
Designing and deploying enterprise messaging queues

Building Data
Streaming Applications
with Apache Kafka

Manish Kumar, Chanchal Singh

Building Data Streaming
Applications with Apache Kafka

Manish Kumar
Chanchal Singh

BIRMINGHAM - MUMBAI

Building Data Streaming Applications with
Apache Kafka
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2017

Production reference: 1170817

ISBN 978-1-78728-398-5

Credits

Authors
Manish Kumar
Chanchal Singh

Copy Editor
Manisha Sinha

Reviewer
Anshul Joshi

Project Coordinator
Manthan Patel

Commissioning Editor
Amey Varangaonkar

Proofreader
Safis Editing

Acquisition Editor
Tushar Gupta

Indexer
Tejal Daruwale Soni

Content Development Editor
Tejas Limkar

Graphics
Tania Dutta

Technical Editor
Dinesh Chaudhary

Production Coordinator
Deepika Naik

About the Authors
Manish Kumar is a Technical Architect at DataMetica Solution Pvt. Ltd.. He has
approximately 11 years, experience in data management, working as a Data Architect and
Product Architect. He has extensive experience in building effective ETL pipelines,
implementing security over Hadoop, and providing the best possible solutions to Data
Science problems. Before joining the world of big data, he worked as an Tech Lead for Sears
Holding, India. He is a regular speaker on big data concepts such as Hadoop and Hadoop
Security in various events. Manish has a Bachelor's degree in Information Technology.

I would like to thank my parents, Dr. N.K. Singh and Mrs. Rambha Singh, for their
support and blessings, my wife; Mrs. Swati Singh, for her successfully keeping me healthy
and happy; and my adorable son, Master Lakshya Singh, for teaching me how to enjoy the
small things in life. I would like to extend my gratitude to Mr. Prashant Jaiswal, whose
mentorship and friendship will remain gems of my life, and Chanchal Singh, my esteemed
friend, for standing by me in times of trouble and happiness. This note will be incomplete if
I do not mention Mr. Anand Deshpande, Mr. Parashuram Bastawade, Mr. Niraj Kumar,
Mr. Rajiv Gupta, and Dr. Phil Shelley for giving me exciting career opportunities and
showing trust in me, no matter how adverse the situation was.

Chanchal Singh is a Software Engineer at DataMetica Solution Pvt. Ltd.. He has over three
years' experience in product development and architect design, working as a Product
Developer, Data Engineer, and Team Lead. He has a lot of experience with different
technologies such as Hadoop, Spark, Storm, Kafka, Hive, Pig, Flume, Java, Spring, and
many more. He believes in sharing knowledge and motivating others for innovation. He is
the co-organizer of the Big Data Meetup - Pune Chapter.

He has been recognized for putting innovative ideas into organizations. He has a Bachelor's
degree in Information Technology from the University of Mumbai and a Master's degree in
Computer Application from Amity University. He was also part of the Entrepreneur Cell in
IIT Mumbai.

I would like to thank my parents, Mr. Parasnath Singh and Mrs. Usha Singh, for
showering their blessings on me and their loving support. I am eternally grateful to my
love, Ms. Jyoti, for being with me in every situation and encouraging me. I would also like
to express my gratitude to all the mentors I've had over the years. Special thanks to Mr
Abhijeet Shingate who helped me as a mentor and guided me in the right direction during
the initial phase of my career. I am highly indebted to Mr. Manish Kumar, without whom
writing this book would have been challenging, for always enlightening me and sharing his
knowledge with me. I would like to extend my sincere thanks by mentioning a few great
personalities: Mr Rajiv Gupta, Mr. Niraj Kumar, Mr. Parashuram Bastawade, and
Dr.Phil Shelley for giving me ample opportunities to explore solutions for real customer
problems and believing in me.

About the Reviewer
Anshul Joshi is a Data Scientist with experience in recommendation systems, predictive
modeling, neural networks, and high performance computing. His research interests are
deep learning, artificial intelligence, computational physics, and biology.

Most of the time, he can be caught exploring GitHub or trying anything new that he can get
his hands on. He blogs on .

www.PacktPub.com
For support files and downloads related to your book, please visit .

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at; and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at for more details.

At , you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at .

If you'd like to join our team of regular reviewers, you can e-mail us at
. We award our regular reviewers with free eBooks and

videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

Table of Contents
Preface 1

Chapter 1: Introduction to Messaging Systems 7

Understanding the principles of messaging systems 8
Understanding messaging systems 9
Peeking into a point-to-point messaging system 12
Publish-subscribe messaging system 15
Advance Queuing Messaging Protocol 18
Using messaging systems in big data streaming applications 19
Summary 23

Chapter 2: Introducing Kafka the Distributed Messaging Platform 24

Kafka origins 25
Kafka's architecture 26
Message topics 28
Message partitions 30
Replication and replicated logs 33
Message producers 36
Message consumers 36
Role of Zookeeper 37
Summary 38

Chapter 3: Deep Dive into Kafka Producers 40

Kafka producer internals 41
Kafka Producer APIs 45

Producer object and ProducerRecord object 47
Custom partition 50
Additional producer configuration 51

Java Kafka producer example 53
Common messaging publishing patterns 55
Best practices 57
Summary 58

Chapter 4: Deep Dive into Kafka Consumers 60

Kafka consumer internals 61
Understanding the responsibilities of Kafka consumers 61

Kafka consumer APIs 64

[]

Consumer configuration 64
Subscription and polling 66
Committing and polling 67
Additional configuration 69

Java Kafka consumer 70
Scala Kafka consumer 72

Rebalance listeners 73
Common message consuming patterns 74
Best practices 77
Summary 78

Chapter 5: Building Spark Streaming Applications with Kafka 79

Introduction to Spark 80
Spark architecture 80

Pillars of Spark 82
The Spark ecosystem 84

Spark Streaming 86
Receiver-based integration 86

Disadvantages of receiver-based approach 88
Java example for receiver-based integration 89
Scala example for receiver-based integration 90

Direct approach 91
Java example for direct approach 93
Scala example for direct approach 94

Use case log processing - fraud IP detection 95
Maven 95

Producer 99
Property reader 99

Producer code 100
Fraud IP lookup 102
Expose hive table 103
Streaming code 104

Summary 106

Chapter 6: Building Storm Applications with Kafka 107

Introduction to Apache Storm 108
Storm cluster architecture 108
The concept of a Storm application 110

Introduction to Apache Heron 112
Heron architecture 112

Heron topology architecture 113
Integrating Apache Kafka with Apache Storm - Java 115

[]

Example 116
Integrating Apache Kafka with Apache Storm - Scala 120
Use case – log processing in Storm, Kafka, Hive 123

Producer 127
Producer code 128

Fraud IP lookup 130
Running the project 139

Summary 139

Chapter 7: Using Kafka with Confluent Platform 140

Introduction to Confluent Platform 140
Deep driving into Confluent architecture 142
Understanding Kafka Connect and Kafka Stream 146

Kafka Streams 146
Playing with Avro using Schema Registry 147
Moving Kafka data to HDFS 148

Camus 149
Running Camus 150

Gobblin 151
Gobblin architecture 151

Kafka Connect 154
Flume 154

Summary 157

Chapter 8: Building ETL Pipelines Using Kafka 158

Considerations for using Kafka in ETL pipelines 159
Introducing Kafka Connect 160
Deep dive into Kafka Connect 162
Introductory examples of using Kafka Connect 164
Kafka Connect common use cases 167
Summary 168

Chapter 9: Building Streaming Applications Using Kafka Streams 169

Introduction to Kafka Streams 170
Using Kafka in Stream processing 170
Kafka Stream - lightweight Stream processing library 171

Kafka Stream architecture 173
Integrated framework advantages 176
Understanding tables and Streams together 176

Maven dependency 177
Kafka Stream word count 177

[]

KTable 179
Use case example of Kafka Streams 180

Maven dependency of Kafka Streams 180
Property reader 181
IP record producer 182
IP lookup service 184
Fraud detection application 186

Summary 187

Chapter 10: Kafka Cluster Deployment 188

Kafka cluster internals 189
Role of Zookeeper 189
Replication 190
Metadata request processing 192
Producer request processing 193
Consumer request processing 193

Capacity planning 194
Capacity planning goals 195
Replication factor 195
Memory 195
Hard drives 196
Network 197
CPU 197

Single cluster deployment 197
Multicluster deployment 198
Decommissioning brokers 200
Data migration 201
Summary 202

Chapter 11: Using Kafka in Big Data Applications 203

Managing high volumes in Kafka 204
Appropriate hardware choices 204
Producer read and consumer write choices 206

Kafka message delivery semantics 207
At least once delivery 208
At most once delivery 211
Exactly once delivery 213

Big data and Kafka common usage patterns 214
Kafka and data governance 216
Alerting and monitoring 218

[]

Useful Kafka matrices 218
Producer matrices 219
Broker matrices 220
Consumer metrics 220

Summary 221

Chapter 12: Securing Kafka 222

An overview of securing Kafka 222
Wire encryption using SSL 223

Steps to enable SSL in Kafka 224
Configuring SSL for Kafka Broker 225
Configuring SSL for Kafka clients 225

Kerberos SASL for authentication 226
Steps to enable SASL/GSSAPI - in Kafka 228

Configuring SASL for Kafka broker 229
Configuring SASL for Kafka client - producer and consumer 230

Understanding ACL and authorization 231
Common ACL operations 232

List ACLs 233
Understanding Zookeeper authentication 234
Apache Ranger for authorization 235

Adding Kafka Service to Ranger 235
Adding policies 237

Best practices 239
Summary 240

Chapter 13: Streaming Application Design Considerations 241

Latency and throughput 242
Data and state persistence 243
Data sources 244
External data lookups 244
Data formats 245
Data serialization 246
Level of parallelism 246
Out-of-order events 247
Message processing semantics 247
Summary 248

Index 249

Preface
Apache Kafka is a popular distributed streaming platform that acts as a messaging queue or
an enterprise messaging system. It lets you publish and subscribe to a stream of records and
process them in a fault-tolerant way as they occur.

This book is a comprehensive guide to designing and architecting enterprise-grade
streaming applications using Apache Kafka and other big data tools. It includes best
practices for building such applications and tackles some common challenges such as how
to use Kafka efficiently to handle high data volumes with ease. This book first takes you
through understanding the type messaging system and then provides a thorough
introduction to Apache Kafka and its internal details. The second part of the book takes you
through designing streaming application using various frameworks and tools such as
Apache Spark, Apache Storm, and more. Once you grasp the basics, we will take you
through more advanced concepts in Apache Kafka such as capacity planning and security.

By the end of this book, you will have all the information you need to be comfortable with
using Apache Kafka and to design efficient streaming data applications with it.

What this book covers
, Introduction to Messaging System, introduces concepts of messaging systems. It

covers an overview of messaging systems and their enterprise needs. It further emphasizes
the different ways of using messaging systems such as point to point or publish/subscribe.
It introduces AMQP as well.

, Introducing Kafka - The Distributed Messaging Platform, introduces distributed
messaging platforms such as Kafka. It covers the Kafka architecture and touches upon its
internal component. It further explores the roles and importance of each Kafka components
and how they contribute towards low latency, reliability, and the scalability of Kafka
Message Systems.

, Deep Dive into Kafka Producers, is about how to publish messages to Kafka
Systems. This further covers Kafka Producer APIs and their usage. It showcases examples
of using Kafka Producer APIs with Java and Scala programming languages. It takes a deep
dive into Producer message flows and some common patterns for producing messages to
Kafka Topics. It walks through some performance optimization techniques for Kafka
Producers.

Preface

[2]

, Deep Dive into Kafka Consumers, is about how to consume messages from Kafka
Systems. This also covers Kafka Consumer APIs and their usage. It showcases examples of
using Kafka Consumer APIs with the Java and Scala programming languages. It takes a
deep dive into Consumer message flows and some common patterns for consuming
messages from Kafka Topics. It walks through some performance optimization techniques
for Kafka Consumers.

, Building Spark Streaming Applications with Kafka, is about how to integrate Kafka
with the popular distributed processing engine, Apache Spark. This also provides a brief
overview about Apache Kafka, the different approaches for integrating Kafka with Spark,
and their advantages and disadvantages. It showcases examples in Java as well as in Scala
with use cases.

, Building Storm Applications with Kafka, is about how to integrate Kafka with the
popular real-time processing engine Apache Storm. This also covers a brief overview of
Apache Storm and Apache Heron. It showcases examples of different approaches of event
processing using Apache Storm and Kafka, including guaranteed event processing.

, Using Kafka with Confluent Platform, is about the emerging streaming platform
Confluent that enables you to use Kafka effectively with many other added functionalities.
It showcases many examples for the topics covered in the chapter.

, Building ETL Pipelines Using Kafka, introduces Kafka Connect, a common
component, which for building ETL pipelines involving Kafka. It emphasizes how to use
Kafka Connect in ETL pipelines and discusses some in-depth technical concepts
surrounding it.

, Building Streaming Applications Using Kafka Streams, is about how to build
streaming applications using Kafka Stream, which is an integral part of the Kafka 0.10
release. This also covers building fast, reliable streaming applications using Kafka Stream,
with examples.

, Kafka Cluster Deployment, focuses on Kafka cluster deployment on enterprise-
grade production systems. It covers in depth, Kafka clusters such as how to do capacity
planning, how to manager single/multi cluster deployments, and so on. It also covers how
to manage Kafka in multi-tenant environments. It further walks you through the various
steps involved in Kafka data migrations.

, Using Kafka in Big Data Applications, walks through some of the aspects of using
Kafka in big data applications. This covers how to manage high volumes in Kafka, how to
ensure guaranteed message delivery, the best ways to handle failures without any data loss,
and some governance principles that can be applied while using Kafka in big data
pipelines.

Preface

[3]

, Securing Kafka, is about securing your Kafka cluster. It covers authentication
and authorization mechanisms along with examples.

, Streaming Applications Design Considerations, is about different design
considerations for building a streaming application. It walks you through aspects such as
parallelism, memory tuning, and so on. It provides comprehensive coverage of the different
paradigms for designing a streaming application.

What you need for this book
You will need the following software to work with the examples in this book:

Apache Kafka, big data, Apache Hadoop, publish and subscribe, enterprise messaging
system, distributed Streaming, Producer API, Consumer API, Streams API, Connect API

Who this book is for
If you want to learn how to use Apache Kafka and the various tools in the Kafka ecosystem
in the easiest possible manner, this book is for you. Some programming experience with
Java is required to get the most out of this book.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "The next
lines of code read the link and assign it to the to the function."

A block of code is set as follows:

Any command-line input or output is written as follows:

sudo su - hdfs -c "hdfs dfs -chmod 777 /tmp/hive"
 sudo chmod 777 /tmp/hive

Preface

[4]

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "In order to download new
modules, we will go to Files | Settings | Project Name | Project Interpreter."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

To send us general feedback, simply e-mail , and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at .

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at

. If you purchased this book elsewhere, you can visit
 and register to have the files e-mailed directly to you.

Preface

[5]

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at

. We also have other code bundles from our rich catalog of books and videos
available at . Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from

.

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting , selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to
 and enter the name of the book in the

search field. The required information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at

, and we will do our best to address the problem.

11
Introduction to Messaging

Systems
People have different styles of learning. This chapter will give you the necessary context to
help you achieve a better understanding of the book.

The goal of any Enterprise Integration is to establish unification between separate
applications to achieve a consolidated set of functionalities.

These discrete applications are built using different programming languages and platforms.
To achieve any unified functionality, these applications need to share information among
themselves. This information exchange happens over a network in small packets using
different protocols and utilities.

So let us say that you are adding a new campaign component to an existing e-commerce
application that needs to interact with a different application to calculate loyalty points. In
this case, you will be integrating your e-commerce application with a different application
using enterprise integration strategies.

This chapter will help you understand messaging systems, one of the common ways of
establishing enterprise integration. It will walk you through various types of messaging
system and their uses. At the end of this chapter, you will be able to distinguish between
different messaging models available today and understand different design considerations
for enterprise application integration.

Introduction to Messaging Systems

[8]

We will be covering the following topics in this chapter:

Principles of designing a good messaging system
How a messaging system works
A point-to-point messaging system
A publish-subscribe messaging system
The AMQP messaging protocol
Finally we will go through the messaging system needed in designing streaming
applications

Understanding the principles of messaging
systems
Continuing our focus on messaging systems, you may have seen applications where one
application uses data that gets processed by other external applications or applications
consuming data from one or more data sources. In such scenarios, messaging systems can
be used as an integration channel for information exchange between different applications.
If you haven't built such an application yet, then don't worry about it. We will build it in
upcoming chapters.

In any application integration system design, there are a few important principles that
should be kept in mind, such as loose coupling, common interface definitions, latency,
and reliability. Let's look into some of these one by one:

Loose coupling between applications ensures minimal dependencies on each
other. This ensures that any changes in one application do not affect other
applications. Tightly coupled applications are coded as per predefined
specifications of other applications. Any change in specification would break or
change the functionality of other dependent applications.
Common interface definitions ensure a common agreed-upon data format for
exchange between applications. This not only helps in establishing message
exchange standards among applications but also ensures that some of the best
practices of information exchange can be enforced easily. For example, you can
choose to use the Avro data format to exchange messages. This can be defined as
your common interface standard for information exchange. Avro is a good choice
for message exchanges as it serializes data in a compact binary format and
supports schema evolution.

Introduction to Messaging Systems

[9]

Latency is the time taken by messages to traverse between the sender and
receiver. Most applications want to achieve low latency as a critical requirement.
Even in an asynchronous mode of communication, high latency is not desirable
as significant delay in receiving messages could cause significant loss to any
organization.
Reliability ensures that temporary unavailability of applications does not affect
dependent applications that need to exchange information. In general, the when
source application sends a message to the remote application, sometimes the
remote application may be running slow or it may not be running due to some
failure. Reliable, asynchronous message communication ensures that the source
application continues its work and feels confident that the remote application will
resume its task later.

Understanding messaging systems
As mentioned earlier, application integration is key for any enterprise to achieve a
comprehensive set of functionalities spanning multiple discrete applications. To achieve
this, applications need to share information in a timely manner. A messaging system is one
of the most commonly used mechanisms for information exchange in applications.

The other mechanisms used to share information could be remote procedure calls (RPC),
file share, shared databases, and web service invocation. While choosing your application
integration mechanism, it is important that you keep in mind the guiding principles
discussed earlier. For example, in the case of shared databases, changes done by one
application could directly affect other applications that are using the same database tables.
Both of the applications are tightly coupled. You may want to avoid that in cases where you
have additional rules to be applied before accepting the changes in the other application.
Likewise, you have to think about all such guiding principles before finalizing ways of
integrating your applications.

Introduction to Messaging Systems

[10]

As depicted in the following figure, message-based application integration involves discrete
enterprise applications connecting to a common messaging system and either sending or
receiving data to it. A messaging system acts as an integration component between multiple
applications. Such an integration invokes different application behaviors based on
application information exchanges. It also adheres to some of the design principles
mentioned earlier.

Enterprises have started adopting micro service architecture and the main advantage of
doing so is to make applications loosely coupled with each other. Applications
communicate with each other asynchronously and it makes communication more reliable as
both applications need not be running simultaneously. A messaging system helps in
transferring data from one application to the other. It allows applications to think of what
they need to share as data rather than how it needs to be shared. You can share small
packets of data or data streams with other applications using messaging in a timely and
real-time fashion. This fits the need of low latency real-time application integration.

Introduction to Messaging Systems

[11]

For a start, you should understand some of the basic concepts of any messaging system.
Understanding these concepts is beneficial to you as it will help you understand different
messaging technologies such as Kafka. The following are some of the basic messaging
concepts:

Message queues: You will sometimes find queues referred as channels as well. In a
simple way, they are connectors between sending and receiving applications.
Their core function is to receive message packets from the source application and
send it to the receiver application in a timely and reliable manner.

Messages (data packets): A message is an atomic data packet that gets
transmitted over a network to a message queue. The sender application breaks
data into smaller data packets and wraps it as a message with protocol and
header information. It then sends it to the message queue. In a similar fashion, a
receiver application receives a message and extracts the data from the message
wrapper to further process it.
Sender (producer): Sender or producer applications are the sources of data that
needs to be sent to a certain destination. They establish connections to message
queue endpoints and send data in smaller message packets adhering to common
interface standards. Depending on the type of messaging system in use, sender
applications can decide to send data one by one or in a batch.
Receiver (consumer): Receiver or consumer applications are the receivers of
messages sent by the sender application. They either pull data from message
queues or they receive data from messages queues through a persistent
connection. On receiving messages, they extract data from those message packets
and use it for further processing.

Data transmission protocols: Data transmission protocols determine rules to
govern message exchanges between applications. Different queuing systems use
different data transmission protocols. It depends on the technical implementation
of the messaging endpoints. Kafka uses binary protocols over TCP. The client
initiates a socket connection with Kafka queues and then writes messages along
with reading back the acknowledgment message. Some examples of such data
transmission protocols are AMQP (Advance Message Queuing Protocol),
STOMP (Streaming Text Oriented Message Protocol), MQTT (Message Queue
Telemetry Protocol), and HTTP (Hypertext Transfer Protocol).

Introduction to Messaging Systems

[12]

Transfer mode: The transfer mode in a messaging system can be understood as
the manner in which data is transferred from the source application to the
receiver application. Examples of transfer modes are synchronous, asynchronous,
and batch modes.

Peeking into a point-to-point messaging
system
This section focuses on the point-to-point (PTP) messaging model. In a PTP messaging
model, message producers are called senders and consumers are called receivers. They
exchange messages by means of a destination called a queue. Senders produce messages to
a queue and receivers consume messages from this queue. What distinguishes point-to-
point messaging is that a message can be consumed by only one consumer.

Point-to-point messaging is generally used when a single message will be received by only
one message consumer. There may be multiple consumers listening on the queue for the
same message but only one of the consumers will receive it. Note that there can be multiple
producers as well. They will be sending messages to the queue but it will be received by
only one receiver.

A PTP model is based on the concept of sending a message to a named
destination. This named destination is the message queue's endpoint that
is listening to incoming messages over a port.

Typically, in the PTP model, a receiver requests a message that a sender sends to the queue,
rather than subscribing to a channel and receiving all messages sent on a particular queue.

You can think of queues supporting PTP messaging models as FIFO queues. In such
queues, messages are sorted in the order in which they were received, and as they are
consumed, they are removed from the head of the queue. Queues such as Kafka maintain
message offsets. Instead of deleting the messages, they increment the offsets for the receiver.
Offset-based models provide better support for replaying messages.

The following figure shows an example model of PTP. Suppose there are two senders, S1
and S2, who send a message to a queue, Q1. On the other side, there are two receivers, R1
and R2, who receive a message from Q1. In this case, R1 will consume the message from S2
and R2 will consume the message from S1:

Introduction to Messaging Systems

[13]

You can deduce the following important points about a PTP messaging system from the
preceding figure:

More than one sender can produce and send messages to a queue. Senders can
share a connection or use different connections, but they can all access the same
queue.
More than one receiver can consume messages from a queue, but each message
can be consumed by only one receiver. Thus, Message 1, Message 2, and
Message 3 are consumed by different receivers. (This is a message queue
extension.)
Receivers can share a connection or use different connections, but they can all
access the same queue. (This is a message queue extension.)
Senders and receivers have no timing dependencies; the receiver can consume a
message whether or not it was running when the sender produced and sent the
message.
Messages are placed in a queue in the order they are produced, but the order in
which they are consumed depends on factors such as message expiration date,
message priority, whether a selector is used in consuming messages, and the
relative message processing rate of the consumers.
Senders and receivers can be added and deleted dynamically at runtime, thus
allowing the messaging system to expand or contract as needed.

Introduction to Messaging Systems

[14]

The PTP messaging model can be further categorized into two types:

Fire-and-forget model
Request/reply model

In fire-and-forget processing, the producer sends a message to a centralized queue and
does not wait for any acknowledgment immediately. It can be used in a scenario where you
want to trigger an action or send a signal to the receiver to trigger some action that does not
require a response. For example, you may want to use this method to send a message to a
logging system, to alert a system to generate a report, or trigger an action to some other
system. The following figure represents a fire-and-forget PTP messaging model:

With an asynchronous request/reply PTP model, the message sender sends a message on
one queue and then does a blocking wait on a reply queue waiting for the response from the
receiver. The request/reply model provides for a high degree of decoupling between the
sender and receiver, allowing the message producer and consumer components to be
heterogeneous languages or platforms. The following figure represents a request/reply PTP
messaging model:

Before concluding this section, it is important for you to understand where you can use the
PTP model of messaging. It is used when you want one receiver to process any given
message once and only once. This is perhaps the most critical difference: only one consumer
will process a given message.

Introduction to Messaging Systems

[15]

Another use case for point-to-point messaging is when you need synchronous
communication between components that are written in different technology platforms or
programming languages. For example, you may have an application written in a language,
say PHP, which may want to communicate with a Twitter application written in Java to
process tweets for analysis. In this scenario, a point-to-point messaging system helps
provide interoperability between these cross-platform applications.

Publish-subscribe messaging system
In this section, we will take a look at a different messaging model called the
publish/subscribe (Pub/Sub) messaging model.

In this type of model, a subscriber registers its interest in a particular topic or event and is
subsequently notified about the event asynchronously. Subscribers have the ability to
express their interest in an event, or a pattern of events, and are subsequently notified of
any event generated by a publisher that matches their registered interest. These events are
generated by publishers. It is different from the PTP messaging model in a way that a topic
can have multiple receivers and every receiver receives a copy of each message. In other
words, a message is broadcast to all receivers without them having to poll the topic. In the
PTP model, the receiver polls the queue for new messages.

A Pub/Sub messaging model is used when you need to broadcast an event or message to
many message consumers. Unlike the PTP messaging model, all message consumers (called
subscribers) listening on the topic will receive the message.

One of the important aspects of Pub/Sub messaging models is that the
topic abstraction is easy to understand and enforces platform
interoperability. Moreover, messages can be retained in the topic until
they are delivered to the active subscribers.

There is an option to have durable subscriptions in the Pub/Sub model that allows the
subscriber to disconnect, reconnect, and collect the messages that were delivered when it
was not active. The Kafka messaging system incorporates some of these important design
principles.

Introduction to Messaging Systems

[16]

The following figure describes a basic model of publish/subscribe messaging. Such event
services are generally called queues. This kind of interaction need a service that provides
storage of the event, a notification service, a way of managing subscriptions and ensuring
the efficient guaranteed delivery of the event to destination. Generally, we call this service a
queue. Queues act as a neutral mediator between the event producer and event consumer.
The producer can produce all the data to queue that they want to and all the consumers will
subscribe to the queue that they are interested in. The consumer does not care about the
source and the producer does not care about consumers. Consumers can unsubscribe to a
queue whenever they want to:

Introduction to Messaging Systems

[17]

You can deduce the following important points about the Pub/Sub messaging system from
the preceding figure:

Messages are shared through a channel called a topic. A topic is a centralized
place where producers can publish, and subscribers can consume, messages.
Each message is delivered to one or more message consumers, called subscribers.
The publisher generally does not know and is not aware of which subscribers are
receiving the topic messages.
Messages are pushed to consumers, which means that messages are delivered to
consumers without their having to request them. Messages are exchanged
through a virtual channel called a topic. Messages delivered to a topic are
automatically pushed to all qualified consumers.
There is no coupling of the producers to the consumers. Subscribers and
publishers can be added dynamically at runtime, which allows the system to
grow or shrink in complexity over time.
Every client that subscribes to a topic receives its own copy of messages
published to that topic. A single message produced by one publisher may be
copied and distributed to hundreds, or even thousands, of subscribers.

You should use the Pub/Sub model when you want to broadcast a message or event to
multiple message consumers. The important point here is that multiple consumers may
consume the message.

By design, the Pub/Sub model will push copies of the message out to multiple subscribers.
Some common examples are notifying exceptions or errors and change the notification of a
particular data item in the database.

Any situation where you need to notify multiple consumers of an event is a good use of the
Pub/Sub model. For example, you want to send out a notification to a topic whenever an
exception occurs in your application or a system component. You may not know how that
information will be used or what types of component will use it. Will the exception be e-
mailed to various parties of interest? Will a notification be sent to a beeper or pager? This is
the beauty of the Pub/Sub model. The publisher does not care or need to worry about how
the information will be used. It simply publishes it to a topic.

Introduction to Messaging Systems

[18]

Advance Queuing Messaging Protocol
As discussed in previous sections, there are different data transmission protocols using
which messages can be transmitted among sender, receiver, and message queues. It is
difficult to cover all such protocols in the scope of this book. However, it is important to
understand how these data transmission protocols work and why it is an important design
decision for your message-oriented application integration architecture. In the light of this,
we will cover one example of such a protocol: Advance Message Queuing Protocol also
known as AQMP.

AQMP is an open protocol for asynchronous message queuing that developed and matured
over several years. AMQP provides richer sets of messaging functionalities that can be used
to support very advanced messaging scenarios. As depicted in the following figure, there
are three main components in any AQMP-based messaging system:

As the name suggests, producers sends messages to brokers that in turn deliver them to
consumers. Every broker has a component called exchange that is responsible for routing
the messages from producers to appropriate message queues.

Introduction to Messaging Systems

[19]

An AQMP messaging system consists of three main components:

Publisher(s)
Consumer(s)
Broker/server(s)

Each component can be multiple in number and situated on independent hosts. Publishers
and consumers communicate with each other through message queues bound to exchanges
within the brokers. AQMP provides reliable, guaranteed, in-order message delivery.
Message exchanges in an AQMP model can follow various methods. Let's look at each one
of them:

Direct exchange: This is a key-based routing mechanism. In this, a message is
delivered to the queue whose name is equal to the routing key of the message.
Fan-out exchange: A fan-out exchange routes messages to all of the queues that
are bound to it and the routing key is ignored. If N queues are bound to a fan-out
exchange, when a new message is published to that exchange, a copy of the
message is delivered to all N queues. Fan-out exchanges are ideal for the
broadcast routing of messages. In other words, the message is cloned and sent to
all queues connected to this exchange.
Topic exchange: In topic exchange, the message can be routed to some of the
connected queues using wildcards. The topic exchange type is often used to
implement various publish/subscribe pattern variations. Topic exchanges are
commonly used for the multicast routing of messages.

Using messaging systems in big data
streaming applications
In this section, we will talk about how messaging systems play important role in a big data
application.

Let's understand the different layers in a big data application:

Ingestion layer: The input data required for the processing gets ingested in some
storage system. There can be many sources of data for which the same or
different processing needs to be done.

Introduction to Messaging Systems

[20]

Processing layer: This contains the business logic that processes the data received
in the ingestion layer and applies some transformation to make it into a usable
form. You can call it converting raw data to information. There can be multiple
processing applications for the same or different data. Each application may have
its different processing logic and capability.
Consumption layer: This layer contains data processed by the processing layer.
This processed data is a single point of truth and contains important information
for business decision makers. There can be multiple consumers who can use the
same data for different purposes or different data for the same purpose.

Streaming applications would probably fall into the second layer--the processing layer. The
same data can be used by many applications simultaneously, and there can be different
ways of serving this data to the application. So, applications can be either streaming, batch,
or micro-batch. All these applications consume data in different ways: streaming
applications may require data as a continuous stream and batch applications may require
data as batches. However, we have already said that there can be multiple sources for this
data.

We can see multiple producer and multiple consumer use cases here, so we have to go for a
messaging system. The same message can be consumed by multiple consumers so we need
to retain the message until all the consumers consume it. How about having a messaging
system that can retain the data until we want it, provides a high degree of fault tolerance,
and provides a different way of consuming data streams, batches, and micro-batches?

Streaming applications will simply consume the data from the messaging queue that they
want and process it as needed. However, there is one problem. What if the message
received by the streaming application fails, what if there are a lot of such messages? In such
cases, we may want to have a system that will help us provide those messages based on the
request and reprocess them.

We need a messaging system that immediately tells the streaming application that,
Something got published; please process it. The following diagram helps you understand a
messaging system use case with a streaming application:

Introduction to Messaging Systems

[21]

The preceding figure explains the following points:

Streaming application 1 has subscribed to Topic 1, which means any event
published to topic 1 will be immediately available to Streaming Application 1.
Streaming Application 1 processes the event and stores them into two
destinations; one is a database and other is Topic 2 of the messaging system.
Here, the the streaming application acts as the producer for Topic 2. Remember
there can be other applications that may consume the event from Topic 1.

Introduction to Messaging Systems

[22]

Streaming application 2 has subscribed to Topic 2, which will immediately
receive the event when it gets published to Topic 2. Remember that there can be
other applications that can publish the event to either Topic 1 or Topic 2.
Streaming Application 2 processes the event and stores it in the database.

In streaming application, each stream or message has its own importance; something will be
triggered based on the type or nature of the message. There can be a scenario where one
streaming application processes the event and passes it to another streaming application for
further processing. In this case, they both need to have a medium of communication.
Remember that the application should care about what it wants to do rather than how to
send the data somewhere. This is the best use case for a publish/subscribe messaging
system as it would ensure that a message published by the producer will reach to all the
applications who have subscribed to it.

Concluding our discussion on messaging systems, these are the points that are important
for any streaming application:

High consuming rate: Streaming data sources can be click-stream data or social
media data where the rate of message producing is too high. Stream applications
may or may not be required to consume at a similar rate. We may want to have a
messaging queue that can consume data at a higher rate.
Guaranteed delivery: Some streaming applications cannot afford to lose
messages; we need a system that guarantees the delivery of messages to the
streaming application whenever needed.
Persisting capability: There can be multiple applications consuming similar data
at a different rate. We may want to have a messaging system that retains data for
a period of time and serves the data to a different application asynchronously.
This helps in decoupling all the applications and designing micro service
architecture.
Security: Some applications may want to have security over the data that they
consume; you may not want to share some data with other applications
consuming from the same messaging system. You want to have a system that
ensures such security.
Fault tolerance: Applications never want to have a system that does not deliver
messages or data whenever they need. We want to have a system that guarantees
fault tolerance and serves messages irrespective of the failure of the server
serving the data before.

Introduction to Messaging Systems

[23]

There are many other points that force us to go for a messaging system that has at least the
capabilities mentioned earlier. We will discuss how Kafka is different from other messaging
systems, and meets the requirement of a messaging system for a streaming application, in
upcoming chapters.

Summary
In this chapter, we covered concepts of messaging systems. We learned the need for
Messaging Systems in Enterprises. We further emphasized different ways of using
messaging systems such as point to point or publish/subscribe. We introduced Advance
Message Queuing Protocol (AQMP) as well.

In next chapter, we will learn about the Kafka architecture and its component in detail. We
will also learn about implementation part of what we discuss in messaging system and its
type.

22
Introducing Kafka the

Distributed Messaging Platform
In this chapter, we will introduce Kafka, a widely adopted scalable, performant, and
distributed messaging platform. We will touch-base on different Kafka components and
how they work in coherence to achieve reliable message delivery. You should see this
chapter as a foundation chapter on Kafka that will help you establish familiarity with the
systems involved. This chapter will help you better grasp the next chapters, which cover
various Kafka components in detail. At the end of this chapter, you will have a clear
understanding of Kafka's architecture and fundamental components of the Kafka
messaging system.

We will cover the following topics in this chapter:

Kafka origins
Kafka's architecture
Message topics
Message partitions
Replication and replicated logs
Message producers
Message consumers
Role of Zookeeper

Introducing Kafka the Distributed Messaging Platform

[25]

Kafka origins
Most of you must have used the LinkedIn portal in your professional career. The Kafka
system was first built by the LinkedIn technical team. LinkedIn constructed a software
metrics collecting system using custom in-house components with some support from
existing open source tools. The system was used to collect user activity data on their portal.
They use this activity data to show relevant information to each respective user on their
web portal. The system was originally built as a traditional XML-based logging service,
which was later processed using different Extract Transform Load (ETL) tools. However,
this arrangement did not work well for a long time. They started running into various
problems. To solve these problems, they built a system called Kafka.

LinkedIn built Kafka as a distributed, fault-tolerant, publish/subscribe system. It records
messages organized into topics. Applications can produce or consume messages from
topics. All messages are stored as logs to persistent filesystems. Kafka is a write-ahead
logging (WAL) system that writes all published messages to log files before making it
available for consumer applications. Subscribers/consumers can read these written
messages as required in an appropriate time-frame. Kafka was built with the following
goals in mind:

Loose coupling between message Producers and message Consumers
Persistence of message data to support a variety of data consumption scenarios
and failure handling
Maximum end-to-end throughput with low latency components
Managing diverse data formats and types using binary data formats
Scaling servers linearly without affecting the existing cluster setup

While we will introduce Kafka in more detail in up coming sections, you
should understand that one of the common uses of Kafka is in its stream
processing architecture. With its reliable message delivery semantics, it
helps in consuming high rates of events. Moreover, it provides message
replaying capabilities along with support for different types of consumer.

This further helps in making streaming architecture fault-tolerant and supports a variety of
alerting and notification services.

Introducing Kafka the Distributed Messaging Platform

[26]

Kafka's architecture
This section introduces you to Kafka architecture. By the end of this section, you will have a
clear understanding of both the logical and physical architecture of Kafka. Let's see how
Kafka components are organized logically.

Every message in Kafka topics is a collection of bytes. This collection is represented as an
array. Producers are the applications that store information in Kafka queues. They send
messages to Kafka topics that can store all types of messages. Every topic is further
differentiated into partitions. Each partition stores messages in the sequence in which they
arrive. There are two major operations that producers/consumers can perform in Kafka.
Producers append to the end of the write-ahead log files. Consumers fetch messages from
these log files belonging to a given topic partition. Physically, each topic is spread over
different Kafka brokers, which host one or two partitions of each topic.

Ideally, Kafka pipelines should have a uniform number of partitions per broker and all
topics on each machine. Consumers are applications or processes that subscribe to a topic or
receive messages from these topics.

The following diagram shows you the conceptual layout of a Kafka cluster:

Introducing Kafka the Distributed Messaging Platform

[27]

The preceding paragraphs explain the logical architecture of Kafka and how different
logical components coherently work together. While it is important to understand how
Kafka architecture is divided logically, you also need to understand what Kafka's physical
architecture looks like. This will help you in later chapters as well. A Kafka cluster is
basically composed of one or more servers (nodes). The following diagram depicts how a
multi-node Kafka cluster looks:

A typical Kafka cluster consists of multiple brokers. It helps in load-balancing message
reads and writes to the cluster. Each of these brokers is stateless. However, they use
Zookeeper to maintain their states. Each topic partition has one of the brokers as a leader
and zero or more brokers as followers. The leaders manage any read or write requests for
their respective partitions. Followers replicate the leader in the background without actively
interfering with the leader's working. You should think of followers as a backup for the
leader and one of those followers will be chosen as the leader in the case of leader failure.

Each server in a Kafka cluster will either be a leader for some of the topic's
partitions or a follower for others. In this way, the load on every server is
equally balanced. Kafka broker leader election is done with the help of
Zookeeper.

Introducing Kafka the Distributed Messaging Platform

[28]

Zookeeper is an important component of a Kafka cluster. It manages and coordinates Kafka
brokers and consumers. Zookeeper keeps track of any new broker additions or any existing
broker failures in the Kafka cluster. Accordingly, it will notify the producer or consumers of
Kafka queues about the cluster state. This helps both producers and consumers in
coordinating work with active brokers. Zookeeper also records which broker is the leader
for which topic partition and passes on this information to the producer or consumer to
read and write the messages.

At this juncture, you must be familiar with producer and consumer applications with
respect to the Kafka cluster. However, it is beneficial to touch on these briefly so that you
can verify your understanding. Producers push data to brokers. At the time of publishing
data, producers search for the elected leader (broker) of the respective topic partition and
automatically send a message to that leader broker server. Similarly, the consumer reads
messages from brokers.

The consumer records its state with the help of Zookeeper as Kafka brokers are stateless.
This design helps in scaling Kafka well. The consumer offset value is maintained by
Zookeeper. The consumer records how many messages have been consumed by it using
partition offset. It ultimately acknowledges that message offset to Zookeeper. It means that
the consumer has consumed all prior messages.

This brings us to an end of our section on Kafka architecture. Hopefully,
by this time, you are well versed with Kafka architecture and understand
all logical and physical components. The next sections cover each of these
components in detail. However, it is imperative that you understand the
overall Kafka architecture before delving into each of the components.

Message topics
If you are into software development and services, I am sure you will have heard terms
such as database, tables, records, and so on. In a database, we have multiple tables; let's say,
Items, Price, Sales, Inventory, Purchase, and many more. Each table contains data of a
specific category. There will be two parts in the application: one will be inserting records
into these tables and the other will be reading records from these tables. Here, tables are the
topics in Kafka, applications that are inserting data into tables are producers, and
applications that are reading data are consumers.

Introducing Kafka the Distributed Messaging Platform

[29]

In a messaging system, messages need to be stored somewhere. In Kafka, we store messages
into topics. Each topic belongs to a category, which means that you may have one topic
storing item information and another may store sales information. A producer who wants
to send a message may send it to its own category of topics. A consumer who wants to read
these messages will simply subscribe to the category of topics that he is interested in and
will consume it. Here are a few terms that we need to know:

Retention Period: The messages in the topic need to be stored for a defined
period of time to save space irrespective of throughput. We can configure the
retention period, which is by default seven days, to whatever number of days we
choose. Kafka keeps messages up to the defined period of time and then
ultimately deletes them.
Space Retention Policy: We can also configure Kafka topics to clear messages
when the size reaches the threshold mentioned in the configuration. However,
this scenario may occur if you haven't done enough capacity planning before
deploying Kafka into your organization.
Offset: Each message in Kafka is assigned with a number called as an offset.
Topics consist of many partitions. Each partition stores messages in the sequence
in which they arrive. Consumers acknowledge messages with an offset, which
means that all the messages before that message offset are received by the
consumer.
Partition: Each Kafka topic consists of a fixed number of partitions. During topic
creation in Kafka, you need to configure the number of partitions. Partitions are
distributed and help in achieving high throughput.
Compaction: Topic compaction was introduced in Kafka 0.8. There is no way to
change previous messages in Kafka; messages only get deleted when the
retention period is over. Sometimes, you may get new Kafka messages with the
same key that includes a few changes, and on the consumer side, you only want
to process the latest data. Compaction helps you achieve this goal by compacting
all messages with the same key and creating a map offset for key: offset. It helps in
removing duplicates from a large number of messages.
Leader: Partitions are replicated across the Kafka cluster based on the replication
factor specified. Each partition has a leader broker and followers and all the read
write requests to the partition will go through the leader only. If the leader fails,
another leader will get elected and the process will resume.
Buffering: Kafka buffers messages both at the producer and consumer side to
increase throughput and reduce Input/Output (IO). We will talk about it in detail
later.

Introducing Kafka the Distributed Messaging Platform

[30]

Message partitions
Suppose that we have in our possession a purchase table and we want to read records for
an item from the purchase table that belongs to a certain category, say, electronics. In the
normal course of events, we will simply filter out other records, but what if we partition our
table in such a way that we will be able to read the records of our choice quickly?

This is exactly what happens when topics are broken into partitions known as units of
parallelism in Kafka. This means that the greater the number of partitions, the more
throughput. This does not mean that we should choose a huge number of partitions. We
will talk about the pros and cons of increasing the number of partitions further.

While creating topics, you can always mention the number of partitions that you require for
a topic. Each of the messages will be appended to partitions and each message is then
assigned with a number called an offset. Kafka makes sure that messages with similar keys
always go to the same partition; it calculates the hash of the message key and appends the
message to the partition. Time ordering of messages is not guaranteed in topics but within a
partition, it's always guaranteed. This means that messages that come later will always be
appended to the end of the partition.

Partitions are fault-tolerant; they are replicated across the Kafka brokers.
Each partition has its leader that serves messages to the consumer that
wants to read the message from the partition. If the leader fails a new
leader is elected and continues to serve messages to the consumers. This
helps in achieving high throughput and latency.

Let's understand the pros and cons of a large number of partitions:

High throughput: Partitions are a way to achieve parallelism in Kafka. Write
operations on different partitions happen in parallel. All time-consuming
operations will happen in parallel as well; this operation will utilize hardware
resources at the maximum. On the consumer side, one partition will be assigned
to one consumer within a consumer group, which means that different
consumers available in different groups can read from the same partition, but
different consumers from the same consumer group will not be allowed to read
from the same partition.

Introducing Kafka the Distributed Messaging Platform

[31]

So, the degree of parallelism in a single consumer group depends on the
number of partitions it is reading from. A large number of partitions results
in high throughput.
Choosing the number of partitions depends on how much throughput you
want to achieve. We will talk about it in detail later. Throughput on the
producer side also depends on many other factors such as batch size,
compression type, number of replications, types of acknowledgement, and
some other configurations, which we will see in detail in , Deep
Dive into Kafka Producers.
However, we should be very careful about modifying the number of
partitions--the mapping of messages to partitions completely depends on the
hash code generated based on the message key that guarantees that messages
with the same key will be written to the same partition. This guarantees the
consumer about the delivery of messages in the order which they were stored
in the partition. If we change the number of partitions, the distribution of
messages will change and this order will no longer be guaranteed for
consumers who were looking for the previous order subscribed. Throughput
for the producer and consumer can be increased or decreased based on
different configurations that we will discuss in detail in upcoming chapters.

Increases producer memory: You must be wondering how increasing the
number of partitions will force us to increase producer memory. A producer does
some internal stuff before flushing data to the broker and asking them to store it
in the partition. The producer buffers incoming messages per partition. Once the
upper bound or the time set is reached, the producer sends his messages to the
broker and removes it from the buffer.

If we increase the number of partitions, the memory allocated for the
buffering may exceed in a very short interval of time, and the producer will
block producing messages until it sends buffered data to the broker. This
may result in lower throughput. To overcome this, we need to configure
more memory on the producer side, which will result in allocating extra
memory to the producer.

Introducing Kafka the Distributed Messaging Platform

[32]

High availability issue: Kafka is known as high-availability, high-throughput,
and distributed messaging system. Brokers in Kafka store thousands of partitions
of different topics. Reading and writing to partitions happens through the leader
of that partition. Generally, if the leader fails, electing a new leader takes only a
few milliseconds. Observation of failure is done through controllers. Controllers
are just one of the brokers. Now, the new leader will serve the request from the
producer and consumer. Before serving the request, it reads metadata of the
partition from Zookeeper. However, for normal and expected failure, the
window is very small and takes only a few milliseconds. In the case of
unexpected failure, such as killing a broker unintentionally, it may result in a
delay of a few seconds based on the number of partitions. The general formula is:

Delay Time = (Number of Partition/replication * Time to read metadata for single
partition)

The other possibility could be that the failed broker is a controller, the controller
replacement time depends on the number of partitions, the new controller reads the
metadata of each partition, and the time to start the controller will increase with an increase
in the number of partitions.

Introducing Kafka the Distributed Messaging Platform

[33]

We should take care while choosing the number of partitions and we will talk about this in
upcoming chapters and how we can make the best use of Kafka's capability.

Replication and replicated logs
Replication is one of the most important factors in achieving reliability for Kafka systems.
Replicas of message logs for each topic partition are maintained across different servers in a
Kafka cluster. This can be configured for each topic separately. What it essentially means is
that for one topic, you can have the replication factor as 3 and for another, you can use 5. All
the reads and writes happen through the leader; if the leader fails, one of the followers will
be elected as leader.

Generally, followers keep a copy of the leader's log, which means that the leader does not
make the message as committed until it receives acknowledgment from all the followers.
There are different ways that the log replication algorithm has been implemented; it should
ensure that, if leader tells the producer that the message is committed, it must be available
for the consumer to read it.

To maintain such replica consistency, there are two approaches. In both approaches, there
will be a leader through which all the read and write requests will be processed. There is a
slight difference in replica management and leader election:

Quorum-based approach: In this approach, the leader will mark messages
committed only when the majority of replicas have an acknowledged receiving
the message. If the leader fails, the election of the new a leader will only happen
with coordination between followers. There are many algorithms that exist for
electing leader and going to depth of those algorithm is beyond the scope of this
book. Zookeeper follows a quorum-based approach for leader election.
Primary backup approach: Kafka follows a different approach to maintaining
replicas; the leader in Kafka waits for an acknowledgement from all the followers
before marking the message as committed. If the leader fails, any of the followers
can take over as leader.

Introducing Kafka the Distributed Messaging Platform

[34]

This approach can cost you more in terms of latency and throughput but this
will guarantee better consistency for messages or data. Each leader records
an in-sync replica set abbreviated to in sync replica (ISR). This means that
for each partition, we will have a leader and ISR stored in Zookeeper. Now
the writes and reads will happen as follows:

Write: All the leaders and followers have their own local log where
they maintain the log end offset that represents the tail of the log.
The last committed message offset is called the High Watermark.
When a client requests to write a message to partition, it first picks
the leader of the partition from Zookeeper and creates a write
request. The leader writes a message to the log and subsequently
waits for the followers in ISR to return an acknowledgement. Once
acknowledgement is received, it simply increases the pointer to
High Watermark and sends an acknowledgment to the client. If
any followers present in ISR fail, the leader simply drops them
from ISR and continues its operation with other followers. Once
failed followers come back, they catch up with a leader by making
the logs sync. Now, the leader adds this follower to ISR again.
Read: All the reads happen through the leader only. The message
that is acknowledged successfully by the leader will be available
for the client to read.

Introducing Kafka the Distributed Messaging Platform

[35]

Here is the diagram that will clear the Kafka Log Implementation:

Introducing Kafka the Distributed Messaging Platform

[36]

Message producers
In Kafka, the producer is responsible for sending data to the partition of the topic for which
it is producing data.

The producer generally does not write data to partitions, it creates write
requests for messages and sends them to the leader broker. Partitioner
calculates the hash value of the message, which helps the producer to
choose which partition should be selected.

The hash value is generally calculated by the message key that we provide when writing
the message to a Kafka topic. The message with a null key will be distributed in a round-
robin fashion across partitions to ensure even distribution of messages. In Kafka, each
partition has a leader and each read write request goes through the leader only. So a request
to write messages to a partition of a topic will go through the leader broker. The producer
waits for an acknowledgement of messages depending on the setting. Generally, it waits
until the replication for a particular message is successfully acknowledged.

Remember that until and unless all replicas have been acknowledged to
commit the message, it will not be available to read. This setting is the
default and ensures that a message cannot be lost if a leader broker fails.

However, you can set the configuration for acknowledgement to 1, which assumes that if a
message is committed by the leader, it will be available to read and the Kafka producer can
produce the next messages. This setting is dangerous because, if brokers fail before other
replicas commit the message, the message will be lost. This leads to less durability but high
throughput.

However, it's better to compromise on throughput if your consumer system does not want
to lose a single message as part of the application. We will talk in detail about the producer
in the next chapter.

Message consumers
The consumer is any one who subscribes for topics in Kafka. Each consumer belongs to a
consumer group and some consumer groups contains multiple consumers. Consumers are
an interesting part of Kafka and we will cover them in detail.

Introducing Kafka the Distributed Messaging Platform

[37]

Two consumers from the same group cannot consume message from a
similar partition because it will lead to the message being consumed out of
order. However, consumers from the same group can consume message
from a different partition of the same topic simultaneously. Similarly,
consumers from a different group can consume messages from the same
partition in parallel without affecting the order of consumption.

So, it's clear that groups play an important role; in Kafka's initial version, Zookeeper was
used for group management, but in the latest version, Kafka has its own group protocol
built in. One of the brokers will act as a group coordinator and will be responsible for
assigning and managing partitions for groups. We will talk about Zookeeper and its own
protocol in later chapters specific to the consumer.

Remember that we talked about assigning an offset to a message in a partition; each
consumer reads the offset and commits the offset to the group coordinator or Zookeeper. So
if consumers fail for any reason, it will start from the next message of the committed offset.

Offset helps guarantee the processing of messages by consumers, which is
important for most applications that cannot afford losing any message as
part of their processing.

Role of Zookeeper
We have already talked a lot about Zookeeper in the previous sections. Zookeeper plays a
very important role in Kafka architecture and it is very important for you to understand
how it records the Kafka cluster state. Therefore, we are dedicating a separate section to the
role of Zookeeper in the Kafka cluster. Kafka cannot work without Zookeeper. Kafka uses
Zookeeper for the following functions:

Choosing a controller: The controller is one of the brokers responsible for
partition management with respect to leader election, topic creation, partition
creation, and replica management. When a node or server shuts down, Kafka
controllers elect partition leaders from followers. Kafka uses Zookeeper's
metadata information to elect a controller. Zookeeper ensures that a new
controller is elected in case the current controller crashes.

Introducing Kafka the Distributed Messaging Platform

[38]

Brokers metadata: Zookeeper records the state of each of the brokers that are part
of the Kafka cluster. It records all relevant metadata about each broker in a
cluster. The producer/consumer interacts with Zookeeper to get the broker's state.
Topic metadata: Zookeeper also records topic metadata such as the number of
partitions, specific configuration parameters, and so on.
Client quota information: With newer versions of Kafka, quota features have
been introduced. Quotas enforce byte-rate thresholds on clients to read and write
messages to a Kafka topic. All the information and states are maintained by
Zookeeper.
Kafka topic ACLs: Kafka has an in-built authorization module that is defined as
Access Control Lists (ACLs). These ACLs determine user roles and what kind of
read and write permissions each of these roles has on respective topics. Kafka
uses Zookeeper to store all ACLs.

The preceding points summarize how Zookeeper is used in the Kafka cluster and why a
Kafka cluster cannot run without Zookeeper. In upcoming chapters, you will understand
Zookeeper concepts in more technical depth.

Summary
We have come to the end of this chapter, and by now you should have a basic
understanding of the Kafka messaging system. An important aspect of mastering any
system is that you should understand the system end to end at a high level first. This will
put you in a better position when you understand individual components of the system in
detail. You can always establish the logical connection with end-to-end system
understanding and understand why individual components are designed in a particular
way. In this chapter, our goal was the same.

We started by discovering why Kafka was built in the first place. We have put forward
problems in LinkedIn systems that led to the creation of Kafka. That section will give you a
very clear understanding of the types of problem that Kafka can solve.

Introducing Kafka the Distributed Messaging Platform

[39]

We further covered Kafka's logical and system architecture. Putting Kafka architecture in
two viewpoints will help you with both a functional and technical understanding of Kafka.
The logical viewpoint is more from the perspective of establishing data flows and seeing
how different components depend on each other. The technical viewpoint will help you in
technically designing producer/consumer applications and understanding the Kafka
physical design. The physical viewpoint is more a system-wise view of the logical structure.
The physical architecture covers producer Applications, consumer Applications, Kafka
brokers (nodes), and Zookeeper.

In this chapter, we have touched on all components that we have illustrated in the Kafka
architecture. We will cover all these components in depth in upcoming chapters. However,
the important goal for you should be to understand the roles and responsibilities of each
Kafka component. Every component in Kafka has some specific role to play, and, even if
one of these is missing overall Kafka functionality cannot be achieved. The other key
takeaways from this chapter should be understanding how the unit of parallelism and
partitioning system works in Kafka. This is one of the key aspects in designing low'- latency
systems with Kafka.

In the next chapter, we will delve into Kafka producers and how you should design a
producer application. We will cover different producer APIs and some of the best practices
associated with Kafka producers.

33
Deep Dive into Kafka Producers
In previous chapters, you have learned about messaging systems and Kafka architecture.
While it is a good start, we will now take a deeper look into Kafka producers. Kafka can be
used as a message queue, message bus, or data storage system. Irrespective of how Kafka is
used in your enterprise, you will need an application system that can write data to the
Kafka cluster. Such a system is called a producer. As the name suggests, they are the source
or producers of messages for Kafka topics. Kafka producers publish messages as per Kafka
protocols defined by the makers of Kafka. This chapter is all about producers, their internal
working, examples of writing producers using Java or Scala APIs, and some of the best
practices of writing Kafka APIs. We will cover the following topics in this chapter:

Internals of a Kafka producer
The Kafka Producer API and its uses
Partitions and their uses
Additional configuration for producers
Some common producer patterns
An example of a producer
Best practices to be followed for a Kafka producer

Deep Dive into Kafka Producers

[41]

Kafka producer internals
In this section, we will walk through different Kafka producer components, and at a higher
level, cover how messages get transferred from a Kafka producer application to Kafka
queues. While writing producer applications, you generally use Producer APIs, which
expose methods at a very abstract level. Before sending any data, a lot of steps are
performed by these APIs. So it is very important to understand these internal steps in order
to gain complete knowledge about Kafka producers. We will cover these in this section.
First, we need to understand the responsibilities of Kafka producers apart from publishing
messages. Let's look at them one by one:

Bootstrapping Kafka broker URLs: The Producer connects to at least one broker
to fetch metadata about the Kafka cluster. It may happen that the first broker to
which the producer wants to connect may be down. To ensure a failover, the
producer implementation takes a list of more than one broker URL to bootstrap
from. Producer iterates through a list of Kafka broker addresses until it finds the
one to connect to fetch cluster metadata.
Data serialization: Kafka uses a binary protocol to send and receive data over
TCP. This means that while writing data to Kafka, producers need to send the
ordered byte sequence to the defined Kafka broker's network port. Subsequently,
it will read the response byte sequence from the Kafka broker in the same
ordered fashion. Kafka producer serializes every message data object into
ByteArrays before sending any record to the respective broker over the wire.
Similarly, it converts any byte sequence received from the broker as a response to
the message object.
Determining topic partition: It is the responsibility of the Kafka producer to
determine which topic partition data needs to be sent. If the partition is specified
by the caller program, then Producer APIs do not determine topic partition and
send data directly to it. However, if no partition is specified, then producer will
choose a partition for the message. This is generally based on the key of the
message data object. You can also code for your custom partitioner in case you
want data to be partitioned as per specific business logic for your enterprise.

Deep Dive into Kafka Producers

[42]

Determining the leader of the partition: Producers send data to the leader of the
partition directly. It is the producer's responsibility to determine the leader of the
partition to which it will write messages. To do so, producers ask for metadata
from any of the Kafka brokers. Brokers answer the request for metadata about
active servers and leaders of the topic's partitions at that point of time.
Failure handling/retry ability: Handling failure responses or number of retries is
something that needs to be controlled through the producer application. You can
configure the number of retries through Producer API configuration, and this has
to be decided as per your enterprise standards. Exception handling should be
done through the producer application component. Depending on the type of
exception, you can determine different data flows.
Batching: For efficient message transfers, batching is a very useful mechanism.
Through Producer API configurations, you can control whether you need to use
the producer in asynchronous mode or not. Batching ensures reduced I/O and
optimum utilization of producer memory. While deciding on the number of
messages in a batch, you have to keep in mind the end-to-end latency. End-to-
end latency increases with the number of messages in a batch.

Hopefully, the preceding paragraphs have given you an idea about the prime
responsibilities of Kafka producers. Now, we will discuss Kafka producer data flows. This
will give you a clear understanding about the steps involved in producing Kafka messages.

Internal implementation or the sequence of steps in Producer APIs may
differ for respective programming languages. Some of the steps can be
done in parallel using threads or callbacks.

Deep Dive into Kafka Producers

[43]

The following image shows the high-level steps involved in producing messages to the
Kafka cluster:

Deep Dive into Kafka Producers

[44]

Publishing messages to a Kafka topic starts with calling Producer APIs with appropriate
details such as messages in string format, topic, partitions (optional), and other
configuration details such as broker URLs and so on. The Producer API uses the passed on
information to form a data object in a form of nested key-value pair. Once the data object is
formed, the producer serializes it into byte arrays. You can either use an inbuilt serializer or
you can develop your custom serializer. Avro is one of the commonly used data serializers.

Serialization ensures compliance to the Kafka binary protocol and efficient
network transfer.

Next, the partition to which data needs to be sent is determined. If partition information is
passed in API calls, then producer would use that partition directly. However, in case
partition information is not passed, then producer determines the partition to which data
should be sent. Generally, this is decided by the keys defined in data objects. Once the
record partition is decided, producer determines which broker to connect to in order to
send messages. This is generally done by the bootstrap process of selecting the producers
and then, based on the fetched metadata, determining the leader broker.

Producers also need to determine supported API versions of a Kafka broker. This is
accomplished by using API versions exposed by the Kafka cluster. The goal is that producer
will support different versions of Producer APIs. While communicating with the respective
leader broker, they should use the highest API version supported by both the producers
and brokers.

Producers send the used API version in their write requests. Brokers can reject the write
request if a compatible API version is not reflected in the write request. This kind of setup
ensures incremental API evolution while supporting older versions of APIs.

Once a serialized data object is sent to the selected Broker, producer receives a response
from those brokers. If they receive metadata about the respective partition along with new
message offsets, then the response is considered successful. However, if error codes are
received in the response, then producer can either throw the exception or retry as per the
received configuration.

As we move further in the chapter, we will dive deeply into the technical side of Kafka
Producer APIs and write them using Java and Scala programs.

Deep Dive into Kafka Producers

[45]

Kafka Producer APIs
Kafka has provided you with a rich set of APIs to create applications to interact with it. We
will go through Producer API details and understand its uses.

Creating a Kafka producer involves the following steps:

Required configuration.1.
Creating a producer object.2.
Setting up a producer record.3.
Creating a custom partition if required.4.
Additional configuration.5.

Required configuration: In most applications, we first start with creating the initial
configuration without which we cannot run the application. The following are three
mandatory configuration parameters:

: This contains a list of Kafka brokers addresses. The
address is specified in terms of . We can specify one or more
broker detail, but we recommend that you provide at least two so that if one
broker goes down, producer can use the other one.

It is not necessary to specify all brokers as the Kafka producer queries this
configured broker for information about other brokers. In older versions of
Kafka, this property was , where we used to
specify a list of brokers .

: The message is sent to Kafka brokers in the form of a key-
value pair. Brokers expect this key-value to be in byte arrays. So we need to tell
producer which serializer class is to be used to convert this key-value object to a
byte array. This property is set to tell the producer which class to use to serialize
the key of the message.

Kafka provides us with three inbuilt serializer classes:
, , and .

All these classes are present in the
 package and implement the

serializer interface.

Deep Dive into Kafka Producers

[46]

: This is similar to the property, but this
property tells the producer which class to use in order to serialize the value. You
can implement your own serialize class and assign to this property.

Let's see how we do it in a programming context.

Here is how Java works for Producer APIs:

The Producer API in Scala:

The preceding code contains three specific points:

Properties object: We start with creating a property object; this object contains
the method that is used to put the configuration key-value pair in place
Serializer class: We will use for both key and value as our
key and value will be of the string type
Producer object: We create a producer object by passing the configuration object
to it, which provides the producer with specific information about broker servers,
serializer classes, and other configurations that we will see later

Deep Dive into Kafka Producers

[47]

Producer object and ProducerRecord object
Producer accepts the object to send records to the
topic. It contains a topic name, partition number, , key, and value. Partition
number, , and key are optional parameters, but the topic to which data will be
sent and value that contains the data is mandatory.

If the partition number is specified, then the specified partition will be used when
sending the record
If the partition is not specified but a key is specified, a partition will be chosen
using a hash of the key
If both key and partition are not specified, a partition will be assigned in a round-
robin fashion

Here is the in Java:

Here is an example of in Scala:

We have different constructors available for :

Here is the first constructor for :

The second constructor goes something like this:

The third constructor is as follows:

The final constructor of our discussion is as follows:

Deep Dive into Kafka Producers

[48]

Each record also has a associated with it. If we do not mention a ,
the producer will stamp the record with its current time. The eventually used
by Kafka depends on the type configured for the particular topic:

CreateTime: The of will be used to append a
 to the data

LogAppendTime: The Kafka broker will overwrite the of
 to the message and add a new when the message

is appended to the log

Once data is sent using the method, the broker persists that message to the partition
log and returns , which contains metadata of the server response for the
record, which includes , , , , , and
so on. We previously discussed common messaging publishing patterns. The sending of
messages can be either synchronous or asynchronous.

Synchronous messaging: Producer sends a message and waits for brokers to reply. The
Kafka broker either sends an error or . We can deal with errors depending
on their type. This kind of messaging will reduce throughput and latency as the producer
will wait for the response to send the next message.

Generally, Kafka retries sending the message in case certain connection errors occur.
However, errors related to serialization, message, and so on have to be handled by the
application, and in such cases, Kafka does not try to resend the message and throws an
exception immediately.

Java:

Scala:

Asynchronous messaging: Sometimes, we have a scenario where we do not want to deal
with responses immediately or we do not care about losing a few messages and we want to
deal with it after some time.

Deep Dive into Kafka Producers

[49]

Kafka provides us with the callback interface that helps in dealing with message reply,
irrespective of error or successful. can accept an object that implements the callback
interface.

The callback interface contains the method, which we need to override.
Let's look at the following example:

Here is the example in Java:

Scala:

Once we have the class implemented, we can simply use it in the method
as follows:

If Kafka has thrown an exception for the message, we will not have a null exception object.
We can also deal with successful and error messages accordingly in .

Deep Dive into Kafka Producers

[50]

Custom partition
Remember that we talked about key serializer and value serializer as well as partitions used
in Kafka producer. As of now, we have just used the default partitioner and inbuilt
serializer. Let's see how we can create a custom partitioner.

Kafka generally selects a partition based on the hash value of the key specified in messages.
If the key is not specified/null, it will distribute the message in a round-robin fashion.
However, sometimes you may want to have your own partition logic so that records with
the same partition key go to the same partition on the broker. We will see some best
practices for partitions later in this chapter. Kafka provides you with an API to implement
your own partition.

In most cases, a hash-based default partition may suffice, but for some scenarios where a
percentage of data for one key is very large, we may be required to allocate a separate
partition for that key. This means that if key K has 30 percent of total data, it will be
allocated to partition N so that no other key will be assigned to partition N and we will not
run out of space or slow down. There can be other use cases as well where you may want to
write . Kafka provides the partitioner interface, which helps us create
our own partition.

Here is an example in Java:

Deep Dive into Kafka Producers

[51]

Scala:

Additional producer configuration
There are other optional configuration properties available for Kafka producer that can play
an important role in performance, memory, reliability, and so on:

: This is the amount of memory that producer can use to buffer a
message that is waiting to be sent to the Kafka server. In simple terms, it is the
total memory that is available to the Java producer to collect unsent messages.
When this limit is reached, the producer will block the messages for

 before raising an exception. If your batch size is more, allocate
more memory to the producer buffer.

Additionally, to avoid keeping records queued indefinitely, you can set a
timeout using . If this timeout expires before a
message can be successfully sent, then it will be removed from the queue and
an exception will be thrown.

: This configuration helps in configuring when producer will receive
acknowledgment from the leader before considering that the message is
committed successfully:

Deep Dive into Kafka Producers

[52]

: Producer will not wait for any acknowledgment from the
server. Producer will not know if the message is lost at any point in
time and is not committed by the leader broker. Note that no retry
will happen in this case and the message will be completely lost.
This can be used when you want to achieve very high throughput
and when you don't care about potential message loss.

: Producer will receive an acknowledgment as soon as the
leader has written the message to its local log. If the leader fails to
write the message to its log, producer will retry sending the data
according to the retry policy set and avoid potential loss of
messages. However, we can still have message loss in a scenario
where the leader acknowledges to producer but does not replicate
the message to the other broker before it goes down.

: Producer will only receive acknowledgment when the
leader has received acknowledgment for all the replicas
successfully. This is a safe setting where we cannot lose data if the
replica number is sufficient to avoid such failures. Remember,
throughput will be lesser then the first two settings.

: This setting allows the producer to batch the messages based on the
partition up to the configured amount of size. When the batch reaches the limit,
all messages in the batch will be sent. However, it's not necessary that producer
wait for the batch to be full. It sends the batch after a specific time interval
without worrying about the number of messages in the batch.

: This represents an amount of time that a producer should wait for
additional messages before sending a current batch to the broker. Kafka producer
waits for the batch to be full or the configured time; if any condition
is met, it will send the batch to brokers. Producer will wait till the configured
amount of time in milliseconds for any additional messages to get added to the
current batch.

: By default, producer sends uncompressed messages to
brokers. When sending a single message, it will not make that much sense, but
when we use batches, it's good to use compression to avoid network overhead
and increase throughput. The available compressions are GZIP, Snappy, or LZ4.
Remember that more batching would lead to better compression.

: If message sending fails, this represents the number of times producer
will retry sending messages before it throws an exception. It is irrespective of
reseeding a message after receiving an exception.

Deep Dive into Kafka Producers

[53]

: This is the number of messages
producer can send to brokers without waiting for a response. If you do not care
about the order of the messages, then setting its value to more than 1 will increase
throughput. However, ordering may change if you set it to more than 1 with
retry enabled.

: If you want to use a custom partitioner for your producer,
then this configuration allows you to set the partitioner class, which implements
the partitioner interface.

: This is the amount of time a leader will wait for its followers to
acknowledge the message before sending an error to producer. This setting will
only help when is set to all.

Java Kafka producer example
We have covered different configurations and APIs in previous sections. Let's start coding
one simple Java producer, which will help you create your own Kafka producer.

Prerequisite

IDE: We recommend that you use a Scala-supported IDE such as IDEA,
NetBeans, or Eclipse. We have used JetBrains IDEA:

.
Build tool: Maven, Gradle, or others. We have used Maven to build our project.

: Add Kafka dependency to the file:

Java:

Deep Dive into Kafka Producers

[54]

Scala:

Deep Dive into Kafka Producers

[55]

The preceding example is a simple Java producer where we are producing string data
without a key. We have also hardcoded the topic name, which probably can be read
through configuration file or as an command line input. To understand producer, we have
kept it simple. However, we will see good examples in upcoming chapters where we will
follow good coding practice.

Common messaging publishing patterns
Applications may have different requirements of producer--a producer that does not care
about acknowledgement for the message they have sent or a producer that cares about
acknowledgement but the order of messages does not matter. We have different producer
patterns that can be used for application requirement. Let's discuss them one by one:

Fire-and-forget: In this pattern, producers only care about sending messages to
Kafka queues. They really do not wait for any success or failure response from
Kafka. Kafka is a highly available system and most of the time, messages would
be delivered successfully. However, there is some risk of message loss in this
pattern. This kind of pattern is useful when latency has to be minimized to the
lowest level possible and one or two lost messages does not affect the overall
system functionality. To use the fire and forget model with Kafka, you have to set
producer config to . The following image represents the Kafka-based fire
and forget model:

Deep Dive into Kafka Producers

[56]

One message transfers: In this pattern, producer sends one message at a time. It
can do so in synchronous or asynchronous mode. In synchronous mode,
producer sends the message and waits for a success or failure response before
retrying the message or throwing the exception. In asynchronous mode, producer
sends the message and receives the success or failure response as a callback
function. The following image indicates this model. This kind of pattern is used
for highly reliable systems where guaranteed delivery is the requirement. In this
model, producer thread waits for response from Kafka. However, this does not
mean that you cannot send multiple messages at a time. You can achieve that
using multithreaded producer applications.

Batching: In this pattern, producers send multiple records to the same partition
in a batch. The amount of memory required by a batch and wait time before
sending the batch to Kafka is controlled by producer configuration parameters.
Batching improves performance with bigger network packets and disk operations
of larger datasets in a sequential manner. Batching negates the efficiency issues
with respect to random reads and writes on disks. All the data in one batch
would be written in one sequential fashion on hard drives. The following image
indicates the batching message model:

Deep Dive into Kafka Producers

[57]

Best practices
Hopefully, at this juncture, you are very well aware of Kafka Producer APIs, their internal
working, and common patterns of publishing messages to different Kafka topics. This
section covers some of the best practices associated with Kafka producers. These best
practices will help you in making some of the design decisions for the producer component.

Let's go through some of the most common best practices to design a good producer
application:

Data validation: One of the aspects that is usually forgotten while writing a
producer system is to perform basic data validation tests on data that is to be
written on the Kafka cluster. Some such examples could be conformity to schema,
not null values for Key fields, and so on. By not doing data validation, you are
risking breaking downstream consumer applications and affecting the load
balancing of brokers as data may not be partitioned appropriately.
Exception handling: It is the sole responsibility of producer programs to decide
on program flows with respect to exceptions. While writing a producer
application, you should define different exception classes and as per your
business requirements, decide on the actions that need to be taken. Clearly
defining exceptions not only helps you in debugging but also in proper risk
mitigation. For example, if you are using Kafka for critical applications such as
fraud detection, then you should capture relevant exceptions to send e-mail alerts
to the OPS team for immediate resolution.
Number of retries: In general, there are two types of errors that you get in your
producer application. The first type are errors that producer can retry, such as
network timeouts and leader not available. The second type are errors that need
to be handled by producer programs as mentioned in the preceding section.
Configuring the number of retries will help you in mitigating risks related to
message losses due to Kafka cluster errors or network errors.
Number of bootstrap URLs: You should always have more than one broker
listed in your bootstrap broker configuration of your producer program. This
helps producers to adjust to failures because if one of the brokers is not available,
producers try to use all the listed brokers until it finds the one it can connect to.
An ideal scenario is that you should list all your brokers in the Kafka cluster to
accommodate maximum broker connection failures. However, in case of very
large clusters, you can choose a lesser number that can significantly represent
your cluster brokers. You should be aware that the number of retries can affect
your end-to-end latency and cause duplicate messages in your Kafka queues.

Deep Dive into Kafka Producers

[58]

Avoid poor partitioning mechanism: Partitions are a unit of parallelism in Kafka.
You should always choose an appropriate partitioning strategy to ensure that
messages are distributed uniformly across all topic partitions. Poor partitioning
strategy may lead to non-uniform message distribution and you would not be
able to achieve the optimum parallelism out of your Kafka cluster. This is
important in cases where you have chosen to use keys in your messages. In case
you do not define keys, then producer will use the default round-robin
mechanism to distribute your messages to partitions. If keys are available, then
Kafka will hash the keys and based on the calculated hash code, it will assign the
partitions. In a nutshell, you should choose your keys in a way that your message
set uses all available partitions.
Temporary persistence of messages: For highly reliable systems, you should
persist messages that are passing through your producer applications. Persistence
could be on disk or in some kind of database. Persistence helps you replay
messages in case of application failure or in case the Kafka cluster is unavailable
due to some maintenance. This again, should be decided based on enterprise
application requirements. You can have message purging techniques built in
your producer applications for messages that are written to the Kafka cluster.
This is generally used in conjunction with the acknowledgement feature that is
available with Kafka Producer APIs. You should purge messages only when
Kafka sends a success acknowledgement for a message set.
Avoid adding new partitions to existing topics: You should avoid adding
partitions to existing topics when you are using key-based partitioning for
message distribution. Adding new partitions would change the calculated hash
code for each key as it takes the number of partitions as one of the inputs. You
would end up having different partitions for the same key.

Summary
This concludes our section on Kafka producers. This chapter addresses one of the key
functionalities of Kafka message flows. The major emphasis in this chapter was for you to
understand how Kafka producers work at the logical level and how messages are passed
from Kafka producers to Kafka queues. This was covered in the Kafka Internals section. This
is an important section for you to understand before you learn how to code with Kafka
APIs. Unless you understand the logical working of Kafka producers, you will not be able
to do justice to producer application technical designing.

Deep Dive into Kafka Producers

[59]

We discussed Kafka Producer APIs and different components around it such as custom
practitioners. We gave both Java and Scala examples as both languages are heavily used in
enterprise applications. We would suggest you try all those examples on your consoles and
get a better grasp of how Kafka producers work. Another important design consideration
for Kafka producer is data flows. We covered some commonly used patterns in this chapter.
You should have a thorough understanding of these patterns. We covered some of the
common configuration parameters and performance tuning steps. These will definitely help
you in case you are writing Kafka producer code for the first time.

In the end, we wanted to bring in some of the best practices of using Kafka producers.
These best practices will help you in scalable designs and in avoiding some common
pitfalls. Hopefully, by the end of this chapter, you have mastered the art of designing and
coding Kafka producers.

In the next chapter, we will cover the internals of Kafka consumers, consumer APIs, and
common usage patterns. The next chapter will give us a good understanding of how
messages produced by producer are being consumed by different consumers irrespective of
knowing their producer.

44
Deep Dive into Kafka

Consumers
Every messaging system has two types of data flows. One flow pushes the data to the Kafka
queues and the other flow reads the data from those queues. In the previous chapter, our
focus was on the data flows that are pushing the data to Kafka queues using producer APIs.
After reading the previous chapter, you should have sufficient knowledge about publishing
data to Kafka queues using producer APIs in your application. In this chapter, our focus is
on the second type of data flow--reading the data from Kafka queues.

Before we start with a deep dive into Kafka consumers, you should have a clear
understanding of the fact that reading data from Kafka queues involves understanding
many different concepts and they may differ from reading data from traditional queuing
systems.

With Kafka, every consumer has a unique identity and they are in full
control of how they want to read data from each Kafka topic partition.
Every consumer has its own consumer offset that is maintained in
Zookeeper and they set it to the next location when they read data from a
Kafka topic.

In this chapter, we will cover different concepts of Kafka consumers. Overall, this chapter
covers how to consume messages from Kafka systems along with Kafka consumer APIs and
their usage. It will walk you through some examples of using Kafka consumer APIs with
Java and Scala programming languages and take a deep dive with you into consumer
message flows along with some of the common patterns of consuming messages from
Kafka topics.

Deep Dive into Kafka Consumers

[61]

We will cover the following topics in this chapter:

Kafka consumer internals
Kafka consumer APIs
Java Kafka consumer example
Scala Kafka consumer example
Common message consuming patterns
Best practices

Kafka consumer internals
In this section of the chapter, we will cover different Kafka consumer concepts and various
data flows involved in consuming messages from Kafka queues. As already mentioned,
consuming messages from Kafka is a bit different from other messaging systems. However,
when you are writing consumer applications using consumer APIs, most of the details are
abstracted. Most of the internal work is done by Kafka consumer libraries used by your
application.

Irrespective of the fact that you do not have to code for most of the consumer internal work,
you should understand these internal workings thoroughly. These concepts will definitely
help you in debugging consumer applications and also in making the right application
decision choices.

Understanding the responsibilities of Kafka
consumers
On the same lines of the previous chapter on Kafka producers, we will start by
understanding the responsibilities of Kafka consumers apart from consuming messages
from Kafka queues.

Let's look at them one by one:

Subscribing to a topic: Consumer operations start with subscribing to a topic. If
consumer is part of a consumer group, it will be assigned a subset of partitions
from that topic. Consumer process would eventually read data from those
assigned partitions. You can think of topic subscription as a registration process
to read data from topic partitions.

Deep Dive into Kafka Consumers

[62]

Consumer offset position: Kafka, unlike any other queues, does not maintain
message offsets. Every consumer is responsible for maintaining its own consumer
offset. Consumer offsets are maintained by consumer APIs and you do not have
to do any additional coding for this. However, in some use cases where you may
want to have more control over offsets, you can write custom logic for offset
commits. We will cover such scenarios in this chapter.
Replay / rewind / skip messages: Kafka consumer has full control over starting
offsets to read messages from a topic partition. Using consumer APIs, any
consumer application can pass the starting offsets to read messages from topic
partitions. They can choose to read messages from the beginning or from some
specific integer offset value irrespective of what the current offset value of a
partition is. In this way, consumers have the capability of replaying or skipping
messages as per specific business scenarios.
Heartbeats: It is the consumer's responsibility to ensure that it sends regular
heartbeat signals to the Kafka broker (consumer group leader) to confirm their
membership and ownership of designated partitions. If heartbeats are not
received by the group leader in a certain time interval, then the partition's
ownership would be reassigned to some other consumer in the consumer group.
Offset commits: Kafka does not track positions or offsets of the messages that are
read from consumer applications. It is the responsibility of the consumer
application to track their partition offset and commit it. This has two advantages-
-this improves broker performance as they do not have to track each consumer
offset and this gives flexibility to consumer applications in managing their offsets
as per their specific scenarios. They can commit offsets after they finish
processing a batch or they can commit offsets in the middle of very large batch
processing to reduce side-effects of rebalancing.
Deserialization: Kafka producers serialize objects into byte arrays before they are
sent to Kafka. Similarly, Kafka consumers deserialize these Java objects into byte
arrays. Kafka consumer uses the deserializers that are the same as serializers used
in the producer application.

Now that you have a fair idea of the responsibilities of a consumer, we can talk about
consumer data flows.

Deep Dive into Kafka Consumers

[63]

The following image depicts how data is fetched from Kafka consumers:

The first step toward consuming any messages from Kafka is topic subscription. Consumer
applications first subscribe to one or more topics. After that, consumer applications poll
Kafka servers to fetch records. In general terms, this is called poll loop. This loop takes care
of server co-ordinations, record retrievals, partition rebalances, and keeps alive the
heartbeats of consumers.

For new consumers that are reading data for the first time, poll loop first
registers the consumer with the respective consumer group and eventually
receives partition metadata. The partition metadata mostly contains
partition and leader information of each topic.

Deep Dive into Kafka Consumers

[64]

Consumers, on receiving metadata, would start polling respective brokers for partitions
assigned to them. If new records are found, they are retrieved and deserialized. They are
finally processed and after performing some basic validations, they are stored in some
external storage systems.

In very few cases, they are processed at runtime and passed to some external applications.
Finally, consumers commit offsets of messages that are successfully processed. The poll
loop also sends periodic keep-alive heartbeats to Kafka servers to ensure that they receive
messages without interruption.

Kafka consumer APIs
Like Kafka producer, Kafka also provides a rich set of APIs to develop a consumer
application. In previous sections of this chapter, you have learned about internal concepts of
consumer, working of consumer within a consumer group, and partition rebalance. We will
see how this concept helps in building a good consumer application.

Consumer configuration
KafkaConsumer object
Subscription and polling
Commit and offset
Additional configuration

Consumer configuration
Creating Kafka consumer also requires a few mandatory properties to be set. There are
basically four properties:

: This property is similar to what we defined in ,
Deep Dive into Kafka Producers, for producer configuration. It takes a list of Kafka
brokers' IPs.

: This is similar to what we specified in producer. The
difference is that in producer, we specified the class that can serialize the key of
the message. Serialize means converting a key to a ByteArray. In consumer, we
specify the class that can deserialize the ByteArray to a specific key type.
Remember that the serializer used in producer should match with the equivalent
deserializer class here; otherwise, you may get a serialization exception.

Deep Dive into Kafka Consumers

[65]

: This property is used to deserialize the message. We
should make sure that the deserializer class should match with the serializer class
used to produce the data; for example, if we have used to
serialize the message in producer, we should use to
deserialize the message.

: This property is not mandatory for the creation of a property but
recommended to use while creating. You have learned in the previous section
about consumer groups and their importance in performance. Defining a
consumer group while creating an application always helps in managing
consumers and increasing performance if needed.

Let's see how we set and create this in the real programming world.

Java:

Scala:

The preceding code contains three specific things:

 object: This object is used to initialize consumer properties.
Mandatory properties discussed earlier can be set as a key-value pair, where the
key would be the property name and value would be the value for the key.

Deep Dive into Kafka Consumers

[66]

: This is also a mandatory property that tells which deserializer
class is to be used to convert ByteArray to the required object. Class can be
different for key and value, but it should align with the serializer class used in
producer while publishing data to the topic. Any mismatch will lead to a
serialization exception.

: Once properties are set, we can create a consumer object by
passing this property to the class. Properties tell the consumer object about
brokers IP to connect, the group name that the consumer should be part of, the
deserialization class to use, and offset strategy to be used for the commit.

Subscription and polling
Consumer has to subscribe to some topic to receive data. The object has

, which takes a list of topics that the consumer wants to subscribe to. There
are different forms of the subscribe method.

Let's talk about the subscribe method in detail with its different signatures:

: This signature
takes a list of topic names to which the consumer wants to subscribe. It uses the
default rebalancer, which may affect data processing of the message.

: This signature takes regex to match topics that exist in Kafka. This
process is dynamic; any addition of a new topic matching the regex or deletion of
a topic matching the regex will trigger the rebalancer. The second parameter,

, will take your own class that implements this
interface. We will talk about this in detail.

: This takes a list of topics
and your implementation of .

Deep Dive into Kafka Consumers

[67]

Committing and polling
Polling is fetching data from the Kafka topic. Kafka returns the messages that have not yet
been read by consumer. How does Kafka know that consumer hasn't read the messages yet?

Consumer needs to tell Kafka that it needs data from a particular offset and therefore,
consumer needs to store the latest read message somewhere so that in case of consumer
failure, consumer can start reading from the next offset.

Kafka commits the offset of messages that it reads successfully. There are different ways in
which commit can happen and each way has its own pros and cons. Let's start looking at
the different ways available:

Auto commit: This is the default configuration of consumer. Consumer auto-
commits the offset of the latest read messages at the configured interval of time. If
we make and set

, then consumer will commit the offset every
second. There are certain risks associated with this option. For example, you set
the interval to 10 seconds and consumer starts consuming the data. At the
seventh second, your consumer fails, what will happen? Consumer hasn't
committed the read offset yet so when it starts again, it will start reading from the
start of the last committed offset and this will lead to duplicates.
Current offset commit: Most of the time, we may want to have control over
committing an offset when required. Kafka provides you with an API to enable
this feature. We first need to do and then use
the method to call a commit offset from the consumer thread.
This will commit the latest offset returned by polling. It would be better to use
this method call after we process all instances of , otherwise
there is a risk of losing records if consumer fails in between.

Java:

Deep Dive into Kafka Consumers

[68]

Scala:

Asynchronous commit: The problem with synchronous commit is that unless we
receive an acknowledgment for a commit offset request from the Kafka server,
consumer will be blocked. This will cost low throughput. It can be done by
making commit happen asynchronously. However, there is a problem in
asynchronous commit--it may lead to duplicate message processing in a few
cases where the order of the commit offset changes. For example, offset of
message 10 got committed before offset of message 5. In this case, Kafka will
again serve message 5-10 to consumer as the latest offset 10 is overridden by 5.

Java:

Scala:

Deep Dive into Kafka Consumers

[69]

You have learned about synchronous and asynchronous calls. However, the best practice is
to use a combination of both. Asynchronous should be used after every poll call and
synchronous should be used for behaviors such as the triggering of the rebalancer, closing
consumer due to some condition, and so on.

Kafka also provides you with an API to commit a specific offset.

Additional configuration
You have learned a few mandatory parameters in the beginning. Kafka consumer has lots of
properties and in most cases, some of them do not require any modification. There are a few
parameters that can help you increase performance and availability of consumers:

: If this is configured to true, then consumer will
automatically commit the message offset after the configured interval of time.
You can define the interval by setting . However,
the best idea is to set it to false in order to have control over when you want to
commit the offset. This will help you avoid duplicates and miss any data to
process.

: This is the minimum amount of data in bytes that the Kafka
server needs to return for a fetch request. In case the data is less than the
configured number of bytes, the server will wait for enough data to accumulate
and then send it to consumer. Setting the value greater than the default, that is,
one byte, will increase server throughput but will reduce latency of the consumer
application.

: This is the maximum amount of time that consumer will
wait for a response to the request made before resending the request or failing
when the maximum number of retries is reached.

Deep Dive into Kafka Consumers

[70]

: This property is used when consumer doesn't have a valid
offset for the partition from which it is reading the value.

latest: This value, if set to latest, means that the consumer will start
reading from the latest message from the partition available at that
time when consumer started.
earliest: This value, if set to earliest, means that the consumer will
start reading data from the beginning of the partition, which means
that it will read all the data from the partition.
none: This value, if set to none, means that an exception will be
thrown to the consumer.

: Consumer sends a heartbeat to the consumer group
coordinator to tell it that it is alive and restrict triggering the rebalancer. The
consumer has to send heartbeats within the configured period of time. For
example, if timeout is set for 10 seconds, consumer can wait up to 10 seconds
before sending a heartbeat to the group coordinator; if it fails to do so, the group
coordinator will treat it as dead and trigger the rebalancer.

: This represents the maximum amount of data
that the server will return per partition. Memory required by consumer for the

 object must be bigger then numberOfParition*valueSet. This
means that if we have 10 partitions and 1 consumer, and

 is set to 2 MB, then consumer will need 10*2 =20
MB for consumer record.

Remember that before setting this, we must know how much time consumer takes to
process the data; otherwise, consumer will not be able to send heartbeats to the consumer
group and the rebalance trigger will occur. The solution could be to increase session
timeout or decrease partition fetch size to low so that consumer can process it as fast as it
can.

Java Kafka consumer
The following program is a simple Java consumer which consumes data from topic test.
Please make sure data is already available in the mentioned topic otherwise no record will
be consumed.

Deep Dive into Kafka Consumers

[71]

Deep Dive into Kafka Consumers

[72]

Scala Kafka consumer
This is the Scala version of the previous program and will work the same as the previous
snippet. Kafka allows you to write consumer in many languages including Scala.

Deep Dive into Kafka Consumers

[73]

Rebalance listeners
We discussed earlier that in case of addition or removal of consumer to the consumer
group, Kafka triggers the rebalancer and consumer loses the ownership of the current
partition. This may lead to duplicate processing when the partition is reassigned to
consumer. There are some other operations such as database connection operation, file
operation, or caching operations that may be part of consumer; you may want to deal with
this before ownership of the partition is lost.

Kafka provides you with an API to handle such scenarios. It provides the
 interface that contains the and

 methods. We can implement these two methods and pass an
object while subscribing to the topic using the method discussed earlier:

Deep Dive into Kafka Consumers

[74]

Common message consuming patterns
Here are a few of the common message consuming patterns:

Consumer group - continuous data processing: In this pattern, once consumer is
created and subscribes to a topic, it starts receiving messages from the current
offset. The consumer commits the latest offsets based on the count of messages
received in a batch at a regular, configured interval. The consumer checks
whether it's time to commit, and if it is, it will commit the offsets. Offset commit
can happen synchronously or asynchronously. It uses the auto-commit feature of
the consumer API.

The key point to understand in this pattern is that consumer is not
controlling the message flows. It is driven by the current offset of the
partition in a consumer group. It receives messages from that current offset
and commits the offsets as and when messages are received by it after
regular intervals. The main advantage of this pattern is that you have a
complete consumer application running with far less code, and as this kind
of pattern mostly depends on the existing consumer APIs, it is less buggy.

Deep Dive into Kafka Consumers

[75]

The following image represents the continuous data processing pattern:

Consumer group - discrete data processing: Sometimes you want more control
over consuming messages from Kafka. You want to read specific offsets of
messages that may or may not be the latest current offset of the particular
partition. Subsequently, you may want to commit specific offsets and not the
regular latest offsets. This pattern outlines such a type of discrete data processing.
In this, consumers fetch data based on the offset provided by them and they
commit specific offsets that are as per their specific application requirements.

Commit can happen synchronously or asynchronously. The consumer API
allows you to call and and pass a map of
partitions and offsets that you wish to commit.

Deep Dive into Kafka Consumers

[76]

This pattern can be used in a variety of ways. For example, to go back a few
messages or skip ahead a few messages (perhaps a time-sensitive application
that is falling behind will want to skip ahead to more relevant messages), but
the most exciting use case for this ability is when offsets are stored in a
system other than Kafka.
Think about this common scenario - your application is reading events from
Kafka (perhaps a clickstream of users in a website), processes the data
(perhaps clean up clicks by robots and add session information), and then
stores the results in a database, NoSQL store, or Hadoop. Suppose that we
really don't want to lose any data nor do we want to store the same results in
the database twice. The following image shows the discrete data processing
pattern:

Deep Dive into Kafka Consumers

[77]

Best practices
After going through the chapter, it is important to note a few of the best practices. They are
listed as follows:

Exception handling: Just like producers, it is the sole responsibility of consumer
programs to decide on program flows with respect to exceptions. A consumer
application should define different exception classes and, as per your business
requirements, decide on the actions that need to be taken.
Handling rebalances: Whenever any new consumer joins consumer groups or
any old consumer shuts down, a partition rebalance is triggered. Whenever a
consumer is losing its partition ownership, it is imperative that they should
commit the offsets of the last event that they have received from Kafka. For
example, they should process and commit any in-memory buffered datasets
before losing the ownership of a partition. Similarly, they should close any open
file handles and database connection objects.
Commit offsets at the right time: If you are choosing to commit offset for
messages, you need to do it at the right time. An application processing a batch of
messages from Kafka may take more time to complete the processing of an entire
batch; this is not a rule of thumb but if the processing time is more than a minute,
try to commit the offset at regular intervals to avoid duplicate data processing in
case the application fails. For more critical applications where processing
duplicate data can cause huge costs, the commit offset time should be as short as
possible if throughput is not an important factor.
Automatic offset commits: Choosing an auto-commit is also an option to go with
where we do not care about processing duplicate records or want consumer to
take care of the offset commit automatically. For example, the auto-commit
interval is 10 seconds and at the seventh second, consumer fails. In this case, the
offset for those seven seconds has not been committed and the next time the
consumer recovers from failure, it will again process those seven seconds records.

Deep Dive into Kafka Consumers

[78]

Keeping the auto-commit interval low will always result in avoiding less
processing of duplicate messages.

In the Committing and polling section, a call to the poll function will always
commit the last offset of the previous poll. In such cases, you must ensure that all
the messages from the previous poll have been successfully processed, otherwise
you may lose records if the consumer application fails after a new previous poll
last offset commit and before all the messages from the previous poll call are
processed. So always make sure that the new call to polling only happens when
all the data from the previous poll call is finished.

Summary
This concludes our section on Kafka consumers. This chapter addresses one of the key
functionalities of Kafka message flows. The major focus was on understanding consumer
internal working and how the number of consumers in the same group and number of topic
partitions can be utilized to increase throughput and latency. We have also covered how to
create consumers using consumer APIs and how to handle message offsets in case
consumer fails.
We started with Kafka consumer APIs and also covered synchronous and asynchronous
consumers and their advantages and disadvantages. We explained how to increase the
throughput of a consumer application. We then went through the consumer rebalancer
concept and when it gets triggered and how we can create our own rebalancer. We also
focused on different consumer patterns that are used in different consumer applications.
We focused on when to use it and how to use it.

In the end, we wanted to bring in some of the best practices of using Kafka consumers.
These best practices will help you in scalable designs and in avoiding some common
pitfalls. Hopefully, by the end of this chapter, you have mastered the art of designing and
coding Kafka consumers.

In the next chapter, we will go through an introduction to Spark and Spark streaming, and
then we will look at how Kafka can be used with Spark for a real-time use case and the
different ways to integrate Spark with Kafka.

55
Building Spark Streaming

Applications with Kafka
We have gone through all the components of Apache Kafka and different APIs that can be
used to develop an application which can use Kafka. In the previous chapter, we learned
about Kafka producer, brokers, and Kafka consumers, and different concepts related to best
practices for using Kafka as a messaging system.

In this chapter, we will cover Apache Spark, which is distributed in memory processing
engines and then we will walk through Spark Streaming concepts and how we can integrate
Apache Kafka with Spark.

In short, we will cover the following topics:

Introduction to Spark
Internals of Spark such as RDD
Spark Streaming
Receiver-based approach (Spark-Kafka integration)
Direct approach (Spark-Kafka integration)
Use case (Log processing)

Building Spark Streaming Applications with Kafka

[80]

Introduction to Spark
Apache Spark is distributed in-memory data processing system. It provides rich set of API
in Java, Scala, and Python. Spark API can be used to develop applications which can do
batch and real-time data processing and analytics, machine learning, and graph processing
of huge volumes of data on a single clustering platform.

Spark development was started in 2009 by a team at Berkeley's AMPLab
for improving the performance of MapReduce framework.

MapReduce is another distributed batch processing framework developed by Yahoo in
context to Google research paper.

What they found was that an application which involves an iterative approach to solving
certain problems can be improvised by reducing disk I/O. Spark allows us to cache a large
set of data in memory and applications which uses iterative approach of transformation can
use benefit of caching to improve performance. However, the iterative approach is just a
small example of what Spark provides; there are a lot of features in the current version
which can help you solve complex problems easily.

Spark architecture
Like Hadoop, Spark also follows the master/slave architecture, master daemons called
Spark drivers, and multiple slave daemons called executors. Spark runs on a cluster and
uses cluster resource managers such as YARN, Mesos, or Spark Standalone cluster
manager.

Building Spark Streaming Applications with Kafka

[81]

Let's walk through each component:

Spark driver is master in the Spark architecture. It is the entry point of Spark application.

Spark driver is responsible for the following tasks:

Spark Context: Spark Context is created in Spark driver. The Context object is
also responsible for initializing application configuration.

DAG creation: Spark driver is also responsible for creating lineage based on RDD
operations and submitting that to DAG scheduler. Lineage is direct acyclic graph
(DAG). This graph is now submitted to DAG scheduler.

Building Spark Streaming Applications with Kafka

[82]

Stage Creation: DAG Scheduler in a driver is responsible for creating stages of
tasks based on a lineage graph.

Task Schedule and Execution: Once the stage of tasks is created, task scheduler
in the driver schedule this task using cluster manager and control its execution.

RDD metadata: Driver maintains metadata of RDD and their partition. In case of
partition failure, Spark can easily recompute the partition or RDD.

Spark workers: Spark workers are responsible for managing executors running on its own
machine and making communication with master node.

They are listed as follows:

Backend process: Each worker node contains one or more backend process. Each
backend process is responsible for launching the executor.
Executors: Each executor consists of a thread pool where each thread is
responsible for executing tasks in parallel. Executors are responsible for reading,
processing, and writing data to a target location or file.

There is a lot more to the internals of the Spark architecture but they are beyond the scope
of this book. However, we are going to give a basic overview of Spark.

Pillars of Spark
The following are the important pillars of Spark:

Resilient Distributed Dataset (RDD): RDD is the backbone of Spark. RDD is an immutable,
distributed, fault tolerant collection of objects. RDDs are divided into logical partitions
which are computed on different worker machines.

In short, if you read any file in Spark, the data of that file will together form a single, large
RDD. Any filtering operation on this RDD will produce a new RDD. Remember, RDD is
immutable. This means that every time we modify the RDD, we have a new RDD. This
RDD is divided into logical chunks known as partitions, which is a unit of parallelism in
Spark. Each chunk or partition is processed on a separate distributed machine.

Building Spark Streaming Applications with Kafka

[83]

The following diagram will give you a better idea about partitioning:

There are two types of operations performed on RDD:

Transformation: Transformation on RDD produces another RDD.
Transformation means applying some filtering or modifying the existing RDD.
This produces another RDD.

Building Spark Streaming Applications with Kafka

[84]

Action: An action operation is responsible for the execution trigger to Spark.
Spark lazily evaluates RDD, which means unless Spark encounters an action, it
does not start execution. Action refers to storing the result in a file, dumping the
result to the console, and so on.

Directed acyclic graph (DAG): As discussed earlier, RDD can be transformed and this
results in a new RDD, and this process can go too deep until we execute some action on it.
Whenever an action is encountered, Spark creates a DAG and then submits it to Scheduler.
Let's take the following example of a word count in Spark:

Once DAG is submitted, DAG scheduler creates stages of tasks based on operators. Task
scheduler then launches this task with the help of cluster manager and worker nodes
execute it.

The Spark ecosystem
As discussed previously, Spark can be used for various purposes, such as real-time
processing, machine learning, graph processing, and so on. Spark consists of different
independent components which can be used depending on use cases. The following figures
give a brief idea about Spark's ecosystem:

Building Spark Streaming Applications with Kafka

[85]

Spark core: Spark core is the base and generalized layer in Spark ecosystem. It
contains basic and common functionality which can be used by all the layers
preceding it. This means that any performance improvement on the core is
automatically applied to all the components preceding it. RDD, which is main
abstraction of Spark, is also part of core layer. It also contains API which can be
used to manipulate RDDs.

Other common functional components such as task scheduler, memory
management, fault tolerance, and the storage interaction layer are also part of
Spark core.

Spark Streaming: Spark Streaming can be used for processing the real-time
streaming data. We will be using this while discussing integration of Spark with
Kafka. Spark Streaming is not real-time but its near real-time as it processes data
in micro batches.

Building Spark Streaming Applications with Kafka

[86]

Spark SQL: Spark SQL provides the API that can be used to run SQL like queries
on a structured RDD, like JSONRDD and CSVRDD.
Spark MLlib: MLlib is used to create scalable machine learning solutions over
Spark. It provides a rich set of machine learning algorithms such as regressing,
classification, clustering, filtering, and so on.
Spark GraphX: GraphX is used to deal with use cases where graph processing
plays a significant role, such as building a recommendation engine for complex
social networks. It provides a rich set of efficient algorithms and their API which
can be used to deal with graphs.

Spark Streaming
Spark Streaming is built on top of Spark core engine and can be used to develop a fast,
scalable, high throughput, and fault tolerant real-time system. Streaming data can come
from any source, such as production logs, click-stream data, Kafka, Kinesis, Flume, and
many other data serving systems.
Spark streaming provides an API to receive this data and apply complex algorithms on top
of it to get business value out of this data. Finally, the processed data can be put into any
storage system. We will talk more about Spark Streaming integration with Kafka in this
section.

Basically, we have two approaches to integrate Kafka with Spark and we will go into detail
on each:

Receiver-based approach
Direct approach

The receiver-based approach is the older way of doing integration. Direct API integration
provides lots of advantages over the receiver-based approach.

Receiver-based integration
Spark uses Kafka high level consumer API to implement receiver. This is an old approach
and data received from Kafka topic partitions are stored in Spark executors and processes
by streaming jobs. However, Spark receiver replicates the message across all the executors,
so that if one executor fails, another executor should be able to provide replicated data for
processing. In this way, Spark receiver provides fault tolerance for data.

Building Spark Streaming Applications with Kafka

[87]

The following diagram will give you a good idea about the receiver-based integration:

Spark receivers only acknowledge to broker when message is successfully replicated into
executors otherwise it will not commit offset of messages to Zookeeper and message will be
treated as unread. This seems to handle guaranteed processing but there are still some cases
where it won't.

What would happen if Spark driver fails? When Spark driver fails, it also kills
all the executors, which causes data to be lost which was available on
executor. What if Spark receiver has already sent acknowledgment for those
messages and has successfully committed offset to Zookeeper? You lose those
records because you don't know how many of them have been processed and
how many of them have not.

Building Spark Streaming Applications with Kafka

[88]

To avoid such problems, we can use a few techniques. Let's discuss them:

Write-ahead Log (WAL): We have discussed data loss scenarios when a driver
fails. To avoid data loss, Spark introduced write-ahead logs in version 1.2, which
allows you to save buffered data into a storage system, such as HDFS or S3. Once
driver is recovered and executors are up, it can simply read data from WAL and
process it.

However, we need to explicitly enable the write-ahead log while executing
the Spark streaming application and write the logic for processing the data
available in WAL.

Exactly one Processing: WAL may guarantee you no data loss but there can be
duplicate processing of data by Spark jobs. WAL does not guarantee exactly one
processing; in other words, it does not ensure avoiding duplicate processing of
data.

Let's take a scenario. Spark reads data from Kafka stores into executor buffer,
replicates it to another executor for fault tolerance. Once the replication is
done, it writes the same message to a write-ahead log and before sending
acknowledgment back to Kafka driver it fails. Now when the driver recovers
from failure, it will first process the data available in WAL and then will start
consuming the messages from Kafka which will also replay all the messages
which have not been acknowledged by Spark receiver but have been written
to WAL and it leads to duplicate processing of message.

Checkpoint: Spark also provides a way to put checkpoints in a streaming
application. Checkpoint stores the information about what has been executed,
what is still in the queue to be executed, configuration of application, and so on.

Enabling checkpoints helps in providing an application's important
metadata information which can be useful when driver recovers from
failure to know what it has to process and what it has to with processed
data. Checkpoint data is again stored into persistent systems, such as
HDFS.

Disadvantages of receiver-based approach
The following are a few disadvantages of the receiver-based approach:

Building Spark Streaming Applications with Kafka

[89]

Throughput: Enabling write-ahead log and checkpoint may cause you less
throughput because time may be consumed in writing data to HDFS. It's obvious
to have low throughput when there is lot of disk I/O involved.
Storage: We store one set of data in Spark executor buffer and another set of the
same data in write-ahead log HDFS. We are using two stores to store the same
data and storage needs may vary, based on application requirements.
Data Loss: If a write-ahead log is not enabled, there is a huge possibility of losing
data and it may be very critical for some important applications.

Java example for receiver-based integration
Let us take an example to be sure:

Building Spark Streaming Applications with Kafka

[90]

Building Spark Streaming Applications with Kafka

[91]

Scala example for receiver-based integration
Here is an example on Scala:

Direct approach
In receiver-based approach, we saw issues of data loss, costing less throughput using write-
ahead logs and difficulty in achieving exactly one semantic of data processing. To overcome
all these problems, Spark introduced the direct stream approach of integrating Spark with
Kafka.

Spark periodically queries messages from Kafka with a range of offsets, which in short we
call batch. Spark uses a low level consumer API and fetches messages directly from Kafka
with a defined range of offsets. Parallelism is defined by a partition in Kafka and the Spark
direct approach takes advantage of partitions.

Building Spark Streaming Applications with Kafka

[92]

The following illustration gives a little detail about parallelism:

Let's look at a few features of the direct approach:

Parallelism and throughput: The number of partitions in RDD is defined by the
number of partitions in a Kafka topic. These RDD partitions read messages from
Kafka topic partitions in parallel. In short, Spark Streaming creates RDD partition
equal to the number of Kafka partitions available to consume data in parallel
which increases throughput.
No write-ahead log: Direct approach does not use write-ahead log to avoid data
loss. Write-ahead log was causing extra storage and possibility of leading to
duplicate data processing in few cases. Direct approach, instead, reads data
directly from Kafka and commits the offset of processed messages to checkpoint.
In case of failure, Spark knows where to start.

Building Spark Streaming Applications with Kafka

[93]

No Zookeeper: By default, direct approach does not use Zookeeper for
committing offset consumed by Spark. Spark uses a checkpoint mechanism to
deal with data loss and to start execution from the last execution point in case of
failure. However, Zookeeper based offset commit can be done using Curator
Client.
Exactly one processing: Direct approach provides opportunity to achieve exactly
one processing, which means that no data is processed twice and no data is lost.
This is done using checkpoint maintained by Spark Streaming application which
tells Spark Streaming application about where to start in case of failure.

Java example for direct approach
Again, let us take a Java example:

Building Spark Streaming Applications with Kafka

[94]

Scala example for direct approach
Here is the Scala example for direct approach:

Building Spark Streaming Applications with Kafka

[95]

Use case log processing - fraud IP detection
This section will cover a small use case which uses Kafka and Spark Streaming to detect a
fraud IP, and the number of times the IP tried to hit the server. We will cover the use case in
the following:

 Producer: We will use Kafka Producer API, which will read a log file and
publish records to Kafka topic. However, in a real case, we may use Flume or
producer application, which directly takes a log record on a real-time basis and
publish to Kafka topic.
Fraud IPs list: We will maintain a list of predefined fraud IP range which can be
used to identify fraud IPs. For this application we are using in memory IP list
which can be replaced by fast key based lookup, such as HBase.
Spark Streaming: Spark Streaming application will read records from Kafka
topic and will detect IPs and domains which are suspicious.

Maven
Maven is a build and project management tool and we will be building this project using
Maven. I recommend using Eclipse or IntelliJ for creating projects. Add the following
dependencies and plugins to your :

Building Spark Streaming Applications with Kafka

[96]

Building Spark Streaming Applications with Kafka

[97]

Building Spark Streaming Applications with Kafka

[98]

Building Spark Streaming Applications with Kafka

[99]

Producer
You can use IntelliJ or Eclipse to build a producer application. This producer reads a log file
taken from an Apache project which contains detailed records like:

You can have just one record in the test file and the producer will produce records by
generating random IPs and replace it with existing. So, we will have millions of distinct
records with unique IP addresses.

Record columns are separated by space delimiters, which we change to commas in
producer. The first column represents the IP address or the domain name which will be
used to detect whether the request was from a fraud client. The following is the Java Kafka
producer which remembers logs.

Property reader
We preferred to use a property file for some important values such as topic, Kafka broker
URL, and so on. If you want to read more values from the property file, then feel free to
change it in the code.

 file:

The following is an example of the property reader:

Building Spark Streaming Applications with Kafka

[100]

Producer code
A producer application is designed to be like a real-time log producer where the producer
runs every three seconds and produces a new record with random IP addresses. You can
add a few records in the file and then the producer will take care of producing
millions of unique records from those three records.

We have also enabled auto creation of topics so you need not create topic before running
your producer application. You can change the topic name in the
file mentioned before:

Building Spark Streaming Applications with Kafka

[101]

Building Spark Streaming Applications with Kafka

[102]

Fraud IP lookup
The following classes will help us as a lookup service which will help us to identify if
request is coming from a fraud IP. We have used interface before implementing the class so
that we can add more NoSQL databases or any fast lookup service. You can implement this
service and add a lookup service by using HBase or any other fast key lookup service.
We are using in-memory lookup and just added the fraud IP range in the cache. Add the
following code to your project:

 is the implementation for the interface which does in
memory lookup:

Building Spark Streaming Applications with Kafka

[103]

Expose hive table
We will create hive table over base directory where a streaming record is getting pushed on
HDFS. This will help us track the number of fraud records being generated over time:

You can also expose hive tables on top of the incoming data which is being pushed to Kafka
topic in order to track the percentage of IPs being detected as fraud from an overall record.
Create one more table and add the following line to your streaming application explained
later:

Also, create the following table in hive:

Remember, we can also use to push data to hive, but for this use case we made
it very simple.

Building Spark Streaming Applications with Kafka

[104]

Streaming code
We haven't focused much on modularization in our code. The IP fraud detection
application scans each record and filters those records which qualify as a the fraud record
based on fraud IP lookup service. The lookup service can be changed to use any fast lookup
database. We are using in memory lookup service for this application:

Building Spark Streaming Applications with Kafka

[105]

Run the application using the following command:

Once the Spark Streaming application starts, run Kafka producer and check the records in
respective hive tables.

Building Spark Streaming Applications with Kafka

[106]

Summary
In this chapter, we learned about Apache Spark, its architecture, and Spark ecosystem in
brief. Our focus was on covering different ways we can integrate Kafka with Spark and
their advantages and disadvantages. We also covered APIs for the receiver-based approach
and direct approach. Finally, we covered a small use case about IP fraud detection through
the log file and lookup service. You can now create your own Spark streaming application.
In the next chapter, we will cover another real-time streaming application, Apache Heron
(successor of Apache Storm). We will cover how Apache Heron is different from Apache
Spark and when to use which one.

66
Building Storm Applications with

Kafka
In the previous chapter, we learned about Apache Spark, a near real-time processing engine
which can process data in micro batches. But when it comes to very low latency
applications, where seconds of delay may cause big trouble, Spark may not be a good fit for
you. You would need a framework which can handle millions of records per second and
you would want to process record by record, instead of processing in batches, for lower
latency. In this chapter, we will learn about the real-time processing engine, Apache Storm.
Storm was first designed and developed by Twitter, which later became an open source
Apache project.

In this chapter, we will learn about:

Introduction to Apache Storm
Apache Storm architecture
Brief overview of Apache Heron
Integrating Apache Storm with Apache Kafka (Java/Scala example)
Use case (log processing)

Building Storm Applications with Kafka

[108]

Introduction to Apache Storm
Apache Storm is used to handle very sensitive applications where even a delay of 1 second
can mean huge losses. There are many companies using Storm for fraud detection, building
recommendation engines, triggering suspicious activity, and so on. Storm is stateless; it uses
Zookeeper for coordinating purposes, where it maintains important metadata information.

Apache Storm is a distributed real-time processing framework which has
the ability to process a single event at a time with millions of records being
processed per second per node. The streaming data can be bounded or
unbounded; in both situations Storm has the capability to reliably process
it.

Storm cluster architecture
Storm also follows the master-slave architecture pattern, where Nimbus is the master and
Supervisors are the slaves:

Nimbus: The master node of Storm cluster. All other nodes in the cluster are
called worker nodes. Nimbus distributes data among the worker nodes and also
assigns task to worker nodes. Nimbus also monitors for worker failure and if a
worker fails, it reassigns a task to some other worker.
Supervisors: Supervisors are responsible for completing tasks assigned by
Nimbus and sending available resource information. Each worker node has
exactly one supervisor and each worker node has one or more worker process
and each supervisor manages multiple worker processes.

Building Storm Applications with Kafka

[109]

Remember we said that Storm is stateless; both Nimbus and Supervisor save its state on
Zookeeper. Whenever Nimbus receives a Storm application execution request, it asks for
available resources from Zookeeper and then schedules the task on available supervisors. It
also saves progress metadata to Zookeeper, so in case of failure, if Nimbus restarts, it knows
where to start again.

Building Storm Applications with Kafka

[110]

The concept of a Storm application
The Apache Storm application consists of two components:

Spout: Spout is used to read the stream of data from an external source system
and pass it to topology for further processing. Spout can be either reliable or
unreliable.

Reliable spout: Reliable spout is capable of replaying the data in
case it failed during the processing. In such a case, spout waits for
acknowledgement for each event it has emitted for further
processing. Remember this may cost more processing time but is
extremely helpful for those applications for which we cannot
manage to lose a single record for processing, such as ATM fraud
detection applications.
Unreliable spout: Unreliable spout does not care about re-emitting
the spout in case of event failure. This can be useful where losing
100-200 records does not cause any loss.

Bolt: Processing of records is done in bolts. Stream emitted by spout is received
by Storm bolt, and after processing, the record can be stored in a database, file, or
any storage system through bolt.
Topology: Topology is entire flow of an application where spout and bolt are
bound together to achieve an application objective. We create a Storm topology
inside a program and then submit it to a Storm cluster. Unlike any batch job,
Storm topology runs forever. If you want to stop a Storm topology, you need to
handle it separately or kill it forcefully.

Here is a detailed image to help you better understand the different types of spouts:

Building Storm Applications with Kafka

[111]

One spout can emit data to multiple bolts at a time and can track for an acknowledgement
for all bolts.

Detailed explanation of the internals of Storm are beyond the scope of this
book. You may refer to Apache Storm documentation at

. Our focus will be on how we can leverage Apache Kafka with
Apache Storm to build real-time processing application.

Building Storm Applications with Kafka

[112]

Introduction to Apache Heron
Apache Heron is the successor to Apache Storm with backward compatibility. Apache
Heron
provides more power in terms of throughput, latency, and processing capability over
Apache Storm as use cases in Twitter started increasing, they felt of having new stream
processing engine because of the following Storm bottleneck:

Debugging: Twitter faced challenges in debugging due to code errors, hardware
failures, and so on. The root cause was very difficult to detect because of no clear
mapping of logical unit of computation to physical processing.
Scale on Demand: Storm requires dedicated cluster resources, which needs
separate hardware resources to run Storm topology. This restricts Storm from
using cluster resources efficiently and limits it to scale on demand. This also
limits its ability to share cluster resources across different processing engines but
not just Storm.
Cluster Manageability: Running a new Storm topology requires manual isolation
of machines. Also killing the topology requires decommissioning of machines
allocated to that topology. Think about doing this in production environment. It
will cost you more in terms of infrastructure cost, manageability cost, and
productivity for users.

Apache Heron is the successor of Apache Storm, with backward
compatibility. Apache Heron provides more power in terms of
throughput, latency, and processing capability over Apache Storm.

Keeping all these limitations as an preference, Twitter decided to build a new Stream
processing engine, which could overcome these limitations and also run an old Storm
production topology efficiently.

Heron architecture
The development of Heron started with Storm's compatibility. Heron also runs topology
and all topologies is submitted to the scheduler known as Aurora scheduler. Aurora
scheduler runs each topology as an Aurora job on multiple containers. Each job consists of
multiple topology processes discussed in Topology architecture section.

Building Storm Applications with Kafka

[113]

Here is an illustration to help you understand better:

Heron topology architecture
The Heron topology is similar to Storm topology, which consist of spout and bolt, where
spout is responsible for reading the input from source and bolt is responsible for doing the
actual processing.
The following core components of Heron topology are discussed in depth in the sections as
follows:

Topology Master
Container
Stream Manager
Heron Instance

Building Storm Applications with Kafka

[114]

Metrics Manager
Heron Tracker

Topology Master: Similar to Application Master in YARN, Heron also creates
multiple containers and creates a Topology Master (TM) on first container which
manages end to end life cycle of topology. Topology Master also creates an entry
in Zookeeper so that it's easily discoverable and no other Topology Master exists
for the same topology.
Containers: The concept of container is similar to that of YARN where one
machine can have multiple containers running on their own JVM. Each container
has single Stream Manager (SM), single Metric Manager, and multiple Heron
Instance (HI). Each container communicates with TM to ensure correctness of
topology.

Building Storm Applications with Kafka

[115]

Stream Manager: The name itself indicates its functionality; it manages the
routing of streams within the topology. All the Stream Managers are connected
with each other to ensure back-pressure is handled efficiently. If it finds that any
bolt is processing streams very slowly, it manages spout serving data to that bolt
and cuts off input to bolt.
Heron Instance: Each Heron Instance in a container is connected to Stream
Manager, and they are responsible for running the actual spout and bolt of
topology. It helps in making the debugging process very easy, as each Heron
instance is a JVM process.
Metric Manager: As discussed previously, each container contains one Metric
Manager. Stream Manager and all Heron instances report their metrics to Metric
Manager, which then sends these metrics to monitoring system. This makes
monitoring of topology simple and saves lots of effort and development time.

Integrating Apache Kafka with Apache Storm
- Java
As discussed previously, we are now familiar with the Storm topology concept and will
now look into how we can integrate Apache Storm with Apache Kafka. Apache Kafka is
most widely used with Apache Storm in production applications. Let us look into different
APIs available for integration:

KafkaSpout: Spout in Storm is responsible for consuming data from the source
system and passing it to bolts for further processing. KafkaSpout is specially
designed for consuming data from Kafka as a stream and then passing it to bolts
for further processing. KafkaSpout accepts , which contains
information about Zookeeper, Kafka brokers, and topics to connect with.

Look at the following code:

Building Storm Applications with Kafka

[116]

Spout acts as a Kafka consumer and therefore it needs to manage the offset of
records somewhere. Spout uses Zookeeper to store the offset, and the last two
parameters in denote the Zookeeper root directory path and for
this particular spout. The offset will be stored as shown next, where , are the
partition numbers:

SchemeAsMultiScheme: It indicates how the ByteBuffer consumed from Kafka
gets transformed into a Storm tuple. We have used the
implementation which will convert bytebuffer into string.

Now the configuration is passed to and the spout is set to
topology:

We will now take a famous wordcount example and will run our Storm topology.

Example
We will be taking the famous wordcount example for Storm Kafka integration, where

 will read input from kafka topic and it will be processed by split bolt and
count bolt. Let's start with topology class.

Topology Class: The flow connection of spouts and bolts together forms a topology. In the
following code, we have the class which allows us to set the connection
flow:

In the preceding code, we can see that spout is set to and then is
passed an input to string split bolt and splitbolt is passed to wordcount bolt. In this way,
end to end topology pipeline gets created.

Building Storm Applications with Kafka

[117]

Building Storm Applications with Kafka

[118]

String Split Bolt: This is responsible for splitting lines into words and then transferring it to
the next bolt in the topology pipeline:

Building Storm Applications with Kafka

[119]

Wordcount Calculator Bolt: It takes the input emitted by split bolt and then stores its count
in Map, which finally gets dumped into console:

Building Storm Applications with Kafka

[120]

Integrating Apache Kafka with Apache Storm
- Scala
This section contains the Scala version of the wordcount program discussed previously.
Topology Class: Let us try the topology class with Scala:

Building Storm Applications with Kafka

[121]

String Split Bolt: The same String Split Bolt on Scala:

Building Storm Applications with Kafka

[122]

Wordcount Bolt: Example of Wordcount Bolt is given next:

Building Storm Applications with Kafka

[123]

Use case log processing in Storm, Kafka,
Hive
We will use the same use case of IP Fraud Detection which we used in , Building
Spark Streaming Applications with Kafka. Let us begin with the code and how it works. Copy
the following classes from , Building Spark Streaming Applications with Kafka, into
your Storm Kafka use case:

:

Building Storm Applications with Kafka

[124]

Building Storm Applications with Kafka

[125]

Building Storm Applications with Kafka

[126]

Building Storm Applications with Kafka

[127]

Producer
We will be reusing the producer code from the previous chapter.

 file:

Property Reader:

Building Storm Applications with Kafka

[128]

Producer code
Our producer application is designed like a real-time log producer, where the producer
runs every three seconds and produces a new record with random IP addresses. You can
add a few records in the file and then the producer will take care of producing
millions of unique records from those three records.

We have also enabled auto creation of topics, so you need not create a topic before running
your producer application. You can change the topic name in the
file mentioned previously.

Building Storm Applications with Kafka

[129]

Building Storm Applications with Kafka

[130]

The following classes will help us to identify if requests are coming from a fraudulent
IP. We have used interface before implementing the class so that we can add more NoSQL
databases or any fast lookup services. You can implement this service and add a lookup
service by using HBase or any other fast key lookup service.

We are using and have just added the fraud IP range in the cache. Add
the following code to your project:

 is one implementation for the interface which does in-
memory lookup.

Building Storm Applications with Kafka

[131]

Storm application
This section will help you create IP Fraud detection application with the help of Apache
Kafka and Apache Storm. Storm will read data from Kafka topic, which contains IP log
records, and then will do the necessary detection processing and dump the records into
hive and Kafka simultaneously.
Our Topology consist of following component:

Kafka Spout: It will read a Stream of records from Kafka and will send it to two
bolts
Fraud Detector Bolt: This bolt will process the record emitted by Kafka spout and
will emit fraud records to Hive and Kafka bolt
Hive Bolt: This bolt will read the data emitted by fraud detector bolt and will
process and push those records to hive table
Kafka Bolt: This bolt will do the same processing as Hive bolt, but will push the
resulting data to a different Kafka topic

:

Building Storm Applications with Kafka

[132]

Hive Table: Create the following table in hive; this table will store the records emitted by
Hive bolt:

: This class will build the topology which indicates how
spout and bolts are connected together to form Storm topology. This is the main class of our
application and we will use it while submitting our topology to Storm cluster.

Building Storm Applications with Kafka

[133]

Building Storm Applications with Kafka

[134]

Building Storm Applications with Kafka

[135]

Fraud Detector Bolt: This bolt will read the tuples emitted by Kafka spout and will detect
which record is fraud by using an in memory IP lookup service. It will then emit the fraud
records to and simultaneously:

Building Storm Applications with Kafka

[136]

: This call will process the records emitted by fraud detector bolt and
will push the data to Hive using a thrift service:

Building Storm Applications with Kafka

[137]

: This uses the Kafka Producer API to push the processed fraud IP to
another Kafka topic:

Building Storm Applications with Kafka

[138]

Building Storm Applications with Kafka

[139]

Running the project
Execute the following permission before running the project:

sudo su - hdfs -c "hdfs dfs -chmod 777 /tmp/hive"
 sudo chmod 777 /tmp/hive

To run in cluster mode, we need to execute as:

Storm jar /home/ldap/chanchals/kafka-Storm-integration-0.0.1-
SNAPSHOT.jar
com.packt.Storm.ipfrauddetection.IPFraudDetectionTopology
iptopology.properties TopologyName

To run in local mode, we need to execute as:

Storm jar kafka-Storm-integration-0.0.1-SNAPSHOT.jar
com.packt.Storm.ipfrauddetection.IPFraudDetectionTopology
iptopology.properties

Summary
In this chapter, we learned about Apache Storm architecture in brief and we also went
through the limitations of Storm which motivated Twitter to develop Heron. We also
discussed Heron architecture and its components. Later, we went through the API and an
example of Storm Kafka integration. We also covered IP Fraud detection use cases and
learned how to create a topology.
In the next chapter, we will learn about the Confluent Platform for Apache Kafka, which
provides lots of advanced tools and features which we can use with Kafka.

77
Using Kafka with Confluent

Platform
In the last chapter, we learned about Apache Storm and Apache Heron. We also went
through Integrating Kafka with Storm. In this chapter, we will focus on Confluent
Platform, which is specially designed to make Kafka more efficient to use in production
application.

We will walk through the following topics in this chapter:

Introduction to Confluent Platform
Confluent architecture
Kafka Connectors and Kafka Streams
Schema Registry and REST proxy
Camus - moving Kafka data to HDFS

Introduction to Confluent Platform
So far, we have walked through learning internal concepts. We also went through a few
programs that helped us use Apache Kafka. Confluent Platform is developed by the creator
of Kafka in order to improve usability of Kafka in production applications.

Using Kafka with Confluent Platform

[141]

The following are a few reasons to introduce Confluent Platform:

Integration with Kafka: We have seen integration of Spark, Storm with Kafka in
the previous chapter. However, these frameworks come with additional rich
APIs, and having such Stream processing available in a single platform with
Kafka will avoid maintaining other distributed execution engines separately.
In-built Connectors: We saw that writing a Kafka producer or consumer
application is very easy using API that Kafka provides. We have seen in many
application architectures where Kafka is being used, that the type of source of
data remains common, which means it may be the database, server logs, any data
generator application server, and so on.

We have also seen that the final consumption layer where data is stored for
drawing some analysis is also common. The data can be used in
Elasticsearch, it can be put on HDFS and so on.
What if we can provide a platform where we just provide configuration, data
is available in Kafka, we provide another configuration, and the data is
pushed to a destination such as Elasticsearch, HDFS and so on.

 Client: We can use Java, Scala client to write Kafka producer or consumer
application using Kafka API. People may need to write the same in PHP, .NET,
Perl, and so on. This is very much necessary to extend the use of Kafka to a
variety of application clients so that users who are comfortable in a particular
language can easily develop the Kafka application.
 Accessibility: What if an application wants to access Kafka using the RESTful
web services? We don't have anything which can do this for applications which
need data from Kafka topics using REST calls.

Exposing REST services to Kafka will simplify the usability of Kafka across
many REST clients, who can simply call the REST services exposed to Kafka
and serve their application purpose without writing any consumer
applications.

Using Kafka with Confluent Platform

[142]

Storage format: A common challenge that may occur where the producer and
consumer of an application are loosely coupled with each other is data format.
We may want to have a contract wherein we say any change in the data on the
producer side should not affect all downstream consumer applications, or the
producer should not accidentally produce data in a format that is not consumable
by the consumer application.

Both producer and consumer should agree on the contract clauses, which
ensures that this type of problem should not affect any of them in case there
is any change in the type of data.

Monitoring and controlling Kafka performance: We also want to have a
mechanism where we can see the performance of the Kafka cluster, which should
provide us with all the valuable metadata information with a good interface. we
may want to see the performance of the topic, or we may want to see the CPU
utilization of the Kafka cluster which may give us information about consumers
at a deep level. All this information may help us optimize our application to a
great extent.

All these features are integrated into a single platform called Confluent Platform. It allows
us to integrate different data sources and manage this data with a reliable and high-
performance system. The Confluent Platform provides us with a very simple way to
connect many data sources to Kafka, building streaming applications with Kafka. It also
provides the ability to secure, monitor, and manage our Kafka cluster efficiently.

Deep driving into Confluent architecture
In this section, we will discuss the architecture of Confluent Platform and its components in
detail. The Confluent Platform provides you with underlying built-in Connectors and
components that help you focus on the business use case and how to get value out of it. It
takes care of the integration of data from multiple sources and its consumption by the target
system. The Confluent Platform provides a trusted way of securing, monitoring, and
managing the entire Kafka cluster infrastructure. Let's talk about its components one-by-
one.

Using Kafka with Confluent Platform

[143]

The following image will give a concise idea of the Confluent architecture:

In the preceding figure, we can see the three colored components. The dark and light blue
represent the enterprise and open source version of the Confluent Platform respectively.
Simply put, there are two versions of the Confluent Platform:

One is an open source version, which they offer for free, and it includes all the
components available in light blue color.
The other is an enterprise version of the Confluent Platform, which contains some
advanced components that can be useful in managing and controlling the overall
Kafka infrastructure.

Using Kafka with Confluent Platform

[144]

Let's look at each component in brief:

Supported Connectors: Connectors are used to move data in and out of Kafka.
This is also known as Kafka Connect. Confluent provides the following
Connectors:

JDBC Connector: You may want to bring data from a relational
database into Kafka, or you may want to export Kafka data into a
relational database or any database supporting JDBC. Confluent
provides the JDBC Connector to make life easy for us.
HDFS Connector: In most cases, you may want to store Kafka data
into HDFS for batch analytics processing or to store historical
records for later processing.
Elasticsearch Connector: It helps you move the Kafka data to
Elasticsearch. Use cases that require a quick adhoc search on data
in Kafka can use this Connector to move data from Kafka to
Elasticsearch and do their job.
File Connector: Confluent also provides you with a Connector that
can help you read data from a file and write it into Kafka or export
Kafka data into a file. It is also known as a FileSource Connector
and FileSink Connector.
S3 Connector: Similar to HDFS Connector, it helps you export
Kafka data into S3 storage.

Client: The Confluent Platform also provides you with an open source Kafka
client library that helps you write Kafka producer and consumer applications in
different languages such as C, C++, .NET, Python, and many more. It makes
Kafka developer-friendly, where developers can build applications in languages
they are more comfortable with.
Schema Registry: We discussed the data format issue when both producers and
consumers are loosely coupled with each other. Confluent provides a Schema
Registry based on Avro Serialization, which maintains all versions of the schema
of each Kafka topic that has registered its schema with it. Developers can modify
the schema without worrying about their impact on underlying dependent
systems.
REST Proxy: It provides a REST-based API to interact with the Kafka cluster. It
provides REST services for writing, reading, and metadata access. Application in
any language can make a REST-based request to the Kafka cluster. This allows
developers to replace their existing components to take advantage of a high-
performing messaging system.

Using Kafka with Confluent Platform

[145]

All the components discussed in the preceding section are available in the open source
Confluent Platform. The following four components are an addition to the enterprise
version of the Confluent Platform, which provides a lot of useful functionality:

Control Center: The Confluent platform provides a rich GUI for managing and
monitoring the Kafka cluster. It also provides a GUI interface to create your own
Kafka pipeline, where you need not write any code, just need to provide some
configuration. It also lets you measure the performance of your Kafka producer
and consumer at a very deep level by collecting different metrics from the Kafka
cluster. All these metrics are very important to effectively monitor and maintain
your Kafka cluster and always give high-performance results.
Multi-Datacenter replication: The Confluent Platform provides you with the
ability to replicate Kafka data across multiple data centers, or it can allow you to
aggregate data from multiple Kafka data centers to another data center without
affecting data in the source data center.

The Kafka data center replicator does this job for us. The control center
provides a nice GUI to do this job. However, confluent also provides a
command-line-based interface to use data center replication. It provides the
ability to replicate the Kafka topic with similar configuration across multiple
data centers.

Auto Data Balancing: Kafka is scalable with growing business and application
requirements, we need to scale our Kafka cluster. We may create more topics and
partitions. We may add more brokers or remove some brokers. This may create a
situation wherein one broker will have more workload than other brokers, and
this may decrease the performance of the Kafka cluster. The Confluent Auto Data
Balancing tool allows you to trigger auto balancing, whenever needed, by
reducing the impact of rebalancing on the production workload.
24*7 Support: This feature is auto-enabled in the enterprise confluent version,
which collects and reports cluster metrics to the confluent, and then their team
helps you by providing regular support on various issues.

Using Kafka with Confluent Platform

[146]

Understanding Kafka Connect and Kafka
Stream
Kafka Connect is a tool that provides the ability to move data into and out of the Kafka
system. Thousands of use cases use the same kind of source and target system while using
Kafka. Kafka Connect is comprised of Connectors for those common source or target
systems.

Kafka Connect consists of a set of Connectors, and the Connectors are of two types:

Import Connectors: Import Connectors are used to bring data from the source
system into Kafka topics. These Connectors accept configuration through
property files and bring data into a Kafka topic in any way you wish. You don't
need to write your own producer to do such jobs. A few of the popular
Connectors are JDBC Connector, file Connector, and so on.
Export Connectors: Unlike Import Connectors, Export Connectors are used to
copy data from Kafka topics to the target system. This also works based on the
configuration property file, which can vary based on which Connector you are
using. Some popular Export Connectors are HDFS, S3, Elasticsearch, and so on.

Kafka Connect does not perform any advanced processing over data available in Kafka, it is
just used for ingestion purposes. Kafka Connect can be used in an ETL pipeline wherein it
can perform the job of extracting and loading data from and to the source and target
system. We will cover Kafka Connect in detail in the next chapter.

Kafka Streams
We have seen Stream processing engines such as Apache Spark and Apache Storm in the
previous chapters. These processing engines require separate installation and maintenance
efforts. Kafka Streams is a tool to process and analyze data stored in Kafka topics. The
Kafka Stream library is built based on popular Stream processing concepts that allow you to
run your streaming application on the Kafka cluster itself.

We will look into the terminology used in Kafka Streams; however, a detailed walk-through
of Kafka Stream is covered in the upcoming chapter. Kafka Streams has a few concepts
similar to what we had in Apache Storm; they are listed as follows:

Streams: Streams is an unbounded set of records that can be used for processing.
Stream API consists of a Stream partition, and a Stream partition is a key-value
pair of data records. Streams are re-playable and fault tolerant in nature.

Using Kafka with Confluent Platform

[147]

Stream processing application: Any application build using Kafka Stream API is
said to be a Stream processing application.
Topology: Topology is the logical plan of application computation where Stream
processors are connected together to achieve the application objective.
Stream processors: Stream processors are connected together to form a topology,
and each processor is responsible for performing some task. Kafka Stream
processors also include two special Stream processors:

Source Stream processor: Source Stream processors are responsible
for reading Stream data from Kafka topic and passing this data to
the down Stream processor. It is the first processor in streaming
topology.
Sink Stream processor: A Sink processor is the last processor in
streaming topology, which receives Stream data from the processor
above it and stores it into the target Kafka topic.

Kafka Streams API also provides a client API to perform aggregation, filtering over a
Stream of data. It also allows you to save the state of an application and handles fault
tolerant in an effective way.

The Kafka Stream application does not require any special framework to be installed other
than Kafka. It can be treated as a simple Java application similar to those of producers and
consumers. We will look into the details of Kafka streaming in the upcoming chapter.

Playing with Avro using Schema Registry
Schema Registry allows you to store Avro schemas for both producers and consumers. It
also provides a RESTful interface for accessing this schema. It stores all the versions of Avro
schema, and each schema version is assigned a schema ID.

When the producer sends a record to Kafka topic using Avro Serialization, it does not send
an entire schema, instead, it sends the schema ID and record. The Avro serializer keeps all
the versions of the schema in cache and stores data with the schemas matching the schema
ID.

The consumer also uses the schema ID to read records from Kafka topic, wherein the Avro
deserializer uses the schema ID to deserialize the record.

Using Kafka with Confluent Platform

[148]

The Schema Registry also supports schema compatibility where we can
modify the setting of schema compatibility to support forward and
backward compatibility.

Here is an example of Avro schema and producer:

Similarly, an example of Avro schema on consumer:

Remember that if the Schema Registry is up and running, the consumer will be able to
deserialize the record. Any attempt to push invalid or non-compatible records to Kafka
topic will result in an exception.

The schema can also be registered using a REST request as follows:

The ability of the Schema Registry to keep all the versions of the schema and configure their
compatibility settings makes Schema Registry more special. Schema registry is very easy to
use, and it also removes bottlenecks of the data format issue in a loosely coupled producer
and consumer environment.

Moving Kafka data to HDFS
We have discussed the integration of Apache Kafka with various frameworks, which can be
used for real-time or near-real-time streaming. Apache Kafka can store data for a configured
time of retention period; the default is seven days.

Using Kafka with Confluent Platform

[149]

Data will be removed from Kafka when the retention period expires. The organization does
not want to lose data, and in many cases, they need data for some batch processing to
generate monthly, weekly, or yearly reports. We can store historical records for further
processing into a cheap and fault-tolerant storage system such as HDFS.

Kafka data can be moved to HDFS and can be used for different purposes. We will talk
about the following four ways of moving data from Kafka to HDFS:

Using Camus
Using Gobblin
Using Kafka Connect
Using Flume

Camus
LinkedIn first created Kafka for its own log processing use case. As discussed, Kafka stores
data for a configured period of time, and the default is seven days. The LinkedIn team felt
the need to store data for any batch-reporting purpose or to use it later. Now, to store data
in HDFS, which is a distributed storage file system, they started developing a tool that can
use a distributed system capability to fetch data from Kafka. They developed Camus, a tool
developed using map reduce API to copy data from Kafka to HDFS.

Camus is just a map-reduce job that has the capability of performing
incremental copying of data. It means it will not copy the data from the
last committed offset.

The following image gives a good idea of the Camus architecture:

Using Kafka with Confluent Platform

[150]

The preceding figure shows a clear picture of how Camus works. It starts with the Camus
setup, which requires Zookeeper to read Kafka metadata. The Camus job is a set of map-
reduce jobs that can run on multiple data nodes at a time, resulting in distributed copying
of data from Kafka.

Running Camus
Camus mainly consists of two tasks:

Reading data from Kafka: Camus acts as a consumer while reading data from
Kafka, and it requires the message decoder class, which can be used to read data
from Kafka topics. The class must implement

. A few default
decoders are available, such as .
Writing data to HDFS: Camus then writes data read from Kafka into HDFS. To
write data into HDFS, it must have a record writer class. The record reader class
must implement .

Running Camus requires the Hadoop cluster. As discussed, Camus is nothing but a map-
reduce job, and it can be run using normal Hadoop jobs as in the following case:

hadoop jar Camus.jar com.linkedin.Camus.etl.kafka.CamusJob -P
Camus.properties

Using Kafka with Confluent Platform

[151]

Gobblin
Gobblin is an advanced version of Apache Camus. Apache Camus is only capable of
copying data from Kafka to HDFS; however, Gobblin can connect to multiple sources and
bring data to HDFS. LinkedIn had more than 10 data sources, and all were using different
tools to ingest data for processing. In the shot term, they realized that maintaining all these
tools and their metadata was getting complex and required more effort and maintenance
resources.

They felt the need to have a single system that can connect to all sources and ingest data to
Hadoop. This motivation helped them build Gobblin.

Gobblin architecture
The following image gives a good idea of the Gobblin architecture:

Using Kafka with Confluent Platform

[152]

The architecture of Gobblin is built in such a way that a user can easily add new Connectors
for new sources, or they can modify existing sources. We can divide the overall architecture
into four parts:

Gobblin Constructs: These are responsible for the overall processing of the
Gobblin ingestion work. It consists of following:

Source: This is responsible for acting as a Connector between the
data source and Gobblin. It also divides the work into smaller work
units, and each work unit is responsible for bringing a few parts of
the data.
Extractor: This is responsible for extracting data from the data
source. The source creates an extractor for each work unit, and each
extractor fetches a portion of data from the data source. Gobblin
also has some prebuilt popular sources and extractors already
available for you.
Converters: These are responsible for converting input records to
output records. One or more converter can be connected together
to achieve the objective.
Quality checkers: These are optional constructs, and they are
responsible for checking the data quality of each record or all
records together.
Writer: This is associated with the sink, and it is responsible for
writing data to the sink it is connected to.
Publisher: This is responsible for collecting data from each work
unit task and storing data in the final directory.

Gobblin runtime: This is responsible for the actual running of Gobblin jobs. It
manages job scheduling and resource negotiation to execute these jobs. Gobblin
runtime also does error handling and retries the job in case of failure.
Supported deployment: Goblin runtime runs jobs based on the deployment
mode. Gobblin can be run on standalone or map reduce mode. It will also
support YARN-based deployment soon.
Gobblin utility: Gobblin utility consists of two parts - one is metadata
management, and the other is monitoring of Gobblin jobs. This utility allows
Gobblin to store metadata in a single place rather than using a third-party tool to
do such jobs. It also collects different matrics which can be useful for managing or
optimizing Gobblin jobs.

Using Kafka with Confluent Platform

[153]

The following configuration file () contains information about
connection URLs, Sink type, output directory, and so on which will be read by Gobblin job
to fetch data from Kafka to HDFS:

Run :

Gobblin-MapReduce.sh --conf kafka_to_hdfs.conf

Running a Gobblin job is very easy. They have already done everything you need. We
would recommend you visit the Gobblin documentation for more details.

Using Kafka with Confluent Platform

[154]

Kafka Connect
We already discussed Kafka Connect in the preceding sections. Kafka Connect refers to the
Connectors that can be used to import or export data from Kafka. Kafka HDFS export
Connector can be used to copy data from Kafka topic to HDFS.

HDFS Connector polls data from Kafka and writes them to HDFS. We can also specify the
partition to be used, and it will divide the data into smaller chunks, where each chunk will
represent a file in HDFS. Let's look into how to use this Connector.

Here is an example of Kafka Connect with producer:

Run :

Run the following:

connect-standalone etc/schema-registry/connect-avro-standalone.properties \
 kafka_to_hdfs.properties

You can verify at the HDFS location that if data is available in the Kafka topic, it will be
there at the HDFS location.

Flume
Apache Flume is a distributed, reliable, and fault-tolerant system for collecting large
volumes of data from different sources to one or more target systems.

Using Kafka with Confluent Platform

[155]

It mainly consists of three components:

Source
Channel
Sink

The three components can be expanded as follows:

Source is responsible for connecting with the source system and bringing data to
the channel. Flume can be connected to different sources such as server logs,
Twitter, Facebook, and so on. It also provides us the flexibility to connect to
Kafka topics and bring data to the Flume channel.
Channel is a temporary storage for data where data is pushed by the source
based on the configuration. Source can push data to one or more channel, which
can later be consumed by the sink.
Sink is responsible for reading data from the Flume channel and storing it in the
permanent storage system or passing it for further processing to some other
system. It can be connected to a single channel at a time. Once the data read is
acknowledged by sink, Flume removes the data from the channel.

Using Kafka with Confluent Platform

[156]

Now you can visualize how to copy Kafka data using Flume and copy data to HDFS. Yes,
we need Kafka source, channel, and HDFS sink. Kafka source will read data from Kafka
topics, and HDFS sink will read data from the channel and store it to the configured HDFS
location. Let's go through the following configuration:

Let us first look into :

If you look at the aforementioned configuration, we have provided configuration for source,
channel, and sink. Source will read data from the topic test, and Flume will use it in the
memory channel to store data. Sink will connect to the in-memory channel and move data
to HDFS.

The following configuration connects the source with the channel:

The following configuration connects the sink with the channel:

Using Kafka with Confluent Platform

[157]

 is an agent name, which you can change according to your wish. Once the agent
configuration is ready, we can run Flume using the following command:

flume-ng agent -c pathtoflume/etc/flume-ng/conf -f flumekafka.conf -n
pipeline

The in-depth overall architecture of Flume is beyond the scope of this chapter. Our
intention is to let you know how we can copy Kafka data to HDFS using Flume.

Summary
This chapter has given us a brief understanding of Confluent Platform and it uses. You
learned about the architecture of Confluent Platform and how Connectors can make our job
of transporting data in and out of Kafka simpler. We also learned about how the Schema
Registry solves data format issues and supports schema resolution. We have covered
different ways of copying data from Kafka to HDFS and their examples.

In the next chapter, we will cover Kafka Connect in detail and will also look into how we
can build a big data pipeline using Kafka and Kafka Connect.

88
Building ETL Pipelines Using

Kafka
In the previous chapter, we learned about Confluent Platform. We covered its architecture
in detail and discussed its components. You also learned how to export data from Kafka to
HDFS using different tools. We went through Camus, Goblin, Flume, and Kafka Connect to
cover different ways of bringing data to HDFS. We also recommend you try all the tools
discussed in the last chapter to understand how they work. Now we will look into creating
an ETL pipeline using these tools and look more closely at Kafka Connect use cases and
examples.

In this chapter, we will cover Kafka Connect in detail. The following are the topics we will
cover:

Use of Kafka in the ETL pipeline
Introduction to Kafka Connect
Kafka Connect architecture
Deep dive into Kafka Connect
Introductory example of Kafka Connect
Common use cases

Building ETL Pipelines Using Kafka

[159]

Considerations for using Kafka in ETL
pipelines
ETL is a process of Extracting, Transforming, and Loading data into the target system,
which is explained next. It is followed by a large number of organizations to build their data
pipelines.

Extraction: Extraction is the process of ingesting data from the source system and
making it available for further processing. Any prebuilt tool can be used to
extract data from the source system. For example, to extract server logs or Twitter
data, you can use Apache Flume, or to extract data from the database, you can
use any JDBC-based application, or you can build your own application. The
objective of the application that will be used for extraction is that it should not
affect the performance of the source system in any manner.

Transformation: Transformation refers to processing extracted data and
converting it into some meaningful form. The application can consume data in
two forms: one could be a pull-based approach where data is stored into some
intermediate storage by the extractor and the application pulls data from here,
the other could be a push-based approach where the extractor directly pushes
data to transformers and the application processes it.
Loading: Once data is transformed into a meaningful form, it has to be loaded
into a target system for further use. The loading phase generally comprises the
loading of meaningful data into the target system. The target system could be any
database or file or any system capable of storing data.

Organizations are exploring many analytics opportunities on data. They want to do real-
time analysis on some data, and on the same data, they also want to do batch analytics to
generate other reports.

There are many frameworks that have been built for real-time stream processing and batch
processing and all of them come with some new features, and some of them are similar, but
the big challenge lies in the fact that there are no such frameworks that can do all the jobs
for you, Ingestion, processing, and exporting it to multiple destinations for further
processing have to be run using different frameworks for different phases of ETL, and this
requires maintenance, cost, and effort to be put in.

Kafka is a centralized publish-subscribe messaging system that comes
with the support of performing ETL operations without using any other
framework or tool.

Building ETL Pipelines Using Kafka

[160]

Let's look into how we can use Kafka in an ETL operation:

Working of extracting operation of ETL: Apache Kafka has introduced the
concept of Kafka Connect, which comes with Source and Sink Connectors. Source
Connectors can extract data from sources and put them into HDFS. Connectors
are easy to use; they can be used by just changing some configuration
parameters.
Working of transforming operation of ETL: Apache Kafka has become more
powerful with the stream processing feature being added to it. It comes with
Kafka Stream, which is capable of handling streams of data and performing
operations such as aggregation, filtering, and so on.

Data from Kafka topic can be exported to HDFS to perform some batch
processing. Kafka also provides export tools to do such jobs.

Working of loading operation of ETL: Kafka Connect also comes with Export
Connectors, which can be used to load data into the target system. For example,
the JDBC Connector can be used to push data into a JDBC-supported database,
the Elastic Search Connector can be used to push data into elastic search, the
HDFS Connector can be used to push data into HDFS on which you can create a
Hive table for further processing or for generating reports.

We will see how we can extract and load data from the source to the target system using
Kafka Connect in the next section. Introducing Kafka Connect using Kafka also ensures that
we do not need to create a separate serving layer to serve data to the consumer. All
consumers maintain an offset of Kafka messages and can read messages from the topic in
any manner they want. It simplifies the ETL pipeline problem, where the number of
producers and consumers increases over time. With all the capabilities of extracting,
transforming, and loading data into the target system, Kafka remains the first choice for lots
of organizations today.

Introducing Kafka Connect
Kafka Connect is used to copy data into and out of Kafka. There are already a lot of tools
available to move data from one system to another system. You would find many use cases
where you want to do real-time analytics and batch analytics on the same data. Data can
come from different sources but finally may land into the same category or type.

Building ETL Pipelines Using Kafka

[161]

We may want to bring this data to Kafka topics and then pass it to a real-time processing
engine or store it for batch processing. If you closely look at the following figure, there are
different processes involved:

Let's look into each component in detail:

Ingestion in Kafka: Data is inserted into Kafka topic from different sources, and
most of the time, the type of sources are common. For example you may want to
insert server logs into Kafka topics, or insert all records from the database table
into topic, or insert records from file to Kafka, and so on. You will use Kafka
Producer, which will do this job for you, or you may use some already available
tools.
Processing: Data available in Kafka topic needs to be processed to extract
business meaning out of it. Data can be consumed by real-time processing
engines such as Apache Spark, Apache Storm, and many more. It can be stored to
HDFS, Hbase, or some other storage for later processing.
Copying Kafka data: Data available in Kafka can be exported to multiple
systems, depending on the use case. It can be exported to Elasticsearch for ad hoc
analysis. It can be stored in HDFS for batch processing. Kafka also has a retention
period after which data available in Kafka will be removed. You may want to
keep a backup of data available in Kafka. The backup can be either HDFS or some
other file system.

Building ETL Pipelines Using Kafka

[162]

Kafka Connect is nothing but a prebuilt set of tools that can be used to
bring data into Kafka topic and copy data from Kafka topic to different
external systems. It provides API to build your own tool for import or
export. It also uses parallel processing capability wherein it copies data in
parallel. It also uses the offset commit mechanism to ensure it starts from
last left point in case of failure.

Deep dive into Kafka Connect
Let's get into the architecture of Kafka Connect. The following figure gives a good idea of
Kafka Connect:

Building ETL Pipelines Using Kafka

[163]

Kafka Connect has three major models in its design:

Connector: A Connector is configured by defining the Connector class and
configuration. The Connector class is defined based on the source or target of the
data, which means that it will be different for the Database source and File
source. It is then followed by setting up the configuration for these classes. For
example, configuration for the Database source could be the IP of the database,
the username and password to connect to the database, and so on. The Connector
creates a set of tasks, which is actually responsible for copying data from the
source or copying data to the target. Connectors are of two types:

Source Connector: This is responsible for ingesting data from the
source system into Kafka
Sink Connector: This is responsible for exporting data from Kafka
to an external system such as HDFS, Elasticsearch, and so on

Worker: Workers are responsible for the execution of Connector tasks. They acts
as a container for the Connector and task. Workers are actual JVM processes that
coordinate with each other to distribute the work and guarantee scalability and
fault tolerance. The Worker does not manage processes. However, it distributes
tasks to any available processes. Processes are managed by resource management
tools such as YARN and Mesos.
Data: Connectors are responsible for copying streams of data from one system to
another system. We discussed two types of Connectors--source Connector and
target Connector. In any case, we may have Kafka as one of the systems to be
used with Connectors. This means that Connectors are tightly coupled with
Kafka. Kafka Connect also manages the offset of streams. In case of task failure,
the offset allows the Connector to resume operation from the last failure point.
The offset type can vary based on the type of Connector we use. For example, the
offset for the database can be some unique record identifier, the offset for file can
be a delimiter, and so on. Kafka Connect also provides data format converters,
which allow you to convert data from one format to other. It also supports
integration with the Schema Registry.

Building ETL Pipelines Using Kafka

[164]

Introductory examples of using Kafka
Connect
Kafka Connect provides us with various Connectors, and we can use the Connectors based
on our use case requirement. It also provides an API that can be used to build your own
Connector. We will go through a few basic examples in this section. We have tested the
code on the Ubuntu machine. Download the Confluent Platform tar file from the Confluent
website:

Import or Source Connector: This is used to ingest data from the source system
into Kafka. There are already a few inbuilt Connectors available in the Confluent
Platform.
Export or Sink Connector: This is used to export data from Kafka topic to
external sources. Let's look at a few Connectors available for real-use cases.
JDBC Source Connector: The JDBC Connector can be used to pull data from any
JDBC-supported system to Kafka.

Let's see how to use it:

Install :1.

sudo apt-get install sqlite3

Start console:2.

sqlite3 packt.db

Create a database table, and insert records:3.

sqlite> CREATE TABLE authors(id INTEGER PRIMARY KEY AUTOINCREMENT
NOT NULL, name VARCHAR(255));

sqlite> INSERT INTO authors(name) VALUES('Manish');

sqlite> INSERT INTO authors(name) VALUES('Chanchal');

Make the following changes in the 4.
 file:

Building ETL Pipelines Using Kafka

[165]

In , the value is the path to your file.5.
Provide the full path to the file. Once everything is ready, run the following
command to execute the Connector script:

 ./bin/connect-standalone etc/schema-registry/connect-avro-
standalone.properties etc/kafka-connect-jdbc/source-quickstart-
sqlite.properties

Once the script is successfully executed, you can check the output using the6.
following command:

bin/kafka-avro-console-consumer --new-consumer --bootstrap-server
localhost:9092 --topic test-authors --from-beginning

You will see the following output:

Make sure you have already started Zookeeper, Kafka server, and Schema
Registry before running this demo.

JDBC Sink Connector: This Connector is used to export data from Kafka topic to any JDBC-
supported external system.

Let's see how to use it:

Configure :1.

Building ETL Pipelines Using Kafka

[166]

Run the producer:2.

Run the Kafka Connect Sink: 3.

Insert the record into the producer:4.

Run : 5.

You will see following output in the table:

Now we know how Kafka Connect can be used to extract and load data from Kafka to the
database and from the database to Kafka.

Building ETL Pipelines Using Kafka

[167]

Kafka Connect is not an ETL framework in itself, but it can be part of an
ETL pipeline where Kafka is being used. Our intention was to focus on
how Kafka Connect can be used in the ETL pipeline and how you can use
it to import or export data from Kafka.

Kafka Connect common use cases
You have learned about Kafka Connect in detail. We know Kafka Connect is used for
copying data in and out of Kafka.

Let's understand a few common use cases of Kafka Connect:

Copying data to HDFS: User wants to copy data from Kafka topics to HDFS for
various reasons. A few want to copy it to HDFS just to take a backup of the
history data, others may want to copy it to HDFS for batch processing. However,
there are already many open source tools available, such as Camus, Gobblin,
Flume, and so on, but maintaining, installing, and running these jobs takes more
effort than what Kafka Connect provides. Kafka Connect copies data from topics
in parallel and is capable of scaling up more if required.
Replication: Replicating Kafka topics from one cluster to another cluster is also a
popular feature offered by Kafka Connect. You may want to replicate topics for
various reasons, such as moving from on-premises to cloud or vice versa,
changing from one vendor to another, upgrading Kafka cluster, decommissioning
the old Kafka cluster, handling disaster management, and so on. One more use
case could be you wanting to bring data from many Kafka clusters to a single
centralized Kafka cluster for better management and optimal use of data.
Importing database records: Records available in the database can be used for
various analytics purposes. We discussed earlier that the same records can be
used for real-time analysis and batch analysis. Database records are stored in the
topic with the same table name. These records are then passed to the processing
engine for further processing.
Exporting Kafka records: In some cases, the data stored in Kafka is already
processed, and people want to do some aggregation or sum kind of job on the
data. In such cases, they want to store these records in the database for utilizing
the powerful features offered by RDBMS. Kafka records can be exported to fast
ad hoc search engines such as Elasticsearch for better use cases.

You can also use Kafka Connect to develop your own Connector to import or export data
from Kafka. Building Connectors using API is out of the scope of this book.

Building ETL Pipelines Using Kafka

[168]

Summary
In this chapter, we learned about Kafka Connect in detail. We also learned about how we
can explore Kafka for an ETL pipeline. We covered examples of JDBC import and export
Connector to give you a brief idea of how it works. We expect you to run this program
practically to get more insight into what happens when you run Connectors.

In the next chapter, you will learn about Kafka Stream in detail, and we will also see how
we can use Kafka stream API to build our own streaming application. We will explore the
Kafka Stream API in detail and focus on its advantages.

99
Building Streaming Applications

Using Kafka Streams
In the previous chapter, you learned about Kafka Connect and how it makes a user's job
simple when it comes to importing and exporting data from Kafka. You also learned how
Kafka Connect can be used as an extract and load processor in the ETL pipeline. In this
chapter, we will focus on Kafka Stream, which is a lightweight streaming library used to
develop a streaming application that works with Kafka. Kafka Stream can act as a
transformer in the ETL phase.

We will cover the following topics in this chapter:

Introduction to Kafka Stream
Kafka Stream architecture
Advantages of using Kafka Stream
Introduction to and
Use case example

Building Streaming Applications Using Kafka Streams

[170]

Introduction to Kafka Streams
The data processing strategy has evolved over time, and it's still being used in different
ways. The following are the important terms related to Kafka Streams:

Request/response: In this type of processing, you send a single request. This is
sent as request data, and the server processes it and returns the response data as a
result. You may take the example of REST servers, where processing is done on
request and the response is sent to the client after processing. Processing may
involve filtering, cleansing, aggregation, or lookup operations. Scaling such a
processing engine requires adding more services in order to handle the increase
in traffic.
Batch processing: This is a process where you send a bounded set of input data
in batches, and the processing engine sends the response in batches after
processing. In batch processing, data is already available in the file or database.
Hadoop MapReduce is a good example of a batch processing model. You can
increase throughput by adding more processing nodes to the cluster; however,
achieving high latency is very challenging in batch processing jobs. The sources
of input data and the processing engine are loosely coupled with each other, and
hence, the time difference between producing the input data and processing it
may be big.
Stream processing: The Stream of data is processed as soon as it is generated
from the source system. Data is passed to the Stream processing application in
the form of Streams. Streams are ordered sets of unbounded data. Stream
processing helps you achieve high latency because you get a processed result for
data as soon as it originates from the source.

You may need to trade off between latency, cost, and correctness when it
comes to Stream processing. For example, if you want to develop a fraud
analytics application, you will focus more on latency and correctness than
on cost. Similarly, if you are just performing an ETL of Stream of data, you
may not care about latency in this case, you will look for more
correctness.

Using Kafka in Stream processing
Kafka is the persistence queue for data where data is stored in order of time stamp. The
following properties of Kafka allow it to occupy its place in most Streaming architecture:

Building Streaming Applications Using Kafka Streams

[171]

Persistence queue and loose coupling: Kafka stores data in topics, which store
data in order. The data producer does not have to wait for a response from the
application that processes data. It simply puts data into the Kafka queue, and the
processing application consumes data from the Kafka queue to process it.
Fault tolerance: Data stored in Kafka will not be lost even if one or two brokers
fail. This is because Kafka replicates topic partition in multiple brokers, so if a
broker fails, data will be served from the other broker holding the replica. It has
the ability to serve a data Stream without any long delay, which is a critical part
of the Stream processing application. Kafka also allows consumers to read
messages as per their requirement, meaning you can read from the beginning or
you can read from anywhere by providing an offset of the message.
Logical ordering: Data ordering is important for a few critical Streaming
applications. Kafka stores data in order of time stamp. Applications such as fraud
analytics will not be able to bear the cost of unordered data. The Stream
application will be able to read messages in the same order in which they were
written in the Kafka topic partition.
Scalability: Kafka has the ability to scale up as per need. All that we need to do is
add more broker nodes to the Kafka cluster, and our job is done. You don't need
to care about whether your data source will grow exponentially in the future, or
whether more applications want to use the same data for multiple use cases. The
data is available in Kafka, and any application can read it from here.

Apache Kafka can be easily integrated with any Stream processing application.

Stream processing applications, such as Spark, Storm, or Flink, provide
good APIs to integrate Kafka with them. This Stream processing
framework provides a nice feature to build the application, but there is
some cost and complexity involved. You need to first set up the specific
cluster before running the application. You also need to maintain the
cluster to identify any problem, to optimize the application, or to check the
health of the cluster.

Kafka Stream - lightweight Stream processing
library
Kafka Stream is a lightweight Stream processing library that is tightly coupled with Kafka.
It does not require any cluster setup or any other operational cost. We will discuss the
features that any Stream processing application should persist and how Kafka Stream
provides those features.

Building Streaming Applications Using Kafka Streams

[172]

Before starting this chapter, we recommend you go through the concept of
Apache Kafka. You should know about the producer, consumer, topic,
parallelism, broker, and other concepts of Apache Kafka to better
understand Kafka Stream.

The following are a few important features that Kafka Stream provides you with as an effort
to build a robust and reliable Stream processing application:

Ordering: Kafka stores messages/data in topic partitions. Partitions store data in
in order of their timestamp. This means that the data in topic partitions is
ordered. Kafka Stream utilizes the capability of Kafka and consumes data in
order. Order processing can be easily achievable as Kafka also stores the time
stamp with messages in topic partition. You can reorder the data in any form
using this time stamp property.
State management: Maintaining the state in a Stream processing application is
also very important for some state dependent applications. Data processing may
require access to recently processed data or derived data, so it is a great idea to
maintain the state of the data as close to processing as possible.
There are two ways to maintain the state:

Remote state: State is maintained in a third-party storage database,
and the application needs to make a connection to the database to
retrieve the state of the records. Many large Streaming applications
use this practice to maintain the state, but this will cost you high
latency as access to the state is remote and depends on network
bandwidth and availability.
Local state: The state is maintained on the same machine where the
application instance is running. This allows quick access to the
state of records and helps you increase latency.

Kafka Stream provides a more powerful feature of maintaining the state
using the local state management technique. It maintains the local state
at each running instance of the application. These local states are shards
of the global state. Kafka Stream instance only processes non
overlapping subsets of Kafka topic partition.

Building Streaming Applications Using Kafka Streams

[173]

Fault tolerance: Fault tolerance is a very common and important feature in the
Stream processing application. Failure of any instance should not affect the
application processing. Kafka Stream maintains change of state in some topic. In
case any instance fails, it restarts the process in some other working instance and
does the load balancing internally.
Time and window: Time refers to the event time and the processing time of
records. Event time is the time when the record is produced or generated, and
processing time is the time when the record is actually processed.

When the record is processed, the data may be processed out of order,
irrespective of its event time. Kafka Stream supports the windowing concept,
where each record is associated with a time stamp, which helps in the order
processing of the event or record. It also helps us deal with late arriving data
and to change log efficiently.

Partition and scalability: Kafka Stream utilizes the capability of data parallelism.
Multiple instances of the same application work on non overlapping subsets of
Kafka topic partitions. Remember that the number of partitions in Kafka is the
key to processing parallelism.

Kafka Stream applications are easily scalable. You just need to ask more
instances, and it will do auto load balancing for you.

Reprocessing: This is the ability to reprocess the records from any point.
Sometimes you may find that the application logic is missing, or there is a bug
that forces you to rewrite the logic or make changes in the existing code and
reprocess the data. Kafka Stream can reprocess the records by simply resetting
the offset in the Kafka topic.

Kafka Stream architecture
Kafka Streams internally uses the Kafka producer and consumer libraries. It is tightly
coupled with Apache Kafka and allows you to leverage the capabilities of Kafka to achieve
data parallelism, fault tolerance, and many other powerful features.

Building Streaming Applications Using Kafka Streams

[174]

In this section, we will discuss how Kafka Stream works internally and what the different
components involved in building Stream applications using Kafka Streams are. The
following figure is an internal representation of the working of Kafka Stream:

Building Streaming Applications Using Kafka Streams

[175]

Stream instance consists of multiple tasks, where each task processes non overlapping
subsets of the record. If you want to increase parallelism, you can simply add more
instances, and Kafka Stream will auto distribute work among different instances.

Let's discuss a few important components seen in the previous figure:

Stream topology: Stream topology in Kafka Stream is somewhat similar to the
topology of Apache Storm. The topology consists of Stream processor nodes
connected with each other to perform the desired computation.
Stream topology contains three types of processors:

Source processor: This is responsible for consuming records from
the source topic and forwarding records to the downstream
processor. It does not have any upstream processor, meaning that it
is the first node or processor in Stream topology.
Stream processor: This is responsible for computing data. The logic
of data transformation is handled by the Stream processor. There
can be multiple such processors in a single topology.
Sink processor: This is responsible for consuming data from
Stream processors and then writing them to the target topic or
system. It is the last processor in the topology, meaning it does not
have any downstream processor.

Local state: Kafka Stream maintains a local state for each instance of the
application. It provides two types of operators: one is a stateless operator, and the
other is a stateful operator. It is similar to the concepts of transformations and
actions in Spark; stateless operators are equivalent to transformations, and
stateful operators are equivalent to actions.

When Kafka Stream encounters any stateful operation, it creates and
manages the local state store. The data structure used for the state store can
be an internal map or a DB.

Record cache: Kafka Stream caches data before storing it to the local state or
forwarding it to any downstream. The cache helps in improving read and write
performance of the local state store. It can be used as a write-back buffer or as a
read buffer. It also allows you to send records in batches to the local state store,
which significantly reduces write--request calls to the local state store.

Building Streaming Applications Using Kafka Streams

[176]

Integrated framework advantages
Kafka Stream is tightly integrated with Apache Kafka. It provides reach sets of API and
offers powerful features to build the Stream processing application. If you are using Kafka
as a centralized storage layer for your data and want to do Stream processing over the it,
then using Kafka Stream should be preferred because of the following reasons:

Deployment: An application built using Kafka Stream does not require any extra
setup of the clusters to run. It can be run from a single-node machine or from
your laptop. This is a huge advantage over other processing tools, such as Spark,
Storm, and so on, which require clusters to be ready before you can run the
application. Kafka Stream uses Kafka's producer and consumer library.

If you want to increase parallelism, you just need to add more instances of
the application, and Kafka Stream will do the auto load balancing for you.
Just because Kafka Streams is framework free does not mean that Kafka
Stream will not need Kafka; Kafka Stream is tightly coupled with Kafka and
will not work if you do not have the Kafka cluster running. You need to
specify the details of the Kafka cluster when you write your Stream
application.

Simple and easy features: Developing the Kafka Stream application is easy
compared to other Streaming applications. Kafka Stream simply reads data from
the Kafka topic and outputs data to the Kafka topic. Stream partition is similar to
Kafka partition Streams, and it works for them too. The Stream application just
acts as another consumer that utilizes the capability of Kafka's consumer offset
management; it maintains states and other computations in the Kafka topic, and
so it does not require an externally dependent system.
Coordination and fault tolerance: Kafka Stream does not depend on any
resource manager or third-party application for coordination. It uses the Kafka
cluster for the load balancing application when a new instance is added or an old
instance fails. In case of failure of load balancing, relievers automatically receive a
new partition set to process from the broker.

Understanding tables and Streams together
Before we start discussing tables and Streams, let's understand the following simple code of
a word count program written in Java using a Kafka Stream API, and then we will look into
the concepts of and . We have been discussing the concepts of Kafka
Stream; in this section, we will discuss , , and their internals.

Building Streaming Applications Using Kafka Streams

[177]

Maven dependency
The Kafka Stream application can be run from anywhere. You just need to add library
dependency and start developing your program. We are using Maven to build our
application. Add the following dependency into your project:

Kafka Stream word count
The following code is a simple word count program built using a Stream API. We will go
through the important APIs used in this program, and will talk about their uses:

Building Streaming Applications Using Kafka Streams

[178]

The application starts with a configuration where we define the set, Kafka Stream provides
two important abstractions: one is , and the other is .

 is an abstraction of a key-value pair record Stream of Kafka's topic record. In
, each record is independent, meaning that a record with a key does not replace an

old record with the same key. can be created in two ways:

Using the Kafka topic: Any Kafka Stream application starts with ,
which consumes data from the Kafka topic. If you look into the earlier program,
the following lines create , which will consume data
from the topic input:

Building Streaming Applications Using Kafka Streams

[179]

Using transformation: can be created by doing transformation on the
existing . If you look at the previous program, you will see that there are
transformations such as and that are used on

. can also be created by converting into
. In the same example, will create , and then

we convert it to using :

KTable
 is a representation of , which does not contain a record with the same

key twice. This means that if encounters a record with the same key in the table, it
will simply replace the old record with the current record.

Building Streaming Applications Using Kafka Streams

[180]

If the same record represented in the previous diagram for is converted to
, it will look like this:

In the previous figure, you can see that the records of and have been updated
and the old entries have been removed. is similar to the update operation in Map.
Whenever a duplicate key is inserted, the old value gets replaced by a new value. We can
perform various operations on and join it to other or instances.

Use case example of Kafka Streams
We will take the same example of IP fraud detection that we used in , Building
Spark Streaming Applications with Kafka, and , Building Storm Application with Kafka.
Let's start with how we can build the same application using Kafka Stream. We will start
with the code, take the producer, and look up the code from , Building Storm
Application with Kafka, which can be utilized here as well.

Maven dependency of Kafka Streams
The best part of Kafka Stream is that it does not require any extra dependency apart from
Stream libraries. Add the dependency to your :

Building Streaming Applications Using Kafka Streams

[181]

Property reader
We are going to use the same property file and property reader that we used in ,
Building Storm Application with Kafka, with a few changes. Kafka Stream will read the record
from the topic and will produce the output to the topic:

Here is the property reader class:

Building Streaming Applications Using Kafka Streams

[182]

IP record producer
Again, the producer is the same as we used in , Building Spark Streaming
Applications with Kafka, and , Building Storm Application with Kafka, which
generates records with random IPs. The producer will auto-create the topic if it does not
exist. Here is how the code goes:

Building Streaming Applications Using Kafka Streams

[183]

Building Streaming Applications Using Kafka Streams

[184]

Verify the producer record using the console producer. Run the following command on the
Kafka cluster:

Kafka-console-consumer --zookeeper localhost:2181 --topic iprecord --from-
beginning

Remember that we are producing multiple records by changing the IP address randomly.
You'll be able to see the records as shown in the following figure:

IP lookup service
As mentioned earlier, the lookup service is reused from , Building Spark Streaming
Applications with Kafka, and , Building Storm Application with Kafka. Note that this is
in the memory lookup created over the interface, so you can add your own lookup service
by simply providing implementation for , and you are done.

Building Streaming Applications Using Kafka Streams

[185]

The IP scanner interface looks like this:

We have kept the in-memory IP lookup very simple for an interactive execution of the
application. The lookup service will scan the IP address and detect whether the record is a
fraud or not by comparing the first 8 bits of the IP address:

Building Streaming Applications Using Kafka Streams

[186]

Fraud detection application
The fraud detection application will be running continuously, and you can run as many
instances as you want; Kafka will do the load balancing for you. Let's look at the following
code that reads the input from the topic and then filters out records that are
fraud using the lookup service:

Building Streaming Applications Using Kafka Streams

[187]

Summary
In this chapter, you learned about Kafka Stream and how it makes sense to use Kafka
Stream to do transformation when we have Kafka in our pipeline. We also went through
the architecture, internal working, and integrated framework advantages of Kafka Streams.
We covered and in brief and understood how they are different from each
other. A detailed explanation of the Kafka Stream API is out of the scope of this book.

In the next chapter, we will cover the internals of Kafka clusters, capacity planning, single-
cluster and multi-cluster deployment, and adding and removing brokers.

110
Kafka Cluster Deployment

In the previous chapters, we talked about the different use cases associated with Apache
Kafka. We shed light on different technologies and frameworks associated with the Kafka
messaging system. However, putting Kafka to production use requires additional tasks and
knowledge. Firstly, you must have a very thorough understanding of how the Kafka cluster
works. Later on, you must determine the hardware required for the Kafka cluster by
performing adequate capacity planning. You need to understand Kafka deployment
patterns and how to perform day-to-day Kafka administrating activities. In this chapter, we
will cover the following topics:

Kafka cluster internals
Capacity planning
Single-cluster deployment
Multi-cluster deployment
Decommissioning brokers
Data migration

In a nutshell, this chapter focuses on Kafka cluster deployment on enterprise grade
production systems. It covers deep topics of Kafka clusters such as how to do capacity
planning, how to manage single/multi cluster deployments, and so on. It also covers how to
manage Kafka in a multitenant environment. It further walks through the different steps
involved in Kafka data migrations.

Kafka Cluster Deployment

[189]

Kafka cluster internals
Well, this topic has been covered in bits and pieces in the introductory chapters of this book.
However, in this section, we are covering this topic with respect to components or processes
that play an important role in Kafka cluster. We will not only talk about different Kafka
cluster components but will also cover how these components communicate with each
other via Kafka protocols.

Role of Zookeeper
Kafka clusters cannot run without Zookeeper servers, which are tightly coupled with Kafka
cluster installations. Therefore, you should first start this section by understanding the role
of Zookeeper in Kafka clusters.

If we must define the role of Zookeeper in a few words, we can say that Zookeeper acts a
Kafka cluster coordinator that manages cluster membership of brokers, producers, and
consumers participating in message transfers via Kafka. It also helps in leader election for a
Kafka topic. It is like a centralized service that manages cluster memberships, relevant
configurations, and cluster registry services.

Zookeeper also keeps track of brokers that are alive and nodes that have joined or left the
cluster. It can be configured to work in quorum or replicated mode, where the same data
and configurations are replicated across multiple nodes to support high availability and
load balancing of incoming requests. Standalone modes are good for development or
testing purposes. In a production environment where high availability and performance
matters, you should always deploy Zookeeper in the replicated mode.

If you are looking for detailed documentation on Zookeeper, you can always consider
Apache docs for the same at , but we believe in the context
of Kafka, there are two important aspects you should learn. The first is how Kafka cluster
data is maintained on Zookeeper nodes, and the second is how Zookeeper is used in the
leader election process. Let's look at those aspects in the following paragraphs.

Let's discuss how the Kafka topic leader election process works. Each Kafka cluster has a
designated broker, which has more responsibilities than the other brokers. These additional
responsibilities are related to partition management. This broker is called controller. One of
the prime responsibilities of the controller is to elect partition leaders. Generally, it is the
first broker that starts in the cluster. After it starts, it creates an ephemeral znode
() in Zookeeper. In that location, it maintains metadata about
brokers that are alive and about topic partitions along with their data replication status.

Kafka Cluster Deployment

[190]

To monitor broker live status controller, keep a watch on the ephemeral znodes ()
created by other brokers. In case the broker leaves the cluster or dies down, the ephemeral
znode created by the broker is deleted. The controller is now aware that the partitions for
which that broker was the leader needs to have a new leader.

After collecting all the information about the partitions that need a new leader, it finds out
the next replica broker for those partitions and sends them leader requests. The same
information is passed to all the followers so that they can start syncing data from the newly
elected leader. After receiving the leader requests, the new leader brokers know that they
must serve the producer and consumer requests for that topic partition.

To summarize, the Zookeeper ephemeral znode feature is used by Kafka
to elect a controller and to notify the controller when other broker nodes
join and leave the cluster. This notification triggers the leader election
process by the controller.

Now that we are aware of the leader election process in Kafka, let's consider the different
znodes maintained by Kafka cluster. Kafka uses Zookeeper for storing a variety of
configurations and metadata in key-value format in the ZK data tree and uses them across
the cluster. The following nodes are maintained by Kafka:

: This is the Kafka znode for controller leader election
: This is the Kafka znode for broker metadata

: This is the Kafka znode for ACL storage
: This is the Kafka admin tool metadata

: This denotes the track changes to in sync
replication

: This denotes the track movement of the controller
: This is the Kafka consumer list

: This denotes the entity configuration

Replication
One of the important aspects of Kafka is that it is highly available, and this is guaranteed
through data replication. Replication is the core principle of Kafka design. Any type of
client (producer or consumer) interacting with Kafka cluster is aware of the replication
mechanism implemented by Kafka.

Kafka Cluster Deployment

[191]

You should understand that in Kafka, replications are driven by topic
partitions. All these replicas are stored in different brokers participating in
Kafka cluster.

You should always see replications in terms of leaders and followers. To further elaborate
on this, you always set the replication factor of the topic. Based on this replication number,
the data in every partition of the topic is copied over to that many different brokers. In the
context of fail over, if the replication factor is set to n, then Kafka cluster can accommodate
n-1 failures to ensure guaranteed message delivery.

The diagram following represents how replication works in Kafka:

Partition leaders receive messages from producer applications. Followers send the fetch
requests to the leaders to keep replicas in sync. You can think of followers as another
consumer application trying to read data from the leaders of the partition.

Once all the replicas are in sync, the consumer can consume messages from the partition
leader. Controllers with the help of Zookeeper keep track of the leader of the partition, and
in case of leader failure, they choose another leader. Once a new leader is chosen,
consumers start consuming from the new leader of the partition.

Kafka Cluster Deployment

[192]

There are two types of replication supported by Kafka--synchronous and asynchronous:

Synchronous replication: In synchronous replication, a producer finds out a
leader of topic partition from Zookeeper and publishes the message. Once the
message is published, it is written to the leader s log. The followers of the leader
then start reading the messages. The order of the messages is always ensured.
Once a follower successfully writes the message to its own log, it sends an
acknowledgement to the leader. When the leader knows that the replication is
done and the acknowledgment is received, it sends the acknowledgment to the
producer about successful publishing of the message.
Asynchronous replication: In asynchronous replication, the acknowledgement to
the producer is sent immediately after the leader writes the message to its own
log. The leader does not wait for any acknowledgement from its follower, and
this practice does not ensure guaranteed message delivery in case of broker
failure.

Metadata request processing
Before we jump into producer or consumer request processing, we should understand some
of the common activities that any Kafka client or broker would perform irrespective of
whether it is a write request or fetch request. One such request is to understand how
metadata is requested or fetched by Kafka clients.

Following are the steps involved in metadata requests for producing a message:

Based on the configuration files, the client prepares a list of topics they are1.
interested in along with the first broker they would send the metadata request to.
It sends the requests to the broker with an array of topics prepared from step 1. If2.
the array of topics is null, the metadata for all the topics is fetched. Along with
the list of topics, it also sends a Boolean flag to
the broker for creating topics that don t exist.
If the response is received from the broker, then send the write request to the3.
leader of the partition. If no valid response is received or the request times out,
the other broker from the configuration list is picked for the metadata fetch
request.
Finally, the client would receive the acknowledgement from the broker for4.
successful or unsuccessful message writes.

Kafka Cluster Deployment

[193]

Both the broker and the client cache the metadata information and refresh them at some
specific time interval. In general, if the client receives a Not a leader response from a broker,
it realizes that the cached metadata is old. It then requests fresh metadata from the broker as
an error indicates that the client metadata has expired.

Producer request processing
Client requests that are intended to write messages to Kafka queues are called producer
requests. Based on the information received from the metadata request, the client issues a
write request to the leader broker. All the write requests contain a parameter called ack,
which determines when brokers should respond with a successful write to the client.
Following are the possible values of the ack configuration:

1: This means the message is accepted only by the leader
all: This means all in-sync replicas along with the leader have accepted the
message
0: This means do not wait for acceptance from any of the brokers

On the other hand, the broker first checks whether all the relevant information is in the
request. It checks whether the user issuing the request has all the relevant privileges or not
and whether the ack variable has relevant values (1, 0, or all).

For all acks, it checks whether there are enough in sync replicas for writing the messages. If
all relevant parameters and checks are in place, the broker will write messages to the local
disk. The broker uses the OS page cache to write the messages and does not wait for it to be
written to the disk. Once the messages are written to the cache, the relevant response is sent
back to the client.

So, if the ack value is set to 0, the broker sends the response back to the client as soon as it
receives it. If it is set to 1, the broker sends a response back to the client once it has written
the messages to the file cache. If the acks configuration is set to all, the request will be stored
in a purgatory buffer. In this case, the response will be sent to the client when the leader
receives an acknowledgement from all the followers.

Consumer request processing
Same as the producer requests, consumer fetch requests start with metadata requests. Once
the consumer is aware of the leader information, it forms a fetch request containing an
offset from which it wants to read the data. It also provides the minimum and maximum
number of messages it wants to read from the leader broker.

Kafka Cluster Deployment

[194]

The consumer can pre-allocate memory for the response from the broker, and therefore, we
should specify the maximum limit of memory allocation. If the minimum limit is not
specified, there could be inefficient utilization of resources when the broker sends a small
portion of the data for which very little memory is required. Instead of processing a small
amount of data, the consumer can wait for more data to come and then run a batch job to
process the data.

The brokers upon receiving the fetch requests, checks whether an offset exists or not. If the
offset exists, the broker will read messages till the batch size reaches the limit set by the
client and then eventually send the response back to the client. It is important to note that
all the fetch requests are handled using the zero copy approach. This kind of approach is
very common in a Java-based system for efficiently transferring data over the network.
Using this approach, the broker does not copy intermediate data to memory buffers,
instead, it is sent to network channels immediately. This saves a lot of CPU cycles and,
hence, increases performance.

In addition to the preceding information, it is important for you to remember two other
important aspects of consumer request processing. One is about the minimum number of
messages required by the fetch request. The other is that consumers can only read messages
that are written to all followers of the leader of the partition.

In other words, consumers can only fetch those messages that all in-sync
replicas have received and registered to their local files' system cache.

Capacity planning
Capacity planning is mostly required when you want to deploy Kafka in your production
environment. Capacity planning helps you achieve the desired performance from Kafka
systems along with the required hardware. In this section, we will talk about some of the
important aspects to consider while performing capacity planning of Kafka cluster.

Note that there is no one definite way to perform Kafka capacity planning.
There are multiple factors that come into the picture, and they vary
depending upon your organizational use cases.

Kafka Cluster Deployment

[195]

Our goal here is to give you a good starting point for Kafka cluster capacity planning with
some pointers that you should always keep in mind. Let's consider these one by one.

Capacity planning goals
This is the most important thing while performing capacity planning of your Kafka cluster.
You should be very clear with your capacity planning goals. You should understand that
without having clear goals in mind, it is very difficult to perform appropriate capacity
planning.

Generally, capacity planning goals are driven by latency and throughput. Some of the
additional goals could be fault tolerance and high availability.

We suggest you derive quantifiable goals so that you can always come up
with logical mathematical conclusions to capacity planning numbers.
Moreover, your goals should also consider future data growth or increase
in the number of requests.

Replication factor
Replication factor is one of the main factors in capacity planning. As a rule of thumb, one
single broker can only host only one partition replica. If that had not been the case, one
broker failure could have caused Kafka to become unavailable.

Hence, the number of brokers must be greater than, or equal to, the number of replicas. As
you can clearly observe, the number of replicas not only decides the number of failures
Kafka can handle, but also helps in deciding the minimum number of broker servers
required for your Kafka cluster.

Memory
Kafka is highly dependent on the file system for storing and caching messages. All the data
is written to the page cache in the form of log files, which are flushed to disk later.
Generally, most of the modern Linux OS use free memory for disk cache. Kafka ends up
utilizing 25-30 GB of page cache for 32 GB memory.

Kafka Cluster Deployment

[196]

Moreover, as Kafka utilizes heap memory very efficiently, 4-5 GB of heap size is enough for
it. While calculating memory, one aspect you need to remember is that Kafka buffers
messages for active producers and consumers. The disk buffer cache lives in your RAM.
This means that you need sufficient RAM to store a certain time of messages in cache. While
calculating buffer requirements, there are two things you should keep in mind: one is the
amount of time you want to buffer messages (this can vary from 30 seconds to 1 minute),
the second is the read or write throughput goal you have in mind.

Based on that, you can calculate your memory needs using this formula:

Throughput * buffer time

Generally, a 64 GB machine is decent for a high performance Kafka cluster. 32 GB would
also meet those needs. However, you should avoid using anything less than 32 GB as you
may end up having smaller machines to load balance your read and write requests.

Hard drives
You should try to estimate the amount of hard drive space required per broker along with
the number of disk drives per broker. Multiple drives help in achieving good throughput.
You should also not share Kafka data drives with Kafka logs, Zookeeper data, or other OS
file system data. This ensures good latency.

Let s first talk about how to determine disk space requirements per broker. You should first
estimate your average message size. You should also estimate your average message
throughput and for how many days you would like to keep the messages in the Kafka
cluster.

Based on these estimates, you can calculate the space per broker using the following
formula:

(Message Size * Write Throughput * Message Retention Period * Replication Factor) / Number of
Brokers

SSDs provide significant performance improvements for Kafka. There are two reasons for it,
and they are explained as follows:

Write to disk from Kafka is asynchronous and no operations of Kafka wait for
disk sync to complete. However, the disk sync happens in the background. If we
use a single replica for topic partition, we may lose data completely because the
disk may crash before it syncs data to disk.

Kafka Cluster Deployment

[197]

Each message in Kafka is stored in a particular partition, which stores data
sequentially in the write ahead log. We may say reads and writes in Kafka
happen in a sequence. Sequential reads and writes are heavily optimized by SSD.

You should avoid network attached storage (NAS). NAS is slower with a higher latency
and bottleneck as a single point of failure. RAID 10 is also recommended, but at times, due
to additional cost, people do not opt for it. In that case, you should configure your Kafka
server with multiple log directories, each directory mounted on a separate drive.

Network
Kafka is a distributed messaging system. The network plays a very important role in a
distributed environment. A bad network design may affect the performance of the overall
cluster. A fast and reliable network ensures that nodes can communicate with each other
easily.

A cluster should not span multiple data centers, even if data centers are close to each other.
High latency will complicate the problem in any distributed system and will make
debugging and resolution look difficult.

CPU
Kafka does not have very high CPU requirement. Although more CPU cores are
recommended. Choose a next-generation processor with more cores. Common clusters
consist of 24 core machines. CPU cores help you add extra concurrency, and more cores will
always improve your performance.

If you want to use SSL with Kafka, it may increase your CPU core requirement as SSL
occupies a few cores for its operation.

Single cluster deployment
This section will give you an overview of what Kafka cluster would look like in a single
data center. In a single cluster deployment, all your clients would connect to one data
center, and read/write would happen from the same cluster. You would have multiple
brokers and Zookeeper servers deployed to serve the requests. All those brokers and
Zookeepers would be in the same data center within the same network subnet.

Kafka Cluster Deployment

[198]

The following diagram represents what single cluster deployments would look like:

In the preceding diagram, Kafka is deployed in Data Center 1. Just like any other single
Kafka cluster deployment, there are internal clients (Application 1 and Application 2),
remote clients in different Data Centers (Application 3 and Application 4), and direct
remote clients in the form of mobile applications.

As you can clearly see, this kind of setup has dependency on a single data center. This can
cause stoppage of your critical functionalities in case of data center outage. Moreover, due
to cross-region data travel, sometimes the response time is also delayed. Sometimes, due to
a very high request load, single data center resources are not enough to ensure latency and
throughput SLAs. To avoid such problems, you can adopt multicluster Kafka deployment.
We will discuss that in the following section.

Multicluster deployment
Generally, multicluster deployment is used to mitigate some of the risks associated with
single cluster deployment. We have mentioned to you, some of those risks in the preceding
section. Multicluster deployment can come in two flavors - distributive models and
aggregate models.

Kafka Cluster Deployment

[199]

The distributive model diagram is shown in the following figure. In this model, based on
the topics, messages are sent to different Kafka clusters deployed in different data centers.
Here, we have chosen to deploy Kafka cluster on Data Center 1 and Data Center 3.

Applications deployed in Data Center 2 can choose to send data to any of the Kafka clusters
deployed in Data Center 1 and Data Center 3. They will use different a data center-
deployed Kafka cluster depending on the Kafka topic associated with the messages. This
kind of message routing can also be done using some intermediate load balancer
application as well. It s a choice that you must make; whether you want to have routing
logic written in your producer or consumer application, or you want to build a separate
component to decide on the message routing-based on the Kafka topic.

The aggregate model is another example of multicluster deployment. In this model, data is
synced between clusters in Data Center 1 and Data Center 3 using a tool called Mirror
Maker. Mirror maker uses a Kafka consumer to consume messages from the source cluster
and republishes those messages to the local (target) cluster using an embedded Kafka
producer. A detailed document on it can be found at

. Clients can use any of the clusters for
reading and writing to any of the clusters. Aggregate models support more availability and
scalability as requests are load balanced equally between the two data centers. Moreover, it
has more tolerance for failure as in case of one data center outage, the other data center can
serve all requests.

Following is a representation of the aggregate model:

Kafka Cluster Deployment

[200]

Decommissioning brokers
Kafka is a distributed and replicated messaging system. Decommissioning brokers can
become a tedious task sometimes. In lieu of that, we thought of introducing this section to
keep you informed about some of the steps you should perform for decommissioning the
broker.

Kafka Cluster Deployment

[201]

You can automate this using any scripting language. In general, you should perform the
following steps:

Log in to the Zookeeper shell, and from there, collect the relevant broker1.
information based on the broker IP or hostname.
Next, based on the broker information collected from Zookeeper, you should2.
gather information about which topics and partition data need to be reassigned to
different brokers. You can use Kafka topic shell-based utilities to gather such
information. Basically, topic partitions that require reassignment are identified
with leader and replicas values that are equal to the broker ID of the node that is
to be decommissioned.
You then should prepare a reassignment partition JSON file, which will contain3.
information about topic partitions and newly assigned broker IDs. Remember
these broker IDs should be different from the one that is decommissioned. Details
of JSON can be found at

.
Then you should run the shell utility to4.
reassign the partitions. Details of the utility can be found at

Finally, check whether partitions are reassigned to different brokers using Kafka5.
topic shell utilities. You can use the same reassignment utility to verify the re-
assignment as well. Run test produce and consume request for those topic
partitions as well. Sometimes, re-assignment does take some time, so it is always
advisable to run the re-assignment script in the background and keep on
checking its state periodically.

Data migration
Data migration in Kafka cluster can be viewed in different aspects. You may want to
migrate data to newly-added disk drives in the same cluster and then decommission old
disks. You may want to move data to a secure cluster or to newly-added brokers and then
decommission old brokers. You may want to move data to a different new cluster
altogether or to the Cloud. Sometimes, you also end up migrating Zookeeper servers. In this
section, we will, in general, discuss one of the scenarios mentioned earlier.

Let's consider the scenario where we want to add new hard drives/disks and decommission
old ones on broker servers. Kafka data directories contain topic and partition data. You can
always configure more than one data directory, and Kafka will balance the partition or topic
data across these directory locations.

Kafka Cluster Deployment

[202]

One important thing to note here is that Kafka does not have a feature to
balance partition data across multiple directories. It does not automatically
move existing data to new data directories. If this needs to be achieved, it
must be done manually.

However, in scenarios where you must decommission old disks, there are multiple
approaches that can be taken. One such approach is to just delete the old directories' content
after taking relevant backups and then configure the new directory location. After the
broker restarts, Kafka would replicate all partition or topic data to the new directories. This
approach is sometimes time consuming if the data that needs to be replicated is huge.
Moreover, while the data is migrated, this broker would not be serving any requests. This
will bring load on other brokers. Network utilization is also high during the migration
period.

Data migration is a huge topic. We cannot cover all aspects of it in this book. However, we
want to touch base with it to give you a sense of how data migration can be done in Kafka.
In any data migration, we believe there are two important things that you should always
do: the first is to ensure you have all the relevant backups done along with recovery plans
in case of migration failure, the second is to avoid a lot of manual work and let Kafka s
replication framework do the bulk of work. This will be much safer and would avoid errors.

Summary
In this chapter, we dove deep into Kafka cluster. You learned how replication works in
Kafka. This chapter walked you through how the Zookeeper maintains its znodes and how
Kafka uses Zookeeper servers to ensure high availability. In this chapter, we wanted you to
understand how different processes work in Kafka and how they are coordinated with
different Kafka components. Sections such as Metadata request processing, Producer request
processing, and Consumer request processing, were written keeping that goal in mind.

You also learned about the different types of Kafka deployment models along with the
different aspects of Capacity Planning Kafka cluster. Capacity Planning is important from
the perspective of deploying Kafka cluster in the production environment. This chapter also
touched base with complex Kafka administration operations such as broker
decommissioning and data migration. Overall, this chapter helped you improve your skills
regarding the internal working of Kafka cluster, cluster deployment model, planning and
managing production grade Kafka cluster.

111
Using Kafka in Big Data

Applications
In the earlier chapters, we covered how Kafka works, what kind of different components
Kafka has, and what some of the Kafka tools that we can utilize for some specific use cases
are. In this chapter, our focus is on understanding the importance of Kafka in big data
applications. Our intention is for you to understand how Kafka can be used in any big data
use cases and what are different types of design aspects you should keep in mind while
using Kafka in this manner.

Kafka is becoming the standard tool for messaging in big data applications. There are some
specific reasons for it. One of the reasons for it is that we can not use databases as the one-
stop destination for all. Earlier, due to lack of elegant storage systems, databases tend to be
the only solution for any type of data store. If you use a database, over a period of time, the
system will become highly complex to handle and expensive. Databases expects all data to
be present in certain data formats. To fit all types of data in the expected data formats tends
to make things more complex.

Gone are the days when you would need databases to store every type of data. The last
decade has seen changes in that paradigm, and specialized systems have been built to cater
to different types of use cases. Moreover, we have improved the process of collecting data
from different systems or devices. Each of those systems has different data formats and data
types. The same data is also utilized to feed in different data pipelines such as real-time
alerting, batch reports, and so on.

Kafka is for situations like these because of the following reasons:

It has the support to store data of any types and formats
It uses commodity hardware for storing high volumes of data
It is a high-performance and scalable system

Using Kafka in Big Data Applications

[204]

It stores data on disk and can be used to serve different data pipelines; it can be
used in real-time event processing and batch processing
Due to data and system redundancy, it is highly reliable, which is an important
requirement in enterprise grade production-deployed big data application

The following topics will be covered in the chapter:

Managing high volumes in Kafka
Kafka message delivery semantics
Failure handling and retry-ability
Big data and Kafka common usage patterns
Kafka and data governance
Alerting and monitoring
Useful Kafka matrices

Managing high volumes in Kafka
You must be wondering why we need to talk about high volumes in this chapter,
considering how aspects such as high volumes, performance, and scalability are in the
genes of Kafka architecture. Well, you are thinking in the right direction, but certain
parameters need to be tuned to manage Kafka latency and throughput requirements.

Moreover, you have to choose the right set of hardware and perform appropriate capacity
planning. Therefore, we thought that it is better to discuss it. In a nutshell, when we talk
about high volumes in Kafka, you have to think of following aspects:

High volume of writes or high message writing throughput
High volumes of reads or high message reading throughput
High volume of replication rate
High disk flush or I/O

Let's look at some of the components that you should consider for high volumes in Kafka.

Appropriate hardware choices
Kafka is a commodity hardware run tool. In cases where volumes are very high, you should
first have a clear understanding of which Kafka components are affected and which one of
them would need more hardware.

Using Kafka in Big Data Applications

[205]

The following diagram will help you understand some of the hardware aspects in case of
high volumes:

In the case of a high volume of writes, producers should have more capacity to buffer
records. That means it should have more memory available to it.

Since batching is always suggested for a high volume of writes, you would require more
network bandwidth for a connection between the producer component and the broker. One
batch would have more number of messages and, hence, more bandwidth. Similar is the
case with high volume reads where you would need more memory for consumer
application. Just like producer application, you would need more network bandwidth for a
connection between the consumer component and the broker.

For brokers, you need to give more thought to the hardware as with high volumes, brokers
do majority of the work. Brokers are multi-threaded applications. They run parallel threads
for both receiving requests and reading/writing data. High volumes in Kafka result in more
read/write requests and more disk I/O threads. Therefore, broker servers need more cores to
support high number of threads. The case with replication threads is similar.

Using Kafka in Big Data Applications

[206]

The higher the number of the replication factor, the higher the number of
threads spawned by brokers to copy data. Accordingly, more cores would
be required. Since Kafka stores everything on disks, to support high
volumes, you would need more drive volumes or hard drive space.

Lastly, to manage high throughput and low latency, the number of disk drives play an
important role. As you increase number of disk drives for Kafka, more parallel threads can
efficiently perform I/O on disks.

Producer read and consumer write choices
We talked about choices of hardware one should make in case of high volumes. In this
section, we will talk about some of the important techniques to manage high throughput
and low latency in case of reading and writing high volume data in Kafka.

We are listing some of the techniques that you can use while writing or reading data:

Message compression: The producer generates the compression type of all the
data. The value for the compression type property are none, GZIP, Snappy, or
lZ4. More batching leads to better compression ratio because compression
happens on the entire batch. You may need to compromise with more CPU cycles
to complete the compression process, but it will definitely save the network
bandwidth later.

The reason is simple--compression reduces the data size, and exchanging less
data over the network saves time. If you wish to disable the compression,
make . Sometimes, good compression codec also
helps in achieving low latency.

Message batches: This property is specific to producers in the asynchronous
mode. A small-sized batch may reduce throughput, and setting batch size to zero
will disable the batch size. Setting a large batch size is also not recommended, as
it will force us to allocate more memory to the producer side, which sometime
results in wastage of memory. The messages going to the same partition are
batched together, and then they are sent to Kafka brokers in a single request for
persisting it to topic partitions.

Using Kafka in Big Data Applications

[207]

Remember that a large-sized batch results in fewer requests to Kafka
brokers, which results in less producer overhead and less brokers CPU
overhead to process each request. You can set the property
along with the property, which allows producer to send a
batch in case it is taking longer to fill batch.

Asynchronous send: If you set the flag to , the producer
will internally use . It offers the capability to do sends on a
separate thread that isolates the network I/O from the thread doing computation
and allows multiple messages to be sent in a single batch. Both isolation and
batching are desirable for good performance on the producer side.
Linger time: The producer sends buffer once it is available and does not wait for
any other trigger. Linger time allows us to set the maximum time in which data
can be buffered before the producer sends it for storage.
Sending messages in batches will always reduce the number of requests, but we
cannot wait for the batch reach the configured size as it may cost us in
throughput and latency. The property allows us to configure the
maximum time our producer should wait before sending the batch of data.
Fetch size: The consumer application property sets
the maximum message size a consumer can read. It must be at least as large
as . This should be appropriately set to manage high
volumes. The number of partitions defines the maximum number of consumers
from the same consumer group who can read messages from it.
The partitions are split between consumers in the same consumer group, but if
the consumer count in the same consumer group is greater than the number of
partitions, a few consumers will be idle. However, this does not affect the
performance.

You can mark the last read message offset, and this allows you to locate the
missing data in case the consumer fails, but enabling this checkpoint for
every message will impact the performance. However, if you enable
checkpoint for every 100 messages, the impact on throughput will be reduced
with a good margin of safety.

Kafka message delivery semantics
Semantic guarantees in Kafka need to be understood from the perspective of producers and
consumers.

Using Kafka in Big Data Applications

[208]

At a very high level, message flows in Kafka comprise the producer
writing messages that are read by consumers to deliver it to the message
processing component. In other words, producer message delivery
semantics impact the way messages are received by the consumer.

For example, suppose the producer component does not receive successful from
brokers because of network connectivity. In that case, the producer re-sends those messages
even if the broker has received them. This results in duplicate messages sent to the
consumer application. Therefore, it is important to understand that the way messages are
delivered by the producer effects the manner in which the consumer would receive the
messages. This would ultimately have impact on applications processing those consumer
received messages.

In general, there are three types of message delivery semantics. They are as follows:

At most once: In this case, messages are only read or written once. The messages
are not redelivered or sent again even if they are lost in between due to
component unavailability or loss of network connectivity. This semantic can
result in message loss.
At least once: In this case, messages are read or written at least once, and they are
never lost. There is a possibility to duplicate messages, because the same message
might be delivered again.
Exactly Once: This is the most favorable delivery semantics as it ensures
messages are delivered once and only once. This ensures no message loss and no
duplication.

Now that we are clear about message delivery semantics, let's see how those works in the
producer and consumer context.

At least once delivery
In the producer context, at least once delivery can happen if are lost in network
translation. Suppose the producer has configuration of . This means the
producers will wait for success or failure acknowledgement from the brokers after messages
are written and replicated to relevant brokers.

In case of timeout or some other kind of error, the producer re-sends those messages
assuming that they are not written to topic partitions. But what if the failure happens right
after the messages are written to Kafka topic but can not be sent? In that case, the
producer will retry sending that message, resulting in messages being written more than
once.

Using Kafka in Big Data Applications

[209]

In this kind of scenario, generally, message de-duplication techniques are applied on data
processing components after consumers have read the messages.

The following diagram, and the step numbers therein, depicts how at least once delivery
semantics works in the producer context:

In the consumer context, at least once processing corresponds to the fact that the consumer
has received the messages and has saved it for further processing. However, the consumer
process fails before committing its offset.

Once we restart the consumer processes or some other consumer processes started reading
messages from same partition, then it will read the same message as its offset is not
committed, although the message has already been saved once for further processing. This
is called at least once semantics in case of consumer component failure.

Using Kafka in Big Data Applications

[210]

The following diagram depicts how at least once delivery semantics works in the consumer
context. Follow the step numbers to understand it in sequence:

Using Kafka in Big Data Applications

[211]

Consumers first read the records from Kafka topics and save them to the file systems for
processing applications as depicted in step 2. File systems are just taken as an example here.
A consumer can directly send data to data processing applications or store it in databases.
Step 3 is about committing the offset. In the case that offset commits failed, consumers will
retry reading those messages again (after restart or some new consumer processes in the
consumer group). It will then eventually save the duplicate message as earlier offset commit
has failed.

At most once delivery
In the producer context, at most delivery can happen if the broker has failed before
receiving messages or are not received and the producer does not try sending the
message again. In that case, messages are not written to Kafka topic and, hence, are not
delivered to the consumer processes. This will result in message loss.

The following diagram depicts how at most once delivery semantics works in the producer
context. Follow the step numbers to understand it in sequence:

Using Kafka in Big Data Applications

[212]

The producers in step 1 attempt to write topic messages to Broker 1. Broker 1 fails
immediately after receiving the messages. In case of at most once delivery semantics, Broker
1 after failure, would not be able to save the records on the local file system, or able to
replicate it to Broker 2. It will not even send any Ack to the the producer application. Since
producer application is not configured to wait for acknowledgement, it will not resend the
messages. This will result in message loss.

The following diagram depicts how at most once delivery semantics works in the consumer
context. Follow the step numbers to understand it in sequence:

Using Kafka in Big Data Applications

[213]

In the consumer context, as shown in previous figure, at most processing corresponds to the
fact that the consumer has read the messages (step 1) and committed message offset (step
2). However, it crashes after committing message offset and before saving the message to
output files (step 3) for further message processing. In case the consumer restarts, it will
start reading from the next offset as the previous offset has been committed. This will result
in message loss.

Exactly once delivery
Exactly once delivery needs to be understood in the complete messaging system and not
only in the producer or consumer context.

Exactly once delivery refers to the semantics that ensures that the broker
or consumer receives only one message, irrespective of how many times
the producer sends the message. In case of failure, the partially completed
steps should either be reverted or the system should store or process
messages in a way that duplicates are ignored.

To ensure exactly once delivery, Kafka has provisions for idempotent producers. These
kinds of producers ensure that one, and only one, message is written to a Kafka log. This
will be irrespective of how many retries happen from producer side.

Idempotent producers generate a unique key identifier for each batch of messages. This
unique identifier remains unchanged in case of message retries. When the message batches
are stored by the broker in Kafka logs, they also have a unique number. So, the next time
the brokers receive a message batch with an already received unique identifier, they do not
write those messages again.

Using Kafka in Big Data Applications

[214]

The other option that is provided with new versions of Kafka is support for transactions.
New versions of Kafka have support for transactions APIs, which ensure automatic
message writes to multiple partitions at a time. Producers can send a batch of messages to
write to multiple partitions using transaction APIs. Ultimately, either all messages of a
batch will be available for consumers to read or none of them will be visible to consumers.
With both the producer features, one can ensure exactly once delivery semantics with
producer applications.

On the consumer side, you have two options for reading transactional messages, expressed
through the consumer config:

: In addition to reading messages that are not part of a
transaction, this allows reading the ones that are, after the transaction is
committed.

: This allows reading all messages in the offset order without
waiting for transactions to be committed. This option is similar to the current
semantics of a Kafka consumer.

To use transactions, you need to configure the consumer to use the right
, use the new producer APIs, and set a producer config

 to some unique ID. This unique ID is needed to provide continuity of
the transactional state across application restarts.

Big data and Kafka common usage patterns
In the big data world, Kafka can be used in multiple ways. One of the common usage
patterns of Kafka is to use it as a streaming data platform. It supports storing streaming
data from varied sources, and that data can later be processed in real time or in batch.

The following diagram shows a typical pattern for using Kafka as a streaming data
platform:

Using Kafka in Big Data Applications

[215]

The previous diagram depicts how Kafka can be used for storing events from a variety of
data sources. Of course, the data ingestion mechanism would differ depending upon the
type of data sources. However, once data is stored in Kafka topics, it can be used in data
search engines, real-time processing, or alerting and even for batch processing.

Using Kafka in Big Data Applications

[216]

Batch processing engines, such as Gobblin, read data from Kafka and use
Hadoop MapReduce to store data in Hadoop. Real-time processing
engines such as Storm can read data, micro batch processing engines, such
as Spark can read data from Kafka topics and use their distributed engines
to process records. Similarly, components such as Kafka Connect can be
used to index Kafka data into search engines such as Elasticsearch.

Nowadays, Kafka is used in micro-services or IOT-based architecture. These kinds of
architecture are driven by request responses and event-based approaches with Kafka as a
central piece of it. Services or IOT devices raise events that are received by Kafka brokers.
The messages can then be used for further processing.

Overall, Kafka, due to its high scalability and performance-driven design, is used as an
event store for many different types of applications, including big data applications.

Kafka and data governance
In any enterprise grade Kafka deployment, you need to build a solid governance
framework to ensure security of confidential data along with who is dealing with data and
what kind of operations are performed on data. Moreover, governance framework ensures
who can access what data and who can perform operations on data elements. There are
tools available such as Apache Atlas and Apache Ranger, which will help you define a
proper governance framework around Kafka.

The fundamental data element in Kafka is Topic. You should define all your governance
processes around Topic data element.

The following diagram represents how data governance can be applied in Kafka using
Apache Atlas and Ranger:

Using Kafka in Big Data Applications

[217]

To give an overview of the diagram, we can sum up all the steps as follows:

Create tags in Apache Atlas. Each tag corresponds to a Topic data element in1.
Kafka. You can utilize the topic tags to classify data into sensitive or non-
sensitive.
Using Atlas and Ranger integration, sync the tags created in Atlas into Ranger.2.
After the sync is complete, use those tags to define authorization policies for3.
users or application processes that will be accessing Kafka topics.
Ranger can be used for audit purposes as well.4.

The preceding steps are just directional in nature to give you a brief overview of how we
can apply data governance to Kafka topics. If you want to explore more and go in to more
detail, you can look into Hortonworks and Apache documents about Apache Atlas and
Apache Ranger.

Using Kafka in Big Data Applications

[218]

Alerting and monitoring
If you have properly configured the Kafka cluster and it is functioning well, it can handle a
significant amount of data. If you have Kafka as a centralized messaging system in your
data pipeline and many applications are dependent on it, any cluster disaster or bottleneck
in the Kafka cluster may affect the performance of all application dependent on Kafka.
Hence, it is important to have a proper alerting and monitor system in place that gives us
important information about the health of the Kafka cluster.

Let's discuss some advantages of monitoring and alerting:

Avoid data loss: Sometimes it may happen that topic partitions are under
replicated, meaning they have fewer number of replicas available in the cluster. If
there are more such partitions, the risk of losing data for partition increases. A
proper triggering system may help us avoid such problems so that we can take
necessary action before any partition becomes completely unavailable.
Producer performance: The alerting and monitoring system will also help us
improve the producer performance by observing its metrics. We may find that
the producer is producing more data than it can send, or we may find that the
producer memory is insufficient for buffering partition data. Getting alerts for
such scenario will help us tune the producer application.
Consumer performance: We may also observe that the consumer is not able to
process data as fast as the producer is producing it, or that the consumer is not
able to consume data due to some network bandwidth issue. If we monitor
consumer metrics for such scenarios, we may find scope for improvement of the
consumer application.
Data availability: Sometimes, the leaders for partitions are not assigned, or it
takes time for the assignment to happen. In such cases, these partitions will not
be available for any read and write operation. If we find such information
beforehand, we may avoid application trying and retrying read and write to
partition whose leader is not available.

There are a lot more benefits of having an alerting and monitoring system in place for
Kafka; covering all those is out of the scope of this book.

Useful Kafka matrices
For useful monitoring and performance measures, we need to have certain matrices, and we
will talk about those matrices in this section.

Using Kafka in Big Data Applications

[219]

We will look into the matrices of Kafka cluster component in detail. The matrices are as
follows:

Kafka producer matrices
Kafka broker matrices
Kafka consumer matrices

Producer matrices
Producers are responsible for producing data to Kafka topics. If the producer fails, the
consumer will not have any new messages to consume and it will be left idle. The
performance of the producer also plays an important role in achieving high throughput and
latency. Let's look into a few important matrices of Kafka producer:

Response rate: The producer sends records to the Kafka broker, and the broker
acknowledges when a message is written to a replica in case of a request.
Required is set to -1. The response rate depends on the value assigned to
this property. If set to, -0, the broker will immediately return a response when it
receives a request from the producer before it writes data to disk. If set to 1, the
producer first writes data to its disk and then returns a response. Obviously, less
fewer write operations will lead to high performance, but there will be chances of
losing data in such cases.
Request rate: The request rate is the number of records the producer produces
within a given time.
I/O wait time: The producer sends data and then waits for data. It may wait for
network resources when the producing rate is more than the sending rate. The
reason for a low producing rate could be slow disk access, and checking the I/O
wait time can help us identify the performance of reading the data. More waiting
time means producers are not receiving data quickly. In such cases, we may want
to use fast access storage such as SSD.
Failed send rate: This gives the number of message requests failed per second. If
more messages are failing, it triggers an alarm to find out the root cause of the
problem and then fix it.
Buffer total bytes: This represents the maximum memory the producer can use
to buffer data before it sends it to brokers. The maximum buffer size will result in
high throughput.
Compression rate: This represents the average compression rate for batch records
for topic. A higher compression rate triggers us to change the compression type
or look for some way to reduce it.

Using Kafka in Big Data Applications

[220]

Broker matrices
Brokers are responsible for serving producer and consumer requests. They also contain
important matrices that can help you avoid some critical issues. There are a lot of metrics
available, but we will only look into a few important ones.

For more metrics, you may visit

Metrics Description

This represents the number of under-replicated partitions. A
higher number of under-replication partition may result in losing
more data in case the broker fails.

This represents the total number of partitions that are not available
for read or write because of no active leader for those partitions.

This defines the number of active controllers per cluster. There
should not be more than one active controller per cluster.

This represents the number of partitions on the broker. The value
should be even across all brokers.

This represents the number of leaders on the broker. This
should also be even across all brokers; if not, we should enable
auto rebalancer for the leader.

Consumer metrics
Consumers are responsible for consuming data from topic and doing some processing on it,
if needed. Sometimes, your consumer may be slow, or it may behave unacceptably. The
following are some important metrics that will help you identify some parameters that
indicate optimization on the consumer side:

: The calculated difference between the producer's current
offset and the consumer's current offset is known as record lag. If the difference is
very big, it's fairly indicative of the consumer processing data much slower than
the producer. It sends alerts for suitable action to fix up this issue, either by
adding more consumer instance or by increasing partitions and increasing
consumers simultaneously.

: This represents the number of bytes consumed per
second by the consumer. It helps in identifying the network bandwidth of your
consumer.

: This defines the number of messages consumed per
second. This value should be constant and generally helps when compared with

.

Using Kafka in Big Data Applications

[221]

: This represents the number of records fetched per second by the
consumer.

: This represents the maximum time taken for the fetch
request. If it's high, it triggers to optimize the consumer application.

There are more parameters available in Kafka documentation. We recommend you go
through them.

Summary
We walked you through some of the aspects of using Kafka in big data applications. By the
end of this chapter, you should have clear understanding of how to use Kafka in big data
Applications. Volume is one of the important aspects of any big data application. Therefore,
we have a dedicated section for it in this chapter, because you are required to pay attention
to granular details while managing high volumes in Kafka. Delivery semantics is another
aspect you should keep in mind. Based on your choice of delivery semantics, your
processing logic would differ. Additionally, we covered some of the best ways of handling
failures without any data loss and some of the governance principles that can be applied
while using Kafka in big data pipeline. We gave you an understanding of how to monitor
Kafka and what some of the useful Kafka matrices are. You learned a good detail of
advanced use of Kafka consumers for high volumes, important aspects of message delivery
semantics, data governance in Kafka, and Kafka monitoring and alerting.

In the next chapter, we will be covering Kafka security in detail.

112
Securing Kafka

In all the earlier chapters, you learned how to use Kafka. In this chapter, our focus is more
towards securing Kafka. Securing Kafka is one of the important aspect in enterprise
adoption of Kafka. Organizations have lot of sensitive information that needs to be stored in
secure environment to ensure security compliance. In this chapter, we focus on ways of
securing sensitive information in Kafka. We will focus on the different security aspects of
Apache Kafka and will cover the following topics:

An overview of securing Kafka
Wire encryption using SSL
Kerberos SASL for authentication
Understanding ACL and authorization
Understanding Zookeeper authentication
Apache Ranger for authorization
Best practices for Kafka security

An overview of securing Kafka
Kafka is used as a centralized event data store, receiving data from various sources, such as
micro services and databases.

In any enterprise deployment of Kafka, security should be looked at from five paradigms.
They are as follows:

Authentication: This establishes who the client(producer or consumer) is that
trying to use Kafka services. Kafka has support for the Kerberos authentication
mechanism.

Securing Kafka

[223]

Authorization: This establishes what kind of permission the client (producer or
consumer) has on topics. Kafka has support for ACLs for authorization. Apache
tools, such as Ranger, can also be used for Kafka authorization.
Wire encryption: This ensures that any sensitive data traveling over the network
is encrypted and not in plain text. Kafka has support for SSL communication
between the client (producer or consumer) and the broker. Even inter-broker
communication can be encrypted.
Encryption at rest: This ensures that any sensitive data that is stored on the disk
is encrypted. Kafka does not have any direct support for encrypting data on the
disk. However, you can utilize OS level disk encryption techniques for the same.
There are lot of third party paid services for the same.
Auditing: This is to ensure that every user activity is logged and analyzed for
security compliance. Kafka logs form a very useful tool for auditing. Apart from
that, Apache Ranger also provides auditing capabilities.

The following diagram summarizes the different Kafka security paradigms:

Wire encryption using SSL
In Kafka, you can enable support for Secure Sockets Layer (SSL) wire encryption. Any data
communication over the network in Kafka can be SSL-wire encrypted. Therefore, you can
encrypt any communication between Kafka brokers (replication) or between client and
broker (read or write).

Securing Kafka

[224]

The following diagram represents how SSL encryption works in Kafka:

The preceding diagram depicts how communication between broker and client is
encrypted. This is valid for both producer and consumer communications. Every broker or
client maintains their keys and certificates. They also maintain truststores containing
certificates for authentication. Whenever certificates are presented for authentication, they
are verified against certificates stored in truststores of respective components.

Steps to enable SSL in Kafka
Let's now look into the steps to enable SSL in Kafka. Before you begin, you should generate
the key, SSL certificate, keystore, and truststore that will be used by Kafka clients and
brokers. You can follow the link

 to create broker keys and certificate, the link
 to create your own certificate authority, and the

link to sign the
certificates. You should perform the same activity for clients (producer and consumer
applications) as well. Once you are done creating certificates, you can enable Kafka SSL
using the following steps.

Securing Kafka

[225]

Configuring SSL for Kafka Broker
The following changes are required in each broker server:

To enable for communications between brokers, make the following changes1.
in the broker properties:

To configure communication protocols and set ports, make the following2.
changes in server properties:

If you have not set SSL for inter-broker communication, you will need to
set listeners properties such as
this:

To give keystore and truststores path for each broker, you should make the3.
following changes in the server properties of each broker:

Some other additional properties like security.inter.broker.protocol can
also be used. Use the link

for additional properties.

Configuring SSL for Kafka clients
The configuration properties for Kafka producer and consumer are the same. The following
are the configuration properties you need to set for enabling SSL. If client authentication is
not required (), you need to set the following properties:

Securing Kafka

[226]

Technically, you can use truststore without a password, but we strongly
recommend using a truststore password, as it helps in integrity checks.

If client authentication is required (), you need to set the
following properties:

Kerberos SASL for authentication
Kerberos is an authentication mechanism of clients or servers over secured network. It
provides authentication without transferring the password over the network. It works by
using time-sensitive tickets that are generated using symmetric key cryptography.

It was chosen over the most-widely-used SSL-based authentication. Kerberos has the
following advantages:

Better performance: Kerberos uses symmetric key operations. This helps in faster
authentication, which is different from SSL key-based authentication.
Easy integration with Enterprise Identity Server: Kerberos is one of the
established authentication mechanisms. Identity servers such as Active Directory
have support for Kerberos. In this way, services such as Kafka can be easily
integrated with centralized authentication servers.
Simpler user management: Creating, deleting, and updating users in Kerberos is
very simple. For example, removing a user can be done by simply deleting the
user from the centrally managed Kerberos servers. For SSL authentication,
certificates have to be removed from all server truststores.
No passwords over the network: Kerberos is a secured network authentication
protocol that provides strong authentication for client/server applications
without transferring the password over the network. Kerberos works by using
time-sensitive tickets that are generated using the symmetric key cryptography.

Securing Kafka

[227]

Scalable: It is KDC that maintains the passwords or secret keys. This makes the
system scalable for authenticating a large number of entities as the entities only
need to know their own secret keys and set the appropriate key in KDC.

Let's also understand how Kerberos authentication flows work in Kafka. They need to be
looked at from different perspectives. There is a need to understand how services and
clients are authenticated and how communication happens between authenticated clients
and authenticated services. We also need to understand in detail how symmetric key
cryptography works in Kerberos authentication and how passwords are not communicated
over the network.

Services authenticate themselves with Kerberos during startup. During startup, Kafka
services will authenticate with KDC directly using the service principal and key tab using
configuration files. Similarly, it is essential for the end user to authenticate to Kerberos
when it accesses Kafka service via client tool or other mechanism, using his/her own user
principals.

The following diagram represents how Kerberos authentication works:

Securing Kafka

[228]

To further explore this, let's now look into how Kafka SASL authentication works. The
following diagram represents the steps involved in Kafka Kerberos authentication:

Steps to enable SASL/GSSAPI - in Kafka
In the following paragraphs, we will walk you through configurations that are required for
enabling Kerberos authentication in Kafka. We will divide our conversation into two parts--
one is about broker SASL (Simple Authentication and Secure Layer) configurations, and
the other is about client SASL configurations.

Securing Kafka

[229]

Configuring SASL for Kafka broker
Here is how to configure SASL for Kafka broker:

Create JAAS configuration files for each broker server, using the following for the1.
content of JAAS files:

Once you have saved JAAS configuration to a specific location, you can pass the2.
JAAS file location to each broker's JAVA OPTS as shown in the following code:

Make the following changes into the broker files. If you3.
have SSL enabled in Kafka, make the following property file changes:

If you do not have SSL enabled in Kafka, make following property file changes:4.

Securing Kafka

[230]

Configuring SASL for Kafka client - producer and
consumer
To configure the SASL for Kafka client, follow the following instructions:

The first step you should perform is to create JAAS configuration files for each1.
producer and consumer application. Use the following for the content of the
JAAS files:

The aforementioned JAAS configuration is for Java processes or for applications2.
acting as producer or consumer. If you want to use SASL authentication for
command line tools, use the following configurations:

Once you have saved JAAS configuration to specific location, you can pass the3.
JAAS file location to each client's JAVA OPTS as shown here:

Make the following changes to the or4.
 files. If you have SSL enabled in Kafka, make the

following property file changes:

Securing Kafka

[231]

If you do not have SSL enabled in Kafka, make the following property file5.
changes:

Kafka has support for other types of SASL mechanisms such as the
following:

Plain (
)

SCRAM-SHA-256 (
)

SCRAM-SHA-512 (
)

You can use them as well. However, GSSAPI (Kerberos) is the most
frequently adopted as it easily integrates with Kerberos-enabled Hadoop
services.

Understanding ACL and authorization
Apache Kafka comes with a pluggable authorizer known as Kafka Authorization
Command Line (ACL) Interface, which is used for defining users and allowing or denying
them to access its various APIs. The default behavior is that only a superuser is allowed to
access all the resources of the Kafka cluster, and no other user can access those resources if
no proper ACL is defined for those users. The general format in which Kafka ACL is
defined is as follows:

Principal P is Allowed OR Denied Operation O From Host H On Resource R.

The terms used in this definition are as follows:

Principal is the user who can access Kafka
Operation is read, write, describe, delete, and so on
Host is an IP of the Kafka client that is trying to connect to the broker
Resource refers to Kafka resources such as topic, group, cluster

Securing Kafka

[232]

Let's discuss a few common ACL types:

Broker or server ACL: The operation between brokers, such as updating broker
and partition metadata, changing the leader of partition, and so on, needs to be
authorized. Brokers also need to have access to topic because a broker has to
perform replication and some internal operation on topic and it requires read and
describe operation access on topic.
Topic: The principle using Kafka client to connect to brokers for topic creation
will require and permissions to be able to create topic.
Sometimes clients are not allowed to create topics on cluster due to security
policies, and in such cases, they need to connect to the Admin to create the topic.
Producer: The producer is responsible for producing data for topic and storing it
in the topic partition. It requires and access on topic resources to do
so.
Consumer: The consumer reads data from topic, and hence, operation
access is required on the topic's resources.

Common ACL operations
Let's now look into the basic operations of the ACL:

Kafka provides a simple authorizer; to enable this authorizer, add the following1.
line to server properties of Kafka:

As discussed in previous paragraphs, by default, only a superuser will have2.
access to resources if no ACL is found. However, this behavior can be changed if
we want to allow everyone to access resources if no ACL is set. Add the
following line to server properties:

You can also add more superusers to your Kafka cluster by adding users to the3.
following property in the server property file:

Securing Kafka

[233]

Adding an ACL: An ACL can be added using the command line interface. For4.
example, if you want to add an ACL where and

 are allowed to perform and operations on
 from and , it can be done using the

following command:

kafka-acls.sh --authorizer kafka.security.auth.SimpleAclAuthorizer
--authorizer-properties zookeeper.connect=localhost:2181 --add --
allow-principal User:Chanchal --allow-principal User:Manish --
allow-hosts 10.200.99.104,10.200.99.105 --operations Read,Write --
topic Packt

 and options can be used if you want to restrict the user
or host from accessing topic.

Removing ACL: The ACL added in the preceding part can be removed using the5.
following command:

kafka-acls.sh --authorizer kafka.security.auth.SimpleAclAuthorizer
--authorizer-properties zookeeper.connect=localhost:2181 --remove -
-allow-principal User:Chanchal --allow-principal User:Manish --
allow-hosts 10.200.99.104,10.200.99.105--operations Read,Write --
topic Packt

List ACLs
You can also list all the ACLs applied on following resources:

For example, if you want to see all ACLs applied in the topic Packt, you can do it1.
using the following command:

kafka-acls.sh --authorizer kafka.security.auth.SimpleAclAuthorizer
--authorizer-properties zookeeper.connect=localhost:2181 --list --
topic Packt

Producer and consumer ACL: Adding a user as the producer or consumer is a2.
very common ACL used in Kafka. If you want to add user as a
producer for , it can be done using the following simple command:

kafka-acls --authorizer-properties
zookeeper.connect=localhost:2181\
 --add --allow-principal User:Chanchal \
 --producer --topic Packt

Securing Kafka

[234]

To add a consumer ACL where will act as the consumer for 3.
 with consumer , the following command will be used:

kafka-acls --authorizer-properties
zookeeper.connect=localhost:2181\
 --add --allow-principal User:Manish \
 --consumer --topic Packt --group G1

There are lots of resources for which you can create an ACL list for allowing or4.
not allowing access on particular resources for particular users. Covering all
ACLs is out of the scope of this book.

Understanding Zookeeper authentication
Zookeeper is the metadata service for Kafka. SASL-enabled Zookeeper services first
authenticate access to metadata stored in Zookeeper. Kafka brokers need to authenticate
themselves using Kerberos to use Zookeeper services. If valid, the Kerberos ticket is
presented to Zookeeper, it then provides access to the metadata stored in it. After valid
authentication, Zookeeper establishes connecting user or service identity. This identity is
then used to authorize access to metadata Znodes guarded by ACLs.

One important thing for you to understand is that Zookeeper ACLs restrict modifications to
Znodes. Znodes can be read by any client. The philosophy behind this behavior is that
sensitive data is not stored in Zookeeper. However, modifications by an unauthorized user
can disrupt your cluster's behavior. Hence, Znodes are world readable, but not world
modifiable. Although authentication must be established irrespective of what kind of access
you have on Znodes, without a valid Kerberos ticket, you cannot access Zookeeper services
at all.

Securing Kafka

[235]

In a highly-secured cluster, to mitigate this risk, you can always use network IP filtering via
firewalls to restrict Zookeeper service access for selective servers. Zookeeper
authentications use Java Authentication and Authorization Service (JAAS) to establish the
login context for connecting clients. JAAS establishes the login context using a standard
configuration file and it directs the code to use the login context to drive authentication.
JAAS login context can be defined in two ways:

One is using Kerberos key tabs. An example of such login context can be seen as1.
follows:

The second one is by user login credential cache. An example of such login2.
context can be seen as follows:

Apache Ranger for authorization
Ranger is a used to monitor and manage security across the Hadoop ecosystem. It provides
a centralized platform from which to create and manage security policies across the cluster.
 We will look at how we can use Ranger to create policies for the Kafka cluster.

Adding Kafka Service to Ranger
The following screenshot shows the user interface in Ranger which is used to add services.
We will add Kafka service here to configure policies for it later:

Securing Kafka

[236]

Let's look into the Service Details :

Service name: The service name needs to be set up in agent config. For example,
in this case, it can be Kafka
Description: This represents what this service will do
Active Status: This refers to enabling or disabling this service

Securing Kafka

[237]

Config properties :

Username: This will be used to connect to this service. In case of Kafka, this is a
principal who has access to defined resources to configure security.
Password: This refers to the password of the user for authentication.
Zookeeper Connect String: This refers to the IP address and port of Zookeeper
running on cluster. The default value is .
Ranger Plugin SSL CName: You need to install Ranger Kafka plugin for
integrating Kafka with Ranger and provide a common name for the certificate,
which is then registered.

Adding policies
Once the service is configured and enabled, you can start adding policies by going into the
Kafka policy listing page, which looks like the following screenshot. On the left side, you
can see the Add New Policy tab:

Once you click on the Add New Policy tab, you will be redirected to the following page,
where you need to specify permission and policy detail:

Securing Kafka

[238]

Let's discuss the parameters available in the preceding screenshot and see their meaning:

Policy Detail:

Policy Name: This defines what this policy is meant for. The policy name should
match the objective of the policy.
Enable Policy: You can enable or disable this policy.
Topic: This refers to the Kafka Topic name for which the policy is being created.
Description: This refers to a detailed description of why you are creating this
policy.
Audit Logging: This needs to be enabled or disabled for auditing this policy.

User and Group Permission :

Select Group: This refers to the user group name from the list of user groups
configured in the cluster. You can assign permissions to the group as well.
Select User: This refers to the username (Principal) from the group for which
permission has to be given.
Permission: This defines the type of permission you want to grant to this user:

Publish: If a given user can produce data to Kafka topic
Consume: If a given user can consume data from topic partitions
Configure: If a given user can configure brokers/clusters

Securing Kafka

[239]

Describe: Permission to fetch metadata on the topic
Kafka Admin: If checked, the user will have the permissions of an
admin

Ranger is easy to configure and provides a nice user interface. You can install Ranger and
try using this policy creation. All the diagram reference for Ranger is taken from

.

Best practices
Here is a list of best practices to optimize your experience with Kafka:

Enable detailed logs for Kerberos: Troubleshooting Kerberos issues can be a
nightmare for technical stakeholders. Sometimes it is difficult to understand why
Kerberos authentication is not working. It also happens that errors are not that
very informative and you get the root cause by looking at the actual
authentication flows. Hence, you need to have a proper debugging set for
Kerberos. In Kafka or, as a matter of fact, in any JAVA Kerberos-enabled
application, you can set the Kerberos debug level using the following property:

Integrate with Enterprise Identity Server: You should always integrate your
Kerberos authentication with Enterprise Identity Servers. It has many benefits.
You do not have to manage more than one version of users. Any user deletion
activity is simplified. Enterprise security policy can be easily enforced.
OS-level Kerberos Integration: One important thing you should always
remember is that OS users and groups get propagated to Kerberos authentication,
especially when you are logging into a server and using Kafka through console. It
is always beneficial to integrate OS to your Enterprise Identity Servers such as
Active Directory. This way, you will have Kerberos tickets issued to you as soon
as you login to servers via SSH. Users do not have to perform separate
authentication with Kerberos.
SSL Certificates Rotation: You should always have processes in place to rotate
SSL certificates for brokers and clients. SSL Certification Rotation has the
advantage that, in case of certificate breaches, the compromised certificates will
work for a very short and limited period of time until we replace the old
certificates with new certificates in truststores.

Securing Kafka

[240]

Automating SSL certificate management: This is an extension of the previous
point. You must have automation scripts for managing certificates. On a typical
production cluster, you will be managing a large number of servers and
processes. Manually performing SSL management on a large number of servers
is cumbersome and error prone. Therefore, you must start creating scripts for
managing certificates in a large-node Kafka cluster.
Security log aggregation: You should understand the fact that one log is not
going to give you a complete big picture of user activity in the Kafka cluster.
Therefore, you should have the mechanism or scripts in place to aggregate logs
from all servers in a cluster to a single location or file. You can index it with tools
such as Solr, Elasticsearch, or Splunk for further security analysis on top of it. You
should ideally aggregate producer application logs, consumer application logs,
Kerberos Logs, Zookeeper logs, and broker logs.
Centralized security auditing: Every enterprise has a security and auditing team.
They have a mechanism of collecting system logs to one place and then
monitoring it for malicious activities. When you are designing your Kafka cluster,
you should always have provisions to route your logs to Enterprise Security
Monitoring systems. One way to do this is to first aggregate all your cluster logs
and then route them to syslogs processes to feed data to SIEM (Security
Information and Event Management) systems for real-time monitoring. Another
way is to collect all logs to some SFTP servers and then send them to SIEM
systems.
Security breach alerting: Well, you can think of this as part of the Centralized
Auditing System. You should have provisions for security breach alerting based
on organization's policies and rules. If your SIEM systems are not in position to
perform such alerting, you can use tools such as NAGIOS and Ganglia.

Summary
In this chapter, we covered different Kafka security paradigms. Our goal with this chapter
is to ensure that you understand different paradigms of securing Kafka. We wanted you to
first understand what are different areas you should evaluate while securing Kafka. After
that, we wanted to address how parts of securing Kafka. One thing to note here is that
Authentication and Authorization is something you have to always implement in a secure
Kafka cluster. Without these two, your Kafka cluster is not secure. SSL can be optional but
is strongly recommended for highly sensitive data. Please keep not of best practices of
securing Kafka as these are more gathered from practical industry implementation
experiences of securing Kafka.

113
Streaming Application Design

Considerations
Streaming is becoming an important pillar for organizations dealing with big data
nowadays. More and more organizations are leaning toward faster actionable insights from
the massive data pool that they have. They understand that timely data and appropriate
actions based on those timely data insights has a long-lasting impact on profitability. Apart
from in-time actions, streaming opens channels to capture unbound, massive amounts of
data from different business units across an organization.

Keeping these important benefits in mind, this chapter focuses on factors that one should
keep in mind while designing any streaming application. The end results of any such
design are driven by organization business goals. Controlling these factors in any streaming
application design helps achieving those defined goals appropriately. In lieu of that, let's
look at these factors one by one.

The following topics will be covered in this chapter:

Latency and throughput
Data persistence
Data sources
Data lookups
Data formats
Data serialization
Level of parallelism
Data skews
Out-of-order events
Memory tuning

Streaming Application Design Considerations

[242]

Latency and throughput
One of the fundamental features of any streaming application is to process inbound data
from different sources and produce an outcome instantaneously. Latency and throughput
are the important initial considerations for that desired feature. In other words,
performance of any streaming application is measured in terms of latency and throughput.

The expectation from any streaming application is to produce outcomes as soon as possible
and to handle a high rate of incoming streams. Both factors have an impact on the choice of
technology and hardware capacity to be used in streaming solutions. Before we understand
their impact in detail, let's first understand the meanings of both terms.

Latency is defined as the unit of time (in milliseconds) taken by the
streaming application in processing an event or group of events and
producing an output after the events have been received by it. Latency can
be expressed in terms of average latency, best case latency, or worst case
latency. Sometimes, it is also represented as the percentage of total events
received in each time window.

For example, it can be defined as 2 ms for 85% of messages that are received in the last 24
hours.

Throughput is defined as the number of outcomes produced by streaming
applications at each unit of time. Basically, throughput derives the number
of events that can be processed by a streaming application at each unit of
time.

In a streaming application design, you usually consider the maximum throughput that the
system can handle, keeping end-to-end latency within the agreed upon SLAs. When the
system is in a state of maximum throughput, all system resources are fully utilized and
beyond this, events will be in the wait state till resources are freed.

Now that we are clear with the definitions of both latency and throughput, it can be easily
understood that both are not independent of each other.

High latency means more time to process an event and produce an output.
This also means that for an event, system resources are occupied for a
longer duration of time and hence, at a time, lesser number of parallel
events can be processed. Hence, if system capacity is limited, high latency
will result in less throughput.

Streaming Application Design Considerations

[243]

There are multiple factors that should be kept in mind while striking a balance between the
throughput and latency of your streaming application. One such factor is the load
distribution across multiple nodes. Load distribution helps in utilizing each system resource
optimally and ensuring end-to-end low latency per node.

Most of the stream processing engines have such a mechanism built-in by default.
However, at times, you must ensure that it avoid too much data shuffling at runtime and
data partitions are defined appropriately. To achieve the desired throughput and frequency,
you must perform capacity planning of your cluster accordingly.

The number of CPUs, RAM, page cache, and so on are some of the
important factors that affect your streaming application performance. To
keep your streaming application performance at the desired level, it is
imperative that you program your streaming application appropriately.
Choice of program constructs and algorithms affect garbage collection,
data shuffling, and so on. Lastly, factors such as network bandwidth also
affect your latency and throughput.

Data and state persistence
Data integrity, safety, and availability are some of the key requirements of any successful
streaming application solution. If you give these factors a thought, you will understand that
to ensure integrity, safety, and availability, persistence plays an important role. For
example, it is absolutely essential for any streaming solution to persists its state. We often
call it checkpointing. Checkpointing enables streaming applications to persist their states
over a period of time and ensures recovery in case of failures. State persistence also ensures
strong consistency, which is essential for data correctness and exactly-once message
delivery semantics.

Now you must have understood why persisting state is important. Another aspect of
persistence is the outcomes of data processing or raw unprocessed events. This serves a
two-fold purpose. It gives us an opportunity to replay messages and to compare the current
data with historical data. It also gives us the ability to retry messages in case of failures. It
also helps us handle back-pressure on the source system in case of peak throughput time
periods.

Streaming Application Design Considerations

[244]

Careful thought must be given to the storage medium used to persist the
data. Some factors that really drive a storage medium for streaming
applications are low latency read/write, hardware fault tolerance,
horizontal scalability, and optimized data transfer protocols with support
for both synchronous and asynchronous operations.

Data sources
One of the fundamental requirements for any streaming application is that the sources of
data should have the ability to produce unbound data in terms of streams. Streaming
systems are built for unbound data streams. If source systems have the support for such
kinds of data streams, then streaming solutions are the way to go, but if they do not have
support for data streams, then either you must build or use prebuilt custom components
that build data streams out of those data sources or go for batch-oriented non-streaming-
based solutions.

Either way, the key takeaway is that streaming solutions should have data
stream producing data sources. This is one of the key design decisions in
any streaming application. Any streaming solution or design should
ensure that continuous unbound data streams are input to your stream
processing engines.

External data lookups
The first question that must be in your mind is why we need external data lookups in the
stream processing pipeline. The answer is that sometimes you need to perform operations
such as enrichment, data validation, or data filtering on incoming events based on some
frequently changing external system data. However, in the streaming design context, these
data lookups pose certain challenges. These data lookups may result in increased end-to-
end latency as there will be frequent calls to external systems. You cannot hold all the
external reference data in-memory as these external datasets are too big to fit in-memory.
They also change too frequently, which makes refreshing memory difficult. If these external
systems are down, then they will become a bottleneck for streaming solutions.

Keeping these challenges in mind, there are three important factors while designing
solutions involving external data lookups. They are performance, scalability, and fault
tolerance. Of course, you can achieve all of these and there are always trade-offs between
the three.

Streaming Application Design Considerations

[245]

One criterion of data lookups is that they should have minimized impact
on event processing time. Even a response time in seconds is not
acceptable, keeping in mind the millisecond response time of stream
processing solutions. To comply with such requirements, some solutions
use caching systems such as Redis to cache all the external data. Streaming
systems use Redis for data lookups. You also need to keep network
latency in mind. Hence, the Redis cluster is generally co-deployed with
your streaming solutions. By caching everything, you have chosen
performance over fault tolerance and scalability.

Data formats
One of the important characteristics of any streaming solution is that it serves as an
integration platform as well. It collects events from varied sources and performs processing
on these different events to produce the desired outcomes. One of the pertinent problems
with such integration platforms is different data formats. Each type of source has its own
format. Some support XML formats and some support JSON or Avro formats. It is difficult
for you to design a solution catering to all formats. Moreover, as more and more data
sources get added, you need to add support for data formats supported by the newly added
source. This is obviously a maintenance nightmare and buggy.

Ideally, your streaming solution should support one data format. Events should be in the
key/value model. The data format for these key/value events should be one agreed-on
format. You should pick one single data format for your application. Choosing a single data
format and ensuring that all data sources and integration points comply to it is important
while designing and implementing streaming solutions.

One of the common solutions that is employed for one common data format is to build a
message format conversion layer before data is ingested for stream processing. This
message conversion layer will have REST APIs exposed to different data sources. These
data sources push events in their respective formats to this conversion layer using REST
APIs and later, it gets converted to a single common data format. The converted events will
be pushed to stream processing. Sometimes, this layer is also utilized to perform some basic
data validation on incoming events. In a nutshell, you should have data format conversion
separate from stream processing logic.

Streaming Application Design Considerations

[246]

Data serialization
Almost all the streaming technology of your choice supports serialization. However, key for
any streaming application performance is the serialization technique used. If the
serialization is slow, then it will affect your streaming application latency.

Moreover, if you are integrating with an old legacy system, it might be that the serialization
of your choice is not supported. Key factors in choosing any serialization technique for your
streaming application should be the amount of CPU cycles required, time for
serialization/deserialization, and support from all integrated systems.

Level of parallelism
Any stream processing engine of your choice has ways to tune stream processing
parallelism. You should always give a thought to the level of parallelism required for your
application. A key point here is that you should utilize your existing cluster to its maximum
potential to achieve low latency and high throughput. The default parameters may not be
appropriate as per your current cluster capacity. Hence, while designing your cluster, you
should always come up with the desired level of parallelism to achieve your latency and
throughput SLAs. Moreover, most of the engines are limited by their automatic ability to
determine the optimal number of parallelism.

Let s take Spark's processing engine as an example and see how parallelism can be tuned on
that. In very simple terms, to increase parallelism, you must increase the number of parallel
executing tasks. In Spark, each task runs on one data partition.

So if you want to increase the number of parallel tasks, you should
increase the number of data partitions. To achieve this, you can repartition
the data with the desired number of partitions or we can increase the
number of input splits from the source. Level of parallelism also depends
on the number of cores available in your cluster. Ideally, you should plan
your level of parallelism with two or three tasks per CPU core.

Streaming Application Design Considerations

[247]

Out-of-order events
This is one of the key problems with any unbound data stream. Sometimes an event arrives
so late that events that should have been processed after that out of order event are
processed first. Events from varied remote discrete sources may be produced at the same
time and, due to network latency or some other problem, some of them are delayed. The
challenge with out-of-order events is that as they come very late, processing them involves
data lookups on relevant datasets.

Moreover, it is very difficult to determine the conditions that help you decide if an event is
an out-of-order event. In other words, it is difficult to determine if all events in each
window have been received or not. Moreover, processing these out-of-order events poses
risks of resource contentions. Other impacts could be increase in latency and overall system
performance degradation.

Keeping these challenges in mind, factors such as latency, easy maintenance, and accurate
results play an important role in processing out-of-order events. Depending on enterprise
requirements, you can drop these events. In case of event drops, your latency is not affected
and you do not have to manage additional processing components. However, it does affect
the accuracy of processing outcomes.

Another option is to wait and process it when all events in each window are received. In
this case, your latency will take a hit and you must maintain additional software
components. Another one of the commonly applied techniques is to process such data
events at the end of the day using batch processing. In this way, factors such as latency are
moot. However, there will be a delay in getting accurate results.

Message processing semantics
Exactly-once delivery is the holy grail of streaming analytics. Having duplicates of events
processed in a streaming job is inconvenient and often undesirable, depending on the
nature of the application. For example, if billing applications miss an event or process an
event twice, they could lose revenue or overcharge customers. Guaranteeing that such
scenarios never happen is difficult; any project seeking such a property will need to make
some choices with respect to availability and consistency. One main difficulty stems from
the fact that a streaming pipeline might have multiple stages, and exactly-once delivery
needs to happen at each stage. Another difficulty is that intermediate computations could
potentially affect the final computation. Once results are exposed, retracting them causes
problems.

Streaming Application Design Considerations

[248]

It is useful to provide exactly-once guarantees because many situations require them. For
example, in financial examples such as credit card transactions, unintentionally processing
an event twice is bad. Spark Streaming, Flink, and Apex all guarantee exactly-once
processing. Storm works with at least-once delivery. With the use of an extension called
Trident, it is possible to reach exactly-once behavior with Storm, but this may cause some
reduction in performance.

De-duplication is one way of preventing multiple execution of an operation and achieving
exactly-once processing semantics. De-duplication is achievable if the application action is a
database update. We can consider some other action such as a web services call.

Summary
At the end of this chapter, you should have a clear understanding of various design
considerations for streaming applications. Our goal with this chapter was to ensure that you
have understood various complex aspects of a streaming application design.

Although the aspects may vary from project to project, based on our industry experience,
we feel that these are some of the common aspects that you will end up considering in any
streaming application design. For example, you cannot design any streaming application
without defining SLAs around latency and throughput.

You can use these principals irrespective of your choice of technology for stream
processing--be it micro-batch Spark streaming applications or real-time Storm/Heron
stream processing applications. They are technology agnostic. However, the way they can
be achieved varies from technology to technology. With this, we conclude this chapter and
hopefully, you will be able to apply these principles to your enterprise applications.

Index

A
Access Control Lists (ACLs)
ack parameter
ACL types
 broker ACL
 consumer
 producer
 sever ACL
 topic
altering
 advantages
AMQP (Advance Message Queuing Protocol)
 about ,
 components
 message exchanges methods
Apache Flume
 about
 components
Apache Heron
Apache Kafka
 integrating, with Apache Storm-Java ,
 integrating, with Apache Storm-Scala
Apache Storm
Apache Storm application
 bolt
 spout
 topology
application integration system design
 common interface definitions
 latency
 loose coupling
 reliability
array
Aurora scheduler
Authorization Command Line (ACL)
 adding

 listing ,
 operations
Avro
 about ,
 working with

B
batch processing
batching ,
big data streaming applications
 layers
 messaging systems, using in , , ,
bolt
broker matrices, Kafka
brokers
 about
 decommissioning ,
ByteArrays

C
Camus
 running
 used, for moving Kafka data to HDFS
capacity planning
 about
 CPU
 goals
 hard drives ,
 memory ,
 network
 replication factor
channels
checkpoint
commit, Kafka consumer
 asynchronous commit
 auto commit
 current offset commit

[250]

committed offset
components, Apache Flume
 channel
 sink
 source
components, Confluent architecture
 24*7 support
 Auto Data Balancing
 client
 Control Center
 Multi-Datacenter replication
 REST Proxy
 schema registry
 supported connectors
components, Kafka Stream
 local state
 record cache
 Stream topology
concepts, messaging
 data transmission protocols
 message queues
 messages (data packets)
 receiver (consumer)
 sender (producer)
 transfer mode
configuration properties, Kafka producer
 acks
 batch.size
 buffer.memory
 compression.type
 linger.ms
 max.in.flight.requests.per.connection
 partitioner.class
 retires
Confluent architecture
 about
 components
Confluent Platform
 about
 features ,
Connector
 about
 Sink Connector
 Source Connector
connectors, Confluent architecture

 Elasticsearch Connector
 File Connector
 HDFS Connector
 JDBC Connector
 S3 Connector
constructs, Gobblin
 converters
 extractor
 publisher
 quality checkers
 source
 writer
consumer ,
consumer group
 continuous data processing
 discrete data processing ,
consumer metrics, Kafka
 bytes-consumed-rate
 fetch-latency-max
 fetch-rate
 records-consumed-rate
 records-lag-max
controller
controllers
custom partition

D
data migration, Kafka cluster ,
data transmission protocol
directed acyclic graph (DAG) ,

E
exactly one processing, WAL
executors
Extract Transform Load (ETL) tools

F
features, Kafka Stream
 fault tolerance
 reprocessing
 state management
 time
 window
file share
fire-and-forget pattern

[251]

fire-and-forget processing
functionalities, Kafka consumer
 consumer offset position
 deserialization
 heartbeats
 messages, replaying
 messages, rewinding
 messages, skipping
 offset commits
 subscribing, to topic

G
Gobblin
Gobblin architecture
 about
 constructs
 run-time
 supported deployment
 utility

H
Heron architecture
Heron Instance (HI)
Heron topology architecture
 about
 containers
 Heron Instance
 Metric Manager
 Stream Manager
 Topology Master
high volumes, Kafka
 appropriate hardware choices , ,
 managing
 message batches
 read choices
 write choices
HTTP (Hypertext Transfer Protocol)

I
in sync replica (ISR)
Input/Output (IO)
IP Fraud detection application
 creating ,

J
Java Authentication and Authorization Service

(JAAS)
Java example
 for direct approach
 for receiver-based integration
Java Kafka consumer
Java Kafka producer
 example
JSON
 reference

K
Kafka architecture ,
Kafka broker
 SASL, configuring for
Kafka Broker
 SSL, configuring for
Kafka client
 SASL, configuring for
Kafka clients
 SSL, configuring for
Kafka cluster
 conceptual layout
 internals
 replication ,
 Zookeeper
Kafka Connect
 about , , ,
 component
 examples
 Export Connectors
 Import Connectors
 models
 use cases
Kafka consumer APIs
Kafka consumer
 additional configuration ,
 best practices
 commit
 configuration ,
 data, fetching from
 functionalities ,
 internals

[252]

 polling
 properties
 subscription
Kafka data, moving to HDFS
 about
 Camus used
 Gobblin
Kafka integration, with Spark
 direct approach , ,
 receiver-based integration ,
Kafka matrices
 about
 broker matrices
 consumer matrices
 producer matrices
Kafka Producer APIs ,
Kafka producer
 asynchronous messaging ,
 configuration properties
 internals , , ,
 synchronous messaging
Kafka queues
Kafka service
 adding, to Ranger ,
Kafka Stream, with Apache Kafka
 advantages
Kafka Stream
 about ,
 architecture ,
 batch processing
 components
 features ,
 IP lookup service
 IP record producer
 Maven dependency ,
 property reader
 request/response
 simple word count program ,
 Stream processing
 stream processing application
 stream processors
 streams
 topology
 use case example
Kafka topic ACLs

Kafka topics
Kafka, in ETL operations
 working
Kafka, in ETL pipelines
 considerations
Kafka, in Stream processing
 fault tolerance
 logic ordering
 loose coupling
 persistence queue ,
 scalability
Kafka
 about
 asynchronous replication
 consumer request processing ,
 data governance ,
 message delivery semantics
 optimization, best practices ,
 origins
 producer request processing
 securing
 SSL, enabling in
 using, as streaming data platform ,
KafkaSpout ,
Kerberos SASL
 for authentication ,
Kerberos
 advantages
KTable ,

L
layers, in big data streaming applications
 consumption layer
 ingestion layers
 processing layer
leader
Lineage
LinkedIn portal
local state

M
MapReduce
matrices, Kafka producer
 buffer total bytes
 compression rate

[253]

 failed send rate
 I/O wait time
 request rate
 response rate
Maven
message
message consumers ,
message consuming patterns
 continuous data processing
 discrete data processing ,
message delivery semantics, Kafka
 at least once , ,
 at most once , , ,
 exactly once , ,
message exchange methods, AMQP (Advance

Message Queuing Protocol)
 direct exchange
 fan-out exchange
 topic exchange
message partitions
 about
 large number of partitions, cons , ,
 large number of partitions, pros , ,
message producers
message queue
message topics
 about
 buffering
 compaction
 leader
 offset
 partitions
 retention period
 space retention policy
messaging publishing patterns
 batching
 fire-and-forget
 one message transfers
messaging systems
 about ,
 principles ,
 using, in big data streaming applications , ,

,
messaging
 concepts

Metric Manager
Mirror Maker
models, Kafka Connect
 Connector
 workers
monitoring
 advantages
MQTT (Message Queue Telemetry Protocol)
multicluster deployment ,
multiple brokers

N
network attached storage (NAS)

O
one message transfers

P
partitions
point-to-point (PTP) messaging model
 about
 fire-and-forget processing
 request/reply model
poll loop
primary backup approach
 about
 read
 write
processor, Stream topology
 sink processor
 source processor
 Stream processor
producer application
 best practices, for designing ,
producer code
 about ,
 fraud IP lookup
producer object
producer
 about , ,
 property reader
ProducerRecord object
producers
properties, Kafka consumer
 bootstrap.servers

[254]

 group.id
 key.deserializer
 value.deserializer
property reader
 fraud IP lookup
 hive table, exposing
 producer code
 Streaming code
publish/subscribe (Pub/Sub) messaging model ,

,

Q
queue
quorum-based approach

R
Ranger
 for authorization
 Kafka policy, adding
 Kafka service, adding to ,
RDD partitions
 action operation
 transformation operation
receiver
receiver-based approach
 disadvantages
record cache
reliable spout
remote procedure calls (RPC)
replication
request/reply model
Resilient Distributed Dataset (RDD)

S
SASL mechanism, Kafka
SASL/GSSAPI
 enabling
SASL
 configuring, for Kafka broker
 configuring, for Kafka client
Scala example
 for direct approach
 for receiver-based integration
Scala Kafka consumer
 about

 listeners, rebalancing
Schema Registry
 used, for working with Avro
SchemeAsMultiScheme
Secure Sockets Layer (SSL)
security, Kafka
 auditing
 authentication
 authorization
 encryption at rest
 wire encryption
sender
serialization
shared databases
SIEM (Security Information and Event

Management)
single cluster deployment ,
Sink Connector
Sink Stream processor
Source Connector
Source Stream processor
Spark architecture ,
Spark core
Spark driver
 about
 tasks
Spark ecosystem
Spark GraphX
Spark MLlib
Spark SQL
Spark Streaming ,
Spark workers
 about
 backend process
 executors
Spark
 about
 Directed acyclic graph (DAG)
 Resilient Distributed Dataset (RDD)
spout
 about
 reliable spout
 unreliable spout
SSL
 configuring, for Kafka Broker

 configuring, for Kafka clients
 enabling, in Kafka
state management
 local state
 remote state
stateless
STOMP (Streaming Text Oriented Message

Protocol)
Storm cluster architecture
 about
 supervisor
Storm Kafka
 wordcount example
Stream processing
Stream topology
 processors
streaming application
 data and state persistence
 data formats
 data serialization
 data sources
 external data lookups ,
 latency and throughput ,
 level of parallelism
 message processing semantics ,
 out-of-order events
streaming applications
 key points
Streams

T
tables
tasks, Spark driver
 DAG creation
 RDD metadata
 Spark Context
 stage creation
 task execution
 task schedule

techniques, for reading/writing data
 message compression
topic ,
topology
Topology Master (TM)
transfer mode
Trident

U
unit of parallelism
unreliable spout
use case example, Kafka Stream
 about
 fraud detection application
use case log processing
 about
 fraud IPs list
 producer ,
 Spark Streaming

W
web service invocation
wire encryption
 with SSL ,
workers
Write-ahead Log (WAL)

Z
zero copy approach
Zookeeper authentication ,
Zookeeper
 about ,
 broker metadata
 client quota information
 controller, selecting
 reference
 role
 topic metadata

	Cover
	Title Page
	Copyright
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Introduction to Messaging Systems
	Understanding the principles of messaging systems
	Understanding messaging systems
	Peeking into a point-to-point messaging system
	Publish-subscribe messaging system
	Advance Queuing Messaging Protocol
	Using messaging systems in big data streaming applications
	Summary

	Chapter 2: Introducing Kafka the Distributed Messaging Platform
	Kafka origins
	Kafka's architecture
	Message topics
	Message partitions
	Replication and replicated logs
	Message producers
	Message consumers
	Role of Zookeeper
	Summary

	Chapter 3: Deep Dive into Kafka Producers
	Kafka producer internals
	Kafka Producer APIs
	Producer object and ProducerRecord object
	Custom partition
	Additional producer configuration

	Java Kafka producer example
	Common messaging publishing patterns
	Best practices
	Summary

	Chapter 4: Deep Dive into Kafka Consumers
	Kafka consumer internals
	Understanding the responsibilities of Kafka consumers

	Kafka consumer APIs
	Consumer configuration
	Subscription and polling
	Committing and polling
	Additional configuration

	Java Kafka consumer
	Scala Kafka consumer
	Rebalance listeners

	Common message consuming patterns
	Best practices
	Summary

	Chapter 5: Building Spark Streaming Applications with Kafka
	Introduction to Spark
	Spark architecture
	Pillars of Spark
	The Spark ecosystem

	Spark Streaming
	Receiver-based integration
	Disadvantages of receiver-based approach
	Java example for receiver-based integration
	Scala example for receiver-based integration

	Direct approach
	Java example for direct approach
	Scala example for direct approach

	Use case log processing - fraud IP detection
	Maven

	Producer
	Property reader
	Producer code
	Fraud IP lookup
	Expose hive table
	Streaming code

	Summary

	Chapter 6: Building Storm Applications with Kafka
	Introduction to Apache Storm
	Storm cluster architecture
	The concept of a Storm application

	Introduction to Apache Heron
	Heron architecture
	Heron topology architecture

	Integrating Apache Kafka with Apache Storm - Java
	Example

	Integrating Apache Kafka with Apache Storm - Scala
	Use case – log processing in Storm, Kafka, Hive
	Producer
	Producer code
	Fraud IP lookup

	Running the project

	Summary

	Chapter 7: Using Kafka with Confluent Platform
	Introduction to Confluent Platform
	Deep driving into Confluent architecture
	Understanding Kafka Connect and Kafka Stream
	Kafka Streams

	Playing with Avro using Schema Registry
	Moving Kafka data to HDFS
	Camus
	Running Camus

	Gobblin
	Gobblin architecture

	Kafka Connect
	Flume

	Summary

	Chapter 8: Building ETL Pipelines Using Kafka
	Considerations for using Kafka in ETL pipelines
	Introducing Kafka Connect
	Deep dive into Kafka Connect
	Introductory examples of using Kafka Connect
	Kafka Connect common use cases
	Summary

	Chapter 9: Building Streaming Applications Using Kafka Streams
	Introduction to Kafka Streams
	Using Kafka in Stream processing
	Kafka Stream - lightweight Stream processing library

	Kafka Stream architecture
	Integrated framework advantages
	Understanding tables and Streams together
	Maven dependency
	Kafka Stream word count
	KTable

	Use case example of Kafka Streams
	Maven dependency of Kafka Streams
	Property reader
	IP record producer
	IP lookup service
	Fraud detection application

	Summary

	Chapter 10: Kafka Cluster Deployment
	Kafka cluster internals
	Role of Zookeeper
	Replication
	Metadata request processing
	Producer request processing
	Consumer request processing

	Capacity planning
	Capacity planning goals
	Replication factor
	Memory
	Hard drives
	Network
	CPU

	Single cluster deployment
	Multicluster deployment
	Decommissioning brokers
	Data migration
	Summary

	Chapter 11: Using Kafka in Big Data Applications
	Managing high volumes in Kafka
	Appropriate hardware choices
	Producer read and consumer write choices

	Kafka message delivery semantics
	At least once delivery
	At most once delivery
	Exactly once delivery

	Big data and Kafka common usage patterns
	Kafka and data governance
	Alerting and monitoring
	Useful Kafka matrices
	Producer matrices
	Broker matrices
	Consumer metrics

	Summary

	Chapter 12: Securing Kafka
	An overview of securing Kafka
	Wire encryption using SSL
	Steps to enable SSL in Kafka
	Configuring SSL for Kafka Broker
	Configuring SSL for Kafka clients

	Kerberos SASL for authentication
	Steps to enable SASL/GSSAPI - in Kafka
	Configuring SASL for Kafka broker
	Configuring SASL for Kafka client - producer and consumer

	Understanding ACL and authorization
	Common ACL operations
	List ACLs

	Understanding Zookeeper authentication
	Apache Ranger for authorization
	Adding Kafka Service to Ranger
	Adding policies

	Best practices
	Summary

	Chapter 13: Streaming Application Design Considerations
	Latency and throughput
	Data and state persistence
	Data sources
	External data lookups
	Data formats
	Data serialization
	Level of parallelism
	Out-of-order events
	Message processing semantics
	Summary

	Index

