
Docker for Web Developers

Craig Buckler, @craigbuckler

DockerWebDev.com, v1.2.0

Contents

0.1 Version history . 1
0.2 Preface . 2
0.3 Prerequisites . 3
0.4 Course website . 4
0.5 Book and/or videos? . 4
0.6 Example code . 4
0.7 Chat room . 5
0.8 Code conventions . 5
0.9 Further tips . 5
0.10 About me . 6
0.11 Copyright and distribution . 7

1 Introduction 9
1.1 “It works on my machine, buddy” . 9
1.2 Virtual machining . 10
1.3 Docker delivers . 11
1.4 Nah, I’m still not convinced . 11
1.5 Isn’t {insert-technology-here} where it’s at? . 13
1.6 Key points . 15

2 What is Docker? 17
2.1 Containers . 18
2.2 Images . 23
2.3 Volumes . 25
2.4 Networks . 26

i

DockerWebDev.com, v1.2.0 Docker for Web Developers

2.5 Docker Compose . 27
2.6 Orchestration . 27
2.7 Docker client-server application . 28
2.8 Docker deployment strategies . 28
2.9 Simpler development and production . 30
2.10 When not to use Docker . 30
2.11 Docker alternatives . 32
2.12 Key points . 33

3 How to install Docker 35
3.1 Install Docker on Linux . 36
3.2 Install Docker on macOS . 38
3.3 Install Docker on Windows . 39
3.4 Test your Docker installation . 48
3.5 Key points . 50

4 Launch a MySQL database with Docker 51
4.1 Locate a suitable MySQL image on Docker Hub 52
4.2 Launch a MySQL container . 54
4.3 Connect to the database using a MySQL client 57
4.4 Connect to a container shell . 58
4.5 View, stop, and restart containers . 60
4.6 Define a Docker network . 61
4.7 Cleaning up . 63
4.8 Launch multiple containers with Docker Compose 66
4.9 Key points . 70

5 WordPress development with Docker 71
5.1 WordPress requirements . 72
5.2 Docker configuration plan . 73
5.3 Docker Compose configuration . 75
5.4 Launch your WordPress environment . 79
5.5 Install WordPress . 80

ii Craig Buckler, @craigbuckler

Docker for Web Developers DockerWebDev.com, v1.2.0

5.6 Local WordPress Development . 83
5.7 Key points . 86

6 Application development with Docker 87
6.1 Container-based application development . 88
6.2 What is Node.js? . 89
6.3 Hello World application overview . 90
6.4 Docker configuration plan . 95
6.5 Dockerfiles . 96
6.6 Build an image . 102
6.7 Launch a production container from your image 103
6.8 Launch a development environment with Docker Compose 104
6.9 Live code editing . 106
6.10 Remote container debugging . 107
6.11 Create an image from a container . 117
6.12 Key points . 118

7 Push your Docker image to a Repository 119
7.1 Why push an image to Docker Hub? . 119
7.2 Docker Hub alternatives . 120
7.3 Image names and tags . 120
7.4 Create a Docker Hub repository . 121
7.5 Log in locally . 122
7.6 Build an application image . 122
7.7 Tag an image . 123
7.8 Push to Docker Hub . 124
7.9 Distribute your image . 125
7.10 Key points . 126

8 Docker orchestration on production servers 127
8.1 Dependency planning . 127
8.2 Application scaling . 128
8.3 Orchestration overview . 129

Craig Buckler, @craigbuckler iii

DockerWebDev.com, v1.2.0 Docker for Web Developers

8.4 Docker Swarm . 130
8.5 Kubernetes . 133
8.6 Key points . 138

9 Your Docker journey 139
9.1 Docker’s future . 139
9.2 Further Docker help . 140

10 Appendix A: Docker command-line reference 141
10.1 Log into Docker Hub . 141
10.2 Search Docker Hub . 141
10.3 Pull a Docker Hub image . 142
10.4 List Docker images . 142
10.5 Build an image from a Dockerfile . 142
10.6 Tag an image . 143
10.7 Push tagged images to Docker Hub . 143
10.8 Launch a container from an image . 143
10.9 List containers . 145
10.10Run a command in a container . 145
10.11Attach to a container shell . 145
10.12Restart a container . 145
10.13Pause a container . 146
10.14Unpause (resume) a container . 146
10.15View container metrics . 146
10.16Increase container resources . 146
10.17Stop a container . 147
10.18Remove stopped containers . 147
10.19View Docker volumes . 148
10.20Delete a volume . 148
10.21Bind mount a host directory . 148
10.22Define a Docker network . 149
10.23View networks . 149
10.24Delete a network . 149

iv Craig Buckler, @craigbuckler

Docker for Web Developers DockerWebDev.com, v1.2.0

10.25View system disk usage . 149
10.26Full clean start . 150

11 Appendix B: Dockerfile reference 151
11.1 # comment . 151
11.2 ARG arguments . 151
11.3 ENV environment variables . 152
11.4 FROM <image> starting image . 152
11.5 WORKDIR working directory . 153
11.6 COPY files from the host to image . 153
11.7 ADD files . 153
11.8 Mount a VOLUME . 153
11.9 Set a USER . 154
11.10RUN a command . 154
11.11EXPOSE a port . 154
11.12CMD execute container . 155
11.13ENTRYPOINT execute container . 155
11.14.dockerignore file patterns . 156

12 Appendix C: Docker Compose reference 157
12.1 Docker Compose CLI . 157
12.2 docker-compose.yml outline . 159
12.3 Starting image . 159
12.4 build an image from a Dockerfile . 160
12.5 Set the container_name . 160
12.6 Container depends_on another . 160
12.7 Set environment variables . 160
12.8 Set environment variables from a env_file 161
12.9 Attach to Docker networks . 161
12.10Attach persistent Docker volumes . 162
12.11Set a custom dns server . 163
12.12expose ports . 163
12.13Define external_links to other containers 164

Craig Buckler, @craigbuckler v

DockerWebDev.com, v1.2.0 Docker for Web Developers

12.14Override the default command . 164
12.15Override the default entrypoint . 164
12.16Specify a restart policy . 164
12.17Run a healthcheck . 165
12.18Define a logging service . 165

13 Appendix D: quiz project 167
13.1 Project overview . 168
13.2 Launch in development mode . 170
13.3 Launch in production mode . 171
13.4 Clean up . 171
13.5 Project file structure . 172
13.6 nodejs Docker image . 173
13.7 nginx Docker image . 177
13.8 mongodb Docker image . 180
13.9 Node.js build process . 181
13.10Node.js Express.js application . 182
13.11Client-side files . 189
13.12Key points . 194

vi Craig Buckler, @craigbuckler

Docker for Web Developers DockerWebDev.com, v1.2.0

0.1 Version history

v1.2.0, January 2021 release

• revisions to MySQL (chapter 4) and WordPress (chapter 5)
• GitHub Container Registry link (chapter 7)
• example quiz project update (appendix D)
• minor updates throughout

v1.1.0, October 2020 release

• image description clarification (chapter 2)
• Windows WSL2 installation and settings (chapter 3)
• MySQL credentials (chapter 4)
• docker compose down usage (chapter 4)
• reddit.com link (chapter 9)
• Dockerfile command corrections (Appendix B)
• links to example code directories
• minor updates and clarifications throughout

v1.0.0, July 2020

• initial release

Craig Buckler, @craigbuckler 1

DockerWebDev.com, v1.2.0 Docker for Web Developers

0.2 Preface

Docker is the most useful web development tool you’re not using.

Using Docker, you can:

• install and run dependencies in minutes. This includes web servers, databases,
language runtimes, applications such as WordPress, and more.

• manage isolated applications. Your PC is not polluted; you can run multiple editions of
any so�ware on the same device at the same time, e.g. MySQL 5 and 8.

• use your favorite development tools, editors, and workflows. Web development with
Docker is no more di�icult than developing code on your local system.

• distribute your web application to others on your team. It won’t matter if they use
another operating system or some dependencies are not available on their platform.

• deploy your application to live production servers. It’s guaranteed to work and o�ers
scaling opportunities.

Despite these benefits, Docker is o�en shunned by web developers. It’s considered too technical,
unnecessary, or something for DevOps experts. Terminology and resources can be impenetrable
and tutorials rarely explain how to use Docker during development. I first tried Docker in 2016
and gave up. It took another three years before I realised what I’d been missing.

This course concisely illustrates how to setup good Docker development environments with
examples you can adapt for your own web development projects. You’ll be running a database, a
WordPress environment, and a Node.js application on Windows, macOS, or Linux in minutes.
You’ll discover how to edit and debug live code using browser DevTools and VS Code. You’ll find
out how to share your application with others and push to production servers.

I considered naming this book “Docker: the Good Parts” or “Docker Essentials”.

Perhaps “How to Use Docker Quickly and Easily for Web Development Projects Without Having to
Wade Through Complex Documentation First” is more apt, but a little long (unless you’re into
SEO).

2 Craig Buckler, @craigbuckler

Docker for Web Developers DockerWebDev.com, v1.2.0

0.3 Prerequisites

This book is technology-agnostic where possible. The examples refer to specific web
development dependencies such as PHP, Node.js, MySQL, and WordPress but you do not require
working knowledge of those technologies. All Docker commands and techniques can be used on
Windows, macOS, or Linux and adapted to your own stack.

Ideally, you should know a little about web development concepts:

1. web servers and browsers
2. client-side HTML, CSS, and JavaScript
3. server-side languages or runtimes such as Node.js, PHP, Python, Ruby, .NET, etc.
4. databases such as MySQL, PostgreSQL, MongoDB, etc.
5. other dependencies used by your web application, such as build tools, queuing systems,

caches, etc.

You don’t need to be a full-stack developer, but it’s practical to have some knowledge of how
these technologies mesh together.

You will also require a terminal and a text editor. Some familiarity with the command-line and Git
will be useful.

0.3.1 Docker Community Edition

You should be running a recent edition of Windows, macOS, or Linux which supports Docker. All
commands shown are cross-platform unless stated otherwise.

The open source (free) Docker Community edition version 19 and Docker Compose 1.26 have
been used to create examples and code snippets. These should be compatible with later
versions, but consider upgrading if you have earlier installations.

The commercial Docker Enterprise Edition (EE) is primarily a support plan, so it should be
compatible.

Craig Buckler, @craigbuckler 3

DockerWebDev.com, v1.2.0 Docker for Web Developers

0.3.2 Docker Hub

Docker Hub is a service for finding and sharing container images. It’s not necessary to create a
DockerHub account, but you will need to sign-up at https://hub.docker.com/ if you want to push
your own images.

0.4 Course website

Course resources, links, announcements, and breaking amendments can be found at
dockerwebdev.com

0.5 Book and/or videos?

This course is provided as a book and a set of videos depending where you purchased it. The
book contains in-depth information but the videos quickly demonstrate concepts, code, and
results. They cover the same topics so use either as you prefer.

You can purchase either, both, or the other option on the dockerwebdev.com website.

0.6 Example code

You may have received the example code in a ZIP archive, but you can also access the GitHub
repository:

https://github.com/craigbuckler/docker-web

Those comfortable with Git can fork the repository and clone their own version. Alternatively,
click the Clone or download button and choose Download ZIP.

4 Craig Buckler, @craigbuckler

https://hub.docker.com/
https://hub.docker.com/
https://dockerwebdev.com/
https://dockerwebdev.com/
https://github.com/craigbuckler/docker-web

Docker for Web Developers DockerWebDev.com, v1.2.0

0.7 Chat room

A course chat room is available at discord.com for registered users to discuss Docker concepts
and problems. Your registration invite link is available in your book/course receipt email.

0.8 Code conventions

Terminal commands are presented in a code block. A backslash denotes a line break for easier
reading, e.g.

docker run -d --rm \
--name mongodb \
-p 27017:27017 \
--mount "src=mongodata,target=/data/db" \
mongo:4

These commands can be copied and pasted as-is on Linux, macOS, and Windows terminals using
the Windows Subsystem for Linux (WSL).

Windows cmd and PowerShell terminal users must remove the \ and line breaks before
pasting.

Code examples such as JavaScript may have additional whitespace in the book. Please refer to
the original source and avoid copying directly from the PDF.

0.9 Further tips

Additional information and asides are shown in a breakout box.

These tips show useful options but are not part of the main tutorial.

Craig Buckler, @craigbuckler 5

https://discord.com/channels/714109256072429630/714109256596455446

DockerWebDev.com, v1.2.0 Docker for Web Developers

0.10 About me

I’m Craig Buckler – a freelance UK web developer. I’ve been coding web sites and apps since the
mid-1990s (using IE2, kids!) and have been fortunate to undertake projects and technologies
which interest me.

You may have encountered my work at SitePoint.com where I’ve written more than 1,200
tutorials and authored several books including Jump Start Web Performance, Browser DevTool
Secrets, and Your First Week With Node.js. I’ve also developed video courses for O’Reilly.

I mainly bang on about web standards, performance, and keeping things simple.

0.10.1 Hire me

I’m available for consultancy, coding, speaking, mentoring, or training. My specialisms include
system design, resilient web development, Progressive Web Apps, performance, accessibility,
and . . . Docker.

More information and contact details:

• craigbuckler.com personal site
• optimalworks.net business site

6 Craig Buckler, @craigbuckler

https://www.sitepoint.com/author/craig-buckler
https://amzn.to/3l1BCNc
https://www.sitepoint.com/premium/books/browser-devtool-secrets
https://www.sitepoint.com/premium/books/browser-devtool-secrets
https://amzn.to/2Ek940G
https://www.oreilly.com/people/craig-buckler/
https://craigbuckler.com/
https://www.optimalworks.net/

Docker for Web Developers DockerWebDev.com, v1.2.0

0.11 Copyright and distribution

Copyright 2021 Craig Buckler. All rights reserved. No part of this book may be reproduced
without the prior written permission of the author.

Kindle editions of the book purchased from Amazon use Digital Rights Management (DRM): you
will only be able to view it on a compatible device.

The book and video files purchased from the dockerwebdev.com website do not use DRM. You
are free to copy and use the files on any of your devices without restriction.

Of course, that means you could distribute, re-brand, or sell this to others. Please don’t! This
course is the culmination of many months e�ort. It’s self-published – I don’t receive income or
commission from a publishing company.

Benefits to those buying the course:

1. You’ll receive updates and amendments as necessary.
2. You can access the chat room for further support.
3. You can become an a�iliate and receive income from your sales.
4. You’re enabling the production of further courses.
5. You’ll receive my eternal gratitude and can sleep well at night.

Many thanks for buying this course. I hope you find it useful and it changes the way you
approach web development. I look forward to receiving your comments and feedback on Twitter
@craigbuckler or the course chat room.

Craig Buckler, @craigbuckler 7

https://dockerwebdev.com/
https://discord.com/channels/714109256072429630/714109256596455446
https://dockerwebdev.com/
https://twitter.com/craigbuckler
https://discord.com/channels/714109256072429630/714109256596455446

DockerWebDev.com, v1.2.0 Docker for Web Developers

8 Craig Buckler, @craigbuckler

1 Introduction

Does our web development stack really need another technology?

Modern web development involves a deluge of files, systems, and components:

• HTML content and templates
• CSS stylesheets and preprocessors such as Sass
• client-side JavaScript including frameworks such as React, Vue.js, and Svelte
• build tools such as bundlers, minifiers, etc.
• web servers such as NGINX or Apache
• server-side runtimes and frameworks including Node.js, PHP, Python, Ruby, .NET etc.
• databases such as MySQL, MariaDB, SQL Server, or MongoDB
• other services for caching, message queues, email, process monitoring, etc.
• Git and Github for source control

Managing this stack can be a challenge.

How many hours do you spend installing, configuring, updating, and managing so�ware
dependencies on your development PC?

1.1 “It works on my machine, buddy”

Imagine your latest application has become successful. You’ve had to hire another developer to
give you more time to rake in money. They turn up at work on day one, clone your repository,
launch the code, and – BANG – it fails with an obscure error message.

9

DockerWebDev.com, v1.2.0 Docker for Web Developers

Debugging may help, but your environments are not the same. . .

• you use a Mac, they use Windows
• you developed the app using Node.js v10, they have v14 installed
• you used MongoDB v3.6, they’re on v4.2

The di�erences mount up.

You may be able to solve these issues within a few hours, but. . .

• Can you keep every dependency synchronized?
• Is that practical as the team and number of devices grow?
• Are those dependencies available on all development OSes and the production servers?

Some companies would implement a locked-down device policy, where you’re prevented from
using the latest or most appropriate tools. (Please don’t be that boss!)

1.2 Virtual machining

Rather than restricting devices and so�ware, the application could be run within a Virtual
Machine (VM). A VM allows an operating system to be installed in an emulated hardware
environment; in essence, it’s a PC running on your PC.

Cross-platform VM options include VMware and VirtualBox. You could create a Linux (or other)
VM with your application and all its dependencies. The VM is just data: it can be copied and run
on any real Windows, macOS, or Linux device. Every developer – and the live server – could run
the same environment.

Unfortunately, VMs quickly become impractical:

• VM disk images are large and di�icult to clone
• an individual VM could be updated automatically or by a single developer so it’s out of sync

with others
• a VM requires considerable computing resources: it’s a full OS running on emulated

hardware within another OS.

10 Craig Buckler, @craigbuckler

https://www.vmware.com/
https://www.virtualbox.org/

Docker for Web Developers DockerWebDev.com, v1.2.0

1.3 Docker delivers

Docker solves all these problems and more. Rather than installing dependencies on your PC, you
run them in lightweight isolated VM-like environments known as containers.

In a single command, you can download, configure, and run whatever combination of services or
platforms you require. Yes, a single command. (Admittedly, it can be quite a complicated
command, but that’s where this book comes in!)

Development benefits include:

• all developers can use the same Docker containers on macOS, Linux, and Windows
• installation, configuration, maintenance, and testing of applications becomes easier
• applications run in virtual environment isolated from your development PC
• multiple versions of the same application or runtime can be used on the same PC at the

same time, e.g. PHP 5.6, 7.0, 7.4 etc.
• developers retain all the benefits of local development and can experiment without risk.

Similar Docker environments can also be deployed in production:

• continuous integration and delivery processes can be simplified for rapid deployment with
zero downtime

• performance can be improved with horizontal scaling. It’s possible to add more
application containers to cope with increased tra�ic.

• services are more robust. If a container fails, it can be automatically restarted with zero
downtime.

• applications can be secured. Containers can be configured to communicate only with each
other and not the outside world. A MySQL database could be made available to a
WordPress container without exposing itself to the host OS and beyond.

1.4 Nah, I’m still not convinced

Neither was I.

Craig Buckler, @craigbuckler 11

https://www.docker.com/

DockerWebDev.com, v1.2.0 Docker for Web Developers

When I first encountered Docker, it seemed like an unnecessary and somewhat daunting hurdle. I
had plenty of experience running VMs and configuring so�ware dependencies – surely I didn’t
need it?

Docker documentation is comprehensive but it has a steep learning curve. Tutorials are o�en
poor and:

1. presume the reader fully understands all the jargon,

2. fail to explain or over-explain esoteric points, and

3. rarely address how Docker can be used during development.

When I started, I presumed Docker couldn’t handle dynamic application restarts or
debugging. Tutorials o�en claimed every code change required a slow and cumbersome
application rebuild.

I gave up.

I was eventually shown the light by another developer (thanks Glynne!) That led to several
months deep-diving into Docker and I realised what I’d been missing.

Example: I’ve created many WordPress-based websites.

I’d usually develop these directly on Windows or an Ubuntu VM, where it’s necessary to
install/update Apache, SSL, PHP, MySQL, and WordPress itself. All before commencing the real
development work.

The equivalent Docker process takes minutes to initialize and can be cloned for every new
project (see WordPress development with Docker). Each installation exists in its own isolated
environment which can be source-controlled and distributed to other developers.

That said, I’ve never deployed WordPress to a production server using Docker. WordPress
hosting is ubiquitous and inexpensive; I’m happy to let someone else manage those
dependencies. However, potential problems are minimized because I replicated the production
server environment on my development PC.

It is considerably easier to build applications with Docker. Without wanting to sound like a
salesperson, Docker will revolutionize your development!

12 Craig Buckler, @craigbuckler

Docker for Web Developers DockerWebDev.com, v1.2.0

1.5 Isn’t {insert-technology-here} where it’s at?

Docker helps regardless of which web development approach and stack you’re using. It provides
a consistent environment at build time and/or closely matches the dependencies on your
production server(s).

Your Docker environment:

1. works without an active/fast internet connection (useful when travelling, during
demonstrations, etc.)

2. permits experimentation without risk. No one will mind if you accidentally wipe your local
MySQL database.

3. is free from cost and usage restrictions.

1.5.1 Monolithic web applications

Monolithic applications contain a mix of front-end and back-end code. Typically, the application
uses a web server, server language runtime, data stores, and client-side HTML, CSS, JavaScript
and frameworks to render pages and provide APIs. WordPress is a typical example.

Docker can be used to replicate that environment so all dependencies are available on your
development PC.

Craig Buckler, @craigbuckler 13

DockerWebDev.com, v1.2.0 Docker for Web Developers

1.5.2 Serverless web applications

Serverless applications implement most functionality in the browser typically with a JavaScript
framework to create a Single Page Application (SPA). The core site/application is downloaded
once.

Additional data and services are provided by small APIs perhaps running as serverless functions.
Despite the name, servers are still used – but you don’t need to worry about managing them. You
create a function which is launched on demand from a JavaScript Ajax request, e.g. code that
emails form data to a sales team.

Docker can be used in development environments to:

1. run build processes such as JavaScript module bundling and Sass preprocessing
2. serve the web application, and
3. emulate infrastructures for serverless function testing.

1.5.3 Static sites

A static site is constructed using a build process which places content (markdown files, JSON
data, database fields, etc.) into templates to create folders of static HTML, CSS, JavaScript, and
media files. Those pre-rendered files can be deployed anywhere: no server-side runtime or
database is required.

Static sites are o�en referred to as the JAMstack (JavaScript, APIs, and Markdown). All content is
pre-rendered where possible, but dynamic services such as a site search can adopt server-based
APIs.

Docker can be used to provide a reproducible build environment on any development PC.

14 Craig Buckler, @craigbuckler

Docker for Web Developers DockerWebDev.com, v1.2.0

1.6 Key points

What you’ve learned in this chapter:

1. Docker can launch all your application’s dependencies in individual containers.

This includes servers, databases, language runtimes, etc. In most cases, these will require
little or no configuration.

2. Docker is cross-platform.

It runs on Windows, macOS, and Linux. Your application will work on any PC.

3. Docker can – and should – be used in your development environment.

You can also use it in production systems if it’s practical to do so.

The next chapter describes Docker concepts in more detail.

Craig Buckler, @craigbuckler 15

DockerWebDev.com, v1.2.0 Docker for Web Developers

16 Craig Buckler, @craigbuckler

2 What is Docker?

Most tutorials attempt to explain Docker concepts first. That can be daunting so here’s the TL;DR
alternative. . .

• Docker runs an application such as MySQL in a single container.

It’s a lightweight virtual machine-like package containing an OS, the application files, and
all dependencies.

• Your web application will probably require several containers; your code (and language
runtime), a database, a web server, etc.

• A container is launched from an image.

In essence, it’s a container template which defines the OS, installation processes, settings,
etc. in a Dockerfile configuration. Any number of containers can be started from the same
image.

• Containers start in clean (image) state and data is not permanently stored.

You can mount Docker volumes or bind host folders to retain state between restarts.

• Containers are isolated from the host and other containers.

You can define a network and open TCP/IP ports to permit communication.

• Each container is started with a single Docker command.

Docker Compose is a utility which can launch multiple containers in one step using a
docker-compose.yml configuration file.

• Optionally, orchestration tools such as Docker Swarm and Kubernetes can be used for
container management and replication on production systems.

17

DockerWebDev.com, v1.2.0 Docker for Web Developers

You’re welcome to skip the rest of this chapter and jump straight into the Docker examples. It’s
worth coming back later: the concepts discussed below may change how you approach web
development.

2.1 Containers

Recall how you could use a Virtual Machine (VM) to install a web application and its
dependencies. VM so�ware such as VMware and VirtualBox are known as hypervisors. They allow
you to create a new virtual machine, then install an appropriate operating system with the
required application stack (web server, runtimes, databases, etc.):

Figure 2.1: single Virtual Machine

18 Craig Buckler, @craigbuckler

https://www.vmware.com/
https://www.virtualbox.org/

Docker for Web Developers DockerWebDev.com, v1.2.0

In some cases, it may not be possible to install all applications in a single VM so multiple VMs
become necessary:

Figure 2.2: multiple Virtual Machines

Each VM is a full OS running on emulated hardware in a host OS with access to resources such as
networks via the hypervisor. This is a considerable overhead, especially when a dependency
could be tiny.

Craig Buckler, @craigbuckler 19

DockerWebDev.com, v1.2.0 Docker for Web Developers

Docker launches each dependency in a separate container. It helps to think of a container as a
mini VM with its own operating system, libraries, and application files.

In reality:

• a virtual machine hypervisor emulates hardware so you can run a full Operating System
• Docker emulates an Operating System so you can run isolated applications within their

own file system.

Figure 2.3: multiple Docker containers

A container is e�ectively an isolated wrapper around an executable so Docker requires far fewer
host OS resources than a VM.

It’s technically possible to run all your application’s dependencies in a single container, but
there are no practical benefits for doing so and management becomes more di�icult.

Always use separate containers for your application, the database, and any other
dependencies you require.

20 Craig Buckler, @craigbuckler

Docker for Web Developers DockerWebDev.com, v1.2.0

2.1.1 Containers are isolated

Each container is available at localhost or 127.0.0.1, but a TCP port must be exposed to
communicate with the application it runs, e.g.

• port 80 or 443 for a HTTP or HTTPS web servers
• 3306 for MySQL
• 27017 for MongoDB

Docker also allows you to access the container shell to enter terminal commands and expose
further ports to attach debuggers and investigate problems.

2.1.2 Containers are stateless and disposable

Data written to the container’s file system is lost the moment it is shuts down!

Any number of containers can be launched from the same base image (see below). This makes
scaling easy because every container instance is identical and disposable.

This may change the way you approach application development if you want to use Docker on
production servers. Presume your application has a variable which counts the number of
logged-in users. If it’s running in two containers, either could handle a login so each would have
a di�erent user count.

Dockerized web applications should therefore avoid retaining state data in variables and local
files. Your application can store data in a database such as redis, MySQL, or MongoDB so state
persists between container instances.

It may be impractical to deploy an existing application using Docker containers if it was
developed in a non-stateless way from the start. However, you can still run the application
in Docker containers during development.

Craig Buckler, @craigbuckler 21

DockerWebDev.com, v1.2.0 Docker for Web Developers

Which begs the question: what if your database is running in a container?

It will also lose data when it restarts, so Docker o�ers volumes and host folder bind mounts.

You may be thinking, “ahh, I can get around the state issue by never stopping a container!”
That’s true. Presuming your application is 100% bug-free. And your runtime is 100% reliable.
And the OS never crashes. And you never need update the host OS or the container itself.

2.1.3 Containers run on Linux

It doesn’t matter what host OS you’re using: Docker containers run natively on Linux. Even
Windows and macOS run Docker containers inside Linux. . .

The macOS edition of Docker requires VirtualBox.

The Windows edition of Docker allows you to switch between either:

1. the Windows Subsystem for Linux (WSL) 2: a highly-integrated seamless VM which is
available on all editions of Windows, or

2. Hyper-V: the Microso� hypervisor provided with Windows 10 Professional and Enterprise.

It is therefore more e�icient to run Docker on Linux but this rarely matters on a development PC.
Use whatever OS and tools you prefer.

However, if you are using Docker to deploy your application, Linux is the best choice for your live
server.

22 Craig Buckler, @craigbuckler

https://www.virtualbox.org/
https://docs.docker.com/docker-for-windows/
https://docs.microsoft.com/windows/wsl/wsl2-index
https://docs.microsoft.com/virtualization/hyper-v-on-windows/

Docker for Web Developers DockerWebDev.com, v1.2.0

2.2 Images

A Docker image is a snapshot of a file and operating system with libraries and application
executables. In essence, an image is a recipe or template for creating a container. (In a similar
way that some computer languages let you define a reusable class template for instantiating
objects of the same type.)

Any number of containers can be started from a single image. This permits scaling on production
servers, although you’re unlikely to launch multiple containers from the same image during
development.

The Docker Hub provides a repository of commonly-used images for:

• dependencies such as NGINX, MySQL, MongoDB, Elasticsearch, redis etc.
• language runtimes or frameworks such as Node.js, PHP, Python, Ruby, Rust, and any other

language you’ve heard of.
• applications such as WordPress, Drupal, Joomla, Nextcloud etc. (These o�en require

additional containers such as databases.)

Reminder: sign-up for Docker Hub account if you’d like to publish your own images.

2.2.1 Dockerfile

An image is configured using a Dockerfile. It typically defines:

1. a starting base image – usually an operating system
2. work directories and user permissions
3. all necessary installation steps, such as defining environment variables, copying files from

the host, running install processes, etc.
4. whether the container should attach one or more volumes for data storage
5. whether the container should join a network to communicate with others
6. which ports (if any) are exposed to localhost on the host
7. the application launch command.

In some cases, you will use an image as-is from Docker Hub, e.g. MySQL. However, your
application will require it’s own custom Dockerfile.

Craig Buckler, @craigbuckler 23

https://hub.docker.com/
https://hub.docker.com/_/nginx
https://hub.docker.com/_/mysql
https://hub.docker.com/_/mongo
https://hub.docker.com/_/elasticsearch
https://hub.docker.com/_/redis
https://hub.docker.com/_/node
https://hub.docker.com/_/php
https://hub.docker.com/_/python
https://hub.docker.com/_/ruby
https://hub.docker.com/_/rust
https://hub.docker.com/_/wordpress
https://hub.docker.com/_/drupal
https://hub.docker.com/_/joomla
https://hub.docker.com/_/nextcloud
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/_/mysql

DockerWebDev.com, v1.2.0 Docker for Web Developers

2.2.2 Development and production Dockerfiles

It is possible to create two Dockerfile configurations for your application:

1. one for development.

It would typically activate logging, debugging, and remote access. For example, during
Node.js development, you might want to launch your application using Nodemon to
automatically restart it when files are changed.

2. one for production.

This would run in a more e�icient and secure mode. For Node.js deployment, it’s likely to
use the standard node runtime command.

However, a simpler process is described throughout this book.

2.2.3 Image tags

Docker Hub is to Docker images what Github is to Git repositories.

Any image you create can be pushed to Docker Hub. Few developers do this, but it may be
practical for deployment purposes or when you want to share your application with others.

Images are name-spaced with your Docker Hub ID to ensure no one can use the same name.
They also have a tag so you can create multiple versions of the same image, e.g. 1.0, 1.1, 2.0,
latest etc.

<Your-Docker-ID>/<Your-Docker-Hub-Repository>:<tag>

Examples: yourname/yourapp:latest, craigbuckler/myapp:1.0.

O�icial images on Docker Hub don’t require a Docker ID, e.g. mysql (which presumes
mysql:latest), mysql:5, mysql:8.0.20, etc.

24 Craig Buckler, @craigbuckler

https://nodemon.io/

Docker for Web Developers DockerWebDev.com, v1.2.0

2.3 Volumes

Containers do not retain state between restarts. This is generally a good thing; any number of
containers can be started from the same base image and each can handle incoming requests
regardless of how or when they were launched (see Orchestration).

However, some containers – such as databases – absolutely must retain data so Docker provides
two storage mechanism types:

1. Volumes: a Docker-managed file system, and
2. Bind mounts: a file or directory on the host machine.

Either can map to a directory on the container, such as /data/db for MongoDB storage.

Volumes are the recommended way to persist data. In some cases, it’s the only option – for
example, MongoDB does not currently support bind mounts on Windows or macOS file
systems.

However, bind mounts are practical during development. An application folder on the host OS
can be mounted within the container so any file changes trigger an application restart, browser
refresh, etc.

It is possible to mount the same volume or bind mount on two or more containers. Read-only
access should be fine, but you could encounter issues if more than one container attempted
to write to the same file at the same time!

Craig Buckler, @craigbuckler 25

DockerWebDev.com, v1.2.0 Docker for Web Developers

2.4 Networks

Any TCP/IP port can be exposed on a container, such as 3306 for MySQL. This allows the
applications on the host to communicate with the database system at localhost:3306.

An application running in another container could not communicate with MySQL because
localhost resolves to itself. For this reason, Docker creates a virtual network and assigns each
running container a unique IP address. It’s then becomes possible for one container to
communicate with another using its address.

Unfortunately, Docker IP addresses can change every time a container is launched. An easier
option is to create your own Docker virtual network. Any container added to that network can
communicate with another using its name, i.e. mysql:3306 resolves to the correct address.

Container TCP/IP ports can be exposed:

1. within the virtual network only, or
2. within the virtual network and to the host.

Presume you are running two containers on the same Docker network:

1. a container named phpapp which exposes a web application on port 80
2. a container named mysql which exposes a database on port 3306.

During development, you would want both ports exposed to the host. The application can be
launched in a web browser at http://localhost/ (port 80 is the default) and MySQL clients
can connect to http://localhost:3306/.

In production environments, the mysql port need not be exposed to the host. The phpapp
container can still communicate with mysql:3306, but unscrupulous crackers would not be
able to probe port 3306 on the host.

With careful planning, it’s possible to create complex Docker networks which heighten security,
e.g. mysql and redis containers can be accessed by phpapp but they cannot access each
other.

26 Craig Buckler, @craigbuckler

Docker for Web Developers DockerWebDev.com, v1.2.0

2.5 Docker Compose

A single container is launched with a single docker command. An application requiring several
containers – say Node.js, NGINX, and MongoDB – must be started with three commands. You
could launch each in three terminals in the correct order (probably MongoDB, then the Node.js
application, then NGINX).

Docker Compose is a tool for managing multiple containers with associated volumes and
networks. A single configuration file, normally named docker-compose.yml, defines the
containers and can override Dockerfile settings where necessary.

It’s practical to create a Docker Compose configuration for development. You could also create
one for production, but there are better options. . .

2.6 Orchestration

Containers are portable and reproducible. A single application can be scaled by launching
identical containers on the same server, another server, or even a di�erent data center on the
other side of the world.

The process of managing, scaling, and maintaining containers is known as orchestration. Docker
Compose can be used for rudimentary orchestration, but it’s better to use specialist tools such
as:

• Docker Swarm or
• Kubernetes

Cloud hosts o�er their own orchestration solutions, such as AWS Fargate, Microso� Azure, and
Google Cloud. These are o�en based on Kubernetes but may have custom options or tools.

Craig Buckler, @craigbuckler 27

https://docs.docker.com/engine/swarm/
https://kubernetes.io/
https://aws.amazon.com/fargate/
https://azure.microsoft.com/en-gb/services/kubernetes-service/docker/
https://cloud.google.com/container-options

DockerWebDev.com, v1.2.0 Docker for Web Developers

2.7 Docker client-server application

Docker is a client-server application. The server is responsible for container management and is
controlled via a REST API. The command-line interface (CLI) communicates with this API, so it’s
possible to run a server daemon anywhere and connect from another device.

This rarely matters during development: the Docker server and CLI is installed on the same PC.

You can communicate with the API using any HTTP client such as cURL. This is beyond the
scope of this book, but it allows you to programmatically run any Docker process.

2.8 Docker deployment strategies

You can use Docker and containers in any way that is practical for your project.

This book suggests you always use Docker during development. It allows you to create robust
and portable environments where your application and each dependency run in separate
containers. Chapters 4, 5, 6, and Appendix D provide recipes you can adapt to your projects.

However, deploying your application to a live server raises further options to consider. . .

2.8.1 Use Docker for development only

Docker is used to emulate your live server’s production environment on your development PC.
The live server itself does not use containers.

This may be practical when you’re using infrastructures, platforms, or so�ware as a service (IaaS,
PaaS, SaaS) where a pre-built environment is provisioned for you. Possible examples include
serverless and WordPress hosts.

28 Craig Buckler, @craigbuckler

https://docs.docker.com/engine/api/

Docker for Web Developers DockerWebDev.com, v1.2.0

2.8.2 Use Docker on production servers where practical

Your live production server uses Docker containers for some – but not all – dependencies. Your
application is likely to be a good candidate, but a database could be provided by a cloud service,
and a load balancer could be supplied by the hosting company.

Your development PC can still emulate this environment using Docker containers. That said, a
test database could be provided by the same cloud service to eliminate compatibility issues.

2.8.3 Use Docker for both development and production

You use mostly identical Docker containers in both development and production. It may be
necessary to create slightly di�erent live server configurations or consider orchestration
options.

2.8.4 Concurrent processing considerations

Runtimes such as Node.js and Python run scripts on a single processing thread. A server with 16
CPU cores executing a single instance of an application will have fi�een cores sitting idle!

Note: some stacks alleviate this situation with a web server. PHP is single-threaded, but
Apache launches a thread for each user request so multiple PHP processes run in parallel.
This method has its own resourcing problems, though.

Multiple instances of Node.js applications can be launched on the same server using clustering
or process managers such as PM2. However, it is generally more practical to use Docker to launch
and manage multiple application containers as resources permit. Each container is isolated so, if
an individual instance crashes, it will not a�ect others and can be restarted.

Craig Buckler, @craigbuckler 29

https://nodejs.org/dist/latest/docs/api/cluster.html
https://pm2.keymetrics.io/

DockerWebDev.com, v1.2.0 Docker for Web Developers

2.9 Simpler development and production

This book uses the following approach where practical:

1. An application Dockerfile configures the production environment only.
2. Docker Compose is used to override this base configuration for development purposes.

An image can therefore be used as-is on production servers regardless of whichever
orchestration or deployment process is adopted.

Don’t worry about this for now – the process will become clearer in the following chapters.

2.10 When not to use Docker

Using Docker during development has no downsides. It enables you to install dependencies on
any OS and emulate a live system. You can easily share that isolated environment with others
while retaining your favorite editor and tools.

However, Docker is not a magical solution which solves all your production woes! There are
situations when Docker may not be appropriate. . .

1. Your application is not stateless

Dockerizing an existing monolithic application can be di�icult if it was not originally
designed for a container-based deployment. Programs which store state in variables or
files will need to be adapted to use other data stores.

2. You’re using a Windows Server

Docker is native on Linux but Windows runs containers in a Hyper-V virtual machine or
WSL2 (e�ectively another VM). It’s an additional overhead and, although Docker lets you
run Linux dependencies, it may be more practical to provision a Linux server.

30 Craig Buckler, @craigbuckler

Docker for Web Developers DockerWebDev.com, v1.2.0

3. Performance is critical

Docker containers have imposed CPU and RAM limits. These are configurable, but an
application running on the host OS will always be faster.

That said, Docker can implement parallel processing by scaling horizontally if your
application generally runs on a single CPU core.

4. Stability is important

Docker is mature, but it’s another dependency to install, update, and manage. Do you have
in-house container management expertise?

Your application may seem more robust since containers can be scaled and automatically
restarted. That doesn’t mean it’s crashing less o�en than before!

5. To store mission-critical data

Volumes and bind mounts can store persistent data, but these are more di�icult to manage
and back-up than standard file system options.

6. To improve security

Containers are isolated but, unlike a real VM, they are not fully sandboxed from the host OS.
Docker provides options for hiding dependencies, but it’s not a substitute for robust
security.

7. To create GUI applications

Someone, somewhere will have created a cross-platform graphical interface application
using containers. That doesn’t make Docker the ideal solution!

8. Because Docker is cool

Jumping on a technology bandwagon without proper investigation and justification is
doomed to fail.

Craig Buckler, @craigbuckler 31

DockerWebDev.com, v1.2.0 Docker for Web Developers

2.11 Docker alternatives

Docker is the most-used container solution but it’s not the only option. Alternatives include:

• Apache Mesos
• containerd
• Linux containers
• RedHat OpenShi� and its Docker-compatible podman manager
• OpenVz

32 Craig Buckler, @craigbuckler

http://mesos.apache.org/
https://containerd.io/
https://linuxcontainers.org/
https://www.okd.io/
https://podman.io/
https://openvz.org/

Docker for Web Developers DockerWebDev.com, v1.2.0

2.12 Key points

What you’ve learned in this chapter:

1. The Docker server manages containers.

It’s an isolated wrapper around an application, which seems similar to a virtual machine
but is more lightweight.

2. Containers are launched from a single image template configured by a Dockerfile.

Images for hundreds of applications are available on Docker Hub.

3. Containers are stateless, but can attach to Docker disk volumes or bind-mounted folders on
the host OS.

4. Containers can expose application ports and communicate over internal Docker networks.

Ports can also be exposed to the host OS.

5. Docker Compose can be used to launch multiple containers at once.

6. Orchestration tools such as Docker Swarm and Kubernetes can be used to launch and scale
containers across multiple systems in production environments.

7. Docker is practical during development.

However, it’s not necessarily essential or practical to use it for every application
component on production systems.

Enough theory. It’s time to install Docker. . .

Craig Buckler, @craigbuckler 33

DockerWebDev.com, v1.2.0 Docker for Web Developers

34 Craig Buckler, @craigbuckler

3 How to install Docker

Docker can be installed on Linux, mac OS, or Windows 10.

Requirements and installation instructions can be found on the Docker Docs help pages.

Figure 3.1: Docker Docs installation

35

https://docs.docker.com/engine/install/

DockerWebDev.com, v1.2.0 Docker for Web Developers

3.1 Install Docker on Linux

Docker is o�en available in o�icial Linux repositories, although these usually o�er older editions.
The latest edition is supported on recent 64-bit editions of popular Linux distros:

• Ubuntu (and derivatives such as Mint)
• CentOS
• Debian
• Fedora

Static binaries are available for other distros, although Googling “install Docker on [your OS]”
may provide easier instructions, e.g. “install Docker on a Raspberry Pi”.

Follow the Docker documentation for your distro. For example, Docker for Ubuntu is installed
with the following commands:

sudo apt-get remove docker docker-engine docker.io containerd runc

sudo apt-get update

sudo apt-get install \
apt-transport-https \
ca-certificates \
curl \
gnupg-agent \
software-properties-common

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | \
sudo apt-key add -

sudo apt-key fingerprint 0EBFCD88

sudo add-apt-repository \
"deb [arch=amd64] https://download.docker.com/linux/ubuntu \
$(lsb_release -cs) \
stable"

sudo apt-get update

sudo apt-get install docker-ce docker-ce-cli containerd.io

36 Craig Buckler, @craigbuckler

https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/centos/
https://docs.docker.com/install/linux/docker-ce/debian/
https://docs.docker.com/install/linux/docker-ce/fedora/
https://docs.docker.com/install/linux/docker-ce/binaries/
https://docs.docker.com/engine/install/ubuntu/

Docker for Web Developers DockerWebDev.com, v1.2.0

Convenience scripts are also available to run these commands for you, but the Docker
documentation warns they are a security risk and should not be used in production
environments:

curl -fsSL https://get.docker.com -o get-docker.sh
sudo sh get-docker.sh

To run Docker commands as a non-root user (without sudo), create and add yourself to a
docker group:

sudo groupadd docker
sudo usermod -aG docker $USER

Then reboot to apply all changes.

3.1.1 Install Docker Compose on Linux

Docker Compose is installed separately using the command:

sudo curl \
-L "https://github.com/docker/compose/releases/download/<VERSION>/ \

docker-compose-$(uname -s)-$(uname -m)" \
-o /usr/local/bin/docker-compose

sudo chmod +x /usr/local/bin/docker-compose

where <VERSION> is the latest release number, e.g. 1.27.4.

Craig Buckler, @craigbuckler 37

https://docs.docker.com/engine/install/ubuntu/#install-using-the-convenience-script
https://docs.docker.com/compose/install/
https://github.com/docker/compose/releases

DockerWebDev.com, v1.2.0 Docker for Web Developers

3.2 Install Docker on macOS

Docker Desktop for macOS Sierra 10.13 and above can be downloaded from Docker Hub. The
package includes the Docker server, CLI, Docker Compose, Docker Swarm, and Kubernetes.

Figure 3.2: Docker Desktop for macOS

Two editions are available: stable and edge with experimental features. The stable version is
best for most developers.

Double-click Docker.dmg to open the installer, then drag the Docker icon to the Applications
folder. Double-click Docker.app in that folder to launch Docker.

A�er completion, the whale icon in the status bar indicates Docker is running and commands can
be entered in the terminal.

Figure 3.3: Docker icon on macOS status bar

38 Craig Buckler, @craigbuckler

https://docs.docker.com/docker-for-mac/install/

Docker for Web Developers DockerWebDev.com, v1.2.0

3.3 Install Docker on Windows

Docker Desktop for Windows requires either WSL2 or Hyper-V.

3.3.1 Windows Subsystem for Linux (WSL) 2

WSL allows you to run full Linux environments directly on Windows 10.

IMPORTANT! You can not install the Linux edition of Docker within a WSL-powered Linux
distro. You must install Docker Desktop for Windows which allows Docker commands to be
run in all Windows and Linux terminals.

WSL2 is the recommended default option for Docker on Windows. It is faster than Hyper-V and
available in all editions of Windows from the May 2020 update (version 2004, OS build 19041).

Windows 10 S is not supported but you can normally upgrade to Home in the Settings.

You may be able to trigger the 2004 update: click Check for updates in the Update &
Security panel of Settings. If your PC reports that 2004 is not yet available, you must either
wait until Microso� releases a fix for your device or use Hyper-V and switch to WSL2 later.

To install WSL2:

1. Enable hardware virtualization support in your BIOS.

This will be active on most devices, but check by rebooting and accessing your PC’s BIOS
panels —- typically by hitting DEL, F2, or F10 as your system starts. Look for Virtualization
Technology, VTx or similar options. Ensure they are enabled, save, and reboot.

WARNING! Be careful when changing BIOS settings – one wrong move could trash your
PC.

Craig Buckler, @craigbuckler 39

https://docs.microsoft.com/windows/wsl/wsl2-index
https://docs.docker.com/docker-for-windows/wsl/

DockerWebDev.com, v1.2.0 Docker for Web Developers

2. Enable the Virtual Machine Platform and Windows Subsystem for Linux options in the
Turn Windows features on or o� panel:

Figure 3.4: Enable WSL in Windows

This can be accessed by hitting the Start button and typing the panel name or from
Programs and Features in the classic Control Panel.

3. Reboot, then enter the following command in a Windows Powershell or cmd prompt to set
WSL2 as the default:

wsl --set-default-version 2

40 Craig Buckler, @craigbuckler

Docker for Web Developers DockerWebDev.com, v1.2.0

4. Download and install your preferred distro by searching for “Linux” in the Microso� Store
app. Ubuntu is a good choice.

Figure 3.5: Windows Store

5. To complete the installation, launch your distro by clicking its Store’s Launch button or
choosing its icon from the Start menu.

You may be prompted to install a kernel update – follow the instructions and launch
the distro again.

6. Enter a Linux username and password. These are separate from your Windows credentials
although choosing the same ones can be practical.

Craig Buckler, @craigbuckler 41

DockerWebDev.com, v1.2.0 Docker for Web Developers

7. Ensure your distro is up-to-date. For example, on an Ubuntu bash prompt enter:

sudo apt update && sudo apt upgrade

You can now install Docker Desktop (see below). For the best performance and stability, store
development files in your Linux file system and run Docker from your Linux terminal.

More information about installing and using WSL2:

• Windows Subsystem for Linux 2: The Complete Guide, and
• optionally, Windows Terminal: The Complete Guide.

42 Craig Buckler, @craigbuckler

https://www.sitepoint.com/wsl2/
https://www.sitepoint.com/windows-terminal/

Docker for Web Developers DockerWebDev.com, v1.2.0

3.3.2 Hyper-V

The Microso� Hyper-V hypervisor is provided free with Windows 10 Professional and Enterprise.
(Windows Home users must use WSL2.)

To install Hyper-V:

1. Enable hardware virtualization support in your BIOS.

This will be active on most devices, but check by rebooting and accessing your PC’s BIOS
panels —- typically by hitting DEL, F2, or F10 as your system starts. Look for Virtualization
Technology, VTx or similar options. Ensure they are enabled, save, and reboot.

WARNING! Be careful when changing BIOS settings – one wrong move could trash your
PC.

2. Enable the Hyper-V option in the Turn Windows features on or o� panel then reboot.

Figure 3.6: Enable Hyper-V in Windows

This can be accessed by hitting the Start button and typing the panel name or from
Programs and Features in the classic Control Panel.

You can now install Docker Desktop (see below).

Craig Buckler, @craigbuckler 43

https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/

DockerWebDev.com, v1.2.0 Docker for Web Developers

3.3.3 Install Docker Desktop for Windows

Docker Desktop for Windows 10 can be downloaded from Docker Hub. The installer includes the
Docker server, CLI, Docker Compose, Docker Swarm, and Kubernetes.

Two editions are available: stable and edge with experimental features. The stable version is
best for most developers.

Double-click Docker Desktop Installer.exe to start the installation process. A�er
completion and launch, the whale icon in the notification area of the task bar indicates Docker is
running and ready to accept commands in the Windows Powershell/cmd terminal (and Linux if
using WSL2).

Figure 3.7: Docker icon on Windows task bar

44 Craig Buckler, @craigbuckler

https://docs.docker.com/docker-for-windows/install/

Docker for Web Developers DockerWebDev.com, v1.2.0

3.3.4 Docker Engine Settings

Docker uses WSL2 as the default engine when available. You will be prompted to confirm this
choice during installation and a�er WSL2 is installed.

Alternatively, WSL2 can be enabled by checking Use the WSL 2 based engine in the General tab
of Settings accessed from the Docker task bar icon. Unchecking the option reverts to Hyper-V.

Figure 3.8: Docker Windows engine

Craig Buckler, @craigbuckler 45

DockerWebDev.com, v1.2.0 Docker for Web Developers

When using WSL2, at least one Linux distro must be enabled – the default is chosen. You can
also permit Docker commands in other distros by accessing the WSL integration panel in the
Resources section of the Docker Settings:

Figure 3.9: Docker Windows WSL2 selection

46 Craig Buckler, @craigbuckler

Docker for Web Developers DockerWebDev.com, v1.2.0

When using Hyper-V, Docker must be granted access to the Windows file system. Select the
drives it is permitted to use by accessing the File Sharing panel in the Resources section of the
Docker Settings:

Figure 3.10: Docker file sharing in Windows

(This option was named Shared Drives in previous editions of Docker Desktop.)

Craig Buckler, @craigbuckler 47

DockerWebDev.com, v1.2.0 Docker for Web Developers

3.4 Test your Docker installation

Check Docker has successfully installed by entering the following command in your terminal:

docker version

A response similar to the following is displayed:

Client: Docker Engine - Community
Version: 19.03.12
API version: 1.40
Go version: go1.13.10
Git commit: abcdef0
Built: Mon Jun 22 15:45:36 2020
OS/Arch: linux/amd64
Experimental: false

Server: Docker Engine - Community
Engine:
Version: 19.03.12
API version: 1.40 (minimum version 1.12)
...etc...

Ensure Docker Compose is working by entering:

docker-compose version

To receive something like:

docker-compose version 1.27.2, build 8d51620a
docker-py version: 4.3.1
CPython version: 3.7.7
OpenSSL version: OpenSSL 1.1.1c 10 Sep 2019

48 Craig Buckler, @craigbuckler

Docker for Web Developers DockerWebDev.com, v1.2.0

Optionally, try entering:

docker run hello-world

to verify Docker can pull an image from Docker Hub and start containers as expected. . .

Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world
1b930d010525: Pull complete
Digest: sha256:f9dfddf63636d84ef479d645ab5885156ae030f611a56f3a7ac
Status: Downloaded newer image for hello-world:latest

Hello from Docker!
This message shows your installation appears to be working correctly.

Craig Buckler, @craigbuckler 49

DockerWebDev.com, v1.2.0 Docker for Web Developers

3.5 Key points

What you’ve learned in this chapter:

1. How to install and configure Docker on your Linux, macOS, or Windows system.
2. How to install Docker Compose.
3. How to test the Docker installation.

The following chapters demonstrate how to use Docker during development. The first shows
how to run the MySQL database, but it could be any so�ware dependency you could need.

50 Craig Buckler, @craigbuckler

4 Launch a MySQL database with Docker

In this chapter you will discover how to launch a MySQL container using both the Docker CLI and
Docker compose.

MySQL is a popular SQL database if you’re developing an application which requires data storage.
It doesn’t matter if you’ve never used MySQL or a database before – the tutorial will help you
become familiar with launching Docker containers. The concepts can be applied to any
dependencies your application requires.

The files created in this chapter are contained in the mysql directory of the example code
repository provided at https://github.com/craigbuckler/docker-web

51

https://github.com/craigbuckler/docker-web/tree/master/mysql
https://github.com/craigbuckler/docker-web

DockerWebDev.com, v1.2.0 Docker for Web Developers

4.1 Locate a suitable MySQL image on Docker Hub

Access Docker Hub, and enter “MySQL” in the search box to locate the page with the o�icial
images:

Figure 4.1: Docker Hub MySQL images

Despite the prompts, you can use Docker Hub without signing in. You only require an account
to push your own application images.

52 Craig Buckler, @craigbuckler

https://hub.docker.com/
https://hub.docker.com/_/mysql
https://hub.docker.com/_/mysql

Docker for Web Developers DockerWebDev.com, v1.2.0

Docker repositories o�er one or more variations of an image each with its own tag. Tags o�en
match the application’s MAJOR.MINOR.PATCH number if releases follow semantic versioning
concepts.

For MySQL, you can choose from various releases such as 5.6, 5.7, or 8.0:

• If you select an exact version, such as 8.0.19, that edition of MySQL will always be
installed.

• Selecting the major and minor version, such as 8.0, will install the latest release of that
minor edition. That could be 8.0.19 now, but become 8.0.20 tomorrow.

• Selecting just the major version, such as 8, will install the latest major release. That could
be 8.0.19 now, but could become 8.1.0 next week.

• Selecting latest (or not specifying a tag) will install the latest release regardless of
version. That could be 8.0.19 now, but could be version 9.0.0 or higher next month.

For this example, latest is a good choice but you would normally use an exact edition so all
developers and the production server are using the same dependency.

Docker makes it easy to install and test database upgrades at any time.

Craig Buckler, @craigbuckler 53

https://semver.org/

DockerWebDev.com, v1.2.0 Docker for Web Developers

4.2 Launch a MySQL container

Launch a MySQL container by entering the following command in your terminal (Windows
users: please remove the back-slashes and line breaks):

docker run \
-it --rm --name mysql \
-p 3306:3306 \
--mount "src=mysqldata,target=/var/lib/mysql" \
-e MYSQL_ROOT_PASSWORD=mysecret \
mysql

All Docker CLI commands start with docker and an instruction such as run followed by
options.

docker run creates a container from a specified image (mysql on the last line) and starts it.
That image is downloaded if it’s not already available on the host.

It can take several minutes to download the image, launch a container, and initialize MySQL the
first time the command is run. Subsequent launches will be almost instantaneous. The database
will be ready to use when you see:

[System] [MY-010931] [Server] /usr/sbin/mysqld: ready for connections.

docker run o�ers numerous options (refer to Appendix A) but the main ones you will use are:

option description

-d run a container as a background process
(which exits when the application ends)

-it keep a container running in the foreground
(even a�er the application ends), and show
an activity log

--rm remove the container a�er it stops

--name name a container (a random GUID is used
otherwise)

54 Craig Buckler, @craigbuckler

https://docs.docker.com/engine/reference/commandline/run/
https://docs.docker.com/engine/reference/commandline/run/

Docker for Web Developers DockerWebDev.com, v1.2.0

option description

-p map a host port to a container port

--mount create a persistent Docker-managed volume
to retain data. The string specifies a src
volume name and a target where it is
mounted in the container’s file system

-v mount a host folder using the notation
<hostdir>:<containerdir>

-e define an environment variable

--env-file read environment variables from a file where
each line defines a VAR=value

--net connect to specific Docker network

--entrypoint override the default starting application

If you do not specify --rm, the container will remain available even once it has stopped.
It’s possible to restart it, but there’s rarely any benefit – it’s simpler to execute the same
docker run command again.

Craig Buckler, @craigbuckler 55

DockerWebDev.com, v1.2.0 Docker for Web Developers

4.2.1 MySQL credentials

MySQL stores user access credentials such as the root user’s password in an internal database.
This is created when MySQL initializes storage space on its first launch.

The docker run command above stores all database data in a Docker volume named
mysqldata. This retains data between restarts – including the first root password you set.

If you alter the run command to use a di�erent password on a subsequent launch
(e.g. -e MYSQL_ROOT_PASSWORD=NewSecret), it will be ignored. To change the root password,
you can either issue a MySQL ALTER USER command using a MySQL client or – more drastically –
delete the Docker volume and initialize the database again.

It’s good practice to create a MySQL user which is granted limited rights to a specific database,
i.e. it can read data but not alter table structures or examine other databases. Application
configuration o�en achieved by setting environment variables (see the MySQL image
documentation).

Your application could launch its own MySQL container, so using a root user with all privileges
seems less dangerous. However, a locked-down user will always be more secure and prevent
malicious or accidental damage.

The examples shown in this chapter use root for brevity, but you should use better credentials
during development and deployment.

56 Craig Buckler, @craigbuckler

https://dev.mysql.com/doc/refman/8.0/en/resetting-permissions.html
https://hub.docker.com/_/mysql
https://hub.docker.com/_/mysql

Docker for Web Developers DockerWebDev.com, v1.2.0

4.3 Connect to the database using a MySQL client

Once the database container has started, you can use any MySQL client application installed on
your host PC to connect to localhost:3306 with the user ID root and password mysecret.

If you don’t have a MySQL client to hand, Adminer is a lightweight PHP-based option. It is also
available as a Docker image and can be launched in another terminal with:

docker run \
-it --rm --name adminer \
-p 8080:8080 \
adminer

A�er it’s started, open http://localhost:8080/ in your browser and enter your MySQL login
credentials:

Figure 4.2: Adminer login screen

Craig Buckler, @craigbuckler 57

https://www.adminer.org/
https://hub.docker.com/_/adminer
http://localhost:8080/

DockerWebDev.com, v1.2.0 Docker for Web Developers

Note that you cannot use localhost as the server name since Adminer will resolve that to its
own container! Instead, you can:

1. Enter host.docker.internal.

Docker Desktop routes this domain to your PC’s network IP address, but it may not be
available on all systems.

2. Use your actual network IP address (192.168.1.20 is shown in the screen above)

This can be obtained with the ifconfig command on macOS and Linux or ipconfig on
Windows.

3. Or use the container’s IP address assigned by Docker.

Docker creates it’s own virtual network. docker inspect mysql returns information
about the container in JSON format. You can locate the "IPAddress" value using the -f
format option:

docker inspect \
-f '{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}' \
mysql

Alternatively, you can define a Docker network (see below). Any container attached to that
network can reference another container by its defined --name and have it resolve correctly,
i.e. you can enter mysql as the server name on the Adminer login screen.

4.4 Connect to a container shell

Every Docker container runs an isolated Linux environment. You can connect to its shell and run
commands, examine logs, or perform any other activities.

Remember containers are stateless! Any changes you make will be lost whenever the
container is restarted.

Presuming your MySQL container is still running, open another terminal and enter:

58 Craig Buckler, @craigbuckler

Docker for Web Developers DockerWebDev.com, v1.2.0

docker exec -it mysql bash

Some lightweight images using Alpine Linux do not o�er the bash shell. If the command
fails, try using docker exec -it mysql sh instead.

For example, you could access the MySQL command line and list databases:

> mysql -u root -pmysecret

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 9
Server version: 8.0.19 MySQL Community Server - GPL

Copyright (c) 2000, 2021, Oracle and/or its affiliates.
All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type 'help;' or '\h' for help.
Type '\c' to clear the current input statement.

mysql> show databases;
+--------------------+
| Database |
+--------------------+
| information_schema |
| mysql |
| performance_schema |
| sys |
+--------------------+
5 rows in set (0.00 sec)

mysql>

Enter an exit command to quit the shell.

Craig Buckler, @craigbuckler 59

DockerWebDev.com, v1.2.0 Docker for Web Developers

4.5 View, stop, and restart containers

Containers running in interactive mode (started with the -it switch) can normally be stopped by
pressing Ctrl|Cmd + C.

By “normally”, I mean “it won’t work some of the time”. Applications will not always shut
down gracefully or signal they have terminated. If an interactive container fails to stop, you’ll
need to execute the stop command described below.

A list of running containers can be viewed by entering:

docker container ls

or the shorter:

docker ps

(Run this in another terminal tab/window if your containers are running in interactive mode.)

A list of active containers is displayed. This can be quite wide – a truncated version is shown
here:

CONTAINER ID IMAGE STATUS PORTS NAMES
ef3bab04fc8f adminer Up 16 mins 8080->8080/tcp adminer
793003e459e6 mysql Up 17 mins 3306->3306/tcp mysql

Each container is assigned a hexadecimal ID which can be used as a reference in Docker
commands. However, specifying a container --name makes management considerably easier.

Containers can be restarted by providing a list of one or more names to
docker container restart. This could be useful if you want to erase browser sessions or
temporary data:

docker container restart adminer mysql

60 Craig Buckler, @craigbuckler

https://docs.docker.com/engine/reference/commandline/container_restart/

Docker for Web Developers DockerWebDev.com, v1.2.0

You can also pause and unpause running containers if, for example, you wanted to test how an
application reacted to a database failure:

docker container pause mysql
docker container unpause mysql

Similarly, containers can be stopped with docker container stop:

docker container stop adminer mysql

Containers started with the -rm option are removed when they are stopped. If you do not use
that option (or experience Docker issues), you can list all containers with:

docker ps -a

Individual containers can be removed using their name or ID, e.g.

docker container rm mysql

Alternatively, remove all stopped containers with:

docker container prune

4.6 Define a Docker network

When a container is started, it’s assigned an IP address on the default Docker network. However,
this can change on subsequent restarts so it is di�icult to communicate between containers
using an IP address.

docker run has --ip and --ip6 options so you can define a fixed IP, but it is generally easier
to refer to another container using it’s --name. That can be achieved by creating your own
Docker network.

Stop any running containers then create a new network, e.g. named mysqlnet here:

docker network create --driver bridge mysqlnet

Craig Buckler, @craigbuckler 61

https://docs.docker.com/engine/reference/commandline/container_pause/
https://docs.docker.com/engine/reference/commandline/container_unpause/
https://docs.docker.com/engine/reference/commandline/container_stop/

DockerWebDev.com, v1.2.0 Docker for Web Developers

Any container can connect to this network using the --net option when it is launched. MySQL
example:

docker run \
-d --rm --name mysql \
-p 3306:3306 \
--mount "src=mysqldata,target=/var/lib/mysql" \
-e MYSQL_ROOT_PASSWORD=mysecret \
--net mysqlnet \
mysql

and Adminer:

docker run \
-d --rm --name adminer \
-p 8080:8080 \
--net mysqlnet \
adminer

Each container’s name now resolves on the Docker mysqlnet network. You can therefore enter
mysql as the server name on the Adminer login screen.

You could hard-code the mysql name and access credentials into your application. However,
it’s more practical to define these using environment variables.

62 Craig Buckler, @craigbuckler

Docker for Web Developers DockerWebDev.com, v1.2.0

4.7 Cleaning up

Docker can use significant quantities of disk space! Scary usage statistics are returned when
entering:

docker system df

To view all containers, both running and stopped, enter:

docker container ls -a

Note that containers are usually small because they are stateless and launch from a specific
image.

To view all images, both active and dangling (those not associated with a container), enter:

docker image ls -a

To view all Docker-managed disk volumes, enter:

docker volume ls

To view all Docker networks, enter:

docker network ls

With just MySQL and Adminer, you’ll have used almost 1GB of space. This will rise as you start
using further dependencies and creating your own images.

Stop containers by specifying their name in a stop command:

docker container stop adminer mysql

All stopped containers, unused networks, and dangling images can be removed with:

docker system prune

This is safe and probably a good idea to run every so o�en.

Craig Buckler, @craigbuckler 63

DockerWebDev.com, v1.2.0 Docker for Web Developers

The following command will do the same and also wipe any image not associated with a running
container:

docker system prune -a

The latest mysql and adminer images will therefore have to be downloaded again if you require
them.

4.7.1 Deleting disk volumes

Removing a Docker volume will wipe it’s data forever! There is no going back.

If you’re developing a database-driven application, it’s usually practical to retain one or more
data dumps which can be used to re-create the database in various states. Most MySQL client
tools provide a dump or export facility, such as the Export link in Adminer.

Alternatively, the mysqldump utility provided with MySQL can be run by attaching to the
container shell or using the docker exec command.

To back up a database named mydb to a file named backup.sql using the root MySQL
credentials on Linux or macOS, enter:

docker exec mysql /usr/bin/mysqldump -u root -pmysecret mydb \
> backup.sql

or on Windows PowerShell:

docker exec mysql /usr/bin/mysqldump -u root -pmysecret -r mydb | \
Set-Content backup.sql

Assuming you’re happy to proceed, you can view Docker volumes with:

docker volume ls

then delete any by ID or name:

docker volume rm <name>

64 Craig Buckler, @craigbuckler

https://dev.mysql.com/doc/refman/8.0/en/mysqldump.html
https://docs.docker.com/engine/reference/commandline/exec/

Docker for Web Developers DockerWebDev.com, v1.2.0

Unused Docker volumes – those not currently attached to a running container – can be removed
with:

docker volume prune

Alternatively, use docker volume prune -a will delete them all. You only have yourself to
blame!. . .

4.7.2 Full clean start

Every unused container, image, volume, and network can be wiped with:

docker system prune -a --volumes

Add -f if you want to force the wipe without a confirmation prompt.

Craig Buckler, @craigbuckler 65

DockerWebDev.com, v1.2.0 Docker for Web Developers

4.8 Launch multiple containers with Docker Compose

Starting Docker containers individually is not fun – especially when commands are long and
di�icult to remember. Fortunately, Docker Compose provides a way to build and launch
containers, networks, and volumes from a single configuration file named
docker-compose.yml.

YAML is a cheeky mnemonic for YAML Ain’t Markup Language: a common, compact data format
o�en used for configuration purposes. It uses new lines and tab stops rather than the quotes and
brackets favored by JSON.

Docker Compose o�ers many configuration options (refer to Appendix C), but an example is the
best way to illustrate common settings. Create the following docker-compose.yml anywhere
on your system:

66 Craig Buckler, @craigbuckler

https://docs.docker.com/compose/compose-file/

Docker for Web Developers DockerWebDev.com, v1.2.0

version: '3'
services:

mysql:
image: mysql
container_name: mysql
environment:
- MYSQL_ROOT_PASSWORD=mysecret

volumes:
- mysqldata:/var/lib/mysql

ports:
- "3306:3306"

networks:
- mysqlnet

restart: on-failure

adminer:
image: adminer
container_name: adminer
depends_on:
- mysql

ports:
- "8080:8080"

networks:
- mysqlnet

restart: on-failure

volumes:
mysqldata:

networks:
mysqlnet:

This creates identical containers to the docker run commands you used above with the
volumes and networks listed at the bottom. It also defines two new settings:

• depends_on start-up dependencies: adminer will start a�er mysql has launched
• restart on-failure: the container is automatically restarted if the application stops

with an exit code.

Craig Buckler, @craigbuckler 67

https://docs.docker.com/compose/compose-file/#depends_on
https://docs.docker.com/compose/compose-file/#restart

DockerWebDev.com, v1.2.0 Docker for Web Developers

If you’ve not stopped your existing containers, do so now with:

docker container stop adminer mysql
docker system prune

Now launch Docker Compose from the same directory as your docker-compose.yml file
using:

docker-compose up

The mysql and adminer images will be downloaded if necessary and the two containers are
started. By default, docker-compose runs as a foreground task and shows a log of all container
activity. MySQL is ready to use when you see:

mysql | ... [Server] X Plugin ready for connections.

You can now start Adminer at http://localhost:8080/ and connect to the mysql server using the
user ID root and password mysecret.

The mysql and adminer network names resolve within the Docker network. If you want to
connect to MySQL using a client installed on your host OS, enter localhost:3306 as the
server/port.

If you specify a single port value in docker-compose.yml, it is only exposed within the Docker
network, e.g.

ports:
- "3306"

In this case, MySQL would not be accessible to the host, although Adminer could still
communicate with mysql:3306 on the internal network.

You can use the services and connect to their shells in the same way as before. The containers
will continue to run until:

1. you press Ctrl|Cmd + C in the terminal where you launched docker-compose, or
2. you enter docker-compose down in another terminal in the same directory as your

docker-compose.yml file.

68 Craig Buckler, @craigbuckler

http://localhost:8080/

Docker for Web Developers DockerWebDev.com, v1.2.0

From this point forward, docker-compose will be used where possible. It’s rarely necessary to
enter individual docker commands, but it’s useful to know they’re available since Docker
Compose may not be available on every system.

4.8.1 Other Docker Compose options

Docker Compose configuration files specify a version at the top:

version: '3'

This specifies a level of compatibility. At the time of writing, 3.8 is the latest version, but you
would only need to specify that if you used options unavailable in previous releases.

The -f option allows you to specify an alternative configuration filename, e.g.

docker-compose -f ./my-config.yml up

Docker Compose can be run as a background service using -d. This may be practical on a live
server where foreground logging is not required:

docker-compose up -d

The active containers can then be viewed using docker ps or:

docker-compose ps

and stopped using:

docker-compose down

Note that docker-compose stop stops containers without removing them. They can then
be restarted with docker-compose start.

Refer to Appendix C for further options.

Craig Buckler, @craigbuckler 69

DockerWebDev.com, v1.2.0 Docker for Web Developers

4.9 Key points

What you’ve learned in this chapter:

1. Finding application images on Docker Hub.
2. Launching MySQL and Adminer containers.
3. Mounting Docker volumes to store persistent data.
4. Connecting to a container’s shell to issue commands.
5. Stopping running containers.
6. Defining a Docker network for easier name resolution.
7. Cleaning Docker files.
8. Launching multiple containers with Docker Compose.

For bonus points, try launching a PostgreSQL or MongoDB database as a container.

Running MySQL as a containerized service is a simple example of the possibilities o�ered by
Docker. The first launch may have taken a few minutes, but how long would it have taken you to
download, install, and configure MySQL on your host OS? Could you have retained that version,
upgraded, or even run multiple editions on the same PC at the same time?

In the next chapter, you’ll use Docker to install and develop a WordPress-powered website. It
introduces the concept of Docker bind mounts – a way to update source files on your host PC
which are executed in a running container.

70 Craig Buckler, @craigbuckler

https://hub.docker.com/_/postgres
https://hub.docker.com/_/mongo

5 WordPress development with Docker

WordPress is a PHP and MySQL-based open-source Content Management System first launched
in 2003. It powers 40% of all websites, is supported by many web hosts, is easy to set-up, and
o�ers thousands of free themes and plugins.

If you’re a web developer, you’ve probably encountered WordPress at some point in your career.
Even modern static sites can adopt WordPress as a headless CMS where it is used to edit content
that is fed into a site generator.

Even if you don’t use (or don’t want to use) WordPress, the concepts demonstrated in this chapter
show how to execute an application in a Docker container but continue to edit code on your local
PC. This is essential for development but the technique is rarely discussed in Docker tutorials.

The files created in this chapter are contained in the wordpress directory of the example
code repository provided at https://github.com/craigbuckler/docker-web

71

https://wordpress.org/
https://w3techs.com/technologies/details/cm-wordpress
https://github.com/craigbuckler/docker-web/tree/master/wordpress
https://github.com/craigbuckler/docker-web

DockerWebDev.com, v1.2.0 Docker for Web Developers

5.1 WordPress requirements

To develop a WordPress-powered site, you must install:

1. a web server, typically Apache
2. the PHP runtime and extensions, then configure the web server accordingly
3. MySQL or MariaDB then define a new database for WordPress use
4. WordPress itself, plus any required themes and plugins.

Tools such as XAMPP can ease some of that e�ort but, with Docker, you’ll be running WordPress
and developing code within minutes.

Windows users will also discover WordPress runs significantly faster on a Docker-powered
Linux-based file system than a native NTFS drive.

72 Craig Buckler, @craigbuckler

https://www.apachefriends.org

Docker for Web Developers DockerWebDev.com, v1.2.0

5.2 Docker configuration plan

You will be pulling two Docker images:

1. wordpress

The latest image is a good choice. It provides the stable versions of Debian Linux, Apache,
PHP, and WordPress. There are more lightweight alpine images, although these do not
match production hosting environments and may not work as expected.

2. mysql:5

At the time of writing, WordPress is not compatible with the new authentication methods
the latest releases of MySQL. You can resolve those issue, but it’s easier to use version 5.

The containers launched from these images will be added to a wpnet Docker network.

5.2.1 Docker volumes

Two Docker volumes will be created:

1. wpdata for the MySQL database (mounted to /var/lib/mysql in the MySQL container),
and

2. wpfiles for WordPress application files (mounted to the Apache server root directory at
/var/www/html in the WordPress container).

Some developers will claim that mounting the wpfiles volume is an anti-pattern because
the WordPress container is no longer stateless. This is true, but WordPress is not a stateless
application. Docker is being used to emulate a live server environment for development
purposes. You are unlikely to use the same configuration in production.

Mounting the wpfiles volume has a number of benefits:

1. Docker start-up is faster.

There’s no need to copy the core WordPress files every time the container is launched.

Craig Buckler, @craigbuckler 73

https://hub.docker.com/_/wordpress
https://hub.docker.com/_/mysql

DockerWebDev.com, v1.2.0 Docker for Web Developers

2. The WordPress application can be updated automatically.

This would happen on live installations, so replicating it during development is useful.

If you choose not to mount a wpfiles volume, you can run docker pull wordpress
every so o�en to download the latest application image.

It should not be necessary to inspect or modify files stored on either volume. However, the
MySQL data can be accessed at localhost:3306 from any MySQL client installed on your PC.

5.2.2 Development directory bind mount

A wp-content sub-directory will be created in the project directory on your host PC. This
contains all plugins, themes, and uploaded assets and mounts to
/var/www/html/wp-content in the WordPress container.

WordPress developers should only ever create and modify files in the wp-content directory.

There’s nothing to stop you editing core WordPress files, but the changes would disappear
the moment the application is updated. Don’t bother trying!

As a bonus, this makes it easier to commit wp-content files to Git/other repositories – it is the
only WordPress folder on your host PC.

5.2.3 localhost domain alternative

WordPress will be launched from the localhost domain on port 8001. However, that can be
impractical when you’re developing several sites:

• your browser may cache files from one site and show them on another.
• WordPress stores the domain in its database, so you might want to use something similar

to the production name.

Optionally, you can configure other domains for development use in your hosts file. This is
located at:

74 Craig Buckler, @craigbuckler

Docker for Web Developers DockerWebDev.com, v1.2.0

• /etc/hosts on Linux and macOS, and
• C:\Windows\System32\drivers\etc\hosts on Windows (administrator permissions

are required to view and edit it).

Add a line to the bottom of the hosts file, e.g.

127.0.0.1 dev.wordpress

and save it. The changes are applied immediately on Linux and macOS, but Windows users must
run nbtstat -R or reboot.

From then on, you can use http://dev.wordpress rather than http://localhost – both resolve to
the loopback address 127.0.0.1.

5.3 Docker Compose configuration

Create a new WordPress project directory – wordpress is a good choice:

mkdir wordpress
cd wordpress

You’ll be using Docker Compose, so create a docker-compose.yml file in the root of the
directory and add:

Craig Buckler, @craigbuckler 75

http://dev.wordpress
http://localhost

DockerWebDev.com, v1.2.0 Docker for Web Developers

version: '3'
services:

mysql:
image: mysql:5
container_name: mysql
environment:
- MYSQL_DATABASE=wpdb
- MYSQL_USER=wpuser
- MYSQL_PASSWORD=wpsecret
- MYSQL_ROOT_PASSWORD=mysecret

volumes:
- wpdata:/var/lib/mysql

ports:
- "3306:3306"

networks:
- wpnet

restart: on-failure

wordpress:
image: wordpress
container_name: wordpress
depends_on:
- mysql

environment:
- WORDPRESS_DB_HOST=mysql
- WORDPRESS_DB_NAME=wpdb
- WORDPRESS_DB_USER=wpuser
- WORDPRESS_DB_PASSWORD=wpsecret

volumes:
- wpfiles:/var/www/html
- ./wp-content:/var/www/html/wp-content

ports:
- "8001:80"

networks:
- wpnet

restart: on-failure

volumes:
wpdata:
wpfiles:

networks:
wpnet:

76 Craig Buckler, @craigbuckler

Docker for Web Developers DockerWebDev.com, v1.2.0

The following sections describe this configuration in detail.

5.3.1 Environment variables

The MySQL environment variables MYSQL_DATABASE, MYSQL_USER, and MYSQL_PASSWORD
define a new database named wpdb which can be accessed by the user wpuser using the
password wpsecret.

These database access values are then set in the WordPress environment variables
WORDPRESS_DB_NAME, WORDPRESS_DB_USER, and WORDPRESS_DB_PASSWORD.

A password is also defined for the MySQL root user in MYSQL_ROOT_PASSWORD. You’re unlikely
to need the root user, but it could be useful to back-up data or perform other database
maintenance.

5.3.2 Exposed ports

MySQL’s port 3306 is exposed to the host PC so it’s possible to connect and inspect a database
using any MySQL client.

Alternatively, you could set:

ports:
- "3306"

This would make the port available to other containers within the Docker network but not
expose it to the host. The WordPress container would be una�ected, but MySQL clients on the
host would be unable to connect to the database.

Finally, the Apache’s port 80 is exposed as 8001 on the host.

Linux and macOS systems do not normally allow applications to use ports under 1000 unless
they are running with root user privileges. Windows users may also find port 80 is hogged by
the Skype app.

Craig Buckler, @craigbuckler 77

DockerWebDev.com, v1.2.0 Docker for Web Developers

5.3.3 WordPress volume and bind mount

The wordpress container defines:

1. a wpfiles Docker volume mounted to the Apache server root directory at
/var/www/html, and

2. a wp-content sub-directory in the host’s project directory mounted to
/var/www/html/wp-content.

If you were using docker run rather than Docker Compose, the equivalent options are:

--mount "src=wpfiles,target=/var/www/html"
-v $PWD/wp-content:/var/www/html/wp-content

$PWD references the current directory on Linux and macOS. It is not available on Windows
so the full path must be specified using forward-slash notation, e.g.

-v /c/projects/wordpress/wp-content:/var/www/html/wp-content

This is not necessary in Docker Compose configurations which support relative file references.

78 Craig Buckler, @craigbuckler

Docker for Web Developers DockerWebDev.com, v1.2.0

5.4 Launch your WordPress environment

Ready? Open a terminal, access your project directory, and enter:

docker-compose up

The process can take several minutes on the first run since Docker must download the images,
initialize the database, and copy application files.

Various errors may be logged, such as:

wordpress | MySQL Connection Error: (2002) Connection refused

but don’t worry about them. Eventually, MySQL will be ready:

mysql | [Note] mysqld: ready for connections.

Check that a wp-content directory has been created in your project directory. It should contain
plugins and themes sub-directories as well as an index.php file.

Craig Buckler, @craigbuckler 79

DockerWebDev.com, v1.2.0 Docker for Web Developers

5.5 Install WordPress

Open http://localhost:8001/ (or the hosts domain you created) in your browser. The first time
you do this, the WordPress installation screen appears:

Figure 5.1: WordPress installation screen

Complete the fields and click Install WordPress to configure the database.

Check Discourage search engines from indexing the site. Search engines won’t be able to
access your local installation, so there’s little point pinging them every time a page or post is
added.

80 Craig Buckler, @craigbuckler

http://localhost:8001/

Docker for Web Developers DockerWebDev.com, v1.2.0

You will now be prompted to log on (at http://localhost:8001/wp-admin). Enter the username
and password you specified to access the administration dashboard:

Figure 5.2: WordPress dashboard

Craig Buckler, @craigbuckler 81

http://localhost:8001/wp-admin

DockerWebDev.com, v1.2.0 Docker for Web Developers

The WordPress-controlled website can be viewed at http://localhost:8001/ (your site may look
di�erent depending on the WordPress version, theme, and settings):

Figure 5.3: WordPress website

82 Craig Buckler, @craigbuckler

http://localhost:8001/

Docker for Web Developers DockerWebDev.com, v1.2.0

5.6 Local WordPress Development

You can now add, edit, or remove themes and plugins in the wp-content directory on your host
PC.

5.6.1 Administration panel permissions

WordPress allows you to install, edit, and delete theme and plugin files directly from its
administration panels. This is permitted on Windows, but Linux and mac OS users must grant
access rights to the project’s wp-content folder by entering the following command on the
host:

chmod 777 ./wp-content -R

If you do not grant access rights:

• WordPress and users testing your site will not be able to change code in the wp-content
directory (that could be a good thing).

• You must manually download plugins and themes from WordPress.org or elsewhere.
Extract the ZIP file to an appropriate wp-content sub-directory before enabling it in the
administration panels.

• Some plugins, such as caching systems, will not operate.

5.6.2 Develop a new theme

To start developing a new WordPress theme, create a directory in wp-content/themes on your
PC, e.g. docker-basic. Add a style.css file with the following code:

/*
Theme Name: Docker Basic Theme
Version: 1.0.0
License: MIT
*/

Craig Buckler, @craigbuckler 83

https://wordpress.org/plugins/
https://wordpress.org/themes/
https://wordpress.org/

DockerWebDev.com, v1.2.0 Docker for Web Developers

Now add an index.php file with the following code:

<!DOCTYPE html>
<html <?php language_attributes(); ?>>
<head>
<title><?php bloginfo('name'); ?></title>
<link rel="stylesheet" href="<?php bloginfo('stylesheet_url'); ?>">
<?php wp_head(); ?>
</head>
<body>

<header>
<h1><?php bloginfo('name'); ?></h1>
<p><?php bloginfo('description'); ?></p>

</header>

<main>
<?php
if (have_posts()) : while (have_posts()): the_post(); ?>

<article id="post-<?php the_ID(); ?>">
<h2><?php the_title(); ?></h2>
<?php the_excerpt(); ?>

</article>

<?php
endwhile;

endif;
?>

</main>

<?php wp_footer(); ?>
</body>
</html>

84 Craig Buckler, @craigbuckler

Docker for Web Developers DockerWebDev.com, v1.2.0

Activate this theme in the Appearance > Themes screen of the WordPress administration
panels.

Open or refresh the http://localhost:8001/ home page to see your new theme in its
award-winning glory:

Figure 5.4: new WordPress theme

This is a minimal example, but you can add content and edit the WordPress theme using any
editors and tools installed on your host PC.

To finish for the day, stop Docker by running docker-compose down in the project directory or
pressing Ctrl|Cmd + C in the terminal. Subsequent restarts of docker-compose up will take
a few seconds.

Craig Buckler, @craigbuckler 85

http://localhost:8001/

DockerWebDev.com, v1.2.0 Docker for Web Developers

5.7 Key points

What you’ve learned in this chapter:

1. Running WordPress and its MySQL database in Docker containers.
2. Mounting host OS directories into a container.
3. Local development with changes instantly applied to running containers.

For bonus points, try adding Adminer to your environment. Perhaps attempt to create
Dockerized versions of the Drupal CMS or PrestaShop ecommerce system.

You’ve now used several pre-built Docker images. In the next chapter, you’ll create an image
containing a simple Node.js application. This introduces the concept of Dockerfiles and the
Docker image building process.

86 Craig Buckler, @craigbuckler

https://hub.docker.com/_/drupal
https://hub.docker.com/r/prestashop/prestashop

6 Application development with Docker

Until now, you’ve used pre-built Docker images such as MySQL, Adminer, and WordPress.
They’re useful but you’ll eventually want to run your own programs in a container.

In this chapter, you’ll be creating a Node.js “Hello World” application which is built into a Docker
image and launched as a container. By default, the image will be ready for deployment on a
production server, but Docker Compose will be used to override some settings to create a
development and debugging environment. You’ll be able to edit source code on your host PC but
the files will be executed within a continually-running container. This has several benefits:

• Docker will manage dependencies for you – there’s no need to install and maintain
language runtimes

• the process is little di�erent to developing locally – you can use whatever editor and tools
you prefer

• the container is isolated – your application cannot do anything nasty such as crash the
host PC or wipe files

• you can distribute your application to other developers or testers – it will run identically on
any other device with zero configuration.

The files created in this chapter are contained in the nodejs directory of the example code
repository provided at https://github.com/craigbuckler/docker-web

87

https://hub.docker.com/_/mysql
https://hub.docker.com/_/adminer
https://hub.docker.com/_/wordpress
https://github.com/craigbuckler/docker-web/tree/master/nodejs
https://github.com/craigbuckler/docker-web

DockerWebDev.com, v1.2.0 Docker for Web Developers

6.1 Container-based application development

Docker simplifies web development: any web application you create can be run in a single
container.

BUT... if you want deploy similar containers to live production servers, the application should
be stateless. Any number of instances can be started and any can react to requests. In practical
terms, your application should not store essential state data in local files or memory.

Example: an application stores login credentials in memory when a user logs in. A single
container is used during development so everything works as expected.

The application is then deployed to a production server and run in two containers which
receives requests via a load balancer. A user accesses the system and has their login processed
by container1. Their next request is served by container2: it does not have the user’s state
and redirects to the login page.

This may change the way you approach application development. Isolated containers should
retain data in central repositories such as a database.

My advice: stateless web applications are a good thing. They permit horizontal scaling – you can
add more machines/containers as usage demands increase. It’s easy to make that decision at the
start of a project, but converting a legacy stateful application may not be viable.

Applications written in PHP can be easier to containerize because HTTP requests are stateless
by default. It may be more di�icult to convert a monolithic Node.js or Python application
which was designed to run on a single production server.

None of this matters during development because you’ll usually run your application in a single
container. You don’t have to use containers in production if it’s not practical.

88 Craig Buckler, @craigbuckler

Docker for Web Developers DockerWebDev.com, v1.2.0

6.2 What is Node.js?

Node.js is a popular, high-performance, JavaScript runtime built with the Chrome browser’s V8
JavaScript engine. It’s typically used for server-side web development, but has also been
adopted for client-side build tools, desktop applications, embedded systems, and more.

A�er installing Node.js, you can execute a JavaScript file using:

node ./index.js

where index.js is a single entry script. It can be named anything but many projects use that
name.

Until now, you’ve been using Docker images provided at Docker Hub. This chapter illustrates
how to build your own Docker image which installs and executes your application in both
development and production environments.

You may have no interest in Node.js, but it’s similar to other runtimes such as PHP, Python, Ruby,
Go, and Rust. The same Docker concepts apply regardless of the runtime language you’re
using.

Craig Buckler, @craigbuckler 89

https://nodejs.org/
https://hub.docker.com/

DockerWebDev.com, v1.2.0 Docker for Web Developers

6.3 Hello World application overview

This project creates a “Hello World” application using the Express.js framework for Node.js.

Express.js is overkill for this example, but it makes the application less verbose and easier to
extend with your own code.

The http://localhost:3000/ root URL returns “Hello World!” as plain text:

Figure 6.1: Node.js Hello World

Calling the same URL from a client-side Ajax request returns the JSON-encoded object:

{ "message": "Hello World!" }

Ajax calls can be identified when an incoming request has a X-Requested-With HTTP
header set to XMLHttpRequest. This is added by most Ajax libraries.

90 Craig Buckler, @craigbuckler

https://expressjs.com/
http://localhost:3000/

Docker for Web Developers DockerWebDev.com, v1.2.0

You can also add a string to the URL path, e.g. http://localhost:3000/Craig returns
“Hello Craig!” as text or { "message": "Hello Craig!"} as appropriate.

Figure 6.2: Node.js Hello custom string

Craig Buckler, @craigbuckler 91

http://localhost:3000/Craig

DockerWebDev.com, v1.2.0 Docker for Web Developers

6.3.1 package.json settings

Node.js applications require a package.json file in the project’s root directory. This defines
settings and required modules which are pulled using npm – the Node.js package manager:

{
"name": "hello-world",
"version": "1.0.0",
"description": "A basic hello-world application.",
"main": "index.js",
"scripts": {

"debug":
"nodemon --trace-warnings --inspect=0.0.0.0:9229 ./index.js",

"start": "node ./index.js"
},
"author": "Craig Buckler",
"license": "MIT",
"dependencies": {

"express": "^4.17.1"
},
"devDependencies": {

"nodemon": "^2.0.2"
}

}

Two launch commands are defined in the scripts section:

1. start (run with npm start) for production systems, and
2. debug (run with npm run debug) for development systems.

92 Craig Buckler, @craigbuckler

https://www.npmjs.com/

Docker for Web Developers DockerWebDev.com, v1.2.0

During development:

• Nodemon is used to restart the application when an application file is changed. It is
installed as a "devDependency" when the NODE_ENV environment variable is set to
development.

• --trace-warnings outputs stack traces when JavaScript Promises fail, and
• --inspect starts the V8 inspector so debuggers can be attached.

Nodemon use a nodemon.json configuration file which specifies which directories to watch and
ignore:

{
"script": "./index.js",
"ext": "js json",
"ignore": [

"node_modules/"
],
"legacyWatch": true,
"delay": 200,
"verbose": true

}

Note: legacyWatch is best for Alpine Docker images (see below).

6.3.2 index.js application script

A single index.js script handles all functionality to start Express.js and define a / root route
(the application route taken when the / root URL path is entered!). It is not necessary to read or
understand this code:

Craig Buckler, @craigbuckler 93

https://nodemon.io/

DockerWebDev.com, v1.2.0 Docker for Web Developers

// main application
'use strict';

const
// HTTP port from NODE_PORT environment variable
port = process.env.NODE_PORT || 3000,

// Express.js module
express = require('express'),
app = express();

// root route with optional name
app.get('/:name?', (req, res) => {

// returned message
const message = `Hello ${ req.params.name || 'World' }!`;

if (req.xhr) {

// JSON response (HTTP header "X-Requested-With: XMLHttpRequest")
res
.set('Access-Control-Allow-Origin', '*')
.json({ message });

}
else {

// text response for all other requests
res.send(message);

}

});

// start HTTP server
app.listen(port, () =>
console.log(`server running on port ${port}`)

);

94 Craig Buckler, @craigbuckler

Docker for Web Developers DockerWebDev.com, v1.2.0

6.3.3 Local Node.js development

To run this application on your local PC, you would need to:

1. Install Node.js.
2. Navigate (cd) to the project directory in your terminal.
3. Run npm install to download the module "dependencies" (and

"devDependencies" when NODE_ENV is set to development).
4. Launch the application with npm start or npm run debug.

None of this is necessary because it will be handled by Docker. You do not need to install Node.js
locally, although you may require it to run debugging tools on your host PC.

6.4 Docker configuration plan

A Dockerfile configuration file specifies the steps required to build and run your bespoke
application in an image which can be launched as a Docker container.

Some developers create two Dockerfiles: one for development that is optimized for debugging
and one for production that is optimized for speed and security. However, in this example, you
will create:

1. a single Dockerfile for production use, and
2. a single docker-compose.yml which uses the production image but overrides the

settings for development purposes.

This should require less e�ort and fewer system resources.

You could use Docker Compose on your production server and define a specific configuration
file, i.e. docker-compose-production.yml. However, the orchestration chapter suggests
better alternatives.

Craig Buckler, @craigbuckler 95

DockerWebDev.com, v1.2.0 Docker for Web Developers

6.5 Dockerfiles

A Dockerfile defines the build steps required to install and execute an application in order to
create a ready-to-run image.

It’s common to start with a base image from Docker Hub. This application requires a Node.js
image:

Figure 6.3: Docker Hub Node.js images

96 Craig Buckler, @craigbuckler

https://hub.docker.com/
https://hub.docker.com/_/node
https://hub.docker.com/_/node

Docker for Web Developers DockerWebDev.com, v1.2.0

Each tag references a separate image (created with its own Dockerfile). For Node.js:

• many images are large and require a 100MB+ download because they contain a full Linux
OS. These are recommended for most applications.

• slim images are are cut-down versions of the main Linux images with a minimum set of
packages required to run Node.js. These may be useful if you’re deploying Node.js
containers to an environment with space constraints.

• alpine images are based on Alpine Linux and are typically around 5MB. These are useful if
you need the smallest possible image and have limited reliance on OS libraries.

lts-alpine is adequate for this example application – it provides a tiny image with the most
recent Long-Term Support version of Node.js.

Craig Buckler, @craigbuckler 97

http://alpinelinux.org/

DockerWebDev.com, v1.2.0 Docker for Web Developers

Create a Dockerfile in the application’s root directory with the content:

base Node.js LTS image
FROM node:lts-alpine

define environment variables
ENV HOME=/home/node/app
ENV NODE_ENV=production
ENV NODE_PORT=3000

create application folder and assign rights to the node user
RUN mkdir -p $HOME && chown -R node:node $HOME

set the working directory
WORKDIR $HOME

set the active user
USER node

copy package.json from the host
COPY --chown=node:node package.json $HOME/

install application modules
RUN npm install && npm cache clean --force

copy remaining files
COPY --chown=node:node . .

expose port on the host
EXPOSE $NODE_PORT

application launch command
CMD ["node", "./index.js"]

Starting from the FROM node:lts-alpine base image, each line defines a step to install and
run the Node.js application in production mode.

98 Craig Buckler, @craigbuckler

Docker for Web Developers DockerWebDev.com, v1.2.0

Various Dockerfile commands can be used (refer to Appendix B), but the most important are:

command description

a comment

FROM build the image from a Docker Hub starting
image

ARG define a variable that can be passed by the
build command

ENV set an environment variable

WORKDIR set a working directory

USER set the active user

VOLUME create a volume mount point so that
directory can be accessed from other
containers in the Docker network

RUN execute a command, such as npm install
to download modules

COPY copy files from the host machine

EXPOSE expose a port to the host

CMD default launch command (which can be
overridden)

ENTRYPOINT default launch command for executable
images

Refer to Appendix B for more information.

Craig Buckler, @craigbuckler 99

https://docs.docker.com/engine/reference/builder/
https://hub.docker.com/

DockerWebDev.com, v1.2.0 Docker for Web Developers

6.5.1 User security

Dockerfile commands run as a root (super) user when the image is created. This is generally safe;
you could restart a container if something catastrophic occurred.

That said, it is safer to run your application as a more restricted user. A node user is created to
launch the application in the Dockerfile above. It does not have rights to wipe the file system
even if the application misbehaved or was maliciously controlled by a nefarious criminal!

6.5.2 Native launch command

It’s best to launch applications by directly calling their executable:

CMD ["node", "./index.js"]

This ensures system messages such as STDERR are returned to Docker so it can react accordingly,
e.g. restart a container when an application crashes.

Failure messages may not be detected if you use a third-party launch system, e.g. npm start.
The npm application would receive errors, but it may not pass them through to Docker. This
matters less when running Docker in development mode since you’ll normally see logged
errors.

100 Craig Buckler, @craigbuckler

Docker for Web Developers DockerWebDev.com, v1.2.0

6.5.3 Image layers

Every line of the Dockerfile creates a separate (hidden) image.

A�er building, you can see every layer by entering docker image ls -a

These layers allow changes to be made more e�iciently. For example, modifying the EXPOSE
port is instantaneous because none of the previous build steps would change. However, using a
di�erent FROM image would require a complete re-build.

Ideally, Dockerfile commands should be ordered from least-likely to most-likely to change. This is
the reason package.json is copied and modules are installed (npm install) before copying
other application files. Imported modules are less likely to change than your own source files.

6.5.4 .dockerignore

The COPY . . command copies all application files from the host directory to the Docker image.
It’s unlikely you’ll need everything so a .dockerignore file can be defined to omit files or
directories which match name patterns. It will be familiar to anyone who has used Git’s
.gitignore file:

Dockerfile
docker*.yml

.git

.gitignore

.config

.npm

.vscode
node_modules

README.md

Craig Buckler, @craigbuckler 101

DockerWebDev.com, v1.2.0 Docker for Web Developers

6.6 Build an image

To build an image named nodehello from your Dockerfile, run the following command in
the project’s root directory:

docker image build -t nodehello .

The period at the end of the command is essential – it references the application path. You
can also use -f <file> if you didn’t name your build file “Dockerfile”.

The build process could take several minutes as all steps are executed. Once it has completed,
run docker image ls to view the new nodehello image (as well as the base lts-apline
image it was created FROM):

REPOSITORY TAG IMAGE ID CREATED SIZE
nodehello latest f5bf8030cd5a 20 seconds ago 89.9MB
node lts-alpine f77abbe89ac1 12 days ago 88.1MB

Enter docker image ls -a to reveal the hidden images created at each step of your
Dockerfile:

REPOSITORY TAG IMAGE ID CREATED SIZE
nodehello latest f5bf8030cd5a 2 minutes ago 89.9MB
<none> <none> 9ceef3937b4a 2 minutes ago 89.9MB
<none> <none> e5bb2afb74b5 2 minutes ago 89.9MB
<none> <none> 89b2f587c265 2 minutes ago 89.8MB
<none> <none> 17e464183259 2 minutes ago 88.1MB
<none> <none> 481fc173212a 2 minutes ago 88.1MB
<none> <none> 8e078964714e 2 minutes ago 88.1MB
<none> <none> 3bfa8ac75748 2 minutes ago 88.1MB
<none> <none> 21439fb6ba1e 2 minutes ago 88.1MB
<none> <none> 22a986df6cdd 2 minutes ago 88.1MB
<none> <none> 79c4ae3fc5b5 2 minutes ago 88.1MB
node lts-alpine f77abbe89ac1 12 days ago 88.1MB

102 Craig Buckler, @craigbuckler

Docker for Web Developers DockerWebDev.com, v1.2.0

Each image is an incremental di�erence from the previous one. Therefore, docker system df
reports that 89.9MB has been used in total (rather than 88MB for each hidden image):

TYPE TOTAL ACTIVE SIZE RECLAIMABLE
Images 2 0 89.89MB 89.89MB (100%)
Containers 0 0 0B 0B
Local Volumes 0 0 0B 0B
Build Cache 0 0 0B 0B

6.7 Launch a production container from your image

A container named nodehello (or whatever you prefer) can be launched from your image in
interactive mode:

docker run -it --rm --name nodehello -p 3000:3000 nodehello

Open http://localhost:3000/ in your browser to see “Hello World!”

The container runs in its default production mode. If you make any changes to the application,
you would need to rebuild the image again. This is clearly impractical, so press Ctrl|Cmd + C
to stop and remove the container.

Craig Buckler, @craigbuckler 103

http://localhost:3000/

DockerWebDev.com, v1.2.0 Docker for Web Developers

6.8 Launch a development environment with Docker
Compose

Docker Compose can override the image’s default production settings to launch a container in
development mode.

Create the following docker-compose.yml in your project’s root directory:

version: '3'

services:

nodehello:
environment:
- NODE_ENV=development

build:
context: ./
dockerfile: Dockerfile

container_name: nodehello
volumes:
- ./:/home/node/app

ports:
- "3000:3000"
- "9229:9229"

command: /bin/sh -c 'npm install && npm run debug'

In previous chapters, you referenced a specific image: from Docker Hub. In this file, you’re using
a build: option to create an image from a Dockerfile:

• context: is the relative path to the location of your Dockerfile, and
• dockerfile: is the name of your Dockerfile.

Additionally:

1. the NODE_ENV environment variable is set to development
2. port 9229 is exposed for remote Node.js debugging
3. no restart option is defined – if the application crashes, you want to know about it!

104 Craig Buckler, @craigbuckler

https://docs.docker.com/compose/compose-file/#image
https://docs.docker.com/compose/compose-file/#build
https://docs.docker.com/compose/compose-file/#context
https://docs.docker.com/compose/compose-file/#dockerfile
https://docs.docker.com/compose/compose-file/#restart

Docker for Web Developers DockerWebDev.com, v1.2.0

4. the application directory on your host PC is mounted to /home/node/app in the
container’s file system, and

5. the Dockerfile CMD application launch command is replaced with /bin/sh to start a
new shell and execute npm install followed by npm run debug.

When the host directory is mounted into the container, none of the module "dependencies"
required in package.json will be found. There are also "devDependencies" which were
never installed. The npm install installs all modules to the host’s application directory when
the container is launched for the first time.

Directories named .config, .npm, and node_modules will be created in the project’s root
directory on the host. Note:

• If you encounter any npm failures during installation, try deleting those directories
before trying again.

• Add those names to .gitignore to ensure the directories are not committed to your
Git repository.

• Do not attempt to run the Node.js application from your host OS! The modules may be
configured for Linux.

Creating these directories can be slow on Windows hosts. The quiz project in Appendix D
shows how to mount them in Docker volumes which makes building considerably faster.

Ensure any existing containers have been stopped then launch Docker Compose:

docker-compose up

The nodehello container will be started in development mode.

Docker Compose will use the nodehello image built earlier or initiate a build when that does
not exist. You can also instruct Docker Compose to rebuild the image – perhaps a�er making
changes to your Dockerfile:

docker-compose up --build

Docker Compose can be stopped with Ctrl|Cmd + C or entering docker-compose down in
another terminal. Try live code editing and debugging before you do that.

Craig Buckler, @craigbuckler 105

DockerWebDev.com, v1.2.0 Docker for Web Developers

6.8.1 Launch a development environment with docker run

Below the surface, Docker Compose issues a docker run command similar to:

docker run -it --rm \
--name nodehello \
-p 3000:3000 \
-p 9229:9229 \
-e NODE_ENV=development \
-v $PWD:/home/node/app \
--entrypoint '/bin/sh' \
nodehello \
-c 'npm install && npm run debug'

Windows users: $PWD references the current directory on Linux and macOS. The full path
must be specified using forward-slash notation on Windows e.g. -v /c/projects/nodejs:/home/node/app.

The command launches the container in development mode and mounts the project directory
on the host to /home/node/app. This is more complex than using Docker Compose, but may
want to use the command in shell scripts or similar processes.

6.9 Live code editing

When the nodehello container is running in development mode, you can edit index.js and
Nodemon will restart the application when you save the file.

For example, examine line 17:

const message = `Hello ${ req.params.name || 'World' }!`;

and change Hello to Hey there:

const message = `Hey there, ${ req.params.name || 'World' }!`;

Save the file and the container log will indicate that Nodemon has restarted the application.
Refresh http://localhost:3000/ in your browser to see the updated message.

106 Craig Buckler, @craigbuckler

http://localhost:3000/

Docker for Web Developers DockerWebDev.com, v1.2.0

6.10 Remote container debugging

This section describes how to debug a Node.js application running in a Docker Container. It can
be skipped if you have no interest in Node.js, although other runtimes o�er similar facilities.

6.10.1 Node.js debugging overview

To debug a Node.js application, you can:

1. Set the NODE_ENV environment variable to development.

Many modules use this to show more verbose errors or record logs. It has already been set
in docker-compose.yml.

2. Launch node with the --inspect=0.0.0.0:9229 parameter.

This starts the debugger listening on port 9229 and allows connections from any device.
The npm run debug command defined in package.json has this set.

3. Optionally, set breakpoints within your JavaScript code with debugger; statements.

You can attach to the Node.js debugger using the Chrome browser, VS Code, or any other
compatible application.

The default --inpect option (without an IP:port) opens port 9229 but only permits
connections from the same device.

A specific IP:port can be passed to node --inspect to limit connections to known devices.

The --inspect-brk option (with or without an IP:port) sets a breakpoint on the first
statement so the application is paused immediately on execution.

Craig Buckler, @craigbuckler 107

DockerWebDev.com, v1.2.0 Docker for Web Developers

6.10.2 Node.js debugging with Chrome

Google Chrome, and Chromium-based browsers such as Brave, Edge, Opera, and Vivaldi, have a
built-in Node.js debugger. Ensure your application is running in a development mode container,
then launch the browser and enter chrome://inspect in the address bar:

Figure 6.4: Chrome inspect page

If you don’t see a Remote Target, ensure Discover network targets is checked, click
Configure.. . and add a connection for (or a network address if you’re running the container
on another device).

108 Craig Buckler, @craigbuckler

https://www.google.com/chrome/
https://brave.com/
https://www.microsoft.com/edge
https://www.opera.com/
https://vivaldi.com/
chrome://inspect

Docker for Web Developers DockerWebDev.com, v1.2.0

Click the inspect link below the Target to launch DevTools. This will be familiar if you’ve tried
client-side debugging. There are application and memory profilers, but the Sources panel is
most useful for debugging. You can also press Esc to show the Console in the lower pane:

Figure 6.5: DevTools Sources panel

Craig Buckler, @craigbuckler 109

DockerWebDev.com, v1.2.0 Docker for Web Developers

Press Ctrl|Cmd + P, enter index.js, and select the file at home/node/app/index.js.
Click any line number to set a breakpoint (line 19 is set here):

Figure 6.6: DevTools set breakpoint

110 Craig Buckler, @craigbuckler

Docker for Web Developers DockerWebDev.com, v1.2.0

Load or refresh http://localhost:3000/ in any browser and DevTools will pause on that line. You
can now inspect the call stack and variable state. In this case, the message variable has been set
to "Hello World!" in the right-hand Scope pane:

Figure 6.7: DevTools execution paused

Craig Buckler, @craigbuckler 111

http://localhost:3000/

DockerWebDev.com, v1.2.0 Docker for Web Developers

The icons along the top of that panel can be clicked to:

icon description

resume execute code until the next breakpoint (if
any)

step over run the next statement but do not pause on
any functions it calls

step into run the next statement and follow calls into
other functions (including asynchronous
functions such as setTimeout)

step out finish the function and return to the calling
statement

step similar to step into, but asynchronous
functions will not be called immediately

deactivate disable or enable all breakpoints

exceptions pause when an error is raised

Try reloading http://localhost:3000/ using Ctrl + F5 (or Shift + F5 in some browsers) to
bypass the browser cache. You will notice the debugger pauses on the breakpoint line twice:

• message is set to "Hello World!" in the first pass
• message is set to "Hello favicon.ico!" in the second.

You have a bug! You’re welcome to attempt a fix (solution below).

Chrome Filesystem workspaces

The + Add directory to workspace option allows you to select a source directory which Chrome
can map to remote files. Unfortunately, it won’t work in this case because, although your
files are local, they’re mounted within a container at /home/node/app/.

112 Craig Buckler, @craigbuckler

http://localhost:3000/
https://en.wikipedia.org/wiki/Wikipedia:Bypass_your_cache

Docker for Web Developers DockerWebDev.com, v1.2.0

6.10.3 Node.js debugging with VS Code

The free Visual Studio Code editor has built-in Node.js debugging facilities as well as debugger
extensions for all popular platforms.

VS Code also has extensions to help with Docker management and file syntaxes as well as
remote development to open directories inside containers. These are not used or required
here because the debugger running in your container permits remote access. However, they
o�er some interesting development options.

Ensure your application is running in development mode, then launch VS Code, open the
project’s root directory, and load index.js. A breakpoint can be added by clicking to the le� of
any line:

Figure 6.8: VS Code set breakpoint

(An “unbound” warning message may appear the first time you do this.)

Craig Buckler, @craigbuckler 113

https://code.visualstudio.com/
https://marketplace.visualstudio.com/search?target=VSCode&category=Debuggers&sortBy=Installs
https://marketplace.visualstudio.com/search?target=VSCode&category=Debuggers&sortBy=Installs
https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-docker
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.vscode-remote-extensionpack

DockerWebDev.com, v1.2.0 Docker for Web Developers

Click the Debugger icon in the activity bar followed by create a launch.json file. Choose
Node.js as the environment then add a process to Attach to a remote program. The following
configuration is recommended – it maps the container’s /home/node/app directory to the
application’s local directory:

{
// Use IntelliSense to learn about possible attributes.
// Hover to view descriptions of existing attributes.
// For more information, visit:
// https://go.microsoft.com/fwlink/?linkid=830387
"version": "0.2.0",
"configurations": [

{
"type": "node",
"request": "attach",
"name": "Attach",
"port": 9229,
"protocol": "inspector",
"localRoot": "${workspaceFolder}",
"remoteRoot": "/home/node/app",
"skipFiles": [

"<node_internals>/**"
]

}
]

}

114 Craig Buckler, @craigbuckler

Docker for Web Developers DockerWebDev.com, v1.2.0

Save launch.json (which is added to a new .vscode directory in your project) and a Attach
option will appear in the drop-down at the top of the debugger pane:

Figure 6.9: VS Code attach

Craig Buckler, @craigbuckler 115

DockerWebDev.com, v1.2.0 Docker for Web Developers

Click the green RUN icon to start the debugger, then reload http://localhost:3000/ in a browser.
VS Code will pause the script at the breakpoint where you can inspect variables and the call
stack:

Figure 6.10: VS Code execution paused

The icon bar at the top o�ers similar resume, step over, step into, and step out icons as Chrome.
There is also a restart icon and a detach icon to quit debugging.

116 Craig Buckler, @craigbuckler

http://localhost:3000/

Docker for Web Developers DockerWebDev.com, v1.2.0

6.11 Create an image from a container

Finally, it’s possible to create a new image from a running container using
docker container commit or the shorthand:

docker commit [CONTAINER_NAME] [IMAGE_NAME]

This option is more fragile than using a Dockerfile, but it could be useful if you need to retain
the current state of your application for development or testing purposes. For example, perhaps
you’ve experienced a race condition or similar bug which is di�icult to replicate.

Craig Buckler, @craigbuckler 117

https://docs.docker.com/engine/reference/commandline/container_commit/

DockerWebDev.com, v1.2.0 Docker for Web Developers

6.12 Key points

What you’ve learned in this chapter:

1. Building your own production-level Docker image with a Dockerfile.
2. Launching a container from that image in both production and development

environments.
3. Using Docker Compose for easier development.
4. Auto-restarting a Node.js application when mounted files change.
5. Debugging an application running in a container.

For a more complex multi-container example, refer to the quiz project in Appendix D. Or perhaps
create a simple Dockerized application in your language of choice.

In the next chapter, you will use push the Docker image you’ve just created to Docker Hub . . . and
discover why that could be useful.

6.12.1 Fixing the favicon.ico bug

Did you work out why the example application made two HTTP requests during debugging?

When a browser makes its first request for a web page it also requests a favicon.ico image.
This is the icon shown to the le� of the title in the browser tab. Web servers normally send
an appropriate image or return an HTTP 404 Not found.

The application currently treats this request in the same way as any other and returns a
Hello favicon.ico message which the browser cannot use. It’s hardly catastrophic, but
both the browser and server are doing unnecessary work.

The easiest solution is to return a 404 error by adding a further route function a�er line 10:

app.get('/favicon.ico', (req, res) => res.sendStatus(404));

Alternatively, you could serve a real favicon image from an Express.js static directory or by
using a module such as serve-favicon.

118 Craig Buckler, @craigbuckler

https://expressjs.com/en/4x/api.html#express.static
https://www.npmjs.com/package/serve-favicon

7 Push your Docker image to a Repository

Docker Hub is to Docker what Github is to Git. Kind of.

You will primarily use Docker Hub to locate and use application images – such as Apache, PHP,
Node.js, Python, MySQL, or MongoDB. However, it’s also possible to push your own application
images to Docker Hub.

7.1 Why push an image to Docker Hub?

Why indeed. Many developers never will. Your Dockerfile can be added to any project
repository to build an application image during development or as part of a production
deployment process.

However, pushing an image to Docker Hub o�ers several benefits:

1. It is easier to distribute a pre-built and tested image with your team.

2. The image can be pulled on production servers.

Deployment is simpler and faster because the image has already been built.

3. A published image can be used by anyone.

Your application can be shared with users, clients, and other developers throughout the
world.

Docker Hub allows you to create any number of public repositories. These appear in search
results and can be used by anyone – but remember you will be distributing your application’s
source code.

119

https://hub.docker.com/
https://github.com/

DockerWebDev.com, v1.2.0 Docker for Web Developers

You can also create one private repository and purchase more if necessary. Access to private
repositories can be granted to named organizations and individual Docker Hub users.

7.2 Docker Hub alternatives

As well as Docker Hub, there are plenty of alternative hosted and self-hosted container registries.
All provide private repositories with varying price points:

• Amazon ECR
• Azure
• Canister
• Cloudsmith
• GitHub
• GitLab
• Google
• Harbor
• JFrog Artifactory
• Portus
• Quay.io
• Sonatype Nexus

This chapter uses Docker Hub, but the process is similar for other repositories. Typically, you will
log into a di�erent system and/or specify a URL when pushing the image.

7.3 Image names and tags

Every image on Docker Hub is assigned a unique name:

[your_user_name]/[image_name]:[tag_name]

The following sections refer to the nodehello image created in the last chapter which is
uploaded to my craigbuckler account.

120 Craig Buckler, @craigbuckler

https://hub.docker.com/billing/plan
https://hub.docker.com/orgs
https://aws.amazon.com/ecr/
https://azure.microsoft.com/services/container-registry/
https://canister.io/
https://cloudsmith.io/
https://ghcr.io/
https://about.gitlab.com/
https://cloud.google.com/container-registry
https://goharbor.io/
https://jfrog.com/artifactory/
http://port.us.org/
https://quay.io/
https://www.sonatype.com/nexus-repository-oss

Docker for Web Developers DockerWebDev.com, v1.2.0

Tags are di�erent variations of an image. You first saw these when running the MySQL container –
the o�icial MySQL image o�ers various editions of 5.6, 5.7, and 8.0.

A default tag of latest is applied to any new image. That version is downloaded when no tag is
specified when pulling an image.

A single image can have any number of tags applied. The onus is on you – the image developer –
to tag images appropriately and ensure the most recent stable release is tagged with latest.

7.4 Create a Docker Hub repository

The first step is to create a repository at Docker Hub. Log in at https://hub.docker.com/ and click
Repositories then Create Repository (or open https://hub.docker.com/repository/create):

Figure 7.1: create repository on DockerHub

Enter the repository name, choose whether it’s public or private, and click Create.

Craig Buckler, @craigbuckler 121

https://hub.docker.com/_/mysql
https://hub.docker.com/
https://hub.docker.com/repository/create

DockerWebDev.com, v1.2.0 Docker for Web Developers

Docker Hub can also automatically build images when you push Dockerfile configurations
to Github or BitBucket Git project repositories.

7.5 Log in locally

Log on your development PC with the same Docker Hub credentials using:

docker login

Alternatively, you can choose log in from the Docker Desktop menu on Windows and macOS.

To log into an alternative image repository (not Docker Hub), use:

docker login <url>

7.6 Build an application image

Build an image from your application’s Dockerfile. The Node.js example from the previous
chapter:

docker image build -t nodehello .

Test the image by launching a container, e.g.

docker run -it --rm --name nodehello -p 3000:3000 nodehello

Presuming everything works as expected, press Ctrl|Cmd + C to stop and remove the
container. List the available images using:

docker images ls

In this example, nodehello has been created and the latest tag is automatically applied:

122 Craig Buckler, @craigbuckler

https://docs.docker.com/docker-hub/builds/
https://github.com/
https://bitbucket.org/

Docker for Web Developers DockerWebDev.com, v1.2.0

REPOSITORY TAG IMAGE ID CREATED SIZE
nodehello latest 7076917cd3fd 15 minutes ago 89.9MB
node lts-alpine f77abbe89ac1 2 weeks ago 88.1MB

7.7 Tag an image

You can now tag the image with your user name, repository name, and tag name so it’s ready to
push to Docker Hub, e.g.

docker tag nodehello craigbuckler/nodehello:firsttry

Running docker image ls again returns:

craigbuckler/nodehello firsttry 7076917cd3fd 18 mins ago 89.9MB
nodehello latest 7076917cd3fd 18 mins ago 89.9MB
node lts-alpine f77abbe89ac1 2 weeks ago 88.1MB

The tagged version points to the nodehello original. You can create as many tags as you like for
the same image, e.g.

docker tag nodehello craigbuckler/nodehello:latest

The docker image build -t option can specify a fully-qualified name so it’s possible to
build and tag an image in a single command:

docker image build -t craigbuckler/nodehello:firsttry .

However, building and testing before tagging is safer – it’s more di�icult to accidentally push
a failing image!

Craig Buckler, @craigbuckler 123

DockerWebDev.com, v1.2.0 Docker for Web Developers

7.8 Push to Docker Hub

Push your tagged images to Docker Hub using:

docker push craigbuckler/nodehello

This could take some time for larger images, but results will eventually be displayed:

The push refers to repository [docker.io/craigbuckler/nodehello]
6766d962cd48: Pushed
91341a5db1c1: Pushed
ecb74f18e87d: Pushed
181dbdd006ce: Pushed
7c9ecf609394: Mounted from library/node
d570627dd098: Mounted from library/node
1d3a976388c0: Mounted from library/node
beee9f30bc1f: Mounted from library/node
firsttry: digest: sha256:a010ec80a540f618c4801c5e63bd7c4bb8d size: 1991

Click the Repositories link in Docker Hub again to view your images. The uploaded image will be
available at the URL:

https://hub.docker.com/repository/docker/[your_user_name]/[image_name]/

124 Craig Buckler, @craigbuckler

https://hub.docker.com/

Docker for Web Developers DockerWebDev.com, v1.2.0

Figure 7.2: image pushed to Docker Hub

7.9 Distribute your image

You can now wipe all images from your system (if you’re absolutely certain, of course. . .)

docker system prune -af

A container can then be launched directly from your Docker Hub image like you’ve done for other
applications, e.g.

docker run -it --rm --name nodehello -p 3000:3000 \
craigbuckler/nodehello:firsttry

Craig Buckler, @craigbuckler 125

DockerWebDev.com, v1.2.0 Docker for Web Developers

7.10 Key points

What you’ve learned in this chapter:

1. Image repository options.
2. Building and tagging an image.
3. Pushing an image to a repository for easier distribution.

Bonus points: try automatically building Docker Hub images from your project’s Github or
BitBucket repository.

In the next chapter, you will take your first steps with orchestration and using Docker containers
in production environments.

126 Craig Buckler, @craigbuckler

https://docs.docker.com/docker-hub/builds/
https://github.com/
https://bitbucket.org/

8 Docker orchestration on production
servers

This book primarily explains how to use Docker during development in order to emulate a
production environment. Your live server may not use Docker and that’s fine if, for example,
you’re running a WordPress site hosted by a specialist company.

However, deploying application containers to live production servers o�ers several benefits.
Containers can be:

• monitored for availability or speed
• restarted on failure
• scaled according to demand
• updated without downtime (presuming at least one application container remains active

while others update).

8.1 Dependency planning

There are many choices to make when planning a container-based production environment.

Some dependencies, such as a database, could be provided by cloud services. Specialist
So�ware as a Service (SaaS) companies do the hard work for you: there’s no need to worry about
installation, maintenance, security, scaling, disk space, or back-ups.

Alternatively, you could choose to install and manage a database application yourself – perhaps
for cost, security, or vendor lock-in reasons. It’s possibly better to install it directly on the host OS
rather than within a container with self-imposed CPU, RAM, and disk limits.

127

DockerWebDev.com, v1.2.0 Docker for Web Developers

8.2 Application scaling

The example Node.js application runs on a single processing thread and other language
runtimes use a similar model. Your server (or a container) could have many CPU cores but only
one will actively execute the application.

Running the application in multiple containers permits more e�icient parallel processing. This is
preferable to solutions such as self-managed clustering or process managers like PM2 because
containers are isolated and can be restarted automatically.

You could use Docker Compose or a script to launch multiple container instances of your
application. If you were running them all on a single production server, each would require a
di�erent name and port exposed to the host, e.g. for three instances:

docker run -d --rm --name container1 -p 3001:3000 myimage
docker run -d --rm --name container2 -p 3002:3000 myimage
docker run -d --rm --name container3 -p 3003:3000 myimage

--restart=always can be added to each command to ensure Docker restarts the
application when the container exits or crashes.

A load balancer such as NGINX (running on the host OS or in another container) can forward
incoming requests to one of the application ports. Three users accessing at the same time could
be processed by di�erent containers running in parallel. In theory.

If this sounds like hard work: it is. And that’s before you consider sharing volumes and
distributing containers between other real and/or virtual servers on the same network.
Fortunately, there are easier solutions. . .

128 Craig Buckler, @craigbuckler

https://nodejs.org/dist/latest/docs/api/cluster.html
https://pm2.keymetrics.io/
https://docs.nginx.com/nginx/admin-guide/load-balancer/http-load-balancer/

Docker for Web Developers DockerWebDev.com, v1.2.0

8.3 Orchestration overview

Orchestration is a process used to manage, scale, and maintain container-based applications
across one or more devices.

Tools to manage container-based applications are named orchestrators. One of the first was
Apache Mesos, which was soon followed by Kubernetes – an open source system developed by
Google and o�en abbreviated to K8S. Docker fully embraces Kubernetes, but also provides the
simpler Docker Swarm.

Then things get complicated.

There are dozens of implementations (the Kubernetes documentation lists at least fi�een) and
cloud provider may o�er their own Kubernetes-based orchestration services with di�erent
terminology and methods: AWS Fargate, Google Cloud, Microso� Azure, Alibaba Cloud, Tencent
etc.

These providers also supply their own load balancing, data, and file storage products which may
be preferable to containerized services.

Just to add to the confusion, there are dozens of companies providing alternative/easier
interfaces to the large cloud services.

8.3.1 Choosing an orchestration service

There are many options which change regularly and could fill a book in their own right.

For smaller or test applications, Docker Swarm running on inexpensive hosting such as
DigitalOcean is a simple way to get started. An example configuration is shown below.

Larger applications with tens of thousands of users are likely to benefit from a more advanced
Kubernetes-based service. An overview of Kubernetes is provided below but I recommend you
seek expert advice for your platform of choice: you’re likely to be spending a lot of money!

Craig Buckler, @craigbuckler 129

http://mesos.apache.org/
https://kubernetes.io/
https://docs.docker.com/engine/swarm/
https://aws.amazon.com/fargate/
https://cloud.google.com/container-options
https://azure.microsoft.com/en-gb/services/kubernetes-service/docker/
https://www.alibabacloud.com/product/container-service
https://intl.cloud.tencent.com/product/tke
https://www.digitalocean.com/

DockerWebDev.com, v1.2.0 Docker for Web Developers

8.4 Docker Swarm

Docker Swarm is provided in your Docker installation so it’s possible to run it on one or more
development machines before deployment. The terminology in brief. . .

A swarm is a set of nodes which are either physical or virtual servers. Each swarm must have at
least one manager node which manages the service: a set of tasks (containers) is distributed to
worker nodes.

If you’ve not previously used Swarm, docker system info returns a report including:

Swarm: inactive

Execute the following command to define your machine as the swarm manager:

docker swarm init

The result:

Swarm initialized: current node (yvhtgc5lypxnygtijxh) is now a manager.

To add a worker to this swarm, run the following command:

docker swarm join --token
SWMTKN-1-0p6w735dvmxq82dcmpcxnykj3obmpfm0wqwcdg4kc17irwmu9y
192.168.65.3:2377

To add a manager to this swarm, run 'docker swarm join-token manager'
and follow the instructions.

Other physical or virtual devices on your network which have Docker installed can join the
swarm by issuing the (long) docker swarm join --token command shown.

130 Craig Buckler, @craigbuckler

https://docs.docker.com/engine/swarm/

Docker for Web Developers DockerWebDev.com, v1.2.0

Enter docker node ls to view all nodes within your swarm. A single development machine
will display something similar to:

ID HOSTNAME STATUS AVAILABILITY MANAGER STATUS
yvhtgc59 * docker-desktop Ready Active Leader

Pull any images you require before creating a service – unlike docker run and
docker compose, they won’t be pulled automatically, e.g.

docker pull craigbuckler/nodehello

Then create a service which launches a single container on the swarm:

docker service create --name nodehello -p 3000:3000 \
craigbuckler/nodehello

Execute docker service ls to show the running tasks:

ID NAME MODE REPLICAS IMAGE PORTS
h7xdw61f8 nodehello replicated 1/1 nodehello *:3000->3000/tcp

docker container ls will also show a single running container (presuming you’re running
the swarm on one machine).

8.4.1 Scale a swarm service

Your application can be scaled as it becomes increasing popular. To launch three container
instances for the nodehello service, enter:

docker service scale nodehello=3

docker service ls now reports three replicas running on your single installation, any of
which can handle requests to http://localhost:3000/:

ID NAME MODE REPLICAS IMAGE PORTS
h7xdw61f8 nodehello replicated 3/3 nodehello *:3000->3000/tcp

Craig Buckler, @craigbuckler 131

http://localhost:3000/

DockerWebDev.com, v1.2.0 Docker for Web Developers

docker container ls shows those containers presuming they’re all running on your local
machine:

CONTAINER ID IMAGE STATUS PORTS NAMES
4748e3dd2981 nodehello Up 31 seconds 3000/tcp nodehello.2.9c5283
9d9b5afc565b nodehello Up 32 seconds 3000/tcp nodehello.3.norbua
0f083e40fc37 nodehello Up 6 minutes 3000/tcp nodehello.1.qjmaki

Alternatively, thedocker service create command has an optional--replicaswhich
could have been used instead of scaling later, e.g.

docker service create --name nodehello -p 3000:3000 --replicas=3 \
craigbuckler/nodehello

8.4.2 Stop and remove a swarm service

Services can be listed by executing docker service ls.

A service name can then be passed to the rm command to stop it, e.g.

docker service rm nodehello

All containers started on swarm nodes are automatically stopped and removed.

8.4.3 Remove a node from a swarm

Any worker node can leave the swarm by entering this command on the device:

docker swarm leave

The manager node can leave the swarm and disable swarm mode using:

docker swarm leave --force

132 Craig Buckler, @craigbuckler

Docker for Web Developers DockerWebDev.com, v1.2.0

8.5 Kubernetes

Kubernetes is considerably beyond the scope of this book, but it uses the following concepts and
terminology. . .

A cluster is a set of nodes which are either physical or virtual servers (like a Docker swarm). At
least one master (like a swarm manager) controls all nodes through the Kubernetes API server.
Communication with the master is handled by the kubectl CLI tool.

Each node runs an agent process known as a kubelet. It is responsible for receiving information
from the master to start, stop, or modify groups of containers known as pods which have shared
storage and network resources.

Your host may have their own Kubernetes methods and recommendations, so it will be practical
to provision and configure a test platform within the same environment.

Another option is the play with Kubernetes tool allows you configure a cluster without installing
anything locally.

Finally, it’s possible to install Kubernetes on your Windows, macOS, or Linux development PC.
Kubernetes is provided in Docker Desktop for Windows and macOS: to enable it, choose
Settings from the Docker icon menu, select the Kubernetes pane, check Enable Kubernetes,
and click Apply & Restart. This process may take several minutes to complete.

Craig Buckler, @craigbuckler 133

https://kubernetes.io/
https://labs.play-with-k8s.com/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://docs.docker.com/get-started/kube-deploy/

DockerWebDev.com, v1.2.0 Docker for Web Developers

Figure 8.1: enable Kubernetes

134 Craig Buckler, @craigbuckler

Docker for Web Developers DockerWebDev.com, v1.2.0

8.5.1 Kubernetes deployment

Kubernetes deployments are defined YAML files. Unlike traditional programming steps, these
describe a desired end state which Kubernetes aims to achieve.

The following example defines a deployment.yaml file to run the latest NGINX web server in
two replica pods:

apiVersion: apps/v1
kind: Deployment
metadata:
name: nginx-deployment

spec:
selector:

matchLabels:
app: nginx

replicas: 2 # 2 pods
template:

metadata:
labels:

app: nginx
spec:
containers:
- name: nginx

image: nginx:latest
ports:
- containerPort: 80

To deploy:

kubectl apply -f ./deployment.yaml

You can also host the deployment file on a web server and use its URL as the reference, e.g.

kubectl apply -f https://myserver.com/deployment.yaml

Information about the nginx-deployment can be displayed with:

kubectl describe deployment nginx-deployment

Craig Buckler, @craigbuckler 135

DockerWebDev.com, v1.2.0 Docker for Web Developers

The pods created during the deployment can be listed:

kubectl get pods -l app=nginx

to reveal pod names:

NAME READY STATUS RESTARTS AGE
nginx-deployment-1771418926-7o5ns 1/1 Running 0 10h
nginx-deployment-1771418926-r18az 1/1 Running 0 10h

More information about any pod can then be viewed, e.g.

kubectl describe pod nginx-deployment-1771418926-7o5ns

Node IP addresses and ports are only available within the cluster. A load balancer can be added
to expose them externally:

kubectl expose deployment nginx-deployment \
--port=80 --target-port=80 \
--name=nginxlb --type=LoadBalancer

8.5.2 Deployment updates

To update the deployment, change the YAML file and run the same kubectl apply again. This
can be useful when you need to increase the number of replicas owing to increased demand.

Deployments can be stopped and deleted by passing its name to the delete command:

kubectl delete deployment nginx-deployment

136 Craig Buckler, @craigbuckler

Docker for Web Developers DockerWebDev.com, v1.2.0

8.5.3 Kubernetes resources

Several other tools may be useful:

• Kompose: a tool to convert Docker Compose to Kubernetes configuration files
• minikube: quickly define a Kubernetes cluster on a development machine
• Helm: manages Kubernetes resources

Further Kubernetes links:

• Kubernetes.io
• Kubernetes documentation
• Deploy to Kubernetes
• Docker and Kubernetes
• Play with Kubernetes

Craig Buckler, @craigbuckler 137

https://kompose.io/
https://minikube.sigs.k8s.io/docs/
https://helm.sh/
https://kubernetes.io/
https://kubernetes.io/docs/home/
https://docs.docker.com/get-started/kube-deploy/
https://www.docker.com/products/kubernetes
https://labs.play-with-k8s.com/

DockerWebDev.com, v1.2.0 Docker for Web Developers

8.6 Key points

What you’ve learned in this chapter:

1. Orchestration on production servers.
2. Using Docker Swarm to scale an application.
3. The basics of Kubernetes deployment.
4. Hosts which o�er container orchestration services.

138 Craig Buckler, @craigbuckler

9 Your Docker journey

Web developers o�en shun Docker and I was a skeptic for many years. It took several months
wading through an impenetrable jungle of conceptual overviews, terminology, and
misinformation to experience my first eureka moment.

I now find it unthinkable to approach a project without considering Docker. Installing and
managing dependencies is no longer a hurdle and I’m not afraid to try new so�ware. I can safely
run an obscure Java application or beta Rust-driven database without risking stability, security,
and sanity.

Docker is liberating.

I hope this book provides you with enough knowledge to understand Docker and be enthusiastic
about using it during web development.

9.1 Docker’s future

Many developers are yet to discover the benefits of Docker and containerization. It’s a relatively
new concept (2013) and remains a complex topic even for IT professionals.

My prediction: Docker will become easier.

Deployment and orchestration are especially di�icult so huge advances from cloud hosts are
likely in the next few years.

Apple, Google, and Microso� are also considering Docker-like technologies within their main
operating systems. Cross-platform so�ware can already be developed using options such as
Electron or Qt, but containers could allow more flexible development of secure applications
which run anywhere without modification or recompilation.

139

https://www.electronjs.org/
https://www.qt.io/

DockerWebDev.com, v1.2.0 Docker for Web Developers

Finally, Unikernels push containerization further by packaging an application into a fast,
ultra-lightweight virtual machine with no operating system. They run directly on a hypervisor
which handles hardware interoperability so no host OS is required. Unikernals are new and will
take several years to become a practical option for development and deployment.

9.2 Further Docker help

The appendices in this book provide further information for:

1. using the docker command line
2. building your own images with a Dockerfile
3. managing multiple containers with docker-compose
4. creating a multi-container application

The Docker Documentation (docs.docker.com) is an excellent but somewhat daunting resource.
It probably provides the information you want, but finding it is another matter!

The discord.com chat room is available as part of this course to discuss Docker concepts and
problems with web developers who have probably encountered similar issues. Your registration
invite link is available in your book/course receipt email.

The Docker Community Forums (forums.docker.com) is another great place to seek help and
discuss topics or best practices.

There is also a thriving Docker community on reddit.com which can o�er rapid assistance. You
could also consider StackOverflow although questions tend to be highly specific and answered
less frequently.

The o�icial Docker Community (docker.com/docker-community) and Docker Twitter account
provides news, events, meet-ups, and training resources from around the world.

Of course, there is Google. Enter a question or error message and you’ll probably find
information on Stack Overflow and similar sites. Always check the document date and feedback
to ensure it relates to your installation.

Finally, you can send me a message on Twitter @craigbuckler or (blatent plug alert) . . . consider
hiring me.

140 Craig Buckler, @craigbuckler

http://unikernel.org/
https://docs.docker.com/
https://discord.com/channels/714109256072429630/714109256596455446
https://forums.docker.com/
https://www.reddit.com/r/docker/
https://stackoverflow.com/questions/tagged/docker
https://www.docker.com/docker-community
https://twitter.com/Docker
https://twitter.com/craigbuckler

10 Appendix A: Docker command-line
reference

The Docker command-line reference provides full documentation, but the commands below will
be used most o�en.

10.1 Log into Docker Hub

docker login

Or login to another registry:

docker login <url>
docker login -u <id> -p <password> <url>

10.2 Search Docker Hub

Search the Docker Hub image repository:

docker search [options] <keyword>

Example: find up to five Docker Hub images that reference php ordered by stars (how many
people liked the image):

docker search --limit 5 php

141

https://docs.docker.com/engine/reference/run/

DockerWebDev.com, v1.2.0 Docker for Web Developers

10.3 Pull a Docker Hub image

Download one or more images from Docker Hub:

docker pull [options] <image>

Example: pull the latest Node.js Long-Term-Support Alpine Linux image:

docker pull node:lts-alpine

10.4 List Docker images

docker image ls
docker images

View all images, both active and dangling (those not associated with a container):

docker image ls -a

10.5 Build an image from a Dockerfile

docker image build -t <image_name> .

Assuming a Dockerfile is in the current directory:

docker image build -t myimage .

If an alternative file name was used:

docker image build -f mybuildfile.txt -t myimage .

142 Craig Buckler, @craigbuckler

Docker for Web Developers DockerWebDev.com, v1.2.0

10.6 Tag an image

docker tag <image_name> [user/repository:tag]

Example: tag the helloworld image with latest in the Docker Hub helloworld repository
owned by myname:

docker tag nodeworld myname/helloworld:latest

10.7 Push tagged images to Docker Hub

docker push [user/repository]

Example:

docker push myname/helloworld

10.8 Launch a container from an image

Start running an image as a container instance:

docker run [options] <image> [command] [args...]
docker container run [options] <image> [command] [args...]

Launch a container named mysql (--name) from the latest mysql image in interactive mode
(-it shows a terminal log), that exposes port 3306 to the host (-p), stores data in a Docker
volume named mysqldata (--mount), sets the root user password to mysecret (-e
environment variable), and deletes the container once it has stopped (-rm):

Craig Buckler, @craigbuckler 143

DockerWebDev.com, v1.2.0 Docker for Web Developers

docker run \
-it --rm --name mysql \
-p 3306:3306 \
--mount "src=mysqldata,target=/var/lib/mysql" \
-e MYSQL_ROOT_PASSWORD=mysecret \
mysql

Useful options include:

option description

-d run a container as a background process
(which exits when the application ends)

-it keep a container running in the foreground
(even a�er the application ends), and show
an activity log

--rm remove the container a�er it stops

--name name a container (a random GUID is used
otherwise)

-p map a host port to a container port

--mount create a persistent Docker-managed volume
to retain data. The string specifies a src
volume name and a target where it is
mounted in the container’s file system

-v mount a host folder using the notation
<hostdir>:<containerdir>

-e define an environment variable

--env-file read environment variables from a file where
each line defines a VAR=value

--net connect to specific Docker network

--entrypoint overrides the default starting application

144 Craig Buckler, @craigbuckler

Docker for Web Developers DockerWebDev.com, v1.2.0

10.9 List containers

Active containers can be viewed with:

docker container ls
docker ps

Also view stopped containers which have not been removed:

docker container ls -a

10.10 Run a command in a container

docker exec -it <container_id_or_name> [command] [args...]

Example: list files in the root directory of the container named mysql:

docker exec -it mysql sh -c "ls /"

10.11 Attach to a container shell

To access a container shell to issue commands and examine files:

docker exec -it mysql bash

sh may be necessary in lightweight containers without bash.

Enter exit to quit the shell.

10.12 Restart a container

docker container restart <container_id_or_name>

Craig Buckler, @craigbuckler 145

DockerWebDev.com, v1.2.0 Docker for Web Developers

10.13 Pause a container

docker container pause <container_id_or_name>

10.14 Unpause (resume) a container

docker container unpause <container_id_or_name>

10.15 View container metrics

View the CPU, memory usage, and network activity of all containers:

docker stats

Specific containers can be examined by adding one or more IDs/names to the command.

10.16 Increase container resources

Container resources are limited by Docker, typically to:

• 2 CPUs
• 2GB RAM
• 512MB swap space (virtual RAM)

Resources can be increased if necessary using docker run options such as:

option description

--cpus CPUs, e.g. --cpus="4". Zero sets no limit,
and fractions can also be used, e.g. "2.5"

146 Craig Buckler, @craigbuckler

https://docs.docker.com/config/containers/resource_constraints/

Docker for Web Developers DockerWebDev.com, v1.2.0

option description

--memory RAM, e.g --memory="4g" (4GB). A minimum
of 4m (4 MB) is permitted

--memory-swap swap space, e.g. --memory-swap="1g"

However, horizontally scaling your application using multiple containers could be a better
option.

10.17 Stop a container

When a container is running in interactive mode (-it), press Ctrl|Cmd + C to stop it. If that
fails, or the container is running in the background, use:

docker container stop <container_id_or_name>

To stop the mysql container:

docker container stop mysql

10.18 Remove stopped containers

docker container rm <container_id_or_name>

or remove all stopped containers:

docker container prune

Craig Buckler, @craigbuckler 147

DockerWebDev.com, v1.2.0 Docker for Web Developers

10.19 View Docker volumes

Volumes are Docker-managed disks mounted into a container (using --mount) to provide
persistent storage between restarts. List created volumes:

docker volume ls

10.20 Delete a volume

docker volume rm <volume_name>

Example:

docker volume rm mysqldata

Or remove all unused volumes not currently attached to a running container:

docker volume prune

10.21 Bind mount a host directory

A directory on the host can be mounted into a container using -v hostdir:containerdir.
For example, mount the current directory’s code sub-directory into the container’s /home/app
directory:

-v $PWD/code:/home/app

$PWD references the current directory on Linux and macOS. It is not available on Windows so the
full path must be specified using forward-slash notation, e.g.

-v /c/project/code:/home/app

148 Craig Buckler, @craigbuckler

Docker for Web Developers DockerWebDev.com, v1.2.0

10.22 Define a Docker network

Using a Docker network allows containers to communicate with each other using their container
name (--name) rather than an IP address.

Create a network:

docker network create --driver bridge <network_name>

Example named mynet:

docker network create --driver bridge mynet

Attach the container to that network in docker run with --net mynet.

10.23 View networks

docker network ls

10.24 Delete a network

docker network rm <network_id_or_name>

Remove all unused networks not currently being used by a running container:

docker volume prune

10.25 View system disk usage

docker system df

Craig Buckler, @craigbuckler 149

DockerWebDev.com, v1.2.0 Docker for Web Developers

10.26 Full clean start

Delete every unused container, image, volume, and network:

docker system prune -a --volumes

Add -f to force the wipe without a confirmation prompt.

150 Craig Buckler, @craigbuckler

11 Appendix B: Dockerfile reference

A Dockerfile is a plain-text file describing the steps to build an image, typically for your own
application. To build a Docker image from a Dockerfile in the current directory, enter:

docker image build -t <image_name> .

The period at the end of the command references the current directory. Append -f <file> to
use an alternative path or file name.

The syntax is described in the Dockerfile reference, but the commands below will be used
most o�en.

11.1 # comment

Lines beginning with a hash # denote a comment:

my comment

11.2 ARG arguments

Variables can be passed at build time with the --builg-arg <name>=<value> option. The
value is imported with an ARG statement:

get myvar
ARG myvar

151

https://docs.docker.com/engine/reference/builder/

DockerWebDev.com, v1.2.0 Docker for Web Developers

A default value can be defined when none is passed:

get myvar, with default of "myimage"
ARG myvar=myimage

Use its value elsewhere by prepending a $ symbol:

RUN echo $myvar

Where the value must be set in part of a string, a ${name} substitution can be defined:

FROM ${myvar}:latest

11.3 ENV environment variables

Set an environment variable:

ENV HOME=/home/app

Use its value elsewhere by prepending a $ symbol or ${} container:

RUN echo $HOME
RUN echo ${HOME}

11.4 FROM <image> starting image

Create a new image using an existing image as a starting point. This will usually be the first
command in a Dockerfile:

latest Node LTS on Alpine Linux
FROM node:lts-alpine

152 Craig Buckler, @craigbuckler

Docker for Web Developers DockerWebDev.com, v1.2.0

11.5 WORKDIR working directory

Set the working directory for any following COPY, ADD, RUN, CMD and ENTRYPOINT
instructions:

WORKDIR /home/myapp

11.6 COPY files from the host to image

Using file patterns:

copy all files to current folder
COPY . .

copy all txt files to /doc/ folder
COPY *.txt /doc/

copy all files and assign ownership to a user and group
(Linux containers only)
COPY --chown=myuser:mygroup . .

11.7 ADD files

ADD is similar to COPY but also supports using URLs and tar files as the source. This may be
useful, although using a RUN with chained curl and tar commands will create a smaller Docker
image with fewer layers.

11.8 Mount a VOLUME

Create a mount point which can be accessed by other containers:

RUN mkdir -p /data/myvol
VOLUME /data/myvol

Craig Buckler, @craigbuckler 153

DockerWebDev.com, v1.2.0 Docker for Web Developers

Multiple volumes can be specified:

VOLUME /myvol1 /myvol2 /myvol3

Example use: client-side HTML, CSS, JavaScript, and media files could be built in a static folder
on a Node.js container. The files can be served directly by an NGINX web server running in
another container.

11.9 Set a USER

Define the user (and optionally a group) to use for any following RUN, CMD and ENTRYPOINT
instructions:

USER myuser

11.10 RUN a command

RUN issues instructions during the build, such as installation or configuration commands. Any
number are permitted in the Dockerfile.

Execute commands using shell form:

RUN npm install

or exec (array) form which runs an executable directly:

RUN ["npm", "install"]

11.11 EXPOSE a port

Informs Docker that the container will listen on a specified network port. Note that the exposed
port must be published with -p when using docker run:

154 Craig Buckler, @craigbuckler

Docker for Web Developers DockerWebDev.com, v1.2.0

EXPOSE 3000

11.12 CMD execute container

CMD sets a default application start instruction if none is specified when launching the container
with docker run. Only one is permitted in the Dockerfile, so only the last is processed.

Commands can be executed using shell form:

CMD node ./index.js

or exec (array) form – the recommended option – to directly run the executable:

CMD ["node", "/index.js"]

In general, use CMD to provide a default command that can be overridden on the command line
when the container is launched.

11.13 ENTRYPOINT execute container

ENTRYPOINT sets a start instruction when building an executable Docker image. The application
will run when the container is launched. Only one is permitted in the Dockerfile and it
overrides any CMD instructions.

Commands can be executed using shell form:

ENTRYPOINT node ./index.js

or exec (array) form – the recommended option – to directly run the executable:

ENTRYPOINT ["node", "/index.js"]

Craig Buckler, @craigbuckler 155

DockerWebDev.com, v1.2.0 Docker for Web Developers

11.14 .dockerignore file patterns

Specifies filename patterns to omit when using COPY and ADD. Example content:

Dockerfile
docker*.yml

.git

.gitignore

.config

.npm

.vscode
node_modules

README.md

156 Craig Buckler, @craigbuckler

12 Appendix C: Docker Compose reference

Docker Compose is a utility for launching and managing multiple containers. It is more powerful
and easier than using a series of docker run commands.

The configuration is usually defined in a docker-compose.yml (YAML) file. The Docker
Compose reference provides full documentation, but the commands below will be used most
o�en.

12.1 Docker Compose CLI

Docker Compose commands can be used in the same directory as your docker-compose.yml
configuration file. The most-used include. . .

Launch all containers:

docker-compose up

Images can be rebuilt with docker-compose up --build or using docker-compose build
first.

Specify an alternative directory and/or filename:

docker-compose -f ./my-config.yml up

-f is necessary in the commands below if you are runningdocker-compose from a directory
other than where the configuration YML file is stored.

157

https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/compose/reference/overview/

DockerWebDev.com, v1.2.0 Docker for Web Developers

Start as a background service:

docker-compose up -d

View active containers:

docker-compose ps

View container logs:

docker-compose logs

Pause running containers with:

docker-compose pause

then resume with:

docker-compose unpause

Restart all stopped and running containers:

docker-compose restart

Stop containers without removing them:

docker-compose stop

Start stopped containers:

docker-compose start

Remove stopped containers:

docker-compose rm

Stop and remove running containers, images, volumes, and networks:

docker-compose down

158 Craig Buckler, @craigbuckler

Docker for Web Developers DockerWebDev.com, v1.2.0

12.2 docker-compose.yml outline

YML is a standard data format using new lines, tabs, colons, and dashes to indicate sections and
data.

All configuration files must specify:

1. Docker Compose version compatibility
2. the services (containers) to launch
3. networks (if used), and
4. volumes (if used).

version: '3'

services:

container
mycontainer:

...definition...

networks:

volumes:

The following sections describe common settings to configure service containers for Docker
Compose v3 and above.

12.3 Starting image

Specify a starting repository image, e.g. for the latest MySQL:

mycontainer:
image: mysql

Craig Buckler, @craigbuckler 159

DockerWebDev.com, v1.2.0 Docker for Web Developers

12.4 build an image from a Dockerfile

A new image can be built by specifying the relative path context, the name of the dockerfile
in that location, and any associated build args passed to Dockerfile ARG instructions:

mycontainer:
build:
context: ./
dockerfile: Dockerfile
args:

- arg1=val1
- arg2=val2
- arg3=val3

12.5 Set the container_name

Set the container name. This can be used for inter-container communications across the same
Docker network:

mycontainer:
container_name: mycontainer

12.6 Container depends_on another

Express a dependency between services to ensure one or more other containers have started
before launching this one:

mycontainer:
depends_on:
- containerA
- containerB

12.7 Set environment variables

Define any number of individual environment variables:

160 Craig Buckler, @craigbuckler

Docker for Web Developers DockerWebDev.com, v1.2.0

mycontainer:
environment:
- MYVAR1=value1
- MYVAR2=value2
- MYVAR3=value3

12.8 Set environment variables from a env_file

Sets of environment variables can be defined in a .env file, e.g.

example values
MYVAR1=value1
MYVAR2=value2
MYVAR3=value3

All values can be imported using env_file::

mycontainer:
env_file: .env

Multiple files can also be specified:

mycontainer:
env_file:
- ./one.env
- ./two.env
- ./three.env

12.9 Attach to Docker networks

Join one or more Docker networks (created on first use):

mycontainer:
networks:
- mynetwork

Craig Buckler, @craigbuckler 161

DockerWebDev.com, v1.2.0 Docker for Web Developers

It is also possible to set aliases (alternative hostnames) and IP addresses for the container on the
network:

mycontainer:
networks:
mynetwork:

aliases:
- myname1
- myname2

ipv4_address: 172.16.238.20
ipv6_address: 2001:3984:3989::20

The networks (and optional configurations) must be referenced a�er the services: definition
at the bottom of docker-compose.yml:

networks:
mynetwork:

12.10 Attach persistent Docker volumes

Mount a Docker volume (created on first use) or bind a host directory:

mycontainer:
volumes:

Docker volume
- type: volume

source: rootfiles
target: /var/www/html

bind host directory
- type: bind

source: ./myfiles
target: /var/www/html/myfiles

A shorter syntax can also be used which defines <source>:<destination>. The <source> is
presumed to be Docker volume unless it starts with . or .. relative file paths.

162 Craig Buckler, @craigbuckler

Docker for Web Developers DockerWebDev.com, v1.2.0

mycontainer:

idential to above
volumes:
- rootfiles:/var/www/html
- ./myfiles:/var/www/html/myfiles

Docker volumes (and optional configurations) must be referenced a�er the services:
definition at the bottom of docker-compose.yml:

volumes:
rootfiles:

12.11 Set a custom dns server

Define one or more DNS servers:

mycontainer:
dns:
- 1.1.1.1
- 8.8.8.8

12.12 expose ports

Ports can be exposed to the host using “host:container” notation:

mycontainer:
expose:
- "3000:3000"

Using a single container value, such as "3000", only exposes the port to other containers on the
same Docker network.

Craig Buckler, @craigbuckler 163

DockerWebDev.com, v1.2.0 Docker for Web Developers

12.13 Define external_links to other containers

Containers started outside the current docker-compose.yml file can be referenced assuming
they are on the same Docker network:

mycontainer:
external_links:
- mysql

12.14 Override the default command

Override the Dockerfile CMD command using shell or exec (array) forms:

mycontainer:
command: node ./test.js
or ["node", "./test.js"]

12.15 Override the default entrypoint

Override the Dockerfile ENTRYPOINT command using shell or exec (array) forms:

mycontainer:
entrypoint: node ./test.js
or ["node", "./test.js"]

12.16 Specify a restart policy

Restart policies include:

• no: never restart the container (the default)
• always: always restart the container when it stops
• on-failure: restart the container when it fails with an exit code

mycontainer:
restart: on-failure

164 Craig Buckler, @craigbuckler

Docker for Web Developers DockerWebDev.com, v1.2.0

12.17 Run a healthcheck

Configure a check that is run periodically to check a container is alive and responding:

mycontainer:
healthcheck:
test: ["CMD", "curl", "-f", "http://localhost:3000/test"]
interval: 1m00s
timeout: 10s
retries: 3

12.18 Define a logging service

A log can be output using the driver of "json-file", "syslog", or "none":

mycontainer:
logging:
driver: syslog
options:

syslog-address: "tcp://192.168.1.100:1234"

Craig Buckler, @craigbuckler 165

DockerWebDev.com, v1.2.0 Docker for Web Developers

166 Craig Buckler, @craigbuckler

13 Appendix D: quiz project

The example quiz project creates a browser-based general knowledge application using Docker
containers:

Figure 13.1: quiz application screen

It’s intentionally simple and it’s easy to cheat if you know a little about browser DevTools!
However, similar Docker concepts will apply to most web applications.

The files created in this chapter are contained in the quiz directory of the example code
repository provided at https://github.com/craigbuckler/docker-web. Refer to README.md
for quick start instructions.

167

https://github.com/craigbuckler/docker-web/tree/master/quiz
https://github.com/craigbuckler/docker-web
https://github.com/craigbuckler/docker-web/blob/master/quiz/README.md

DockerWebDev.com, v1.2.0 Docker for Web Developers

13.1 Project overview

Three containers are connected to a quiznet Docker network:

Figure 13.2: quiz application screen

13.1.1 MongoDB database (mongodb container)

This uses a Docker volume (quizdata) for question storage and exposes the database on port
27017.

A collection named quiz is created in the quiz database which is accessed with the user ID
quizuser and password quizpass.

168 Craig Buckler, @craigbuckler

Docker for Web Developers DockerWebDev.com, v1.2.0

13.1.2 Node.js application (nodejs container)

The Node.js container has two functions:

1. index.js launches an Express.js application exposed on port 8000 which:

• fetches questions and answers from the Open Trivia Database API on start-up. These
are formatted and stored in the MongoDB database.

• provides a single /question endpoint. This queries the database and returns details
of the next question as JSON-encoded data.

During development, any changes to the Node.js files trigger an application restart using
Nodemon.

2. Client-side HTML, CSS, and JavaScript implement the application logic to fetch questions
and keep score. Source code contained in the src directory is built using npm scripts
which run pug, PostCSS, and Rollup.js. The resulting files are output to a static directory
(a shared Docker volume).

In production, this processing occurs when the Docker image is built. During development,
changes to src files in the host’s project directory trigger a static file re-build and source
maps are appended.

13.1.3 NGINX reverse proxy (nginx container)

An NGINX web server container serves files from the shared static volume. This is more
e�icient than serving via Express.js.

Other HTTP requests (such as the /question endpoint) are forwarded to the nodejs container.
NGINX acts as a reverse proxy.

Craig Buckler, @craigbuckler 169

https://opentdb.com/
https://nodemon.io/
https://pugjs.org/
https://postcss.org/
https://rollupjs.org/

DockerWebDev.com, v1.2.0 Docker for Web Developers

13.2 Launch in development mode

Launch the quiz in development mode with auto-building, source maps, and application restarts
using the docker-compose.yml configuration in the ./quiz project root:

cd quiz
docker-compose up

Access the application via NGINX at http://localhost:8080/

Additionally, you can access:

• the Node.js application directly at http://localhost:8000/
• the Node.js debugger at http://localhost:9229/
• the quiz database using a MongoDB client by connecting to http://localhost:27017/ with

the user ID quizuser and password quizpass.

Free MongoDB client applications include Compass, Robo 3T, and Mongoku (also available
as a Docker image).

Alternatively, access the container shell: docker exec -it mongodb sh

and launch the MongoDB CLI: mongo -u quizuser -p quizpass

Then issue queries and commands, e.g.

use quiz;
show collections;
db.quiz.find({}, { _id:0, question:1 });

170 Craig Buckler, @craigbuckler

http://localhost:8080/
http://localhost:8000/
http://localhost:9229/
http://localhost:27017/
https://www.mongodb.com/products/compass
https://robomongo.org/
https://github.com/huggingface/Mongoku
https://hub.docker.com/r/huggingface/mongoku

Docker for Web Developers DockerWebDev.com, v1.2.0

13.3 Launch in production mode

Each Dockerfile builds a production image. These can be launched without modification
using the docker-compose-production.yml configuration in the ./quiz project root:

cd quiz
docker-compose -f ./docker-compose-production.yml up

Append -d to run the quiz as a background process.

Access the application via NGINX at http://localhost:8080/

Direct access to other containers is not permitted.

The default HTTP port 80 can be set at line 54 of docker-compose-production.yml.
However, the container will fail to start if you have other applications using that port, such
as another web server or Skype.

13.4 Clean up

To stop the quiz application, press Ctrl|Cmd + C or enter docker-compose down in another
terminal (cd to the same directory).

The application’s Docker containers, images, volumes, and networks can be removed with:

docker-compose rm
docker volume prune -f
docker image rm quiz_nodejs quiz_nginx

Alternatively, you can wipe all Docker data including base images:

docker system prune -af --volumes

Craig Buckler, @craigbuckler 171

http://localhost:8080/

DockerWebDev.com, v1.2.0 Docker for Web Developers

13.5 Project file structure

The project root directory contains:

file description

README.md technical information

docker-compose.yml Docker Compose development mode
configuration

docker-compose-production.yml Docker Compose production mode
configuration

The nginx sub-directory contains:

file description

nginx.Dockerfile the Dockerfile used to build the nginx
Docker image

nginx.conf the NGINX configuration file copied to the
Docker image

The nodejs sub-directory contains:

file description

nodejs.Dockerfile the Dockerfile used to build the nodejs
Docker image

.dockerignore paths to omit when copying files to the
nodejs Docker image

package.json application dependencies and npm build
scripts

172 Craig Buckler, @craigbuckler

Docker for Web Developers DockerWebDev.com, v1.2.0

file description

.env environment variables for database access

index.js the main Express.js application

lib/* custom modules used by the Express.js
application

src/* client-side HTML, CSS, and JavaScript source
files

nodemon.json Nodemon configuration for Express.js
restarts

postcss.config.js PostCSS configuration for processing CSS
src files

rollup.config.js Rollup.js configuration for processing
JavaScript src files

13.6 nodejs Docker image

The nodejs.Dockerfile creates a production Docker image which:

1. uses the tiny Node 14 Alpine Docker Hub image as a base
2. sets environment variables, including NODE_ENV=production
3. creates a working directory (/home/node/app) and grants access to the node user
4. copies package.json and installs modules
5. copies the remaining application files
6. runs the build script. This creates a static directory for client-side files which is mounted

as a Docker volume and shared with other containers
7. exposes port 8000, and
8. runs the Express.js application (index.js).

Craig Buckler, @craigbuckler 173

https://nodemon.io/
https://postcss.org/
https://rollupjs.org/
https://hub.docker.com/_/node

DockerWebDev.com, v1.2.0 Docker for Web Developers

base Node.js v14 image
FROM node:14-alpine

environment variables
ENV NODE_ENV=production
ENV NODE_PORT=8000
ENV HOME=/home/node/app
ENV PATH=${PATH}:${HOME}/node_modules/.bin

create application folder and assign rights to the node user
RUN mkdir -p $HOME && chown -R node:node $HOME

set the working directory
WORKDIR $HOME

set the active user
USER node

copy package.json from the host
COPY --chown=node:node package*.json $HOME/

install application modules
RUN npm install

copy remaining files and build
COPY --chown=node:node . .
RUN npm run build

share volume
VOLUME ${HOME}/static

expose port on the host
EXPOSE $NODE_PORT

application launch command
CMD ["node", "./index.js"]

174 Craig Buckler, @craigbuckler

Docker for Web Developers DockerWebDev.com, v1.2.0

docker-compose.yml overrides some nodejs.Dockerfile settings when running in
development mode:

1. NODE_ENV is set to development
2. the project’s nodejs sub-directory on the host is mounted to the container’s

/home/node/app directory so file changes can be monitored
3. port 9229 is also exposed so a Node.js debugger can be attached.
4. the application is launched by installing dependencies and running npm run debug.

nodejs:
environment:
- NODE_ENV=development

build:
context: ./nodejs
dockerfile: nodejs.Dockerfile

container_name: nodejs
depends_on:
- mongodb

volumes:
- ./nodejs:/home/node/app
- nodejsfiles:/home/node/app/static
- nodejsfiles:/home/node/app/.config
- nodejsfiles:/home/node/app/.npm
- nodejsfiles:/home/node/app/node_modules

networks:
- quiznet

ports:
- "8000:8000"
- "9229:9229"

command: /bin/sh -c 'npm i && npm run debug'

Node.js modules and npm data would normally be installed in the nodejs project directory
on the host. Unfortunately, this can be slow on Windows file systems and you may encounter
permission issues on macOS or Linux when attempting to write data to the static directory.

AnodejsfileDocker volume is mounted to persistently store generated files. This improves
reliability and the initial start-up speed.

Craig Buckler, @craigbuckler 175

DockerWebDev.com, v1.2.0 Docker for Web Developers

docker-compose-production.yml retains the production nodejs.Dockerfile
configuration. Port 8000 is only exposed within the Docker network and the container will
restarts when it fails:

nodejs:
build:
context: ./nodejs
dockerfile: nodejs.Dockerfile

container_name: nodejs
depends_on:
- mongodb

networks:
- quiznet

ports:
- "8000"

restart: on-failure

176 Craig Buckler, @craigbuckler

Docker for Web Developers DockerWebDev.com, v1.2.0

13.7 nginx Docker image

The nginx.Dockerfile creates a production Docker image which:

1. uses the tiny stable Alpine Docker Hub image as a base
2. copies the nginx.conf configuration file, and
3. exposes the default HTTP port 80.

FROM nginx:stable-alpine

COPY nginx.conf /etc/nginx/nginx.conf

EXPOSE 80

Craig Buckler, @craigbuckler 177

https://hub.docker.com/_/nginx

DockerWebDev.com, v1.2.0 Docker for Web Developers

nginx.conf sets NGINX to listen for requests on port 80. When a URL is received, it attempts to
locate a suitable file in the /home/node/app/static/ shared Docker volume defined by the
nodejs container. If nothing suitable is found, the request is forwarded to
http://nodejs:8000 to be processed by the Express.js application:

HTTP requests
server {

listen 80;
listen [::]:80;

server_name localhost; # domain

is a static file?
location / {
root /home/node/app/static/;
index index.html;
try_files $uri $uri/ @nodejs;

}

reverse-proxy to Node.js app
location @nodejs {
proxy_pass http://nodejs:8000;
proxy_http_version 1.1;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection 'upgrade';
proxy_set_header Host $host;
proxy_cache_bypass $http_upgrade;

}

}

178 Craig Buckler, @craigbuckler

Docker for Web Developers DockerWebDev.com, v1.2.0

The Docker Compose configuration is similar in both production and development modes
(restart is only set in production):

nginx:
build:
context: ./nginx
dockerfile: nginx.Dockerfile

container_name: nginx
depends_on:
- nodejs

networks:
- quiznet

ports:
- "8080:80"

restart: on-failure
logging:
driver: "none"

Setting the logging driver to "none" disables terminal logging. NGINX access logs are less
useful during development.

Craig Buckler, @craigbuckler 179

DockerWebDev.com, v1.2.0 Docker for Web Developers

13.8 mongodb Docker image

The latest MongoDB image is used directly from Docker Hub. The Docker Compose configuration
is similar in both production and development modes:

mongodb:
environment:
- MONGO_INITDB_ROOT_USERNAME=quizuser
- MONGO_INITDB_ROOT_PASSWORD=quizpass

image: mongo:latest
container_name: mongodb
volumes:
- quizdata:/data/db

networks:
- quiznet

ports:
- "27017:27017"

logging:
driver: "none"

In production, port "27017" is only exposed within the Docker network and a
restart: on-failure setting is added.

Ideally, the user ID and password should be stronger! The ./nodejs/.env file would need
changing accordingly.

180 Craig Buckler, @craigbuckler

https://hub.docker.com/_/mongo

Docker for Web Developers DockerWebDev.com, v1.2.0

13.9 Node.js build process

Client-side files in the src directory are processed using npm scripts and output to a static
directory. This is shared as a Docker volume so NGINX can serve HTML, CSS, and JavaScript
requests without Express.js processing.

13.9.1 Production mode build

Production environment build scripts are defined in the package.json "scripts"
section:

"build:htm":
"pug -O ./src/html/data.json ./src/html/ -o ./static/",

"build:css":
"postcss src/css/main.css -o static/css/main.css --no-map",

"build:es6":
"rollup --config",

"build":
"npm run build:htm && npm run build:css && npm run build:es6",

"start":
"npm run build && node ./index.js"

npm run build is executed when the Docker image is built. This processes src files using pug,
PostCSS, and Rollup.js to create optimised HTML, CSS, and JavaScript files in the static
directory.

Craig Buckler, @craigbuckler 181

https://pugjs.org/
https://postcss.org/
https://rollupjs.org/

DockerWebDev.com, v1.2.0 Docker for Web Developers

13.9.2 Development mode watch and build

Development mode watch scripts are also defined in the package.json "scripts"
section:
"watch:htm":
"pug -O ./src/html/data.json ./src/html/ -o ./static/ --pretty -w",

"watch:css":
"postcss ./src/css/main.css -o ./static/css/main.css

--map --watch --poll --verbose",

"watch:es6":
"rollup --config --sourcemap inline --watch --no-watch.clearScreen",

"watch:app":
"nodemon --trace-warnings --inspect=0.0.0.0:9229 ./index.js",

"debug":
"concurrently 'npm:watch:*'",

pug, PostCSS, and Rollup.js watch options are used to monitor files and re-build when necessary.
Similarly, Nodemon watches for Node.js application file changes and restarts accordingly.

npm run debug is executed by Docker Compose. This launches Concurrently which executes
all npm watch:* scripts in parallel.

13.10 Node.js Express.js application

The primary index.js application uses dotenv to parse database settings in the .env file and
define environment variables:
// main application

'use strict';

// load environment
require('dotenv').config();

182 Craig Buckler, @craigbuckler

https://pugjs.org/
https://postcss.org/
https://rollupjs.org/
https://nodemon.io/
https://www.npmjs.com/package/concurrently
https://www.npmjs.com/package/dotenv

Docker for Web Developers DockerWebDev.com, v1.2.0

The ./lib/db.js module then initializes the database and exports a single getQuestion()
function:

const
// initialize database
quizDB = require('./lib/db'),

Express.js is initialized with middleware functions to set the static directory, permit access
from other domains using CORS, and ensure requests are never cached:

// default HTTP port
port = process.env.NODE_PORT || 8000,

// express
express = require('express'),
app = express();

// static files
app.use(express.static('./static'));

// header middleware
app.use((req, res, next) => {

res.set({
'Access-Control-Allow-Origin': '*',
'Cache-Control': 'must-revalidate, max-age=0'

});
next();

});

It should not be necessary to set the express.static directory because NGINX will serve
the files directly. However, you may need to connect to the Node.js application directly at
http://localhost:8000/ or http://localhost:9229/ when debugging.

You could also consider running the command in development mode by adding the condition:

if (process.env.NODE_ENV !== 'production')

Craig Buckler, @craigbuckler 183

https://developer.mozilla.org/Web/HTTP/CORS
http://localhost:8000/
http://localhost:9229/

DockerWebDev.com, v1.2.0 Docker for Web Developers

A single GET /question endpoint is defined which returns the next question in JSON format by
calling getQuestion() in the ./lib/db.js module:

// route: fetch a question
app.get('/question', async (req, res) => {

const q = await quizDB.getQuestion();

if (q) res.json(q);
else res.status(500).send('service unavailable');

});

Finally, Express.js is launched on port 8000:

// start HTTP server
app.listen(port, () =>
console.log(`page hit web service running on port ${port}`)

);

13.10.1 /lib/db.jsmodule

The db.js module defines several constants to control how many questions are required and
fetched from the Open Trivia Database API:

'use strict';

const

maxQuestions = 300,
maxApiFetch = 50,
maxApiCalls = 10,

A connection to the MongoDB database is made using the credentials supplied in the .env file:

184 Craig Buckler, @craigbuckler

https://opentdb.com/

Docker for Web Developers DockerWebDev.com, v1.2.0

// MongoDB connect
mongo = require('mongodb'),

client = new mongo.MongoClient(
`mongodb://${ process.env.MONGO_USERNAME }` +
`:${ process.env.MONGO_PASSWORD }` +
`@${ process.env.MONGO_HOST }:${ process.env.MONGO_PORT }/`,
{ useNewUrlParser: true, useUnifiedTopology: true }

);

The quiz collection in the quiz database is referenced:

// database connection objects
let db, quiz;

// connect to MongoDB database
(async () => {

try {

await client.connect();
db = client.db(process.env.MONGO_DB);

// quiz collection
quiz = db.collection('quiz');

The init() function is called which returns the number of questions available in the
database:

// initialize
if (!await init()) {
throw 'no questions in database';

}

}
catch (err) {

console.log('database error', err);
}

})();

Craig Buckler, @craigbuckler 185

DockerWebDev.com, v1.2.0 Docker for Web Developers

13.10.2 ./lib/db.js init() function

init() fetches the current number of questions in the quiz collection and returns immediately
when that is equal or greater to the maxQuestions constant (300).

// initialize database
async function init() {

// question count
let qCount = await quiz.countDocuments();
if (qCount >= maxQuestions) return qCount;

Indexes are added to the quiz collection when it is empty:

console.log('initializing quiz database...');

// create indexes
if (!qCount) {

await quiz.createIndexes([
{ key: { category: 1 }},
{ key: { question: 1 } },
{ key: { used: 1 } }

]);

}

Random questions from the Open Trivia Database API are retrieved using one or more
concurrent HTTP node_fetch calls.

The question and answer data is converted from JSON, cleaned, and appended to a new object
(newQ):

186 Craig Buckler, @craigbuckler

https://opentdb.com/
https://www.npmjs.com/package/node-fetch

Docker for Web Developers DockerWebDev.com, v1.2.0

const
fetch = require('node-fetch'),
lib = require('./lib'),
batch = quiz.initializeUnorderedBulkOp(),

maxReq = Math.min(maxApiFetch, maxQuestions - qCount),
quizApi =

`https://opentdb.com/api.php?type=multiple&amount=${ maxReq }`;

(await Promise.allSettled(
// make multiple API calls
Array(Math.min(

maxApiCalls,
Math.ceil((maxQuestions - qCount) / maxReq)

))
.fill(quizApi)
.map((u, i) => fetch(`${u}#${i}`))

)
.then(
// parse JSON
response => Promise.allSettled(

response.map(res => res.value && res.value.json())
)

)
.then(
// extract questions
json => json.map(j => j && j.value && j.value.results || [])

))
.flat().forEach(q => {
// format each question
let

correct = lib.cleanString(q.correct_answer),
newQ = {

category: lib.cleanString(q.category),
question: lib.cleanString(q.question),
answers: q.incorrect_answers

.map(i => lib.cleanString(i))

.concat(correct).sort()
};

newQ.correct = newQ.answers.indexOf(correct);

Craig Buckler, @craigbuckler 187

DockerWebDev.com, v1.2.0 Docker for Web Developers

Note that lib.cleanString() is defined in ./lib/lib.js. It removes unnecessary
whitespace and converts & characters to HTML & entities.

newQ is inserted into the database using a bulk operation. A new document will be created if the
question has not been added before:

// database insert
batch

.find({ question: q.question })

.upsert()

.update({ $set: newQ });

});

The database is updated and the total of new and existing questions is returned:

// update database
const

dbUpdate = await batch.execute(),
qAdded = dbUpdate.result.nUpserted;

qCount += qAdded;

console.log(`${ qAdded } questions added`);
console.log(`${ qCount } questions available`);

return qCount;

}

13.10.3 ./lib/db.js getQuestion() function

getQuestion() is exported for use by calling modules.

The MongoDB quiz collection is ordered by each document’s used value in ascending order so
the first least-used question can be returned. That document has its used value incremented:

188 Craig Buckler, @craigbuckler

Docker for Web Developers DockerWebDev.com, v1.2.0

// get next question
module.exports.getQuestion = async () => {

const
nextQ = await quiz.findOneAndUpdate(
{},
{ $inc: { used: 1 }},
{

sort: { used: 1 },
projection:

{ _id: 0, category: 1, question: 1, answers: 1, correct: 1 }
}

);

return (nextQ && nextQ.ok && nextQ.value) || null;

};

13.11 Client-side files

The quiz functionality is implemented in the client-side HTML, CSS, and JavaScript. Files
contained in the src directory are built to the static directory.

13.11.1 HTML page

./static/index.html is generated from the ./src/html/index.pug template and data
defined in ./src/html/data.json. The score, category, question, and four answer buttons
are output. The file is minified in production mode.

13.11.2 CSS styles

./static/css/main.css is generated from ./src/css/main.css. All @import references
are merged into a single minified file. An inline source map is added in development mode.

Craig Buckler, @craigbuckler 189

DockerWebDev.com, v1.2.0 Docker for Web Developers

13.11.3 JavaScript functionality

./static/js/main.js is generated from ./src/js/main.js. This contains vanilla
ES6/2015 code which is minified and used directly as a <script type="module"> (this will
work in all modern browsers but not Internet Explorer). An inline source map is added in
development mode.

The code defines the question API URL:

// question API URL
const questionAPI = '/question';

and a state object which fetches the associated DOM node and sets an initial zero value:

// initialize state
const state = {};

'answered,right,wrong,category,question,a0,a1,a2,a3'
.split(',')
.forEach(prop => {

state[prop] = {
node: document.getElementById(prop),
value: 0

};
});

An event handler listens for clicks on the #answers element which contains all the answer
buttons:

// answer event handler
document
.getElementById('answers')
.addEventListener('click', answerHandler, false);

The first question is then fetched:

// start first question
(async () => await newQuestion())();

190 Craig Buckler, @craigbuckler

Docker for Web Developers DockerWebDev.com, v1.2.0

The newQuestion() function fetches the next question, updates the state object, renders those
items to DOM content, and stores the ID of the correct answer:

// new question
async function newQuestion() {

const question = await fetchQuestion();

// populate state
for (const prop in question) {

if (state[prop] && state[prop].node) {
state[prop].value = question[prop];

}
}

// render question
for (const prop in state) {

if (state[prop].node) {
state[prop].node.innerHTML = state[prop].value;

}
}

// correct answer
state.correct = 'a' + question.correct;

}

The fetchQuestion() function uses the Fetch API to retrieve the next question from the
Node.js application. The 4-element answers array is converted to properties a0, a1, a2, and a3
to match the state object.

Craig Buckler, @craigbuckler 191

https://developer.mozilla.org/Web/API/Fetch_API

DockerWebDev.com, v1.2.0 Docker for Web Developers

// next question
async function fetchQuestion() {

const
call = await fetch(questionAPI),
q = await call.json();

q.answers.forEach((a, i) => { q['a'+i] = a; });
delete q.answers;

return q;

}

The answerHandler() function activates when an element within the #answers element is
clicked. The function exits if an answer has already been received (state.done is true) or a
button was not clicked:

// answer clicked
function answerHandler(e) {

const clicked = e.target;
if (state.done || clicked.nodeName !== 'BUTTON') return;

state.done = true;

The ID of the correct answer button is determined, the number answered is incremented, and the
clicked button has its focus unset:

const correct = state[state.correct].node;

state.answered.value++;
clicked.blur();

CSS classes are added to indicate whether the answer was correct, highlight the right answer,
and update the state counters:

192 Craig Buckler, @craigbuckler

Docker for Web Developers DockerWebDev.com, v1.2.0

if (clicked === correct) {
state.right.value++;
clicked.classList.add('right');

}
else {

state.wrong.value++;
clicked.classList.add('wrong');
correct.classList.add('right', 'reveal');

}

A�er a three-second timeout, all the classes are reset and a new question is triggered. The game
continues forever until the user becomes bored!

setTimeout(async () => {

clicked.classList.remove('right', 'wrong');
correct.classList.remove('right', 'reveal');

await newQuestion();
state.done = false;

}, 3000);

}

Craig Buckler, @craigbuckler 193

DockerWebDev.com, v1.2.0 Docker for Web Developers

13.12 Key points

This quiz illustrates how to develop a complex multi-container web applications with build
systems. Consider creating an application using your favorite language, database, and
associated dependencies. For example:

1. the obligatory to-do app

2. a web-based notes system (bonus points for markdown support)

3. a recipe database containing ingredients, steps, and search – ideally based on ingredients
you have!

4. an online poll system to create and host simple surveys

5. a real-time chat app.

Consider how multiple Docker containers would permit horizontal scaling. People chatting
in the same room could be connected to di�erent containerized applications running on
di�erent servers. A backend redis, database, or queue system could broadcast messages to
other containers.

Best of luck!

194 Craig Buckler, @craigbuckler

https://daringfireball.net/projects/markdown/syntax
https://redis.io/

	Version history
	Preface
	Prerequisites
	Course website
	Book and/or videos?
	Example code
	Chat room
	Code conventions
	Further tips
	About me
	Copyright and distribution
	Introduction
	``It works on my machine, buddy''
	Virtual machining
	Docker delivers
	Nah, I'm still not convinced
	Isn't {insert-technology-here} where it's at?
	Key points

	What is Docker?
	Containers
	Images
	Volumes
	Networks
	Docker Compose
	Orchestration
	Docker client-server application
	Docker deployment strategies
	Simpler development and production
	When not to use Docker
	Docker alternatives
	Key points

	How to install Docker
	Install Docker on Linux
	Install Docker on macOS
	Install Docker on Windows
	Test your Docker installation
	Key points

	Launch a MySQL database with Docker
	Locate a suitable MySQL image on Docker Hub
	Launch a MySQL container
	Connect to the database using a MySQL client
	Connect to a container shell
	View, stop, and restart containers
	Define a Docker network
	Cleaning up
	Launch multiple containers with Docker Compose
	Key points

	WordPress development with Docker
	WordPress requirements
	Docker configuration plan
	Docker Compose configuration
	Launch your WordPress environment
	Install WordPress
	Local WordPress Development
	Key points

	Application development with Docker
	Container-based application development
	What is Node.js?
	Hello World application overview
	Docker configuration plan
	Dockerfiles
	Build an image
	Launch a production container from your image
	Launch a development environment with Docker Compose
	Live code editing
	Remote container debugging
	Create an image from a container
	Key points

	Push your Docker image to a Repository
	Why push an image to Docker Hub?
	Docker Hub alternatives
	Image names and tags
	Create a Docker Hub repository
	Log in locally
	Build an application image
	Tag an image
	Push to Docker Hub
	Distribute your image
	Key points

	Docker orchestration on production servers
	Dependency planning
	Application scaling
	Orchestration overview
	Docker Swarm
	Kubernetes
	Key points

	Your Docker journey
	Docker's future
	Further Docker help

	Appendix A: Docker command-line reference
	Log into Docker Hub
	Search Docker Hub
	Pull a Docker Hub image
	List Docker images
	Build an image from a Dockerfile
	Tag an image
	Push tagged images to Docker Hub
	Launch a container from an image
	List containers
	Run a command in a container
	Attach to a container shell
	Restart a container
	Pause a container
	Unpause (resume) a container
	View container metrics
	Increase container resources
	Stop a container
	Remove stopped containers
	View Docker volumes
	Delete a volume
	Bind mount a host directory
	Define a Docker network
	View networks
	Delete a network
	View system disk usage
	Full clean start

	Appendix B: Dockerfile reference
	# comment
	ARG arguments
	ENV environment variables
	FROM <image> starting image
	WORKDIR working directory
	COPY files from the host to image
	ADD files
	Mount a VOLUME
	Set a USER
	RUN a command
	EXPOSE a port
	CMD execute container
	ENTRYPOINT execute container
	.dockerignore file patterns

	Appendix C: Docker Compose reference
	Docker Compose CLI
	docker-compose.yml outline
	Starting image
	build an image from a Dockerfile
	Set the container_name
	Container depends_on another
	Set environment variables
	Set environment variables from a env_file
	Attach to Docker networks
	Attach persistent Docker volumes
	Set a custom dns server
	expose ports
	Define external_links to other containers
	Override the default command
	Override the default entrypoint
	Specify a restart policy
	Run a healthcheck
	Define a logging service

	Appendix D: quiz project
	Project overview
	Launch in development mode
	Launch in production mode
	Clean up
	Project file structure
	nodejs Docker image
	nginx Docker image
	mongodb Docker image
	Node.js build process
	Node.js Express.js application
	Client-side files
	Key points

