

Docker Orchestration

Table of Contents

Docker Orchestration
Credits
About the Author
About the Reviewer
www.PacktPub.com

Why subscribe?
Customer Feedback
Preface

What this book covers
What you need for this book
Who this book is for
Conventions
Reader feedback
Customer support

Downloading the example code
Downloading the color images of this book
Errata
Piracy
Questions

1. Getting Started with Docker Orchestration
Installing Docker Engine
Installing with Docker Machine

Starting a host on AWS
Starting a host on GCE
Starting a host on Microsoft Azure
Installing on a running Linux host

Introducing Docker-specific distributions
CoreOS
RancherOS
Project Atomic / RHEL Atomic

Running single container applications
What is running?

Inspecting your container
Summary

2. Building Multi-Container Applications with Docker Compose
Building an image with Docker Engine

Building from a Dockerfile
Tagging the image
Skipping the build cache
Running the image

Installing Docker Compose

Writing a Docker Compose file
Multi-container applications

Using environment files
Extending compose files

Controlling start order
Using Docker networks
Keeping your data safe in volumes
Summary

3. Cluster Building Blocks – Registry, Overlay Networks, and Shared Storage
Creating a Docker Registry

Using the Docker Hub
Logging in
Working with a repository
Automating image builds with Docker Hub
Integration with Docker Cloud

Using the GitLab Container Registry
Installing GitLab on Ubuntu
Enabling Docker Registry on a project

Introducing the Docker Trusted Registry and Docker Datacenter
Building it yourself

Connecting containers with overlay networks
Using Docker native overlays

Working with DNS-SD
Publishing services with mesh routing mode

Using Weave
Installing Weave
Connecting containers to Weave

Using Flannel
Configuring etcd and Flannel
Starting a CoreOS cluster with Flannel
Connecting to Flannel

Using shared network storage for Docker volumes
Introducing Ceph
Using Ceph with Docker

Creating a Docker volume
Other shared storage plugins

Summary
4. Orchestration with Docker Swarm

Setting up a swarm
Initializing a swarm

Managing a swarm
Adding a node
Promoting and demoting nodes
Changing node availability

Pausing a node
Draining a node
Activating a node

Removing nodes
Recovering from a disaster

Restarting the full cluster
Backup and recovery

Backing up the swarm
Recovering a swarm
Backing up services

Grouping nodes with labels
Managing services

Running services
Creating replicas
Running global services
Setting constraints
Stopping services
Upgrading a service with rolling updates

Using Docker Compose with swarm
Building images
Starting an application
Bundling an application
Deploying a stack

Introducing Docker Datacenter
Summary

5. Deploying and Managing Services with Kubernetes
Getting to know Kubernetes

Command-line tools
Master components
Node components

Installing Kubernetes
Installing with kubeadm
Installing with kube-up.sh
Installing add-ons

Managing resources
Creating resources
Deleting resources

Running pods
Defining a pod

Viewing pods
Environment
Multi-container pods
Using secrets

Creating secrets

Using secrets in environment variables
Using secrets in files

Logging into a container
Deleting a pod

Using deployments
Creating a single container deployment
Creating a multi-container deployment
Scaling a deployment
Rolling updates

Updating a deployment
Getting the rollout history
Rolling back an update

Deleting a deployment
Running pods on every node with DaemonSets
Introducing scheduled jobs
Using labels

Using selectors to find resources
Using namespaces

Viewing namespaces
Creating namespaces
Switching namespaces
Deleting a namespace

Networking
Services

Creating a service
Listing services

Introducing DNS-SD
Using volumes

Using plain volumes
Storing long-lived data in persistent volumes

Creating a PersistentVolume
Creating the PersistentVolumeClaim resource
Using a PersistentVolumeClaim as a volume

Further reading
Summary

6. Working with Mesosphere
Getting started with DC/OS

Logging into the web interface
Installing the DC/OS client

Managing applications
Running a simple application
Stopping an application
Removing an application
Forcing Marathon to pull images

Using environment variables
Scaling applications
Checking application health

Using TCP and HTTP checks
Using command checks

Deploying rolling updates
Setting an upgrade strategy

Testing updates with blue-green deployments
Introducing pods

Using network services and load balancing
Discovering services with DNS
Connecting to the overlay network
Using virtual IPs
Using the Marathon load balancer

Providing persistent storage
Using local volumes
Using external volumes

Using a private registry
Summary

7. Using Simpler Orchestration Tools – Fleet and Cattle
Using Fleet

Starting Fleet
Verifying the cluster
Starting a container
Monitoring services
Viewing service logs
Stopping a service
Using environment variables
Scheduling services with affinity

Setting positive affinity
Using negative affinity
High availability

Sidekick services
Starting global units

Using Rancher Cattle
Installing Rancher

Installing Rancher server
Installing Rancher agents
Installing Rancher Compose
Introducing environments

Managing services
Starting a stack
Stopping a stack
Removing a stack

Upgrading a stack
Rolling back and confirming upgrades
Checking service health
Scheduling and affinity

Using networking services
Discovering services
Load balancer

Further reading
Summary

8. Monitoring Your Cluster
Logging with containers

Using Docker logging plugins
Logging containers that do not play by the rules
Logging with the ELK stack

Starting Elasticsearch
Starting Logstash
Viewing the logs with Kibana

Remote logging in Docker Datacenter
Logging from Kubernetes
Logging from Mesosphere
Logging your Docker hosts

Collecting and graphing performance data
Collecting data with collectd

Running collectd
Configuring collectd

Storing performance data in Elasticsearch
Storing performance data in InfluxDB

Graphing data with Kibana
Creating a new chart
Adding charts to a dashboard

Graphing data with Grafana
Installing Grafana
Adding data source
Creating a new dashboard
Creating a graph

Using Heapster in Kubernetes
Considerations for monitoring system health

Monitor services
Watching services in real time with Sysdig

Summary
9. Using Continuous Integration to Build, Test, and Deploy Containers

The importance of using CI
Using GitLab for CI

Setting up GitLab for CI

Installing the GitLab Runner on Ubuntu
Registering a runner
Enabling a Docker Repository
Adding the project to the repository
Creating .gitlab-ci.yml
Testing the image
Cleanup jobs
Releasing the image
Deploying the image
Deploying the image manually
Deploying to Kubernetes
Building DAB files

Using Docker Cloud for CI
Enabling autobuilds
Testing the image

Summary
10. Why Stop at Containers? Automating Your Infrastructure

Configuring Docker hosts
Using configuration management
Configuring a server on boot
Using a custom image

Building a new image with Packer
Preparing the Ubuntu Cloud Image
Building the image

Using Puppet with Packer
Treating infrastructure like code
Post-build configuration

Automating host deployment
Deploying hosts with Terraform

Creating a Terraform configuration
Running Terraform
Showing the cluster state

Deploying hosts with Docker Cloud
Introducing Docker for AWS and Docker for Azure

Scaling down nodes
Summary

Docker Orchestration

Docker Orchestration
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without warranty,
either express or implied. Neither the author, nor Packt Publishing, and its dealers and
distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

First published: January 2017

Production reference: 1190117

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78712-212-3

www.packtpub.com

http://www.packtpub.com

Credits

Author

Randall Smith

Copy Editor

Tom Jacob

Reviewer

Vincent De Smet

Project Coordinator

Kinjal Bari

Commissioning Editor

Pratik Shah

Proofreader

Safis Editing

Acquisition Editor

Rahul Nair

Indexer

Tejal Daruwale Soni

Content Development Editors

Radhika Atitkar

Sanjeet Rao

Graphics

Kirk D'Penha

Technical Editor

Bhagyashree Rai

Production Coordinator

Melwyn Dsa

About the Author
Randall Smith is a senior systems administrator at Adams State University. He has been
administering Windows, Linux, and BSD systems since 1999.

He has been active in helping other sysadmins solve problems online and off. He has presented at
the Colorado Higher Ed Computing Organization and Educause conferences on topics including
Linux KVM and Ceph.

In his spare time, Randall streams Let's Play gaming videos at Music Free Gaming on YouTube
and Twitch.

I would like to thank my family for their support and understanding as I disappeared into
my bedroom for hours at a time to write this book. I would like to thank Adams State
University for providing servers used for testing and the opportunity to play with really
cool software such as Docker. Finally, I would like to thank the reviewers and everyone at
Packt who helped make this book possible.

I want to give a special shout-out to all of the developers and companies who have open-
sourced the tools described in this book. You all make it so much much easier for the rest
of us to get the job done. Thank you all so much.

About the Reviewer
Vincent De Smet is a Docker Captain with experience as an IT consultant and a DevOps
engineer in Vietnam and Singapore, respectively. He's also a co-organizer of the Docker Saigon
and Cloud Native Singapore meetups. Vincent loves to deep dive into container internals, is an
active speaker, and publishes articles to the docker-saigon.github.io blog.

http://docker-saigon.github.io

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt books
and video courses, as well as industry-leading tools to help you plan your personal development
and advance your career.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

Customer Feedback
Thank you for purchasing this Packt book. We take our commitment to improving our content and
products to meet your needs seriously—that's why your feedback is so valuable. Whatever your
feelings about your purchase, please consider leaving a review on this book's Amazon page. Not
only will this help us, more importantly it will also help others in the community to make an
informed decision about the resources that they invest in to learn.

You can also review for us on a regular basis by joining our reviewers' club. If you're
interested in joining, or would like to learn more about the benefits we offer, please contact
us: customerreviews@packtpub.com.

Preface
Docker containers are a powerful tool for building and deploying services consistently and
reliably. As the number of containers increases, they also become a problem to manage. The
problem is only exasperated when the containers are run on multiple hosts. This book shows you
how to get started bringing order to the chaos through orchestration.

This book starts by showing you how to get started with Docker then delves into the building
blocks that are needed for a Docker cluster. It shows you how to use the "Big Three"
orchestration tools—Docker Swarm, Kubernetes, and Mesosphere. It will also introduce two
additional tools, Fleet and Cattle, which can be simpler to use and install, but very powerful.

Finally, you will be introduced to tools that make life simpler for people managing clusters and
developers creating images that will be run. You will explore tools to monitor clusters and see
where the performance bottlenecks are. You will see how to use continuous integration to
consistently and reliably build, test, and deploy Docker images. Finally, this book will show you
how to apply the same principles to the hosts that Docker is running on.

What this book covers
Chapter 1, Getting Started with Docker Orchestration , gets you started with using Docker. It
shows you how to install Docker locally and on popular cloud services such as Amazon Web
Services, Google Compute Engine, and Microsoft Azure.

Chapter 2, Building Multi-Container Applications with Docker Compose , provides an
introduction to building multi-container applications with Docker Compose. It also shows how to
use named networks for data isolation and data volumes to share data.

Chapter 3 , Cluster Building Blocks – Registry, Overlay Networks, and Shared Storage ,
describes the building blocks that are needed for a Docker cluster. You will explore the registry,
overlay networks, and shared storage and learn why they are needed.

Chapter 4 , Orchestration with Docker Swarm , shows you how to create and manage a cluster
with Docker Swarm. You will learn how to manage services, run them with multiple replicas, and
perform "zero downtime" upgrades.

Chapter 5 , Deploying and Managing Services with Kubernetes , explores the basics of using
Kubernetes to orchestrate a Docker cluster. You will see how to create services provided by
multiple containers, how to provide load balancing for those services, and how to seamlessly
upgrade them. Finally, you will see how to create persistent volumes to share data between
containers.

Chapter 6 , Working with Mesosphere , delves into using Mesosphere and DC/OS for
orchestration. You will learn how to create and manage containers, load-balance them, and
provide persistent storage. You will also see how to create health checks to ensure that services
are running properly and how to perform "zero downtime" upgrades.

Chapter 7 , Using Simpler Orchestration Tools – Fleet and Cattle, takes a look Fleet and Cattle.
Fleet is a low-level tool that can be used to base custom management tools on. Cattle is a
powerful, but easy to use, orchestration tool from Rancher. You will see how to use each to
manage containers and services.

Chapter 8 , Monitoring Your Cluster , explores the important task of ensuring that clusters, and
containers running in them, are behaving properly. You will learn how to aggregate logs from all
your containers in Elasticsearch and view them in Kibana. You will also learn how to use
collectd, InfluxDB, and Grafana to collect performance data.

Chapter 9 , Using Continuous Integration to Build, Test, and Deploy Containers , explains how
to use continuous integration in GitLab to build, test, and even deploy containers. This helps to
ensure that images are built consistently and reliably.

Chapter 10 , Why Stop at Containers? Automating Your Infrastructure , looks beyond containers

to show how the same principles that go into building and orchestrating Docker containers can
also be used with the hosts those containers run on. You will see how configuration management
can be used to configure hosts and ensure that they stay configured. The chapter also shows you
how to use Packer to build host images that can be deployed locally or to cloud services. Finally,
it will introduce Terraform, which can be used to create an entire Docker cluster from scratch.

What you need for this book
You will need a place to run Docker hosts. This can be in a local cluster such as OpenStack or a
cloud hosting provider such as Amazon EC2, Google Compute Engine, or Microsoft Azure. The
first chapter shows you how to install Docker on Linux and the rest of the book assumes that the
tools are run from Linux. Ubuntu, CentOS, and Red Hat Enterprise Linux are, currently, the best
supported.

A text editor, such as Emacs, will be needed as most orchestration tools store their configurations
in text files. Many of the tools and examples described within this book require a web browser to
access.

Who this book is for
This book is for developers and system administrators who have a basic knowledge of Docker
and now want to deploy and manage containers across multiple hosts.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames,
dummy URLs, user input, and Twitter handles are shown as follows: "Containers are started using
docker run command."

A block of code is set as follows:

#cloud-config
users:
 - name: "demo"
 passwd: "6HpqJOCs8XahT$mSgRYAn..."
 groups:
 - "sudo"
 - "docker"

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

#cloud-config
users:
 - name: "demo"
 passwd: "6HpqJOCs8XahT$mSgRYAn..."
 groups:
 - "sudo"
 - "docker"

Any command-line input or output is written as follows:

$ wget -qO - https://get.docker.com/ | sh

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Select your account then click
Allow on the next page."

Note

Warnings or important notes appear in a box like this.

Tip

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book-what
you liked or disliked. Reader feedback is important for us as it helps us develop titles that you
will really get the most out of. To send us general feedback, simply e-
mail feedback@packtpub.com, and mention the book's title in the subject of your message. If there
is a topic that you have expertise in and you are interested in either writing or contributing to a
book, see our author guide at www.packtpub.com/authors.

http://www.packtpub.com/authors

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to get
the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder using the latest
version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
https://github.com/PacktPublishing/Docker-Orchestration. We also have other code bundles from
our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them
out!

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Docker-Orchestration
https://github.com/PacktPublishing/

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used in
this book. The color images will help you better understand the changes in the output. You can
download this file from
https://www.packtpub.com/sites/default/files/downloads/DockerOrchestration_ColorImages.pdf.

https://www.packtpub.com/sites/default/files/downloads/DockerOrchestration_ColorImages.pdf

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If
you find a mistake in one of our books-maybe a mistake in the text or the code-we would be
grateful if you could report this to us. By doing so, you can save other readers from frustration and
help us improve subsequent versions of this book. If you find any errata, please report them by
visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on the Errata
Submission Form link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added to any list
of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/content/support
and enter the name of the book in the search field. The required information will appear under the
Errata section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any illegal
copies of our works in any form on the Internet, please provide us with the location address or
website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

Chapter 1. Getting Started with Docker
Orchestration
Initially, Internet services ran on hardware and life was okay. To scale services to handle peak
capacity, one needed to buy enough hardware to handle the load. When the load was no longer
needed, the hardware sat unused or underused but ready to serve. Unused hardware is a waste of
resources. Also, there was always the threat of configuration drift because of the subtle changes
we made with each new install.

Then came VMs and life was good. VMs could be scaled to the size that was needed and no
more. Multiple VMs could be run on the same hardware. If there was an increase in demand, new
VMs could be started on any physical server that had room. More work could be done on less
hardware. Even better, new VMs could be started in minutes when needed, and destroyed when
the load slackened. It was even possible to outsource the hardware to companies such as Amazon,
Google, and Microsoft. Thus elastic computing was born.

VMs, too, had their problems. Each VM required that additional memory and storage space be
allocated to support the operating system. In addition, each virtualization platform had its own
way of doing things. Automation that worked with one system had to be completely retooled to
work with another. Vendor lock-in became a problem.

Then came Docker. What VMs did for hardware, Docker does for the VM. Services can be
started across multiple servers and even multiple providers. Once deployed, containers can be
started in seconds without the resource overhead of a full VM. Even better, applications
developed in Docker can be deployed exactly as they were built, minimizing the problems of
configuration drift and package maintenance.

The question is: how does one do it? That process is called orchestration, and like an orchestra,
there are a number of pieces needed to build a working cluster. In the following chapters, I will
show a few ways of putting those pieces together to build scalable, reliable services with faster,
more consistent deployments.

Let's go through a quick review of the basics so that we are all on the same page. The following
topics will be covered:

How to install Docker Engine on Amazon Web Services (AWS), Google Compute Engine
(GCE), Microsoft Azure, and a generic Linux host with docker-machine
An introduction to Docker-specific distributions including CoreOS, RancherOS, and Project
Atomic
Starting, stopping, and inspecting containers with Docker
Managing Docker images

Installing Docker Engine
Docker Engine is the process that actually runs and controls containers on each Docker host. It is
the engine that makes your cluster work. It provides the daemon that runs and manages the
containers, an API that the various tools use to interact with Docker, and a command-line
interface.

Docker Engine is easy to install with a script provided by Docker. The Docker project
recommends that you pipe the download through sh:

$ wget -qO - https://get.docker.com/ | sh

I cannot state strongly enough how dangerous that practice is. If https://www.docker.com/ is
compromised, the script that you download could compromise your systems. Instead, download
the file locally and review it to ensure that you are comfortable with what the script is doing.
After you have reviewed it, you could load it to a local web server for easy access or push it out
with a configuration management tool such as Puppet, Chef, or Ansible:

$ wget -qO install-docker.sh https://get.docker.com/

After you have reviewed the script, run it:

$ sh install-docker.sh

Note

The user that runs the install script needs to be root or have the ability to use su or sudo.

If you are running a supported Linux distribution, the script will prepare your system and install
Docker. Once installed, Docker will be updated by the local package system, such as apt on
Debian and Ubuntu or yum on CentOS and Red Hat Enterprise Linux (RHEL). The install
command starts Docker and configures it to start on system boot.

Note

A list of supported operating systems, distributions, and cloud providers is located at
https://docs.docker.com/engine/installation/ .

By default, anyone using Docker locally will need root privileges. You can change that by adding
them to the docker group which is created by the install packages. They will be able to use
Docker without root, starting with their next login.

https://www.docker.com/
https://docs.docker.com/engine/installation/

Installing with Docker Machine
Docker provides a very nice tool to facilitate deployment and management of Docker hosts on
various cloud services and Linux hosts called Docker Machine. Docker Machine is installed as
part of the Docker Toolbox but can be installed separately. Full instructions can be found at
https://github.com/docker/machine/releases/ .

Docker Machine supports many different cloud services including AWS, Microsoft Azure, and
GCE. It can also be configured to connect to any existing supported Linux server. The driver
docker-machine uses is defined by the --driver flag. Each driver has its own specific flags
that control how docker-machine works with the service.

https://github.com/docker/machine/releases/

Starting a host on AWS
AWS is a great way to run Docker hosts and docker-machine makes it easy to start and manage
them. You can use the Elastic Load Balancer (ELB) to send traffic to containers running on a
specific host or load balance among multiple hosts.

First of all, you will need to get your access credentials from AWS. You can use them in a couple
of ways. First, you can include them on the command line when you run docker-machine:

$ docker-machine create --driver amazonec2 --amazonec2-access-key AK*** --
amazonec2-secret-key DM*** ...

Second, you can add them to ~/.aws/credentials. Putting your credentials in a credential file
means that you will not have to include them on the command line every time you use docker-
machine to work with AWS. It also keeps your credentials off of the command line and out of the
process list. The following examples will assume that you have created a credentials file to keep
from cluttering the command line:

[default]
aws_access_key_id = AK***
aws_secret_access_key = DM***

A new Docker host is created with the create subcommand. You can specify the region using the
--amazonec2-region flag. By default, the host will be started in the us-east-1 region. The last
item on the command line is the name of the instance, in this case dm-aws-test:

$ docker-machine create --driver amazonec2 --amazonec2-region
us-west-2 dm-aws-test

Creating CA: /home/user/.docker/machine/certs/ca.pem
Creating client certificate:
/home/user/.docker/machine/certs/cert.pem
Running pre-create checks...
Creating machine...
(dm-aws-test) Launching instance...
Waiting for machine to be running, this may take a few minutes...
Detecting operating system of created instance...
Waiting for SSH to be available...
Detecting the provisioner...
Provisioning with ubuntu(systemd)...
Installing Docker...
Copying certs to the local machine directory...
Copying certs to the remote machine...
Setting Docker configuration on the remote daemon...
Checking connection to Docker...
Docker is up and running!
To see how to connect your Docker Client to the Docker Engine running on this
virtual machine, run: docker-machine env dm-aws-test

The command takes a couple of minutes to run but when it's complete, you have a fully-functional
Docker host ready to run containers. The ls subcommand will show you all the machines that
docker-machine knows about:

$ docker-machine ls
NAME ACTIVE DRIVER STATE URL SWARM
DOCKER ERRORS
dm-aws-test - amazonec2 Running tcp://52.43.71.87:2376
v1.12.1

The machine's IP address is listed in the output of docker-machine ls, but you can also get it by
running docker-machine ip. To start working with your new machine, set up your environment
by running eval $(docker-machine env dm-aws-test). Now when you run Docker, it will
talk to the instance running up on AWS. It is even possible to ssh into the server using docker-
machine:

$ docker-machine ssh dm-aws-test
Welcome to Ubuntu 15.10 (GNU/Linux 4.2.0-18-generic x86_64)
* Documentation: https://help.ubuntu.com/
Get cloud support with Ubuntu Advantage Cloud Guest:
http://www.ubuntu.com/business/services/cloud
New release '16.04.1 LTS' available.
Run 'do-release-upgrade' to upgrade to it.
*** System restart required ***
ubuntu@dm-aws-test:~$

Once you are done with the instance, you can stop it with docker-machine stop and remove it
with docker-machine rm:

$ docker-machine stop dm-aws-test
Stopping "dm-aws-test"...
Machine "dm-aws-test" was stopped.

$ docker-machine rm dm-aws-test
About to remove dm-aws-test
Are you sure? (y/n): y
Successfully removed dm-aws-test

Note

There are a number of options that can be passed to docker-machine create including options
to use a custom AMI, instance type, or volume size. Complete documentation is available at
https://docs.docker.com/machine/drivers/aws/ .

https://docs.docker.com/machine/drivers/aws/

Starting a host on GCE
GCE is another big player in cloud computing. Their APIs make it very easy to start up new hosts
running on Google's high power infrastructure. Google is an excellent choice to host your Docker
hosts, especially if you are already using other Google Cloud services.

You will need to create a project in GCE for your containers. Authentication happens through
Google Application Default Credentials (ADC). This means that authentication will happen
automatically if you run docker-machine from a host on GCE. If you are running docker-
machine from your own computer, you will need to authenticate using the gcloud tool.
The gcloud tool requires Python 2.7 and can be downloaded from the following site:
https://cloud.google.com/sdk/ .

$ gcloud auth login

The gcloud tool will open a web browser to authenticate using OAuth 2. Select your account then
click Allow on the next page. You will be redirected to a page that shows that you have been
authenticated. Now, on to the fun stuff:

$ docker-machine create --driver google \
--google-project docker-test-141618 \
--google-machine-type f1-micro \
dm-gce-test

https://cloud.google.com/sdk/

It will take a few minutes to complete depending on the size of image you choose. When it is
done, you will have a Docker host running on GCE. You can now use the ls, ssh, and ip
subcommands just like the preceding AWS. When you are done, run docker-machine stop and
docker-machine rm to stop and remove the image.

Note

There are a number of options that can be passed to docker-machine including options to set the
zone, image, and machine time. Complete documentation is available at
https://docs.docker.com/machine/drivers/gce/ .

https://docs.docker.com/machine/drivers/gce/

Starting a host on Microsoft Azure
Microsoft is a relative newcomer to the cloud services game but they have built an impressive
service. Azure underpins several large systems including Xbox Live.

Azure uses the subscription ID for authentication. You will be given an access code and directed
to enter it at https://aka.ms/devicelogin . Select Continue, choose your account, then click on
Accept. You can close the browser window when you are done:

$ docker-machine create --driver azure --azure-subscription-id 30*** dm-
azure-test

Again, it will take some time to finish. Once done, you will be able to run containers on your new
host. As always, you can manage your new host with docker-machine. There is an important
notice in the output when you remove a machine on Azure. It is worth making sure that everything
does get cleaned up:

$ docker-machine rm dm-azure-test
About to remove dm-azure-test
Are you sure? (y/n): y
(dm-azure-test) NOTICE: Please check Azure portal/CLI to make sure you have
no

leftover resources to avoid unexpected charges.

https://aka.ms/devicelogin

(dm-azure-test) Removing Virtual Machine resource. name="dm-azure-test"
(dm-azure-test) Removing Network Interface resource. name="dm-azure-test-
nic"
(dm-azure-test) Removing Public IP resource. name="dm-azure-test-ip"
(dm-azure-test) Removing Network Security Group resource.
name="dm-azure-test-firewall"

(dm-azure-test) Attempting to clean up Availability Set resource...
name="docker-machine"
(dm-azure-test) Removing Availability Set resource... name="docker-machine"
(dm-azure-test) Attempting to clean up Subnet resource... name="docker-
machine"
(dm-azure-test) Removing Subnet resource... name="docker-machine"
(dm-azure-test) Attempting to clean up Virtual Network resource...
name="docker
-machine-vnet"

(dm-azure-test) Removing Virtual Network resource... name="docker-machine-
vnet"
Successfully removed dm-azure-test

Note

There are many options for the Azure driver including options to choose the image, VM size,
location, and even which ports need to be open on the host. For full documentation refer to
https://docs.docker.com/machine/drivers/azure/ .

https://docs.docker.com/machine/drivers/azure/

Installing on a running Linux host
You can also use a generic driver of docker-machine to install and manage Docker on an
existing host running a supported Linux distribution. There are a couple of things to keep in mind.
First, the host must already be running. Docker can be pre-installed. This can be useful if you are
installing Docker as part of your host build process. Second, if Docker is running, it will be
restarted. This means that any running containers will be stopped. Third, you need to have an
existing SSH key pair.

The following command will use SSH to connect to the server specified by the --generic-ip-
address flag using the key identified by --generic-ssh-key and the user set with --generic-
ssh-user. There are two important things to keep in mind for the SSH user. First, the user must
be able to use sudo without a password prompt. Second, the public key must be in the
authorized_keys file in the user's $HOME/.ssh/ directory:

$ docker-machine create --driver generic --generic-ip-address 52.40.113.7 --
generic-ssh-key ~/.ssh/id_rsa --generic-ssh-user ubuntu dm-ubuntu-test

This process will take a couple of minutes. It will be faster than the creates on cloud services that
also have to provision the VM. Once it is complete, you can manage the host with docker-
machine and start running containers.

The only difference between the generic driver and the other cloud drivers is that the stop
subcommand does not work. This means that stopping a generic Docker host has to be done from
the host.

Note

Full documentation can be found at https://docs.docker.com/machine/drivers/generic/ .

https://docs.docker.com/machine/drivers/generic/

Introducing Docker-specific distributions
One of the benefits of running services with Docker is that the server distribution no longer
matters. If your application needs CentOS tools, it can run in a container based on CentOS. The
same is true for Ubuntu. In fact, services running in containers based on different distributions can
run side-by-side without issue. This has led to a push for very thin, Docker-specific distributions.

These distributions have one purpose: to run Docker containers. As such, they are very small and
very limited in what comes out of the box. This a huge benefit to cloud wranglers everywhere.
Fewer tools mean fewer updates and more uptime. It also means that the host OS has a much
smaller attack surface, giving you greater security.

Their focus on Docker is a great strength, but it can also be a weakness. You may find yourself up
against a wall if you need something specific on your host that is not available. On the positive
side, many tools that might not be available in the default install can be run from a container.

CoreOS
CoreOS (https://coreos.com) was one of the first Docker-specific distributions. They have since
started their own container project called rkt, but still include Docker. It is supported on all
major cloud providers including Amazon EC2, Microsoft Azure, and GCE and can be installed
locally in bare-metal or in a local cloud environment.

CoreOS uses the same system that Google uses on their Chromebooks to manage updates. If the
updates cause a problem, they can be easily rolled back to the previous version. This can help
you maintain stable and reliable services.

CoreOS is designed to update the system automatically which is very unique. The idea is that
automatically updating the OS is the best way to maintain the security of the infrastructure. This
process can be configured, by default, to ensure that only one host in a CoreOS cluster is
rebooting at a time. It can also be configured to only update during maintenance windows or
turned off completely. Before you decide to turn it off manually, remember that a properly
configured orchestration system will keep services up and running even when the hosts they are
running is on reboot.

CoreOS includes Docker but does not enable it. The following example from the CoreOS
documentation shows how to enable Docker on boot. This is done by creating a new systemd unit
file through cloud-init. On AWS, this is placed in the user data instance configuration:

#cloud-config

coreos:
 units:
 - name: docker-tcp.socket
 command: start
 enable: true
 content: |
 [Unit]
 Description=Docker Socket for the API

 [Socket]
 ListenStream=2375
 BindIPv6Only=both
 Service=docker.service

 [Install]
 WantedBy=sockets.target

CoreOS uses a default core user. Users can be added through the cloud-config file:

#cloud-config
users:
 - name: "demo"
 passwd: "6HpqJOCs8XahT$mSgRYAn..."
 groups:
 - "sudo"

https://coreos.com

 - "docker"

As SSH key can also be added with the ssh-authorized-keys option in the users block. You
can add any number of keys to each user:

#cloud-config
users:
 - default
 - name: "demo"
 ssh-authorized-keys:
 - "ssh-rsa AAAAB3Nz..."

CoreOS also supports sssd for authentication against LDAP and Active Directory (AD). Like
Docker, it is enabled through cloud-config:

#cloud-config
coreos:
 units:
 - name "sssd.service"
 command: "start"
 enable: true

The sssd configuration is in /etc/sssd/sssd.conf. Like the rest of CoreOS, the configuration
can be added to cloud-config:

#cloud-config
write_files:
 - path: "/etc/sssd/sssd.conf"
 permissions: "0644"
 owner: "root"
 content: |
 config_file_version = 2
 ...

Note

Full configuration of sssd is beyond the scope of this book. Full documentation is at the
following website: https://jhrozek.fedorapeople.org/sssd/1.13.1/man/sssd.conf.5.html

https://jhrozek.fedorapeople.org/sssd/1.13.1/man/sssd.conf.5.html

RancherOS
Rancher (http://rancher.com) was designed from the ground up to run Docker containers. It
supports multiple orchestration tools including Kubernetes, Mesos, and Docker Swarm. There are
ISOs available for installation to hardware and images for Amazon EC2, GCE, or OpenStack.
You can even install RancherOS on Raspberry Pi!

RancherOS is so unique; even the system tools run in Docker. Because of this, the admin can
choose a console that fits what they're comfortable with. Supported consoles are CentOS, Debian,
Fedora, Ubuntu, or the default BusyBox-based console.

Rancher provides a very nice web interface for managing containers and clusters. It also makes it
easy to run multiple environments including multiple orchestration suites. Rancher will be
covered in more detail in Chapter 7, Using Simpler Orchestration Tools - Fleet and Cattle.

The cloud-init package is used to configure RancherOS. You can configure it to start containers
on boot, format persistent disks, or do all sorts of other cool things. One thing it cannot do is add
additional users. The idea is that there is very little reason to log in to the host once Docker is
installed and configured. However, you can add SSH keys to the default rancher user to allow
unique logins for different users:

#cloud-config
ssh_authorized_keys:
 - ssh-rsa AAAAB3Nz...

If you need to add options to Docker, set them with cloud-init:

#cloud-config
rancher:
 docker:
 args: [daemon, ...]

http://rancher.com

Project Atomic / RHEL Atomic
Project Atomic (http://projectatomic.io) grew out of the Fedora Project but now supports
CentOS, Fedora, and RHEL. Images are available for Linux KVM and Xen-based virtualization
platforms as well as Amazon EC2 and bare-metal installation.

It uses OSTree and rpm-OSTree to provide atomic updates. In other words, every package is
updated at the same time, in one chunk. You do not have to worry that one package might have
failed updates and left the system with an older package. It also provides for easy rollback in
case the updates cause problems.

Project Atomic comes pre-installed with Docker and Kubernetes. (Kubernetes is covered in
detail in Chapter 5, Deploying and Managing Services with Kubernetes.) This makes it an ideal
base for Kubernetes-based clusters. The addition of SELinux adds an extra level of security in
case one of the running containers is compromised.

Deployment on almost any local cloud system or EC2 is made easier by the use of cloud-init.
The cloud-init package lets you configure your Atomic hosts automatically on boot, instantly
growing your Kubernetes cluster.

You can use cloud-init to set the password and enable SSH logins for the default user:

#cloud-config
password: c00l-pa$$word
ssh_pwauth: True

You can also add SSH keys to the default user's authorized_keys file:

#cloud-config
ssh_authorized_keys:
 - ssh-rsa AAAAB3Nz...
 - ssh-rsa AAAAB3Nz...

Note

The name of the default user depends on which version of Atomic you use. For Fedora, the
username is fedora, for CentOS it is centos, and for RHEL it is cloud-user.

http://projectatomic.io

Running single container applications
Before we get into the nuts and bolts of Docker orchestration, let's run through the basics of
running single applications in Docker. Seeing as this is a tech book, the first example is always
some variant of Hello World and this is no different.

Note

By default, docker must be run as the root user or with sudo. Instead, you could add your user to
the docker group and run containers without root.

$ docker run --rm ubuntu echo "Hello World"

This example is really simple. It downloads the ubuntu Docker image and uses that image to run
the echo "Hello World" command. Simple, right? There is actually a lot going on here that you
need to understand before you get into orchestration.

First of all, notice the word ubuntu in that command. That tells Docker that you want to use the
ubuntu image. By default, Docker will download images from the Docker Hub. There are a large
number of images, most uploaded by the community, but there are also a number of official images
of various projects of which ubuntu is one. These form a great base for almost any application.

Second, take special note of the --rm flag. When docker runs, it creates an image for the
container that contains any changes to the base image. Those changes persist as long as the
container exists even if the container is stopped. The --rm flag tells docker to remove the
container and its image as soon as it stops running. When you start automating containers with
orchestration tools, you will often want to remove containers when they stop. I'll explain more in
the next section.

Lastly, take a look at the echo command. Yes, it is an echo alright, and it outputs Hello World
just like one would expect. There are two important points here. First, the command can be
anything in the image, and second, it must be in the image. For example, if you tried to run nginx
in that command, Docker will throw an error similar to the following:

$ sudo docker run --rm ubuntu nginx
exec: "nginx": executable file not found in $PATH
Error response from daemon: Cannot start container
821fcd4e8ae76668d8c508190b338e166247dc46cb6bc2582731566e7f2c705a: [8] System
error: exec: "nginx": executable file not found in $PATH

The "Hello World" examples are all good but what if you want to do something actually useful?
To quote old iPhone ads; There's an app for that. There are many official applications available
on the Docker Hub. Let's continue with nginx and start a container running nginx to serve a
simple website:

$ docker run --rm -p 80:80 --name nginx nginx

This command starts a new container based on the nginx image, downloading it if needed, and
telling docker to forward TCP port 80 to port 80 in the image. Now you can go to
http://localhost and see a most welcoming website:

Welcoming people to Nginx is all well and good, but obviously, you will want to do more than
that. That will be covered in more detail in Chapter 2, Building Multi-Container Applications
with Docker Compose. For now, the default will be sufficient.

If you run the preceding example, you will notice that the console appears to hang. That's because
docker starts processes in the foreground. What you are seeing there is nginx waiting for a
request. If you go to http://localhost, then you should see messages from the nginx access
log printed to the console. Another option is to add -d to your run command. That will detach the
process from the console:

$ docker run -d -p 80:80 --name nginx nginx

Note

The -d and --rm options are mutually exclusive.

There are multiple ways to stop a container. The first way is to end the process running in the
container. This will happen automatically for short running processes. When starting a container
like nginx in the preceding example, pressing Ctrl + C in the session will stop nginx and the
container. The other way is to use docker stop. It takes the image ID or name of the container.
For example, to stop the container that was started earlier you would run docker stop nginx.

Let's take a moment and look at how Docker deals with remote images. Remember, when you first
ran docker run with the ubuntu or nginx images, docker had to first download the images
from the Docker Hub. When you run them again, Docker will use the downloaded image. You can
see the images Docker knows about with the docker images command:

$ docker images
REPOSITORY TAG IMAGE ID CREATED
VIRTUAL SIZE
ubuntu latest ae81bbda2b6c 5 hours ago
126.6 MB
nginx latest bfdd4ced794e 3 days ago
183.4 MB

Unwanted images can be deleted with the docker rmi command:

$ docker rmi ubuntu

Ack! What do you do if you deleted an image but you still need it? You have two options. First,
you can run a container that uses the image. It works, but can be cumbersome if running a
container changes data or conflicts with something that is already running. Fortunately, there is the
docker pull command:

$ docker pull ubuntu

This command will pull the default version of the ubuntu image from the repository on Docker
Hub. Specific versions can be pulled by specifying them in the command:

$ docker pull ubuntu:trusty

Docker pull is also used to update a previously downloaded image. For example, the ubuntu
image is regularly updated with security fixes and other patches. If you do not pull the updates,
docker on your host will continue to use the old image. Simply run the docker pull command
again and any updates to the image will be downloaded.

Let's take a quick diversion and consider what this means for your hosts when you begin to
orchestrate Docker. Unless you or your tools update the images on your hosts, you will find that
some hosts are running old images while others are running the new, shiny image. This can open
your systems up to intermittent failures or security holes. Most modern tools will take care of that
for you or, at least, have an option to force a pull before deployment. Others may not, keep that in
mind as you look at orchestration tools and strategies.

What is running?
At some point, you will want to see what containers are running on a specific host. Your
orchestration tools will help with that, but there will be times that you will need to go straight to
the source to troubleshoot a problem. For that, there is the docker ps command. To demonstrate,
start up a few containers:

$ for i in {1..4}; do docker run -d --name nginx$i nginx ; done

Now run docker ps:

$ sudo docker ps
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
e5b302217aeb nginx "nginx -g 'daemon off" About a
minute ago Up About a minute 80/tcp, 443/tcp nginx4
dc9d9e1e1228 nginx "nginx -g 'daemon off" About a
minute ago Up About a minute 80/tcp, 443/tcp nginx3
6009967479fc nginx "nginx -g 'daemon off" About a
minute ago Up About a minute 80/tcp, 443/tcp nginx2
67ac8125983c nginx "nginx -g 'daemon off" About a
minute ago Up About a minute 80/tcp, 443/tcp nginx1

You should see the containers that were just started as well as any others that you may have
running. If you stop the containers, they will disappear from docker ps:

$ for i in {1..4}; do docker stop nginx$i ; done
nginx1
nginx2
nginx3
nginx4

As you can see if you run docker ps, the containers are gone:

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

However, since the --rm flag was not used, docker still knows about them and could restart
them:

$ docker ps -a

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
e5b302217aeb nginx "nginx -g 'daemon off" 3 minutes
ago Exited (0) About a minute ago nginx4
dc9d9e1e1228 nginx "nginx -g 'daemon off" 3 minutes
ago Exited (0) About a minute ago nginx3
6009967479fc nginx "nginx -g 'daemon off" 3 minutes
ago Exited (0) About a minute ago nginx2
67ac8125983c nginx "nginx -g 'daemon off" 3 minutes

ago Exited (0) About a minute ago nginx1

These are all the stopped nginx containers. The docker rm command will remove the
containers:

$ for i in {1..4}; do docker rm nginx$i ; done
nginx1
nginx2
nginx3
nginx4

Until a container is removed, all the data is still available. You can restart the container and it
will chug along quite happily with whatever data existed when the container was stopped. Once
the container is removed, all the data within that container is removed right along with it. In many
cases, you might not care but, in others, that data might be important. How you deal with that data
will be an important part of planning out your orchestration system. In Chapter 3, Cluster
Building Blocks - Registry, Overlay Networks, and Shared Storage, I will show you how you
can move your data into shared storage to keep it safe.

Inspecting your container
There comes a time in the life of anyone working with containers when you will need to jump into
a running container and see what is going on. Fortunately, Docker has just the tool for you in the
form of docker exec. The exec subcommand takes two arguments, the name of the container, and
the command to run:

$ docker exec -it nginx bash

I slipped an option in there that is important if you are starting an interactive process. The -it
option tells Docker that you have an interactive process and that you want a new TTY. This is
essential if you want to start a shell:

$ sudo docker exec -it nginx bash
root@fd8533fa2eda:/# ps ax
PID TTY STAT TIME COMMAND
1 ? Ss 0:00 nginx: master process nginx -g daemon off;
6 ? S 0:00 nginx: worker process
13 ? Ss 0:00 bash
18 ? R+ 0:00 ps ax
root@fd8533fa2eda:/# exit

In the preceding example, I connected to the container and ran ps ax to see every process that the
container knew about. Getting a shell in the container can be invaluable when debugging. You can
verify that files were added correctly or that internal scripts are properly handling environment
variables passed in through docker.

It's also possible to run non-interactive programs. Let's use the same ps example as earlier:

$ sudo docker exec nginx ps ax
PID TTY STAT TIME COMMAND
1 ? Ss 0:00 nginx: master process nginx -g daemon off;
6 ? S 0:00 nginx: worker process
19 ? Rs 0:00 ps ax

As you might expect, there's not much to see here, but it should give you an idea of what is
possible. I often use them when debugging and I do not need a full shell.

Summary
In this chapter you have learned the basics of using Docker. You saw how to quickly install
Docker on AWS, GCE, Azure, and a generic Linux host. You were introduced to a few Docker-
specific distributions and saw a little bit of how to configure them. Finally, we reviewed the
basics of using the docker command. In the next chapter, I will walk you through using Docker
Compose to build new single and multi-container applications.

Chapter 2. Building Multi-Container
Applications with Docker Compose
Modern applications have a lot of moving parts. A web application almost always uses a
database such as MySQL or MongoDB to store data. There may be a load balancer or SSL proxy.
Often there are tasks scheduled to run regularly that perform routine maintenance or backups. On a
traditional server, these tasks might all be installed on a single server or spread across numerous
hosts. The challenge faced by system administrators is how are all these parts deployed
consistently and reliably?

Rather than having a single container that does everything, you can split your application into
smaller chunks. Each container has a specific task and does only that task. For example, you might
have one image that is a Perl-based web application; a second that runs MySQL; a third that runs
HAProxy to load balance and provide SSL termination for the Perl application. Each separate
container can be run, upgraded, and tested independent of each other. Your developers can work
on the web code all they want, and you do not have to worry about what they might do to your
database install.

This chapter will show you how that is done. The process starts with a single image, defined by a
Dockerfile. It then proceeds to build a small multi-container application using both custom
images and images from the Docker Hub. Along the way, you will see how to use Docker
Compose to define your application; how networks can be used to isolate your data; and how
volumes can keep your data safe.

The following topics will be covered in this chapter:

Building an image from a Dockerfile with Docker Engine
Installing Docker Compose
Using Docker Compose to build single and multi-container applications
Using environment files to change how your application runs
Extending Docker Compose files
Controlling the container start order
Using named networks for data isolation
Using volumes for data persistence

Building an image with Docker Engine
They say the longest journey begins with a single step. In this case, an application begins with a
single image. More often than not, existing images will not be perfect fits. This will certainly be
the case if you are deploying your own services.

It all starts with a Dockerfile. This file provides detailed instructions to Docker for building an
image. There are a lot of things that can be done in a Dockerfile. Specific operating system
packages or language libraries can be installed; configuration files can be put into place; and a
default command can be set. It is best to base a new image for an application off an official
image, when possible. For example, an application written in Ruby should be based off of the
official ruby image. A full reference of the Dockerfile directives can be found at
https://docs.docker.com/engine/reference/builder/ .

https://docs.docker.com/engine/reference/builder/

Building from a Dockerfile
Back in Chapter 1 , Getting Started with Docker Orchestration, we started with a container that
ran Nginx and displayed the default welcome page. This time, let us add a custom website to the
container. Start by creating an empty directory somewhere. In that directory, download the
examples from the GitLab repository for this book:

$ git clone https://gitlab.com/perlstalker/docker-orchestration-examples
$ cd docker-orchestration-examples/ch02

Then, create a file named Dockerfile with the following content:

FROM nginx:1.10
COPY sample-website /usr/share/nginx/html

This is a simple file but there are two important pieces here. First is the FROM command, which
tells Docker that your container extends the nginx image that was used before. Basing your
custom images on the existing images can save a lot of time and hassle. They may not be perfect
out of the box but often it only takes a few changes to get what you need.

Second, there is the ADD command. The nginx container uses /usr/share/nginx/html within
the container as the document root. The ADD command places the content of the website directory
in /usr/share/nginx/html when the container is built.

The ADD command can add single files, directories, or tarballs. The TAR files will be unpacked
in the directory that you specify. The TAR file can be compressed with gzip, bzip2, or xz. The
ADD command can also take a URL. The file pointed to by ADD will be downloaded and placed in
the given directory in your image. A tarball added via URL will not be unpacked.

In addition to the ADD command, there is a command called COPY. It simply adds the given files or
directories with any of the automated unpacking that ADD does. The COPY command is preferred
when adding simple files or directories to an image.

Now, it is time to build the container. Change to the directory with your Dockerfile and website
directory and run docker build. When the build completes, you will have an image named
website ready to use with docker run:

$ docker build -t website .

Tagging the image
The -t flag allows you to give your image a name. The name may include a : followed by a tag.
The most common way of using this is as a version number. It might also be a date, Git tag, or
something else that makes sense in your environment. For example, the official ubuntu image has
tags for releases such as ubuntu:trusty or ubuntu:xenial, which refer to the appropriate
Ubuntu release:

$ docker build -t website:0.1 .

Image versioning will be important going forward. At some point, you will be deploying an
updated version of your service. It is possible to reuse a name and version, which may be fine
while you develop the application, but different versions will make it easy to roll back to a
previous, known good image in the event of a failure. It also allows you or your QA team to test
an image without overwriting the image your production services are started from.

Additional tags can be added to an image after it has been built. You can think of this as an alias.
Image tags are a good way to identify images that are in a certain state. For example, after you
have built the website, you could tag it to show that it is ready for testing with docker tag
website:testing website:0.1. After testing, the image can be tagged as website:latest or
website:production to show that the image is ready for production. Repeat the process as each
new image moves through the development process. Having a consistent image name will make it
easier for developers to know which image to download. Using version numbers will make it
easier to see which version of an image is being used. It also allows for easy rollbacks of an
application in case the new version is broken.

Skipping the build cache
Another useful flag is --no-cache. Normally, Docker will try to reuse existing images as much
as possible. This will speed up the build process but might cause problems with your build. A
common example is when adding packages to an image. Take this small Dockerfile, for
example. It is based on the latest Ubuntu image. It simply updates apt and installs nginx:

FROM ubuntu:16.04
RUN apt-get update
RUN apt-get -y install nginx && apt-get clean

Because Docker caches each step, apt-get update will not be run on subsequent builds. APT
will then attempt to install nginx based on what is in the cache. It is possible that the version the
image wants to install no longer exists on the mirror and the install will fail. This happens most
often if you are changing the list of packages to install. The apt-get install command is rerun
but apt-get update is not. When that happens, adding --no-cache will force Docker to rerun
every step rather than use the cache.

There is one more flag that I want to point out - the --pull flag. It tells Docker to download a
newer image of any images that are used. This is important if you want to be sure that you have
the latest version with all security patches applied. However, that might mean updated libraries
which could cause problems for your application. The good news is that with versioned builds,
you will not break anything running in production:

$ docker build --no-cache --pull -t website:0.1 .

Running the image
Once your image is built, you may run a container using the image with the following command:

$ docker run --rm -p 80:80 website:0.1

That should look very familiar. This time, instead of running the nginx image, Docker will run
your newly built image complete with the sample website. Once started, you can then open the
site in a web browser. If the container is running on your desktop, go to http://localhost/
and see the new site:

Installing Docker Compose
Once your images are built, you need to tell Docker how to run them. Docker Engine is limited in
allowing you to define how containers work together. The Docker project provides a solution
called Docker Compose. Docker Compose is a great tool for testing out deployments, defining
how containers will interact or what external storage they need, or even as a lightweight
orchestration tool.

Installing Docker Compose is easy. For Windows and OS X users, docker-compose installs as
part of the Docker Toolbox and Docker for Mac and Windows. For Linux users, docker-
compose can be downloaded from the Docker repository on GitHub. The following command
from the Docker Compose documentation shows you how:

curl -L https://github.com/docker/compose/releases/download/1.8.0 /docker-
compose-`uname -s`-`uname -m` > /usr/local/bin/docker-compose
chmod +x /usr/local/bin/docker-compose

As shown, the curl command must be run as root in order to have the permissions to write
the file to /usr/local/bin.
The version number will have almost certainly changed since the time of writing. Update the
command accordingly. The latest release can be found at
https://github.com/docker/compose/releases/.

https://github.com/docker/compose/releases/

Writing a Docker Compose file
A Docker Compose file defines everything about an application. The services, volumes,
networks, and dependencies can all be defined in one place. The configuration can be used
locally to stand up a development environment, plugged into an existing continuous integration or
continuous deployment system, or even used on a server to start production services. Later
chapters will show better ways to manage running services.

Docker Compose looks for a file named docker-compose.yml in the current directory. An
alternate file can be specified with the -f option. The file is formatted in YAML so it can be
edited in any text editor.

Let's start with a very simple compose file that starts a single nginx container that listens on port
80. This is an analogous container started with docker run -p 80:80 nginx. The value for
image can be any image on your server or on the registry just like in the docker run command:

version: '2'
services:
 web:
 image: nginx
 ports:
 - "80:80"

Applications defined in Docker Compose files are started using the command docker-compose
up. Like docker run, you can use the -d option of docker-compose to start your application in
the background:

$ docker-compose up -d
Starting singleservice_web_1

The application has been started and is now running in the background. If you opened
http://localhost in your web browser, you would see the Nginx welcome page. You can use
docker ps to see the running container, but docker-compose ps provides a little bit of a nicer
view:

$ docker-compose ps
 Name Command State Ports

singleservice_web_1 nginx -g daemon off; Up 443/tcp, 0.0.0.0:80-
>80/tcp

The singleservice prefix is the namespace for the application. By default, it is based on the
directory name that contains your docker-compose.yml file. It may be different on your system.
A namespace can be specified by passing the -p flag to docker-compose:

$ docker-compose -p mynamespace up

When you are done, the application can be stopped by running docker-compose stop. To stop,

as well as remove all resources created by docker-compose for the current context, use docker-
compose down. Any volumes created in docker-compose.yml will not be removed:

$ docker-compose down
Stopping singleservice_web_1 ... done
Removing singleservice_web_1 ... done
Removing network singleservice_default

It's often useful to see the output from the containers in your application. This can be done with
the docker-compose logs command. Adding the -f flag will cause docker-compose to follow
the log and print messages and they appear in the log.

Multi-container applications
The example in the previous section was fun but did not really gain us anything over using the
docker command. Most Internet applications have multiple pieces. The most common example is
a web application that loads data from a database.

In ch02/web-db of the docker-orchestration-examples repository there is a very simple
application that loads a list of authors and books from MySQL and displays them on a web page.
Here is a docker-compose.yml that defines the application:

version: '2'

services:
 web:
 image: web-db:0.1
 build: .
 ports:
 - 80:5000
 env_file:
 - db.env
 entrypoint: ./start.pl --init --command shotgun
 db:
 image: mysql:5.7
 env_file:
 - db.env

The first thing that you should notice is that there are two services defined. The first, web, is the
web application. The second, db, is a MySQL container. Let's look at them one at a time.

The build key tells docker-compose that this service will be built from a Dockerfile in the
same directory as docker-compose.yml. It is possible to define a subdirectory here such as
build: ./myapp. This is common if you have multiple custom images to build to support your
application.

The name of the image to build is set with the image key. This is the same thing that you would
pass to the -t flag of docker build. Once the image is built, you will see that name listed in
docker images. You can run the container separately with docker run or push it into a registry.

Note

Older versions of the docker-compose.yml specification did not allow you to use both build
and image in the same service.

The ports key is the same as the -p flag to docker run. In this case, docker-compose will
forward port 80 to 5000 in the container. The ports key takes a list so you can specify multiple
ports to forward, if desired. Following is an example that forwards ports 80 and 443 on the host
to ports 5000 and 5001 in the container, respectively:

ports:

 - 80:5000
 - 443:5001

Let's skip over the env_file key for the moment and go to the entrypoint key. The entrypoint
key allows you to override entrypoint defined in the image's Dockerfile. It is the same as
using --entrypoint with docker run. I will explain why you might want to set that later in the
chapter.

The db service starts MySQL. Like the web service, the image option defines the image to use. In
this case, however, rather than build one from a Dockerfile, docker-compose will download
the official mysql image from the Docker Hub.

The astute reader may notice something else about the db service. There are no ports set. Services
within a single docker-compose namespace can connect to the ports the other containers define
with the EXPOSE command in their Dockerfile. There is no need to make the ports available to
other people or containers. Even better, docker-compose provides name resolution for every
container in the cluster so that they can find each other. In this case, the web application can
connect to MySQL using the name of the service - db. Networking will be discussed in more
detail a little later in this chapter.

Using environment files
Now let's turn to that mysterious env_file option. The env_file option allows you to supply
one or more environment files. These files set environment variables which will be passed to the
services when they start. This is the same as setting environment variables using the -e flag to
docker run. The same file can be passed to the --env-file option to docker run. The mysql
image uses environment variables to configure the name of a database to create if one does not
exist, the root password, an application username and password, and many other things. This
particular env_file contains MySQL user information:

MYSQL_DATABASE=db
MYSQL_USER=myapp
MYSQL_PASSWORD=password
MYSQL_ROOT_PASSWORD=root-password

Putting that information in an env_file lets you pass those same variables to the web
application. The ./start.pl script defined in the web service's entrypoint reads those
environment variables and writes a configuration file for the application.

Having that information in the environment variables rather than in the web image itself makes it
easier to update your running services in the event of a password change. All you need to do is
update the environment file and restart any containers using it. This will save a lot of time over
updating the image configuration, rebuilding, and re-deploying the image to all of the Docker
hosts in the cluster.

The other major use case for environment files is to have different settings for development and
production. For example, in an application like the preceding one, you could have one file that
defines account credentials for a development database and one for production.

One other thing to note is that env_file takes a list. You can specify as many different files as
you might need. For example, you might have a set of common environment variables and another
set which is specific to this application. In this situation, your env_file might look something
like the following example. Variables in later files override those set in the earlier ones:

env_file:
 - common.env
 - myapp.env

Extending compose files
We have already talked about using environment files to change your application's behavior.
Another way that you can do that is to use multiple Docker Compose files. Each file builds on the
previous one, extending it and possibly overriding options. This can give you great flexibility in
developing your application or adjusting it to fit different environments. This can be done in one
of the following two ways:

The first way is to put your overrides in a file named docker-compose.override.yml.
This file is read automatically by docker-compose. The options in docker-compose.yml
are applied first and then the options in docker-compose.override.yml are applied.
The second option is to use the -f flag to docker-compose. You may include as many
compose files as you want. They will be applied in order from left to right. For example, in
the docker-compose -f docker-compose.yml -f docker-compose-prod.yml
command, docker-compose.yml is read first then docker-compose-prod.yml.

Let's go back to the sample web application. The default docker-compose.yml defined an
entrypoint for the web service which uses the Shotgun loader for Plack. That is a great tool for
debugging but it is slow because it recompiles the application on every page load. To put this into
production, something that has better performance is needed. Instead, let's use the preforking
loader, Starman.

Here is the relevant portion of the docker-compose.yml file:

services:
 web:
 image: web-db
 build: .
 ports:
 - 80:5000
 env_file:
 - db.env
 entrypoint: ./start.pl --init --command shotgun

Now create a file named docker-compose-prod.yml that overrides entrypoint:

version: '2'

services:
 web:
 entrypoint: ./start.pl --init -command starman

Start the application with docker-compose:

$ docker-compose -f docker-compose.yml -f docker-compose-prod.yml up

When it starts up, you should see this message in the logs:

web_1 | Command: starman

web_1 | Waiting 60 seconds for mysql
web_1 | Initializing database
web_1 | Starting the app
web_1 | 2016/09/08-13:11:35 Starman::Server (type Net::Server::PreFork)
starting! pid(1)
web_1 | Resolved [*]:5000 to [0.0.0.0]:5000, IPv4
web_1 | Binding to TCP port 5000 on host 0.0.0.0 with IPv4
web_1 | Setting gid to "0 0"

If you stop the application and run it again without the docker-compose-prod.yml file, you
should see it go back to using Shotgun:

web_1 | Command: shotgun
web_1 | Waiting 60 seconds for mysql
web_1 | Initializing database
web_1 | Starting the app
web_1 | HTTP::Server::PSGI: Accepting connections at http://0:5000/

Using multiple compose files can be of great use, but it can also be a little confusing. You might
find yourself in a situation where you are trying to debug your application configuration and ask
yourself, "Why is docker-compose using that option?" In those cases, it may be helpful to run
docker-compose config to see the merged configuration:

$ docker-compose -f docker-compose.yml -f docker-compose-prod.yml config
networks: {}
services:
db:
environment:`
MYSQL_DATABASE: db
 MYSQL_PASSWORD: password
 MYSQL_ROOT_PASSWORD: root-password
 MYSQL_USER: myapp
image: mysql
web:
build:
context: /home/user/examples/ch02/web-db
 entrypoint: ./start.pl --init --command starman
 environment:
 MYSQL_DATABASE: db
 MYSQL_PASSWORD: password
 MYSQL_ROOT_PASSWORD: root-password
 MYSQL_USER: myapp
 image: web-db
 ports:
 - 80:5000
version: '2.0'
volumes: {}

From this, you can see that docker-compose did pick up our override of entrypoint. You can
also see all of the environment variables that were added via the env_files options. If you see
an option that does not look right, you can start hunting through your compose files for that
specific option. Most likely, you will have an ordering problem.

Controlling start order
Like almost every application that uses a database, the preceding sample application will not
work if it cannot connect to the database. For this to happen, the database needs to be started first.
Docker Compose provides an option called depends_on that helps with this:

version: '2'

services:
 web:
 image: web-db
 build: .
 depends_on:
 - db
 ...
 db:
 image: mysql
 ...

In the preceding example, docker-compose will start the db service first, then start the web
service. It will also start the db service if you try to start the web service separately with docker-
compose up web. You can define as many additional dependencies as the service needs.

There is an important point to note here. Docker Compose will start the required service first, but
it will not wait for it to be ready to accept connections before starting the services that depend on
it. In this case, docker-compose will start db and then web immediately after. Unfortunately,
MySQL takes a little time to get started. If the web application tries to connect right away,
MySQL might not be ready and your application could fail to start.

There are a few ways to deal with this problem. The first, and usually the best option is for your
application to keep trying to connect. Eventually, the database will be ready and your application
can go about its business. The reason I like this option is because failures happen often. In large
Docker environments, failure is often a feature. Containers are designed to start quickly and are
often replaced quickly as new versions of services are deployed. A self-healing service means
fewer headaches for the team managing the cluster.

Another option is to use a wrapper around your application's start up command. The wrapper
could repeatedly poll the database, and when it sees that the database is ready, start your
application. The start.pl script in the example application takes a much simpler approach, it
just sleeps for 60 seconds to give the database time to start.

Note

The Docker documentation points to two tools called wait-for-it and dockerize. Either can
be used to delay the start of your application until another service is ready. They are available at
https://github.com/vishnubob/wait-for-it and https://github.com/jwilder/dockerize , respectively.

https://github.com/vishnubob/wait-for-it
https://github.com/jwilder/dockerize

Using Docker networks
Docker supports the concept of virtual networks. Docker Compose uses them to provide network
isolation between applications. By default, every application started with Docker Compose has
its own virtual network named after the application's namespace. That means, if you start two
different applications with docker-compose, they will not be able to see each other.

Within an application's namespace, the network created by docker-compose provides DNS
service discovery. In the case of the example multi-container application, there were DNS entries
created for the web and database services called web and db, respectively. In the configuration
for the web application (MyApp/config.yml.in), the database connection is configured to
connect to a host named db. Docker does the rest by making sure that the db hostname points to the
db service.

Tip

When a service is restarted, it will get a new IP address but keeps the same hostname. Make sure
your application can handle this situation.

Originally, networking in Docker was very limited. Recent releases have created a pluggable
network stack that can be as simple or complicated as you need. Docker Compose lets you
configure that with the networks option:

version: '2'

services:
 web:
 image: web-db
 build: .
 ports:
 - 80:5000
 env_file:
 - db.env
 entrypoint: ./start.pl --init --command shotgun
 networks:
 - frontend
 - backend
 db:
 image: mysql
 env_file:
 - db.env
 networks:
 - backend

networks:
 frontend:
 driver: bridge
 backend:
 driver: bridge

This example builds on the simple multi-container application from the earlier section. This time,
there are two networks defined, named frontend and backend, which uses the standard Docker
bridge network. Start the application with docker-compose up:

$ docker-compose -f docker-compose-networks.yml up

If you log into the web container, you will see that Docker has created two NICs in the container,
not counting the loopback interface:

$ docker-compose exec web /bin/bash
root@2bae616b5cf1:/var/www# ip addr

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group
default qlen 1
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
505: eth0@if506: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue
state UP group default
 link/ether 02:42:ac:13:00:03 brd ff:ff:ff:ff:ff:ff link-netnsid 0
 inet 172.19.0.3/16 scope global eth0
 valid_lft forever preferred_lft forever
 inet6 fe80::42:acff:fe13:3/64 scope link
 valid_lft forever preferred_lft forever
507: eth1@if508: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue
state UP group default
 link/ether 02:42:ac:12:00:02 brd ff:ff:ff:ff:ff:ff link-netnsid 0
 inet 172.18.0.2/16 scope global eth1
 valid_lft forever preferred_lft forever
 inet6 fe80::42:acff:fe12:2/64 scope link
 valid_lft forever preferred_lft forever

The database container still only has one NIC. Notice that the address assigned to eth1 in the web
container is in a different subnet from the addresses assigned to eth0 in both containers:

$ use docker-compose exec db bash
root@cc883ceac1f3:/# ip addr

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group
default qlen 1
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
503: eth0@if504: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue
state UP group default
 link/ether 02:42:ac:13:00:02 brd ff:ff:ff:ff:ff:ff
 inet 172.19.0.2/16 scope global eth0
 valid_lft forever preferred_lft forever
 inet6 fe80::42:acff:fe13:2/64 scope link
 valid_lft forever preferred_lft forever

The networks option makes it easy to isolate services from each other within an application. For
example, you may have service in the frontend network, such as an SSL terminating proxy, that
answers requests from the Internet that you do not want to be able to connect to the database. It
can also be used to connect to networks that were previously created with docker network
create. This is especially useful when you start working with multi-host clusters. That will be
covered in more detail in Chapter 3 , Cluster Building Blocks - Registry, Overlay Networks, and
Shared Storage.

Keeping your data safe in volumes
Adding data directly to the container image works very well for applications that you do not want
to change while the applications are running. Your application code usually falls into this
category. For tasks that will be updating data regularly, it is better to put the data on a volume.
Volumes also provide a measure of data persistence since they stick around even after a container
is removed.

Volumes are one of the keys to orchestration. Putting container data in an external volume helps to
facilitate container updates and running containers across multiple hosts. Using networked, shared
storage is covered in Chapter 3 , Cluster Building Blocks - Registry, Overlay Networks, and
Shared Storage.

Let's go back to the web database example. The way it is configured at the beginning of the
chapter, the database is created every time the application starts and destroyed when the
application stops. That works for an example, but it is not very practical in real life. Instead, let's
reconfigure the application to put the database on a volume:

version: '2'

services:
 web:
 image: web-db
 build: .
 ports:
 - 80:5000
 env_file:
 - db.env
 entrypoint: ./start.pl --init --command shotgun
 depends_on:
 - db
 db:
 image: mysql
 env_file:
 - db.env
 volumes:
 - ./mysql:/var/lib/mysql

This example will put the MySQL data in a directory named mysql in the same directory as
docker-compose.yml. Once the application has started, you should see the MySQL data files:

$ ls mysql
db mysql performance_schema sys auto.cnf ib_buffer_pool ibdata1
ib_logfile0 ib_logfile1

Tip

If you ran the previous examples, you may need to remove the containers with docker-compose
rm before it will use the volume directory.

Now, when you remove the application with docker-compose rm, you can see that the data is
still in the mysql directory. If you restart the application, the MySQL container will see the data
from the volume and pick up where it left off. You can see it in the example in two ways. First, a
warning will be displayed that Table 'author' already exists. Second, there will be duplicate
entries. This is because start.pl is run with the --init flag which blindly tries to create the
database and insert the sample author and book entries when it starts.

Any volume driver supported by Docker can be configured. To do so, a separate volumes entry in
docker-compose.yml is needed. This block will let you configure any options that the driver
needs:

version: '2'

services:
 web:
 ...
 db:
 image: mysql
 env_file:
 - db.env
 volumes:
 - dbvol:/var/lib/mysql

volumes:
 dbvol:
 driver: "driver-name"
 driver_opts:
 - opt1: "foo"
 - opt2: "bar"

In this example, there is a volume defined, named dbvol. The driver key tells Docker which
driver to use. Any options needed for the driver are set with the driver_opts key.

To use the volume in one of your services, use the volumes option as before. This time, the first
part is the volume name rather than a local path, in this case dbvol. The second part is still the
path within the container to mount the volume.

Note

Docker's pluggable architecture has allowed for an explosion of plugins supporting a wide
variety of storage systems. Among those available are Azure File Storage, Ceph, Gluster, and
VMware vSphere. Your favorite search engine will help you find many more. Docker maintains
an incomplete list at https://docs.docker.com/engine/extend/legacy_plugins/ .

https://docs.docker.com/engine/extend/legacy_plugins/

Summary
In this chapter, you saw how to build new Docker images and define and control applications
with Docker Compose. You also learned how to use networks to isolate traffic between
containers and how to keep your data safe with volumes. In the next chapter, the groundwork will
be laid for a multi-host Docker cluster including using registries, overlay networks, and network
storage.

Chapter 3. Cluster Building Blocks – Registry,
Overlay Networks, and Shared Storage
The previous two chapters covered the basics of using Docker. Now it is time to start looking
forward to building a Docker cluster. Before a new cluster can be built, a foundation needs to be
laid. This chapter will cover the registry, overlay networks, and shared storage. Each component
is essential for the smooth operation of containers in a Docker cluster.

Docker is a highly pluggable system. Meaning, there are many options for each component. Each
has its own strengths and weaknesses. Some may be better suited to your environment than others.
This chapter will give a few examples of each component and explain how to use them.

The good news is that no matter your choice, you are not locked in. Docker's plugin system makes
it easy to use whichever component you need, often on a per-container basis. You could start, for
example, using one system for shared storage and decide that another fits your needs. New
containers can start using the new storage immediately, while older ones continue to use the old
system.

The following topics will be covered in this chapter:

Registry
Using a registry
Docker Hub
Docker Cloud
Docker Datacenter and Docker Trusted Registry
GitLab registry
Building it yourself
Overlay networks
Native Docker overlay networks
Flannel
Weave
Shared storage
Storage drivers
Ceph

Creating a Docker Registry
A registry is simply a place where images are stored. Already in this book, you have used a
Docker Registry. In Chapter 1, Getting Started with Docker Orchestration, there was an example
of starting an nginx container:

$ docker run --name webserver -p 80:80 nginx

The docker command includes the name of the image to use, in this case nginx. Docker first
looks for that image locally, but if the image is not found locally, Docker connects to the default
registry at the Docker Hub. If the image exists on the registry, it is downloaded and your container
starts.

Think of how powerful having a registry can be. A registry makes it easy to quickly deploy any
image to any node in your cluster. Without one, you have to manually build your image on each
and every machine first. In my early days of using Docker, I did that and it was not fun. Each time
I built an image, there was a chance that a library change would break my application. Using a
registry gives you consistent deployments across your cluster.

Using the Docker Hub
By far, the easiest registry to use out of the box is Docker Hub. The official Docker images for
most projects are hosted there. You can create an account for free and host as many public images
as you need. Private repositories are available for a fee. To create an account, go to
https://hub.docker.com .

Logging in

Once you have an account, it is time to log into the registry with docker login. By default,
Docker will attempt to log you into Docker Hub. Once you are logged in, you will have rights to
pull your private images and push new images into the repository:

$ docker login
Username: username
Password:
Email: username@example.com
WARNING: login credentials saved in /home/user/.docker/config.json
Login Succeeded

Take note of the warning in the output. Your registry login credentials will be saved in
$HOME/.docker/config.json. This file can be pushed to your cluster servers to automate
registry actions:

$ cat ~/.docker/config.json
{
 "auths": {
 "https://index.docker.io/v1/": {
 "auth": "cG...",
 "email": "username@example.com"
 }
 }
}

Once you have logged in and your credentials have been saved, you can log in again without
having to specify the password. It is also possible to pass the password on the command line
using the -p option:

$ docker login -u username
WARNING: login credentials saved in /home/user/.docker/config.json
Login Succeeded

Obviously, leaving your password credentials around, even when they are hashed, can be a bit
scary. At the very least, make sure that $HOME/.docker/config.json is only readable by your
user. When you are done, you can remove your credentials from config.json by running docker
logout.

When you start orchestrating your cluster, you are going to have to automate registry logins from
your servers if you are using private repositories. The servers will need to be able to pull the

https://hub.docker.com

images from the registry. If they cannot, your services will not run. Whenever possible, you
should have a separate, read-only user that can pull images from your repository but cannot
update it. It is possible to do this in Docker Hub but takes a few steps to set up:

1. Click on Organizations and then click on Create Organization.
2. Click on the Create Team button, fill in the Team Name and Description fields, then click

on Add:

3. Click on the team from the list and add your read-only users to the team.
4. Create a repository or click on an existing repository in your organization.
5. Click on Collaborators. Select the team from the drop-down menu. Select Read and click

on Add Team:

Any users that you add to the group will be able to pull images from the repository but will not be
able to push to it. You can add your read-only team to as many repositories as needed. This will
provide a measure of safety while still allowing your orchestration tools to pull images from the
repository when needed.

Working with a repository

It is not required that a repository be created before it can be used. However, if the repository is
going to be private, it should be created ahead of time. That way it can be assured that images
pushed to the repository are not visible. You can create as many repositories as you need:

1. Log in to Docker Hub and click on Create Repository.
2. Select your namespace from the list. This will either be your username or the name of an

organization.
3. Enter a name for your repository. This must be unique within the namespace.
4. Add a short description and a full description, if desired.
5. Select your Visibility, either public or private, and click on Create.

Now it is time to upload an image to Docker Hub. You must first build an image with docker
build. The image name must be the same as the one you are pushing to. When using Docker Hub,
images are named with either the username or the organization and the image name separated by a

slash. For example, if your organization is dodemoorg and the image is named test, the image
name would be dodemoorg/test. Optionally, a tag may also be included such as
dodemomode/test:0.1. When the build is complete, push the image up to Docker Hub:

$ docker build -t dodemoorg/test .
[output omitted]
$ docker push dodemoorg/test
The push refers to a repository [docker.io/dodemoorg/test]
2a2c642ec5d1: Pushed
45d6c44ca123: Pushed
07066ce72cdd: Pushed
e4c7c26cda75: Pushed
0cad5e07ba33: Mounted from library/ubuntu
48373480614b: Mounted from library/ubuntu
055757a19384: Mounted from library/ubuntu
c6f2b330b60c: Mounted from library/ubuntu
c8a75145fcc4: Mounted from library/ubuntu
latest: digest:
sha256:f1af9d37d7792490f571a572bb17a21936b512b22a2d8650c11a3424f9192033 size:
2198

The image is now available on Docker Hub. If the repository is public, anyone can download and
use the image. For that reason, do not include passwords in your image. Whenever possible, use
environment variables as discussed in Chapter 2, Building Multi-Container Applications with
Docker Compose, to keep your passwords secret.

Downloading your image from Docker Hub can be done in one of two ways. First, you could
simply run a container such as docker run dodemoorg/test. If the image does not exist on the
server, it will be downloaded automatically. Note that docker run will not see if an image has
changed on Docker Hub. To force your system to download the image use docker pull:

$ docker pull dodemoorg/test

In some cases, it may be useful to use docker pull to download your images before you are
ready to deploy it. For example, you may have a new version of an existing image that is already
being used by a running container. Running docker pull will ensure that everything is in place
before you upgrade. That will minimize potential downtime when the new container starts.

Automating image builds with Docker Hub

Docker Hub has a feature that will automatically build a new image based on updates to a Git
branch hosted on GitHub or Bitbucket. To create an automated build, select Create Automated
Build from the Create menu. You will be prompted to link to an account on GitHub or Bitbucket,
if you have not already done so.

Note

Note that a linked GitHub or Bitbucket account may only be linked to a single Docker Hub
account.

The wizard will walk you through the creation of a new repository. You will be asked for a name
and description for the repository. Once the repository is created, go to Build Settings to
configure the automated build. Docker Hub can track multiple branches from your Git repository
and build a new tagged image every time that branch is updated.

You can also configure Docker Hub to rebuild your image if an upstream container is updated.
For example, let's suppose that your container is based on the ubuntu image, in other words, you
used From ubuntu at the top of your Dockerfile. Whenever the ubuntu image is rebuilt, it will
trigger a rebuild of your image as well. This is one way to ensure that your images always have
the latest security updates from the upstream image.

Automated builds are a great way to get started with Continuous Integration (CI) and
Continuous Deployment (CD). It does not have the image testing capabilities that GitLab or
Jenkins have, but you could still build an automated testing process. For example, when your
developers are ready to test their application, they could push their changes to a testing branch in
GitHub. That push will trigger a build on Docker Hub that builds a new image. A process could
run on one of your servers that regularly pulls the testing branch, runs a test suite against it, and
sends your team a build report. If the tests were successful, the team could then push their code to
the master branch and trigger a build for production.

CI/CD tools are one way to ensure stability and reliability in your deployment process.
The Chapter 9, Using Continuous Integration to Build, Test, and Deploy Containers, will show
you how you can use the built-in Docker Registry in GitLab to automate testing and deployment.

Integration with Docker Cloud

Docker offers a completely cloud hosted Docker management platform called Docker Cloud.
Docker Cloud uses Docker Hub to provide registry services. Meaning, in addition to the tight
integration with the management environment, you also get the same automated build services that
are available directly on Docker Hub. In addition to automated builds, Docker Cloud also
provides an automated test framework. This will be covered more in Chapter 9, Using
Continuous Integration to Build, Test, and Deploy Containers.

Another feature of Docker Cloud for private repositories is the ability to perform security scans
of your images. It scans each layer of your image for known vulnerabilities and provides a report.
The scans are run on image push or when an automated build is triggered. The generated reports
may show a vulnerability in an image that your image is based on. In that case, you will have to
rebuild with a newer version of the base image or work around the vulnerability yourself.

Using the GitLab Container Registry
GitLab is an all in one development suite. It provides Git repositories, issue tracking, CI, and a
Docker Registry. The tight integration between Git, issue tracking, and Docker registries in
GitLab make it an ideal solution for application development. GitLab is open source and can be
installed locally. Enterprise hosting is also available at gitlab.com.

The easiest way to use GitLab is through their cloud offering, but installing it locally is
straightforward. In my experience, the best way to install GitLab is to use the Omnibus installer. It
installs all the software GitLab needs and manages all of the updates. The Omnibus package is
available for Ubuntu, Debian, CentOS, and Raspberry Pi.

There is a Docker image available, but it is a little bit harder to work with. I recommend creating
your own image using gitlab/gitlab-ce as a base to put the package configuration and SSL
certificates in place. The GitLab Docker image documentation is at
https://docs.gitlab.com/omnibus/docker/.

Installing GitLab on Ubuntu

There are a number of dependencies that need to be installed before GitLab can be installed.
Postfix is optional. If you choose not to use it, you will need to configure GitLab to use another
server to send e-mail:

$ sudo apt-get install curl openssh-server ca-certificates postfix

GitLab is another one of those projects that wants you to download a script and pipe it directly
through sudo. Again, I cannot state strongly enough how dangerous that is. Instead, download the
script, review it, and if it looks okay to you, then run it:

$ wget -qO script.deb.sh
https://packages.gitlab.com/install/repositories/gitlab/gitlab-
ce/script.deb.sh
$ sudo bash script.deb.sh
$ sudo apt-get install gitlab-ce

GitLab is configured in /etc/gitlab/gitlab.rb. A full guide to all of the options is beyond the
scope of this book. Let's, instead, focus on what is needed to configure the Docker Registry:

registry['enable'] = true
registry_external_url 'https://registry.example.com'
gitlab_rails['registry_path'] = "/var/opt/gitlab/gitlab-
rails/shared/registry"
registry_nginx['ssl_certificate'] =
"/etc/gitlab/ssl/registry.example.com.crt"
registry_nginx['ssl_certificate_key'] =
"/etc/gitlab/ssl/registry.example.com.key"
gitlab_rails['lfs_enabled'] = true

The first line enables the registry service in GitLab. The second line sets the URL for the

https://about.gitlab.com/
https://docs.gitlab.com/omnibus/docker/

registry. It can use the same address as the rest of GitLab on a different port. It is also possible to
make the registry available on a separate hostname. The third line sets the location of the registry
on the filesystem.

The fourth and fifth lines define the SSL certificate and key files. The certificate used for the
registry must be trusted by the clients or Docker will throw an error. If the certificate you are
using has an intermediate certificate, the certificate chain will need to be added to the certificate
file:

$ cat intermediate.pem your_certificate.pem > registry.pem

Note

Using GitLab Docker registry without a certificate is possible but not recommended. Add --
insecure-registry with the address of your registry to the startup command for the Docker
daemon. Full details are available at https://docs.docker.com/registry/insecure/.

The last line enables Git Large File Storage (LFS). It is not strictly necessary but it does allow
for adding large files to the Git repository for an image. For example, I have services that require
the Oracle Instant Client. The ZIP files for the client are large but they are needed to build the
images. LFS allows the client to be added comfortably to Git. LFS must be installed and
configured on the client to be used.

GitLab needs to be reconfigured once the changes have been made to gitlab.rb. This is done by
running sudo gitlab-ctl reconfigure. This command is also run after upgrades to update the
database.

Note

Full details on configuring the GitLab Container Registry are available at:
https://docs.gitlab.com/ce/administration/container_registry.html

Enabling Docker Registry on a project

A Docker Registry can be enabled for any project created in GitLab. Click on the gear icon on the
top-right and select Edit Project. Scroll down to the Features section, enable the Container
Registry then click on Save changes:

https://docs.docker.com/registry/insecure/
https://docs.gitlab.com/ce/administration/container_registry.html

Once enabled, users with access to the repository can log in with docker login using their
GitLab credentials. Users may have read or write access to the repository depending on their
project access. Once logged in, images may be pushed, or pulled as usual. Note that the image
name starts with the address of the registry:

$ docker pull registry.example.com/namespace/project
$ docker push registry.example.com/namespace/project

GitLab CI has the ability to automatically build, test, and even deploy images. This will be
covered in detail in Chapter 9, Using Continuous Integration to Build, Test, and Deploy
Containers.

Note

Full documentation on using the GitLab Container Registry on a project can be found at:
https://docs.gitlab.com/ce/user/project/container_registry.html

https://docs.gitlab.com/ce/user/project/container_registry.html

Introducing the Docker Trusted Registry and Docker Datacenter
The Docker Trusted Repository (DTR) is an application that is available for the Docker
Universal Control Plane (UCP) and is part of Docker Datacenter. Docker Datacenter provides
an on-site or cloud-based cluster management tool with Role-Based Access Control (RBAC),
LDAP, and AD authentication, and monitoring of your Docker hosts. In effect, Docker Datacenter
is Docker Cloud with DTR filling the role of Docker Hub running on your own network.

Docker Datacenter supports automated builds or testing of images with full CI/CD. It also has
built-in support for high availability and image security. Docker Datacenter uses the integrated
Docker Content Trust to digitally sign and verify images. This ensures that the image you get is the
one you want.

Building it yourself
If none of those options work for you, there is the option to build it yourself. This will allow you
to customize the registry for your specific needs but may require significantly more work to
implement. It also works well in smaller environments that do not need the complexity of GitLab
or expense of Docker Datacenter but still need a private repository.

Like so many things in the world of Docker, a new registry is just a docker run away:

$ docker run -d -p 5000:5000 --name registry registry:2

This command will start up a new registry container and is ready to use with a few caveats.
First, the image data is stored in the container. Removing the container will also remove all of
your images. The simplest solution is to use a volume to mount a directory from the local
filesystem to /var/lib/registry. For greater flexibility, you will want to consider using shared
storage rather than a local directory:

$ docker run -d -p 5000:5000 -v /data/registry:/var/lib/registry --name
registry registry:2

Second, this will only work with the docker command on the localhost unless Docker is
configured to use an insecure registry. That is because docker requires a valid certificate for a
TLS connection to the registry. You can mount a directory containing the certificates in the
container and specify environment variables to tell the registry where to read the certificates
from:

$ docker run -d -p 5000:5000 \
-v /data/registry:/var/lib/registry \
-v /data/certs:/etc/certs \
-e REGISTRY_HTTP_TLS_CERTIFICATE=/etc/certs/registry.pem \
-e REGISTRY_HTTP_TLS_KEY=/etc/certs/registry.key \
--name regis
try registry:2

The same warning about certificates in GitLab applies here as well. If your certificate is signed
by an intermediate certificate, the complete certificate chain must be included in the certificate
file.

Docker Registry supports basic authentication natively. If you want to do something more
complex, you will need to run a proxy in front of your registry or use a token server. The proxy is
simpler but a token server will give you the flexibility to control access to a minute level. Full
details as well as proxy examples and a Docker Compose file to run a registry are available
at https://github.com/docker/docker.github.io/blob/master/registry/deploying.md.

https://github.com/docker/docker.github.io/blob/master/registry/deploying.md

Connecting containers with overlay networks
When Docker containers are started, they are assigned a private IP address. This avoids conflicts
with addresses that may already be in use on the network and allows containers on the same host
to talk to each other. It is a nice system except that containers running on different hosts cannot
talk to each other unless they are exposed on the hosts. To solve this problem, various projects,
including Docker, developed overlay networks.

An overlay network is a private network that is layered on top of an existing IP network to allow
containers on multiple hosts to talk to each other. Containers connected to an overlay network are
still assigned private addresses and are not accessible from outside the network. Ports can be
made public using the -p option to docker run as normal.

Docker's pluggable network infrastructure has led to a growth in the number of overlay plugins. It
also allows for containers to use multiple overlays networks. Using multiple networks provides
for network isolation and segmentation and minimizes the risk of a compromised container
sniffing network traffic that it is not supposed to see.

Using Docker native overlays
Docker's native overlay networking is a relative newcomer to the space. It provides DNS
Service Discovery (DNS-SD) and the ability to use multiple overlays. When combined with
Docker Swarm, it provides cross cluster connectivity. The advantage to being later to the
ecosystem is that you can learn from other entries in the space. Docker has certainly done that.

The features described in this section rely heavily on Docker Swarm which will be covered in
detail in Chapter 4, Orchestration with Docker Swarm. For now, a single node swarm can be
created by running docker swarm init:

$ docker swarm init

Note

Docker 1.12 or higher is needed to use Docker Swarm.

Let us start by creating a network that our containers will use. Docker Swarm ensures that this
network is available to all hosts connected to the swarm node:

$ docker network create --driver overlay external

The --driver option tells Docker that this network uses the swarm native overlay driver. At the
end is the name of the overlay network. In this case, external. This is the name that will be used
in service definitions to configure the network that will be used.

The --opt encrypted option is optional. If specified, it tells Docker to encrypt the connections
between the containers on different nodes. To do this, Docker Swarm will automatically build
IPSEC tunnels between any nodes that have containers connected to that network. The encryption
key is automatically updated every twelve hours.

Using an encrypted overlay network is especially helpful if you have a network that spans
providers or as a way to simplify inter-container security. For example, MySQL supports using
TLS to connect. However, few containers have TLS enabled for MySQL. Using an encrypted
overlay gives you the encryption that you might want when talking to the database without having
to worry about certificate distribution or if TLS is supported at all.

Working with DNS-SD

One of the problems with containers is that every time they start, they get a new IP address. That
makes it really hard to configure containers that connect to each other. This gets even harder when
the containers are running on different hosts. Fortunately, Docker overlay networks have built-in
service discovery using DNS. DNS entries are created as part of the swarm services which are
described in Chapter 4, Orchestration with Docker Swarm . Consider the following command:

$ docker service create --network external --name nginx --replicas 2 -p 80:80
nginx

8m2wvm3n9w990kh77vf556k7i

This command uses Docker Swarm to create a service named nginx with two replicas. When the
service starts, Docker creates a DNS record for nginx that resolves to the two containers that
were started. Any other container on the network will be able to use the name nginx to connect to
the service. Let us create a busybox container to test with:

$ docker service create --name shell --network external busybox sleep 6000
191qi8lvvpnah3eqq8cvaxt4n

$ docker service ps nginx
ID NAME IMAGE NODE DESIRED STATE CURRENT
STATE ERROR

da3hba7mokh0o0qr39eov9n9p nginx.1 nginx swarm-host2 Running
Running 30 seconds ago

4vzfcgjnujawjy6m7ngmbyiww nginx.2 nginx swarm-master Running Running
30 seconds ago

$ docker service ps shell
ID NAME IMAGE NODE DESIRED STATE CURRENT
 STATE ERROR
ccbx21b5hs0ax06jfaeqzfjrq shell.1 busybox swarm-host1 Running
Running
 24 seconds ago

This shows that the nginx containers are running two hosts named swarm-master and swarm-
host2. The busybox shell service was started on swarm-host1. Using docker exec, it is
possible to connect to the shell container and verify connectivity.

First, get the container name from the host with docker ps:

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
1148d48d5720 nginx:latest "nginx -g 'daemon off" 2 minutes
ago Up 2 minutes 80/tcp, 443/tcp
nginx.1.2t914z7ogcdb5nohrujd1ttln
0bc68f9957b1 busybox:latest "sleep 6000" 2 minutes ago
Up 2 minutes shell.1.3wul50smhsjjhzpctnnsbeurd

$ docker exec -it shell.1.3wul50smhsjjhzpctnnsbeurd sh
/ # wget -O - nginx
Connecting to nginx (10.255.0.6:80)
<!DOCTYPE html>
<html>
 <head>
 <title>Welcome to nginx!</title>
 ...

The wget command is requesting a web page from a host named nginx. The request gets

forwarded to the nginx service and is printed on the screen.

Publishing services with mesh routing mode

Docker overlay networks support another useful feature called mesh routing. This is enabled
automatically when the --publish or -p option is used upon service creation. The router will
forward a request to any host in the cluster to the container or service listening on the requested
port even if the service is not running on the host that received the request. In the preceding
example, a service called nginx was started, and it used the -p flag to send port 80 on the hosts
to port 80 in the containers. A request to port 80 on any of the Docker hosts will result in one of
the two nginx containers answering the request.

Mesh routing load balances the requests across all the containers in the service. You could set up
a round robin DNS entry for a hostname such as www.example.com that has the addresses of your
hosts, or an external load balancer that points to the addresses of Docker hosts in your swarm.
Doing the latter would allow you to keep your Docker nodes on private addresses.

The drawback to mesh routing in Docker Swarm, that published ports must be unique across the
cluster. In other words, you cannot have services web1 and web2 that both try to publish on port
80. One would have to be on a different port.

Using Weave
Weave Net was developed by Weaveworks to provide a resilient and secure overlay network for
Docker. Weave nodes form a mesh which allows traffic in the cluster to keep flowing even if a
node goes down. The mesh can be encrypted to keep the data flowing across it securely. A Weave
mesh can even spread between cloud providers connecting containers running on Amazon EC2,
Microsoft Azure, or even locally in Docker Datacenter. Weave also supports DNS-SD allowing
your containers to talk to each other by name, even on different hosts.

Note

Full documentation on Weave Net is available
at: https://www.weave.works/docs/net/latest/using-weave/.

Installing Weave

Step one is to install the weave tool to your desktop or other management system. The weave tool
is just a shell script. The real guts of weave run in Docker containers. The script should also be
installed directly on the Docker nodes themselves:

$ wget -O weave git.io/weave
$ chmod +x weave; cp weave /usr/local/bin/

The following examples assume a three node cluster with nodes names swarm-master, swarm-
host1, and swarm-host2. The nodes can be created with Docker Machine as described in
Chapter 1, Getting Started with Docker Orchestration . Any number of hosts can be added to the
cluster. The greater the mesh, the more resilient it will be in the event of node failures.

The next step is to initialize Weave. Start by using Docker Machine to switch to the first server.
The consensus flag tells Weave that there will be initially three servers. More can be added
later:

$ eval $(docker-machine env swarm-master)
$ weave launch --ipalloc-init consensus=3

This will download and start three containers on swarm-master. Add the --password flag to
weave launch if you want to encrypt your mesh. The password must be the same on every node
that connects:

$ weave launch --password XXXXX ...

You can verify that they are running with docker ps:

$ docker ps
CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS NAMES

b645e00cde8d weaveworks/plugin:1.6.1 "/home/weave/plugin" 42
seconds ago Up 41 seconds weaveplugin

https://www.weave.works/docs/net/latest/using-weave/

e0bc711a0972 weaveworks/weaveexec:1.6.1 "/home/weave/weavepro" 44
seconds ago Up 43 seconds weaveproxy

89897514f42d weaveworks/weave:1.6.1 "/home/weave/weaver -" 45
seconds ago Up 44 seconds weave

Next, install Weave on the second host and connect it to the first:

$ eval $(docker-machine env swarm-host1)
$ weave launch --ipalloc-init consensus=3
$ weave connect 10.128.0.2

The IP address in the last command is the IP address of the master node. Often you can use
$(docker-machine ip swarm-master) there. If you are running your hosts on a service such as
GCE, you will want to use the internal IP address there as it does not change. Repeat the process
for the third host:

$ eval $(docker-machine env swarm-host2)
$ weave launch --ipalloc-init consensus=3
$ weave connect 10.128.0.2

Once Weave is installed and running on all three nodes, check the status of the network with
weave status:

$ weave status
Version: 1.6.1 (up to date; next check at 2016/09/16 23:30:55)
 Service: router
 Protocol: weave 1..2
 Name: 22:b6:71:6d:9c:d2(swarm-host2)
 Encryption: disabled
 PeerDiscovery: enabled
 Targets: 1
 Connections: 2 (2 established)
 Peers: 3 (with 6 established connections)
 TrustedSubnets: none
 Service: ipam
 Status: idle
 Range: 10.32.0.0/12
 DefaultSubnet: 10.32.0.0/12
 Service: dns
 Domain: weave.local.
 Upstream: 169.254.169.254
 TTL: 1
 Entries: 0
 Service: proxy
 Address: tcp://104.197.144.79:12375
 Service: plugin
 DriverName: weave

Connecting containers to Weave

Now that the network is set up, it is time to start containers that use it. The containers will use the
weave network that was created when Weave was started. This example will start two containers

named shell1 and shell2. The shell1 container will run in the background:

$ docker run --net=weave -h shell1.weave.local $(weave dns-args) -tdi
weaveworks/ubuntu
$ docker run --net=weave -h shell2.weave.local $(weave dns-args) -ti
weaveworks/ubuntu

For DNS-SD to work, the --dns and --dns-search options need to be used with docker run.
Weave provides a helper command, weave dns-args, that will set those appropriately.

After the second command, you will be left at Command Prompt in the shell2 container. From
there, you should be able to ping shell1:

root@shell2:/# ping shell1
PING shell1 (10.40.0.0) 56(84) bytes of data.
64 bytes from 89d43b8ac937.weave (10.40.0.0): icmp_seq=1 ttl=64 time=0.180 ms
64 bytes from 89d43b8ac937.weave (10.40.0.0): icmp_seq=2 ttl=64 time=0.099 ms
64 bytes from 89d43b8ac937.weave (10.40.0.0): icmp_seq=3 ttl=64 time=0.069 ms
64 bytes from 89d43b8ac937.weave (10.40.0.0): icmp_seq=4 ttl=64 time=0.104 ms
^C
--- shell1 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3000ms
rtt min/avg/max/mdev = 0.069/0.113/0.180/0.040 ms

Using Flannel
Flannel is an overlay network developed by CoreOS. It uses etcd as a data store and for network
synchronization. Flannel lacks some of the features that Docker overlay and Weave support. There
is no option for encryption or DNS-SD. It is, however, very simple to use once it is configured.

Configuring etcd and Flannel

CoreOS is configured through cloud-config. A cloud-config file is a YAML file that is
passed to the host through the user data option. The file must start with #cloud-config for
CoreOS to recognize it.

Before you begin, a new token must be generated for etcd. The size parameter is the initial size
of your cluster. You will be able to add and remove nodes later:

$ wget -qO - 'https://discovery.etcd.io/new?size=3'
https://discovery.etcd.io/c37921aac12231bf487a3ed82c464a4f

Note

The discovery URL can take additional options. For full details, see
https://coreos.com/etcd/docs/latest/clustering.html.

The generated token will be used in the coreos > etcd2 > discovery option in the cloud-
config file. You will need to use the same token for every host in the cluster. A new token must
be generated for each cluster:

#cloud-config

coreos:
 etcd2:
 discovery: https://discovery.etcd.io/<token>
 advertise-client-urls:
 http://$private_ipv4:2379,http://$private_ipv4:4001
 initial-advertise-peer-urls: http://$private_ipv4:2380
 listen-client-urls:
 http://0.0.0.0:2379,http://0.0.0.0:4001
 listen-peer-urls: http://$private_ipv4:2380
 flannel:
 public_ip: $private_ipv4
 etcd_endpoints: http://$private_ipv4:2379
 fleet:
 public_ip: $private_ipv4
 units:
 - name: etcd2.service
 command: start
 - name: fleet.service
 command: start
 - name: flanneld.service
 command: start
 drop-ins:
 - name: 50-networking-config.conf

https://coreos.com/etcd/docs/latest/clustering.html

 content: |
 [Service]
 ExecStartPre=/usr/bin/etcdctl set
 /coreos.com/network
 /config '{"Network":"10.42.0.0/16"}'
 - name: docker.service
 command: start
 drop-ins:
 - name: 40-flannel.conf
 content: |
 [Unit]
 Requires=flanneld.service
 After=flanneld.service

This example shows how to use Flannel on CoreOS. It assumes that your CoreOS hosts have two
network interfaces; one on a public network and one on a private network. The $private_ipv4
variable is replaced with the private IP address assigned by the cloud provider. This is supported
by Amazon EC2, GCE, Microsoft Azure, and OpenStack.

Flannel stores its configuration in JSON format in etcd in the /coreos.com/network/config
path. Before Flannel starts, the configuration must be written to etcd. Since CoreOS uses
systemd to manage services, it is possible to create a drop-in file that adds the configuration to
etcd before Flannel is started.

The preceding example has the bare minimum needed for Flannel. All it does is set the network
that will be used to assign IP addresses to each container. You should change this to something
that does not conflict with anything in your environment. Docker will need to be restarted, if it is
already running. A full list of options is available in the Flannel documentation at
https://github.com/coreos/flannel.

Starting a CoreOS cluster with Flannel

The following command starts three CoreOS alpha servers on GCE. The --can-ip-forward flag
is required for Flannel to properly forward traffic for running containers. The cloud-config file
for the hosts is set with the --metadata-from-file option:

$ gcloud compute instances create core1 core2 core3 --image-project coreos-
cloud --image-family coreos-alpha \
--zone us-central1-a --machine-type g1-small --can-ip-forward
--scopes compute-rw --metadata-from-file \
user-data=coreos-user-data.yml

Ensure sshd started:

$ gcloud compute instances get-serial-port-output core1 | grep Starting.*sshd
Starting Generate sshd host keys...

Once the hosts have been started, log into one of them to verify that etcd is healthy. Since Flannel
depends on etcd, if that does not work, neither will Flannel:

$ gcloud compute ssh --zone us-central1-a core@core1

https://github.com/coreos/flannel

X11 forwarding request failed
Last login: Sat Sep 17 21:34:41 2016 from 162.220.127.20
core@core1 ~ $ etcdctl cluster-health
member 9817b5cb6bd4b548 is healthy: got healthy result from
http://10.128.0.4:2379
member aa7418b2c3e34652 is healthy: got healthy result from
http://10.128.0.2:2379
member d9402f140b10154d is healthy: got healthy result from
http://10.128.0.3:2379
cluster is healthy

If etcd shows as healthy, you can check on the status of Flannel with sudo systemctl status
flanneld.

When Flannel starts, it creates an environment file named /run/flannel_docker_opts.env.
This file is loaded by the docker.service unit file to configure Docker's networking to use
Flannel. Because the Docker daemon is configured to use Flannel, there is no need to specify any
special networking options when you use docker run.

Now, verify Docker was correctly configured by Flannel to use the subnet for its Docker bridge:

$ sudo systemctl status docker.service
● docker.service - Docker Application Container Engine
Loaded: loaded (/usr/lib64/systemd/system/docker.service; disabled; vendor
preset: disabled)
Active: active (running) since Sun 2016-10-30 05:27:48 UTC; 22s ago
 Docs: http://docs.docker.com
 Main PID: 1881 (docker)
 Tasks: 6
 Memory: 14.1M
 CPU: 205ms
 CGroup: /system.slice/docker.service
 └─1881 docker daemon --host=fd:// --exec-opt
native.cgroupdriver=systemd --bip=10.42.88.1/24 --mtu=1432 --ip-masq=false --
selinux-enabled

Tip

The first time you run Flannel, Docker might not pick up the environment file. In that case, restart
Docker with sudo systemctl restart docker.service or reboot. Docker should be fine
after that.

Connecting to Flannel

Connecting containers to Flannel is as simple as docker run. Start by starting a busybox
container on core1 and get the IP address. If the address that is assigned is not in the subnet set in
the Flannel configuration, it means that Docker did not read the environment file created by
Flannel:

core@core1 ~ $ docker run -it -d --name test1 busybox
ee06605271b8301d27a03a6b4ae7aa32d4fc3f558888087e2047eaedd0241c7d
core@core1 ~ $ docker exec test1 -4 ip addr | grep inet

inet 127.0.0.1/8 scope host lo
inet 10.42.88.2/24 scope global eth0

Next, start up another busybox container on core2. This time, run the container in the foreground
so that you get Command Prompt:

core@core2 ~ $ docker run -it --rm --name test2 busybox
/ # ip -4 addr | grep inet
inet 127.0.0.1/8 scope host lo
inet 10.42.3.2/24 scope global eth0

As you can see, this container was also assigned an IP in the Flannel subnet. Now ping the
container that was started on core1:

/ # ping 10.42.88.2
PING 10.42.88.2 (10.42.88.2): 56 data bytes
64 bytes from 10.42.88.2: seq=0 ttl=60 time=1.491 ms
64 bytes from 10.42.88.2: seq=1 ttl=60 time=0.528 ms

Success! Take note of something. The IP address was used to ping rather than the container name
for a reason. Flannel does not support DNS-SD. Had you tried to ping the container by its name,
ping would have reported an error:

/ # ping test1
ping: bad address 'test1'

The lack of service discovery is not the weakness it might seem at first. Orchestration tools, such
as Kubernetes, that can use Flannel as the overlay network often provide their own service
discovery:

$ gcloud compute instances delete core1 core2 core3

The following instances will be deleted. Attached disks configured to be auto-deleted will be
deleted unless they are attached to any other instances. Deleting a disk is irreversible and any
data on the disk will be lost:

 - [core1] in [asia-east1-a]
 - [core2] in [asia-east1-a]
 - [core3] in [asia-east1-a]
Do you want to continue (Y/n)? y

Using shared network storage for Docker
volumes
One of the biggest challenges with running a Docker cluster is figuring out what to do with the
data. Docker supports using volumes to store data. By default, the volumes store data on the
Docker host. What happens if that container is started on another host? None of the data is
available. For most applications, this is a problem.

Docker solved this problem by creating a pluggable storage system. Volumes can be created that
connect to a wide variety of storage systems. Those systems can be anything from traditional
network storage such as a Network File System (NFS) and Internet Small Computer System
Interface (iSCSI) to cloud services such as Amazon S3 or clustered storage systems such as
Gluster or Ceph.

Each storage option has its pros and cons. Some may be better suited to some workloads than
others. Fortunately, you can choose the best solution on a per-container basis. A public web
server may run in Amazon EC2 and need storage there while a local file server connects to a
local Ceph cluster.

A volume is created using the docker volume create command. The following example creates
a volume named vol1 using a fictional driver named foo:

$ docker volume create --driver foo --name vol1 --opt bar=1 --opt baz=2

The driver a volume uses is defined by the --driver flag. Each driver has its own set of options
that are set adding one or more --opt flags. Be sure to read the documentation for each storage
driver you choose to use.

Introducing Ceph
Ceph is a distributed, clustered storage solution developed by Red Hat. It provides an object
store, block storage, and a shared filesystem. Ceph can also provide compatibility with Amazon
S3 and OpenStack Swift with the RADOS Gateway. Multiple storage pools and storage tiering
are also possible. It can also self-heal when there are problems in the cluster making it an
excellent choice for providing storage for network services.

There are two components of note when setting up a Ceph cluster. The first component is the Ceph
Monitor. Monitors keep track of the cluster health and the Controlled Replication Under
Scalable Hashing (CRUSH) map, which tells the cluster how to find data in the cluster. Second
are the Ceph OSDs. These are the daemons that actually control the storage. A best practice is to
run one OSD for each disk that will be used in the cluster. For more details about Ceph, refer to
Learning Ceph, Karan Singh, published by Packt Publishing or http://www.ceph.com/.

http://www.ceph.com/

Using Ceph with Docker
Docker can use Ceph for volumes through one of a number of storage drivers. Some orchestration
systems, such as Kubernetes, have Ceph support built-in. As always, do your own research to see
which plugin is right for your environment. This demonstration will use the volplugin driver
from contiv which is available at: https://github.com/contiv/volplugin.

The volplugin driver uses a number of daemons. You can install them manually but the easiest
way is to run them in a Docker container:

$ sudo docker run -it -v /var/run/docker.sock:/var/run/docker.sock
contiv/volplugin-autorun

Notice that the Docker socket is being passed in to the container as a volume. That is what allows
the startup scripts to register and run the required containers.

The initial installation will create a policy named policy1 that will create new images in the rbd
storage pool. You can create additional policies if you are using another storage pool, set a
different default size, or use a different filesystem on the image. These are managed through the
volcli tool which is available through the volplugin image:

$ sudo docker exec volplugin volcli policy get policy1
{"name":"policy1","create":{"size":"10MB","filesystem":""},"runtime":
{"snapshots
":true,"snapshot":{"frequency":"30m","keep":20},"rate-limit":{"write-
iops":0,"re
ad-iops":0,"write-bps":0,"read-bps":0}},"driver":
{"pool":"rbd"},"filesystems":{"
ext4":"mkfs.ext4 -m0 %"},"backends":
{"crud":"ceph","mount":"ceph","snapshot":"ce
ph"}}

This example shows how to use the volcli to get the configuration for policy1. Notice the use
of docker exec, which allows the volplugin tool to connect to the running daemon.

Creating a Docker volume

Once volplugin is running, you can use it to create a Docker volume. The name of the volume
starts with the policy that is being used followed by a slash, then the image name:

$ sudo docker volume create -d volplugin --name policy1/test

In Ceph, a new rbd is created in the storage pool. Notice the name difference. Ceph does not
allow slashes in the image name so the slash is changed to a dot:

$ sudo rbd info policy1.test
rbd image 'policy1.test':
 size 10240 kB in 3 objects
 order 22 (4096 kB objects)
 block_name_prefix: rbd_data.372d8625e32

https://github.com/contiv/volplugin

 format: 2
 features: layering
 flags:

Now the volume can be used with a running container. It works just the same as mounting a local
directory except that instead of a local path, the name of the volume is used:

$ sudo docker run --rm -v policy1/test:/mnt busybox

This command starts a new busybox container with the Ceph rbd image mounted at /mnt. Notice
that since it is a new filesystem, the only thing in /mnt is the lost+found directory. To
demonstrate the power of volumes with a simple example, let's create a new file in /mnt:

/ # touch /mnt/example
/ # ls /mnt
example lost+found

Because this container was started with --rm, the container will be deleted when it exits. The
data stored on the volume, however, will remain for use by the next container. If you start a new
container that uses the same volume, the data will still be there:

$ sudo docker run --rm -v policy1/test:/mnt -it busybox
/ # ls /mnt
example lost+found

The power of using a system such as Ceph for your volumes is that you can start your container on
any host in the cluster and your data will be there waiting for you. Meaning, it does not matter
where in the cluster your container starts or that a particular host is running.

A word of warning. Ceph rbd images are block devices just like any other that is available to a
host. The same is true if you were to use iSCSI, OpenStack Cinder, or storage from your cloud
provider. Meaning, the standard warnings about multiple hosts trying to mount the same filesystem
apply. Multiple hosts mounting the same Ext4 or similar filesystem for writing will inevitably
lead to data loss. That is a bad thing.

If you need multiple hosts to have access to the same filesystem, consider using NFS or SMB as
an intermediary layer. You could also use containers that run a cluster aware filesystem such as
OCFS2, but that adds even more complexity to an increasingly complex environment.

Other shared storage plugins
As mentioned previously, there are a lot of storage plugins. Nearly every major storage system
has a plugin. Following are a few of the more interesting ones:

Azure file storage: An open source plugin developed by Microsoft to support Azure. Refer
to https://github.com/Azure/azurefile-dockervolumedriver.
GlusterFS: Supports the clustered storage system GlusterFS from Red Hat. Refer to
https://github.com/calavera/docker-volume-glusterfs.
REX-Ray: Developed by Dell EMC to support ScaleIO and Isilon for Docker and Mesos.
Refer to https://github.com/emccode/rexray.
Kubernetes: The Kubernetes orchestration tool has native support for iSCSI, NFS, Ceph,
and many others.

https://github.com/Azure/azurefile-dockervolumedriver
https://github.com/calavera/docker-volume-glusterfs
https://github.com/emccode/rexray

Summary
In this chapter, you saw the building blocks that are needed for a Docker cluster. No matter what
orchestration tool is used, there will be the need for a registry to store your images, an overlay
network for inter-container communication, and network storage so that your containers can get at
their data wherever in the cluster they start. There are many options to fill each role. While the
choice of solution is important, it's easy to switch between systems if needed. Some will be better
in certain environments and workloads. The next chapter will dive into orchestrating a Docker
cluster using Docker Swarm.

Chapter 4. Orchestration with Docker Swarm
Docker Swarm is the native orchestration tool for Docker. It was rolled into the core Docker suite
with version 1.12. At its simplest, using Docker Swarm is just like using Docker. All of the tools
that have been covered still work. Docker Swarm adds a couple of features that make deploying
and updating services very nice. You got a glimpse of them in Chapter 3, Cluster Building Blocks
– Registry, Overlay Networks, and Shared Storage, which covered Docker overlay networks.
Now it is time to dive into the details.

The following topics are covered in this chapter:

Creating a swarm
Adding and removing nodes
Changing node availability
Swarm disaster recovery
Grouping nodes with labels
Creating and stopping services
Creating replicas
Using global services
Using constraints
Zero downtime upgrades with rolling updates
Using Docker Compose with swarm
Using Docker Datacenter

Setting up a swarm
The first step for running a swarm is to have a number of hosts ready with Docker installed. It
does not matter if you use the install script from get.docker.com or if you use Docker Machine.
You also need to be sure that a few ports are open between the servers, as given here:

2377 TCP port for cluster management
7946 TCP and UDP port for node communication
4789 TCP and UDP port for overlay network

Take a moment to get or assign a static IP address to the hosts that will be the swarm managers.
Each manager must have a static IP address so that workers know how to connect to them. Worker
addresses can be dynamic but the IP of the manager must be static.

As you plan your swarm, take a moment to decide how many managers you are going to need. The
minimum number to run and still maintain fault tolerance is three. For larger clusters, you may
need as many as five or seven. Very rarely will you need more than that. In any case, the number
of managers should be odd. Docker Swarm can maintain a quorum as long as 50% + 1 managers
are running. Having two or four managers provides no additional fault tolerance than one or three.

If possible, you should spread your managers out so that a single failure will not take down your
swarm. For example, make sure that they are not all running on the same VM host or connected to
the same switch. The whole point is to have multiple managers to keep the swarm running in the
event of a manager failure. Do not undermine your efforts by allowing a single point of failure
somewhere else taking down your swarm.

https://get.docker.com/

Initializing a swarm
If you are installing from your desktop, it may be better to use Docker Machine to connect to the
host as this will set up the necessary TLS keys. Run the docker swarm init command to
initialize the swarm. The --advertize-addr flag is optional. By default, it will guess an address
on the host. This may not be correct. To be sure, set it to the static IP address you have for the
manager host:

$ docker swarm init --advertise-addr 172.31.26.152
Swarm initialized: current node (6d6e6kxlyjuo9vb9w1uug95zh) is now a manager.
To add a worker to this swarm, run the following command:
docker swarm join \
--token SWMTKN-1-0061dt2qjsdr4gabxryrksqs0b8fnhwg6bjhs8cxzen7tmarbi-89mmok3p
f6dsa5n33fb60tx0m \
 172.31.26.152:2377
To add a manager to this swarm, run 'docker swarm join-token manager' and
follow the instructions.

Included in the output of the init command is the command to run on each worker host. It is also
possible to run it from your desktop if you have set your environment to use the worker host. You
can save the command somewhere, but you can always get it again by running docker swarm
join-token manager.

As part of the join process, Docker Swarm will create TLS keys, which will be used to encrypt
communication between the managers and the hosts. It will not, however, encrypt network traffic
between containers. The certificates are updated every three months. The time period can be
updated by running docker swarm update --cert-expiry duration. The duration is
specified as number of hours and minutes. For example, setting the duration to 1000h will tell
Docker Swarm to reset the certificate every 1,000 hours.

Managing a swarm
One of the easiest pieces to overlook when it comes to orchestrating Docker is how to manage the
cluster itself. In this section, you will see how to manage your swarm including adding and
removing nodes, changing their availability, and backup and recovery. In Chapter 10, Why Stop at
Containers? Automating Your Infrastructure, we will learn about automating node deployment in
depth.

Adding a node
New worker nodes can be added at any time. Install Docker, then run docker swarm join-
token worker to get the docker swarm join command to join the host to the swarm. Once
added, the worker will be available to run tasks. Take note that the command to join the cluster is
consistent. This makes it easy to add to a host configuration script and join the swarm on boot.

You can get a list of all of the nodes in the swarm by running docker node ls from a manager
node:

$ docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
1i3wtacdjz5p509bu3l3qfbei worker1 Ready Active Reachable
3f2t4wwwthgcahs9089b8przv worker2 Ready Active Reachable
6d6e6kxlyjuo9vb9w1uug95zh * manager Ready Active Leader

The list will not only show the machines but it will also show if they are active in the swarm and
if they are a manager. The node marked as Leader is the master of the swarm. It coordinates the
managers.

Promoting and demoting nodes
In Docker Swarm, just like in real life, managers are also workers. This means that managers can
run tasks. It also means that workers can be promoted to become managers. This can be useful to
quickly replace a failed manager or to seamlessly increase the number of managers. The
following command promotes the node named worker1 to be a manager. The command must be
run on a node that is already a manager:

$ docker node promote worker1
Node worker1 promoted to a manager in the swarm.

Managers can also be demoted to become plain workers. This should be done before a manager
node is going to be decommissioned. The following command demotes worker1 back to a plain
worker:

$ docker node demote worker1
Manager worker1 demoted in the swarm.

Whatever your reasons for promoting or demoting node might be, make sure that when you are
done, there are an odd number of managers.

Changing node availability
Docker Swarm nodes have a concept of availability. The availability of a node determines
whether or not tasks can be scheduled on that node. Use the docker node update --
availability <state> <node-id> command to set the availability state. There are three
availability states that can be set—pause, drain, and active.

Pausing a node

Setting a node's availability to pause will prevent the scheduler from assigning new tasks to the
node. Existing tasks will continue to run. This can be useful for troubleshooting load issues on a
node or for preventing new tasks from being assigned to an already overloaded node. The
following command pauses worker2:

$ docker node update --availability pause worker2
worker2

$ docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
1i3wtacdjz5p509bu3l3qfbei worker1 Ready Active Reachable
3f2t4wwwthgcahs9089b8przv worker2 Ready Pause Reachable
6d6e6kxlyjuo9vb9w1uug95zh * manager Ready Active Leader

Do not rely on using pause to deal with overload issues. It is better to place reasonable resource
limits on your services and let the scheduler figure things out for you. You can use pause to help
determine what the resource limits should be. For example, you can start a task on a node, then
pause the node to prevent new tasks from running while you monitor resource usage.

Draining a node

Like pause, setting a node's availability to drain will stop the scheduler from assigning new
tasks to the node. In addition, drain will stop any running tasks and reschedule them to run
elsewhere in the swarm. The drain mode has two common purposes.

First, it is useful for preparing a node for an upgrade. Containers will be stopped and rescheduled
in an orderly fashion. Updates can then be applied and the node rebooted, if necessary, without
further disruption. The node can be set to active again once the updates are complete.

Remember that, when draining a node, running containers have to be stopped and restarted
elsewhere. This can cause disruption if your applications are not built to handle failure. The great
thing about containers is that they start quickly, but some services, such as MySQL, take a few
seconds to initialize.

The second use of drain is to prevent services from being scheduled on manager nodes. Manager
processing is very reliant on messages being passed in a timely manner. An unconstrained task
running on a manager node can cause a denial of service outage for the node causing problems for
your cluster. It is not uncommon to leave manager nodes in a drain state permanently. The

following command will drain the node named manager:

$ docker node update --availability drain manager
manager

$ docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
1i3wtacdjz5p509bu3l3qfbei worker1 Ready Active Reachable
3f2t4wwwthgcahs9089b8przv worker2 Ready Active Reachable
6d6e6kxlyjuo9vb9w1uug95zh * manager Ready Drain Leader

Activating a node

When a node is ready to accept tasks again, set the state to active. Do not be concerned if the
node does not immediately fill up with containers. Tasks are only assigned when a new
scheduling event happens, such as starting a service. The following command will reactivate the
worker2 node:

$ docker node update --availability active worker2
worker2

$ docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
1i3wtacdjz5p509bu3l3qfbei worker1 Ready Active Reachable
3f2t4wwwthgcahs9089b8przv worker2 Ready Active Reachable
6d6e6kxlyjuo9vb9w1uug95zh * manager Ready Active Leader

Removing nodes
Nodes may need to be removed for a variety of reasons including upgrades, failures, or simply
eliminating capacity that is no longer needed. For example, it may be easier to upgrade nodes by
building new ones rather than performing updates on the old nodes. The new node will be added
and the old one removed.

Step one for a healthy node is to set the --availability state to drain. This will ensure that all
scheduled tasks have been stopped and moved to other nodes in the swarm.

Step two is to run docker swarm leave from the node that will be leaving the swarm. This will
assign the node a Down status. In the following example, worker2 has left the swarm:

$ docker node ls
ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
1i3wtacdjz5p509bu3l3qfbei worker1 Ready Active Reachable
3f2t4wwwthgcahs9089b8przv worker2 Down Active
6d6e6kxlyjuo9vb9w1uug95zh * manager Ready Active Leader

If the node that is being removed is a manager, it must first be demoted to a worker as described
earlier before running docker swarm leave. When removing managers, take care that you do not
lose quorum or your cluster will stop working.

Once the node has been marked Down, it can be removed from the swarm. From a manager node,
use docker node rm to remove the node from the swarm:

$ docker node rm worker2

In some cases, the node that you want to remove is unreachable so it is not possible to run docker
swarm leave. When that happens, use the --force option:

$ docker node rm --force worker2

Nodes that have been removed can be re-added with docker swarm join.

Recovering from a disaster
Failures are a regular occurrence in large clusters. Hard drives fail, servers fail, even full data
centers will go dark. Shifting services to cloud platforms such as AWS and Azure have helped,
but even they have had entire regions go down. Using containers may make your applications
more resistant to failure, but the hosts running those containers are still affected by any number of
things. Properly engineered, your cluster should be able to cope with disaster. Here are a few
things to keep in mind to keep your cluster safe.

Restarting the full cluster
There may be times when the entire swarm has to be shutdown. Hopefully, there will be time to
properly shut down running services and the hosts. When the time comes to shutdown the hosts,
start with the workers then shutdown the managers. When the cluster is started up again, start the
managers first then the workers. Make sure that the managers have the same IP addresses or your
nodes will come up and not be able to reconnect with the swarm.

Backup and recovery
Just because Docker Swarm is resilient to failure, does not mean that you should ignore backups.
Good backups may be the difference between restoring services and a resume altering event.
There are two major components to back up – the swarm state data and your application data.

Backing up the swarm

Each manager keeps the cluster information in /var/lib/docker/swarm/raft. If, for some
reason, you need to completely rebuild your cluster, you will need this data. Make sure you have
at least one good backup of the raft data directory. It does not matter which of the managers the
backups are pulled from. It might be wise to pull backups from a couple of managers, just in case
one is corrupted.

Recovering a swarm

In most cases, losing a failed manager is an easy fix. Restart the failed manager and everything
should be good. It may be necessary to build a new manager or promote an existing worker to a
manager. In most circumstances, this will bring your cluster back into a healthy state.

If you lose enough managers to lose a quorum, recovery gets more complex. The first step is to
start enough managers to restore quorum. The data should be synced to the new managers, and
once quorum is recovered, so is the cluster. If that does not work, you will have to rebuild the
swarm. This is where your backups come in.

If the manager node you choose to rebuild on has an otherwise healthy raft database, you can
start there. If not, or if you are rebuilding on a brand new node, stop Docker and copy the raft
data back to /var/lib/docker/swarm/raft. After the raft data is in place, ensure that Docker
is running and run the following command:

$ docker swarm init --force-new-cluster --advertise-addr manager

The address set in with --advertise-addr has the same meaning as what was used to create the
swarm initially. The magic here is the --force-new-cluster option. This option will ignore the
swarm membership data that is the raft database, but will remember things such as the worker
node list, running services, and tasks.

Backing up services

Service information is backed up as part of the raft database, but you should have a plan to
rebuild them in case the database becomes corrupted. Backing up the output of docker swarm ls
is a start. Application information, including networks, and volumes may be sourced for Docker
Compose files, which should be backed up. The container configuration, which includes the
Dockerfile and everything needed to build the container, and your application should be in
version control and backed up.

Most importantly, do not forget your data. If you have your Dockerfile and the application code,
the applications can be rebuilt even if the registry is lost. In some cases, it is a valid choice to not
back up the registry since the images can, potentially, be rebuilt. The data, however, usually
cannot be. Have a strategy in place for backing up the data that works for your environment. I
suggest creating a container for each application that is deployed and can properly back up data
for the application. Docker Swarm does not have a native scheduled task option, but you can
configure cron on a worker node that runs the various backup containers on a schedule.

The pause availability option can be helpful here. Configure a worker node that will be your
designated host to pull backups. Set the availability to pause so that other containers are not
started on the node and resources are available to perform the backups.

Using pause means that containers can be started in the background and will continue to run after
the node is paused, allowing them to finish normally. Then cron can run a script that looks
something like the following one. The contents of run-backup-containers is left as an exercise
for the reader:

#!/bin/bash
docker node update --availability active backupworker
run-backup-containers
docker node update --availability pause

You can also label to designate multiple nodes for backups and schedule services to ignore those
nodes, or in the case of backup containers, run on them. Labels are covered in more depth in the
next section.

Note

Many network storage solutions provide options such as snapshots that may augment your backup
strategy.

Grouping nodes with labels
It is often useful to group your nodes. For example, you may have a set of nodes that have external
IP addresses and another set that only has private IP addresses. Frontend services, such as web
servers, should be on the public nodes while backend services such as databases should be on the
nodes with private addresses. In another case, you might have a set of nodes with SSDs while
another has slower disks. Docker Swarm accomplishes this grouping with labels.

Labels are added to a node with docker node update. A label can be added by itself or as
key/value pair. One or more labels can be set at one time:

$ docker node update --label-add frontend worker1
$ docker node update --label-add backend --label-add env=prod worker2

The docker node inspect command will show you everything about a node including the
labels. By default, it outputs in JSON format. To make it easier to read, use the --pretty flag:

$ docker node inspect --pretty worker2
ID: 0c9wmu7elqs8zkxe6k103k1t3
Labels:
- backend =
- env = prod
Hostname: worker2
Joined at: 2016-09-23 04:19:32.236213766
+0000 utc
Status:
State: Ready
Availability: Active
Manager Status:
Address: 172.31.26.153:2377
Raft Status: Reachable
Leader: No
Platform:
Operating System:linux
Architecture: x86_64
Resources:
CPUs: 1
Memory: 990.7 MiB
Plugins:
Network: bridge, host, null, overlay
Volume: local
Engine Version: 1.12.1
Engine Labels:
- provider = generic

It is possible to output just the labels by passing a Go template to the --format flag. The template
uses the key names from the JSON output:

$ docker node inspect --format '{{ .Spec.Labels }}' worker2
map[backend: env:prod]

Labels are removed with the --label-rm flag to docker node update. Like --label-add,

multiple labels can be removed at one time by specifying --label-rm multiple times:

$ docker node update --label-rm backend worker1

Node labels can be used as constraints for services to restrict them to certain nodes. Constraints
will be covered in more detail later in this chapter.

Managing services
Now that the swarm is up and running, it is time to look at services. A service is a collection of
one or more tasks that do something. Each task is a container running somewhere in the swarm.
Since services are potentially composed of multiple tasks, there are different tools to manage
them. In most cases, these commands will be a subcommand of docker service.

Running containers as services in a swarm offers a number of benefits. They are as follows:

Services can be scaled out quickly and easily.
Swarm can perform zero-downtime upgrades where updated versions of an image are added
while old versions are removed.
Easily create overlay networks to connect containers running on multiple hosts. (Overlay
networks were covered in detail in Chapter 3, Cluster Building Blocks – Registry, Overlay
Networks, and Shared Storage.)

Running services
Running tasks with Docker Swarm is a little bit different than running them under plain Docker.
Instead of using docker run, the command is docker service create:

$ docker service create --name web nginx

When a service starts, a swarm manager schedules the tasks to run on active workers in the
swarm. By default, swarm will spread running containers across all of the active hosts in the
swarm.

Offering services to the Internet requires publishing ports with the -p flag. Multiple ports can be
opened by specifying -p multiple times. When using the swarm overlay network, you also get
ingress mesh routing, which was described in Chapter 3, Cluster Building Blocks – Registry,
Overlay Networks, and Shared Storage. The mesh will route connections from any host in the
cluster to the service no matter where it is running. Port publishing will also load balance across
multiple containers:

$ docker service create --name web -p 80 -p 443 nginx

Creating replicas

A service can be started with multiple containers using the --replicas option. The value is the
number of desired replicas. It may take a moment to start all the desired replicas:

$ docker service create --replicas 2 --name web -p 80 -p 443 nginx

This example starts two copies of the nginx container under the service name web. The great
news is that you can change the number of replicas at any time:

$ docker service update --replicas 3 web

Even better, a service can be scaled up or down. This example scales the service up to three
containers. It is possible to scale the number down later once the replicas are no longer needed.

Use docker service ls to see a summary of running services and the number of replicas for
each:

$ docker service ls
ID NAME REPLICAS IMAGE COMMAND
4i3jsbsohkxj web 3/3 nginx

If you need to see the details of a service, including where tasks are running, use the docker
service ps command. It takes the name of the service as an argument. This example shows three
nginx tasks that are part of the service web:

$ docker service ps web
ID NAME IMAGE NODE DESIRED STATE CURRENT
STATE

ERROR
d993z8o6ex6wz00xtbrv647uq web.1 nginx worker2 Running Running 31
minutes ago
eueui4hw33eonsin9hfqgcvd7 web.2 nginx worker1 Running Preparing 4
seconds ago
djg5542upa1vq4z0ycz8blgfo web.3 nginx worker2 Running Running 2
seconds ago

Take note of the name of the tasks. If you were to connect to worker1 and try to use docker exec
to access the web.2 container, you will get an error:

$ docker exec -it web.2 bash
Error response from daemon: No such container: web.2

Tasks started with the docker service command are named with the name of the service, a
number, and the ID of the task separated by dots. Using docker ps on worker1, you can see the
actual name of the web.2 container:

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
b71ad831eb09 nginx:latest "nginx -g 'daemon off" 2 days ago
Up 2 days 80/tcp, 443/tcp web.2.eueui4hw33eonsin9hfqgcvd7

Running global services

There may be times when you want to run a task on every active node in the swarm. This is useful
for monitoring tools:

$ docker service create --mode global --name monitor nginx
$ docker service ps monitor
ID NAME IMAGE NODE DESIRED STATE
CURRENT S
TATE ERROR
daxkqywp0y8bhip0f4ocpl5v1 monitor nginx worker2 Running
Running 6
seconds ago
a45opnrj3dcvz4skgwd8vamx8 _ monitor nginx worker1 Running
Running 4
seconds ago

It is important to reiterate that global services only run on active nodes. The task will not start on
nodes that have the availability set to pause or drain. If a paused or drained node is set to
active, the global service will be started on that node immediately:

$ docker node update --availability active manager
manager

$ docker service ps monitor
ID NAME IMAGE NODE DESIRED STATE
CURRENT S
TATE ERROR
0mpe2zb0mn3z6fa2ioybjhqr3 monitor nginx manager Running
Preparing

3 seconds ago
daxkqywp0y8bhip0f4ocpl5v1 _ monitor nginx worker2 Running
Running
3
minutes ago
a45opnrj3dcvz4skgwd8vamx8 _ monitor nginx worker1 Running
Running
3
minutes ago

Setting constraints

It is often useful to limit which nodes a service can run on. For example, a service that might be
dependent on a fast disk might be limited to nodes that have SSDs. Constraints are added to the
docker service create command with the --constraint flag. Multiple constraints can be
added. The result will be the intersection of all of the constraints.

For this example, assume that there is a swarm with three nodes – manager, worker1, and
worker2. The worker1 and worker2 nodes have the env=prod label while manager has the
env=dev label. If a service is started with the constraint that env is dev, it will only run service
tasks on the manager node:

$ docker service create --constraint "node.labels.env == dev" --name web-dev
--replicas 2 nginx
913jm3v2ytrpxejpvtdkzrfjz

$ docker service ps web-dev
ID NAME IMAGE NODE DESIRED STATE CURRENT
STATE ERROR
5e93fl10k9x6kq013ffotd1wf web-dev.1 nginx manager Running Running
6 seconds ago
5skcigjackl6b8snpgtcjbu12 web-dev.2 nginx manager Running Running
5 seconds ago

Even though there are two other nodes in the swarm, the service is only running on the manager
because it is the only node with the env=dev label. If another service was started with the
constraint that env is prod, the tasks will start on the worker nodes:

$ docker service create --constraint "node.labels.env == prod" --name web-
prod --replicas 2 nginx
88kfmfbwksklkhg92f4fkcpwx

$ docker service ps web-prod
ID NAME IMAGE NODE DESIRED STATE CURRENT
STATE ERROR
5f4s2536g0bmm99j7wc02s963 web-prod.1 nginx worker2 Running Running
3 seconds ago
5ogcsmv2bquwpbu1ndn4i9q65 web-prod.2 nginx worker1 Running Running
3 seconds ago

The constraints will be honored if the services are scaled. No matter how many replicas are
requested, the containers will only be run on nodes that match the constraints:

$ docker service update --replicas 3 web-prod
web-prod
$ docker service ps web-prod
ID NAME IMAGE NODE DESIRED STATE CURRENT
STATE ERROR
5f4s2536g0bmm99j7wc02s963 web-prod.1 nginx worker2 Running Running
about a minute ago
5ogcsmv2bquwpbu1ndn4i9q65 web-prod.2 nginx worker1 Running Running
about a minute ago
en15vh1d7819hag4xp1qkerae web-prod.3 nginx worker1 Running Running
2 seconds ago

As you can see from the example, the containers are all running on worker1 and worker2. This
leads to an important point. If the constraints cannot be satisfied, the service will be started but no
containers will actually be running:

$ docker service create --constraint "node.labels.env == testing" --name web-
test --replicas 2 nginx
6tfeocf8g4rwk8p5erno8nyia

$ docker service ls
ID NAME REPLICAS IMAGE COMMAND
6tfeocf8g4rw web-test 0/2 nginx
88kfmfbwkskl web-prod 3/3 nginx
913jm3v2ytrp web-dev 2/2 nginx

Notice that the number of replicas requested is two but the number of containers running is zero.
Swarm cannot find a suitable node so it does not start the containers. If a node with the
env=testing label were to be added or if that label were to be added to an existing node, swarm
would immediately schedule the tasks:

$ docker node update --label-add env=testing worker1
worker1

$ docker service ps web-test
ID NAME IMAGE NODE DESIRED STATE CURRENT
STATE ERROR
7hsjs0q0pqlb6x68qos19o1b0 web-test.1 nginx worker1 Running Running
18 seconds ago
dqajwyqrah6zv83dsfqene3qa web-test.2 nginx worker1 Running Running
18 seconds ago

In this example, the env label was changed to testing from prod on worker1. Since a node is
now available that meets the constraints for the web-test service, swarm started the containers
on worker1. However, the constraints are only checked when tasks are scheduled. Even though
worker1 no longer has the env label set to prod, the existing containers for the web-prod service
are still running:

$ docker node ps worker1
ID NAME IMAGE NODE DESIRED STATE CURRENT
STATE ERROR
7hsjs0q0pqlb6x68qos19o1b0 web-test.1 nginx worker1 Running Running
5 minutes ago

dqajwyqrah6zv83dsfqene3qa web-test.2 nginx worker1 Running Running
5 minutes ago
5ogcsmv2bquwpbu1ndn4i9q65 web-prod.2 nginx worker1 Running Running
21 minutes ago
en15vh1d7819hag4xp1qkerae web-prod.3 nginx worker1 Running Running
20 minutes ago

Stopping services

All good things come to an end and this includes services running in a swarm. When a service is
no longer needed, it can be removed with docker service rm. When a service is removed, all
tasks associated with that service are stopped and the containers removed from the nodes they
were running on. The following example removes a service named web:

$ docker service rm web

Docker makes the assumption that the only time services are stopped is when they are no longer
needed. Because of this, there is no Docker service analog to the docker stop command. This
might not be an issue since services are so easily recreated. That said, I have run into situations
where I have needed to stop a service for a short time for testing and did not have the command at
my fingertips to recreate it.

The solution is very easy but not necessarily obvious. Rather than stopping the service and
recreating it, set the number of replicas to zero. This will stop all running tasks and they will be
ready to start up again when needed:

$ docker service update --replicas 0 web
web

$ docker service ls
ID NAME REPLICAS IMAGE COMMAND
5gdgmb7afupd web 0/0 nginx

The containers for the tasks are stopped, but remain on the nodes. The docker service ps
command will show that the tasks for the service are all in the Shutdown state. If needed, one can
inspect the containers on the nodes:

$ docker service ps web
ID NAME IMAGE NODE DESIRED STATE CURRENT STATE ERROR
68v6trav6cf2qj8gp8wgcbmhu web.1 nginx worker1 Shutdown Shutdown 3
seconds ago
060wax426mtqdx79g0ulwu25r web.2 nginx manager Shutdown Shutdown 2
seconds ago
79uidx4t5rz4o7an9wtya1456 web.3 nginx worker2 Shutdown Shutdown 3
seconds ago

When it is time to bring the service back, use docker swarm update to set the number of
replicas back to what is needed. Swarm will start the containers across in the swarm just as if
you had used docker swarm create.

Upgrading a service with rolling updates

It is likely that services running in a swarm will need to be upgraded. Traditionally, upgrades
involved stopping a service, performing the upgrade, then restarting the service. If everything
goes well, the service starts and works as expected and the downtime is minimized. If not, there
can be an extended outage as the administrator and developers debug what went wrong and
restore the service.

Docker makes it easy to test new images before they are deployed and one can be confident that
the service will work in production just as it did during testing. The question is, how does one
deploy the upgraded service without a noticeable downtime for the users? For busy services,
even a few seconds of downtime can be problematic. Docker Swarm provides a way to update
services in the background with zero downtime.

There are three options which are passed to docker service create that control how rolling
updates are applied. These options can also be changed after a service has been created with
docker service update. The options are as follows:

--update-delay: This option sets the delay between each container upgrade. The delay is
defined by a number of hours, minutes, and seconds indicated by a number followed by h, m,
or s, respectively. For example, a 30 second delay will be written as 30s. A delay of 1 hour,
30 minutes, and 12 seconds will be written as 1h30m12s.
--update-failure-action: This tells swarm how to handle an upgrade failure. By
default, Docker Swarm will pause the upgrade if a container fails to upgrade. You can
configure swarm to continue even if a task fails to upgrade. The allowed values are pause
and continue.
--update-parallelism: This tells swarm how many tasks to upgrade at one time. By
default, Docker Swarm will only upgrade one task at a time. If this is set to 0 (zero), all
running containers will be upgraded at once.

For this example, a service named web is started with six replicas using the nginx:1.10 image.
The service is configured to update two tasks at a time and wait 30 seconds between updates. The
list of tasks from docker service ps shows that all six tasks are running and that they are all
running the nginx:1.10 image:

$ docker service create --name web --update-delay 30s --update-parallelism 2
--replicas 6 nginx:1.10

$ docker service ps web
ID NAME IMAGE NODE DESIRED STATE CURRENT
STATE ERROR
83p4vi4ryw9x6kbevmplgrjp4 web.1 nginx:1.10 worker2 Running Running
20 seconds ago
2yb1tchas244tmnrpfyzik5jw web.2 nginx:1.10 worker1 Running Running
20 seconds ago
f4g3nayyx5y6k65x8n31x8klk web.3 nginx:1.10 worker2 Running Running
20 seconds ago
6axpogx5rqlg96bqt9qn822rx web.4 nginx:1.10 worker1 Running Running
20 seconds ago
2d7n5nhja0efka7qy2boke8l3 web.5 nginx:1.10 manager Running Running
16 seconds ago

5sprz723zv3z779o3zcyj28p1 web.6 nginx:1.10 manager Running Running
16 seconds ago

Updates have started using the docker service update command and specifying a new image.
In this case, the service will be upgraded from nginx:1.10 to nginx:1.11. Rolling updates
work by stopping a number of tasks defined by --update-parallelism and starting new tasks
based on the new image. Swarm will then wait until the delay set by --update-delay elapses
before upgrading the next tasks:

$ docker service update --image nginx:1.11 web

When the updates begin, two tasks will be updated at a time. If the image is not found on the node,
it will be pulled from the registry, slowing down the update. You can speed up the process by
writing a script to pull the new image on each node before you run the update.

The update process can be monitored by running docker service inspect or docker
service ps:

$ docker service inspect --pretty web
ID: 4a60v04ux70qdf0fzyf3s93er
Name: web
Mode: Replicated
Replicas: 6
Update status:
State: updating
Started: about a minute ago
Message: update in progress
Placement:
UpdateConfig:
Parallelism: 2
Delay: 30s
On failure: pause
ContainerSpec:
Image: nginx:1.11
Resources:

$ docker service ps web
ID NAME IMAGE NODE DESIRED STATE
CURRENT STATE ERROR
83p4vi4ryw9x6kbevmplgrjp4 web.1 nginx:1.10 worker2 Running
Running 35 seconds ago
29qqk95xdrb0whcdy7abvji2p web.2 nginx:1.11 manager Running
Preparing 2 seconds ago
2yb1tchas244tmnrpfyzik5jw _ web.2 nginx:1.10 worker1 Shutdown
Shutdown 2 seconds ago
f4g3nayyx5y6k65x8n31x8klk web.3 nginx:1.10 worker2 Running
Running 35 seconds ago
6axpogx5rqlg96bqt9qn822rx web.4 nginx:1.10 worker1 Running
Running 35 seconds ago
3z6ees2748tqsoacy114ol183 web.5 nginx:1.11 worker1 Running
Running less than a second ago
2d7n5nhja0efka7qy2boke8l3 _ web.5 nginx:1.10 manager Shutdown
Shutdown 1 seconds ago
5sprz723zv3z779o3zcyj28p1 web.6 nginx:1.10 manager Running

Running 30 seconds ago

As the upgrade starts, the web.2 and web.3 tasks have been updated and are now running
nginx:1.11. The others are still running the old version. Every 30 seconds, two more tasks will
be upgraded until the entire service is running nginx:1.11.

Docker Swarm does not care about the version that is used on the image tag. This means that you
can just as easily downgrade the service. In this case, if the docker service update --image
nginx:1.10 web command were to be run after the upgrade, swarm will go through the same
update process until all tasks are running nginx:1.10. This can be very helpful if an upgrade
does work as it was supposed to.

It is also important to note that there is nothing that says that the new image has to be the same
base as the old one. You can decide to run Apache instead of Nginx by running docker service
update --image httpd web. Swarm will happily replace all the web tasks which were running
an nginx image with one running the httpd image.

Rolling updates require that your service is able to run multiple containers in parallel. This may
not work for some services, such as SQL databases. Some updates may require a schema change
that is incompatible with the older version. In either case, rolling updates may not work for the
service. In those cases, you can set --update-parallelism 0 to force all tasks to update at
once or manually recreate the service. If you are running a lot of replicas, you should pre-pull
your image to ease the load on your registry.

Using Docker Compose with swarm
Docker Compose can be used with Docker Swarm to build multi-container applications. You can
configure your environment to use any node in the swarm and then use docker-compose just as
you would when talking to a single Docker host. There are some serious issues using it for now.

Building images

One of the issues is image building. It is possible to use docker-compose build but the image
will only appear on the node that docker-compose used to build the image. This is fine when
running on a single host, but probably not what you want since you are running a swarm. To work
around this, it is necessary to build your image manually with docker build and push it into a
registry.

Starting an application

Starting an application with docker-compose up and swarm is exactly the same as running it
with a single host. Unfortunately, Docker Compose does not use swarm to schedule containers. In
fact, it prints a warning when you try:

$ docker-compose up -d
WARNING: The Docker Engine you're using is running in swarm mode.
Compose does not use swarm mode to deploy services to multiple nodes in a
swarm. All containers will be scheduled on the current node.
To deploy your application across the swarm, use the bundle feature of the
Docker experimental build.
More info:
https://docs.docker.com/compose/bundles
Starting webdb_web_1
Recreating webdb_db_1

The containers are started on the swarm node just as they would be if you were using a single
Docker node. Scaling services within the application with docker-compose scale also works,
but again, the additional containers are started on the same swarm node.

Bundling an application

Docker Distributed Application Bundle (DAB) and stacks are an experimental feature. The
ability to build a bundle with docker-compose was added in Docker Compose 1.8 and Docker
1.12. At the time of writing, it is only possible to use bundles and stacks with an experimental
version of Docker Engine. As such, the tools to work with bundles may change considerably
before they are released.

Building a bundle is as simple as running docker-compose bundle. A .dab file will be created
that corresponds to the namespace of the application. For example, an application with the webdb
namespace will create a bundle file named webdb.dab. Once a bundle file is created, it can be
used to create a stack.

Deploying a stack

Stacks are the collection of services and resources that are run on a swarm. When deployed to a
swarm, all the required services are scheduled and started on swarm nodes. Once deployed, the
list of running services can be shown with docker service ls:

$ docker deploy stackname

The preceding command will deploy a stack named stackname. All services started by docker
deploy are prefixed with the stack name. By default, docker deploy will look for a .dab file
that matches the stack name. For example, a stack named webdb will look for a .dab file named
webdb.dab. A different file can be specified with the --file option:

$ docker deploy --file webdb.dab mystack

Introducing Docker Datacenter
Docker Datacenter is a commercial application from Docker. It is composed of the commercially
supported Docker Engine, the UCP, and the DTR. The UCP provides a web-based interface to run
containers and Docker Compose applications on a cluster.

Docker Datacenter cannot be layered on an existing swarm. Instead, each node is added in a
similar manner to joining a swarm. From the first node in the new cluster, run the following
command:

$ docker run --rm -it --name ucp -v /var/run/docker.sock:/var/run/docker.sock
docker/ucp install -i --host-address <public ip>

This command uses the docker/ucp image to perform the installation. The Docker socket is
passed in as a volume to allow the install script to start the needed containers. The --host-
address is the public IP address that will be used to access UCP. The interactive install will
prompt you for an administrative password so that you can log in to the web interface.

Applications can be run with Docker Compose just like they can with Docker Swarm.
Unfortunately, similar restrictions apply here as with plain swarm. The containers are all started
on the same node. There is no special scheduling as you might get with Docker Swarm. What you
do get is a nice interface for seeing the state of the cluster, managing volumes and networks, and
running individual containers and full applications.

Creating a new container is really easy. From the dashboard, click on Containers and Deploy
Container. There will be a form that allows you set the container name, image, and any other
options the container might need. Containers can also be started using the standard Docker
command-like tools:

Docker Datacenter also supports running applications with Docker Compose. To run an
application, go to Applications and click on Compose Application. You will be prompted for an
application name and a compose file. The compose file, can be pasted into the box or uploaded
from a file on your desktop. You can also use docker-compose up from your desktop or
management server to launch applications:

Running applications appear on the Applications page. From there, you can scale services, restart
containers, and even access the console of a running container:

Summary
In this chapter, you have seen how to use Docker Swarm to orchestrate a Docker cluster. The
same tools that are used with a single node can be used with a swarm. Additional tools available
through swarm, allow for easy scale out of services and rolling updates with little to no
downtime. In the next chapter, you will look at how to use Kubernetes to orchestrate your cluster.

Chapter 5. Deploying and Managing Services
with Kubernetes
Kubernetes was started at Google as a way for them to manage containers and was released as
open source on June 2014. Other companies quickly jumped on board. Kubernetes is the backend
for Red Hat OpenShift 3, Deis Workflow, and fabric8's Platform as a Service (PaaS) products.
Everyday, more and more organizations are deploying Kubernetes to orchestrate their services.

Kubernetes is a huge project; there is no way to cover everything about it in a single chapter. This
chapter will cover everything you need to get started orchestrating containers using Kubernetes.
The full documentation can be found at http://kubernetes.io/docs/.

The following topics are covered in this chapter:

Installing Kubernetes
Running pods
Managing deployments
Using rolling updates to upgrade a deployment with zero downtime
Using services and load balancers to expose your application to the Internet
Using persistent volumes to preserve container data

http://kubernetes.io/docs/

Getting to know Kubernetes
Kubernetes is a complicated piece of software. As such, there are a number of components that an
administrator needs to be aware of. Some will be used everyday while others will work quietly
in the background to keep everything running.

Command-line tools
Following are the command-line tools:

kubeadm: This tool was added in Kubernetes 1.4, as of this writing, still considered an
alpha tool. It is the new installer for Kubernetes on Linux hosts.
kubectl: This is the main tool used to interact with a running cluster. It is used to add pods
and services, perform rolling updates, and much more. Nearly everyone who interacts with
Kubernetes will use kubectl.

Master components
These components run on the master node. They are responsible for all of the high level controls
of the cluster. Following are the master components:

etcd: This is where Kubernetes keeps its cluster configuration. Make sure this is backed up
or you will be unable to recover your cluster in the event of a total rebuild.
kube-apiserver: The API server is the main point of contact for everything that interacts
with the cluster. The kubectl tool uses it to manage services, the controllers use it for
configuration, and much more. The kube-apiserver component is the only component on
the master that needs to be accessible outside the cluster. It is also the only component that
needs to connect to etcd.
kube-controller-manager: Unsurprisingly, this manages the running controllers. This
includes replication controllers, node controllers, third-party controllers, and service
accounts.
kube-scheduler: This schedules pods to run in the cluster. Any time new pods are started
or scaled, the scheduler determines which nodes to run them on.

Node components
Node components run on the worker nodes. They control running containers, networking, and
other services. They are as follows:

kubelet: This is the main processing daemon on each node. It is responsible for starting
containers, mounting volumes, downloading secrets, and keeping the node part of the cluster.
kube-proxy: This is responsible for maintaining the network rules and forwards network
requests to the correct location.

Installing Kubernetes
Kubernetes can be installed on most cloud services or locally on your own hardware or virtual
machines. Unsurprisingly, since Kubernetes is a Google project, it runs best on GCE and new
features tend to be supported there first.

In addition, Google has rolled out a service called Google Container Engine (GKE), which is a
pre-rolled Kubernetes service. Google maintains the Kubernetes master and makes it easy to add
new nodes to the cluster. You only need to worry about the containers. This is the easiest way to
get started with Kubernetes.

For local installations, there are several options. The first is the new kubeadm tool which was
released as a beta tool with Kubernetes 1.4. Second, there is the kube-up.sh script which is part
of the Kubernetes release package which can install Kubernetes on a variety of platforms.

There are two other options worth considering. RHEL has a kubernetes package available
which is installable with yum. The Rancher container management suite has an option to
automatically deploy Kubernetes environments.

Installing with kubeadm
The kubeadm tool was introduced in Kubernetes 1.4. The goal is to provide an easy way to install
Kubernetes on any platform. For now, it only supports CentOS 7 and Ubuntu 16.04. Installation
using kubeadm is still a little messy but it is an exciting start. For more details, refer to
http://kubernetes.io/docs/getting-started-guides/kubeadm/.

http://kubernetes.io/docs/getting-started-guides/kubeadm/

Installing with kube-up.sh
GCE is the most fully supported way of running Kubernetes. The only serious difference between
running Kubernetes on GCE compared to anywhere else is how external services are mapped to
running pods. GCE also does a lot of the grunt work for you such as managing firewall settings
and registering new nodes with the cluster:

$ export KUBERNETES_PROVIDER=gce; wget -O - https://get.k8s.io | bash

If you do not like the security risks of piping a downloaded script directly to bash or if you want
to make changes to the install options, you can download the latest release, unpack it, and run
kube-up.sh manually:

$ cd kubernetes/cluster/
$ export KUBERNETES_PROVIDER=gce; ./kube-up.sh

The script will create a new Kubernetes master and a number of worker nodes. When it is done, it
will create a kubeconfig file in ~/.kube/config. You will then be able to interact with the
cluster using kubectl.

A number of other cloud providers are available for installation with kube-up.sh including
AWS, Azure, and GKE. It can also install a test cluster using Vagrant for local testing. For a full
list and instructions on adapting kube-up.sh for your environment, refer to
http://kubernetes.io/docs/getting-started-guides/binary_release/.

http://kubernetes.io/docs/getting-started-guides/binary_release/

Installing add-ons
Kubernetes supports using add-ons to extend the functionality of the cluster. Most common are the
kube-dns and kube-ui add-ons, which provide DNS-SD and a graphical view of the cluster,
respectively. Add-ons can also be used to install different tools, such as Weave Net, for overlay
networks. A list of available add-ons can be found at: http://kubernetes.io/docs/admin/addons/.

http://kubernetes.io/docs/admin/addons/

Managing resources
Every resource in Kubernetes is defined in a file in either JSON or YAML format. The two
formats are completely interchangeable. YAML is usually easier for a human to read. It is
possible to have some resources defined in YAML and others in JSON. As a best practice, pick a
format and stick to it.

Creating resources
All resources will have at least two fields:

apiVersion: This is the version of the API that is being used. As new features are added,
the version may change.
kind: This is the type of resource. This tells Kubernetes what type of resource is being
created.

Each resource may be defined in a separate file. In some cases, it is worth combining resources
into a single file. For example, it makes sense to define an ingress object in the same file as the
service that it exposes. In that case, separate the resources with three dashes, ---, alone on a line.
Following is an example showing how to do this:

apiVersion: v1
kind: Service
metadata:
 name: wp-service
 labels:
 app: wordpress
spec:
 ports:
 - port: 443
 name: https
 selector:
 app: wordpress

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: wp-ingress
spec:
 backend:
 serviceName: wp-service
 servicePort: 80

Once the resource is defined, it is added to Kubernetes by running kubectl create. The -f flag
tells kubectl to read the resource definition from the given file. If the file name is a dash (-), the
resource is read from stdin:

$ kubectl create -f multi-deployment.yml
deployment "multi-deploy" created

It is also possible to tell kubectl create to read all of the files in a directory by adding the -R
flag and setting -f to a directory name. This makes it easy to put all of the resources for a specific
application in a directory and load them all at once.

The Kubernetes project has created a tool called Helm which can be used to package pre-
configured resources. For more information see https://github.com/kubernetes/helm.

https://github.com/kubernetes/helm

Deleting resources
Resources are deleted with the kubectl delete command. At its simplest, kubectl delete is
called with the type and name of the resource to delete:

$ kubectl delete service wp-service
service "wp-service" deleted

Like the create command, delete can use the -f flag to pass in a file. Every resource defined in
the file will be deleted. The -R flag can also be used to delete every resource defined in a
directory.

Running pods
Kubernetes organizes containers into pods. Each pod is a collection of one or more containers. A
pod can be replicated, scaled, and updated independently of other pods running in the cluster.
Each pod is assigned an IP address, which is used to connect to the exposed ports of containers
running in the pod. Care must be taken to ensure that services within a pod do not try to use the
same port, but that is much easier to coordinate than managing port usage across a Docker Swarm.

Defining a pod
Pods define one or more containers as well as all of the volumes that the containers need. The
containers operate as a single unit. They are all started and stopped together. They can also
communicate with each other on localhost. The pod is defined using YAML or JSON and passed
to kubectl create. Following is a simple pod definition:

apiVersion: v1
kind: Pod
metadata:
 name: simple
spec:
 containers:
 - name: web
 image: nginx
 ports:
 - containerPort: 80
 - containerPort: 443

The preceding YAML file defines a simple pod that runs a single nginx container. The name field
sets the name of the pod. In this case, the pod is named simple. The generateName field may be
used instead of the name field, this takes a prefix for an automatically generated name. This is
useful if you need to run multiple, independent copies of the pod.

The spec field is where the pod's containers and volumes are defined. The containers field
takes a list of one or more containers. The preceding example creates a single container named
web. The container image is set with the image field. These are the only two required fields for
containers.

The ports field defines the ports that will be exposed on the pod's IP address. This is the port in
the container, not the port that will be made public. Setting the external port will be covered with
service resources later in this chapter.

The ports field uses TCP by default. The protocol can be set to UDP as an additional field to the
port. The following snippet shows what it would look like:

ports:
 - containerPort: 53
 protocol: UDP

Note

There is a lot more to pods than can be covered in one chapter. For full details, refer to the pod
specification at: http://kubernetes.io/docs/api-reference/v1/definitions/#_v1_podspec.

Once the pod specification is written to a file, the pod can be added to Kubernetes with kubectl
create:

$ kubectl create -f simple-pod.yml

http://kubernetes.io/docs/api-reference/v1/definitions/#_v1_podspec

pod "simple" created

Viewing pods

A list of running pods is available by running kubectl get pods. Adding -o wide will show
the pod's IP address and the node that the pod is running on:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
simple 1/1 Running 0 12s
$ kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE
simple 1/1 Running 0 1m 10.246.46.5 kubernetes-
node-1

The details of a pod are available using the kubectl describe pod command. Everything you
need to know about a running pod is displayed in the output of describe. The following
command displays the details for a pod named simple:

$ kubectl describe pod simple
Name: simple
Namespace: default
Node: kubernetes-node-1/10.245.1.3
Start Time: Wed, 05 Oct 2016 18:55:46 -0600
Labels: <none>
Status: Running
IP: 10.246.46.5
Controllers: <none>
Containers:
 web:
 Container ID: docker://6460c3565b2c0d7cb356f0d
 a2ea5e12f58017e881fb9117
6eafbf65b5a46bc31
Image: nginx
Image ID: docker://sha256:ba6bed934df2e644fdd34
 e9d324c80f3c615544e
e9a93e4ce3cfddfcf84bdbc2
Ports: 80/TCP, 443/TCP
Requests:
 cpu: 100m
State: Running
 Started: Wed, 05 Oct 2016 18:55:48 -0600
Ready: True
Restart Count: 0
Volume Mounts:
/var/run/secrets/kubernetes.io/
 serviceaccount from default-token-dlmur (ro)
Environment Variables: <none>
Conditions:
Type Status
Initialized True
Ready True
PodScheduled True
Volumes:
default-token-dlmur:

Type: Secret (a volume populated by a Secret)
SecretName: default-token-dlmur
QoS Class: Burstable
Tolerations: <none>
Events:
FirstSeen LastSeen Count From
SubobjectPath Type Reason Message
--------- -------- ----- ---- -------
------ -------- ------ -------
 7s 7s 1 {default-scheduler }
Normal Scheduled Successfully assigned simple to kubernetes-
node-1
...

Environment

Many containers use environment variables to configure how they run. The mysql image uses
environment variables to initialize a database and set user passwords. The wordpress image
uses environment variables to configure the location of a MySQL database and set the appropriate
credentials in the configuration.

Here is an example pod that runs the mysql image and sets two environment variables. The first,
MYSQL_ROOT_PASSWORD, sets the password for the root user. The second, MYSQL_DATABASE,
configures the container to create a database named wordpress:

apiVersion: v1
kind: Pod
metadata:
 name: mysql
 labels:
 app: mysql
spec:
 containers:
 - name: db
 image: mysql:5.7
 ports:
 - containerPort: 3306
 env:

 - name: MYSQL_ROOT_PASSWORD

 value: password

 - name: MYSQL_DATABASE

 value: wordpress

Multi-container pods

It is possible to define pods that run multiple containers. This is especially useful when migrating
legacy applications into Docker and Kubernetes.

One of the great things about pods is that every container in a pod can connect to any other

container within the pod on localhost. This makes it fairly straightforward to migrate legacy
applications into Kubernetes. With standalone Docker, each container is assigned its own random
IP address. That can make it difficult for the containers to find each other unless a DNS-SD tool is
installed. Even worse, because each container gets a different IP, a separate component such as
HAProxy must be used to unify them under a single IP address for end users.

For example, suppose you had a Samba file server with a web interface and SFTP server for off-
site access. Every service communicates with the others on localhost and are accessible from the
same IP address and hostname. It is very convenient to be able to tell users to connect to
myfiles.example.com no matter which service they wish to use to access their files.

By combining those services into a single pod, the application can be treated almost the same way
it would as if it were on a single host. They still communicate with each other on localhost and
are still available from a single IP address. Later, as work is done to decouple components and
make them multiple pods, they can still be united under a single service. This service is assigned
the single IP to which the hostname can be mapped. Services will be covered later in this chapter.

Let's look at an example multi-container pod that starts WordPress with a MySQL database. This
example creates a pod named multi. This time, the containers field lists two containers. The
first is named wordpress and runs the official wordpress image. The second is named db and
runs the mysql image:

apiVersion: v1
kind: Pod
metadata:
 name: multi
 labels:
 app: wordpress
spec:
 containers:
 - name: wordpress
 image: wordpress
 ports:
 - containerPort: 80
 - containerPort: 443
 env:
 - name: WORDPRESS_DB_HOST
 value: 127.0.0.1
 - name: WORDPRESS_DB_USER
 value: wordpress
 - name: WORDPRESS_DB_PASSWORD
 value: password
 - name: db
 image: mysql
 env:
 - name: MYSQL_ROOT_PASSWORD
 value: password
 - name: MYSQL_DATABASE
 value: wordpress
 - name: MYSQL_USER
 value: wordpress

 - name: MYSQL_PASSWORD
 value: password

There are a couple of things to note with this example:

First, the wordpress container is configured to look for MySQL on 127.0.0.1 which is
localhost.
Second, the db container has no ports defined. This is because the database does not need to
be exposed on the pod's IP address.

The only containers that can connect to the database are the ones in the same pod.

Using secrets

The WordPress example in the previous section is pretty exciting, but all of your security
conscious administrators are probably having a small heart attack over the plain text passwords
in the pod definition. The good news is that Kubernetes makes it possible to separate out things
that should be secret into a special Secret type. Secrets can be used to keep things such as
passwords out of pod definitions or they can be used to provide different passwords, SSL
certificates, or SSH keys in different namespaces without needing to change the pod definitions.

Creating secrets

Secrets are base64 encoded strings. On Linux, the strings can be encoded with the base64 tool.
Once the string is encoded, it can be added to the YAML or JSON file that defines the secret:

$ echo -n "root-password" | base64
cm9vdC1wYXNzd29yZA==

Following is an example that defines two secret passwords for the root and wordpress users for
the preceding WordPress application:

apiVersion: v1
kind: Secret
metadata:
 name: mysql-passwords
type: Opaque
data:
 root: cm9vdC1wYXNzd29yZA==
 wordpress: d29yZHByZXNzLXBhc3N3b3Jk

YAML defines a new secret named mysql-passwords. The secrets are in the data section. The
root and wordpress keys will be used to reference the passwords from the node definition.

Secrets can be displayed with kubectl describe secret. Well, almost. The secret object
with its associated labels and a list of keys is displayed, but the keys themselves are hidden:

$ kubectl describe secret mysql-passwords
Name: mysql-passwords
Namespace: default
Labels: <none>

Annotations: <none>
Type: Opaque
Data
====
wordpress: 18 bytes
root: 13 bytes

It is important to note that the secrets that are not encrypted are fairly easy to get. They are hidden
when the secret is described with kubectl describe secret, however, a user with the
appropriate access can log in to a running container that is using a secret and print it out. Do not
rely on secrets to keep your passwords and other sensitive secrets safe. For more details refer to
http://kubernetes.io/docs/user-guide/secrets/.

Using secrets in environment variables

There are two ways of getting the keys into the containers. The first is through environment
variables. Following is the WordPress pod definition again. This time the passwords are
retrieved from the mysql-passwords secret object. The key option states which secret from the
mysql-passwords secret object is used. The relevant sections are highlighted. Inside the
containers, the *_PASSWORD environment variables will have the decoded values:

apiVersion: v1
kind: Pod
metadata:
 name: multi-secrets
 labels:
 app: wordpress
spec:
 containers:
 - name: wordpress
 image: wordpress
 ports:
 - containerPort: 80
 - containerPort: 443
 env:
 - name: WORDPRESS_DB_HOST
 value: 127.0.0.1
 - name: WORDPRESS_DB_USER
 value: wordpress
 - name: WORDPRESS_DB_PASSWORD
 valueFrom:

 secretKeyRef:

 name: mysql-passwords

 key: wordpress
 - name: db
 image: mysql
 env:
 - name: MYSQL_ROOT_PASSWORD
 valueFrom:

 secretKeyRef:

http://kubernetes.io/docs/user-guide/secrets/

 name: mysql-passwords

 key: root
 - name: MYSQL_DATABASE
 value: wordpress
 - name: MYSQL_USER
 value: wordpress
 - name: MYSQL_PASSWORD
 valueFrom:

 secretKeyRef:

 name: mysql-passwords

 key: wordpress

Using secrets in files

The other option is to have the secret available as files in the container. This is done through
volumes. A volume that contains the decoded secret values in files named after the keys is
created. This can be useful for adding SSL certificates and SSH keys to a container. The
application can be configured to use the mounted secrets volume, or a small wrapper script can
copy the file to a place the application can find it.

Following is a simple pod running nginx. It creates a volume that is mounted in the container at
/etc/secrets. This example uses the same mysql-passwords secret as the previous example:

apiVersion: v1
kind: Pod
metadata:
 name: nginx-secrets
spec:
 containers:
 - name: nginx
 image: nginx
 volumeMounts:

 - name: secrets

 mountPath: "/etc/secrets"

 readOnly: true

 volumes:

 - name: secrets

 secret:

 secretName: mysql-passwords

In the container, the decoded secrets are available in /etc/secrets. Each secret is stored in a
file in the volume:

cd /etc/secrets/
ls
root wordpress
cat root
root-password

Logging into a container

It is often necessary to log in to a container to troubleshoot problems. The same functionality as
docker exec is available in Kubernetes as kubectl exec. As one might expect, kubectl exec
is a little bit different to account for the concept of pods:

$ kubectl exec multi-secrets -c wordpress -it bash
root@multi-secrets:/var/www/html#

This example starts a bash shell in the wordpress container from the multi-secrets pod. The -
i and -t flags work just like in docker exec by telling exec to take input from stdin and to
create a new TTY.

If the command that you want to run has flags, the command can be prefixed by two dashes (--).
Following is an example that opens a MySQL shell in the db container in the mysql-secrets
pod:

$ kubectl exec multi-secrets -c db -it -- mysql -u root -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 3
Server version: 5.7.15 MySQL Community Server (GPL)
Copyright (c) 2000, 2016, Oracle and/or its affiliates. All rights reserved.
Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.
Type 'help;' or '\h' for help. Type '\c' to clear the current input
statement.
mysql>

The -c flag can be omitted if the pod has only one container or if you want to connect to the first
container in the pod. You can use -c even if the pod only has one container to avoid confusion.

Deleting a pod

When a pod is no longer needed, it can be deleted with kubectl delete pod. The following
example deletes a pod named simple:

$ kubectl delete pod simple
pod "simple" deleted

Using deployments
A deployment is a set of pods with one or more replicas. It is responsible for ensuring that the
requested number of pods are running and restarting them, if necessary. Deployments make it easy
to scale out pods and update them later. Deployments supersede the ReplicationController
resource.

Creating a single container deployment

One of the joys of Docker is the ability to start containers quickly and easily. Kubernetes can be
complicated, but it is still easy to start a single container:

$ kubectl run web --image=nginx:1.11 --replicas=2 --port=80
deployment "web" created

The preceding command creates a new deployment named web that is running two nginx images.
The --replicas flag can be used to set the number of replicas desired. If omitted, only one pod
is started. The --port flag tells Kubernetes to expose port 80. The --port flag may be used
multiple times to expose additional ports.

The kubectl get deployments command will show all of the current deployments in the
cluster. In this case, it shows that both pod replicas are running, up to date, and available:

$ kubectl get deployments
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
web 2 2 2 2 12s

A list of running pods is available from the kubectl get pods command. The -l flag limits the
display to pods with the given label(s). When the run command is used, the pods are
automatically given the run=<name> label, where <name> is the name of the deployment. To limit
the list to only pods from the run named web, use the following command:

$ kubectl get pods -l run=web
NAME READY STATUS RESTARTS AGE
web-4291803130-haisr 1/1 Running 0 13m
web-4291803130-j7y51 1/1 Running 0 13m

Both replicas are running and ready to serve web pages.

Creating a multi-container deployment

Multi-container deployments require that the deployment be defined in YAML or JSON. The file
specifies the name of the deployment, the number of replicas, and the pod specification. This
same format can also be used for single container deployments:

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: multi-deploy
spec:

 replicas: 2
 template:
 metadata:
 labels:
 app: web-deploy
 spec:
 containers:
 - name: nginx
 image: nginx:1.10.4
 - name: mysql
 image: mysql:5.5
 env:
 - name: MYSQL_ROOT_PASSWORD
 value: password

The example creates two pods with two containers—nginx and mysql. The pod is defined in the
template section of the deployment definition. It works just like the pods already covered in this
chapter. The biggest difference is that the pod name is omitted. Pod names will be based on the
deployment name.

Take note of apiVersion. Deployments are a new feature and still, officially, in beta. The
specification may change in later versions.

Scaling a deployment

Kubernetes makes it easy to increase or decrease the number of replicas in a deployment with the
scale command. The following command scales the deployment named web to three replicas:

$ kubectl scale --replicas=3 deployment/web
deployment "web" scaled

A deployment can be scaled up or down as much as you need. The scheduler will ensure that the
required pods are started across the cluster.

Rolling updates

Deployments in Kubernetes have a feature that allows all of the pods in a deployment to be
updated automatically. Updates are triggered whenever a part of the pod specification in the
template section of a deployment is changed.

Updating a deployment

Consider the following deployment which has two containers. The first, named web, is an
nginx:1.10.1 image. The second, named db, is a mysql:5.5 image:

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: update-deploy
spec:
 replicas: 2
 template:

 metadata:
 labels:
 app: update-deploy
 spec:
 containers:
 - name: web
 image: nginx:1.10.1
 - name: db
 image: mysql:5.5
 env:
 - name: MYSQL_ROOT_PASSWORD
 value: password

Both containers are running older versions of their images. Let's start by upgrading the web
container:

$ kubectl set image deployment/update-deploy web=nginx:1.11.4
deployment "update-deploy" image updated

This commands sets the image attribute of the web container in the update-deploy deployment to
nginx:1.11.4. Immediately after that command is run, Kubernetes starts a new pod with the
updated image. When the new pod is ready, one of the existing pods is stopped. This process is
repeated until all of the replicas are updated.

A word of warning. Make sure that your container can run multiple times safely before updating a
deployment. By default, Kubernetes uses the same mechanism to perform updates as it does to
scale pods. If your application cannot run multiple copies, you can set the update strategy type
to Recreate in the deployment definition. Kubernetes will then stop the existing pods before
starting new ones. The following excerpt shows how to set the deployment strategy:

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: update-deploy
spec:
 strategy:
 type: "Recreate"
...

Getting the rollout history

Kubernetes remembers the changes that have been made to the deployment. The revision history is
available by running the kubectl rollout history deploy/<name> command, where <name>
is the name of the deployment:

$ kubectl rollout history deployment/update-deploy
deployments "update-deploy"
REVISION CHANGE-CAUSE
1 <none>
2 <none>

Full details of the deployment are available by adding --revision=N to the history command,
where N is revision number. In the following output, you can see that the image for the web
container was updated to nginx:1.11.4:

$ kubectl rollout history deployment/update-deploy --revision=2 deployments
"update-deploy" with revision #2
Labels: app=update-deploy
 pod-template-hash=1680774371
Containers:
 web:
 Image: nginx:1.11.4
 Port:
 Volume Mounts: <none>
 Environment Variables: <none>
 db:
 Image: mysql:5.5
 Port:
 Volume Mounts: <none>
 Environment Variables:
 MYSQL_ROOT_PASSWORD: password
No volumes.

Rolling back an update

You may find that, after the update, something has gone horribly wrong, and that the update needs
to be rolled back. Fortunately, there is a very convenient undo command:

$ kubectl rollout undo deploy/update-deploy
deployment "update-deploy" rolled back

Without options, the command will revert the named deployment to the previous one in the
history. The --to-revision=N flag will revert the deployment to revision N from the history.

Deleting a deployment

Remember that the job of a deployment is to ensure that the required number of pods are running.
Trying to delete a deployment by deleting the pods is like Sisyphus trying to roll a rock up a hill.
Kubernetes will keep recreating the pods as fast as they are deleted. When a deployment is no
longer needed, it can be deleted with kubectl delete deployment. Make sure that you want to
proceed because this will delete all running pods which are part of the deployment:

$ kubectl delete deployment web
deployment "web" deleted

It is possible to delete a deployment while leaving the pods running, using the --cascade=false
flag. The leftover pods will have to be deleted manually.

Running pods on every node with DaemonSets
A DaemonSet is a type of resource that ensures a pod or set of pods runs on every node in the
cluster. The format of the resource is very similar to that of a deployment. The template section
is a pod specification just like a deployment:

apiVersion: extensions/v1beta1
kind: DaemonSet
metadata:
 name: daemon
spec:
 template:
...

DaemonSets are useful for running services such as logging or monitoring. For example, you
might have a service such as collectd which sends performance data to a monitoring solution.

It is also possible to limit a DaemonSet to only run on a set of nodes that match a given selector.
For example, your local Kubernetes cluster may have a mix of server hardware from HP and
Dell. You can create a DaemonSet that runs the Dell OpenManage tools on nodes that have a
hardware label set to dell:

apiVersion: extensions/v1beta1
kind: DaemonSet
metadata:
 name: omsa
spec:
 template:
 spec:
 nodeSelector:
 hardware: dell
...

Introducing scheduled jobs
Kubernetes 1.4 introduced scheduled jobs. These are sets of containers that run on a schedule.
They are similar to Cron jobs in Linux and even use the Cron time format in the specification.
Scheduled jobs are still considered alpha and are not available unless the --runtime-
config=batch/v2alpha1 flag is added to the API server on startup. For more details refer to
http://kubernetes.io/docs/user-guide/jobs/.

http://kubernetes.io/docs/user-guide/jobs/

Using labels
Nearly every resource in Kubernetes can be assigned labels. Labels are a way to organize your
resources but do not change how they operate. They are completely arbitrary and should be
chosen to fit your environment. For example, you may want to group resources by application,
label pods that are currently in testing, or signify that certain pods should only run on frontend
nodes.

Labels are set in the metadata section of a resource. They are a series of key/value pairs. In the
following example, the pod has four labels set. The app label is used to show that this pod is part
of the wordpress application. The tier label signifies that this pod should run on backend
nodes. This pod is still in testing so the env label is set appropriately. Finally, the hero label
exists in this example to show how arbitrary labels are:

apiVersion: v1
kind: Pod
metadata:
 name: mysql
 labels:

 app: wordpress

 tier: backend

 env: testing

 hero: darkwing-duck
...

By themselves, labels do nothing. When a resource is created, Kubernetes notes the labels and
goes about scheduling the resource somewhere in the cluster.

Using selectors to find resources

All of the tools that list resources can take a selector with the -l flag to limit the list to resources
with labels that match. This was used earlier in the chapter to see the list of pods started by a
deployment:

$ kubectl get pods -l 'app=update-deploy'
NAME READY STATUS RESTARTS AGE
update-deploy-1680774371-9x8qd 2/2 Running 0 23h
update-deploy-1680774371-y0tbf 2/2 Running 0 23h

This example lists all of the pods with the app key and the update-deploy value. There are
several different comparison operators that can be used. Wrap the selector in single quotes to
ensure that the shell handles spaces and special characters properly:

Operator Description Example

=, == The value of the key must match. env = production

!= The value of the key must not match. env != production

in The value is in a set of values. env in (testing, development)

notin The value is not in a set of values. env notin (testing, development)

label Does the resource have the label? The
value is ignored.

app

!label Resources without the given label. The
value is ignored.

!app

,
(comma)

Joins multiple queries. All queries must
match.

env in (production, testing),
app=website

There are a few resources in Kubernetes that use labels. The service resource, for example,
groups pods that match a selector for load balancing and external access. Every time a pod that
matches what the service is looking for is created, it is automatically added to the group.

Note

Full details on using labels and selectors may be found at http://kubernetes.io/docs/user-
guide/labels/.

http://kubernetes.io/docs/user-guide/labels/

Using namespaces
Kubernetes uses namespaces as a logical separation between groups of running pods and their
associated volumes, services, and controllers. By default, Kubernetes has two namespaces:

kube-system: This is used for containers running Kubernetes services and add-ons
default: This is where everything else runs

Namespaces can be used as a way of providing different environments for development and
production, between two business units, or even multiple customers. It is also possible to define
resource limits per namespace.

Viewing namespaces

It is possible to list the currently configured namespaces. Use the kubectl get namespaces
command:

$ kubectl get namespaces
NAME STATUS AGE
default Active 3h
kube-system Active 3h

Details of a specific namespace can be displayed with kubectl describe namespace. This
includes the overall quota on the namespace as well as resource limits on individual entities:

$ kubectl describe namespace default
Name: default
Labels: <none>
Status: Active
No resource quota.
Resource Limits
Type Resource Min Max Default Request Default Limit
Max Limit/Request Ratio
 ---- -------- --- --- --------------- -------------

 Container cpu - - 100m -
-

Creating namespaces

A new namespace is defined in a YAML file. This example creates a namespace named
production:

apiVersion: v1
kind: Namespace
metadata:
 name: production

Then pass the namespace definition file to kubectl create:

$ kubectl create -f production-ns.yaml
namespace "production" created

Switching namespaces

Once a namespace is created, it is possible to take actions on that namespace. For one off
changes, the --namespace option can be passed to kubectl:

$ kubectl --namespace=kube-system get pods
NAME READY STATUS RESTARTS AGE
heapster-v1.2.0-3649594813-4zdoy 0/4 Pending 0 4h
kube-dns-v19-zma1s 3/3 Running 0 4h
kube-proxy-kubernetes-node-1 1/1 Running 0 3h
kubernetes-dashboard-v1.4.0-pbhe2 1/1 Running 0 4h
monitoring-influxdb-grafana-v4-zc7x4 2/2 Running 0 4h

If you plan on doing a lot of work in a namespace, it is best to create a context. This example
creates a context named production that uses the production namespace:

$ kubectl config set-context production --namespace=production
context "production" set.

The flags --cluster and --user can be used to set the cluster and username for the context, if
they are different. Once a context is set, it is easy to switch to it whenever you need to. The
following example switches to the production context. Now every command that is run with
kubectl will be in the production namespace:

$ kubectl config use-context production
switched to context "production".

Deleting a namespace

A namespace may be a temporary sandbox or a long running environment. Whatever you use
namespaces for, you may need to delete one. The following command will delete the production
namespace:

$ kubectl delete namespace production
namespace "production" deleted

Take a deep breath before deleting a namespace. Doing so will destroy anything in that
namespace including pods, services, and volumes. Make sure there is nothing important in the
namespace before you delete it.

Networking
Networking in Kubernetes is different from straight Docker, in that, IP addresses are assigned per
pod rather than per container. This allows containers within a pod to connect to each other on
localhost. It also allows them to act as one service. This is more akin to the traditional server
model than most Docker tools. In addition, Kubernetes provides tools for doing automatic load
balancing for applications and can work with most cloud providers to use their existing load
balancers to provide external access.

Kubernetes requires the use of an overlay network to allow pods to communicate across the
cluster. It supports GCE, Weave, Flannel, OpenVSwitch, and others either out-of-the-box or with
an add-on. DNS-SD is also available out-of-the-box through the kube-dns add-on, but other
services can be used instead.

Services
Kubernetes assigns each pod an IP address, but that address will change every time the pod is
restarted. In addition, the IP assigned to the pod is a private address that is not accessible outside
of the cluster. Neither is helpful if you want to make the application public. The solution is a
service.

Services provide load balancing and maintain a static IP address for as long as the service exists.
Pods can be restarted, updated, or scaled and the service will keep track of them and route traffic
appropriately. This is done using selectors.

Creating a service

As discussed previously, pods and deployments can have labels assigned. A service uses those
labels to determine which pods to send traffic to. Let's look at an example:

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: wp
spec:
 replicas: 1
 template:
 metadata:
 labels:
 app: wordpress
 spec:
 containers:
 - name: wordpress
 image: wordpress
 ports:
 - containerPort: 80
 - containerPort: 443
...

This is an abbreviated deployment for a WordPress install. Notice that the label app has been set
to wordpress. Now, let's take a look at a service for this application:

apiVersion: v1
kind: Service
metadata:
 name: wp-service
 labels:
 app: wordpress
spec:
 type: LoadBalancer
 ports:
 - port: 80
 name: http
 - port: 443
 name: https
 selector:

 app: wordpress

There are a couple of things to note here. The ports section lists all of the ports that this service
will expose. If the ports match the ports set with containerPort, then there is nothing more to
do. If not, the targetPort field can be added to the port entry with the port that the container is
listening on. The following example shows how to send port 80 in the service to port 5000 in the
pod:

ports:
 - port: 80
 name: http
 targetPort: 5000

The selector field is where the service is configured to know which pods to serve. In this case,
the service is looking for pods or deployments with the app label set to wordpress. Any new pod
that shows up in the namespace that matches the selector will be automatically added to the
service.

Tip

Make sure that the selectors for services do not overlap. It would be bad. If they do overlap, there
will be contention and the possibility that your applications will appear in multiple services.
Your WordPress service, for example, might suddenly be showing your accounting application.

The Type field tells Kubernetes how this service will be exposed:

ClusterIP: This is the default type. It assigns the service an IP from a pre-configured pool.
This address is almost always private and only accessible from within the cluster. Use this if
your service is only servicing other applications in Kubernetes.
NodePort: This allocates a random port from 30,000 to 32,767 on every node in the cluster.
Any request to that node will be sent to the pods targeted by the service. A specific port can
be set with the nodePort option on a port entry. The port must still be within the configured
range. The NodePort type is useful if you want to run your own load balancer.
LoadBalancer: This will start a cloud-specific load balancer to handle traffic for the
service.

There is much more to services than can be covered here. For more details refer to
http://kubernetes.io/docs/user-guide/services/.

Listing services

The list of services is available by running kubectl get service. The list will show the
services, cluster IP and the external IP address if one has been assigned:

$ kubectl get service
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes 10.3.240.1 <none> 443/TCP 2h
wp-service 10.3.242.67 104.154.253.227 80/TCP,443/TCP 1h

http://kubernetes.io/docs/user-guide/services/

A detailed description of a service is also available by running kubectl describe service
with the service name. The description includes the cluster IP, port list, and the ingress port:

$ kubectl describe service wp-service
Name: wp-service
Namespace: default
Labels: app=wordpress
Selector: app=wordpress
Type: LoadBalancer
IP: 10.3.242.67
LoadBalancer Ingress: 104.154.253.227
Port: http 80/TCP
NodePort: http 31342/TCP
Endpoints: 10.0.2.3:80
Port: https 443/TCP
NodePort: https 30763/TCP
Endpoints: 10.0.2.3:443
Session Affinity: None
No events.

Introducing DNS-SD
Kubernetes ships with an add-on called kube-dns which provides DNS-SD. In recent versions of
Kubernetes, this is enabled by default. Names are assigned to services. It is expected that if pods
need to talk to each other, they will do it through a service.

Generated hostnames are in the service_name.namespace.svc.cluster.local form, where
service_name is the name of the service and namespace is the namespace the service is running
in. For example, a service named wordpress in the prod namespace would have an A record that
is wordpress.prod.svc.cluster.local.

Using volumes
Like plain Docker, Kubernetes supports volumes. The main difference is that Kubernetes supports
them at the pod level. This means that a volume configured in a pod is available and may be used
by every container in the pod for reading and writing. Second, Kubernetes volumes may use
multiple different types of network storage at the same time.

Volumes come in two forms, the first is an ephemeral volume that lives only as long as the pod
using it. When the pod is deleted, so is the volume. The second is a persistent volume that
persists data even when a pod is deleted.

Using plain volumes
Volumes in Kubernetes behave a lot like volumes do in plain Docker. They are only expected to
live as long as the pods using them. Every container in the pod may mount the volume and they
may mount in the same or different locations. The only restriction is that volumes cannot be
mounted on filesystems that are mounted from other volumes. In other words, volumes may not
nest:

apiVersion: v1
kind: Pod
metadata:
 name: web
spec:
 volumes:

 - name: test

 gcePersistentDisk:

 pdName: test-pd

 fsType: ext4
 containers:
 - name: nginx
 image: nginx
 volumeMounts:

 - mountPath: /mnt

 name: test

This is a simple pod that uses a GCE persistent disk named test-pd. Volumes are defined in the
volumes section. As many volumes as may be needed can be defined there. The nginx container
mounts the volume in /mnt. The name in volumeMounts must match the name in volumes.

The options for the volume will vary depending on the type of disk. Note that many types of
networked storage must exist before it can be used as a volume. For more details, refer to
http://kubernetes.io/docs/user-guide/volumes/.

http://kubernetes.io/docs/user-guide/volumes/

Storing long-lived data in persistent volumes
Persistent volumes are, as one might expect, persistent. They are designed to persist after a pod is
deleted and to be used again by another pod. Typically, databases and similar systems use
persistent volumes to store their data. Whenever the pod is restarted for any reason, such as after
an update, the data is there waiting for it.

Persistent volumes happen in two parts. The first is the PersistentVolume object, which stores
the connection details for physical storage that is being used. The second is a
PersistentVolumeClaim, which tells Kubernetes that at some point, something is going to want
to use that storage. A pod with a claim basically has permission to use that piece of storage.

You can think of it like a ticket to a theater. The PersistentVolume object is a seat in the theater.
The PersistentVolumeClaim object is the ticket that allows one to enter the theater and sit in
the seat.

Persistent volumes also allow some measure of abstraction of the volume from a pod.
The PersistentVolume object stores all the details for accessing the physical storage. The pod
does not have to care about it. It simply uses a PersistentVolumeClaim object to access the
storage.

Creating a PersistentVolume

Let's start by creating a PersistentVolume object. This uses the same GCE persistent disk as the
preceding volume example:

apiVersion: v1
kind: PersistentVolume
metadata:
 name: test-pd
 labels:
 name: test-pd
spec:
 capacity:
 storage: 10Gi
 accessModes:
 - ReadWriteOnce
 persistentVolumeReclaimPolicy: Retain
 gcePersistentDisk:
 pdName: test-pd
 fsType: ext4

The interesting things that happen in the spec section are as follows:

If one pod claims write access on a persistent volume that already has a write claim, the
second claim will be denied. A claim will also be denied if it tries to get write access on a
volume that is only allowing read-only access.
Next, accessModes determine what sort of access pods are allowed to claim. To continue
the theater analogy, it is like saying that a pod can get a ticket on the main floor or in the

balcony. There are three modes that can be set:
ReadWriteOnce: Only a single node may mount this storage read-write
ReadOnlyMany: Many nodes may mount this storage for read-only access
ReadWriteMany: Many nodes may mount this storage for read-write access

First, the storage capacity is defined; in this case 10 GiB. It is possible to create multiple
storage chunks of varying sizes ahead of time and let a pod claim the size that it needs.
Third is persistentVolumeReclaimPolicy. This setting determines what will be done
with the volume when the claim is released. There are three possible values. Note that not
every storage type supports every reclaim policy:

Retain: Nothing is done with the volume. It is up to the cluster administrator to remove
the volume if it is no longer needed.
Recycle: The physical storage remains, but Kubernetes attempts an rm -rf * on the
volume before making it available again.
 Delete: The volume will be deleted when the claim is released.

The last field configures the storage. In this case, a GCE persistent disk named test-pd. This
will vary depending on the storage that is being used.

Creating the PersistentVolumeClaim resource

Before any pod can use a PersistentVolume resource, a PersistentVolumeClaim resource
must be created:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: test-pd-pvc
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 10Gi
 selector:
 matchLabels:
 name: test-pd

This example creates a claim named test-pd-pvc. The accessModes specification tells
Kubernetes that this claim is for write access for only this pod. The resources section means
that this claim is looking for a volume that is at least 10 GiB. The volume that is actually mapped
to this claim may be bigger but it will not be smaller. Finally, selector matches the labels on
PersistentVolume. In this case, claim is looking for a persistent volume with a name label that
is test-pd. It is possible for a claim to match multiple volumes. If that is the case, the volume
that Kubernetes determines is the closest match provided. If you are trying to connect to a specific
volume, use a unique label on the persistent volume that the claim can match.

Using a PersistentVolumeClaim as a volume

When a pod wants to use a persistent volume, a claim is listed in the volumes section of the pod
specification. Following is the nginx pod from before. This time, it is using
PersistentVolumeClaim to access the volume:

apiVersion: v1
kind: Pod
metadata:
 name: web-pvc
spec:
 volumes:

 - name: test-pd

 persistentVolumeClaim:

 claimName: test-pd-pvc
 containers:
 - name: nginx
 image: nginx:1.11
 volumeMounts:
 - mountPath: /mnt
 name: test-pd

The volume type is a persistentVolumeClaim. The claimName attribute must match the
PersistentVolumeClaim created earlier. Like the plain volume before, the volume name in the
pod, test-pd in this case, is used in the container definition to mount the storage in the container.

Note

There are number of other things that can be done with PersistentVolumes including dynamic
provisioning of volumes for pods. For more details, refer to:http://kubernetes.io/docs/user-
guide/persistent-volumes/.

http://kubernetes.io/docs/user-guide/persistent-volumes/

Further reading
As long as this chapter is, it has only scratched the surface of what Kubernetes can do. The
following is a list of a few features that were not covered:

Ingress resources: The Ingress resource is a new load balancer abstraction that works with
services. It provides more granular routing for web applications including host-based and
path-based routing. Refer to http://kubernetes.io/docs/user-guide/ingress/.
Kubernetes Dashboard: Kubernetes ships with the kube-ui add-on which provides a
dashboard for viewing the cluster and quickly creating new pods and other resources. Refer
to http://kubernetes.io/docs/user-guide/ui/.
Pod resource limits: It is possible to set per-pod and per-container CPU and memory limits
at the namespace level. Refer to http://kubernetes.io/docs/admin/limitrange/.
Quotas: Quotas can be applied at a project level to ensure that the total number of pods or
the amount of resources are not exceeded. Refer
to http://kubernetes.io/docs/admin/resourcequota/.
Batch jobs: Jobs are a resource type that is expected to run and terminate. Multiple jobs can
be run in parallel. Refer to http://kubernetes.io/docs/user-guide/jobs/.
Health checks: Kubernetes has the capability of running health checks against a container to
verify that it is running properly. Refer to http://kubernetes.io/docs/user-guide/liveness/.

http://kubernetes.io/docs/user-guide/ingress/
http://kubernetes.io/docs/user-guide/ui/
http://kubernetes.io/docs/admin/limitrange/
http://kubernetes.io/docs/admin/resourcequota/
http://kubernetes.io/docs/user-guide/jobs/
http://kubernetes.io/docs/user-guide/liveness/

Summary
In this chapter, you saw how to install Kubernetes and create resources. You saw how to create
pods and how to use them with deployments for replication and updates. Network features such as
DNS-SD and services were discussed and it was shown how to create load balancers to make
services available to the Internet. Finally, volumes were discussed and you saw how to use
PersistentVolume to make data available across pods. The next chapter will examine how to
use Apache Mesosphere as a Docker orchestration platform.

Chapter 6. Working with Mesosphere
Apache Mesos is a distributed kernel. It allows one to work on a cluster of servers as if they
were a single resource. Mesosphere and DC/OS build on this to provide a robust system for
running any workload, including Docker containers. Native support for distributed workloads
such as Cassandra and Jenkins, as well as Docker, make for a powerful combination.

Microsoft's Azure Container Service (ACS) is based around DC/OS. In March 2016,
Mesosphere open sourced DC/OS, making it easier than ever to get started.

This chapter will look at using Mesosphere, to manage and deploy Docker-based applications. It
will cover deploying, scaling, and upgrading new applications. It will also show how to use the
built-in overlay with the load balancing features of Marathon. Finally, the chapter will cover the
use of volumes to persist data and how to use a private registry.

This chapter will cover the following topics:

Installing Mesos and DC/OS
Managing containers and applications
Scaling applications
Using health checks
Scaling applications
Updating applications with zero downtime upgrades
Connecting to the Mesos overlay network
Using virtual IPs and the Marathon load balancer
Using local and external volumes
Using a private registry

Getting started with DC/OS
Installing DC/OS is a complicated process to be covered here, and the instructions differ for each
environment. Be sure to read through the documentation before you start this process. There are
features, such as the number of masters or external persistent storage that must be enabled at
install time and cannot be changed later without reinstalling. Installation instructions are available
at https://dcos.io/docs/1.8/administration/installing/.

Tip

The easiest way to get Mesosphere up and running is to use the stack install on AWS or use ACS
which runs Mesosphere.

There are a few things to be aware of if you are installing manually or on local hardware:

Nodes must have at least two cores or virtual processors.
DC/OS nodes must be running CoreOS 7, RHEL 7, or CoreOS.
All nodes in the cluster must have NTP enabled. NTP servers are set in
/etc/systemd/timesyncd.conf. After the NTP servers have been set, run systemctl,
enable systemd-timedated.service and systemctl, and start systemd-
timedated.service to enable and start the systemd internal NTP client. Following is a
sample timesyncd.conf for use on GCE:

 [Time]
 NTP=time1.google.com time2.google.com
 time3.google.com time4.google.com
 FallbackNTP=0.pool.ntp.org 1.pool.ntp.org
 0.fr.pool.ntp.org

https://dcos.io/docs/1.8/administration/installing/

Logging into the web interface
After DC/OS is installed, it will be possible to log in using the web interface. Mesosphere uses
OAuth for authentication with Google, GitHub, or Microsoft accounts. After you have logged in,
you will be directed to the Mesosphere Dashboard. From there you can start managing
applications or install the command-line client, dcos:

Installing the DC/OS client
Once DC/OS is installed, log into the website. At the bottom-left corner, the popup menu has a
link labeled Install CLI. The window that opens after clicking this link has instructions for client
installation on Windows, OS X, and Linux:

The client can also be installed manually. On Linux, the commands for installation looks like this:

$ wget -O dcos https://downloads.dcos.io/binaries/cli/linux/x86-64/dcos-
1.8/dcos
$ chmod +x dcos
$ sudo cp dcos /usr/local/bin/
$ dcos config set core.dcos_url https://m1.dcos

Change the version number in the URL to match your master server version. In this example, it is
1.8. The last command configures the location of the DC/OS master. Change the URL passed to
dcos config to the appropriate address for your environment. If you do not have a valid SSL
certificate, dcos can be configured to ignore the verification:

$ dcos config set core.ssl_verify false

Once dcos is installed, it is time to log in:

$ dcos auth login

Now go to the following link in your browser:

https://m1.dcos/login?redirect_uri=urn:ietf:wg:oauth:2.0:oob

Enter the authentication token:

Go to the indicated URL. DC/OS will attempt to authenticate you with OAuth 2 via
https://auth0.com/. Copy the token and paste it into the shell. You should now be logged in and
ready to use the command line.

https://auth0.com/

Managing applications
A Mesos cluster is managed with the dcos tool and the web interface. Applications in Mesos are
handled by the Marathon scheduler and are defined in JSON format.

Running a simple application
Let's start with a simple container that runs Nginx. Create a file named nginx.json that contains
the following definition:

{
 "id" : "simple-nginx",
 "instances" : 1,
 "cpus" : 0.25,
 "mem" : 64.0,
 "container" : {
 "type" : "DOCKER",
 "docker" : {
 "image" : "nginx:1.11",
 "network" : "HOST"
 }
 }
}

The id tag is the name of the service. It is displayed in the service list. The instances tag tells
Marathon that only one instance is needed. It can be increased or decreased as needed later.

The cpus and mem tags are hints to Marathon as to what percentage of CPU and the amount of
RAM is needed. They do not actually set resource limits in Docker. However, Marathon may kill
tasks that use more than the allocated resources. In this case, the application is requesting 25
percent of a CPU and 64 MB of RAM. These settings cannot be changed after an application is
created without redeploying the application.

The container tag is where the Docker container is defined. Because this is a Docker container,
the type tag is set to DOCKER. The image is set in the image tag. This is the same image name that
will be passed to docker run.

Finally, the network tag is set to HOST, which tells the Docker Engine to use host networking.
Later in the chapter, other networking types will be used, but this will suffice for now.

Start the service with dcos marathon app add nginx.json. If everything goes well, the
command will produce no output. Otherwise, an error is displayed. Use dcos marathon app
list to verify that the application is running:

$ dcos marathon app list
ID MEM CPUS TASKS HEALTH DEPLOYMENT CONTAINER CMD
/simple-nginx 64 0.25 1/1 --- --- DOCKER None

Nginx is running, but how do you get to it? Because host networking was used, you can point your
web browser to the external IP address of the node the container is running on. The host address
is available in the service details in the web interface or by running dcos marathon app show
simple-nginx.

Stopping an application
A service may be stopped without removing it from Marathon with the dcos marathon app
stop command. Marathon will create a deployment to scale the service to zero tasks. The web
interface refers to this as suspending an application:

$ dcos marathon app stop simple-nginx
Created deployment e5be6896-f593-4a32-852f-30bd98551a0e
$ dcos marathon app list
ID MEM CPUS TASKS HEALTH DEPLOYMENT CONTAINER CMD
/simple-nginx 64 0.25 0/0 --- --- DOCKER None

Removing an application
When the service is no longer needed, it can be removed with dcos marathon app remove. An
application does not have to be stopped to be removed. Marathon will stop the running containers
and remove the application from the list:

$ dcos marathon app remove simple-nginx

Forcing Marathon to pull images
One of the biggest problems with running containers across a cluster is ensuring that the image
being run is up to date. Remember, Docker caches images are downloaded from the registry. If a
container is started with the nginx image and a new version is released that fixes a security hole,
containers on that host will continue to run the vulnerable version.

Marathon provides the forcePullImage option to force the node to pull a new image every time
the application is started. It goes in the docker section of a container specification. The following
example shows how it works:

"docker" : {
 "image" : "nginx:latest",
 "forcePullImage" : true
}

Ensure that your registry can handle the load. If a lot of applications that pull an image are started,
there is the possibility that they will overwhelm the registry.

Using environment variables
Some Docker images require the use of environment variables to run. The official MySQL image,
for example, uses them to set the initial root password. Marathon uses the env tag to pass
environment variables to the task. In this case, the environment variables MYSQL_ROOT_PASSWORD
and MYSQL_DATABASE are being set:

{
 "id": "/mysql",
 "instances": 1,
 "cpus": 1,
 "mem": 1024,
 "env": {
 "MYSQL_ROOT_PASSWORD": "password",
 "MYSQL_DATABASE": "mydb"
 },
 "container": {
 "docker": {
 "image": "mysql:5.7",
 "forcePullImage": true,
 "network": "HOST"
 }
 }
}

Scaling applications
Marathon makes it very easy to scale up or down the number of tasks for an application. Not only
does this allow one to scale out to meet increased load, it also allows for blue-green
deployments, which will be covered a little later in the chapter.

Assume that there is an application named nginx running with one instance. All that needs to be
done to increase that to two instances is to run dcos marathon app update:

$ dcos marathon app update nginx instances=2
Created deployment 8dbf3d16-44d3-4478-9366-9743658dcfcd

This example sets the number of instances to two. Applications can similarly be scaled up or
down. Marathon will attempt to start or stop as many instances as needed to meet the new
requirement.

Make sure that your application can support running multiple instances. Databases, in particular,
do not react well to other processes changing their files.

Checking application health
Marathon, very similar to Kubernetes, supports the option of setting one or more health checks on
a service to ensure it is running properly before making it available to handle requests. There are
options to run a custom check command, check for TCP connectivity, or check the HTTP status for
a specific path.

Using TCP and HTTP checks

This is an example of a TCP check for MySQL. The protocol option says that this is a TCP
check. The portNumber defines the port to connect to. Instead, it can be replaced with
portIndex which will check the index into the ports or portDefintion lists in the application
definition. The index is zero based so the first entry is 0, the second is 1, and so on:

"healthChecks": [
 {
 "protocol": "TCP",
 "portNumber": 3306,
 "gracePeriodSeconds": 300,
 "intervalSeconds": 60,
 "timeoutSeconds": 20,
 "maxConsecutiveFailures": 3
 }
]

There are a number of settings that are usable for every check type. They are as follows:

gracePeriodSeconds: This is the number of seconds to wait before throwing errors. It
allows containers, such as MySQL, that take time to start to finish initializing before
throwing errors. If the check passes before the grace period ends, the application is
immediately marked as healthy.
intervalSeconds: This is the number of seconds to wait between checks.
timeoutSeconds: The check fails if it does not respond in these many seconds.
maxConsecutiveFailures: If a health check fails these many times in a row without a
success, the task is killed and restarted.
taskKillGracePeriodSeconds: When a task has failed too many checks, Marathon will
send a SIGTERM signal. If the task has not stopped by the time these many seconds have
elapsed, Marathon will send the SIGKILL task. This defaults to three seconds.

The HTTP and HTTPS protocols check the HTTP status code for a given path. The path option
may be set, which defines the path to test. It defaults to /. The HTTP and HTTPS checks also use
the portNumber and portIndex options described earlier. The HTTPS protocol is used to check
SSL enabled websites. It does not check the validity of the SSL certificate.

By default, only status codes in the 200-399 range are considered healthy. You can configure the
check to ignore status codes from 100-199 by setting ignoreHttp1xx to true. Every other status
code is considered a failure.

Using command checks

It is also possible to check the health status using a custom command. The check is considered
successful if it exits with a true value, usually 0 in sh. Anything else is considered a failure. The
following example adds a command check to an application:

{
 "id" : "nginx-health",
 "instances" : 1,
 "cpus" : 0.25,
 "mem" : 64.0,
 "labels" : {
 "HAPROXY_GROUP" : "external"
 },
 "container" : {
 "type" : "DOCKER",
 "docker" : {
 "image" : "nginx",
 "network" : "BRIDGE",
 "portMappings" : [
 {
 "hostPort" : 0,
 "containerPort" : 80,
 "servicePort" : 80,
 "name" : "web"
 }
]
 }
 },
 "upgradeStrategy" : {
 "minimumHealthCapacity" : 1,
 "maximumOverCapacity" : 1
 },
 "healthChecks" : [
 {
 "protocol" : "COMMAND",
 "command" :
 {
 "value" : "your_check_health_command.sh"
 }
 }
]
}

The command is passed to /bin/sh -c "". Any double quotes in the command must be escaped.
To complicate matters, the escape character (\) must also be escaped. A command that includes a
double quoted component looks something like this:

"healthChecks" : [
 {
 "protocol" : "COMMAND",

 "command" : {

 "value" : "your_check_health_command.sh "Foo""

 }

 }
]

Deploying rolling updates
Existing applications are updated with dcos marathon update. Previously, this command was
used to scale the number of instances of an application. It can also be used to update an
application to use a new image:

{
 "id" : "nginx",
 "instances" : 1,
 "cpus" : 0.25,
 "mem" : 64.0,
 "container" : {
 "type" : "DOCKER",
 "docker" : {
 "image" : "nginx:1.10",
 "network" : "HOST"
 }
 }
}

This is a simple Ngnix application.

Note that the image tag is set to nginx:1.10. It just so happens that 1.11 has been released and
now it is time to update the application. There are two ways to do it.

The easiest way is to edit the application in the web interface. In Container Settings, change
Container Image to nginx:1.11 and click on Deploy Changes. A new deployment will be
created that will create a new task running the nginx:1.11 image and end the old task:

The second way is to use dcos marathon update. This works best if you already have your
applications defined in JSON files. Create a new file or edit the existing one that defines the
Nginx application. Change the image tag to nginx:1.11:

{
 "id" : "nginx",
 "instances" : 1,
 "cpus" : 0.25,
 "mem" : 64.0,
 "container" : {
 "type" : "DOCKER",
 "docker" : {
 "image" : "nginx:1.11",
 "network" : "HOST"
 }
 }
}

Once the file is changed, it can be passed to dcos:

$ dcos marathon app update nginx < nginx-1.11.json
Created deployment 2c28f5db-0fcd-4605-9d5b-b1abd5986579

Once again, Marathon will proceed to replace the old tasks with ones running the updated image.
When the deployment finishes, you can verify that the application is running the new image:

$ dcos marathon app show nginx | grep image
"image": "nginx:1.11",

Setting an upgrade strategy
An application can define an upgrade strategy to control how application tasks are replaced. By
default, Marathon will start all of the new tasks before stopping the old ones. This can be
problematic for two reasons:

First, the update could corrupt data if the application cannot handle multiple tasks writing to
the same volume
Second, you need to have enough capacity to run all of those extra tasks

To solve this problem, Marathon allows one to set an upgradeStrategy for an application:

"upgradeStrategy": {
 "minimumHealthCapacity": 1
}

The minimumHealthCapacity option is a value from zero to one. When set to 1, the new
instances are started before the old ones have been stopped. When set to 0, all of the old instances
are stopped before the new ones start. This solves the first problem. It also, technically, solves
the second, but there could be noticeable downtime when the number instances gets too low to
serve the clients trying to access it.

To smoothly update the application while minimizing client impact, minimumHealthCapacity
can be set to a fraction between 0 and 1. This value represents a percentage of running instances
to scale the application down to. For example, if there are ten instances and
minimumHealthCapacity is set to 0.4 (40 percent capacity), the application will be scaled
down to four instances and six new instances will be started. Anything over 0.5 means that
additional capacity will be needed for the upgrade. If the new instances have no errors, the rest of
the old instances will be shut down and the new instances will be started to take their place.

Testing updates with blue-green deployments

The built-in update mechanism is great for automatically deploying a new version of the
application. In some cases, however, it may be desirable to roll out an update more slowly to
verify that there is no impact on end users. This is especially useful if the updates make
significant changes.

A blue-green deployment slowly replaces the old application, called blue, with a new version,
called green. In Marathon, this manual process is done by creating a new application which uses
the updated image. Give the new application a title that makes it obvious that it is the new one.

The green application is started with a small number of tasks; often just one. Once the health
checks show that everything is ready, the green application is added to the load balancer for the
service. Assuming there are a larger number of the old, blue tasks running, most of the requests
will go there. A small number, however, will be sent to the green application.

Once requests start going to the green application, one can watch for errors or other issues that

might require a rollback. As tests pass, the green application can be scaled up and the blue
application can be scaled down. This is a manual process that can take as much or as little time as
needed. It is not unusual to wait hours or days before choosing to scale up the green application.
If anything goes wrong, the green application can be scaled back down or removed from the load
balancer completely.

When you are satisfied that the green application is fully ready for production, the green
application can be scaled up to the desired number of tasks and the blue application can be scaled
to zero and removed from the load balancer. At that point, the application is fully upgraded. The
blue application can be removed from the system once it is clear that it will no longer be needed
for rollback.

Note

More information on blue-green deployments and how they may be scripted is available at
https://mesosphere.github.io/marathon/docs/blue-green-deploy.html.

https://mesosphere.github.io/marathon/docs/blue-green-deploy.html

Introducing pods
With the 1.9 release, DC/OS introduces pods. Pods in DC/OS and Marathon are very similar to
those found in Kubernetes. They allow multiple containers to be grouped together into a single
object. All of the containers can share volumes and communicate with each other over localhost.

Using network services and load balancing
Mesosphere provides a number of networking services that make orchestration easier. These
services provide service discovery and load balancing for running applications.

Discovering services with DNS
Every service that is created is assigned a hostname in Mesos DNS. The entries are service-
name.marathon.mesos, where service-name is the name of the service in the id field. The
following snippet is from a service with id set to simple-nginx. Mesos DNS would create a
record named simple-nginx.marathon.mesos:

{
 "id" : "simple-nginx",
 ...
}

Because the services are translated directly into DNS hostnames, there are a few restrictions, as
follows:

First, names must only contain letters, numbers, and dash (-).
Second, the names must be shorter than 24 characters. Longer names will be shortened. This
can lead to problems if two services end up with the same hostname. Tasks running in one
service may be returned for the other service.

The DNS service can also be queried over HTTP using REST API. Entries are returned in JSON
format. The following example gets the IP information for the simple-nginx service:

$ curl http://master.mesos:8123/v1/hosts/simple-nginx.marathon.mesos
[
 {
 "host": "simple-nginx.marathon.mesos.",
"ip": "10.128.0.4"
}
]

Connecting to the overlay network
So far, the examples have used host networking. DC/OS creates a Docker overlay network when
it is installed. Connecting applications to the overlay network enables the use of load balancing
as well as the ability to connect to other services across the network:

{
 "id" : "nginx-overlay",
 "instances" : 1,
 "cpus" : 0.25,
 "mem" : 64.0,
 "container" : {
 "type" : "DOCKER",
 "docker" : {
 "image" : "nginx",
 "network" : "USER"
 }
 },
 "ipAddress":{
 "networkName":"dcos"
 }
}

The preceding example creates a service named nginx-overlay that connects to an overlay
network. The network tag is set to USER and the networkName tag is set to the name of the
overlay network, in this case, dcos.

Using virtual IPs
Marathon can assign a name-based virtual IP to a service. Virtual IPs provide layer four load
balancing for the services they are attached to. Tasks across the cluster can then use the virtual IP
to access the service.

To add a virtual IP, click on the service in the web interface then click on the Edit button. Go to
the Network section. Select Virtual Network. This is the same as connecting the service to an
overlay network. Enter Container Port, Name, and Protocol, then click on the checkbox next to
Load Balanced. If additional ports are needed, click on the Add an endpoint link. When you are
done, click on Deploy Changes:

The service will be assigned a name that looks like service-
name.marathon.l4lb.thisdcos.discovery where service-name is the name of the service.
For a service named nginx, the name is nginx.marathon.l4lb.thisdcos.discovery. The
service can then be accessed with the virtual IP anywhere in the cluster:

$ curl nginx.marathon.l4lb.thisdcos.directory:80
<!DOCTYPE html>
<html>
...

Using the Marathon load balancer
Marathon provides a second load balancer by the name of Marathon-LB. It is a HAProxy-based
service that can handle multiple services as well as proxy based on the hostname for a web
service. Marathon-LB is an add-on installed with the DC/OS package manager:

$ dcos package install marathon-lb
We recommend a minimum of 0.5 CPUs and 256 MB of RAM available for the
Marathon-
LB DCOS Service.
Continue installing? [yes/no] yes
Installing Marathon app for package [marathon-lb] version [1.4.1]
Marathon-lb DC/OS Service has been successfully installed!
See https://github.com/mesosphere/marathon-lb for documentation.

The dcos command will install Marathon-LB. By default, the installation is configured to serve
external requests. The load balancer is visible in DC/OS as a service named marathon-lb.

Adding a new service to the load balancer is pretty easy. Following is a service that runs nginx:

{
 "id" : "nginx-mlb",
 "instances" : 1,
 "cpus" : 0.25,
 "mem" : 64.0,
 "labels" : {
 "HAPROXY_GROUP" : "external"
 },
 "container" : {
 "type" : "DOCKER",
 "docker" : {
 "image" : "nginx",
 "network" : "BRIDGE",
 "portMappings" : [
 {
 "hostPort" : 0,
 "containerPort" : 80,
 "servicePort" : 10001,
 "name" : "web"
 }
]
 }
 },
 "upgradeStrategy": {
 "minimumHealthCapacity": 1,
 "maximumOverCapacity": 1
 }
}

The HAPROXY_GROUP label tells Marathon that this service will use the external HAProxy group,
which is served by the marathon-lb service.

The other important settings are in the portMappings list. This example defines a single port to

make available through the load balancer. The containerPort is the port that the container is
listening on. hostPort is the port on the host that the container will listen on. If it is missing or
set to 0, the container is assigned a random port. A hostPort is required, even if set to 0, to make
the container's service available outside the cluster.

Finally, servicePort is the port on the load balancer that will service this application. In this
case, external clients will connect to the load balancer on port 10001 to access this application.
In practice, an external load balancer, such as an ELB on AWS, will be used to provide mapping
from a standard port to the one configured in the load balancer.

By default, Marathon-LB is configured to use service ports 10000 through 10100, 80, and 443.
Any service that will use this load balancer must select an available port from these for
servicePort. Make sure that the ports do not overlap.

It is possible to run multiple load balancers. However, the load balancers run in the host mode on
the nodes, which means that it is only possible to run as many load balancers as there are worker
nodes.

Running an additional load balancer is straightforward. First, create a file called options.json
that contains the following:

{
 "marathon-lb":{
 "name":"marathon-lb-internal",
 "haproxy-group":"internal",
 "bind-http-https":false,
 "role":""
 }
}

The name option is the name of the new service. The haproxy-group option sets the HAProxy
group. This group is what goes in the HAPROXY_GROUP label in the service. Marathon will use
whichever load balancer that matches the group. Create the new load balancer by running the
following command:

$ dcos package install --options=lb-options.json marathon-lb
We recommend a minimum of 0.5 CPUs and 256 MB of RAM available for the
Marathon-LB DCOS Service.
Continue installing? [yes/no] yes

If there are resources available, the load balancer will start and be ready to serve requests.

Providing persistent storage
Running ephemeral containers like these is all well and good, but more complicated workloads
will require some form of additional storage. DC/OS and Marathon provide two options. The
first is local storage, which is only available on the node that the task starts on. The second is
external volumes, which are available anywhere in the cluster.

Note

As of this writing, volumes are considered experimental. The functionality may change.

Using local volumes
Local persistent volumes are blocks of data allocated on a node that persists across application
upgrades and restarts. Because the volume is located on a single node, the application is pinned
to that node and will always start there. This means that the data will always be available for the
application, but it also means that if that node goes away, the application will not be able to start.
The following example shows how to add a local volume:

{
 "id" : "nginx-volume",
 "instances" : 1,
 "cpus" : 0.25,
 "mem" : 64.0,
 "container" : {
 "type" : "DOCKER",
 "docker" : {
 "image" : "nginx",
 "network" : "USER"
 },
 "volumes" : [
 {
 "containerPath" : "website",
 "mode" : "RW",
 "persistent" : {
 "size" : 20
 }
 }
]
 },
 "ipAddress" : {
 "networkName" : "dcos"
 },
 "residency": {

 "taskLostBehavior": "WAIT_FOREVER"

 }
}

This example creates an application with a local persistent volume. Volumes are created with the
volumes block within the container definition. The path of the volume is set by
containerPath. The path may not contain forward slashes (/). Within the container, the volume
will be available in /mnt/mesos/sandbox/containerPath. In this case, the website volume
will be /mnt/mesos/sandbox/website.

The mode option can only be RW, which gives the container read-write access to the volume. Other
modes may be added as the volumes feature is developed. The persistent block only has the
size option which defines the amount of space to be allocated in MiB.

Finally, a residency block must be defined with taskLostBehavior set to WAIT_FOREVER. This
signals Marathon that this application is stateful.

Some applications do not allow you to change the path where the data lives. This could be a
problem for applications such as MySQL. Since it is not possible to specify a specific path,
Marathon has a workaround. The trick is to specify a second volume:

{
 "id" : "nginx-volume",
 "instances" : 1,
 "cpus" : 0.25,
 "mem" : 64.0,
 "container" : {
 "type" : "DOCKER",
 "docker" : {
 "image" : "nginx",
 "network" : "USER"
 },
 "volumes" : [
 {
 "containerPath" : "website",
 "mode" : "RW",
 "persistent" : {
 "size" : 20
 }
 },
 {
 "containerPath" : "/var/lib/www",
 "mode" : "RW",
 "hostPath" : "website"
 }
]
 },
 "ipAddress" : {
 "networkName" : "dcos"
 },
 "residency": {
 "taskLostBehavior": "WAIT_FOREVER"
 }
}

This example extends the previous one to mount the website volume in /var/lib/www. The
second volume uses hostPath, which matches containerPath of the persistent volume. Since
hostPath is being used, containerPath can point to any location in the container's file system.
The data stored on the volume is available in both /mnt/mesos/sandbox/website and
/var/lib/www.

Using external volumes
The biggest failing with local persistent volumes is that the data is stuck on a single node. If that
node fails, the data is no longer accessible. External volumes allow an application to store data
off the node where the application is run. An application can be started anywhere in the cluster
and still access its data.

Mesosphere uses REX-Ray to manage access to external storage. REX-Ray supports Amazon
EC2, GCE, OpenStack, and more. A complete list of supported storage drivers is available at
https://rexray.readthedocs.io/en/v0.3.3/user-guide/storage-providers/.

External storage must be enabled when Mesosphere is installed. The configuration is enabled in
genconf/config.yaml in the installation package. The specifics will depend on the driver used.
Following is an example for GCE:

rexray_config:
 rexray:
 loglevel: info
 modules:
 default-admin:
 host: tcp://127.0.0.1:61003
 storageDrivers:
 - gce
 gce:
 keyfile: /path/to/gce-auth.json

Multiple storage drivers can be set in the storageDrivers section. Each storage driver will
have its own section for configuration. In the case of GCE, keyfile is the JSON formatted
credentials from the API portal.

The following example shows how one would use an external volume. The only option for
provider is dvdi with the dvdi/driver option set to rexray. The value for name is the name of
the volume from the provider. In the following example, the testpd volume will be loaded from
the storage provider:

{
 "id" : "nginx-volume",
 "instances" : 1,
 "cpus" : 0.25,
 "mem" : 64.0,
 "container" : {
 "type" : "DOCKER",
 "docker" : {
 "image" : "nginx",
 "network" : "USER"
 },
 "volumes" : [
 {
 "containerPath" : "website",
 "mode" : "RW",
 "external" : {

https://rexray.readthedocs.io/en/v0.3.3/user-guide/storage-providers/

 "size" : 200,
 "name" : "testpd",
 "provider" : "dvdi",
 "options" : {
 "dvdi/driver" : "rexray"
 }
 }
 }
]
 },
 "ipAddress" : {
 "networkName" : "dcos"
 },
 "residency": {
 "taskLostBehavior": "WAIT_FOREVER"
 }
}

The rules for volume names with local volumes also apply to external volumes as well. If the
volume is to be mounted in a specific path, a second volume must be used as demonstrated
earlier.

Mesosphere only allows a single instance of an application to mount a specific external volume.
A task may be scaled down to zero. The volume will persist and will be ready for use when the
application is scaled back up.

Here are a few other things to keep in mind when using external persistent volumes:

The volume will not be destroyed when the associated cluster is destroyed. You are
responsible for volume clean up.
For some providers, images that are created in a certain zone or region are only available to
hosts running in that same zone.
Ensure that your volume names are unique to avoid conflicts.
Make sure that a compatible version of Docker is used. The REX-Ray documentations
recommends Docker 1.10.2 or higher.

Using a private registry
Mesosphere has the ability to use a private Docker Registry for images. Images can be pulled
from a local registry in the same way one would with Docker; using the registry address followed
by the image. For example, to use the myapp image that is on registry.example.com, you
would set the image to registry.example.com/myapp.

It is also possible to host a private registry on your Mesosphere cluster. The registry can be set up
using host networking or with either VIP or Marathon-LB as the load balancer. The following
example creates an insecure registry which uses Marathon-LB:

{
 "id" : "registry",
 "cpus" : 0.5,
 "mem" : 128,
 "instances" : 1,
 "labels" : {
 "HAPROXY_GROUP" : "external"
 },
 "container" : {
 "type" : "DOCKER",
 "docker" : {
 "network" : "BRIDGE",
 "image" : "registry:2",
 "portMappings" : [
 {
 "containerPort" : 5000,
 "hostPort" : 0,
 "servicePort" : 10003
 }
]
 },
 "volumes" : [
 {
 "containerPath" : "registry",
 "mode" : "RW",
 "persistent" : {
 "size" : 2048
 }
 }
]
 },
 "env" : {
 "STORAGE_PATH" : "/mnt/mesos/sandbox/registry"
 },
 "residency" : {
 "taskLostBehavior": "WAIT_FOREVER"
 }
}

This example does not use TLS keys to secure the registry. To use them, the Docker daemon must
be configured with the --insecure-registry flag. Certificates can be added through a volume.

The REGISTRY_HTTP_TLS_CERTIFICATE and REGISTRY_HTTP_TLS_KEY environment variables
can then be used to set the path to the certificate and the key, respectively.

In the preceding example, the registry is stored on a volume. The STORAGE_PATH environment
variable is used to configure the registry to use that location. While this example uses a local
persistent volume, an external volume should be set up for the registry. The registry should not be
dependent on running on a specific node.

For more details on running a private registry, refer to the DC/OS documentation and the registry
documentation at https://dcos.io/docs/1.8/usage/tutorials/registry/ and
https://hub.docker.com/_/registry/, respectively.

https://dcos.io/docs/1.8/usage/tutorials/registry/
https://hub.docker.com/_/registry/

Summary
This chapter covered the basics of using Mesosphere to manage your applications. It showed how
to create applications, scale them, upgrade them without downtime, and delete them. It also
showed how to use the built-in load balancers and how to run a private registry. The next chapter
will look at other less well-known orchestration tools, including CoreOS Fleet and Rancher
Cattle.

Chapter 7. Using Simpler Orchestration Tools –
Fleet and Cattle
Docker Swarm, Kubernetes, and Mesosphere are the big players in Docker orchestration, but they
are hardly the only ones. In some cases, they are overkill. This chapter will look at two of the
other options—Fleet and Cattle. Each tool has its own strengths and weaknesses. Fleet is a
lower-level tool that is great for small environments or as a base for other tools. Cattle is a fully
featured orchestration suite that is simpler to use than Kubernetes or Mesosphere.

This chapter will cover the following topics:

Using Fleet
Installing Fleet
Using fleetctl to start, stop, and remove services
Using environment variables with Fleet unit files to configure containers
Setting service affinity and anti-affinity for high availability
Using sidekick services
Running global services

Using Rancher Cattle
Installing Rancher Server, agents, and clients
Managing application stacks with rancher-compose
Perform zero downtime upgrades
Configuring health checks
Using the built-in DNS discovery and load balancing services

Using Fleet
Fleet was developed by the CoreOS company as a way of managing containers in CoreOS
clusters. It is a low-level tool that other tools can build upon. Fleet has limits of approximately
100 nodes and 1,000 services. Having said that, for a small cluster, it can be just enough
orchestration to meet the needs of your organization. It can also provide a solid base to build in-
house processes.

Like all Docker orchestration tools, Fleet requires an overlay network. CoreOS ships with
Flannel installed, but any Docker overlay network can be used. This includes the Docker native
overlay and Weave Net. Overlay networks were described in Chapter 3, Cluster Building Blocks
– Registry, Overlay Networks, and Shared Storage. It is important to note that neither Flannel nor
Fleet provide any sort of service discovery. If that feature is needed, an overlay network which
provides service discovery, such as Weave Net, may be used instead.

Starting Fleet
Since Fleet was developed by CoreOS, that is the easiest way to use it. As mentioned in Chapter
1, Getting Started with Docker Orchestration, Linux Container by CoreOS is a Linux
distribution specifically designed to run containers. It uses Cloud-Init to configure the entire
system on boot. This includes Fleet.

Fleet uses etcd to store the cluster configuration and for communication. Chapter 3, Cluster
Building Blocks – Registry, Overlay Networks, and Shared Storage covered setting up etcd on
CoreOS for the Flannel overlay network. The exact same process is used with Fleet. All that
needs to happen is to ensure that Fleet is enabled in the cloud-config file:

#cloud-config

coreos:
 etcd2:
 discovery: https://discovery.etcd.io/<token>
 advertise-client-urls:
 http://$private_ipv4:2379,http://$private_ipv4:4001
 initial-advertise-peer-urls: http://$private_ipv4:2380
 listen-client-urls:
 http://0.0.0.0:2379,http://0.0.0.0:4001
 listen-peer-urls: http://$private_ipv4:2380
 flannel:
 public_ip: $private_ipv4
 etcd_endpoints: http://$private_ipv4:2379
 fleet:
 public_ip: $private_ipv4
 etcd_servers: http://$private_ipv4:2379
 units:
 - name: etcd2.service
 command: start
 - name: fleet.service
 command: start
 - name: flanneld.service
 command: start
 drop-ins:
 - name: 50-networking-config.conf
 content: |
 [Service]
 ExecStartPre=/usr/bin/etcdctl set
 /coreos.com/network/config
 '{"Network":"10.42.0.0/16"}'
 - name: docker.service
 command: start
 drop-ins:
 - name: 40-flannel.conf
 content: |
 [Unit]
 Requires=flanneld.service
 After=flanneld.service

This is the sample cloud-config file from Chapter 3, Cluster Building Blocks - Registry,

Overlay Networks, and Shared Storage, with the configuration to ensure that the fleet service is
started when CoreOS boots, highlighted.

For new clusters, replace <token> with the one generated by wget -qO -
'https://discovery.etcd.io/new?size=3', where size is the initial number of hosts in your
cluster. If you are adding hosts, use the same token that was used for the original hosts in the
cluster.

Verifying the cluster
Once the nodes have started, there are two commands that will verify that all the nodes are
communicating as they should. First, use etcdctl cluster-health to ensure that etcd sees all
the nodes in the cluster:

$ etcdctl cluster-health
member 577728b97424518 is healthy: got healthy result from
http://172.17.8.103:2379
member 82f8a69dac8afeb3 is healthy: got healthy result from
http://172.17.8.102:2379
member d263b74b628b0458 is healthy: got healthy result from
http://172.17.8.101:2379
cluster is healthy

This example is from a three node cluster. The output of etcdctl will list each host in the cluster
and their state. The important part is the last line that shows that the cluster is healthy.

The other command is fleetctl list-machines. This command will list every machine in the
cluster and any metadata that has been set on them:

$ fleetctl list-machines
MACHINE IP METADATA
86bceaea... 172.17.8.103 -
9c07271b... 172.17.8.102 -
acbccfa4... 172.17.8.101 -

The fleetctl tool uses SSH to communicate with the other nodes in the cluster. Make sure that
your public key is in ~core/.ssh/authorized_keys on every server. It also requires that you
have an SSH-agent running. You can use an existing agent from your own desktop by passing -A to
your ssh command. For example, ssh -A core@core-01 will connect to the core-01 server as
the core user and forward your existing agent to the server. This will allow you to use your own
SSH key without the need to copy the private key to all the Fleet nodes. Be aware that this is a
potential security hole.

Starting a container
Services in Fleet are defined by systemd unit files. These files work like any other unit file in
systemd, but there are a few Fleet-specific extensions to allow for scheduling services across the
cluster. Let's start with a simple nginx service.

Create the nginx.service file in the current working directory with the following contents:

[Unit]
Description=Nginx
After=docker.service
Requires=docker.service

[Service]
TimeoutStartSec=infinity
ExecStartPre=-/usr/bin/docker kill nginx
ExecStartPre=-/usr/bin/docker rm nginx
ExecStartPre=-/usr/bin/docker pull nginx
ExecStart=/usr/bin/docker run --name nginx -p 80:80 nginx
ExecStop=/usr/bin/docker stop nginx

The [Unit] section sets the description and some meta information about the service.
The Description option is a short, freeform description of the service. The After option tells
Fleet that this service must start after Docker. Since it does not make sense to run a Docker
container without Docker, the Requires option is set. For both After and Requires, the value is
the name of a systemd unit. Additional units can be added to both by adding additional After or
Requires lines or by adding additional units to the existing lines, separated by spaces.

The steps needed to start a service that is set in the [Service] section. The TimeoutStartSec
option is the number of seconds to wait for a service to start. If the service does not complete
start up within the timeout window, Fleet assumes the service failed and kills it.

Each ExecStartPre line combines to form a script that runs prior to starting the actual service.
Prefixing a command with a minus (-) tells systemd that it is okay for this step to fail. Otherwise,
any command that exits with a non-zero error code will prevent the service from starting.

The first command kills the existing nginx is container. If it is not running, this command will
fail, but that is just fine. Killing the service might seem a little extreme. If the service stops
cleanly, then the running container will be in a stopped state and kill will do nothing. If the
service did not stop cleanly, docker kill ensures that the service is stopped so that it can be
restarted.

The second command removes the container from Docker. A container cannot start if a container
with the same name already exists. Removing the container ensures that the container will be
recreated with all the right options later.

The third and final ExecStartPre line pulls a new copy of the image. This ensures that the
service is not running a stale image. One might think that this would be a command that should

prevent the service from starting if it fails. Letting it fail means that the service can still start if the
registry is down, assuming that the image has already been downloaded.

The ExecStart command is the command that actually starts the service. Multiple lines can be
specified, but that does not make as much sense when using Docker containers. It is important that
the -d flag is not passed to docker run. If it is, Fleet loses track of the container and stops the
service.

Finally, ExecStop is the command to run to stop the service. Remember that docker stop leaves
the container around. This is why docker rm is needed in ExecStartPre. You could remove the
container here. Keeping it around makes it easier to troubleshoot if there are problems:

$ fleetctl start nginx.service
Unit nginx.service inactive
Unit nginx.service launched on 86bceaea.../172.17.8.103

The preceding command loads the given unit file and starts it. In this case, the nginx.service
file is in the current directory.

A unit file can be added to the Fleet registry without starting with the fleetctl submit
command. The service can be started at a later time with fleetctl start:

$ fleetctl submit nginx.service
Unit nginx.service inactive

Monitoring services
There are two ways to check the status of a service. The first is the same fleetctl list-units
command, which will also show the unit name, the machine where it is assigned, and the current
status of each unit:

$ fleetctl list-units
UNIT MACHINE ACTIVE SUB
nginx.service 86bceaea.../172.17.8.103 active running

The other option is to use fleetctl status. This will not only show the status of the container
but also the most recent log entries for the service and the status codes of the ExecStartPre
commands:

$ fleetctl status nginx.service
● nginx.service - Nginx
 Loaded: loaded (/run/fleet/units/nginx.service;
 linked-runtime; vendor preset
Active: active (running) since Fri 2016-10-21 02:59:31
 UTC; 1min 24s ago
 Process: 3947 ExecStartPre=/usr/bin/docker pull nginx
 (code=exited, status=0/S
Process: 3942 ExecStartPre=/usr/bin/docker rm nginx
 (code=exited, status=0/SUC
Process: 3933 ExecStartPre=/usr/bin/docker kill nginx
 (code=exited, status=1/F
Main PID: 3953 (docker)
 Tasks: 7
 Memory: 3.7M
 CPU: 40ms
 CGroup: /system.slice/nginx.service
 └─3953 /usr/bin/docker run --name nginx -p
 80:80 nginx
Oct 21 02:59:27 core-03 systemd[1]: Starting Nginx...
Oct 21 02:59:27 core-03 docker[3933]: Error response
 from daemon: Cannot kill co
Oct 21 02:59:27 core-03 docker[3942]: nginx
Oct 21 02:59:28 core-03 docker[3947]: Using default
 tag: latest
Oct 21 02:59:31 core-03 docker[3947]: latest: Pulling
 from library/nginx
Oct 21 02:59:31 core-03 docker[3947]: Digest:
 sha256:e40499ca855c9edfb212e1c3ee1
Oct 21 02:59:31 core-03 docker[3947]: Status: Image is
 up to date for nginx:late
Oct 21 02:59:31 core-03 systemd[1]: Started Nginx.

Viewing service logs
It is possible to view the logs from a service by viewing the journal for the unit with fleetctl
journal. The command takes the name of the unit of interest. The lines marked as coming from
Docker are both the output from the docker command as well as the output of docker logs. The
-f flag can be added to follow the logs as new entries are added:

$ fleetctl journal nginx.service
-- Logs begin at Thu 2016-10-20 00:35:44 UTC, end at Fri 2016-10-21 03:12:36
UTC. --
Oct 21 02:56:45 core-03 systemd[1]: Stopped Nginx.
Oct 21 02:59:27 core-03 systemd[1]: Starting Nginx...
Oct 21 02:59:27 core-03 docker[3933]: Error response
from daemon: Cannot kill container nginx: Container
816e99e3ec3de47cf48f5ab19900db4a162905a133078f4fbc3bd91b27b5c24b is not
running
Oct 21 02:59:27 core-03 docker[3942]: nginx
Oct 21 02:59:28 core-03 docker[3947]: Using default tag: latest
Oct 21 02:59:31 core-03 docker[3947]: latest: Pulling from library/nginx
Oct 21 02:59:31 core-03 docker[3947]: Digest:
sha256:e40499ca855c9edfb212e1c3ee1a6ba8b2d873a294d897b4840d49f94d20487c
Oct 21 02:59:31 core-03 docker[3947]: Status: Image is up to date for
nginx:latest
Oct 21 02:59:31 core-03 systemd[1]: Started Nginx.
Oct 21 03:12:32 core-03 docker[3953]: 172.16.69.1 - - [21/Oct/2016:03:12:32
+0000] "GET / HTTP/1.1" 200 612 "-" "Wget/1.18 (linux-gnu)" "-"

Stopping a service
A running service is stopped with fleetctl stop. It takes the name of the service as the only
argument:

$ fleetctl stop nginx.service
Unit nginx.service loaded on 86bceaea.../172.17.8.103

The stop command stops the running container, but it leaves it scheduled on a node in the cluster.
When the service is restarted, it will start on the same node that it was running on before.

To unschedule a service, use the fleetctl unload command. This will remove the service from
the list of active units. It will remain in the Fleet registry and can be started again with fleetctl
start:

$ fleetctl unload nginx.service
Unit nginx.service inactive

A service can be permanently removed from the cluster with the command fleetctl destroy:

$ fleetctl destroy nginx.service
Destroyed nginx.service

The destroy command is also used when changing a unit. The service must be removed with
fleetctl destroy then it can be recreated with the required changes.

Using environment variables
Many Docker images use environment variables to configure them and control how they run. Fleet
can define those variables in the unit file for the service, using the Environment option:

[Unit]
Description=MySQL
After=docker.service
Requires=docker.service

[Service]
Environment=MYSQL_ROOT_PASSWORD=password
Environment=MYSQL_DATABASE=myapp
TimeoutStartSec=infinity
ExecStartPre=-/usr/bin/docker kill mysql
ExecStartPre=-/usr/bin/docker rm mysql
ExecStartPre=-/usr/bin/docker pull mysql
ExecStart=/usr/bin/docker run --name mysql -e MYSQL_ROOT_PASSWORD -e
MYSQL_DATABASE -p 3306:3306 mysql
ExecStop=/usr/bin/docker stop mysql

This example starts a MySQL image and defines the MySQL root password and an initial
database. The values of the variables do not need to be defined in the docker run command.
Docker will use the values set in the Environment lines.

Rather than specifying all of the environment variables in the unit as was done earlier, they can all
be placed into an EnvironmentFile. Variables and their values are defined, one per line:

MYSQL_ROOT_PASSWORD=password
MYSQL_DATABASE=myapp

The file is then specified in the EnvironmentFile option in the [Service] section of the unit:

...
[Service]
EnvironmentFile=/etc/mysql.env
...

The file must exist on every node in the cluster where the service may run. If it does not exist, the
service will be unable to start.

Scheduling services with affinity
It is often desirable to ensure that a service runs on the same host as another service. Contrarily, it
may be better to force services to run on separate hosts. This process, known as affinity, is
configured in a special [X-Fleet] section of the unit file.

Setting positive affinity

There are two options that control affinity between containers. The first, MachineOf, is the name
of a unit file in Fleet. Fleet will attempt to place the unit with the MachineOf option on the same
node that is running the named service.

For example, let's assume that the MySQL service described in the previous section is running
somewhere in the Fleet cluster. For performance reasons, it is desirable to run a certain web
application that uses the database on the same node. In this example, nginx will be the web
application:

[Unit]
Description=Nginx Affinity
After=docker.service
Requires=docker.service
Requires=mysql.service

[Service]
TimeoutStartSec=infinity
ExecStartPre=-/usr/bin/docker kill nginx
ExecStartPre=-/usr/bin/docker rm nginx
ExecStartPre=-/usr/bin/docker pull nginx
ExecStart=/usr/bin/docker run --name nginx -p 80:80 nginx
ExecStop=/usr/bin/docker stop nginx

[X-Fleet]
MachineOf=mysql.service

This is the same basic nginx service defined earlier in the chapter. There are two things to note
here. First, a Requires option was added to ensure that mysql.service is running. If it is not
running and is defined, Fleet will start it. Next is the [X-Fleet] section and the MachineOf
option which ensures that Fleet will try to run nginx.service on the same host as
mysql.service.

It is important to keep in mind that affinity definitions should always be one way. If they are not, a
race condition develops. In this example, if mysql.service also had
MachineOf=nginx.service, Fleet would be unable to start either service. It would not be
possible to determine where to start the first service because the other one has not been started
yet.

Using negative affinity

Sometimes it is important that two services never run on the same node. Generally, this is for

redundancy and high availability reasons. Fleet provides the Conflicts option for those
occasions. The Conflicts option can match an exact unit name or a group of services using glob-
matching.

With glob-matching, an asterisk (*) is used to match zero or more characters. For example, to
match any service that starts with nginx, the pattern would be nginx*. The following snippet
shows a unit that is configured not to start on any node that is running a service that starts with
nginx:

[Unit]
Description=Nginx Affinity
After=docker.service
Requires=docker.service
...
[X-Fleet]
Conflicts=nginx*

High availability

As mentioned earlier, negative affinity is often used for high availability. Fleet uses systemd
template units, which make it easy to start multiple, identical services. To start, create a file
named nginxha@.service:

[Unit]
Description=Nginx HA
After=docker.service
Requires=docker.service

[Service]
TimeoutStartSec=infinity
ExecStartPre=-/usr/bin/docker kill nginx
ExecStartPre=-/usr/bin/docker rm nginx
ExecStartPre=-/usr/bin/docker pull nginx
ExecStart=/usr/bin/docker run --name nginx -p 80:80 nginx
ExecStop=/usr/bin/docker stop nginx

[X-Fleet]
Conflicts=nginxha@*.service

For the most part, this is identical to the nginx.service unit that was used before. The
Conflicts option is set to ensure that any unit that uses this template.

Each instance of the template is named nginxha@id.service, where id is whatever makes sense
for the service. Usually, id is a number, but it does not have to be:

$ fleetctl start nginxha@1.service
Unit nginxha@1.service inactive
Unit nginxha@1.service launched on 86bceaea.../172.17.8.103
$ fleetctl start nginxha@2.service
Unit nginxha@2.service inactive
Unit nginxha@2.service launched on 9c07271b.../172.17.8.102
$ fleetctl start nginxha@3.service

Unit nginxha@3.service inactive
Unit nginxha@3.service launched on acbccfa4.../172.17.8.101
$ fleetctl list-units
UNIT MACHINE ACTIVE SUB
nginxha@1.service 86bceaea.../172.17.8.103 active running
nginxha@2.service 9c07271b.../172.17.8.102 active running
nginxha@3.service acbccfa4.../172.17.8.101 active running

In this example, three instances of the nginxha@.service template were started. They were
named nginxha@1, nginxha@2, and nginxha@3. Notice; all of them were started on different
machines. A load balancer could then be used to spread the load across all the instances. If any of
the units fail, the overall service will remain up.

Sidekick services
Most services are not aware of what else is happening in the cluster, by design. How does a
service let other things know that it is up and ready to answer requests? To do that, a separate
service called sidekick is started. The sidekick will notify the other services that the container
has started or stopped. The specifics will vary depending on the environment. For example, it
might issue API calls to an external load balancer.

Fleet does not have a native way to inform other services that a new unit has started. What it does
have is etcd. The etcd key value store is designed for exactly this sort of message passing. The
following example is a simple sidekick that updates etcd when nginx.service starts:

[Unit]
Description=Nginx Sidekick
BindsTo=nginx.service
After=nginx.service

[Service]
ExecStart=/bin/sh -c "while [true]; do etcdctl set /services/websites/nginx
'{ "host": "%H", "port": 80 }' --ttl 60; sleep 50; done"
ExecStop=/usr/bin/etcdctl rm /services/websites/nginx

[X-Fleet]
MachineOf=nginx.service

The BindsTo option works like Requires, but it tells Fleet to stop the sidekick if
nginx.service stops for any reason. The ExecStart option runs an infinite loop that updates the
/services/websites/nginx key in etcd with a bit of JSON. A TTL is added to the key with the
--ttl flag to ensure that it disappears if the sidekick fails. The sleep command waits 50
seconds before updating the key again. The times can be adjusted to the needs of the environment,
but the sleep should always be less than the TTL minus the time it takes to update etcd.

The %H variable in the JSON is replaced with the hostname of the node that nginx-
sidekick.service is running on. This could be problematic if the sidekick were to be started on
a different host from nginx.service. However, the Fleet affinity option, MachineOf, ensures
that Fleet always schedules the sidekick on the same host as nginx.service.

Another service can monitor the specific files or directories within the etcd tree and take actions
based on updates to the tree. The Confd tool does exactly that, and based on the contents of the
tree, can update a configuration template and restart a service. The implementation of Confd is
left as an exercise for the reader. Confd is available at https://github.com/kelseyhightower/confd.

https://github.com/kelseyhightower/confd

Starting global units
There are often times when it is desirable to run containers for logging or monitoring on every
node in the cluster. Fleet accomplishes this with the Global option in [X-Fleet]:

[Unit]
Description=Monitor
After=docker.service
Requires=docker.service

[Service]
TimeoutStartSec=infinity
ExecStartPre=-/usr/bin/docker kill monitor
ExecStartPre=-/usr/bin/docker rm monitor
ExecStartPre=-/usr/bin/docker pull monitor
ExecStartPre=-mkdir -p /var/lib/monitor
ExecStart=/usr/bin/docker run -v /var/lib/monitor:/var/www/rrd --net=host --
name=monitor hyper/host-monitor
ExecStop=/usr/bin/docker stop monitor

[X-Fleet]
Global=true

This example starts a simple container that creates RRD files and images which chart CPU,
memory, and network data. The Global option tells Fleet to start a copy of the service on every
node in the cluster:

$ fleetctl start monitor.service
Unit monitor.service
Triggered global unit monitor.service start
$ fleetctl list-units
UNIT MACHINE ACTIVE SUB
monitor.service 86bceaea.../172.17.8.103 active running
monitor.service 9c07271b.../172.17.8.102 active running
monitor.service acbccfa4.../172.17.8.101 active running

There they are. One monitor.service for each node in this cluster. This can be done for as many
global services as needed.

Using Rancher Cattle
The word "Simpler" in the title is a bit of a misnomer when applied to Rancher Cattle. Cattle is a
fully featured orchestration system available with Rancher. It is simpler to set up than Kubernetes
or Mesosphere. It is also easier to use due to a robust web interface and command-line tool based
on Docker Compose. If you have already used Docker Compose, you may be quite comfortable
with Cattle.

Installing Rancher
Rancher and its components run in Docker containers. This makes it very easy to install almost
anywhere.

Installing Rancher server

The Rancher server can be added to any existing Docker cluster. The only requirement is that it is
running Docker 1.10.3 or higher. A quick and dirty install for testing is as simple as running
docker run -d -p 8080:8080 rancher/server. The web interface will then be available at
port 8080 on your Docker host.

For a permanent solution, the Rancher data will need to be stored in a volume or connected to an
external MySQL database. The volume can be any Docker volume including a directory on the
host server. The following example will store the MySQL data in /var/lib/rancherdb:

$ docker run -d -v /var/lib/rancherdb:/var/lib/mysql -p 8080:8080
rancher/server

For an external database, create an environment file that contains the connection information. The
database set in CATTLE_DB_CATTLE_MYSQL_NAME must have already been created and the user set
in CATTLE_DB_CATTLE_USERNAME must have been granted all rights to the Cattle database. The
schema will be created automatically by Rancher if it does not already exist:

CATTLE_DB_CATTLE_MYSQL_HOST=mysql-host
CATTLE_DB_CATTLE_MYSQL_PORT=3306
CATTLE_DB_CATTLE_MYSQL_NAME=cattle
CATTLE_DB_CATTLE_USERNAME=cattle
CATTLE_DB_CATTLE_PASSWORD=cattle-password

The Rancher Server can be started with the environment file. In this example, it is named
cattle.env:

$ docker run -d --env-file cattle.env --name rancher-server -p 8080:8080
rancher/server

Note

The Rancher Server can be installed on multiple nodes for high availability. For more
information, refer to http://docs.rancher.com/rancher/v1.2/en/installing-rancher/installing-server/.

Installing Rancher agents

Once Rancher has been started, it can create new hosts using any upstream provider that is
supported by docker-machine. Log in to the web UI, go to Hosts in the
INFRASTRUCTURE menu, and click on Add Host. A wizard will walk you through adding the
host to the cloud environment:

http://docs.rancher.com/rancher/v1.2/en/installing-rancher/installing-server/

It is also possible to add the agent manually. Select the Custom option in Add Host. There will
be a Docker command that will need to be run on each Docker host that is being added to the
cluster. It will look something like the command listed here:

sudo docker run -d --privileged -v /var/run/docker.sock:/var/run/docker.sock
-v /var/lib/rancher:/var/lib/rancher rancher/agent:v1.0.2
http://172.17.8.101:8080/v1/scripts/781E07FE518B7181D563:1477180800000:N3gZUQ
goo3mFPCgkQEimBOnEXFc

The Rancher agent creates IPSEC links between all the hosts in the environment to provide a
secure overlay network. It also listens for Docker events and sends regular updates to the Rancher
server with information on running containers and performance statistics.

Installing Rancher Compose

Nearly anything that needs to be done to create and manage services in Rancher can be done
through the web interface. However, there is a command-line tool called rancher-compose that
can be used as well. It is available for Windows, OS X, and Linux. To install Rancher Compose
follow these steps:

1. To download it, click on Download CLI in the bottom right corner of the web interface and
select your operating system.

2. Unpack the downloaded archive and place the rancher-compose tool in your path.
3. Rancher Compose requires an API key to authenticate the Rancher server. A new key for the

environment or for a specific user can be created in the API section at the top of the page.
4. Click on Add Environment API Key or Add Account API Key to create the appropriate

key. You will be presented with an access key and a secret key.
5. Copy them to a safe location. There is no way to get the secret key after it has been created:

The access key, secret key, and Rancher URL are passed to rancher-compose using the --
access-key, --secret-key, and --url flags, respectively:

$ rancher-compose --url http://rancher:8080/ --access-key=CA... --secret-
key=C4G...

It is also possible to set the keys and URL with the RANCHER_ACCESS_KEY,
RANCHER_SECRET_KEY, and RANCHER_URL environment variables. Add them to the equivalent of
.bash_profile for your client system:

export RANCHER_URL=http://rancher:8080/
export RANCHER_ACCESS_KEY=CA...
export RANCHER_SECRET_KEY=C4G...

Introducing environments

Rancher supports running multiple environments. After installation, a single environment named
default will be created that runs the Cattle orchestration suite. Additional environments can be
created as needed. The environments are isolated from each other. This makes it easy to create
environments for development, testing, production, or environments for different business units.

While Cattle is the default orchestration tool, Rancher also has the ability to create new
environments running Docker Swarm, Kubernetes, and Mesosphere. This is probably the easiest
way to install either of those systems in a local environment. Once the new environment is

created, add a new host. The services for the environment, such as kubectl or the Swarm agent,
will be added automatically.

For more information on using Docker Swarm refer to Chapter 4, Orchestration with Docker
Swarm, for Kubernetes refer to Chapter 5, Deploying and Managing Services with Kubernetes,
and for Mesosphere refer to Chapter 6, Working with Mesosphere.

Managing services
Cattle uses Docker Compose files to define services. As of the 1.1.4 release, only version 1 of
the Docker Compose specification is supported. Version 2 support is being added in Rancher 1.2.

Rancher Compose builds on the standard docker-compose.yml file in two ways. First, special
labels can be added to services to define things such as affinity. Second, another file called
rancher-compose.yml can be used to define Rancher-specific settings such as health checks.

Note

The following sections discuss using the Rancher CLI. All of the following actions can also be
done through the web interface.

Starting a stack

By design, the rancher-compose tool is very similar to docker-compose. A stack is a
collection of services defined in a docker-compose.yml file and an optional rancher-
compose.yml file. There are pre-built stacks for many applications in the Rancher catalog. In
addition to quickly deploying services, they can be great examples for building your own stacks.

To create your own stack, make a directory for your application that contains the docker-
compose.yml file. The stack name is derived from the directory name, but may be overridden
with the -s flag. When the compose files have been created, run rancher-compose up in the
directory. The following is a docker-compose.yml file that starts a WordPress stack:

wordpress:
 image: wordpress
 env_file:
 - db.env
db:
 image: mysql:5.6
 env_file:
 - db.env
lb:
 image: rancher/load-balancer-service
 ports:
 - 80:80
 links:
 - wordpress:wordpress

This example starts three services. The first, wordpress, starts the WordPress application. The
second, db, is a MySQL database. Both services use the db.env environment file to load the
environment variables needed to start. Environment files were covered in Chapter 2, Building
Multi-Container Applications with Docker Compose.

The lb service configures a Rancher load balancer service for this application. Load balancers
will be covered in more detail later in this chapter. For now, it is enough to know that it is
configured to send port 80 to the wordpress service.

As with docker-compose, multiple docker-compose.yml files may be specified on the
command line with the -f flag. The -d flag can also be set to start the stack in the background:

$ rancher-compose up -f docker-compose.yml -f production.yml -d

Stopping a stack

Services are stopped with rancher-compose stop. This must be run in the same directory that
contains the docker-compose.yml file. By default, rancher-compose will stop all running
services:

$ rancher-compose stop
INFO[0000] [0/3] [lb]: Stopping
INFO[0000] [0/3] [db]: Stopping
INFO[0000] [0/3] [wordpress]: Stopping
INFO[0001] [0/3] [lb]: Stopped
INFO[0001] [0/3] [db]: Stopped
INFO[0001] [0/3] [wordpress]: Stopped

Individual services may be stopped by specifying the service name on the command line:

$ rancher-compose stop wordpress
INFO[0000] [0/3] [wordpress]: Stopping
INFO[0001] [0/3] [wordpress]: Stopped

Removing a stack

A service can be removed with rancher-compose rm. A single service can be removed by
specifying the service name on the command line. The following command removes the lb
service:

$ rancher-compose rm lb
INFO[0000] [0/3] [lb]: Deleting
INFO[0000] [0/3] [lb]: Deleted

Removing an entire stack requires that the --force flag be added to the command line. If --
force is not included, rancher-compose will exit with an error and a reminder to add it:

$ rancher-compose rm --force
INFO[0000] [0/3] [lb]: Deleting
INFO[0000] [0/3] [wordpress]: Deleting
INFO[0000] [0/3] [db]: Deleting
INFO[0000] [0/3] [db]: Deleted
INFO[0000] [0/3] [wordpress]: Deleted
INFO[0000] [0/3] [lb]: Deleted

Upgrading a stack

There are two ways to upgrade a stack. The first is an in-service upgrade and the second is a
rolling upgrade. Both options can provide zero-downtime upgrades. An in-service upgrade will
replace the service running in a stack without changing the name of the service. In the WordPress
example, the wordpress service remains wordpress. With a rolling upgrade, a new service must

be defined which requires changing the service name in docker-compose.yml. In-service
upgrades are recommended by Rancher and the only upgrade option available through the web
interface.

In-service upgrades are performed with rancher-compose up -upgrade:

$ rancher-compose up --upgrade -d
INFO[0006] [0/3] [db]: Starting
INFO[0006] [0/3] [wordpress]: Starting
INFO[0009] [1/3] [db]: Started
INFO[0009] Updating wordpress
INFO[0011] Upgrading wordpress
INFO[0029] [2/3] [wordpress]: Started
INFO[0029] [2/3] [lb]: Starting
INFO[0034] [3/3] [lb]: Started

Any changes to existing services will be applied. If an upgrade requires a change to a running
service, the containers are stopped and then the new containers for the service are started. This
behavior is controlled on a per-service basis with the upgrade_strategy option in rancher-
compose.yml. The following example configures Rancher to start new wordpress services
before stopping the old ones. The db service, which runs MySQL, continue to use the default
behavior and will still stop the container first before starting a new one:

wordpress:
 upgrade_strategy:
 start_first: true

There are a couple of additional flags to rancher-compose that are commonly used with
upgrades. The first is the --pull flag, which forces Rancher to pull a new copy of the image,
even if it has it already. This is especially useful if you are using the latest tag for an image and
need to ensure that the latest copy is available.

The second flag is the --force-upgrade flag. This will force Rancher to perform an upgrade
even if the docker-compose.yml and rancher-compose.yml files have not changed. When
combined with the --pull flag, this can be used to upgrade all containers in the stack to the latest
version of whichever image tag they are running. Again, this is most useful when using the latest
tag or a tag that gets updated with point releases.

By default, rancher-compose will follow the logs of all the services in the stack. The -d flag
will perform the upgrade in the background without displaying the logs.

Rolling back and confirming upgrades

At this point in the process, there is still an opportunity to rollback an upgrade. If the upgrade
goes badly, it can be rolled back by running rancher-compose up --upgrade --rollback.
The rollback can be done at any time as long as the update has not been confirmed.

Once you are sure that the upgrade is successful, it can be confirmed by running rancher-
compose up --upgrade --confirm-upgrade. Remember that once an upgrade has been

confirmed, it cannot be rolled back:

$ rancher-compose up --upgrade -d --confirm-upgrade
INFO[0005] [0/3] [db]: Starting
INFO[0005] [0/3] [wordpress]: Starting
INFO[0009] [1/3] [db]: Started
INFO[0013] [2/3] [wordpress]: Started
INFO[0013] [2/3] [lb]: Starting
INFO[0016] [3/3] [lb]: Started

In both cases, rancher-compose will follow the logs of the services in the stack. This can be
suppressed by passing the -d flag to rancher-compose:

Checking service health

Rancher supports adding health checks to a service. A check can be configured to query a TCP
port or to make an HTTP request. For TCP, the service just needs to accept a connection. For
HTTP, the request must return a status code between 200 and 399. Anything else will trigger an
error. The following is a rancher-compose.yml file that defines an HTTP check for WordPress
and a TCP check for MySQL:

wordpress:
 upgrade_strategy:
 start_first: true
 health_check:
 port: 80
 request_line: GET / HTTP/1.0
 interval: 3000
 initializing_timeout: 60000
 unhealthy_threshold: 3
 strategy: recreate
 response_timeout: 2000
db:
 health_check:
 port: 3306
 interval: 3000
 initializing_timeout: 60000
 unhealthy_threshold: 3
 strategy: recreate
 response_timeout: 2000

For an HTTP check, request_line must be set. If it is empty or absent, the check will only test
the TCP connection. The initializing_timeout option defines the time in milliseconds to wait
for a service to start. The number of milliseconds between checks is defined by the interval
setting. If the check is not successful in the number of milliseconds defined in
response_timeout, the check will fail.

The unhealthy_threshold option sets the number of failures before Rancher does something
about it. That something is defined by the strategy option. When set to recreate, as in the
example, Rancher will recreate the service. There are two other options for strategy. The first
option is none, which tells Rancher to do nothing. The second is recreateOnQuorum, which tells

Rancher to restart the service if there is a given number of healthy containers in the service. The
number is defined in the recreate_on_quorum_strategy_config section. An example is
shown here:

recreate_on_quorum_strategy_config:
 quorum: 1

Health checks can be updated by upgrading the stack with rancher-compose up --upgrade.

Scheduling and affinity

Rancher supports scheduling services manually on specific hosts, running them globally on all
hosts in the environment, or setting service affinity or anti-affinity. Rancher does this with labels
on the service in docker-compose.yml. A full list of the labels that can be used for scheduling is
available at http://docs.rancher.com/rancher/v1.2/en/cattle/scheduling/.

http://docs.rancher.com/rancher/v1.2/en/cattle/scheduling/

Using networking services
Rancher provides a couple of useful services. First of all, Rancher uses IPSEC to create a secure
overlay network for services running on the cluster. Second, it provides DNS-SD for services
within a stack and for referencing services across stacks. Finally, Rancher can create load
balancers, which can spread the requests across containers in a service or redirect traffic based
on HTTP request information.

Discovering services
Rancher provides DNS-SD for all services running in the cluster. Within a stack, all services are
accessible by the service name. In the preceding WordPress example, the wordpress container
can access the MySQL service with the db hostname. Services running other stacks are accessible
with <service name>.<stack name>. For example, if the preceding WordPress stack was
named wordpress, the MySQL service would be db.wordpress.

Each service can specify an alias to refer to another service using the links option. In the
following example, an alias is created in the wordpress service. That link makes the db service
accessible with the name mysql:

wordpress:
 image: wordpress
 env_file:
 - db.env
 links:
 - db:mysql
db:
 ...

Load balancer
Rancher provides a HAproxy-based load balancer. It can proxy at layer four by simply
forwarding connections to the appropriate port or at layer seven, where it can route traffic based
on HTTP information. The load balancer can also provide SSL termination for any service.

The easiest way to create a load balancer is through the web interface. Click on the down arrow
next to Add Service and select Add Load Balancer. A window will open providing
configuration options:

If the load balancer is providing SSL termination, a certificate must be created in
INFRASTRUCTURE | SSL. Multiple certificates can be configured for web services. The load
balancer will use SNI to provide the correct certificate based on the requested server name.

As seen in the preceding WordPress example, a load balancer may be created as part of a
docker-compose.yml file. In that example, a simple load balancer is created that proxies HTTP
connections on port 80 to port 80 in the wordpress service. To use plain TCP, append /tcp to
the target port number. For example, to forward port 25 to TCP port 25 on a container, the port
entry would be 25:25/tcp.

Note

All of the load balancer settings from the web interface are also possible through docker-
compse.yml. For more details, refer to http://docs.rancher.com/rancher/v1.2/en/cattle/adding-
load-balancers/.

http://docs.rancher.com/rancher/v1.2/en/cattle/adding-load-balancers/

Further reading
This chapter and the preceding three showed just a few of the orchestration platforms out there.
There are many others and it seems as if another one is released every day. Here are some other
orchestration tools to look at:

Google, Amazon, and Microsoft all have container services as part of their cloud offerings.
These are often the easiest ways to use containers in the cloud.
Red Hat OpenShift is a PaaS platform built on top of Kubernetes. It is available as a hosted
platform or it can be installed on-site. There is also an open source variant called OpenShift
Origin. For more details, refer to https://www.openshift.com/.
Panamax is an open source project developed by CenturyLink based on Fleet and CoreOS. It
provides an easy to use web interface for managing applications. For more details, refer to
http://panamax.io/.
Modera Cloud is an open source package that works with Docker Swarm. It bills itself as
being, by developers for developers. It uses a command line interface to manage
applications. For more details, refer to https://mcloud.io/.
Microsoft Azure Stack unifies management of containers with the rest of your on premise
cloud. Windows Server 2016 released with container support, which is compatible with
Docker. Windows Server is capable of running Windows-based containers as well as Linux-
based containers in light weight VMs. As of this writing, Azure Stack is still a technical
preview. For more details, refer to https://azure.microsoft.com/en-us/overview/azure-stack/.

https://www.openshift.com/
http://panamax.io/
http://mcloud.io/
https://azure.microsoft.com/en-us/overview/azure-stack/

Summary
This chapter looked at two different tools—Fleet and Rancher. Fleet is a lower level system that
is great for small environments or as a base for a higher level tool. It was shown how to start and
stop services, set service affinity, run highly available services, and run global services across
the cluster.

Rancher makes it easy to run multiple environments using different orchestration tools, including
Docker Swarm, Kubernetes, Mesos, and Rancher Cattle. This chapter also showed how to use
rancher-compose to manage applications, create health checks, and load balance services.

The next chapter will cover logging and monitoring of Docker clusters.

Chapter 8. Monitoring Your Cluster
Setting up orchestration for a Docker cluster is only half the battle. One also needs visibility into
the cluster. Why is data retrieval slow? Is it disk or network? What is being logged by the web
server for an application? How much memory is being used by an application? At some point,
these or similar questions will come up and it will be up to you, as the administrator, to have the
answers for these.

This chapter will look at different tools that can be deployed to assist in monitoring and
troubleshooting. Some, such as Kibana, can provide a summary of the cluster health while others,
such as Sysdig, can provide deep dive information on applications or individual containers.

This chapter will cover the following topics:

Docker logging drivers
Logging for containers that do not send logs to standard out or standard error
Logging and viewing logs with the ELK stack
Using remote logging with Kubernetes, Mesosphere, and Docker Datacenter
Collecting performance metrics
Graphing metrics with Kibana and Grafana
Considerations for logging and troubleshooting
Using Sysdig to view container metrics in real time

Logging with containers
Nearly every application generates logs of some sort. They might track usage such as web server
access logs or they may only show start up or error messages. In every case, logs have their use
and not being able to see them can be a serious problem.

Logging in Docker is a strange beast. Containers are, by design, transitory. They are designed to
be created and destroyed often. This becomes a problem for application logs because log files
are deleted right along with a container.

The solution to the problem is two-fold. First, Docker provides a plugin system for logging,
which takes everything an application prints to standard out or standard error and logs it
somewhere. Second, a somewhere is needed for those logs to go to. In other words, a log
aggregation server is needed.

Using Docker logging plugins
Docker assumes that everything that is printed to standard out or standard error is a log. These
logs can be accessed by running docker logs <container name> where <container name>
is the name of the container. Unfortunately, these logs only exist as long as the container does.
Docker solved this problem by creating a logging plugin system that allows an administrator to
configure Docker to send those logs elsewhere.

In an orchestrated environment, logs should be sent to a log aggregation server. If they are kept
local, it becomes a challenge to find the logs when they are needed. There are several options for
remote logging available. Following are a few of them:

syslog: This is the tried and true remote logging solution on Unix and Linux systems. This is
a fine solution if a remote Syslog infrastructure is already available. The biggest drawback
is that Syslog logs are unformatted making it difficult to automatically mine useful data from
the logs.
gelf: The Graylog Extended Log Format (GELF) was developed by the Graylog project
to overcome the deficiencies in Syslog by providing a structured log format. It works hand-
in-hand with NoSQL style databases that can automatically index and search based on the
keys in the GELF entry.
fluentd: This takes the concept of structured logs one step further by making it easy to send
different logs to different logging and analytics services, including Elasticsearch, MySQL,
and Nagios. No matter what the environment is, it is a good bet that Fluentd can work with it.
awslogs and gcplogs: These plugins send logs to Amazon CloudWatch and Google Cloud
Logging, respectively. They are a great option if a Docker cluster is running exclusively on
AWS or GCE.
etwlogs: This Windows-only plugin sends Docker logs to Event Tracing for Windows
(ETW). From there, standard Windows tools such as System Center Operations Manager
(SCOM) can be used to aggregate and alert based on the logs.

A complete list of logging drivers and their settings may be found at
https://docs.docker.com/engine/admin/logging/overview/.

A log driver may be specified for the Docker daemon with the --log-driver flag. The driver
will apply to any containers started on the server. It is also possible to pass --log-driver as an
argument to docker run to override the logging options for that container.

Each logging driver takes a number of options specific to the driver. The syslog driver, for
example, has options for the remote Syslog server address, log facility, and TLS options. The
following example configures the Docker daemon to use the gelf driver to send logs to a Graylog
server. The address name is set with the gelf-address option:

$ docker daemon --log-driver=gelf --log-opt gelf-address=udp://graylog:12201
...

Setting the logging driver for a specific container works the same way. This example uses the

https://docs.docker.com/engine/admin/logging/overview/

syslog driver for a container:

$ docker run --log-driver=syslog ...

Nearly all of the logging plugins prevent the use of the docker logs command. The only way to
see the logs for those containers will be through the aggregation server. During container testing,
it may be helpful to set the log driver to the default json-file driver.

Note

Warning: All output from a container is sent to the log server. This includes all of the command
output from containers running a shell such as docker run -it busybox. The output of
commands run through docker exec are not included. Specify a local logging driver if you are
running commands that will output sensitive information that should not be in the logs.

Logging containers that do not play by the rules
There may be times when an application in a container does not output logs to standard output or
standard error. This is common for traditional applications that are being transitioned to run in
containers. There are a couple of options for handling the logs depending on the application.

The first option is to run a service such as Logstash or Filebeat inside the container. Logstash is
configured to watch the application's log files and send them to the appropriate server. A service
controller such as supervisord is used as the entrypoint in the Dockerfile to start the
application and Logstash. Be careful with this because it is possible that the logging service could
stop and not be restarted.

A second option is to configure a volume in the Dockerfile for the logs. Logstash could then be
run in a sidekick container to read the logs and send them to the aggregation server. If the service
is running in a Kubernetes cluster, a pod could be used to group the containers. This is a better
option, in general, because it keeps the logging tools separate from the application making it
easier to upgrade or replace each of them.

Logging with the ELK stack
The combination of Elasticsearch, Logstash, and Kibana make up the ELK stack. Each component
makes up a single part of the whole. Elasticsearch is the database. All log information will end up
here. Logstash is what puts (or stashes) the logs in Elasticsearch. Logstash has a number of input
plugins including gelf and syslog. Finally, Kibana provides a simple way to search the logs and
create dashboards based on the log information.

Starting Elasticsearch

Elasticsearch is a NoSQL style database that can be used by a number of tools. It is very fast and
was designed from the beginning to be able to run in a multi-master environment. The following
example starts a new Elasticsearch container:

$ docker run -d --name es -p 9200:9200 -p 9300:9300 elasticsearch -E
node.name="Node1"

Single configuration settings can be set with the -E flag. The value of node.name is the name of
this node in the Elasticsearch cluster. If you plan to run more than one Elasticsearch container,
two more options are needed. The first is cluster.name which is the name of the cluster and
must be the same for all nodes. The second is discovery.zen.ping.unicast.hosts which
contains a list of hosts to connect to. It may also be a DNS name that resolves to multiple hosts.
This is a good place to use the hostname from an overlay network's DNS-SD.

If a more involved configuration is needed, the configuration settings can be added to
/usr/share/elasticsearch/config in the container either as a volume or by building a new
image. The following Dockerfile shows how it might be done. This has the advantage of letting
you build an image with your configuration baked in and allowing you to version your images for
more controlled deployments in the cluster:

FROM elasticsearch:5.0
COPY config /usr/share/elasticsearch/config

The elasticsearch image stores its data in /usr/share/elasticsearch/data. This should be
a persistent, network volume. The exact configuration of the volume will depend on what is being
used for shared storage.

Starting Logstash

Logstash is a tool that takes logs from various sources and stores them in Elasticsearch. The
simplest way to use it with Docker is to configure it to listen for GELF logs. The configuration
will look similar to the one shown here:

input {
 gelf { }
}
output {
 elasticsearch {

 hosts => ['es.weave.local']
 }
}

The gelf block tells Logstash to listen for GELF logs. The elasticsearch block tells Logstash
that output is going to Elasticsearch. The hosts option is a comma delimited list of hosts. It can
also be a DNS entry that returns one or more IP addresses:

$ docker run -d --name logstash -p 9200:9200 -p 12201:12201/udp logstash -f
/config/logstash.conf

The configuration file to use is set with the -f flag. This file can be added to the container as a
volume or added to a custom logstash image. Adding the configuration to the image prevents
configuration drift and ensures that every Logstash service is doing the same thing:

FROM logstash:5.0
COPY logstash.conf /config/logstash.conf

There are two options for using Logstash with Docker:

The first is to run a central Logstash service that every Docker host uses.
The second option is to run Logstash on every host and configure Docker to send logs to the
local Logstash container. This option will scale better on large clusters.

The following example shows how to configure the Docker daemon to send GELF logs to a
service running on localhost. If a central Logstash server is used instead, replace localhost with
the address of the server:

$ docker daemon --log-driver=gelf --log-opt gelf-
address=udp://localhost:12201

Viewing the logs with Kibana

Sending the logs to a remote server is great, but does not do any good unless there is a way to
view them. This is where Kibana comes in. Kibana provides an interface to view and search the
logs in Elasticsearch. It can also create graphs and charts based on any information in the
Elasticsearch database.

The easiest way to get started with Kibana is with the official Docker image. The following
example shows how to run it. The value of ELASTICSEARCH_URL is the address of the
Elasticsearch API service:

$ docker run -d --name kibana:5.0 -e
ELASTICSEARCH_URL=http://elasticsearch:9200 -p 5601:5601 kibana

Once Kibana is running, you can connect to the Docker host where Kibana is running. For
example, if Kibana is running on 172.17.8.101, the address of the web interface is
http://172.17.8.101:5601. There is no authentication, by default:

The first time that you log in, you will be prompted for an index that Kibana will run analytics
against. Logs from Logstash are available under the logstash-* index. Entries in the selected
index must exist before an index can be configured. The Time-field name field must be set to
@timestamp.

Once the index pattern has been configured, the logs can be viewed on the Discover page. Once a
lot of logs from a large number of services start arriving, viewing all of the logs at once becomes
an exercise in futility. Fortunately, Elasticsearch is very good at searching. For example, one can
see the logs for a single container with the container_name:<container> query, where
<container> is the name of the container. It is also possible to search based on the image name
using image_name:<name> in the query.

Note

The field names container_name and image_name may be different if a different logging driver
is used to add the logs to Elasticsearch.

Individual logs are made up of a number of fields. Each field can be used as a query term. This
makes it possible to drill down to exactly what is needed. The following screenshot shows the
fields for a single log from Docker:

Among the more useful fields for docker logs are the following:

container_name: This is the name of the container as specified by the --name flag to
docker run.
container_id: This is the full ID of the container. This can be particularly useful if
multiple containers are running with the same name.
image_name: This is the name of the image being used. This makes it possible to find logs
for all containers running a specific image.
host: This is the name of the host that the container is running on.
message: This is the actual log message. This is whatever would have been printed by the
docker logs command.

Note

Queries in Kibana are built using Elasticsearch syntax. Documentation may be found at
https://www.elastic.co/guide/en/elasticsearch/reference/5.0/query-dsl-query-string-
query.html#query-string-syntax.

Search queries can be saved. This makes it easy to rerun queries that are needed often. Saved
searches can also be added to dashboards to bring multiple sets of logs into a single view.

https://www.elastic.co/guide/en/elasticsearch/reference/5.0/query-dsl-query-string-query.html#query-string-syntax

Remote logging in Docker Datacenter
Docker hosts managed by Docker Datacenter can be configured to use log drivers just like any
other Docker host. Docker Datacenter, itself, supports logging to a remote Syslog server. Go to
Settings and then to LOGS. From there, the remote Syslog server, protocol, and log level can be
set. Click on Enable Remote Logging when you are done:

Logging from Kubernetes
Kubernetes was designed with centralized logging in mind. It can send logs to Google Cloud
Logging or to Elasticsearch running as a Kubernetes service. Kibana is also started to provide an
easy way to access logs sent to Elasticsearch. To enable Elasticsearch on installation, set the
KUBE_LOGGING_DESTINATION environment variable to elasticsearch before running kube-
up.sh:

$ KUBE_LOGGING_DESTINATION=elasticsearch kube-up.sh

For full details, refer to http://kubernetes.io/docs/getting-started-guides/.

http://kubernetes.io/docs/getting-started-guides/

Logging from Mesosphere
Mesosphere makes logs from every running service available through the Marathon web
interface. Unfortunately, it can be cumbersome to access logs for more than one service at a time.
There is no native way to send service logs to an aggregation server.

There are a couple of options to work around that. The first option is to configure the Docker
daemon to send logs to Elasticsearch using the GELF logging driver as described earlier. The
other option is to use Logstash or Elastic Filebeat to read the service logs directly and send them
to Elasticsearch.

To use Filebeat, install it on each host from Elastic's yum repository. Then add the following to
/etc/filebeat/filebeat.yml. Be sure to change the name of the Elasticsearch hosts in the
hosts key:

filebeat.prospectors:
- input_type: log
 paths:
 - /var/lib/mesos/slave/slaves/*/frameworks/*
 /executors/*/runs/latest/stdout
 - /var/lib/mesos/slave/slaves/*/frameworks/*
 /executors/*/runs/latest/stderr
output.elasticsearch:
 hosts: ["elasticsearch:9200"]

Logging your Docker hosts
Remember that the cluster logs should include the Docker hosts as well as Docker, itself. When
considering a logging solution for Docker, it is worth ensuring that logs from the hosts can be sent
there as well. Logstash, for example, has an option to act as a Syslog server. Each host can be
configured to send logs through Logstash which will add them to Elasticsearch.

Adding the logs from the Docker hosts to the same logging solution as Docker will aid in
troubleshooting and root cause analysis. A viewer such as Kibana becomes the single pane of
glass to see everything that is happening in the cluster. Imagine getting alerts warning that certain
containers cannot talk to a database and seeing in the same view as the Docker logs, a log
message that an interface on a Docker host is disconnected. The faster problems can be found, the
faster services can be restored.

Collecting and graphing performance data
Logs are great, but sometimes what is really needed is a summary of system performance. A quick
view of performance graphs can often tell an administrator much more than sifting through
hundreds or thousands of log entries. A simple question such as "Why is this application slow?"
can often require looking at performance data for the disks on the storage nodes, network
utilization between each storage node and between the storage and the Docker host, memory and
CPU utilization, and host disk performance. That does not even include things such as database
speed and application inefficiencies. The good news is that all of this data can be collected and
graphed.

Collecting data with collectd
The collectd daemon is a powerful tool that can collect data from many different sources and send
the data to a number of databases. Two of those databases are Elasticsearch and InfluxDB. Using
Elasticsearch means that the data is available for Kibana to build visualizations and to include in
dashboards. InfluxDB is a high-speed database designed specifically for storing time series data.
There are a number of tools which can create graphs and charts from InfluxDB, including
Grafana, which will be discussed a little later.

Tip

Sometimes, the right answer to the question of which database to use to store cluster metrics is
both. Elasticsearch and InfluxDB have their strengths and weaknesses but they compliment each
other well. Try running them both for a while. It is always possible to stop sending data to one or
the other at a later date.

Running collectd

There are packages for collectd available for most major Linux distributions. In Debian and
Ubuntu, installation is as simple as apt-get install collectd. Packages and installation
instructions for other distributions are available at https://collectd.org/download.shtml.

The collectd daemon can be run manually from the command line as in the following example.
The -f flag will keep collectd in the foreground. The -C flag is used to provide a path to the
configuration file:

$ collectd -f -C /etc/collectd/collectd.conf

There is no official Docker container for collectd. Some plugins make assumptions that makes
running it in a container problematic. For example, the memory plugin hardcodes /proc as the
source for memory information. In a container, /proc only contains the information for the
container rather than for the entire system.

Interface data is odd when collectd is run in a container because of the virtual interfaces created
for a container. This can be worked around using --net=host with docker run.

Configuring collectd

Data is collected through a series of plugins. Each plugin is loaded with the LoadPlugin option.
If the plugin has options, they are set using a <Plugin name> block, where name is the name of
the plugin. A complete list of plugins with links to their options is available in the
collectd.conf(5) man page or at https://collectd.org/wiki/index.php/Table_of_Plugins.

The following example shows a basic configuration that reads CPU usage metrics, load average,
and disk usage:

BaseDir "/var/lib/collectd"

https://collectd.org/download.shtml
https://collectd.org/wiki/index.php/Table_of_Plugins

PIDFile "/run/collectd.pid"
Interval 10.0

LoadPlugin cpu
LoadPlugin load
LoadPlugin disk

The Interval option is the number of seconds between data collection runs. Be sure that this is
not set so low that it overwhelms the server. The interval can be set per plugin using the
<LoadPlugin> tag and specifying the Interval option there:

<LoadPlugin foo>
 Interval 60
</LoadPlugin>

The preceding base example reads the data but does not do anything with it. In a clustered
environment, it is most likely that the data will be sent to a database. The network plugin can be
configured to send collected data to one or more servers. The following snippet loads the
network plugin and configures collectd to send the data to two servers. The number after the IP
address is the UDP port number:

LoadPlugin network
<Plugin network>
 Server "172.17.8.102" "25826"
 Server "172.17.8.101" "12203"
</Plugin>

Storing performance data in Elasticsearch

The collectd daemon data is added to Elasticsearch through Logstash. The following example
adds a UDP input plugin to the input block. Logstash will listen for collectd connections on the
port specified by the port option. The buffer_size option sets the maximum packet size. For
performance reasons, this should be set small enough to fit in a single network frame.

The codec option tells Logstash that the incoming packets are in binary network format of
collectd. In order to properly map the data types, Logstash needs a copy of types.db from
collectd. The collectd daemon usually installs types.db in /usr/share/collectd/.

This example does one last thing. It sets the type for each input plugin. This makes it easy to see
only logs in queries in Kibana by adding _type:log to a query:

input {
 gelf {
 type => log
 }
 udp {
 port => 12203
 buffer_size => 1452
 codec => collectd {
 typesdb => ['/usr/share/collectd/types.db']
 }
 type => perf

 }

If you are going to run Logstash in a container, create a custom image that adds types.db. An
example Dockerfile is shown here:

FROM logstash:5.0
COPY types.db /usr/share/collectd/types.db

Storing performance data in InfluxDB

InfluxDB was built from the ground up to handle time-series data. It is very fast with several
options for high availability. Best of all, there is an official Docker container available. Starting
InfluxDB is as simple as running the following command:

docker run -d -p 8083:8083 -p 8086:8086 -p 25826:25826/udp --name influxdb \
-v /usr/share/collectd/types.db:/usr/share/collectd /types.db:ro \
-e INFLUXDB_COLLECTD_ENABLED=true \
-e INFLUXDB_COLLECTD_port=25826 \
-e INFLUXDB_COLLECTD_DATABASE=collectd_db \
-e INFLUXDB_COLLECTD_TYPESDB=/usr/share/collectd/types.db\
influxdb

The environment variables configure InfluxDB to do the following in this order:

Enabling collectd support
Listening for collectd connections on UDP port 25826
Setting the database for collectd data to collectd_db
Setting the path within the container to the collectd types.db

The influxdb image stores the database in /var/lib/influxdb. When run in production this
should be on an external volume.

Graphing data with Kibana

The Visualize page provides options for creating graphs and charts of data in Elasticsearch.
Visualizations that are created can then be saved for later viewing, or combined on dashboards to
provide a more complete view of a cluster or service.

Creating a new chart

To create a new graph, click on Visualize, select the chart type, and then select the name of the
index. Logstash data will be in the indices matching the logstash-* pattern. You will then be
taken to a page to create the graph:

1. Click on the arrow next to Y-Axis to show the options.
2. Select the Aggregation method. The Average method works well in most cases.
3. Select a Field. Obviously, this will vary depending on the data that is being graphed.
4. Optionally, set the Custom Label for the axis.
5. Additional metrics can be added:

6. In the buckets section, click on the arrow next to X-Axis.
7. Select the Aggregation method. In most cases this will be Date Histogram.
8. The Field should be @timestamp unless there is a custom timestamp field set:

9. Click on the arrow at the top of the configuration panel to apply the changes and see the
graph.

10. Click on Save from the menu at the top of the page to save the chart.

By default, Kibana will aggregate all of the data for the chosen field into the graph. Often, it
makes more sense to see the data broken out based on the host or other metadata. To do that, click
on Add sub-buckets. Then click on Split Lines or Split Chart. Split Lines shows a line for each
sub-bucket. Split Chart creates a separate chart for each sub-bucket. Split Chart is better if there
are many metrics being graphed.

To break the data out by hostname, set Sub Aggregation to Significant Terms, set Field to
host.keyword, and Size to 1. Click on the arrow at the top to apply any changes and see what the
graph looks like.

Adding charts to a dashboard

Dashboards provide a way to show saved charts and searches together in one place. To create a
new dashboard, follow the steps mentioned here:

1. Click on Dashboard from the menu on the left and click on New from the menu at the top.
Click on Add at the top of the page to add a new panel to the dashboard.

2. Click on the saved visualization or search and it will be added to the dashboard:

Panels can be resized and moved around the dashboard to present the information in a way that
makes the most sense. When the dashboard is ready, click on the Save option at the top of the
page. Give the dashboard a name and click on the Save button. Previously saved dashboards can
be opened by clicking on the Open option from the menu at the top of the page.

Graphing data with Grafana
Grafana is a very powerful tool for graphing data. It can use Elasticsearch and InfluxDB as data
sources, but InfluxDB has more query options for manipulating the data.

One of Grafana's biggest features is the ability to create dashboard templates that allow one to
build groupings of datasets for easy display. For example, you could choose to display just web
servers, database servers, or all servers tagged with frontend. For more details, refer to
http://docs.grafana.org/reference/templating/.

Installing Grafana

The Grafana project has created a Docker image to make deploying Grafana easier. The basic
command to get started is given here. The default username and password are both admin.

$ docker run -d -p 3000:3000 --name grafana grafana/grafana

By default, Grafana stores database and session information in /var/lib/grafana using SQLite.
It can be configured to use MySQL or PostgreSQL instead. If you choose to stick with SQLite,
make sure that /var/lib/grafana is mounted as an external volume. Full configuration
documentation may be found at http://docs.grafana.org/installation/configuration/.

Adding data source

Before Grafana can be used to graph data, it must know where the data is. To add a new data
source select Data Sources from the drop-down menu at the top left. Click on the Add new
button. The specifics will vary depending on the data source chosen with the Type option. When
you are finished setting the connection information for the data source, click on Save & Test.
Grafana will attempt to connect to the data source and will print a warning if there is a problem.
Multiple data sources may be added and used within a single graph:

http://docs.grafana.org/reference/templating/
http://docs.grafana.org/installation/configuration/

Creating a new dashboard

A new dashboard can be created by selecting Dashboard from the drop-down menu and choosing
the +New option. The new dashboard will be blank with a very small pop-out menu to the left of
the row. From that pop-out menu, new panels can be added. The menu on an example dashboard
is shown here:

Creating a graph

Open the pop-out menu for a row and go first to Add Panel then to Graph. The graph editor will
then be displayed. There are a lot of options. Do not panic. Most of them are simple with obvious
functions. The most complicated is the Metrics tab. This is where the metrics are chosen to be
displayed on the graph.

Click on the button that says select metric and choose the metric that will be used for this graph.
In the following screenshot, the load_shortterm metric has been selected. Additional metrics can
be added to the graph with the Add query button:

A number of options are available including options to manipulate the chosen metric. One useful
option is the ability to group the metric by a tag. Click on the plus sign in the GROUP BY row
and select tag(host) to break each host out into its own line.

When the graph is done, click on Back to dashboard to return to the dashboard. Click on the disk
icon at the top or press Ctrl + S to save the dashboard. The dashboard will be available from the
drop-down menu at the top of the page.

Using Heapster in Kubernetes
Heapster is a Kubernetes service that collects node and pod metrics and makes them available
through InfluxDB and Grafana or through Google Cloud Monitoring. It is installed by default
when Kubernetes is installed with kube-up.sh. Full details on accessing metrics from Heapster
are available at http://kubernetes.io/docs/user-guide/monitoring/.

One of the things Heapster does is group container metrics by pod. It adds labels to the metrics
based on the labels set in the pod. This makes it easy to create charts in Grafana that focus on a
single pod or a single application made up of multiple pods.

http://kubernetes.io/docs/user-guide/monitoring/

Considerations for monitoring system health
One of the things a system administrator learns early in his or her career is that it is better to find
out about problems and fix them before the customer or the boss notices them. Log collection and
performance graphs are essential when it comes to troubleshooting problems. Rarely, however, is
someone watching every log message and every piece of performance data. There is just too much
information and some administrators even have lives outside of the office. Fortunately, computers
are very good at sifting through lots of data and rarely ask for time off.

Most of the tools that have been used for years to monitor server and service health still apply.
However, a fully orchestrated environment offers some unique challenges when compared to the
old standalone server model. For example, a service does not live on a single host. It could run
anywhere in the cluster. In addition, the ability to quickly add or remove capacity to the Docker
cluster through AWS, GCE, or even a VM in a local data center makes adding specific hosts in a
monitoring suite a challenge.

There are too many variations to provide specific solutions that will work in all circumstances,
but here are some general guidelines.

Monitor services
Remember that the most important thing your clients care about when using your service is; "Does
it work?", For the administrator, the question is not just; "Is it up?", but; "How can I keep it that
way?". There are several things that can be done to ensure that the administrators know that there
are problems before the clients do:

Use health checks: Some orchestration tools, such as Kubernetes, can run checks to monitor
the health of a service. Use them and make them meaningful. It is not enough to know that a
web server is accepting connections on port 80. You also need to know if it is returning a
good status code and showing what is expected.
Monitor all of the moving parts: A web application is usually more than a web server. Is
there a database and is it responding properly? Do not be afraid to write a health check that
logs into the database with the credentials of the web application and performs queries.
Do not forget the network: When running a cluster locally, it can be easy to overlook, or
take for granted, the network infrastructure. Where feasible, add the networking stack to your
monitoring. Some organizations split the network and server operations teams which may
make adding the network stack to the Docker monitors politically problematic. In that case,
make friends with the network team.
Create useful dashboards: Being able to see the logs and metrics from related components
in one place can simplify troubleshooting. The trick is to know what is worth looking at and
what is not. Too much information can be just as much a problem as too little.

Watching services in real time with Sysdig
Sysdig is a real-time command-line monitoring tool. It can monitor most host components and has
support for reporting container statistics. It also has support for viewing metrics based on
Kubernetes pods, replication controllers, services, and more.

When possible, Sysdig should be installed and run directly on the host machine. This will provide
it the most visibility into the system. Packages are available for Debian and Red Hat-based
systems. Installation instructions may be found at http://www.sysdig.org/install/.

It is also possible to run Sysdig in a container. This is especially useful if the Docker hosts are
running a Linux distribution that is not directly supported or systems such as CoreOS which run
everything in containers. The command to start the container is as follows:

$ docker run -it --rm --name=sysdig --privileged=true \
--volume=/var/run/docker.sock:/host/var/run/docker.sock \
--volume=/dev:/host/dev \
--volume=/proc:/host/proc:ro \
--volume=/boot:/host/boot:ro \
--volume=/lib/modules:/host/lib/modules:ro \
--volume=/usr:/host/usr:ro \
sysdig/sysdig

There are a couple of things to note:

First of all, running sysdig in a container requires the use of the --privileged flag. It
needs the access in order to load the sysdig kernel module and to be able to access all of
the required information.
Second, the command maps through a number of important file systems such as /proc for
visibility reasons.
Third, /var/run/docker.sock is mapped into the container so that sysdig can retrieve
information about running Docker containers.

Once sysdig has been installed, run the command csysdig to start the curses interface. This
provides a top-like interface which lets you see what is happening on the server. Use F2 to
switch views. The -pc flag adds container information to many of the views that are available:

$ csysdig -pc

http://www.sysdig.org/install/

Sysdig can be invaluable in troubleshooting a problem on a system in real time. Each view has
options to drill down and see more information about a specific thing, which may be a container,
network connection, host process, or any number of other items.

Summary
This chapter showed how to send Docker logs and metrics to remote services. It showed how to
use Kibana to view logs stored in Elasticsearch and how to use Kibana and Grafana to build
charts and dashboards based on metrics stored in Elasticsearch and InfluxDB to provide useful
information quickly. Some general tips were presented for monitoring services in a Docker
cluster. Finally, Sysdig was introduced which can provide live monitoring of a host and
containers. The next chapter will cover how to use continuous integration to build, test, and
deploy containers.

Chapter 9. Using Continuous Integration to
Build, Test, and Deploy Containers
One of the most important parts of running containers is building the images those containers are
based on. After all, without an image, there is no container. One of the challenges is to ensure that
the Docker images actually, not only build, but also work before being deployed.

This chapter will demonstrate how to use GitLab to implement Continuous Integration (CI) for
Docker images. It will show how to automatically build an image, run a test suite against it, push
the new image into a Docker Registry, and even deploy the new image to a Docker cluster.

The following topics will be covered in the chapter:

The importance of using CI
Setting up a project in GitLab for CI
Automatically building a new image
Running tests against an image
Releasing a tested image
Automatically deploying the image
Using GitLab CI to create DAB files
Using Docker Cloud for image testing

The importance of using CI
It is worth keeping in mind how a Docker application is defined. At its most basic level, a
Docker application is really no different from any software project. It is simply a Dockerfile
and the resources needed for the image are most likely stored in version control. It is software.

Treating Docker applications like code means that an administrator or team of administrators can
benefit from all of the advances in software development methodologies. One of those is the
automated building and testing of a project. This process is called CI. Any time a change is made
to an application, whether it is a small change to a configuration file or the upgrade of the actual
application, the image can be automatically rebuilt and tested to ensure that the image will work
as intended when it is deployed.

I often joke that my job as a system administrator is to get other people or things to do my work
for me. The reality is that the more I can empower other people in my organization, the more
effective we can all be. For example, imagine a development team that is working on a web
application. In a traditional model, these developers must wait for an administrator to deploy any
changes into the testing and production environments and hope that nothing breaks in the process.
Using a proper CI workflow means that whenever the developers are ready to deploy, the CI tools
can safely deploy the application without waiting for an administrator to get around to it. The end
result is faster, more consistent, and more reliable deployments.

Using GitLab for CI
GitLab is a wonderful tool for CI and deployment for Docker images and services. It combines
Git with issue tracking, a Docker Registry, and CI to provide a unified experience. However, this
process is not unique to GitLab. The lessons learned in this section should be applicable
regardless of the systems used.

Setting up GitLab for CI
GitLab CI is available for free as part of the offerings at GitLab.com. It is also possible to pay for
an enterprise license which provides more resources. The free community and commercial
enterprise editions of GitLab can also be installed locally. In Chapter 3, Cluster Building Blocks
– Registry, Overlay Networks, and Shared Storage we showed how to install GitLab and how to
enable the Docker Registry.

A registry is an important part of making CI work. It provides a place for finished images to be
stored for use in the cluster. Another registry could be used instead of GitLab. For example, an
organization may choose to use the Docker Hub or the secure registry in Docker Datacenter.

As of GitLab 8.0, GitLab CI is fully integrated into the main package. There is nothing else to
install or enable in GitLab to make those features available, with one exception. The last
component that is needed is a GitLab Runner.

https://about.gitlab.com/

Installing the GitLab Runner on Ubuntu
It is the job of the GitLab Runner to perform the actual image builds. Each build is queued up and
processed in turn. It is possible to use multiple runners to allow multiple builds to be performed
in parallel. Runners can be tagged to run specific tasks such as building Docker images or
building an application for Microsoft Windows.

The GitLab.com provides a shared runner that can be used to build images. This is great for
smaller projects or for testing. Larger organizations should consider paying for an enterprise
license or installing their own runner locally. A local runner may also be desired if the image
tests contain sensitive information or if they need to connect to resources that are not accessible
from the Internet.

The preferred method of running the GitLab Runner is to install it natively on Debian, Ubuntu,
RHEL, or CentOS. However, there is an official Docker image. For details on using the image,
refer to https://gitlab.com/gitlab-org/gitlab-ci-multi-runner/blob/master/docs/install/docker.md.

The first step in installing a runner that will build Docker images is to have Docker installed. The
build process will need to be able to pull images, build new ones, and push the completed build
into the repository.

GitLab provides a script to add their apt repository to the server. Download the script, double
check that it will do what is expected, and then run it. For security reasons, do not pipe the
download directly to sudo bash:

$ wget -O script.deb.sh
https://packages.gitlab.com/install/repositories/runner/gitlab-ci-multi-
runner/script.deb.sh
$ sudo bash script.deb.sh

The script will add GitLab's GPG key to the apt keyring, add the repository, and run apt-get
update. When it is complete, the runner can be installed:

$ apt-get install gitlab-ci-multi-runner

The runner does not have to be on the GitLab server. If load is an issue, runners can be installed
on multiple servers or on cloud providers. It is also possible to have GitLab automatically scale
up the number runners on any provider supported by Docker Machine. For details, refer to
https://docs.gitlab.com/runner/install/autoscaling.html.

https://about.gitlab.com/
https://gitlab.com/gitlab-org/gitlab-ci-multi-runner/blob/master/docs/install/docker.md
https://docs.gitlab.com/runner/install/autoscaling.html

Registering a runner
Once the runner is installed, it must be registered with GitLab. There are two ways to do it. The
first is to register it for a single project. In that case, the runner will only run for the builds of the
specific project. The other option is to register it globally. This will make the runner available for
every project in GitLab. There are pros and cons to both approaches, but they are not mutually
exclusive. It is possible to configure one or more global runners for general use and others
specifically for a project.

A registration token is needed before the runner can be registered with GitLab. For project
specific runners, go to the Runners settings page of the project. The Specific Runners section
will show the URL and token to use when registering a runner:

For shared runners, the registration token is in the Runners page in the Admin Area (the wrench
icon) when logged in as an administrator. The URL is the same as for the project specific runner:

There are multiple ways of creating a runner that can be used to build Docker images. The
simplest is to use the shell executor. It is designed to run any shell commands to build the project.
It works well for almost any sort of project including Docker. The gitlab-runner user must be
in the docker group or otherwise have rights to run docker.

The following command is used to register the runner. Replace $GITLAB_URL with the CI URL for
the GitLab install listed on the project's Runners page. If you are using GitLab.com, the URL
would be https://gitlab.com/ci. The $REGISTRATION_TOKEN token is the token from either the
project specific or global Runner pages:

$ sudo gitlab-ci-multi-runner register -n \
--url $GITLAB_URL \
--registration-token $REGISTRATION_TOKEN \
--executor shell \
--description "Shell Runner"

The other option is to run the docker-in-docker executor. This executor builds the project in a
Docker container which contains Docker and Docker Compose:

$ sudo gitlab-ci-multi-runner register -n \
--url $GITLAB_URL \
--registration-token $REGISTRATION_TOKEN \
--executor docker \
--description "Docker Runner" \
--docker-image "docker:latest" \

https://about.gitlab.com/
https://gitlab.com/ci

--docker-privileged

The runner container must run in privileged mode in order to run the build containers.

Enabling a Docker Repository
The next thing to set up before beginning the build process is to enable a Docker Registry. GitLab
provides a registry service that can be enabled on a per project basis. Instructions for setting it up
are in Chapter 3, Cluster Building Blocks – Registry, Overlay Networks, and Shared Storage. If
it is already set up or you are using GitLab.com, go to Edit Project and ensure that the box next to
Container Registry is checked.

The GitLab registry is a great choice because of the integration with GitLab and the CI process.
Other registries can be used, if desired. If another registry is used, set up an account for the runner
that has rights to push new images into the registry.

https://about.gitlab.com/

Adding the project to the repository
Finally, the project needs to be added to the Git repository in GitLab. This is done with standard
git commands. Following is the basic script. If the Docker configuration is already in Git, only
the last two commands are needed. Be sure to change the URL of the remote to match your
repository:

$ git init
$ git add .
$ git commit -m 'initial commit'
$ git remote add origin http://gitlab.example.com/project/repo
$ git push -u origin master

The following examples will use a very simple Docker image. It is an Nginx web server with a
single page website. Following is the Dockerfile:

FROM nginx:1.10
COPY index.html /usr/share/nginx/html/

Note

Full examples of the CI process described in this section are available on GitLab. Each branch is
a complete example for each step. Download the examples from https://gitlab.com/perlstalker/ci-
demo.

https://gitlab.com/perlstalker/ci-demo

Creating .gitlab-ci.yml
CI is configured through a file named .gitlab-ci.yml in the root of the repository. This YAML
file defines the build stages, variables, and jobs needed to build, test, and deploy the image. Any
number of jobs can be defined and jobs can be run in parallel. For full details on the options
available in .gitlab-ci.yml, refer to https://docs.gitlab.com/ce/ci/yaml/README.html.

The following .gitlab-ci.yml example is a simple configuration that can build the image and
push it into the registry. This example uses the docker-in-docker executor. The first three lines can
be omitted when using the shell executor with a local runner:

image: docker:latest
services:
 - docker:dind

stages:
 - build
 - test
 - release
 - deploy

variables:
 DOCKER_CI_IMAGE: registry.gitlab.com/perlstalker/ci-demo:$CI_BUILD_REF_NAME

before_script:
 - docker login -u gitlab-ci-token -p $CI_BUILD_TOKEN registry.gitlab.com

build-image:
 stage: build
 tags:
 - docker
 script:
 - docker build --pull -t $DOCKER_CI_IMAGE .
 - docker push $DOCKER_CI_IMAGE

The stages option defines the list of stages that jobs can be configured to run in. Any number of
stages can be defined to fit the needs of the project. The four listed here, build, test, release,
and deploy, are typical. Each stage is run in the order it is listed. Jobs for the build stage are run
first, then test, and so on. If there are multiple jobs in each stage, they are run in parallel.

The variables option allows one to define variables for use in the rest of the build process. In
the example, a variable named $DOCKER_CI_IMAGE is set to the name of the image that will be
built. The image name includes the $CI_BUILD_REF_NAME variable, which is a built-in variable
that is set to the branch or tag name. The value of $DOCKER_CI_IMAGE should be changed for the
specific project.

Using $CI_BUILD_REF_NAME can be very helpful, especially when testing a new image or
preparing a new release. During testing, creating a new branch means that the generated image
will be tagged with the branch name. For example, if a branch named foo is created, the new
image will be image:foo.

https://docs.gitlab.com/ce/ci/yaml/README.html

Note

GitLab provides a number of useful variables that can be used in the CI configuration. A full list
is available at https://docs.gitlab.com/ce/ci/variables/README.html.

Git tags will also generate an image with that tag. For example, if the 1.1 tag is added to a
commit, a new image named image:1.1 is created. This makes it easy to create versioned images
for deployment. Remember that using image:version instead of image:latest makes it easier
to track exactly what is running on the cluster and makes it easy to roll back to the previous image
version in the event of a failure.

The before_script option contains a list of commands to run to prepare the environment before
each job. In this example, it logs into the GitLab Docker registry using a special CI account and
build token. The build token temporarily gives the builder the rights of the user who triggered the
build. If a different registry is being used, the login credentials for that registry would be used
instead.

The last block is a job named build-image. The stage option gives the stage at which this job
will run. In this case, the build-image job runs in the build stage. If multiple jobs are defined in
the same stage, they are run in parallel.

Jobs can define a list of tags which are used to define which runner is used. In the preceding
example, the image will be built by a runner with the docker tag. If multiple tags are set, the
runner must match all of them to be used. This makes it possible to create runners that can build
certain types of projects and not others.

Finally, the script option is a list of commands to run to build the project. Each command must
succeed before the next command is run. If any of them fail, the build stops and it is marked as
having failed. The commands can be regular system commands as in the example or scripts from
the repository.

In this example, the runner first builds the image. The --pull flag is used with docker build to
ensure that the latest copy of the base image is used to build the new image. If the build succeeds,
the new image is pushed back into the repository. A list of available images is available in the
Registry section on the project page:

https://docs.gitlab.com/ce/ci/variables/README.html

The status of the current build, as well as previous builds, is available in the Pipelines section of
the project. Click on any build to drill down and see the status of each build stage. Clicking on the
stage will show the build log for the stage. Any errors generated by a failed build will appear
there:

Testing the image
One of the reasons that CI is so popular among software developers is that it provides a way to
automatically run a test suite against the new build to ensure that it works properly. The tests
provide a level of security in knowing that whatever changes the developers made, these did not
break the functionality of the software. This is just as valuable for Docker images that are going to
be deployed to, potentially, hundreds or thousands of servers.

There are several ways of implementing the tests:

The first is to include the tests in the git repository, but not adding them to the image. This
keeps the image small, but requires that all of the tools needed for testing are installed on the
runner. Some runners, such as the docker-in-docker executor may not include the tools
needed to run the tests.
The second way is to include the tests in the Docker image. The tests can then be run from
within the container with either docker run or docker exec. This leads to a larger image,
but ensures that all of the tools needed to test the image are available. It also makes it
possible to run the tests on a running image at anytime. This could be useful if there are
problems that only show up when the image is running in production.
A third option is to create a separate image that contains all of the tests needed to validate
the image. This image can be downloaded and run by GitLab during the test stage to test the
application image. The nice thing about this approach is that the tests and test image can be
updated independently as new test cases come up.

Let's take a look at the very simple web page that is being used in this example:

<html>
 <head><title>Docker Orchestration</title></head>
 <body>
 <h1>Docker Orchestration is fun!</h1>
 <p>Automate all the things!</p>
 </body>
</html>

The boss has decided that the web page must always proclaim how much fun Docker
orchestration is. To this end, a test is created to ensure that it remains fun. In this example, it is
placed in a tests directory and named run-tests.sh:

#!/bin/sh
curl -s http://localhost | grep 'fun!</h1>' > /dev/null

This test is very simple. It accesses the web page and checks to see if fun! is the last thing in the
heading. To simplify things, the test will be added to the image. The updated Dockerfile is
listed here. It does two things. First, it adds curl, which is needed for the test. Second, it adds the
tests to the /tests directory in the image:

FROM nginx:1.11
RUN apt-get update && apt-get install -y curl && apt-get clean

COPY index.html /usr/share/nginx/html/
COPY tests /tests

To run the test, a new job needs to be added to .gitlab-ci.yml. The following snippet shows
the job. Once .gitlab-ci.yml is updated in the repository, future commits will run the tests:

test-image:
 stage: test
 tags:
 - docker
 script:
 - docker pull $DOCKER_CI_IMAGE
 - docker run -d -P --name $CI_BUILD_ID $DOCKER_CI_IMAGE
 - docker run --rm --network container:$CI_BUILD_ID --name $CI_BUILD_ID-
test
 --entrypoint /tests/run-tests.sh $DOCKER_CI_IMAGE
 - docker stop $CI_BUILD_ID; docker rm -f $CI_BUILD_ID

The stage option is set so that the job will run in the test stage. This job will not run if the
build stage fails. It also includes the docker tag so that GitLab will use a runner that is also
tagged with docker.

The script section lists the commands that are run to test the image. The first two commands
download the image and run it in the background. The container name is set to $CI_BUILD_ID,
which is the unique build ID assigned to the build by GitLab. It is important to set the name
because it will be needed when the test is run.

The third entry in the script block runs the actual test. It starts a new container that shares the
target container's network. This allows the tests to connect to the web server on localhost. The
test container runs the test script which was shown earlier. The grep in the script will fail if the
pattern is not matched and the test will return a non-zero exit code, which GitLab interprets as a
failure. If the pattern in the script is found, the test succeeds and the process moves on.

The last line stops the target container and removes it. The container running the tests is removed
automatically when the test is done because --rm was used when it was started.

Cleanup jobs
The preceding test job works great when the tests succeed, but when it fails, it can leave the test
container running. This is not an issue when using the shared runner on GitLab.com because a new
VM is started for every test and removed immediately after the build process has been completed.
However, it could be a problem when using a local runner. In that case, a job may be needed for
cleanup after the test.

To start, create a new cleanup_test stage and a job named cleanup_tests is defined to run in
the cleanup_test stage. Normally, if a job in the test stage fails, nothing after it would run. The
cleanup_tests job gets around that using the when option. By setting it to always, the job will
run no matter what happens in the test stage. The when option can also be set to on_success or
on_failure to run the job only when the jobs succeed or fail, respectively. There is a fourth
option, manual, that will be covered later in the chapter. The following snippet shows how to
create a job that cleans up after the CI process completes:

stages:
 - build
 - test
 - cleanup_test
 - release
 - deploy
...
test-image:
 stage: test
 tags:
 - docker
 script:
 - docker pull $DOCKER_CI_IMAGE
 - docker run -d -P --name $CI_BUILD_ID $DOCKER_CI_IMAGE
 - sh tests/run-tests.sh $CI_BUILD_ID

cleanup_tests:
 stage: cleanup_test
 script:
 - docker stop $CI_BUILD_ID; docker rm -f $CI_BUILD_ID
 when: always

https://about.gitlab.com/

Releasing the image
The build-image job has been creating an updated image every time changes are pushed to the
git repository. Let's take a closer look at what is being created. The docker build command in
the example is creating an image that is named registry.gitlab.com/perlstalker/ci-
demo:$CI_BUILD_REF_NAME. The $CI_BUILD_REF_NAME variable is the name of the branch or
tag. This means that, at this point, the only image that is created is
registry.gitlab.com/perlstalker/ci-demo:master. There is no :latest image. If
someone were to try and run docker run registry.gitlab.com/perlstalker/ci-demo, the
command would fail because the image with its implied latest tag does not exist.

The fact that GitLab does not automatically tag the image with the latest tag is a feature. The
idea is for the CI plan in .gitlab-ci.yml to explicitly tag the image. This is done by creating a
new job. A snippet of .gitlab-ci.yml is shown here:

variables:
 DOCKER_CI_IMAGE: registry.gitlab.com/perlstalker/ci-demo:$CI_BUILD_REF_NAME
 DOCKER_RELEASE_IMAGE: registry.gitlab.com/perlstalker/ci-demo:latest
...
release-image:
 stage: release
 tags:
 - docker
 script:
 - docker pull $DOCKER_CI_IMAGE
 - docker tag $DOCKER_CI_IMAGE $DOCKER_RELEASE_IMAGE
 - docker push $DOCKER_RELEASE_IMAGE
 only:
 - master

The first difference is that a new variable, $DOCKER_RELEASE_IMAGE, was added with the name
of the release image.

Note

Note that the image tag is latest.

As always, the work is done in the script block. The first step is to pull the latest copy of the
image for this branch. Next, docker tag tags that image with the release image name. Specifically,
it is given the latest tag. Finally, the docker push command pushes the newly tagged image
back into the registry.

The only block is important. It tells GitLab that this job must only be run when building one of
the listed branches. In this case, master. Without the only block, any newly built image from any
branch would replace the latest image.

The nice thing about this configuration is that new images can be worked on in different branches
and images for those branches will be created. Those images can be individually run, tested, and

debugged without modifying the released image. When the changes are ready, the development
branch can be merged back into the master branch and a new latest image is created.

Deploying the image
Let's take a moment and see where things stand. At this point, new Docker images for a project
are being automatically built any time changes are pushed to the Git repository in GitLab. A test
suite is being run against the new image to ensure that it will function as expected. If the changes
are pushed to the master branch, a new release image is created. The only thing left to do is to
deploy the image to the cluster.

How the image is deployed will depend on the orchestration suite chosen. In most cases, all that
is needed is to run the command that performs a rolling update of the service. A snippet of an
automated deployment job is as follows:

deploy-to-dev:
 stage: deploy
 tags:
 - docker
 environment: development
 script:
 - ./deploy.sh $DOCKER_CI_IMAGE development
 only:
 - master

There are a couple of things to note here. First, the stage is set to deploy. The job will only run
if the build, test, and release stages are completed successfully; environment is optional.
The Environments page in the Pipelines section in the project makes it easy to track deployments
to different environments:

The deploy.sh script in the snippet is a placeholder. The script can contain whatever is needed
to deploy the image in your environment. The script could also be included directly in the script
block. Later in the chapter, it will be shown how to deploy an image to a Kubernetes cluster.

Tip

Consider using the tags keyword instead of a branch name in the only section for deployments.
This will limit deployments only to commits that have been tagged. It will ensure that all images
that are deployed use the tag. It will be easier to tell which version of the image a container is
running based on the tag on the image.

Deploying the image manually
Automatically deploying an image to the cluster is exciting. Perhaps too exciting. Not everyone
wants services to be updated automatically. This does not mean that GitLab cannot be used for
deployments. GitLab provides a way of configuring a job to run manually. The build process will
run as it normally does, but when it gets to a manual job, it will wait until someone tells GitLab
that it is okay to proceed. This provides the consistency of an automated deployment while still
allowing a human to decide whether the deployment happens or not.

The following .gitlab-ci.yml snippet shows how to create a job with a manual trigger. It is
basically the same as the preceding automated deployment. The only functional change is the when
tag:

deploy-to-prod:
 stage: deploy
 tags:
 - docker
 environment: production
 script:
 - ./deploy.sh $DOCKER_CI_IMAGE production
 only:
 - master
 when: manual

Setting when to manual will pause the build and deployment process until someone goes to
Pipelines, clicks on the build, and clicks on the deployment. The following screenshot shows the
build pipeline:

Note

Note that all of the jobs have succeeded. Only the deploy-to-prod job has not. The triangle play
button shows that the deploy-to-prod job is awaiting manual action. When that button is
pushed, the deployment will begin.

Any number of deployment jobs may be defined to fit a variety of needs. For example, a fully
automatic job could deploy new images to a development environment. A manual job could then
trigger the deployment to a QA or canary environment. Finally, another manual job could deploy
the image fully into production. This could be done with parallel jobs as shown here or as
separate build stages. Using separate stages ensures that each previous deployment is done before
finally being pushed into production.

Deploying to Kubernetes
The preceding examples used a dummy deploy script. Let's a take a look at how one might use
GitLab CI to deploy a new image to Kubernetes. In Chapter 5, Deploying and Managing
Services with Kubernetes we covered managing deployments in Kubernetes.

The following .gitlab-ci.yml snippet makes a couple of assumptions:

First, kubectl is installed on the runner machine and that the gitlab-runner user has
permissions to make changes to the Kubernetes cluster
Second, a deployment has already been created which will be updated by the build process:

 variables:
 DOCKER_CI_IMAGE: registry.gitlab.com/perlstalker
 /ci-demo:$CI_BUILD_REF_NAME
 DOCKER_RELEASE_IMAGE: registry.gitlab.com/perlstalker
 /ci-demo:latest
 DEPLOYMENT: ci-demo
 CONTAINER: web
 ...
 deploy-to-kube:
 stage: deploy
 tags:
 - kubectl
 environment: production
 script:
 - kubectl set image deployment/$DEPLOYMENT
 $CONTAINER=$DOCKER_CI_IMAGE
 only:
 - tags
 when: manual

Two new variables, DEPLOYMENT and CONTAINER are added to the configuration. They contain the
name of the deployment and the container within that deployment that will be updated,
respectively.

As an example, the kubectl tag is set on the job. The expectation is that a runner with the
kubectl tag is available, which has kubectl configured to manage the cluster. This makes it
easy to create a runner that is only used for deployments and is not used for other build jobs.

The script contains only the command to update an image in the deployment. It is not necessary to
do anything with the image in the runner. The Kubernetes nodes that are running the deployment
will perform the update on the container based on the deployment strategy of the pod.

Finally, the only block tells GitLab to only run this job if the build has a git tag set. This will
ensure that the built image has a different tag than what was running previously. If the image name
is the same as what the deployment currently uses, Kubernetes will not know that the image needs
to be updated.

Building DAB files
Docker Swarm is moving to Distributed Application Bundles (DAB) to define stacks for
deployment. GitLab CI can be used to automatically build DAB files for a project. The following
snippet assumes that docker-compose.yml is in the root directory of the project:

build-dab:
 stage: release
 tags:
 - docker
 script:
 - docker-compose bundle
 artifacts:
 paths:
 - *.dab
 name: "${PROJECT_NAME}-${CI_BUILD_REF_NAME}"

The script block runs docker-compose bundle which will generate the .dab file. Additional
options can be added to the command, if needed. The artifacts block tells GitLab that the build
process generates files that are important. In this example, the .dab files will be saved if the
build is successful. All of the files matching the entries in the path list will be added to the
artifacts archive file.

Finally, the name option provides the name of the artifact archive. In this example, it is the name
of the archive and the build reference name separated by a hyphen. For example, if the project is
named ci-demo and the master branch is being built, the name would be ci-demo-master. The
artifact archive file would be named ci-demo-master.zip.

Using Docker Cloud for CI
Docker Hub and Docker Cloud can automatically update images when a linked Git repository is
updated. This can be used for lightweight CI, if GitLab is too involved a tool for the job. In either
case, custom tools could be written to run the newly generated images against a test suite or they
could be run and tested by hand.

Docker Cloud, in particular, can be useful for testing images. It can auto build an image every
time the project is updated in GitHub or Bitbucket. Once the image is built, it can be started as a
service in a test cluster from the web interface.

To start, click on the Repositories link and click on Create to create a new repository. Link the
new repository to GitLab or Bitbucket by clicking on the appropriate icon at the bottom of the
creation page. When everything is ready, click on Create:

Enabling autobuilds
Autobuilds can be created any time after a repository is created by selecting the repository from
the Repositories page and clicking on the Builds tab. Configure the build settings and click on
Save to save the settings or Save and Build to save and immediately build the project.

By default, a new build will be generated every time a commit is pushed to the master branch.
Additional build rules can be created to fit the needs of the project. For example, whenever a new
version tag is pushed to Git, Docker Cloud can build a new image that uses that version for the
image label.

Testing the image
Once a repository has an image, it can be deployed as a service in the following steps:

1. Click on the Launch Service button from the General tab and a new page will load with all
of the deployment options. That page allows one to set nearly any option that is available
with docker run.

2. When all of the settings are ready, click on Create & Deploy. Docker Cloud will run the
service on any nodes that have been configured:

Once the service has started, the list of containers will be available in the Containers list or
in the details of the service in the Services section.

3. To log in to the container's console, click on the container and go to the Terminal tab. The
tests can be run from there:

Summary
This chapter showed how to use CI with Docker. It showed how to use GitLab to automatically
build, test, release, and deploy new images. It also showed how to use Docker Cloud to
automatically build images and run them for testing. In the next chapter, you will learn how to
automate the infrastructure that the cluster runs on.

Chapter 10. Why Stop at Containers?
Automating Your Infrastructure
The last nine chapters have talked a lot about automating Docker. That is what this book is about,
after all. It is important to remember that there is more to a Docker cluster than just Docker. There
is the registry, shared storage, overlay networks, and the actual orchestration tool, be it Swarm,
Kubernetes, Mesos, or something else. There is one last, very important piece to the puzzle. The
servers that all of that run on. Whether those servers are hardware or part of a public cloud, they
too need to be managed. After all, what good is it if the Docker orchestration tool can quickly
scale an image out if it takes hours to deploy a new Docker host?

This chapter will look at strategies and tools that can be used to automate the server-side of a
Docker cluster. It will start by examining the servers themselves, then move on to options for
running those machines in the cluster. Finally, it will look at options for removing servers from
the cluster.

The following topics will be covered:

Using configuration management on the server
Configuring a server on boot with Cloud-Init
Using and building specialized server images
Deploying new servers on AWS and Azure
Using Terraform to orchestrate cloud servers
Deploying a new cluster with Docker Cloud
Removing servers from the cluster

Configuring Docker hosts
In many ways, Docker abstracts the server away from the application. It no longer matters which
Linux distribution a server is running. A Docker application can be based on any distribution
available. Multiple applications can run on the same server and use different base images.
Despite that, without the server, nothing runs.

In Chapter 9 , Using Continuous Integration to Build, Test, and Deploy Containers, we
discussed the importance of having a consistent build process for Docker images because doing
so provides consistency and reliability. The same is true for the servers those applications run on.
If the servers are not consistent, it could cause problems for the containers running on them. This
section will discuss different ways of ensuring that the server images are consistent.

Using configuration management
Configuration management has been around on servers in many forms for decades. Sometimes it
was as simple as mounting /usr from a remote server or using rcp, scp, or rsync to keep
configurations in sync. Later, more powerful tools, such as CFEngine, Puppet, Chef, and Ansible,
came along that managed everything from configuration files and installed applications, to
managing local users and running services.

Configuration management is an important and powerful tool for any orchestrated cluster. It can
perform two important tasks for a server. First, it can set up a server from just the base operating
system. It ensures that everything is installed, configured, and running. Second, it makes sure that
everything that was installed, configured, and running remains so.

First things first. Puppet needs to be installed on the host:

Note

Note that this a manual step on an existing server.

$ sudo apt-get install puppet

Now that Puppet is installed, a manifest can be created to install Docker. The following sample
installs Docker on an Ubuntu server and ensures that the docker service is running:

node default {
 exec { 'install docker' :
 command => "/usr/bin/wget -O - http://get.docker.com |
 /bin/bash",
 creates => '/etc/apt/sources.list.d/docker.list',
 }

 package { "docker-engine" :
 ensure => "installed",
 require => Exec['install docker']
 }

 service { "docker" :
 ensure => "running",
 require => Package['docker-engine']
 }
}

This manifest defines a default node. This means that this manifest will be applied to any node
that does not match a more specific node definition. Puppet best practice is to only use modules in
node definitions. This example breaks that practice in favor of brevity and simplicity.

The exec resource checks to see if /etc/apt/sources.list.d/docker.list exists, and if not,
runs the install script from get.docker.com. The script will create docker.list and install
Docker. This example uses the security nightmare of downloading the script and piping it directly

http://get.docker.com

to bash. In a production environment, the verified script should be added to the server as a puppet
resource.

The package resource ensures that the docker-engine package is installed. If, for some reason,
docker-engine is uninstalled, Puppet will re-install it on the next run. The require option tells
Puppet that the install docker resource must have happened first.

Finally, the service resource ensures that the docker service is running. If the service is
stopped, Puppet will attempt to restart it. This resource requires that the docker-engine package
is installed before it tries to start the service.

Note

There is a very useful module from Puppetlabs to manage Docker, images, and containers on a
host. For more details, refer to https://forge.puppet.com/puppetlabs/docker_platform.

When the manifest is ready, it can be applied to the server with puppet apply if running
masterless, or with puppet agent when using Puppet Server:

$ puppet apply docker-host.pp
Notice: Compiled catalog for ubuntu in environment production in 0.43 seconds
Notice: /Stage[main]/Main/Node[default]/Exec[install docker]/returns:
executed successfully
Notice: Finished catalog run in 31.86 seconds

Note

Puppet Server provides for easy distribution of manifests to servers in the cluster. Documentation
on configuring Puppet Server may be found at
https://docs.puppet.com/puppetserver/latest/services_master_puppetserver.html.

All that this configuration does is install Docker. Adding it to the cluster is a different matter. A
check should be written to see if the host is part of the cluster, and if not, run the appropriate
commands to join the cluster. These scripts will vary depending on the orchestration tool used.

The exec resource in the following snippet runs docker swarm join, and if successful, touches
the /root/swarm-joined file:

exec { 'join swarm' :
 command => "/usr/bin/docker swarm join --token SWMTKN-... manager:2377
&& /usr/bin/touch /root/swarm-joined",
 creates => '/root/swarm-joined'
}

Every time puppet apply is run, it will check to see if /root/swarm-joined exists. If it does
not, Puppet will rerun the command to join the swarm. This is an overly simplistic check since it
does nothing to attempt to re-establish a connection to the swarm. However, if the node had
joined successfully before, it will attempt to rejoin on its own.

https://forge.puppet.com/puppetlabs/docker_platform
https://docs.puppet.com/puppetserver/latest/services_master_puppetserver.html

Configuring a server on boot
Using configuration management to configure a host is great, but there is a problem with it. There
was the manual step of installing Puppet and running puppet apply the first time. The fewer
manual steps there are in an automated environment, the lesser chance there is of something
getting missed or done differently.

There is a solution which works very well for servers running in a cloud environment called
Cloud-Init. Cloud-Init was created specifically to deal with the problems of configuring servers
started in AWS and similar services. The base image was fine to start with, but things such as
user accounts and applications needed to be added or run when the server was started and people
did not want to have to log in to every machine by hand to add them.

Cloud-Init has made several appearances in this book already. Chapter 1, Getting Started with
Docker Orchestration showed how to use it to add login credentials to CoreOS, RancherOS, and
Project Atomic hosts. It showed up again in Chapter 3, Cluster Building Blocks – Registry,
Overlay Networks, and Shared Storage and Chapter 7, Using Simpler Orchestration Tools –
Fleet and Cattle when enabling Flannel and Fleet on CoreOS. The cloud images for Ubuntu,
RHEL, Fedora, and CentOS all have support for Cloud-Init.

The configuration file for Cloud-Init is a YAML file that starts with #cloud-config as the first
line. It is usually added to a new server instance through a field named user-data. It can also be
made available through a mounted disk such as a CD-ROM. Full documentation is available at
https://cloudinit.readthedocs.io/en/latest/index.html.

Let's first assume that the image being started needs to have Docker installed and will be joining a
Docker Swarm. The following example shows how to do both of these things. It first downloads
and runs the Docker install script. Then Cloud-Init will run the command to join a Docker Swarm:

#cloud-config
runcmd:
 - "/usr/bin/wget -O - http://get.docker.com | /bin/bash",
 - ['/usr/bin/docker', 'swarm', 'join', '--token', 'SWMTKN-...',
'manager:2377']

The runcmd module takes a list of commands to run when the instance is first booted. Each
command can be either a string or a list.

Cloud-Init can also set up and run Puppet. The following example will install Puppet and run it on
boot:

puppet:
 install: true
 conf:
 server: "puppet.example.com"
 certname: "%i.%f"

https://cloudinit.readthedocs.io/en/latest/index.html

The conf section contains key/value pairs that will be added to the [puppetd] section of
/etc/puppet/puppet.conf on the client. The server option is the address of the Puppet server.
The certname option sets the name of the certificate that the client will use to authenticate. The
%i and %f variables are the instance ID and the fully qualified domain name, respectively.

Using a custom image
The problem with installing and configuring an application with configuration management or
Cloud-Init is that it can lead to subtle differences in the versions of the installed software. It also
takes extra time when the server first boots to install and configure everything. A faster and more
consistent solution is to use an image which has been custom built for the task. CoreOS and
Project Atomic are two distributions that are custom built to run Docker containers and very little
else. It is also possible to build a custom image with all of the required software pre-installed.

Building a new image with Packer

HashiCorp has created a tool called Packer, which can be used to create custom images for use
with OpenStack, AWS, Azure, GCE, and VMWare. It can also create images for Xen, Linux
KVM, and can even deploy to hardware via cobbler.

A Packer configuration is a JSON file. There are three major sections, which are as follows:

The builders section is a list that contains the list of image types to build.
The provisioners section is a list of tasks to perform to provision an image. This includes
running scripts, uploading files, and running configuration management.
Finally, the post-processors section contains a list of tasks to do after the build is
completed.

Those tasks can generate a manifest, run local commands, or upload an image to VMWare
vSphere or Amazon S3.

Multiple images can be built from the same configuration file. Each image will have an entry in
the builders list. This allows multiple images to be built in parallel using the same
provisioners. For example, this could be used to build a new image to be deployed to Amazon,
Azure, and locally to OpenStack.

Note

Full documentation for Packer is available at https://www.packer.io/docs/.

Preparing the Ubuntu Cloud Image

This example uses the qemu builder for easy testing on a local Linux box. The qemu builder works
from a base image. By default, the new image is installed from an ISO installer, but it can also be
clones from an existing disk image. This example uses the Ubuntu Cloud Image. This is the same
basic image that is available on most cloud providers. The image is available at https://cloud-
images.ubuntu.com.

The cloud image is a great starting point because it is a very minimal server installation. It has
two problems that need to be fixed before it can be used with Packer. First, the qemu builder uses
SSH to log in to the system for provisioning. Unfortunately, there are no accounts available to log
in with. Second, the qemu builder can only log in with a username and password, but the SSH

https://www.packer.io/docs/
https://cloud-images.ubuntu.com

daemon is configured to deny password authentication. The following script fixes both of these
problems. It must be run as root to allow it to mount the image and make the necessary changes:

#!/bin/bash

IMAGES=/packer/images
BASE=xenial-server-cloudimg-amd64-disk1.img
NEW=xenial-server-cloudimg-amd64-prep.img
MNT=/mnt

cd $IMAGES
cp $BASE $NEW

modprobe nbd max_part=16
qemu-nbd -c /dev/nbd0 $NEW
partprobe /dev/nbd0
mount /dev/nbd0p1 $MNT
sed -i 's/^PermitRootLogin .*$/PermitRootLogin yes/' $MNT/etc/ssh/sshd_config
sed -i 's/^PasswordAuthentication no/PasswordAuthentication yes/'
$MNT/etc/ssh/sshd_config
chroot $MNT sh -c 'echo "root:s3cret-s@uce" | /usr/sbin/chpasswd'
umount $MNT
qemu-nbd -d /dev/nbd0
md5sum $NEW > $NEW.md5sum

The script copies the original image to a new file and mounts the new file. It then reconfigures
sshd to allow password login in general and root logins specifically. Next, it uses chpassed
within chroot to set a root password. Finally, it unmounts the image and creates a checksum file.

Instead of using the root user, a separate build user could be added to the image. To simplify the
build process, the image should be configured to allow the build user to use sudo without a
password. The user could then be removed at the end of the build process.

Building the image

Now that the image is prepared, it can be used to build a new image. Following is a Packer
configuration that will build a new image that will install all available updates and install
Docker:

{
 "builders" : [
 {
 "type" : "qemu",
 "iso_urls" : ["file:///packer/images/xenial-server-
 cloudimg-amd64-prep.img"
],
 "iso_checksum_url" : "file:///packer/images/xenial-
 server-cloudimg-amd64-prep.img.md5sum",
 "iso_checksum_type" : "md5",
 "disk_image" : true,
 "output_directory" : "/packer/images/xenial-cloudimg",
 "vm_name": "xenial-cloudimg-amd64-custom.img",
 "shutdown_command" : "shutdown -P now",

 "format" : "qcow2",
 "disk_size" : 20000,
 "headless" : true,
 "ssh_username": "root",
 "ssh_password": "s3cret-s@uce",
 "ssh_wait_timeout": "10m"
 }
],
 "provisioners" : [
 {
 "type" : "shell",
 "scripts" : [
 "/packer/scripts/install-updates.sh",
 "/packer/scripts/install-docker.sh"
]
 }
]
}

First is the builders section. The only entry is the qemu builder which is specified by the type
setting. The iso_* settings specify the URLs of the images to use, a checksum file to verify the
images, and the type of the checksum. In this case, there is only a single image file. Since the
image is a disk image rather than an ISO, the disk_image setting must be set to true.

The format setting sets the output format to qcow2. The format can also be set to raw. The
disk_size setting sets the size of the new disk image in MB. This sets the size of the disk but
does not change the file system. Cloud-Init will resize the root filesystem when the VM is booted
with the disk image. The output directory and the name of the generated image are set in the
output_directory and vm_name options, respectively. The path set in output_directory may
be absolute or relative to the location where Packer is run.

By default, the qemu builder will start a VM using the SDI console. This will only work if X11 is
available. In most cases, the headless setting should be set to true. The console is available via
VNC to watch the console during the provisioning process.

The ssh_* settings control how the qemu builder connects to the VM for provisioning. The
ssh_username and ssh_password settings set the credentials needed to log in to the VM. In this
case, it is configured to use the root user and the password set when the image was prepared. The
qemu builder will continually try to connect to SSH after the VM starts, but will give up after the
amount of time specified in ssh_wait_timeout. Ensure that the timeout provides enough time for
the VM to boot.

The provisioners section is a list of provisioners that are to be used to provision the image.
This example has a single shell provisioner, which runs the scripts specified in the scripts section
on the VM. The install-updates.sh script simply runs apt-get update && apt-get dist-
upgrade -y. The second script, install-docker.sh, is the install script from get.docker.com.

When the configuration is ready, the image can be built by running packer build <config>,
where <config> is the name of the configuration file. A sample is given here. Most of the output

https://get.docker.com/

has been removed for brevity:

$ packer build xenial-cloudimg.json
qemu output will be in this color.

==> qemu: Downloading or copying ISO
 qemu: Downloading or copying: file:///packer/images/xenial-server-
cloudimg-amd64-prep.img
==> qemu: Copying hard drive...
==> qemu: Resizing hard drive...
==> qemu: Found port for communicator (SSH, WinRM, etc): 3475.
==> qemu: Looking for available port between 5900 and 6000 on 127.0.0.1
==> qemu: Starting VM, booting disk image
 qemu: The VM will be run headless, without a GUI. If
you want to
 qemu: view the screen of the VM, connect via VNC without a password to
 qemu: 127.0.0.1:5983
==> qemu: Waiting 10s for boot...
==> qemu: Connecting to VM via VNC
==> qemu: Typing the boot command over VNC...
==> qemu: Waiting for SSH to become available...
==> qemu: Connected to SSH!
==> qemu: Provisioning with shell script: /packer/scripts/install-updates.sh
==> qemu: Provisioning with shell script: /packer/scripts/install-docker.sh
==> qemu: Gracefully halting virtual machine...
==> qemu: Converting hard drive...
Build 'qemu' finished.

==> Builds finished. The artifacts of successful builds are:
--> qemu: VM files in directory: /packer/images/xenial-cloudimg

Note

Ensure the user running Packer has permission to use KVM, when using the qemu builder. Qemu
may throw permission-denied errors if the user does not have the access needed. On Ubuntu, the
user needs to be in the kvm group.

The run will take a few minutes and, assuming everything runs properly, the new image will be
placed in the directory set in the output_directory. Packer will not run if the output directory
exists unless the -force option is set to avoid accidental deletion of build images.

Using Puppet with Packer

Provisioning a new image with scripts works if the needed changes are relatively simple. More
complicated changes require more complicated scripts. Configuration management tools are
ideally suited to the task and can be used to provision the new image. Ansible, Chef, Puppet, and
Salt are all supported.

An added benefit to using a configuration management tool to provision an image is that the same
configuration can be used to ensure that it stays properly configured while the server is running.
The exact process to do that will vary depending on the tool being used.

The following Packer snippet uses Puppet in the masterless mode to configure the image. The
same Puppet manifest that was used in the Using configuration management section is used here
as well. A command to join the Docker cluster should not be included. The command to join the
cluster can be run after a new instance is started in the cluster:

"provisioners" : [
 {
 "type" : "shell",
 "scripts" : [
 "/packer/scripts/install-updates.sh",
 "/packer/scripts/install-puppet.sh"
]
 },
 {
 "type" : "puppet-masterless",
 "manifest_file" : "/packer/puppet/docker-host.pp"
 }
]

The first difference is that the install-docker.sh script was replaced by install-puppet.sh
which runs apt-get install -y puppet. Second is the new provisioner block with a type
of puppet-masterless. The manifest_file option specifies the manifest that will be used to
configure the image; a directory may also be used. In that case, all of the manifests will be
applied to the node.

Treating infrastructure like code

Let's pause for a moment and consider what was just done. The server has been completely
defined in one or more files with a scriptable build process. We have just turned our servers into
code.

The server images can be built through a CI process. Rather than performing updates on the
running servers, new images can be built that incorporate the updates. The images can be fully
tested through a test suite before being deployed. They can be fully vetted in a test environment
before being deployed into production. Even the deployment process can be controlled through
the CI process, just like the Docker images.

The other benefit of this approach is that it is very easy to roll back updates. If a problem is
discovered, new servers can be started on the previous, working image to restore services
quickly. The broken image can be tested and debugged offline or in a different environment.

This is, basically, the same approach to running versioned containers. The important thing from a
troubleshooting perspective is that important data, such as logs, are not stored on the server.
Instead, they should be stored on network storage or shipped to services such as Elasticsearch
and Kibana.

Post-build configuration

Using a custom image does not eliminate the need for boot-time and ongoing configuration

management. Boot-time configuration can be minimized to simple things like the hostname or
joining a cluster. When running in multiregion or multicloud environments, Cloud-Init sets
information specific to the region.

Configuration management of a running system is still important. It can ensure that the
configurations that were put in place when the server was built, remain in place. It can also make
simple changes such as updating administrators' SSH keys without needing to fully rebuild the
image.

Automating host deployment
There are many ways to automate the deployment of Docker hosts. The specifics, as always,
depend on the orchestration system. For example, adding new hosts to a Docker Swarm cluster
running on Amazon EC2 is as easy as running something like the following:

$ docker-machine create --driver amazonec2
$ docker swarm join --token ABC... manager

For Azure or GCE, it would be the same. Simply replace the driver and pass the appropriate
driver specific flags to docker-machine.

This section will look at a couple of different tools that can be used to manage the hosts for a
Docker cluster. The first is Terraform which works with just about everything. Next is Docker's
own cloud management tool, Docker Cloud. Finally, it will introduce two tools which are in
public beta, Docker for AWS and Docker for Azure.

Note

If you plan on running on AWS, GCE, or Azure, consider using the container hosting services that
each of them offers. With each service, the tasks of creating and managing hosts is taken care of
by the service. Administrators only need to concern themselves with the containers.

Deploying hosts with Terraform
Terraform is a multicloud deployment tool. It uses a configuration file to define what the cluster
should look like. It then builds a plan for creating or updating the cluster based on the
configuration. The plan gives the administrator a chance to review what is going to be done
before it happens. If the plan looks good, Terraform will execute the plan to bring the cluster into
compliance with the configuration.

Terraform is completely cloud agnostic. It works with AWS, GCE, Microsoft Azure, OpenStack,
and others. It can be used in combination with cobbler to manage hosts running on local
hardware. It even has limited support for Docker. Even better, it can be used to configure multiple
clouds at the same time.

Creating a Terraform configuration

Let's look at an example Terraform configuration. This example creates two new instances on
Amazon EC2. The file can be named anything but must end in .tf. Full documentation for
Terraform may be found at https://www.terraform.io/docs/index.html.

provider "aws" {
 access_key = "ACCESS_KEY"
 secret_key = "SECRET_KEY"
 region = "us-west-2"
}

resource "aws_instance" "docker-hosts" {
 count = 2
 ami = "ami-a9d276c9"
 instance_type = "t2.micro"
 user_data = "${file("cloud-init.yml")}"
 key_name = "aws-key"
 vpc_security_group_ids = ["sg-ID"]
 tags {
 Name = "dock${count.index}"
 }
}

Each provider block specifies a cloud service. In this case, the provider is aws. The
access_key and secret_key options are the appropriate keys to manage the EC2 service. The
region option specifies the region to where these instances are going to be started. A provider
block can be specified for each region that instances will be started in.

The resource block defines a resource that will be started on a provider. Terraform matches
resources to the appropriate provider type. A resources with a type of aws_instances, as in
this case, will be started on an aws provider.

The count option specifies the number of identical resources to start. The default is one. This can
be changed later to scale the cluster up or down.

https://www.terraform.io/docs/index.html

The ami option sets the AMI to use for this instance. This can be a public AMI such as the Ubuntu
Xenial cloud image, as in this example. Private AMIs can also be used. For example, Packer can
build a new image and make it available as an AMI. The instance_type is the type of instance
to start.

Note

The specific AMI will depend on the version of image and the region it will run in. A complete
list of APIs for Ubuntu cloud images is at https://cloud-images.ubuntu.com/locator/ec2/.

A Cloud-Init file can be specified for each resource with the user_data option. The easiest way
to do it is to specify a file using the file() function. The path is relative to the location that
Terraform is run from. The configuration will be encoded and added to the instance when it is
created.

The key_name specifies the SSH key to add to the default user. The key must already exist in
EC2. A list of VPC security groups may be set with the vpc_security_group_ids option. The
security groups must exist for this example to work. Make sure that the security group allows SSH
access or you may find yourself locked out of the instance.

Note

Terraform can be used to create the VPC, security groups, and anything else that might be needed.
Full documentation is available at https://www.terraform.io/docs/providers/aws/index.html.

Finally, the tags option provides a way to set tags on the instance. This example sets the Name
tag. The ${count.index} variable is the current count if multiple instances are created from the
same resource. In this case, the two instances are named dock0 and dock1.

Running Terraform

Creating or updating a cluster with Terraform happens in two steps. The first step is to generate a
plan, while not strictly necessary, the plan shows exactly what Terraform is going to do; that way
there are no surprises. To see the plan, run terraform plan in the directory with your
configuration. It will read the configuration from the .tf files in the directory and create a plan:

$ terraform plan
Refreshing Terraform state in-memory prior to plan...
The refreshed state will be used to calculate this plan, but
will not be persisted to local or remote state storage.
The Terraform execution plan has been generated and is shown below.
Resources are shown in alphabetical order for quick scanning. Green resources
will be created (or destroyed and then created if an existing resource
exists), yellow resources are being changed in-place, and red resources
will be destroyed. Cyan entries are data sources to be read.
Note: You didn't specify an "-out" parameter to save this plan, so when
"apply" is called, Terraform can't guarantee this is what will execute.
+ aws_instance.docker-hosts.0
ami: "ami-a9d276c9"

https://cloud-images.ubuntu.com/locator/ec2/
https://www.terraform.io/docs/providers/aws/index.html

associate_public_ip_address: "<computed>"
availability_zone: "<computed>"
ebs_block_device.#: "<computed>"
ephemeral_block_device.#: "<computed>"
instance_state: "<computed>"
instance_type: "t2.micro"
key_name: "aws-key"
 network_interface_id: "<computed>"
 placement_group: "<computed>"
 private_dns: "<computed>"
 private_ip: "<computed>"
 public_dns: "<computed>"
 public_ip: "<computed>"
 root_block_device.#: "<computed>"
 security_groups.#: "<computed>"
 source_dest_check: "true"
 subnet_id: "<computed>"
 tags.%: "1"
 tags.Name: "dock0"
 tenancy: "<computed>"
 user_data:
 "23845b687111f6870657ecb38214e6a8f18b231e"
vpc_security_group_ids.#: "1"
vpc_security_group_ids.839449168: "sg-..."
+ aws_instance.docker-hosts.1
ami: "ami-a9d276c9"
associate_public_ip_address: "<computed>"
availability_zone: "<computed>"
ebs_block_device.#: "<computed>"
ephemeral_block_device.#: "<computed>"
instance_state: "<computed>"
instance_type: "t2.micro"
key_name: "aws-key"
network_interface_id: "<computed>"
placement_group: "<computed>"
private_dns: "<computed>"
private_ip: "<computed>"
public_dns: "<computed>"
public_ip: "<computed>"
root_block_device.#: "<computed>"
security_groups.#: "<computed>"
source_dest_check: "true"
subnet_id: "<computed>"
tags.%: "1"
tags.Name: "dock1"
tenancy: "<computed>"
user_data:
 "23845b687111f6870657ecb38214e6a8f18b231e"
vpc_security_group_ids.#: "1"
vpc_security_group_ids.839449168: "sg-..."
Plan: 2 to add, 0 to change, 0 to destroy.

If the plan looks good, it can be put into action by running terraform apply. The following
output was trimmed for brevity:

$ terraform apply

aws_instance.docker-hosts.1: Creating...
ami: "" => "ami-a9d276c9"
...
aws_instance.docker-hosts.0: Creating...
ami: "" => "ami-a9d276c9"
...
aws_instance.docker-hosts.1: Still creating... (10s elapsed)
aws_instance.docker-hosts.0: Still creating... (10s elapsed)
aws_instance.docker-hosts.1: Still creating... (20s elapsed)
aws_instance.docker-hosts.0: Still creating... (20s elapsed)
aws_instance.docker-hosts.0: Creation complete
aws_instance.docker-hosts.1: Creation complete
Apply complete! Resources: 2 added, 0 changed, 0 destroyed.
The state of your infrastructure has been saved to the path
below. This state is required to modify and destroy your
infrastructure, so keep it safe. To inspect the complete state
use the `terraform show` command.
State path: terraform.tfstate

The generated terraform.tfstate file is important. It provides a map from the resources
defined in the configuration to what is actually running. Anyone operating on the same Terraform
cluster must use the same terraform.tfstate file. The state file is small enough that it can be
stored in version control, but that can cause merge conflicts. Instead, Terraform has a option to
store the state remotely. Several backends are supported including S3, Azure, and etcd. Full
documentation, including the list of backends, is available at
https://www.terraform.io/docs/state/remote/index.html.

To update the cluster, simply change the configuration and run terraform plan and terraform
apply again. The requested change will be made throughout the cluster. Be advised that some
changes will require Terraform to remove and recreate running instances. It is possible that
enough of the instances will be stopped as to affect services.

Showing the cluster state

It can be useful to see what state the cluster is in. To see the state, run terraform show. The
output is potentially long depending on how large the cluster is. The following example shows the
type of information that is available. Of special note are the private and public IP addresses:

$ terraform show
aws_instance.docker-hosts.0:
 id = i-0095dceada25205bf
ami = ami-a9d276c9
associate_public_ip_address = true
availability_zone = us-west-2c
disable_api_termination = false
ebs_block_device.# = 0
ebs_optimized = false
ephemeral_block_device.# = 0
iam_instance_profile =
instance_state = running
instance_type = t2.micro
key_name = aws-key

https://www.terraform.io/docs/state/remote/index.html

monitoring = false
network_interface_id = eni-44e0df15
private_dns = ip-172-31-12-31.us-west-
 2.compute.internal
private_ip = 172.31.12.31
public_dns = ec2-35-164-109-235.us-west-
 2.compute.amazonaws.com
public_ip = 35.164.109.235
root_block_device.# = 1
root_block_device.0.delete_on_termination = true
root_block_device.0.iops = 100
root_block_device.0.volume_size = 8
root_block_device.0.volume_type = gp2
security_groups.# = 0
source_dest_check = true
subnet_id = subnet-7160dc29
tags.% = 1
tags.Name = dock0
tenancy = default
user_data = 23845b687111f6870657ecb38214e6a8f18b231e
vpc_security_group_ids.# = 1
vpc_security_group_ids.839449168 = sg-...
aws_instance.docker-hosts.1:
id = i-08eb6ebb75b788823
...

Deploying hosts with Docker Cloud
Docker Cloud is an excellent tool to manage Docker Swarms on various cloud services. It makes
it easy to create new clusters and scale them up or down to meet the needs of the services running
on the cluster.

To create a new cluster, click on Node Clusters and then on Create. A window will pop up and
ask for information such as the cluster name, cloud provider, disk size, and the initial number of
nodes. After everything is configured, click on Launch node cluster. The new nodes will be
started and, after a few minutes, be ready to run containers:

Adding a new node is very easy. Click on Node Clusters and select the cluster to add nodes to.
At the top right of the page, there is a slider which can be used to scale up the number of nodes.
Adjust the slider and click on the Scale link. Additional nodes will be added and will be ready to
run containers:

Introducing Docker for AWS and Docker for Azure
Docker for AWS is a process that uses CloudFormation to automatically build a Docker Swarm
on AWS. The process creates a new VPC for the Swarm including subnets and security groups.
Two Auto Scaling groups are also created; one for the managers and one for the workers. The
number of each can be adjusted by changing the number instances in the respective Auto Scaling
groups. New instances will automatically join the swarm.

Docker for Azure provides a similar service for clusters running on Azure. It automatically
creates all of the services required to run a Docker Swarm. It ties into the scaling features of
Azure to make it easy to scale up the number of masters and workers.

More information is available at the following locations:

Docker for AWS: https://beta.docker.com/docs/aws/
Docker for Azure: https://beta.docker.com/docs/azure/

https://beta.docker.com/docs/aws/
https://beta.docker.com/docs/azure/

Scaling down nodes
One of the benefits of cloud computing is the ability to scale down the number of hosts when they
are no longer needed. For example, a web store may increase the number of hosts during the
Christmas shopping season and then scale them down in January. How that happens will, again,
depend on the orchestration solution chosen and the platform it is running on.

Most orchestration systems have a command that will shut down containers on a specific node
and reschedule them elsewhere in the cluster. This gives the orchestration tool a chance to cleanly
move services around the cluster before a node is removed. Services such as Docker Cloud and
GKE take care of that automatically.

The command to change the node's availability could be added to the shut down scripts.
However, care must be made to ensure that all of the containers have stopped before the system is
shutdown. In most cases, another command will need to be run to permanently remove a node
from the cluster. Again, the specific command will vary depending on the orchestration tool being
used.

Summary
This chapter explored different ways to automate the infrastructure that is used to run a Docker
cluster. It looked at using configuration management while a node is running, configuring a node at
boot with Cloud-Init, and building custom images with Packer. We also covered using Terraform
and Docker Cloud to manage a cluster. Finally, some tips were shared for deprovisioning nodes
when they are no longer needed.

Where you go next is up to you. This book has provided an introduction to Docker Orchestration
using several tools. Successfully running a Docker cluster requires a number of different services
including registries, overlay networks, shared storage, the orchestration tool itself, log and
resource monitoring, and continuous integration. The specific tools and work flows will vary
from cluster to cluster. This book was only able to scratch the surface of what is possible.
Hopefully, you will be able to take what you have learned here and use it to build a scalable,
reliable service for your organization using Docker.

	Docker Orchestration
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Why subscribe?
	Customer Feedback
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. Getting Started with Docker Orchestration
	Installing Docker Engine
	Installing with Docker Machine
	Starting a host on AWS
	Starting a host on GCE
	Starting a host on Microsoft Azure
	Installing on a running Linux host
	Introducing Docker-specific distributions
	CoreOS
	RancherOS
	Project Atomic / RHEL Atomic
	Running single container applications
	What is running?
	Inspecting your container
	Summary
	2. Building Multi-Container Applications with Docker Compose
	Building an image with Docker Engine
	Building from a Dockerfile
	Tagging the image
	Skipping the build cache
	Running the image
	Installing Docker Compose
	Writing a Docker Compose file
	Multi-container applications
	Using environment files
	Extending compose files
	Controlling start order
	Using Docker networks
	Keeping your data safe in volumes
	Summary
	3. Cluster Building Blocks – Registry, Overlay Networks, and Shared Storage
	Creating a Docker Registry
	Using the Docker Hub
	Logging in
	Working with a repository
	Automating image builds with Docker Hub
	Integration with Docker Cloud
	Using the GitLab Container Registry
	Installing GitLab on Ubuntu
	Enabling Docker Registry on a project
	Introducing the Docker Trusted Registry and Docker Datacenter
	Building it yourself
	Connecting containers with overlay networks
	Using Docker native overlays
	Working with DNS-SD
	Publishing services with mesh routing mode
	Using Weave
	Installing Weave
	Connecting containers to Weave
	Using Flannel
	Configuring etcd and Flannel
	Starting a CoreOS cluster with Flannel
	Connecting to Flannel
	Using shared network storage for Docker volumes
	Introducing Ceph
	Using Ceph with Docker
	Creating a Docker volume
	Other shared storage plugins
	Summary
	4. Orchestration with Docker Swarm
	Setting up a swarm
	Initializing a swarm
	Managing a swarm
	Adding a node
	Promoting and demoting nodes
	Changing node availability
	Pausing a node
	Draining a node
	Activating a node
	Removing nodes
	Recovering from a disaster
	Restarting the full cluster
	Backup and recovery
	Backing up the swarm
	Recovering a swarm
	Backing up services
	Grouping nodes with labels
	Managing services
	Running services
	Creating replicas
	Running global services
	Setting constraints
	Stopping services
	Upgrading a service with rolling updates
	Using Docker Compose with swarm
	Building images
	Starting an application
	Bundling an application
	Deploying a stack
	Introducing Docker Datacenter
	Summary
	5. Deploying and Managing Services with Kubernetes
	Getting to know Kubernetes
	Command-line tools
	Master components
	Node components
	Installing Kubernetes
	Installing with kubeadm
	Installing with kube-up.sh
	Installing add-ons
	Managing resources
	Creating resources
	Deleting resources
	Running pods
	Defining a pod
	Viewing pods
	Environment
	Multi-container pods
	Using secrets
	Creating secrets
	Using secrets in environment variables
	Using secrets in files
	Logging into a container
	Deleting a pod
	Using deployments
	Creating a single container deployment
	Creating a multi-container deployment
	Scaling a deployment
	Rolling updates
	Updating a deployment
	Getting the rollout history
	Rolling back an update
	Deleting a deployment
	Running pods on every node with DaemonSets
	Introducing scheduled jobs
	Using labels
	Using selectors to find resources
	Using namespaces
	Viewing namespaces
	Creating namespaces
	Switching namespaces
	Deleting a namespace
	Networking
	Services
	Creating a service
	Listing services
	Introducing DNS-SD
	Using volumes
	Using plain volumes
	Storing long-lived data in persistent volumes
	Creating a PersistentVolume
	Creating the PersistentVolumeClaim resource
	Using a PersistentVolumeClaim as a volume
	Further reading
	Summary
	6. Working with Mesosphere
	Getting started with DC/OS
	Logging into the web interface
	Installing the DC/OS client
	Managing applications
	Running a simple application
	Stopping an application
	Removing an application
	Forcing Marathon to pull images
	Using environment variables
	Scaling applications
	Checking application health
	Using TCP and HTTP checks
	Using command checks
	Deploying rolling updates
	Setting an upgrade strategy
	Testing updates with blue-green deployments
	Introducing pods
	Using network services and load balancing
	Discovering services with DNS
	Connecting to the overlay network
	Using virtual IPs
	Using the Marathon load balancer
	Providing persistent storage
	Using local volumes
	Using external volumes
	Using a private registry
	Summary
	7. Using Simpler Orchestration Tools – Fleet and Cattle
	Using Fleet
	Starting Fleet
	Verifying the cluster
	Starting a container
	Monitoring services
	Viewing service logs
	Stopping a service
	Using environment variables
	Scheduling services with affinity
	Setting positive affinity
	Using negative affinity
	High availability
	Sidekick services
	Starting global units
	Using Rancher Cattle
	Installing Rancher
	Installing Rancher server
	Installing Rancher agents
	Installing Rancher Compose
	Introducing environments
	Managing services
	Starting a stack
	Stopping a stack
	Removing a stack
	Upgrading a stack
	Rolling back and confirming upgrades
	Checking service health
	Scheduling and affinity
	Using networking services
	Discovering services
	Load balancer
	Further reading
	Summary
	8. Monitoring Your Cluster
	Logging with containers
	Using Docker logging plugins
	Logging containers that do not play by the rules
	Logging with the ELK stack
	Starting Elasticsearch
	Starting Logstash
	Viewing the logs with Kibana
	Remote logging in Docker Datacenter
	Logging from Kubernetes
	Logging from Mesosphere
	Logging your Docker hosts
	Collecting and graphing performance data
	Collecting data with collectd
	Running collectd
	Configuring collectd
	Storing performance data in Elasticsearch
	Storing performance data in InfluxDB
	Graphing data with Kibana
	Creating a new chart
	Adding charts to a dashboard
	Graphing data with Grafana
	Installing Grafana
	Adding data source
	Creating a new dashboard
	Creating a graph
	Using Heapster in Kubernetes
	Considerations for monitoring system health
	Monitor services
	Watching services in real time with Sysdig
	Summary
	9. Using Continuous Integration to Build, Test, and Deploy Containers
	The importance of using CI
	Using GitLab for CI
	Setting up GitLab for CI
	Installing the GitLab Runner on Ubuntu
	Registering a runner
	Enabling a Docker Repository
	Adding the project to the repository
	Creating .gitlab-ci.yml
	Testing the image
	Cleanup jobs
	Releasing the image
	Deploying the image
	Deploying the image manually
	Deploying to Kubernetes
	Building DAB files
	Using Docker Cloud for CI
	Enabling autobuilds
	Testing the image
	Summary
	10. Why Stop at Containers? Automating Your Infrastructure
	Configuring Docker hosts
	Using configuration management
	Configuring a server on boot
	Using a custom image
	Building a new image with Packer
	Preparing the Ubuntu Cloud Image
	Building the image
	Using Puppet with Packer
	Treating infrastructure like code
	Post-build configuration
	Automating host deployment
	Deploying hosts with Terraform
	Creating a Terraform configuration
	Running Terraform
	Showing the cluster state
	Deploying hosts with Docker Cloud
	Introducing Docker for AWS and Docker for Azure
	Scaling down nodes
	Summary

