23.1 Examples of Third-Party Packages . 276
23.2 Know About the Python Package Index 276
23.3 Know About DjangoPackages.org . 276
23.4 Know Your Resources . 277
23.5 Tools for Installing and Managing Packages 277
23.6 Package Requirements . 277
23.7 Wiring Up Django Packages: The Basics 277

23.7.1 Step 1: Read the Documentation for the Package 278
23.7.2 Step 2: Add Package and Version Number to Your Requirements 278
23.7.3 Step 3: Install the Requirements Into Your Virtualenv 279
23.7.4 Step 4: Follow the Package’s Installation Instructions Exactly . . 279

23.8 Troubleshooting Third-Party Packages 279
23.9 Releasing Your Own Django Packages 280
23.10 What Makes a Good Django Package? 280

23.10.1 Purpose . 280
23.10.2 Scope . 281
23.10.3 Documentation . 281
23.10.4 Tests . 281
23.10.5 Templates . 281
23.10.6 Activity . 281
23.10.7 Community . 282
23.10.8 Modularity . 282
23.10.9 Availability on PyPI . 282
23.10.10 Uses the Broadest Requirements Specifiers Possible 282
23.10.11 Proper Version Numbers . 283
23.10.12 Name . 284
23.10.13 License . 285
23.10.14 Clarity of Code . 285
23.10.15 Use URL Namespaces . 285

23.11 Creating Your Own Packages the Easy Way 286

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues xvii

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Contents

23.12 Maintaining Your Open Source Package 287
23.12.1 Give Credit for Pull Requests 287
23.12.2 Handling Bad Pull Requests 287
23.12.3 Do Formal PyPI Releases . 288
23.12.4 Create and Deploy Wheels to PyPI 289
23.12.5 Add Git Tags to the Repo . 290
23.12.6 Upgrade the Package to New Versions of Django 290
23.12.7 Follow Good Security Practices 290
23.12.8 Provide Sample Base Templates 290
23.12.9 Give the Package Away . 291

23.13 Additional Reading . 291
23.14 Summary . 291

24 Testing Stinks and Is a Waste of Money! 293
24.1 Testing Saves Money, Jobs, and Lives 293
24.2 How to Structure Tests . 294
24.3 How to Write Unit Tests . 295

24.3.1 Each Test Method Tests One Thing 295
24.3.2 For Views, When Possible Use the Request Factory 297
24.3.3 Don’t Write Tests That Have to Be Tested 299
24.3.4 Don’t Repeat Yourself Doesn’t Apply to Writing Tests 299
24.3.5 Don’t Rely on Fixtures . 299
24.3.6 Things That Should Be Tested 300
24.3.7 Test for Failure . 301
24.3.8 Use Mock to Keep Unit Tests From Touching the World 302
24.3.9 Use Fancier Assertion Methods 304
24.3.10 Document the Purpose of Each Test 305

24.4 What About Integration Tests? . 305
24.5 Continuous Integration . 306
24.6 Who Cares? We Don’t Have Time for Tests! 306
24.7 The Game of Test Coverage . 307
24.8 Setting Up the Test Coverage Game 307

24.8.1 Step 1: Start Writing Tests . 307
24.8.2 Step 2: Run Tests and Generate Coverage Report 307
24.8.3 Step 3: Generate the Report! 308

24.9 Playing the Game of Test Coverage . 308
24.10 Alternatives to unittest . 309
24.11 Summary . 310

25 Documentation: Be Obsessed 311

xviii Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Contents

25.1 Use GitHub-Flavored Markdown for Docs 311
25.2 Use MkDocs or Sphinx with Myst to Generate Documentation From

Markdown . 313
25.3 What Docs Should Django Projects Contain? 313
25.4 Additional Markdown Documentation Resources 315
25.5 The ReStructuredText Alternative . 315

25.5.1 ReStructuredText Resources 315
25.6 When Documentation Needs to Be Convert to/from Markdown or Re-

StructuredText . 316
25.7 Wikis and Other Documentation Methods 316
25.8 Ensuring that Code is Documented . 316
25.9 Summary . 316

26 Finding and Reducing Bottlenecks 319
26.1 Should You Even Care? . 319
26.2 Speed Up Query-Heavy Pages . 319

26.2.1 Find Excessive Queries With Django Debug Toolbar 319
26.2.2 Reduce the Number of Queries 320
26.2.3 Speed Up Common Queries 321
26.2.4 Switch ATOMIC_REQUESTS to False 322

26.3 Get the Most Out of Your Database 322
26.3.1 Know What Doesn’t Belong in the Database 322
26.3.2 Getting the Most Out of PostgreSQL 323
26.3.3 Getting the Most Out of MySQL 323

26.4 Cache Queries With Memcached or Redis 323
26.5 Identify Specific Places to Cache . 323
26.6 Consider Third-Party Caching Packages 324
26.7 Compression and Minification of HTML, CSS, and JavaScript 324
26.8 Use Upstream Caching or a Content Delivery Network 325
26.9 Other Resources . 325
26.10 Summary . 327

27 Asynchronous Task Queues 329
27.1 Do We Need a Task Queue? . 330

28 Security Best Practices 333
28.1 Reference Security Sections in Other Chapters 333
28.2 Harden Your Servers . 333
28.3 Know Django’s Security Features . 334
28.4 Turn Off DEBUG Mode in Production 334

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues xix

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Contents

28.5 Keep Your Secret Keys Secret . 334
28.6 HTTPS Everywhere . 335

28.6.1 Use Secure Cookies . 337
28.6.2 Use HTTP Strict Transport Security (HSTS) 337
28.6.3 HTTPS Configuration Tools 338

28.7 Use Allowed Hosts Validation . 339
28.8 Always Use CSRF Protection With HTTP Forms That Modify Data . . 339
28.9 Prevent Against Cross-Site Scripting (XSS) Attacks 339

28.9.1 Use format_html Over mark_safe 339
28.9.2 Don’t Allow Users to Set Individual HTML Tag Attributes . . . 340
28.9.3 Use JSON Encoding for Data Consumed by JavaScript 340
28.9.4 Beware Unusual JavaScript . 340
28.9.5 Add Content Security Policy Headers 340
28.9.6 Additional Reading . 341

28.10 Defend Against Python Code Injection Attacks 341
28.10.1 Python Built-Ins That Execute Code 341
28.10.2 Python Standard Library Modules That Can Execute Code . . . 341
28.10.3 Third-Party Libraries That Can Execute Code 342
28.10.4 Be Careful With Cookie-Based Sessions 342

28.11 Validate All Incoming Data With Django Forms 343
28.12 Disable the Autocomplete on Payment Fields 344
28.13 Handle User-Uploaded Files Carefully 344

28.13.1 When a CDN Is Not an Option 344
28.13.2 Django and User-Uploaded Files 345

28.14 Don’t Use ModelForms.Meta.exclude 346
28.14.1 Mass Assignment Vulnerabilities 348

28.15 Don’t Use ModelForms.Meta.fields = ”__all__” 348
28.16 Beware of SQL Injection Attacks . 348
28.17 Don’t Store Unnecessary Data . 349

28.17.1 Never Store Credit Card Data 349
28.17.2 Don’t Store PII or PHI Unless Required (By Law) 349

28.18 Monitor Your Sites . 350
28.19 Keep Your Dependencies Up-to-Date 350
28.20 Prevent Clickjacking . 350
28.21 Guard Against XML Bombing With defusedxml 351
28.22 Explore Two-Factor Authentication 351
28.23 Embrace SecurityMiddleware . 352
28.24 Force the Use of Strong Passwords . 352
28.25 Don’t Prevent Copy/Pasting of Password 353

xx Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Contents

28.26 Give Your Site a Security Checkup . 353
28.27 Put Up a Vulnerability Reporting Page 353
28.28 Never Display Sequential Primary Keys 353

28.28.1 Lookup by Slug . 354
28.28.2 UUIDs . 354

28.29 Upgrade Password Hasher to Argon2 356
28.30 Use SRI When Loading Static Assets From External Sources 356
28.31 Reference Our Security Settings Appendix 358
28.32 Review the List of Security Packages 358
28.33 Keep Up-to-Date on General Security Practices 358
28.34 Summary . 359

29 Logging: What’s It For, Anyway? 361
29.1 Application Logs vs. Other Logs . 361
29.2 Why Bother With Logging? . 361
29.3 When to Use Each Log Level . 362

29.3.1 Log Catastrophes With CRITICAL 362
29.3.2 Log Production Errors With ERROR 363
29.3.3 Log Lower-Priority Problems With WARNING 364
29.3.4 Log Useful State Information With INFO 364
29.3.5 Log Debug-Related Messages to DEBUG 364

29.4 Log Tracebacks When Catching Exceptions 366
29.5 One Logger Per Module That Uses Logging 367
29.6 Log Locally to Rotating Files . 367
29.7 Other Logging Tips . 368
29.8 Necessary Reading Material . 368
29.9 Useful Third-Party Tools . 369
29.10 Summary . 369

30 Signals: Use Cases and Avoidance Techniques 371

31 What About Those Random Utilities? 373
31.1 Create a Core App for Your Utilities 373
31.2 Optimize Apps With Utility Modules 374

31.2.1 Storing Code Used in Many Places 374
31.2.2 Trimming Models . 374
31.2.3 Easier Testing . 374

31.3 Django’s Own Swiss Army Knife . 375
31.3.1 django.contrib.humanize . 375
31.3.2 django.utils.decorators.method_decorator(decorator) 376

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues xxi

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Contents

31.3.3 django.utils.decorators.decorator_from_middleware(middleware) 376
31.3.4 django.utils.encoding.force_text(value) 376
31.3.5 django.utils.functional.cached_property 376
31.3.6 django.utils.html.format_html(format_str, *args, **kwargs) . . . 377
31.3.7 django.utils.html.strip_tags(value) 377
31.3.8 django.utils.text.slugify(value) 377
31.3.9 Slugification and Languages Besides English 378
31.3.10 django.utils.timezone . 379
31.3.11 django.utils.translation . 379

31.4 Exceptions . 379
31.4.1 django.core.exceptions.ImproperlyConfigured 379
31.4.2 django.core.exceptions.ObjectDoesNotExist 379
31.4.3 django.core.exceptions.PermissionDenied 380

31.5 Serializers and Deserializers . 381
31.5.1 django.core.serializers.json.DjangoJSONEncoder 383
31.5.2 django.core.serializers.pyyaml 384
31.5.3 django.core.serializers.xml_serializer 384
31.5.4 rest_framework.serializers . 384

31.6 Summary . 385

32 Deployment: Platforms as a Service 387

33 Deploying Django Projects 389

34 Continuous Integration 391

35 The Art of Debugging 393

36 Where and How to Ask Django Questions 395

37 Closing Thoughts 397

Appendix A: Packages Mentioned In This Book 399

Appendix B: Troubleshooting Installation 407

Appendix C: Additional Resources 411
Timeless Python and Django Material . 411
Timeless Beginner Django Material . 413
Timeless Beginner Python Material . 413
Timeless Useful Python Material . 413
JavaScript Resources . 414

xxii Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Contents

Appendix D: Internationalization and Localization 415

Appendix E: Settings Alternatives 421

Appendix F: Security Settings Reference 423

Appendix G: Handling Security Failures 425
Have a Plan Ready for When Things Go Wrong 425
Shut Everything Down or Put It in Read-Only Mode 425
Put Up a Static HTML Page . 426
Back Everything Up . 426
Email security@djangoproject.com, Even if It’s Your Fault 426
Start Looking Into the Problem . 427

Appendix H: WebSockets with Channels 429
Each Browser Tab Has Its Own WebSocket Connection 429
Expect WebSocket Connections to Drop All the Time 429
Validate Incoming Data! . 430

Acknowledgments 431

List of Figures 437

List of Tables 439

Index 441

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues xxiii

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Contents

xxiv Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Forward

The first edition of Two Scoops of Django came out in 2013 when Django was only on ver-
sion 1.5, and I was just beginning my own Django journey. I still recall the deep frustration
of trying to properly wrap my mind around this batteries-included web framework. I had
studied Python. Gone through the official Django Polls tutorial multiple times. And read
every book and tutorial I could find. But, still, I felt lost. Whenever it came time to build
my own Django apps from scratch, I hit a wall. Stack Overflow provided answers to discrete
questions, but no larger context of understanding. Open source Django code–what little of
it I could find, anyway–seemed hopelessly complex, far beyond my abilities as a budding
developer.

In short, I was stuck in the classic tutorial trap that afflicts so many beginners: able to blindly
follow along with Django tutorials, yet unable to truly understand what was happening.

And then I found this book. Here, finally, was an opinionated guide to using Django. One
that took a holistic approach to the framework and the process of building web applications.
At first, I was surprised by the format: it didn’t adopt the traditional step-by-step process
of walking through a demo Django application. The book didn’t build a complete website
at all. Instead, it was structured like an encyclopedia covering all the major areas of Django.
If I wanted to know the proper way to configure, say, my models, I could go to that section,
read the advice, and apply it in my projects.

While reading the book I spotted a few typos and gathered the courage to contact the
authors, Daniel and Audrey. To my surprise, they responded immediately, thanked me, and
several weeks later a signed and illustrated additional copy of the book arrived at my door.
I still have that book on my bookshelf.

This type of interaction, welcoming a newcomer into the fold, turns out to be quite common
in the Django community. It is perhaps the nicest technology group I know of, and many
Django developers feel the same way. There is a saying among those who have been around
Django for a while, “Come for the framework, stay for the community.” And it is true.

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues xxv

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Contents

If you want to become involved, there are multiple ways. The codebase is open source so
anyone can submit a pull request. There are also annual DjangoCon conferences in the U.S.,
Europe, Australia, and Africa, as well as innumerable smaller local meetups and conferences.

As technology continues its relentless march onwards, Django and the broader Python com-
munity has kept pace. Since that first version of Two Scoops back in 2013, there have been
new editions covering Django 1.6, 1.8, and 1.11, all of which I bought, learning something
new and revisiting wise advice I’d read years before. The old debates of Python 2 vs Python
3 and related third-party package support are now settled, replaced by new ones, I suspect,
around the new async capabilities in Python that are making their way into Django.

To a newcomer, Django can feel intimidating: it certainly did for me. But thanks to the
community and resources like Two Scoops, it is more accessible than ever. I encourage you
to join us and, who knows, maybe even make your own contributions.

William Vincent
Django Software Foundation Board Member
Founder of LearnDjango.com
May 2020

xxvi Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://learndjango.com
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Authors’ Notes

A Few Words From Daniel Feldroy
In the spring of 2006, I was working for NASA on a project that implemented a Java-based
RESTful web service that was taking weeks to deliver. One evening, when management
had left for the day, I reimplemented the service in Python in 90 minutes.

I knew then that I wanted to work with Python.

I wanted to use Django for the front-end of the web service, but management insisted on
using a closed-source stack because “Django is only at version 0.9x, hence not ready for real
projects.” I disagreed, but stayed happy with the realization that at least the core architecture
was in Python. Django used to be edgy during those heady days, and it scared people.

Many years later, Django is considered a mature, powerful, secure, stable framework used by
incredibly successful corporations (OctopusEnergy, Instagram, Mozilla, Sentry, etc.) and
government agencies (NASA, Library of Congress, et al) all over the world. Convincing
management to use Django isn’t hard anymore, and if it is hard to convince them, finding
jobs which let you use Django has become much easier.

My goal in this book is to share with you what I’ve learned. My knowledge and experience
have been gathered from advice given by core developers, mistakes I’ve made, successes
shared with others, and an enormous amount of note taking. I’m going to admit that the
book is opinionated, but many of the leaders in the Django community use the same or
similar techniques.

This book is for you, the developers. I hope you enjoy it!

A Few Words From Audrey Feldroy
I first discovered Python in a graduate class at MIT in 2005. In less than 4 weeks of
homework assignments, each student built a voice-controlled system for navigating between

https://octopus.energy/careers/

Contents

rooms in MIT’s Stata Center, running on our HP iPaqs running Debian. I was in awe of
Python and wondered why it wasn’t used for everything. I tried building a web application
with Zope but struggled with it.

A couple of years passed, and I got drawn into the Silicon Valley tech startup scene. I wrote
graphics libraries in C and desktop applications in C++ for a startup. At some point, I left
that job and picked up painting and sculpture. Soon I was drawing and painting frantically
for art shows, co-directing a 140-person art show, and managing a series of real estate ren-
ovations. I realized that I was doing a lot at once and had to optimize. Naturally, I turned
to Python and began writing scripts to generate some of my artwork. That was when I
rediscovered the joy of working with Python.

Many friends from the Google App Engine, SuperHappyDevHouse, and hackathon scenes
in Silicon Valley inspired me to get into Django. Through them and through various free-
lance projects and partnerships I discovered how powerful Django was.

Before I knew it, I was attending PyCon 2010, where I met my husband Daniel Feldroy.
We met at the end of James Bennett’s “Django In Depth” tutorial, and now this chapter in
our lives has come full circle with the publication of this book.

Django has brought more joy to my life than I thought was possible with a web frame-
work. My goal with this book is to give you the thoughtful guidance on common Django
development practices that are normally left unwritten (or implied), so that you can get
past common hurdles and experience the joy of using the Django web framework for your
projects.

xxviii Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Introduction

Our aim in writing this book is to write down all of the unwritten tips, tricks, and common
practices that we’ve learned over the years while working with Django.

While writing, we’ve thought of ourselves as scribes, taking the various things that people
assume are common knowledge and recording them with simple examples.

A Word About Our Recommendations
Like the official Django documentation, this book covers how to do things in Django, il-
lustrating various scenarios with code examples.

Unlike the Django documentation, this book recommends particular coding styles, patterns,
and library choices. While core Django developers may agree with some or many of these
choices, keep in mind that many of our recommendations are just that: personal recommen-
dations formed after years of working with Django.

Throughout this book, we advocate certain practices and techniques that we consider to be
the best approaches. We also express our own personal preferences for particular tools and
libraries.

Sometimes we reject common practices that we consider to be anti-patterns. For most things
we reject, we try to be polite and respectful of the hard work of the authors. There are the
rare, few things that we may not be so polite about. This is in the interest of helping you
avoid dangerous pitfalls.

We have made every effort to give thoughtful recommendations and to make sure that
our practices are sound. We’ve subjected ourselves to harsh, nerve-wracking critiques from
Django and Python core developers whom we greatly respect. We’ve had this book reviewed
by more technical reviewers than the average technical book, and we’ve poured countless
hours into revisions. That being said, there is always the possibility of errors or omissions.
There is also the possibility that better practices may emerge than those described here.

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues xxix

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 0: Introduction

We are fully committed to iterating on and improving this book, and we mean it. If you see
any practices that you disagree with or anything that can be done better, we humbly ask that
you send us your suggestions for improvements. The best way to send us feedback is to file
an issue at
github.com/feldroy/two-scoops-of-django-3.x/issues.

Please don’t hesitate to tell us what can be improved. We will take your feedback construc-
tively.

Why Two Scoops of Django?
Like most people, we, the authors of this book, love ice cream. Every Saturday night we
throw caution to the wind and indulge in ice cream. Don’t tell anyone, but sometimes we
even have some when it’s not Saturday night!

Figure 1: Throwing caution to the wind.

We like to try new flavors and discuss their merits against our old favorites. Tracking our
progress through all these flavors, and possibly building a club around it, makes for a great
sample Django project.

When we do find a flavor we really like, the new flavor brings a smile to our face, just like
when we find great tidbits of code or advice in a technical book. One of our goals for this
book is to write the kind of technical book that brings the ice cream smile to readers.

Best of all, using ice cream analogies has allowed us to come up with more vivid code exam-
ples. We’ve had a lot of fun writing this book. You may see us go overboard with ice cream
silliness here and there; please forgive us.

xxx Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Before You Begin
This book is not a tutorial. If you are new to Django, this book will be helpful but large
parts will be challenging for you. To use this book to its fullest extent, you should have
an understanding of the Python programming language and have at least gone through ei-
ther the officialDjangotutorial, the entire Django Crash Course tutorial (feldroy.
com/products/django-crash-course), or other similar introductory resources. Expe-
rience with object-oriented programming is also very useful.

This Book Is Intended for Django 3.x and Python 3.8 or 3.9
This book will work well with the Django 3.x series, less so with Django 2.2, and so on. Even
though we make no promises about functional compatibility, at least the general approaches
from most of this book stand up over every post-1.0 version of Django.

As for the Python version, this book is tested on Python 3.8. Most code examples should
work on Python 3.7.x and 3.6.x. Anything below that will certainly break.

Each Chapter Stands on Its Own
Unlike tutorial and walkthrough books where each chapter builds upon the previous chap-
ter’s project, we’ve written this book in a way that each chapter intentionally stands by itself.

We’ve done this in order to make it easy for you to reference chapters about specific topics
when needed while you’re working on a project.

The examples in each chapter are completely independent. They aren’t intended to be com-
bined into one project and are not a tutorial. Consider them useful, isolated snippets that
illustrate and help with various coding scenarios.

Conventions Used in This Book
Code examples like the following are used throughout the book:

Example 1: Code Example

class Scoop:
def __init__(self):

self._is_yummy = True

To keep these snippets compact, we sometimes violate the PEP 8 conventions on comments
and line spacing. Code samples are available online at
github.com/feldroy/two-scoops-of-django-3.x.

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues xxxi

https://docs.djangoproject.com/en/3.2/intro/tutorial01/
https://www.feldroy.com/products/django-crash-course
https://www.feldroy.com/products/django-crash-course
https://github.com/feldroy/two-scoops-of-django-3.x
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 0: Introduction

Special “Don’t Do This!” code blocks like the following indicate examples of bad code that
you should avoid:

Example 2: “Don’t Do This!” Code Example

class Scoop:
def __init__(self):

self._is_yummy = False

We use the following typographical conventions throughout the book:

ä Constant width or shaded constant width for code fragments or commands.
ä Italic for filenames.
ä Bold when introducing a new term or important word.

Boxes containing notes, warnings, tips, and little anecdotes are also used in this book:

TIP: Something You Should Know

Tip boxes give handy advice.

WARNING: Some Dangerous Pitfall

Warning boxes help you avoid common mistakes and pitfalls.

PACKAGE TIP: Some Useful Package Recommendation

Indicates notes about useful third-party packages related to the current chapter, and
general notes about using various Python, Django, and front-end packages.
We also provide a complete list of packages recommended throughout the book in
Chapter 37: Appendix A: Packages Mentioned In This Book.

We also use tables to summarize information in a handy, concise way:

Core Concepts
When we build Django projects, we keep the following concepts in mind.

Keep It Simple, Stupid
Kelly Johnson, one of the most renowned and prolific aircraft design engineers in the history
of aviation, said it this way about 50 years ago.

xxxii Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Daniel Feldroy Audrey Feldroy
Can be fed coconut ice
cream

No Yes

Favorite ice cream flavors
of the moment

Pumpkin Mint Chocolate Chip

Authors’ Ice Cream Preferences

When building software projects, each piece of unnecessary complexity makes it harder
to add new features and maintain old ones. Attempt the simplest solution, but take care
not to implement overly simplistic solutions that make bad assumptions. This concept is
sometimes abbreviated as “KISS.”

Fat Models, Utility Modules, Thin Views, Stupid Templates

When deciding where to put a piece of code, we like to follow the “Fat Models, Utility
Modules, Thin Views, Stupid Templates” approach.

We recommend that you err on the side of putting more logic into anything but views and
templates. The results are pleasing. The code becomes clearer, more self-documenting, less
duplicated, and a lot more reusable. As for template tags and filters, they should contain the
least amount of logic possible to function.

We cover this further in:

Fat Models Section 6.7: Understanding Fat Models
Utility Modules Section 31.2: Optimize Apps With Utility Modules
Thin Views Section 8.5: Try to Keep Business Logic Out of Views
Stupid Templates I Section 14.9: Follow a Minimalist Approach
Stupid Templates II Chapter 15: Template Tags and Filters

Start With Django by Default

Before we consider switching out core Django components for things like alternative tem-
plate engines, different ORMs, or non-relational databases, we first try an implementation
using standard Django components. If we run into obstacles, we explore all possibilities
before replacing core Django components.

See Chapter 20: Tradeoffs of Replacing Core Components.

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues xxxiii

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 0: Introduction

Be Familiar with Django’s Design Philosophies

It is good to periodically read the documentation on Django’s design philosophy because it
helps us understand why Django provides certain constraints and tools. Like any framework,
Django is more than just a tool for providing views, it’s a way of doing things designed to
help us put together maintainable projects in a reasonable amount of time.

Reference docs.djangoproject.com/en/3.2/misc/design-philosophies/

The Twelve-Factor App

A comprehensive approach to web-based application design, the Twelve-Factor App ap-
proach is growing in popularity amongst many senior and core Django developers. It is a
methodology for building deployable, scalable applications worth reading, and understand-
ing. Parts of it closely match the practices espoused in Two Scoops of Django, and we like
to think of it as suggested reading for any web-based application developer.

See 12factor.net

Our Writing Concepts
When we wrote this book, we wanted to provide to the reader and ourselves the absolute
best material possible. To do that, we adopted the following principles:

Provide the Best Material

We’ve done our absolute best to provide the best material possible, going to the known
resources on every topic covered to vet our material. We weren’t afraid to ask questions!
Then we distilled the articles, responses, and advice of experts into the content that exists
in the book today. When that didn’t suffice, we came up with our own solutions and vetted
them with various subject matter experts. It has been a lot of work, and we hope you are
pleased with the results.

If you are curious about the differences between this edition (Django 3.x) and the previous
edition (Django 1.11) of the book, you can find the shortlist of changes at
github.com/feldroy/two-scoops-of-django-3.x/blob/master/changelog.
md

Stand on the Shoulders of Giants

While we take credit and responsibility for our work, we certainly did not come up with all
the practices described in this book on our own.

xxxiv Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://docs.djangoproject.com/en/3.2/misc/design-philosophies/
http://12factor.net
https://github.com/feldroy/two-scoops-of-django-3.x/blob/master/changelog.md
https://github.com/feldroy/two-scoops-of-django-3.x/blob/master/changelog.md
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Without all of the talented, creative, and generous developers who make up the Django,
Python, and general open source software communities, this book would not exist. We
strongly believe in recognizing the people who have served as our teachers and mentors as
well as our sources of information, and we’ve tried our best to give credit wherever credit is
due.

Listen to Our Readers and Reviewers
In the previous editions of this book, we received a huge amount of feedback from a veritable
legion of readers and reviewers. This allowed us to greatly improve the quality of the book.
It is now at a level that we hoped for but never expected to achieve.

In return, we’ve shared credit at the back of the book and are continually working on ways
to pay it forward by improving the lives of developers around the world.

If you have any questions, comments, or other feedback about this edition, please share your
input by submitting issues in our issue tracker, at:

ä github.com/feldroy/two-scoops-of-django-3.x/issues

Also, at the end of the book is a link to leave a review for Two Scoops of Django on Amazon.
Doing this will help others make an informed decision about whether this book is right for
them.

Publish Issues and Errata
Nothing is perfect, even after extensive review cycles. We will be publishing issues and errata
at the Two Scoops of Django 3.x GitHub repo:

ä github.com/feldroy/two-scoops-of-django-3.x

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues xxxv

https://github.com/feldroy/two-scoops-of-django-3.x/issues
https://github.com/feldroy/two-scoops-of-django-3.x
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 0: Introduction

xxxvi Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

1 | Coding Style

A little attention to following standard coding style guidelines will go a long way. We highly
recommend that you read this chapter, even though you may be tempted to skip it.

1.1 The Importance of Making Your Code Readable
Programs must be written for people to read, and only incidentally for machines to
execute.

– Structure and Interpretation of Computer Programs by Abelson and Sussman

Code is read more than it is written. An individual block of code takes moments to write,
minutes or hours to debug, and can last forever without being touched again. It’s when you or
someone else visits code written yesterday or ten years ago that having code written in a clear,
consistent style becomes extremely useful. Understandable code frees mental bandwidth
from having to puzzle out inconsistencies, making it easier to maintain and enhance projects
of all sizes.

What this means is that you should go the extra mile to make your code as readable as
possible:

ä Avoid abbreviating variable names.
ä Write out your function argument names.
ä Document your classes and methods.
ä Comment your code.
ä Refactor repeated lines of code into reusable functions or methods.
ä Keep functions and methods short. A good rule of thumb is that scrolling should not

be necessary to read an entire function or method.

When you come back to your code after time away from it, you’ll have an easier time picking
up where you left off.

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 1

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 1: Coding Style

Take those pesky abbreviated variable names, for example. When you see a variable called
balance_sheet_decrease , it’s much easier to interpret in your mind than an abbreviated

variable like bsd or bal_s_d . These types of shortcuts may save a few seconds of typing,
but those savings come at the expense of hours or days of technical debt. It’s not worth it.

1.2 PEP 8
PEP8 is the official style guide for Python. We advise reading it in detail and learn to follow
the PEP 8 coding conventions: python.org/dev/peps/pep-0008/

PEP 8 describes coding conventions such as:

ä “Use 4 spaces per indentation level.”
ä “Separate top-level function and class definitions with two blank lines.”
ä “Method definitions inside a class are separated by a single blank line.”

All the Python files in your Django projects should follow PEP 8. If you have trouble re-
membering the PEP 8 guidelines, find a plugin for your code editor that checks your code
as you type.

When an experienced Python programmer sees gross violations of PEP 8 in a Django
project, even if they don’t say anything, they are probably thinking bad things. Trust us
on this one.

WARNING: Don’t Change an Existing Project’s Conventions

The style of PEP 8 applies to new Django projects only. If you are brought into an
existing Django project that follows a different convention than PEP 8, then follow
the existing conventions.

Please read the “A Foolish Consistency is the Hobgoblin of Little Minds” section
of PEP 8 for details about this and other reasons to break the rules:

ä python.org/dev/peps/pep-0008/#a-foolish-consistency-is-the-
hobgoblin-of-little-minds

PACKAGE TIP: Use Black to format Python Code

Black is an uncompromising Python code formatter created by Łukasz Langa. By
using it, we give up our control over the minutiae of hand-wrangling code into
legibility, and in return it gives us speed and determinism in how our code will
look. We love it as it frees us up from format noodling so we can get our work
done. We hook it into our code submission processes. You can find out more at

2 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

http://www.python.org/dev/peps/pep-0008/
https://feld.to/2y01SnH
https://feld.to/2y01SnH
https://github.com/feldroy/two-scoops-of-django-3.x/issues

1.2: PEP 8

github.com/psf/black.

PACKAGE TIP: Use Flake8 for Checking Code Quality

Created by Tarek Ziadé and now maintained by the PyCQA group, Flake8 is a
very useful command-line tool for checking coding style, quality, and logic errors
in projects. Use while developing locally and as a component of Continuous Inte-
gration. See github.com/PyCQA/flake8

1.2.1 The 79-Character Limit
No joke, I still deal with consoles that are restricted to 80 characters.

– Barry Morrison, Systems Engineer and tech reviewer of Two Scoops of
Django.

According to PEP 8, the limit of text per line is 79 characters. This exists because it’s a
safe value that most text-wrapping editors and developer teams can accommodate without
hurting the understandability of code.

However, PEP 8 also has a provision for relaxing this limit to 99 characters for exclusive
team projects. We interpret this to mean projects that are not open source.

Our preference is as follows:

ä On open source projects, there should be a hard 79-character limit. Our experience
has shown that contributors or visitors to these projects will grumble about line length
issues; however, it has not kept contributors away and we feel the value isn’t lost.

ä On private projects, we relax the limit to 99 characters, taking full advantage of mod-
ern monitors.

Please read python.org/dev/peps/pep-0008/#maximum-line-length

TIP: Aymeric Augustin on Line Length Issues

Django core developer Aymeric Augustin says, “Fitting the code in 79 columns is
never a good reason to pick worse names for variables, functions, and classes. It’s
much more important to have readable variable names than to fit in an arbitrary
limit of hardware from three decades ago.”

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 3

https://github.com/psf/black
https://github.com/PyCQA/flake8
https://feld.to/2YgG6Xs
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 1: Coding Style

1.3 The Word on Imports
PEP 8 suggests that imports should be grouped in the following order:

1 Standard library imports
2 Related third-party imports
3 Local application or library-specific imports

When we’re working on a Django project, our imports look something like the following:

Example 1.1: Good Python Imports

Stdlib imports
from math import sqrt
from os.path import abspath

Core Django imports
from django.db import models
from django.utils.translation import gettext_lazy as _

Third-party app imports
from django_extensions.db.models import TimeStampedModel

Imports from your apps
from splits.models import BananaSplit

(Note: you don’t actually need to comment your imports like this. The comments are just
here to explain the example.)

The import order in a Django project is:

1 Standard library imports.
2 Imports from core Django.
3 Imports from third-party apps including those unrelated to Django.
4 Imports from the apps that you created as part of your Django project. (You’ll read

more about apps in Chapter 4: Fundamentals of Django App Design.)

PACKAGE TIP: isort for Sorting Imports

The isort Python library sorts your imports so we don’t have to. It imports alphabet-
ically and automatically separates our imports into sections and by type.

4 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

1.4: Understand Explicit Relative Imports

1.4 Understand Explicit Relative Imports
When writing code, it’s important to do so in such a way that it’s easier to move, rename,
and version your work. In Python, explicit relative imports are a powerful tool for separat-
ing individual modules from being tightly coupled to the architecture around them. Since
Django apps are simply Python packages, the same rules apply.

To illustrate the benefits of explicit relative imports, let’s explore an example. Imagine that
the following snippet is from a Django project that you created to track your ice cream
consumption, including all of the waffle/sugar/cake cones that you have ever eaten.

Example 1.2: Relative Python Imports

cones/views.py
from django.views.generic import CreateView

Relative imports of the 'cones' package
from .models import WaffleCone
from .forms import WaffleConeForm

absolute import from the 'core' package
from core.views import FoodMixin

class WaffleConeCreateView(FoodMixin, CreateView):
model = WaffleCone
form_class = WaffleConeForm

By understanding the difference between absolute and explicit relative imports, we can
immediately tell our local/internal imports from global/external imports, highlighting the
Python package as a unit of code.

To summarize, here’s a table of the different Python import types and when to use them in
Django projects:

Code Import Type Usage
from core.views import
FoodMixin

absolute import Use when importing from
outside the current app

from .models import Waf-
fleCone

explicit relative Use when importing from
another module in the cur-
rent app

Table 1.1: Imports: Absolute vs. Explicit Relative

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 5

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 1: Coding Style

Get into the habit of using explicit relative imports. It’s very easy to do, and using explicit
relative imports is a good habit for any Python programmer to develop.

TIP: Doesn’t PEP 328 Clash With PEP 8?
See what Guido van Rossum, BDFL of Python says about it:

ä python.org/pipermail/python-dev/2010-October/104476.html

Additional reading: python.org/dev/peps/pep-0328/

1.5 Avoid Using Import *
In 99 percent of all our work, we explicitly import each module:

Example 1.3: Explicit Python Imports

from django import forms
from django.db import models

Never do the following:

Example 1.4: Import *

ANTI-PATTERN: Don't do this!
from django.forms import *
from django.db.models import *

The reason for this is to avoid implicitly loading all of another Python module’s locals into
and over our current module’s namespace, this can produce unpredictable and sometimes
catastrophic results.

We do cover a specific exception to this rule in Chapter 5: Settings and Requirements Files.

Let’s look at the bad code example above. Both the Django forms and Django models
libraries have a class called CharField . By implicitly loading both libraries, the models
library overwrote the forms version of the class. This can also happen with Python built-in
libraries and other third-party libraries overwriting critical functionality.

Using import * is like being that greedy customer at an ice cream shop who asks for a
free taster spoon of all thirty-one flavors, but who only purchases one or two scoops. Don’t
import everything if you’re only going to use one or two things.

6 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://mail.python.org/pipermail/python-dev/2010-October/104476.html
https://www.python.org/dev/peps/pep-0328/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

1.6: Django Coding Style

If the customer then walked out with a giant ice cream bowl containing a scoop of every or
almost every flavor, though, it would be a different matter.

Figure 1.1: Using import * in an ice cream shop.

1.5.1 Other Python Naming Collisions

You’ll run into similar problems if you try to import two things with the same name, such
as:

Example 1.5: Python Module Collisions

ANTI-PATTERN: Don't do this!
from django.db.models import CharField
from django.forms import CharField

If you need to avoid a naming collision of this nature, you can always use aliases to overcome
them:

Example 1.6: Using Aliases to Avoid Python Module Collisions

from django.db.models import CharField as ModelCharField
from django.forms import CharField as FormCharField

1.6 Django Coding Style
This section covers both the official guidelines as well as unofficial but commonly-accepted
Django conventions.

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 7

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 1: Coding Style

1.6.1 Consider the Django Coding Style Guidelines

It goes without saying that it’s a good idea to be aware of common Django style conventions.
In fact, internally Django has its own set of style guidelines that extend PEP 8:

ä docs.djangoproject.com/en/3.2/internals/contributing/
writing-code/ coding-style/

Additionally, while the following are not specified in the official standards, they are com-
mon enough in the Django community that you will probably want to follow them in your
projects.

TIP: Review the Documentation on Django Internals

The documentation on Django internals holds a lot more than just coding style.
They’re chock-full of useful information, including the history of the Django project,
the release process, and more! We recommend you check them out.

docs.djangoproject.com/en/3.2/internals/

1.6.2 Use Underscores in URL Pattern Names Rather Than Dashes

We always try to use underscores (the “_” character) over dashes. This isn’t just more
Pythonic, it’s friendlier to more IDEs and text editors. Note that we are referring to the
name argument of url() here, not the actual URL typed into the browser.

The wrong way, with dashes in url names:

Example 1.7: Bad URL Pattern Names

patterns = [
path(route='add/',

view=views.add_topping,
name='add-topping'),

]

The right way, with underscores in url names:

8 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://docs.djangoproject.com/en/3.2/internals/contributing/writing-code/coding-style/
https://docs.djangoproject.com/en/3.2/internals/contributing/writing-code/coding-style/
https://docs.djangoproject.com/en/3.2/internals/contributing/writing-code/coding-style/
https://docs.djangoproject.com/en/3.2/internals/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

1.7: Choose JS, HTML, and CSS Style Guides

Example 1.8: Good URL Pattern Names

patterns = [
path(route='add/',

view=views.add_topping,
name='toppings:add_topping'),

]

Dashes in actual URLs are fine (e.g. route=’add-topping/’).

1.6.3 Use Underscores in Template Block Names Rather Than Dashes
For the same reasons as using underscores in URL pattern names, we recommend using
underscores when defining names of template blocks: in this case, they’re more Pythonic
and more editor-friendly.

1.7 Choose JS, HTML, and CSS Style Guides
1.7.1 JavaScript Style Guides
Unlike Python which has one official style guide, there is no official JavaScript style guide.
Instead, a number of unofficial JS style guides have been created by various individuals
and/or companies:

ä Standard combined JavaScript and Node.js Style Guide github.com/standard/
standard

ä idiomatic.js: Principles of Writing Consistent, Idiomatic JavaScript github.com/
rwaldron/idiomatic.js

ä Airbnb JavaScript Style Guide github.com/airbnb/javascript

There is no consensus in the Django or JavaScript communities on any one of these, so just
pick your favorite and stick with it.

However, if you are using a JavaScript framework with a style guide of its own, you should
use that guide. For example, ember.js has its own style guide.

PACKAGE TIP: ESLint: A Pluggable Linting Utility for
JavaScript and JSX

ESLint (eslint.org) is a tool for checking JavaScript and JSX code styles. It has
presets for the JS style rules of several style guides, including a few of those listed
above. There are also ESLint plugins for various text editors and ESLint tasks for

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 9

https://github.com/standard/standard
https://github.com/standard/standard
https://github.com/rwaldron/idiomatic.js/
https://github.com/rwaldron/idiomatic.js/
https://github.com/airbnb/javascript
http://eslint.org/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 1: Coding Style

various JavaScript tools like Webpack, Gulp, and Grunt.

1.7.2 HTML and CSS Style Guides
ä Code Guide by @mdo for HTML and CSS: codeguide.co
ä idomatic-css: Principles of Writing Consistent, Idiomatic CSS:

github.com/necolas/idiomatic-css

PACKAGE TIP: stylelint

Stylelint (stylelint.io) is a coding style formatter for CSS. It checks for consis-
tency against the rules for which you configure it, and checks the sort order of your
CSS properties. Just as for ESLint, there are stylelint text editor and task/build tool
plugins.

1.8 Never Code to the IDE (Or Text Editor)
There are developers who make decisions about the layout and implementation of their
project based on the features of IDEs (Integrated Development Environment). This can
make the discovery of project code extremely difficult for anyone whose choice of develop-
ment tool doesn’t match the original author.

Always assume that the developers around you like to use their own tools and that your
code and project layout should be transparent enough that someone stuck using Notepad
or Nano will be able to navigate your work.

For example, introspecting template tags or discovering their source can be difficult and
time consuming for developers not using a very, very limited pool of IDEs. Therefore, we
follow the commonly-used naming pattern of <app_name>_tags.py.

1.9 Summary
This chapter covered our preferred coding style and explained why we prefer each technique.

Even if you don’t follow the coding style that we use, please follow a consistent coding
style. Projects with varying styles are much harder to maintain, slowing development, and
increasing the chances of developer mistakes.

10 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://twitter.com/mdo
http://codeguide.co
https://github.com/necolas/idiomatic-css
https://stylelint.io/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

2 | The Optimal Django Environment
Setup

This chapter describes what we consider the best local environment setup for intermediate
and advanced developers working with Django.

2.1 Use the Same Database Engine Everywhere
A common developer pitfall is using SQLite3 for local development and PostgreSQL (or
MySQL) in production. This section applies not only to the SQLite3/PostgreSQL scenario
but to any scenario where you’re using two different databases and expecting them to behave
identically.

Here are some of the issues we’ve encountered with using different database engines for
development and production:

2.1.1 You Can’t Examine an Exact Copy of Production Data Locally
When your production database is different from your local development database, you can’t
grab an exact copy of your production database to examine data locally.

Sure, you can generate an SQL dump from production and import it into your local database,
but that doesn’t mean that you have an exact copy after the export and import.

2.1.2 Different Databases Have Different Field Types/Constraints
Keep in mind that different databases handle type casting of field data differently. Django’s
ORM attempts to accommodate those differences, but there’s only so much that it can do.

For example, some people use SQLite3 for local development and PostgreSQL in produc-
tion, thinking that the Django ORM gives them the excuse not to think about the differ-
ences. Eventually, they run into problems, since SQLite3 has dynamic, weak typing instead
of strong typing.

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 11

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 2: The Optimal Django Environment Setup

Yes, the Django ORM has features that allow your code to interact with SQLite3 in a
more strongly typed manner, but form and model validation mistakes in development will
go uncaught (even in tests) until the code goes to a production server. You may be saving
long strings locally without a hitch, for example, since SQLite3 won’t care. But then in
production, your PostgreSQL or MySQL database will throw constraint errors that you’ve
never seen locally, and you’ll have a hard time replicating the issues until you set up an
identical database locally.

Most problems usually can’t be discovered until the project is run on a strongly typed
database (e.g. PostgreSQL or MySQL). When these types of bugs hit, you end up kicking
yourself and scrambling to set up your local development machine with the right database.

TIP: Django+PostgreSQL Rocks

Most Django developers that we know prefer to use PostgreSQL for all environ-
ments: development, staging, QA, and production systems.

Depending on your operating system, use these instructions:

ä Mac: Download the one-click Mac installer at postgresapp.com
ä Windows: Download the one-click Windows installer at

postgresql.org/download/windows/
ä Linux: Install via your package manager, or follow the instructions at

postgresql.org/download/linux/

PostgreSQL may take some work to get running locally on some operating systems,
but we find that it’s well worth the effort.

2.1.3 Fixtures Are Not a Magic Solution
You may be wondering why you can’t simply use fixtures to abstract away the differences
between your local and production databases.

Well, fixtures are great for creating simple hardcoded test data sets. Sometimes you need
to pre-populate your databases with fake test data during development, particularly during
the early stages of a project.

Fixtures are not a reliable tool for migrating large data sets from one database to another in
a database-agnostic way. They are simply not meant to be used that way. Don’t mistake the
ability of fixtures to create basic data (dumpdata/loaddata) with the capability to migrate
production data between database tools.

12 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

http://postgresapp.com
http://postgresql.org/download/windows/
http://postgresql.org/download/linux/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

2.2: Use Pip and (Virtualenv or venv)

WARNING: Don’t Use SQLite3 with Django in Production

For any web project with more than one user, or requiring anything but light con-
currency, SQLite3 is a nightmare in the making. In the simplest terms possible,
SQLite3 works great in production until it doesn’t. We’ve experienced it ourselves,
and heard horror stories from others.

This issue compounds itself with the difficulty and complexity involved in migrat-
ing data out of SQLite3 and into something designed for concurrency (e.g., Post-
greSQL) when problems eventually arise.

While we’re aware that there are plenty of articles advocating the use of SQLite3 in
production, the fact that a tiny group of SQLite3 power users can get away with it
for particular edge cases is not justification for using it in production Django.

2.2 Use Pip and (Virtualenv or venv)
If you are not doing so already, we strongly urge you to familiarize yourself with both pip
and virtualenv. They are the de facto standard for Django projects, and most companies that
use Django rely on these tools.

Pip is a tool that fetches Python packages from the Python Package Index and its mirrors.
It is used to manage and install Python packages and it comes with most non-Linux Python
installations.

Virtualenv is a tool for creating isolated Python environments for maintaining package
dependencies. It’s great for situations where you’re working on more than one project at a
time, and where there are clashes between the version numbers of different libraries that
your projects use.

For example, imagine that you’re working on one project that requires Django 3.0 and an-
other that requires Django 3.2.

ä Without virtualenv (or an alternative tool to manage dependencies), you have to re-
install Django every time you switch projects.

ä If that sounds tedious, keep in mind that most real Django projects have at least a
dozen dependencies to maintain.

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 13

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 2: The Optimal Django Environment Setup

Pip is already included in Python 3.4 and higher. Further reading and installation instruc-
tions can be found at:

ä pip: pip.pypa.io
ä virtualenv: virtualenv.pypa.io

PACKAGE TIP: Virtualenv Alternative: Conda
Conda is an open source package management system and environment manage-
ment system that runs on Windows, Mac, and Linux. Originating from the data
science community, of all the packaging environments, it is the easiest for users
on Windows platforms who want to install compiled binaries. Conda also makes
the handling of multiple Python versions trivial. At the moment, this is Daniel’s
preferred development, he uses it with pip to manage his dependencies.
More information: docs.conda.io/

PACKAGE TIP: Pip+Virtualenv Alternatives: Poetry and Pipenv

Poetry helps you declare, manage, and install dependencies of Python projects, en-
suring you have the right stack everywhere. We appreciate how it elegantly encap-
sulates so much functionality in an intuitive CLI. It is popular and stable enough to
be a dependency management platform we can recommend.
More information: python-poetry.org
Pipenv is a tool that wraps pip and virtualenv into a single interface. It automates
processes like creating environments and introduces Pipfile.lock, a file that allows
for deterministic builds.
More information: pipenv.pypa.io/

WARNING: Pip is Not Necessarily Installed by Default on Linux
Distros
For many Linux distributions the maintainers remove some modules from the stan-
dard Python library and keep them in separated installable packages. For exam-
ple, on ubuntu you must install python3-pip, python3-setuptools, python3-wheel , and
python3-distutils.
Since Windows 10 will in the near future come with stable versions of WSL2 (Linux
on Windows), this pattern may also affect those users in a similar manner.

14 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://pip.pypa.io/en/stable/
https://virtualenv.pypa.io/en/stable/
https://docs.conda.io/
https://python-poetry.org/
https://pipenv.pypa.io/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

2.2: Use Pip and (Virtualenv or venv)

2.2.1 virtualenvwrapper

We also highly recommend virtualenvwrapper for Mac and Linux or
virtualenvwrapper-win for Windows. The project was started by Doug Hellman.

Personally, we think virtualenv without virtualenvwrapper can be a pain to use, because every
time you want to activate a virtual environment, you have to type something long like:

Example 2.1: Activating virtualenv

$ source ~/.virtualenvs/twoscoops/bin/activate

With virtualenvwrapper, you’d only have to type:

Example 2.2: Activating virtualenv

$ workon twoscoops

Virtualenvwrapper is a popular companion tool to pip and virtualenv and makes our lives
easier, but it’s not an absolute necessity.

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 15

http://virtualenvwrapper.rtfd.org
https://pypi.org/project/virtualenvwrapper-win
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 2: The Optimal Django Environment Setup

Figure 2.1: Pip, virtualenv, and virtualenvwrapper in ice cream bar form.

2.3 Install Django and Other Dependencies via Pip
The official Django documentation describes several ways of installing Django. Our recom-
mended installation method is with pip and requirements files.

To summarize how this works: a requirements file is like a grocery list of Python packages
that you want to install. It contains the name and optionally suitable version range of each
package. You use pip to install packages from this list into your virtual environment.

We cover the setup of and installation from requirements files in Chapter 5: Settings and
Requirements Files.

TIP: Setting PYTHONPATH

If you have a firm grasp of the command line and environment variables, you can
set your virtualenv PYTHONPATH so that the django-admin command can be used
to serve your site and perform other tasks.

You can also set your virtualenv’s PYTHONPATH to include the current directory with
the latest version of pip. Running “pip install -e .” from your project’s root
directory will do the trick, installing the current directory as a package that can be

16 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

2.4: Use Git For Version Control

edited in place.

If you don’t know how to set this or it seems complicated, don’t worry about it and
stick with manage.py.

Additional reading:
ä hope.simons-rock.edu/~pshields/cs/python/pythonpath.html
ä docs.djangoproject.com/en/3.2/ref/django-admin/

2.4 Use Git For Version Control
Version control systems are also known as revision control or source control. Whenever you
work on any Django project, you should use a version control system to keep track of your
code changes.

Git is the industry standard for developers of all languages and tools. Git makes it easy to
create branches and merge changes. When using a version control system, it’s important
to not only have a local copy of your code repository but also to use a code hosting service
for backups. Fortunately, there are a number of services and tools who host repositories. Of
them, we recommend using GitHub (github.com) or GitLab (gitlab.com).

2.5 Optional: Identical Environments
What works on a programmer’s laptop might not work in production. But what if your
local development environment was identical to your project’s staging, test, and production
environments?

That said, if the production infrastructure consists of 10,000 servers, it’s completely unrealis-
tic to have another 10,000 local servers for development purposes. So when we say identical,
we mean “as identical as realistically possible.”

These are the environment differences that you can eliminate:

Operating system differences. If we’re developing on a Mac or on Windows, and if our
site is deployed on Ubuntu Linux, then there are huge differences between how our
Django project works locally and how it works in production.

Python setup differences. Let’s face it, many developers and sysadmins don’t even know
which version of Python they have running locally, although no one will admit it.
Why? Because setting up Python properly and understanding your setup completely
is hard.

Developer-to-developer differences. On large development teams, a lot of time can be
wasted trying to debug differences between one developer’s setup and another’s.

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 17

http://hope.simons-rock.edu/~pshields/cs/python/pythonpath.html
https://docs.djangoproject.com/en/3.2/ref/django-admin/
https://github.com/
https://gitlab.com/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 2: The Optimal Django Environment Setup

The most common way to set up identical development environments is with Docker.

2.5.1 Docker
At the time of this writing, Docker is the industry standard for containerization of environ-
ments. It has excellent support across all operating systems, including Microsoft Windows.
Working with Docker is sort of like developing inside of a VM, except more lightweight.
Docker containers share the host OS but have their own isolated process and memory space.
Furthermore, since Docker uses a union-capablefilesystem, containers can be built
quickly off of a snapshot plus deltas rather than building from scratch.

For the purposes of local development, its main benefit is that it makes setting up environ-
ments that closely match development and production much easier.

For example, if our development laptops run Mac (or Windows, or Centos, etc) but a
project’s configuration is Ubuntu-specific, we can use Docker via Docker Compose to
quickly get a virtual Ubuntu development environment set up locally, complete with all
the packages and setup configurations needed for the project. We can:

ä Set up identical local development environments for everyone on our project’s dev
team.

ä Configure these local development environments in a way similar to our staging, test,
and production servers.

The potential downsides are:

ä Extra complexity that is not needed in many situations. For simpler projects where
we’re not too worried about OS-level differences, it’s easier to skip this.

ä On older development machines, running even lightweight containers can slow per-
formance to a crawl. Even on newer machines, small but noticeable overhead is added.

References for developing with Docker:

ä cookiecutter-django.readthedocs.io/en/latest/
developing-locally-docker.html

ä http://bit.ly/1dWnzVW Real Python article on Django and Docker Compose
ä dockerbook.com

2.6 Summary
This chapter covered using the same database in development as in production, pip, vir-
tualenv, venv, conda, poetry, pipenv, version control, and Docker. These are good to have
in your tool chest, since they are commonly used not just in Django, but in the majority of
Python software development.

18 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://en.wikipedia.org/wiki/Union_mount
http://cookiecutter-django.readthedocs.io/en/latest/developing-locally-docker.html
http://cookiecutter-django.readthedocs.io/en/latest/developing-locally-docker.html
https://realpython.com/blog/python/django-development-with-docker-compose-and-machine/
https://www.dockerbook.com/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

3 | How to Lay Out Django Projects

Project layout is one of those areas where core Django developers have differing opinions
about what they consider best practice. In this chapter, we present our approach, which is
one of the most commonly used ones.

PACKAGE TIP: Django Project Templates

There are a number of project templates that really kickstart a Django project and
follow the patterns described in this chapter. Here are several links that may be of
use when we bootstrap a project:

ä github.com/pydanny/cookiecutter-django
Featured in this chapter.

ä github.com/grantmcconnaughey/cookiecutter-django-vue-graphql-aws
Also featured in this chapter.

ä djangopackages.org/grids/g/cookiecutters/
A list of alternative cookiecutter templates.

3.1 Django 3’s Default Project Layout
Let’s examine the default project layout that gets created when you run startproject and
startapp:

Example 3.1: Default startproject and startapp

django-admin startproject mysite
cd mysite
django-admin startapp my_app

Here’s the resulting project layout:

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 19

https://github.com/pydanny/cookiecutter-django
https://github.com/grantmcconnaughey/cookiecutter-django-vue-graphql-aws
https://djangopackages.org/grids/g/cookiecutters/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 3: How to Lay Out Django Projects

Example 3.2: Default Project Layout

mysite/
├── manage.py
├── my_app
│ ├── __init__.py
│ ├── admin.py
│ ├── apps.py
│ ├── migrations
│ │ └── __init__.py
│ ├── models.py
│ ├── tests.py
│ └── views.py
└── mysite

├── __init__.py
├── asgi.py
├── settings.py
├── urls.py
└── wsgi.py

There are a number of problems with Django’s default project layout. While useful for the
tutorial, it’s not quite as useful once you are trying to put together a real project. The rest of
this chapter will explain why.

3.2 Our Preferred Project Layout
We rely on a modified two-tier approach that builds on what is generated by the
django-admin startproject management command. Our layouts at the highest level
are:

Example 3.3: Project Root Levels

<repository_root>/
├── <configuration_root>/
├── <django_project_root>/

Let’s go over each level in detail:

3.2.1 Top Level: Repository Root
The <repository_root> directory is the absolute root directory of the project. In addition to the
<django_project_root> and <configuration_root>, we also include other critical components

20 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

3.2: Our Preferred Project Layout

like the README.md , docs/ directory, manage.py, .gitignore, requirements.txt files, and
other high-level files that are required for deployment and running the project.

Figure 3.1: Yet another reason why repositories are important.

TIP: Common Practice Varies Here
Some developers like to combine the <django_project_root> into the <reposi-
tory_root> of the project.

3.2.2 Second Level: Django Project Root

The <django_project_root>/ directory is the root of the actual Django project. Non-
configuration Python code files are inside this directory, its subdirectories, or below.

If using django-admin startproject, you would run the command from within the
repository root. The Django project that it generates would then be the project root.

3.2.3 Second Level: Configuration Root

The <configuration_root> directory is where the settings module and base URLConf (urls.py)
are placed. This must be a valid Python package containing an __init__.py module. Even in
Python 3, if the __init__.py is not included then the <configuration_root> won’t be recog-
nized as a python package.

If using django-admin startproject, the configuration root is initially inside of the
Django project root. It should be moved to the repository root.

The files in the configuration root are part of what is generated by the
django-admin startproject command.

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 21

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 3: How to Lay Out Django Projects

Figure 3.2: Three-tiered scoop layout.

3.3 Sample Project Layout
Let’s take a common example: a simple rating site. Imagine that we are creating Ice Cream
Ratings, a web application for rating different brands and flavors of ice cream.

This is how we would lay out such a project:

Example 3.4: Layout for icecreamratings

icecreamratings_project
├── config/
│ ├── settings/
│ ├── __init__.py
│ ├── asgi.py
│ ├── urls.py
│ └── wsgi.py
├── docs/
├── icecreamratings/
│ ├── media/ # Development only!
│ ├── products/
│ ├── profiles/
│ ├── ratings/
│ ├── static/
│ └── templates/
├── .gitignore

22 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

3.3: Sample Project Layout

├── Makefile
├── README.md
├── manage.py
└── requirements.txt

Let’s do an in-depth review of this layout. As you can see, in the icecreamratings_project/
directory, which is the <repository_root> , we have the following files and directories. We
describe them in the table below:

File or Directory Purpose
.gitignore Lists the files and directories that Git

should ignore.
config/ The <configuration_root> of the project,

where project-wide settings, urls.py, and
wsgi.py modules are placed (We’ll cover
settings layout later in Chapter 5: Settings
and Requirements Files).

Makefile Contains simple deployment tasks and
macros. For more complex deployments
you may want to rely on tools like Invoke,
Paver, or Fabric.

manage.py If you leave this in, don’t modify its con-
tents. Refer to Chapter 5: Settings and Re-
quirements Files for more details.

README.md and docs/ Developer-facing project documentation.
We cover this in Chapter 25: Documenta-
tion: Be Obsessed.

requirements.txt A list of Python packages required by your
project, including the Django 3.x package.
You’ll read more about this in Chapter 23:
Django’s Secret Sauce: Third-Party Pack-
ages.

icecreamratings/ The <django_project_root> of the project.

Table 3.1: Repository Root Files and Directories

When anyone visits this project, they are provided with a high-level view of the project.
We’ve found that this allows us to work easily with other developers and even non-
developers. For example, it’s not uncommon for designer-focused directories to be created
in the root directory.

Inside the icecreamratings_project/icecreamratings directory, at the <django_project_root>, we
place the following files/directories:

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 23

https://pypi.org/project/invoke
https://pypi.org/project/Paver/
http://fabfile.org
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 3: How to Lay Out Django Projects

File or Directory Purpose
media/ For use in development only: user-

generated static media assets such as
photos uploaded by users. For larger
projects, this will be hosted on separate
static media server(s).

products/ App for managing and displaying ice
cream brands.

profiles/ App for managing and displaying user pro-
files.

ratings/ App for managing user ratings.
static/ Non-user-generated static media assets in-

cluding CSS, JavaScript, and images. For
larger projects, this will be hosted on sepa-
rate static media server(s).

templates/ Where you put your site-wide Django tem-
plates.

Table 3.2: Django Project Files and Directories

TIP: Conventions for Static Media Directory Names

In the example above, we follow the official Django documentation’s convention of
using static/ for the (non-user-generated) static media directory.

If you find this confusing, there’s no harm in calling it assets/ or site_assets/ instead.
Just remember to update your STATICFILES_DIRS setting appropriately.

3.4 What About the Virtualenv?
Notice how there is no virtualenv directory anywhere in the project directory or its subdi-
rectories? That is completely intentional.

A good place to create the virtualenv for this project would be a separate directory where
you keep all of your virtualenvs for all of your Python projects. We like to put all our envi-
ronments in one directory and all our projects in another.

24 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

3.4: What About the Virtualenv?

Figure 3.3: An isolated environment, allowing your ice cream to swim freely.

For example, on Mac or Linux:

Example 3.5: On Mac or Linux

~/projects/icecreamratings_project/
~/.envs/icecreamratings/

On Windows:

Example 3.6: On Windows

c:\projects\icecreamratings_project\
c:\envs\icecreamratings\

If you’re using virtualenvwrapper (Mac or Linux) or virtualenvwrapper-win (Windows),
that directory defaults to ~/.virtualenvs/ and the virtualenv would be located at:

Example 3.7: virtualenvwrapper

~/.virtualenvs/icecreamratings/

Also, remember, there’s no need to keep the contents of your virtualenv in version control
since it already has all the dependencies captured in requirements.txt, and since you won’t be
editing any of the source code files in your virtualenv directly. Just remember that require-
ments.txt does need to remain in version control!

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 25

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 3: How to Lay Out Django Projects

WARNING: Don’t Upload Environment Directories To Public
Repos

A common mistake by less experienced coders trying to build a GitHub portfolio is
to include a venv or icecreamratings_env directory in public GitHub repos. This is
a red flag to people looking over such projects, demonstrating in the clearest terms
the inexperience of the person.
The same goes for .node_modules.
The way to avoid making this mistake is for all projects to have a .gitignore file in
the root directory. This ensures that files and directories that shouldn’t be added to
git and never included in a commit. Useful references:

ä help.github.com/en/github/using-git/ignoring-files -
GitHub’s instructions on the topic.

ä github.com/github/gitignore/blob/master/Python.gitignore
- A good basic .gitignore for python projects.

3.4.1 Listing Current Dependencies

If you have trouble determining which versions of dependencies you are using in your vir-
tualenv, at the command line you can list your dependencies by typing:

Example 3.8: Listing Current Dependencies

$ pip freeze

With Mac or Linux, you can pipe this into a requirements.txt file:

Example 3.9: Saving Current Dependencies to a File

$ pip freeze > requirements.txt

3.5 Going Beyond startproject
Django’s startproject command allows you to create and use simple Django project
templates. However, over time the controls (deployment, front end tooling, etc) around a
project grow more and more complex. Most of us hit the limitations of startproject
quickly and need a more powerful project templating tool. Hence the use of Cookiecutter
(cookiecutter.readthedocs.io), an advanced project templating tool that can be used
for generating Django project boilerplate.

26 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://help.github.com/en/github/using-git/ignoring-files
https://github.com/github/gitignore/blob/master/Python.gitignore
https://cookiecutter.readthedocs.io/en/latest
https://github.com/feldroy/two-scoops-of-django-3.x/issues

3.5: Going Beyond startproject

TIP: Audrey on Cookiecutter

I originally created Cookiecutter in 2013 to meet my own Python package boiler-
plate creation needs. It was the first project to template file paths and file contents
identically, an idea I thought was silly but decided to implement anyway.

There are now thousands of Cookiecutter templates for Python, Django, FastAPI,
C, C++, JavaScript, Ruby, LaTeX/XeTeX, Berkshelf-Vagrant, HTML, Scala, 6502
Assembly, and more. Numerous companies use Cookiecutter internally to power a
variety of tools.

Cookiecutter isn’t just a command-line tool, it’s a library used by a host of orga-
nizations. You can also find it integrated into IDEs such as PyCharm and Visual
Studio.

In this section, we present a popular Django project template, rendered by Cookiecutter.

3.5.1 Generating Project Boilerplate With Cookiecutter
Here’s how Cookiecutter works:

1 First, it asks you to enter a series of values (e.g. the value for project_name).
2 Then it generates all your boilerplate project files based on the values you entered.

First, install Cookiecutter as per the instructions in the official Cookiecutter documentation.

3.5.2 Generating a Starting Project With Cookiecutter Django
Here’s how you would use Cookiecutter to generate your Django 3 boilerplate from
Cookiecutter Django:

Example 3.10: Using Cookiecutter and Cookiecutter Django

cookiecutter https://github.com/pydanny/cookiecutter-django
You've downloaded /home/quique/.cookiecutters/cookiecutter-django

before. Is it okay to delete and re-download it? [yes]: no↪→

Do you want to re-use the existing version? [yes]: yes
project_name [My Awesome Project]: icecreamratings
project_slug [icecreamratings]:
description [Behold My Awesome Project!]: Support your Ice Cream

Flavour!↪→

author_name [Daniel Feldroy]:

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 27

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 3: How to Lay Out Django Projects

<snip for brevity>

After filling out all the values, in the directory where you ran Cookiecutter, it will create
a directory for your project. In this case with the values entered above, the name of this
directory will be icecreamratings.

The resulting project files will be roughly similar to the layout example we provided. The
project will include settings, requirements, starter documentation, a starter test suite, and
more.

TIP: What Are All the Other Files?
Keep in mind that Cookiecutter Django goes much further than the basic project
layout components that we outlined earlier in this chapter. It’s our ultimate Django
project template that we use for our projects, so it has a lot of other bells and whistles.

It’s a lot fancier than the default startproject template provided by Django.
We’d rather have you see our actual, real-life template that we use for our projects
than a stripped-down, beginner-oriented template that we don’t use.

You are welcome to fork Cookiecutter Django and customize it to fit your own Django
project needs.

3.6 Other Alternatives to startproject
People can get very opinionated about their project layout being the “right” way, but as we
mentioned, there’s no one right way.

It’s okay if a project differs from our layout, just so long as things are either done in a hier-
archical fashion or the locations of elements of the project (docs, templates, apps, settings,
etc) are documented in the root README.md .

We encourage you to explore the forks of Cookiecutter Django, and to search for other
Cookiecutter-powered Django project templates online. You’ll learn all kinds of interesting
tricks by studying other people’s project templates.

TIP: cookiecutter-django-vue-graphql-aws

Another good open source Cookiecutter-powered template is Grant Mc-
Connaughey’s cookiecutter-django-vue-graphql-aws. It knits together
technology we enjoy (Django, GraphQL, Vue, AWS Lambda + Zappa,

28 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

3.7: Summary

etc.) in a concise manner. What isn’t documented is named explicitly.
More information can be found at github.com/grantmcconnaughey/
cookiecutter-django-vue-graphql-aws

Figure 3.4: Project layout differences of opinion can cause ice cream fights.

3.7 Summary
In this chapter, we covered our approach to basic Django project layout. We provided a
detailed example to give you as much insight as possible into our practice. Cookiecutter and
two templates are introduced.

Project layout is one of those areas of Django where practices differ widely from developer
to developer and group to group. What works for a small team may not work for a large
team with distributed resources. Whatever layout is chosen it should be documented clearly.

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 29

https://github.com/grantmcconnaughey/cookiecutter-django-vue-graphql-aws
https://github.com/grantmcconnaughey/cookiecutter-django-vue-graphql-aws
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 3: How to Lay Out Django Projects

30 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

4 | Fundamentals of Django App
Design

It’s not uncommon for new Django developers to become understandably confused by
Django’s usage of the word “app”. So before we get into Django app design, it’s very impor-
tant that we go over some definitions.

A Django project is a web application powered by the Django web framework.
Django apps are small libraries designed to represent a single aspect of a project. A Django

project is made up of many Django apps. Some of those apps are internal to the project
and will never be reused; others are third-party Django packages.

INSTALLED_APPS is the list of Django apps used by a given project available in its
INSTALLED_APPS setting.

Third-party Django packages are simply pluggable, reusable Django apps that have been
packaged with the Python packaging tools. We’ll begin coverage of them in Chap-
ter 23: Django’s Secret Sauce: Third-Party Packages.

Figure 4.1: It’ll make more sense when you see the next figure.

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 31

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 4: Fundamentals of Django App Design

Figure 4.2: Did that make sense? If not, read it again.

4.1 The Golden Rule of Django App Design
James Bennett is a Django core developer. He taught us everything that we know about
good Django app design. We quote him:

“The art of creating and maintaining a good Django app is that it should
follow the truncated Unix philosophy according to Douglas McIlroy: ‘Write
programs that do one thing and do it well.”’

In essence, each app should be tightly focused on its task. If an app can’t be explained in
a single sentence of moderate length, or you need to say ‘and’ more than once, it probably
means the app is too big and should be broken up.

4.1.1 A Practical Example of Apps in a Project
Imagine that we’re creating a web application for our fictional ice cream shop called “Two
Scoops”. Picture us getting ready to open the shop: polishing the countertops, making the
first batches of ice cream, and building the website for our shop.

We’d call the Django project for our shop’s website twoscoops_project. The apps within our
Django project might be something like:

32 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

4.1: The Golden Rule of Django App Design

ä A flavors app to track all of our ice cream flavors and list them on our website.
ä A blog app for the official Two Scoops blog.
ä An events app to display listings of our shop’s events on our website: events such as

Strawberry Sundae Sundays and Fudgy First Fridays.

Each one of these apps does one particular thing. Yes, the apps relate to each other, and you
could imagine events or blog posts that are centered around certain ice cream flavors, but it’s
much better to have three specialized apps than one app that does everything.

In the future, we might extend the site with apps like:

ä A shop app to allow us to sell pints by mail order.
ä A tickets app, which would handle ticket sales for premium all-you-can-eat ice cream

fests.

Notice how events are kept separate from ticket sales. Rather than expanding the events app
to sell tickets, we create a separate tickets app because most events don’t require tickets, and
because event calendars and ticket sales have the potential to contain complex logic as the
site grows.

Eventually, we hope to use the tickets app to sell tickets to Icecreamlandia, the ice cream
theme park filled with thrill rides that we’ve always wanted to open.

Did we say that this was a fictional example? Ahem...well, here’s an early concept map of
what we envision for Icecreamlandia:

Figure 4.3: Our vision for Icecreamlandia.

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 33

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 4: Fundamentals of Django App Design

4.2 What to Name Your Django Apps
Everyone has their own conventions, and some people like to use really colorful names. We
like to use naming systems that are dull, boring, and obvious. In fact, we advocate doing the
following:

When possible keep to single word names like flavors, animals, blog, polls, dreams, estimates,
and finances. A good, easy-to-remember app name makes the project easier to maintain.

As a general rule, the app’s name should be a plural version of the app’s main model, but
there are many good exceptions to this rule, blog being one of the most common ones.

Don’t just consider the app’s main model, though. You should also consider how you want
your URLs to appear when choosing a name. If you want your site’s blog to appear at
http://www.example.com/weblog/, then consider naming your app weblog rather than
blog, posts, or blogposts, even if the main model is Post, to make it easier for you to see
which app corresponds with which part of the site.

Use valid, PEP 8-compliant, importable Python package names: short, all-lowercase names
without numbers, dashes, periods, spaces, or special characters. If needed for readability, you
can use underscores to separate words, although the use of underscores is discouraged.

4.3 When in Doubt, Keep Apps Small
Don’t worry too hard about getting app design perfect. It’s an art, not a science. Sometimes
you have to rewrite them or break them up. That’s okay.

Try and keep your apps small. Remember, it’s better to have many small apps than to have
a few giant apps.

34 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

4.4: What Modules Belong in an App?

Figure 4.4: Two small, single-flavor pints are better than a giant, 100-flavor container.

4.4 What Modules Belong in an App?
In this section, we cover both the common and uncommon Python modules that belong in
an app. For those with even a modicum of experience with Django, skipping to Section 4.4.2:
Uncommon App Modules may be in order.

4.4.1 Common App Modules
Here are common modules seen in 99% of Django apps. These will prove very familiar to
most readers, but we’re placing this here for those just coming into the world of Django.
For reference, any module ending with a slash (‘/’) represents a Python package, which can
contain one or more modules.

Example 4.1: Common App Modules

Common modules
scoops/
├── __init__.py
├── admin.py
├── forms.py
├── management/
├── migrations/
├── models.py
├── templatetags/
├── tests/

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 35

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 4: Fundamentals of Django App Design

├── urls.py
├── views.py

Over time a convention of module names has emerged for building Django apps. By fol-
lowing this convention across the building of apps we set behaviors for ourselves and others,
making examining each other’s code easier. While Python and Django are flexible enough
that most of these don’t need to be named according to this convention, not doing so will
cause problems. Probably not from an immediate technical perspective, but when you or
others look at nonstandard module names later, it will prove to be a frustrating experience.

4.4.2 Uncommon App Modules
Here are less common modules, which may or may not be familiar to many readers:

Example 4.2: Uncommon Django Modules

uncommon modules
scoops/
├── api/
├── behaviors.py
├── constants.py
├── context_processors.py
├── decorators.py
├── db/
├── exceptions.py
├── fields.py
├── factories.py
├── helpers.py
├── managers.py
├── middleware.py
├── schema.py
├── signals.py
├── utils.py
├── viewmixins.py

What is the purpose of each module? Most of these have clear English names, but we’ll go
over a few that might not be so clear.

api/ This is the package we create for isolating the various modules needed when creating
an api. See Section 17.3.1: Use Consistent API Module Naming.

36 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

4.5: Alternative: Ruby on Rails-Style Approaches

behaviors.py An option for locating model mixins per Section 6.7.1: Model Behaviors
a.k.a Mixins.

constants.py A good name for placement of app-level settings. If there are enough of them
involved in an app, breaking them out into their own module can add clarity to a
project.

decorators.py Where we like to locate our decorators. For more information on decorators,
see Section 9.3: Decorators Are Sweet.

db/ A package used in many projects for any custom model fields or components.
fields.py is commonly used for form fields but is sometimes used for model fields when

there isn’t enough field code to justify creating a db/ package.
factories.py Where we like to place our test data factories. Described in brief in Sec-

tion 24.3.5: Don’t Rely on Fixtures
helpers.py What we call helper functions. These are where we put code extracted from

views (Section 8.5: Try to Keep Business Logic Out of Views) and models (Sec-
tion 6.7: Understanding Fat Models) to make them lighter. Synonymous with utils.py

managers.py When models.py grows too large, a common remedy is to move any custom
model managers to this module.

schema.py This is where code behind GraphQL APIs is typically placed.
signals.py While we argue against providing custom signals (see ??: ??), this can be a useful

place to put them.
utils.py Synonymous with helpers.py
viewmixins.py View modules and packages can be thinned by moving any view mixins to

this module. See Section 10.2: Using Mixins With CBVs.

For all of the modules listed in this section, their focus should be at the ‘app-level’, not
global tools. Global-level modules are described in Section 31.1: Create a Core App for
Your Utilities.

4.5 Alternative: Ruby on Rails-Style Approaches
Some people have found success using more RubyonRails-style approaches. Ruby on Rails
or Rails for short, is a successful Ruby-powered application framework approximately the
same age as Django. Notable Rails projects include GitHub, GitLab, Coinbase, Stripe, and
Square. There are enough similarities between Django and Rails as well as Python and Ruby
to make their approach worth examining.

4.5.1 Service Layers

When coding in Django, it’s common for newcomers to struggle determining where busi-
ness logic should go. The classic example is the process of creating user objects and related
data across multiple models and apps. In our case a ticket to enter the Icecreamlandia theme

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 37

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 4: Fundamentals of Django App Design

park:

1 System creates a user record in a manager method called create_user()
2 create_user() uploads a photo of the user to a file hosting system
3 create_user() also creates a ticket object by calling create_ticket() , which is on

a manager method called create_ticket()
4 create_ticket() makes an API call to the guest Icecreamlandia check-in app, which

is a third-party service

The typical placement for these actions is spread across methods on the managers assigned
to the User and Ticket. Others prefer to use class methods instead. So we might see:

Example 4.3: Typical Django Business Logic Placement

class UserManager(BaseUserManager):
"""In users/managers.py"""
def create_user(self, email=None, password=None,

avatar_url=None):↪→

user = self.model(
email=email,
is_active=True,
last_login=timezone.now(),
registered_at=timezone.now(),
avatar_url=avatar_url

)
resize_avatar(avatar_url)
Ticket.objects.create_ticket(user)
return user

class TicketManager(models.manager):
"""In tasks/managers.py"""
def create_ticket(self, user: User):

ticket = self.model(user=user)
send_ticket_to_guest_checkin(ticket)
return ticket

While this works, the service layer approach argues that there should be separation of con-
cerns between the user object and tickets. Specifically, embedding logic in the User code
to call the Ticket code tightly couples the two domains. Thus, a new layer is added to keep
concerns separate, and this is called the service layer. Code for this architecture is placed in
service.py and selectors.py.

38 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

4.5: Alternative: Ruby on Rails-Style Approaches

Example 4.4: Service Layers

Service layer example
scoops/
├── api/
├── models.py
├── services.py # Service layer location for business logic
├── selectors.py # Service layer location for queries
├── tests/

Under the service layer design, the above code would be executed thus:

Example 4.5: Service Layer Business Logic Placement

In users/services.py
from .models import User
from tickets.models import Ticket, send_ticket_to_guest_checkin

def create_user(email: str, password: str, avatar_url: str) ->
User:↪→

user = User(
email=email,
password=password,
avatar_url=avatar_url

)
user.full_clean()
user.resize_avatar()
user.save()

ticket = Ticket(user=user)
send_ticket_to_guest_checkin(ticket)
return user

A popular explanation for this technique can be found at github.com/HackSoftware/
Django-Styleguide#services

Advantages to this approach:

ä In this simplistic example, 12 lines of code versus 17
ä Loose coupling means the user or ticketing code can be more readily replaced
ä Separation of concerns makes it easier to do functional tests of individual components

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 39

https://feld.to/2KGJkey
https://feld.to/2KGJkey
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 4: Fundamentals of Django App Design

ä Adding type annotations of returned objects is easier with this approach than typical
Django

Disadvantages to this approach:

ä Very rare for projects to replace entire modules without entire rewrites
ä For small projects often adds unnecessary complexity
ä For complex projects the service layer typically grows to thousands of lines of code,

forcing the development of new architecture to support it
ä Use of selectors.py everywhere forces an extra step any time a simple ORM query

could be made
ä Django persistence is based on importable business logic placed on the model itself.

Service layers remove that capability, removing some advanced techniques

Further refutation of service layers or explanations of how to organize business logic in
traditional Django tools can be read in long-time Django maintainer James Bennett’s blog
and an article by Tom Christie, founder of Django REST Framework:

ä b-list.org/weblog/2020/mar/16/no-service/
ä b-list.org/weblog/2020/mar/23/still-no-service/
ä dabapps.com/blog/django-models-and-encapsulation/

For the authors of Two Scoops of Django the use of service layers isn’t new - we’ve seen
it for years. As with any technique that diverges from core Django practices, our anecdotal
experience is we’ve seen projects fail a bit more frequently using service layers. That isn’t to
say that the approach doesn’t have merit, but rather than the additional abstraction may not
be worth the effort.

4.5.2 The Large Single App Project
This is where a project puts all code into a single app. While common for small Django
projects, larger projects typically don’t follow this pattern.

There are positives to this approach. Specifically, migrations are easier and table names fol-
low a simplified pattern.

It has to be said that other frameworks such as Rails embrace this technique and are quite
successful. However, while Rails and other tools are designed to follow this pattern, Django
isn’t optimized for this design. Using this technique with Django requires experience and
expertise with patterns rarely described in documentation on Django.

40 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://www.b-list.org/weblog/2020/mar/16/no-service/
https://www.b-list.org/weblog/2020/mar/23/still-no-service/
https://www.dabapps.com/blog/django-models-and-encapsulation/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

4.6: Summary

Typically, everything is lumped together in giant models.py, views.py, tests.py, and urls.py
modules. Eventually either the project collapses under its own growing complexity or the
files are broken up into sub-modules based on the domains covered by models. Using our
icecreamlandia project, anything about “Users” is placed into models/users.py and “Tickets”
is placed into models/tickets.py.

Please note this can work if done with careful foresight. Indeed, Audrey has done it with
a project to great success, it did involve a bit more juggling of code than expected. It’s a
technique that should only be explored after a Djangonaut has completed several successful
Django projects.

WARNING:BeCarefulwithTooDivergentDjangoArchitectures

James Beith is a senior engineer whom we respect. He has an interesting take on how
to structure a Django project. In his design, James overtly rewrites common patterns
for Django. While it appears to work for him, it makes for a harder-to-maintain
project in that any new developer on the project has to learn a new paradigm. The
charm of Django is heavily based on convention over configuration, and his design
explicitly breaks it. While we salute his desire to try something new, we feel he’s
gone too far in re-architecting Django projects.
James Beith’s article: jamesbeith.co.uk/blog/
how-to-structure-django-projects/

4.6 Summary
This chapter covered the art of Django app design. Specifically, each Django app should
be tightly-focused on its own task and possess a simple, easy-to-remember name. If an app
seems too complex, it should be broken up into smaller apps. Getting app design right takes
practice and effort, but it’s well worth the effort.

We also covered alternative approaches to architecting apps and how logic is called within
them.

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 41

https://www.jamesbeith.co.uk/blog/how-to-structure-django-projects/
https://www.jamesbeith.co.uk/blog/how-to-structure-django-projects/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 4: Fundamentals of Django App Design

42 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

5 | Settings and Requirements Files

Django 3 has over 150 settings that can be controlled in the settings module, most of which
come with default values. Settings are loaded when your server starts up, and experienced
Django developers stay away from trying to change settings in production since they require
a server restart.

Figure 5.1: As your project grows, your Django settings can get pretty complex.

Some best practices we like to follow:

ä All settings files need to be version-controlled. This is especially true in production
environments, where dates, times, and explanations for settings changes absolutely
must be tracked.

ä Don’t Repeat Yourself. You should inherit from a base settings file rather than
cutting-and-pasting from one file to another.

ä Keep secret keys safe. They should be kept out of version control.

5.1 Avoid Non-Versioned Local Settings
We used to advocate the non-versioned local_settings anti-pattern. Now we know better.

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 43

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 5: Settings and Requirements Files

As developers, we have our own necessary settings for development, such as settings for
debugging tools that should be disabled (and often not installed to) staging or production
servers.

Furthermore, there are often good reasons to keep specific settings out of public or private
code repositories. The SECRET_KEY setting is the first thing that comes to mind, but API
key settings to services like Amazon, Stripe, and other password-type variables need to be
protected.

WARNING: Protect Your Secrets!
The SECRET_KEY setting is used in Django’s cryptographic signing functionality
and needs to be set to a unique, unpredictable setting best kept out of version control.
Running Django with a known SECRET_KEY defeats many of Django’s security
protections, which can lead to serious security vulnerabilities. For more details, read
docs.djangoproject.com/en/3.2/topics/signing/.

The same warning for SECRET_KEY also applies to production database passwords,
AWS keys, OAuth tokens, or any other sensitive data that your project needs in
order to operate.

Later in this chapter, we’ll show how to handle the SECRET_KEY issue in the “Keep
Secret Keys Out With Environment Settings” section.

A common solution is to create local_settings.py modules that are created locally per server
or development machine, and are purposefully kept out of version control. Developers now
make development-specific settings changes, including the incorporation of business logic
without the code being tracked in version control. Staging and deployment servers can have
location-specific settings and logic without them being tracked in version control.

What could possibly go wrong?!?

Ahem...

ä Every machine has untracked code.
ä How much hair will you pull out, when after hours of failing to duplicate a production

bug locally, you discover that the problem was custom logic in a production-only
setting?

ä How fast will you run from everyone when the ‘bug’ you discovered locally, fixed, and
pushed to production was actually caused by customizations you made in your own
local_settings.py module and is now crashing the site?

44 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://docs.djangoproject.com/en/3.2/topics/signing/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

5.2: Using Multiple Settings Files

ä Everyone copy/pastes the same local_settings.py module everywhere. Isn’t this a vio-
lation of Don’t Repeat Yourself but on a larger scale?

Let’s take a different approach. Let’s break up development, staging, test, and production
settings into separate components that inherit from a common base object in a settings file
tracked by version control. Plus, we’ll make sure we do it in such a way that server secrets
will remain secret.

Read on and see how it’s done!

5.2 Using Multiple Settings Files
TIP: History of This Setup Pattern

The setup described here is based on the so-called “The One True Way”, from Ja-
cob Kaplan-Moss’ The Best (and Worst) of Django talk at OSCON 2011. See
slideshare.net/jacobian/the-best-and-worst-of-django.

Instead of having one settings.py file, with this setup you have a settings/ directory containing
your settings files. This directory will typically contain something like the following:

Example 5.1: Settings Directory

settings/
├── __init__.py
├── base.py
├── local.py
├── staging.py
├── test.py
├── production.py

WARNING: Requirements + Settings

Each settings module should have its own corresponding requirements file. We’ll
cover this at the end of this chapter in Section 5.5: Using Multiple Requirements
Files.

TIP: Multiple Files With Continuous Integration Servers

You’ll also want to have a ci.py module containing that server’s settings. Similarly,
if it’s a large project and you have other special-purpose servers, you might have

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 45

https://www.slideshare.net/jacobian/the-best-and-worst-of-django
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 5: Settings and Requirements Files

Settings file Purpose
base.py Settings common to all instances of the

project.
local.py This is the settings file that you use when

you’re working on the project locally. Lo-
cal development-specific settings include
DEBUG mode, log level, and activation of
developer tools like django-debug-toolbar.

staging.py Staging version for running a semi-private
version of the site on a production server.
This is where managers and clients should
be looking before your work is moved to
production.

test.py Settings for running tests including test
runners, in-memory database definitions,
and log settings.

production.py This is the settings file used by your live
production server(s). That is, the server(s)
that host the real live website. This file con-
tains production-level settings only. It is
sometimes called prod.py.

Table 5.1: Settings files and their purpose

custom settings files for each of them.

Let’s take a look at how to use the shell and runserver management commands with this
setup. You’ll have to use the --settings command line option, so you’ll be entering the
following at the command-line.

To start the Python interactive interpreter with Django, using your settings/local.py settings
file:

Example 5.2: Local Settings Shell

python manage.py shell --settings=config.settings.local

To run the local development server with your settings/local.py settings file:

Example 5.3: Local Settings Runserver

python manage.py runserver --settings=config.settings.local

46 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

5.2: Using Multiple Settings Files

TIP: DJANGO_SETTINGS_MODULE and PYTHONPATH

A great alternative to using the --settings command line option everywhere
is to set the DJANGO_SETTINGS_MODULE and PYTHONPATH environment vari-
able to your desired settings module path. To accomplish this, you’ll need to set
DJANGO_SETTINGS_MODULE to the corresponding settings module for each envi-
ronment.

For those with a more comprehensive understanding of virtualenvwrapper, an-
other alternative is to set DJANGO_SETTINGS_MODULE and PYTHONPATH in the
postactivate script and unset them in the postdeactivate script. Then, once
the virtualenv is activated, you can just type python from anywhere and import
those values into your project. This also means that typing django-admin at the
command-line works without the --settings option.

For the settings setup that we just described, here are the values to use with the --settings
command line option or the DJANGO_SETTINGS_MODULE environment variable:

Environment Option To Use With --settings (or
DJANGO_SETTINGS_MODULE value)

Your local development server twoscoops.settings.local
Your staging server twoscoops.settings.staging
Your test server twoscoops.settings.test
Your production server twoscoops.settings.production

Table 5.2: Setting DJANGO_SETTINGS_MODULE per location

5.2.1 A Development Settings Example
As mentioned earlier, we need settings configured for development, such as selecting the
console email backend, setting the project to run in DEBUG mode, and setting other con-
figuration options that are used solely for development purposes. We place development
settings like the following into settings/local.py:

Example 5.4: settings/local.py

from .base import *

DEBUG = True

EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend'

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 47

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 5: Settings and Requirements Files

DATABASES = {
'default': {

'ENGINE': 'django.db.backends.postgresql',
'NAME': 'twoscoops',
'HOST': 'localhost',

}
}

INSTALLED_APPS += ['debug_toolbar',]

Now try it out at the command line with:

Example 5.5: runserver with local settings

python manage.py runserver --settings=config.settings.local

Open http://127.0.0.1:8000 and enjoy your development settings, ready to go into
version control! You and other developers will be sharing the same development settings
files, which for shared projects, is awesome.

Yet there’s another advantage: No more ‘if DEBUG’ or ‘if not DEBUG’ logic to copy/paste
around between projects. Settings just got a whole lot simpler!

At this point we want to take a moment to note that Django settings files are the single,
solitary place we advocate using import *. The reason is that for the singular case of Django
setting modules we want to override all the namespace.

5.2.2 Multiple Development Settings
Sometimes we’re working on a large project where different developers need different set-
tings, and sharing the same local.py settings module with teammates won’t do.

Well, it’s still better tracking these settings in version control than relying on everyone cus-
tomizing the same local.py module to their own tastes. A nice way to do this is with multiple
dev settings files, e.g. local_audrey.py and local_pydanny.py:

Example 5.6: settings/local_pydanny.py

settings/local_pydanny.py
from .local import *

48 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

http://127.0.0.1:8000
https://github.com/feldroy/two-scoops-of-django-3.x/issues

5.3: Separate Configuration From Code

Set short cache timeout
CACHE_TIMEOUT = 30

Why? It’s not only good to keep all your own settings files in version control, but it’s also
good to be able to see your teammates’ dev settings files. That way, you can tell if someone’s
missing a vital or helpful setting in their local development setup, and you can make sure
that everyone’s local settings files are synchronized. Here is what our projects frequently use
for settings layout:

Example 5.7: Custom Settings

settings/
__init__.py
base.py
local_audreyr.py
local_pydanny.py
local.py
staging.py
test.py
production.py

5.3 Separate Configuration From Code
One of the causes of the local_settings anti-pattern is that putting SECRET_KEY, AWS keys,
API keys, or server-specific values into settings files has problems:

ä Config varies substantially across deploys, code does not.
ä Secret keys are configuration values, not code.
ä Secrets often should be just that: secret! Keeping them in version control means that

everyone with repository access has access to them.
ä Platforms-as-a-service usually don’t give you the ability to edit code on individual

servers. Even if they allow it, it’s a terribly dangerous practice.

To resolve this, our answer is to use environment variables in a pattern we like to call, well,
The Environment Variables Pattern.

Every operating system supported by Django (and Python) provides the easy capability to
create environment variables.

Here are the benefits of using environment variables for secret keys:

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 49

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 5: Settings and Requirements Files

ä Keeping secrets out of settings allows you to store every settings file in version control
without hesitation. All of your Python code really should be stored in version control,
including your settings.

ä Instead of each developer maintaining an easily-outdated, copy-and-pasted version of
the local_settings.py.example file for their own development purposes, everyone shares
the same version-controlled settings/local.py .

ä System administrators can rapidly deploy the project without having to modify files
containing Python code.

ä Most platforms-as-a-service recommend the use of environment variables for config-
uration and have built-in features for setting and managing them.

TIP: 12 Factor App: Store Config in the Environment

If you’ve read the 12 Factor App’s article on configuration you’ll recognize this pat-
tern. For reference, see 12factor.net/config. Some developers even advocate
combining the use of environment variables with a single settings modules. We
cover this practice in Chapter 37: Appendix E: Settings Alternatives.

5.3.1 A Caution Before Using Environment Variables for Secrets

Before you begin setting environment variables, you should have the following:

ä A way to manage the secret information you are going to store.
ä A good understanding of how bash works with environment variables on servers, or

a willingness to have your project hosted by a platform-as-a-service.

For more information, see en.wikipedia.org/wiki/Environment_variable.

WARNING: Environment Variables Do Not Work With Apache

If your target production environment uses Apache (outside of Elastic Beanstalk),
then you will discover that setting operating system environment variables as de-
scribed below doesn’t work. Confusing the issue is that Apache has its own environ-
ment variable system, which is almost but not quite what you’ll need.
If you are using Apache and want to avoid the local_settings anti-pattern, we rec-
ommend reading Section 5.4: When You Can’t Use Environment Variables later in
this chapter.

50 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

http://12factor.net/config
https://en.wikipedia.org/wiki/Environment_variable
https://github.com/feldroy/two-scoops-of-django-3.x/issues

5.3: Separate Configuration From Code

5.3.2 How to Set Environment Variables Locally
On pre-Catalina Mac and many Linux distributions that use bash for the shell, one can add
lines like the following to the end of a .bashrc, .bash_profile, or .profile. Macs on Catalina
and afterwards use .zshrc. When dealing with multiple projects using the same API but
with different keys, you can also place these at the end of your virtualenv’s bin/postactivate
script:

Example 5.8: Setting Environment Variables on Linux/OSX

export SOME_SECRET_KEY=1c3-cr3am-15-yummy
export AUDREY_FREEZER_KEY=y34h-r1ght-d0nt-t0uch-my-1c3-cr34m

On Windows systems, it’s a bit trickier. You can set them one-by-one at the command line
(cmd.exe) in a persistent way with the setx command, but you’ll have to close and reopen
your command prompt for them to go into effect. A better way is to place these commands
at the end of the virtualenv’s bin/postactivate.bat script so they are available upon activation:

Example 5.9: Setting Environment Variables on Windows

> setx SOME_SECRET_KEY 1c3-cr3am-15-yummy

PowerShell is much more powerful than the default Windows shell and comes with Win-
dows Vista and above. Setting environment variables while using PowerShell:

For the current Windows user only:

Example 5.10: Setting Environment Variables on Powershell

[Environment]::SetEnvironmentVariable('SOME_SECRET_KEY',
'1c3-cr3am-15-yummy', 'User')

[Environment]::SetEnvironmentVariable('AUDREY_FREEZER_KEY',
'y34h-r1ght-d0nt-t0uch-my-1c3-cr34m', 'User')

Machine-wide:

Example 5.11: Globally Setting Environment Variables on Powershell

[Environment]::SetEnvironmentVariable('SOME_SECRET_KEY',
'1c3-cr3am-15-yummy', 'Machine')

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 51

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 5: Settings and Requirements Files

[Environment]::SetEnvironmentVariable('AUDREY_FREEZER_KEY',
'y34h-r1ght-d0nt-t0uch-my-1c3-cr34m', 'Machine')

For more information on Powershell, see en.wikipedia.org/wiki/PowerShell

TIP: virtualenvwrapper Makes This Easier

Mentioned earlier in this book, virtualenvwrapper, simplifies per-virtualenv envi-
ronment variables. It’s a great tool. However, setting it up requires a more-than-
basic understanding of the shell and Mac, Linux, or Windows.

5.3.3 How to Unset Environment Variables Locally
When you set an environment variable via the commands listed above it will remain in
existence within that terminal shell until it is unset or the shell is ended. This means that
even if you deactivate a virtualenv, the environment variable remains. In our experience,
this is fine 99% of the time. However, there are occasions when we want to tightly control
environment variables. To do this, we execute the appropriate command for the operating
system or shell variant:

Example 5.12: Unsetting Environment Variables on Linux/OSX/Windows

unset SOME_SECRET_KEY
unset AUDREY_FREEZER_KEY

Example 5.13: Unsetting Environment Variables on Powershell

[Environment]::UnsetEnvironmentVariable('SOME_SECRET_KEY', 'User')
[Environment]::UnsetEnvironmentVariable('AUDREY_FREEZER_KEY',

'User')↪→

If you are using virtualenvwrapper and want to unset environment variables whenever a
virtualenv is deactivated, place these commands in the postdeactivate script.

5.3.4 How to Set Environment Variables in Production
If you’re using your own servers, your exact practices will differ depending on the tools you’re
using and the complexity of your setup. For the simplest 1-server setup for test projects, you

52 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://en.wikipedia.org/wiki/PowerShell
https://github.com/feldroy/two-scoops-of-django-3.x/issues

5.3: Separate Configuration From Code

can set the environment variables manually. But if you’re using scripts or tools for auto-
mated server provisioning and deployment, your approach may be more complex. Check
the documentation for your deployment tools for more information.

If your Django project is deployed via a platform-as-a-service (PaaS), such as Heroku,
Python Anywhere, platform.sh, etc., check the documentation for specific instructions.

To see how you access environment variables from the Python side, open up a new Python
prompt and type:

Example 5.14: Accessing Environment Variables in Python’s REPL

>>> import os
>>> os.environ['SOME_SECRET_KEY']
'1c3-cr3am-15-yummy'

To access environment variables from one of your settings files, you can do something like
this:

Example 5.15: Accessing Environment Variables in Python

Top of settings/production.py
import os
SOME_SECRET_KEY = os.environ['SOME_SECRET_KEY']

This snippet simply gets the value of the SOME_SECRET_KEY environment variable from
the operating system and saves it to a Python variable called SOME_SECRET_KEY.

Following this pattern means all code can remain in version control, and all secrets remain
safe.

5.3.5 Handling Missing Secret Key Exceptions

In the above implementation, if the SECRET_KEY isn’t available, it will throw a KeyError ,
making it impossible to start the project. That’s great, but a KeyError doesn’t tell you that
much about what’s actually wrong. Without a more helpful error message, this can be hard
to debug, especially under the pressure of deploying to servers while users are waiting and
your ice cream is melting.

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 53

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 5: Settings and Requirements Files

Here’s a useful code snippet that makes it easier to troubleshoot those missing environment
variables. If you’re using our recommended environment variable secrets approach, you’ll
want to add this to your settings/base.py file:

Example 5.16: The get_env_variable() Function

settings/base.py
import os

Normally you should not import ANYTHING from Django directly
into your settings, but ImproperlyConfigured is an exception.
from django.core.exceptions import ImproperlyConfigured

def get_env_variable(var_name):
"""Get the environment variable or return exception."""
try:

return os.environ[var_name]
except KeyError:

error_msg = 'Set the {} environment
variable'.format(var_name)↪→

raise ImproperlyConfigured(error_msg)

Then, in any of your settings files, you can load secret keys from environment variables as
follows:

Example 5.17: Using get_env_variable()

SOME_SECRET_KEY = get_env_variable('SOME_SECRET_KEY')

Now, if you don’t have SOME_SECRET_KEY set as an environment variable, you get
a traceback that ends with a useful error message like this:

Example 5.18: Error Generated by get_env_variable()

django.core.exceptions.ImproperlyConfigured: Set the
SOME_SECRET_KEY↪→

environment variable.

54 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

5.4: When You Can’t Use Environment Variables

WARNING: Don’t Import Django Components Into Settings
Modules
This can have many unpredictable side effects, so avoid any sort of import of Django
components into your settings. ImproperlyConfigured is the exception because
it’s the official Django exception for...well...improperly configured projects. And just
to be helpful we add the name of the problem setting to the error message.

PACKAGE TIP: Packages for Settings Management

A number of third-party packages take the idea of our get_env_variable() func-
tion and expand on it, including features like defaults and types and supporting .env
files. The downside is the same you get with any complex packages: sometimes the
edge cases cause problems. Nevertheless, most of them are quite useful and we’ve
listed some of our favorites:

ä github.com/joke2k/django-environ (Used in Cookiecutter Django)
ä github.com/jazzband/django-configurations

TIP: Using django-admin Instead of manage.py

The official Django documentation says that you should use django-admin rather
than manage.py when working with multiple settings files:
docs.djangoproject.com/en/3.2/ref/django-admin/

That being said, if you’re struggling with getting django-admin to work, it’s perfectly
okay to develop and launch your site running it with manage.py.

5.4 When You Can’t Use Environment Variables
The problem with using environment variables to store secrets is that it doesn’t always work.
The most common scenario for this is when using Apache for serving HTTP, but this
also happens even in Nginx-based environments where operations wants to do things in a
particular way. When this occurs, rather than going back to the local_settings anti-pattern,
we advocate using non-executable files kept out of version control in a method we like to
call the secrets file pattern.

To implement the secrets file pattern, follow these three steps:

1 Create a secrets file using the configuration format of choice, be it JSON, .env, Config,
YAML, or even XML.

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 55

https://github.com/joke2k/django-environ
https://github.com/jazzband/django-configurations
https://docs.djangoproject.com/en/3.2/ref/django-admin/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 5: Settings and Requirements Files

2 Add a secrets loader (JSON-powered example below) to manage the secrets in a
cohesive, explicit manner.

3 Add the secrets file name to the project’s .gitignore file.

5.4.1 Using JSON Files
Our preference is to use shallow JSON files. The JSON format has the advantage of being a
format of choice for both Python and non-Python tools. To do this, first create a secrets.json
file:

Example 5.19: secrets.json

{
"FILENAME": "secrets.json",
"SECRET_KEY": "I've got a secret!",
"DATABASES_HOST": "127.0.0.1",
"PORT": "5432"

}

To use the secrets.json file, add the following code to your base settings module.

Example 5.20: The get_settings() Function

settings/base.py
import json

Normally you should not import ANYTHING from Django directly
into your settings, but ImproperlyConfigured is an exception.
from django.core.exceptions import ImproperlyConfigured

JSON-based secrets module
with open('secrets.json') as f:

secrets = json.load(f)

def get_secret(setting, secrets=secrets):
'''Get the secret variable or return explicit exception.'''
try:

return secrets[setting]
except KeyError:

error_msg = 'Set the {0} environment
variable'.format(setting)↪→

raise ImproperlyConfigured(error_msg)

56 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

5.5: Using Multiple Requirements Files

SECRET_KEY = get_secret('SECRET_KEY')

Now we are loading secrets from non-executable JSON files instead of from unversioned
executable code. Hooray!

PACKAGE TIP: Zappa Provides Powerful Options

One of the reasons we prefer Zappa for deploying to AWS Lambda is the different
and powerful options it provides for environment variable management. Definitely
worth a look and something we want to see other tools and hosting platforms adopt.
Reference: github.com/Miserlou/Zappa#setting-environment-variables

5.4.2 Using .env, Config, YAML, and XML File Formats
While we prefer the forced simplicity of shallow JSON, others might prefer other file for-
mats. We’ll leave it up to the reader to create additional get_secret() alternatives that
work with these formats. Just remember to be familiar with things like yaml.safe_load()
and XML bombs. See Section 28.10: Defend Against Python Code Injection Attacks.

5.5 Using Multiple Requirements Files
Finally, there’s one more thing you need to know about multiple settings files setup. It’s
good practice for each settings file to have its own corresponding requirements file. This
means we’re only installing what is required on each server.

To follow this pattern, recommended to us by Jeff Triplett, first create a requirements/ di-
rectory in the <repository_root>. Then create ‘.txt’ files that match the contents of your
settings directory. The results should look something like:

Example 5.21: Segmented Requirements

requirements/
├── base.txt
├── local.txt
├── staging.txt
├── production.txt

In the base.txt file, place the dependencies used in all environments. For example, you might
have something like the following in there:

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 57

https://feld.to/2KLZRhi
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 5: Settings and Requirements Files

Example 5.22: requirements/base.txt

Django==3.2.0
psycopg2-binary==2.8.8
djangorestframework==3.11.0

Your local.txt file should have dependencies used for local development, such as:

Example 5.23: requirements/local.txt

-r base.txt # includes the base.txt requirements file

coverage==5.1
django-debug-toolbar==2.2

The needs of a continuous integration server might prompt the following for a ci.txt file:

Example 5.24: requirements/ci.txt

-r base.txt # includes the base.txt requirements file

coverage==5.1

Production installations should be close to what is used in other locations, so production.txt
commonly just calls base.txt:

Example 5.25: requirements/production.txt

-r base.txt # includes the base.txt requirements file

5.5.1 Installing From Multiple Requirements Files
For local development:

Example 5.26: Installing Local Requirements

pip install -r requirements/local.txt

For production:

58 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

5.6: Handling File Paths in Settings

Example 5.27: Installing Production Requirements

pip install -r requirements/production.txt

TIP: Pin Requirements Exactly

All the pip requirements.txt examples in this chapter are explicitly set to a package
version. This ensures a more stable project. We cover this at length in Section 23.7.2:
Step 2: Add Package and Version Number to Your Requirements.

TIP: Using Multiple Requirements Files With PaaS

We cover this in ??: ??

5.6 Handling File Paths in Settings
If you switch to the multiple settings setup and get new file path errors to things like tem-
plates and media, don’t be alarmed. This section will help you resolve these errors.

We humbly beseech the reader to never hardcode file paths in Django settings files. This is
really bad:

Example 5.28: Never Hardcode File Paths

settings/base.py

Configuring MEDIA_ROOT
DON’T DO THIS! Hardcoded to just one user's preferences
MEDIA_ROOT = '/Users/pydanny/twoscoops_project/media'

Configuring STATIC_ROOT
DON’T DO THIS! Hardcoded to just one user's preferences
STATIC_ROOT = '/Users/pydanny/twoscoops_project/collected_static'

Configuring STATICFILES_DIRS
DON’T DO THIS! Hardcoded to just one user's preferences
STATICFILES_DIRS = ['/Users/pydanny/twoscoops_project/static']

Configuring TEMPLATES
DON’T DO THIS! Hardcoded to just one user's preferences
TEMPLATES = [

{

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 59

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 5: Settings and Requirements Files

'BACKEND':
'django.template.backends.django.DjangoTemplates',↪→

DIRS: ['/Users/pydanny/twoscoops_project/templates',]
},

]

The above code represents a common pitfall called hardcoding. The above code, called a
fixed path, is bad because as far as you know, pydanny (Daniel Feldroy) is the only person
who has set up their computer to match this path structure. Anyone else trying to use this
example will see their project break, forcing them to either change their directory structure
(unlikely) or change the settings module to match their preference (causing problems for
everyone else including pydanny).

Don’t hardcode your paths!

To fix the path issue, we dynamically set a project root variable intuitively named BASE_DIR
at the top of the base settings module. Since BASE_DIR is determined in relation to the
location of base.py, your project can be run from any location on any development computer
or server.

Figure 5.2: While we’re at it, let’s go down this path.

We find the cleanest way to set a BASE_DIR-like setting is with Pathlib, part of Python
since 3.4 that does elegant, clean path calculations:

Example 5.29: Using Pathlib to discover project root

At the top of settings/base.py
from pathlib import Path

BASE_DIR = Path(__file__).resolve().parent.parent.parent
MEDIA_ROOT = BASE_DIR / 'media'
STATIC_ROOT = BASE_DIR / 'static_root'

60 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

5.6: Handling File Paths in Settings

STATICFILES_DIRS = [BASE_DIR / 'static']
TEMPLATES = [

{
'BACKEND':

'django.template.backends.django.DjangoTemplates',↪→

'DIRS': [BASE_DIR / 'templates']
},

]

If you really want to set your BASE_DIRwith the Python standard library’s os.path library,
though, this is one way to do it in a way that will account for paths:

Example 5.30: Using os.path to discover project root

At the top of settings/base.py
from os.path import abspath, dirname, join

def root(*dirs):
base_dir = join(dirname(__file__), '..', '..')
return abspath(join(base_dir, *dirs))

BASE_DIR = root()
MEDIA_ROOT = root('media')
STATIC_ROOT = root('static_root')
STATICFILES_DIRS = [root('static')]
TEMPLATES = [

{
'BACKEND':

'django.template.backends.django.DjangoTemplates',↪→

'DIRS': [root('templates')],
},

]

With your various path settings dependent on BASE_DIR, your file path settings should
work, which means your templates and media should be loading without error.

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 61

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 5: Settings and Requirements Files

TIP: How Different Are Your Settings From the Django
Defaults?
If you want to know how things in your project differ from Django’s defaults, use
the
diffsettings management command.

5.7 Summary
Remember, everything except for passwords and API keys ought to be tracked in version
control.

Any project that’s destined for a real live production server is bound to need multiple set-
tings and requirements files. Even beginners to Django need this kind of settings/require-
ments file setup once their projects are ready to leave the original development machine.
We provide our solution, as well as an Apache-friendly solution since it works well for both
beginning and advanced developers.

Also, if you prefer a different shell than the ones provided, environment variables still work.
You’ll just need to know the syntax for defining them.

The same thing applies to requirements files. Working with untracked dependency differ-
ences increases risk as much as untracked settings.

62 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

6 | Model Best Practices

Models are the foundation of most Django projects. Racing to write Django models without
thinking things through can lead to problems down the road.

All too frequently we developers rush into adding or modifying models without considering
the ramifications of what we are doing. The quick fix or sloppy “temporary” design decision
that we toss into our codebase now can hurt us in the months or years to come, forcing crazy
workarounds or corrupting existing data.

So keep this in mind when adding new models in Django or modifying existing ones. Take
your time to think things through, and design your foundation to be as strong and sound as
possible.

PACKAGE TIP: Our Picks for Working With Models

Here’s a quick list of the model-related Django packages that we use in practically
every project.

ä django-model-utils to handle common patterns like TimeStampedModel.

ä django-extensions has a powerful management command called
shell_plus which autoloads the model classes for all installed apps.
The downside of this library is that it includes a lot of other functionality
which breaks from our preference for small, focused apps.

6.1 Basics
6.1.1 Break Up Apps With Too Many Models
If there are 20+ models in a single app, think about ways to break it down into smaller apps,
as it probably means your app is doing too much. In practice, we like to lower this number
to no more than five to ten models per app.

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 63

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 6: Model Best Practices

6.1.2 Be Careful With Model Inheritance

Model inheritance in Django is a tricky subject. Django provides three ways to do model
inheritance: abstract base classes, multi-table inheritance, and proxy models.

WARNING: Django Abstract Base Classes <> Python Abstract
Base Classes
Don’t confuse Django abstract base classes with the abstract base classes in the
Python standard library’s abc module, as they have very different purposes and be-
haviors.

Here are the pros and cons of the three model inheritance styles. To give a complete com-
parison, we also include the option of using no model inheritance to begin with:

Model Inheritance Style Pros Cons
No model inheritance: if
models have a common
field, give both models that
field.

Makes it easiest to un-
derstand at a glance how
Django models map to
database tables.

If there are a lot of fields du-
plicated across models, this
can be hard to maintain.

Abstract base classes: tables
are only created for derived
models.

Having the common fields
in an abstract parent class
saves us from typing them
more than once.
We don’t get the over-
head of extra tables and
joins that are incurred from
multi-table inheritance.

We cannot use the parent
class in isolation.

Multi-table inheritance:
tables are created for both
parent and child. An
implied OneToOneField
links parent and child.

Gives each model its own
table, so that we can query
either parent or child
model.
It also gives us the abil-
ity to get to a child ob-
ject from a parent object:
parent.child

Adds substantial overhead
since each query on a child
table requires joins with all
parent tables.
We strongly recommend
against using multi-table
inheritance. See the warn-
ing below.

Proxy models: a table is
only created for the original
model.

Allows us to have an alias
of a model with different
Python behavior.

We cannot change the
model’s fields.

Table 6.1: Pros and Cons of the Model Inheritance Styles
64 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

6.1: Basics

WARNING: Avoid Multi-Table Inheritance
Multi-table inheritance, sometimes called “concrete inheritance,” is considered by
the authors and many other developers to be a bad thing. We strongly recommend
against using it. We’ll go into more detail about this shortly.

Here are some simple rules of thumb for knowing which type of inheritance to use and
when:

ä If the overlap between models is minimal (e.g. you only have a couple of models
that share one or two identically named fields), there might not be a need for model
inheritance. Just add the fields to both models.

ä If there is enough overlap between models that maintenance of models’ repeated fields
cause confusion and inadvertent mistakes, then in most cases the code should be
refactored so that the common fields are in an abstract base model.

ä Proxy models are an occasionally-useful convenience feature, but they’re very different
from the other two model inheritance styles.

ä At all costs, everyone should avoid multi-table inheritance (see warning above) since
it adds both confusion and substantial overhead. Instead of multi-table inheritance,
use explicit OneToOneFields and ForeignKeys between models so you can control
when joins are traversed. In our combined 20+ years of doing Django we’ve never seen
multi-table inheritance cause anything but trouble.

6.1.3 Model Inheritance in Practice: The TimeStampedModel
It’s very common in Django projects to include a created and modified timestamp
field on all your models. We could manually add those fields to each and every model,
but that’s a lot of work and adds the risk of human error. A better solution is to write a
TimeStampedModel to do the work for us:

Example 6.1: core/models.py

from django.db import models

class TimeStampedModel(models.Model):
"""
An abstract base class model that provides self-
updating ``created`` and ``modified`` fields.
"""
created = models.DateTimeField(auto_now_add=True)

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 65

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 6: Model Best Practices

modified = models.DateTimeField(auto_now=True)

class Meta:
abstract = True

Take careful note of the very last two lines in the example, which turn our example into an
abstract base class:

Example 6.2: Defining an abstract base class

class Meta:
abstract = True

By defining TimeStampedModel as an abstract base class when we define a new class that
inherits from it, Django doesn’t create a core_timestampedmodel table when migrate
is run.

Let’s put it to the test:

Example 6.3: flavors/models.py

flavors/models.py
from django.db import models

from core.models import TimeStampedModel

class Flavor(TimeStampedModel):
title = models.CharField(max_length=200)

This only creates one table: the flavors_flavor database table. That’s exactly the behavior
we wanted.

On the other hand, if TimeStampedModel was not an abstract base class (i.e. a concrete
base class via multi-table inheritance), it would also create a core_timestampedmodel
table. Not only that, but all of its subclasses including Flavor would lack the fields and
have implicit foreign keys back to TimeStampedModel just to handle created/modified
timestamps. Any reference to Flavor that reads or writes to the TimeStampedModel
would impact two tables. (Thank goodness it’s abstract!)

66 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

6.2: Database Migrations

Remember, concrete inheritance has the potential to become a nasty performance bottle-
neck. This is even more true when you subclass a concrete model class multiple times.

Further reading:

ä docs.djangoproject.com/en/3.2/topics/db/models/
#model-inheritance

6.2 Database Migrations
Django comes with a powerful database change propagation library aptly called
“migrations”, or as we prefer to refer to it in the book, django.db.migrations.

6.2.1 Tips for Creating Migrations

ä As soon as a new app or model is created, take that extra minute to create the
initial django.db.migrations for that new model. All we do is type python
manage.py makemigrations.

ä Examine the generated migration code before you run it, especially when complex
changes are involved. Also, review the SQL that will be used with the sqlmigrate
command.

ä Use the MIGRATION_MODULES setting to manage writing migrations for third-party
apps that don’t have their own django.db.migrations-style migrations.

ä Don’t worry about how many migrations are created. If the number of migrations
becomes unwieldy, use squashmigrations to bring them to heel.

ä Always back up your data before running a migration.

6.2.2 Adding Python Functions and Custom SQL to Migrations

django.db.migrations can’t anticipate complex changes to your data, or to external
components that interact with your data. That’s when it’s useful to delve into writing python
or custom SQL to aid in running migrations. At some point in any project that hits produc-
tion, you’ll find a reason to use either the RunPython or RunSQL classes:

ä docs.djangoproject.com/en/3.2/ref/migration-operations/
#runpython

ä docs.djangoproject.com/en/3.2/ref/migration-operations/#runsql

For what it’s worth, our preference is to use RunPython before RunSQL, but we advise
sticking to where your strengths are.

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 67

https://feld.to/3csJP7U
https://feld.to/3csJP7U
https://feld.to/2VfzDdm
https://feld.to/2VfzDdm
https://feld.to/2XQONqW
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 6: Model Best Practices

6.3 Overcoming Common Obstacles of RunPython
When we write RunPython-called functions, we encounter a few pain points. Most, but
not all of these can be resolved.

6.3.1 Getting Access to a Custom Model Manager’s Methods

Sometimes you want to be able to filter, exclude, create, or modify records by us-
ing custom model manager methods. However, by default django.db.migrations
excludes these components. Fortunately, we can override this behavior by adding a
use_in_migrations = True flag to our custom managers.

See: docs.djangoproject.com/en/3.2/topics/migrations/#model-managers

6.3.2 Getting Access to a Custom Model Method

Due to how django.db.migrations serializes models, there’s no way around this limi-
tation. You simply cannot call any custom methods during a migration. See the reference
link below:

docs.djangoproject.com/en/3.2/topics/migrations/#historical-models

WARNING: Watch Out for Custom Save and Delete Methods
If you override a model’s save and delete methods, they won’t be called when called
by RunPython. Consider yourself warned, this can be a devastating gotcha.

6.3.3 Use RunPython.noop to Do Nothing

In order for reverse migrations to work, RunPython must be given a reverse_code callable
to undo the effects of the code callable. However, some of the code callables that we write
are idempotent. For example, they combine existing data into a newly added field. Writing
a reverse_code callable for these functions is either impossible or pointless. When this
happens, use RunPython.noop as the reverse_code .

For example, let’s say we create a new model called “Cone”. All existing scoops need
their own cone, so we write an add_cones function to add the cones to the database.
However, when reversing the migration, writing code to remove the cones is pointless;
migrations.CreateModel.database_backwards will delete the cone.cone table and all
its records for us. Therefore, we should use RunPython.noop for the reverse_code :

68 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://feld.to/3covkCf
https://feld.to/2XLf5eu
https://github.com/feldroy/two-scoops-of-django-3.x/issues

6.3: Overcoming Common Obstacles of RunPython

Example 6.4: RunPython Reversal with RunPython.noop

from django.db import migrations, models

def add_cones(apps, schema_editor):
Scoop = apps.get_model('scoop', 'Scoop')
Cone = apps.get_model('cone', 'Cone')

for scoop in Scoop.objects.all():
Cone.objects.create(

scoop=scoop,
style='sugar'

)

class Migration(migrations.Migration):

initial = True

dependencies = [
('scoop', '0051_auto_20670724'),

]

operations = [
migrations.CreateModel(

name='Cone',
fields=[

('id', models.AutoField(auto_created=True,
primary_key=True,↪→

serialize=False, verbose_name='ID')),
('style', models.CharField(max_length=10),

choices=[('sugar', 'Sugar'), ('waffle',
'Waffle')]),↪→

('scoop', models.OneToOneField(null=True,
to='scoop.Scoop'↪→

on_delete=django.db.models.deletion.SET_NULL,
)),↪→

],
),
RunPython.noop does nothing but allows reverse migrations

to occur↪→

migrations.RunPython(add_cones, migrations.RunPython.noop)
]

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 69

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 6: Model Best Practices

6.3.4 Deployment and Management of Migrations
ä It goes without saying, but we’ll say it anyway: Always back up your data before run-

ning a migration.
ä Before deployment, check that you can rollback migrations! We can’t always have

perfect round-trips, but not being able to roll back to an earlier state really hurts bug
tracking and sometimes deployment in larger projects.

ä If a project has tables with millions of rows in them, do extensive tests against data
of that size on staging servers before running a migration on a production server.
Migrations on real data can take much, much, much more time than anticipated.

ä If you are using MySQL:
ä You absolutely positively must back up the database before any schema change.

MySQL lacks transaction support around schema changes, hence rollbacks are
impossible.

ä If you can, put the project in read-only mode before executing the change.
ä If not careful, schema changes on heavily populated tables can take a long time.

Not seconds or minutes, but hours.

Figure 6.1: Cones migrating south for the winter. Django’s built-in migration system started
out as an external project called South.

TIP: Always Put Data Migration Code Into Source Control

Including migration code in VCS is an absolute necessity. Not including migration
code in version control is just like not including settings files in VCS: You might
be able to develop, but should you switch machines or bring someone else into the
project, then everything will break.

6.4 Django Model Design
One of the most difficult topics that receive the least amount of attention is how to design
good Django models.

70 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

6.4: Django Model Design

How do you design for performance without optimizing prematurely? Let’s explore some
strategies here.

6.4.1 Start Normalized
We suggest that readers of this book need to be familiar with database normalization. If
you are unfamiliar with database normalization, make it your responsibility to gain an un-
derstanding, as working with models in Django effectively requires a working knowledge
of this. Since a detailed explanation of the subject is outside the scope of this book, we
recommend the following resources:

ä en.wikipedia.org/wiki/Database_normalization
ä en.wikibooks.org/wiki/Relational_Database_Design/Normalization

When you’re designing your Django models, always start off normalized. Take the time to
make sure that no model should contain data already stored in another model.

At this stage, use relationship fields liberally. Don’t denormalize prematurely. You want to
have a good sense of the shape of your data.

6.4.2 Cache Before Denormalizing
Often, setting up caching in the right places can save you the trouble of denormalizing your
models. We’ll cover caching in much more detail in Chapter 26: Finding and Reducing
Bottlenecks, so don’t worry too much about this right now.

6.4.3 Denormalize Only if Absolutely Needed
It can be tempting, especially for those new to the concepts of data normalization, to denor-
malize prematurely. Don’t do it! Denormalization may seem like a panacea for what causes
problems in a project. However, it’s a tricky process that risks adding complexity to your
project and dramatically raises the risk of losing data.

Please, please, please explore caching before denormalization.

When a project has reached the limits of what the techniques described in Chapter 26:
Finding and Reducing Bottlenecks can address, that’s when research into the concepts and
patterns of database denormalization should begin.

6.4.4 When to Use Null and Blank
When defining a model field, you have the ability to set the null=True and the
blank=True options. By default, they are False.

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 71

http://en.wikipedia.org/wiki/Database_normalization
http://en.wikibooks.org/wiki/Relational_Database_Design/Normalization
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 6: Model Best Practices

Knowing when to use these options is a common source of confusion for developers.

We’ve put table Table 6.2: When to Use Null and Blank by Field together to serve as a guide
for standard usage of these model field arguments.

Figure 6.2: A common source of confusion.

6.4.5 When to Use BinaryField
This field allows for the storage of raw binary data or bytes. We can’t perform filters, excludes,
or other SQL actions on the field, but there are use cases for it. For example, we could store:

ä MessagePack-formatted content.
ä Raw sensor data.
ä Compressed data e.g. the type of data Sentry stores as a BLOB, but is required to

base64-encode due to legacy issues.

The possibilities are endless, but remember that binary data can come in huge chunks, which
can slow down databases. If this occurs and becomes a bottleneck, the solution might be to
save the binary data in a file and reference it with a FileField.

WARNING: Don’t Serve Files From BinaryField!

Storing files in a database field should never happen. If it’s being considered as a
solution to a problem, find a certified database expert and ask for a second opinion.

To summarize PostgreSQL expert Frank Wiles on the problems with using a
database as a file store:

ä ‘read/write to a DB is always slower than a filesystem’

72 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

6.4: Django Model Design

Field Type Setting null=True Setting blank=True
CharField,
TextField,
SlugField,
EmailField,
CommaSeparated-
IntegerField,
UUIDField

Okay if you also have set
both unique=True and
blank=True. In this sit-
uation, null=True is re-
quired to avoid unique con-
straint violations when sav-
ing multiple objects with
blank values.

Okay if you want the cor-
responding form widget
to accept empty values. If
you set this, empty values
are stored as NULL in the
database if null=True
and unique=True are also
set. Otherwise, they get
stored as empty strings.

FileField,
ImageField

Don’t do this.
Django stores the path
from MEDIA_ROOT to the
file or to the image in a
CharField, so the same pat-
tern applies to FileFields.

Okay.
The same pattern for
CharField applies here.

BooleanField Okay. Default is blank=True.
IntegerField,
FloatField,
DecimalField,
DurationField, etc

Okay if you want to be able
to set the value to NULL in
the database.

Okay if you want the cor-
responding form widget to
accept empty values. If so,
you will also want to set
null=True.

DateTimeField,
DateField,
TimeField, etc.

Okay if you want to be able
to set the value to NULL in
the database.

Okay if you want the cor-
responding form widget to
accept empty values, or if
you are using auto_now or
auto_now_add. If it’s the
former, you will also want
to set null=True.

ForeignKey,
OneToOneField

Okay if you want to be able
to set the value to NULL in
the database.

Okay if you want the cor-
responding form widget
(e.g. the select box) to
accept empty values. If so,
you will also want to set
null=True.

ManyToManyField Null has no effect Okay if you want the corre-
sponding form widget (e.g.
the select box) to accept
empty values.

GenericIPAddressField Okay if you want to be able
to set the value to NULL in
the database.

Okay if you want to make
the corresponding field
widget accept empty values.
If so, you will also want to
set null=True.

JSONField Okay. Okay.

Table 6.2: When to Use Null and Blank by Field

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 73

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 6: Model Best Practices

ä ‘your DB backups grow to be huge and more time consuming’
ä ‘access to the files now requires going through your app (Django) and DB

layers’
See revsys.com/blog/2012/may/01/three-things-you-should-never-put-
your-database/

When someone thinks there is a good use case for serving files from a database and
quotes a success like npmjs.org (stored files in CouchDB), it’s time to do your
research. The truth is that npmjs.org, migrated its database-as-file-store system
to a more traditional file serving method years ago.

6.4.6 Try to Avoid Using Generic Relations
In general we advocate against generic relations and use of
models.field.GenericForeignKey. They are usually more trouble than they are
worth. Using them is often a sign that troublesome shortcuts are being taken, that the
wrong solution is being explored.

The idea of generic relations is that we are binding one table to another by way of an uncon-
strained foreign key (GenericForeignKey). Using it is akin to using a NoSQL datastore
that lacks foreign key constraints as the basis for projects that could really use foreign key
constraints. This causes the following:

ä Reduction in speed of queries due to lack of indexing between models.
ä Danger of data corruption as a table can refer to another against a non-existent record.

The upside of this lack of constraints is that generic relations make it easier to build apps for
things that need to interact with numerous model types we might have created. Specifically
things like favorites, ratings, voting, messages, and tagging apps. Indeed, there are a number
of existing apps that are built this way. While we hesitate to use them, we are comforted by
the fact that the good ones are focused on a single task (for example, tagging).

Over time, we’ve found that we can build favorites, ratings, voting, messages, and tagging
apps built off ForeignKey and ManyToMany field. For a little more development work, by
avoiding the use of GenericForeignKey we get the benefit of speed and integrity.

Where the GenericForeignKey becomes really troublesome is when its unconstrained
feature becomes the method by which a project’s primary data is defined. For example, if
we built an Ice Cream themed project where the relationships between toppings, flavors,

74 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

http://www.revsys.com/blog/2012/may/01/three-things-you-should-never-put-your-database/
http://www.revsys.com/blog/2012/may/01/three-things-you-should-never-put-your-database/
https://npmjs.org
https://npmjs.org
https://github.com/feldroy/two-scoops-of-django-3.x/issues

6.4: Django Model Design

containers, orders, and sales were all tracked via GenericForeignKey, we would have the
problems described in the bullets above. In short:

ä Try to avoid generic relations and GenericForeignKey.
ä If you think you need generic relations, see if the problem can be solved through better

model design or the new PostgreSQL fields.
ä If usage can’t be avoided, try to use an existing third-party app. The isolation a third-

party app provides will help keep data cleaner.

For another view that shares our opinion, please read lukeplant.me.uk/blog/posts/
avoid-django-genericforeignkey

6.4.7 Make Choices and Sub-Choices Model Constants
A nice pattern is to add choices as properties to a model as a structure defined with tuples.
As these are constants tied to your model (and the represented data) being able to easily
access them everywhere makes development easier.

This technique is described in docs.djangoproject.com/en/3.2/ref/models/
fields/#django.db.models.Field.choices. If we translate that to an ice cream-
based example, we get:

Example 6.5: Setting Choice Model Attributes

orders/models.py
from django.db import models

class IceCreamOrder(models.Model):
FLAVOR_CHOCOLATE = 'ch'
FLAVOR_VANILLA = 'vn'
FLAVOR_STRAWBERRY = 'st'
FLAVOR_CHUNKY_MUNKY = 'cm'

FLAVOR_CHOICES = (
(FLAVOR_CHOCOLATE, 'Chocolate'),
(FLAVOR_VANILLA, 'Vanilla'),
(FLAVOR_STRAWBERRY, 'Strawberry'),
(FLAVOR_CHUNKY_MUNKY, 'Chunky Munky')

)

flavor = models.CharField(
max_length=2,

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 75

https://lukeplant.me.uk/blog/posts/avoid-django-genericforeignkey/
https://lukeplant.me.uk/blog/posts/avoid-django-genericforeignkey/
https://feld.to/3eZ6lra
https://feld.to/3eZ6lra
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 6: Model Best Practices

choices=FLAVOR_CHOICES
)

Using this model, we can do the following:

Example 6.6: Accessing Choice Model Attributes

>>> from orders.models import IceCreamOrder
>>>

IceCreamOrder.objects.filter(flavor=IceCreamOrder.FLAVOR_CHOCOLATE)↪→

[<icecreamorder: 35>, <icecreamorder: 42>, <icecreamorder: 49>]

This works in both Python code and templates, and the attribute can be accessed on either
the class or the instantiated model object.

6.4.8 Using Enumeration Types for Choices

Nate Cox recommends using Django’s enumeration types for choices. Built into Django as
of the release of 3.0, it’s even easier to use.

Example 6.7: Setting Choice Model Attributes

from django.db import models

class IceCreamOrder(models.Model):
class Flavors(models.TextChoices):

CHOCOLATE = 'ch', 'Chocolate'
VANILLA = 'vn', 'Vanilla'
STRAWBERRY = 'st', 'Strawberry'
CHUNKY_MUNKY = 'cm', 'Chunky Munky'

flavor = models.CharField(
max_length=2,
choices=Flavors.choices

)

Using this code we’re able to do:

76 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

6.5: The Model _meta API

Example 6.8: Accessing Enum-Based Choice Model Attributes

>>> from orders.models import IceCreamOrder
>>>

IceCreamOrder.objects.filter(flavor=IceCreamOrder.Flavors.CHOCOLATE)↪→

[<icecreamorder: 35>, <icecreamorder: 42>, <icecreamorder: 49>]

There are a few drawbacks to using enumeration types over the previous method. Specifi-
cally:

ä Named groups are not possible with enumeration types. What this means is that if
we want to have categories inside our choices, we’ll have to use the older tuple-based
approach.

ä If we want other types besides str and int, we have to define those ourselves.

Enumeration types for choice fields provide a lovely API. We’ve found an excellent approach
to using them is to stick with them until we run into the drawbacks listed above. Then we
switch to the older tuple-based method.

6.4.9 PostgreSQL-Specific Fields: When to Use Null and Blank
Field Type Setting null=True Setting blank=True
ArrayField Okay. Okay.
HStoreField Okay. Okay.
IntegerRangeField,
BigIntegerRangeField,
and FloatRangeField

Okay if you want to be able
to set the value to NULL in
the database.

Okay if you want the cor-
responding form widget to
accept empty values. If so,
you will also want to set
null=True.

DatetimeRangeField
and DateRangeField

Okay if you want to be able
to set the value to NULL in
the database.

Okay if you want the cor-
responding form widget to
accept empty values, or if
you are using auto_now
or auto_now_add. If so,
you will also want to set
null=True.

Table 6.3: When to Use Null and Blank for Postgres Fields

6.5 The Model _metaAPI
This _meta API is unusual in the following respects:

ä It is prefixed with “_” yet is a public, documented API.

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 77

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 6: Model Best Practices

ä Unlike other _-prefixed components of Django _meta follows the same deprecation
patterns as the rest of the framework.

The reason for this is that before Django 1.8, the model _meta API was unofficial and
purposely undocumented, as is normal with any API subject to change without notice. The
original purpose of _meta was simply for Django to store extra info about models for its
own use. However, it proved so useful that it is now a documented API.

For most projects, you shouldn’t need _meta. The main uses for it are when you need to:

ä Get a list of a model’s fields.
ä Get the class of a particular field for a model (or its inheritance chain or other info

derived from such).
ä Ensure that how you get this information remains constant across future Django ver-

sions.

Examples of these sorts of situations:

ä Building a Django model introspection tool.
ä Building your own custom specialized Django form library.
ä Creating admin-like tools to edit or interact with Django model data.
ä Writing visualization or analysis libraries, e.g. analyzing info only about fields that

start with “foo”.

Further reading:

ä Model _meta docs: docs.djangoproject.com/en/3.2/ref/models/meta/

6.6 Model Managers
Every time we use the Django ORM to query a model, we are using an interface called a
model manager to interact with the database. Model managers are said to act on the full
set of all possible instances of this model class (all the data in the table) to restrict the ones
you want to work with. Django provides a default model manager for each model class, but
we can define our own.

Here’s a simple example of a custom model manager:

Example 6.9: Custom Model Manager: published

from django.db import models
from django.utils import timezone

78 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://docs.djangoproject.com/en/3.2/ref/models/meta/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

6.6: Model Managers

class PublishedManager(models.Manager):

def published(self, **kwargs):
return self.filter(pub_date__lte=timezone.now(), **kwargs)

class FlavorReview(models.Model):
review = models.CharField(max_length=255)
pub_date = models.DateTimeField()

add our custom model manager
objects = PublishedManager()

Now, if we first want to display a count of all of the ice cream flavor reviews, and then a
count of just the published ones, we can do the following:

Example 6.10: Custom Model Manager: published

>>> from reviews.models import FlavorReview
>>> FlavorReview.objects.count()
35
>>> FlavorReview.objects.published().count()
31

Easy, right? Yet wouldn’t it make more sense if you just added a second model manager?
That way you could have something like:

Example 6.11: Illusory Benefits of Using Two Model Managers

>>> from reviews.models import FlavorReview
>>> FlavorReview.objects.filter().count()
35
>>> FlavorReview.published.filter().count()
31

On the surface, replacing the default model manager seems like the intelligent thing to do.
Unfortunately, our experiences in real project development make us very careful when we
use this method. Why?

First, when using model inheritance, children of abstract base classes receive their parent’s
model manager, and children of concrete base classes do not.

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 79

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 6: Model Best Practices

Second, the first manager applied to a model class is the one that Django treats as the
default. This breaks significantly with the normal Python pattern, causing what can
appear to be unpredictable results from QuerySets.

With this knowledge in mind, in your model class, objects = models.Manager()
should be defined manually above any custom model manager.

WARNING: Know the Model Manager Order of Operations

Always set objects = models.Manager() above any custom model manager
that has a new name. While this rule can be broken, it’s an advanced technique that
we don’t recommend for most projects.

Additional reading: docs.djangoproject.com/en/3.2/topics/db/managers/

6.7 Understanding Fat Models
The concept of fat models is that rather than putting data-related code in views and tem-
plates, instead, we encapsulate the logic in model methods, classmethods, properties, even
manager methods. That way, any view or task can use the same logic. For example, if we have
a model that represents Ice Cream reviews we might attach to it the following methods:

ä Review.create_review(cls, user, rating, title, description) A
classmethod for creating reviews. Called on the model class itself from HTML
and REST views, as well as an import tool that accepts spreadsheets.

ä Review.product_average A review instance property that returns the reviewed
product’s average rating. Used on review detail views so the reader can get a feel for
the overall opinion without leaving the page.

ä Review.found_useful(self, user, yes) A method that sets whether or not
readers found the review useful or not. Used in detail and list views, for both HTML
and REST implementations.

As can be inferred from this list, fat models are a great way to improve the reuse of code
across a project. In fact, the practice of moving logic from views and templates to models
has been growing across projects, frameworks, and languages for years. This is a good thing,
right?

Not necessarily.

The problem with putting all logic into models is it can cause models to explode in size of
code, becoming what is called a ‘god object’. This anti-pattern results in model classes that

80 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://docs.djangoproject.com/en/3.2/topics/db/managers/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

6.8: Additional Resources

are hundreds, thousands, even tens of thousands of lines of code. Because of their size and
complexity, god objects are hard to understand, hence hard to test and maintain.

When moving logic into models, we try to remember one of the basic ideas of object-
oriented programming, that big problems are easier to resolve when broken up into smaller
problems. If a model starts to become unwieldy in size, we begin isolating code that is
prime for reuse across other models, or whose complexity requires better management. The
methods, classmethods, and properties are kept, but the logic they contain is moved into
Model Behaviors or Stateless Helper Functions. Let’s cover both techniques in the following
subsections:

6.7.1 Model Behaviors a.k.a Mixins
Model behaviors embrace the idea of composition and encapsulation via the use of mix-
ins. Models inherit logic from abstract models. For more information, see the following
resources:

ä blog.kevinastone.com/django-model-behaviors.html Kevin Stone’s arti-
cle on using composition to reduce replication of code.

ä Section 10.2: Using Mixins With CBVs.

6.7.2 Stateless Helper Functions
By moving logic out of models and into utility functions, it becomes more isolated. This
isolation makes it easier to write tests for the logic. The downside is that the functions are
stateless, hence all arguments have to be passed.

We cover this in Chapter 31: What About Those Random Utilities?

6.7.3 Model Behaviors vs Helper Functions
In our opinion, alone neither of these techniques is perfect. However, when both are used
judiciously, they can make projects shine. Understanding when to use either isn’t a static
science, it is an evolving process. This kind of evolution is tricky, prompting our suggestion
to have tests for the components of fat models.

6.8 Additional Resources
Here are a number of articles that build on what we illustrate in this chapter:

ä hakibenita.com/bullet-proofing-django-models - Haki Benita’s excellent
article on implementing very serious rules to Django models. His entire blog is full
of excellent information.

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 81

https://blog.kevinastone.com/django-model-behaviors.html
https://hakibenita.com/bullet-proofing-django-models
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 6: Model Best Practices

ä - Andrew Brooks’ deep dive into Django’s ORM is worth the read for anyone
concerned about the performance of their model design. spellbookpress.com/
books/temple-of-django-database-performance/

6.9 Summary
Models are the foundation for most Django projects, so take the time to design them
thoughtfully.

Start normalized, and only denormalize if you’ve already explored other options thoroughly.
You may be able to simplify slow, complex queries by dropping down to raw SQL, or you
may be able to address your performance issues with caching in the right places.

If you decide to use model inheritance, inherit from abstract base classes rather than concrete
models. You’ll save yourself from the confusion of dealing with implicit, unneeded joins.

Watch out for the “gotchas” when using the null=True and blank=True model field
options. Refer to our handy table for guidance.

You may find django-model-utils and django-extensions pretty handy.

Finally, fat models are a way to encapsulate logic in models, but can all too readily turn into
god objects.

Our next chapter is where we begin talking about queries and the database layer.

82 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://spellbookpress.com/books/temple-of-django-database-performance/
https://spellbookpress.com/books/temple-of-django-database-performance/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

7 | Queries and the Database Layer

Most of the queries we write are simple. Django’s Object-Relational Model or ORM pro-
vides a great productivity shortcut: not only generating decent SQL queries for common use
cases, but providing model access/update functionality that comes complete with validation
and security. It allows us to trivially write code that works with different database engines.
This feature of ORMs powers much of the Django third-party package ecosystem. If you
can write your query easily with the ORM, then take advantage of it!

The Django ORM, like any ORM, converts data from different types into objects that we
can use pretty consistently across supported databases. Then it provides a set of methods for
interacting with those objects. For the most part, Django does a pretty good job at what
it’s designed to do. However, it does have quirks, and understanding those quirks is part of
learning how to use Django. Let’s go over some of them, shall we?

7.1 Use get_object_or_404() for Single Objects
In views such as detail pages where you want to retrieve a single object and do something
with it, use get_object_or_404() instead of get().

WARNING: get_object_or_404() Is for Views Only

ä Only use it in views.
ä Don’t use it in helper functions, forms, model methods or anything that is

not a view or directly view related.
Many years ago a certain Python coder and author named Daniel was deploying
his first Django project. So entranced was he by Django’s get_object_or_404()
function that he used it everywhere, in views, in models, in forms, everywhere. In
development this worked great and passed tests. Unfortunately, this unconstrained
use meant that when certain records were deleted by the admin staff, the entire site
broke.

Keep get_object_or_404() in your views!

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 83

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 7: Queries and the Database Layer

7.2 Be Careful With Queries That Might Throw
Exceptions

When you’re getting a single Django model instance with the get_object_or_404()
shortcut, you don’t need to wrap it in a try-except block. That’s because
get_object_or_404() already does that for you.

However, in most other situations you need to use a try-except block. Some tips:

7.2.1 ObjectDoesNotExist vs. DoesNotExist

ObjectDoesNotExist can be applied to any model object, whereas DoesNotExist is for
a specific model.

Example 7.1: Example Use for ObjectDoesNotExist

from django.core.exceptions import ObjectDoesNotExist

from flavors.models import Flavor
from store.exceptions import OutOfStock

def list_flavor_line_item(sku):
try:

return Flavor.objects.get(sku=sku, quantity__gt=0)
except Flavor.DoesNotExist:

msg = 'We are out of {0}'.format(sku)
raise OutOfStock(msg)

def list_any_line_item(model, sku):
try:

return model.objects.get(sku=sku, quantity__gt=0)
except ObjectDoesNotExist:

msg = 'We are out of {0}'.format(sku)
raise OutOfStock(msg)

7.2.2 When You Just Want One Object but Get Three Back

If it’s possible that your query may return more than one object, check for a
MultipleObjectsReturned exception. Then in the except clause, you can do whatever
makes sense, e.g. raise a special exception or log the error.

84 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

7.3: Use Lazy Evaluation to Make Queries Legible

Example 7.2: Example Use of MultipleObjectsReturned

from flavors.models import Flavor
from store.exceptions import OutOfStock, CorruptedDatabase

def list_flavor_line_item(sku):
try:

return Flavor.objects.get(sku=sku, quantity__gt=0)
except Flavor.DoesNotExist:

msg = 'We are out of {}'.format(sku)
raise OutOfStock(msg)

except Flavor.MultipleObjectsReturned:
msg = 'Multiple items have SKU {}. Please fix!'.format(sku)
raise CorruptedDatabase(msg)

7.3 Use Lazy Evaluation to Make Queries Legible
Django’s ORM is very powerful. And with such power comes the responsibility to make
code legible, hence maintainable. With complex queries, attempt to avoid chaining too
much functionality on a small set of lines:

Example 7.3: Illegible Queries

Don't do this!
from django.db.models import Q

from promos.models import Promo

def fun_function(name=None):
"""Find working ice cream promo"""

Too much query chaining makes code go off the screen or page. Not good.↪→

return
Promo.objects.active().filter(Q(name__startswith=name)|Q(description__icontain↪→

This is unpleasant, right? Yet if we add in advanced Django ORM tools, then it will go
from unpleasant to as terrible as a sriracha-based ice cream topping. To mitigate this un-
pleasantness, we can use the lazy evaluation feature of Django queries to keep our ORM
code clean.

By lazy evaluation, we mean that the Django ORM doesn’t make the SQL calls until the
data is actually needed. We can chain ORM methods and functions as much as we want,

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 85

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 7: Queries and the Database Layer

and until we try to loop through the result, Django doesn’t touch the database. Instead of
being forced to chain many methods and advanced database features on a single line, we
can break them up over as many lines as needed. This increases readability, which improves
the ease of maintenance, which increases time for getting ice cream.

Here we take the code from bad example 7.3 and break it up into more legible code:

Example 7.4: Legible Queries

Do this!
from django.db.models import Q

from promos.models import Promo

def fun_function(name=None):
"""Find working ice cream promo"""
results = Promo.objects.active()
results = results.filter(

Q(name__startswith=name) |
Q(description__icontains=name)

)
results = results.exclude(status='melted')
results = results.select_related('flavors')
return results

As can be seen in the corrected code, we can more easily tell what the end result will be.
Even better, by breaking up the query statement we can comment on specific lines of code.

7.3.1 Chaining Queries for Legibility
This technique borrows from the Pandas and JavaScript communities. Instead of using lazy
evaluation, it’s possible to chain queries thus:

Example 7.5: Chaining Queries

Do this!
from django.db.models import Q

from promos.models import Promo

def fun_function(name=None):
"""Find working ice cream promo"""

86 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

7.4: Lean on Advanced Query Tools

qs = (Promo
.objects
.active()
.filter(

Q(name__startswith=name) |
Q(description__icontains=name)

)
.exclude(status='melted')
.select_related('flavors')

)
return qs

The downside to this approach is that debugging isn’t as easy as using the lazy evaluation
method of writing a query. We simply can’t stick a PDB or IPDB call in the middle of a
query defined this way.

To get around this, we have to do a bit of commenting out:

Example 7.6: Debugging with Chained Queries

def fun_function(name=None):
"""Find working ice cream promo"""
qs = (

Promo
.objects
.active()
.filter(
Q(name__startswith=name) |
Q(description__icontains=name)
)
.exclude(status='melted')
.select_related('flavors')

)
breakpoint()
return qs

7.4 Lean on Advanced Query Tools
Django’s ORM is easy to learn, intuitive, and covers many use cases. Yet there are a number
of things it does not do well. What happens then is that, after the queryset is returned, we
begin processing more and more data in Python. This is a shame, because every database

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 87

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 7: Queries and the Database Layer

manages and transforms data faster than Python (or Ruby, JavaScript, Go, Java, et al).

Instead of managing data with Python, we always try to use Django’s advanced query tools
to do the lifting. In doing so we not only benefit from increased performance, we also enjoy
using code that is more proven (Django and most databases are constantly tested) than any
Python-based workarounds we create.

7.4.1 Query Expressions

When performing reads on a database, query expressions can be used to create values or
computations during that read. If that sounds confusing, don’t feel alone, we’re confused
too. Since a code example is worth a thousand words, let’s provide an example of how they
can benefit us. In our case, we’re trying to list all the customers who have on average ordered
more than one scoop per visit to an ice cream store.

First, how this might be done, albeit dangerously, without query expressions:

Example 7.7: No Query Expressions

Don't do this!
from models.customers import Customer

customers = []
for customer in Customer.objects.iterator():

if customer.scoops_ordered > customer.store_visits:
customers.append(customer)

This example makes us shudder with fear. Why?

ä It uses Python to loop through all the Customer records in the database, one by one.
This is slow and memory consuming.

ä Under any volume of use, it will generate race conditions. This occurs when we’re
running the script while customers interact with the data. While probably not an
issue in this simple ‘READ’ example, in real-world code combining that with an
‘UPDATE’ can lead to loss of data.

Fortunately, through query expressions Django provides a way to make this more efficient
and race-condition free:

88 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

7.4: Lean on Advanced Query Tools

Example 7.8: Yes Query Expressions

from django.db.models import F

from models.customers import Customer

customers =
Customer.objects.filter(scoops_ordered__gt=F('store_visits'))↪→

What this does is use the database itself to perform the comparison. Under the hood, Django
is running something that probably looks like:

Example 7.9: Query Expression Rendered as SQL

SELECT * from customers_customer where scoops_ordered >
store_visits↪→

Query Expressions should be in your toolkit. They increase the performance and stability
of projects.

ä docs.djangoproject.com/en/3.2/ref/models/expressions/

7.4.2 Database Functions
Since Django 1.8 we’ve been able to easily use common database functions such
as UPPER(), LOWER(), COALESCE(), CONCAT(), LENGTH(), and SUBSTR(). Of
all the advanced query tools provided by Django, these are our favorites. Why?

1 Very easy to use, either on new projects or existing projects.
2 Database functions allow us to move some of the logic from Python to the database.

This can be a performance booster, as processing data in Python is not as fast as
processing data in a database.

3 Database functions are implemented differently per database, but Django’s ORM
abstracts this away. Code we write using them on PostgreSQL will work on MySQL
or SQLite3.

4 They are also query expressions, which means they follow a common pattern already
established by another nice part of the Django ORM.

Reference:

ä docs.djangoproject.com/en/3.2/ref/models/database-functions/

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 89

https://docs.djangoproject.com/en/3.2/ref/models/expressions/
https://docs.djangoproject.com/en/3.2/ref/models/database-functions/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 7: Queries and the Database Layer

7.5 Don’t Drop Down to Raw SQL Until It’s Necessary
Whenever we write raw SQL we lose elements of security and reusability. This doesn’t just
apply to internal project code, but also to the rest of the Django world. Specifically, if you
ever release one of your Django apps as a third-party package, using raw SQL will decrease
the portability of the work. Also, in the rare event that the data has to be migrated from one
database to another, any database-specific features that you use in your SQL queries will
complicate the migration.

So when should you actually write raw SQL? If expressing your query as raw SQL would
drastically simplify your Python code or the SQL generated by the ORM, then go ahead
and do it. For example, if you’re chaining a number of QuerySet operations that each operate
on a large data set, there may be a more efficient way to write it as raw SQL.

TIP: Malcolm Tredinnick’s Advice on Writing SQL in Django

Django core developer Malcolm Tredinnick said (paraphrased):
“The ORM can do many wonderful things, but sometimes SQL is the
right answer. The rough policy for the Django ORM is that it’s a storage
layer that happens to use SQL to implement functionality. If you need
to write advanced SQL you should write it. I would balance that by
cautioning against overuse of the raw() and extra() methods.”

TIP: Jacob Kaplan-Moss’ Advice on Writing SQL in Django

Django project co-leader Jacob Kaplan-Moss says (paraphrased):
“If it’s easier to write a query using SQL than Django, then do it.
extra() is nasty and should be avoided; raw() is great and should
be used where appropriate.”

90 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

7.6: Add Indexes as Needed

Figure 7.1: This flavor of ice cream contains raw SQL. It’s a bit chewy.

7.6 Add Indexes as Needed
While adding db_index=True to any model field is easy, understanding when it should
be done takes a bit of judgment. Our preference is to start without indexes and add them
as needed.

When to consider adding indexes:

ä The index would be used frequently, as in 10–25% of all queries.
ä There is real data, or something that approximates real data, so we can analyze the

results of indexing.
ä We can run tests to determine if indexing generates an improvement in results.

When using PostgreSQL, pg_stat_activity tells us what indexes are actually being
used.

Once a project goes live, Chapter 26: Finding and Reducing Bottlenecks, has information
on index analysis.

TIP: Class-Based Model Indexes
Django provides the django.db.models.indexes module, the Index class,
and the Meta.indexes option. These make it easy to create all sorts of
database indexes: just subclass Index, add it to Meta.indexes, and you’re

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 91

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 7: Queries and the Database Layer

done! django.contrib.postgres.indexes currently includes BrinIndex
and GinIndex, but you can imagine HashIndex, GistIndex, SpGistIndex, and
more.

ä docs.djangoproject.com/en/3.2/ref/models/indexes/
ä docs.djangoproject.com/en/3.2/ref/models/options/

#indexes

7.7 Transactions
The default behavior of the ORM is to autocommit every query when it is called. In the
case of data modification, this means that every time a .create() or .update() is called,
it immediately modifies data in the SQL database. The advantage of this is that it makes
it easier for beginning developers to understand the ORM. The disadvantage is that if a
view (or some other operation) requires two or more database modifications to occur, if one
modification succeeds and the other fails, the database is at risk of corruption.

The way to resolve the risk of database corruption is through the use of database transactions.
A database transaction is where two or more database updates are contained in a single unit
of work. If a single update fails, all the updates in the transaction are rolled back. To make
this work, a database transaction, by definition, must be atomic, consistent, isolated and
durable. Database practitioners often refer to these properties of database transactions using
the acronym ACID.

Django has a powerful and relatively easy-to-use transaction mechanism. This makes it
much easier to lock down database integrity on a project, using decorators and context
managers in a rather intuitive pattern.

7.7.1 Wrapping Each HTTP Request in a Transaction

Example 7.10: Wrapping Each HTTP Request in a Transaction

settings/base.py

DATABASES = {
'default': {

...
'ATOMIC_REQUESTS': True,

},
}

Django makes it easy to handle all web requests inside of a transaction with the

92 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://docs.djangoproject.com/en/3.2/ref/models/indexes/
https://feld.to/2SimEpd
https://feld.to/2SimEpd
https://github.com/feldroy/two-scoops-of-django-3.x/issues

7.7: Transactions

ATOMIC_REQUESTS setting. By setting it to True as shown above, all requests are wrapped
in transactions, including those that only read data. The advantage of this approach is safety:
all database queries in views are protected, the disadvantage is performance can suffer. We
can’t tell you just how much this will affect performance, as it depends on individual database
design and how well various database engines handle locking.

We’ve found that this is a great way to ensure at the start that a write-heavy project’s database
maintains integrity. With lots of traffic, however, we’ve had to go back and change things
to a more focused approach. Depending on the size this can be a small or monumental task.

Another thing to remember when using ATOMIC_REQUESTS, is that only the database
state is rolled back on errors. It’s embarrassing to send out a confirmation email and then
have the transaction that wraps a request rolled back. This problem may crop up with any
“write” to anything other than the database: sending email or SMS, calling a third-party
API, writing to the filesystem, etc. Therefore, when writing views that create/update/delete
records but interact with non-database items, you may choose to decorate the view with
transaction.non_atomic_requests().

WARNING: Aymeric Augustin on non_atomic_requests()

Core Django developer and main implementer of the new transaction system,
Aymeric Augustin says, “This decorator requires tight coupling between views and
models, which will make a code base harder to maintain. We might have come up
with a better design if we hadn’t had to provide for backwards-compatibility.”

Then you can use the more explicit declaration as described below in this super-simple API-
style function-based view:

Example 7.11: Simple Non-Atomic View

flavors/views.py

from django.db import transaction
from django.http import HttpResponse
from django.shortcuts import get_object_or_404
from django.utils import timezone

from .models import Flavor

@transaction.non_atomic_requests
def posting_flavor_status(request, pk, status):

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 93

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 7: Queries and the Database Layer

flavor = get_object_or_404(Flavor, pk=pk)

This will execute in autocommit mode (Django's default).
flavor.latest_status_change_attempt = timezone.now()
flavor.save()

with transaction.atomic():
This code executes inside a transaction.
flavor.status = status
flavor.latest_status_change_success = timezone.now()
flavor.save()
return HttpResponse('Hooray')

If the transaction fails, return the appropriate status
return HttpResponse('Sadness', status_code=400)

If you are using ATOMIC_REQUESTS=True and want to switch to a more focused approach
described in the following section, we recommend an understanding of Chapter 26: Find-
ing and Reducing Bottlenecks, Chapter 24: Testing Stinks and Is a Waste of Money!, and
Chapter 34: Continuous Integration before you undertake this effort.

TIP: Projects Touching Medical or Financial Data

For these kinds of projects, engineer systems for eventual consistency rather than
for transactional integrity. In other words, be prepared for transactions to fail and
rollbacks to occur. Fortunately, because of transactions, even with a rollback, the
data will remain accurate and clean.

7.7.2 Explicit Transaction Declaration
Explicit transaction declaration is one way to increase site performance. In other words,
specifying which views and business logic are wrapped in transactions and which are not.
The downside to this approach is that it increases development time.

TIP: Aymeric Augustin on ATOMIC_REQUESTS vs. Explicit
Transaction Declaration
Aymeric Augustin says, ‘Use ATOMIC_REQUESTS as long as the performance
overhead is bearable. That means “forever” on most sites.’

94 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

7.7: Transactions

When it comes to transactions, here are some good guidelines to live by:

ä Database operations that do not modify the database should not be wrapped in trans-
actions.

ä Database operations that modify the database should be wrapped in a transaction.
ä Special cases including database modifications that require database reads and perfor-

mance considerations can affect the previous two guidelines.

If that’s not clear enough, here is a table explaining when different Django ORM calls
should be wrapped in transactions.

Purpose ORM method Generally Use Transac-
tions?

Create Data .create(), .bulk_create(),
.get_or_create(),

3

Retrieve Data .get(), .filter(), .count(), .it-
erate(), .exists(), .exclude(),
.in_bulk, etc.

Modify Data .update() 3

Delete Data .delete() 3

Table 7.1: When to Use Transactions

Figure 7.2: Because no one loves ice cream quite like a database.

We also cover this in Chapter 26: Finding and Reducing Bottlenecks, specifically subsection
Section 26.2.4: Switch ATOMIC_REQUESTS to False.

TIP: Never Wrap Individual ORM Method Calls

Django’s ORM actually relies on transactions internally to ensure consistency of
data. For instance, if an update affects multiple tables because of concrete inheri-
tance, Django has that wrapped up in transactions.

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 95

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 7: Queries and the Database Layer

Therefore, it is never useful to wrap an individual ORM method [.create(),
.update(), .delete()] call in a transaction. Instead, use explicit transactions
when you are calling several ORM methods in a view, function, or method.

7.7.3 django.http.StreamingHttpResponse and Transactions
If a view is returning django.http.StreamingHttpResponse, it’s impossible to handle
transaction errors once the response has begun. If your project uses this response method
then ATOMIC_REQUESTS should do one of the following:

1 Set ATOMIC_REQUESTS to Django’s default, which is False. Then you can use the
techniques explored in Section 7.7.2: Explicit Transaction Declaration. Or...

2 Wrap the view in the django.db.transaction.non_atomic_requests deco-
rator.

Keep in mind that you can use ATOMIC_REQUESTS with a streaming response, but the
transaction will only apply to the view itself. If the generation of the response stream triggers
additional SQL queries, they will be made in autocommit mode. Hopefully generating a
response doesn’t trigger database writes...

7.7.4 Transactions in MySQL
If the database being used is MySQL, transactions may not be supported depending on
your choice of table type such as InnoDB or MyISAM. If transactions are not supported,
Django will always function in autocommit mode, regardless of ATOMIC_REQUESTS or
code written to support transactions. For more information, we recommend reading the
following articles:

ä docs.djangoproject.com/en/3.2/topics/db/transactions/
#transactions-in-mysql

ä dev.mysql.com/doc/refman/8.0/en/sql-transactional-statements.
html

7.7.5 Django ORM Transaction Resources
ä docs.djangoproject.com/en/3.2/topics/db/transactions/ Django’s

documentation on transactions.
ä Real Python has a great tutorial on the subject of transactions. While written for

Django 1.6, much of the material remains pertinent to this day. realpython.com/
blog/python/transaction-management-with-django-1-6

96 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://feld.to/2wOrTFR
https://feld.to/2wOrTFR
https://dev.mysql.com/doc/refman/8.0/en/sql-transactional-statements.html
https://dev.mysql.com/doc/refman/8.0/en/sql-transactional-statements.html
https://docs.djangoproject.com/en/3.2/topics/db/transactions/
https://realpython.com/blog/python/transaction-management-with-django-1-6/
https://realpython.com/blog/python/transaction-management-with-django-1-6/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

7.8: Summary

7.8 Summary
In this chapter we went over different ways to query a project’s persistent data.

We recommend using indexes once there is a better feel for how the data actually works
throughout the project.

Now that we know how to store and index data, let’s begin to display it. Starting with the
next chapter we’re diving into views!

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 97

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 7: Queries and the Database Layer

98 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

8 | Function- And Class-Based Views

Both function-based views (FBVs) and class-based views (CBVs) are a core part of Django.
We recommend that you understand how to use both types of views.

8.1 When to Use FBVs or CBVs
Whenever you implement a view, think about whether it would make more sense to imple-
ment as an FBV or as a CBV. Some views are best implemented as CBVs, and others are
best implemented as FBVs.

If you aren’t sure which method to choose, on the next page we’ve included a flow chart that
might be of assistance.

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 99

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 8: Function- And Class-Based Views

Figure 8.1: Should you use an FBV or a CBV? flow chart.

This flowchart follows our preference for using CBVs over FBVs. We prefer to use CBVs
for most views, using FBVs to implement only the custom error views or complicated ones
that would be a pain to implement with CBVs.

TIP: Alternative Approach - Staying With FBVs

Some developers prefer to err on the side of using FBVs for most views and CBVs
only for views that need to be subclassed. That strategy is fine as well.

8.2 Keep View Logic Out of URLConfs
Requests are routed to views via URLConfs, in a module that is normally named
urls.py. Per Django’s URL design philosophy (docs.djangoproject.com/en/3.2/
misc/design-philosophies/#url-design), the coupling of views with urls is loose,
allows for infinite flexibility, and encourages best practices.

And yet, this is what Daniel feels like yelling every time he sees complex urls.py files:

“I didn’t write J2EE XML and Zope ZCML configuration files back in the day just
so you darn kids could stick logic into Django url modules!”

100 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://feld.to/3bL4gwY
https://feld.to/3bL4gwY
https://github.com/feldroy/two-scoops-of-django-3.x/issues

8.2: Keep View Logic Out of URLConfs

Remember that Django has a wonderfully simple way of defining URL routes. Like every-
thing else we bring up in this book, that simplicity is to be honored and respected. The rules
of thumb are this:

1 The views modules should contain view logic.
2 The URL modules should contain URL logic.

Ever see code like this? Perhaps in the official documentation for Class-Based Views?

Example 8.1: Django CBV-Style URLconf Modules

Don't do this!
from django.urls import path
from django.views.generic import DetailView

from tastings.models import Tasting

urlpatterns = [
path('<int:pk>',

DetailView.as_view(
model=Tasting,
template_name='tastings/detail.html'),

name='detail'),
path('<int:pk>/results/',

DetailView.as_view(
model=Tasting,
template_name='tastings/results.html'),

name='results'),
]

At a glance this code might seem okay, but we argue that it violates the Django design
philosophies:

ä Loose coupling between views, urls, and models has been replaced with tight cou-
pling, meaning you can never reuse the view definitions.

ä Don’t Repeat Yourself is violated by using the same/similar arguments repeatedly
between CBVs.

ä Infinite flexibility (for URLs) is destroyed. Class inheritance, the primary advantage
of Class Based Views, is impossible using this anti-pattern.

ä Lots of other issues: What happens when you have to add in authentication? And
what about authorization? Are you going to wrap each URLConf view with two or

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 101

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 8: Function- And Class-Based Views

more decorators? Putting your view code into your URLConfs quickly turns your
URLConfs into an unmaintainable mess.

In fact, we’ve heard from developers that seeing CBVs defined in URLConfs this way was
part of why they steered clear of using them.

Alright, enough griping. We’ll show our preferences in the next section.

8.3 Stick to Loose Coupling in URLConfs

Figure 8.2: Loose coupling of chocolate chip cookie dough ice cream.

Here is how to create URLConfs that avoid the problems we mentioned on the previous
page. First, we write the views:

Example 8.2: tastings/views.py

from django.urls import reverse
from django.views.generic import ListView, DetailView, UpdateView

from .models import Tasting

class TasteListView(ListView):
model = Tasting

class TasteDetailView(DetailView):
model = Tasting

class TasteResultsView(TasteDetailView):
template_name = 'tastings/results.html'

class TasteUpdateView(UpdateView):
model = Tasting

102 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

8.3: Stick to Loose Coupling in URLConfs

def get_success_url(self):
return reverse('tastings:detail',

kwargs={'pk': self.object.pk})

Then we define the urls:

Example 8.3: tastings/urls.py

from django.urls import path

from . import views

urlpatterns = [
path(

route='',
view=views.TasteListView.as_view(),
name='list'

),
path(

route='<int:pk>/',
view=views.TasteDetailView.as_view(),
name='detail'

),
path(

route='<int:pk>/results/',
view=views.TasteResultsView.as_view(),
name='results'

),
path(

route='<int:pk>/update/',
view=views.TasteUpdateView.as_view(),
name='update'

)
]

Your first response to our version of this should go something like, “Are you sure this is a good
idea? You changed things to use two files AND more lines of code! How is this better?”

Well, this is the way we do it. Here are some of the reasons we find it so useful:

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 103

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 8: Function- And Class-Based Views

ä Don’t Repeat Yourself : No argument or attribute is repeated between views.
ä Loose coupling: We’ve removed the model and template names from the URLConf

because views should be views and URLConfs should be URLConfs. We should be
able to call our views from one or more URLConfs, and our approach lets us do just
that.

ä URLConfs should do one thing and do it well: Related to our previous bullet, our
URLConf is now focused primarily on just one thing: URL routing. We aren’t track-
ing down view logic across both views and URLConfs, we just look in our views.

ä Our views benefit from being class-based: Our views, by having a formal definition
in the views module, can inherit from other classes. This means adding authentication,
authorization, new content formats, or any other business requirement tossed our way
is much easier to handle.

ä Infinite flexibility: Our views, by having a formal definition in the views module, can
implement their own custom logic.

8.3.1 What if We Aren’t Using CBVs?

The same rules apply.

We’ve encountered debugging nightmares of projects using FBVs with extensive URLConf
hackery, such as elaborate tricks with the __file__ attribute of Python modules combined
with directory walking and regular expressions to automagically create URLConfs. If that
sounds painful, it was.

Keep logic out of URLConfs!

8.4 Use URL Namespaces
What URL namespaces do is provide an identifier for app-level and instance level names-
paces. URL namespaces are one of those things where on the surface they seem like they
might not help much, but once a developer begins using them they wonder why they didn’t
use them already. We’ll sum up using URL namespaces as follows:

Instead of writing URL names like tastings_detail write them like
tastings:detail.

Before we explain why this is so useful, we’ll provide an example of usage based on the
app-level URLConf code from example 8.2. In the root URLConf we would add:

104 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

8.4: Use URL Namespaces

Example 8.4: Snippet of urls.py At Root of Project

urlpatterns += [
path('tastings/', include('tastings.urls',

namespace='tastings')),↪→

]

To see this in action in a view, let’s take a look at a snippet of code from example 8.1:

Example 8.5: Snippet of tastings/views.py

tastings/views.py snippet
class TasteUpdateView(UpdateView):

model = Tasting

def get_success_url(self):
return reverse('tastings:detail',

kwargs={'pk': self.object.pk})

See this in action in an HTML template:

Example 8.6: taste_list.html

{% extends 'base.html' %}

{% block title %}Tastings{% endblock title %}

{% block content %}

{% for taste in tastings %}

{{ taste.title

}}↪→

<small>
(update)

</small>

{% endfor %}

{% endblock content %}

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 105

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 8: Function- And Class-Based Views

Now that we understand how to implement URL namespaces, let’s cover why they are
useful.

8.4.1 Makes for Shorter, More Intuitive, and Don’t Repeat Yourself
URL Names

In example 8.3 what we don’t see are URL names like “tastings_detail” and
“tastings_results” that copy the model or app name. Instead there are simple, intu-
itive names like “detail” and “results”. This greatly increases the legibility of apps, especially
to newer Django developers.

Also, who wants to type “tastings” or whatever an app is called so many extra times?

8.4.2 Increases Interoperability With Third-Party Libraries
One of the problems of writing URL names like <myapp>_detail is when app names
collide. While this might not be a problem with things like our tastings app, it’s certainly
happened to the authors with blog and contact applications. Fortunately, URL namespaces
makes this easy to resolve. Assuming that we have an existing contact app, but needed to
add a second one, using URL namespaces we could integrate them to our root URLConf
like so:

Example 8.7: Root URLConf Interoperability

urls.py at root of project
urlpatterns += [

path('contact/', include('contactmonger.urls',

namespace='contactmonger')),↪→

path('report-problem/', include('contactapp.urls',

namespace='contactapp')),↪→

]

Then work them into our templates doing the following:

Example 8.8: contact.html

{% extends "base.html" %}
{% block title %}Contact{% endblock title %}
{% block content %}

106 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

8.4: Use URL Namespaces

<p>
Contact Us

</p>
<p>
Report a Problem

</p>
{% endblock content %}

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 107

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 8: Function- And Class-Based Views

8.4.3 Easier Searches, Upgrades, and Refactors
Considering the prevalence of underscores in names for PEP 8-friendly frameworks like
Django, searching code or names like “tastings_detail” can be challenging. When a
result comes up, is that for a view name, a URL name, or something else?

On the other hand, searching for “tastings:detail” makes for intuitive search result
responses. This can and has made upgrades and refactoring of apps and projects easier, in-
cluding when interacting with new third-party libraries.

8.4.4 Allows for More App and Template Reverse Tricks
We’re not going to cover any tricks here, because we feel such things are almost never justi-
fied. In fact, they usually just add to the complexity of a project without adding any tangible
benefit. However, there are a couple of use cases worth mentioning:

ä Development tools like django-debug-toolbar that perform debug-level introspec-
tion.

ä Projects that allow end-users to add “modules” to change or alter the behavior of their
account.

While developers can use either of these to justify the use of creative URL namespaces tricks,
as always, we recommend trying the simplest approach first.

8.5 Try to Keep Business Logic Out of Views
In the past, we’ve placed an amazing amount of sophisticated business logic into our views.
Unfortunately, when it became time to generate PDFs, add a REST API, or serve out other
formats, placing so much logic in our views made it much harder to deliver new formats.

This is where our preferred approach of model methods, manager methods, or general utility
helper functions come into play. When business logic is placed into easily reusable compo-
nents, and called from within views, it makes extending components of the project to do
more things much easier.

Since it’s not always possible to do this at the beginning of a project, our rule of thumb has
become whenever we find ourselves duplicating business logic instead of Django boilerplate
between views, it’s time to move code out of the view.

8.6 Django Views Are Functions
When it comes down to it, every Django view is a function. This function takes an HTTP
request object and turns it into an HTTP response object. If you know anything about basic
mathematical functions, this process of change should look very familiar.

108 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

8.6: Django Views Are Functions

Example 8.9: Django Views as Mathematical Funtions

Django FBV as a function
HttpResponse = view(HttpRequest)

Deciphered into basic math (remember functions from algebra?)
y = f(x)

... and then translated into a CBV example
HttpResponse = View.as_view()(HttpRequest)

This concept of change serves as a foundation for all sorts of things you can do with Django
views, be they function- or class-based.

TIP: Class-Based Views Are Actually Called as Functions

Django’s CBVs appear to be very different than FBVs. However, the
View.as_view() classmethod called in URLConfs is actually returning a callable
instance of the view. In other words, a callback function that handles the request/re-
sponse cycle in exactly the same manner as a function-based view!

8.6.1 The Simplest Views
With this in mind, it’s good to remember the simplest possible views that can be created
with Django:

Example 8.10: simplest_views.py

from django.http import HttpResponse
from django.views.generic import View

The simplest FBV
def simplest_view(request):

Business logic goes here
return HttpResponse('FBV')

The simplest CBV
class SimplestView(View):

def get(self, request, *args, **kwargs):
Business logic goes here
return HttpResponse('CBV')

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 109

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 8: Function- And Class-Based Views

Why is this useful to know?

ä Sometimes we need one-off views that do tiny things.
ä Understanding the simplest Django views means we better understand what they are

really doing.
ä Illustrates how Django FBVs are HTTP method neutral, but Django CBVs require

specific HTTP method declaration.

8.7 Don’t Use locals() as Views Context
Returning locals() from any callable is an anti-pattern. While it seems like a handy
shortcut, in fact it is a time consuming nightmare. Let’s use an example to explore why.
Here is a view following this anti-pattern:

Example 8.11: Inappropriate Use of locals()

Don't do this!
def ice_cream_store_display(request, store_id):

store = get_object_or_404(Store, id=store_id)
date = timezone.now()
return render(request, 'melted_ice_cream_report.html',

locals())↪→

On the surface everything seems fine.

However, we’ve gone from an explicit design to implicit anti-pattern, making this simple
view annoying to maintain. Specifically that we don’t know what the view is supposed to
return. This becomes an issue because changing any of the variables returned by the view is
not immediately apparent:

Example 8.12: Altered Version of Previous Code Example

Don't do this!
def ice_cream_store_display(request, store_id):

store = get_object_or_404(Store, id=store_id)
now = timezone.now()
return render(request, 'melted_ice_cream_report.html',

locals())↪→

How long did it take you to spot the difference between Bad Example 8.11 and Bad Example
8.12? This was a simple example, imagine a more complicated one with a large template. This
is why we strongly advocate use of explicit context in views:

110 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

8.8: Summary

Example 8.13: Explicit View Context

def ice_cream_store_display(request, store_id):
return render(

request,
'melted_ice_cream_report.html',
{

'store': get_object_or_404(Store, id=store_id),
'now': timezone.now()

}
)

ä Alex Martelli’s Reasoning: stackoverflow.com/a/1901720

8.8 Summary
This chapter started with discussing when to use either FBVs or CBVs, and matched our
own preference for the latter. In fact, in the next chapter we’ll start to dig deep into the
functionality that can be exploited when using FBVs, followed up by a chapter on CBVs.

We also discussed keeping view logic out of the URLConfs. We feel view code belongs
in the apps’ views.py modules, and URLConf code belongs in the apps’ urls.py modules.
Adhering to this practice allows for object inheritance when used with class-based views,
easier code reuse, and greater flexibility of design.

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 111

http://stackoverflow.com/a/1901720
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 8: Function- And Class-Based Views

112 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

9 | Best Practices for Function-Based
Views

Since the beginning of the Django project, function-based views have been in frequent use
by developers around the world. While class-based views have risen in usage, the simplicity
of using a function is appealing to both new and experienced developers alike. While the
authors are in the camp of preferring CBVs, we work on projects that use FBVs and here
are some patterns we’ve grown to enjoy.

9.1 Advantages of FBVs
The simplicity of FBVs comes at the expense of code reuse: FBVs don’t have the same ability
to inherit from superclasses the way that CBVs do. They do have the advantage of being
more functional in nature, which lends itself to a number of interesting strategies.

We follow these guidelines when writing FBVs:

ä Less view code is better.
ä Never repeat code in views.
ä Views should handle presentation logic. Try to keep business logic in models when

possible, or in forms if you must.
ä Keep your views simple.
ä Use them to write custom 403, 404, and 500 error handlers.
ä Complex nested-if blocks are to be avoided.

9.2 Passing the HttpRequest Object
There are times where we want to reuse code in views, but not tie it into global actions such
as middleware or context processors. Starting in the introduction of this book, we advised
creating utility functions that can be used across the project.

For many utility functions, we are taking an attribute or attributes from the
django.http.HttpRequest (or HttpRequest for short) object and gathering data or

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 113

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 9: Best Practices for Function-Based Views

performing operations. What we’ve found is by having the request object itself as a primary
argument, we have simpler arguments on more methods. This means less cognitive overload
of managing function/method arguments: just pass in the HttpRequest object!

Example 9.1: sprinkles/utils.py

from django.core.exceptions import PermissionDenied
from django.http import HttpRequest

def check_sprinkle_rights(request: HttpRequest) -> HttpRequest:
if request.user.can_sprinkle or request.user.is_staff:

return request

Return a HTTP 403 back to the user
raise PermissionDenied

The check_sprinkle_rights() function does a quick check against the rights
of the user, raising a django.core.exceptions.PermissionDenied excep-
tion, which triggers a custom HTTP 403 view as we describe in Section 31.4.3:
django.core.exceptions.PermissionDenied.

You’ll note that we return back a HttpRequest object rather than an arbitrary value or even
a None object. We do this because as Python is a dynamically typed language, we can attach
additional attributes to the HttpRequest. For example:

Example 9.2: Enhanced sprinkles/utils.py

from django.core.exceptions import PermissionDenied
from django.http import HttpRequest, HttpResponse

def check_sprinkles(request: HttpRequest) -> HttpRequest:
if request.user.can_sprinkle or request.user.is_staff:

By adding this value here it means our display templates
can be more generic. We don't need to have
{% if request.user.can_sprinkle or

request.user.is_staff %}↪→

instead just using
{% if request.can_sprinkle %}
request.can_sprinkle = True
return request

114 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

9.2: Passing the HttpRequest Object

Return a HTTP 403 back to the user
raise PermissionDenied

There’s another reason, which we’ll cover shortly. In the meantime, let’s demonstrate this
code in action:

Example 9.3: Passing the Request Object in FBVs

sprinkles/views.py
from django.shortcuts import get_object_or_404
from django.shortcuts import render
from django.http import HttpRequest, HttpResponse

from .models import Sprinkle
from .utils import check_sprinkles

def sprinkle_list(request: HttpRequest) -> HttpResponse:
"""Standard list view"""

request = check_sprinkles(request)

return render(request,
"sprinkles/sprinkle_list.html",
{"sprinkles": Sprinkle.objects.all()})

def sprinkle_detail(request: HttpRequest, pk: int) -> HttpResponse:
"""Standard detail view"""

request = check_sprinkles(request)

sprinkle = get_object_or_404(Sprinkle, pk=pk)

return render(request, "sprinkles/sprinkle_detail.html",
{"sprinkle": sprinkle})

def sprinkle_preview(request: HttpRequest) -> HttpResponse:
"""Preview of new sprinkle, but without the

check_sprinkles function being used.
"""
sprinkle = Sprinkle.objects.all()
return render(request,

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 115

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 9: Best Practices for Function-Based Views

"sprinkles/sprinkle_preview.html",
{"sprinkle": sprinkle})

Another good feature about this approach is that it’s trivial to integrate into class-based
views:

Example 9.4: Passing the Request Object in a CBV

from django.views.generic import DetailView

from .models import Sprinkle
from .utils import check_sprinkles

class SprinkleDetail(DetailView):
"""Standard detail view"""

model = Sprinkle

def dispatch(self, request, *args, **kwargs):
request = check_sprinkles(request)
return super().dispatch(request, *args, **kwargs)

TIP: Specific Function Arguments Have Their Place

The downside to single argument functions is that specific function arguments like
‘pk’, ‘flavor’ or ‘text’ make it easier to understand the purpose of a function at a glance.
In other words, try to use this technique for actions that are as generic as possible.

Since we’re repeatedly reusing functions inside functions, wouldn’t it be nice to easily rec-
ognize when this is being done? This is when we bring decorators into play.

9.3 Decorators Are Sweet
For once, this isn’t about ice cream, it’s about code! In computer science parlance, syntactic
sugar is a syntax added to a programming language in order to make things easier to read
or to express. In Python, decorators are a feature added not out of necessity, but in order to
make code cleaner and sweeter for humans to read. So yes, Decorators Are Sweet.

When we combine the power of simple functions with the syntactic sugar of decorators, we
get handy, reusable tools like the extremely useful to the point of being ubiquitous
django.contrib.auth.decorators.login_required decorator.

116 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

9.3: Decorators Are Sweet

Here’s a sample decorator template for use in function-based views:

Example 9.5: Simple Decorator Template

import functools

def decorator(view_func):
@functools.wraps(view_func)
def new_view_func(request, *args, **kwargs):

You can modify the request (HttpRequest) object here.
response = view_func(request, *args, **kwargs)
You can modify the response (HttpResponse) object here.
return response

return new_view_func

That might not make too much sense, so we’ll go through it step-by-step, using in-line code
comments to clarify what we are doing. First, let’s modify the decorator template from the
previous example to match our needs:

Example 9.6: Decorator Example

sprinkles/decorators.py
import functools

from . import utils

based off the decorator template from the previous example
def check_sprinkles(view_func):

"""Check if a user can add sprinkles"""
@functools.wraps(view_func)
def new_view_func(request, *args, **kwargs):

Act on the request object with utils.can_sprinkle()
request = utils.can_sprinkle(request)

Call the view function
response = view_func(request, *args, **kwargs)

Return the HttpResponse object
return response

return new_view_func

Then we attach it to the function thus:

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 117

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 9: Best Practices for Function-Based Views

Example 9.7: Example of Using a Decorator

sprinkles/views.py
from django.shortcuts import get_object_or_404, render

from .decorators import check_sprinkles
from .models import Sprinkle

Attach the decorator to the view
@check_sprinkles
def sprinkle_detail(request: HttpRequest, pk: int) -> HttpResponse:

"""Standard detail view"""

sprinkle = get_object_or_404(Sprinkle, pk=pk)

return render(request, "sprinkles/sprinkle_detail.html",
{"sprinkle": sprinkle})

Figure 9.1: If you look at sprinkles closely, you’ll see that they’re Python decorators.

TIP: What About functools.wraps()?

Astute readers may have noticed that our decorator examples used the
functools.wraps() decorator function from the Python standard library. This is
a convenience tool that copies over metadata including critical info like docstrings
to the newly decorated function. It’s not necessary, but it makes project maintenance
much easier.

118 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

9.4: Passing the HttpResponse Object

9.3.1 Be Conservative With Decorators
As with any powerful tool, decorators can be used the wrong way. Too many decorators
can create their own form of obfuscation, making even complex class-based view hierar-
chies seem simple in comparison. When using decorators, establish a limit of how many
decorators can be set on a view and stick with it. Video on the subject: pyvideo.org/
pycon-us-2011/pycon-2011--how-to-write-obfuscated-python.html

9.3.2 Additional Resources on Decorators
ä Decorators Explained:

jeffknupp.com/blog/2013/11/29/improve-your-python-decorators-explained/
ä Decorator Cheat Sheet by author Daniel Feldroy

daniel.feldroy.com/python-decorator-cheatsheet.html

9.4 Passing the HttpResponse Object
Just as with the HttpRequest object, we can also pass around the
HttpResponse object from function to function. Think of this as a selective
Middleware.process_template_response() method. See docs.djangoproject.
com/en/3.2/topics/http/middleware/#process-template-response.

Yes, this technique can be leveraged with decorators. See Example 8.5 which gives a hint as
to how this can be accomplished.

9.5 Additional Resources for Function-Based Views
Luke Plant is a core Django developer with strong opinions in favor of Function-Based
Views. While we don’t agree with most of his anti-CBV arguments he lists in the article
linked below, this nevertheless is of immeasurable value to anyone writing FBVs:

spookylukey.github.io/django-views-the-right-way/

9.6 Summary
Function-based views are still alive and well in the Django world. If we remember that every
function accepts an HttpRequest object and returns an HttpResponse object, we can
use that to our advantage. We can leverage in generic HttpRequest and HttpResponse
altering functions, which can also be used to construct decorator functions.

We’ll close this chapter by acknowledging that every lesson we’ve learned about function-
based views can be applied to what we begin to discuss next chapter, class-based views.

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 119

http://pyvideo.org/pycon-us-2011/pycon-2011--how-to-write-obfuscated-python.html
http://pyvideo.org/pycon-us-2011/pycon-2011--how-to-write-obfuscated-python.html
https://www.jeffknupp.com/blog/2013/11/29/improve-your-python-decorators-explained/
https://daniel.feldroy.com/python-decorator-cheatsheet.html
https://feld.to/3f2pJUk
https://feld.to/3f2pJUk
https://spookylukey.github.io/django-views-the-right-way/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 9: Best Practices for Function-Based Views

120 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

10 | Best Practices for Class-Based
Views

Django provides a standard way to write class-based views (CBVs). In fact, as we mentioned
in previous chapters, a Django view is just a callable that accepts a request object and returns
a response. For function-based views (FBVs), the view function is that callable. For CBVs,
the view class provides an as_view() class method that returns the callable. This mecha-
nism is implemented in django.views.generic.View. All CBVs should inherit from
that class, directly or indirectly.

Django also provides a series of generic class-based views (GCBVs) that implement com-
mon patterns found in most web projects and illustrate the power of CBVs.

PACKAGE TIP: Filling the Missing Parts of Django GCBVs

Out of the box, Django does not provide some very useful mixins for GCBVs. The
django-braces library addresses most of these issues. It provides a set of clearly
coded mixins that make Django GCBVs much easier and faster to implement. The
library is so useful that three of its mixins have been copied into core Django.

10.1 Guidelines When Working With CBVs
ä Less view code is better.
ä Never repeat code in views.
ä Views should handle presentation logic. Try to keep business logic in models when

possible, or in forms if you must.
ä Keep your views simple.
ä Keep your mixins simpler.

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 121

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 10: Best Practices for Class-Based Views

TIP: Familarize Yourself With ccbv.co.uk
Arguably this should be placed as the sixth guideline, ccbv.co.uk is so useful that
we felt it deserved its own tipbox. This site takes all the attributes and methods
that every CBV defines or inherits and flattens it into one comprehensive page per
view. Most Django developers, once they get past the tutorials on CBVs, rely on
ccbv.co.uk more than the official documentation.

10.2 Using Mixins With CBVs
Think of mixins in programming along the lines of mixins in ice cream: you can enhance
any ice cream flavor by mixing in crunchy candy bits, sliced fruit, or even bacon.

Figure 10.1: Popular and unpopular mixins used in ice cream.

Soft serve ice cream greatly benefits from mixins: ordinary vanilla soft serve turns into birth-
day cake ice cream when sprinkles, blue buttercream icing, and chunks of yellow cake are
mixed in.

In programming, a mixin is a class that provides functionality to be inherited, but isn’t meant
for instantiation on its own. In programming languages with multiple inheritance, mixins
can be used to add enhanced functionality and behavior to classes.

We can use the power of mixins to compose our own view classes for our Django apps.

When using mixins to compose our own view classes, we recommend these rules of in-
heritance provided by Kenneth Love. The rules follow Python’s method resolution order,

122 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://ccbv.co.uk/
https://ccbv.co.uk/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

10.3: Which Django GCBV Should Be Used for What Task?

which in the most simplistic definition possible, proceeds from left to right:

1 The base view classes provided by Django always go to the right.
2 Mixins go to the left of the base view.
3 Mixins should not inherit from any other class. Keep your inheritance chain simple!

Example of the rules in action:

Example 10.1: Using Mixins in a View

from django.views.generic import TemplateView

class FreshFruitMixin:

def get_context_data(self, **kwargs):
context = super().get_context_data(**kwargs)
context["has_fresh_fruit"] = True
return context

class FruityFlavorView(FreshFruitMixin, TemplateView):
template_name = "fruity_flavor.html"

In our rather silly example, the FruityFlavorView class inherits from both
FreshFruitMixin and TemplateView.

Since TemplateView is the base view class provided by Django, it goes on the far right
(rule 1), and to its left we place the FreshFruitMixin (rule 2). This way we know that our
methods and properties will execute correctly.

10.3 Which Django GCBV Should Be Used for What
Task?

The power of generic class-based views comes at the expense of simplicity: GCBVs come
with a complex inheritance chain that can have up to eight superclasses on import. Trying to
work out exactly which view to use or which method to customize can be very challenging
at times.

To mitigate this challenge, here’s a handy chart listing the name and purpose of each Django
CBV. All views listed here are assumed to be prefixed with django.views.generic.

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 123

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 10: Best Practices for Class-Based Views

Name Purpose Two Scoops Example
View Base view or handy view

that can be used for any-
thing.

See Section 10.6:
Using Just
django.views.generic.View.

RedirectView Redirect user to another
URL

Send users who visit ‘/log-
in/’ to ‘/login/’.

TemplateView Display a Django HTML
template.

The ‘/about/’ page of our
site.

ListView List objects List of ice cream flavors.
DetailView Display an object Details on an ice cream fla-

vor.
FormView Submit a form The site’s contact or email

form.
CreateView Create an object Create a new ice cream fla-

vor.
UpdateView Update an object Update an existing ice

cream flavor.
DeleteView Delete an object Delete an unpleasant ice

cream flavor like Vanilla
Steak.

Generic date views For display of objects that
occur over a range of time.

Blogs are a common rea-
son to use them. For Two
Scoops, we could create a
public history of when fla-
vors have been added to the
database.

Table 10.1: Django CBV Usage Table

124 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

10.4: General Tips for Django CBVs

TIP: The Three Schools of Django CBV/GCBV Usage

We’ve found that there are three major schools of thought around CBV and GCBV
usage. They are:

The School of “Use all the generic views!”
This school of thought is based on the idea that since Django provides functionality
to reduce your workload, why not use that functionality? We tend to belong to
this school of thought, and have used it to great success, rapidly building and then
maintaining a number of projects.

The School of “Just use django.views.generic.View”
This school of thought is based on the idea that the base Django CBV does just
enough and is ‘the True CBV, everything else is a Generic CBV’. In the past year,
we’ve found this can be a really useful approach for tricky tasks for which the
resource-based approach of “Use all the views” breaks down. We’ll cover some use
cases for it in this chapter.

The School of “Avoid them unless you’re actually subclassing views”
Jacob Kaplan-Moss says, “My general advice is to start with function views since
they’re easier to read and understand, and only use CBVs where you need them.
Where do you need them? Any place where you need a fair chunk of code to be
reused among multiple views.”

We generally belong to the first school, but it’s good for you to know that there’s no
real consensus on best practices here.

10.4 General Tips for Django CBVs
This section covers useful tips for all or many Django CBV and GCBV implementations.
We’ve found they expedite writing of views, templates, and their tests. These techniques
will work with Class-Based Views or Generic Class-Based Views. As always for CBVs in
Django, they rely on object oriented programming techniques.

10.4.1 Constraining Django CBV/GCBV Access to Authenticated
Users

The Django CBV documentation gives a helpful working example of using
the django.contrib.auth.decorators.login_required decorator with
a CBV, but this example violates the rule of keeping logic out of urls.py:

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 125

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 10: Best Practices for Class-Based Views

docs.djangoproject.com/en/3.2/topics/class-based-views/intro/
#decorating-class-based-views.

Fortunately, Django provides a ready implementation of a LoginRequiredMixin object
that you can attach in moments. For example, we could do the following in all of the Django
GCBVs that we’ve written so far:

Example 10.2: Using LoginRequiredMixin

flavors/views.py
from django.contrib.auth.mixins import LoginRequiredMixin
from django.views.generic import DetailView

from .models import Flavor

class FlavorDetailView(LoginRequiredMixin, DetailView):
model = Flavor

TIP: Don’t Forget the GCBV Mixin Order!

Remember that:
ä LoginRequiredMixin must always go on the far left side.
ä The base view class must always go on the far right side.

If you forget and switch the order, you will get broken or unpredictable results.

WARNING: Overriding dispatch() When Using LoginRequired-
Mixin
If you use LoginRequiredMixin and override the dispatch method, make
sure that the first thing you do is call super().dispatch(request, *args,
**kwargs). Any code before the super() call is executed even if the user is not
authenticated.

10.4.2 Performing Custom Actions on Views With Valid Forms

When you need to perform a custom action on a view with a valid form, the form_valid()
method is where the GCBV workflow sends the request.

126 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://feld.to/2WcnXXU
https://feld.to/2WcnXXU
https://github.com/feldroy/two-scoops-of-django-3.x/issues

10.4: General Tips for Django CBVs

Example 10.3: Custom Logic with Valid Forms

from django.contrib.auth.mixins import LoginRequiredMixin
from django.views.generic import CreateView

from .models import Flavor

class FlavorCreateView(LoginRequiredMixin, CreateView):
model = Flavor
fields = ['title', 'slug', 'scoops_remaining']

def form_valid(self, form):
Do custom logic here
return super().form_valid(form)

To perform custom logic on form data that has already been validated, simply
add the logic to form_valid(). The return value of form_valid() should be a
django.http.HttpResponseRedirect.

10.4.3 Performing Custom Actions on Views With Invalid Forms

When you need to perform a custom action on a view with an invalid form, the
form_invalid() method is where the Django GCBV workflow sends the request. This
method should return a django.http.HttpResponse.

Example 10.4: Overwriting Behavior of form_invalid

from django.contrib.auth.mixins import LoginRequiredMixin
from django.views.generic import CreateView

from .models import Flavor

class FlavorCreateView(LoginRequiredMixin, CreateView):
model = Flavor

def form_invalid(self, form):
Do custom logic here
return super().form_invalid(form)

Just as you can add logic to form_valid(), you can also add logic to form_invalid().

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 127

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 10: Best Practices for Class-Based Views

You’ll see an example of overriding both of these methods in Section 13.5.1: ModelForm
Data Is Saved to the Form, Then the Model Instance.

Figure 10.2: The other CBV: class-based vanilla ice cream.

10.4.4 Using the View Object
If you are using class-based views for rendering content, consider using the view object
itself to provide access to properties and methods that can be called by other methods and
properties. They can also be called from templates. For example:

Example 10.5: Using the View Object

from django.contrib.auth.mixins import LoginRequiredMixin
from django.utils.functional import cached_property
from django.views.generic import UpdateView, TemplateView

from .models import Flavor
from .tasks import update_user_who_favorited

class FavoriteMixin:

@cached_property
def likes_and_favorites(self):

"""Returns a dictionary of likes and favorites"""

128 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

10.4: General Tips for Django CBVs

likes = self.object.likes()
favorites = self.object.favorites()
return {

"likes": likes,
"favorites": favorites,
"favorites_count": favorites.count(),

}

class FlavorUpdateView(LoginRequiredMixin, FavoriteMixin,
UpdateView):↪→

model = Flavor
fields = ['title', 'slug', 'scoops_remaining']

def form_valid(self, form):
update_user_who_favorited(

instance=self.object,
favorites=self.likes_and_favorites['favorites']

)
return super().form_valid(form)

class FlavorDetailView(LoginRequiredMixin, FavoriteMixin,
TemplateView):↪→

model = Flavor

The nice thing about this is the various flavors/ app templates can now access this property:

Example 10.6: Using View Methods in flavors/base.html

{# flavors/base.html #}
{% extends "base.html" %}

{% block likes_and_favorites %}

Likes: {{ view.likes_and_favorites.likes }}
Favorites: {{ view.likes_and_favorites.favorites_count
}}↪→

{% endblock likes_and_favorites %}

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 129

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 10: Best Practices for Class-Based Views

10.5 How GCBVs and Forms Fit Together
A common source of confusion with GCBVs is their usage with Django forms.

Using our favorite example of the ice cream flavor tracking app, let’s chart out a couple of
examples of how form-related views might fit together.

First, let’s define a flavor model to use in this section’s view examples:

Example 10.7: Flavor Model

flavors/models.py
from django.db import models
from django.urls import reverse

class Flavor(models.Model):
class Scoops(models.IntegerChoices)

SCOOPS_0 = 0
SCOOPS_1 = 1

title = models.CharField(max_length=255)
slug = models.SlugField(unique=True)
scoops_remaining = models.IntegerField(choices=Scoops.choices,

default=Scoops.SCOOPS_0)

def get_absolute_url(self):
return reverse("flavors:detail", kwargs={"slug":

self.slug})↪→

Now, let’s explore some common Django form scenarios that most Django users run into
at one point or another.

10.5.1 Views + ModelForm Example
This is the simplest and most common Django form scenario. Typically when you create a
model, you want to be able to add new records and update existing records that correspond
to the model.

In this example, we’ll show you how to construct a set of views that will create, update and
display Flavor records. We’ll also demonstrate how to provide confirmation of changes.

Here we have the following views:

130 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

10.5: How GCBVs and Forms Fit Together

1 FlavorCreateView corresponds to a form for adding new flavors.
2 FlavorUpdateView corresponds to a form for editing existing flavors.
3 FlavorDetailView corresponds to the confirmation page for both flavor creation and

flavor updates.

To visualize our views:

Figure 10.3: Views + ModelForm Flow

Note that we stick as closely as possible to Django naming conventions.
FlavorCreateView subclasses Django’s CreateView, FlavorUpdateView subclasses
Django’s UpdateView, and FlavorDetailView subclasses Django’s DetailView.

Writing these views is easy, since it’s mostly a matter of using what Django gives us:

Example 10.8: Building Views Quickly with CBVs

flavors/views.py
from django.contrib.auth.mixins import LoginRequiredMixin
from django.views.generic import CreateView, DetailView, UpdateView

from .models import Flavor

class FlavorCreateView(LoginRequiredMixin, CreateView):
model = Flavor
fields = ['title', 'slug', 'scoops_remaining']

class FlavorUpdateView(LoginRequiredMixin, UpdateView):
model = Flavor
fields = ['title', 'slug', 'scoops_remaining']

class FlavorDetailView(DetailView):

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 131

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 10: Best Practices for Class-Based Views

model = Flavor

Simple at first glance, right? We accomplish so much with just a little bit of code!

But wait, there’s a catch. If we wire these views into a urls.py module and create the necessary
templates, we’ll uncover a problem:

The FlavorDetailView is not a confirmation page.

For now, that statement is correct. Fortunately, we can fix it quickly with a few modifications
to existing views and templates.

The first step in the fix is to use django.contrib.messages to inform the user visiting
the FlavorDetailView that they just added or updated the flavor.

We’ll need to override the FlavorCreateView.form_valid() and
FlavorUpdateView.form_valid() methods. We can do this conveniently for
both views with a FlavorActionMixin.

For the confirmation page fix, we change flavors/views.py to contain the following:

Example 10.9: Success Message Example

flavors/views.py
from django.contrib import messages
from django.contrib.auth.mixins import LoginRequiredMixin
from django.views.generic import CreateView, DetailView, UpdateView

from .models import Flavor

class FlavorActionMixin:

fields = ['title', 'slug', 'scoops_remaining']

@property
def success_msg(self):

return NotImplemented

def form_valid(self, form):
messages.info(self.request, self.success_msg)
return super().form_valid(form)

132 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

10.5: How GCBVs and Forms Fit Together

class FlavorCreateView(LoginRequiredMixin, FlavorActionMixin,
CreateView):

model = Flavor
success_msg = "Flavor created!"

class FlavorUpdateView(LoginRequiredMixin, FlavorActionMixin,
UpdateView):

model = Flavor
success_msg = "Flavor updated!"

class FlavorDetailView(DetailView):
model = Flavor

Earlier in this chapter, we covered a simpler example of how to override form_valid()
within a GCBV. Here, we reuse a similar form_valid() override method by creating a
mixin to inherit from in multiple views.

Now we’re using Django’s messages framework to display confirmation messages to the
user upon every successful add or edit. We define a FlavorActionMixin whose job is to
queue up a confirmation message corresponding to the action performed in a view.

TIP: This replicates SuccessMessageMixin

Since we wrote this section in 2013, Django has implemented
django.contrib.messages.views.SuccessMessageMixin, which pro-
vides similar functionality.
Reference: https://docs.djangoproject.com/en/3.2/ref/contrib/
messages/#django.contrib.messages.views.SuccessMessageMixin

TIP: Mixins Shouldn’t Inherit From Other Object

Please take notice that the FlavorActionMixin is a base class, not inheriting from
another class in our code rather than a pre-existing mixin or view. It’s important that
mixins have as shallow inheritance chain as possible. Simplicity is a virtue!

After a flavor is created or updated, a list of messages is passed to the context of the
FlavorDetailView. We can see these messages if we add the following code to the views’
template and then create or update a flavor:

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 133

https://feld.to/3gaLth9
https://feld.to/3gaLth9
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 10: Best Practices for Class-Based Views

Example 10.10: flavor_detail.html

{% if messages %}
<ul class="messages">

{% for message in messages %}
<li id="message_{{ forloop.counter }}"

{% if message.tags %} class="{{ message.tags }}"
{% endif %}>

{{ message }}

{% endfor %}

{% endif %}

TIP: Reuse the Messages Template Code!

It is common practice to put the above code into your project’s base HTML tem-
plate. Doing this allows message support for templates in your project.

To recap, this example demonstrated yet again how to override the form_valid()method,
incorporate this into a mixin, how to incorporate multiple mixins into a view, and gave a
quick introduction to the very useful django.contrib.messages framework.

10.5.2 Views + Form Example
Sometimes you want to use a Django Form rather than a ModelForm. Search forms are a
particularly good use case for this, but you’ll run into other scenarios where this is true as
well.

In this example, we’ll create a simple flavor search form. This involves creating an HTML
form that doesn’t modify any flavor data. The form’s action will query the ORM, and the
records found will be listed on a search results page.

Our intention is that when using our flavor search page, if users do a flavor search for
“Dough”, they should be sent to a page listing ice cream flavors like “Chocolate Chip Cookie
Dough,” “Fudge Brownie Dough,” “Peanut Butter Cookie Dough,” and other flavors con-
taining the string “Dough” in their title. Mmm, we definitely want this feature in our web
application.

There are more complex ways to implement this, but for our simple use case, all we need is
a single view. We’ll use a FlavorListView for both the search page and the search results

134 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

10.5: How GCBVs and Forms Fit Together

page.

Here’s an overview of our implementation:

Figure 10.4: Views + Form Flow

In this scenario, we want to follow the standard internet convention for search pages, where
‘q’ is used for the search query parameter. We also want to accept a GET request rather than
a POST request, which is unusual for forms but perfectly fine for this use case. Remember,
this form doesn’t add, edit, or delete objects, so we don’t need a POST request here.

To return matching search results based on the search query, we need to modify the
standard queryset supplied by the ListView. To do this, we override the ListView's
get_queryset() method. We add the following code to flavors/views.py:

Example 10.11: List View Combined with Q Search

from django.views.generic import ListView

from .models import Flavor

class FlavorListView(ListView):
model = Flavor

def get_queryset(self):
Fetch the queryset from the parent get_queryset
queryset = super().get_queryset()

Get the q GET parameter
q = self.request.GET.get("q")
if q:

Return a filtered queryset
return queryset.filter(title__icontains=q)

Return the base queryset
return queryset

Now, instead of listing all of the flavors, we list only the flavors whose titles contain the
search string.

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 135

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 10: Best Practices for Class-Based Views

As we mentioned, search forms are unusual in that unlike nearly every other HTML form
they specify a GET request in the HTML form. This is because search forms are not chang-
ing data, but simply retrieving information from the server. The search form should look
something like this:

Example 10.12: Search Snippet of HTML

{# templates/flavors/_flavor_search.html #}
{% comment %}

Usage: {% include "flavors/_flavor_search.html" %}
{% endcomment %}
<form action="{% url "flavor_list" %}" method="GET">

<input type="text" name="q" />
<button type="submit">search</button>

</form>

TIP: Specify the Form Target in Search Forms

We also take care to specify the URL in the form action, because we’ve found that
search forms are often included in several pages. This is why we prefix them with ‘_’
and create them in such a way as to be included in other templates.

Once we get past overriding the ListView's get_queryset() method, the rest of this
example is just a simple HTML form. We like this kind of simplicity.

10.6 Using Just django.views.generic.View
It’s entirely possible to build a project just using django.views.generic.View for all the
views. It’s not as extreme as one might think. For example, if we look at the official Django
documentation’s introduction to class-based views (docs.djangoproject.com/en/3.
2/topics/class-based-views/intro/#using-class-based-views), we can see
the approach is very close to how function-based views are written. In fact, we highlighted
this two chapters ago in Section 8.6.1: The Simplest Views because it’s important.

Imagine instead of writing function-based views with nested-ifs representing different
HTTP methods or class-based views where the HTTP methods are hidden behind
get_context_data() and form_valid() methods, they are readily accessible to de-
velopers. Imagine something like:

136 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://feld.to/2W9f6WV
https://feld.to/2W9f6WV
https://github.com/feldroy/two-scoops-of-django-3.x/issues

10.6: Using Just django.views.generic.View

Example 10.13: Using the Base View Class

from django.contrib.auth.mixins import LoginRequiredMixin
from django.shortcuts import get_object_or_404
from django.shortcuts import render, redirect
from django.views.generic import View

from .forms import FlavorForm
from .models import Flavor

class FlavorView(LoginRequiredMixin, View):

def get(self, request, *args, **kwargs):
Handles display of the Flavor object
flavor = get_object_or_404(Flavor, slug=kwargs['slug'])
return render(request,

"flavors/flavor_detail.html",
{"flavor": flavor}

)

def post(self, request, *args, **kwargs):
Handles updates of the Flavor object
flavor = get_object_or_404(Flavor, slug=kwargs['slug'])
form = FlavorForm(request.POST, instance=flavor)
if form.is_valid():

form.save()
return redirect("flavors:detail", flavor.slug)

While we can do this in a function-based view, it can be argued that the GET/POST
method declarations within the FlavorView are easier to read than the traditional “if
request.method == ...” conditions. In addition, since the inheritance chain is so shal-
low, it means using mixins doesn’t threaten us with cognitive overload.

What we find really useful, even on projects which use a lot of generic class-based views, is
using the django.views.generic.View class with a GET method for displaying JSON,
PDF or other non-HTML content. All the tricks that we’ve used for rendering CSV, Excel,
and PDF files in function-based views apply when using the GET method. For example:

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 137

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 10: Best Practices for Class-Based Views

Example 10.14: Using the View Class to Create PDFs

from django.contrib.auth.mixins import LoginRequiredMixin
from django.http import HttpResponse
from django.shortcuts import get_object_or_404
from django.views.generic import View

from .models import Flavor
from .reports import make_flavor_pdf

class FlavorPDFView(LoginRequiredMixin, View):

def get(self, request, *args, **kwargs):
Get the flavor
flavor = get_object_or_404(Flavor, slug=kwargs['slug'])

create the response
response = HttpResponse(content_type='application/pdf')

generate the PDF stream and attach to the response
response = make_flavor_pdf(response, flavor)

return response

This is a pretty straight-forward example, but if we have to leverage more mixins and deal
with more custom logic, the simplicity of django.views.generic.View makes it much
easier than the more heavyweight views. In essence, we get all the advantages of function-
based views combined with the object-oriented power that CBVs give us.

10.7 Additional Resources
ä docs.djangoproject.com/en/3.2/topics/class-based-views/
ä docs.djangoproject.com/en/3.2/topics/class-based-views/

generic-display/
ä docs.djangoproject.com/en/3.2/topics/class-based-views/

generic-editing/
ä docs.djangoproject.com/en/3.2/topics/class-based-views/mixins/
ä docs.djangoproject.com/en/3.2/ref/class-based-views/
ä The GCBV inspector at ccbv.co.uk
ä python.org/download/releases/2.3/mro/ - For Python 2.3, nevertheless an

excellent guide to how Python handles MRO.
ä daniel.feldroy.com/tag/class-based-views.html

138 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://docs.djangoproject.com/en/3.2/topics/class-based-views/
https://docs.djangoproject.com/en/3.2/topics/class-based-views/generic-display/
https://docs.djangoproject.com/en/3.2/topics/class-based-views/generic-display/
https://docs.djangoproject.com/en/3.2/topics/class-based-views/generic-editing/
https://docs.djangoproject.com/en/3.2/topics/class-based-views/generic-editing/
https://docs.djangoproject.com/en/3.2/topics/class-based-views/mixins/
https://docs.djangoproject.com/en/3.2/ref/class-based-views/
http://ccbv.co.uk
https://python.org/download/releases/2.3/mro/
https://daniel.feldroy.com/tag/class-based-views.html
https://github.com/feldroy/two-scoops-of-django-3.x/issues

10.8: Summary

ä spapas.github.io/2018/03/19/comprehensive-django-cbv-guide/ -
Serafeim Papastefanos’ lovely deep dive into Django CBVs

ä djangodeconstructed.com/2020/04/27/roll-your-own-class-based-views-in-djang
- Another deep dive into CBVs, this one illustrating how to create a RESTful API
with DRF

PACKAGE TIP: Other Useful CBV Libraries
ä django-extra-views Another great CBV library, django-extra-views covers

the cases that django-braces does not.
ä django-vanilla-views A very interesting library that provides all the power of

classic Django GCBVs in a vastly simplified, easier-to-use package. Works
great in combination with django-braces.

10.8 Summary
This chapter covered:

ä Using mixins with CBVs
ä Which Django CBV should be used for which task
ä General tips for CBV usage
ä Connecting CBVs to forms
ä Using the base django.views.generic.View

The next chapter explores asynchronous views. Chapter 12 explores common CBV/form
patterns. Knowledge of both of these are helpful to have in your developer toolbox.

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 139

https://spapas.github.io/2018/03/19/comprehensive-django-cbv-guide/
https://djangodeconstructed.com/2020/04/27/roll-your-own-class-based-views-in-django/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 10: Best Practices for Class-Based Views

140 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

11 | Asynchronous Views

WARNING: This Chapter is in Progress

We are in the midst of working on this chapter and will expand on it in the days to
come. We are open to suggestions on topics and items to cover, please submit them
to github.com/feldroy/two-scoops-of-django-3.x/issues

11.1 Notes fromAnalyzingDjango 3.1aPre-ReleaseAsync
Views

ä Don’t use Django for simple reads of data to present to the user. The data will typically
be fetched before HTML or JSON rendering can be performed.

ä When using Class-Based Views, keep them as simple as possible. Consider inheriting
from django.views.generic.View. The machinary underneath more complex
views has proven unstable. This recommendation may change as Django’s async story
advances.

Example 11.1: An example of a simple update form that is a working async view

class AsyncViewMixin:
async def __call__(self):

return super().__call__(self)

class SimpleBookUpdateView(LoginRequiredMixin, AsyncViewMixin,
View):↪→

def get(self, request, *args, **kwargs):
flavor = get_object_or_404(Flavor, slug=slug)
return render(request, "flavor_form.html", {"flavor":

Flavor})↪→

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 141

https://github.com/feldroy/two-scoops-of-django-3.x/issues
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 11: Asynchronous Views

def post(self, request, *args, **kwargs):
form = FlavorForm(request.POST)
if form.is_valid():

sync_to_async(form.save())
else:

return render({'form': form}, "flavor_form.html")
return redirect("flavor:detail")

11.2 Resources
ä docs.djangoproject.com/en/dev/topics/async/

142 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://docs.djangoproject.com/en/dev/topics/async/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

12 | Common Patterns for Forms

Django forms are powerful, flexible, extensible, and robust. For this reason, the Django
admin and CBVs use them extensively. In fact, all the major Django API frameworks use
ModelForms or a similar implementation as part of their validation.

Combining forms, models, and views allows us to get a lot of work done for little effort. The
learning curve is worth it: once you learn to work fluently with these components, you’ll find
that Django provides the ability to create an amazing amount of useful, stable functionality
at an amazing pace.

PACKAGE TIP: Useful Form-Related Packages

ä django-floppyforms for rendering Django inputs in HTML5.
ä django-crispy-forms for advanced form layout controls. By default, forms

are rendered with Bootstrap form elements and styles. This package plays
well with django-floppyforms, so they are often used together.

This chapter goes explicitly into one of the best parts of Django: forms, models, and CBVs
working in concert. This chapter covers five common form patterns that should be in every
Django developer’s toolbox.

12.1 Pattern 1: Simple ModelForm With Default
Validators

The simplest data-changing form that we can make is a ModelForm using several default
validators as-is, without modification. In fact, we already relied on default validators in
Section 10.5.1: Views + ModelForm Example.

If you recall, using ModelForms with CBVs to implement add/edit forms can be done in
just a few lines of code:

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 143

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 12: Common Patterns for Forms

Example 12.1: flavors/views.py

from django.contrib.auth.mixins import LoginRequiredMixin
from django.views.generic import CreateView, UpdateView

from .models import Flavor

class FlavorCreateView(LoginRequiredMixin, CreateView):
model = Flavor
fields = ['title', 'slug', 'scoops_remaining']

class FlavorUpdateView(LoginRequiredMixin, UpdateView):
model = Flavor
fields = ['title', 'slug', 'scoops_remaining']

To summarize how we use default validation as-is here:

ä FlavorCreateView and FlavorUpdateView are assigned Flavor as their model.
ä Both views auto-generate a ModelForm based on the Flavor model.
ä Those ModelForms rely on the default field validation rules of the Flavor model.

Yes, Django gives us a lot of great defaults for data validation, but in practice, the defaults
are never enough. We recognize this, so as a first step, the next pattern will demonstrate
how to create a custom field validator.

12.2 Pattern 2: Custom Form Field Validators in
ModelForms

What if we wanted to be certain that every use of the title field across our project’s dessert
apps started with the word ‘Tasty’?

144 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

12.2: Pattern 2: Custom Form Field Validators in ModelForms

Figure 12.1: At Tasty Research, every flavor must begin with “Tasty”.

This is a string validation problem that can be solved with a simple custom field validator.

In this pattern, we cover how to create custom single-field validators and demonstrate how
to add them to both abstract models and forms.

Imagine for the purpose of this example that we have a project with two different dessert-
related models: a Flavormodel for ice cream flavors, and a Milkshakemodel for different
types of milkshakes. Assume that both of our example models have title fields.

To validate all editable model titles, we start by creating a validators.py module:

Example 12.2: validators.py

core/validators.py
from django.core.exceptions import ValidationError

def validate_tasty(value):
"""Raise a ValidationError if the value doesn't start with the

word 'Tasty'.
"""

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 145

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 12: Common Patterns for Forms

if not value.startswith('Tasty'):
msg = 'Must start with Tasty'
raise ValidationError(msg)

In Django, a custom field validator is simply a callable (usually a function) that raises an
error if the submitted argument doesn’t pass its test.

While our validate_tasty() validator function just does a simple string check for the
sake of example, it’s good to keep in mind that form field validators can become quite com-
plex in practice.

TIP: Test Your Validators Carefully

Since validators are critical in keeping corruption out of Django project databases,
it’s especially important to write detailed tests for them.

These tests should include thoughtful edge case tests for every condition related to
your validators’ custom logic.

In order to use our validate_tasty() validator function across different dessert models,
we’re going to first add it to an abstract model called TastyTitleAbstractModel, which
we plan to use across our project.

Assuming that our Flavor and Milkshake models are in separate apps, it doesn’t make
sense to put our validator in one app or the other. Instead, we create a core/models.py module
and place the TastyTitleAbstractModel there.

Example 12.3: Adding Custom Validator to a Model

core/models.py
from django.db import models

from .validators import validate_tasty

class TastyTitleAbstractModel(models.Model):

title = models.CharField(max_length=255,
validators=[validate_tasty])↪→

class Meta:

146 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

12.2: Pattern 2: Custom Form Field Validators in ModelForms

abstract = True

The last two lines of the above example code for core/models.py make
TastyTitleAbstractModel an abstract model, which is what we want. See Sec-
tion 6.1.2: Be Careful With Model Inheritance.

Let’s alter the original flavors/models.py Flavor code to use TastyTitleAbstractModel
as the parent class:

Example 12.4: Inheriting Validators

flavors/models.py
from django.db import models
from django.urls import reverse

from core.models import TastyTitleAbstractModel

class Flavor(TastyTitleAbstractModel):
slug = models.SlugField()
scoops_remaining = models.IntegerField(default=0)

def get_absolute_url(self):
return reverse('flavors:detail', kwargs={'slug':

self.slug})↪→

This works with the Flavor model, and it will work with any other tasty food-based
model such as a WaffleCone or Cake model. Any model that inherits from the
TastyTitleAbstractModel class will throw a validation error if anyone attempts to save
a model with a title that doesn’t start with ‘Tasty’.

Now, let’s explore a couple of questions that might be forming in your head:

ä What if we wanted to use validate_tasty() in just forms?
ä What if we wanted to assign it to other fields besides the title?

To support these behaviors, we need to create a custom FlavorForm that utilizes our cus-
tom field validator:

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 147

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 12: Common Patterns for Forms

Example 12.5: Adding Custom Validators to a Model Form

flavors/forms.py
from django import forms

from .models import Flavor
from core.validators import validate_tasty

class FlavorForm(forms.ModelForm):
def __init__(self, *args, **kwargs):

super().__init__(*args, **kwargs)
self.fields['title'].validators.append(validate_tasty)
self.fields['slug'].validators.append(validate_tasty)

class Meta:
model = Flavor

A nice thing about both examples of validator usage in this pattern is that we haven’t had
to change the validate_tasty() code at all. Instead, we just import and use it in new
places.

Attaching the custom form to the views is our next step. The default behavior of Django
model-based edit views is to auto-generate the ModelForm based on the view’s model at-
tribute. We are going to override that default and pass in our custom FlavorForm. This
occurs in the flavors/views.py module, where we alter the create and update forms as demon-
strated below:

Example 12.6: Overriding the CBV form_class Attribute

flavors/views.py
from django.contrib import messages
from django.contrib.auth.mixins import LoginRequiredMixin
from django.views.generic import CreateView, DetailView, UpdateView

from .models import Flavor
from .forms import FlavorForm

class FlavorActionMixin:

model = Flavor
fields = ['title', 'slug', 'scoops_remaining']

148 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

12.3: Pattern 3: Overriding the Clean Stage of Validation

@property
def success_msg(self):

return NotImplemented

def form_valid(self, form):
messages.info(self.request, self.success_msg)
return super().form_valid(form)

class FlavorCreateView(LoginRequiredMixin, FlavorActionMixin,
CreateView):

success_msg = 'created'
Explicitly attach the FlavorForm class
form_class = FlavorForm

class FlavorUpdateView(LoginRequiredMixin, FlavorActionMixin,
UpdateView):

success_msg = 'updated'
Explicitly attach the FlavorForm class
form_class = FlavorForm

class FlavorDetailView(DetailView):
model = Flavor

The FlavorCreateView and FlavorUpdateView views now use the new FlavorForm
to validate incoming data.

Note that with these modifications, the Flavor model can either be identical to
the one at the start of this chapter, or it can be an altered one that inherits from
TastyTitleAbstractModel.

12.3 Pattern 3: Overriding the Clean Stage of Validation
Let’s discuss some interesting validation use cases:

ä Multi-field validation
ä Validation involving existing data from the database that has already been validated

Both of these are great scenarios for overriding the clean() and clean_<field_name>()
methods with custom validation logic.

After the default and custom field validators are run, Django provides a second stage
and process for validating incoming data, this time via the clean() method and

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 149

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 12: Common Patterns for Forms

clean_<field_name>() methods. You might wonder why Django provides more hooks
for validation, so here are our two favorite arguments:

1 The clean() method is the place to validate two or more fields against each other,
since it’s not specific to any one particular field.

2 The clean validation stage is a better place to attach validation against persistent data.
Since the data already has some validation, you won’t waste as many database cycles
on needless queries.

Let’s explore this with another validation example. Perhaps we want to implement an ice
cream ordering form, where users could specify the flavor desired, add toppings, and then
come to our store and pick them up.

Since we want to prevent users from ordering flavors that are out of stock, we’ll put in a
clean_slug() method. With our flavor validation, our form might look like:

Example 12.7: Custom clean_slug() Method

flavors/forms.py
from django import forms

from flavors.models import Flavor

class IceCreamOrderForm(forms.Form):
"""Normally done with forms.ModelForm. But we use forms.Form

here↪→

to demonstrate that these sorts of techniques work on every
type of form.

"""
slug = forms.ChoiceField(label='Flavor')
toppings = forms.CharField()

def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
We dynamically set the choices here rather than
in the flavor field definition. Setting them in
the field definition means status updates won't
be reflected in the form without server restarts.
self.fields['slug'].choices = [

(x.slug, x.title) for x in Flavor.objects.all()
]
NOTE: We could filter by whether or not a flavor

150 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

12.3: Pattern 3: Overriding the Clean Stage of Validation

has any scoops, but this is an example of
how to use clean_slug, not filter().

def clean_slug(self):
slug = self.cleaned_data['slug']
if Flavor.objects.get(slug=slug).scoops_remaining <= 0:

msg = 'Sorry, we are out of that flavor.'
raise forms.ValidationError(msg)

return slug

For HTML-powered views, the clean_slug() method in our example, upon throwing
an error, will attach a “Sorry, we are out of that flavor” message to the flavor HTML input
field. This is a great shortcut for writing HTML forms!

Now imagine if we get common customer complaints about orders with too much chocolate.
Yes, it’s silly and quite impossible, but we’re just using ‘too much chocolate’ as a completely
mythical example for the sake of making a point.

In any case, let’s use the clean() method to validate the flavor and toppings fields against
each other.

Example 12.8: Custom clean() Form Method

attach this code to the previous example (12.7)
def clean(self):

cleaned_data = super().clean()
slug = cleaned_data.get('slug', '')
toppings = cleaned_data.get('toppings', '')

Silly "too much chocolate" validation example
in_slug = 'chocolate' in slug.lower()
in_toppings = 'chocolate' in toppings.lower()
if in_slug and in_toppings:

msg = 'Your order has too much chocolate.'
raise forms.ValidationError(msg)

return cleaned_data

There we go, an implementation against the impossible condition of too much chocolate!

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 151

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 12: Common Patterns for Forms

TIP: Common Fields Used in Multi-Field Validation
It is common practice for user account forms involved with email and password entry
to force the user to enter the same data twice. Other things to check for against those
fields include:

ä Strength of the submitted password.
ä If the email model field isn’t set to unique=True, whether or not the email

is unique.

Figure 12.2: Why would they do this to us?

12.4 Pattern 4: Hacking Form Fields
(2 CBVs, 2 Forms, 1 Model)

This is where we start to get fancy. We’re going to cover a situation where two views/forms
correspond to one model. We’ll hack Django forms to produce a form with custom behavior.

It’s not uncommon to have users create a record that contains a few empty fields which need
additional data later. An example might be a list of stores, where we want each store entered
into the system as fast as possible, but want to add more data such as phone number and

152 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

12.4: Pattern 4: Hacking Form Fields (2 CBVs, 2 Forms, 1 Model)

description later. Here’s our IceCreamStore model:

Example 12.9: IceCreamStore Model

stores/models.py
from django.db import models
from django.urls import reverse

class IceCreamStore(models.Model):
title = models.CharField(max_length=100)
block_address = models.TextField()
phone = models.CharField(max_length=20, blank=True)
description = models.TextField(blank=True)

def get_absolute_url(self):
return reverse('stores:store_detail', kwargs={'pk':

self.pk})↪→

The default ModelForm for this model forces the user to enter the title and
block_address field but allows the user to skip the phone and description fields.
That’s great for initial data entry, but as mentioned earlier, we want to have future updates
of the data to require the phone and description fields.

The way we implemented this in the past before we began to delve into their construction
was to override the phone and description fields in the edit form. This resulted in heavily-
duplicated code that looked like this:

Example 12.10: Repeated Heavily Duplicated Code

stores/forms.py
from django import forms

from .models import IceCreamStore

class IceCreamStoreUpdateForm(forms.ModelForm):
Don't do this! Duplication of the model field!
phone = forms.CharField(required=True)
Don't do this! Duplication of the model field!
description = forms.TextField(required=True)

class Meta:

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 153

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 12: Common Patterns for Forms

model = IceCreamStore

This form should look very familiar. Why is that?

Well, we’re nearly copying the IceCreamStore model!

This is just a simple example, but when dealing with a lot of fields on a model, the duplication
becomes extremely challenging to manage. In fact, what tends to happen is copy-pasting of
code from models right into forms, which is a gross violation of Don’t Repeat Yourself.

Want to know how gross? Using the above approach, if we add a simple help_text at-
tribute to the description field in the model, it will not show up in the template until we
also modify the description field definition in the form. If that sounds confusing, that’s
because it is.

A better way is to rely on a useful little detail that’s good to remember about Django forms:
instantiated form objects store fields in a dict-like attribute called fields.

Instead of copy-pasting field definitions from models to forms, we can simply modify exist-
ing attributes on specified fields in the __init__() method of the ModelForm:

Example 12.11: Overriding Init to Modify Existing Field Attributes

stores/forms.py
Call phone and description from the self.fields dict-like object
from django import forms

from .models import IceCreamStore

class IceCreamStoreUpdateForm(forms.ModelForm):

class Meta:
model = IceCreamStore

def __init__(self, *args, **kwargs):
Call the original __init__ method before assigning
field overloads
super().__init__(*args, **kwargs)
self.fields['phone'].required = True
self.fields['description'].required = True

154 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

12.4: Pattern 4: Hacking Form Fields (2 CBVs, 2 Forms, 1 Model)

This improved approach allows us to stop copy-pasting code and instead focus on just the
field-specific settings.

An important point to remember is that when it comes down to it, Django forms are just
Python classes. They get instantiated as objects, they can inherit from other classes, and
they can act as superclasses.

Therefore, we can rely on inheritance to trim the line count in our ice cream store forms:

Example 12.12: Using Inheritance to Clean Up Forms

stores/forms.py
from django import forms

from .models import IceCreamStore

class IceCreamStoreCreateForm(forms.ModelForm):

class Meta:
model = IceCreamStore
fields = ['title', 'block_address',]

class IceCreamStoreUpdateForm(IceCreamStoreCreateForm):

def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.fields['phone'].required = True
self.fields['description'].required = True

class Meta(IceCreamStoreCreateForm.Meta):
show all the fields!
fields = ['title', 'block_address', 'phone',

'description',]

WARNING: Use Meta.fields and Never Use Meta.exclude
We use Meta.fields instead of Meta.exclude so that we know exactly what
fields we are exposing. See Section 28.14: Don’t Use ModelForms.Meta.exclude.

Finally, now we have what we need to define the corresponding CBVs. We’ve got our form
classes, so let’s use them in the IceCreamStore create and update views:

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 155

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 12: Common Patterns for Forms

Example 12.13: Revised Create and Update Views

stores/views
from django.views.generic import CreateView, UpdateView

from .forms import IceCreamStoreCreateForm, IceCreamStoreUpdateForm
from .models import IceCreamStore

class IceCreamCreateView(CreateView):
model = IceCreamStore
form_class = IceCreamStoreCreateForm

class IceCreamUpdateView(UpdateView):
model = IceCreamStore
form_class = IceCreamStoreUpdateForm

We now have two views and two forms that work with one model.

12.5 Pattern 5: Reusable Search Mixin View
In this example, we’re going to cover how to reuse a search form in two views that correspond
to two different models.

Assume that both models have a field called title (this pattern also demonstrates why
naming standards in projects is a good thing). This example will demonstrate how a sin-
gle CBV can be used to provide simple search functionality on both the Flavor and
IceCreamStore models.

We’ll start by creating a simple search mixin for our view:

Example 12.14: TitleSearchMixin a simple search class

core/views.py
class TitleSearchMixin:

def get_queryset(self):
Fetch the queryset from the parent's get_queryset
queryset = super().get_queryset()

Get the q GET parameter
q = self.request.GET.get('q')
if q:

156 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

12.5: Pattern 5: Reusable Search Mixin View

return a filtered queryset
return queryset.filter(title__icontains=q)

No q is specified so we return queryset
return queryset

The above code should look very familiar as we used it almost verbatim in the Forms + View
example. Here’s how you make it work with both the Flavor and IceCreamStore views.
First the flavor view:

Example 12.15: Adding TitleSearchMixin to FlavorListView

add to flavors/views.py
from django.views.generic import ListView

from .models import Flavor
from core.views import TitleSearchMixin

class FlavorListView(TitleSearchMixin, ListView):
model = Flavor

And we’ll add it to the ice cream store views:

Example 12.16: Adding TitleSearchMixin to IceCreamStoreListView

add to stores/views.py
from django.views.generic import ListView

from .models import Store
from core.views import TitleSearchMixin

class IceCreamStoreListView(TitleSearchMixin, ListView):
model = Store

As for the form? We just define it in HTML for each ListView:

Example 12.17: Snippet from stores/store_list.html

{# form to go into stores/store_list.html template #}
<form action="" method="GET">

<input type="text" name="q" />

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 157

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 12: Common Patterns for Forms

<button type="submit">search</button>
</form>

and

Example 12.18: Snippet from flavors/flavor_list.html

{# form to go into flavors/flavor_list.html template #}
<form action="" method="GET">

<input type="text" name="q" />
<button type="submit">search</button>

</form>

Now we have the same mixin in both views. Mixins are a good way to reuse code, but using
too many mixins in a single class makes for very hard-to-maintain code. As always, try to
keep your code as simple as possible.

12.6 Summary
We began this chapter with the simplest form pattern, using a ModelForm, CBV, and de-
fault validators. We iterated on that with an example of a custom validator.

Next, we explored more complex validation. We covered an example overriding the clean
methods. We also closely examined a scenario involving two views and their corresponding
forms that were tied to a single model.

Finally, we covered an example of creating a reusable search mixin to add the same form to
two different apps.

158 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

13 | Form Fundamentals

100% of Django projects should use Forms.
95% of Django projects should use ModelForms.
91% of all Django projects use ModelForms.
80% of ModelForms require trivial logic.
20% of ModelForms require complicated logic.

– Daniel’s made-up statistics™

Django’s forms are really powerful, and knowing how to use them anytime data is coming
from outside your application is part of keeping your data clean.

There are edge cases that can cause a bit of anguish. If you understand the structure of how
forms are composed and how to call them, most edge cases can be readily overcome.

The most important thing to remember about Django forms is they should be used to vali-
date all incoming data.

13.1 Validate All Incoming Data With Django Forms
Django’s forms are a wonderful framework designed to validate Python dictionaries. While
most of the time we use them to validate incoming HTTP requests containing POST, there
is nothing limiting them to be used just in this manner.

For example, let’s say we have a Django app that updates its model via CSV files fetched
from another project. To handle this sort of thing, it’s not uncommon to see code like this
(albeit in not as simplistic an example):

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 159

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 13: Form Fundamentals

Example 13.1: How Not to Import CSV

import csv

from django.utils.six import StringIO

from .models import Purchase

def add_csv_purchases(rows):

rows = StringIO.StringIO(rows)
records_added = 0

Generate a dict per row, with the first CSV row being the keys↪→

for row in csv.DictReader(rows, delimiter=','):
DON'T DO THIS: Tossing unvalidated data into your model.
Purchase.objects.create(**row)
records_added += 1

return records_added

In fact, what you don’t see is that we’re not checking to see if sellers, stored as a string
in the Purchase model, are actually valid sellers. We could add validation code to our
add_csv_purchases() function, but let’s face it, keeping complex validation code under-
standable as requirements and data changes over time is hard.

A better approach is to validate the incoming data with a Django Form like so:

Example 13.2: How to Safely Import CSV

import csv

from django.utils.six import StringIO

from django import forms

from .models import Purchase, Seller

class PurchaseForm(forms.ModelForm):

class Meta:

160 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

13.1: Validate All Incoming Data With Django Forms

model = Purchase

def clean_seller(self):
seller = self.cleaned_data['seller']
try:

Seller.objects.get(name=seller)
except Seller.DoesNotExist:

msg = '{0} does not exist in purchase #{1}.'.format(
seller,
self.cleaned_data['purchase_number']

)
raise forms.ValidationError(msg)

return seller

def add_csv_purchases(rows):

rows = StringIO.StringIO(rows)

records_added = 0
errors = []
Generate a dict per row, with the first CSV row being the

keys.↪→

for row in csv.DictReader(rows, delimiter=','):

Bind the row data to the PurchaseForm.
form = PurchaseForm(row)
Check to see if the row data is valid.
if form.is_valid():

Row data is valid so save the record.
form.save()
records_added += 1

else:
errors.append(form.errors)

return records_added, errors

What’s really nice about this practice is that rather than cooking up our own validation
system for incoming data, we’re using the well-proven data testing framework built into
Django.

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 161

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 13: Form Fundamentals

TIP: What About the code parameter?

Arnaud Limbourg pointed out that the official Django docs recommend passing a
code parameter to ValidationError as follows:
forms.ValidationError(_(’Invalid value’), code=’invalid’)
In our example we don’t include one, but you can use it in your code if you want.

Django core developer Marc Tamlyn says, “On a personal note, I feel that Django’s
docs are maybe a little heavy handed with recommending the use of code as a best
practice everywhere, although it should be encouraged in third party applications. It
is however definitely the best practice for any situation where you wish to check the
nature of the errors - it’s much better than checking the message of the validation
error as this is subject to copy changes.”

Reference:
ä docs.djangoproject.com/en/3.2/ref/forms/validation/

#raising-validationerror

13.2 Use the POST Method in HTML Forms
Every HTML form that alters data must submit its data via the POST method:

Example 13.3: How to Use POST in HTML

<form action="{% url 'flavor_add' %}" method="POST">

The only exception you’ll ever see to using POST in forms is with search forms, which
typically submit queries that don’t result in any alteration of data. Search forms that are
idempotent should use the GET method.

13.3 Always Use CSRF Protection With HTTP Forms
That Modify Data

Django comes with cross-site request forgery protection (CSRF) built in, and usage of it is
introduced in Part 4 of the Django introductory tutorial. It’s easy to use, and Django even
throws a friendly warning during development when you forget to use it. This is a critical
security issue, and here and in our security chapter we recommend always using Django’s
CSRF protection capabilities.

In our experience, the time when CSRF protection isn’t used is when creating machine-
accessible APIs authenticated by proven libraries such as github.com/jazzband/

162 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://feld.to/2zD4HeB
https://feld.to/2zD4HeB
https://github.com/jazzband/dj-rest-auth
https://github.com/jazzband/dj-rest-auth

13.4: Understand How to Add Django Form Instance Attributes

dj-rest-auth. Tools like this, when combined with Django REST Framework do this for
you. Since API requests should be signed/authenticated on a per-request basis, this means
relying on HTTP cookies for authentication isn’t realistic. Therefore, CSRF isn’t always a
problem when using these frameworks.

If you are writing an API from scratch that accepts data changes, it’s a good idea to become
familiar with Django’s CSRF documentation at
docs.djangoproject.com/en/3.2/ref/csrf/.

TIP: HTML Search Forms
Since HTML search forms don’t change data, they use the HTTP GET method
and do not trigger Django’s CSRF protection.

You should use Django’s CsrfViewMiddleware as blanket protection across your site
rather than manually decorating views with csrf_protect. To ensure that CSRF works
in Jinja2 templates, see Section 16.3: Considerations When Using Jinja2 With Django.

13.3.1 Posting Data via AJAX

You should use Django’s CSRF protection even when posting data via AJAX. Do not make
your AJAX views CSRF-exempt.

Instead, when posting via AJAX, you’ll need to set an HTTP header called X-CSRFToken.

The official Django documentation includes a snippet that shows how to set this header for
only POST requests, in conjunction with jQuery 1.5.1 or higher’s cross-domain checking:
docs.djangoproject.com/en/3.2/ref/csrf/#ajax

See this and more at Section 19.3.5: AJAX and the CSRF Token.

13.4 Understand How to Add Django Form Instance
Attributes

Sometimes in the clean(), clean_FOO() or save()methods of a Django form, we need
to have additional form instance attributes available. A sample case for this is having the
request.user object available. Here is a simple taster-driven example.

First, here is the form:

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 163

https://docs.djangoproject.com/en/3.2/ref/csrf/
https://feld.to/2xgJoi8
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 13: Form Fundamentals

Example 13.4: Taster Form

from django import forms

from .models import Taster

class TasterForm(forms.ModelForm):

class Meta:
model = Taster

def __init__(self, *args, **kwargs):
set the user as an attribute of the form
self.user = kwargs.pop('user')
super().__init__(*args, **kwargs)

See how we set self.user before calling super(), and extract it from kwargs? Pointed
out to us by Christopher Lambacher, this makes our form more robust, especially when
using multiple inheritance. Then, here is the view:

Example 13.5: Taster Update View

from django.contrib.auth.mixins import LoginRequiredMixin
from django.views.generic import UpdateView

from .forms import TasterForm
from .models import Taster

class TasterUpdateView(LoginRequiredMixin, UpdateView):
model = Taster
form_class = TasterForm
success_url = '/someplace/'

def get_form_kwargs(self):
"""This method is what injects forms with keyword

arguments."""↪→

grab the current set of form #kwargs
kwargs = super().get_form_kwargs()
Update the kwargs with the user_id
kwargs['user'] = self.request.user
return kwargs

164 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

13.5: Know How Form Validation Works

PACKAGE TIP: django-braces’s ModelForm Mixins

Inserting the request.user object into forms is so frequently done that django-
braces can do it for us. Nevertheless, knowing how it works is useful for when what
you need to add is not the request.user object.

ä django-braces.readthedocs.io/en/latest/form.html#
userformkwargsmixin

ä django-braces.readthedocs.io/en/latest/form.html#
userkwargmodelformmixin

13.5 Know How Form Validation Works
Form validation is one of those areas of Django where knowing the inner workings will
drastically improve your code. Let’s take a moment to dig into form validation and cover
some of the key points.

When you call form.is_valid(), a lot of things happen behind the scenes. The following
things occur according to this workflow:

1 If the form has bound data, form.is_valid() calls the form.full_clean()
method.

2 form.full_clean() iterates through the form fields and each field validates itself:
a Data coming into the field is coerced into Python via the to_python()method

or raises a ValidationError.
b Data is validated against field-specific rules, including custom validators. Failure

raises a ValidationError.
c If there are any custom clean_<field>()methods in the form, they are called

at this time.
3 form.full_clean() executes the form.clean() method.
4 If it’s a ModelForm instance, form._post_clean() does the following:

a Sets ModelForm data to the Model instance, regardless of whether
form.is_valid() is True or False.

b Calls the model’s clean() method. For reference, saving a model instance
through the ORM does not call the model’s clean() method.

If this seems complicated, just remember that it gets simpler in practice, and that all of this
functionality lets us really understand what’s going on with incoming data. The example in
the next section should help to explain this further.

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 165

https://feld.to/3bM9poJ
https://feld.to/3bM9poJ
https://feld.to/3fz3BkN
https://feld.to/3fz3BkN
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 13: Form Fundamentals

Figure 13.1: When ice cream validation fails.

13.5.1 ModelForm Data Is Saved to the Form, Then the Model
Instance

We like to call this the WHAT?!? of form validation. At first glance, form data being set to
the form instance might seem like a bug. But it’s not a bug. It’s intended behavior.

In a ModelForm, form data is saved in two distinct steps:

1 First, form data is saved to the form instance.
2 Later, form data is saved to the model instance.

Since ModelForms don’t save to the model instance until they are activated by the
form.save() method, we can take advantage of this separation as a useful feature.

For example, perhaps you need to catch the details of failed submission attempts for a form,
saving both the user-supplied form data as well as the intended model instance changes.

A simple, perhaps simplistic, way of capturing that data is as follows. First, we create a form
failure history model in core/models.py as shown on the next page:

Example 13.6: Form Failure History Model

core/models.py
from django.db import models

class ModelFormFailureHistory(models.Model):
form_data = models.TextField()
model_data = models.TextField()

166 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

13.6: Add Errors to Forms With Form.add_error()

Second, we add the following to the FlavorActionMixin in flavors/views.py:

Example 13.7: FlavorActionMixin

flavors/views.py
import json

from django.contrib import messages
from django.core import serializers

from core.models import ModelFormFailureHistory

class FlavorActionMixin:

@property
def success_msg(self):

return NotImplemented

def form_valid(self, form):
messages.info(self.request, self.success_msg)
return super().form_valid(form)

def form_invalid(self, form):
"""Save invalid form and model data for later reference."""
form_data = json.dumps(form.cleaned_data)
Serialize the form.instance
model_data = serializers.serialize('json', [form.instance])
Strip away leading and ending bracket leaving only a dict
model_data = model_data[1:-1]
ModelFormFailureHistory.objects.create(

form_data=form_data,
model_data=model_data

)
return super().form_invalid(form)

If you recall, form_invalid() is called after failed validation of a form with bad data.
When it is called here in this example, both the cleaned form data and the final data saved
to the database are saved as a ModelFormFailureHistory record.

13.6 Add Errors to Forms With Form.add_error()
Shared with us by Michael Barr, we can streamline Form.clean() with the
Form.add_error() method.

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 167

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 13: Form Fundamentals

Example 13.8: Using Form.add_error

from django import forms

class IceCreamReviewForm(forms.Form):
Rest of tester form goes here
...

def clean(self):
cleaned_data = super().clean()
flavor = cleaned_data.get('flavor')
age = cleaned_data.get('age')

if flavor == 'coffee' and age < 3:
Record errors that will be displayed later.
msg = 'Coffee Ice Cream is not for Babies.'
self.add_error('flavor', msg)
self.add_error('age', msg)

Always return the full collection of cleaned data.
return cleaned_data

13.6.1 Other Useful Form Methods

Here are other form validation methods worth exploring:

ä docs.djangoproject.com/en/3.2/ref/forms/api/#django.forms.
Form.errors.as_data

ä docs.djangoproject.com/en/3.2/ref/forms/api/#django.forms.
Form.errors.as_json

ä docs.djangoproject.com/en/3.2/ref/forms/api/#django.forms.
Form.non_field_errors

13.7 Fields Without Pre-Made Widgets
Two of the new django.contrib.postgres fields, ArrayField and HStoreField,
don’t work well with existing Django HTML fields. They don’t come with corresponding
widgets at all. Nevertheless, you should still be using forms with these fields.

As in the previous section this topic is covered in Section 13.1: Validate All Incoming Data
With Django Forms.

168 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://feld.to/2KEwsG2
https://feld.to/2KEwsG2
https://feld.to/2Yc936N
https://feld.to/2Yc936N
https://feld.to/2YjxMWL
https://feld.to/2YjxMWL
https://github.com/feldroy/two-scoops-of-django-3.x/issues

13.8: Customizing Widgets

13.8 Customizing Widgets
One of our favorite features about modern Django is how trivial it is to override the HTML
of Django widgets or even create custom widgets. Here’s our general advice:

ä As always, keep it simple! Stay focused on presentation, nothing more.
ä No widgets should ever change data. They are meant purely for display.
ä Follow the Django pattern and put all custom widgets into modules called widgets.py.

13.8.1 Overriding the HTML of Built-In Widgets
This technique is useful for integrating tools like Bootstrap, Zurb, and other responsive
front-end frameworks. On the downside, overriding the default templates in this manner
means that every form element will use these alterations. To override these templates, you
need to make the following changes to settings.py:

Example 13.9: Overriding Django Form Widget HTML

settings.py
FORM_RENDERER = 'django.forms.renderers.TemplatesSetting'

INSTALLED_APPS = [
...
'django.forms',
...

]

Once that’s complete, create a directory inside your templates directory and start over-
riding templates. If you want to know which templates can be overidden, you can look
inside Django’s source code at github.com/django/django/tree/master/django/
forms/templates/django/forms/widgets

More information:

ä docs.djangoproject.com/en/3.2/ref/forms/renderers/
#overriding-built-in-widget-templates

ä docs.djangoproject.com/en/3.2/ref/forms/renderers/
#templatessetting

13.8.2 Creating New Custom Widgets
If we want finer control of widgets, perhaps limiting the changes to certain data types, then
it’s time to delve into creating custom widgets of our own. To do this:

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 169

https://github.com/django/django/tree/master/django/forms/templates/django/forms/widgets
https://github.com/django/django/tree/master/django/forms/templates/django/forms/widgets
https://feld.to/3f2IuXt
https://feld.to/3f2IuXt
https://feld.to/2Yc93DP
https://feld.to/2Yc93DP
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 13: Form Fundamentals

1 Go to https://github.com/django/django/blob/master/django/
forms/widgets.py and select the widget closest to what you want.

2 Extend the widget to behave as you would like. Keep changes to a minimum!

Here’s an example:

Example 13.10: Creating an Ice Cream Widget

flavors/widgets.py
from django.forms.widgets import TextInput

class IceCreamFlavorInput(TextInput):
"""Ice cream flavors must always end with 'Ice Cream'"""

def get_context(self, name, value, attrs):
context = super().get_context(name, value, attrs)
value = context['widget']['value']
if not value.strip().lower().endswith('ice cream'):

context['widget']['value'] = '{} Ice
Cream'.format(value)↪→

return context

While this example is silly, it illustrates how to extend an existing widget to serve our pur-
pose. Please note the following:

ä All the widget does is modify how the value is displayed.
ä The widget does not validate or modify the data coming back from the browser. That’s

the job of forms and models respectively.
ä We extended the absolute bare minimum of django.forms.widgets.TextInput to

make it work.

13.9 Additional Resources
ä Classy Django Forms is an API inspector with detailed descriptions of all the ele-

ments of Django’s form system. df.9vo.lt/
ä Matt Layman’s deep dive into forms is great reading: mattlayman.com/

understand-django/user-interaction-forms
ä Author Daniel Feldroy’s blog series on forms expands upon concepts touched in this

book daniel.feldroy.com/tag/forms.html
ä Brad Montgomery’s article on how to create a widget for

the ArrayField . bradmontgomery.net/blog/2015/04/25/
nice-arrayfield-widgets-choices-and-chosenjs//

170 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/django/django/blob/master/django/forms/widgets.py
https://github.com/django/django/blob/master/django/forms/widgets.py
https://cdf.9vo.lt/
https://www.mattlayman.com/understand-django/user-interaction-forms
https://www.mattlayman.com/understand-django/user-interaction-forms
https://daniel.feldroy.com/tag/forms.html
https://bradmontgomery.net/blog/2015/04/25/nice-arrayfield-widgets-choices-and-chosenjs/
https://bradmontgomery.net/blog/2015/04/25/nice-arrayfield-widgets-choices-and-chosenjs/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

13.10: Summary

ä Rendering custom Django widgets docs.djangoproject.com/en/3.2/ref/
forms/renderers/

13.10 Summary
Once you dig into forms, keep yourself focused on clarity of code and testability. Forms are
one of the primary validation tools in your Django project, an important defense against
attacks and accidental data corruption.

In the next chapter we’ll dig into using templates.

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 171

https://docs.djangoproject.com/en/3.2/ref/forms/renderers/
https://docs.djangoproject.com/en/3.2/ref/forms/renderers/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 13: Form Fundamentals

172 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

14 | Templates: Best Practices

One of Django’s early design decisions was to limit the functionality of the template lan-
guage. This heavily constrains what can be done with Django templates, which we often
think is a very good thing since it forces us to keep business logic in the Python side of
things.

Think about it: the limitations of Django templates force us to put the most critical, com-
plex and detailed parts of our project into .py files rather than into template files. Python
happens to be one of the most clear, concise, and elegant programming languages on the
planet, so why would we want things any other way?

TIP: Using Jinja2 With Django

Since the release of 1.8, Django has natively supported Jinja2. It also provides an
interface for including other template languages. We cover this topic in Chapter 16:
Django Templates and Jinja2.

14.1 Keep Templates Mostly in templates/
In our projects, we keep the majority of our templates in the main ‘templates/’ directory. We
put subdirectories in ‘templates/’ to correspond to each of our apps, as shown here:

Example 14.1: How We Structure Our Templates Directories

templates/
├── base.html
├── ... (other sitewide templates in here)
├── freezers/
│ ├── ("freezers" app templates in here)

However, some tutorials advocate putting templates within a subdirectory of each app. We
find that the extra nesting is a pain to deal with, as shown here:

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 173

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 14: Templates: Best Practices

Example 14.2: Overly Complex Template Directory Structure

freezers/
├── templates/
│ ├── freezers/
│ │ ├── ... ("freezers" app templates in here)
templates/
├── base.html
├── ... (other sitewide templates in here)

That said, some people like to do it the second way, and that’s alright.

The exception to all of this is when we work with Django apps that are installed as pluggable
packages. A Django package usually contains its own in-app ‘templates/’ directory. Then we
override those templates anyway from our project’s main ‘templates/’ directory in order to
add design and styling. We’ll explore this in Section 23.9: Releasing Your Own Django
Packages

14.2 Template Architecture Patterns
We’ve found that for our purposes, simple 2-tier or 3-tier template architectures are ideal.
The difference in tiers is how many levels of template extending needs to occur before con-
tent in apps is displayed. See the examples below:

14.2.1 2-Tier Template Architecture Example
With a 2-tier template architecture, all templates inherit from a single root base.html file.

Example 14.3: 2-Tier Template Architecture

templates/
├── base.html
├── dashboard.html # extends base.html
├── profiles/
│ ├── profile_detail.html # extends base.html
│ ├── profile_form.html # extends base.html

This is best for sites with a consistent overall layout from app to app.

14.2.2 3-Tier Template Architecture Example
With a 3-tier template architecture:

174 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

14.2: Template Architecture Patterns

ä Each app has a base_<app_name>.html template. App-level base templates share a
common parent base.html template.

ä Templates within apps share a common parent base_<app_name>.html template.
ä Any template at the same level as base.html inherits base.html .

Example 14.4: 3-Tier Template Architecture

templates/
base.html
dashboard.html # extends base.html
profiles/

base_profiles.html # extends base.html
profile_detail.html # extends base_profiles.html
profile_form.html # extends base_profiles.html

The 3-tier architecture is best for websites where each section requires a distinctive layout.
For example, a news site might have a local news section, a classified ads section, and an
events section. Each of these sections requires its own custom layout.

This is extremely useful when we want HTML to look or behave differently for a particular
section of the site that groups functionality.

14.2.3 Flat Is Better Than Nested

Figure 14.1: An excerpt from the Zen of Ice Cream.

Complex template hierarchies make it exceedingly difficult to debug, modify, and extend
HTML pages and tie in CSS styles. When template block layouts become unnecessarily
nested, you end up digging through file after file just to change, say, the width of a box.

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 175

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 14: Templates: Best Practices

Giving your template blocks as shallow an inheritance structure as possible will make your
templates easier to work with and more maintainable. If you’re working with a designer,
your designer will thank you.

That being said, there’s a difference between excessively-complex template block hierarchies
and templates that use blocks wisely for code reuse. When you have large, multi-line chunks
of the same or very similar code in separate templates, refactoring that code into reusable
blocks will make your code more maintainable.

The Zen of Python includes the aphorism “Flat is better than nested” for good reason. Each
level of nesting adds mental overhead. Keep that in mind when architecting your Django
templates.

TIP: The Zen of Python

At the command line, do the following:

python -c 'import this'

What you’ll see is the Zen of Python, an eloquently-expressed set of guiding princi-
ples for the design of the Python programming language.

14.3 Limit Processing in Templates
The less processing you try to do in your templates, the better. This is particularly a problem
when it comes to queries and iteration performed in the template layer.

Whenever you iterate over a queryset in a template, ask yourself the following questions:

1 How large is the queryset? Looping over gigantic querysets in your templates is almost
always a bad idea.

2 How large are the objects being retrieved? Are all the fields needed in this template?
3 During each iteration of the loop, how much processing occurs?

If any warning bells go off in your head, then there’s probably a better way to rewrite your
template code.

WARNING: Why Not Just Cache?

Sometimes you can just cache away your template inefficiencies. That’s fine, but
before you cache, you should first try to attack the root of the problem.
You can save yourself a lot of work by mentally tracing through your template code,

176 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

14.3: Limit Processing in Templates

doing some quick run time analysis, and refactoring.

Let’s now explore some examples of template code that can be rewritten more efficiently.

Suspend your disbelief for a moment and pretend that the nutty duo behind Two Scoops
ran a 30-second commercial during the Super Bowl. “Free pints of ice cream for the first
million developers who request them! All you have to do is fill out a form to get a voucher
redeemable in stores!”

Figure 14.2: Two Scoops, official halftime sponsor of the Super Bowl.

Naturally, we have a “vouchers” app to track the names and email addresses of everyone who
requested a free pint voucher. Here’s what the model for this app looks like:

Example 14.5: Voucher Model Example

vouchers/models.py
from django.db import models

from .managers import VoucherManager

class Voucher(models.Model):

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 177

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 14: Templates: Best Practices

"""Vouchers for free pints of ice cream."""
name = models.CharField(max_length=100)
email = models.EmailField()
address = models.TextField()
birth_date = models.DateField(blank=True)
sent = models.DateTimeField(null=True, default=None)
redeemed = models.DateTimeField(null=True, default=None)

objects = VoucherManager()

This model will be used in the following examples to illustrate a few “gotchas” that you
should avoid.

14.3.1 Gotcha 1: Aggregation in Templates
Since we have birth date information, it would be interesting to display a rough breakdown
by age range of voucher requests and redemptions.

A very bad way to implement this would be to do all the processing at the template level.
To be more specific in the context of this example:

ä Don’t iterate over the entire voucher list in your template’s JavaScript section, using
JavaScript variables to hold age range counts.

ä Don’t use the add template filter to sum up the voucher counts.

Those implementations are ways of getting around Django’s limitations of logic in templates,
but they’ll slow down your pages drastically.

The better way is to move this processing out of your template and into your Python code.
Sticking to our minimal approach of using templates only to display data that has already
been processed, our template looks like this:

Example 14.6: Using Templates to Display Pre-Processed Data

{# templates/vouchers/ages.html #}
{% extends "base.html" %}

{% block content %}
<table>
<thead>
<tr>

178 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

14.3: Limit Processing in Templates

<th>Age Bracket</th>
<th>Number of Vouchers Issued</th>

</tr>
</thead>
<tbody>
{% for age_bracket in age_brackets %}
<tr>
<td>{{ age_bracket.title }}</td>
<td>{{ age_bracket.count }}</td>

</tr>
{% endfor %}

</tbody>
</table>
{% endblock content %}

In this example, we can do the processing with a model manager, using the Django ORM’s
aggregation methods and the handy dateutil library described in Chapter 37: Appendix A:
Packages Mentioned In This Book:

Example 14.7: Pre-Processing Data Before Template Display

vouchers/managers.py
from django.db import models
from django.utils import timezone

from dateutil.relativedelta import relativedelta

class VoucherManager(models.Manager):
def age_breakdown(self):

"""Returns a dict of age brackets/counts."""
age_brackets = []
delta = timezone.now() - relativedelta(years=18)
count =

self.model.objects.filter(birth_date__gt=delta).count()↪→

age_brackets.append(
{'title': '0-17', 'count': count}

)
count =

self.model.objects.filter(birth_date__lte=delta).count()↪→

age_brackets.append(

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 179

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 14: Templates: Best Practices

{'title': '18+', 'count': count}
)
return age_brackets

This method would be called from a view, and the results would be passed to the template
as a context variable.

14.3.2 Gotcha 2: Filtering With Conditionals in Templates

Suppose we want to display a list of all the Greenfelds and the Roys who requested free
pint vouchers, so that we could invite them to our family reunion. We want to filter our
records on the name field. A very bad way to implement this would be with giant loops and
if statements at the template level.

Example 14.8: Disastrous Method of Filtering Data

<h2>Greenfelds Who Want Ice Cream</h2>

{% for voucher in voucher_list %}
{# Don't do this: conditional filtering in templates #}
{% if 'greenfeld' in voucher.name.lower %}
{{ voucher.name }}

{% endif %}
{% endfor %}

<h2>Roys Who Want Ice Cream</h2>

{% for voucher in voucher_list %}
{# Don't do this: conditional filtering in templates #}
{% if 'roy' in voucher.name.lower %}
{{ voucher.name }}

{% endif %}
{% endfor %}

In this bad snippet, we’re looping and checking for various “if ” conditions. That’s filtering a
potentially gigantic list of records in templates, which is not designed for this kind of work,
and will cause performance bottlenecks. On the other hand, databases like PostgreSQL

180 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

14.3: Limit Processing in Templates

and MySQL are great at filtering records, so this should be done at the database layer. The
Django ORM can help us with this as demonstrated in the next example.

Example 14.9: Using the ORM/Database to Filter Data

vouchers/views.py
from django.views.generic import TemplateView

from .models import Voucher

class GreenfeldRoyView(TemplateView):
template_name = 'vouchers/views_conditional.html'

def get_context_data(self, **kwargs):
context = super().get_context_data(**kwargs)
context['greenfelds'] = \

Voucher.objects.filter(name__icontains='greenfeld')
context['roys'] =

Voucher.objects.filter(name__icontains='roy')↪→

return context

Then to call the results, we use the following, simpler template:

Example 14.10: Simplified Fast Template Display

<h2>Greenfelds Who Want Ice Cream</h2>

{% for voucher in greenfelds %}
{{ voucher.name }}

{% endfor %}

<h2>Roys Who Want Ice Cream</h2>

{% for voucher in roys %}
{{ voucher.name }}

{% endfor %}

It’s easy to speed up this template by moving the filtering to a view. With this change, we
now simply use the template to display the already-filtered data. The above template now
follows our preferred minimalist approach.

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 181

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 14: Templates: Best Practices

14.3.3 Gotcha 3: Complex Implied Queries in Templates
Despite the limitations on logic allowed in Django templates, it’s all too easy to find our-
selves calling unnecessary queries repeatedly in a view. For example, if we list users of our
site and all their flavors this way:

Example 14.11: Template Code Generating Extra Queries

{# list generated via User.objects.all() #}
<h1>Ice Cream Fans and their favorite flavors.</h1>

{% for user in user_list %}

{{ user.name }}:
{# DON'T DO THIS: Generated implicit query per user #}
{{ user.flavor.title }}
{# DON'T DO THIS: Second implicit query per user!!! #}
{{ user.flavor.scoops_remaining }}

{% endfor %}

Then calling each user generates a second query. While that might not seem like much, we
are certain that if we had enough users and made this mistake frequently enough, our site
would have a lot of trouble.

One quick correction is to use the Django ORM’s select_related() method:

Example 14.12: Data Queried with select_related

{% comment %}
List generated via User.objects.all().select_related('flavor')
{% endcomment %}
<h1>Ice Cream Fans and their favorite flavors.</h1>

{% for user in user_list %}

{{ user.name }}:
{{ user.flavor.title }}
{{ user.flavor.scoops_remaining }}

{% endfor %}

182 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

14.3: Limit Processing in Templates

One more thing: If you’ve embraced using model methods, the same applies. Be cautious
putting too much query logic in the model methods called from templates.

14.3.4 Gotcha 4: Hidden CPU Load in Templates
Watch out for innocent-looking calls in templates that result in intensive CPU processing.
Although a template might look simple and contain very little code, a single line could be
invoking an object method that does a lot of processing.

Figure 14.3: Bubble gum ice cream looks easy to eat but requires a lot of processing.

Common examples are template tags that manipulate images, such as the template tags
provided by libraries like sorl-thumbnail. In many cases tools like this work great, but we’ve
had some issues. Specifically, the manipulation and the saving of image data to file systems
(often across networks) inside a template means there is a choke point within templates.

This is why projects that handle a lot of image or data processing increase the performance
of their site by taking the image processing out of templates and into views, models, helper
methods, or asynchronous messages queues like Celery or Django Channels.

14.3.5 Gotcha 5: Hidden REST API Calls in Templates
You saw in the previous gotcha how easy it is to introduce template loading delays by access-
ing object method calls. This is true not just with high-load methods, but also with methods
that contain REST API calls. A good example is querying an unfortunately slow maps API
hosted by a third-party service that your project absolutely requires. Don’t do this in the
template code by calling a method attached to an object passed into the view’s context.

Where should actual REST API consumption occur? We recommend doing this in:

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 183

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 14: Templates: Best Practices

ä JavaScript code so after your project serves out its content, the client’s browser handles
the work. This way you can entertain or distract the client while they wait for data to
load.

ä The view’s Python code where slow processes might be handled in a variety of ways
including message queues, additional threads, multiprocesses, or more.

14.4 Don’t Bother Making Your Generated HTML Pretty
Bluntly put, no one cares if the HTML generated by your Django project is attractive. In
fact, if someone were to look at your rendered HTML, they’d do so through the lens of
a browser inspector, which would realign the HTML spacing anyway. Therefore, if you
shuffle up the code in your Django templates to render pretty HTML, you are wasting
time obfuscating your code for an audience of yourself.

And yet, we’ve seen code like the following. This evil code snippet generates nicely formatted
HTML but itself is an illegible, unmaintainable template mess:

Example 14.13: Obfuscating Template Code to Produce Pretty HTML Code

{% comment %}Don't do this! This code bunches everything
together to generate pretty HTML.
{% endcomment %}
{% if list_type=='unordered' %}{% else %}{% endif %}{% for
syrup in syrup_list %}<li class="{{ syrup.temperature_type|roomtemp
}}">{% syrup.title %}
{% endfor %}{% if list_type=='unordered' %}{% else %}
{% endif %}

A better way of writing the above snippet is to use indentation and one operation per line
to create a readable, maintainable template:

Example 14.14: Understandable Template Code

{# Use indentation/comments to ensure code quality #}
{# start of list elements #}
{% if list_type=='unordered' %}

{% else %}

{% endif %}

{% for syrup in syrup_list %}

184 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

14.5: Exploring Template Inheritance

<li class="{{ syrup.temperature_type|roomtemp }}">

{% syrup.title %}

{% endfor %}
{# end of list elements #}
{% if list_type=='unordered' %}

{% else %}

{% endif %}

Are you worried about the volume of whitespace generated? Don’t be. First of all, expe-
rienced developers favor readability of code over obfuscation for the sake of optimization.
Second, there are compression and minification tools that can help more than anything you
can do manually here. See Chapter 26: Finding and Reducing Bottlenecks for more details.

14.5 Exploring Template Inheritance
Let’s begin with a simple base.html file that we’ll inherit from another template:

Example 14.15: A Base HTML File

{# simple base.html #}
{% load staticfiles %}
<html>
<head>
<title>
{% block title %}Two Scoops of Django{% endblock title %}

</title>
{% block stylesheets %}
<link rel="stylesheet" type="text/css"
href="{% static 'css/project.css' %}">

{% endblock stylesheets %}
</head>
<body>
<div class="content">
{% block content %}

<h1>Two Scoops</h1>
{% endblock content %}

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 185

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 14: Templates: Best Practices

</div>
</body>
</html>

The base.html file contains the following features:

ä A title block containing “Two Scoops of Django”.
ä A stylesheets block containing a link to a project.css file used across our site.
ä A content block containing “<h1>Two Scoops</h1>”.

Our example relies on just three template tags, which are summarized below:

Template Tag Purpose
{% load %} Loads the staticfiles built-in template tag

library
{% block %} Since base.html is a parent template, these

define which child blocks can be filled in
by child templates. We place links and
scripts inside them so we can override if
necessary.

{% static %} Resolves the named static media argument
to the static media server.

Table 14.1: Template Tags in base.html

To demonstrate base.html in use, we’ll have a simple about.html inherit the following from
it:

ä A custom title.
ä The original stylesheet and an additional stylesheet.
ä The original header, a sub header, and paragraph content.
ä The use of child blocks.
ä The use of the {{ block.super }} template variable.

Example 14.16: Extending From base.html

{% extends "base.html" %}
{% load staticfiles %}
{% block title %}About Audrey and Daniel{% endblock title %}
{% block stylesheets %}

186 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

14.5: Exploring Template Inheritance

{{ block.super }}
<link rel="stylesheet" type="text/css"
href="{% static 'css/about.css' %}">

{% endblock stylesheets %}
{% block content %}

{{ block.super }}
<h2>About Audrey and Daniel</h2>
<p>They enjoy eating ice cream</p>

{% endblock content %}

When we render this template in a view, it generates the following HTML:

Example 14.17: Rendered HTML

<html>
<head>
<title>
About Audrey and Daniel

</title>
<link rel="stylesheet" type="text/css"
href="/static/css/project.css">

<link rel="stylesheet" type="text/css"
href="/static/css/about.css">

</head>
<body>
<div class="content">
<h1>Two Scoops</h1>
<h2>About Audrey and Daniel</h2>
<p>They enjoy eating ice cream</p>

</div>
</body>
</html>

Notice how the rendered HTML has our custom title, the additional stylesheet link, and
more material in the body? We’ll use the table below to review the template tags and vari-
ables in the about.html template.

Note that the {% block %} tag is used differently in about.html than in base.html , serving
to override content. In blocks where we want to preserve the base.html content, we use {{
block.super }} variable to display the content from the parent block. This brings us to
the next topic, {{ block.super }}.

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 187

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 14: Templates: Best Practices

Template Object Purpose
{% extends %} Informs Django that about.html is inher-

iting or extending from base.html
{% block %} Since about.html is a child template,

block overrides the content provided by
base.html. This means our title will render
as <title>Audrey and Daniel</title>.

{{ block.super }} When placed in a child template’s block,
it ensures that the parent’s content is also
included in the block. In the content block
of the about.html template, this will render
<h1>Two Scoops</h1>.

Table 14.2: Template Objects in about.html

14.6 block.super Gives the Power of Control
Let’s imagine that we have a template which inherits everything from the base.html but
replaces the project’s link to the project.css file with a link to dashboard.css. This use case
might occur when you have a project with one design for normal users, and a dashboard
with a different design for staff.

If we aren’t using {{ block.super }}, this often involves writing a whole new base file,
often named something like base_dashboard.html . For better or for worse, we now have two
template architectures to maintain.

If we are using {{ block.super }}, we don’t need a second (or third or fourth) base
template. Assuming all templates extend from base.html we use {{ block.super }} to
assume control of our templates. Here are three examples:

Template using both project.css and a custom link:

Example 14.18: Using Base CSS And Custom CSS Link

{% extends "base.html" %}
{% block stylesheets %}
{{ block.super }} {# this brings in project.css #}
<link rel="stylesheet" type="text/css"
href="{% static 'css/custom.css' %}" />

{% endblock stylesheets %}

Dashboard template that excludes the project.css link:

188 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

14.7: Useful Things to Consider

Example 14.19: Excluding the Base CSS

{% extends "base.html" %}
{% block stylesheets %}
<link rel="stylesheet" type="text/css"
href="{% static 'css/dashboard.css' %}" />

{% comment %}
By not using {{ block.super }}, this block overrides the
stylesheet block of base.html

{% endcomment %}
{% endblock stylesheets %}

Template just linking the project.css file:

Example 14.20: Using the Base CSS File

{% extends "base.html" %}
{% comment %}

By not using {% block stylesheets %}, this template inherits the
stylesheets block from the base.html parent, in this case the
default project.css link.

{% endcomment %}

These three examples demonstrate the amount of control that {{ block.super }} pro-
vides. The variable serves a good way to reduce template complexity, but can take a little bit
of effort to fully comprehend.

TIP: block.super Is Similar but Not the Same as super()

For those coming from an object oriented programming background, it might
help to think of the behavior of the {{ block.super }} variable to be like a
very limited version of the Python built-in function, super(). In essence, the {{
block.super }} variable and the super() function both provide access to the
parent.
Just remember that they aren’t the same. It’s just a nice mnemonic that some devel-
opers might find useful.

14.7 Useful Things to Consider
The following are a series of smaller things we keep in mind during template development.

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 189

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 14: Templates: Best Practices

14.7.1 Avoid Coupling Styles Too Tightly to Python Code
Aim to control the styling of all rendered templates entirely via CSS and JS.

Use CSS for styling whenever possible. Never hardcode things like menu bar widths and
color choices into your Python code. Avoid even putting that type of styling into your
Django templates.

Here are some tips:

ä If you have magic constants in your Python code that are entirely related to visual
design layout, you should probably move them to a CSS file.

ä The same applies to JavaScript.

14.7.2 Common Conventions
Here are some naming and style conventions that we recommend:

ä We prefer underscores over dashes in template names, block names, and other names
in templates. Most Django users seem to follow this convention. Why? Well, because
underscores are allowed in names of Python objects but dashes are forbidden.

ä We rely on clear, intuitive names for blocks. {% block javascript %} is good.
ä We include the name of the block tag in the endblock. Never write just {% endblock

%}, include the whole {% endblock javascript %}.
ä Templates called by other templates are prefixed with ‘_’. This applies to templates

called via {% include %} or custom template tags. It does not apply to templates
inheritance controls such as {% extends %} or {% block %}.

14.7.3 Use Implicit and Named Explicit Context Objects Properly
When you use generic display CBVs, you have the option of using the generic {{
object_list }} and {{ object }} in your template. Another option is to use the ones
that are named after your model.

For example, if you have a Topping model, you can use {{ topping_list }} and {{
topping }} in your templates, instead of {{ object_list }} and {{ object }}.
This means both of the following template examples will work:

Example 14.21: Implicit and Explicit Context Objects

{# templates/toppings/topping_list.html #}
{# Using implicit names, good for code reuse #}

190 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

14.7: Useful Things to Consider

{% for object in object_list %}
{{ object }}

{% endfor %}

{# Using explicit names, good for object specific code #}

{% for topping in topping_list %}
{{ topping }}

{% endfor %}

14.7.4 Use URL Names Instead of Hardcoded Paths

A common developer mistake is to hardcode URLs in templates like this:

Example 14.22: Hardcoded URL in Template. Sad!

The problem with this is that if the URL patterns of the site need to change, all the URLs
across the site need to be addressed. This impacts HTML, JavaScript, and even RESTful
APIs.

Instead, we use the {% url %} tag and references the names in our URLConf files:

Example 14.23: Using the URL Tag

14.7.5 Debugging Complex Templates

A trick recommended by Lennart Regebro is that when templates are complex and it be-
comes difficult to determine where a variable is failing, you can force more verbose errors
through the use of the string_if_invalid option in OPTIONS of your TEMPLATES set-
ting:

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 191

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 14: Templates: Best Practices

Example 14.24: Using the string_if_invalid Option

settings/local.py
TEMPLATES = [

{
'BACKEND':

'django.template.backends.django.DjangoTemplates',↪→

'APP_DIRS': True,
'OPTIONS': {

'string_if_invalid': 'INVALID EXPRESSION: %s'
}

},
]

14.8 Error Page Templates
Even the most tested and analyzed site will have a few problems now and then, and that’s
okay. The problem lies in how you handle those errors. The last thing that you want to do
is show an ugly response or a blank web server page back to the end user.

It’s standard practice to create at least 404.html and 500.html templates. See the GitHub
HTML Styleguide link at the end of this section for other types of error pages that you may
want to consider.

We suggest serving your error pages from a static file server (e.g. Nginx or Apache) as entirely
self-contained static HTML files. That way, if your entire Django site goes down but your
static file server is still up, then your error pages can still be served.

If you’re on a PaaS, check the documentation on error pages. For example, Heroku allows
users to upload a custom static HTML page to be used for 500 errors.

WARNING: Resist the Temptation to Overcomplicate Your
Error Pages

Interesting or amusing error pages can be a draw to your site, but don’t get carried
away. It’s embarrassing when your 404 page has a broken layout or your 500 page
can’t load the CSS and JavaScript. Worse yet is dynamic 500 error pages that break
in the event of a database failure.

GitHub’s 500 error page is a good example of fancy but an entirely static, self-contained
error page. View the source of github.com/500 to see that:

192 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/500
https://github.com/feldroy/two-scoops-of-django-3.x/issues

14.9: Follow a Minimalist Approach

ä All CSS styles are inline in the head of the same HTML page, eliminating the need
for a separate stylesheet.

ä All images are entirely contained as data within the HTML page. There are no
links to external URLs.

ä All JavaScript needed for the page is contained within the HTML page. There are
no external links to JavaScript assets.

For more information, see the Github HTML Styleguide:

ä github.com/styleguide

14.9 Follow a Minimalist Approach
We recommend taking a minimalist approach to your template code. Treat the so-called
limitations of Django templates as a blessing in disguise. Use those constraints as inspiration
to find simple, elegant ways to put more of your business logic into Python code rather than
into templates.

Taking a minimalist approach to templates also makes it much easier to adapt your Django
apps to changing format types. When your templates are bulky and full of nested looping,
complex conditionals, and data processing, it becomes harder to reuse business logic code in
templates, not to mention impossible to use the same business logic in template-less views
such as API views. Structuring your Django apps for code reuse is especially important as
we move forward into the era of increased API development, since APIs and web pages
often need to expose identical data with different formatting.

To this day, HTML remains a standard expression of content, providing the practices and
patterns for this chapter.

14.10 Summary
In this chapter, we covered the following:

ä Template inheritance, including the use of {{ block.super }}.
ä Writing legible, maintainable templates.
ä Easy methods to optimize template performance.
ä Issues with limitations of template processing.
ä Error page templates.
ä Many other helpful little details about templates.

In the next chapter we’ll examine template tags and filters.

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 193

https://github.com/styleguide
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 14: Templates: Best Practices

194 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

15 | Template Tags and Filters

Django provides dozens of default template tags and filters, all of which share the following
common traits:

ä All of the defaults have clear, intuitive names.
ä All of the defaults do just one thing.
ä None of the defaults alter any sort of persistent data.

These traits serve as very good best practices when you have to write your own template
tags. Let’s now dive a bit deeper into practices and recommendations when writing custom
filters and template tags.

15.1 Filters Are Functions
Filters are functions that accept just one or two arguments, and that don’t give developers
the ability to add behavior controls in Django templates.

We feel that this simplicity makes filters less prone to abuse, since they are essentially just
functions with decorators that make Python usable inside of Django templates. This means
that they can be called as normal functions (although we prefer to have our filters call func-
tions imported from utility modules).

In fact, a quick scan of the source code of Django’s default filters at /git.io/vyzxO shows
that the slugify() template filter simply calls the django.utils.text.slugify func-
tion.

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 195

https://git.io/vyzxO
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 15: Template Tags and Filters

Figure 15.1: This filter transforms 1-2 flavors of ice cream into vanilla, outputting to a cone.

15.1.1 Filters Are Easy to Test
Testing a filter is just a matter of testing a function, which we cover in Chapter 24: Testing
Stinks and Is a Waste of Money!.

15.1.2 Filters and Code Reuse
As can be seen in the Django source code defaultfilter.py github.com/django/
django/blob/stable/3.0.x/django/template/defaultfilters.py, most
of the filter logic is imported from other libraries. For example, it’s not necessary
to import django.template.defaultfilters.slugify. Instead we can use
django.utils.text.slugify. While it might seem to be perfectly acceptable to
import the filter, it adds a level of code abstraction that can make debugging a problem a
little more difficult.

Since filters are just functions, we advocate that anything but the simplest logic for them be
moved to more reusable utility functions, perhaps stored in a utils.py module. Doing this
makes it easier to introspect code bases and test, and can mean dramatically fewer imports.
Over time core Django has followed this pattern more and more.

15.1.3 When to Write Filters
Filters are good for modifying the presentation of data, and they can be readily reused in
REST APIs and other output formats. Being constrained to two arguments limits the func-
tionality so it’s harder (but not impossible) to make them unbearably complex.

196 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/django/django/blob/stable/3.0.x/django/template/defaultfilters.py
https://github.com/django/django/blob/stable/3.0.x/django/template/defaultfilters.py
https://github.com/feldroy/two-scoops-of-django-3.x/issues

15.2: Custom Template Tags

15.2 Custom Template Tags
“Please stop writing so many template tags. They are a pain to debug.”

– Audrey Feldroy, while debugging Daniel Feldroy’s code.

While template tags are great tools when developers have the discipline to keep them in
check, in practice they tend to get abused. This section covers the problems that you run
into when you put too much of your logic into template tags and filters.

15.2.1 Template Tags Are Harder to Debug

Template tags of any complexity can be challenging to debug. When they include opening
and closing elements, they become even harder to handle. We’ve found liberal use of log
statements and tests are very helpful when they become hard to inspect and correct.

15.2.2 Template Tags Make Code Reuse Harder

It can be difficult to consistently apply the same effect as a template tag on alternative output
formats used by REST APIs, RSS feeds, or in PDF/CSV generation. If you do need to
generate alternate formats, it’s worth considering putting all logic for template tags into
utils.py, for easy access from other views.

15.2.3 The Performance Cost of Template Tags

Template tags can have a significant performance cost, especially when they load other tem-
plates. While templates run much faster than they did in pre-1.8 versions of Django, it’s easy
to lose those performance benefits if you don’t have a deep understanding of how templates
are loaded in Django.

If your custom template tags are loading a lot of templates, you might want to con-
sider caching the loaded templates. See docs.djangoproject.com/en/3.2/ref/
templates/api/#django.template.loaders.cached.Loader for more details.

15.2.4 When to Write Template Tags

These days, we’re very cautious about adding new template tags. We consider two things
before writing them:

ä Anything that causes a read/write of data might be better placed in a model or object
method.

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 197

https://feld.to/3f0u4Yc
https://feld.to/3f0u4Yc
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 15: Template Tags and Filters

ä Since we implement a consistent naming standard across our projects, we can add an
abstract base class model to our core.models module. Can a method or property
in our project’s abstract base class model do the same work as a custom template tag?

When should you write new template tags? We recommend writing them in situations
where they are only responsible for rendering of HTML. For example, projects with very
complex HTML layouts with many different models or data types might use them to create
a more flexible, understandable template architecture.

PACKAGE TIP: We Do Use Custom Template Tags

It sounds like we stay away from custom template tags, but that’s not the case. We’re
just cautious. Interestingly enough, Daniel has been involved with at least three
prominent libraries that make extensive use of template tags.

ä django-crispy-forms
ä django-uni-form (deprecated, use django-crispy-forms instead)
ä django-wysiwyg (deprecated)

15.3 Naming Your Template Tag Libraries
The convention we follow is <app_name>_tags.py. Using the twoscoops example, we would
have files named thus:

ä flavors_tags.py
ä blog_tags.py
ä events_tags.py
ä tickets_tags.py

This makes determining the source of a template tag library trivial to discover.

TIP: Don’t Name Your Template Tag Libraries With the Same
Name as Your App

For example, naming the events app’s templatetag library events.py is problematic.
It used to be that doing so would cause all sorts of problems because of the way that
Django loaded template tags. While that’s been fixed, the convention of adding a
_tags.py suffix to template tag libraries has remained. This means it’s easy for every-
one to find template tag libraries.

198 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

15.4: Loading Your Template Tag Modules

WARNING: Don’t Use Your IDE’s Features as an Excuse to
Obfuscate Your Code
Do not rely on your text editor or IDE’s powers of introspection to determine the
name of your template tag library.

15.4 Loading Your Template Tag Modules
In your template, right after {% extends "base.html" %} (or any other parent template
besides base.html) is where you load your template tags:

Example 15.1: The Right Way To Load A Template Tag Library

{% extends "base.html" %}

{% load flavors_tags %}

Simplicity itself ! Explicit loading of functionality! Hooray!

15.4.1 Watch Out for This Anti-Pattern
Unfortunately, there is an anti-pattern that will drive you mad with fury each and every time
you encounter it:

Example 15.2: Implicit Loading of Template Tag Libraries

settings/base.py
TEMPLATES = [

'BACKEND': 'django.template.backends.django.DjangoTemplates',
'OPTIONS': {

Don't do this!
It's an evil anti-pattern!
'builtins': ['flavors.templatetags.flavors_tags'],

},
]

The anti-pattern replaces the explicit load method described above with an implicit behav-
ior which supposedly fixes a “Don’t Repeat Yourself ” (DRY) issue. However, any DRY
“improvements” it creates are destroyed by the following:

ä It will add some overhead due to the fact this literally loads the template tag library
into each and every template loaded by django.template.Template. This means

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 199

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 15: Template Tags and Filters

every inherited template, template {% include %}, inclusion_tag, and more
will be impacted. While we have cautioned against premature optimization, we are
also not in favor of adding this much unneeded extra computational work into our
code when better alternatives exist.

ä Because the template tag library is implicitly loaded, it immensely adds to the diffi-
culty in introspection and debugging. Per the Zen of Python, “Explicit is better than
Implicit.”

Fortunately, this is obscure because beginning Django developers don’t know enough to
make this mistake and experienced Django developers get annoyed when they have to deal
with it.

15.5 Summary
It is our contention that template tags and filters should concern themselves only with the
manipulation of presentable data. So long as we remember this when we write or use them,
our projects run faster and are easier to maintain.

In the next chapter we explore the use of Django templates and Jinja2.

200 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

16 | Django Templates and Jinja2

With Django 1.8 came support for multiple template engines. As of now, the only avail-
able built-in backends for the Django template system are the Django template language
(DTL) and Jinja2.

16.1 What’s the Syntactical Difference?
At the syntax level, DTL and Jinja2 are very similar. In fact, Jinja2 was inspired by DTL.
Here are the most significant syntax differences:

Subject DTL Jinja2
Method Calls {{

user.get_favorites
}}

{{
user.get_favorites()
}}

Filter Arguments {{ toppings|join:',
' }}

{{ toppings|join(',
') }}

Loop Empty Argument {% empty %} {% else %}
Loop Variable {{ forloop }} {{ loop }}
Cycle {% cycle 'odd'

'even' %}
{{ loop.cycle('odd',
'even') }}

Table 16.1: DTL vs Jinja2 Syntax Differences

16.2 Should I Switch?
First off, when using Django we don’t have to choose between DTL or Jinja2. We can set
settings.TEMPLATES to use DTL for some template directories and Jinja2 for others. If
we have a lot of templates in our codebase, we can hold onto our existing templates and
leverage the benefits of Jinja2 where we need it. This allows for the best of both worlds:
Access to the vast Django ecosystem of third-party packages and the features of alternatives
to DTL.

In short, we can use multiple template languages together harmoniously.

For example, most of a site can be rendered using DTL, with the larger pages rendered
content done with Jinja2. A good example of this behavior are the djangopackages.org/

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 201

https://djangopackages.org/grids/
https://djangopackages.org/grids/

Chapter 16: Django Templates and Jinja2

grids. Because of their size and complexity, in the future these pages may be refactored
to be powered by Jinja2 rather than DTL (unless the project becomes a single page app
(SPA)).

16.2.1 Advantages of DTL
Here are reasons to use the Django template language:

ä It’s batteries-included with all the functionality clearly documented within the
Django docs. The official Django documentation on DTL is very extensive and easy
to follow. The template code examples in the Django docs use DTL.

ä Most third-party Django packages use DTL. Converting them to Jinja2 is extra work.
ä Converting a large codebase from DTL to Jinja2 is a lot of work.

16.2.2 Advantages of Jinja2
Here are reasons to use Jinja2:

ä Can be used independently of Django.
ä As Jinja2’s syntax is closer to Python’s syntax, many find it more intuitive.
ä Jinja2 is generally more explicit, e.g. function calls in the template use parentheses.
ä Jinja2 has less arbitrary restrictions on logic, e.g. you can pass unlimited arguments

to a filter with Jinja2 vs. only 1 argument with DTL.
ä According to benchmarks online and our own experiments, Jinja2 is faster. That said,

templates are always a much smaller performance bottleneck than database optimiza-
tion. See Chapter 26: Finding and Reducing Bottlenecks.

16.2.3 Which One Wins?
It depends on your situation:

ä New users should always stick with DTL.
ä Existing projects with large codebases will want to stick with DTL except for those

few pages that need performance improvements.
ä Experienced Djangonauts should try both, weigh the benefits of DTL and Jinja, and

make their own decision.

TIP: Choose a Primary Template Language

While we can mix multiple template languages across a project, doing so risks adding
dramatically to the mental overload of a project. To mitigate this risk, choose a
single, primary template language.

202 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

16.3: Considerations When Using Jinja2 With Django

16.3 Considerations When Using Jinja2 With Django
Here are some things to keep in mind when using Jinja2 templates with Django:

16.3.1 CSRF and Jinja2
Jinja2 accesses Django’s CSRF mechanism differently than DTL. To incorporate CSRF
into Jinja2 templates, when rendering forms make certain to include the necessary HTML:

Example 16.1: Using Django’s CSRF Token with Jinja2 Templates

<div style="display:none">
<input type="hidden" name="csrfmiddlewaretoken" value="{{
csrf_token }}">↪→

</div>

16.3.2 Using Template Tags in Jinja2 Templates
At this time using Django-style Template Tags isn’t possible in Jinja2. If we need the func-
tionality of a particular template tag, depending on what we’re trying to do we convert it
using one of these techniques:

ä Convert the functionality into a function.
ä Create a Jinja2 Extension. See jinja.pocoo.org/docs/dev/extensions/

#module-jinja2.ext

16.3.3 Using Django-Style Template Filters in Jinja2 Templates
One thing we’ve grown used to having around in DTL is Django’s default template filters.
Fortunately, as Django filters are just functions (see Section 15.1: Filters Are Functions),
we can easily specify a custom Jinja2 environment that includes the template filters:

Example 16.2: Injecting Django Filters Into Jinja2 Templates

core/jinja2.py
from django.contrib.staticfiles.storage import staticfiles_storage
from django.template import defaultfilters
from django.urls import reverse

from jinja2 import Environment

def environment(**options):

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 203

https://feld.to/2VJw4fK
https://feld.to/2VJw4fK
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 16: Django Templates and Jinja2

env = Environment(**options)
env.globals.update({

'static': staticfiles_storage.url,
'url': reverse,
'dj': defaultfilters

})
return env

Here is a an example of using Django template filters as functions in a Jinja2 template:

Example 16.3: Using Django Filters in a Jinja2 Template

<table><tbody>
{% for purchase in purchase_list %}

<tr>

{{ purchase.title }}

</tr>
<tr>{{ dj.date(purchase.created, 'SHORT_DATE_FORMAT') }}</tr>
<tr>{{ dj.floatformat(purchase.amount, 2) }}</tr>

{% endfor %}
</tbody></table>

If you want a less global approach, we can use a technique explored in Section 10.4.3: Per-
forming Custom Actions on Views With Invalid Forms. Here we create a mixin for attach-
ing the Django template filters as an attribute on views:

Example 16.4: Django Filter View Mixin for Jinja2

core/mixins.py
from django.template import defaultfilters

class DjFilterMixin:
dj = defaultfilters

If a view inherits from our core.mixins.DjFilterMixin class, in its Jinja2 template we
can do the following:

204 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

16.3: Considerations When Using Jinja2 With Django

Example 16.5: Using View-Injected Django Filters in Jinja2

<table><tbody>
{% for purchase in purchase_list %}

<tr>

{{ purchase.title }}

</tr>
<!-- Call the django.template.defaultfilters functions from the
view -->↪→

<tr>{{ view.dj.date(purchase.created, 'SHORT_DATE_FORMAT')
}}</tr>↪→

<tr>{{ view.dj.floatformat(purchase.amount, 2) }}</tr>
{% endfor %}
</tbody></table>

TIP: Avoid Using Context Processors With Jinja2

The Django documentation recommends against using context processors with
Jinja2. See the warning box at docs.djangoproject.com/en/3.2/topics/
templates/#django.template.backends.jinja2.Jinja2. What they rec-
ommend instead is passing a function to the template that can be called as needed.
This can be done on a per-view basis or by injecting the callable function as described
in this subsection.

16.3.4 The Jinja2 Environment Object Should Be Considered Static
In example 15.1 we demonstrate the use of the core component of Jinja2, the
jinja2.Environment class. This object is where Jinja2 shares configuration, filters, tests,
globals, and more. When the first template in your project is loaded, Jinja2 instantiates this
class as what is essentially a static object.

Example:

Example 16.6: Static Nature of Jinja2 Environment

core/jinja2.py
from jinja2 import Environment

import random

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 205

https://feld.to/35d3d6J
https://feld.to/35d3d6J
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 16: Django Templates and Jinja2

def environment(**options):
env = Environment(**options)
env.globals.update({

Runs only on the first template load! The three displays
below↪→

will all present the same number.
{{ random_once }} {{ random_once }} {{ random_once }}
'random_once': random.randint(1, 5)
Can be called repeated as a function in templates. Each

call↪→

returns a random number:
{{ random() }} {{ random() }} {{ random() }}
'random': lambda: random.randint(1, 5),

})
return env

WARNING: Don’t Alter jinja.Environment After Instantiation

While possible, modifying the jinja.Environment object is dangerous. Per the
Jinja2 API documentation, “Modifications on environments after the first template
was loaded will lead to surprising effects and undefined behavior.”

Reference: jinja.pocoo.org/docs/dev/api/#jinja2.Environment

16.4 Resources
ä Django’s documentation on using Jinja2: docs.djangoproject.com/en/3.2/

topics/templates/#django.template.backends.jinja2.Jinja2
ä jinja.pocoo.org

16.5 Summary
In this chapter we covered the similarities and differences between DTL and Jinja2. We
also explored some of the ramifications and workarounds for using Jinja2 in projects.

Starting in the next chapter we leave templates behind and explore the world of REST from
both the server and client sides.

206 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://feld.to/2Yc94aR
https://feld.to/35d3d6J
https://feld.to/35d3d6J
http://jinja.pocoo.org/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

17 | Building REST APIs With
Django REST Framework

Today’s internet is much more than HTML-powered websites. Developers need to support
web clients, native mobile apps, and business-to-business applications . Having tools that
support easy creation of JSON, YAML, XML, and other formats is important. By design,
a Representational State Transfer (REST) Application Programming Interface (API)
exposes application data to other concerns.

The defacto package for building these REST APIs with Django is Django REST Frame-
work (DRF). In fact, DRF has become so ubiquitous it’s not uncommon to hear questions
like, “What’s the difference between Django and Django REST Framework”? Since approx-
imately 2013, we estimate 90-95% of new Django projects with an API use DRF.

Why the popularity? Well, we feel that the success of Django REST Framework is because:

ä DRF leans heavily on object-oriented design and is designed to be easily extensible.
ä DRF builds directly off of Django CBVs. If you understand CBVs, DRF’s design

feels like an understandable extension of Django.
ä It comes with a host of views for API generation, ranging from the

django.views.generic.View-like APIView to deep abstractions like generic
API views and viewsets.

ä The serializer system is extremely powerful, but can be trivially ignored or replaced.
ä Authentication and Authorization are covered in a powerful, extendable way.
ä If you really want to use FBVs for your API, DRF has you covered there too.

Because of these reasons, DRF’s community is gigantic. This is important, because it means
that many of the challenges in building REST APIs with it have been solved. Perhaps not
in DRF directly, but in third-party packages. Also, finding people who know it and can
answer questions isn’t hard.

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 207

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 17: Building REST APIs With Django REST Framework

We’ll go over the new paradigm of APIs in Chapter 18: Building GraphQL APIs With
Django.

If you don’t know how to use DRF yet, we recommend its official tutorials:

ä django-rest-framework.org/tutorial/quickstart/
ä django-rest-framework.org/tutorial/1-serialization/

TIP: Django REST Framework Needs Your Support!

DRF is a collaboratively funded project. If you use it commercially we strongly en-
courage you to invest in its continued development by signing up for a paid plan.
Thanks to this funding, we’ve seen the project leap forward in terms of functional-
ity.
Financial contributions start at US$15 and go up. At the higher levels, the DRF
project even provides priority support: fund.django-rest-framework.org/
topics/funding/

17.1 Fundamentals of Basic REST API Design
Let’s take a step back and look at HTTP and how it interacts with Django REST Frame-
work.

The Hypertext Transfer Protocol (HTTP) is a protocol for distributing content that pro-
vides a set of methods to declare actions. By convention, REST APIs rely on these methods,
so use the appropriate HTTP method for each type of action:

Purpose of Request HTTP Method Rough SQL equivalent
Create a new resource POST INSERT
Read an existing resource GET SELECT
Update an existing re-
source

PUT UPDATE

Update part of an existing
resource

PATCH UPDATE

Delete an existing resource DELETE DELETE
Returns same HTTP head-
ers as GET, but no body
content

HEAD

Return the supported
HTTP methods for the
given URL

OPTIONS

Echo back the request TRACE

Table 17.1: HTTP Methods

208 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

http://www.django-rest-framework.org/tutorial/quickstart/
http://www.django-rest-framework.org/tutorial/1-serialization/
https://fund.django-rest-framework.org/topics/funding/
https://fund.django-rest-framework.org/topics/funding/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

17.2: Illustrating Design Concepts With a Simple API

A few notes on the above:

ä If you’re implementing a read-only API, you might only need to implement GET
methods.

ä If you’re implementing a read-write API, you should use the GET, POST, PUT, and
DELETE methods.

ä Relying on just GET and POST for all actions can be a frustrating pattern for API
users.

ä By definition, GET, PUT, and DELETE are idempotent. POST and PATCH are
not.

ä PATCH is often not implemented, but it’s a good idea to implement it if your API
supports PUT requests.

ä Django Rest Framework is designed around these methods, understand them and
DRF itself becomes easier to understand.

Here are some common HTTP status codes that should be considered when implementing
a REST API. DRF’s generic views and viewsets return these values as appropriate for the
method called. Note that this is a partial list; a much longer list of status codes can be found
at en.wikipedia.org/wiki/List_of_HTTP_status_codes.

17.2 Illustrating Design Concepts With a Simple API
In order to illustrate how DRF ties together HTTP methods, HTTP status codes, serial-
ization, and views, let’s create a simple JSON API. We’ll use the flavors app example from
previous chapters as our base, providing the capability to create, read, update, and delete
flavors via HTTP requests using AJAX, python-requests, or some other library.

We’ll begin by checking that we have a tightly secured API. In our settings file we set our
default permission classes to allow just admins:

Example 17.1: Our Standard Default DRF Permission Classes

REST_FRAMEWORK = {
'DEFAULT_PERMISSION_CLASSES': (

'rest_framework.permissions.IsAdminUser',
),

}

TIP: IsAdminUser as the Constant Default Permission Class
We like to lock down our projects, especially our REST APIs. There’s no better
way to this then to have rest_framework.permissions.IsAdminUser as the

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 209

http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 17: Building REST APIs With Django REST Framework

HTTP Status Code Success/Failure Meaning
200 OK Success GET - Return resource

PUT - Provide status mes-
sage or return resource

201 Created Success POST - Provide status
message or return newly
created resource

204 No Content Success PUT or DELETE - Re-
sponse to successful update
or delete request

304 Not Modified Redirect ALL - Indicates no
changes since the last
request. Used for check-
ing Last-Modified and
ETag headers to improve
performance.

400 Bad Request Failure ALL - Return error mes-
sages, including form vali-
dation errors.

401 Unauthorized Failure ALL - Authentication re-
quired but user did not pro-
vide credentials or provided
invalid ones.

403 Forbidden Failure ALL - User attempted to
access restricted content

404 Not Found Failure ALL - Resource is not
found

405 Method Not Allowed Failure ALL - An unallowed
HTTP method was
attempted.

410 Gone Failure ALL - A requested re-
source is no longer avail-
able and won’t be available
in the future. Used when
an API is shut down in fa-
vor of a newer version of an
API. Mobile applications
can test for this condition,
and if it occurs, tell the user
to upgrade.

429 Too Many Requests Failure ALL - The user has sent
too many requests in a
given amount of time. In-
tended for use with rate
limiting.

Table 17.2: HTTP Status Codes

210 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

17.2: Illustrating Design Concepts With a Simple API

default permission class. This we can override on a per-view basis. This makes our
API views very secure by default, something worth more than having to add a few
extra lines of code in our API views.

With that out of the way, here’s our Flavor model again, but enhanced with a UUID for
API lookups:

Example 17.2: Flavor Model Used in Our REST API

flavors/models.py
import uuid as uuid_lib

from django.db import models
from django.urls import reverse

class Flavor(models.Model):
title = models.CharField(max_length=255)
slug = models.SlugField(unique=True) # Used to find the web

URL↪→

uuid = models.UUIDField(# Used by the API to look up the
record↪→

db_index=True,
default=uuid_lib.uuid4,
editable=False)

scoops_remaining = models.IntegerField(default=0)

def get_absolute_url(self):
return reverse('flavors:detail', kwargs={'slug':

self.slug})↪→

WARNING: Don’t Use Sequential Keys as Public Identifiers

Sequential keys, such as what Django provides as a default as model primary keys,
can be a security concern if used publicly. We cover this in-depth at Section 28.28:
Never Display Sequential Primary Keys.
In our example, we’re going to use the model’s UUID rather than the model’s pri-
mary key to look up our records. We always try to avoid using sequential numbers
for lookups.

Define the serializer class:

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 211

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 17: Building REST APIs With Django REST Framework

Example 17.3: Flavor model serializer

flavors/api/serializers.py
from rest_framework import serializers

from ..models import Flavor

class FlavorSerializer(serializers.ModelSerializer):
class Meta:

model = Flavor
fields = ['title', 'slug', 'uuid', 'scoops_remaining']

Now let’s add in our API views:

Example 17.4: Flavor API views

flavors/api/views.py
from rest_framework.generics import (
ListCreateAPIView,
RetrieveUpdateDestroyAPIView

)
from rest_framework.permissions import IsAuthenticated

from ..models import Flavor
from .serializers import FlavorSerializer

class FlavorListCreateAPIView(ListCreateAPIView):
queryset = Flavor.objects.all()
permission_classes = (IsAuthenticated,)
serializer_class = FlavorSerializer
lookup_field = 'uuid' # Don't use Flavor.id!

class
FlavorRetrieveUpdateDestroyAPIView(RetrieveUpdateDestroyAPIView):↪→

queryset = Flavor.objects.all()
permission_classes = (IsAuthenticated,)
serializer_class = FlavorSerializer
lookup_field = 'uuid' # Don't use Flavor.id!

We’re done! Wow, that was fast!

212 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

17.2: Illustrating Design Concepts With a Simple API

TIP: Classy Django REST Framework Is a Useful Reference

For working with the Django Rest Framework, we’ve found that http://cdrf.co
is a great cheat sheet. It is patterned after the famous ccbv.co.uk reference site,
but tailored for Django REST Framework.

Now we’ll wire this into our flavors/urls.py module:

Example 17.5: Wiring in API Views

flavors/urls.py
from django.urls import path

from flavors.api import views

urlpatterns = [
/flavors/api/
path(

route='api/',
view=views.FlavorListCreateAPIView.as_view(),
name='flavor_rest_api'

),
/flavors/api/:uuid/
path(

route='api/<uuid:uuid>/',
view=views.FlavorRetrieveUpdateDestroyAPIView.as_view(),
name='flavor_rest_api'

)
]

What we are doing is reusing the URLConf name, making it easier to manage when you
have a need for a JavaScript-heavy front-end. All you need to do is access the Flavor resource
via the {% url %} template tag.

In case it’s not clear exactly what our URLConf is doing, let’s review it with a table:

Url View Url Name (same)
/flavors/api/ FlavorListCreateAPIView flavor_rest_api
/flavors/api/:uuid/ FlavorRetrieveUpdateDestroyAPIViewflavor_rest_api

Table 17.3: URLConf for the Flavor REST APIs

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 213

http://cdrf.co
http://ccbv.co.uk
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 17: Building REST APIs With Django REST Framework

WARNING: Our Simple API Does Not Use Permissions

We overrode the default IsAdmin permission with IsAuthenticated. If you im-
plement an API using our example, don’t forget to assign user permissions appro-
priately!

ä django-rest-framework.org/api-guide/authentication
ä django-rest-framework.org/api-guide/permissions

The end result is the traditional REST-style API definition:

Example 17.6: Traditional REST-style API definition

flavors/api/
flavors/api/:uuid/

TIP: Common Syntax for Describing REST APIs

It’s not uncommon to see syntax like what is described in the Wiring in API Views
code example. In this particular case, /flavors/api/:uuid/ includes a :uuid
value. This represents a variable, but in a manner suited for documentation across
frameworks and languages, and you’ll see it used in many third-party REST API
descriptions.

We’ve shown you (if you didn’t know already) how it’s very easy to build REST APIs in
Django. Now let’s go over some advice on maintaining and extending them.

17.3 REST API Architecture
Building simple, quick APIs is easy with Django REST Framework, but extending and
maintaining it to match your project’s needs takes a bit more thought. This is usually where
people get hung up on API design. Here are some tips for improving your design:

17.3.1 Use Consistent API Module Naming
Just like anything else, how things are named needs to be consistent across a project. Our
preferences for naming module related to API design is as follows:

Example 17.7: Our Preferences for Naming API-Related Modules

flavors/
├── api/

214 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

http://www.django-rest-framework.org/api-guide/authentication/
http://www.django-rest-framework.org/api-guide/permissions/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

17.3: REST API Architecture

│ ├── __init__.py
│ ├── authentication.py
│ ├── parsers.py
│ ├── permissions.py
│ ├── renderers.py
│ ├── serializers.py
│ ├── validators.py
│ ├── views.py
│ ├── viewsets.py

Please observe the following:

ä We like to place all our API components into a package within an app called api/ .
That allows us to isolate our API components in a consistent location. If we were to
put it in the root of our app, then we would end up with a huge list of API-specific
modules in the general area of the app.

ä Viewsets belong in their own module.
ä We always place routers in urls.py. Either at the app or project level, routers belong

in urls.py.

17.3.2 Code for a Project Should Be Neatly Organized
For projects with a lot of small, interconnecting apps, it can be hard to hunt down where
a particular API view lives. In contrast to placing all API code within each relevant app,
sometimes it makes more sense to build an app specifically for the API. This is where all
the serializers, renderers, and views are placed.

Therefore, the name of the app should reflect its API version (see Section 17.3.7: Version
Your API).

For example, we might place all our views, serializers, and other API components in an app
titled apiv4.

The downside is the possibility for the API app to become too large and disconnected from
the apps that power it. Hence we consider an alternative in the next subsection.

17.3.3 Code for an App Should Remain in the App
When it comes down to it, REST APIs are just views. For simpler, smaller projects, REST
API views should go into views.py or viewsets.py modules and follow the same guidelines we

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 215

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 17: Building REST APIs With Django REST Framework

endorse when it comes to any other view. The same goes for app- or model-specific serializers
and renderers. If we do have app-specific serializers or renderers, the same applies.

For apps with so many REST API view classes that it makes it hard to navigate a single
api/views.py or api/viewsets.py module, we can break them up. Specifically, we move our
view (or viewset) classes into a api/views/ (or api/viewsets/) package containing Python
modules typically named after our models. So you might see:

flavors/
├── api/
│ ├── __init__.py
│ ├── ... other modules here
│ ├── views
│ │ ├── __init__.py
│ │ ├── flavor.py
│ │ ├── ingredient.py

The downside with this approach is that if there are too many small, interconnecting apps,
it can be hard to keep track of the myriad of places API components are placed. Hence we
considered another approach in the previous subsection.

17.3.4 Try to Keep Business Logic Out of API Views

Regardless of which architectural approach you take, it’s a good idea to try to keep as much
logic as possible out of API views. If this sounds familiar, it should. We covered this in
Section 8.5: Try to Keep Business Logic Out of Views. Remember, at the end of the day,
API views are just another type of view.

216 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

17.3: REST API Architecture

Figure 17.1: An Ice Cream as a Service API.

17.3.5 Grouping API URLs
If you have REST API views in multiple Django apps, how do you build a project-wide
API that looks like this?

Example 17.9: Project-Wide API Design

api/flavors/ # GET, POST
api/flavors/:uuid/ # GET, PUT, DELETE
api/users/ # GET, POST
api/users/:uuid/ # GET, PUT, DELETE

In the past, we placed all API view code into a dedicated Django app called api or apiv1,
with custom logic in some of the REST views, serializers, and more. In theory it’s a pretty
good approach, but in practice it means we have logic for a particular app in more than just
one location.

Our current approach is to lean on URL configuration. When building a project-wide API
we write the REST views in the api/views.py or api/viewsets.py modules, wire them into

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 217

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 17: Building REST APIs With Django REST Framework

a URLConf called something like core/api_urls.py or core/apiv1_urls.py, and include that
from the project root’s urls.py module. This means that we might have something like the
following code:

Example 17.10: Combining Multiple App API Views Into One

core/api_urls.py
"""Called from the project root's urls.py URLConf thus:

path('api/', include('core.api_urls', namespace='api')),
"""
from django.urls import path

from flavors.api import views as flavor_views
from users.api import views as user_views

urlpatterns = [
{% url 'api:flavors' %}
path(

route='flavors/',
view=flavor_views.FlavorCreateReadView.as_view(),
name='flavors'

),
{% url 'api:flavors' flavor.uuid %}
path(

route='flavors/<uuid:uuid>/',
view=flavor_views.FlavorReadUpdateDeleteView.as_view(),
name='flavors'

),
{% url 'api:users' %}
path(

route='users/',
view=user_views.UserCreateReadView.as_view(),
name='users'

),
{% url 'api:users' user.uuid %}
path(

route='users/<uuid:uuid>/',
view=user_views.UserReadUpdateDeleteView.as_view(),
name='users'

),
]

218 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

17.3: REST API Architecture

17.3.6 Test Your API
We find that Django’s test suite makes it really easy to test API implementations. It’s cer-
tainly much easier than staring at curl results! Testing is covered at length in Chapter 24:
Testing Stinks and Is a Waste of Money!. We even include in that chapter the tests we wrote
for our simple JSON API (see Section 24.3.1: Each Test Method Tests One Thing).

17.3.7 Version Your API
It’s a good practice to abbreviate the urls of your API with the version number e.g.
/api/v1/flavors or /api/v1/users and then as the API changes, /api/v2/flavors
or /api/v2/users. We prefer this method or the host name style of versioning
v1.icecreamlandia.com/api/users. When the version number changes, existing cus-
tomers can continue to use the previous version without unknowingly breaking their calls
to the API.

Also, in order to avoid angering API consumers, it’s critical to maintain both the existing
API and the predecessor API during and after upgrades. It’s not uncommon for the depre-
cated API to remain in use for several months.

When we implement a new version of the API, we provide customers/users with a dep-
recation warning well in advance of breaking API changes so they can perform necessary
upgrades and not break their own applications. From personal experience, the ability to send
a deprecation warning to end users is an excellent reason to request email addresses from
users of even free and open source API services.

Django REST Framework has built-in mechanisms for supporting the preferred
scheme we list above as well as other approaches. Documentation for this exists at
django-rest-framework.org/api-guide/versioning/

17.3.8 Be Careful With Customized Authentication Schemes
If you’re building an API and need a customized authentication scheme, be extra careful.
Security is hard, and there are always unpredictable edge cases, which is how people pen-
etrate sites. We’ve only had to implement customized authentication schemes a few times,
but we kept the following in mind:

ä If we’re creating a new authentication scheme, we keep it simple and well tested.
ä Outside of the code, we document why existing standard authentication schemes are

insufficient. See the tipbox below.
ä Also outside of the code, we document in depth how our authentication scheme is

designed to work. See the tipbox below.

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 219

https://www.django-rest-framework.org/api-guide/versioning/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 17: Building REST APIs With Django REST Framework

ä Unless we are writing a non-cookie based scheme, we don’t disable CSRF.

TIP: Documentation Is Critical for Customized Authentication
Writing out the why and how of a customized authentication scheme is a critical
part of the process. Don’t skip it! Here’s why:

ä Helps us validate our reasoning for coming up with something new. If we
can’t describe the problem in writing, then we don’t fully understand it.

ä Documentation forces us to architect the solution before we code it.
ä After the system is in place, later the documentation allows us (or others) to

understand why we made particular design decisions.

17.4 When DRF Gets in the Way
Django Rest Framework is a powerful tool that comes with a lot of abstractions. Trying to
work through these abstractions can prove to be extremely frustrating. Let’s take a look on
overcoming them.

17.4.1 Remote Procedure Calls vs REST APIs

The resource model used by REST frameworks to expose data is very powerful, but it doesn’t
cover every case. Specifically, resources don’t always match the reality of application design.
For example, it is easy to represent syrup and a sundae as two resources, but what about the
action of pouring syrup? Using this analogy, we change the state of the sundae and decrease
the syrup inventory by one. While we could have the API user change things individually,
that can generate issues with database integrity. Therefore in some cases it can be a good idea to
present a method like sundae.pour_syrup(syrup) to the client as part of the RESTful
API.

In computer science terms, sundae.pour_syrup(syrup) could be classified as a Remote
Procedure Call or RPC.

References:

ä en.wikipedia.org/wiki/Remote_Procedure_Call
ä en.wikipedia.org/wiki/Resource-oriented_architecture

Fortunately, RPC calls are easy to implement with Django Rest Framework. All we have to
do is ignore the abstraction tools of DRF and rely instead on its base APIView:

220 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://en.wikipedia.org/wiki/Remote_Procedure_Call
https://en.wikipedia.org/wiki/Resource-oriented_architecture
https://github.com/feldroy/two-scoops-of-django-3.x/issues

17.4: When DRF Gets in the Way

Example 17.11: Implementing pour_syrup() RPC with DRF

sundaes/api/views.py
from django.shortcuts import get_object_or_404

from rest_framework.response import Response
from rest_framework.views import APIView

from ..models import Sundae, Syrup
from .serializers import SundaeSerializer, SyrupSerializer

class PourSyrupOnSundaeView(APIView):
"""View dedicated to adding syrup to sundaes"""

def post(self, request, *args, **kwargs):
Process pouring of syrup here,
Limit each type of syrup to just one pour
Max pours is 3 per sundae
sundae = get_object_or_404(Sundae,

uuid=request.data['uuid'])↪→

try:
sundae.add_syrup(request.data['syrup'])

except Sundae.TooManySyrups:
msg = "Sundae already maxed out for syrups"
return Response({'message': msg}, status_code=400)

except Syrup.DoesNotExist
msg = "{} does not

exist".format(request.data['syrup'])↪→

return Response({'message': msg}, status_code=404)
return Response(SundaeSerializer(sundae).data)

def get(self, request, *args, **kwargs)
Get list of syrups already poured onto the sundae
sundae = get_object_or_404(Sundae,

uuid=request.data['uuid'])↪→

syrups = [SyrupSerializer(x).data for x in
sundae.syrup_set.all()]↪→

return Response(syrups)

And our API design would look like this now:

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 221

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 17: Building REST APIs With Django REST Framework

Example 17.12: Sundae and Syrup API Design

/sundae/ # GET, POST
/sundae/:uuid/ # PUT, DELETE
/sundae/:uuid/syrup/ # GET, POST
/syrup/ # GET, POST
/syrup/:uuid/ # PUT, DELETE

17.4.2 Problems With Complex Data

Okay, we’ll admit it, we make this mistake with DRF about once a month. Let’s sum up
what happens in very simple terms with the following API design:

Example 17.13: A Cone and Scoop API

/api/cones/ # GET, POST
/api/cones/:uuid/ # PUT, DELETE
/api/scoops/ # GET, POST
/api/scoops/:uuid/ # PUT, DELETE

1 We have a model (Scoop) that we want represented within another (Cone)
2 We can easily write a GET of the Cone that includes a list of its Scoops
3 On the other hand, writing a POST or PUT of Cones that also adds or updates

its Scoops at the same time can be challenging, especially if it requires any kind of
validation or post processing

4 Frustration sets in and we leave to get some real-world ice cream

While there are nicely complex solutions for nested data, we’ve found a better solution. And
that is to simplify things just a bit. Example:

ä Keep the GET representation of the Cone that includes its Scoops
ä Remove any capability of the POST or PUT for the Cone model to modify Scoops

for that cone.
ä Create GET/POST/PUT API views for Scoops that belong to a Cone.

Our end API will now look like this:

222 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

17.4: When DRF Gets in the Way

Example 17.14: A Cone and Scoop API

/api/cones/ # GET, POST
/api/cones/:uuid/ # PUT, DELETE
/api/cones/:uuid/scoops/ # GET, POST
/api/cones/:uuid/scoops/:uuid/ # PUT, DELETE
/api/scoops/ # GET, POST
/api/scoops/:uuid/ # PUT, DELETE

Yes, this approach does add extra views and additional API calls. On the other hand, this
kind of data modeling can result in simplification of your API. That simplification will result
in easier testing, hence a more robust API.

For what it’s worth, if you take a close look at the Stripe API reference (stripe.com/
docs/api) you’ll see they follow our pattern. You can view complex data, but you have to
create it bit-by-bit.

17.4.3 Simplify! Go Atomic!
In the previous two subsections (RPC Calls and Problems With Complex Data), we’ve
established a pattern of simplification. In essence, when we run into problems with DRF
we ask these questions:

ä Can we simplify our views? Does switching to APIView resolve the problem?
ä Can we simplify our REST data model as described by views? Does adding more

views (of a straightforward nature) resolve the problem?
ä If a serializer is troublesome and is outrageously complex, why not break it up into

two different serializers for the same model?

As you can see, to overcome problems with DRF, we break our API down into smaller,
more atomic components. We’ve found that it’s better to have more views designed to be
as atomic as possible than a few views with many options. As any experienced programmer
knows, more options means more edge cases.

Atomic-style components help in these regards:

ä Documentation is easier/faster because each component does less
ä Easier testing since there are less code branches
ä Bottlenecks are easier to resolve because chokepoints are more isolated
ä Security is better since we can easily change access per view rather than within the

code of a view

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 223

https://stripe.com/docs/api
https://stripe.com/docs/api
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 17: Building REST APIs With Django REST Framework

17.5 Shutting Down an External API
When it’s time to shut down an older version of an external API in favor of a new one, here
are useful steps to follow:

17.5.1 Step #1: Notify Users of Pending Shut Down
Provide as much advance notice as possible. Preferably six months, but as short as one month.
Inform API users via email, blogs, and social media. We like to report the shutdown noti-
fication to the point that we worry people are getting tired of the message.

17.5.2 Step #2: Replace API With 410 Error View
When the API is finally shut down, we provide a simple 410 Error View. We include a very
simple message that includes the following information:

ä A link to the new API’s endpoint.
ä A link to the new API’s documentation.
ä A link to an article describing the details of the shut down.

Below is a sample shutdown view that works against any HTTP method:

Example 17.15: Code for a Shutdown

core/apiv1_shutdown.py
from django.http import HttpResponseGone

apiv1_gone_msg = """APIv1 was removed on April 2, 2017. Please
switch to APIv2:↪→

APIv3
Endpoint↪→

APIv3
Documentation↪→

APIv1 shut
down notice↪→

224 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

17.6: Rate-Limiting Your API

"""

def apiv1_gone(request):
return HttpResponseGone(apiv1_gone_msg)

17.6 Rate-Limiting Your API
Rate limiting is when an API restricts how many requests can be made by a user of the API
within a period of time. This is done for a number of reasons, which we’ll explain below.

17.6.1 Unfettered API Access Is Dangerous

In the ancient times (2010) we launched the djangopackages.org website. The project,
started during the Django Dash contest, was an instant hit for the Django community. We
sprinted on it constantly, and its feature set grew rapidly. Unfortunately, we quickly hit the
rate limit of GitHub’s first API. This meant that after a certain amount of API requests per
hour, we weren’t allowed to make any more until a new hour passed.

Fortunately at DjangoCon 2010 we had the opportunity to ask one of the founders of
GitHub if we could have unlimited access to their API. He graciously said ‘yes’ and within
a day we could get data from GitHub as much as we wanted.

We were delighted. Our users were delighted. Usage of the site increased, people were thirsty
for data as to what were the most active projects. So desirous of data were we that every hour
we requested the latest data from GitHub. And that caused a problem for GitHub.

You see, this was 2010 and GitHub was not the giant, powerful company it is today. At 17
minutes past each hour, Django Packages would send thousands of requests to the GitHub
API in a very short period. With unfettered access we were causing them problems.

Eventually, GitHub contacted us and requested that we scale back how much we were using
their API. We would still have unlimited access, just needed to give them breathing room.
We complied, checking data once per day instead of by the hour, and at a more reasonable
rate. We continue to do so to this day.

While modern GitHub can certainly handle much, much larger volumes of API access then
it could in late 2010, we like to think we learned a shared lesson about unfettered access to
an API: Grant such access cautiously.

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 225

https://djangopackages.org/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 17: Building REST APIs With Django REST Framework

17.6.2 REST Frameworks Must Come With Rate Limiting
Controlling the volume of REST API access can mean the difference between joyful tri-
umph or utter disaster in a project.

TIP: HTTP Server Rate Limiting

It’s possible to use nginx or apache httpd for rate limiting. The upside is faster per-
formance. The downside is that it removes this functionality from the Python code.
For a python-based system, DRF provides some basic tools that can be built upon.

ä nginx.com/blog/rate-limiting-nginx/
ä httpd.apache.org/docs/2.4/mod/mod_ratelimit.html
ä django-rest-framework.org/api-guide/throttling/

#setting-the-throttling-policy

17.6.3 Rate Limiting Can Be a Business Plan
Imagine we launch an API-based startup that lets users add images of toppings to images
of ice cream. We know that everyone will want to use this API, and come up with several
tiers of access that we tie into pricing:

Developer tier is free, but only allows 10 API requests per hour.
One Scoop is $24/month, allows 25 requests per minute.
Two Scoops is $79/month, allows 50 requests per minute.
Corporate is $5000/month, allows for 200 requests per minute.

This method is called Bucket-Based Pricing. Now all we have to do is get people to use
our API.

TIP: Consider Usage-Based Pricing Instead of Rate Limit-Based
Pricing

Randall Degges makes a strong argument that the business plan of bucket based
pricing we suggest in this section is not a good business plan. He advocates unlimited
usage from the beginning, where API users are charged in volume, with the price
per unit going down as usage increases. His version of our chart might then be:

ä First 1000 requests made per month are free
ä 1001 to 100,000 requests made per month cost 0.4 cents each
ä 100,001 to 200,000 requests made per month cost 0.3 cents each
ä 200,001+ requests made per month cost 0.2 cents each

The advantage of Usage-Based Pricing is that it incentives volume over trying to

226 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://www.nginx.com/blog/rate-limiting-nginx/
https://httpd.apache.org/docs/2.4/mod/mod_ratelimit.html
https://feld.to/2X7AVrz
https://feld.to/2X7AVrz
https://github.com/feldroy/two-scoops-of-django-3.x/issues

17.7: Advertising Your REST API

fit into buckets or tiers. The downside is it will require more work to set up this
billing plan in your project. Third-party services like Stripe and Paddle can add fees
or additional amounts to subscriptions, so it’s possible to do in common payment
systems.
Reference: rdegges.com/2020/the-only-type-of-api-services-ill-use

17.7 Advertising Your REST API
Let’s assume we’ve built our REST API and want outside coders and companies to use it.
How do we go about doing that?

17.7.1 Documentation
The most important thing to do is to provide comprehensive documentation. The eas-
ier to read and understand the better. Providing easy-to-use code examples is a must.
You can write it from scratch or use auto-documentation tools provided by django-
rest-framework itself and various third-party packages (django-rest-framework.org/
topics/documenting-your-api/#third-party-packages. You can even embrace
commercial documentation generation services like readthedocs.com and swagger.io.

Some of the material in Chapter 25: Documentation: Be Obsessed might prove useful for
forward-facing REST API documentation.

17.7.2 Provide Client SDKs
Something that may help spread use of your API is to provide a software development
kits (SDK) for various programming languages. The more programming languages covered
the better. For us, we’ve found the must-have languages include Python, JavaScript, Ruby,
PHP, Go, and Java.

In our experience, it’s a good idea to write at least one of these libraries ourselves and create
a demo project. The reason is that it not only advertises our API, it forces us to experience
our API from the same vantage point as our consumers.

Fortunately for us, thanks to the underlying OpenAPI document object model of
(openapis.org/), DRF provides JSON Hyperschema-compatible functionality. When
this format is followed for both the client- and server-side, OpenAPI allows for writing
dynamically driven client libraries that can interact with any API that exposes a supported
schema or hypermedia format.

These tools should work immediately with most DRF-powered APIs:

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 227

https://www.rdegges.com/2020/the-only-type-of-api-services-ill-use/
https://feld.to/2SeZssc
https://feld.to/2SeZssc
https://readthedocs.com/
https://swagger.io
https://www.openapis.org/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 17: Building REST APIs With Django REST Framework

ä Command line client
https://www.django-rest-framework.org/api-guide/schemas/
#generating-an-openapi-schema

ä Multi-language Client SDK generator
github.com/OpenAPITools/openapi-generator

ä swagger-cli for use with JavaScript
npmjs.com/package/swagger-cli

For building Python-powered client SDKs, reading Section 23.9: Releasing Your Own
Django Packages might prove useful.

17.8 Additional Reading
We highly recommend reading the following:

ä en.wikipedia.org/wiki/REST
ä en.wikipedia.org/wiki/List_of_HTTP_status_codes
ä github.com/OAI/OpenAPI-Specification
ä jacobian.org/writing/rest-worst-practices/

17.9 Other Approaches for Crafting APIs
For the reasons explained at the beginning of this chapter, we recommend Django Rest Frame-
work. However, should you choose not to use DRF, consider the following approaches:

17.9.1 CBV Approach: JsonResponse with View
It is possible to use Django’s built-in django.http.JsonResponse class, which is a sub-
class of django.http.HttpResponse , on django.views.generic.View. This sup-
ports the full range of HTTP methods but has no support for OpenAPI. . This is proven
to work with async views.

Example 17.16: Simple JsonResponse View

class FlavorApiView(LoginRequiredMixin,View):
def post(self, request, *args, **kwargs):

logic goes here
return JsonResponse({})

def get(self, request, *args, **kwargs):
logic goes here
return JsonResponse({})

def put(self, request, *args, **kwargs):

228 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://feld.to/3hmDGOb
https://feld.to/3hmDGOb
https://github.com/OpenAPITools/openapi-generator
https://www.npmjs.com/package/swagger-cli
http://en.wikipedia.org/wiki/REST
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
https://github.com/OAI/OpenAPI-Specification
http://jacobian.org/writing/rest-worst-practices/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

17.10: Summary

logic goes here
return JsonResponse({})

def delete(self, request, *args, **kwargs):
logic goes here
return JsonResponse({})

17.9.2 FBV approach: django-jsonview
While you can use DRF with function-based views, that approach doesn’t have all the fea-
tures of CBV-based DRF. A simpler approach is to use django-jsonview. The downside is
that when you get into the full range of HTTP methods and more complex API designs,
we’ve found in Django FBVs become a hindrance due to their lack of focus on building
APIs or support for OpenAPI.

17.9.3 django-tastypie
django-tastypie is a mature API framework that implements its own class-based view sys-
tem. Predating Django REST Framework by 3 years, it’s a feature-rich, mature, powerful,
stable tool for creating APIs from Django models.

django-tastypie.readthedocs.io/

Figure 17.2: A tasty pie is one filled with ice cream.

17.10 Summary
In this chapter we covered:

ä Why you should use Django Rest Framework
ä Basic REST API concepts and how they relate to Django Rest Framework
ä Security considerations
ä Grouping strategies
ä Simplification strategies

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 229

https://django-tastypie.readthedocs.io/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 17: Building REST APIs With Django REST Framework

ä Fundamentals of basic REST API design
ä Alternatives to Django REST Framework

Coming up next, we’ll go over the other side of REST APIs in Chapter 19: JavaScript and
Django.

230 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

18 | Building GraphQL APIs With
Django

WARNING: This Chapter is in Progress

With the Async Views still not in core, the landscape for Django and GraphQL
remains incomplete. We also did not have enough time to finish consolidating our
thoughts.
Therefore, in the days to come we will expand on the material here. We are open
to suggestions on topics and items to cover, please submit them to github.com/
feldroy/two-scoops-of-django-3.x/issues

Started in 2012, GraphQL is a newcomer to the world of API formats. Unlike REST,
GraphQL comes with schemas, types, and one of our favorite features is a a built-in method
to handle real-time update (Subscriptions). Clients of an API specify the data they want,
and can easily figure out queries because the schemas and types makes it very easy to build
instrospection tools. GraphQL responses are easily serialized to JSON or YAML. For these
reasons and more, GraphQL has seen rapid growth in the past few years.

If you want to learn GraphQL, we recommend the resources at graphql.org: graphql.org/
learn

Because GraphQL comes with a query language and types named in clear English terms
we’ve found it easier to teach beginners how to use GraphQL than REST.

18.1 Dispelling the Performance Myth
A lot of people, upon first learning about how GraphQL clients define the data they want
to receive, raise concerns about performance. The specific issue raised is how can one cache
the data raised by a query if each and every access request could be different?

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 231

https://github.com/feldroy/two-scoops-of-django-3.x/issues
https://github.com/feldroy/two-scoops-of-django-3.x/issues
https://graphql.org/learn
https://graphql.org/learn
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 18: Building GraphQL APIs With Django

GraphQL Method REST Method Action
query GetRecords() GET /records Read-only Query
subscription GetRecords() no equivalent Open websocket and up-

date on any changes
query GetRecord(id: X) GET /record/:id Read-only Query
subscription GetRecord(id:
X)

GET /record/:id Open websocket and up-
date on any changes

mutation CreateRecord() POST /records/ Create record
mutation UpdateRe-
cord(id: X)

PUT /records/:id Update record

mutation DeleteRecord(id:
X)

DELETE /records/:id Delete record

There are several things that destroy this myth:

1 By specifying only the data they need rather than accepting large REST-style re-
sponses, clients consume significantly less data. This can have a dramatic impact on
both server and database overhead.

2 Much like with a REST API, common acces patterns can still be identified and han-
dled better through caching, indexing, or code optimization.

Do keep in mind we’re not saying that GraphQL APIs are immune to bottlenecks, we’re
just saying that they are at least as manageable as REST APIs, if not more so due to the
lower bandwidth.

Our preferred library for building GraphQL APIs with Django is Ariadne. Here’s why:

ä Fully asynchronous when used with ASGI and Channels, allowed real-time updates
from Django projects via GraphQL Subscriptions.

ä If you aren’t ready for async yet, you can still run under WSGI.
ä Schemas comes first, meaning you are forced to spec out your design before starting to

code. Since GraphQL schemas carry so much weight, this is a very powerful feature.
ä Creating queries and mutations requires following a simple and lightweight API.
ä Supports Apollo Federation, a specification for composing multiple GraphQL ser-

vices into one GraphQL service.

PACKAGE TIP: What About Graphene?

Graphene was the first mainstram Python library to support the GraphQL spec-
ification, and it even comes with a Django integration. The ability to use Django
forms or serializers in nodes is a definate bonus. However, while we respect the ef-
fort put into it, we have found its shortcomings insurmountable for our own projects.

232 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

18.2: GraphQL API Architecture

Specifically:
ä Graphene-Django doesn’t support GraphQL Subscriptions, meaning to get

real-time updates one is forced to either poll the API from the client or use a
separate websocket process. Either is an unnacceptable burden and one that
we hope Django’s new Async Views will empower the library maintainers to
correct.

ä On other platforms, such as Apollo server, GraphQL APIs require little code
to implement. In comparison, to us Graphene feels heavyweight.

Reference: docs.graphene-python.org/projects/django/

18.2 GraphQL API Architecture
Building simple, quick GraphQL APIs is easy with Ariadne, but extending and maintaining
it to match your project’s needs takes a bit more thought. This is usually where people get
hung up on API design. This section illustrates some things to keep in mind.

18.2.1 Don’t Use Sequential Keys as Public Identifiers
Sequential keys, such as what Django provides as a default as model primary keys, can be
a security concern if used publicly. We cover this in-depth at Section 28.28: Never Display
Sequential Primary Keys.

In our example, we’re going to use the model’s UUID rather than the model’s primary key
to look up our records. We always try to avoid using sequential numbers for lookups.

18.2.2 Use Consistent API Module Naming
Just like anything else, how things are named needs to be consistent across a project. Here’s
two patterns we’ve explored.

The first is a simple GraphQL architecture suitable for most small-to-mid sized applications.
Because Ariadne’s API is lightweight, we’ve found it’s workable to write all queries and
mutations in one schemas.py module.

Example 18.1: Simple GraphQL Architecture

config/
├── schema.py # imports forms & models from flavors app
├── settings/
├── urls.py
flavors/

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 233

https://docs.graphene-python.org/projects/django/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 18: Building GraphQL APIs With Django

├── __init__.py
├── app.py
├── forms.py
├── models.py

Sometimes a single schemas.py module gets too big for comfort. In which case breaking it
up across apps has worked well. Queries and mutations are moved to individual apps, then
imported into the core schemas.py module where make_executable_schema() can be
called on it.

Example 18.2: Complex GraphQL Architecture

config/
├── schema.py # imports queries/mutations from flavors app
├── settings/
├── urls.py
flavors/
├── __init__.py
├── app.py
├── api/
│ ├── queries.py # imports models
│ ├── mutations.py # imports forms and models
├── forms.py
├── models.py

Please observe the following about both architectures:

ä We’re still leaning on Django forms and models
ä We stick to intuitive, consistent naming patterns.

18.2.3 Try to Keep Business Logic Out of API Views

Regardless if your API is small or large, it’s a good idea to keep your logic where it belongs.
Validation should be in forms (or DRF serializers if you prefer them) and database handling
should be in models.

It’s easy with Ariadne to start dumping business logic into function or class definitions.
Avoid this anti-pattern, it makes it harder to test, upgrade, or reuse logic when it comes
time to release APIv2.

234 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

18.3: Shutting Down an External API

18.2.4 Test Your API
We’ve found that the best way to test our Ariadne-powered GraphQL is to use
Django’s built-in RequestFactory system. Here is how Ariadne tests it’s Django integra-
tion: github.com/mirumee/ariadne/blob/master/tests/django/test_query_
execution.py

18.2.5 Version Your API
In progress

18.2.6 Be Careful With Customized Authentication Schemes
In progress

18.3 Shutting Down an External API
In progress

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 235

https://github.com/mirumee/ariadne/blob/master/tests/django/test_query_execution.py
https://github.com/mirumee/ariadne/blob/master/tests/django/test_query_execution.py
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 18: Building GraphQL APIs With Django

236 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

19 | JavaScript and Django

This chapter is about JavaScript in the context of Django. Here are the most common ways
JavaScript is used in tandem with Django:

ä To provide the entire frontend and consume REST/GraphQL APIs served by
Django. This is the Single Page App approach often executed with React, Vue, and
other frameworks.

ä To enhance templates written in either DTL or Jinja2 served by Django.
ä To make the Django admin useful and efficient. This is important to remember when

APIs created with Django are serving native apps, even then JavaScript is often still
part of projects.

This chapter will address the following topics:

ä Section 19.1: Popular JavaScript Approaches
ä Section 19.2: Consuming Django-served APIs with JavaScript
ä Section 19.3: Real-Time Woes a.k.a. Latency
ä Section 19.4: Using JavaScript with Templates Served by Django
ä ??: ??

19.1 Popular JavaScript Approaches
With the advent of faster JavaScript engines and a maturation of the associated community,
there has been a rise in new JavaScript frameworks that are designed for integration with
REST or GraphQL APIs. The three most popular ones in 2020 seem to be:

React.js facebook.github.io/react/
A JavaScript framework and ecosystem created and maintained by Facebook. De-
signed for creation of HTML, iOS, and Android applications. React is typically used
for Single Page Apps, but can be used to enhance existing pages.

Vue.js vuejs.org
Vue is designed to be incrementally adoptable. While its ecosystem isn’t as large as

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 237

https://facebook.github.io/react/
https://vuejs.org/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 19: JavaScript and Django

React.js, the simpler data model is considered easier to learn. In the Django world,
Vue is frequently used to enhance existing pages or for building of Single Page Apps
frontends.

Angular angular.io
Angular is a typescript-only framework open sourced by Google. Within the Django
community it is not as popular as React or Vue.

Reactisso2019.HTML+minimumJSis2020

– David Heinemeier Hansson, Founder of Rails, Basecamp, and Hey

In addition to these comprehensive Single Page Application frameworks the approach of
using serverside rendered HTML templates remains popular. While this might seem like a
step backwards, new approaches to this older architecure has demonstrated that it remains
a viable approach. Sites like hey.com, basecamp.com, and the forthcoming Writernaut
project demonstrate SPA-like speed and power using traditional HTML templates.

Vanilla JavaScript developer.mozilla.org/en-US/docs/Web/JavaScript
Vanilla JavaScript is plain JavaScript without any additional libraries like React,
Vue, or jQuery. There was a time when such libraries were absolutely necessary,
but JavaScript in the browser has become a powerful, feature-rich tool for building
projects.

Small, Focused Libraries + Vanilla JavaScript While Vanilla JavaScript’s interaction with
the DOM has grown in recent years, there are a number of useful libraries that can
empower developers and reduce code complexity. Examples include:

ä Alpine.js github.com/alpinejs/alpine is a rugged, minimal framework
for composing JavaScript behavior in markup. The syntax is Intentionally almost
identical to Vue, giving the power of Vue without the associated heavyweight
architecture.

ä Turbolinks github.com/turbolinks/turbolinks Uses HTML to render
views on the server side and link to pages as usual. When users follow a link,
Turbolinks automatically fetches the page, swaps in its <body>, and merges its
<head>, all without incurring the cost of a full page load. Getting it running
Django isn’t trivial, but can dramatically speed up traditional server side ren-
dered template sites.

jQuery jquery.com
Once the backbone of the JavaScript world, so much of functionality JQuery provides
has now been factored into Vanilla JavaScript it is rarely used in new projects. How-
ever, legions of existing Django projects use it extensively, and will continue to need
to be maintained or upgraded to other tools for years to come.

238 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://angular.io/
https://mobile.twitter.com/dhh/status/1275902566719610880
https://hey.com
https://basecamp.com
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://github.com/alpinejs/alpine
https://github.com/turbolinks/turbolinks
http://jquery.com/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

19.1: Popular JavaScript Approaches

These five options can really improve what we like to call the ‘immediate user experience’.
However, with every good thing there are always things to consider and things to do. Here
are a number of anti-patterns that we’ve discovered when it comes to frontend projects
consuming APIs for content.

19.1.1 Building Single Page Apps When Multi-Page Apps Suffice

Single-page apps with frameworks like React, Vue, and Angular are fun to build, but does a
traditional CMS-site need to be one? Certainly the content pages can include API-powered
editing controls, but when building this kind of site, there is something to be said for tradi-
tional HTML pages.

For example, our health provider in 2017 had a SPA-style site. It was lovely. The way every-
thing moved together was a marvel. And it was completely useless when we had to do any
kind of comparative research.

The worst example of the site was when the search system returned a list of doctors we
couldn’t easily compare them. When we clicked on one for more information, their data was
in a sliding modal. We couldn’t right-click and open several on independant tabs as doing
so just took us to the root search page. We could print or email yourself the information on
individual doctors, but PDFs and email are awful comparison tools compared to hopping
between tabs.

What the site should have provided is individual domain references (i.e. URLs) for each
doctor. Either parsed by the server on the back end or even by JavaScript URL management
on the front end. This isn’t hard to do, yet it remained a painfully common issue until we
went to another healthcare provider.

19.1.2 Upgrading Legacy Sites

Unless the entire site is being scrapped for a new version, don’t upgrade the whole front-end
at once.

When working with legacy projects, it’s often easier to add new features as single-page
apps. This allows for the maintainers of the project to deliver improved experiences with
new features, while preserving the stability of the existing code base. A good example of
this might be adding a calendar application to an existing project. This is easily possible
with Vue and to a lesser extent with React.

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 239

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 19: JavaScript and Django

19.1.3 Not Writing Tests
When we first begin working in a new language or framework, including client-side
JavaScript, it’s tempting to skip the tests. In a word, don’t. Working in the client is get-
ting more complicated and sophisticated every year. Between evolving client-side standards,
things are simply not as readable there as on the server side.

We cover Django/Python testing in Chapter 24: Testing Stinks and Is a Waste of Money!.
A good reference for JavaScript testing is stackoverflow.com/questions/300855/
javascript-unit-test-tools-for-tdd

19.1.4 Not Understanding JavaScript Memory Management
Single-page apps are great, but the complex implementations where users keep them open
constantly will hold objects in the browser for a very long time. Eventually, if not managed,
this can cause browser slowdowns and crashes. Each JavaScript framework comes with tools
or advice on how to handle this potential problem, and it’s a good idea to know the recom-
mended approach.

19.1.5 Storing Data in the DOM When It’s Not jQuery
After years of using jQuery, some of us have grown used to using DOM elements to store
data (especially Daniel). However, when using other JavaScript frameworks this isn’t ideal.
They have their own mechanisms for handling client data, and by not following them we
risk losing out on some of the features promised by these frameworks.

We recommend looking up the data management methods for your chosen JavaScript frame-
work and embracing them as deeply as possible.

19.2 Consuming Django-served APIs with JavaScript
Now that we’ve covered both creating REST APIs and template best practices, let’s combine
them. In other words, these are best practices for using Django-powered tools to display
content to the end user in the browser using content managed by REST/GraphQL APIs
and presented by modern JavaScript frameworks.

19.2.1 Learn How to Debug the Client
Debugging client-side JavaScript is a lot more than simply writing console.log() and
console.dir() statements. There are a number of tools for debugging and finding errors,
and some of them are specifically written for particular JavaScript frameworks. Once a tool
is chosen, it’s an excellent idea to take a day to learn how to write client-side tests.

Reference material:

240 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

http://stackoverflow.com/questions/300855/javascript-unit-test-tools-for-tdd
http://stackoverflow.com/questions/300855/javascript-unit-test-tools-for-tdd
https://github.com/feldroy/two-scoops-of-django-3.x/issues

19.2: Consuming Django-served APIs with JavaScript

ä developers.google.com/web/tools/chrome-devtools
ä developer.mozilla.org/en-US/docs/Mozilla/Debugging/Debugging_

JavaScript

Figure 19.1: Server-side vs. client-side ice cream.

19.2.2 When Possible, Use JavaScript-Powered Static Asset Preproces-
sors

Up until about 2017, we used Python everywhere, including JavaScript and CSS minifica-
tion. However, the JavaScript community is maintaining their versions of these tools better
than the Python community. That’s perfectly okay, because since they’ve done the work on
this part of the toolchain, we can focus on other things.

As we write this, the most commonly used tool for this kind of work is webpack. Used by
both React, Vue, and every major framework, webpack bundles browser-based scripts to be
served as assets. While we prefer to use the stock webpack setup provided by Vue or React
CLI tools, understanding webpack is a very powerful skill to have.

References:

ä webpack.js.org
ä github.com/owais/django-webpack-loader - Owais Lone’s Django package

for transparently using webpack with Django

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 241

https://developers.google.com/web/tools/chrome-devtools
https://developer.mozilla.org/en-US/docs/Mozilla/Debugging/Debugging_JavaScript
https://developer.mozilla.org/en-US/docs/Mozilla/Debugging/Debugging_JavaScript
https://webpack.js.org/
https://github.com/owais/django-webpack-loader
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 19: JavaScript and Django

19.3 Real-Time Woes a.k.a. Latency
Let’s say we’ve put together a well-designed, well-indexed, well-cached real-time project
with the widest bandwidth piping content to the world. We can handle any load, and our
test users applaud the speed and functionality of the project. Things look great, and we look
forward to bonuses and raises.

Then the complaints from the other side of the planet start coming in about the slow speed
of the application. Our effort isn’t ‘real-time’ to any of a potentially large block of users and
our client/boss is really unhappy.

Congratulations, we’ve just hit the speed of light!

This isn’t a joke, it’s a very real problem. Here, Django isn’t the problem. Instead, it’s physics.
The time it takes for HTTP requests to transmit back and forth across half the circumference
of the planet is noticeable to human beings. Add in server-side and client-side processing,
and we risk alienating potential or existing users.

Also, keep in mind that even the fastest local connections have hiccups and slow-downs. So
it’s not uncommon for ‘real-time’ applications to have ways to handle this sort of behavior.

19.3.1 Solution: Mask the Latency With Animations
One of the more common fixes is to have JavaScript-powered animation distract the user
from latency issues. We encounter this every time we use a single page app with an attractive
interface, including all modern web-based email clients.

19.3.2 Solution: Fake Successful Transactions
Another solution involves processing the request on the client-side as if the request success-
fully made it to the server. We’ll need to include client-side logic to handle failures, but
JavaScript frameworks handling HTTP requests are asynchronous, making this feasible,
albeit possibly complicated.

If you’ve ever suddenly discovered that your cloud-based spreadsheet hadn’t saved the data
entered for the past 30 seconds, you’ve uncovered this kind of JavaScript powered trickery
in action. As this can be very frustrating, some online tools upon detecting a connection
failure, disallow further data entry.

19.3.3 Solution: Geographically Based Servers
Geographically-based servers across all seven continents is an option. However, for Django
this is not trivial to implement, not at the programming or database level. It requires a

242 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

19.3: Real-Time Woes a.k.a. Latency

significant volume of skills and expertise that’s outside the scope of this book.

If you have the time and budget, this can be an exciting avenue to explore and we encour-
age it. However, unless you’ve done this before there is a good chance you are going to
underestimate the effort involved.

19.3.4 Solution: Restrict Users Geographically
Sometimes we just don’t have a choice. Perhaps our application is too reliant on ‘real-time’
performance and geolocating servers might be outside the budget. We might make some
people unhappy, but that can be mitigated to some degree by saying things like, ‘Support in
your country is coming soon!’

19.3.5 AJAX and the CSRF Token
Django’s CSRF protection appears to be an inconvenience when writing AJAX calls from
the browser to the server. If you use AJAX with Django, especially with REST APIs,
you may discover that triggering the CSRF token validation blocks your ability to POST,
PATCH, or DELETE data to your API. However, it’s part of what makes Django secure,
don’t disable it!

Our answer to overcoming this hurdle to read and understand the AJAX portion of the
CSRF documentation of Django, listed in the resources below. It comes with sample
JavaScript code that you can put into your projects.

References:

ä docs.djangoproject.com/en/3.2/ref/csrf/
ä github.com/jazzband/dj-rest-authThis is a proven authentication library for

DRF that depending on circumstances can be used without CSRF.
ä ??: ??

WARNING: Don’t Use AJAX as an Excuse to Turn Off CSRF

Django core developer Aymeric Augustin says, “...CSRF protection is almost always
disabled because the developers couldn’t quite figure out how to make it work... if
it accepts cookie authentication.”
Unless using planning to build a machine-to-machine API, don’t build a site with
disabled CSRF. If it’s not possible to figure out how to make it work, ask for help.
No one’s going to make fun of someone trying to make their site more secure.

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 243

https://docs.djangoproject.com/en/3.2/ref/csrf/
https://github.com/jazzband/dj-rest-auth
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 19: JavaScript and Django

19.4 Using JavaScript with Templates Served by Django
19.4.1 JavaScript Can Go In the Header Again
For years it was advantageous to put links to scripts and <script> tags at the bottom of a
page body. Modern browsers are much better at parsing how pages load, so this technique
is no longer necessary.

19.4.2 Use JSON Encoding for Data Consumed by JavaScript
Rely on JSON encoding rather than finding ways to dump Python structures directly to
templates. It’s not just easier to integrate into client-side JavaScript, it’s safer. To do this,
always use the json_script filter.

Example 19.1: Properly JSON encoding Data for JavaScript

{{ page_data|json_script:"page-data" }}
<script>
var data = JSON.parse(document.getElementById('page').textContent);
injectNameIntoDiv('scoopName', data.scoop.name);
</script>

Don’t do this, which must we admit to having done for years.

Example 19.2: Improperly JSON encoding Data for JavaScript

// Rendering a value from the Django template
// Hoping no one injected anything malignant
injectNameIntoDiv('scoopName', {{ scoop.name }});

Reference: docs.djangoproject.com/en/3.2/ref/templates/builtins/
#json-script

19.5 Strengthening JavaScript Skills
One of the best things we can do when implementing the consumption of REST APIs
on the client side is to ensure our JavaScript skills are up to par. While Python developers
sometimes like to grumble about JavaScript, it is a very capable language in its own right.
Any responsible web developer will take the time to ramp up their skills so they can reap
the benefits of modern JavaScript.

TODO

244 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://feld.to/3f77ahJ
https://feld.to/3f77ahJ
https://github.com/feldroy/two-scoops-of-django-3.x/issues

19.6: Follow JavaScript Coding Standards

19.5.1 Learn More JavaScript!
There are plenty of resources available for improving your basic JavaScript skills. We list our
favorites at the end of Appendix C: Additional Resources.

19.6 Follow JavaScript Coding Standards
In the case of JavaScript, we advocate the following guides for both front- and back-end
work:

ä Felix’s Node.js Style Guide
nodeguide.com/style.html

ä idiomatic.js
github.com/rwaldron/idiomatic.js

19.7 Summary
TODO

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 245

http://nodeguide.com/style.html
https://github.com/rwaldron/idiomatic.js/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 19: JavaScript and Django

246 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

20 | Tradeoffs of Replacing
Core Components

Some people advocate swapping out core parts of Django’s stack for other pieces. Should it
be done?

Short Answer: Don’t do it. Even one of the founders of Instagram (Kevin Systrom) said
to Forbes.com that it’s completely unnecessary (bit.ly/2pZxOBO).

Long Answer: It’s certainly possible, since Django modules are simply just Python mod-
ules. Is it worth it? Well, it’s worth it only if:

ä You are okay with sacrificing some or all of your ability to use third-party Django
packages.

ä You have no problem giving up the powerful Django admin.
ä You have already made a determined effort to build your project with core

Django components, but you are running into walls that are major blockers.
ä You have already analyzed your own code to find and fix the root causes of your

problems. For example, you’ve done all the work you can to reduce the numbers
of queries made in your templates.

ä You’ve explored all other options including caching, denormalization, etc.
ä Your project is a real, live production site with tons of users. In other words,

you’re certain that you’re not just optimizing prematurely.
ä You’ve looked at and rejected adopting a Service Oriented Approach (SOA) for

those cases Django has problems dealing with.
ä You’re willing to accept the fact that upgrading Django will be extremely painful

or impossible going forward.

That doesn’t sound so great anymore, does it?

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 247

http://bit.ly/2pZxOBO
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 20: Tradeoffs of Replacing Core Components

20.1 The Temptation to Build FrankenDjango
Every few years, a new fad leads waves of developers to replace some particular core Django
component. Here’s a summary of some of the fads we’ve seen come and go.

Figure 20.1: Replacing more core components of cake with ice cream seems like a good idea.
Which cake would win? The one on the right!

20.2 Non-Relational Databases vs. Relational
Databases

Even Django projects that use relational databases for persistent data storage rely on non-
relational databases. If a project relies on tools like Memcached for caching and Redis for
queuing, then it’s using non-relational databases.

The problem occurs when NoSQL solutions are used to completely replace Django’s rela-
tional database functionality without considering in-depth the long-term implications.

20.2.1 Not All Non-Relational Databases Are ACID Compliant
ACID is an acronym for:

Atomicity means that all parts of a transaction work or it all fails. Without this, you risk
data corruption.

Consistency means that any transaction will keep data in a valid state. Strings remain
strings and integers remain integers. Without this, you risk data corruption.

Isolation means that concurrent execution of data within a transaction will not collide or
leak into another transaction. Without this, you risk data corruption.

Durability means that once a transaction is committed, it will remain so even if the
database server is shut down. Without this, you risk data corruption.

248 Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

20.2: Non-Relational Databases vs. Relational
Databases

Fad Reasons
For performance reasons, replacing the
database/ORM with a NoSQL database
and corresponding ORM replacement.

Not okay: “I have an idea for a social net-
work for ice cream haters. I just started
building it last month. It must scale to bil-
lions!

Okay: “Our site has 50M users and I’m
hitting the limits of what I can do with
indexes, query optimization, caching, etc.
We’re also pushing the limits of our Post-
gres cluster. I’ve done a lot of research on
this and am going to try storing a simple
denormalized view of data in Cassandra to
see if it helps. I’m aware of the CAP the-
orem (en.wikipedia.org/wiki/CAP_
theorem), and for this view, eventual con-
sistency is fine.”

For data processing reasons, replacing the
database/ORM with a NoSQL database
and corresponding ORM replacement.

Not okay: “SQL Sucks! We’re going with
a document-oriented database like Mon-
goDB!”

Okay: “PostgreSQL’s and MySQL’s
JSON datatypes replicate nearly every
aspect of MongoDB’s data storage system.
Yes, MongoDB’s has built-in MapReduce
functionality, but it’s easier to execute that
in a task queue.”

Replacing Django’s template engine with
Jinja2, Mako, or something else.

Not okay: “I read that Jinja2 is faster. I
don’t know anything about caching or op-
timization, but I need Jinja2!”

Not okay: “I hate having logic in Python
modules. I want logic in my templates!”

Okay: “I have a small number of views
which generate 1MB+ HTML pages de-
signed for Google to index. I’ll use
Django’s native support for multiple tem-
plate languages to render the 1MB+ sized
pages with Jinja2, and serve the rest with
Django Template Language.”

Table 20.1: Fad-based Reasons to Replace Components of Django

Please submit issues to github.com/feldroy/two-scoops-of-django-3.x/issues 249

https://en.wikipedia.org/wiki/CAP_theorem
https://en.wikipedia.org/wiki/CAP_theorem
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 20: Tradeoffs of Replacing Core Components

Did you notice how each of those descriptions ended with ‘Without this, you risk data corrup-
tion.’? This is because for many NoSQL engines, there is little-to-no mechanism for ACID
compliance. It’s much easier to corrupt the data, which is mostly a non-issue for things like
caching but another thing altogether for projects handling processing of persistent medical
or e-commerce data.

20.2.2 Don’t Use Non-Relational Databases for Relational Tasks
Imagine if we were to use a non-relational database to track the sale of properties, prop-
erty owners, and how property laws worked for them in 50 US states. There are a lot of
unpredictable details, so wouldn’t a schemaless datastore be perfect for this task?

Perhaps...

We would need to track the relationship between properties, property owners, and laws of
50 states. Our Python code would have to maintain the referential integrity between all the
components. We would also need to ensure that the right data goes into the right place.

For a task like this, stick with a relational database.

20.2.3 Ignore the Hype and Do Your Own Research
It’s often said that non-relational databases are faster and scale better than relational
databases. Whether or not this is true, don’t blindly swallow the marketing hype of the
companies behind any particular alternative database solution.

Instead, do as we do: search for benchmarks, read case studies describing when things went
right or wrong, and form opinions as independently as possible.

Also, experiment with unfamiliar NoSQL databases on small hobby side projects before
you make major changes to your main project infrastructure. Your main codebase is not a
playground.

Lessons learned by companies and individuals:

ä Pinterest: medium.com/@Pinterest_Engineering/
stop-using-shiny-3e1613c2ce14

ä Dan McKinley while at Etsy: mcfunley.com/
why-mongodb-never-worked-out-at-etsy

ä When to use MongoDB with Django daniel.feldroy.com/
when-to-use-mongodb-with-django.html

https://medium.com/Pinterest_Engineering/learn-to-stop-using-shiny-new-things-and-love-mysql-3e1613c2ce14
https://medium.com/Pinterest_Engineering/learn-to-stop-using-shiny-new-things-and-love-mysql-3e1613c2ce14
http://mcfunley.com/why-mongodb-never-worked-out-at-etsy
http://mcfunley.com/why-mongodb-never-worked-out-at-etsy
https://daniel.feldroy.com/when-to-use-mongodb-with-django.html
https://daniel.feldroy.com/when-to-use-mongodb-with-django.html
https://github.com/feldroy/two-scoops-of-django-3.x/issues

20.3: What About Replacing the Django Template Language?

20.2.4 How We Use Non-Relational Databases With Django
This is how we prefer to do things:

ä If we use a non-relational data store, limit usage to short-term things like caches,
queues, and sometimes denormalized data. But avoid it if possible, to reduce the
number of moving parts.

ä Use relational data stores for long-term, relational data and sometimes denormalized
data (PostgreSQL’s array and JSON fields work great for this task).

For us, this is the sweet spot that makes our Django projects shine.

20.3 What About Replacing the Django Template
Language?

We advocate the practice of sticking entirely to the Django Template Language (DTL) with
the exception of rendered content of huge size. However, as this use case is now covered by
Django’s native support of alternate template systems, we’ve moved discussion of this topic
to Chapter 16: Django Templates and Jinja2.

20.4 Summary
Always use the right tool for the right job. We prefer to go with stock Django components,
just like we prefer using a scoop when serving ice cream. However, there are times when
other tools make sense.

Just don’t follow the fad of mixing vegetables into your ice cream. You simply can’t replace
the classic strawberry, chocolate, and vanilla with supposedly “high-performance” flavors
such as broccoli, corn, and spinach. That’s taking it too far.

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 20: Tradeoffs of Replacing Core Components

https://github.com/feldroy/two-scoops-of-django-3.x/issues

21 | Working With the Django Admin

When people ask, “What are the benefits of Django over other web frameworks?” the admin is
what usually comes to mind.

Imagine if every gallon of ice cream came with an admin interface. You’d be able to not
just see the list of ingredients, but also add/edit/delete ingredients. If someone was messing
around with your ice cream in a way that you didn’t like, you could limit or revoke their
access.

Figure 21.1: Chocolate chip ice cream with an admin interface.

Pretty surreal, isn’t it? Well, that’s what web developers coming from another background
feel like when they first use the Django admin interface. It gives you so much power over
your web application automatically, with little work required.

21.1 It’s Not for End Users
The Django admin interface is designed for site administrators, not end users. It’s a place
for your site administrators to add/edit/delete data and perform site management tasks.

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 21: Working With the Django Admin

Although it’s possible to stretch it into something that your end users could use, you really
shouldn’t. It’s just not designed for use by every site visitor.

21.2 Admin Customization vs. New Views
It’s usually not worth it to heavily customize the Django admin. Sometimes, creating a
simple view or form from scratch results in the same desired functionality with a lot less
work. We’ve always had better results with creating custom management dashboards for
client projects than we have with modifying the admin to fit the need of the client.

21.3 Viewing String Representations of Objects
The default admin page for a Django app shows a list of generic looking objects like this:

Figure 21.2: Admin list page for an ice cream bar app.

That’s because the default string representation of an IceCreamBar object is “IceCreamBar
object”. Wouldn’t it be helpful to display something better?

Figure 21.3: What? An admin interface for ice cream bars?

https://github.com/feldroy/two-scoops-of-django-3.x/issues

21.3: Viewing String Representations of Objects

21.3.1 Using __str__()
Implementing __str__() is straightforward:

Example 21.1: String Representation of Objects

from django.db import modelss

class IceCreamBar(models.Model):
name = models.CharField(max_length=100)
shell = models.CharField(max_length=100)
filling = models.CharField(max_length=100)
has_stick = models.BooleanField(default=True)

def __str__(self):
return self.name

The result is as follows:

Figure 21.4: Improved admin list page with better string representation of our objects.

It’s more than that. When you’re in the shell, you see the better string representation:

Example 21.2: List of Ice Cream Bar Types

>>> IceCreamBar.objects.all()
[<IceCreamBar: Vanilla Crisp>, <IceCreamBar: Mint Cookie Crunch>,
<IceCreamBar: Strawberry Pie>]

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 21: Working With the Django Admin

The __str__() method is called whenever you call str() on an object. This occurs in the
Django shell, templates, and by extension the Django admin. Therefore, try to make the
results of __str__() nice, readable representation of Django model instances.

21.3.2 Using list_display
If you want to change the admin list display in a way that isn’t quite a string representation
of the object, then use list_display.

Example 21.3: Admin List Display

from django.contrib import admin

from .models import IceCreamBar

@admin.register(IceCreamBar)
class IceCreamBarModelAdmin(admin.ModelAdmin):

list_display = ('name', 'shell', 'filling')

The result with the specified fields:

Figure 21.5: Further improvements to the admin list page.

21.4 Adding Callables to ModelAdmin Classes
You can use callables such as methods and functions to add functionality to the Django
django.contrib.admin.ModelAdmin class. This allows you to really modify the list
and display screens to suit your ice cream project needs.

https://github.com/feldroy/two-scoops-of-django-3.x/issues

21.4: Adding Callables to ModelAdmin Classes

For example, it’s not uncommon to want to see the exact URL of a model instance in
the Django admin. If you define a get_absolute_url() method for your model, what
Django provides in the admin is a link to a redirect view whose URL is very different from
the actual object URL. Also, there are cases where the get_absolute_url() method is
meaningless (REST APIs come to mind).

In the example below, we demonstrate how to use a simple callable to provide a link to our
target URL:

Example 21.4: Adding Callables to ModelAdmin Classes

icecreambars/admin.py
from django.contrib import admin
from django.urls import reverse, NoReverseMatch
from django.utils.html import format_html

from .models import IceCreamBar

@admin.register(IceCreamBar)
class IceCreamBarModelAdmin(admin.ModelAdmin):

list_display = ('name', 'shell', 'filling')
readonly_fields = ('show_url',)

def show_url(self, instance):
url = reverse('icecreambars:ice_cream_bar_detail',

kwargs={'pk': instance.pk})↪→

response = format_html("""{0}""", url)
return response

show_url.short_description = 'Ice Cream Bar URL'

Since a picture is worth a thousand words, here is what our callable does for us:

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 21: Working With the Django Admin

Figure 21.6: Displaying URL in the Django Admin.

WARNING: Always Use format_html When Presenting Data
From Users
Any time data is presented in the admin that includes HTML tags, use
format_html to ensure that arguments are escaped during the rendering process.
This is explained more at Section 28.9.1: Use format_html Over mark_safe.

21.5 Be Aware of the Complications of Multiuser Environ-
ments

Nothing in the Django admin locks records to a particular staff- or admin-level user. While
this is fine for a project with a single person with admin-level access, on a multi-user project
it can be a very serious problem. Here is what happens:

1 Via the Django admin, Daniel edits the record for “Peppermint Sundae” ice cream
bar. He starts to make changes. He gets a phone call from the marketing officer of
Icecreamlandia and leaves his screen open.

2 In the meantime, Audrey decides to modify “Peppermint Sundae” ice cream bar. She
spends ten minutes making her changes, then saves the her data.

3 Daniel gets off the phone and finally saves his changes. He overwrites Audrey’s
changes.

If you have multiple users with access to the Django admin, you need to be aware of this

https://github.com/feldroy/two-scoops-of-django-3.x/issues

21.6: Django’s Admin Documentation Generator

possibility.

21.6 Django’s Admin Documentation Generator
One of the more interesting developer tools that Django provides is the
django.contrib.admindocs package. Created in an era before the advent of the
documentation tools that we cover in Chapter 25: Documentation: Be Obsessed, it
remains a useful tool.

It’s useful because it introspects the Django framework to display docstrings for project
components like models, views, custom template tags, and custom filters. Even if a project’s
components don’t contain any docstrings, simply seeing a list of harder-to-introspect items
like oddly named custom template tags and custom filters can be really useful in exploring
the architecture of a complicated, existing application.

Using django.contrib.admindocs is easy, but we like to reorder the steps described in
the formal documentation:

1 pip install docutils into your project’s virtualenv.
2 Add django.contrib.admindocs to your INSTALLED_APPS.
3 Add path('admin/doc/', include('django.contrib.admindocs.urls'))

to your root URLConf. Make sure it’s included before the admin/ entry, so that
requests to /admin/doc/ don’t get handled by the latter entry.

4 Optional : Using the admindocs bookmarklets requires the XViewMiddleware to be
installed.

Once you have this in place, go to /admin/doc/ and explore. You may notice a lot of
your project’s code lacks any sort of documentation. This is addressed in the formal doc-
umentation on django.contrib.admindocs: docs.djangoproject.com/en/3.2/
ref/contrib/admin/admindocs/ and our own chapter on Chapter 25: Documenta-
tion: Be Obsessed.

21.7 Using Custom Skins With the Django Admin
Over the years there have been a number of efforts to reskin or theme the Django Admin.
These range from the venerable, stable, and very popular django-grappelli to more recent
up-and-comers. They allow easy-to-hard customization.

PACKAGE TIP: Custom django.contrib.admin Skins

Here are some of the more popular custom skins:
ä django-grappelli is the grand-daddy of all custom Django skins. Stable, ro-

bust, and with a unique but friendly style.

https://docs.djangoproject.com/en/3.2/ref/contrib/admin/admindocs/
https://docs.djangoproject.com/en/3.2/ref/contrib/admin/admindocs/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 21: Working With the Django Admin

ä django-suit is built using the familiar Bootstrap front-end framework.
ä jet-admin is an API-based Admin Panel Framework.

A more complete list can be found at
djangopackages.org/grids/g/admin-styling/.

Django has a gigantic community, so why aren’t there more skins?

It turns out that besides the most basic CSS-based modifications, creating custom Django
themes is very challenging. For anyone who has delved into the source code for these
projects, it’s clear that custom admin skins require arcane code to account for some of the
idiosyncrasies of django.contrib.admin.

Patrick Kranzlmueller, maintainer of django-grappelli, goes into great detail in his article
on the subject, ‘A Frontend Framework for the Django Admin Interface’, which you can
read at the link below:

ä sehmaschine.net/blog/django-admin-frontend-framework.

Here are some tips when working with custom django.contrib.admin skins:

21.7.1 Evaluation Point: Documentation is Everything
As mentioned earlier, writing a custom skin for django.contrib.admin is hard. While
the successful skins are relatively easy to add to a project, it’s the edge cases (invariably
involved in extending the ModelAdmin object) that can hurt.

Therefore, when evaluating one of these projects for use on a project, check to see how far
the documentation goes beyond installation instructions.

21.7.2 Write Tests for Any Admin Extensions You Create
For our purposes, we’ve found that while clients enjoy the more modern themes, you
have to be careful of how far you extend these admin skins. What works great in vanilla
django.contrib.admin can break in a custom skin. Since the custom skins have to wrap
portions of django.contrib.admin abstractions in curious ways, debugging these prob-
lems can prove to be a mind-numbing nightmare.

Therefore, if you use a custom skin, the best practice is to write tests of the admin, especially
for any customization. Yes, it is a bit of work up front, but it means catching these bugs much,
much earlier.

https://djangopackages.org/grids/g/admin-styling/
http://sehmaschine.net/blog/django-admin-frontend-framework
https://github.com/feldroy/two-scoops-of-django-3.x/issues

21.8: Secure the Django Admin

For more on testing, see our writings on testing in Chapter 24: Testing Stinks and Is a
Waste of Money!.

21.8 Secure the Django Admin
Since the Django admin gives your site admins special powers that ordinary users don’t have,
it’s good practice to make it extra secure.

21.8.1 Change the Default Admin URL

By default, the admin URL is yoursite.com/admin/. Change it to something that’s long and
difficult to guess.

TIP: Jacob Kaplan-Moss Talks About Changing the Admin URL

Django project co-leader Jacob Kaplan-Moss says (paraphrased) that it’s an easy ad-
ditional layer of security to come up with a different name (or even different domain)
for the admin.

It also prevents attackers from easily profiling your site. For example, attackers can
tell which version of Django you’re using, sometimes down to the point-release level,
by examining the HTML content of the login screen for admin/ .

21.8.2 Use django-admin-honeypot

TODO - Ask Derek to update this package

If you’re particularly concerned about people trying to break into your Django site, django-
admin-honeypot is a package that puts a fake Django admin login screen at admin/ and
logs information about anyone who attempts to log in.

See github.com/dmpayton/django-admin-honeypot for more information.

21.8.3 Only Allow Admin Access via HTTPS

This is already implied in Section 28.6: HTTPS Everywhere, but we want to especially em-
phasize here that your admin needs to be TLS-secured. If your site allows straight HTTP
access, you will need to run the admin on a properly-secured domain, adding to the complex-
ity of your deployment. Not only will you need a second deployment procedure, but you’ll
need to include logic in your URLConf in order to remove the admin from HTTP access.
In the experience of the authors, it’s much easier to put the whole site on TLS/HTTPS.

https://github.com/dmpayton/django-admin-honeypot
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 21: Working With the Django Admin

Without TLS, if you log into your Django admin on an open WiFi network, it’s trivial for
someone to sniff your admin username/password.

21.8.4 Limit Admin Access Based on IP
Configure your web server to only allow access to the Django admin to certain IP addresses.
Look up the instructions for your particular web server.

ä Nginx instructions tech.marksblogg.com/django-admin-logins.html

An acceptable alternative is to put this logic into middleware. It’s better to do it at the
web server level because every middleware component adds an extra layer of logic wrapping
your views, but in some cases this can be your only option. For example, your platform-as-
a-service might not give you fine-grain control over web server configuration.

21.9 Securing the Admin Docs
Since the Django admin docs give your site admins a view into how the project is con-
structed, it’s good practice to keep them extra-secure just like the Django admin. Borrowing
from the previous section on the Django admin, we advocate the following:

ä Changing the admin docs URL to something besides yoursite.com/admin/doc/.
ä Only allowing admin docs access via HTTPS.
ä Limiting admin docs access based on IP.

21.10 Summary
In this chapter we covered the following:

ä Who should be using the Django admin.
ä When to use the Django admin and when to roll a new dashboard.
ä String representation of objects.
ä Adding callables to Django admin classes.
ä Using Django’s admin docs.
ä Encouraging you to secure the Django admin.
ä Advised on working with custom Django skins.

http://tech.marksblogg.com/django-admin-logins.html
https://github.com/feldroy/two-scoops-of-django-3.x/issues

22 | Dealing With the User Model

Django comes with a built-in support for user records. It’s a useful feature, doubly so once
you learn how to extend and expand on the basic functionality. So let’s go over the best
practices:

22.1 Use Django’s Tools for Finding the User Model
The advised way to get to the user class is as follows:

Example 22.1: Using get_user_model to the User Record

Stock user model definition
>>> from django.contrib.auth import get_user_model
>>> get_user_model()
<class django.contrib.auth.models.User>

When the project has a custom user model definition
>>> from django.contrib.auth import get_user_model
>>> get_user_model()
<class profiles.models.UserProfile>

It is possible to get two different User model definitions depending on the project configu-
ration. This doesn’t mean that a project can have two different User models; it means that
every project can customize its own User model.

22.1.1 Use settings.AUTH_USER_MODEL for Foreign Keys to User

In Django, the official preferred way to attach ForeignKey, OneToOneField, or
ManyToManyField to User is as follows:

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 22: Dealing With the User Model

Example 22.2: Using settings.AUTH_USER_MODEL to Define Model Rela-
tions

from django.conf import settings
from django.db import models

class IceCreamStore(models.Model):

owner = models.OneToOneField(settings.AUTH_USER_MODEL)
title = models.CharField(max_length=255)

Yes, it looks a bit strange, but that’s what the official Django docs advise.

Figure 22.1: This looks strange too.

WARNING: Don’t Change settings.AUTH_USER_MODEL!

Once set in a project, changing settings.AUTH_USER_MODEL requires changing
your database schema accordingly. It’s one thing to add or modify User model fields,
it’s another thing to create a whole new User object.

22.1.2 Don’t Use get_user_model() for Foreign Keys to User
This is bad, as it tends to create import loops.

Example 22.3: Using get_user_model() Improperly

DON'T DO THIS!
from django.contrib.auth import get_user_model
from django.db import models

class IceCreamStore(models.Model):

https://github.com/feldroy/two-scoops-of-django-3.x/issues

22.2: Custom User Fields for Django Projects

This following line tends to create import loops.
owner = models.OneToOneField(get_user_model())
title = models.CharField(max_length=255)

22.2 Custom User Fields for Django Projects
In Django, as long as we incorporate the required methods and attributes, we can create our
own user model with its own fields.

PACKAGE TIP: Libraries for Defining Custom User Models

django-authtools is a library that makes defining custom user models easier. Of
particular use are the AbstractEmailUser and AbstractNamedUser models.
Even if you don’t end up using django-authtools, the source code is well worth
examining.
At this time django-authtools doesn’t support Django 3, even though there is a pull
request adding it. Nevertheless, as mentioned before the code is worth a look.

22.2.1 Option 1: Subclass AbstractUser
Choose this option if you like Django’s User model fields the way they are, but need extra
fields. For what it’s worth, this is the first approach that we look at anytime we start a new
project. When using django-authtools’ base models, forms, and admin objects, we find that
it’s the quickest and easiest way to implement custom user models.

Here’s an example of how to subclass AbstractUser:

Example 22.4: Subclassing of AbstractUser

profiles/models.py
from django.contrib.auth.models import AbstractUser
from django.db import models

class KarmaUser(AbstractUser):
karma = models.PositiveIntegerField(verbose_name='karma',

default=0,
blank=True)

The other thing you have to do is set this in your settings:

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 22: Dealing With the User Model

Example 22.5: Setting AUTH_USER_MODEL

AUTH_USER_MODEL = 'profiles.KarmaUser'

22.2.2 Option 2: Subclass AbstractBaseUser
AbstractBaseUser is the bare-bones option with only 3 fields: password, last_login,
and is_active.

Choose this option if:

ä You’re unhappy with the fields that the User model provides by default, such as
first_name and last_name.

ä You prefer to subclass from an extremely bare-bones clean slate but want to take
advantage of the AbstractBaseUser sane default approach to storing passwords.

If you want to go down this path, we recommend the following reading:

Official Django Documentation Example
docs.djangoproject.com/en/3.2/topics/auth/customizing/
#a-full-example

Source code of django-authtools (Especially admin.py, forms.py, and models.py)
github.com/fusionbox/django-authtools

22.2.3 Option 3: Linking Back From a Related Model
This code is very similar to the pre-Django 1.5 project technique of creating ‘Profile’ models.
Before discarding this approach as legacy, consider the following use cases:

Use Case: Creating a Third Party Package

ä We are creating a third-party package for publication on PyPI.
ä The package needs to store additional information per user, perhaps a Stripe ID or

another payment gateway identifier.
ä We want to be as unobtrusive to the existing project code as possible. Loose coupling!

Use Case: Internal Project Needs

ä We are working on our own Django project.
ä We want different types of users to have different fields.
ä We might have some users with a combination of different user types.

https://feld.to/2Yc94HT
https://feld.to/2Yc94HT
https://github.com/fusionbox/django-authtools
https://github.com/feldroy/two-scoops-of-django-3.x/issues

22.2: Custom User Fields for Django Projects

ä We want to handle this at the model level, instead of at other levels.
ä We want this to be used in conjunction with a custom user model from options #1 or

#2.

Either of these use cases provide motive for the continued use of this technique.

To make this technique work, we continue to use django.contrib.models.User (called
preferably via django.contrib.auth.get_user_model()) and keep your related fields
in separate models (e.g. Profiles). Here’s an example:

Example 22.6: Custom User Profile Examples

profiles/models.py

from django.conf import settings
from django.db import models

from flavors.models import Flavor

class EaterProfile(models.Model):

Default user profile
If you do this you need to either have a post_save signal or
redirect to a profile_edit view on initial login.
user = models.OneToOneField(settings.AUTH_USER_MODEL)
favorite_ice_cream = models.ForeignKey(Flavor, null=True,

blank=True)↪→

class ScooperProfile(models.Model):

user = models.OneToOneField(settings.AUTH_USER_MODEL)
scoops_scooped = models.IntegerField(default=0)

class InventorProfile(models.Model):

user = models.OneToOneField(settings.AUTH_USER_MODEL)
flavors_invented = models.ManyToManyField(Flavor, null=True,

blank=True)↪→

Using this approach, we can query for any user’s favorite ice cream trivially with the ORM:
user.eaterprofile.favorite_ice_cream. In addition, Scooper and Inventor

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 22: Dealing With the User Model

profiles provide individual data that only applies to those users. Since that data is isolated
into dedicated models, it’s much harder for accidents between user types to occur.

The only downside to this approach is that it’s possible to take it too far in complexity of
profiles or in the supporting code. As always, keep your code as simple and clean as possible.

WARNING: Third-Party Libraries Should Not Be Defining the
User Model
Unless the express purpose of the library is to define custom user models for a project
(à la django-authtools), third-party libraries shouldn’t be using options #1 or #2 to
add fields to user models. Instead, they should rely on option #3.

22.3 Handling Multiple User Types
A common question from Django beginners is how to handle multiple user types. For ex-
ample with ice cream stores, dealing with customer, employee, and owner user types. Often
they think about defining two different user models, which is a dangerous approach to take
- Django isn’t designed to work that way.

Instead, just use one model and mark it appropriately. There’s two primary ways to do this:

22.3.1 Add a User Type Field
This approach assumes different roles have the same data and methods available to them.
In the user model, add a choices field distingishing between types of users. This allows for
role checks across a Django project.

Example 22.7: A Choices-Based User Type Field

class User(AbstractUser):
class Types(models.TextChoices):

EATER = "EATER", "Eater"
SCOOPER = "SCOOPER", "Scooper"
INVENTOR = "INVENTOR", "Inventor"

What type of user are we?
type = models.CharField(

_("Type"), max_length=50, choices=Types.choices,
default=Types.EATER↪→

)

https://github.com/feldroy/two-scoops-of-django-3.x/issues

22.3: Handling Multiple User Types

Please note that we don’t rely on the multiple use of BooleanField to control roles. That
approach works only in limited circumstances, and becomes confusing as a site grows in size
and complexity over time. Better to use a single field to control the role of a User.

Furthermore, the approach we’re using relies on a CharField. In practice, we tend to use
ForeignKey relations to a Role model. If users need multiple roles, then we will either make
that a ManyToManyField or lean on Django’s built-in Group system. The disadvantage of
using Django’s built-in Group system is the minimal documentation for it.

22.3.2 Add a User Type Field Plus Proxy Models
It is typical for different types of users to have different methods and properties. For example,
a SCOOPER would have a scoop_icecream() method and an EATER would have a
consume() method.

Let’s also make querying for types of user as obvious and explicit as possible. It is easy to
forget to include a filter on a type of user, granting them access to things they should not
have.

Proxy models makes implementing this easy. First, in our model, add a base_type property
and extend the built-in save() method:

Example 22.8: ”The base_type Property”

class User(AbstractUser):
class Types(models.TextChoices):

EATER = "EATER", "Eater"
SCOOPER = "SCOOPER", "Scooper"
INVENTOR = "INVENTOR", "Inventor"

Ensures that creating new users through proxy models works
base_type = Types.EATER

What type of user are we?
type = models.CharField(

_("Type"), max_length=50,
choices=Types.choices,
default=Types.EATER

)

...

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 22: Dealing With the User Model

def save(self, *args, **kwargs):
If a new user, set the user's type based off the
base_type property
if not self.pk:

self.type = self.base_type
return super().save(*args, **kwargs)

In our users/models.py module, underneath the User mode:

Example 22.9: ”Adding the Inventor Proxy Model”

class InventorManager(BaseUserManager):
def get_queryset(self, *args, **kwargs):

results = super().get_queryset(*args, **kwargs)
return results.filter(type=User.Types.INVENTOR)

class Inventor(User):
This sets the user type to INVENTOR during record creation
base_type = User.Types.INVENTOR

Ensures queries on the Inventor model return only Inventors
objects = InventorManager()

Setting proxy to "True" means a table WILL NOT be created
for this record
class Meta:

proxy = True

Only inventors get to invent new flavors!
def invent(self):

Magical custom logic goes Here
return "Delicious!"

As mentioned in the comments, proxy models don’t add fields. What they do create is refer-
ences to a model object on which we can hang custom managers, methods, and properties.
The example queries below will show the power of this approach:

https://github.com/feldroy/two-scoops-of-django-3.x/issues

22.3: Handling Multiple User Types

Example 22.10: Demonstrating the Power of Proxy Models

>>> from users.models import User, Inventor
>>> User.objects.count() # Over 300 million users!
323482357
>>> Inventor.objects.count() # But only 3 inventors
3
>>> # Calling someone as both a User and an Inventor
>>> user = User.objects.get(username='umafeldroy')
>>> user
<User: uma>
>>> inventor = Inventor.objects.get(username='umafeldroy')
>>> inventor
<Inventor: uma>
>>> # Calling a method that's only for inventors
>>> user.invent()
AttributeError
>>> inventor.invent()
'Delicious'

The proxy approach gives us multiple types of users without creating a new User table or
being forced to dramatically extend django.contrib.auth in such a way that we can’t
use third-party libraries.

That proxy models can have their own model managers means that we can have more ex-
plicit queries. This helps prevent mistakes in granting permission. Compare these two code
examples for clarity:

Example 22.11: Explicitly Filtering on Inventor Type

>>> User.objects.filter(type=User.Types.INVENTOR)
>>> Inventor.objects.filter() # Our preference

22.3.3 Adding Extra Data Fields
We’ve found there two ways to handle extra data fields for different user types:

1 Use OneToOneField relations to profile models as described in Section 22.2.3: Op-
tion 3: Linking Back From a Related Model.

2 Put all the fields in the base User model. This approach is simple, but with enough
users and user-specific data can result in the User table slowing. Even without perfor-

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 22: Dealing With the User Model

mance considerations in, there is significant risk of innappropiate data being held by
the wrong user type.

Our preference is the first option, to link back from a related model and combine with proxy
models. Here’s how we do it using all the ”Profile” models from Section 22.2.3: Option 3:
Linking Back From a Related Model.

class Inventor(User):
...
objects = InventorManager()

class Meta:
proxy = True

@property
def extra(self):

return self.inventorprofile

class Scooper(User):
...
objects = ScooperManager()

class Meta:
proxy = True

@property
def extra(self):

return self.scooperprofile

class Eater(User):
...
objects = EaterManager()

class Meta:
proxy = True

@property
def extra(self):

return self.eaterprofile

Now, no matter the user type, the Profile from the One-to-One relationship can be accessed

https://github.com/feldroy/two-scoops-of-django-3.x/issues

22.4: Summary

thus:

ä eater.extra.favorite_ice_cream
ä scooper.extra.scoops_scooped
ä invented.extra.flavors_invented

We really like this approach, it is easy to remember that the relation to the profile table is
accessible via the extra property. It even works with architectures that allow users to have
more than one role.

Proxy models are something typically used sparingly as complex implementations can be
confusing. However, under the right circumstances such as multiple user types, they are
incredibly useful.

22.3.4 Additional Resources on Multiple User Types
ä Daniel Feldroy’s Youtube tutorial on this topic: feld.to/multiple-user-types
ä Official documentation on Proxy Models: docs.djangoproject.com/en/3.2/

topics/db/models/#proxy-models
ä Vitor Freitas’ of ‘Simple is better than Complex article’ on the topic of multiple user

types. Very useful article, even if he doesn’t use proxy models: feld.to/2VSi3My

22.4 Summary
In this chapter we covered the new method to find the User model and define our own
custom ones. Depending on the needs of a project, they can either continue with the current
way of doing things or customize the actual user model. We also covered the use case of
multiple user model types through proxy models.

The next chapter is a dive into the world of third-party packages.

https://feld.to/multiple-user-types
https://feld.to/2BKXQkD
https://feld.to/2BKXQkD
https://feld.to/2VSi3My
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 22: Dealing With the User Model

https://github.com/feldroy/two-scoops-of-django-3.x/issues

23 | Django’s Secret Sauce:
Third-Party Packages

TODO - Add mention of https://www.python.org/dev/peps/pep-0517/

The real power of Django is more than just the framework and documentation available at
djangoproject.com. It’s the vast selection of third-party Django and Python packages
provided by the open source community. There are many, many third-party packages avail-
able for your Django projects which can do an incredible amount of work for you. These
packages have been written by people from all walks of life, and they power much of the
world today.

Figure 23.1: A jar of Django’s mysterious secret sauce. Most don’t have a clue what this is.

Much of professional Django and Python development is about the incorporation of third-
party packages into Django projects. If you try to write every single tool that you need from
scratch, you’ll have a hard time getting things done.

This is especially true for us in the consulting world, where client projects consist of many
of the same or similar building blocks.

https://djangoproject.com
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 23: Django’s Secret Sauce: Third-Party Packages

Figure 23.2: The secret is out. It’s just hot fudge.

23.1 Examples of Third-Party Packages
Chapter 37: Appendix A: Packages Mentioned In This Book covers all of the packages
mentioned throughout Two Scoops of Django. This list is a great starting point if you’re
looking for highly-useful packages to consider adding to your projects.

Note that not all of those packages are Django-specific, that means that you can use some of
them in other Python projects. (Generally, Django-specific packages have names prefixed
with “django-” or “dj-”, but there are many exceptions.)

23.2 Know About the Python Package Index
The Python Package Index (PyPI), located at pypi.org/, is a repository of software for
the Python programming language. As of the time this sentence was written, it lists over
100,000 packages, including Django itself.

For the vast majority of Python community, no open source project release is considered
official until it occurs on the Python Package Index.

The Python Package Index is much more than just a directory. Think of it as the world’s
largest center for Python package information and files. Whenever you use pip to install a
particular release of Django, pip downloads the files from the Python Package Index. Most
Python and Django packages are downloadable from the Python Package Index in addition
to pip.

23.3 Know About DjangoPackages.org
Django Packages (djangopackages.org) is a directory of reusable apps, sites, tools and
more for your Django projects. Unlike PyPI, it doesn’t store the packages themselves, in-
stead providing a mix of hard metrics gathered from the Python Package Index, GitHub,
ReadTheDocs, and “soft” data entered by users.

Django Packages is best known as a comparison site for evaluating package features. On

https://feld.to/3eTOdyS/
https://djangopackages.org/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

23.4: Know Your Resources

Django Packages, packages are organized into handy grids so they can be compared against
each other.

Django Packages also happens to have been created by the authors of this book, with con-
tributions from many, many people in the Python community. Thanks to many volunteers
it is continually maintained and improved as a helpful resource for Django users.

23.4 Know Your Resources
Django developers unaware of the critical resources of Django Packages and the Python
Package Index are denying themselves one of the most important advantages of using
Django and Python. If you are not aware of these tools, it’s well worth the time you spend
educating yourself.

As a Django (and Python) developer, make it your mission to use third-party libraries in-
stead of reinventing the wheel whenever possible. The best libraries have been written, doc-
umented, and tested by amazingly competent developers working around the world. Stand-
ing on the shoulders of these giants is the difference between amazing success and tragic
downfall.

As you use various packages, study and learn from their code. You’ll learn patterns and tricks
that will make you a better developer.

On the other hand, it’s very important to be able to identify the good packages from the
bad. It’s well worth taking the time to evaluate packages written by others the same way we
evaluate our own work. We cover this later in this chapter in Section 23.10: What Makes a
Good Django Package?

23.5 Tools for Installing and Managing Packages
To take full advantage of all the packages available for your projects, having virtualenv and
pip (or Conda or Poetry) installed isn’t something you can skip over. It’s mandatory.

Refer to Chapter 2: The Optimal Django Environment Setup for more details.

23.6 Package Requirements
As we mentioned earlier in Chapter 5: Settings and Requirements Files, we manage our
Django/Python dependencies with requirements files. These files go into the requirements/
directory that exists in the root of our projects.

23.7 Wiring Up Django Packages: The Basics
When you find a third-party package that you want to use, follow these steps:

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 23: Django’s Secret Sauce: Third-Party Packages

23.7.1 Step 1: Read the Documentation for the Package
Are you sure you want to use it? Make sure you know what you’re getting into before you
install any package.

23.7.2 Step 2: Add Package and Version Number to Your
Requirements

If you recall from Chapter 5: Settings and Requirements Files, a requirements/base.txt file
looks something like this (but probably longer):

Example 23.1: Adding Packages with Version Numbers to Requirements

Django==1.11
coverage==4.3.4
django-extensions==1.7.6
django-braces==1.11

Note that each package is pinned to a specific version number. Always pin your package
dependencies to version numbers.

What happens if you don’t pin your dependencies? You are almost guaranteed to run into
problems at some point when you try to reinstall or change your Django project. When new
versions of packages are released, you can’t expect them to be backwards-compatible.

Our sad example: Once we followed a software-as-a-service platform’s instructions for us-
ing their library. As they didn’t have their own Python client, but an early adopter had a
working implementation on GitHub, those instructions told us to put the following into
our requirements/base.txt:

Example 23.2: How Not To List Requirements

-e git+https://github.com/erly-adptr/py-junk.git#egg=py-jnk

Our mistake. We should have known better and pinned it to a particular git revision number.

Not the early adopter’s fault at all, but they pushed up a broken commit to their repo. Once
we had to fix a problem on a site very quickly, so we wrote a bug fix and tested it locally in
development. It passed the tests. Then we deployed it to production in a process that grabs

https://github.com/feldroy/two-scoops-of-django-3.x/issues

23.8: Troubleshooting Third-Party Packages

all dependency changes; unfortunately the broken commit was interpreted as a valid change.
Which meant, while fixing one bug, we crashed the site.

Not a fun day.

The purpose of using pinned releases is to add a little formality and process to our published
work. Especially in Python, GitHub and other repos are a place for developers to pub-
lish their work-in-progress, not the final, stable work upon which our production-quality
projects depend.

One more thing, when pinning dependencies, try to pin the dependencies of dependencies.
It just makes deployment and testing that much more predictable.

23.7.3 Step 3: Install the Requirements Into Your Virtualenv
Assuming you are already in a working virtualenv and are at the <repo_root> of your
project, you pip install the appropriate requirements file for your setup, e.g. require-
ments/dev.txt.

If this is the first time you’ve done this for a particular virtualenv, it’s going to take a while
for it to grab all the dependencies and install them.

23.7.4 Step 4: Follow the Package’s Installation Instructions
Exactly

Resist the temptation to skip steps unless you’re very familiar with the package. Since open
source Django package developers tend to take pride in their documentation and love to get
people to use their packages, most of the time the installation instructions they’ve authored
make it easy to get things running.

23.8 Troubleshooting Third-Party Packages
Sometimes you run into problems setting up a package. What should you do?

First, make a serious effort to determine and solve the problem yourself. Pour over the
documentation and make sure you didn’t miss a step. Search online to see if others have run
into the same issue. Be willing to roll up your sleeves and look at the package source code,
as you may have found a bug.

If it appears to be a bug, see if someone has already reported it in the package repository’s
issue tracker. Sometimes you’ll find workarounds and fixes there. If it’s a bug that no one
has reported, go ahead and file it.

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 23: Django’s Secret Sauce: Third-Party Packages

If you still get stuck, try asking for help in all the usual places: StackOverflow, IRC #django,
the project’s IRC channel if it has its own one, and your local Python user group. Be as
descriptive and provide as much context as possible about your issue.

23.9 Releasing Your Own Django Packages
Whenever you write a particularly useful Django app, consider packaging it up for reuse in
other projects.

The best way to get started is to follow Django’s Advanced Tutorial: How to Write Reusable
Apps, for the basics: docs.djangoproject.com/en/3.2/intro/reusable-apps/

In addition to what is described in that tutorial, we recommend that you also:

ä Create a public repo containing the code. Most Django packages are hosted on
GitHub these days, so it’s easiest to attract contributors there, but various alterna-
tives exist (Gitlab, Bitbucket, Assembla, etc.).

ä Release the package on the Python Package Index (pypi.org). Follow
the submission instructions at packaging.python.org/distributing/
#uploading-your-project-to-pypi.

ä Add the package to Django Packages (djangopackages.org).
ä Use Read the Docs (readthedocs.io) or similar service to host your Sphinx docu-

mentation.

TIP: Where Should I Create a Public Repo?

There are websites that offer free source code hosting and version control for open
source projects. As mentioned in Chapter 2: The Optimal Django Environment
Setup, GitHub or GitLab are two popular options.

When choosing alternative hosted version control services, keep in mind that pip
only supports Git, Mercurial, Bazaar, and Subversion.

23.10 What Makes a Good Django Package?
Here’s a checklist for you to use when creating a new open source Django package. Much of
this applies to Python packages that are not Django-specific. This checklist is also helpful
for when you’re evaluating a Django package to use in any of your projects.

23.10.1 Purpose
Your package should do something useful and do it well. The name should be descriptive.
The package repo’s root folder should be prefixed with ‘django-’ or ‘dj-’ to help make it easier
to find.

https://docs.djangoproject.com/en/3.2/intro/reusable-apps/
https://feld.to/3eTOdyS
https://packaging.python.org/distributing/#uploading-your-project-to-pypi
https://packaging.python.org/distributing/#uploading-your-project-to-pypi
https://djangopackages.org
https://readthedocs.io/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

23.10: What Makes a Good Django Package?

If part of the package’s purpose can be accomplished with a related Python package that
doesn’t depend on Django, then create a separate Python package and use it as a dependency.

23.10.2 Scope
Your package’s scope should be tightly focused on one small task. This means that your
application logic will be tighter, and users will have an easier time patching or replacing the
package.

23.10.3 Documentation
A package without documentation is a pre-alpha package. Docstrings don’t suffice as docu-
mentation.

As described in Chapter 25: Documentation: Be Obsessed, your docs should be written in
Markdown. A nicely-formatted version of your docs should be generated with MkDocs,
Sphinx, or other tools and hosted publicly. We encourage you to use readthedocs.io
with webhooks so that your formatted documentation automatically updates whenever you
make a change.

If your package has dependencies, they should be documented. Your package’s installation
instructions should also be documented. The installation steps should be bulletproof.

23.10.4 Tests
Your package should have tests. Tests improve reliability, make it easier to advance
Python/Django versions, and make it easier for others to contribute effectively. Write up
instructions on how to run your package’s test suite. If you or any contributor can run your
tests easily before submitting a pull request, then you’re more likely to get better quality
contributions.

23.10.5 Templates
In the past, some Django packages provided instructions for creating templates in their docs
in lieu of actual template files. However, nowadays it’s pretty standard for Django packages
to come with a set of barebones templates that demonstrate basic functionality. Typically
these templates contain only minimalist HTML, any needed JavaScript, and no CSS. The
exception is for packages containing widgets that require CSS styling.

23.10.6 Activity
Your package should receive regular updates from you or contributors if/when needed.
When you update the code in your repo, you should consider uploading a minor or ma-

https://readthedocs.io/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 23: Django’s Secret Sauce: Third-Party Packages

jor release to the Python Package Index.

23.10.7 Community
Great open source packages, including those for Django, often end up receiving contribu-
tions from other developers in the open source community. All contributors should receive
attribution in a CONTRIBUTORS.rst or AUTHORS.rst file.

Be an active community leader if you have contributors or forks of your package. If your
package is forked by other developers, pay attention to their work. Consider if there are
ways that parts or all of their work can be merged into your fork. If the package’s function-
ality diverges a lot from your package’s purpose, be humble and consider asking the other
developer to give their fork a new name.

23.10.8 Modularity
Your package should be as easily pluggable into any Django project that doesn’t replace
core components (templates, ORM, etc) with alternatives. Installation should be minimally
invasive. Be careful not to confuse modularity with over-engineering, though.

23.10.9 Availability on PyPI
All major and minor releases of your package should be available for download from the
Python Package Index. Developers who wish to use your package should not have to go to
your repo to get a working version of it. Use proper version numbers per the next section.

23.10.10 Uses the Broadest Requirements Specifiers Possible
Your third-party package should specify in setup.py the install_requires argument
what other libraries your package requires in the broadest terms possible. However, this
is a terrible way to define a package’s requirements:

Example 23.3: Narrow Requirements for a Package

DON'T DO THIS!
requirements for django-blarg

Django==3.0
requests==2.11.0

The reason is dependency graphs. Every so often something that you absolutely pin to a
specific version of Django or another library will break on someone else’s site project. For

https://github.com/feldroy/two-scoops-of-django-3.x/issues

23.10: What Makes a Good Django Package?

example, what if icecreamratings.com was our site and this was its deployed project’s require-
ments.txt file, and we installed django-blarg?

Example 23.4: Requirements.txt for icecreamratings.com

requirements.txt for the mythical web site 'icecreamratings.com'
Django==3.1
requests==2.13.0
django−blarg==1.0

Note that unlike the django−blarg library , we explicitly pin
the requirements so we have total control over the environment

What would happen if Bad Example 21.3 were installed to a project with Example 21.4
requirements is that the Django 3.0 requirement would overwrite the Django 3.1 specifica-
tion during installation of icecreamratings.com requirements. As there are several backwards
incompatibilities between Django 3.0 and 3.1, django-blarg could make icecreamratings.com
site simply throw HTTP 500 errors.

Your third-party package should specify what other libraries your package requires in the
broadest terms possible:

Example 23.5: Broadly Defined Package Requirements

requirements for django-blarg

Django>=3.1,<3.0
requests>=2.13.0,<=3.0.0

Additional Reading:

ä pip.pypa.io/en/stable/reference/pip_install/
#requirement-specifiers

ä nvie.com/posts/pin-your-packages/

23.10.11 Proper Version Numbers

Like Django and Python, we prefer to adhere to the strict version of PEP 386 naming
schema. In fact we follow the ‘A.B.C’ pattern. Let’s go through each element:

https://feld.to/2KKwwnw
https://feld.to/2KKwwnw
http://nvie.com/posts/pin-your-packages/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 23: Django’s Secret Sauce: Third-Party Packages

‘A’ represents the major version number. Increments should only happen with large changes
that break backwards compatibility from the previous major version. It’s not uncom-
mon to see large API changes between versions.

‘B’ is the minor version number. Increments include less breaking changes, or deprecation
notices about forthcoming changes.

‘C’ represents bug fix releases, and purists call this the ‘micro’ release. It’s not uncommon
for developers to wait until a project has its first release at this level before trying the
latest major or minor release of an existing project.

For alpha, beta, or release-candidates for a project, the convention is to place this informa-
tion as a suffix to the upcoming version number. So you might have:

ä Django 3.2-alpha
ä django-crispy-forms 1.9.1-beta

WARNING: Don’t Upload Unfinished Code to PyPI

PyPI, the Python Package Index, is meant to be the place where dependable, stable
packages can be harnessed to build Python projects. PyPI is not the place for Alpha,
Beta, or Release Candidate code, especially as pip and other tools will fetch the latest
release by default.

Be nice to other developers and follow the convention of only placing proper
releases on PyPI.

Note: While modern versions of pip no longer install pre-releases by default, it’s
dangerous to expect users of code to have the latest pip version installed.

Additional Reading:

ä python.org/dev/peps/pep-0386
ä semver.org

23.10.12 Name

The name of the project is absolutely critical. A well-named project makes it easy to discover
and remember, a poor name hides it from potential users, can scare off its use from some
developer shops, and even block it from being listed on PyPI, Django Packages, and other
resources.

https://www.python.org/dev/peps/pep-0386
http://semver.org/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

23.10: What Makes a Good Django Package?

We did cover the basics in Section 4.2: What to Name Your Django Apps, but here are tips
that apply to open source Django packages:

ä Check to see that the name isn’t already registered on PyPI. Otherwise, it won’t be trivial
to install with pip.

ä Check to see that the name isn’t on Django Packages. This applies only to packages de-
signed for use with Django.

ä Don’t use names that include obscenity. While you might find them funny, it’s unfortu-
nate for others. For example a noted developer once created a library that couldn’t be
used at NASA until he agreed to change the name.

23.10.13 License

Your package needs a license. Preferably, for individuals it should be licensed under the MIT
licenses, which are generally accepted for being permissive enough for most commercial or
noncommercial uses. If you are worried about patents, then go with the Apache license.

Create a LICENSE.rst file in your repo root, mention the license name at the top, and paste
in the appropriate text from the (OSI) approved list at choosealicense.com.

TIP: Licenses Protect You and the World
In this era of casual litigation and patent trolls adding a software license isn’t just
a matter of protecting your ownership of the code. It’s much, much more. If you
don’t license your code, or use an unapproved license not vetted by real lawyers, you
run the risk of your work being used as a weapon by a patent troll, or in the case of
financial or medical disaster, you could be held liable.
OSI-approved licenses all include a couple critical statements on copyright, redis-
tribution, disclaimer of warranty, and limitation of liability.

23.10.14 Clarity of Code

The code in your Django package should be as clear and simple as possible. Don’t use weird,
unusual Python/Django hacks without explaining what you are doing.

23.10.15 Use URL Namespaces

Described in Section 8.4: Use URL Namespaces, URL namespaces allow for greater inter-
operability. Using means it’s easier to manage collisions between projects, or even prepare
for it ahead of time.

https://choosealicense.com/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 23: Django’s Secret Sauce: Third-Party Packages

If there is concern about future collisions, settings-based URL namespace systems can be
implemented. This is where the project defines its URL namespace as a setting, then pro-
vides a Django context processor and detailed instructions on use. While it’s not hard to
implement, it does create a level of abstraction that can make a project a little bit harder to
maintain.

23.11 Creating Your Own Packages the Easy Way
Releasing your own bit of code can be a wonderfully rewarding experience. Everyone should
do it!

That said, putting all the pieces together in order to make a reusable Django package is a lot
of work, and it’s common to get things wrong. Fortunately, Cookiecutter makes this easy.

PACKAGE TIP: Cookiecutter: Project Templates Made Easy

In 2013 Audrey created the popular Cookiecutter utility for generating project tem-
plates. It’s easy to use and very powerful. Numerous templates exist for Python and
Django packages. Even better, many IDEs such as PyCharm and Visual Studio
Code now provide support for Cookiecutter-based templates.

ä github.com/cookiecutter/cookiecutter
ä cookiecutter.readthedocs.io

In the Cookiecutter templates referenced below, we have vetted them by aggressively asking
for them to be reviewed by leaders in both the Django and Python communities. Just use
the following bash example at the command-line:

Example 23.6: Using Cookiecutter to Jumpstart Packages

Only if you haven't installed cookiecutter yet
\$ pip install cookiecutter

Creating a Django Package from scratch
\$ cookiecutter

https://github.com/pydanny/cookiecutter-djangopackage.git↪→

Creating a Python Package from scratch
\$ cookiecutter

https://github.com//ionelmc/cookiecutter-pylibrary.git↪→

You’ll be prompted to provide information. The generated result will be an implementation
of a base Django/Python/etc. package template that includes code, documentation, tests,

https://github.com/cookiecutter/cookiecutter
http://cookiecutter.readthedocs.io/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

23.12: Maintaining Your Open Source Package

license, and much more.

23.12 Maintaining Your Open Source Package
WARNING: Open Source Burnout and Giving Too Much

Unless you are getting paid professionally to do open source work, remember that
this is volunteer work done for pleasure. Do what you can at your own pace, and
just try your best.

The open source packages that you create have a life of their own. They mature over time,
changing as their needs and the development standards grow over time. Here are some
things we should do when maintaining open source projects:

23.12.1 Give Credit for Pull Requests
When someone submits a pull request that’s accepted, treat them right. Make sure to add
the contributor to a project’s author document called something like CONTRIBUTORS.md
or AUTHORS.md .

23.12.2 Handling Bad Pull Requests
Sometimes you get pull requests that you just have to reject. Be nice and positive about it,
since a well-handled rejected pull request can make a friend for life.

Here are problematic pull requests that should be considered for rejection:

ä Any pull request that fails the tests. Ask for fixes. See Chapter 24: Testing Stinks and
Is a Waste of Money!.

ä Any added code that reduces test coverage. Again, see chapter 24.
ä Pull requests should change/fix as little as possible. Large, wide-sweeping changes in a

pull request should be rejected, with comments to isolate changes in smaller, atomic
pull requests.

ä Overly complex code submissions should be carefully considered. There is nothing wrong
with asking for simplification, better comments, or even rejecting an overly complex
pull request.

ä Code that breaks PEP-8 needs to be resubmitted. The Django world follows PEP-8 very
closely, and so should your project. Submissions that violate PEP 8 can be requested
to be improved.

ä Code changes combined with major whitespace cleanup. If someone submits a change of
two lines of code and corrects 200 lines of whitespace issues, the diff on that pull

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 23: Django’s Secret Sauce: Third-Party Packages

request is functionally unreadable and should be rejected. Whitespace cleanups need
to be in their own pull request.

WARNING: Code Changes Combined With Major Whitespace
Cleanup

We’re adding a warning because this is arguably a form of code obfuscation by a
third party. One could argue it’s potentially a security risk. What better way to inject
malignant code than through a pull request?

23.12.3 Do Formal PyPI Releases
In the Python community, it’s considered irresponsible to force developers to rely on a ‘stable’
master or trunk branch of critical open source projects because the PyPI version is out of
date. This can cause problems as open source code repositories are not considered to be good
sources of production quality code. For example, which particular commit or tag should be
used? On the other hand, PyPI, is a known resource designed to securely provide valid
installable packages.

In the Python world, the accepted best practice is to release when significant (or even minor)
changes or bug fixes happen on trunk or master. In fact, minor bug fix releases are a part of
every ongoing software project and no one faults anyone for these kinds of things (except
in US government IT contracts, but that’s outside the scope of this book).

If you aren’t sure how this works, please look at python-request’s change history, it be-
ing one of Python’s most popular projects: github.com/psf/requests/blob/master/
HISTORY.md

To create and upload your distribution, use the following steps:

Example 23.7: Using Twine to Upload Package Distributions

pip install twine
python setup.py sdist
twine upload dist/*

PACKAGE TIP: What is Twine?
Twine is the preferred library for uploading packages to PyPI. The problem with
python setup.py is that it sends files over a non secure connection, exposing

https://github.com/psf/requests/blob/master/HISTORY.md
https://github.com/psf/requests/blob/master/HISTORY.md
https://github.com/feldroy/two-scoops-of-django-3.x/issues

23.12: Maintaining Your Open Source Package

your library to a man-in-the-middle attack. In contrast, twine uses only verified
TLS to upload your package.

That’s not all! Twine works better at uploading Wheels (see the next subsection),
doesn’t require executing the setup.py, and even pre-signs your releases. If you are
seriously security minded, it’s the tool of choice.

23.12.4 Create and Deploy Wheels to PyPI
According to PEP 427, Wheels are the new standard of python distribution. They are in-
tended to replace eggs and provide a number of advantages including faster installation and
allow secure digital signing. Support is offered in pip >= 1.4 and setuptools >= 0.8.

Example 23.8: Installing Wheel

pip install wheel

Then, after you’ve deployed your package to PyPI, run the following commands:

Example 23.9: Creating Wheel Distributions and Uploading Them

python setup.py bdist_wheel
twine upload dist/*

Twine makes universal wheels when the optional setup.cfg file is at the same level as setup.py
and includes this snippet:

Example 23.10: Configuring Universal Wheels

setup.cfg
[wheel]
universal = 1

Wheel Resources:

Specification: PEP 427 python.org/dev/peps/pep-0427
Wheel Package on PyPI https://feld.to/3eTOdyS/project/wheel
Documentation wheel.readthedocs.io
Advocacy pythonwheels.com

http://www.python.org/dev/peps/pep-0427/
https://feld.to/3eTOdyS/project/wheel
http://wheel.readthedocs.io/
http://pythonwheels.com/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 23: Django’s Secret Sauce: Third-Party Packages

23.12.5 Add Git Tags to the Repo
We also like to git tag our releases in the repo. This is a snapshot of the code at the time the
release was submitted to PyPI (see previous subsection). In addition to serving as a historical
record, it can also location for installing packages from. For example, if an organization
doesn’t want to stand up a private package server, they can rely on git tags (or releases for
those repo hosts like GitHub that provide this option).

Example 23.11: Create and Push Tag to repo

git tag -a v1.4 -m "my version 1.4"
git push origin v1.4

Reference: git-scm.com/book/en/v2/Git-Basics-Tagging

23.12.6 Upgrade the Package to New Versions of Django
Every once in awhile, Django is updated with a minor release. Approximately once a year
there is a major Django release. When this happens, it’s very important to run our package’s
test suite in a virtualenv that contain Django’s latest release.

If for no other reason, this is an excellent reason to include tests in your project.

23.12.7 Follow Good Security Practices
We discuss security in-depth in Chapter 28: Security Best Practices. However, core Django,
Python, and PyPy developer Alex Gaynor has an incredibly useful article for maintainers
of any open source project:
alexgaynor.net/2013/oct/19/security-process-open-source-projects

TIP: Alex Gaynor on Security for Open Source Projects

“Security vulnerabilities put your users, and often, in turn, their users at
risk. As an author and distributor of software, you have a responsibility
to your users to handle security releases in a way most likely to help
them avoid being exploited.”

23.12.8 Provide Sample Base Templates
Always include some basic templates for views using your project. We prefer to write either
incredibly simple HTML or use a common front-end frameworks such as Bootstrap or Tail-
wind. This makes ‘test-driving’ the project much easier for developers who are considering

https://git-scm.com/book/en/v2/Git-Basics-Tagging
https://alexgaynor.net/2013/oct/19/security-process-open-source-projects/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

23.13: Additional Reading

using it to solve their problems. Invariably they’ll modify the templates inside their own
templates/ directory, but this just makes everything so much easier.

In addition, include a templates/myapp/base.html to increase interoperability. You can see a
description and example of this in cookiecutter-djangopackage:

bit.ly/2onSzCV

23.12.9 Give the Package Away
Sometimes, life takes you away from maintaining a package. It might be family or a new
job, but sometimes you just have no need for a particular open source project. Time consid-
erations might mean that you don’t have the ability to review pull requests or explore ideas
for new features. If you’re the creator of a project it can be extremely challenging to let it go.

However, by giving a project away to active maintainers, it can be reborn and prove more
useful. It also earns the respect of the developer community at large.

Some notable giveaways in the Django and Python communities include:

ä Ian Bicking and pip/virtualenv.
ä Daniel and Audrey Feldroy and djangopackages.org
ä Daniel Feldroy and django-uni-form, dj-stripe, and django-mongonaut
ä Audrey Feldroy and Cookiecutter
ä Rob Hudson and django-debug-toolbar.

23.13 Additional Reading
The following are links to useful articles for anyone contributing to, creating, or maintaining
open source libraries:

ä djangoappschecklist.com A personal favorite of ours, the Django Apps Check-
list is a checklist for everything in this chapter.

ä alexgaynor.net/2013/sep/26/effective-code-review
ä hynek.me/articles/sharing-your-labor-of-love-pypi-quick-and-dirty

23.14 Summary
Django’s real power is in the vast selection of third-party packages available to you for use
in your Django projects.

Make sure that you have pip and virtualenv (or Poetry as an alternative) installed and know
how to use them, since they’re your best tools for installing packages on your system in a
manageable way.

http://bit.ly/2onSzCV
https://djangopackages.org
http://djangoappschecklist.com/
http://alexgaynor.net/2013/sep/26/effective-code-review/
https://hynek.me/articles/sharing-your-labor-of-love-pypi-quick-and-dirty/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 23: Django’s Secret Sauce: Third-Party Packages

Get to know the packages that exist. The Python Package Index and Django Packages are
a great starting point for finding information about packages.

Package maturity, documentation, tests, and code quality are good starting criteria when
evaluating a Django package.

Installation of stable packages is the foundation of Django projects big and small. Being
able to use packages means sticking to specific releases, not just the trunk or master of a
project. Barring a specific release, you can rely on a particular commit. Fixing problems that
a package has with your project takes diligence and time, but remember to ask for help if
you get stuck.

We also covered how to create your own third-party package, and provided basic instruction
on how to use cookiecutter to jump-start you on your way to releasing something on the
Python Package Index. We also included instructions on using the new Wheel format.

Finally, we provided guidance on how to maintain a package.

https://github.com/feldroy/two-scoops-of-django-3.x/issues

24 | Testing Stinks and Is a Waste of
Money!

There, got you to this chapter.

Now you have to read it.

We’ll try and make this chapter interesting.

24.1 Testing Saves Money, Jobs, and Lives
Daniel ’s Story: Ever hear the term “smoke test”?

Gretchen Davidian, a Management and Program Analyst at NASA, told me that when she
was still an engineer, her job as a tester was to put equipment intended to get into space
through such rigorous conditions that they would begin emitting smoke and eventually
catch on fire.

That sounds exciting! Employment, money, and lives were on the line, and knowing
Gretchen’s attention to detail, I’m sure she set a lot of hardware on fire.

Keep in mind that for a lot of us, as software engineers, the same risks are on the line
as NASA. I recall in 2004 while working for a private company how a single miles-vs-
kilometers mistake cost a company hundreds of thousands of dollars in a matter of hours.
Quality Assurance (QA) staff lost their jobs, which meant that money and health benefits
were gone. In other words, employment, money, and possibly lives can be lost without ad-
equate tests. While the QA staff were very dedicated, everything was done via manually
clicking through projects, and human error simply crept into the testing process.

Today, as Django moves into a wider and wider set of applications, the need for automated
testing is just as important as it was for Gretchen at NASA and for the poor QA staff in 2004.
Here are some cases where Django is used today that have similar quality requirements:

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 24: Testing Stinks and Is a Waste of Money!

ä Applications that handle medical information.
ä Applications that provide life-critical resources to people in need.
ä Applications working with user’s financial information.

PACKAGE TIP: Useful Library for Testing Django Projects

We like to use coverage.py.

This tool provides clear insight into what parts of your code base are covered by tests,
and what lines haven’t been touched by tests. You also get a handy percentage of how
much of your code is covered by tests. Even 100% test coverage doesn’t guarantee a
bug-free application, but it helps.

We want to thank Ned Batchelder for his incredible work in maintaining cover-
age.py. It’s a superb project and is useful for any Python-related project.

24.2 How to Structure Tests
Let’s say we’ve just created a new Django app. The first thing we do is delete the default but
useless tests.py module that python manage.py startapp creates. In it’s place we create
a directory called tests and place an empty __init__.py within.

Inside that new directory, because most apps need them, we create test_forms.py,
test_models.py, test_views.py modules. Tests that apply to forms go into test_forms.py, model
tests go into test_models.py, and so on.

Here’s what it looks like:

Example 24.1: How to Structure Tests

popsicles/
__init__.py
admin.py
forms.py
models.py
tests/

__init__.py
test_forms.py
test_models.py
test_views.py

views.py

https://github.com/feldroy/two-scoops-of-django-3.x/issues

24.3: How to Write Unit Tests

Also, if we have other files besides forms.py, models.py and views.py that need testing, we
create corresponding test files.

We like this approach because while it does add an extra layer of nesting, the alternative is
to have an app structure with a painful number of modules to navigate.

TIP: Prefix Test Modules With test_
It’s critically important that we always prefix test modules with test_, otherwise
Django’s test runner can’t trivially discover our test files. Also, it’s a nice convention
that allows for greater flexibility for viewing filenames in IDEs and text editors. As
always, never lean on your preferred IDE for how to name things.

24.3 How to Write Unit Tests
It’s not uncommon for programmers to feel at the top of their game at the moment they are
writing code. When they revisit that same code in months, weeks, days, or even hours and
it’s not uncommon for programmers to feel as if that same code is of poor quality.

The same applies to writing unit tests.

Over the years, we’ve evolved a number of practices we like to follow when writing tests,
including unit tests. Our goal is always to write the most meaningful tests in the shortest
amount of time. Hence the following:

24.3.1 Each Test Method Tests One Thing
A test method must be extremely narrow in what it tests. A single unit test should never
assert the behavior of multiple views, models, forms, or even multiple methods within a
class. Instead, a single test should assert the behavior of a single view, model, form, method,
or function.

Therein lies a conundrum. How does one run a test for a view, when views often require the
use of models, forms, methods, and functions?

The trick is to be absolutely minimalistic when constructing the environment for a particular
test, as shown in the example below:

Example 24.2: Testing Just One Thing

flavors/tests/test_api.py
import json

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 24: Testing Stinks and Is a Waste of Money!

from django.test import TestCase
from django.urls import reverse

from flavors.models import Flavor

class FlavorAPITests(TestCase):

def setUp(self):
Flavor.objects.get_or_create(title='A Title',

slug='a-slug')↪→

def test_list(self):
url = reverse('flavors:flavor_object_api')
response = self.client.get(url)
self.assertEquals(response.status_code, 200)
data = json.loads(response.content)
self.assertEquals(len(data), 1)

In this test, taken from code testing the API we presented in Section 17.2: Illustrating
Design Concepts With a Simple API, we use the setUp() method to create the minimum
possible number of records needed to run the test.

Here’s a much larger example, one based on the REST API example that we provided in
Chapter 17: Building REST APIs With Django REST Framework.

Example 24.3: Testing API Code

flavors/tests/test_api.py
import json

from django.test import TestCase
from django.urls import reverse

from flavors.models import Flavor

class DjangoRestFrameworkTests(TestCase):

def setUp(self):
Flavor.objects.get_or_create(title='title1', slug='slug1')

https://github.com/feldroy/two-scoops-of-django-3.x/issues

24.3: How to Write Unit Tests

Flavor.objects.get_or_create(title='title2', slug='slug2')

self.create_read_url = reverse('flavors:flavor_rest_api')
self.read_update_delete_url = \

reverse('flavors:flavor_rest_api', kwargs={'slug':
'slug1'})↪→

def test_list(self):
response = self.client.get(self.create_read_url)

Are both titles in the content?
self.assertContains(response, 'title1')
self.assertContains(response, 'title2')

def test_detail(self):
response = self.client.get(self.read_update_delete_url)
data = json.loads(response.content)
content = {'id': 1, 'title': 'title1', 'slug': 'slug1',

'scoops_remaining': 0}
self.assertEquals(data, content)

def test_create(self):
post = {'title': 'title3', 'slug': 'slug3'}
response = self.client.post(self.create_read_url, post)
data = json.loads(response.content)
self.assertEquals(response.status_code, 201)
content = {'id': 3, 'title': 'title3', 'slug': 'slug3',

'scoops_remaining': 0}
self.assertEquals(data, content)
self.assertEquals(Flavor.objects.count(), 3)

def test_delete(self):
response = self.client.delete(self.read_update_delete_url)
self.assertEquals(response.status_code, 204)
self.assertEquals(Flavor.objects.count(), 1)

24.3.2 For Views, When Possible Use the Request Factory

The django.test.client.RequestFactory provides a way to generate a request in-
stance that can be used as the first argument to any view. This provides a greater amount of
isolation than the standard Django test client, but it does require a little bit of extra work on

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 24: Testing Stinks and Is a Waste of Money!

the part of the test writer. This is because the request factory doesn’t support middleware,
including session and authentication.

See docs.djangoproject.com/en/3.2/topics/testing/advanced/

Unfortunately the documentation doesn’t cover when you want to test a view wrapped with
a single middleware class. For example, if a view required sessions, this is how we would
do it:

Example 24.4: How to Add Middleware to Requests and Responses

from django.contrib.auth.models import AnonymousUser
from django.contrib.sessions.middleware import SessionMiddleware
from django.test import TestCase, RequestFactory

from .views import cheese_flavors

def add_middleware_to_request(request, middleware_class):
middleware = middleware_class()
middleware.process_request(request)
return request

def add_middleware_to_response(request, middleware_class):
middleware = middleware_class()
middleware.process_response(request)
return request

class SavoryIceCreamTest(TestCase):
def setUp(self):

Every test needs access to the request factory.
self.factory = RequestFactory()

def test_cheese_flavors(self):
request = self.factory.get('/cheesy/broccoli/')
request.user = AnonymousUser()

Annotate the request object with a session
request = add_middleware_to_request(request,

SessionMiddleware)↪→

request.session.save()

process and test the request

https://docs.djangoproject.com/en/3.2/topics/testing/advanced/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

24.3: How to Write Unit Tests

response = cheese_flavors(request)
self.assertContains(response, 'bleah!')

24.3.3 Don’t Write Tests That Have to Be Tested
Tests should be written as simply as possible. If the code in a test (or the code called to help
run a test) feels complicated or abstracted, then we have a problem. In fact, we ourselves
are guilty of writing overly complicated utility test functions that required their own tests
in the past. As one can imagine, this made debugging the actual tests a nightmare.

24.3.4 Don’t Repeat Yourself Doesn’t Apply to Writing Tests
The setUp() method is really useful for generating reusable data across all test methods in
a test class. However, sometimes we need similar but different data between test methods,
which is where we often fall into the trap of writing fancy test utilities. Or worse, we decide
that rather than write 20 similar tests, we can write a single method that when passed certain
arguments will handle all the work for us.

Our favorite method of handling these actions is to just dig in and write the same or sim-
ilar code multiple times. In fact, we’ll quietly admit to copy/pasting code between tests to
expedite our work.

TIP: Our Problem With the Django Testing Tutorial #5

The official Django beginner tutorial on testing demonstrates the implementation
of a create_question() utility method, which is designed to take some of the
repetition out of the process of created questions.
We think its inclusion in the tutorial is a mistake. Simple examples in the official
documentation that follow poor practice provide encouragement that often play
out in terrible ways. We’ve encountered projects inspired by this example to add
deep layers of abstraction to their testing code, abstraction that makes it incredibly
challenging to correct and enhance existing tests.
Again, Don’t Repeat Yourself doesn’t apply to tests.

24.3.5 Don’t Rely on Fixtures
We’ve learned over time that using fixtures is problematic. The problem is that fixtures are
hard to maintain as a project’s data changes over time. Modifying JSON-formatted files to
match your last migration is hard, especially as it can be difficult to identify during the JSON

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 24: Testing Stinks and Is a Waste of Money!

load process where your JSON file(s) is either broken or a subtly inaccurate representation
of the database.

Rather than wrestle with fixtures, we’ve found it’s easier to write code that relies on the
ORM. Other people like to use third-party packages.

PACKAGE TIP: Tools to Generate Test Data
The following are popular tools for test data generation:

ä factory boy A package that generates model test data.
ä faker This package generates test data, but rather than a random jumble of

text, it creates localized names, addresses, and text. It even comes with instruc-
tions on how to integrate it with factory boy: faker.readthedocs.io/en/
master/
#how-to-use-with-factory-boy

ä model bakery Another package that generates model test data.
ä mock Not explicitly for Django, this allows us to replace parts of our system

with mock objects. This project made its way into the standard library as of
Python 3.3.

24.3.6 Things That Should Be Tested

Everything! Seriously, test whatever is possible to test, including:

Views: Viewing of data, changing of data, and custom class-based view methods.
Models: Creating/updating/deleting of models, model methods, model manager methods.
Forms: Form methods, clean() methods, and custom fields.
Validators: Really dig in and write multiple test methods against each custom validator

you write. Pretend you are a malignant intruder attempting to damage the data in the
site.

Signals: Since they act at a distance, signals can cause grief especially if you lack tests on
them.

Filters: Since filters are essentially just functions accepting one or two arguments, writing
tests for them should be easy.

Template Tags: Since template tags can do anything and can even accept template context,
writing tests often become much more challenging. This means you really need to test
them, since otherwise you may run into edge cases.

Miscellany: Context processors, middleware, email, and anything else not covered in this
list.

https://feld.to/2Yh01pg
https://feld.to/2Yh01pg
https://feld.to/2Yh01pg
https://github.com/feldroy/two-scoops-of-django-3.x/issues

24.3: How to Write Unit Tests

Failure What happens when any of the above fail? Testing for system error is as important
as testing for system success.

The only things that shouldn’t be tested are parts of your project that are already covered by
tests in core Django and third-party packages. For example, a model’s fields don’t have to be
tested if you’re using Django’s standard fields as-is. However, if you’re creating a new type
of field (e.g. by subclassing FileField), then you should write detailed tests for anything
that could go wrong with your new field type.

Figure 24.1: Test as much of your project as you can, as if it were free ice cream.

24.3.7 Test for Failure
Let’s say we have a view that allows users to edit their own ice cream shop reviews. Typical
tests involve logging in, attempting to change the review, and then checking whether they’ve
actually changed. Test success, coverage 100%. Right?

However, this only tests part of the scenario. What if the user isn’t logged in? What if
the user is trying to edit someone else’s review? Does the view produce an error and most
importantly: is the object left unchanged? It has been argued that this test is even more
important than the success scenario: a failure in the success scenario will cause inconvenience
for users but will be reported. A failure in the fail scenario will cause a silent security hole
that could go undetected until it’s too late.

This is only a sampling of the things that can go wrong when we don’t test for what happens
when our systems break down. It is up to us to learn how to test for the exceptions our code

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 24: Testing Stinks and Is a Waste of Money!

may throw:

ä docs.python.org/2/library/unittest.html#unittest.TestCase.
assertRaises

ä bit.ly/2pAxLtm PyTest assertion docs

24.3.8 Use Mock to Keep Unit Tests From Touching the World
Unit tests are not supposed to test things external to the function or method they are call-
ing. Which means that during tests we should not access external APIs, receive emails or
webhooks, or anything that is not part of the tested action. Alas, this causes a conundrum
when you are trying to write a unit test for a function that interacts with an external API.

At this point you have two choices:

ä Choice #1: Change the unit test to be an Integration Test.
ä Choice #2: Use the Mock library to fake the response from the external API.

The Mock library, created by Michael Foord, has as one of its features the capability to
briefly monkey-patch libraries in order to make them return the exact value that we want.
This way we are testing not the availability of the external API, but instead just the logic of
our code.

In the example displayed below, we are monkey-patching a function in a mythical Ice Cream
API library so our test code doesn’t access anything external to our application.

Example 24.5: Using Mock to Keep Unit Tests From Touching the World

from unittest import mock, TestCase

import icecreamapi

from flavors.exceptions import CantListFlavors
from flavors.utils import list_flavors_sorted

class TestIceCreamSorting(TestCase):

Set up monkeypatch of icecreamapi.get_flavors()
@mock.patch.object(icecreamapi, 'get_flavors')
def test_flavor_sort(self, get_flavors):

Instructs icecreamapi.get_flavors() to return an
unordered list.↪→

https://feld.to/3f2Ip67
https://feld.to/3f2Ip67
https://feld.to/3bYFHN2
https://github.com/feldroy/two-scoops-of-django-3.x/issues

24.3: How to Write Unit Tests

get_flavors.return_value = ['chocolate', 'vanilla',
'strawberry',]↪→

list_flavors_sorted() calls the icecreamapi.get_flavors()
function. Since we've monkeypatched the function, it

will always↪→

return ['chocolate', 'strawberry', 'vanilla',]. Which
the.↪→

list_flavors_sorted() will sort alphabetically
flavors = list_flavors_sorted()

self.assertEqual(
flavors,
['chocolate', 'strawberry', 'vanilla',]

)

Now let’s demonstrate how to test the behavior of the list_flavors_sorted() function
when the Ice Cream API is inaccessible.

Example 24.6: Testing For When API is Unavailable

@mock.patch.object(icecreamapi, 'get_flavors')
def test_flavor_sort_failure(self, get_flavors):

Instructs icecreamapi.get_flavors() to throw a FlavorError.
get_flavors.side_effect = icecreamapi.FlavorError()

list_flavors_sorted() catches the icecreamapi.FlavorError()
and passes on a CantListFlavors exception.
with self.assertRaises(CantListFlavors):

list_flavors_sorted()

As an added bonus for API authors, here’s how we test how code handles two different
python-requests connection problems:

Example 24.7: Testing python-requests Connection Failures

@mock.patch.object(requests, 'get')
def test_request_failure(self, get):

"""Test if the target site is inaccessible."""

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 24: Testing Stinks and Is a Waste of Money!

get.side_effect = requests.exception.ConnectionError()

with self.assertRaises(CantListFlavors):
list_flavors_sorted()

@mock.patch.object(requests, 'get')
def test_request_failure_ssl(self, get):

"""Test if we can handle SSL problems elegantly."""
get.side_effect = requests.exception.SSLError()

with self.assertRaises(CantListFlavors):
list_flavors_sorted()

24.3.9 Use Fancier Assertion Methods

Comparing two lists (or tuples) is a very common use case. However, if the lists are al-
lowed to have different sort orders, then we have to sort the lists to match, then run
self.assertEqual(control_list, candidate_list) right?

Not if we know to use unittest’s assertItemsEqual() assertion method! In fact, Python
and Django’s unittest documentation includes handy links to the very useful assertion types
we get for free:

ä docs.python.org/3/library/unittest.html#assert-methods
ä docs.djangoproject.com/en/3.2/topics/testing/tools/#assertions

We’ve found the following assert methods extremely useful:

ä assertRaises
ä assertRaisesMessage()
ä assertCountEqual()
ä assertDictEqual()
ä assertFormError()
ä assertContains() Check status 200, checks in response.content.
ä assertHTMLEqual() Amongst many things, ignores whitespace differences.
ä assertInHTML()Great for confirming a tiny bit of HTML in a giant HTML page.
ä assertJSONEqual()
ä assertURLEqual()

https://feld.to/35f7ztM
https://feld.to/35fSkkD
https://github.com/feldroy/two-scoops-of-django-3.x/issues

24.4: What About Integration Tests?

24.3.10 Document the Purpose of Each Test
Just as it is a good idea to document the purpose of a class, method, or function with doc-
strings, it is also a good idea to document the purpose of the test analogs of these items.
If undocumented code makes a project somewhat harder to maintain, undocumented test
code can make a project impossible to test. To remedy this, a little bit of docstring can go a
long way.

If one thinks this is boring, well, we’ve found that a good way to deal with an impossible-
to-debug problem is to document the related tests. By the time the tests are documented,
we have either figured out the problem or we have documented tests. Either case is a win!

Resources:

ä hynek.me/articles/document-your-tests/
ä interrogate.readthedocs.io/ - A library that checks code bases for missing

docstrings

24.4 What About Integration Tests?
Integration testing is when individual software modules are combined and tested as a group.
This is best done after unit tests are complete. Examples of integration tests can include:

ä Selenium tests to confirm that an application works in the browser.
ä Actual testing against a third-party API instead of mocking responses. For example,

Django Packages conducts periodic tests against GitHub and the PyPI API to ensure
that its interaction with those systems is valid.

ä Interacting with httpbin.org to confirm the validity of outbound requests.
ä Using runscope.com or postman.com to validate that our API is working as ex-

pected.

Integration tests are a great way to confirm that ‘all the pieces’ are working. We can confirm
that our users will see what they are supposed to see and our APIs are functioning correctly.

The downside of integration tests are:

ä Setting up integration tests can take a lot of time.
ä Compared to unit tests, integrations are extremely slow. That’s because instead of

testing the smallest components, integration tests are, by definition, testing the whole
system.

ä When errors are thrown by integration tests, uncovering the problem is harder than
unit tests. For example, a problem affecting a single type of browser might be caused
by a unicode transformation happening at the database level.

https://hynek.me/articles/document-your-tests/
https://interrogate.readthedocs.io/
http://httpbin.org/
https://www.runscope.com/
https://postman.com
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 24: Testing Stinks and Is a Waste of Money!

ä Integration tests are fragile compared to unit tests. A small change in a component
or setting can break them. We’ve yet to work on a significant project where at least
one person wasn’t forever blocked from running them successfully.

Even with these problems, integration tests are useful and worth considering adding to our
testing stack.

24.5 Continuous Integration
For projects of any size, we recommend setting up a continuous integration (CI) server to
run the project’s test suite whenever code is committed and pushed to the project repo. See
Chapter 34: Continuous Integration for more details.

24.6 Who Cares? We Don’t Have Time for Tests!
“Tests are the Programmer’s stone, transmuting fear into boredom.”

–Kent Beck

Let’s say you are confident of your coding skill and decide to skip testing to increase your
speed of development. Or maybe you feel lazy. It’s easy to argue that even with test genera-
tors and using tests instead of the shell, they can increase the time to get stuff done.

Oh, really?

What about when it’s time to upgrade?

That’s when the small amount of work you did up front to add tests saves you a lot of work.

For example, in the summer of 2010, Django 1.2 was the standard when we started Django
Packages (djangopackages.org). Since then the project has stayed current with new
Django versions, which has been really useful. Because of its pretty good test coverage,
moving it up a version of Django (or the various dependencies) has been easy. Our path to
upgrade:

ä Upgrade the version in a local instance of Django Packages.
ä Run the tests.
ä Fix any errors that are thrown by the tests.
ä Do some manual checking.

If Django Packages didn’t have tests, any time we upgraded anything we would have to click
through dozens and dozens of scenarios manually, which is error-prone. Having tests means
we can make changes and dependency upgrades with the confidence that our users (i.e. the
Django community) won’t have to deal with a buggy experience.

This is the benefit of having tests.

http://djangopackages.org
https://github.com/feldroy/two-scoops-of-django-3.x/issues

24.7: The Game of Test Coverage

24.7 The Game of Test Coverage
A great, fun game to play is trying get test coverage as high as possible. Every day that we
increase our test coverage is a victory, and every day that the coverage goes down is a loss.

24.8 Setting Up the Test Coverage Game
Yes, we call test coverage a game. It’s a good tool for developers to push themselves. It’s
also a nice metric that both developers and their clients/employers/investors can use to help
evaluate the status of a project.

We advocate following these steps because most of the time we want to only test our own
project’s apps, not all of Django, and the myriad of third-party libraries that are the building
blocks of our project. Testing those ‘building blocks’ takes an enormous amount of time,
which is a waste because most are already tested or require additional setup of resources.

24.8.1 Step 1: Start Writing Tests

We’ve done that already, right?

24.8.2 Step 2: Run Tests and Generate Coverage Report

Let’s try it out! In the command-line, at the <project_root>, type:

Example 24.8: Running Django tests using coverage.py

$ coverage run manage.py test --settings=twoscoops.settings.test

If we have nothing except for the default tests for two apps, we should get a response that
looks like:

Example 24.9: Positive Test Results

Creating test database for alias "default"...
..

Ran 2 tests in 0.008s

OK

Destroying test database for alias "default"...

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 24: Testing Stinks and Is a Waste of Money!

This doesn’t look like much, but what it means is that we’ve constrained our application to
only run the tests that you want. Now it’s time to go and look at and analyze our embarrass-
ingly low test coverage numbers.

24.8.3 Step 3: Generate the Report!

coverage.py provides a very useful method for generating HTML reports that don’t just
provide percentage numbers of what’s been covered by tests, it also shows us the places
where code is not tested. In the command-line, at the <project_root>:

Example 24.10: Test Results Without admin.py

$ coverage html --omit="admin.py"

Ahem...don’t forget to change <project-root> to match the development machine’s structure!
For example, depending on where one does things, the <path-to-project-root> could be:

ä /Users/audreyr/code/twoscoops/twoscoops/
ä /Users/pydanny/projects/twoscoops/twoscoops/
ä c:\ twoscoops

After this runs, in the <project_root> directory there is a new directory called htmlcov/ . In
the htmlcov/ directory, open the index.html file using any browser.

What is seen in the browser is the test results for our test run. Unless we already wrote some
tests, the total on the front page will be in the single digits, if not at 0%. Click into the
various modules listed and we should see lots of code that’s red-colored. Red is bad.

Let’s go ahead and admit that our project has a low coverage total. If your project has a
low coverage total, you need to admit it as well. It’s okay just so long as we also resolve to
improve the coverage total.

In fact, there is nothing wrong in saying publicly that you are working to improve a project’s
test coverage. Then, other developers (including ourselves) will cheer you on!

24.9 Playing the Game of Test Coverage
The game has a single rule:

Mandate that no commit can lower test coverage.

https://github.com/feldroy/two-scoops-of-django-3.x/issues

24.10: Alternatives to unittest

If we add a feature or bug fix and coverage is 65% when we start, we can’t merge our code
in until coverage is at least 65% again. At the end of each day, if test coverage goes up by
any amount, it means we’re winning.

Keep in mind that the gradual increase of test coverage can be a very good thing over huge
jumps. Gradual increases can mean that we developers aren’t putting in bogus tests to bump
up coverage numbers; instead, we are improving the quality of the project.

24.10 Alternatives to unittest
All the examples in this chapter thus far have used the unittest library. While every known
authority on testing agrees that unittest is a very powerful, useful tool, not all of them like it.
The specific reason, and one we fully comprehend, is that it requires too much boilerplate.

Fortunately, there is the pytest alternatives that requires a lot less boilerplate: pypi.org/
project/pytest-django/

This library is a wrapper around the pytest library. In return for a little bit of extra setup,
this allows for not just the running of unittest-based tests, but also for running any function
(and class/directory/module) prefixed with “test_”. For example, you could write a simple
test that looks like this:

Example 24.11: py.test example

test_models.py
from pytest import raises

from cones.models import Cone

def test_good_choice():
assert Cone.objects.filter(type='sugar').count() == 1

def test_bad_cone_choice():
with raises(Cone.DoesNotExist):

Cone.objects.get(type='spaghetti')

While this example is based on pytest, similar functionality can be used with nose and it’s
nose.tools.raises decorator.

A possible downside of the simplicity of these function-based tests is the lack of inheritance.
If a project needs to have similar behavior over a lot of different tests, then writing tests this
way may not make sense.

https://pypi.org/project/pytest-django/
https://pypi.org/project/pytest-django/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 24: Testing Stinks and Is a Waste of Money!

24.11 Summary
All of this might seem silly, but testing can be very serious business. In a lot of developer
groups this subject, while gamified, is taken very seriously. Lack of stability in a project can
mean the loss of clients, contracts, and even employment.

In the next chapter we cover a common obsession of Python developers: documentation.

https://github.com/feldroy/two-scoops-of-django-3.x/issues

25 | Documentation: Be Obsessed

Given a choice between ice cream and writing great documentation, most Python developers
would probably choose to write the documentation. That being said, writing documentation
while eating ice cream is even better.

When you have great documentation tools like Markdown , MkDocs, Sphinx, Myst-
Parser for Sphinx, and you actually can’t help but want to add docs to your projects.

25.1 Use GitHub-Flavored Markdown for Docs
You’ll want to learn and follow the standard best practices for documentation. These days,
GitHub-Flavored Markdown (GFM) is the most common markup language used for doc-
umenting Python projects. Other tools and companies have adopted GFM, for example,
GitLab uses GFM in their READMEs and issue trackers.

Here is the formal GFM specification and a sample project which benefits from using it:

ä github.github.com/gfm/
ä django-rest-framework.org/

While it’s possible to study the formal documentation for GFM and learn the basics, here
is a quick primer of some very useful commands you should learn.

Example 25.1: Markdown Primer

H1 Header

emphasis (bold/strong)

italics

underline

https://github.github.com/gfm/
https://www.django-rest-framework.org/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 25: Documentation: Be Obsessed

link: [Two Scoops Press](https://twoscoopspress.com)

Note: The secret to links in Markdown is think of it like a
function call. The link in the paranthesis is the value being
called.

↪→

↪→

Section Header

#. An enumerated list item
#. Second item

- First bullet

- Second bullet

- Indented Bullet

- Note carriage return and indents

Literal code block:

``` python
def like():

print("I like Ice Cream")

for i in range(10):
like()

```

JavaScript colored code block:

``` js
console.log("Don't use alert()");
```

https://github.com/feldroy/two-scoops-of-django-3.x/issues

25.2: Use MkDocs or Sphinx with Myst to Generate Documentation From Markdown

25.2 Use MkDocs or Sphinx with Myst to Generate Docu-
mentation From Markdown

MkDocs and Sphinx with Myst are static site generators which render nice-looking docs
from your .md files. Output formats include HTML, LaTeX, manual pages, and plain text.

MkDocs should just work per the usage instructions at mkdocs.org/#getting-started

For Sphinx, you’ll need to follow the Myst instructions to generate markdown docs: https:
//myst-parser.readthedocs.io/en/latest/using/intro.html.

TIP: Build Your Documentation at Least Weekly

You never know when bad cross-references or invalid formatting can break the doc-
umentation build. Rather than discover that the documentation is unbuildable at an
awkward moment, just make a habit of creating it on a regular basis. Our preference
is to make it part of our Continuous Integration processes, as covered in Chapter 34:
Continuous Integration.

PACKAGE TIP: Other Documentation Generators
We list the two main Python-based documentation site generators, but if one is
willing to explore non-python options, there are numerous other open source and
commercial documentation alternatives. Here is a quick list of some excellent ones
we’ve used in the past few years:

ä docusaurus.io
ä docsify.js.org
ä bookdown.org

25.3 What Docs Should Django Projects Contain?
Developer-facing documentation refers to notes and guides that developers need in order
to set up and maintain a project. This includes notes on installation, deployment, architec-
ture, how to run tests or submit pull requests, and more. We’ve found that it really helps to
place this documentation in all our projects, private or public.

Here we provide a table that describes what we consider the absolute minimum documen-
tation:

https://feld.to/2YnG5Rs
myst-parser.readthedocs.io/en/latest/using/intro.html
myst-parser.readthedocs.io/en/latest/using/intro.html
https://docusaurus.io/
https://docsify.js.org/
https://bookdown.org/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 25: Documentation: Be Obsessed

Filename or Directory Reason Notes
README.md Every coding project you

begin regardless of frame-
work or languae should
have a README.md file
in the repository root.

Provide at least a short
paragraph describing what
the project does. Also, link
to the installation instruc-
tions in the docs/ directory.

docs/ Your project documenta-
tion should go in one, con-
sistent location. This is the
Python community stan-
dard.

A simple directory.

docs/deployment.md This file lets you take a day
off.

A point-by-point set of in-
structions on how to instal-
l/update the project into
production, even if it’s done
via something powered by
various devops tools that
in theory make it “simple”,
document it here.

docs/installation.md This is really nice for new
people coming into a
project or when you get a
new laptop and need to set
up the project.

A point-by-point set of in-
structions on how to on-
board yourself or another
developer with the soft-
ware setup for a project.

docs/architecture.md A guide for understanding
what things evolved from
as a project ages and grows
in scope.

This is how you imagine a
project to be in simple text
and it can be as long or
short as you want. Good
for keeping focused at the
beginning of an effort.

Table 25.1: Documentation Django Projects Should Contain

https://github.com/feldroy/two-scoops-of-django-3.x/issues

25.4: Additional Markdown Documentation Resources

Figure 25.1: Even ice cream could benefit from documentation.

25.4 Additional Markdown Documentation Resources
ä python.org/dev/peps/pep-0257 Official specification on docstrings.
ä readthedocs.io Read the Docs is a free service that can host your Sphinx or Mk-

Docs documentation.
ä pythonhosted.org Python Hosted is another free service for documentation host-

ing.
ä en.wikipedia.org/wiki/Markdown
ä documentup.com will host README documents written in Markdown format.

25.5 The ReStructuredText Alternative
ReStructuredText is a plain text formatting syntax not too dissimilar to Markdown. It has
a lot more built-in features than Markdown but is harder to learn and slower to write. It is
used by core tools such as Django, Python and many older third-party libraries .

25.5.1 ReStructuredText Resources
ä docutils.sourceforge.net/docs/ref/rst/restructuredtext.html is

the formal specification for reStructuredText.
ä docs.readthedocs.io/en/stable/intro/getting-started-with-sphinx.

html - ReadTheDoc’s starting instructions for Sphinx.
ä sphinx-doc.org/ is the Sphinx project home page. While usable with Markdown,

Sphinx really shines when used with ReStructuredText.

http://www.python.org/dev/peps/pep-0257
https://readthedocs.io/
http://pythonhosted.org/
https://en.wikipedia.org/wiki/Markdown
https://documentup.com
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html
https://docs.readthedocs.io/en/stable/intro/getting-started-with-sphinx.html
https://docs.readthedocs.io/en/stable/intro/getting-started-with-sphinx.html
https://www.sphinx-doc.org/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 25: Documentation: Be Obsessed

25.6 When Documentation Needs to Be Convert to/from
Markdown or ReStructuredText

Pandoc is a command-line tool that allows us to convert files from one markup format
into another. We can write in one format, and quickly convert it to another. Here’s how to
convert files using this tool:

Example 25.2: Using Pandoc to convert between formats

\$ # To convert a ReStructuredText document to GitHub-Flavored
Markdown↪→

\$ pandoc -t gfm README.rst -o README.md
\$ # To convert a Markdown document to ReStructuredText
\$ pandoc -f gfm README.md -o README.rst

Pandoc’s documentation is found at pandoc.org.

25.7 Wikis and Other Documentation Methods
For whatever reason, if you can’t place developer-facing documentation in the project itself,
you should have other options. While wikis, online document stores, and word processing
documents don’t have the feature of being placed in version control, they are better than no
documentation.

Please consider creating documents within these other methods with the same names as the
ones we suggested in the table on the previous page.

25.8 Ensuring that Code is Documented
Even with unambigious naming patterns and type hints, it can be hard to determine what
a particular class, method, or function does. This is where docstrings have saved the day
for so many over the years. To make enforcing this level of documentation easier, use the
Interrogate library.

interrogate.readthedocs.io/

25.9 Summary
In this chapter we went over the following:

ä The use of Markdown to write documentation in plaintext format.
ä The use of static site generators to render your documentation in HTML. Some tools

enable rendering docs as epub, mobi, or PDF.
ä Advice on the documentation requirements for any Django project.

https://pandoc.org/
https://interrogate.readthedocs.io/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

25.9: Summary

ä Using ReStructuredText as a documentation alternative.
ä Pandoc as a tool to convert between formats.
ä Enforcing documentation with Interrogate.

Next, we’ll take a look at common bottlenecks in Django projects and ways to deal with
them.

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 25: Documentation: Be Obsessed

https://github.com/feldroy/two-scoops-of-django-3.x/issues

26 | Finding and Reducing
Bottlenecks

WARNING: This Chapter is in Progress

We are in the midst of working on this chapter and will expand on it in the days to
come. We are open to suggestions on topics and items to cover, please submit them
to github.com/feldroy/two-scoops-of-django-3.x/issues

This chapter covers a few basic strategies for identifying bottlenecks and speeding up your
Django projects.

26.1 Should You Even Care?
Remember, premature optimization is bad. If your site is small- or medium-sized and the
pages are loading fine, then it’s okay to skip this chapter.

On the other hand, if your site’s user base is growing steadily or you’re about to land a
strategic partnership with a popular brand, then read on.

26.2 Speed Up Query-Heavy Pages
This section describes how to reduce bottlenecks caused by having too many queries, as well
as those caused by queries that aren’t as snappy as they could be.

We also urge you to read up on database access optimization in the official Django docs:
docs.djangoproject.com/en/3.2/topics/db/optimization/

26.2.1 Find Excessive Queries With Django Debug Toolbar
You can use django-debug-toolbar to help you determine where most of your queries are
coming from. You’ll find bottlenecks such as:

https://github.com/feldroy/two-scoops-of-django-3.x/issues
https://docs.djangoproject.com/en/3.2/topics/db/optimization/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 26: Finding and Reducing Bottlenecks

ä Duplicate queries in a page.
ä ORM calls that resolve to many more queries than you expected.
ä Slow queries.

You probably have a rough idea of some of the URLs to start with. For example, which
pages don’t feel snappy when they load?

Install django-debug-toolbar locally if you don’t have it yet. Look at your project in a web
browser, and expand the SQL panel. It’ll show you how many queries the current page
contains.

PACKAGE TIP: Packages for Profiling and Performance Analysis

django-debug-toolbar is a critical development tool and an invaluable aid in page-
by-page analysis. We also recommend adding django-cache-panel to your project,
but only configured to run when settings/local.py module is called. This will increase
visibility into what your cache is doing.

django-extensions comes with a tool called RunProfileServer that starts
Django’s runserver command with hotshot/profiling tools enabled.

silk (github.com/mtford90/silk) Silk is a live profiling Django app that inter-
cepts and stores HTTP requests and database queries before presenting them in a
user interface for further inspection.

26.2.2 Reduce the Number of Queries
Once you know which pages contain an undesirable number of queries, figure out ways to
reduce that number. Some of the things you can attempt:

ä Try using select_related() in your ORM calls to combine queries. It follows
ForeignKey relations and combines more data into a larger query. If using CBVs,
django-braces makes doing this trivial with the SelectRelatedMixin. Beware of
queries that get too large by explicitly passing the related field names you are interested
in. Only the specified relations will be followed. Combine that with careful testing!

ä For many-to-many and many-to-one relationships that can’t be optimized with
select_related(), explore using prefetch_related() instead.

ä If the same query is being generated more than once per template, move the query
into the Python view, add it to the context as a variable, and point the template ORM
calls at this new context variable.

https://github.com/mtford90/silk
https://github.com/feldroy/two-scoops-of-django-3.x/issues

26.2: Speed Up Query-Heavy Pages

ä Implement caching using a key/value store such as Memcached or Redis. Then
write tests to assert the number of queries run in a view. See
docs.djangoproject.com/en/3.2/topics/testing/tools/#django.
test.TransactionTestCase.assertNumQueries for instructions.

ä Use the django.utils.functional.cached_property decorator to cache in
memory the result of method call for the life of an object instance. This is incred-
ibly useful, so please see Section 31.3.5: django.utils.functional.cached_property in
chapter 31.

26.2.3 Speed Up Common Queries
The length of time it takes for individual queries can also be a bottleneck. Here are some
tips, but consider them just starting points:

ä Make sure your indexes are helping speed up your most common slow queries. Look
at the raw SQL generated by those queries, and index on the fields that you filter/sort
on most frequently. Look at the generated WHERE and ORDER_BY clauses.

ä Understand what your indexes are actually doing in production. Development ma-
chines will never perfectly replicate what happens in production, so learn how to
analyze and understand what’s really happening with your database.

ä Look at the query plans generated by common queries.
ä Turn on your database’s slow query logging feature and see if any slow queries occur

frequently.
ä Use django-debug-toolbar in development to identify potentially-slow queries defen-

sively, before they hit production.

Once you have good indexes, and once you’ve done enough analysis to know which queries
to rewrite, here are some starting tips on how to go about rewriting them:

1 Rewrite your logic to return smaller result sets when possible.
2 Re-model your data in a way that allows indexes to work more effectively.
3 Drop down to raw SQL in places where it would be more efficient than the generated

query.

TIP: Use EXPLAIN ANALYZE / EXPLAIN
If you’re using PostgreSQL, you can use EXPLAIN ANALYZE to get an extremely
detailed query plan and analysis of any raw SQL query. For more information, see:

ä revsys.com/writings/postgresql-performance.html
ä craigkerstiens.com/2013/01/10/more-on-postgres-performance/

https://feld.to/3bMRhej
https://feld.to/3bMRhej
http://www.revsys.com/writings/postgresql-performance.html
http://www.craigkerstiens.com/2013/01/10/more-on-postgres-performance/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 26: Finding and Reducing Bottlenecks

The MySQL equivalent is the EXPLAIN command, which isn’t as detailed but is still
helpful. For more information, see:

ä dev.mysql.com/doc/refman/5.7/en/explain.html

A nice feature of django-debug-toolbar is that the SQL pane has an EXPLAIN fea-
ture.

26.2.4 Switch ATOMIC_REQUESTS to False
The clear, vast majority of Django projects will run just fine with the setting of
ATOMIC_REQUESTS to True. Generally, the penalty of running all database queries in a
transaction isn’t noticeable. However, if your bottleneck analysis points to transactions caus-
ing too much delay, it’s time to change the project run as ATOMIC_REQUESTS to False. See
Section 7.7.2: Explicit Transaction Declaration for guidelines on this setting.

26.3 Get the Most Out of Your Database
You can go a bit deeper beyond optimizing database access. Optimize the database itself !
Much of this is database-specific and already covered in other books, so we won’t go into
too much detail here.

26.3.1 Know What Doesn’t Belong in the Database
Frank Wiles of Revolution Systems taught us that there are two things that should never
go into any large site’s relational database:

Logs. Don’t add logs to the database. Logs may seem OK on the surface, especially in devel-
opment. Yet adding this many writes to a production database will slow their performance.
When the ability to easily perform complex queries against your logs is necessary, we rec-
ommend third-party services such as Splunk or Loggly, or use of document-based NoSQL
databases.

Ephemeral data. Don’t store ephemeral data in the database. What this means is data that
requires constant rewrites is not ideal for use in relational databases. This includes examples
such as django.contrib.sessions, django.contrib.messages, and metrics. Instead, move this
data to things like Memcached, Redis, and other non-relational stores.

TIP: Frank Wiles on Binary Data in Databases

Actually, Frank says that there are three things to never store in a database, the
third item being binary data. Storage of binary data in databases is addressed by

http://dev.mysql.com/doc/refman/5.7/en/explain.html
https://github.com/feldroy/two-scoops-of-django-3.x/issues

26.4: Cache Queries With Memcached or Redis

django.db.models.FileField, which does the work of storing files on file
servers like AWS CloudFront or S3 for you. Exceptions to this are detailed in Sec-
tion 6.4.5: When to Use BinaryField.

26.3.2 Getting the Most Out of PostgreSQL
If using PostgreSQL, be certain that it is set up correctly in production. As this is outside
the scope of the book, we recommend the following articles:

ä wiki.postgresql.org/wiki/Detailed_installation_guides
ä wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
ä revsys.com/writings/postgresql-performance.html
ä craigkerstiens.com/2012/10/01/understanding-postgres-performance
ä craigkerstiens.com/2013/01/10/more-on-postgres-performance

26.3.3 Getting the Most Out of MySQL
It’s easy to get MySQL running, but optimizing production installations requires experience
and understanding. As this is outside the scope of this book, we recommend the following
links to help you:

ä TODO - list good resources

26.4 Cache Queries With Memcached or Redis
You can get a lot of mileage out of simply setting up Django’s built-in caching system with
Memcached or Redis. You will have to install one of these tools, install a package that
provides Python bindings for them, and configure your project.

You can easily set up the per-site cache, or you can cache the output of individual views or
template fragments. You can also use Django’s low-level cache API to cache Python objects.

Reference material:

ä docs.djangoproject.com/en/3.2/topics/cache/
ä github.com/niwinz/django-redis

26.5 Identify Specific Places to Cache
Deciding where to cache is like being first in a long line of impatient customers at Ben and
Jerry’s on free scoop day. You are under pressure to make a quick decision without being
able to see what any of the flavors actually look like.

Here are things to think about:

http://wiki.postgresql.org/wiki/Detailed_installation_guides
http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
http://www.revsys.com/writings/postgresql-performance.html
http://www.craigkerstiens.com/2012/10/01/understanding-postgres-performance/
http://www.craigkerstiens.com/2013/01/10/more-on-postgres-performance/
https://docs.djangoproject.com/en/3.2/topics/cache/
https://github.com/niwinz/django-redis
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 26: Finding and Reducing Bottlenecks

ä Which views/templates contain the most queries?
ä Which URLs are being requested the most?
ä When should a cache for a page be invalidated?

Let’s go over the tools that will help you with these scenarios.

26.6 Consider Third-Party Caching Packages
Third-party packages will give you additional features such as:

ä Caching of QuerySets.
ä Cache invalidation settings/mechanisms.
ä Different caching backends.
ä Alternative or experimental approaches to caching.

A few of the popular Django packages for caching are:

ä django-cacheops
ä django-cachalot

See djangopackages.org/grids/g/caching/ for more options.

WARNING: Third-Party Caching Libraries Aren’t Always the
Answer
Having tried many of the third-party Django cache libraries, we have to ask our
readers to test them very carefully and be prepared to drop them. They are cheap,
quick wins, but can lead to some hair-raising debugging efforts at the worst possible
times.

Cache invalidation is hard, and in our experience, magical cache libraries are better
for projects with more static content. By-hand caching is a lot more work, but leads
to better performance in the long run and doesn’t risk those terrifying moments.

26.7 Compression and Minification of HTML, CSS, and
JavaScript

When a browser renders a web page, it usually has to load HTML, CSS, JavaScript, and im-
age files. Each of these files consumes the user’s bandwidth, slowing down page loads. One
way to reduce bandwidth consumption is via compression and minification. Django even
provides tools for you: GZipMiddleware and the {% spaceless %} template tag. Through
the at-large Python community, we can even use WSGI middleware that performs the
same task.

https://djangopackages.org/grids/g/caching/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

26.8: Use Upstream Caching or a Content Delivery Network

The problem with making Django and Python do the work is that compression and minifica-
tion take up system resources, which can create bottlenecks of their own. A better approach
is to use Nginx or Apache web servers configured to compress the outgoing content. If you
are maintaining your own web servers, this is absolutely the way to go.

A common approach is to use a third-party compression module or Django library to com-
press and minify the HTML, CSS, and JavaScript in advance. Our preference is django-
pipeline which comes recommended by Django core developer Jannis Leidel.

For CSS and JavaScript, most people use JavaScript-powered tools for minification. Tools
like django-webpack-loader manage the JavaScript libraries within the Django context.
The advantage of this approach is the greater mindshare of tools and solved problems in
this domain space.

Tools and libraries to reference:

ä Apache and Nginx compression modules
ä django-webpack-loader
ä django-pipeline
ä django-compressor
ä django-htmlmin
ä Django’s built-in spaceless tag: docs.djangoproject.com/en/3.2/ref/

templates/builtins/spaceless
ä djangopackages.org/grids/g/asset-managers/

26.8 Use Upstream Caching or a Content Delivery
Network

Upstream caches such as Varnish are very useful. They run in front of your web server and
speed up web page or content serving significantly. See varnish-cache.org.

Content Delivery Networks (CDNs) like Fastly, Akamai, and Amazon Cloudfront serve
static media such as images, video, CSS, and JavaScript files. They usually have servers all
over the world, which serve out your static content from the nearest location. Using a CDN
rather than serving static content from your application servers can speed up your projects.

26.9 Other Resources
Advanced techniques on scaling, performance, tuning, and optimization are beyond the
scope of this book, but here are some starting points.

On general best practices for web performance:

https://feld.to/2SkUg66
https://feld.to/2SkUg66
http://djangopackages.org/grids/g/asset-managers/
http://varnish-cache.org/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 26: Finding and Reducing Bottlenecks

ä TODO - add useful links

On scaling large Django sites:

ä “The Temple of Django Database Performance” is a book that dives deep into opti-
mizing Django projects for speed and scalability. It’s a delightful book full of fan-
tasy and RPG references and worth every penny. spellbookpress.com/books/
temple-of-django-database-performance/

ä Written with a focus on scaling Django, the book “High Performance Django” espouses
many good practices. Full tricks and tips, as well as questions in each section that
force you to think about what you are doing. Dated in places, but still full of useful
information. highperformancedjango.com

ä Watch videos of presentations from past DjangoCons and Py-
Cons about different developers’ experiences. Scaling prac-
tices vary from year to year and from company to company:
https://www.youtube.com/results?search_query=django+scaling

Figure 26.1: With your site running smoothly, you’ll be feeling as cool as a cone.

https://spellbookpress.com/books/temple-of-django-database-performance/
https://spellbookpress.com/books/temple-of-django-database-performance/
https://highperformancedjango.com
https://www.youtube.com/results?search_query=django+scaling
https://github.com/feldroy/two-scoops-of-django-3.x/issues

26.10: Summary

TIP: For Sites With High Volume: High Performance Django

We want to reiterate that “High Performance Django” is worth getting if your site
has enough traffic to cause issues. While it’s getting old, Peter Baumgartner and
Yann Malet wrote the book more at the conceptual level, making it a volume that
you should consider purchasing.

ä highperformancedjango.com
ä amazon.com/High-Performance-Django/dp/1508748128

26.10 Summary
In this chapter, we explored a number of bottleneck reduction strategies including:

ä Whether you should even care about bottlenecks in the first place.
ä Profiling your pages and queries.
ä Optimizing queries.
ä Using your database wisely.
ä Caching queries.
ä Identifying what needs to be cached.
ä Compression of HTML, CSS, and JavaScript.
ä Exploring other resources.

In the next chapter, we’ll cover various practices involving asynchronous taskqueues, which
may resolve our bottleneck problems.

https://highperformancedjango.com
https://www.amazon.com/High-Performance-Django/dp/1508748128/?tag=mlinar-20
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 26: Finding and Reducing Bottlenecks

https://github.com/feldroy/two-scoops-of-django-3.x/issues

27 | Asynchronous Task Queues

WARNING: This Chapter is in Progress

We are in the midst of working on this chapter and will expand on it in the days to
come. We are open to suggestions on topics and items to cover, please submit them
to github.com/feldroy/two-scoops-of-django-3.x/issues

An asynchronous task queue is one where tasks are executed at a different time from when
they are created, and possibly not in the same order they were created. Here is an example
of a human-powered asynchronous task queue:

1 In their spare time, Audrey and Daniel make ice cream cakes, taking orders from
friends and family. They use an issue tracker to track their tasks for scooping, spread-
ing, and decorating each cake.

2 Every so often, when they have spare time, they review the list of tasks and pick
one to do. Audrey prefers scooping and decorating, always doing those tasks first.
Daniel prefers scooping and spreading, finishing those before decorating. The result
is asynchronous completion of cake-making tasks.

3 As a cake-making task is completed and delivered, they mark the issue as closed.

TIP: Task Queue vs Asynchronous Task Queue

In the Django world, both terms are used to describe asynchronous task queue.
When someone writes task queue in the context of Django, they usually mean asyn-
chronous task queue.

Before we get into best practices, let’s go over some definitions:

Broker The storage for the tasks themselves. This can be implemented using any sort of

https://github.com/feldroy/two-scoops-of-django-3.x/issues
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 27: Asynchronous Task Queues

persistence tool, although in Django the most common ones in use are RabbitMQ
and Redis. In the human-powered example, the storage is an online issue tracker.

Producer The code that adds tasks to the queue to be executed later. This is application
code, the stuff that makes up a Django project. In the human-powered example, this
would be Audrey and Daniel, plus anyone they can get to pitch in to help.

Worker The code that takes tasks from the broker and performs them. Usually there is more
than one worker. Most commonly each worker runs as a daemon under supervision.
In the human-powered example, this is Audrey and Daniel.

Serverless Usually provided by services such as AWS Lambda, this is, to paraphrase Mar-
tin Fowler, “where some amount of server-side logic is written by us but unlike tra-
ditional architectures is run in stateless compute containers that are event-triggered,
ephemeral (only last for one invocation), and fully managed by a 3rd party.” Server-
less takes over the role of Broker and Worker. In the human-powered example, it’s
as if Daniel and Audrey use a third-party service to take the orders and then follow
their precise instructions on doing the work.

27.1 Do We Need a Task Queue?
It depends. They add complexity but can improve user experience. Arguably it comes down
to whether a particular piece of code causes a bottleneck and can be delayed for later when
more free CPU cycles are available.

Here is a useful rule of thumb for determining if a task queue should be used:

Results take time to process: Task queue should probably be used.
Users can and should see results immediately: Task queue should not be used.

Let’s go over some possible use cases:

Issue Use Task Queue?
Sending bulk email Yes
Modifying files (including images) Yes
Fetching large amounts of data from third-
party Ice Cream APIs

Yes

Inserting or updating a lot of records into
a table

Yes

Updating a user profile No
Adding a blog or CMS entry No
Performing time-intensive calculations Yes
Sending or receiving of webhooks Yes

Table 27.1: Should a Project Have a Task Queue?

Please keep in mind there are site-traffic driven exceptions to all of these use cases:

https://github.com/feldroy/two-scoops-of-django-3.x/issues

27.1: Do We Need a Task Queue?

ä Sites with small-to-medium amounts of traffic may never need a task queue for any
of these actions.

ä Sites with larger amounts of traffic may discover that nearly every user action requires
use of a task queue.

Determining whether or not a site or action needs a task queue is a bit of an art. There is no
easy answer we can provide. However, knowing how to use them is a really powerful tool in
any developer’s toolkit.

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 27: Asynchronous Task Queues

https://github.com/feldroy/two-scoops-of-django-3.x/issues

28 | Security Best Practices

When it comes to security, Django has a pretty good record. This is due to security tools
provided by Django, solid documentation on the subject of security, and a thoughtful team
of core developers who are extremely responsive to security issues. However, it’s up to indi-
vidual Django developers such as ourselves to understand how to properly secure Django-
powered applications.

This chapter contains a list of things helpful for securing your Django application. This list
is by no means complete. Consider it a starting point.

TIP: What to Do if You Have a Security Breach

If you’re in the midst of a security crisis, please go to Chapter 37: Appendix G:
Handling Security Failures.

28.1 Reference Security Sections in Other Chapters
A number of other chapters in this book contain dedicated security sections, or touch on
security matters. These are found at the following locations:

ä Section 5.3: Separate Configuration From Code
ä Section 13.3: Always Use CSRF Protection With HTTP Forms That Modify Data
ä ??: ??
ä Section 28.28: Never Display Sequential Primary Keys
ä Section 21.8: Secure the Django Admin
ä Chapter 37: Appendix G: Handling Security Failures

28.2 Harden Your Servers
Search online for instructions and checklists for server hardening. Server hardening mea-
sures include but are not limited to things like setting up firewalls (help.ubuntu.com/
community/UFW), changing your SSH port, and disabling/removing unnecessary services.

https://help.ubuntu.com/community/UFW
https://help.ubuntu.com/community/UFW
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 28: Security Best Practices

28.3 Know Django’s Security Features
Django’s security features include:

ä Cross-site scripting (XSS) protection.
ä Cross-site request forgery (CSRF) protection.
ä SQL injection protection.
ä Clickjacking protection.
ä Support for TLS/HTTPS/HSTS, including secure cookies.
ä Automatic HTML escaping.
ä An expat parser hardened against XML bomb attacks.
ä Hardened JSON, YAML, and XML serialization/deserialization tools.
ä Secure password storage, using the PBKDF2 algorithm with a SHA256 hash by de-

fault. That said, please upgrade per Section 28.29: Upgrade Password Hasher to Ar-
gon2

Most of Django’s security features “just work” out of the box without additional configura-
tion, but there are certain things that you’ll need to configure. We’ve highlighted some of
these details in this chapter, but please make sure that you read the official Django documen-
tation on security as well: docs.djangoproject.com/en/3.2/topics/security/

28.4 Turn Off DEBUG Mode in Production
Your production site should not be running in DEBUG mode. Attackers can find out
more than they need to know about your production setup from a helpful DEBUG mode
stack trace page. For more information, see docs.djangoproject.com/en/3.2/ref/
settings/#debug.

Keep in mind that when you turn off DEBUG mode, you will need to set AL-
LOWED_HOSTS or risk raising a SuspiciousOperation error, which generates a 400
BAD REQUEST error that can be hard to debug. For more information on setting/debug-
ging ALLOWED_HOSTS see:

ä Section 28.7: Use Allowed Hosts Validation
ä ??: ??

28.5 Keep Your Secret Keys Secret
If the SECRET_KEY setting is not secret, depending on project setup, we risk an at-
tacker gaining control of other people’s sessions, resetting passwords, and more. Our API
keys and other secrets should be carefully guarded as well. These keys should not even be
kept in version control.

We cover the mechanics of how to keep your SECRET_KEY out of version control

https://docs.djangoproject.com/en/3.2/topics/security/
https://feld.to/3f0eV99
https://feld.to/3f0eV99
https://github.com/feldroy/two-scoops-of-django-3.x/issues

28.6: HTTPS Everywhere

in Chapter 5: Settings and Requirements Files, Section 5.3: Separate Configuration From
Code, and Section 5.4: When You Can’t Use Environment Variables.

28.6 HTTPS Everywhere
Sites must always be deployed behind HTTPS. Not having HTTPS means that malicious
network users will sniff authentication credentials between your site and end users. In fact,
all data sent between your site and end users is up for grabs.

There is also no guarantee that any of your users are seeing what you expect them to see: an
attacker could manipulate anything in the request or the response. So HTTPS makes sense
even if all your information is public, but you do care about the integrity of the information.

Your entire site must be behind HTTPS. Your site’s static resources must also be served via
HTTPS, otherwise visitors will get warnings about “insecure resources” which will rightly
scare them away from your site. For reference, these warnings exist because they are a po-
tential man-in-the-middle vector.

TIP: Jacob Kaplan-Moss on HTTPS vs HTTP

Django co-leader Jacob Kaplan-Moss says, “Your whole site should only be available
via HTTPS, not HTTP at all. This prevents getting “firesheeped” (having a session
cookie stolen when served over HTTP). The cost is usually minimal.”

If visitors try to access your site via HTTP, they must be redirected to HTTPS. This
can be done either through configuration of your web server or with Django middleware.
Performance-wise, it’s better to do this at the web server level, but if you don’t have control
over your web server settings for this, then redirecting via Django middleware is fine.

In the modern era obtaining SSL certificates is cheap and easy. Depending on your plat-
form, it’s even provided for free. To set it up, follow the instructions for your particular
web server or platform-as-a-service. Our preferred services are the very reputable (and free)
letsencrypt.org and cloudflare.com. These services makes it trivial to secure sites
with proper SSL certicates.

Large cloud providers such as AWS, Google, and Microsoft also provide options.

WARNING: The Most Secure Option is to Set Up Your Own SSL

While services like CloudFlare, AWS, Google Cloud, and Azure make it easy to
set up SSL, they aren’t as secure as letsencrypt.org. We can best explain this
through the Principle of Least Privilege (POLP). This is the practice of limiting

https://letsencrypt.org
https://cloudflare.com
https://letsencrypt.org
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 28: Security Best Practices

access rights for users to the bare minimum permissions they need to perform their
work.
While it is unlikely that a penetration will occur on these systems, either from an
outside or employee, it is not outside the realm of possibility.
For many systems the time benefit of using someone else’s SSL is worth it. However,
sites containing critical privacy information (HIPAA comes to mind) should set up
their own SSL.

WARNING: Not having HTTPS is Inexcusable

At the publication of this book it is 2020 and getting HTTPS/SSL into place is
relatively easy. Furthermore, browsers give users bold unavoidable warnings about
lack of SSL. Users of all ages and technical acumen are becoming knowledgeable of
what these warnings mean. Search engines harshly penalize sites without it.
Going forward there is no excuse for having a production site not on HTTPS. Don’t
do it, even for demos or MVPs.

TIP: Use django.middleware.security.SecurityMiddleware

The tool of choice for projects on Django for enforcing HTTPS/SSL across an
entire site through middleware is built right in. To activate this middleware just
follow these steps:

1 Add django.middleware.security.SecurityMiddleware to the
settings.MIDDLEWARE definition.

2 Set settings.SECURE_SSL_REDIRECT to True .

WARNING: django.middleware.security.SecurityMiddleware
Does Not Include static/media
Even if all Django requests are served over HTTPS, omitting HTTPS for resources
like javascript would still allow attackers to compromise your site.
As JavaScript, CSS, images, and other static assets are typically served directly by
the web server (nginx, Apache), make certain that serving of such content is done
via HTTPS. Providers of static assets such as Amazon S3 now do this by default.

https://github.com/feldroy/two-scoops-of-django-3.x/issues

28.6: HTTPS Everywhere

28.6.1 Use Secure Cookies
Your site should inform the target browser to never send cookies unless via HTTPS. You’ll
need to set the following in your settings:

Example 28.1: Securing Cookies

SESSION_COOKIE_SECURE = True
CSRF_COOKIE_SECURE = True

Read docs.djangoproject.com/en/3.2/topics/security/#ssl-https for more
details.

28.6.2 Use HTTP Strict Transport Security (HSTS)
HSTS can be configured at the web server level. Follow the instructions for your web server,
platform-as-a-service, and Django itself (via settings.SECURE_HSTS_SECONDS).

If you have set up your own web servers, Wikipedia has sample HSTS configuration snippets
that you can use: en.wikipedia.org/wiki/HTTP_Strict_Transport_Security

When you enable HSTS, your site’s web pages include a HTTP header that tells HSTS-
compliant browsers to only connect to the site via secure connections:

ä HSTS-compliant browsers will redirect HTTP links to HTTPS.
ä If a secure connection isn’t possible (e.g. the certificate is self-signed or expired), an

error message will be shown and access will be disallowed.

To give you a better idea of how this works, here’s an example of what a HTTP Strict
Transport Security response header might look like:

Example 28.2: HSTS Response Header

Strict-Transport-Security: max-age=31536000; includeSubDomains

Some HSTS configuration advice:

1 Set max-age to a small value like 300 (5 minutes) during initial deployment of a
secured site to make sure you haven’t screwed something up or forgotten to make
some portion of the site available via HTTPS. We suggest this small value because
once you set max-age, we can’t unset it for users; their browsers control expiration,
not us.

https://feld.to/2ShvQuh
https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 28: Security Best Practices

2 Once it’s been confirmed the site is properly secured, set max-age to incrementally
larger values. Go to 1 hour (3600), 1 week (604800), 1 month (2592000), and finally
1 year (31536000). This allows us to correct issues that may not turn up in initial
checks.

3 Once the project’s max-age is set to 1 year or greater (31536000), submit the project
for HSTS preloading, which can be done at hstspreload.org/. This aids in block-
ing active attackers from intercepting the first request from a user to a site.

WARNING: Choose Your HSTS Policy Duration Carefully

Remember that HSTS is a one-way switch. It’s a declaration that for the next N
seconds, your site will be HTTPS-only. Don’t set a HSTS policy with a max-age
longer than you are able to maintain. Browsers do not offer an easy way to unset it.

Note that HSTS should be enabled in addition to redirecting all pages to HTTPS as de-
scribed earlier.

WARNING: Additional Warning for includeSubDomains

We recommend everyone to use HSTS with a long duration and to use
includeSubDomains. However, especially in projects with lots of legacy compo-
nents, the combination requires great care when configuring.

Example: Imagine we create a new Django website called example.com. The site
is HTTPS with HSTS enabled. We test the HSTS settings, which work fine,
and then increase the duration to a year. Alas, after a month, someone realises
legacy.example.com is still a production service and does not support HTTPS. We
remove includeSubdomains from the header, but by now it’s already too late: all
clients inside the company have the old HSTS header remembered.

In short, before even considering includeSubdomains, one should be entirely aware
of what might be hosted under the domain that HSTS is configured on.

28.6.3 HTTPS Configuration Tools

Mozilla provides a SSL configuration generator at the mozilla.github.io/
server-side-tls/ssl-config-generator/, which can provide a starting point for
your own configuration. While not perfect, it expedites setting up HTTPS. As our security
reviewers say, “In general, any HTTPS is better than plain HTTP.”

https://hstspreload.org/
https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

28.7: Use Allowed Hosts Validation

Once you have a server set up (preferably a test server), use the Qualys SSL Labs server test
at ssllabs.com/ssltest/index.html to see how well you did. A fun security game is
trying to score an A+. Especially as the official Two Scoops of Django reward for getting
that good of a grade is a trip to the local favorite ice cream saloon.

28.7 Use Allowed Hosts Validation
In production, you must set ALLOWED_HOSTS in your settings to a list of allowed
host/domain names in order to avoid raising SuspiciousOperation exceptions. This is a
security measure to prevent the use of fake HTTP host headers to submit requests.

We recommend that you avoid setting wildcard values here. For more information, read the
Django documentation on ALLOWED_HOSTS and the get_host() method:

ä docs.djangoproject.com/en/3.2/ref/settings/#allowed-hosts
ä docs.djangoproject.com/en/3.2/ref/request-response/#django.

http.HttpRequest.get_host

28.8 Always Use CSRF Protection With HTTP Forms
That Modify Data

Django comes with easy-to-use cross-site request forgery protection (CSRF) built in, and
by default it is activated across the site via the use of middleware. Make sure that your data
changing forms use the POST method, which by default will activate CSRF protection on
the server side. The only valid exception to use GET method is for search forms, where
it is useful for the user to have the argument visible in the URL. We have some strong
recommendations discussed in Section 13.3: Always Use CSRF Protection With HTTP
Forms That Modify Data.

28.9 Prevent Against Cross-Site Scripting (XSS) Attacks
XSS attacks usually occur when users enter malignant JavaScript that is then rendered into
a template directly. This isn’t the only method, but it is the most common. Fortunately for
us, Django by default escapes <, >, ’, ”, and &, which is all that is needed for proper HTML
escaping.

The following are recommended by the Django security team:

28.9.1 Use format_html Over mark_safe

Django gives developers the ability to mark content strings as safe, meaning that Django’s
own safeguards are taken away. A better alternative is django.utils.html.format_html ,
which is like Python’s str.format() method, except designed for building up HTML

https://www.ssllabs.com/ssltest/index.html
https://feld.to/2KUWk0B
https://feld.to/3f0eVGb
https://feld.to/3f0eVGb
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 28: Security Best Practices

fragments. All args and kwargs are escaped before being passed to str.format() which
then combines the elements.

Reference: docs.djangoproject.com/en/3.2/ref/utils/#django.utils.html.
format_html

28.9.2 Don’t Allow Users to Set Individual HTML Tag Attributes
If you allow users to set individual attributes of HTML tags, that gives them a venue for
injecting malignant JavaScript.

28.9.3 Use JSON Encoding for Data Consumed by JavaScript
Rely on JSON encoding rather than finding ways to dump Python structures directly to
templates. It’s not just easier to integrate into client-side JavaScript, it’s safer. To do this,
always use the json_script filter.

Reference: docs.djangoproject.com/en/3.2/ref/templates/builtins/
#json-script

28.9.4 Beware Unusual JavaScript
Due to JavaScript’s weird semantics, it’s possible to construct syntactically-valid, executable
programs from a very tiny subset of characters. Per feld.to/unusual-javascript, it’s
possible to transform regular-looking JavaScript into an alphabet of only six characters (plus
sign, exclamation mark, open/close bracket and open/close parenthesis).

WARNING: NSFW: feld.to/unusual-javascript not safe for work

The URL that feld.to/unusual-javascript links to has a URL that may vi-
olate educational or corporate viewing policies.

28.9.5 Add Content Security Policy Headers
Also known as CSP, Content Security Policy provides a standard method to declare ap-
proved origins of content that browsers should be allowed to load on a website. Covered
types are JavaScript, CSS, HTML frames, web workers, fonts, images, embeddable objects
such as Java applets, ActiveX, audio and video files, and other HTML5 features. Option-
ally, CSP can be used with a violation-report URL collected by a project or managed by a
third-party service.

ä en.wikipedia.org/wiki/Content_Security_Policy

https://feld.to/2YfQHBZ
https://feld.to/2YfQHBZ
https://feld.to/3f77ahJ
https://feld.to/3f77ahJ
https://feld.to/unusual-javascript
https://feld.to/unusual-javascript
https://en.wikipedia.org/wiki/Content_Security_Policy
https://github.com/feldroy/two-scoops-of-django-3.x/issues

28.10: Defend Against Python Code Injection Attacks

ä github.com/mozilla/django-csp

28.9.6 Additional Reading
There are other avenues of attack that can occur, so educating yourself is important.

ä docs.djangoproject.com/en/3.2/ref/templates/builtins/#escape
ä en.wikipedia.org/wiki/Cross-site_scripting

28.10 Defend Against Python Code Injection Attacks
We once were hired to help with a project that had some security issues. The requests coming
into the site were being converted from django.http.HttpRequest objects directly into
strings via creative use of the str() function, then saved to a database table. Periodically,
these archived Django requests would be taken from the database and converted into Python
dicts via the eval() function. This meant that arbitrary Python code could be run on the
site at any time.

Needless to say, upon discovery the critical security flaw was quickly removed. This just
goes to show that no matter how secure Python and Django might be, we always need to
be aware that certain practices are incredibly dangerous.

28.10.1 Python Built-Ins That Execute Code

Beware of the eval() , exec() , and execfile() built-ins. If your project allows arbitrary
strings or files to be passed into any of these functions, you are leaving your system open to
attack.

For more information, read “Eval Really Is Dangerous” by Ned Batchelder:
nedbatchelder.com/blog/201206/eval_really_is_dangerous.html

28.10.2 Python Standard Library Modules That Can Execute Code
“Never unpickle data that could have come from an untrusted source, or that could
have been tampered with.”

– docs.python.org/3/library/pickle.html

You should not use the Python standard library’s pickle module to deserialize anything
which could have been modified by the user. As a general rule, avoid accepting pickled values
from user for any reason. Specific warnings about pickle and security are listed below:

ä lincolnloop.com/blog/playing-pickle-security/
ä blog.nelhage.com/2011/03/exploiting-pickle/

https://github.com/mozilla/django-csp
https://feld.to/2xeA7XQ
http://en.wikipedia.org/wiki/Cross-site_scripting
http://nedbatchelder.com/blog/201206/eval_really_is_dangerous.html
http://docs.python.org/3/library/pickle.html
https://lincolnloop.com/blog/playing-pickle-security/
https://blog.nelhage.com/2011/03/exploiting-pickle/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 28: Security Best Practices

28.10.3 Third-Party Libraries That Can Execute Code

When using PyYAML, only use safe_load() . While the use of YAML in the Python
and Django communities is rare outside of continuous integration, it’s not uncommon to
receive this format from other services. Therefore, if you are accepting YAML documents,
only load them with the yaml.safe_load() method.

For reference, the yaml.load() method will let you create Python objects,
which is really bad. As Ned Batchelder says, yaml.load() should be renamed to
yaml.dangerous_load() : nedbatchelder.com/blog/201302/war_is_peace.
html

28.10.4 Be Careful With Cookie-Based Sessions

Typically most Django sites use either database- or cache-based sessions. These function
by storing a hashed random value in a cookie which is used as a key to the real session
value, which is stored in the database or cache. The advantage of this is that only the key
to the session data is sent to the client, making it very challenging for malignant coders to
penetrate Django’s session mechanism.

However, Django sites can also be built using cookie-based sessions, which place the session
data entirely on the client’s machine. While this means slightly less storage needs for the
server, it comes with security issues that justify caution. Specifically:

1 It is possible for users to read the contents of cookie-based sessions.
2 If an attacker gains access to a project’s SECRET_KEY and your session serializer

is JSON-based, they gain the ability to falsify session data and therefore, if authenti-
cation is used, impersonate any user.

3 If an attacker gains access to a project’s SECRET_KEY and your session serializer
is pickle-based, they gain the ability to not only falsify session data, but also to execute
arbitrary code. In other words, not only can they assume new rights and privileges,
they can also upload working Python code. If you are using pickle-based sessions or
are considering using them, please read the tip below.

4 Another disadvantage of this configuration is that sessions can’t be invalidated in a
guaranteed way (except when they expire): you can try to override the cookie in the
browser with a new value, but you can’t enforce an attacker to use it: if they continue
sending requests with the old cookie, the session backend won’t know the difference.

http://nedbatchelder.com/blog/201302/war_is_peace.html
http://nedbatchelder.com/blog/201302/war_is_peace.html
https://github.com/feldroy/two-scoops-of-django-3.x/issues

28.11: Validate All Incoming Data With Django Forms

TIP: Use JSON for Cookie-Based Sessions

The default cookie serializer for Django is JSON-based, meaning that even if an
attacker discovers a project’s SECRET_KEY , they can’t execute arbitrary code.
If you decide to write your own cookie serializer, stick to using JSON as the format.
Never, ever use the optional pickle serializer.

Resources on the subject:
ä docs.djangoproject.com/en/3.2/topics/http/sessions/

#session-serialization
ä docs.djangoproject.com/en/3.2/ref/settings/

#session-serializer

Another thing to consider is that cookie-based sessions are a potential client-side perfor-
mance bottleneck. Transmitting the session data server-to-client is generally not an issue,
but client-to-server transmissions are much, much slower. This is literally the difference
between download and upload speeds all internet users encounter.

In general, we try to avoid cookie-based sessions.

Additional reading:

ä docs.djangoproject.com/en/3.2/topics/http/sessions/
#using-cookie-based-sessions

ä http://bit.ly/2plfHqU Threatpost.com article on cookies
ä yuiblog.com/blog/2007/03/01/performance-research-part-3/

28.11 Validate All Incoming Data With Django Forms
Django forms should be used to validate all data being brought into your project, including
from non-web sources. Doing so protects the integrity of our data and is part of securing
your application. We cover this in Section 13.1: Validate All Incoming Data With Django
Forms.

TIP: Using DRF Serializers Instead of Django Forms

Django REST Framework’s validation is as well constructed and secure as Django’s
form libraries. If you are more familiar with DRF, then using serializers to validate
all incoming data is perfectly okay.

https://feld.to/2KHtpwT
https://feld.to/2KHtpwT
https://feld.to/2KIERIu
https://feld.to/2KIERIu
https://feld.to/2yV4Qtn
https://feld.to/2yV4Qtn
https://threatpost.com/security-vulnerability-in-django-could-allow-attackers-access-to-cookies/102501/
http://yuiblog.com/blog/2007/03/01/performance-research-part-3/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 28: Security Best Practices

28.12 Disable the Autocomplete on Payment Fields
You should disable the HTML field autocomplete browser feature on fields that are gate-
ways to payment. This includes credit card numbers, CVVs, PINs, credit card dates, etc.
The reason is that a lot of people use public computers or their personal computers in public
venues.

For reference, Django forms make this easy:

Example 28.3: Disabling Autocomplete in Form Fields

from django import forms

class SpecialForm(forms.Form):
my_secret = forms.CharField(

widget=forms.TextInput(attrs={'autocomplete': 'off'}))

For any site that might be used in a public area (an airport for example), consider changing
the form field itself to PasswordInput:

Example 28.4: Changing Public Widget to PasswordInput

from django import forms

class SecretInPublicForm(forms.Form):

my_secret = forms.CharField(widget=forms.PasswordInput())

28.13 Handle User-Uploaded Files Carefully
The only way to completely safely serve user-provided content is from a completely sepa-
rate domain. For better or worse, there are an infinite number of ways to bypass file type
validators. This is why security experts recommend the use of content delivery networks
(CDNs): they serve as a place to store potentially dangerous files.

If you must allow upload and download of arbitrary file types, make sure that the server
uses the “Content-Disposition: attachment” header so that browsers won’t display
the content inline.

28.13.1 When a CDN Is Not an Option
When this occurs, uploaded files must be saved to a directory that does not allow them to
be executed. In addition, at the very least make sure the HTTP server is configured to serve

https://github.com/feldroy/two-scoops-of-django-3.x/issues

28.13: Handle User-Uploaded Files Carefully

images with image content type headers, and that uploads are restricted to a whitelisted
subset of file extensions.

Take extra care with your web server’s configuration here, because a malicious user can try to
attack your site by uploading an executable file like a CGI or PHP script and then accessing
the URL. This won’t solve every problem, but it’s better than the defaults.

Consult your web server’s documentation for instructions on how to configure this, or con-
sult the documentation for your platform-as-a-service for details about how static assets and
user-uploaded files should be stored.

28.13.2 Django and User-Uploaded Files
Django has two model fields that allow for user uploads: FileField and ImageField.
They come with some built-in validation, but the Django docs also strongly advise you to
“pay close attention to where you’re uploading them and what type of files they are, to avoid
security holes.”

If you are only accepting uploads of certain file types, do whatever you can do to ensure that
the user is only uploading files of those types. For example, you can:

ä Use the python-magic library to check the uploaded file’s headers:
github.com/ahupp/python-magic

ä Validate the file with a Python library that specifically works with that file type. Unfor-
tunately this isn’t documented, but if you dig through Django’s ImageField source
code, you can see how Django uses PIL to validate that uploaded image files are in
fact images.

ä Use defusedxml instead of native Python XML libraries or lxml. See Section 28.21:
Guard Against XML Bombing With defusedxml.

WARNING: Custom Validators Aren’t the Answer Here
Don’t just write a custom validator and expect it to validate your uploaded files be-
fore dangerous things happen. Custom validators are run against field content after
they’ve already been coerced to Python by the field’s to_python() method.

If the contents of an uploaded file are malicious, any validation happening after
to_python() is executed may be too late.

Further research:

ä docs.djangoproject.com/en/3.2/ref/models/fields/#filefield

https://github.com/ahupp/python-magic
https://feld.to/2VJVGcn
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 28: Security Best Practices

ä youtube.com/watch?v=HS8KQbswZkU Tom Eastman’s PyCon AU talk on the
“The dangerous, exquisite art of safely handing user-uploaded files” is required watch-
ing if building a site handling file uploads.

28.14 Don’t Use ModelForms.Meta.exclude
When using ModelForms, always use Meta.fields. Never use Meta.exclude. The use
of Meta.exclude is considered a grave security risk, specifically a Mass Assignment Vul-
nerability. We can’t stress this strongly enough. Don’t do it.

One common reason we want to avoid the Meta.exclude attribute is that its behavior
implicitly allows all model fields to be changed except for those that we specify. When using
the excludes attribute, if the model changes after the form is written, we have to remember
to change the form. If we forget to change the form to match the model changes, we risk
catastrophe.

Let’s use an example to show how this mistake could be made. We’ll start with a simple ice
cream store model:

Example 28.5: Sample Store Model

stores/models.py
from django.conf import settings
from django.db import models

class Store(models.Model):
title = models.CharField(max_length=255)
slug = models.SlugField()
owner = models.ForeignKey(settings.AUTH_USER_MODEL)
Assume 10 more fields that cover address and contact info.

Here is the wrong way to define the ModelForm fields for this model:

Example 28.6: Implicit Definition of Form Fields

DON'T DO THIS!
from django import forms

from .models import Store

class StoreForm(forms.ModelForm):

class Meta:

https://www.youtube.com/watch?v=HS8KQbswZkU
https://github.com/feldroy/two-scoops-of-django-3.x/issues

28.14: Don’t Use ModelForms.Meta.exclude

model = Store
DON'T DO THIS: Implicit definition of fields.
Too easy to make mistakes!
excludes = ("pk", "slug", "modified", "created", "owner")

In contrast, this is the right way to define the same ModelForm’s fields:

Example 28.7: Explicit Definition of Form Fields

from django import forms

from .models import Store

class StoreForm(forms.ModelForm):

class Meta:
model = Store
Explicitly specifying the fields we want
fields = (

"title", "address_1", "address_2", "email",
"usstate", "postal_code", "city",

)

The first code example, as it involves less typing, appears to be the better choice. It’s not, as
when you add a new model field you now you need to track the field in multiple locations
(one model and one or more forms).

Let’s demonstrate this in action. Perhaps after launch we decide we need to have a way of
tracking store co-owners, who have all the same rights as the owner. They can access account
information, change passwords, place orders, and specify banking information. The store
model receives a new field as shown on the next page:

Example 28.8: Added Co-Owners Field

stores/models.py
from django.conf import settings
from django.db import models

class Store(models.Model):
title = models.CharField(max_length=255)

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 28: Security Best Practices

slug = models.SlugField()
owner = models.ForeignKey(settings.AUTH_USER_MODEL)
co_owners = models.ManyToManyField(settings.AUTH_USER_MODEL)
Assume 10 more fields that cover address and contact info.

The first form code example which we warned against using relies on us remembering to
alter it to include the new co_owners field. If we forget, then anyone accessing that store’s
HTML form can add or remove co-owners. While we might remember a single form,
what if we have more than one ModelForm for a model? In complex applications this is not
uncommon.

On the other hand, in the second example, where we used Meta.fields we know exactly
what fields each form is designed to handle. Changing the model doesn’t alter what the form
exposes, and we can sleep soundly knowing that our ice cream store data is more secure.

28.14.1 Mass Assignment Vulnerabilities
The problem we describe in this section is a Mass Assignment Vulnerability.

These occur when the patterns such as Active Record, designed to empower developers,
create security risks for web applications. The solution is the approach we advocate in this
section, which is explicit definition of fields that can be modified.

See n.wikipedia.org/wiki/Mass_assignment_vulnerability for more detail.

28.15 Don’t Use ModelForms.Meta.fields = ”__all__”
This includes every model field in your model form. It’s a shortcut, and a dangerous one. It’s
very similar to what we describe in Section 28.14: Don’t Use ModelForms.Meta.exclude,
and even with custom validation code, exposes projects to form-based Mass Assignment
Vulnerabilities. We advocate avoiding this technique as much as possible, as we feel that it’s
simply impossible to catch all variations of input.

28.16 Beware of SQL Injection Attacks
The Django ORM generates properly-escaped SQL which will protect your site from users
attempting to execute malignant, arbitrary SQL code.

Django allows you to bypass its ORM and access the database more directly through raw
SQL. When using this feature, be especially careful to escape your SQL code properly. This
is of concern in these specific components of Django:

ä The .raw() ORM method.

https://en.wikipedia.org/wiki/Mass_assignment_vulnerability
https://github.com/feldroy/two-scoops-of-django-3.x/issues

28.17: Don’t Store Unnecessary Data

ä The .extra() ORM method.
ä Directly accessing the database cursor.

Reference:

ä docs.djangoproject.com/en/3.2/topics/security/
#sql-injection-protection

28.17 Don’t Store Unnecessary Data
There is data we should avoid storing for financial and legal reasons.

28.17.1 Never Store Credit Card Data
Unless you have a strong understanding of the PCI-DSS security standards
(pcisecuritystandards.org) and adequate time/resources/funds to validate your
PCI compliance, storing credit card data is too much of a liability and should be avoided.

Instead, we recommend using third-party services like Stripe, Braintree, Adyen, PayPal,
and others that handle storing this information for you, and allow you to reference the data
via special tokens. Most of these services have great tutorials, are very Python and Django
friendly, and are well worth the time and effort to incorporate into your project.

TIP: Educate Yourself on PCI Compliance

Ken Cochrane has written an excellent blog post on PCI
compliance. Please read kencochrane.net/blog/2012/01/
developers-guide-to-pci-compliant-web-applications/

TIP: Read the Source Code of Open Source E-Commerce
Solutions
If you are planning to use any of the existing open source Django e-commerce so-
lutions, examine how the solution handles payments. If credit card data is being
stored in the database, even encrypted, then please use another solution.

28.17.2 Don’t Store PII or PHI Unless Required (By Law)
PII is the abbreviation for Personally Identifying Information and PHI is the abbreviation
for Protected Health Information. This data is a key part of our online identity and can
be exploited to gain access to various accounts or worse. Using the United States as an
example, storing Social Security Numbers (SSN) and state ID numbers should be avoided

https://feld.to/35gzPfN
https://feld.to/35gzPfN
https://www.pcisecuritystandards.org/
https://www.kencochrane.net/blog/2012/01/developers-guide-to-pci-compliant-web-applications/
https://www.kencochrane.net/blog/2012/01/developers-guide-to-pci-compliant-web-applications/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 28: Security Best Practices

unless required by law. Even if required by law, if it is possible to store the data in one-way
hashes, then by all means do so.

If PII is discovered within a project that doesn’t have a legal obligation to store it, raise it
as an issue immediately with the project owners. Having this data stolen through either
technical or social methods can be disastrous legally and financially for an organization. In
the case of Payment cards can be easily cancelled, the same cannot be said for PII.

In the case of PHI, which is medical data, our warnings are more dire. Specifically, ev-
eryone involved is at risk for civil and criminal prosecution under Title II of HIPAA. See
en.wikipedia.org/wiki/HIPAA#Security_Rule. While that rule is for US-based
projects, many countries have similar regulations. For example, the authors know someone
called to trial in Kenya over a PHI leak.

28.18 Monitor Your Sites
Check your web servers’ access and error logs regularly. Install monitoring tools and check
on them frequently. Keep an eye out for suspicious activity.

28.19 Keep Your Dependencies Up-to-Date
You should always update your projects to work with the latest stable release of Django and
third-party dependencies. This is particularly important when a release includes security
fixes. For that, we recommend pyup.io, which automatically checks requirements files
against the latest versions that PyPI provides.

‘I’ve set up (these kinds of services) for distinct actions: it mails me once a week
for each project with any outdated dependencies, and if it finds an insecure ver-
sion it automatically creates a pull request in GitHub, so tests run automatically
and I can deploy quickly.’

– Sasha Romijn, Django core dev and security reviewer for Two Scoops of
Django 1.8

Useful links for updates to Django itself.

ä The official Django weblog at djangoproject.com/weblog/
ä The official django-announce mailing list at groups.google.com/forum/#!

forum/django-announce

28.20 Prevent Clickjacking
Clickjacking is when a malicious site tricks users to click on a concealed element of another
site that they have loaded in a hidden frame or iframe. An example is a site with a false
social media ‘login’ button that is really a purchase button on another site.

https://feld.to/3aLltoI
https://pyup.io/
https://www.djangoproject.com/weblog/
https://feld.to/2WcnZ1Y
https://feld.to/2WcnZ1Y
https://github.com/feldroy/two-scoops-of-django-3.x/issues

28.21: Guard Against XML Bombing With defusedxml

Django has instructions and components to prevent this from happening:

ä docs.djangoproject.com/en/3.2/ref/clickjacking/

28.21 Guard Against XML Bombing With defusedxml
Attacks against XML libraries are nothing new. For example, the amusingly titled but dev-
astating ‘Billion Laughs’ attack (http://en.wikipedia.org/wiki/Billion_laughs)
was discovered in 2003.

Unfortunately, Python, like many other programming languages, doesn’t account for this or
other venues of attack via XML. Furthermore, third-party Python libraries such as lxml are
vulnerable to at least 4 well-known XML-based attacks. For a list of Python and Python
library vulnerabilities see https://feld.to/2KKwuMq.

Fortunately for us, Christian Heimes created defusedxml, a Python library designed to
patch Python’s core XML libraries and some of the third-party libraries (including lxml).

For more information, please read:

ä https://pypi.org/project/defusedxml

28.22 Explore Two-Factor Authentication
Two-factor authentication (2FA) requires users to authenticate by combining two separate
means of identification.

For modern web applications, what that usually means is you enter your password as well
as a value sent to your mobile device. Another option for One-Time Passwords (OTP) is
to register them in a password manager.

The advantage of 2FA is that it adds another component, one that changes frequently, to
the authentication process, great for any site involving personal identity, finance, or medical
requirements.

The downside is that the user needs to have a charged mobile device with access to a network
in order to log in to your site, making it not so ideal for users who may not have a charged
mobile device or easy access to a network.

ä en.wikipedia.org/wiki/Two_factor_authentication
ä https://pypi.org/project/django-two-factor-auth

https://docs.djangoproject.com/en/3.2/ref/clickjacking/
http://en.wikipedia.org/wiki/Billion_laughs
https://feld.to/2KKwuMq
https://pypi.org/project/defusedxml
http://en.wikipedia.org/wiki/Two_factor_authentication
https://pypi.org/project/django-two-factor-auth
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 28: Security Best Practices

PACKAGE TIP: Look for TOTP in 2FA Products and Packages

TOTP is short for en.wikipedia.org/wiki/Time-based_One-time_
Password_Algorithm, which is an open standard used by Google Authenticator
and many other services. TOTP does not require network access, which is useful
for building certain kinds of Django projects. However, SMS implementations
require cellular network access or third-party services such as twilio.com.

WARNING: The Issue of 2FA Recovery

An important issue is how people recover from loss of their 2FA token or phone
number. Passwords are generally recovered by sending an e-mail with a secret link.
However, if the 2FA token can also be reset by e-mail, access to the user’s e-mail
has basically become the single factor of authentication. Common methods include
offering TOTP authentication with SMS as a fallback, or offering a number of
recovery codes that need to be kept by the user. In some cases, organisations will
only reset these tokens after receiving a scan of an identity card belonging to the
account holder. In any case, a recovery process will be needed, so think of this in
advance.

28.23 Embrace SecurityMiddleware
We’ve mentioned Django’s built-in django.middleware.security.SecurityMiddleware
several times already in this chapter. We owe it to ourselves and our users to embrace and
use this feature of Django.

28.24 Force the Use of Strong Passwords
A strong password is one that more than just a list of characters. It is long and preferably
complex, including punctuation, digits, and both character cases. Let’s pledge to protect our
users by enforcing the use of such passwords.

So what makes the best password?

Our opinion is that at this point in time, length is more important than complexity. An 8
character length password mixing cases, numbers, and special characters is easier by several
orders of magnitude to break than a 50-character sentence of just lower cased letters. What’s
even better is if you have a 30-50 character sentence that includes numbers, mixed cases,
and special characters.

Reference: xkcd.com/936/

https://en.wikipedia.org/wiki/Time-based_One-time_Password_Algorithm
https://en.wikipedia.org/wiki/Time-based_One-time_Password_Algorithm
https://www.twilio.com/
https://xkcd.com/936/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

28.25: Don’t Prevent Copy/Pasting of Password

Quality Password Specification
Bad 6-10 characters of just the alphabet
Okay Minimum 8 characters, mixed case + nu-

meric + special characters
Better Minimum 30 characters of just the alpha-

bet
Best Minimum 30 characters, mixed case + nu-

meric + special characters

Table 28.1: Password Strength: Length vs Complexity

28.25 Don’t Prevent Copy/Pasting of Password
There are sites that force users to enter passwords manually, rather than allow for copy/past-
ing. This is a terrible anti-pattern, one that encourages users to rely on easy-to-remember
or repeatedly used passwords rather than strong, unique passwords for every site generated
by secure password managers such as 1Password or LastPass.

28.26 Give Your Site a Security Checkup
There are a number of services that provide automated checkups for sites. They aren’t security
audits, but they are great, free ways to make certain that your production deployment doesn’t
have any gaping security holes.

pyup.io’s Safety library (github.com/pyupio/safety) checks your installed depen-
dencies for known security vulnerabilities. By default it uses the open Python vulnerability
database Safety DB, but can be upgraded to use pyup.io’s Safety API using the --key
option.

TODO - consider adding snikt or other commercial tools

Mozilla also provides a similar, but non-Django specific service called Observatory
(observatory.mozilla.org).

28.27 Put Up a Vulnerability Reporting Page
It’s a good idea to publish information on your site about how users can report security
vulnerabilities to you.

GitHub’s “Responsible Disclosure of Security Vulnerabilities” page is a good example of
this and rewards reporters of issues by publishing their names:
help.github.com/articles/responsible-disclosure-of-security-vulnerabilities/

28.28 Never Display Sequential Primary Keys
Displaying sequential primary keys is to be avoided because:

https://pyup.io/
https://github.com/pyupio/safety
https://pyup.io/
https://observatory.mozilla.org/
https://help.github.com/articles/responsible-disclosure-of-security-vulnerabilities/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 28: Security Best Practices

ä They inform potential rivals or hackers of your volume
ä By displaying these values we make it trivial to exploit insecure direct object references
ä We also provide targets for XSS attacks

Here are some patterns for looking up records without revealing sequential identifiers:

28.28.1 Lookup by Slug
In the Django world, this is incredibly common. There are literally hundreds of examples
available on how to do it. This is the goto method for many Django projects. However, it
becomes a little challenging when you have issues with duplicate slugs. In which case, one
of the other methods apply.

28.28.2 UUIDs
Django comes with very useful models.UUIDField. While a use case for using them as
primary keys for large distributed systems exists, they also serve nicely for public lookups.
Here is a sample model:

Example 28.9: Using UUID for Public Lookups

import uuid
from django.db import models

class IceCreamPayment(models.Model):
uuid = models.UUIDField(

unique=True,
default=uuid.uuid4,
editable=False)

def __str__(self):
return str(self.pk)

And here is how we call that model:

Example 28.10: Looking Up Payment By UUID

>>> from payments import IceCreamPayment
>>> payment = IceCreamPayment()
>>> IceCreamPayment.objects.get(id=payment.id)
<IceCreamPayment: 1>
>>> payment.uuid

https://github.com/feldroy/two-scoops-of-django-3.x/issues

28.28: Never Display Sequential Primary Keys

UUID('0b0fb68e-5b06-44af-845a-01b6df5e0967')
>>> IceCreamPayment.objects.get(uuid=payment.uuid)
<IceCreamPayment: 1>

TIP: Using UUIDs as the Primary Key

Some people like to use UUIDs as the primary key. In fact, we’ve done so on several
projects over the years. Here are observations on doing so by us and members of the
Django security team:
UUIDs as primary keys simplifies the security of data. Instead of two fields (id and
uuid), there is just ”id”.
On the other hand, sequential IDs are possible for humans to remember, UUIDs
are not. If the only access to a model is through UUIDs, that makes working with
data a bit harder. To grab a particular record one typically needs the entire UUID
string.
Also, there are performance considerations to be aware of when using UUIDs for
lookups. Security is being traded for speed: percona.com/blog/2019/11/22/
uuids-are-popular-but-bad-for-performance-lets-discuss/.
What all of this tells us is that UUIDs for primary keys (and lookups) is something
that should be considered carefully. If a project is expected to handle billions of
records, an alternative approach (including sequential IDs) should be considered.

WARNING: The Dangers of Obfuscating Sequential IDs

Slugs and UUIDs both have their disadvantages. The slug-based approach runs
into collisions quickly, causing things like, “vanilla”, “vanilla-2”, “vanilla-3” to occur.
UUIDs, to put it simply, are long and not memorizable by most humans. What can
we do?
You can obfuscate the sequential ID. But we don’t recommend it. Why not?
The short answer: Obfuscating is not an effective way to hide sequential IDs.
The long answer: There are any number of methods for obfuscating numbers rang-

ing from base64 encoding to using the hashids library. These approaches
work by converting a number to a alphanumeric code and back again. They
not only hide the number, they also shorten it. Sounds great, right?
The problem is that every method of obfuscating sequential IDs is funda-
mentally insecure. Base64 encoding is trivial to undo. Libraries like hashids
can be broken with brute-forceattacks or by anyone with a good un-
derstanding of cryographic knowledge (carnage.github.io/2015/08/

https://www.percona.com/blog/2019/11/22/uuids-are-popular-but-bad-for-performance-lets-discuss/
https://www.percona.com/blog/2019/11/22/uuids-are-popular-but-bad-for-performance-lets-discuss/
https://pypi.org/project/hashids
https://en.wikipedia.org/wiki/Brute-force_attack
http://carnage.github.io/2015/08/cryptanalysis-of-hashids

Chapter 28: Security Best Practices

cryptanalysis-of-hashids).
To summarize: If you want to hide your sequential identifiers, don’t rely on obfus-
cation.

28.29 Upgrade Password Hasher to Argon2
...Django’s default password hasher is PBKDF2. While this is still acceptable as a
lowest-common-denominator option, there are and for many years have been better
options available.

– James Bennett, Django Core Developer and security reviewer of Two Scoops
of Django.

PBKDF2 is Django’s default because it’s supported in the Python standard library and thus
requires no third-party packages. Argon2 is the best option that is natively supported by
Django. Installation instructions and references:

ä https://docs.djangoproject.com/en/3.2/topics/auth/passwords/
#using-argon2-with-django - Instructions on installing and using Argon2
with Django

ä https://docs.djangoproject.com/en/3.2/topics/auth/passwords/
#argon2 - Instructions on customizing Argon2 arguments (advanced and not
necessary for most projects)

ä latacora.micro.blog/2018/04/03/cryptographic-right-answers.
html - Easy-to-understand list of answers to questions non-security focused
developers get asked about cryptographic questions.

28.30 Use SRI When Loading Static Assets From External
Sources

It is not uncommon for projects to load libraries from external sources. For example, JQuery,
Google Fonts, Bootstrap Tailwindcss, and even React and Vue are often loaded from CDNs
like CDNJS, unpkg, Google Hosted Libraries, and others. Unfortunately, without the use
of SRI (Subresource Integrity) to confirm the source, attackers can replace or modify assets
used by users. In other words, don’t do this:

Example 28.11: Naively Loading Bootstrap Assets

<!-- DON'T DO THIS - loading static assets without SRI -->
<link rel="stylesheet"

https://feld.to/3bcmHK0
https://feld.to/3bcmHK0
https://feld.to/2WGm0TR
https://feld.to/2WGm0TR
https://latacora.micro.blog/2018/04/03/cryptographic-right-answers.html
https://latacora.micro.blog/2018/04/03/cryptographic-right-answers.html
https://github.com/feldroy/two-scoops-of-django-3.x/issues

28.30: Use SRI When Loading Static Assets From External Sources

href="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.css">↪→

<script
src="https://code.jquery.com/jquery-3.3.1.slim.min.js"></script>↪→

<script
src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.7/umd/popper.min.js"></↪→

<script
src="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/js/bootstrap.min.js"></scr↪→

This is why we recommend the use of subresource integrity hashes when including CSS,
JavaScript, or web fonts from external projects. This is provided as a feature by CDNJS, the
JQuery project, the Bootstrap project, and a shockingly small number of other projects.

From the official Bootstrap site, this is what using SRI looks like:

Example 28.12: Using SRI When Loading Bootstrap Assets

<!-- Loading Static Assets with SRI -->
<link rel="stylesheet"

href="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.css"↪→

integrity="sha384-ggOyR0iXCbMQv3Xipma34MD+dH/1fQ784/j6cY/iJTQUOhcWr7x9JvoRxT2MZw1T↪→

crossorigin="anonymous">
<script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"

integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo↪→

crossorigin="anonymous"></script>
<script

src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.7/umd/popper.min.js"↪→

integrity="sha384-UO2eT0CpHqdSJQ6hJty5KVphtPhzWj9WO1clHTMGa3JDZwrnQq4sF86dIHNDz0W1↪→

crossorigin="anonymous"></script>
<script

src="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/js/bootstrap.min.js"↪→

integrity="sha384-JjSmVgyd0p3pXB1rRibZUAYoIIy6OrQ6VrjIEaFf/nJGzIxFDsf4x0xIM+B07jRM↪→

crossorigin="anonymous"></script>

If a project doesn’t include SRI hashes with their installation instructions, we suggest you

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 28: Security Best Practices

load their assets using CDNJS, which includes it as a feature in their “copy” dropdown. Just
choose the “copy link tag” option.

Recommended tools and useful references:

ä cdnjs.com - CDN that provides SRI hashes for all libraries they host
ä developer.mozilla.org/en-US/docs/Web/Security/Subresource_

Integrity - Mozilla’s documetation of SRI
ä w3.org/TR/SRI/ - Official specification

28.31 Reference Our Security Settings Appendix
Keeping track of everything that relates to security and Django is challenging. This chapter
alone is nigh 30 pages long and at the beginning we make it very clear this is not an absolute
reference.

In order to add clarity, we’ve created Appendix G: Security Settings Reference. This is where
we put important and useful information on how to better configure the security settings of
a Django project.

28.32 Review the List of Security Packages
In the security section of Appendix A: Packages, we list over ten related security packages
that can make a difference to your site. While some are listed in this chapter, others are
unique to that section of this book.

28.33 Keep Up-to-Date on General Security Practices
We end this chapter with some common-sense advice.

First, keep in mind that security practices are constantly evolving, both in the
Django community and beyond. Subscribe to groups.google.com/forum/#!forum/
django-announce and check Twitter, Hacker News, and various security blogs regularly.

Second, remember that security best practices extend well beyond those practices specific to
Django. You should research the security issues of every part of your web application stack,
and you should follow the corresponding sources to stay up to date.

TIP: Good Books and Articles on Security

Paul McMillan, Django core developer, security expert, and Two Scoops reviewer,
recommends the following books:

ä “The Tangled Web: A Guide to Securing Modern Web Applications”:
amzn.to/1hXAAyx

ä “The Web Application Hacker’s Handbook”:

https://cdnjs.com/
https://developer.mozilla.org/en-US/docs/Web/Security/Subresource_Integrity
https://developer.mozilla.org/en-US/docs/Web/Security/Subresource_Integrity
https://www.w3.org/TR/SRI/
https://feld.to/2WcnZ1Y
https://feld.to/2WcnZ1Y
http://amzn.to/1hXAAyx
https://github.com/feldroy/two-scoops-of-django-3.x/issues

28.34: Summary

amzn.to/1dZ7xEY

In addition, we recommend the following reference site:
ä wiki.mozilla.org/WebAppSec/Secure_Coding_Guidelines

28.34 Summary
Please use this chapter as a starting point for Django security, not the ultimate reference
guide. See the Django documentation’s list for additional security topics:
docs.djangoproject.com/en/3.2/topics/security/
#additional-security-topics

Django comes with a good security record due to the diligence of its community and at-
tention to detail. Security is one of those areas where it’s a particularly good idea to ask for
help. If you find yourself confused about anything, ask questions and turn to others in the
Django community for help.

http://amzn.to/1dZ7xEY
https://wiki.mozilla.org/WebAppSec/Secure_Coding_Guidelines
https://feld.to/3aMYjhQ
https://feld.to/3aMYjhQ
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 28: Security Best Practices

https://github.com/feldroy/two-scoops-of-django-3.x/issues

29 | Logging: What’s It For, Anyway?

Logging is like rocky road ice cream. Either you can’t live without it, or you forget about it
and wonder once in awhile why it exists.

Anyone who’s ever worked on a large production project with intense demands understands
the importance of using the different log levels appropriately, creating module-specific log-
gers, meticulously logging information about important events, and including extra detail
about the application’s state when those events are logged.

While logging might not seem glamorous, remember that it is one of the secrets to building
extremely stable, robust web applications that scale and handle unusual loads gracefully.
Logging can be used not only to debug application errors, but also to track interesting
performance metrics.

Logging unusual activity and checking logs regularly is also important for ensuring the
security of your server. In the previous chapter, we covered the importance of checking your
server access and error logs regularly. Keep in mind that application logs can be used in
similar ways, whether to track failed login attempts or unusual application-level activity.

29.1 Application Logs vs. Other Logs
This chapter focuses on application logs. Any log file containing data logged from your
Python web application is considered an application log.

In addition to your application logs, you should be aware that there are other types of logs,
and that using and checking all of your server logs is necessary. Your server logs, database
logs, network logs, etc. all provide vital insight into your production system, so consider
them all equally important.

29.2 Why Bother With Logging?
Logging is your go-to tool in situations where a stack trace and existing debugging tools
aren’t enough. Whenever you have different moving parts interacting with each other or the
possibility of unpredictable situations, logging gives you insight into what’s going on.

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 29: Logging: What’s It For, Anyway?

The different log levels available to you are DEBUG, INFO, WARNING, ERROR, and CRITICAL.
Let’s now explore when it’s appropriate to use each logging level.

29.3 When to Use Each Log Level
In places other than your production environment, you might as well use all the log lev-
els. Log levels are controlled in your project’s settings modules, so we can fine tune this
recommendation as needed to account for load testing and large scale user tests.

In your production environment, we recommend using every log level except for DEBUG.

Figure 29.1: Appropriate usage of CRITICAL/ERROR/WARNING/INFO logging in
ice cream.

Since the same CRITICAL, ERROR, WARNING, and INFO logs are captured whether in pro-
duction or development, introspection of buggy code requires less modification of code. This
is important to remember, as debug code added by developers working to fix one problem
can create new ones.

The rest of this section covers how each log level is used.

29.3.1 Log Catastrophes With CRITICAL

Use the CRITICAL log level only when something catastrophic occurs that requires urgent
attention.

For example, if your code relies on an internal web service being available, and if that web
service is part of your site’s core functionality, then you might log at the CRITICAL level
anytime that the web service is inaccessible.

https://github.com/feldroy/two-scoops-of-django-3.x/issues

29.3: When to Use Each Log Level

This log level is never used in core Django code, but you should certainly use it in your code
anywhere that an extremely serious problem can occur.

29.3.2 Log Production Errors With ERROR

Let’s look at core Django for an example of when ERROR level logging is appropriate. In
core Django, the ERROR log level is used very sparingly. There is one very important place
where it is used: whenever code raises an exception that is not caught, the event gets logged
by Django using the following code:

Example 29.1: Logging Production Errors

Taken directly from core Django code.
Used here to illustrate an example only, so don't
copy this into your project.
logger.error('Internal Server Error: %s', request.path,

exc_info=exc_info,
extra={

'status_code': 500,
'request': request

}
)

How does Django put this to good use? Well, when DEBUG=False is in your settings, ev-
eryone listed in ADMINS immediately gets emailed the following:

ä A description of the error
ä A complete Python traceback from where the error occurred
ä Information about the HTTP request that caused the error

If you’ve ever received one of those email notifications, you know how useful ERROR logs
are when you need them most.

Similarly, we recommend that you use the ERROR log level whenever you need to log an
error that is worthy of being emailed to you or your site admins. When your code catches
the exception, log as much information as you can to be able to resolve the problem.

For example, an exception may be thrown when one of your views cannot access a needed
third-party API. When the exception is caught, you can log a helpful message and the API’s
failure response, if any.

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 29: Logging: What’s It For, Anyway?

29.3.3 Log Lower-Priority Problems With WARNING
This level is good for logging events that are unusual and potentially bad, but not as bad as
ERROR-level events.

For example, if you are using django-admin-honeypot to set up a fake admin/ login form,
you might want to log intruders’ login attempts to this level.

Django uses the log level in several parts of CsrfViewMiddleware, to log events that
result in a 403 Forbidden error. For example, when an incoming POST request is missing
its csrf_token, the event gets logged as follows:

Example 29.2: Logging Missing CSRF

Taken directly from core Django code.
Used here to illustrate an example only, so don't
copy this into your project.
logger.warning('Forbidden (%s): %s',

REASON_NO_CSRF_COOKIE, request.path,
extra={

'status_code': 403,
'request': request,

}
)

29.3.4 Log Useful State Information With INFO
We recommend using this level to log any details that may be particularly important when
analysis is needed. These include:

ä Startup and shutdown of important components not logged elsewhere
ä State changes that occur in response to important events
ä Changes to permissions, e.g. when users are granted admin access

In addition to this, the INFO level is great for logging any general information that may help
in performance analysis. It’s a good level to use while hunting down problematic bottlenecks
in your application and doing profiling.

29.3.5 Log Debug-Related Messages to DEBUG
In development, we recommend using DEBUG and occasionally INFO level logging wherever
you’d consider throwing a print statement into your code for debugging purposes.

https://github.com/feldroy/two-scoops-of-django-3.x/issues

29.3: When to Use Each Log Level

Getting used to logging this way isn’t hard. Instead of this:

Example 29.3: Using Print to Display Data

from django.views.generic import TemplateView

from .helpers import pint_counter

class PintView(TemplateView):

def get_context_data(self, *args, **kwargs):
context = super().get_context_data(**kwargs)
pints_remaining = pint_counter()
print(f'Only {pints_remaining} pints of ice cream left.')
return context

We do this:

Example 29.4: Using Logging to Display Data

import logging

from django.views.generic import TemplateView

from .helpers import pint_counter

logger = logging.getLogger(__name__)

class PintView(TemplateView):

def get_context_data(self, *args, **kwargs):
context = super().get_context_data(**kwargs)
pints_remaining = pint_counter()
logger.debug('Only %d pints of ice cream left.' %

pints_remaining)↪→

return context

TIP: Don’t use f-strings in logging statements

As of Python 3.9, f-strings don’t work with loggers.

Sprinkling print statements across your projects results in problems and technical debt:

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 29: Logging: What’s It For, Anyway?

ä Depending on the web server, a forgotten print statement can bring your site down.
ä Print statements are not recorded. If you don’t see them, then you miss what they were

trying to say.

Unlike print statements, logging allows different report levels and different response meth-
ods. This means that:

ä We can write DEBUG level statements, leave them in our code, and never have to worry
about them doing anything when we move code to production.

ä The response method can provide the response as email, log files, console and stdout.
It can even report as pushed HTTP requests to applications such as Sentry!

Note that there’s no need to go overboard with debug-level logging. It’s great to add
logging.debug() statements while you’re debugging, but there’s no need to clutter your
code with logging every single line.

Figure 29.2: Appropriate usage of DEBUG logging in ice cream.

29.4 Log Tracebacks When Catching Exceptions
Whenever you log an exception, it’s usually helpful to log the stack trace of the exception.
Python’s logging module supports this:

1 Logger.exception() automatically includes the traceback and logs at ERROR level.
2 For other log levels, use the optional exc_info keyword argument.

Here’s an example of adding a traceback to a WARNING level log message:

https://github.com/feldroy/two-scoops-of-django-3.x/issues

29.5: One Logger Per Module That Uses Logging

Example 29.5: Capturing Tracebacks with exc_info

import logging
import requests

logger = logging.getLogger(__name__)

def get_additional_data():
try:

r = requests.get('http://example.com/something-optional/')
except requests.HTTPError as e:

logger.exception(e)
logger.debug('Could not get additional data',

exc_info=True)↪→

return None
return r

29.5 One Logger Per Module That Uses Logging
Whenever you use logging in another module, don’t import and reuse a logger from else-
where. Instead, define a new logger specific to the module like this:

Example 29.6: One Logger Per Module

You can place this snippet at the top
of models.py, views.py, or any other
file where you need to log.
import logging

logger = logging.getLogger(__name__)

What this gives you is the ability to turn on and off only the specific loggers that you currently
need. If you’re running into a strange issue in production that you can’t replicate locally, you
can temporarily turn on DEBUG logging for just the module related to the issue. Then, when
you identify the problem, you can turn that logger back off in production.

29.6 Log Locally to Rotating Files
When you create a new Django project with startproject, your default settings file is
configured to email ERROR and higher log messages to whomever you list in ADMINS. This
occurs via a handler called AdminEmailHandler that comes with Django.

In addition to this, we recommend also writing logs of level INFO and higher to rotating

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 29: Logging: What’s It For, Anyway?

log files on disk. On-disk log files are helpful in case the network goes down or emails can’t
be sent to your admins for some reason. Log rotation keeps your logs from growing to fill
your available disk space.

A common way to set up log rotation is to use the UNIX logrotate utility with
logging.handlers.WatchedFileHandler.

Note that if you are using a platform-as-a-service, you might not be able to set up rotat-
ing log files. In this case, you may need to use an external logging service such as Loggly:
loggly.com.

29.7 Other Logging Tips
ä Control the logging in settings files per the Django documentation on logging: docs.

djangoproject.com/en/3.2/topics/logging/
ä While debugging, use the Python logger at DEBUG level.
ä After running tests at DEBUG level, try running them at INFO and WARNING levels.

The reduction in information you see may help you identify upcoming deprecations
for third-party libraries.

ä Don’t wait until it’s too late to add logging. You’ll be grateful for your logs if and when
your site fails.

ä You can do useful things with the emails you receive when ERROR or higher level
events occur. For example, you can configure a PagerDuty (pagerduty.com) account
to alert you and your team repeatedly until you’ve taken action.

PACKAGE TIP: Logutils Provides Useful Handlers

The logutils package by Vinay Sajip comes with a number of very interesting logging
handlers. Features include:

ä Colorizing of console streams under Windows, Linux and Mac.
ä The ability to log to queues. Useful in situations where you want to queue up

log messages to a slow handler like SMTPHandler.
ä Classes that allow you to write unit tests for log messages.
ä An enhanced HTTPHandler that supports secure connections over HTTPS.

Some of the more basic features of logutils are so useful that they have been absorbed
into the Python standard library!

29.8 Necessary Reading Material
ä docs.djangoproject.com/en/3.2/topics/logging/
ä docs.python.org/3/library/logging.html

http://loggly.com/
https://docs.djangoproject.com/en/3.2/topics/logging/
https://docs.djangoproject.com/en/3.2/topics/logging/
http://www.pagerduty.com/
https://docs.djangoproject.com/en/3.2/topics/logging/
http://docs.python.org/3/library/logging.html
https://github.com/feldroy/two-scoops-of-django-3.x/issues

29.9: Useful Third-Party Tools

ä docs.python.org/3/library/logging.config.html
ä docs.python.org/3/library/logging.handlers.html
ä docs.python.org/3/howto/logging-cookbook.html

29.9 Useful Third-Party Tools
ä Sentry (sentry.io) aggregates errors for you and is trusted by the authors, Dropbox,

AirBnB, and host of other firms. Their product is open source, and they have an
awesome history of supporting various developers with their open source efforts. We
can’t recommend them enough.

ä loggly.com (loggly.com) simplifies log management and provides various query
tools.

29.10 Summary
Django projects can easily take advantage of the rich logging functionality that comes with
Python. Combine logging with handlers and analysis tools, and suddenly you have real
power. You can use logging to help you improve the stability and performance of your
projects.

In the next chapter we’ll discuss signals, which become much easier to follow, debug, and
understand with the help of logging.

http://docs.python.org/3/library/logging.config.html
http://docs.python.org/3/library/logging.handlers.html
http://docs.python.org/3/howto/logging-cookbook.html
https://www.sentry.io/
http://loggly.com/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 29: Logging: What’s It For, Anyway?

https://github.com/feldroy/two-scoops-of-django-3.x/issues

30 | Signals: Use Cases and
Avoidance Techniques

WARNING: This Chapter is in Progress

We are in the midst of working on this chapter and will expand on it in the days to
come. We are open to suggestions on topics and items to cover, please submit them
to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 30: Signals: Use Cases and Avoidance Techniques

https://github.com/feldroy/two-scoops-of-django-3.x/issues

31 | What About Those Random
Utilities?

31.1 Create a Core App for Your Utilities
Sometimes we end up writing shared classes or little general-purpose utilities that are useful
everywhere. These bits and pieces don’t belong in any particular app. We don’t just stick them
into a sort-of-related random app, because we have a hard time finding them when we need
them. We also don’t like placing them as “random” modules in the root of the project.

Our way of handling our utilities is to place them into a Django app called core that contains
modules which contains functions and objects for use across a project. (Other developers
follow a similar pattern and call this sort of app common, generic, util , or utils.)

For example, perhaps our project has both a custom model manager and a custom view
mixin used by several different apps. Our core app would therefore look like:

Example 31.1: Core App Layout Example

core/
__init__.py
managers.py # contains the custom model manager(s)
models.py
views.py # Contains the custom view mixin(s)

TIP: Always Make the Core App a Real Django App

We always make the core directory a Django app. At some point we inevitably end
up doing at least one of the following:

ä Have non-abstract models in core.
ä Have admin auto-discovery working in core.

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 31: What About Those Random Utilities?

ä Have template tags and filters in core.

Now, if we want to import our custom model manager and/or view mixin , we import using
the same pattern of imports we use for everything else:

Example 31.2: Importing From the Core App

from core.managers import PublishedManager
from core.views import IceCreamMixin

31.2 Optimize Apps With Utility Modules
Synonymous with helpers, these are commonly called utils.py and sometimes helpers.py.
They are places where we place functions and classes which make common patterns shorter
and easier. Let’s go into why this is helpful.

31.2.1 Storing Code Used in Many Places
There are times when we have functions or classes used in several places that doesn’t quite
fit in models.py, forms.py, or any other specifically named module. When this occurs, we put
this logic in the utils.py module.

31.2.2 Trimming Models
This is best explained with an example.

We use the Flavor model frequently. We start attaching field after field, method after
method, property after property, classmethod after classmethod. One day we notice that
our fat model has reached brobdingnagian proportions and is over a thousand lines of code.
Debugging and maintenance have become hard. What do we do?

We start looking for methods (or properties or classmethods) whose logic can be easily
encapsulated in functions stored in flavors/utils.py. The existing methods (or properties or
classmethods) become simple wrappers calling functions from flavors/utils.py. The result is
a more distributed code base that encourages code reuse as well as easier testing.

31.2.3 Easier Testing
A side effect of moving logic from more complex constructs into functions placed in iso-
lated modules is that it becomes easier to test. By isolation we mean it is usually imported

https://github.com/feldroy/two-scoops-of-django-3.x/issues

31.3: Django’s Own Swiss Army Knife

within the app, rather than doing in-app/in-project imports. This causes less business logic
overhead, hence making it easier to write tests for what logic is present in the module.

TIP: Make Utility Code Constructs as Focused as Possible

Be it a function or a class, avoid allowing multiple behaviors or conditions. Each
utility function should do one and only one thing well. Don’t repeat yourself. Don’t
create utility functions that are duplicates of model behaviors.

31.3 Django’s Own Swiss Army Knife
The Swiss army knife is a multi-purpose tool that is compact and useful. Django has a
number of useful helper functions that don’t have a better home than the django.utils
package. It’s tempting to dig into the code in django.utils and start using things, but
don’t. Most of those modules are designed for internal use and their behavior or inclusion
can change between Django versions.

Instead, read docs.djangoproject.com/en/3.2/ref/utils/ to see which modules
in there are stable.

TIP: Malcolm Tredinnick on Django’s Utils Package.

Django core developer Malcolm Tredinnick liked to think of django.utils as
being in the same theme as Batman’s utility belt: indispensable tools that are used
everywhere internally.

Figure 31.1: A utility belt for serious ice cream eaters.

There are some gems in there that have turned into best practices:

31.3.1 django.contrib.humanize
This is a set of localized template filters designed to give user presented data a more ‘human’
touch. For example it includes a filter called ‘intcomma’ that converts integers to strings
containing commas (or periods depending on locale) every three digits.

https://docs.djangoproject.com/en/3.2/ref/utils/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 31: What About Those Random Utilities?

While django.contrib.humanize’s filters are useful for making template output more
attractive, we can also import each filter individually as a function. This is quite handy when
processing any sort of text, especially when used in conjunction with REST APIs.

31.3.2 django.utils.decorators.method_decorator(decorator)
Django has some really great function decorators. Many of us have written decorators
for Django projects, especially when we’re working with Function-Based Views. However,
there comes a time when we discover that our favorite function decorator would also make
sense as a method decorator. Fortunately, Django provides the method_decorator

31.3.3 django.utils.decorators.decorator_from_middleware(
middleware)

Middleware is a wonderful tool, but is global in nature. This can generate extra queries or
other complications. Fortunately, we can isolate the use of middleware on a per-view basis
by using this view decorator.

Also see the related decorator_from_middleware_with_args decorator.

31.3.4 django.utils.encoding.force_text(value)
This forces Django to take anything and turn it into a plain str representation in Python. It
avoids the display of a django.utils.functional.__proxy__ object. For more details,
see Appendix D.

31.3.5 django.utils.functional.cached_property
Reinout van Rees educated us about this incredibly useful method decorator introduced in
Django 1.5. What it does is cache in memory the result of a method with a single self
argument as a property. This has wonderful implications in regards to performance opti-
mization of a project. We use it in every project, enjoying how it allows us to cache the
results of expensive computations trivially.

For a description on how to use the cached_property decorator, the official Django docu-
mentation on the subject is excellent: docs.djangoproject.com/en/3.2/ref/utils/
#django.utils.functional.cached_property

In addition to the potential performance benefits, we’ve used this decorator to make sure
that values fetched by methods remain static over the lifetime of their object. This has proven
very useful when dealing with third-party APIs or dealing with database transactions.

https://feld.to/2VJlcyl
https://feld.to/2VJlcyl
https://github.com/feldroy/two-scoops-of-django-3.x/issues

31.3: Django’s Own Swiss Army Knife

WARNING: Using cached_property Outside of Django

It is tempting to copy/paste the source code for cached_property for use outside
of Django. However, when used outside a web framework, we discovered the code
for this function has problems in multithreaded environments. Therefore, if coding
outside of Django, use the following options for cached_property:

ä docs.python.org/dev/library/functools.html?highlight=
#functools.cached_property for use with Python 3.8 or higher

ä github.com/pydanny/cached-property for use with Python 3.7 or
older

ä daniel.feldroy.com/cached-property.html

31.3.6 django.utils.html.format_html(format_str,
args, **kwargs)

This is similar to Python’s str.format()method, except designed for building up HTML
fragments. All args and kwargs are escaped before being passed to str.format() which
then combines the elements.

Reference: docs.djangoproject.com/en/3.2/ref/utils/#django.utils.html.
format_html

31.3.7 django.utils.html.strip_tags(value)

When we need to accept content from users and have to strip out anything that could be
HTML, this function removes those tags for we while keeping all the existing text between
tags.

WARNING: Security Advisory on strip_tags Safety

When using the strip_tags function, or the striptags template tage, make
absolutely certain that the outputted content is not marked as safe. This especially
applies if you have disabled automatic escaping in your templates. Reference:
djangoproject.com/weblog/2014/mar/22/strip-tags-advisory/

31.3.8 django.utils.text.slugify(value)

We recommend that whatever you do, don’t write your own version of the slugify()
function, as any inconsistency from what Django does with this function will cause subtle

https://feld.to/3fEEso3
https://feld.to/3fEEso3
https://github.com/pydanny/cached-property
https://daniel.feldroy.com/cached-property.html
https://feld.to/2YfQHBZ
https://feld.to/2YfQHBZ
https://djangoproject.com/weblog/2014/mar/22/strip-tags-advisory/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 31: What About Those Random Utilities?

yet nasty problems in our data. Instead, we use the same function that Django uses and
slugify() consistently.

It is possible to use django.templates.defaultfilters.slugify() in our Python
code, as this calls the function described here. Nevertheless, we like to use the function
directly from Django’s utils directory, as it is a more appropriate import path.

However we decide to import this function, we try to keep it consistent across a project as
there is a use case for when it has to be replaced, as described in the next subsection.

31.3.9 Slugification and Languages Besides English
Tomek Paczkowski points out that Django’s built-in slugify() function can cause prob-
lems with localization:

Example 31.3: Slugification That Converts to the English Alphabet

>>> from django.utils.text import slugify
>>> slugify('straße') # German
'strae'

Fortunately, you can use the allow_unicode flag to overcome this issue:

Example 31.4: Slugification That Preserves Original Characters

>>> slugify('straße', allow_unicode=True) # Again with German
'straße'

PACKAGE TIP: python-slugify

If you want even more control over slugification you can’t do wrong with the python-
slugify package. It provides a greater control over the slugification process, allowing
the following benefits:

ä Customizing of separators
ä Detailed control of the case of the outputting string
ä Translation mappings
ä Is Django-independent, which is useful for microservices
ä Lots more!

References: github.com/un33k/python-slugify

https://github.com/un33k/python-slugify
https://github.com/feldroy/two-scoops-of-django-3.x/issues

31.4: Exceptions

31.3.10 django.utils.timezone
It’s good practice for us to have time zone support enabled. Chances are that our users live
in more than one time zone.

When we use Django’s time zone support, date and time information is stored in the
database uniformly in UTC format and converted to local time zones as needed.

31.3.11 django.utils.translation
Much of the non-English speaking world appreciates use of this tool, as it provides Django’s
i18n support. See Appendix D: Internationalization and Localization for a more in-depth
reference.

31.4 Exceptions
Django comes with a lot of exceptions. Most of them are used internally, but a few
of them stand out because the way they interact with Django can be leveraged in fun
and creative ways. These, and other built-in Django exceptions, are documented at docs.
djangoproject.com/en/dev/ref/exceptions.

31.4.1 django.core.exceptions.ImproperlyConfigured
The purpose of this module is to inform anyone attempting to run Django that there is a
configuration issue. It serves as the single Django code component considered acceptable
to import into Django settings modules. We discuss it in both Chapter 5: Settings and
Requirements Files and Appendix E: Settings Alternatives.

31.4.2 django.core.exceptions.ObjectDoesNotExist
This is the base Exception from which all DoesNotExist exceptions inherit from. We’ve
found this is a really nice tool for working with utility functions that fetch generic model
instances and do something with them. Here is a simple example:

Example 31.5: Example Generic Load Function

core/utils.py
from django.core.exceptions import ObjectDoesNotExist

class BorkedObject:
loaded = False

def generic_load_tool(model, pk):

https://docs.djangoproject.com/en/dev/ref/exceptions
https://docs.djangoproject.com/en/dev/ref/exceptions
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 31: What About Those Random Utilities?

try:
instance = model.objects.get(pk=pk)

except ObjectDoesNotExist:
return BorkedObject()

instance.loaded = True
return instance

Also using this exception, we can create our own variant of Django’s
django.shortcuts.get_object_or_404 function, perhaps raising a HTTP 403
exception instead of a 404:

Example 31.6: get_object_or_403

core/utils.py
from django.core.exceptions import MultipleObjectsReturned
from django.core.exceptions import ObjectDoesNotExist
from django.core.exceptions import PermissionDenied

def get_object_or_403(model, **kwargs):
try:

return model.objects.get(**kwargs)
except ObjectDoesNotExist:

raise PermissionDenied
except MultipleObjectsReturned:

raise PermissionDenied

31.4.3 django.core.exceptions.PermissionDenied

This exception is used when users, authenticated or not, attempt to get responses from
places they are not meant to be. Raising it in a view will trigger the view to return a
django.http.HttpResponseForbidden.

This exception can prove useful to use in functions that are touching the sensitive data and
components of a high-security project. It means that if something bad happens, instead of
just returning a 500 exception, which may rightly alarm users, we simply provide a “Permis-
sion Denied” screen.

https://github.com/feldroy/two-scoops-of-django-3.x/issues

31.5: Serializers and Deserializers

Example 31.7: PermissionDenied in Action

stores/calc.py

def finance_data_adjudication(store, sales, issues):

if store.something_not_right:
msg = 'Something is not right. Please contact the support

team.'↪→

raise PermissionDenied(msg)

Continue on to perform other logic.

In this case, if this function were called by a view and something was ‘not right,’ then the
PermissionDenied exception would force the view to display the project’s 403 error page.
Speaking of 403 error pages, we can set this to any view we want. In the root URLConf of
a project, just add:

Example 31.8: Specifying a Custom Permission Denied View

urls.py

This demonstrates the use of a custom permission denied view. The
default↪→

view is django.views.defaults.permission_denied
handler403 = 'core.views.permission_denied_view'

As always, with exception-handling views, because they handle all HTTP methods equally,
we prefer to use function-based views.

31.5 Serializers and Deserializers
Whether it’s for creating data files or generating one-off simple REST APIs, Django has
some great tools for working with serialization and deserialization of data of JSON, Python,
YAML and XML data. They include the capability to turn model instances into serialized
data and then return it back to model instances.

Here is how we serialize data:

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 31: What About Those Random Utilities?

Example 31.9: serializer_example.py

serializer_example.py
from django.core.serializers import get_serializer

from favorites.models import Favorite

Get and instantiate the serializer class
The 'json' can be replaced with 'python' or 'xml'.
If you have pyyaml installed, you can replace it with
'pyyaml'
JSONSerializer = get_serializer('json')
serializer = JSONSerializer()

favs = Favorite.objects.filter()[:5]

Serialize model data
serialized_data = serializer.serialize(favs)

save the serialized data for use in the next example
with open('data.json', 'w') as f:

f.write(serialized_data)

Here is how we deserialize data:

Example 31.10: deserializer_example.py

deserializer_example.py
from django.core.serializers import get_serializer

from favorites.models import Favorite

Get and instantiate the serializer class
The 'json' can be replaced with 'python' or 'xml'.
If you have pyyaml installed, you can replace it with
'pyyaml'
JSONSerializer = get_serializer('json')
serializer = JSONSerializer()

open the serialized data file
with open('data.txt') as f:

https://github.com/feldroy/two-scoops-of-django-3.x/issues

31.5: Serializers and Deserializers

serialized_data = f.read()

deserialize model data into a generator object
we'll call 'python data'
python_data = serializer.deserialize(serialized_data)

iterate through the python_data
for element in python_data:

Prints 'django.core.serializers.base.DeserializedObject'
print(type(element))

Elements have an 'object' that are literally instantiated
model instances (in this case, favorites.models.Favorite)
print(

element.object.pk,
element.object.created

)

Django already provides a command-line tool for using these serializers and deserializers:
the dumpdata and loaddata management commands. While we can use them, they don’t
grant us the same amount of control that direct code access to the serializers provides.

This brings us to something that we always need to keep in mind when using Django’s built-
in serializers and deserializers: they can cause problems. From painful experience, we know
that they don’t handle complex data structures well.

Consider these guidelines that we follow in our projects:

ä Serialize data at the simplest level.
ä Any database schema change may invalidate the serialized data.
ä Don’t just import serialized data. Consider using Django’s form libraries or Django

Rest Framework serializers to validate incoming data before saving to the database.

Let’s go over some of the features provided by Django when working with specific formats:

31.5.1 django.core.serializers.json.DjangoJSONEncoder
Out of the box, Python’s built-in JSON module can’t handle encoding of date/time or deci-
mal types. Anyone who has done Django for a while has run into this problem. Fortunately
for all of us, Django provides a very useful JSONEncoder class. See the code example below:

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 31: What About Those Random Utilities?

Example 31.11: DjangoJSONEncoder

json_encoding_example.py
import json

from django.core.serializers.json import DjangoJSONEncoder
from django.utils import timezone

data = {'date': timezone.now()}

If you don't add the DjangoJSONEncoder class then
the json library will throw a TypeError.
json_data = json.dumps(data, cls=DjangoJSONEncoder)

print(json_data)

31.5.2 django.core.serializers.pyyaml
While powered by the third-party library, pyyaml, Django’s YAML serializer tools handles
the time conversion from Python-to-YAML that pyyaml doesn’t.

For deserialization, it also uses the yaml.safe_load() function under the hood, which
means that we don’t have to worry about code injection. See Section 28.10.3: Third-Party
Libraries That Can Execute Code for more details.

31.5.3 django.core.serializers.xml_serializer
By default Django’s XML serializer uses Python’s built-in XML handlers. It also incor-
porates elements of Christian Heimes’ defusedxml library, protecting usage of it from
XML bomb attacks. For more information, please read Section 28.21: Guard Against XML
Bombing With defusedxml.

31.5.4 rest_framework.serializers
There are times when Django’s built-in serializers just don’t do enough. Here are common
examples of their limitations:

ä They only serialize data stored in fields. You can’t include data from methods or prop-
erties.

ä You can’t constrain the fields serialized. This can be a security or performance consid-
eration.

https://github.com/feldroy/two-scoops-of-django-3.x/issues

31.6: Summary

When we run into these obstacles, it’s a good idea to consider switching to Django Rest
Framework’s Serializers toolset. They allow for a lot more customization of both the serial-
ization and deserialization process. While that power comes with complexity, we’ve found
it’s worth it to use this tool rather than constructing a manual process from scratch.

References:

ä django-rest-framework.org/api-guide/serializers/
ä Serializing Objects:

django-rest-framework.org/api-guide/serializers/
#serializing-objects

ä Deserializing Objects:
django-rest-framework.org/api-guide/serializers/
#deserializing-objects

31.6 Summary
We follow the practice of putting often reused files into utility packages. We enjoy being
able to remember where we placed our often reused code. Projects that contain a mix of
core, common, util, and utils directories are just that much harder to navigate.

Django’s own ‘utility belt’ includes a plethora of useful tools, including useful functions, ex-
ceptions, and serializers. Leveraging them is on of the ways experienced Django developers
accelerate development and avoid some of the tangles that can be caused by some of the
very features of Django.

Now that we’ve covered tools to make things work, in the next chapter we’ll begin to cover
sharing a project with the world.

http://www.django-rest-framework.org/api-guide/serializers/
https://feld.to/2yWryBm
https://feld.to/2yWryBm
https://feld.to/2yWryBm
https://feld.to/2yWryBm
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 31: What About Those Random Utilities?

https://github.com/feldroy/two-scoops-of-django-3.x/issues

32 | Deployment: Platforms as a
Service

WARNING: This Chapter is in Progress

We are in the midst of working on this chapter and will expand on it in the days to
come. We are open to suggestions on topics and items to cover, please submit them
to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 32: Deployment: Platforms as a Service

https://github.com/feldroy/two-scoops-of-django-3.x/issues

33 | Deploying Django Projects

WARNING: This Chapter is in Progress

We are in the midst of working on this chapter and will expand on it in the days to
come. We are open to suggestions on topics and items to cover, please submit them
to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 33: Deploying Django Projects

https://github.com/feldroy/two-scoops-of-django-3.x/issues

34 | Continuous Integration

WARNING: This Chapter is in Progress

We are in the midst of working on this chapter and will expand on it in the days to
come. We are open to suggestions on topics and items to cover, please submit them
to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 34: Continuous Integration

https://github.com/feldroy/two-scoops-of-django-3.x/issues

35 | The Art of Debugging

WARNING: This Chapter is in Progress

We are in the midst of working on this chapter and will expand on it in the days to
come. We are open to suggestions on topics and items to cover, please submit them
to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 35: The Art of Debugging

https://github.com/feldroy/two-scoops-of-django-3.x/issues

36 | Where and How to Ask
Django Questions

WARNING: This Chapter is in Progress

We are in the midst of working on this chapter and will expand on it in the days to
come. We are open to suggestions on topics and items to cover, please submit them
to github.com/feldroy/two-scoops-of-django-3.x/issues

https://github.com/feldroy/two-scoops-of-django-3.x/issues
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 36: Where and How to Ask Django Questions

https://github.com/feldroy/two-scoops-of-django-3.x/issues

37 | Closing Thoughts

While we’ve covered a lot of ground here in this fifth edition of the book, this is just the tip
of the ice cream cone. We’re writing more technical books and hope you read them!

As for Two Scoops of Django, if there is another edition, it won’t be out until Django 5 is
on the horizon. The reason is that Django 3.2 is a Long Term Support version of Django,
meaning that the content in this book will remain current until at least April 2024.

We’d genuinely love to hear from you, and so would the rest of the Django community.
For specific book content-related feedback, we’re using GitHub issues to track submissions
and commentary from readers. Report any of the following at github.com/feldroy/
two-scoops-of-django-3.x/issues:

ä Did you find any of the topics unclear or confusing?
ä Any errors or omissions that we should know about?
ä What additional topics do you think we should cover in this edition?

We hope that this has been a useful and worthwhile read for you. If you enjoyed reading this
book, please tell others by writing a positive review. We need and appreciate your support.

Cheers to your success with your Django projects!

Daniel Feldroy and Audrey Feldroy

ä twitch.tv/danielfeldroy / dev.to/audreyfeldroy / feldroy.com
ä patreon.com/feldroy Support our ongoing creative efforts by joining our Patreon

program.
ä GitHub: @pydanny, @audreyr, and @feldroy
ä Twitter: @pydanny, @audreyr, and @feldroyteam
ä Facebook: facebook.com/feldroy

https://github.com/feldroy/two-scoops-of-django-3.x/issues
https://github.com/feldroy/two-scoops-of-django-3.x/issues
https://twitch.tv/danielfeldroy
https://dev.to/audreyfeldroy
https://feldroy.com
https://www.patreon.com/feldroy
https://github.com/pydanny
https://github.com/audreyr
https://github.com/feldroy
https://twitter.com/pydanny
https://twitter.com/audreyr
https://twitter.com/feldroyteam
https://www.facebook.com/feldroy
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Chapter 37: Closing Thoughts

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Appendix A: Packages Mentioned In This
Book

This is a list of the third-party Python, Django, and front-end packages that we’ve described
or mentioned in this book. We’ve also snuck in a few really useful packages that we don’t
mention in the book but that we feel are extremely useful.

As for the packages that we’re currently using in our own projects: the list has some overlap
with this list but is always changing. Please don’t use this as the definitive list of what you
should and should not be using.

Core
Django djangoproject.com

The web framework for perfectionists with deadlines.
django-debug-toolbar django-debug-toolbar.readthedocs.org

Display panels used for debugging Django HTML views.
django-model-utils https://pypi.org/project/django-model-utils

Useful model utilities including a time stamped model.
ipdb https://pypi.org/project/ipdb

IPython-enabled pdb
Pillow https://pypi.org/project/Pillow

Friendly installer for the Python Imaging Library.

Dependency Management
conda http://docs.conda.io/

The default package manager for the scientific community.
pip pip-installer.org

Package installer for Python. Comes built-in with Python.
pipenv docs.pipenv.org

Combines Pipfile, Pip, & Virtualenv. Mostly replaces virtualenvwrapper and adds
features in the process.

https://djangoproject.com
http://django-debug-toolbar.readthedocs.org/
https://pypi.org/project/django-model-utils
https://pypi.org/project/ipdb
https://pypi.org/project/Pillow
https://http://docs.conda.io
https://www.pip-installer.org
https://docs.pipenv.org/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Appendix A: Packages Mentioned In This Book

poetry python-poetry.org
Python packaging and dependency management made easy.

virtualenv virtualenv.org
Virtual environments for Python.

virtualenvwrapper doughellmann.com/projects/virtualenvwrapper
Makes virtualenv better for Mac and Linux!

virtualenvwrapper-win https://pypi.org/project/virtualenvwrapper-win
Makes virtualenv better for Windows!

Asynchronous
celery celeryproject.org

Distributed task queue.
flower https://pypi.org/project/flower

Tool for monitoring and management of Celery tasks.
django-channels https://pypi.org/project/channels

Official Django websockets interface, can also be used as task queue.
rq https://pypi.org/project/rq

RQ is a simple, lightweight, library for creating background jobs, and processing
them.

django-rq https://pypi.org/project/django-rq
A simple app that provides django integration for RQ (Redis Queue).

django-background-tasks github.com/arteria/django-background-tasks
Database backed asynchronous task queue.

Database
psycopg2-binary https://pypi.org/project/psycopg2-binary

The binaries for the PostgreSQL database adapter.
aldjemyy github.com/aldjemy/aldjemy

Integrating SQLAlchemy in Django projects for effective query building purposes.
django-maintenancemode-2 github.com/alsoicode/

django-maintenancemode-2
A database-powered solution great for flipping portions of a site in and out of
read-only mode. Not to be used for security-related shutdowns.

Deployment
Invoke https://pypi.org/project/invoke

Like Fabric, also works in Python 3.
Supervisor supervisord.org

Supervisord is a client/server system that allows its users to monitor and control a
number of processes on UNIX-like operating systems.

https://python-poetry.org/
http://virtualenv.org
http://www.doughellmann.com/projects/virtualenvwrapper/
https://pypi.org/project/virtualenvwrapper-win
http://www.celeryproject.org/
https://pypi.org/project/flower
https://pypi.org/project/channels
https://pypi.org/project/rq
https://pypi.org/project/django-rq
https://github.com/arteria/django-background-tasks
https://pypi.org/project/psycopg2-binary
https://github.com/aldjemy/aldjemy
https://github.com/alsoicode/django-maintenancemode-2
https://github.com/alsoicode/django-maintenancemode-2
https://pypi.org/project/invoke
http://supervisord.org/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Documentation
mkdocs mkdocs.org

Markdown Documentation tool.
Sphinx sphinx-doc.org

ReStructuredText- or Markdown-powered Documentation tool.
Myst Markdown Renderer for Sphinx myst-parser.readthedocs.io

Markdown renderer for Sphinx.

Environment Variables
dynaconf github.com/rochacbruno/dynaconf

Configuration management for Python and Django, works with toml, env, ini, and
more.

python-decouple pypi.org/project/python-decouple/
Also works with .ini and .env files.

Forms
django-crispy-forms django-crispy-forms.readthedocs.io

Rendering controls for Django forms. Uses Bootstrap widgets by default, but
skinnable.

crispy-tailwind github.com/django-crispy-forms/crispy-tailwind
A Tailwind template pack for django-crispy-forms.

django-floppyforms django-floppyforms.readthedocs.io
Form field, widget, and layout that can work with django-crispy-forms.

Front-End
eslint eslint.org/

Find and fix problems in your JavaScript code.
django-webpack-loader TODO

Logging and Performance Monitering
Sentry sentry.io

Exceptional error aggregation and performance monitoring, with an open source code
base.

Project Templates
All of these are described in Chapter 3: How to Lay Out Django Projects.

Cookiecutter Django github.com/pydanny/cookiecutter-django
A popular Cookiecutter by one of the authors of this book.

django-crash-starter github.com/pydanny/cookiecutter-django
A simplified version of Cookiecutter Django, also by one of the authors of this book.

http://mkdocs.org/
http://sphinx-doc.org/
https://myst-parser.readthedocs.io/
https://github.com/rochacbruno/dynaconf
https://pypi.org/project/python-decouple/
http://django-crispy-forms.readthedocs.io/
https://github.com/django-crispy-forms/crispy-tailwind
http://django-floppyforms.readthedocs.io/
https://eslint.org/
http://sentry.io
https://github.com/pydanny/cookiecutter-django
https://github.com/pydanny/cookiecutter-django
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Appendix A: Packages Mentioned In This Book

cookiecutter-django-vue-graphql-aws github.com/grantmcconnaughey/
cookiecutter-django-vue-graphql-aws
Another sample project layout mentioned in chapter 3 of this book.

Cookiecutter cookiecutter.readthedocs.io
Not explicitly for Django, a command-line utility for creating project and app tem-
plates. It’s focused, heavily tested and well documented. By one of the authors of this
book.

REST APIs
django-rest-framework django-rest-framework.org

The defacto REST package for Django. Exposes model and non-model resources as
a RESTful API.

django-jsonview github.com/jsocol/django-jsonview
Provides a simple decorator that translates Python objects to JSON and makes sure
decorated views will always return JSON.

django-tastypie django-tastypie.readthedocs.io
Expose model and non-model resources as a RESTful API.

Security
bleach https://pypi.org/project/bleach

An easy whitelist-based HTML-sanitizing tool.
defusedxml https://pypi.org/project/defusedxml

Must-have Python library if you are accepting XML from any foreign source.
django-admin-honeypot https://pypi.org/project/django-admin-honeypot

A fake Django admin login screen to notify admins of attempted unauthorized access.

django-axes github.com/django-pci/django-axes
Keep track of failed login attempts in Django-powered sites.

django-csp github.com/mozilla/django-csp
Adds Content Security Policy to Django.

django-restricted-sessions github.com/mxsasha/django-restricted-sessions
This third-party package lets you restrict sessions to an IP or an IP range and/or the
user agent.

django-stronghold github.com/mgrouchy/django-stronghold
Get inside your stronghold and make all your Django views default login_required.

django-two-factor-auth https://pypi.org/project/django-two-factor-auth
Complete Two-Factor Authentication for Django.

django-user-sessions https://pypi.org/project/django-user-sessions
Django sessions with a foreign key to the user.

https://github.com/grantmcconnaughey/cookiecutter-django-vue-graphql-aws
https://github.com/grantmcconnaughey/cookiecutter-django-vue-graphql-aws
http://cookiecutter.readthedocs.io
http://django-rest-framework.org/
https://github.com/jsocol/django-jsonview
http://django-tastypie.readthedocs.io
https://pypi.org/project/bleach
https://pypi.org/project/defusedxml
https://pypi.org/project/django-admin-honeypot
https://github.com/django-pci/django-axes
https://github.com/mozilla/django-csp
https://github.com/mxsasha/django-restricted-sessions
https://github.com/mgrouchy/django-stronghold
https://pypi.org/project/django-two-factor-auth
https://pypi.org/project/django-user-sessions
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Twine https://pypi.org/project/twine
Uses only verified TLS to upload to PyPI protecting your credentials from theft. Has
other useful features worth looking at.

Testing
coverage coverage.readthedocs.io

Checks how much of your code is covered with tests.
django-test-plus github.com/revsys/django-test-plus

Useful additions to Django’s default TestCase, which the Two Scoops authors learned
from the creator of this package and continue to use to this day. We’re happy to see
this bundled up for ease of use.

factory boy https://pypi.org/project/factory_boy
A package that generates model test data.

model bakery https://pypi.org/project/model_bakery
Another package that generates model test data.

mock https://pypi.org/project/mock
Not explicitly for Django, this allows you to replace parts of your system with mock
objects. This project made its way into the standard library as of Python 3.4.

pytest pytest.org
A mature full-featured Python testing tool that is very useful for Python and Django
projects.

pytest-django pytest-django.readthedocs.io
pytest-django is a plugin for py.test that provides a set of useful tools for testing
Django applications and projects.

tox tox.readthedocs.io
A generic virtualenv management and test command line tool that allows testing of
projects against multiple Python version with a single command at the shell.

nox nox.readthedocs.io
nox is a command-line tool that automates testing in multiple Python environments,
similar to tox. Unlike tox, Nox uses a standard Python file for configuration.

User Registration
django-allauth django-allauth.readthedocs.io

General-purpose registration and authentication. Includes Email, Twitter, Facebook,
GitHub, Google, and lots more.

python-social-auth github.com/python-social-auth/social-core
Easy social authentication and registration for Twitter, Facebook, GitHub, Google,
and lots more.

django-registration github.com/ubernostrum/django-registration
A simple, extensible user-registration app for Django

https://pypi.org/project/twine
http://coverage.readthedocs.io/
https://github.com/revsys/django-test-plus
https://pypi.org/project/factory_boy
https://pypi.org/project/model_bakery
https://pypi.org/project/mock
http://pytest.org/
http://pytest-django.readthedocs.io/
http://tox.readthedocs.io/
http://nox.readthedocs.io/
http://django-allauth.readthedocs.io/
https://github.com/python-social-auth/social-core
https://github.com/ubernostrum/django-registration
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Appendix A: Packages Mentioned In This Book

Views
django-braces django-braces.readthedocs.io

Drop-in mixins that really empower Django’s class-based views.
django-vanilla-views django-vanilla-views.org

Simplifies Django’s generic class-based views by simplifying the inheritance chain.

Time
pendulum https://pypi.org/project/pendulum

Python datetimes made easy, highly recommended by Audrey Feldroy.
python-dateutil https://pypi.org/project/python-dateutil

Provides powerful extensions to Python’s datetime module.
pytz https://pypi.org/project/pytz

Brings the Olson tz database into Python. This library allows accurate and cross plat-
form timezone calculations. It also solves the issue of ambiguous times at the end of
daylight saving time. Library Reference

Miscellaneous
dj-stripe pypi.org/project/dj-stripe

Django + Stripe made easy.
django-compressor django-compressor.readthedocs.io

Compresses linked and inline JavaScript or CSS into a single cached file using Node
under the hood.

django-extensions django-extensions.readthedocs.io
Provides shell_plus management command and a lot of other utilities.

django-haystack github.com/django-haystack/django-haystack
Full-text search that works with SOLR, Elasticsearch, and more.

django-js-reverse github.com/ierror/django-js-reverse
Javascript url handling for Django that doesn’t hurt.

django-pipeline github.com/jazzband/django-pipeline
Compression of CSS and JS. Use with cssmin and jsmin packages.

django-htmlmin github.com/cobrateam/django-htmlmin
HTML minifier for django.

django-reversion github.com/etianen/django-reversion
An extension to the Django web framework that provides comprehensive version
control facilities.

django-watson github.com/etianen/django-watson
Full-text multi-table search application for Django using SQL database features.

envdir github.com/jezdez/envdir A Python port of daemontools’ envdir.
flake8 pypi.org/project/flake8

http://django-braces.readthedocs.io
http://django-vanilla-views.org/
https://pypi.org/project/pendulum/
https://pypi.org/project/python-dateutil
https://pypi.org/project/pytz/
https://pypi.org/project/dj-stripe
http://django-compressor.readthedocs.io/
http://django-extensions.readthedocs.io/
https://github.com/django-haystack/django-haystack
https://github.com/ierror/django-js-reverse
https://github.com/jazzband/django-pipeline
https://github.com/cobrateam/django-htmlmin
https://github.com/etianen/django-reversion
https://github.com/etianen/django-watson
https://github.com/jezdez/envdir
https://pypi.org/project/flake8
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Checks code quality by using PyFlakes, pep8, and other tools.
isort pypi.org/project/flake8
pip-tools github.com/nvie/pip-tools

A set of tools to keep your pinned Python dependencies fresh.
python-slugify github.com/un33k/python-slugify

A flexible slugify function.
pyyaml pypi.org/project/PyYAML

YAML parser and emitter for Python.
requests docs.python-requests.org

Easy-to-use HTTP library that replaces Python’s urllib2 library.
silk github.com/mtford90/silk

Silk is a live profiling and inspection tool for the Django framework. Silk intercepts
and stores HTTP requests and database queries before presenting them in a user
interface for further inspection.

https://pypi.org/project/isort
https://github.com/nvie/pip-tools
https://pypi.org/project/python-slugify
https://pypi.org/project/PyYAML
http://docs.python-requests.org
https://github.com/mtford90/silk
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Appendix B: Troubleshooting Installation

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Appendix B: Troubleshooting
Installation

This appendix contains tips for troubleshooting common Django installation issues.

Identifying the Issue
Often, the issue is one of:

ä That Django isn’t on your system path, or
ä That you’re running the wrong version of Django

Run this at the command line:

Example 1: Checking Your Django Version

python -c "import django; print django.get_version()"

If you’re running Django 3.x, you should see the following output:

Example 2: Django Version

3.x, where "x" is the version of Django you are using

Don’t see the same output? Well, at least you now know your problem. Read on to find a
solution.

Our Recommended Solutions
There are all sorts of different ways to resolve Django installation issues (e.g. manually edit-
ing your PATH environment variable), but the following tips will help you fix your setup in
a way that is consistent with what we describe in chapter on The Optimal Django Environ-
ment Setup.

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Appendix B: Troubleshooting Installation

Check Your Virtualenv Installation
Is virtualenv installed properly on your computer? At the command line, try creating a test
virtual environment and activating it.

If you’re on a Mac or Linux system, verify that this works:

Example 3: Checking Virtualenv on Mac or Linux

$ virtualenv testenv
$ source testenv/bin/activate

If you’re on Windows, verify that this works:

Example 4: Checking Virtualenv on Windows

C:\code\> virtualenv testenv
C:\code\> testenv\Scripts\activate

Your virtualenv should have been activated, and your command line prompt should now
have the name of the virtualenv prepended to it.

On Mac or Linux, this will look something like:

Example 5: Virtualenv Prompt on Mac and Linux

(testenv) \$

On Windows, this will look something like:

Example 6: Virtualenv Prompt on Windows

(testenv) >

Did you run into any problems? If so, study the Virtualenv documentation (virtualenv.
org) and fix your installation of Virtualenv.

If not, then continue on.

http://virtualenv.org
http://virtualenv.org
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Check if Your Environment Has the right version of Django Installed
With your virtualenv activated, check your version of Django again:

Example 7: Checking the Django Version Again

python -c "import django; print django.get_version()"

If you still don’t see your defined version, then try using pip to install Django into testenv:

Example 8: Pip Installing Django 3.x

(testenv) \$ pip install Django==3.2

Did it work? Check your version of Django again. If not, check that you have pip installed
correctly as per the official documentation (pip-installer.org).

Check for Other Problems
Follow the instructions in the official Django docs for troubleshooting problems related to
running django-admin:
docs.djangoproject.com/en/3.2/faq/troubleshooting/

http://pip-installer.org
https://docs.djangoproject.com/en/3.2/faq/troubleshooting/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Appendix C: Additional Resources

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Appendix C: Additional Resources

This appendix lists additional resources that we feel are timeless. Some of them might be
for previous versions of Python or Django, but the concepts they present transcend version.

Timeless Python and Django Material
Books:

Best Django Books (2020)
wsvincent.com/best-django-books/
William Vincent maintains a list of what he considers the best Django books. The
books in his list are so good we feel honored to share two places with them.

Speed Up Your Django Tests
gumroad.com/l/suydt
For medium-to-advanced level Djangonauts only, Django technical board member
Adam Johnson has written an excellent book on how to accelerate tests. This is a
critical issue on larger or more complicated projects.

High Performance Django
amazon.com/High-Performance-Django/dp/1508748128/
highperformancedjango.com
Written with a focus on scaling Django, this book espouses many good practices. Full
of useful information and tricks, as well as questions in each section that force you to
think about what you are doing.

Two Scoops of Django: Best Practices for Django 1.11 (print)
twoscoopspress.com/products/two-scoops-of-django-1-11
The fourth printed edition of this book.

Web:

Django Packages
djangopackages.org

https://wsvincent.com/best-django-books/
https://gumroad.com/l/suydt
http://mybook.to/hpd
https://highperformancedjango.com
https://www.feldroy.com/products/two-scoops-of-django-1-8
https://djangopackages.org
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Appendix C: Additional Resources

A directory of reusable apps, sites, tools, and more for your Django projects main-
tained by the authors of Two Scoops of Django.

Classy Class-Based Views
ccbv.co.uk
A website that has provides detailed descriptions, with full methods and attributes,
for each of Django’s class-based generic views.

Classy Django Forms
cdf.9vo.lt
Detailed descriptions, with full methods and attributes, for each of Django’s form
classes and methods.

Classy Django REST Framework
cdrf.co
Detailed descriptions, with full methods and attributes, for each of Django REST
Framework’s class-based views and serializers.

Daniel’s blog
daniel.feldroy.com/tag/django.html
A good amount of this blog is about modern Django. As the author of this blog is
also one of this book’s authors, the style of the blog loosely resembles the content of
this book. He is in the process of writing updated versions of his outdated Django
articles.

Django Model Behaviors
blog.kevinastone.com/django-model-behaviors.html
Kevin Stone explores how to structure models and associated code in large Django
projects.

Awesome-Django
awesome-django.com
A curated list of awesome Django apps, projects and resources.

Real Python Blog
realpython.com/blog/categories/django/
In addition to their excellent tutorial book, the Real Python blog contains a lot of
useful Django material on a wide range of subjects.

Simple is Better than Complex simpleisbetterthancomplex.com/
Vitor Freitas is an amazing writer on Python and Django, able to turn complex topics
into usable components.

Django Tricks djangotricks.com/
Aidas Bendoraitis has spent years curating tips, tricks, and code snippets about
Django and Python. He’s also the author of the “Django 3 Web Development Cook-
book”, found on Amazon at https://amzn.to/3dYaXfQ

testdrivei.io testdriven.io/blog/topics/django/

http://ccbv.co.uk/
https://cdf.9vo.lt/
http://www.cdrf.co/
http://daniel.feldroy.com/tag/django.html
http://blog.kevinastone.com/django-model-behaviors.html
http://awesome-django.com/
https://realpython.com/blog/categories/django/
https://simpleisbetterthancomplex.com/
https://www.djangotricks.com/
https://amzn.to/3dYaXfQ
https://testdriven.io/blog/topics/django/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Michael Herman has been teaching and writing Django, Python, JavaScript and more
for years. We’ve always found his works enlightening and useful.

Timeless Beginner Django Material
Web:

Official Django 3.0 Documentation
docs.djangoproject.com/en/3.2/
The official Django documentation is incredibly useful. If you’ve used a previous ver-
sion of Django, make sure that you are reading the correct edition of the documenta-
tion.

Django Girls Tutorial
tutorial.djangogirls.org
Created and maintained by the international Django Girls organization, this is an
excellent resource no matter your gender.

Simple is Better than Complex simpleisbetterthancomplex.com/
Vitor Freitas’ beginner level material is very well written.

Timeless Beginner Python Material
Learn Python the Hard Way Online Edition

learnpythonthehardway.org
By going right to the source, this free for HTML, paid for video resources, is one of
the best places to start. The video resources are especially useful.

Automate the Boring Stuff with Python
amazon.com/gp/product/1593275994
This fascinating book teaches Python by instructing on how to make boring com-
puter tasks easy through automation. Why update 150 columns of a spreadsheet when
Python can do it for you?

Timeless Useful Python Material
Fluent Python

amzn.to/2oHTORa
One of our favorite Python books, author Luciano Ramalho tours Python’s core lan-
guage features and libraries, and shows us how to make code shorter, faster, and more
readable at the same time.

Effective Python
amzn.to/1NsiqVr
Instructs on many useful practices and techniques when coding in Python.

Python Cookbook, 3rd Edition
amzn.to/I3Sv6q

https://docs.djangoproject.com/en/3.2/
http://tutorial.djangogirls.org/
https://simpleisbetterthancomplex.com/
http://learnpythonthehardway.org/
http://mybook.to/atbsp
http://amzn.to/2oHTORa
http://amzn.to/1NsiqVr
http://amzn.to/I3Sv6q
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Appendix C: Additional Resources

An incredible book by Python luminaries David Beazley and Brian Jones, it’s filled
with delicious ice cream recipes... err... incredibly useful Python recipes for any devel-
oper using Python 3.3 or greater.

Treading on Python Volume 2
amzn.to/1kVWi2a
Covers more advanced Python structures.

Writing Idiomatic Python 3.3
amzn.to/1aS5df4
Great tips for optimizing your code and increasing the legibility of your work. There
are a few places it differs from our practices (imports being the largest area of differ-
ence), but overall we concur. A 2.7 version is available at amzn.to/1fj9j7z

JavaScript Resources
WARNING: ATTENTION: Help Wanted!

Books:

Secrets of a JavaScript Ninja (Print and Kindle)
amzn.to/2AknxYp

TODO - Add more good, modern JS books!

Web Resources:

Mozilla Developer Network
developer.mozilla.org/en-US/docs/Web/JavaScript

Stack Overflow
stackoverflow.com/questions/tagged/javascript

TODO - Add at least one more good, modern JS web resource!

WARNING: Stay Away From W3Schools

One problem about JavaScript (and CSS) research on the web is that W3Schools
will turn up at the top of search engine results. This is unfortunate, because much of
the data there is outdated enough to be incorrect. Be smart and avoid this resource.

We scan the results page for the Mozilla Developer Network (MDN) link, usually
around the third position, and click on that one.

http://amzn.to/1kVWi2a
http://amzn.to/1aS5df4
http://amzn.to/1fj9j7z
https://amzn.to/2AknxYp
https://developer.mozilla.org/en-US/docs/Web/JavaScript
http://stackoverflow.com/questions/tagged/javascript
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Appendix D: Internationalization and
Localization

Django and Python provides a lot of very useful tools for dealing with internationalization,
localization, and Unicode.

This appendix contains a list of things helpful for preparing your Django application for
non-English readers and non-USA users. This list is by no means complete, and we invite
the reader to provide additional feedback.

Start Early
It is always easier to start with and grow an internationalized, localized project than to
convert an existing project.

Wrap Content Strings with Translation Functions
Every string presented to end users should be wrapped in a translation function. This is de-
scribed in-depth in the official Django documentation on django.utils.translation
at docs.djangoproject.com/en/3.2/topics/i18n/translation/. Since that is a
lot of text to swallow, the table on the following page is a reference guide for knowing when
and where to use what translation function for what tasks.

https://docs.djangoproject.com/en/3.2/topics/i18n/translation/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Appendix D: Internationalization and Localization

Function Purpose Link
gettext() For content executed at

runtime, e.g. form valida-
tion errors.

docs.djangoproject.
com/en/3.2/topics/
i18n/translation/
#standard-translation

gettext_lazy() For content executed
at compile time, e.g.
verbose_name in mod-
els.

docs.djangoproject.
com/en/3.2/topics/
i18n/translation/
#lazy-translation

django.utils.text.format_lazy()Replaces the standard
str.join() method for
joining strings.

docs.djangoproject.
com/en/3.2/topics/
i18n/translation/
#formatting-strings-format-lazy

Table 1: Translation Function Reference

Convention: Use the Underscore Alias to Save Typing
As you know, normally we aren’t fans of abbreviations or shortcuts. However, in the case of
internationalizing Python code, the existing convention is to use a _, or underscore, to save
on letters.

Example 9: The Underscore Alias in Action

from django.utils.translation import gettext as _

print(_('We like gelato.'))

Don’t Interpolate Words in Sentences
The golden rule is always have as much grammar as possible in the string, don’t
let the code piece the grammar together; and generally verbs are the most prob-
lematic.

– Patrick McLoughlan

We used to construct translation strings all the time, going so far as to include it in the 1.5
edition of the book. This is when you use slightly-clever code to construct sentences out of
various Python objects. For reference, this was part of Example 8.7:

Example 10: Our Bad Code from the 1.5 Edition

DON'T DO THIS!

https://feld.to/3bPcMer
https://feld.to/3bPcMer
https://feld.to/3bPcMer
https://feld.to/3bPcMer
https://feld.to/2yRiPkc
https://feld.to/2yRiPkc
https://feld.to/2yRiPkc
https://feld.to/2yRiPkc
https://feld.to/3cdVQ1t
https://feld.to/3cdVQ1t
https://feld.to/3cdVQ1t
https://feld.to/3cdVQ1t
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Skipping the rest of imports for the sake of brevity
class FlavorActionMixin:

@property
def action(self):

msg = '{0} is missing action.'.format(self.__class__)
raise NotImplementedError(msg)

def form_valid(self, form):
msg = 'Flavor {0}!'.format(self.action)
messages.info(self.request, msg)
return super().form_valid(form)

Snipping the rest of this module for the sake of brevity

While seemingly handy in that it makes for a self-maintaining mixin, it is overly clever in
we can’t internationalize the result of calling self.__class__. In other words, you can’t
just add django.utils.translation the following and expect it to produce anything
meaningful for translators to work from:

Example 11: Making Things Impossible For Translators

DON'T DO THIS!
from django.utils.translations import gettext as _

Skipping the rest of this module for the sake of brevity

def form_valid(self, form):

This generates a useless translation object.
msg = _('Flavor {0}!'.format(self.action))
messages.info(self.request, msg)
return super().form_valid(form)

Skipping the rest of this module for the sake of brevity

Rather than writing code that constructs sentences out of various Python constructs, now
we write more meaningful dialogues that can be readily translated. This means a little more
work, but the result is a more easily translatable project. Hence we now follow this pattern:

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Appendix D: Internationalization and Localization

Example 12: Use of Complete Strings

Skipping the rest of imports for the sake of brevity
from django.utils.translation import gettext as _

class FlavorActionMixin:

@property
def success_msg(self):

return NotImplemented

class FlavorCreateView(LoginRequiredMixin, FlavorActionMixin,
CreateView):

model = Flavor

Slightly longer but more meaningful dialogue
success_msg = _('Flavor created!')

Skipping the rest of this module for the sake of brevity

For reference, you can combine individual strings representing meaningful sentences and
dialogues into larger values. However, you shouldn’t build sentences by concatenating pieces,
because other languages may require a different order. For the same reason, you should
always include punctuation in translated strings. See as follows:

Example 13: Using Punctuation in Translated Strings

from django.utils.translation import gettext as _

class FlavorActionMixin:

@property
def success_msg(self):

return NotImplemented

class FlavorCreateView(LoginRequiredMixin, FlavorActionMixin,
CreateView):

model = Flavor

Example combining strings
part_one = _('Flavor created! ')

https://github.com/feldroy/two-scoops-of-django-3.x/issues

part_two = _("Let's go try it!")
success_msg = part_one + part_two

Skipping the rest of this module for the sake of brevity

Unicode Tricks
Here are some things we’ve learned when dealing with unicode-related issues.

Use django.utils.encoding.force_text() Instead of str()
When we need to ensure that a useful string-type value is returned, don’t use the str()
built-in. What can happen is that under certain circumstances, instead of returning a ustr
object, Django will return a nigh-meaningless django.utils.functional.__proxy__
object, which is a lazy instance of the data requested.

Instead, do as our friend Douglas Miranda suggested to us, and use
django.utils.encoding.force_text. In the case that you are dealing with a proxy
object or lazy instance, it resolves them as strings.

TIP: Django is Lazy

One of the ways that Django does optimizations is via lazy loading, a design pat-
tern which defers initialization of an object until it is needed. The place where
this is most used is Django’s ORM, as described at docs.djangoproject.
com/en/3.2/topics/db/queries/#querysets-are-lazy. This use of lazy
objects can cause problems with display of content, hence the need for
django.utils.encoding.force_text().

Browser Page Layout
Assuming you’ve got your content and Django templates internationalized and localized,
you can discover that your layouts are broken.

A good Django-based example is Mozilla and their various sites for supporting tools like
Firefox. On these sites they handle translations for over 80 languages. Unfortunately, a title
that fits the page in English breaks the site in more verbose languages such as German.

Mozilla’s answer is to determine the width of a title container, then use JavaScript to adjust
the font size of the title text downwards until the text fits into the container with wrapping.

A simpler way of handling this issue is to assume that other languages can take up twice as

https://feld.to/2YewRXJ
https://feld.to/2YewRXJ
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Appendix D: Internationalization and Localization

much space as English. English is a pretty concise language that, because of its short words,
handles text wrapping very well.

The Challenges of Time
Time is a tricky subject even without timezones and different calendering systems. Here are
resources to help navigate through time-based coding:

ä yourcalendricalfallacyis.com

http://yourcalendricalfallacyis.com/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Appendix E: Settings Alternatives

Here a couple of alternative patterns for managing settings that we feel can be recommended.
They avoid the local_settings anti-pattern and allow for management of configuration that
will work with either the Environment Variables Pattern or the Secrets File Pattern.

WARNING: Converting Existing Settings is Hard

If you have an existing project using multiple settings modules and you want to con-
vert it to the single settings style, you might want to reconsider. Migrating settings
approaches is always a tricky process, and requires deep and wide test coverage. Even
with the best test coverage, there is a chance it’s not going to be worth it.

For these reasons, we suggest being conservative about switching to new settings
approaches. Only do it when the current settings management approach has become
a pain point, not when a new method becomes popular.

Twelve Factor-Style Settings
If we’re relying on environment variables, why not use the simplest settings.py system pos-
sible? Bruno Renié, creator of django-floppyforms and FeedHQ (feedhq.org), advocates
an alternate approach to Django settings files, in which all environments use the same single
settings file.

The argument for this approach is that when using the multiple settings files approach,
you end up with environment-specific code. For instance, when doing local development,
you’re not running the code with production settings. This increases the chance of running
into production-specific bugs when you update some code without updating the production
settings accordingly.

This style involves using sensible default settings and as few environment specific values as
possible. When combined with tools like Vagrant and Docker, it means that mirroring
production is trivial.

https://feedhq.org
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Appendix E: Settings Alternatives

It results in a much simpler settings file, and for Twelve Factor App fans, it’s right in line
with that approach.

If you want to see an example of the approach in action, check out FeedHQ’s settings mod-
ule: github.com/feedhq/feedhq/blob/master/feedhq/settings.py

We’ve enjoyed this approach for new and smaller projects. When done right, it makes things
elegantly simple.

However, it’s not a perfect solution for all problems:

ä It doesn’t provide much benefit for simplification when development environments
are drastically different than production.

ä It doesn’t work as well with projects being deployed to more than one operating sys-
tem.

ä Complex settings on large projects are not really simplified or shortened by this ap-
proach. It can be challenging to use on large or complex projects.

If you would like to know more about this approach, we recommend the following articles:

ä bruno.im/2013/may/18/django-stop-writing-settings-files/
ä 12factor.net/config

https://github.com/feedhq/feedhq/blob/master/feedhq/settings.py
http://bruno.im/2013/may/18/django-stop-writing-settings-files/
http://12factor.net/config
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Appendix G: Security
Settings Reference

In Django, knowing which setting should be set to what value in development vs production
requires an unfortunate amount of domain knowledge. This appendix is a reference for better
understanding how to configure a Django project for both development and production.

Setting Development Production
ALLOWED_HOSTS any list See ??
Cross Site Request Forgery
protection

See next page See next page

DEBUG True False
DEBUG_PROPAGATE_EXCEPTIONSFalse False
Email SSL See next page See next page
MIDDLEWARE_CLASSES Standard Add

SecurityMiddleware
SECRET_KEY Use cryptographic key See section 5.3
SECURE_CONTENT_TYPE_NOSNIFFTrue True
SECURE_PROXY_SSL_HEADERNone See next page
SECURE_SSL_HOST False True
SESSION_COOKIE_SECURE False True
SESSION_SERIALIZER See below See next page

Table 2: Security Settings Reference

Cross Site Request Forgery Protection Settings
For most cases, the standard Django defaults for these settings are adequate. This list pro-
vides references to edge cases and the CSRF setting documentation that might provide
mitigation:

ä Internet Explorer and CSRF failure: docs.djangoproject.com/en/3.2/ref/
settings/#csrf-cookie-age

ä Cross-subdomain request exclusion, (e.g. posting from

https://feld.to/3eV1DuF
https://feld.to/3eV1DuF
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Appendix F: Security Settings Reference

vanilla.twoscoopspress.com to chocolate.twoscoopspress.com):
docs.djangoproject.com/en/3.2/ref/settings/#csrf-cookie-domain

ä Changing the default CSRF failure view: docs.djangoproject.com/en/3.2/
ref/settings/#csrf-failure-view

Email SSL
Django supports secure connections to SMTP servers. We strongly suggest using this fea-
ture. Documentation on the following settings begins at docs.djangoproject.com/en/
3.2/ref/settings/#email-use-tls

ä EMAIL_USE_TLS
ä EMAIL_USE_SSL
ä EMAIL_SSL_CERTFILE
ä EMAIL_SSL_KEYFILE

SESSION_SERIALIZER
Per subsection 28.10.4:

SESSION_SERIALIZER = django.contrib.sessions.serializers.JSONSerializer.

SECURE_PROXY_SSL_HEADER
For some setups, most notably Heroku, this should be:

SECURE_PROXY_SSL_HEADER = (`HTTP_X_FORWARDED_PROTO', `https')

https://feld.to/2yRiQog
https://feld.to/35c3ney
https://feld.to/35c3ney
https://feld.to/3f0eZpp
https://feld.to/3f0eZpp
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Appendix G: Handling Security Failures

Have a Plan Ready for When Things Go Wrong
Handling security failures is incredibly stressful. There is a sense of urgency and panic that
can overwhelm our better judgement, leading to snap decisions that can involve ill-advised
‘bug fixes’ and public statements that worsen the problem.

Therefore, it’s critical that a point-by-point plan be written and made available to maintain-
ers and even non-technical participants of a project. Here is a sample plan:

1 Shut everything down or put it in read-only mode.
2 Put up a static HTML page.
3 Back everything up.
4 After reading docs.djangoproject.com/en/dev/internals/security/,

email security@djangoproject.com about your security-related problem, even if it’s
your fault.

5 Start looking into the problem.

Let’s go over these steps:

Shut Everything Down or Put It in Read-Only Mode
The first thing to do is remove the ability for the security problem to continue. That way,
further damage is hopefully prevented.

On Heroku:

Example 14: Turning on Maintenance Mode for Heroku Projects

\$ heroku maintenance:on
Enabling maintenance mode for myapp... done

https://docs.djangoproject.com/en/dev/internals/security/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Appendix G: Handling Security Failures

For projects you deploy yourself or with automated tools, you’re going to have create this
capability yourself. Fortunately, other people have faced this before so we come prepared
with reference material:

ä cyberciti.biz/faq/custom-nginx-maintenance-page-with-http503
for putting up maintenance 503 pages.

ä Other tools can be found at djangopackages.org/grids/g/
emergency-management

Put Up a Static HTML Page
You should have a maintenance page formatted and ready to go when you launch your
project. This way, when things go wrong and you’ve shut everything down, you can display
that to the end user. If done well, the users might understand and give you the breathing
room to work out the problem.

Back Everything Up
Get a copy of the code and then the data off the servers and keep it on a local hard drive or
SSD. You might also consider a bonded, professional storage company.

Why? First, when you back things up at this stage, you are protecting your audit trail. This
might provide you with the capability to determine where and when things went wrong.

Second, and this might be unpleasant to hear, but malignant staff can cause as many prob-
lems as any bug or successful penetration. What that means is that the best software-based
security is useless against a developer who creates a backdoor or a non-technical staff level
user who decides to cause trouble.

Email security@djangoproject.com, Even if It’s Your Fault
As long as your problem is security related, read through docs.djangoproject.com/en/
dev/internals/security/, then send a quick email summarizing the problem. Ask for
help while you are at it.

There are a number of reasons why this is important:

ä Writing up a quick summary will help you focus and gather your thoughts. You’re
going to be under an amazing amount of stress. The stress and urgency of the situation
can make you attempt stupid things that can aggravate the problem.

ä You never know, the Django security team might have good advice or even an answer
for you.

ä It might be a Django problem! If that is the case, the Django security team needs to
know so they can mitigate the problem for everyone else before it becomes public.

https://www.cyberciti.biz/faq/custom-nginx-maintenance-page-with-http503/
https://djangopackages.org/grids/g/emergency-management/
https://djangopackages.org/grids/g/emergency-management/
https://docs.djangoproject.com/en/dev/internals/security/
https://docs.djangoproject.com/en/dev/internals/security/
https://github.com/feldroy/two-scoops-of-django-3.x/issues

TIP: Jacob Kaplan-Moss on Reporting to the Django Project

Former Django BDFL and former Director of Security for Heroku Jacob Kaplan-
Moss says, “I’d much rather have people send things that aren’t actual problems
in Django to security@djangoproject.com than accidentally disclose security issues
publicly because they don’t know better.”

Start Looking Into the Problem
You’ve shut things down, backed everything up, are displaying a static HTML page, emailed
security@djangoproject.com, and are looking at the problem. By following the above steps,
you’ve given yourself (and possibly your team) time to breathe and figure out what really
happened.

This will be a stressful time and people will be on the edge of panic. Start doing research,
perhaps in this book, ask questions as per Chapter 36: Where and How to Ask Django
Questions, and find a resolution.

Before you implement a correction, it’s often better to make sure you have a real, proper
fix for the problem then do a rushed emergency patch that destroys everything. Yes, this is
where tests and continuous integration shine.

Stay positive: now is the time for everyone to come together and fix the problem. Start taking
notes, ask for help from the best people you know, remind yourself (or the team) that you
have the will and the smarts to fix things, and make things right!

WARNING: The Nightmare of the Zero-Day Attack

Zero-day attacks are attacks on vulnerabilities that may be known to the public or
a closed list but still unpatched. For example:

ä Attacks the day of a software update release, right before most people get
around to installing the software update.

ä Attacks right after a user writes up a blog post about a vulnerability they found,
before package maintainers have the chance to write and release a patch.

ä Attacks targeting vulnerabilities in discussion on a closed security mailing list.

With zero-day attacks, there is often no time to address and patch the vulnerability,
making the compromise especially difficult to manage. If there was ever a reason to
have a battle plan for handling security issues, this is it.

See en.wikipedia.org/wiki/0day

https://en.wikipedia.org/wiki/0day
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Appendix H: WebSockets with Channels

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Appendix H: WebSockets with Channels

Already mentioned in Chapter 27: Asynchronous Task Queues, Channels provides the ca-
pability for Django to handle WebSockets. The advantage of using Channels for this pur-
pose is that unlike alternative approaches such as FastAPI or Node.js , Channels allows us
to use Websockets in a way very similar to views. Better yet, by using Channels, we can ac-
cess our project’s code base, allowing us to access our models and other custom code. We’ve
found Channels to be a very powerful tool, especially when we follow the same practices we
espouse in the rest of this book.

Keep in mind that the advantage of WebSockets is much more than providing a real-time
interface. It’s that the protocol is lighter than HTTP. This makes it a faster way to transmit
data back and forth between client and server.

Here are our thoughts on using Channels based off lessons learned:

Each Browser Tab Has Its Own WebSocket Connection
If a user has one hundred tabs open to our project, then they are connecting to us with
one hundred WebSockets. As can be imagined, this causes browsers to crash and if enough
users share this behavior, can overload servers. While we can’t realistically force users to
close their tabs, we can optimize servers on our end. We cover this in Chapter 26: Finding
and Reducing Bottlenecks.

Another option is to track the number of WebSockets a particular user has to your system.
If they have more than twenty (or any number of your choosing) open, then close the con-
nections that don’t seem to be doing anything. We found this to be a pretty effective way of
protecting servers from unnecessary load. Unfortunately, there isn’t yet a stock solution for
resolving things in this manner.

Expect WebSocket Connections to Drop All the Time
WebSockets in Channels works very differently than the typical Django request-response
cycle. Instead of receiving an HTTP request from a user and then sending out an HTTP

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Appendix H: WebSockets with Channels

response in the form of HTML or JSON, WebSockets open a constant connection, or
socket, between the server and the browser. Hence the term ‘WebSocket’.

The problem is that the odds are stacked against the connection’s survival. Let’s go over
some of what threatens it, shall we?

ä Small amounts of latency between the browser and the server
ä The server throws the equivalent of the 500 error
ä The server crashes
ä The browser tab crashing
ä The browser crashing
ä The user putting their computer to sleep

Rather than address this problem with some kind of long poll fallback like socket.io or
SockJS, Django Channels just lets the connection die. When this happens, the client has
to trigger a new connection. Conveniently, Django Channels provides a small JavaScript
library that creates a new connection when the old one dies.

The important thing in all this is to remember is that when using Channels we have to take
into account that long polling isn’t an option we can use.

Validate Incoming Data!
WebSockets provide another means for our users to send data to our project. As always,
validate incoming data before you do anything else with it. We’ve used both Django Forms
and Django REST Framework Serializers in this capacity. We cover the former technique
in depth in Section 13.1: Validate All Incoming Data With Django Forms.

Watch Out For Spaghetti Code
Alright, it’s time for an admission: Our first real effort with Channels turned into a nasty
plate of spaghetti code. We had a blast putting it together but when we were done we realized
our backend code was unmaintainable.

Later we took our time, leaned on the concept of fat models and helper files documented
as we worked, wrote better tests, and embraced Generic Consumers as if they were Class-
Based Views. In other words, we practiced what we preach.

In talking to other coders we discovered we weren’t the only ones whose first Channels
project turned out messy. The lesson learned from this is that in the excitement to play
with Django Channels, it’s easy to make basic mistakes. So do yourself a favor the first
time you write Channels code: Remember to take the time and use standard best practices.
Especially when it comes to writing tests: channels.readthedocs.io/en/stable/
topics/testing.html

https://channels.readthedocs.io/en/stable/topics/testing.html
https://channels.readthedocs.io/en/stable/topics/testing.html
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Acknowledgments

This book was not written in a vacuum. We would like to express our thanks to everyone
who had a part in putting it together.

The Python and Django Community
The Python and Django communities are an amazing family of friends and mentors. Thanks
to the combined community we met each other, fell in love, and were inspired to write this
book.

Technical Reviewers for 3.x
These reviewers gave us their valuable time, helped caught our mistakes and pointed us in
the right direction on many occasions. Here they are in alphabetical order:

Adeyinka Adegbenro Adeyinka Adegbenro is a Software Engineer with a passion for com-
puter science and problem-solving. Outside of work, she enjoys writing(essays and
technical tutorials), working out, and watching documentaries. She lives in Lagos,
Nigeria.

Carol Willing is a member of Python’s Steering Council and a core developer of
CPython. She’s a Python Software Foundation Fellow and former Director. In 2019,
she was awarded the Frank Willison Award python.org/community/awards/
frank-willison/#carol-willing-2019 for technical and community contri-
butions to Python. With a strong commitment to community outreach, Carol co-
organizes PyLadies San Diego and San Diego Python User Group.

Enrique Matías Sánchez is a Software Engineer with a soft spot for System Administra-
tion. Besides programming, he enjoys outdoor sports (cycling, hiking, running, climb-
ing...) and learning to gibber in foreign languages. He lives in Zaragoza, Spain and
shares a black cat with his charming girlfriend Elena.

Haris Ibrahim K V is a human being working as a Software Developer since 2014 building
websites using primarily & Django in order to support his family. Enjoys teaching,
writing, singing, religion, learning, and banana roasted in ghee (as opposed to ice
cream, so there!).

https://feld.to/3drfeIk
https://feld.to/3drfeIk
https://github.com/feldroy/two-scoops-of-django-3.x/issues

Acknowledgments

Iacopo Spalletti tinkers with his computer for more time he would admit, Iacopo met
Python and Django in the late ’00s and he felt like home. He split his time building
things with clients and as opensource, working with the community as a speaker and
as organizer and mentor (meetups, Pycon Italia, DjangoCon Europe, DjangoGirls).
Lately focusing on avoiding too many bugs in raising a little human being.

Madelene Campos is a recovering professional musician, having earned 2 degrees in music.
Despite not studying computer science at University, web development seemed like a
natural extension to her musical studies. Programming and music are both powerful
and important communication tools. She started on this path in 2015, and has been a
professional developer since 2016. Maddie has been happily using Python and Django
for a little over 2 years, and hopes to continue on this glorious path!

Modasser Billah is a djangonaut whose favorite pet is Python. He loves to build enterprise
software systems in the cloud and currently works as a Lead Software Engineer at
BriteCore. Modasser is an AWS certified developer associate and a proponent of
leveraging the collective wisdom of software engineers known as best practices. He
loves remote work and teams without borders. Modasser has a Bachelor’s degree in
CS from Bangladesh University of Engineering & Technology and lives in Cumilla,
Bangladesh. When he is not coding, he is probably either enjoying today’s edition of
Dilbert or playing with his toddler daughters Naseeha and Naaera.

Renato Oliveira is a Brazilian Software Engineer and co-founder at Labcodes Software
Studio. He has been working with Python and Django for almost 10 years. He loves
creating sustainable web applications that don’t take forever to add a feature and also
helping others to accomplish their tasks.

Security Reviewers for 3.x
The following members of Django’s security team reviewed our material related to privacy,
authentication, crytography, and other security-related topics.

Florian Apolloner us a Software Engineer who loves debugging hopeless cases and find-
ing the root causes of weird bugs. He started contributing to Django around 2007,
became a member of the Django Team in 2012 and nowadays works as part of the Se-
curity Team. He enjoys biking and various winter sports and is living in the kangaroo-
free Austria (not Australia ;)).

James Bennett has been using and loving Django since almost the day it was released. He
spent five years working at the Lawrence Journal-World where he became directly
involved in the project, and has since served as a committer and release manager, a
member of the framework’s security team and technical board, and on the Board of
Directors of the Django Software Foundation. He now lives in California. Daniel and
Audrey met in his PyCon 2010 Djang Deep Dive tutorial, hence he is responsible for Two
Scoops of Django.

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Markus Holterman (Security) - Markus Holtermann has been a member of several Open
Source communities and projects for over a decade. He gained experience in engineer-
ing, application and infrastructure security, and community management by taking on
tasks in these communities. Markus is a member of the security team for the Django
web framework and has given several conference talks about security in and around
Django. In his free time, Markus is a hobby photographer.

Michael Manfre is a software engineer with over two decades of involvement in Open
Source projects. He is a member of the Django web framework’s security team.
Michael’s Django contributions started in 2008 and initially focused on maintaining
a Microsoft SQL Server database backend and running Django on Windows.

Contributors to the 3.x Alpha
The following individuals helped us improve this edition by submitting corrections and
ideas for content: Luca Bezerra, Jane Upshur, Denis Morozov, Jack Pote, Sam Parting-
ton, Sim Kimsia, Nathan Hinchey, Kamil Kijak, Eman Calso, Jeff Maher, Veli Eroglu,
Davide Brunato, Ryan Harrington, Yong Shean, Laurent Steffan, Alexander Viklund,
Ramast Magdy, Steve Ratcliffe, Jeremiah Cooper, Arnav Choudhury, Keith Richards,
Victor David, Hugh Macdonald, Anthony Shaw, Andy Grabow, Lance Goyke, Edwin
Lileo, Tomi Okretič, Tim McCurrach, Ambrose Andrews, Remy Charlot, José Francisco
Martínez Salgado, Holger Rother, Mark Dobossy, Vlad Dmitrievich, Marek Turnovec,
Marcos Escalona, Bill Beal, Patrick Bollinger, Foad Mohammadi, Dominique Bischof,
Noah Lipsyc, Rakibul Islam, Michael Scharf, Mauro Allegrini

Technical Reviewers for 1.11
The following were critical in supporting the 1.11 edition of this book.

Matt Braymer-Hayes
Nathan Cox
Ola Sendecka
Jannis Gebauer
Haris Ibrahim K V
Tom Christie
Michael Herman
Humphrey Butau
Sasha Romijn - Security Reviewer
James Bennett - Security Reviewer
Florian Apolloner - Security Reviewer
Aymeric Augustin - Security Reviewer

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Acknowledgments

Contributors to 1.11
The following individuals helped us improve this edition: Andrés Pérez-Albela H., Leila
Loezer, Martin Koistinen, Miguel Pachas, José Augusto Costa Martins Jr., Daniel Bond,
John Carter, Bernard ‘BJ’ Jauregui, Peter Inglesby, Michael Scharf, Jason Wolosonovich,
Dipanjan Sarkar, Anish Menon, Ramon Maria Gallart Escolà, You Zhou, Khaled Alqe-
naei, Xus Zoyo, Joris Derese, Laurent Steffan, Louie Pascual, Charlie Tian, Thijs van
Dien, Paulina Rybicka, Qi Ying Koo, Bassem Ali, Jonathan Mitchell, Anton Backer, Mar-
tijn Mhkuu, Photong, Michael John Barr, Kevin Marsh, Greg Smith, Muraoka Yusuke,
Michael Helmick, Zachery Tapp, Jesús Gómez, Klemen Strušnik, Peter Brooks, Bernat
Bonet, Danilo Cabello, Alenajk, Piotr Szpetkowski, Nick Wright, Michael Sanders, Nate
Guerin, David Adam Hernandez, Brendan M. Sleight, Maksim Iakovlev, and David Da-
han

Technical Reviewers for 1.8
The following were critical in supporting the 1.8 edition of this book.

Bartek Ogryczak
Barry Morrison
Kevin Stone
Paul Hallett
Saurabh Kumar
Sasha Romijn - Security Reviewer

Contributors to 1.8
Kenneth Love, Patrick McLoughlan, Sebastián J. Seba, Kevin Campbell, Doug Folland,
Kevin London, Ramon Maria Gallart Escolà, Eli Bendersky, Dan O’Donovan, Ryan Cur-
rah, Shafique Jamal, Russ Ferriday, Charles L. Johnson, Josh Wiegand, William Vincent,
Tom Atkins, Martey Dodoo, Krace Kumar Ramaraju, Felipe Arruda Pontes, Ed Patrick
Tan, Sven Aßmann, Christopher Lambacher, Colin O’Brien, Sebastien de Menten, Evan-
gelos Mantadakis, Silas Wegg, Michal Hoftich, Markus Holterman, Pat Curry, Gaston
Keller, Mihail Russu, Jean-Baptiste Lab, Kaleb Elwert, Tim Bell, Zuhair Parvez, Ger
Schinkel, Athena Yao, Norberto Bensa, Abhaya Agarwal, Steve Sarjeant, Karlo Tamayo,
Cary Kempston, José Padilla, Konstantinos Faliagkas, Kelsey Gilmore-Innis, Adam Bog-
dał, Tyler Davis, Javier Liendo, Kevin Xu, Michael Barr, Caroline Simpson, John Might,
Tom Christie, Nicolas Pannetier, Marc Tamlyn, Loïc Bistuer, Arnaud Limbourg, Alasdair
Nicol, and Ludvig Wadenstein.

Technical Reviewers for 1.6
The following were critical in supporting the 1.6 edition of this book.

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Aymeric Augustin
Barry Morrison
Ken Cochrane
Paul McMillan - Security Reviewer

Technical Reviewers for 1.5
The following individuals gave us their invaluable help, aid and encouragement for the initial
release of this book. We give special recognition here to Malcolm for his contributions to
this book and the world.

Malcolm Tredinnick lived in Sydney, Australia and spent much of his time travelling in-
ternationally. He was a Python user for over 15 years and Django user since just after
it was released to the public in mid-2005, becoming a Django core developer in 2006.
A user of many programming languages, he felt that Django was one of the better
web libraries/frameworks that he used professionally and was glad to see its incredibly
broad adoption over the years. In 2012 when he found out that we were co-hosting
the first PyCon Philippines, he immediately volunteered to fly out, give two talks,
and co-run the sprints. Sadly, he passed away in March of 2013, just two months
after this book was released. His leadership and generosity in the Python and Django
community will always be remembered.

The following were also critical in supporting the 1.5 edition of this book.

Kenneth Love
Lynn Root
Barry Morrison
Jacob Kaplan-Moss
Jeff Triplett
Lennart Regebro
Randall Degges
Sean Bradley

Chapter Reviewers for 1.5
The following are people who gave us an amazing amount of help and support with specific
chapters during the writing of the 1.5 edition. We would like to thank Preston Holmes for
his contributions to the User model chapter, Tom Christie for his sage observations to the
REST API chapter, and Donald Stufft for his support on the Security chapter.

Contributors to 1.5
The following individuals sent us corrections, cleanups, bug fixes, and suggestions. This in-
cludes: Álex González, Alex Gaynor, Amar Šahinović, Andrew Halloran, Andrew Jordan,

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Acknowledgments

Anthony Burke, Aymeric Augustin, Baptiste Mispelon, Bernardo Brik, Branko Vukelic,
Brian Shumate, Carlos Cardoso, Charl Botha, Charles Denton, Chris Foresman, Chris
Jones, Dan Loewenherz, Dan Poirier, Darren Ma, Daryl Yu, Dave Castillo, Dave Murphy,
David Beazley, David Sauve, Davide Rizzo, Deric Crago, Dolugen Buuraldaa, Dominik
Aumayr, Douglas Miranda, Eric Woudenberg, Sasha Romijn, Esteban Gaviota, Fabio Na-
tali, Farhan Syed, Felipe Coelho, Felix Ingram, Florian Apolloner, Francisco Barros, Gabe
Jackson, Gabriel Duman, Garry Cairns, Graham Dumpleton, Hamid Hoorzad, Hamish
Downer, Harold Ekstrom, Hrayr Artunyan, Jacinda Shelly, Jamie Norrish, Jason Best, Ja-
son Bittel, Jason Novinger, Jannis Leidel, Jax, Jim Kalafut, Jim Munro, João Oliveira, Joe
Golton, John Goodleaf, John Jensen, Jonas Obrist, Jonathan Hartley, Jonathan Miller,
Josh Schreuder, Kal Sze, Karol Breguła, Kelly Nicholes, Kelly Nichols, Kevin Londo,
Khee Chin, Lachlan Musicman, Larry Prince, Lee Hinde, Maik Hoepfel, Marc Tam-
lyn, Marcin Pietranik, Martin Báchtold, Matt Harrison, Matt Johnson, Michael Reczek,
Mickey Cheong, Mike Dewhirst, Myles Braithwaite, Nick August, Nick Smith, Nicola
Marangon, Olav Andreas Lindekleiv, Patrick Jacobs, Patti Chen, Peter Heise, Peter Valdez,
Phil Davis, Prahlad Nrsimha Das, R. Michael Herberge, Richard Cochrane, Richard Cor-
den, Richard Donkin, Robbie Totten, Robert Węglarek, Rohit Aggarwa, Russ Ferriday,
Saul Shanabrook, Simon Charettes, Stefane Fermigier, Steve Klass, Tayfun Sen, Tiberiu
Ana, Tim Baxter, Timothy Goshinski, Tobias G. Waaler, Tyler Perkins, Vinay Sajip, Vinod
Kurup, Vraj Mohan, Wee Liat, William Adams, Xianyi Lin, Yan Kalchevskiy, Zed Shaw,
and Zoltán Árokszállási.

Typesetting
We thank Laura Gelsomino for helping us with all of our LaTeX issues and for improving
upon the book layout.

Laura Gelsomino is an economist keen about art and writing, and with a soft spot for
computers, who found the meeting point between her interests the day she discovered
LaTeX. Since that day, she habitually finds any excuse to vent her aesthetic sense on
any text she can lay her hands on, beginning with her economic models.

We originally typeset the alpha version of the 1.5 edition with iWork Pages. Later editions
of the book were written using LaTeX. All editions up to 1.11 have been written on 2011
Macbook Airs. The 3.x edition was written on a mix of Macbook Pros and Macbook Airs.

https://github.com/feldroy/two-scoops-of-django-3.x/issues

List of Figures

1 Throwing caution to the wind. xxx

1.1 Using import * in an ice cream shop. 7

2.1 Pip, virtualenv, and virtualenvwrapper in ice cream bar form. 16

3.1 Yet another reason why repositories are important. 21
3.2 Three-tiered scoop layout. 22
3.3 An isolated environment, allowing your ice cream to swim freely. 25
3.4 Project layout differences of opinion can cause ice cream fights. 29

4.1 It’ll make more sense when you see the next figure. 31
4.2 Did that make sense? If not, read it again. 32
4.3 Our vision for Icecreamlandia. 33
4.4 Two small, single-flavor pints are better than a giant, 100-flavor container. 35

5.1 As your project grows, your Django settings can get pretty complex. . . . 43
5.2 While we’re at it, let’s go down this path. 60

6.1 Cones migrating south for the winter. Django’s built-in migration system
started out as an external project called South. 70

6.2 A common source of confusion. 72

7.1 This flavor of ice cream contains raw SQL. It’s a bit chewy. 91
7.2 Because no one loves ice cream quite like a database. 95

8.1 Should you use an FBV or a CBV? flow chart. 100
8.2 Loose coupling of chocolate chip cookie dough ice cream. 102

9.1 If you look at sprinkles closely, you’ll see that they’re Python decorators. . 118

10.1 Popular and unpopular mixins used in ice cream. 122
10.2 The other CBV: class-based vanilla ice cream. 128
10.3 Views + ModelForm Flow . 131

https://github.com/feldroy/two-scoops-of-django-3.x/issues

10.4 Views + Form Flow . 135

12.1 At Tasty Research, every flavor must begin with “Tasty”. 145
12.2 Why would they do this to us? . 152

13.1 When ice cream validation fails. 166

14.1 An excerpt from the Zen of Ice Cream. 175
14.2 Two Scoops, official halftime sponsor of the Super Bowl. 177
14.3 Bubble gum ice cream looks easy to eat but requires a lot of processing. . . 183

15.1 This filter transforms 1-2 flavors of ice cream into vanilla, outputting to a
cone. 196

17.1 An Ice Cream as a Service API. 217
17.2 A tasty pie is one filled with ice cream. 229

19.1 Server-side vs. client-side ice cream. 241

20.1 Replacing more core components of cake with ice cream seems like a good
idea. Which cake would win? The one on the right! 248

21.1 Chocolate chip ice cream with an admin interface. 253
21.2 Admin list page for an ice cream bar app. 254
21.3 What? An admin interface for ice cream bars? 254
21.4 Improved admin list page with better string representation of our objects. . 255
21.5 Further improvements to the admin list page. 256
21.6 Displaying URL in the Django Admin. 258

22.1 This looks strange too. 264

23.1 A jar of Django’s mysterious secret sauce. Most don’t have a clue what this is.275
23.2 The secret is out. It’s just hot fudge. 276

24.1 Test as much of your project as you can, as if it were free ice cream. 301

25.1 Even ice cream could benefit from documentation. 315

26.1 With your site running smoothly, you’ll be feeling as cool as a cone. 326

29.1 CRITICAL/ERROR/WARNING/INFO logging in ice cream. 362
29.2 Appropriate usage of DEBUG logging in ice cream. 366

31.1 A utility belt for serious ice cream eaters. 375

https://github.com/feldroy/two-scoops-of-django-3.x/issues

List of Tables

1.1 Imports: Absolute vs. Explicit Relative 5

3.1 Repository Root Files and Directories 23
3.2 Django Project Files and Directories . 24

5.1 Settings files and their purpose . 46
5.2 Setting DJANGO_SETTINGS_MODULE per location 47

6.1 Pros and Cons of the Model Inheritance Styles 64
6.2 When to Use Null and Blank by Field 73
6.3 When to Use Null and Blank for Postgres Fields 77

7.1 When to Use Transactions . 95

10.1 Django CBV Usage Table . 124

14.1 Template Tags in base.html . 186
14.2 Template Objects in about.html . 188

16.1 DTL vs Jinja2 Syntax Differences . 201

17.1 HTTP Methods . 208
17.2 HTTP Status Codes . 210
17.3 URLConf for the Flavor REST APIs 213

20.1 Fad-based Reasons to Replace Components of Django 249

25.1 Documentation Django Projects Should Contain 314

27.1 Should a Project Have a Task Queue? 330

28.1 Password Strength: Length vs Complexity 353

1 Translation Function Reference . 416

https://github.com/feldroy/two-scoops-of-django-3.x/issues

2 Security Settings Reference . 423

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Index

–settings, 46, 47
.gitignore, 26
<configuration_root>, 21
<django_project_root>, 21, 23
<repository_root>, 21, 23, 57
__str__(), 255–256
{% block %}, 186, 188, 190
{% extends %}, 188
{% include %}, 190
{% load %}, 186
{% static %}, 186
{{ block.super }}, 186–189

abstract base classes, 64–66, 82
AbstractBaseUser, 266
AbstractUser, 265
ACID, 92, 248–251
Acknowledgments, 431–436
Additional Resources, 411–414
AJAX, 163, 207, 211, 243
ALLOWED_HOSTS, 334
Angular, 238
Apache, 50, 325

Environment Variables, 50
Argon2, 356
ASGI, 232
assertions, 304
assets/, 24
Asynchronous Task Queues, 329
Asynchronous Views, 141–142
ATOMIC_REQUESTS, 322
Avoid Using Import *, 6–7, 48

AWS Lambda, 330

BASE_DIR, 59–61
Bottleneck Analysis, 94, 319–327

caching, 71, 176–177, 197, 247, 320, 321,
323–324, 327

Cassandra, 248
CBVs, see Class-Based Views
CDN, see Content Delivery Networks
Class-Based Views, 99–111, 116, 119, 121–

139, 190, 207, 320
clean() methods, 150, 151, 165
Coding Style, 1–10
Content Delivery Networks, 325, 344–345
Continuous Integration, 94, 306
Credit Cards, 349
CSRF, 162–163, 243, 334, 339, 364
custom field validators, 145–147, 149
Custom User models, 263–273

database, 83
Database Migrations, 70
database normalization, 71
DEBUG, 46–48, 334
debugging, 393
Decorators, 116–119
denormalization, 71, 249, 251
deployment, 400
Django Coding Style Guidelines, 7–9
Django Packages, 275–292, 306
Django Templates and Jinja2, 201–206

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Django’s Admin, 253–262
Secure the Django Admin, 261–262

django-admin, 16, 19–21, 26–28, 47, 55
django-admin startproject, 19–21
django.contrib.admin, 253–262
django.contrib.admindocs, 259–262
django.contrib.auth.mixins.LoginRequiredMixin,

125–129, 131–133
django.contrib.humanize, 375
django.contrib.messages, 132–134
django.core.exceptions

ImproperlyConfigured, 379
ObjectDoesNotExist, 379–380
PermissionDenied, 114, 380

django.core.serializers
json.DjangoJSONEncoder, 383
pyyaml, 384
xml_serializer, 384

django.db, 63–82
django.db.migrations, 67–70
django.db.migrations.RunPython.noop, 68–

69
django.db.models, 63–80
django.db.transaction, 92–96
django.forms.renderers.TemplatesSetting,

169
django.http.HttpResponse, 127, 228
django.http.HttpResponseForbidden, 380
django.http.HttpResponseRedirect, 127
django.http.JsonResponse, 228
django.http.StreamingHttpResponse, 96
django.utils.decorators

decorator_from_middleware, 376
method_decorator, 376

django.utils.encoding.force_text, 376, 419
django.utils.functional.cached_property,

376
django.utils.html.format_html(), 339–340,

377

django.utils.html.strip_tags(), 377
django.utils.html.timezone, 379
django.utils.translation, 379, 415–417
django.views.generic.View, 121, 123–125,

136–138
DJANGO_SETTINGS_MODULE, 47
djangopackages.org, 202
Docker, 18
Documentation, 259–262, 311–317
docutils, 259
Don’t Repeat Yourself, 43, 45, 101, 104, 106,

154, 199, 299

Enumeration Types, 76–77
environment variables, 49–57
Environment Variables Pattern, 49–55, 421
Error Page Templates, 192–193
eval(), 341
exec(), 341
execfile(), 341
Explicit Relative Imports, 5–6

Fat Models, 80–81
FBVs, see Function-Based Views
FileField, 72
filters, 195–196, 300
fixtures, 12, 299–300
form.is_valid(), 165
form_invalid, 167
form_invalid(), 127–128
form_valid(), 126–127, 132–134, 165
Forms, 6, 126–136, 143–171, 343–344,

346–348
FrankenDjango, 247
Function-Based Views, 93, 99–111, 113–

119, 136–138, 207
functools.wraps(), 118

GCBVs, see Generic Class-Based Views
Generic Class-Based Views, 121, 123–125,

137–139, 403–404

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Index

get_absolute_url(), 257
get_env_variable(), 54, 55
get_object_or_404(), 83, 380
get_secret(), 55–57
Git, 17, 20, 278, 280
git tag, 289–290
GitHub, 17, 26, 276, 278–280, 353
GitLab, 17, 280
god object, 80
GraphQL, 37, 231–235
Grunt, 10
Gulp, 10

Heroku, 53, 425
HIPAA, 336
HttpRequest, 113–118, 429
HttpResponse, 117–119, 430

i18n, 415–420
ImproperlyConfigured, 55
indexes, 91–92, 97
INSTALLED_APPS, 31, 259
intcomma, 375
Integration Tests, 305–306
is_valid(), 165

JavaScript, 237–245
Jinja2, 201–206

context processors, 205
CSRF, 203
Django-style Filters, 203–205
jinja2.Environment, 205–206
Template Tags, 203

JQuery, 238, 240
JSCS, 10
JSON, 55–57, 137, 207, 209–214, 218–219,

296, 299–300, 334, 340, 342–343,
381–384

Keep It Simple, Stupid, xxxii–xxxiii
kept out of version control, 44

KISS, xxxii–xxxiii

Let’s Encrypt, 335
license, ii
Linux, 12, 17, 25, 51, 368, 408
list_display, 256
local_settings anti-pattern, 43–45, 49, 55,

421
logging, 361–369

CRITICAL, 362
DEBUG, 362, 364–366
ERROR, 362, 363
exceptions, 366–367
INFO, 362, 364
WARNING, 362, 364

logrotate, 368
Loose coupling, 101–102, 104

Mac, 12, 17, 25, 51, 368, 408
makemigrations, 67
manage.py, 16, 55
mark_safe, 339
Markdown, 281, 311, 316
Memcached, 248, 321–323
Mercurial, 280
Meta.exclude, 346–348
Meta.fields, 346–348
method resolution order, 123
MIGRATION_MODULES, 67
Migrations, 67–70
mixins, 121–123, 133, 134, 158, 374
model _meta, 77–78
Model Choice Constants, 75–77
model managers, 78–80
ModelForms, 143, 144, 147–149, 153, 165,

166, 346–348
models, 6, 63–82
models.field.BinaryField, 72–74

warning, 72–74
models.field.GenericForeignKey, 74–75

https://github.com/feldroy/two-scoops-of-django-3.x/issues

MongoDB, 248
Mozilla, 419
multi-table inheritance, 64–67
Multiple Settings Files, 45–49
MySQL, 12, 70, 96, 181, (�)248, 248, 322,

323

NASA, xxvii, 293
Never Code to the IDE, 10
Nginx, 55, 325
node.js, 429
NoSQL, 248–251

Open Source Initiative, 285
Open Source Licenses, 285
OpenAPI, 227–229
ORM, xxxiii, 11–12, 63–97, 134, 165, 179,

181, 182, 248, 267, 282, 300, 320,
348–349, 419

PaaS, see Platforms as a Service
Packages A-D

, 340
aldjemy, 400
Black, 2–3
bleach, 402
cached-property, 376–377
celery, 183, 400
Conda, 14
conda, 399
Cookiecutter, 19, 26–28
cookiecutter, 286–287, 291, 402
cookiecutter-django, 26–28
coverage.py, 294, 306–309, 403
crispy-tailwind, 401
defusedxml, 345, 351, 384, 402
dj-stripe, 404
Django Channels, 183, 400, 429–430
django-admin-honeypot, 261, 402
django-allauth, 403

django-axes, 402
django-background-tasks, 400
django-braces, 121, 229, 320, 404
django-cachealot, 324
django-cacheops, 324
django-compressor, 325, 404
django-crispy-forms, 143, 198, 284,

401
django-csp, 341, 402
django-debug-toolbar, 46, 108, 291,

319–322, 399
django-extensions, 63, 82, 320, 404
django-extra-views, 139
django-floppyforms, 143, 401
django-haystack, 404
django-htmlmin, 325, 404
django-js-reverse, 404
django-jsonview, 229, 402
django-maintenancemode, 426
django-maintenancemode2, 400, 426
django-model-utils, 63, 82, 399
django-pipeline, 325, 404
django-registration, 403
django-rest-framework, 162–163, 207–

230, 402
django-reversion, 404
django-rq, 400
django-secure, 352
django-stronghold, 402
django-tastypie, 229, 402
django-two-factor-auth, 402
django-user-sessions, 402
django-vanilla-views, 139, 404
django-watson, 404
django-webpack-loader, 325
dynaconf, 401
flower, 400
python-slugify, 378, 405
rest_framework.serializers, 384–385

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Index

Packages E-O
envdir, 404
ESLint, 9–10, 401
fabric, 23
factory boy, 300, 403
flake8, 3, 405
Interrogate, 305, 316
invoke, 23, 400
ipdb, 399
isort, 4, 405
jinja2, 201–206, 248
logutils, 368
Mock, 302–304
mock, 300, 403
model bakery, 300, 403

Packages P-Z
Myst-Parser, 401
nox, 403
pathlib, 60–61
paver, 23
pendulum, 404
pillow, 399
pip, 13, 16, 259, 276–277, 280, 284,

285, 291, 399, 409
pip-tools, 405
Pipenv, 14
pipenv, 399
poetry, 14, 400
psycopg2-binary, 400
pytest, 403
pytest-django, 403
python-dateutils, 404
python-decouple, 401
python-social-auth, 403
pytz, 404
pyYAML, 341–342, 384, 405
requests, 405
rq, 400
silk, 320, 405

sphinx, 280, 281, 311–315, 401
stylelint, 10
supervisor, 400
tox, 403
twine, 288–289, 403
venv, 13
virtualenv, 13, 15, 24–26, 51, 52, 259,

277, 279, 291, 400, 408, 409
virtualenvwrapper, 15, 52, 400
virtualenvwrapper-win, 400
Zappa, 57

pandoc, 316
PBKDF2, 356
PCI, 349
PEPs

PEP 257, 315
PEP 328, 6
PEP 427, 289
PEP 8, 2–4, 6

Personally Identifying Information, 349–
350

PHI, 349–350
pickle, 341–343
PII, 349–350
platform.sh, 53
POLP, 336
PostgreSQL, 11, 12, 91, 181, 248, 251, 321,

323
PowerShell, 51
Principle of Least Privilege, 336
print(), 364–366
Project Templates, 19–29, 421–422

cookiecutter grid, 19
cookiecutter-django, 19, 26–28, 401
cookiecutter-django-vue-graphql-aws,

19, 28, 402
cookiecutter-djangopackage, 286, 291
cookiecutter-pylibrary, 286
django-crash-starter, 402

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Protected Health Information, 349–350
Proxy Models, 269–273
proxy models, 64, 65
PyPI, 276, 280, see Python Package Index
Python Anywhere, 53
Python Package Index, 266, 276, 284–285,

288–289, 292
PYTHONPATH, 16, 47

queries, 83

Rails, 37–41
Rate-Limiting Your API, 225–227
React, 237
README.md, 28
README.rst, 21
Redis, 248, 322, 323
Remote Procedure Calls, 220–222
requirements, 57–59
requirements.txt, 21, 25
requirements/, 57
REST APIs, 207–230
ReStructuredText, 315–316
Ruby on Rails, 37–41

SECRET_KEY, 43–45, 49–57, 334–335
Secrets File Pattern, 55–57, 421
Secure Password Managers, 353
Security, 333–359

2FA, 351–352
Checkups, 353
Clickjacking, 350–351
Code Injection Attacks, 341
Cookie-based sessions, 342–343
CSRF, 162–163, 339
CSRF and Jinja2, 203
defusedxml, 351
django-admin-honeypot, 261
HSTS, 337–339
HTTPS, 335–339

LoginRequiredMixin, 126
Mass Assignment Vulnerabilities, 348
pickle, 341
Planning for Disaster, 353, 425–427
PyYAML security warning, 341–342
Secure the Django Admin, 261–262
SECURE_PROXY_SSL_HEADER,

424
SecurityMiddleware, 352
SESSION_SERIALIZER, 424
Settings Reference, 423–424
SSL, 335–336
strip_tags, 377
TOTP, 351–352
Two-Factor Authentication, 351–352
Use format_html, 258
Vulnerability Page, 353
XML bombs, 351
XSS, 339–341
Zero-Day Attack, 353, 427

security
Content Security Policy, 340–341

select_related(), 182, 320
Sentry, 369, 401
Serverless, 330
Service Layers, 37–40
settings, 23, 43–62

settings/base.py, 60, 61
settings/local.py, 46, 47, 50

settings/base.py, 54
signals, 371
Single Page App, 237
site_assets/, 24
slugify(), 195, 377–378
smoke test, 293
Sphinx, 280
SQLite3, 11, 12
sqlmigrate, 67
squashmigrations, 67

https://github.com/feldroy/two-scoops-of-django-3.x/issues

Index

SRI, 356–358
STATICFILES_DIRS, 24
stylelint, 10
Subresource Integrity, 356–358
syntactic sugar, 116

template tags, 10, 195, 197–200, 300
templates, 21, 23, 28, 59, 61, 132, 134, 136,

173–193
TEMPLATES OPTIONS

string_if_invalid, 191
test coverage, 306–309
Testing, 94, 293–310, 374–375
TimeStampedModel, 65
Tips for Creating Database Migrations, 67
Transactions, 92–96

ATOMIC_REQUESTS, 92–94
MySQL, 96

Twelve Factor App, 421–422

Unicode, 376, 415, 419
unit tests, 295
Upstream Caches, 325
URL namespaces, 104–108
URLConfs, 21, 23, 100–108, 111, 191, 259,

285–286, 381
User model, 263–273
Utility Modules, 374–375

validation, 12, 143–171
Vanilla JavaScipt, 238
Vanilla Steak, 124
Varnish, 325
Vue, 238

Webpack, 10
webpack, 241
Websockets with Django Channels, 429–

430
wheel, 289, 292
Windows, 12, 15, 17, 25, 51, 368, 408

WSGI, 23, 232, 324

XML, 55–57, 207, 334, 345, 381, 384
XML bombs, 351

YAML, 55–57, 207, 334, 341, 381, 384
YAML and PyYAML security warning, 341

Zen of Python, 175–176, 200

https://github.com/feldroy/two-scoops-of-django-3.x/issues

	Dedication
	About the Dedication

	Forward by William Vincent
	Authors' Notes
	A Few Words From Daniel Feldroy
	A Few Words From Audrey Feldroy

	Introduction
	A Word About Our Recommendations
	Why Two Scoops of Django?
	Before You Begin
	This Book Is Intended for Django 3.x and Python 3.8 or 3.9
	Each Chapter Stands On Its Own

	Conventions Used in This Book
	Core Concepts
	Keep It Simple, Stupid
	Fat Models, Utility Modules, Thin Views, Stupid Templates
	Start With Django By Default
	Be Familiar with Django's Design Philosophies
	The Twelve-Factor App

	Our Writing Concepts
	Provide the Best Material
	Stand on the Shoulders of Giants
	Listen to Our Readers and Reviewers
	Publish Errata

	1 Coding Style
	1.1 The Importance of Making Your Code Readable
	1.2 PEP 8
	1.2.1 The 79-Character Limit

	1.3 The Word on Imports
	1.4 Understand Explicit Relative Imports
	1.5 Avoid Using Import *
	1.5.1 Other Python Naming Collisions

	1.6 Django Coding Style
	1.6.1 Consider the Django Coding Style Guidelines
	1.6.2 Use Underscores in URL Pattern Names Rather Than Dashes
	1.6.3 Use Underscores in Template Block Names Rather Than Dashes

	1.7 Choose JS, HTML, and CSS Style Guides
	1.7.1 JavaScript Style Guides
	1.7.2 HTML and CSS Style Guides

	1.8 Never Code to the IDE (Or Text Editor)
	1.9 Summary

	2 The Optimal Django Environment Setup
	2.1 Use the Same Database Engine Everywhere
	2.1.1 You Can't Examine an Exact Copy of Production Data Locally
	2.1.2 Different Databases Have Different Field Types/Constraints
	2.1.3 Fixtures Are Not a Magic Solution

	2.2 Use Pip and (Virtualenv or venv)
	2.2.1 virtualenvwrapper

	2.3 Install Django and Other Dependencies via Pip
	2.4 Use Git For Version Control
	2.5 Optional: Identical Environments
	2.5.1 Docker

	2.6 Summary

	3 How to Lay Out Django Projects
	3.1 Django 3's Default Project Layout
	3.2 Our Preferred Project Layout
	3.2.1 Top Level: Repository Root
	3.2.2 Second Level: Django Project Root
	3.2.3 Second Level: Configuration Root

	3.3 Sample Project Layout
	3.4 What About the Virtualenv?
	3.4.1 Listing Current Dependencies

	3.5 Going Beyond startproject
	3.5.1 Generating Project Boilerplate With Cookiecutter
	3.5.2 Generating a Starting Project With Cookiecutter Django

	3.6 Other Alternatives to startproject
	3.7 Summary

	4 Fundamentals of Django App Design
	4.1 The Golden Rule of Django App Design
	4.1.1 A Practical Example of Apps in a Project

	4.2 What to Name Your Django Apps
	4.3 When in Doubt, Keep Apps Small
	4.4 What Modules Belong in an App?
	4.4.1 Common App Modules
	4.4.2 Uncommon App Modules

	4.5 Alternative: Ruby on Rails-Style Approaches
	4.5.1 Service Layers
	4.5.2 The Large Single App Project

	4.6 Summary

	5 Settings and Requirements Files
	5.1 Avoid Non-Versioned Local Settings
	5.2 Using Multiple Settings Files
	5.2.1 A Development Settings Example
	5.2.2 Multiple Development Settings

	5.3 Separate Configuration From Code
	5.3.1 A Caution Before Using Environment Variables for Secrets
	5.3.2 How to Set Environment Variables Locally
	5.3.3 How to Unset Environment Variables Locally
	5.3.4 How to Set Environment Variables in Production
	5.3.5 Handling Missing Secret Key Exceptions

	5.4 When You Can't Use Environment Variables
	5.4.1 Using JSON Files
	5.4.2 Using .env, Config, YAML, and XML File Formats

	5.5 Using Multiple Requirements Files
	5.5.1 Installing From Multiple Requirements Files

	5.6 Handling File Paths in Settings
	5.7 Summary

	6 Model Best Practices
	6.1 Basics
	6.1.1 Break Up Apps With Too Many Models
	6.1.2 Be Careful With Model Inheritance
	6.1.3 Model Inheritance in Practice: The TimeStampedModel

	6.2 Database Migrations
	6.2.1 Tips for Creating Migrations
	6.2.2 Adding Python Functions and Custom SQL to Migrations

	6.3 Overcoming Common Obstacles of RunPython
	6.3.1 Getting Access to a Custom Model Manager's Methods
	6.3.2 Getting Access to a Custom Model Method
	6.3.3 Use RunPython.noop to Do Nothing
	6.3.4 Deployment and Management of Migrations

	6.4 Django Model Design
	6.4.1 Start Normalized
	6.4.2 Cache Before Denormalizing
	6.4.3 Denormalize Only if Absolutely Needed
	6.4.4 When to Use Null and Blank
	6.4.5 When to Use BinaryField
	6.4.6 Try to Avoid Using Generic Relations
	6.4.7 Make Choices and Sub-Choices Model Constants
	6.4.8 Using Enumeration Types for Choices
	6.4.9 PostgreSQL-Specific Fields: When to Use Null and Blank

	6.5 The Model _meta API
	6.6 Model Managers
	6.7 Understanding Fat Models
	6.7.1 Model Behaviors a.k.a Mixins
	6.7.2 Stateless Helper Functions
	6.7.3 Model Behaviors vs Helper Functions

	6.8 Additional Resources
	6.9 Summary

	7 Queries and the Database Layer
	7.1 Use get_object_or_404() for Single Objects
	7.2 Be Careful With Queries That Might Throw Exceptions
	7.2.1 ObjectDoesNotExist vs. DoesNotExist
	7.2.2 When You Just Want One Object but Get Three Back

	7.3 Use Lazy Evaluation to Make Queries Legible
	7.3.1 Chaining Queries for Legibility

	7.4 Lean on Advanced Query Tools
	7.4.1 Query Expressions
	7.4.2 Database Functions

	7.5 Don't Drop Down to Raw SQL Until It's Necessary
	7.6 Add Indexes as Needed
	7.7 Transactions
	7.7.1 Wrapping Each HTTP Request in a Transaction
	7.7.2 Explicit Transaction Declaration
	7.7.3 django.http.StreamingHttpResponse and Transactions
	7.7.4 Transactions in MySQL
	7.7.5 Django ORM Transaction Resources

	7.8 Summary

	8 Function- And Class-Based Views
	8.1 When to Use FBVs or CBVs
	8.2 Keep View Logic Out of URLConfs
	8.3 Stick to Loose Coupling in URLConfs
	8.3.1 What if We Aren't Using CBVs?

	8.4 Use URL Namespaces
	8.4.1 Makes for Shorter, More Intuitive, and Don't Repeat Yourself URL Names
	8.4.2 Increases Interoperability With Third-Party Libraries
	8.4.3 Easier Searches, Upgrades, and Refactors
	8.4.4 Allows for More App and Template Reverse Tricks

	8.5 Try to Keep Business Logic Out of Views
	8.6 Django Views Are Functions
	8.6.1 The Simplest Views

	8.7 Don't Use locals() as Views Context
	8.8 Summary

	9 Best Practices for Function-Based Views
	9.1 Advantages of FBVs
	9.2 Passing the HttpRequest Object
	9.3 Decorators Are Sweet
	9.3.1 Be Conservative With Decorators
	9.3.2 Additional Resources on Decorators

	9.4 Passing the HttpResponse Object
	9.5 Additional Resources for Function-Based Views
	9.6 Summary

	10 Best Practices for Class-Based Views
	10.1 Guidelines When Working With CBVs
	10.2 Using Mixins With CBVs
	10.3 Which Django GCBV Should Be Used for What Task?
	10.4 General Tips for Django CBVs
	10.4.1 Constraining Django CBV/GCBV Access to Authenticated Users
	10.4.2 Performing Custom Actions on Views With Valid Forms
	10.4.3 Performing Custom Actions on Views With Invalid Forms
	10.4.4 Using the View Object

	10.5 How GCBVs and Forms Fit Together
	10.5.1 Views + ModelForm Example
	10.5.2 Views + Form Example

	10.6 Using Just django.views.generic.View
	10.7 Additional Resources
	10.8 Summary

	11 Asynchronous Views
	11.1 Notes from Analyzing Django 3.1a Pre-Release Async Views
	11.2 Resources

	12 Common Patterns for Forms
	12.1 Pattern 1: Simple ModelForm With Default Validators
	12.2 Pattern 2: Custom Form Field Validators in ModelForms
	12.3 Pattern 3: Overriding the Clean Stage of Validation
	12.4 Pattern 4: Hacking Form Fields (2 CBVs, 2 Forms, 1 Model)
	12.5 Pattern 5: Reusable Search Mixin View
	12.6 Summary

	13 Form Fundamentals
	13.1 Validate All Incoming Data With Django Forms
	13.2 Use the POST Method in HTML Forms
	13.3 Always Use CSRF Protection With HTTP Forms That Modify Data
	13.3.1 Posting Data via AJAX

	13.4 Understand How to Add Django Form Instance Attributes
	13.5 Know How Form Validation Works
	13.5.1 ModelForm Data Is Saved to the Form, Then the Model Instance

	13.6 Add Errors to Forms With Form.add_error()
	13.6.1 Other Useful Form Methods

	13.7 Fields Without Pre-Made Widgets
	13.8 Customizing Widgets
	13.8.1 Overriding the HTML of Built-In Widgets
	13.8.2 Creating New Custom Widgets

	13.9 Additional Resources
	13.10 Summary

	14 Templates: Best Practices
	14.1 Keep Templates Mostly in templates/
	14.2 Template Architecture Patterns
	14.2.1 2-Tier Template Architecture Example
	14.2.2 3-Tier Template Architecture Example
	14.2.3 Flat Is Better Than Nested

	14.3 Limit Processing in Templates
	14.3.1 Gotcha 1: Aggregation in Templates
	14.3.2 Gotcha 2: Filtering With Conditionals in Templates
	14.3.3 Gotcha 3: Complex Implied Queries in Templates
	14.3.4 Gotcha 4: Hidden CPU Load in Templates
	14.3.5 Gotcha 5: Hidden REST API Calls in Templates

	14.4 Don't Bother Making Your Generated HTML Pretty
	14.5 Exploring Template Inheritance
	14.6 block.super Gives the Power of Control
	14.7 Useful Things to Consider
	14.7.1 Avoid Coupling Styles Too Tightly to Python Code
	14.7.2 Common Conventions
	14.7.3 Use Implicit and Named Explicit Context Objects Properly
	14.7.4 Use URL Names Instead of Hardcoded Paths
	14.7.5 Debugging Complex Templates

	14.8 Error Page Templates
	14.9 Follow a Minimalist Approach
	14.10 Summary

	15 Template Tags and Filters
	15.1 Filters Are Functions
	15.1.1 Filters Are Easy to Test
	15.1.2 Filters and Code Reuse
	15.1.3 When to Write Filters

	15.2 Custom Template Tags
	15.2.1 Template Tags Are Harder to Debug
	15.2.2 Template Tags Make Code Reuse Harder
	15.2.3 The Performance Cost of Template Tags
	15.2.4 When to Write Template Tags

	15.3 Naming Your Template Tag Libraries
	15.4 Loading Your Template Tag Modules
	15.4.1 Watch Out for This Anti-Pattern

	15.5 Summary

	16 Django Templates and Jinja2
	16.1 What's the Syntactical Difference?
	16.2 Should I Switch?
	16.2.1 Advantages of DTL
	16.2.2 Advantages of Jinja2
	16.2.3 Which One Wins?

	16.3 Considerations When Using Jinja2 With Django
	16.3.1 CSRF and Jinja2
	16.3.2 Using Template Tags in Jinja2 Templates
	16.3.3 Using Django-Style Template Filters in Jinja2 Templates
	16.3.4 The Jinja2 Environment Object Should Be Considered Static

	16.4 Resources
	16.5 Summary

	17 Building REST APIs With Django REST Framework
	17.1 Fundamentals of Basic REST API Design
	17.2 Illustrating Design Concepts With a Simple API
	17.3 REST API Architecture
	17.3.1 Use Consistent API Module Naming
	17.3.2 Code for a Project Should Be Neatly Organized
	17.3.3 Code for an App Should Remain in the App
	17.3.4 Try to Keep Business Logic Out of API Views
	17.3.5 Grouping API URLs
	17.3.6 Test Your API
	17.3.7 Version Your API
	17.3.8 Be Careful With Customized Authentication Schemes

	17.4 When DRF Gets in the Way
	17.4.1 Remote Procedure Calls vs REST APIs
	17.4.2 Problems With Complex Data
	17.4.3 Simplify! Go Atomic!

	17.5 Shutting Down an External API
	17.5.1 Step #1: Notify Users of Pending Shut Down
	17.5.2 Step #2: Replace API With 410 Error View

	17.6 Rate-Limiting Your API
	17.6.1 Unfettered API Access Is Dangerous
	17.6.2 REST Frameworks Must Come With Rate Limiting
	17.6.3 Rate Limiting Can Be a Business Plan

	17.7 Advertising Your REST API
	17.7.1 Documentation
	17.7.2 Provide Client SDKs

	17.8 Additional Reading
	17.9 Other Approaches for Crafting APIs
	17.9.1 CBV Approach: JsonResponse with View
	17.9.2 FBV approach: django-jsonview
	17.9.3 django-tastypie

	17.10 Summary

	18 Building GraphQL APIs With Django
	18.1 Dispelling the Performance Myth
	18.2 GraphQL API Architecture
	18.2.1 Don't Use Sequential Keys as Public Identifiers
	18.2.2 Use Consistent API Module Naming
	18.2.3 Try to Keep Business Logic Out of API Views
	18.2.4 Test Your API
	18.2.5 Version Your API
	18.2.6 Be Careful With Customized Authentication Schemes

	18.3 Shutting Down an External API

	19 JavaScript and Django
	19.1 Popular JavaScript Approaches
	19.1.1 Building Single Page Apps When Multi-Page Apps Suffice
	19.1.2 Upgrading Legacy Sites
	19.1.3 Not Writing Tests
	19.1.4 Not Understanding JavaScript Memory Management
	19.1.5 Storing Data in the DOM When It's Not jQuery

	19.2 Consuming Django-served APIs with JavaScript
	19.2.1 Learn How to Debug the Client
	19.2.2 When Possible, Use JavaScript-Powered Static Asset Preprocessors

	19.3 Real-Time Woes a.k.a. Latency
	19.3.1 Solution: Mask the Latency With Animations
	19.3.2 Solution: Fake Successful Transactions
	19.3.3 Solution: Geographically Based Servers
	19.3.4 Solution: Restrict Users Geographically
	19.3.5 AJAX and the CSRF Token

	19.4 Using JavaScript with Templates Served by Django
	19.4.1 JavaScript Can Go In the Header Again
	19.4.2 Use JSON Encoding for Data Consumed by JavaScript

	19.5 Strengthening JavaScript Skills
	19.5.1 Learn More JavaScript!

	19.6 Follow JavaScript Coding Standards
	19.7 Summary

	20 Tradeoffs of Replacing Core Components
	20.1 The Temptation to Build FrankenDjango
	20.2 Non-Relational Databases vs. Relational Databases
	20.2.1 Not All Non-Relational Databases Are ACID Compliant
	20.2.2 Don't Use Non-Relational Databases for Relational Tasks
	20.2.3 Ignore the Hype and Do Your Own Research
	20.2.4 How We Use Non-Relational Databases With Django

	20.3 What About Replacing the Django Template Language?
	20.4 Summary

	21 Working With the Django Admin
	21.1 It's Not for End Users
	21.2 Admin Customization vs. New Views
	21.3 Viewing String Representations of Objects
	21.3.1 Using __str__()
	21.3.2 Using list_display

	21.4 Adding Callables to ModelAdmin Classes
	21.5 Be Aware of the Complications of Multiuser Environments
	21.6 Django's Admin Documentation Generator
	21.7 Using Custom Skins With the Django Admin
	21.7.1 Evaluation Point: Documentation is Everything
	21.7.2 Write Tests for Any Admin Extensions You Create

	21.8 Secure the Django Admin
	21.8.1 Change the Default Admin URL
	21.8.2 Use django-admin-honeypot
	21.8.3 Only Allow Admin Access via HTTPS
	21.8.4 Limit Admin Access Based on IP

	21.9 Securing the Admin Docs
	21.10 Summary

	22 Dealing With the User Model
	22.1 Use Django's Tools for Finding the User Model
	22.1.1 Use settings.AUTH_USER_MODEL for Foreign Keys to User
	22.1.2 Don't Use get_user_model() for Foreign Keys to User

	22.2 Custom User Fields for Django Projects
	22.2.1 Option 1: Subclass AbstractUser
	22.2.2 Option 2: Subclass AbstractBaseUser
	22.2.3 Option 3: Linking Back From a Related Model

	22.3 Handling Multiple User Types
	22.3.1 Add a User Type Field
	22.3.2 Add a User Type Field Plus Proxy Models
	22.3.3 Adding Extra Data Fields
	22.3.4 Additional Resources on Multiple User Types

	22.4 Summary

	23 Django's Secret Sauce: Third-Party Packages
	23.1 Examples of Third-Party Packages
	23.2 Know About the Python Package Index
	23.3 Know About DjangoPackages.org
	23.4 Know Your Resources
	23.5 Tools for Installing and Managing Packages
	23.6 Package Requirements
	23.7 Wiring Up Django Packages: The Basics
	23.7.1 Step 1: Read the Documentation for the Package
	23.7.2 Step 2: Add Package and Version Number to Your Requirements
	23.7.3 Step 3: Install the Requirements Into Your Virtualenv
	23.7.4 Step 4: Follow the Package's Installation Instructions Exactly

	23.8 Troubleshooting Third-Party Packages
	23.9 Releasing Your Own Django Packages
	23.10 What Makes a Good Django Package?
	23.10.1 Purpose
	23.10.2 Scope
	23.10.3 Documentation
	23.10.4 Tests
	23.10.5 Templates
	23.10.6 Activity
	23.10.7 Community
	23.10.8 Modularity
	23.10.9 Availability on PyPI
	23.10.10 Uses the Broadest Requirements Specifiers Possible
	23.10.11 Proper Version Numbers
	23.10.12 Name
	23.10.13 License
	23.10.14 Clarity of Code
	23.10.15 Use URL Namespaces

	23.11 Creating Your Own Packages the Easy Way
	23.12 Maintaining Your Open Source Package
	23.12.1 Give Credit for Pull Requests
	23.12.2 Handling Bad Pull Requests
	23.12.3 Do Formal PyPI Releases
	23.12.4 Create and Deploy Wheels to PyPI
	23.12.5 Add Git Tags to the Repo
	23.12.6 Upgrade the Package to New Versions of Django
	23.12.7 Follow Good Security Practices
	23.12.8 Provide Sample Base Templates
	23.12.9 Give the Package Away

	23.13 Additional Reading
	23.14 Summary

	24 Testing Stinks and Is a Waste of Money!
	24.1 Testing Saves Money, Jobs, and Lives
	24.2 How to Structure Tests
	24.3 How to Write Unit Tests
	24.3.1 Each Test Method Tests One Thing
	24.3.2 For Views, When Possible Use the Request Factory
	24.3.3 Don't Write Tests That Have to Be Tested
	24.3.4 Don't Repeat Yourself Doesn't Apply to Writing Tests
	24.3.5 Don't Rely on Fixtures
	24.3.6 Things That Should Be Tested
	24.3.7 Test for Failure
	24.3.8 Use Mock to Keep Unit Tests From Touching the World
	24.3.9 Use Fancier Assertion Methods
	24.3.10 Document the Purpose of Each Test

	24.4 What About Integration Tests?
	24.5 Continuous Integration
	24.6 Who Cares? We Don't Have Time for Tests!
	24.7 The Game of Test Coverage
	24.8 Setting Up the Test Coverage Game
	24.8.1 Step 1: Start Writing Tests
	24.8.2 Step 2: Run Tests and Generate Coverage Report
	24.8.3 Step 3: Generate the Report!

	24.9 Playing the Game of Test Coverage
	24.10 Alternatives to unittest
	24.11 Summary

	25 Documentation: Be Obsessed
	25.1 Use GitHub-Flavored Markdown for Docs
	25.2 Use MkDocs or Sphinx with Myst to Generate Documentation From Markdown
	25.3 What Docs Should Django Projects Contain?
	25.4 Additional Markdown Documentation Resources
	25.5 The ReStructuredText Alternative
	25.5.1 ReStructuredText Resources

	25.6 When Documentation Needs to Be Convert to/from Markdown or ReStructuredText
	25.7 Wikis and Other Documentation Methods
	25.8 Ensuring that Code is Documented
	25.9 Summary

	26 Finding and Reducing Bottlenecks
	26.1 Should You Even Care?
	26.2 Speed Up Query-Heavy Pages
	26.2.1 Find Excessive Queries With Django Debug Toolbar
	26.2.2 Reduce the Number of Queries
	26.2.3 Speed Up Common Queries
	26.2.4 Switch ATOMIC_REQUESTS to False

	26.3 Get the Most Out of Your Database
	26.3.1 Know What Doesn't Belong in the Database
	26.3.2 Getting the Most Out of PostgreSQL
	26.3.3 Getting the Most Out of MySQL

	26.4 Cache Queries With Memcached or Redis
	26.5 Identify Specific Places to Cache
	26.6 Consider Third-Party Caching Packages
	26.7 Compression and Minification of HTML, CSS, and JavaScript
	26.8 Use Upstream Caching or a Content Delivery Network
	26.9 Other Resources
	26.10 Summary

	27 Asynchronous Task Queues
	27.1 Do We Need a Task Queue?

	28 Security Best Practices
	28.1 Reference Security Sections in Other Chapters
	28.2 Harden Your Servers
	28.3 Know Django's Security Features
	28.4 Turn Off DEBUG Mode in Production
	28.5 Keep Your Secret Keys Secret
	28.6 HTTPS Everywhere
	28.6.1 Use Secure Cookies
	28.6.2 Use HTTP Strict Transport Security (HSTS)
	28.6.3 HTTPS Configuration Tools

	28.7 Use Allowed Hosts Validation
	28.8 Always Use CSRF Protection With HTTP Forms That Modify Data
	28.9 Prevent Against Cross-Site Scripting (XSS) Attacks
	28.9.1 Use format_html Over mark_safe
	28.9.2 Don't Allow Users to Set Individual HTML Tag Attributes
	28.9.3 Use JSON Encoding for Data Consumed by JavaScript
	28.9.4 Beware Unusual JavaScript
	28.9.5 Add Content Security Policy Headers
	28.9.6 Additional Reading

	28.10 Defend Against Python Code Injection Attacks
	28.10.1 Python Built-Ins That Execute Code
	28.10.2 Python Standard Library Modules That Can Execute Code
	28.10.3 Third-Party Libraries That Can Execute Code
	28.10.4 Be Careful With Cookie-Based Sessions

	28.11 Validate All Incoming Data With Django Forms
	28.12 Disable the Autocomplete on Payment Fields
	28.13 Handle User-Uploaded Files Carefully
	28.13.1 When a CDN Is Not an Option
	28.13.2 Django and User-Uploaded Files

	28.14 Don't Use ModelForms.Meta.exclude
	28.14.1 Mass Assignment Vulnerabilities

	28.15 Don't Use ModelForms.Meta.fields = "all"
	28.16 Beware of SQL Injection Attacks
	28.17 Don't Store Unnecessary Data
	28.17.1 Never Store Credit Card Data
	28.17.2 Don't Store PII or PHI Unless Required (By Law)

	28.18 Monitor Your Sites
	28.19 Keep Your Dependencies Up-to-Date
	28.20 Prevent Clickjacking
	28.21 Guard Against XML Bombing With defusedxml
	28.22 Explore Two-Factor Authentication
	28.23 Embrace SecurityMiddleware
	28.24 Force the Use of Strong Passwords
	28.25 Don't Prevent Copy/Pasting of Password
	28.26 Give Your Site a Security Checkup
	28.27 Put Up a Vulnerability Reporting Page
	28.28 Never Display Sequential Primary Keys
	28.28.1 Lookup by Slug
	28.28.2 UUIDs

	28.29 Upgrade Password Hasher to Argon2
	28.30 Use SRI When Loading Static Assets From External Sources
	28.31 Reference Our Security Settings Appendix
	28.32 Review the List of Security Packages
	28.33 Keep Up-to-Date on General Security Practices
	28.34 Summary

	29 Logging: What's It For, Anyway?
	29.1 Application Logs vs. Other Logs
	29.2 Why Bother With Logging?
	29.3 When to Use Each Log Level
	29.3.1 Log Catastrophes With CRITICAL
	29.3.2 Log Production Errors With ERROR
	29.3.3 Log Lower-Priority Problems With WARNING
	29.3.4 Log Useful State Information With INFO
	29.3.5 Log Debug-Related Messages to DEBUG

	29.4 Log Tracebacks When Catching Exceptions
	29.5 One Logger Per Module That Uses Logging
	29.6 Log Locally to Rotating Files
	29.7 Other Logging Tips
	29.8 Necessary Reading Material
	29.9 Useful Third-Party Tools
	29.10 Summary

	30 Signals: Use Cases and Avoidance Techniques
	31 What About Those Random Utilities?
	31.1 Create a Core App for Your Utilities
	31.2 Optimize Apps With Utility Modules
	31.2.1 Storing Code Used in Many Places
	31.2.2 Trimming Models
	31.2.3 Easier Testing

	31.3 Django's Own Swiss Army Knife
	31.3.1 django.contrib.humanize
	31.3.2 django.utils.decorators.method_decorator(decorator)
	31.3.3 django.utils.decorators.decorator_from_middleware(middleware)
	31.3.4 django.utils.encoding.force_text(value)
	31.3.5 django.utils.functional.cached_property
	31.3.6 django.utils.html.format_html(format_str, *args, **kwargs)
	31.3.7 django.utils.html.strip_tags(value)
	31.3.8 django.utils.text.slugify(value)
	31.3.9 Slugification and Languages Besides English
	31.3.10 django.utils.timezone
	31.3.11 django.utils.translation

	31.4 Exceptions
	31.4.1 django.core.exceptions.ImproperlyConfigured
	31.4.2 django.core.exceptions.ObjectDoesNotExist
	31.4.3 django.core.exceptions.PermissionDenied

	31.5 Serializers and Deserializers
	31.5.1 django.core.serializers.json.DjangoJSONEncoder
	31.5.2 django.core.serializers.pyyaml
	31.5.3 django.core.serializers.xml_serializer
	31.5.4 rest_framework.serializers

	31.6 Summary

	32 Deployment: Platforms as a Service
	33 Deploying Django Projects
	34 Continuous Integration
	35 The Art of Debugging
	36 Where and How to Ask Django Questions
	37 Closing Thoughts
	Appendix A: Packages Mentioned In This Book
	Appendix B: Troubleshooting Installation
	Appendix C: Additional Resources
	Timeless Python and Django Material
	Timeless Beginner Django Material
	Timeless Beginner Python Material
	Timeless Useful Python Material
	JavaScript Resources

	Appendix D: Internationalization and Localization
	Appendix E: Settings Alternatives
	Appendix F: Security Settings Reference
	Appendix G: Handling Security Failures
	Have a Plan Ready for When Things Go Wrong
	Shut Everything Down or Put It in Read-Only Mode
	Put Up a Static HTML Page
	Back Everything Up
	Email security@djangoproject.com, Even if It's Your Fault
	Start Looking Into the Problem

	Appendix H: WebSockets with Channels
	Each Browser Tab Has Its Own WebSocket Connection
	Expect WebSocket Connections to Drop All the Time
	Validate Incoming Data!

	Acknowledgments
	List of Figures
	List of Tables
	Index

