

APACHE KAFKA
INVENT THE FUTURE

ERNESTO LEE

APACHE KAFKA
Copyright © 2021 by ERNESTO LEE

All rights reserved.

No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, or otherwise, without the prior written consent of

the publisher. Short extracts may be used for review purposes.

Table of Contents
CHAPTER 1: INTRODUCTION TO APACHE KAFKA

OVERVIEW OF BIGDATA

BRIEF INTRODUCTION TO SPARK

INTRODUCTION TO KAFKA

CONFLUENT OVERVIEW

KAFKA USE CASE

INTRODUCTION TO ZOOKEEPER

WHY DOES KAFKA NEED ZOOKEEPER?

SUMMARY

CHAPTER 2: KAFKA FRAMEWORK
KAFKA ARCHITECTURE

Task 1: Download and Install JDK

Task 2: Download and Install ZooKeeper

Task 3: Configure ZooKeeper

Task 4: Download and Install Kafka

Task 5: Configure Kafka

Task 6: Starting ZooKeeper and Kafka

SUMMARY

CHAPTER 3: KAFKA IN-DEPTH PART I
TOPIC OPERATIONS

TOPICS OVERVIEW

DATA MODEL IN ZOOKEEPER

ZOOKEEPER WATCHES

ZOOKEEPER’S ROLE IN CLUSTER MEMBERSHIP

ELECTION OF CONTROLLER BROKER

RESPONSIBILITIES OF CONTROLLER BROKER

Task 1: Kafka Topic Operations

Task 2: Hands-on ZooKeeper Shell

Task 3: Controller Broker election

SUMMARY

CHAPTER 4: KAFKA IN-DEPTH PART II

REPLICATIONS

PARTITIONS

BOOTSTRAP SERVER

Task 1: Download and Install Scala

Task 2: Download and Install IntelliJ IDEA

Task 3: Configuring IntelliJ IDEA

Task 4: Specifying Bootstrap Servers

SUMMARY

CHAPTER 5: THE PRODUCER
PRODUCER WORKFLOW

TYPES OF PRODUCERS

PRODUCER CONFIGURATIONS

Task 1: Import Kafka Packages and Declare variables

Task 2: Create a Kafka Producer ProducerRecord Object

Task 3: Running the Producer

Task 4: Sending message synchronously

Task 5: Sending message Asynchronously

SUMMARY

CHAPTER 6: THE CONSUMER
OFFSET

CONSUMER GROUPS

OFFSET MANAGEMENT

REBALANCE LISTENERS

Task 1: Constructing a Kafka Consumer

Task 2: Running the Consumer

Task 3: Synchronous & Asynchronous Offset Commit

Task 4: Using both Synchronous & Asynchronous Offset Commit

Task 5: Commit Specified Offset

SUMMARY

CHAPTER 7: KAFKA DATA DELIVERY
DELIVERY SEMANTICS

SERVICE GOALS

Task 1: Download & Install MySQL

Task 2: Create Database & Tables

Task 3: Constructing a Producer

Task 4: Constructing a Consumer

SUMMARY

CHAPTER 8: KAFKA ADMINISTRATION
BASIC KAFKA OPERATIONS

KAFKA CONSUMER GROUPS TOOL

DYNAMIC CONFIGURATIONS

HANDLING PARTITIONS

Task 1: Executing Graceful Shutdown

Task 2: Working with Consumer Groups Tool

Task 3: Dynamically Overriding onfigurations

SUMMARY

REFERENCES

CHAPTER 1:
INTRODUCTION TO

APACHE KAFKA

THEORY
This chapter is intended to provide a comprehensive introduction to Apache
Kafka, the focus throughout this book. We shall present a brief overview of
BigData before discussing Kafka.

OVERVIEW OF BIGDATA
Brief Introduction to Hadoop

Apache Hadoop is an open-source distributed framework that allows for the
storage and processing of large data (BigData) sets across clusters of
commodity machines. Hadoop overcomes the traditional limitations of the
storing and computing of data by distributing the data over clusters of
commodity machines, making it scalable and cost-effective.

The concept of Hadoop was originated when Google released a whitepaper
about the Google File System (GFS), a computing model built by Google
designed to provide efficient, reliable access to data using large clusters of
commodity hardware. Following this, the model was adopted by Doug
Cutting and Mike Cafarella for their search engine called “Nutch.” Hadoop
was then developed to support distribution for the Nutch search engine
project by Doug Cutting and Mike Cafarella. What does the name Hadoop
mean? The name has no significance, nor is it an acronym. Rather, Hadoop is
the name that Doug Cutting’s son gave to his yellow stuffed elephant. The
name is therefore unique, easy to remember, and sometimes funny. Not
only does Hadoop have a name with no significance, but also its sub-projects
tend to have such names, which are based on names of animals, such as Pig,

for the same reason. These names are unique, not used anywhere else, and
easy to remember.

Why Hadoop?

Companies today have begun to realize that there is much information in
unstructured documents spread across the network. Much data is available
in the form of spreadsheets, text files, emails, logs, PDFs, and other data
formats that contain valuable information and can help to discover new
trends, design new products, improve existing products, know customers
better, and so on. Data is increasing at an alarming rate beyond limits never
seen before, and there are no signs of slowing, at least in the near future. To
deal with such data, we need a reliable and low-cost tool to meaningfully
process it; therefore, we use Hadoop. Hadoop helps us to reliably process all
the BigData present in a variety of formats, in a much shorter time and in a
flexible and cost-effective manner.

Let us explore why Hadoop is so popular and what it offers:

● Scalable: Hadoop is scalable; thus, the user can begin with a
single-node server and eventually increase to more nodes as
additional storage and computing power are needed.

● Fault-Tolerant: Hadoop helps to prevent the loss of data. All the
data stored in the Hadoop Distributed File System is broken into
blocks and stored with a default replication factor of 3. While
processing the data, if a node goes off, the process does not stop
but continues, as the data still exists in other nodes.

● Flexible: Hadoop does not require a schema. Hadoop can process
unstructured, semi-structured, and structured data from any type
of source or even from multiple sources.

● Cost-effective: Hadoop does not require expensive, high-end
computing hardware. Hadoop works well with a cluster of
commodity machines by parallel computing.

Brief Introduction to the Hadoop Distributed File System

Hadoop Distributed File System (HDFS) is a file system that extends over a
cluster of commodity machines rather than a single high-end machine. The
HDFS is a distributed large-scale storage component and is highly scalable.
Additionally, the HDFS can accept node failures without losing data, and it is
widely known for its reliability. Let us now examine why HDFS is so favorable
in terms of distributed file systems.

Reliable Data
Storage

The HDFS is very reliable in terms of
data storage. The data stored in the
HDFS is replicated by a default
replication factor of 3. Therefore, even
if a machine fails, the data will still be
available in two other machines.

Cost-Effective The HDFS can be deployed on clusters
of commodity hardware and save on
much money. High-end, expensive
hardware is not required by the HDFS
to function.

Big Datasets The HDFS is capable of storing
petabytes of data over a cluster of
machines, in which a file can range
from gigabytes to terabytes in size. The
HDFS is not designed to store a large
number of small-sized files, as the file
system metadata is stored in the
memory of NameNode.

Streaming Data
Access

The HDFS provides streaming access to
data. It is best suited for batch
processing data and is not suitable for
interactive processing. Moreover, the
HDFS is not designed for applications
that require low latency access to data,
such as online transaction processing
(OLTP).

Simple Coherency
Model

The HDFS is designed to write once and
read many times as its access model
for files. Appending the content to files
is supported at the end but cannot be
updated at an arbitrary point, and it is
not possible to have multiple writers.
Files can be written by only a single
writer.

Block Placement in HDFS

Hadoop is designed such that the first block replica is placed on the same
node as the client, and the second replica is placed on a different rack from
that of the first replica. The third replica is placed on a random node on the
same rack as the second replica. If the replication factor is greater, random
nodes in the cluster are selected to place the replicas. If a client running
outside the cluster stores a file, a random node (that is not busy) is selected
to place the first replica. This way, if a node fails, the data is still available on
other nodes of the cluster, and if a rack fails, the data remains intact, as well.

HDFS Architecture

The HDFS has a master and slave architecture, in which the master node
controls and assigns jobs to all its slave nodes. The following terminologies
are used to describe the master and slave nodes:

The master nodes in the HDFS are as follows:
● NameNode
● Secondary NameNode

The slave nodes in the HDFS are as follows:
● Data nodes

These nodes represent the core serving roles in the HDFS architecture. Let
us now explore in detail the roles of each node to better understand them.

NameNode NameNode is an HDFS daemon that
controls all the data nodes and handles

all the file system operations, such as
creating a directory, creating a file, or
reading and writing a file. The
NameNode is responsible for managing
the file system namespace image. It
holds the image in memory,
representing how the file system looks.
Additionally, it maintains the metadata
for all the blocks of files in the file
system and tracks the replication
value, so it knows the locations of
blocks stored on data nodes within the
cluster. However, the metadata is not
stored onto the disk and, each time,
gets recreated when it starts.
NameNode stores all this information
persistently on the local disk in the
form of a namespace image and edit
log. The NameNode is the single point
of failure in the Hadoop cluster. If the
NameNode fails, the entire cluster fails.

Data Nodes Data nodes are the slave machines
controlled by the NameNode that
perform all the block operations. Data
nodes store and retrieve blocks when
asked to do so by the NameNode, and
they periodically inform the
NameNode with the lists of blocks they
store by sending heartbeats. Data
nodes replicate the data physically
when instructed by the NameNode
regarding where and how to replicate.

Secondary
NameNode

The secondary NameNode, as its name
implies, is not exactly the secondary
NameNode. The secondary NameNode

is not a high-availability solution and
does not automatically adopt the
responsibilities of NameNode on
failure. Its primary role is to create a
checkpoint and back up the NameNode
periodically; thus, it is like a backup
solution to the NameNode. The
hardware specifications of the
secondary NameNode should be
similar to those of the NameNode. In
the event of the NameNode’s failure,
the secondary NameNode can be
manually configured to work as a
primary NameNode; this is not a high-
availability solution.

Now that we have been briefly introduction to Hadoop, let us shift our focus
to the main topic of our discussion, Apache Spark.

BRIEF INTRODUCTION TO SPARK
What is Spark?

Apache Spark is an open-source, fast, and unified parallel large-scale data
processing engine. It provides a framework for programming, allowing for
the distributed processing of large data sets at high speeds. Spark supports
the most popular programming languages such as Java, Python, Scala, and R.
Spark is scalable, meaning that it can run on a single desktop machine or a
laptop to a cluster of thousands of machines. Spark provides a set of inbuilt
libraries that can be accessed to perform data analysis over a large data set.
However, if the user’s requirements are not satisfied by the inbuilt libraries,
a library can be written, or the user can explore countless external libraries
from open-source communities on the internet.

Why Spark?

Why should one use Spark when Hadoop exists? Spark excels as a unified
platform for processing large quantities of data at very high speeds for

various data processing requirements (discussed later in this chapter).
Moreover, Spark is an in-memory processing framework. Spark is considered
a successor of Apache Hadoop. Let us briefly discuss the advantages Spark
offers over Hadoop.

Within the Hadoop ecosystem, there are various frameworks for data
processing requirements. A developer would use the MapReduce
framework to analyze data using any of the languages, such as Java, C++,
Python, and so on, but a data warehouse engineer, who is an SQL expert,
must learn any of the aforementioned programming languages. To
overcome this problem, a new framework that runs on top of Hadoop,
called “Hive,” was introduced. This was likewise a problem for ETL
processing, so “Pig” was introduced, as well. Similarly, tools such as “Giraph”
and “Mahout” were developed for graphs processing and machine learning,
respectively. Moreover, Hadoop is used only for batch processing, and there
is no way to process data in real-time. Therefore, to achieve this, a new
framework called “Storm” was integrated with Hadoop to work with
streaming data. With so many frameworks, organizations had a difficult time
maintaining all the frameworks and tracking issues with them. Fortunately,
all this would change with the advent of Spark. As mentioned, Spark is a
unified platform that provides all these frameworks as a single package
containing four major components.

What does in-memory processing refer to? All the applications are
processed in memory only, are they not? Indeed, all the applications are
processed in memory and written back to the disk once the processing is
completed, but Spark can process data in-memory and retain the data
within the memory or write to the disk. Let us examine this with a figure
that compares Spark with MapReduce.

1(a) Data Processing with MapReduce

In MapReduce, the data present in the HDFS or any other distributed file
system is read by a MapReduce application and is processed in memory and
then written back to the disk after the job is complete. If the processed data
is needed again for further processing, the data is read from the disk by a
MapReduce application, processed in memory, and then written back to the
disk. This process continues per the requirements, as seen in Figure 1(a). The
processes of reading and writing data from and to the disk increase the IO
latency, so the overall job duration is increased. This is optimized in Spark, as
presented in Figure 1(b).

1(b) Data Processing with Spark

In Spark, the data is read from the disk and processed in-memory, but
instead of spilling it back to the disk, Spark can retain the data within the
memory for further processing. Therefore, if the processed data is again

required for further processing, the data is already present in the memory,
and the Spark application processes the data eliminating the IO latency, and
so the overall time to process the job is significantly reduced. Through this,
the processing speed compared with MapReduce is increased up to 100
times. The processed data from a Spark application can either be retained in
memory or stored on the disk per the requirements, illustrated in Figure
1(b).

The reasons, such as a unified platform for various data processing
requirements and high-speed in-memory processing, have gained worldwide
popularity throughout the industry, with nearly all major organizations using
Spark for their data processing requirements.

Components of Spark

Now that we understand why Spark is used, let us further investigate and
learn the inner workings of Spark. Let us consider each of Spark’s major
components individually and learn about them in detail. Figure 1(c) presents
the components of Spark.

1(c) Components of Spark

Let us consider a brief explanation so that we can better understand the
Spark components.

Spark Core Spark Core, as the name suggests, is the
core component of Spark and contains all
the basic functionalities for processing large
data sets. Some of its functionalities include
managing memory, scheduling jobs,
providing fault tolerance, using in-memory
computation, referring data sets stored in
storage systems, and so on. Spark Core
includes a programming abstraction (API)
called resilient distributed data sets (RDDs),
which is responsible for partitioning data
across nodes on a cluster. With the help of
these RDDs, the data can be transformed,
collected, and reduced together. These RDD
APIs can be referred to using any of the

programming languages, such as Scala,
Python, Java, and R, as depicted in Figure
1(c).

Spark SQL The Spark SQL component provides the
developer with an SQL-like interface to work
with large structured data, which is
distributed over a cluster of nodes. Spark
SQL works well with structured and semi-
structured data. Moreover, Spark SQL can
work with data sources such as Apache Hive
tables, Avro, JDBC, ORC, JSON, and Parquet
file formats. In addition, Spark SQL allows
developers to combine RDD APIs along with
Spark SQL code in a single application.

Spark
Streaming

The Spark Streaming component of Spark
concerns the processing of real-time data,
known as streaming data. Streaming data
can result from a fleet of web servers,
sensors, IOT devices, or any other sources
that generate data. This enables Spark to
ingest data as it is generated in real-time
and perform data manipulation on that
data. There are three major phases of Spark
Streaming: gathering, processing, and data
storage. Moreover, Spark Streaming is fault-
tolerant and scalable. Spark Streaming is
discussed a little in this book.

Spark MLlib Spark MLlib is short for machine learning
libraries, which provides machine learning
for large data sets. MLlib contains various
machine learning algorithms, such as
regression, clustering, classification, and
collaborative filtering. Furthermore, MLlib
contains lower-level primitives, such as a
generic gradient descent optimization

algorithm. Additionally, MLlib uses the linear
algebra package Breeze for numerical
computing.

GraphX GraphX concerns the efficient and
distributed processing of graphs. GraphX
extends the RDD APIs, which allows a
developer to create a directed multigraph
using properties attached to each vertex and
edge.

Cluster
Managers

Spark involves processing massive amounts
of data sets by distributing them over a
number of nodes and scaling the cluster as
required. To efficiently perform this task, a
cluster manager is required; Spark offers its
own cluster manager, called Standalone
Scheduler. Moreover, Spark can be deployed
using Hadoop YARN, Apache Mesos, or
Kubernetes as a cluster manager to schedule
jobs and manage the cluster’s resources.

Spark Data Storage

Spark supports major file systems such as HDFS, Amazon S3, Azure Blob, and
so on. Moreover, Spark supports the local file system for storing the data, as
well. However, using a distributed file system, such as the HDFS, can
leverage the power of Spark by distributing the data sets throughout the
cluster. In addition, Spark is capable of handling various file formats, such as
text, ORC, parquet, and so on.

Hadoop and Spark are used to analyze large amounts of data; however, this
solves only one of the challenges faced with BigData. The other challenge is
collecting large amounts of data efficiently; Kafka helps us with this. Let us
now proceed with an introduction of Kafka to obtain an understanding of
how it addresses this challenge.

INTRODUCTION TO KAFKA

What is Kafka?

Kafka is an open-source, distributed, persistent, and fault-tolerant message-
streaming platform or central repository that can handle a high volume
(trillions) of Publish-Subscribe messages each day. The Publish-Subscribe
messaging system is a system in which data is produced (publish) by
producers and consumed (subscribe) by consumers. Producers and
consumers are described in detail in the following chapter.

Kafka is written in Scala and built on top of the ZooKeeper coordination
service. The integration of Spark and Kafka enables real-time streaming data
analysis. Kafka was built at LinkedIn and was later donated to the Apache
Software Foundation, making it open-source.

Kafka is popular due to the following features:

● Scalable: Kafka can be scaled from a single machine to a cluster
of machines spanning data centers with zero downtime. The
number of machines required can be scaled per the requirement.

● Persistent: The data or messages are stored and cached in the
disk rather than memory, making them persistent and durable.
Moreover, Kafka is fault-tolerant with replications and partitions.

● Performance: Kafka provides great performance and stability
with large volumes of publishing and subscribing messages.

● Distributed: Kafka is distributed to a cluster of machines and
hence processes streams with great speed and efficiency.

● Real-Time Streaming: Kafka is capable of processing streams of
messages in real-time.

Kafka is used to develop real-time streaming data pipelines for the steady
transfer of data between applications. The use cases include collecting logs
from multiple servers, data from sensors, and so on.

Why Kafka?

Why do we need Kafka? We already have message queue and data

streaming platforms, do we not? How is Kafka better than the traditional
data streaming platforms? Let us answer these questions now. To
understand why Kafka is necessary, we should first understand how
traditional streaming platforms work.

Consider a traditional system with a message queue, as presented below.
The message queue could be implemented in any programming language.
The message queue receives messages from various processes, denoted P1,
P2…Pn. This message queue may store data in-memory or on the file system
based on the implementation. If the system is memory-based, the data will
be lost in the event of system failure. However, if the system is file-based,
the data will remain intact even if the system goes down. The data from the
message queue will be consumed by various consumer processes, denoted
by C1, C2…Cn.

The data is produced by the producers, and it is consumed by the consumers
via the message queue. However, the problem arises when one of the
consumers is connected to a distributed platform, such as the Spark
application. Spark is capable of processing large amounts of data in a
distributed manner; however, the message queue is not distributed, and it is
implemented in a single machine. Therefore, the traditional message queue
is limited by the resources of that machine, such as the CPU core, RAM, and
disk size, and becomes the bottleneck, as it cannot receive large amounts of
data similar to Spark.

1(d) Traditional Message Queue

To cater to a distributed processing application such as Spark, it is efficient

only to have a message queue distributed across several machines. The
limitation of machine resources, such as CPU, RAM, and disk size, was one of
the reasons for developing Kafka, which is a distributed message queue.

Let us now consider another reason why Kafka was developed. Consider an
application app1 that generates data during its operations. This data is
required by an analytics application, say appA. The data is simply transferred
via an interface from app1 to appA. Later, there is another application, say
app2, that generates data. This data is likewise required by the analytics
application appA for more analytics. Thus, an interface must be
implemented to send the data from app2 to appA. Once the interface for
app2 is implemented and tested, the interface for app1 should also be
tested to ensure the new implementation has not broken something with
the old implementation.

Eventually, more operational (app3, app4, app5…) and analytics (appB,
appC, appD…) applications were developed that require data from the
operational to analytics applications. For example, data from app4 might be
needed by appB and appD, or data from app3 might be required by appA
and appC. Many such possibilities may exist for transferring data from one
or more operational applications to one or more analytics applications. Each
time a new operational application generates data for an analytics
application, a new interface must be implemented, and all the interfaces
should be tested to determine whether something is broken due to the new
implementations. This becomes highly difficult to maintain when there are
so many applications and interfaces. The entire system should be tested
each time a new interface between applications is implemented.

All these problems have led to the development of Kafka. Instead of having
different interfaces for different applications, all the operational applications
send the data to Kafka. The analytics applications can then consume the
data from Kafka, making it a central repository. The figure below illustrates
how data is being produced and consumed with Kafka as a central
repository.

1(e) Kafka Message Queue

As seen in the figure above, we do not need to build interfaces and test
them to transfer data each time a new application is implemented. All the
producers generate the data to Kafka, while the consumers pull the data
from Kafka, making it a central repository.

CONFLUENT OVERVIEW
Confluent is a data streaming platform based on Apache Kafka and is
founded by the creators of Apache Kafka. Confluent expands the capabilities
of Apache Kafka for not only Publish-Subscribe messages but also a full-scale
event streaming platform that allows for storing and processing real-time
streams. The Confluent data streaming platform consists of Apache Kafka as

its core component.

The Confluent data streaming platform provides the following components,
making it a complete distribution of Apache Kafka:

● Apache Kafka: Apache Kafka is the core component of the
Confluent platform. Apache Kafka is an open-source, distributed,
persistent, and fault-tolerant message-streaming platform or
central repository that can handle high volumes (trillions) of
Publish-Subscribe messages each day.

However, Apache Kafka is not a complete data streaming platform. It
provides data storage and interfaces only for reading and writing
data. It does not directly integrate with other services, such as
RDBMS. With Confluent’s other components, the capabilities of Kafka
can be extended such that it can integrate with other services.

● Kafka Connect: Kafka Connect is used to transfer data to and from
Kafka. HDFS, JDBC, S3, Elasticsearch, and so on are some Kafka
connectors that transfer data to and from Kafka.

● Kafka REST Proxy: The Kafka REST proxy provides a RESTful
interface to a Kafka cluster. The Kafka REST proxy can be used to
send and receive messages, view the state of the cluster, and
perform administrative actions.

● Kafka Streams: Kafka Streams is a powerful yet easy-to-use client
library for stream processing and analysis. With the Kafka Streams
processing layer, we can perform transformations or analysis by
reading the real-time data and writing the results back to Kafka.

● Schema Registry: Schema Registry is a serving layer for metadata.
Schema Registry provides a RESTful interface for storing and
retrieving AVRO schemas. It ensures that the data being sent and
received is in a common format (i.e., checking schema
compatibility for Kafka). This is described in greater detail in the
upcoming chapters.

● KSQL: KSQL is a streaming SQL engine for Kafka used to run
queries on data stored in the Kafka cluster. KSQL is used internally
on Kafka streams for processing.

We focus only on Apache Kafka throughout this book. However, let us
consider a use case to better understand how all these components are
integrated to form an end-to-end pipeline using the Confluent data
streaming platform.

KAFKA USE CASE
Let us now consider a fraud detection use case at a high level to better
understand how all the components of Confluent can be integrated to form
an end-to-end pipeline. We shall observe a use case of fraud detection in
credit card transactions.

The use of credit cards has been on the rise in the past few decades, in
addition to instances of fraud regarding cards. People make transactions
using credit cards, and this transaction data can be analyzed to prevent
fraud in real-time and minimize monetary loss.

1. Let us consider that all credit card transactions are recorded in a
web application.

2. These transactions are then transferred to the Kafka message
queue using the REST proxy server. The REST proxy server serves
as an interface to Kafka.

3. The transactions are then pulled from Kafka by Kafka Streaming
or Spark Streaming to apply transformations or analysis. Please
note that Spark Streaming is generally used to process real-time
messages similar to credit card transactions, since we feed the
processed data to a machine learning model.

After processing the streams, the data is internally fed to a Spark
machine learning model to predict whether the transaction is
fraudulent. Confluent Kafka does not provide a machine learning
module, so Spark MLlib is used for predictions.

4. The unpredicted raw data from Spark Streaming is saved to
Cassandra for further processing, if required.

1(f) Kafka Use Case

5. Two outcomes are possible for these predictions: i.e.genuine
transactions and potentially fraudulent transactions. This data is
sent to Kafka.

6. In general, there will be more genuine or non-fraud transactions
than fraudulent transactions. Hence, all the genuine transactions

are sent to a NoSQL database, such as Cassandra.

7. The potential fraud transactions are then transferred to an
RDBMS database, such as MySQL, via Kafka Connect.

8. These records can then be pulled from MySQL and displayed on
webUI.

9. Domain experts can then take the necessary actions to
determine whether these predicted potentially fraudulent
transactions are actually fraudulent. If it is determined that a
transaction is fraudulent, the card issuer can block or hold the
card from making transactions to prevent further loss.

This is how the Confluent Kafka components can be used to build an end-to-
end pipeline.

Before concluding this chapter, let us consider ZooKeeper and why it is
needed by Kafka.

INTRODUCTION TO ZOOKEEPER
What is ZooKeeper?

ZooKeeper is an open-source, robust distributed coordination service for
distributed applications. In particular, ZooKeeper is an open-source Apache
Software Foundation project that is available for free and ready to
use. ZooKeeper helps to overcome many of the common challenges faced
by distributed applications. ZooKeeper can be used for synchronization,
sequential consistency, and coordination between distributed applications.
It helps to maintain the configuration information that can be shared to all
the nodes in a distributed system. Moreover, ZooKeeper helps in group
services, such as leader election and many more. In addition, ZooKeeper is
reliable and fast, yet simple to work with. With ZooKeeper, one can build
reliable, distributed data structures for group membership, leader election,
coordinated workflow, and configuration services. Furthermore, one can
build generalized distributed data structures, such as locks, queues, barriers,
and latches.

ZooKeeper provides an eventually consistent view of its znodes, which are
nothing but files or directories in a file system. Moreover, ZooKeeper
provides basic CRUD operations, such as creating, updating, and deleting
znodes. It provides an event-driven model in which clients can watch for
changes to specific znodes, such as if a new child is added to an existing
znode. ZooKeeper is a high-availability service, as it consists of a set of
ZooKeeper servers known as the ensemble (cluster), with each of the servers
holding an in-memory image of the distributed file system to serve client
read requests; in addition, each server holds a persistent copy on disk.

One of the servers in the ensemble is dynamically selected by consensus to
be the leader, and all other servers are the followers. The leader is
responsible for all writes and updating the changes to its followers. When
the majority of followers update a change successfully, the write succeeds,
and the data is still available even if the leader fails. When a leader fails, a
new leader is again dynamically selected by consensus within the ensemble.
This eliminates the single point of failure scenario, and the ensemble
continues working as it should.

When a client connects to ZooKeeper, it is provided with the list of servers in
the ensemble. The client connects to one of the servers in the ensemble at
random until a connection is established. Once connected, ZooKeeper
creates a session with a timeout period pre-specified by the client. The
ZooKeeper client automatically sends heartbeats periodically to keep the
session alive if no operations are performed for a time, and it automatically
handles failover. If the connection between ZooKeeper and the client fails,
the client automatically detects this and tries again to connect to a different
server in the ensemble. After it is reconnected, the same client session is
retained while the failure has occurred.

ZooKeeper Data Consistency

ZooKeeper provides the following guaranteed consistencies:

Sequential consistency: Updates from a client to the ZooKeeper service are
applied in the order they are sent. Since all writes go through the leader, the
global order is simply the order in which the leader receives the write
requests.

Single System Image: The Single System Image guarantees that a client will
see the same view of the ZooKeeper service no matter the server in the
ensemble to which it is connected.

Atomicity: There are no partial failures. The updates from a client to the
ZooKeeper service either succeed or fail. For example, assume a client sends
an update to a server, but before the response is received, the network
connection is lost or the server goes down. Now, did the update get through
to the server? If yes, did the operation complete successfully? The only way
to know the answers to these questions is when the server/network is back
up again. ZooKeepe, however, cannot help with network problems or partial
failures; rather, it handles through atomicity. If the network/server goes
down during an update operation, the operation is marked as failed;
otherwise, it is marked as a success.

Reliability: If the update is successful, it is persistent and will not be rolled
back. The update will be overwritten only when the client makes a new
update. The updates are still available even when the server fails.

Consistent Client View: A client’s view of the system is guaranteed to be up-
to-date within a certain time bound, generally within tens of seconds. If a
client does not observe system changes within that time bound, the client
assumes a service outage has occurred and will connect to a different server
in the ensemble.

ZooKeeper Architecture

The ZooKeeper architecture consists of a leader and follower servers. The
collection of these servers is known as the ensemble. The number of servers
in a ZooKeeper ensemble should always be an odd number. The reason for
this is because we need a majority during the voting process of electing a
leader. Let us now consider the responsibilities of the leader and follower
servers.

● Leader: When an ensemble is first started, a voting process is held
to select a leader. During the voting process, a leader is elected,
and the process is completed as soon as a simple majority of
followers have synchronized their state with the leader. After the
leader election is complete, the leader is responsible for handling
all the write requests from clients, and changes are committed to
all followers. Once a majority of followers have persisted with the
change, the leader commits the change and notifies the client of a
successful update. There should always be a leader; if the leader
is down, all the existing followers vote for and elect a new leader.

● Followers: The followers’ function is similar to that of the leader,
allowing clients to connect to them and send, read, and write
requests to them; here, however, the writes are forwarded to the
leader.

● Observers: Observers are the non-voting members of an
ensemble, which do not participate in the voting process but only
hear the voting results. When more followers participate in
voting, the write performance drops significantly, so observers are
added to the ensemble to address this issue. Observers improve
ZooKeeper’s scalability, and we can increase the number of
observers as much as we like without harming the performance of
votes. The observers’ function is the same as the followers, in
which clients connect to them and send, read, and write requests
to them. Observers forward these requests to the leader, akin to
followers, but they then simply wait to hear the result of the vote.

WHY DOES KAFKA NEED ZOOKEEPER?
Kafka cannot be started without ZooKeeper. We must first start the
ZooKeeper service before starting Kafka. The ZooKeeper service will run on a
separate server rather than on the servers running Kafka Brokers. Based on
the explanation of Zookeeper in the sections above, Kafka needs ZooKeeper
for the following purposes:

● Electing a Controller: Kafka consists of brokers to handle
requests, such as sending and receiving messages. The broker acts
as a mediator for both producers and consumers to handle the
requests. The broker is a Kafka server, and multiple brokers form
a Kafka cluster. Since a Kafka cluster contains multiple brokers, we
must elect a leader among these brokers to maintain the cluster
state. The broker that we elect as the leader is called the
controller and is responsible for maintaining the leader-follower
relationships. In the event of the failure of a broker, the
controller’s responsibility is to instruct all the replicas to act as
partition leaders to fulfill the duties of the partition leaders on the
broker that is about to fail. ZooKeeper is used to elect this
controller, ensures there is only one leader, and elects a new
leader in the event of failure.

● High Availability: ZooKeeper tracks the membership of all the
brokers and periodically checks whether any of the brokers that
are part of the cluster have failed. It maintains a high availability
of the controller broker.

● Topic Configuration: ZooKeeper tracks existing topics, partitions
for each topic, replica locations, the preferred leader, and
configuration override information for each topic.

● Access Control Lists: ZooKeeper maintains access control lists for
each topic (i.e., the read and write permissions of clients).

Do not worry if the new concepts are difficult to understand at this time. We
shall explore brokers, replications, partitions, topics, and so on in greater
detail in the next chapter. It will become clear why we need ZooKeeper once
we better understand the architecture of Kafka.
This concludes the theory for this chapter.

LAB EXERCISE 1

"There are no activities required for this lab"

SUMMARY
Kafka is an open-source, distributed, persistent, and fault-tolerant message-
streaming platform or central repository that can handle high volumes
(trillions) of Publish-Subscribe messages each day. A Publish-Subscribe
messaging system is a system in which data is produced (publish) by
producers and consumed (subscribe) by consumers.

Kafka is written in Scala and built on top of the ZooKeeper coordination
service. The integration of Spark and Kafka allows for real-time streaming
data analysis. Kafka was built at LinkedIn and later donated to the Apache
Software Foundation, making it open-source.

ZooKeeper is an open-source, robust distributed coordination service for
distributed applications. In particular, ZooKeeper is an open-source Apache
Software Foundation project that is available for free and ready to
use. ZooKeeper helps to overcome many of the common challenges faced
by distributed applications. Moreover, ZooKeeper can be used for
synchronization, sequential consistency, and coordination between
distributed applications. It helps to maintain the configuration information
that can be shared to all the nodes in a distributed system.

CHAPTER 2:
KAFKA FRAMEWORK

THEORY
The previous chapter provides an overview of BigData through a brief
introduction to the Apache Hadoop and Apache Spark frameworks.
Moreover, it presents a comprehensive introduction to Apache Kafka and
Apache ZooKeeper. Let us now learn more about Apache Kafka, starting with
the architecture, APIs, and CLI of Apache Kafka before proceeding to the labs
to install Apache ZooKeeper and Apache Kafka on our machines.

KAFKA ARCHITECTURE
We have considered a use case of Kafka in the previous chapter, presenting
a high-level representation of the Kafka architecture. Let us now explore the
Hive architecture in detail.

The Kafka architecture is presented in the figure below.

2(a) Kafka Architecture

The Kafka architecture consists of the following components:
● Brokers
● Producers
● Consumers
● Topics
● Partitions
● Replications
● ZooKeeper

Let us now explore an overview of each component.

Topics

Kafka is capable of streaming messages from multiple sources. A topic is a

name provided to each source to distinguish and store the incoming
messages. Topics are used to group similar messages. Producers write
messages to topics, and consumers read data from topics with the help of
brokers. A new directory is created with the name of the topic’s partition
whenever a new topic is created. A leader broker is responsible for all the
read and write operations for that partition.

Partitions

Kafka topics are further divided into partitions to achieve scalability. A topic
can have multiple partitions. A partition is a log to which the messages are
appended as received. The messages are distributed across multiple brokers
with the help of partitions, thus making Kafka a distributed message queue.
This allows multiple consumers to read data from a topic in parallel.

Producers

Producers are the Kafka clients that create and send new messages to the
brokers. Producers create messages for one or more Kafka topics and are
the source of data for a Kafka cluster; there can be multiple producers in a
Kafka cluster. Each message produced is assigned an offset by the broker. An
offset is the integer metadata associated with each message, and it
increases monotonically for each message.

Consumers

Consumers are the Kafka clients that read data from brokers, and there can
be multiple consumers in a Kafka cluster. Consumers read the data from
topics to which they are subscribed. The data is read in the order it was
produced. Consumers know which messages have already been consumed
with the help of offsets. Partitions have a unique offset for each message. A
consumer simply stores the last offset it consumed in ZooKeeper or Kafka,
which will help the consumer to continue consuming the messages from
precisely where it stopped.

Brokers

A Kafka cluster consists of daemons known as brokers and consists of one or
more brokers. Brokers are the most important components and workhorses
of a Kafka cluster; without brokers, there is no Kafka. As the name suggests,

brokers act as middlemen between the producers and consumers. Brokers
receive messages from producers, assign them with offsets, and store them
on disk into Kafka topics. Similarly, they respond to consumers’ data pull
requests from Kafka topics.

In the production environment, there should be only one Broker per node in
the Kafka cluster; however, in the testing environment, there can be
multiple brokers on a single node. The brokers are further classified as the
leader broker and controller broker.

Controller Broker

A controller broker is available in the pool of brokers within a Kafka cluster.
A controller broker is elected with the help of ZooKeeper as soon as the
brokers in a Kafka cluster are started, and it is considered the master broker.
A controller broker is similar to any other broker in the Kafka cluster but has
extra responsibilities. There is only one active controller broker at all times.

The controller broker is responsible for assigning partitions to brokers,
monitoring brokers for failure, and rebalancing partitions to other brokers in
the event of failure. Moreover, the controller broker is responsible for the
duties of any other broker in the cluster (i.e., leading partitions, performing
reads/writes, and having partition replications).

Leader Broker

Each partition in a Kafka cluster has one broker that acts as a leader broker.
If the partition is created with a replication factor greater than one, the
partitions are replicated to the follower brokers. The leader broker manages
the read/write requests for the partitions from producers and consumers,
and the follower brokers simply replicate the partitions in the leader broker.
In the event of failure of the leader broker, another broker that has the
replications will adopt the leadership, making it redundant.

Replications

The partitions are replicated across the Kafka cluster to achieve high
availability. This is done to ensure that the data is not lost in the event of a
broker failure in the Kafka cluster. The replications are of two types: leader
and follower replicas. The messages transmitted from the leader broker are

leader replicas, and the follower replicas are used for fault tolerance in the
event of data loss available in the follower brokers.

ZooKeeper

As discussed in the previous chapter, ZooKeeper provides a coordination
service for a Kafka cluster. Please review Why does Kafka need
ZooKeeper? for more information.

We consider the internals of these concepts in detail in the upcoming
chapters.

This concludes the theory for this chapter. Let us proceed to the lab exercise
to install ZooKeeper and Kafka onto our machines.

AIM

The aim of the following lab exercises is to install and configure ZooKeeper
and Kafka.

The labs for this chapter include the following exercises.
● Downloading and installing JDK
● Downloading and installing

ZooKeeper
● Configuring ZooKeeper
● Downloading and installing Kafka
● Configuring Kafka
● Starting ZooKeeper and Kafka

We require the following packages to perform this lab exercise:
● Java Development

Kit
● Apache ZooKeeper
● Apache Kafka

We will use an Ubuntu 18.04 LTS operating system with at least 4 GB of RAM
throughout this book for all our exercises. Please ensure that you install this
version of OS before proceeding with Kafka installation.

LAB EXERCISE 2: KAFKA INSTALLATION

1. Download and install JDK
2. Download and install ZooKeeper
3. Configure ZooKeeper
4. Download and install Kafka
5. Configure Kafka
6. Start ZooKeeper and Kafka

TASK 1: DOWNLOAD AND INSTALL JDK
Step 1: From the terminal, run the following commands to install JDK (Java
Development Kit):

$ sudo apt-get update

This will update the package index. You might be asked to enter your
password after running the command above.

Step 2: Once you run the above command, run the following command to
download and install JDK.

$ sudo apt-get install default-jdk

The prompt will ask you to press “Y” after running the above command, as
illustrated in the screenshot. Press “Y” on your keyboard to continue with
the installation, and finally press the Enter key. This will download and install
JDK onto your machine.

The installation process might take some time depending on your internet
connection. Please allow it to download and install completely. You will be
presented with the following message once the installation has been
completed.

Step 3: Run the following command to check whether Java has been
installed successfully. The terminal should display the Java version, as
presented in the screenshot.

$ java –version

Please note that your version of JDK might be the latest version, as opposed
to what is shown in the screenshot.

Task 1 is complete!

TASK 2: DOWNLOAD AND INSTALL ZOOKEEPER
Step 1: Let us ZooKeeper in standalone mode. Navigate to the download
URL below and click to download the latest stable version for ZooKeeper
(ZooKeeper 3.6.1 at the time of writing this book).

Download URL: https://zookeeper.apache.org/releases.html

After clicking the download link, you will be taken to a page with a mirror
site to download ZooKeeper. Click the mirror link as illustrated below, and
your download should start. The download might take some time depending
upon your internet connection.

https://zookeeper.apache.org/releases.html

Step 2: The download will be saved to the Downloads directory by default.
Execute the following command from your terminal to change the directory
to the Downloads folder:

$ cd Downloads

Once you are in the Downloads directory, you may optionally check whether
ZooKeeper has been downloaded using the ls command.

$ ls

Now that you are certain you have the ZooKeeper tar file, untar the
ZooKeeper tar file to /usr/share directory using the command below:

$ sudo tar –xvf apache-zookeeper-3.6.1-bin.tar.gz –C
/usr/share

The file will begin to untar to the /usr/share directory, as presented in the
screenshot above. You can verify this by executing the command below:

$ cd /usr/share

$ ls

As we can see from the screenshot above, the ZooKeeper directory is listed.

Step 3: Let us create a softlink to the ZooKeeper directory so that we do not
need to refer to ZooKeeper with the entire name as above. This will be
useful for future updates, as well. Execute the following command:

$ sudo ln –s apache-zookeeper-3.6.1-bin zookeeper

Run the following command again to check whether we could create the
softlink successfully.

Step 4: Let us conclude the installation process by creating the directory
where ZooKeeper will store its data.

$ sudo mkdir zookeeper/data

$ ls zookeeper

Step 5: Change the permissions of the ZooKeeper directory by running the

following command:

$ sudo chown <username> /usr/share/zookeeper

<username> - Insert your username.

This completes the installation of ZooKeeper. Let us now proceed to the
next task to configure ZooKeeper.

Task 2 is complete!

TASK 3: CONFIGURE ZOOKEEPER
Step 1: Let us now set up the environment variables for ZooKeeper. Begin by
executing the following command:

$ sudo vi ~/.bashrc

The file should open as presented below.

Now, press the i key to edit the file and append the following environment
variable at the end of the file:

ZOOKEEPER_HOME=/usr/share/zookeeper
Export PATH=$ZOOKEEPER_HOME/bin:$PATH

After you have finished appending the text above, press the Esc key on your
keyboard to stop editing, and then press Shift - Z - Z to exit the editor by
saving the changes (please note that you need to press Z twice while holding
the Shift key).

Now, reload the modified .bashrc file using the following command:

$ source ~/.bashrc

Step 5: Finally, let us create a ZooKeeper configuration file to include the
data directory we created in the previous task along with other information.
To create the configuration file, run the following command from the
command line interface:

$ sudo vi zookeeper/conf/zoo.cfg

Enter the following settings in the file, and save it:

tickTime=2000
dataDir=/usr/share/zookeeper/data
clientPort=2181

The above settings are sufficient for configuring ZooKeeper in standalone
mode.

However, If you wish to install ZooKeeper in replicated mode, please enter
the following settings in the configuration file and ensure you have the same
settings in all the servers in ZooKeeper Ensemble:

tickTime=2000
dataDir=/usr/local/zookeeper-3.4.6/data
clientPort=2181
initLimit=5
syncLimit=2
server.1=<server_name>:2888:3888
server.2=<server_name>:2888:3888
server.3=<server_name>:2888:3888

tickTime: The basic time unit in milliseconds used by Zookeeper. This is used
to do heartbeats. The minimum session timeout is twice the tickTime.

dataDir: The location for storing the in-memory database snapshots and,
unless specified otherwise, the transaction log of updates to the database.

clientPort: The port to listen for client connections.

initLimit: The total amount of time allowed for the quorum members
(followers) to connect to and sync with the leader. If most of the quorum
members fail to sync with the leader during this period, the leader powers
are revoked, and a new election for leader occurs.

syncLimit: The total amount of time allowed for the quorum members to
sync with the leader. If the quorum member fails to sync during this period,
it will restart itself. Clients will be routed to other quorum members if they
were connected to this quorum member.

Next, we specify the servers in the ensemble for each line with a server
number. There are two port settings: The first port is used by followers to
connect to the leader, while the second is used for leader election. There are
three port numbers on which the servers listen. The description is as
follows:

2181: Port for client connections.
2888: Used by followers to connect to the leader.
3888: Used for leader election.

In addition to these settings, you will need to create a file called myid in the
data directory that contains a numeric identifier for each ZooKeeper server
in the ensemble. The range for this numeric identifier is from 1 to 255. This
denotes the server number set in the configuration file above. If you are
creating the myid file in server.1, simply enter 1 in the myid file, and save it.
Similarly, if you are creating the myid file in server.2, simply enter 2 in the
myid file, and so on.

$ sudo vi zookeeper/data/myid

Enter the numeric identifier ranging from 1 to 255 in the file depending on
the server configuration file.

Once we start the server, it reads the myid file and determines which server
it is based on the numeric identifier. It then reads the configuration file for
all the information regarding the ports and network addresses of other
servers within the ensemble.

Step 6: Change the ownership of the files zoo.cfg and myid (replicated
mode) by running the following command:

$ sudo chown <username> zookeeper/conf/zookeeper.cfg

$ sudo chown <username> zookeeper/data/myid
Run the above command only if you are installing ZooKeeper in replicated mode.

This completes the installation of ZooKeeper.

Task 3 is complete!

TASK 4: DOWNLOAD AND INSTALL KAFKA
Now that we have ZooKeeper installed and configured, let us proceed by
installing Kafka.

Step 1: Let us install Kafka in standalone mode. Navigate to the download
URL below and click to download the latest stable version of Kafka (Kafka
2.12-2.5.0 at the time of writing this book).

Note: 2.12 is the Scala version, and 2.5.0 is the Kafka version.

Download URL: https://kafka.apache.org/downloads

https://kafka.apache.org/downloads

After clicking the download link, you will be directed to a page with a mirror
site to download Kafka. Click the mirror link as presented below, and your
download should begin. The download might take some time depending on
your internet connection.

Step 2: The download will be saved to the Downloads directory by default.
Execute the following command from your terminal to change the directory
to the Downloads folder:

$ cd
$ cd Downloads

Once you are in the Downloads directory, you may optionally check whether
Kafka has been downloaded using the ls command:

$ ls

Now that you are certain you have the Kafka tar file, untar the Kafka tar file
to the /usr/share directory using the command below:

$ sudo tar –xvf apache-zookeeper-3.6.1-bin.tar.gz –C
/usr/share

The file will begin to untar to the /usr/share directory, as illustrated in the
screenshot below.

Step 3: Let us create a softlink to the Kafka directory so that we do not need
to refer to Kafka with the entire name as above. This will be useful for future
updates, as well. Execute the following command:

$ sudo ln –s kafka_2.12-2.50 kafka

Run the ls command again to check whether we could create the softlink
successfully.

Step 4: Change the permissions of the Kafka directory by running the
following command:

$ sudo chown <username> /usr/share/kafka

<username> - Insert your username.

Task 4 is complete!

TASK 5: CONFIGURE KAFKA
Step 1: Let us now set up the environment variables for Kafka. Begin by
executing the following command:

$ sudo vi ~/.bashrc

The file should open as presented below.

Now press the i key to edit the file and append the following environment
variable at the end of the file:

KAFKA_HOME=/usr/share/kafka
Export PATH=$KAFKA_HOME/bin:$PATH

After you have finished appending the text above, press the Esc key on your
keyboard to stop editing, and then press Shift - Z - Z to exit the editor by
saving the changes (please note that you need to press Z twice while holding
the Shift key).

Now reload the modified .bashrc file using the following command:

$ source ~/.bashrc

This completes the installation for Kafka in standalone mode. The
configuration file provided with the Kafka installation is sufficient for
running Kafka for training purposes. However, when working in a real-time
environment, these configurations are not sufficient.

Let us now consider a few of the configuration options available in Kafka.

Step 2: The configuration properties for Kafka are available in the following
path:

/usr/share/kafka/config/server.properties

broker.id: The broker.id is the configuration property used to identify a
broker in a Kafka cluster. The broker.id must be a unique integer value for
every broker in the Kafka cluster and is set to 0 by default.

listeners: The listeners property is used to set the URIs as comma-separated
values, which the brokers will use to create server sockets. The value
consists of the hostname and port, with the default port being 9092. The
port number can be changed to any other available port.

zookeeper.connect: This configuration property is used to set the
connection string of a ZooKeeper server in hostname:port format. Multiple
hostnames can be provided, separated with a comma. The default value is
localhost:2181 for this property. The hostname could be the hostname or IP
address of the ZooKeeper server. Optionally, this property can have a
ZooKeeper chroot path as part of its ZooKeeper connection string, which
puts its data under some path in the global ZooKeeper namespace.

zookeeper.connection.timeout.ms: The value set in this property specifies
the timeout value for connecting to ZooKeeper in ms. The default value is
18,000.

log.dirs: We have learned that messages in Kafka are persistent (i.e., the

data received from producers is stored on the disk). This property specifies
the location/path for data to be stored. Multiple paths can be specified as a
comma-separated list. Whenever multiple paths are specified, the broker
stores the partitions in the path that has the fewest partitions. The default
path is set to /tmp/kafka-logs.

num.partitions: The num.partitions property is used to specify the default
number of partitions per topic. The default value for this property is 1.

num.recovery.threads.per.data.dir: This property specifies the number of
threads used per data directory to recover the data at startup and flushing
at shutdown. The default value for this property is 1.
auto.create.topics.enable: This property, when set to true, creates topics
automatically whenever applications produce, consume, or fetch metadata
for a non-existent topic. The automatically created topic will have the
default partitions and replications. It is always recommended to set this
property to false so that the topics are not automatically created without
your knowledge.

log.retention.hours: This property specifies the number of hours after which
Kafka will delete the messages. Other similar properties concern the
deletion of logs after a certain period, namely log.retention.minutes and
log.retention.ms. All these properties perform the same operation; however,
the property with the lowest time unit takes precedence (i.e.,
log.retention.ms has precedence over log.retention.minutes, and so on). The
default value for log.retention.hours is 168.

log.retention.bytes: This property determines the size of a message upon
which it should be deleted. The size after which the log should be deleted
must be specified in bytes.

These are a few of the configuration properties for configuring the Kafka
broker. You can find all the configuration properties in the Kafka
documentation URL available in the references link.

Task 5 is complete!

TASK 6: STARTING ZOOKEEPER AND KAFKA

Now that we have completed the installation and configuration of
ZooKeeper and Kafka, let us start them.

Step 1: First, start ZooKeeper by running the following command:

$ zkServer.sh start

You should observe that the ZooKeeper server starts as presented in the
screenshot below.

Step 2: Let us attempt to connect to the client port and run the command
srvr. Run the following command first:

$ telnet localhost 2181

When you see you are connected to localhost, type the following command:

srvr

You should see the output as displayed below.

Step 3: Let us now start the Kafka server. Run the following command:

$ kafka-server-start.sh

/usr/share/kafka/config/server.properties

You should see a large amount of information while Kafka starts. The last
line informs you that Kafka has been started, as presented below.

Task 6 is complete!

SUMMARY
Kafka is an open-source, distributed, persistent, and fault-tolerant message-
streaming platform or central repository that can handle high volumes
(trillions) of Publish-Subscribe messages each day. A Publish-Subscribe
messaging system is a system in which data is produced (publish) by
producers and consumed (subscribe) by consumers.

The Kafka architecture consists of the following components:
● Brokers
● Producers
● Consumers
● Topics
● Partitions
● Replications
● ZooKeeper

CHAPTER 3:
KAFKA IN-DEPTH

PART I

THEORY
In the previous chapter, we have looked at the architecture of Kafka with an
overview of its components. We have also installed and configured Kafka in
the labs. In this chapter and the next one, let us dig a little deeper and
understand how Kafka works internally at core. It is paramount to
understand the internal working of Kafka for efficient production and to
troubleshoot issues, when necessary.

Let us look at the following internals of Kafka in this chapter.

● Topics Operations
● Topics Overview
● Data Model in ZooKeeper
● ZooKeeper Watches
● ZooKeeper’s role in cluster

membership
● Election of Controller Broker
● Responsibilities of Controller Broker

TOPIC OPERATIONS
In the previous chapter, we have seen what are Topics. Now, let us look at
various operations of Topics and see what happens internally when Topics
are created, altered, deleted, etc.

Creating a Kafka Topic

A Kafka Topic can be created with the following syntax.

$ kafka-topics.sh \
--zookeeper <ZOOKEEPER_URL:PORT> \
--create --topic <TOPIC_NAME> \
--replication-factor <NO_OF_REPLICATIONS> \
--partitions <NO_OF_PARTITIONS>

Please note that the ‘\’ symbol is not required if you specify the syntax in
single line. The ‘\’ symbol is only used here since the syntax is specified in
multiple lines.

● The script to manage (create, alter, delete, list, etc.) Kafka Topics
is kafka-topics.sh. This script is available in <KAFKA_HOME>/bin/
directory. Therefore, we use the kafka-topics.sh script file to
create a Kafka Topic.

● Next, we specify the URL and Port on which ZooKeeper is running
using the --zookeeper switch.

● The next part of the syntax uses the --create, followed by the --
topic switch to specify the name of the new topic that has to be
created.

● The --replication-factor switch is used to specify the number of
replications for the Kafka Topic.

● Similarly, the --partitions switch is used to specify the number of
partitions.

Since Kafka is a persistent message queue, all the messages are stored on
the disk. The path where the messages will be stored is set in the
server.properties file pointed in the log.dirs property, as seen in the previous
chapter.
We shall be looking at the contents of logs directory in the lab exercise for
this chapter.

Listing Kafka Topics

The following syntax is used to list all the available Topics on the Kafka

server.

$ kafka-topics.sh \
--zookeeper <ZOOKEEPER_URL:PORT> \
--list

We use the kafka-topics.sh script, followed by the ZooKeeper details and
specify the --list switch to list all the Kafka Topics.

Modifying Kafka Topics

A Kafka Topic can be modified to change the number of partitions using the -
-alter switch in kafka-topics.sh script as shown below.

$ kafka-topics.sh \
--zookeeper <ZOOKEEPER_URL:PORT> \
--alter --topic <TOPIC_NAME> \
--partitions <NO_OF_PARTITIONS>

Note: Modifying the number of partitions will affect the partition logic or
ordering of messages for consumers. Do not worry if you do not understand
this. It will be clear once we look at Consumers in detail.

Please note that we cannot change the number of replications using the
above syntax. We shall look at this in the upcoming chapters.

Deleting Kafka Topics

A Kafka Topic can be deleted using the following syntax.

$ kafka-topics.sh \
--zookeeper <ZOOKEEPER_URL:PORT> \
--delete --topic <TOPIC_NAME>

Please note that the topics cannot be deleted if delete.topic.enable property
is not set to true.

TOPICS OVERVIEW
Let us now understand how Topics receive messages from Producers.
Consider a Kafka cluster with 5 Brokers and a web server that generates logs
as our Kafka Producer.

● First, start the ZooKeeper server and all the Brokers one by one.
Post starting all the Brokers, create a Topic as explained in the
previous section. Let us name the Topic as logs.

● The topic is created with 3 Partitions and a replication factor of 1.
Once the Topic is created, three directories will be created under
the path specified in logs.dir property on three different Brokers,
i.e., one directory for each partition. The directories will have the
names as logs-0, logs-1 and logs-2.

● Let us assume that the log directories are created in Brokers with
ids 1, 3 and 5 as shown in the figure below.

3(a) Topics Overview – Single Producer

● The Producer will now send the data to the Brokers 1, 3 and
5.

● The Broker 1 will write the data to logs-0, Broker 3 will write the
data to logs-1 and Broker 5 will write the data to logs-2.

Let us consider we have one more producer which generates Twitter data.
The data is stored in the same process as above.

● Create a topic and name it twitter. The topic has 3 partitions with
a replication factor of 1.

● Let us assume that the log directories are created in Brokers with
ids 1, 2 and 4 as shown in the figure below.

● The Producer will now send the data to the Brokers 1, 2 and
4.

● The Broker 1 will write the data to twitter-0, Broker 2 will write
the data to twitter-1 and Broker 4 will write the data to twitter-2.

3(b) Topics Overview – Multiple Producers

From the above illustration, we can say that Kafka is a distributed, as the
data is saved in the form of partitions across the cluster and, is persistent as
the data is saved on disk.

In the illustration above, we have seen that when a directory is created in a
Broker, the Broker takes all the ownership (read/write operations) of that
directory. From our example above, Broker 1 is responsible for all the
operations for logs-0 and twitter-0 partitions. But, how has the Broker 1
been assigned the ownership for logs-0 and twitter-0 partitions? Through
which process has this responsibility assigned? Controller Broker is the
answer for these questions. Move on to the next sections for a detailed
explanation.

Before we learn about Controller Broker in detail, let us first understand the
ZooKeeper data model and watches in ZooKeeper.

DATA MODEL IN ZOOKEEPER
Data model in ZooKeeper is a distributed, hierarchical file system comprised
of znodes (directories). The znodes are containers for data and other nodes.
The znodes have associated data such as statistic information and versioning
information. Znodes also store user data which is limited to 1 MB (per
znode).

3(c) ZooKeeper Data Model

The znodes can be of Persistent or Ephemeral znodes and optionally
sequential znodes.

Persistent
znodes

Persistent znodes persist even after the client
session. expires or disconnected. Persistent
znodes can have child. Persistent znodes are
always present and is only deleted when
clients explicitly deletes it.

Ephemeral Unlike persistent znodes, ephemeral znodes

znodes are automatically deleted by zookeeper as
soon as the session in which they are created
is closed or expired. Ephemeral znodes
cannot have children, not even the
ephemeral children.

Sequential
znode

A sequential znode is given a sequence
number while znode is being created. All
znodes can optionally be sequential, for
which ZooKeeper maintains a monotonically
increasing counter which is automatically
appended to the znode name upon creation.
Each sequence number is guaranteed to be
unique.

ZOOKEEPER WATCHES
Watches notify clients when a znode has been changed. We can set watches
on read or get notified when there is a write operation on a znode. For
example, a client, say x, sets a watch on a znode and another client y
performs a write request on that znode, a watch is triggered and client x is
notified about the write operation. Client x and y are completely
independent and do not know anything about each other’s existence, so
long as they each know their own responsibilities in relation to specific
znodes.

Also the watches are triggered only once and notify the client about the
change. Once triggered, the client has to register again to get notified for
future notifications. It is also possible that during the period between
receipt of the notification and re-registration, other clients could perform
write operations on the znode before the new Watch is registered by the
client and the client may miss that update/notification.

ZOOKEEPER’S ROLE IN CLUSTER MEMBERSHIP
As we have learned in previous chapters, Kafka uses ZooKeeper to manage
the Brokers which are the members of Kafka cluster. Each Broker has a

unique id that is either set via broker.id property in the Broker’s
server.properties configuration file or is automatically generated. The
following actions happen when Brokers are started.

● Whenever a Broker is started, the Broker registers itself with its ID
in ZooKeeper with information such as its hostname, port and
other metadata. The Broker creates a directory in ZooKeeper
known as Ephemeral node, to store this information. The list of
Brokers will be available in the following ZooKeeper path:
/brokers/ids. For example, if the Broker id is 1, an Ephemeral node
is created as /brokers/ids/1. The Ephemeral node 1 consists of all
the metadata information regarding Broker 1.

● All the different Kafka components such as other brokers,
producers, consumers etc., subscribe (set ZooKeeper watch) to
the Brokers’ path above. This was they get notified whenever a
change such as addition or removal of Brokers takes place.

● A Broker ID is always unique and a new Broker cannot be started
with the same ID. If a Broker ID is started with same ID, an error is
thrown since there is already a Broker running with the same ID.

● In case of Broker failure, the Ephemeral node created by that
particular Broker which failed, will be removed from ZooKeeper.
This will trigger a notification to all the Kafka components, which
subscribed to Brokers’ path regarding the Broker failure.

● A new Broker with the same ID can then be commissioned and
have the data restored with the help of replicas available in other
Brokers. The metadata information of partitions stored in the
failed Broker will be available with the Controller Broker (Details
in the next section). Thus making Kafka fault tolerant.

This is how ZooKeeper helps in maintaining Brokers’ membership with Kafka
cluster.

ELECTION OF CONTROLLER BROKER

The Controller Broker can be thought as a master which controls the
membership of all other Brokers in Kafka cluster. The Controller Broker is
responsible to allocate partitions to the Brokers, also known as Leader
Brokers. Controller Broker is not a special server, but one among the list of
Brokers available in the Kafka cluster. The Controller Broker is elected with
the help of ZooKeeper. Let us see how the Controller Broker is elected with
the help of ZooKeeper and learn its responsibilities.

● Consider a Kafka cluster with few Brokers and a ZooKeeper server.

● When the Brokers are started in Kafka cluster, every Broker tries
to create an ephemeral node (directory) called /controller in
ZooKeeper.

● The Broker that succeeds in creating this ephemeral node
becomes the Controller Broker in Kafka cluster. Generally, the
first Broker that starts in Kafka cluster succeeds in creating the
ephemeral node and thus becomes Controller Broker.

● The other Brokers also try to create this node but fail to do so, as
the Controller Broker is already elected. This ensures that there is
only one Controller Broker at any given point of time.

● Since all the other Brokers now know there is a Controller Broker,
they subscribe (set ZooKeeper watch) to the /controller node to
get notified of any changes that happen to this node.

● If the Controller Broker shuts down due to hardware failure or
experiences connectivity issues with ZooKeeper, the /controller
ephemeral node will be deleted By ZooKeeper (See data model in
ZooKeeper section for more information).

● Since the removal of /controller node is a change, all the other
Brokers that have set a watch to this node will be notified that the
cluster no longer has a Controller Broker.

● All the Brokers will once again try to create an ephemeral
node called /controller in ZooKeeper. Whichever Broker succeeds
in creating this node will become the Controller Broker and the
rest of the Brokers will again set a ZooKeeper watch to this node.

● Every Controller Broker that gets elected is assigned with a
controller epoch number, which is higher than the epoch that is
assigned to previous Controller. So, if the Controller Broker that
failed due to connectivity issues or any other reason, gets
connected again, the rest of the Brokers will simply ignore its
messages based on the Controller’s epoch number.

This is how a Controller Broker is elected and its high availability is ensured
using ZooKeeper. We shall look this in real time in our lab exercises.

RESPONSIBILITIES OF CONTROLLER BROKER
Controller Broker has a few more responsibilities apart from the
responsibilities of a regular Broker in Kafka. The Controller Broker acts as a
regular Broker for communication between Producer and Consumer, as well
as the following responsibilities.

● The Controller Broker is responsible to assign partitions and
replications to Brokers. The Controller Broker maintains metadata
of Leader Brokers and Follower Brokers. Controller Brokers sets a
ZooKeeper watch on the /brokers/ids node and hence it gets
notified when a new Broker has joined or left the cluster.

● The Controller Broker shares all the metadata information such as
the Brokers leading partitions, the Brokers having replications
with all the other Brokers in the Cluster. This way if the Controller
Broker is down, the newly elected Controller Broker has all the
metadata information to start its duties as a Controller. In simple
words, every Broker on the cluster knows the metadata
information of every other Broker. Thus any Broker has the
potential to become a Controller Broker.

● The Controller Broker is also responsible for the duties like any
other Broker in the cluster, i.e., leading partitions, performing
reads/writes and having partition replications. In other words, the
Controller Broker assigns partitions and replications to itself and
also to other Brokers.

● The Controller Broker monitors Brokers for failures and
rebalancing partitions to other Brokers in the event of failure.
When a Broker goes down, the Controller Broker elects a new
Partition leader which has the replications of failed Broker. The
new Partition leader will now start serving the requests from
Producers and Consumers while the Follower Brokers start
replicating the messages from Leader Broker.

That’s all for the theory for this chapter. Let us move to the lab exercise to
check all this theory in action.

AIM

The aim of the following lab exercises is to perform Kafka topic operations,
work with ZooKeeper shell and demonstrate the election and responsibilities
of a Controller Broker.

The labs for this chapter include the following exercises.
● Kafka Topic operations
● Hands-on ZooKeeper

Shell
● Controller Broker Election

We need the following packages to perform the lab exercise:
● Java Development

Kit
● Apache ZooKeeper
● Apache Kafka

LAB EXERCISE 3: KAFKA IN-DEPTH – PART I

1. Kafka Topic Operations
2. Hands-on ZooKeeper Shell
3. Controller Broker election

TASK 1: KAFKA TOPIC OPERATIONS
Step 1: Let us first start the ZooKeeper server, if not started already.

$ zkServer.sh start

You should see that the ZooKeeper server starts as shown in the screenshot
below.

Step 2: Let us now start the Kafka Broker, if not started already

$ kafka-server-start.sh
/usr/share/kafka/config/server.properties

You should see a lot of information while Kafka starts. The last line would
inform you that Kafka has been started as shown below.

Step 3: Now that we have ZooKeeper and Kafka server up and running, let us
perform few Topic operations. Open a new terminal and run the following
command to create a new Topic.

$ kafka-topics.sh \
--zookeeper localhost:2181 \
--create --topic http-logs \
--replication-factor 1 \
--partitions 3

You should see the confirmation message that the Topic is created as shown
in the screenshot below.

Since Kafka is a persistent message queue, the messages will be stored on
disk. Let us now look the path where this new topic is created. This is the
same path that is specified in the logs.dir property in server.properties
configuration file. The path that is specified in server.properties
configuration file is /tmp/kafka-logs. Please check the previous lab exercise
for more information on Kafka configurations.

Note: The default path specified to store Kafka logs is the tmp folder. This
path should always be changed to a new path, as the tmp folder will be
deleted automatically when you restart the server.

Enter the following commands to check the contents of the topic we
created.

$ cd /tmp/kafka-logs
$ ll

You should see the following contents as shown in the screenshot below.

As seen in the screenshot above, three directories have been created for the
topic as we have specified 3 partitions. The number of directories created
will be directly proportional to the number of partitions specified while
creating a topic. Since we are only working on single Kafka server, all the
three partitions have been created in the same server. In multi-node Kafka
cluster, these partitions will be created on any of the Kafka servers. The rest
of the files in the kafka-logs directory contain the metadata information.

Now, let us look the contents of a directory of the partition.

$ cd http-logs-0
$ ll

The directory contains the following files.

The file with .log extension is where all the messages from producers get
appended. Any new messages generated are appended here by the Broker,
thus making Kafka a persistent storage message queue.

Step 4: Let us now list all the Topics that are available in Kafka. Since we
have only created one Topic, it is the only one that should return once we
run the command below.

$ kafka-topics.sh \
--zookeeper localhost:2181 \
--list

Step 5: Let us now modify the number of partitions for the topic we created
in previous step to 4.

$ kafka-topics.sh \
--zookeeper localhost:2181 \
--alter --topic http-logs \
--partitions 4

Please note that you can only increase the number of partitions and not
decrease them.

You can check if this action has been successful by navigating to the kafka-
logs directory.

As you can see from the screenshot above, a new directory is created
indicating the modification of partition was successful.

Step 6: Let us finally delete the Topic we created.

$ kafka-topics.sh \
--zookeeper localhost:2181 \
--delete --topic http-logs

You will see a message that the topic is marked for deletion as shown in the
screenshot below.

This is because Kafka will never delete a Topic right away. The Topic doesn’t
get deleted if Producers are still producing messages for the Topic, or if the

Consumers are still consuming the messages from the Topic. The Topic
cannot be deleted if the delete.topic.enable is not set to true. This is to
ensure no data loss happens when a Topic is accidentally deleted.

Task 1 is complete!

TASK 2: HANDS-ON ZOOKEEPER SHELL
To better understand how ZooKeeper works as a coordination service, let us
look at the file system in ZooKeeper.

Step 1: Before we look at the ZooKeeper shell, let us first stop the Kafka and
ZooKeeper servers. Let us also remove the directories that got created in
tmp folder while we created new topic in the previous task.

Let us first stop Kafka and ZooKeeper.

$ kafka-server-stop.sh
$ zookeeper-server-stop.sh

Make sure you stop the ZooKeeper server after you stop the Kafka server.

Let us now remove all the kafka-logs and zookeeper directory inside the tmp
folder.

$ rm –rf /tmp/kafka-logs
$ rm –rf /tmp/zookeeper
$ rm –rf /tmp/hsperfdata_{insert_your_username_here}

Let us now only start the ZooKeeper server.

$ zkServer.sh start

Step 2: Now that the ZooKeeper server has been started, let us connect to
the ZooKeeper server using the ZooKeeper Shell. Run the following
command to connect to the ZooKeeper server.

$ zookeeper-shell.sh localhost:2181

You should see the prompt as shown in the screenshot below.

Please note that the ZooKeeper Shell is not very user friendly. The
ZooKeeper shell lacks many features you would expect.

Step 3: Let us now check what all directories or files exist in the ZooKeeper
file system. We shall be using the list command on the root path of
ZooKeeper.

ls /

As you can see from the screenshot above there is only one item called
zookeeper. This item can either be a file or a folder.

Step 4: Let us check if this item is a folder by running the list command.

ls /zookeeper

As you can see from the screenshot below, zookeeper is a directory and it
contains two more items inside it. These items can again be either files or
directories.

Step 5: Let us now try to read these files using the get command as shown
below. You may also check if they are directories using the ls command. You
should only get the square brackets if the item is not a directory as shown
below.
get /zookeeper/quota

There nothing exists in those files as of now.

Step 6: Let is now start the Kafka server in a new terminal and check what all
the files get generated within the ZooKeeper file system.

$ kafka-server-start.sh
/usr/share/kafka/config/server.properties

Once the Kafka server has been started, switch to ZooKeeper shell and run
the ls command on the root directory of ZooKeeper.

ls /

You should see the following nodes getting created in the Zookeeper as
shown in the screenshot below.

Earlier we only had the zookeeper node. After we have started the Kafka
server all the above directories have been created.
Step 7: Let us now check what information the controller file consists of.

get /controller

As you can see from the screenshot above, the controller file shows the
brokerid as 0. The Broker with id 0 created this file on ZooKeeper and hence
is the Controller Broker. It also shows the version and the timestamp at
which it was created.

Step 8: Let us now check the contents of brokers directory.

ls /zookeeper/brokers

The screenshot below shows the contents of brokers directory.

The ids folder contains the list of Broker ids that are the members of the
Kafka cluster. We can check that using the ls command as shown below.

ls /zookeeper/ids

As we can see from the screenshot above, there is a folder named 0 inside
/brokers/ids folder. This indicates that there is one broker as part of the
Kafka cluster with id 0.

Task 2 is complete!

TASK 3: CONTROLLER BROKER ELECTION
We have learned how a Controller Broker is elected using ZooKeeper in the
theory. Let us now test that theory and see the election in real time.

Step 1: Let us create multiple Brokers in a single server so that we have
multiple Brokers to demonstrate the election of Controller Broker. Please
note that we are only creating multiple brokers in single server for training
and demonstration purposes. Never create multiple Brokers in single server
in production environment.

Stop the Kafka and ZooKeeper servers in order and also remove the data
from tmp folder as shown below.

$ kafka-server-stop.sh
$ zookeeper-server-stop.sh
$ rm –rf /tmp/kafka-logs
$ rm –rf /tmp/zookeeper
$ rm –rf /tmp/hsperfdata_{insert_your_username_here}

Step 2: In a multi-node Kafka cluster, every server has its own
server.properties configuration file. We have to start each Kafka server
individually by referring to its server.properties configuration file. In
standalone single Kafka server, we can create multiple server.properties
configuration files to simulate a multi-node Kafka cluster.

We should first create three server.properties configuration files
(server1.properties, server1.properties and server2.properties) and make
sure the Broker id, port number and the logs.dir path is different in all the
three configuration files.

In the terminal navigate to the following path and copy the server.properties

file 3 times as shown below.

$ cd /usr/share/kafka/config

$ sudo cp server.properties server1.properties
$ sudo cp server.properties server2.properties
$ sudo cp server.properties server3.properties

Step 3: Let’s make sure the Broker id, port number and path to Kafka logs is
different in all three server.properties configuration files.

Edit the server1.properties file to have the Broker id as 1, port number as
9092 and Kafka logs as /tmp/kafka-logs-1.

$ sudo vi server1.properties

Press ‘i’ key to edit.

You should see the values as per the screenshot below.

Make sure you remove ‘#” symbol before any of the properties highlighted
above.

Press “esc” to come out of edit mode and save the file by pressing ‘:’ and ‘x’
key.

Repeat the same process and edit the server2.properties file. Edit the Broker
id to be 2, the port to be 9092 and Kafka logs path to /tmp/kafka-logs-2. The
file should have the values as highlighted in the screenshot below.

Finally, repeat the same process and edit the server3.properties file. Edit the
Broker id to be 3, the port to be 9093 and Kafka logs path to /tmp/kafka-
logs-3. The file should have the values as highlighted in the screenshot
below.

Step 4: Let us now start the ZooKeeper server and connect to the ZooKeeper
server using ZooKeeper shell.

$ zkServer.sh start

$zookeeper-shell localhost:2181

Let us check the content that exists in ZooKeeper by running the ls
command on root directory.

$ ls /

You might see the items in the root path as shown above, but there will not
be any Brokers. We can ls on the /brokers/ids path to check that there are
no Brokers in Kafka cluster.

$ ls /brokers/ids

Step 5: Let us now start the first broker. Run the following command from a
new terminal. Do not close the ZooKeeper shell.

$ kafka-server-start.sh
/usr/share/kafka/config/server1.properties

Since this is the first Broker that has been started in the cluster, it will try
and succeed in creating the controller node in ZooKeeper. Since the
controller node does not exist in ZooKeeper already, it becomes the
Controller Broker.

You should see the controller file in ZooKeeper file system as shown in the
screenshot below. All the Brokers when joined to this cluster, will put a
ZooKeeper watch on this file so that ZooKeeper notifies them whenever a
change happens to the file.

ls /

You Should also see the Broker with id 1 having membership in Kafka
cluster.

ls /brokers/ids

Let us see if the Broker 1 is the controller broker.

get /controller

Let us also check the content in the /brokers/ids/1 file.

get /brokers/ids/1

This file contains the endpoints (ip address), port number, host and other
information about the Broker.

Let us finally check if the path to store Kafka logs has been created for
Broker 1. Open a new terminal and run the command as shown below.

$ ll /tmp

As you can see from the screenshot, the path for Kafka logs has been
successfully created.

Step 6: Let us now start the second Broker.

$ kafka-server-start.sh
/usr/share/kafka/config/server2.properties

Go back to the ZooKeeper shell and check if the new Broker has joined the
Kafka cluster.

ls /brokers/ids

A path for Broker 2 should also be created in the tmp directory as shown
below.

$ ll /tmp

Step 7: Let us finally start Broker 3.

$ kafka-server-start.sh
/usr/share/kafka/config/server3.properties

Go back to the ZooKeeper shell and check if the new Broker has joined the
Kafka cluster.

ls /brokers/ids

Every time a new Broker is started, a new file is created in ids directory and
the file name is same as the Broker id.

A path for Broker 3 should also be created in the tmp directory as shown
below.

$ ll /tmp

Step 8: Let us now create a Topic and see how the partitions are distributed
within the 3 brokers. Let us create a Topic called twitter with 3 partitions
and replication factor as 1.

$ kafka-topics.sh --zookeeper localhost:2181 --create --
topic twitter --replication-factor 1 --partitions 3

Let us check the Kafka logs directory for each Broker.

$ ll /tmp/kafka-logs-1

$ ll /tmp/kafka-logs-2
$ ll /tmp/kafka-logs-3

This is how the data is distributed across the cluster in a Kafka cluster.

Step 9: Let us stop the Controller Broker i.e., Broker 1 to simulate failure and
see which Broker gets successful in creating the controller file in ZooKeeper
to become the Controller Broker.

You can either press Ctrl + C keys or run the stop command to shut down the
Kafka Broker 1.

After the Broker 1 is shut down, go back to the ZooKeeper shell and check
the list of available Brokers.

ls /brokers/ids

You should see that Broker 1 is no longer the member of Kafka cluster.

Now, check the contents of controller file to see which Broker was successful
in becoming the Controller Broker.

As you can see from the screenshot above, Broker 2 is now the Controller
Broker.

When Broker 1, i.e., the previous Controller Broker was down, the controller
file gets deleted in ZooKeeper. Since all the other Brokers subscribe to this
file, they get notified about the deletion of file, i.e., the Controller Broker
failure. All the Brokers will once again try to create the controller file.
Whichever Broker succeeds in creating the controller file becomes the
Controller Broker. This entire process happens in milliseconds ensuring the
high availability of Controller Broker.

You may try shutting down the Broker 2 to check if the Broker 3 will become
the Controller Broker.

Task 3 is complete!
SUMMARY
In this chapter, we have looked at Topic operations, Topic Overview, Data
model in ZooKeeper, ZooKeeper watches, Election and responsibilities of
Controller Broker. We have seen how the Topics receive messages from
Producers. We have also seen how ZooKeeper helps Kafka in Controller
Broker election ensuring high availability and coordination.

In the labs, we have performed, Topic operations, had hands-on the
ZooKeeper shell and demonstrated the Controller Broker election.

CHAPTER 4:
KAFKA IN-DEPTH

PART II
In the previous chapter, we had discussed the internals of the following
Topics: ZooKeeper, Election, and responsibilities of the Controller Broker. In
this chapter, we describe the remaining Kafka components
comprehensively.

Let us learn the following internals of Kafka in this chapter.

● Replications
● Partitions
● Bootstrap Server

REPLICATIONS
Replication in Kafka plays an important role in the durability of data. It
guarantees that the data and/or messages are not lost in case of a Broker
failure. As discussed in the previous chapters, messages are classified in the
form of Topics and stored in the Brokers. A Topic is further divided into
multiple Partitions, and each Partition can contain any number of
replications. The durability of data is ensured by storing the replicas of a
Partition across multiple Brokers; hence, an individual Broker failure does
not lead to the data loss. Let us understand the concept of replication with
the following example:

● Consider a Kafka cluster containing six Brokers and a RFID sensor
application as Producer that sends messages to the Brokers in the
cluster.

● The producer sends sensor messages to a Topic called sensor,
which contains three partitions with a replication factor of two.

For creating this particular sensor Topic, the following details are
specified:

Topic – sensor
Partitions – 3
Replication factor – 2

After the creation of the Topic sensor, the partitions and replications
are automatically stored in the Brokers, as depicted in Figure 4(a). It
can be observed that there are three partitions with a replication
factor of two, and they are stored in six different Brokers.

● There are two types of replicas in Kafka: they are termed as, the
Leader replica and the Follower replica. When a new Topic (like
sensor) is created, Kafka automatically elects a partition as Leader
replica using its leader election algorithm. The first replica is
elected as the Leader from a list of replicas.

● Let us consider that the replicas in Brokers 1, 2, and 3 are elected
as the Leader replicas, whereas, the replicas in Brokers 4, 5, and 6
are the Follower replicas as depicted in Figure 4(a). The Leader
replicas are denoted with ‘L’, whereas the Follower replicas are
denoted with ‘F’.

● All the communication between the Producer and Consumer
occurs through those Brokers that host the Leader replicas. In our
example, the Producer sends data to Brokers 1, 2, and 3 i.e., the
Brokers hosting the Leader replicas. The Producer does not send
the data to the Brokers 4, 5, and 6 hosting the Follower replicas.
Similarly, the Consumer requests the data from the Brokers 1, 2,
and 3 and not from the Brokers 4, 5, and 6.

● The Brokers containing replicas of Partitions that are not the
Leader replicas hold the Follower replicas. The Follower replicas
act similar to the Consumers, but internally within the Kafka
cluster. The Follower replicas request data from the Brokers
hosting the Leader replicas and replicate all the messages from
the Brokers holding the Leader replicas. Hence, the Brokers
containing Follower replicas do not communicate with the
Producers or Consumers. Their job is to replicate the data
received by the Brokers that contain Leader replicas and update
the newly received messages.

In our example above, Broker 6 (hosting a Follower replica) sends a
request to Broker 2 (hosting a Leader replica) to replicate the data in
Broker 2. Similarly, Brokers 4 and 5 request Brokers 1 and 3 for
replicating the data. This helps the Follower Brokers to maintain the
current state of data to that of Leader Brokers for an overall data
durability.

● The Brokers can also host both a Leader replica and a Follower
replica. There is no such constraint that a Broker hosting a Leader
replica cannot host a Follower replica. In the aforementioned
example, the Brokers 1, 2, and 3 can also host the Follower replica
partitions of other Topics, and similarly, the Brokers 4, 5, and 6
can host Leader replica partitions of other Topics. A Broker can
also be termed as a Leader Broker or a Follower Broker with
respect to the Topic’s Partition it is currently hosting.

● The Leader Broker is also responsible to keep track of the current
state of data being replicated by its Followers. In this manner, the
Followers have an up-to-date data replicated with the help of the
Leader. However, there could be multiple scenarios, where the
Followers are not in sync with Leader due to network and
hardware issues. In order to tackle this issue, the following
mechanism is invoked:

If a Follower does not send a fetch request to the Leader
for more than 10 seconds or the message sent by the
Leader has not been acknowledged by the Follower, it is
tagged as an out of sync Follower with the Leader.
Therefore, this out of sync Follower replica cannot be
upgraded to become a new Leader replica in case of the
failure of the current Leader.

On the other hand, the Follower replica that maintains the
updated state of data as that of the Leader replica is
termed as an In-Sync Replica (ISR). The ISR is eligible to
become a new Leader in the event of current Leader
failure. The maximum amount of time a Follower replica
can lag before it is considered out of sync can be
controlled by the replica.lag.time.max.ms configuration
property. By default, this time is set as 10 seconds.

● In the event of Broker failure that hosts the Leader replica, the
Controller Broker gets notified about the failure using ZooKeeper
(Please refer to Chapter 3 for more information about ZooKeeper
and Controller Broker). The Controller Broker contains all the
metadata information regarding the Leader and Follower
replicas. Subsequently, the Controller Broker looks for a Follower
replica that was in-sync with Leader prior to its failure. Once it
verifies the in-sync replica, it is made the new Leader replica. This
simple process ensures a high availability of the Kafka cluster.

● In our example, let us assume that Broker 2 that hosts the sensor-
0 Partition replica is down due to a hardware failure. The
Controller Broker that keeps a watch (subscribe) on Brokers’ IDs
directory will be notified about the failure as the Broker ID 2 node
will be deleted. Subsequently, the Controller Broker with the help
of metadata information will search for a Follower copy that is in-
sync with the Leader. In this case, it is the Broker 6 that hosts the
Follower replica of sensor-0, and hence it will be promoted as the
Leader replica.

● This scenario entails a logical query: With Broker 6 now hosting
the Leader replica, how does the Producer know that the Broker 2
had failed earlier, and Broker 6 now hosts the Leader replica? The
Producer will generate the data and send it to Broker 2 as usual.
But this time the Producer will receive an exception called
LeaderNotAvailable. The Producer then contacts the Controller
Broker requesting the metadata, which responds to the metadata
request of the Producer by notifying about the newly-elected
Broker hosting the Leader replica. Therefore, the Producer starts
sending data to Broker 6. This ensures that the communication
between the components of Kafka cluster is always integrated
and available.

● In our example, we have used a replication factor of 2 for
simplicity. However, the recommended replication factor at which
the partitions should be replicated is 3.

To summarize, replication helps in achieving the high availability of
communication and the durability of data between Kafka components.

PARTITIONS
Partitions serve as the unit of storage for messages in Kafka. As discussed
earlier, a Topic can be divided into any number of Partitions. These
Partitions cannot be split across Brokers in a Kafka cluster or within the disks
on the same Broker. Hence the maximum size of a Partition cannot exceed
the size of the disk. Therefore, the number of Partitions is specified while

creating a Topic. The path at which the Partitions will be stored is specified
in the configurations file, as we have discussed in the previous chapters.

But how does Kafka decide which Partition should be stored in which
Broker? To answer this question, the following section thoroughly describes
how partitions are assigned in Kafka.

Assigning Partitions

After a Topic is created, Kafka allocates partitions to the available Brokers in
the cluster. Consider the example from the previous section. We created a
Topic containing 3 Partitions with a replication factor of 2. This translates to
a total of six partition replicas on six Brokers. Kafka makes sure the following
conditions are met while assigning these Partitions.

1. All the Partition replicas for a given Topic are distributed evenly
among the list of Brokers. Each Partition is assigned per Broker in
case of our example.

2. Replicas of the same Partitions are not assigned to the same
Broker. In case of our example, sensor-0 Partition is assigned to
Broker 2, whereas the other replica Partition is allocated to
Broker 5, as depicted in Figure 4(a). Kafka does not assign both
the Leader replica and Follower replica to the same Broker. In
this way, it assures that the Follower replica in Broker 5 is still
available if Broker 2 is down due to network issues or hardware
failure, etc.

3. Kafka can also be configured for the rack awareness, if available.
If the Kafka cluster spans multiple racks, the Partitions can be
assigned in Brokers available on different racks. Assigning
Partitions with rack awareness ensures that in the case of a rack
failure, the data is still available in the Brokers on other racks.

The Leader replica of a Partition is first assigned by selecting a random
Broker in the Kafka cluster. Subsequently, the rest of the Leader Partitions
are assigned in a round-robin fashion. The Follower replicas are allotted with
the increased offsets from their Leader. For example, if a Leader replica is

assigned to Broker 3, its Follower replicas will be assigned to Broker 4,
Broker 5, and so on.

The above approach does not apply, when rack-awareness is available for
the Kafka cluster. In case of rack-awareness, a Broker is selected from each
rack alternatively. If a cluster contains of a total of 10 Brokers, with an
arrangement of 5 Brokers on each rack, a Broker list for the rack awareness
is prepared as 0, 5, 1, 6, 2, 7, 3, 8, 4, and 9. This list contains alternating
Brokers from rack 1 and rack 2. Hence if a Leader replica of a Partition is
present on Broker 6, its replica will be on Broker 2. This also means that the
Leader replica is on a Broker in rack 1 and its Follower replica is on a Broker
in rack 2. This approach ensures that in the event of rack 1 failure, the
Follower replica is still available in the alternate rack 2.

BOOTSTRAP SERVER
Bootstrap servers are a list of Brokers utilized by the clients (Producers and
Consumers) to establish an initial connection with the Kafka cluster. Once
the connection is established, the clients acquire the full list of Brokers
available in that cluster using the metadata information, which is shared
with every Broker in the cluster by the Controller Broker. The client then
looks for the Brokers hosting the Partitions for their specific Topic using the
metadata information, and starts communicating with the corresponding
Brokers.

Let us understand this better with the following example:
● Consider a Kafka cluster with six Brokers and one Producer that

generates the sensor data. Moreover, consider a Topic with three
Partitions and a replication factor of 1.

● The Producer now starts generating the messages. But how does
the Producer know about the Brokers which host the
corresponding Partitions it has to send the messages to? This is
where the Bootstrap servers play their role.

● In the Producer code, we need to specify a list of host:port pairs
of Brokers in the configuration property called bootstrap.servers.

● The Producer utilizes the first host:port pair of the Broker to
establish an initial connection with the Kafka cluster.

● The Producer then requests the Broker to send it the
corresponding metadata information of the Kafka cluster. As a
result, the Broker responds with the required metadata
information.

● The client then looks up for the Brokers containing the Partitions
related to the relevant Topic and starts generating messages to
the Partitions.

● But how many Broker host:port pairs should be provided as the
value for bootstrap.servers configuration property? It is
recommended to provide at least two Broker host:port pairs. This
is to ensure that the client is always able to connect with the
Kafka cluster, even if one of the Brokers is down for some reason.

In the labs, we shall be looking at an example Producer code to practically
understand how the bootstrap.servers configuration property is specified.

The theory of this chapter concludes here. Let us now proceed to the lab
exercise to install IntelliJ IDEA and Scala language to our virtual machines.
This exercise will serve as a platform when we start writing Producer and
Consumer code in the succeeding chapters.

AIM OF LAB EXERCISE 4

The primary aim of the following lab exercises is to download and install
IntelliJ IDEA and Scala. Subsequently, we will then learn how to specify
Bootstrap servers in the Producer code.

The labs for this chapter include the following exercises:
● Download and Install Scala
● Download and Install IntelliJ

IDEA
● Configuring IntelliJ IDEA
● Specifying Bootstrap servers

We need the following packages to perform the lab exercise:
● Java Development Kit

(JDK)
● Apache ZooKeeper
● Apache Kafka
● Scala
● IntelliJ IDEA

LAB EXERCISE 4: KAFKA IN-DEPTH – PART II

1. Download & Install Scala
2. Download & Install IntelliJ IDEA
3. Configuring IntelliJ IDEA
4. Specifying Bootstrap Servers

TASK 1: DOWNLOAD AND INSTALL SCALA
Let us first install Scala, as we will be writing the Producer and Consumer
code in Scala in the upcoming lab exercises.

Step 1: Run the following command from the terminal to install Scala.

$ sudo apt-get install scala

The command prompt will ask you to hit ‘Y’ after running the above
command as shown in the screenshot above. Therefore, please hit ‘Y’ from
your keyboard to continue with the installation, and finally hit the Enter key
to proceed further.

Step 2: Verify the Scala installation version by running the following
command:

$ scala -version

Step 3: After the installation is completed successfully, type scala in your
terminal and a Scala prompt will appear as shown below.

$ scala

These simple steps complete the Scala installation. The Scala prompt is an
interactive shell, where you can write and run the Scala code. This

interactive shell is also known as REPL.

Step 4: Using the REPL, you can now start writing the Scala code! Let’s start
by printing the classic “Hello world!” from the shell. To do this, simply type
the following code and hit Enter on your keyboard.

scala> println(“Hello World!”)

As you can observe from the prompt screenshot, the output is displayed
below immediately, as soon as you hit the Enter button.

Step 5: To quit the Scala REPL, you can use the following command:

scala> :q

This will take you back to the terminal prompt.

Task 1 is complete!

TASK 2: DOWNLOAD AND INSTALL INTELLIJ IDEA
We shall be using IntelliJ IDEA to write the client code throughout the lab
exercises. In Task 2, we shall download and install the IntelliJ IDEA and then
install the Scala plugin, so that we can write the Scala code.

Step 1: Navigate to the following URL from your web browser and click on

the “Download” button for the Community edition as depicted in the
screenshot below.

http://bit.ly/2V1HFYO

The file shall download automatically to the Downloads folder. This
download might take time, depending upon the speed of your internet
connection.

Step 2: Once the download is complete, open the terminal and run the
following commands to untar the package. We shall be extracting the tar
ball to the /opt directory.

$ sudo tar –xzf Downloads/ideaIC-2019.1.1.tar.gz –C /opt

Please note that your downloaded version of IntelliJ might be different.
Therefore, please type the version correctly in the above command.

Step 3: Now run the following command to install IntelliJ.

$/opt/idea-IC-191.6707.61/bin/idea.sh

Please note that your path or the version might be different from the ones
given in the command.

http://bit.ly/2V1HFYO

You should now see a prompt asking to import the settings. Simply click
“OK”.

Step 4: You should now be prompted with a Privacy Policy window. Click on
the check box to accept the policy and click on the “Continue” button as
depicted in the screenshot.

In the next prompted window, please click on the “Don’t Send” button.

Step 5: You will now be prompted to select a theme. Therefore, please
select a theme according to your own comfort and click on the “Skip
remaining and Set Defaults” button as shown in the following screenshot.

You shall then be able to see the Welcome screen as shown below.

This concludes the installation of IntelliJ IDEA. But to run the Spark Scala
code, we need to install the Scala plugin.

Step 6: Click on the “Configure” button as shown in the screenshot below
and click on the “Plugins” in the dropdown menu.

Step 7: The marketplace for the plugins will then be opened. Click on the
“Install” button for “Scala” plugin as shown in the screenshot. If you do not
see “Scala” right away, search for “Scala” in the search bar above and then
click the “Install” button.

This action should begin the download. Once it is downloaded, you will be
requested to Restart IDE. Please click on the “Restart IDE” button. Click
“Restart” in the confirmation pop-up.

The IDE will now restart and show the welcome screen once again. With
this, you have successfully installed the IntelliJ IDEA with the Scala plugin.

Task 2 is complete!

TASK 3: CONFIGURING INTELLIJ IDEA
Step 1: Click on the “Create New Project” button on the welcome screen, as
shown in the screenshot below.

Step 2: You will then be taken to the “New Project” screen. Click on Scala in
the left panel, select “SBT” and then click on the “Next” button as shown in
the screenshot below.

Step 3: After clicking the “Next” button in the previous step, you will be
taken to a prompt screen to enter your project’s name. Enter the project
name as “Kafka”. Please make sure that the JDK, SBT, and Scala versions are
selected automatically as shown in the screenshot below. Furthermore,
check the “Sources” checkbox for both the SBT and Scala, if not checked
already. Finally, click the Finish button.

Step 4: You will now be taken to the IDE interface. Click on the “Project” as
shown in the screenshot, if it is not open already.

Expand the Kafka project by clicking on the small triangle to the left of
Kafka’s title, if not already expanded. Thereafter, please double click on the
build.sbt file as shown in the screenshot.

Step 5: Now go to the Maven Repository for Kafka using the following URL:

https://bit.ly/3iJGkOw

Click on the Kafka Clients link as shown in the screenshot below.

Next, please select the version of Kafka that you have already installed. For
this book, we have installed Kafka 2.5.0 and hence we will be clicking on
2.5.0 link for Kafka. Please select the correct version according to your
specific installation package.

Now, select SBT tab and copy all the lines of code for SBT and paste it in the
build.sbt file.

Go back to the Maven Repository page and copy paste the Kafka libraries as
well in the build.sbt file.

Furthermore, please add the following slf4j dependency. You may visit the
website below to add this dependency. Please ensure that you have added
the latest stable version, and not the alpha or beta versions.
// https://mvnrepository.com/artifact/org.slf4j/slf4j-simple
libraryDependencies += "org.slf4j" % "slf4j-simple" % "1.7.30" % Test

Finally, click on the “Import Changes” button to finish the configuration. The
import may take some time depending upon the speed of your Internet
connection.

You can add the new libraries (if required) by following the same procedure.
You are now ready to write your first Client program in Kafka!

Task 3 is complete!

TASK 4: SPECIFYING BOOTSTRAP SERVERS

The Bootstrap servers are specified as a configuration property within the
Producer or Consumer code. Let us look at the Bootstrap server in the
following Producer example:

Step 1: The following screenshot provides a Producer code.

Step 2: The Bootstrap servers are set by a configuration property called
bootstrap.servers as shown in the screenshot below.

The host:port pairs of Brokers are then mentioned in terms of the comma-
separated values.

For example, the bootstrap.servers will look like

props.put(“bootstrap.servers”, “localhost:9092,
localhost:9093”)

Please note that the example Producer code above takes the list of Brokers
as arguments, and hence, the variable name is specified in the value field of

the property instead of the list of Broker addresses.

We shall be working with the Producers in the next chapter and execute the
Producer code.

Task 4 is complete!

SUMMARY
In this chapter, we discussed the Replications, Partitions, and the Bootstrap
server configuration property. We have learned that how the replication
process may help in the high availability of data in the Kafka cluster, in the
event of Broker failure due to the hardware or network issues.

Subsequently, in the labs, we learned to download and install the Scala and
IntelliJ. Furthermore, we have also configured IntelliJ to execute the Kafka
client code. Finally, we discovered how to specify the Bootstrap servers in
the Producer example.

CHAPTER 5:
THE PRODUCER

THEORY
We have so far elaborated the basics as well as the in-depth architecture of
Kafka. Let us now dive deeper and explain the most important component of
Kafka called the Producer, which has the ability to generate messages and
allow them to write into Kafka using the Kafka Producer APIs.

What are the Producer APIs? According to the Kafka documentation, “The
Producer API allows applications to send streams of data to Topics in the
Kafka cluster.” This simply means that the Producer APIs allow the users to
implement a Producer application that can send data to one or more Topics
present in the cluster of Kafka Brokers. For example, consider a few web
servers generating HTTP logs for all the user visits to those servers. A
security team might want to analyze these logs generated by the web
servers for the security issues in real time. In this scenario, they could
implement a Producer application using the Producer APIs to get the log
data from the servers into Kafka and then consume the data using the
Consumer APIs and perform the required analysis.

In this chapter, let us first look at all the internal components and workflow
of a Producer. Subsequently, we will learn how to implement a Producer
application using the Producer APIs in Scala. Furthermore, we shall
implement and run a Producer to send messages to the Brokers of a Kafka
cluster in the labs.

PRODUCER WORKFLOW
The basic aim of a Producer is to be able to send messages to the Topics in a
Kafka cluster. This aim may seem simple at first, but a lot of process takes
place behind the scenes of a Producer.

The following are the internal components of a Producer:

● ProducerRecord
● Serializer
● Partitioner
● Producer Partition buffers

Let us look at these components in detail and understand the workflow of a
Kafka Producer.

Figure 5(a) depicts the workflow of sending messages from a Producer to
the Brokers in Kafka cluster.

5(a) Producer Workflow

ProducerRecord

The first step in the workflow is to create a ProducerRecord object, which
contains the name of the Topic to which the messages (or events) may be
sent by the Producer. The ProducerRecord object also contains another field

called ‘value’. Essentially, a value is the actual message that has to be sent
by the Producer to Brokers. Moreover, we can optionally specify the key and
Partition in the ProducerRecord object. Since they are optional, Figure 5(a)
above shows them enclosed inside ‘[]’. A typical example of the
ProducerRecord object is shown below.

val record = new ProducerRecord[String, String](topic,
value)

This line of code simply creates a ProducerRecord object which takes two
parameters of type String i.e., the Topic name and value (actual message).
This ProducerRecord object has to be programmed by the developer, while
the rest of the process is internally managed by the inherent Producer
mechanism in Kafka. This is why the internals of Producer are placed inside a
dotted box in Figure 5(a). Subsequently, the ProducerRecord is processed to
the next step (Serializer) using the send() method.

Serializer

The ProducerRecord is now sent to a Serializer. Serialization is the process of
transforming the structured objects to a Byte stream in order to send them
over the network or save it to a persistent storage. The reverse process, i.e.,
the transformation of Byte stream to the structured objects is termed as the
Deserialization. But why do we have to serialize? This is because Kafka only
deals with the data that is formally arranged in Bytes. But this does not
imply that the users should only send data in the form of Bytes. The data can
be sent in many forms with various types such as, String, Int, JSON, class
objects and many more. Any type of data will be serialized by the serializer
and transmitted over the network for storing in the Brokers. The consumers
can then deserialize these messages and receive them in the type they were
originally produced and sent by the Producer. The programmer has to
specify the type of serializer in the Producer application to tailor the type of
messages being sent. For example, if the original message is of the type
String, the programmer must specify the String Serializer.

Partitioner

After the serialization process, the data is then sent to the Partitioner. Let us
understand this with the following example. Let us consider that we have a

Topic called transactions with three different partitions, i.e., transactions-0,
transactions-1 and transactions-2 stored in three Brokers. Now the Producer
starts transmitting the messages to this Topic. How does the Producer
determine which message should specifically be sent to which Partition?
This process is performed with the help of Partitioner. A Partitioner
determines the Partition to which a record/message should go. There are 4
types of Partitioners that determine how the messages are delivered to the
Partitions. These include:

● Round-Robbin Partitioner
● Hash Partitioner
● Specify Partition number

explicitly
● Custom Partitioner

The Round-Robbin Partitioner is the default Partitioner in Kafka.
When no key or partition number is specified in the
ProducerRecord, the messages from the Producer are
automatically sent to the partitions in a Round-Robbin fashion.
In case of our example, the first message, say M1 will be sent to
transactions-0, second message, M2, will go to transactions-1
and the third message, M3, will go to transactions-2. Similarly,
the messages M4, M5, and M6 will be transmitted to
transactions-0, transactions-1 and transactions-2 respectively,
and so on. In this manner, the messages are continuously
assigned to the partitions in the Round-Robbin manner.

The Hash Partitioner is used whenever a key is specified in the
ProducerRecord. The hash Partitioner computes the hash of the
key and performs the modulo of hash result with the number of
partitions. The computed result is the number of partitions, to
which the message for that key should go to. This computation is
given below:

hash(key) % Number of partitions

In case of our example, there are a total of three partitions. Hence,

when the hash of key is performed, the modulo operation with this
number of partitions will always be 1, 2, or 3, based on the key.

We can also specify the number of partitions explicitly in the
ProducerRecord. This will enable all the messages to explicitly go
to the specified partition number.

Finally, we can also create a custom Partitioner. We can create
our own Partitioner and specify how the messages should be
delivered to the specified number of partitions. Kafka uses the
custom Partitioner when specified within the partitioner.class
property in the Producer application.

Producer Partition Buffers

The Producer sends the messages to partitions in batches. Depending upon
the Partitioner used, the Producer maintains a memory buffer for each
partition. These messages are flushed to the partitions upon reaching a
certain threshold. Let us understand this with the following example:

● In Figure 5(a) depicting the Producer Workflow, there are two
partitions for Topic A. For these two Partitions (Partition 0 and
Partition 1), Kafka creates two memory buffers (RAM allocated)
within the Producer. The size of each buffer is allocated using the
property called buffer.memory.

● Let us consider that the Round-Robbin Partitioner (the default
one) is used to determine the partitions for messages to be
delivered to.

● Once the Producer has started producing the messages, it does
not immediately send these messages to the partitions. Instead,
the Producer stores these messages in the buffer. The first
message, say M1, is buffered in the allocated buffer for Partition
0. Similarly, the second message, M2, is buffered in buffer
allocated for Partition 1.

● In the same way, the messages M3, M5, and M7 will be buffered
in Partition 0 and the messages M4, M6, and M8 will be buffered
in Partition 1.

● At this point of time, the buffer for Partition 0 contains messages
M1, M3, M5, and M7, whereas the buffer for Partition 1 contains
messages M2, M4, M6, and M8. The messages within the
Partition 0 buffer are called Batch 0, whereas the messages in
Partition 1 buffer are also called Batch 0, as presented in Figure
5(a).

● The Producer always sends the messages to the Partitions in the
form of batches. Once the preset threshold for a batch is crossed,
the batches are flushed to the appropriate Brokers containing
those Partitions. In our example, Batch 0 will be transmitted to
the partitions once the threshold is reached. A new batch, let’s
say Batch 1, is allocated for new messages and the same cycle is
repeated.

● The preset threshold at which the batches have to be flushed are
controlled by using the following configuration properties:

batch.size
linger.ms

● The batch.size property is used to specify the size of batch in
bytes, while the linger.ms property specifies the minimum
amount of time (in milliseconds) to wait for the additional
messages before sending the batch to the specified partitions.
The messages are flushed in case if either the size of batch crosses
the size preset in batch.size property, or if the time set in the
linger.ms property has reached.

● A batch may contain any number of messages based on the
properties discussed above. We shall learn how to determine the
size for batch.size and time for linger.ms properties in the
proceeding chapters.

Once the Broker starts receiving messages, it sends a response back to the
Producer. If the messages were successfully received by the Broker, the
Broker will send metadata information i.e., the RecordMetadata object. This
object contains Topic, partition, and the offset of the record within the
partition. However, if the Broker fails to receive the message, it responds
with an error. The Producer then retries to send the messages until the
Broker receives them. If the Broker continues to respond with error, the
Producer eventually quits and returns an error itself.

TYPES OF PRODUCERS
There are three different types of approaches which are used by the
Producers to send data to the Brokers. The major difference between these
approaches is based on the way in which the data is being sent to the
Brokers and how the errors are being handled. Let us look at these
approaches in detail.

Fire and
Forget

The Fire and Forget Producer simply sends a
message to a Broker, and does not worry if
the message was successfully received by
that Broker. Even though Kafka is fault
tolerant (i.e., Producer automatically
resends messages in case of a failure), there
may be some scenarios where the
messages sent by the Producer are not
received by the Brokers. Therefore, there is
a chance of messages being lost with this
type of Producer. It is recommended that
this type of Producer should be utilized
when we are dealing with the huge volumes
of data, and losing a few messages is not a
problem. One example of such a Producer is
ingesting tweets from Twitter for the
sentiment analysis. It is evident that losing a
small percentage of tweets would not really
be a big problem in this case.

Basically, using this type of approach may
result in some data loss. Therefore, it is not
recommended to use the Fire and Forget
approach, if it is mandatory to receive all
the messages transmitted by the Producer.
The Fire and Forget Producer has a very low
latency, but may not be fault-tolerant to
the data loss.

Synchronous
Producer

The Synchronous Producer sends a message
to a Broker and waits until it receives a
response from the Broker. The Broker
responds with the RecordMetadata object,
if it had successfully received the message.
In case of a failure, an exception is thrown.
There is no data loss when this type of
Producer is utilized. The Producer waits for
a response before sending out another
message. This type of Producer should be
used when it is mandatory to receive every
generated message by the Producer. One
example of this sort of Producer is the
credit card transaction processing, because
it is mandatory to receive all the messages
regarding every transaction that has been
processed and we cannot afford to lose
even one of them.

Synchronous Producer has a very high
latency but is fault tolerant to the data loss.
It guarantees that every message that is
sent to the Producer is either received by
the Broker or otherwise, an exception is
thrown in case of a failure. Consequently,
the developer has to implement a solution
on how to deal with the exception.

Asynchronous
Producer

While Fire & Forget and Synchronous
Producers are two extreme approaches of
sending data, the Asynchronous Producer
approach is somewhere in middle of the
above two approaches. The Asynchronous
Producer sends a message to a Broker and
registers a callback method to handle the
responses from the Brokers. The Producer
keeps on sending the messages and does
not wait for the response. Instead, it
registers a callback method that gets
triggered when there is a response from the
Brokers.

The callback method returns either the
RecordMetadata object when the message
is successfully received or an exception in
case of a failure. We do nothing if the
message was successfully received;
however, we need to implement a solution
in case of failure. The difference here when
compared to synchronous producer is, in
this approach there is no waiting after
sending every message for response from
the Broker. The callback method fetches
the response while still being able to send
the messages. There is low latency when
compared to synchronous producer but
there may be data loss.

Let us understand these concepts better with an example. Consider a fast
food joint that sells burgers. A customer (Broker) places an order for a
burger (Messages). This message (burger request) can be handed over to the
customer by chef (Producer) in three different ways.

● The chef makes the burger and places it over the counter. If the
chef doesn’t care whether the customer received the burger or
not, this situation is similar to the Fire and Forget approach. The
customer might or might not receive the burger. If the customer
was not available at the counter for some reason while the burger
was placed over the counter, he might have never received it.

● Let us look at the second approach. The customer (after placing
the order for a burger) is handed over a receipt. The customer
always stays close to the counter and constantly inquires if the
burger is ready and available on the counter. Once the chef has
prepared the burger, the customer is asked for the receipt. The
customer hands over the receipt (refer to the return
RecordMetadata object) and takes his burger. In this manner, the
customer always receives his burger, whereas the chef knows that
the customer had received his burger. Subsequently, the chef
takes the next order. However, if the customer is not available
(refer to the error exception) at the counter after the burger is
ready, the chef might make an announcement (refer to exception
handling) with the order number for a few times before canceling
the order. In this type of approach, the chef does not take new
orders until the current order is properly handed over to the
customer, or in case of his absence, the situation is handled
accordingly. This kind of approach is similar to the Synchronous
Producer.

● Let us now look at the final approach, i.e., Asynchronous
Producer. The customer places an order online. The chef receives
the order, prepares the burger and places it in the pickup tray.
The chef does not stop here, and continues to take customer
orders and prepares stuff as ordered and places them in the
pickup tray. The delivery boy (callback method) then picks up the
orders and delivers them to the respective customers. Then the
delivery boy informs the chef that all the orders have been
successfully delivered (Return RecordMetadata object) to
customers. However, if the customer is unavailable (error
exception) to receive the order, the delivery boy also relays this
information back to chef. In this case, the chef may ask the
delivery boy to reattempt the delivery at a later time or cancel the
order. In this approach, the chef does not stop working on the
upcoming orders and also ensures that the customers received
their orders. However, the customers might not receive their
orders if they are not available at the time of delivery, and the
chef has to handle the situation accordingly. This kind of approach
is similar to the Asynchronous Producer.

PRODUCER CONFIGURATIONS
Let us look at a few of the Producer configurations, so that we can change
them according to our requirement. There are a lot of Producer
Configurations available. These configurations can be found in the Kafka
documentation page, using the link available in the references section. Most
of the configurations are preset with the default values that need not be
modified. We shall now look at these configurations which can have a major
impact on the performance when modified.

acks: The acks property is a Producer configuration that defines the
acknowledgments sent to the Producers by the Brokers. This property has
the acknowledgment values of 0, 1, and all. It defines the number of replicas
that can receive the messages, before the Producer can consider that the
message was successfully received by all the Brokers.

acks = 0: If the acks property is set to 0, the Producer will not wait to receive

the acknowledgment from the Brokers. Therefore, the Producer just keeps
sending data to the Brokers without caring about the brokers’
acknowledgments. The Brokers may or may not receive any data. There
could be data loss, if the Broker is unavailable when the Producer sends
data. However, there is no latency, as the Producer does not wait for the
acknowledgments and keeps sending data. It can be noted that the
configuration leads to an approach which is equivalent to the Fire and
Forget approach.

acks = 1: When the acks property is set to 1, the Producer waits for the
acknowledgment from the Leader Broker hosting the Partition. The Producer
sends the data to the Leader Broker and waits for its acknowledgment. The
Leader Broker after receiving the data sends an acknowledgment to the
Producer, which then starts sending other messages. However, the Producer
does not care if the Follower Brokers containing the replicas have replicated
the data from Leader Broker.

If the Leader is down before the Followers were able to replicate the data
from the Leader, there could be data loss. It can be noticed that there could
be a limited data loss in this case within the domain of a single Leader as
well as a little latency as the Producer has to wait for the acknowledgment
from the Leader. This setting guarantees that the Leader received the data
but there is no guarantee that the replicas within the domain of the Leader
have also received the data.

acks = all: When the acks property is set to ‘all’, the Producer waits for the
acknowledgments from both the Leader and Follower Brokers hosting the
Partition replicas. The Producer sends the data to Leader Broker and waits
for its acknowledgment. The Leader Broker then commits the data to its log
file. The replicas in Follower Brokers then request the data from the Leader
and replicate the data. Once the Follower Brokers have replicated the data,
they immediately send an acknowledgment to their specific Leader Broker.
The Leader then sends the acknowledgment to Producer. The Producer then
starts sending other messages.

There is no data loss in this case. However, there is high latency as the
Producer waits for the acknowledgment from all the replicas of a Partition.
This setting guarantees that all the replicas of a partition have received the

data properly.

batch.size: Please check Producer Partition Buffers section.

buffer.memory: The buffer.memory property specifies the size of memory in
Producer to buffer the messages before sending them to the Brokers. If the
records are sent faster than they can be transmitted to the server, then the
buffer space will be exhausted. When the buffer space is exhausted, the
additional send calls will block. The threshold for time to block is determined
by the max.block.ms property after which it throws an exception called
TimeoutException.

compression.type: The compression.type property is used to specify the
compression algorithm to be used while sending data. The messages are
sent uncompressed, by default. We can specify various compression types
such as, snappy, gzip, or lz4 as values. When a compression is specified, the
data is compressed before sending it over the network. This enables less
network utilization and storage.

linger.ms: Please check Producer Partition Buffers section.

max.block.ms: The max.block.ms property is used to control the duration
for which the producer blocks while calling the methods
KafkaProducer.send() and KafkaProducer.partitionsFor() methods. These
methods can be blocked either because the buffer is full or the metadata is
unavailable.

max.request.size: The max.request.size property is used to specify the
maximum request size a Producer can send. This limits the maximum size of
a single message, as well as, the total number of messages that can be sent
in a batch by the Producer. Similarly, a Broker also has the limit for the
maximum request size it can accept using the message.max.bytes property.
It is recommended to have the same value for both the properties, so that
the Broker does not reject a message sent by the Producer, which is more
than the configured maximum size a Broker can accept.

These are few Producer configurations required to configure the Producer as
per requirement. Please note that the configuration properties mentioned
above are only a few out of a long list of properties. Please check the link in

References section for the complete list of all configurations.

That’s all for the theory part of this chapter. Let us move to the lab exercise
to check all this theory in action.

AIM

The aim of the following lab exercises is to implement a Kafka Producer. We
shall also run the Producer to send data to the Brokers.

The labs related to this chapter include the following exercises:
● Import Kafka Packages & Declare variables
● Create a Kafka Producer and ProducerRecord

Object
● Running the Producer
● Sending the messages Synchronously
● Sending the messages Asynchronously

For this purpose, we need the following packages to perform these lab
exercises:

● Java Development Kit
(JDK)

● Apache ZooKeeper
● Apache Kafka
● Scala
● IntelliJ IDEA

LAB EXERCISE 5: THE PRODUCER

1. Import the Kafka Packages & Declare Variables
2. Create a Kafka Producer and ProducerRecord Object
3. Running the Producer
4. Sending messages Synchronously
5. Sending messages Asynchronously

Let us start by implementing a very basic Kafka Producer. For the simplicity
and better understanding, this lab exercise is divided into various tasks for
the major steps that are involved in implementing a Kafka Producer.

TASK 1: IMPORT KAFKA PACKAGES AND DECLARE
VARIABLES
Step 1: Let us create a new Scala Object. Right click on the Scala folder in
IDE, hover on New and click on Scala Class. You should see a prompt to
enter the name. Enter KafkaProducer in the name field. Click on kind
dropdown and select Object. Click OK and you should see the KafkaProducer
object, as depicted in the screenshot below:

Let’s extend this object to App trait to convert it into an executable program.

object KafkaProducer extends App { }

Step 2: Now that we have created an object, let us import the packages
given below. These imports are required to specify the properties and create
Producer & ProducerRecord objects.

import java.util.properties
import org.apache.kafka.client.producer.KafkaProducer

import org.apache.kafka.client.producer.ProducerRecord

Step 3: Let us now specify a few variables. First, we specify the name of the
Topic and the bootstrap address (Brokers) as arguments. Next, we specify
the message, i.e., the key and its value. This is the message that will be sent
to the brokers. These messages are sent in the form of key and value pairs.
However, a message can also be sent without a key as well.

val topic = args(0)
val brokers = args(1)
val key = “key1”
val value = “value1”

Since we are specifying a key, the hash Partitioner is used to determine
which message goes to which Partition.

Step 4: The next step is to specify the properties. We have already learned
the bootstrap.servers property in the previous lab exercises.

val props = new Properties()
props.put(“bootstrap.servers”, brokers)
props.put(“client.id”, “Kafka Producer”)
props.put(“key.serializer”,
“org.apache.kafka.common.serialization.StringSerializer”)

props.put(“value.serializer”,
“org.apache.kafka.common.serialization.StringSerializer”)

● The put method is used to specify the configuration properties to
the props object.

● The client.id is an optional property that is used to set a unique
identifier to the Producer.

● The key.serializer is used to specify the serialization for the key
while the value.serializer is used to specify the serialization for the
value. Since our message is of type ‘String’ in both key and value,
a StringSerializer is used for both the key and value. However, you
can also use an IntSerializer, DoubleSerializer, LongSerializer,
JSONSerializer etc, if the keys or values are of that type.

The various types of serializers in Kafka include ByteArraySerializer,
ByteBufferSerializer, BytesSerializer, DoubleSerializer,
ExtendedSerializer.Wrapper, FloatSerializer, IntegerSerializer,
LongSerializer, SessionWindowedSerializer, ShortSerializer,
StringSerializer, TimeWindowedSerializer, UUIDSerializer

Please check Serializer section under Producer Workflow for more
information on serialization.

Task 1 is complete!

TASK 2: CREATE A KAFKA PRODUCER
PRODUCERRECORD OBJECT
Step 1: Now that we have configured the Producer, the next step is to create
a Producer object. The Kafka Producer object is instantiated by passing the
props object as an argument.

val producer = new KafkaProducer[String, String] (props)

The above line of code instantiates a Producer object that is of type String.
The String type also specifies the type for key and value.

Step 2: Now that we have a Producer object created, the next step is to
enable this Producer to send messages. To be able to send messages, we
must instantiate a ProducerRecord object.

val message = new ProducerRecord[String, String] (topic,
key, value)

The ProducerRecord object constructor is instantiated by passing the
arguments as the name of the Topic, key, and value. The ProducerRecord
object contains the actual message that is being sent to the Brokers.

The ProducerRecord object has various constructors. It is mandatory to pass
Topic and value to ProducerRecord constructor; you can also specify the key,
the partition number and a timestamp to include within your message.

To learn more about the ProducerRecord object constructors, you may hold
the ctrl key and click on the ProducerRecord as shown in the screenshot
below:

You should then find a new tab ProducerRecord.java displaying all the
constructors as depicted in the screenshot below:

Step 3: Finally, we need to trigger the message to be sent. This can be
performed by using the send method. We simply call the send method on
our producer object by passing the ProducerRecord as an argument. The
Producer will then start sending the messages to the Brokers.

producer.send(message)

Finally, after sending the messages, we must close the Producer object using
the close message method as shown below. Closing the Producer object will
free up the resources being used by the Producer.

producer.close()

In this manner, we have completed implementing a very basic Producer. Let
us run this and check if the message is successfully sent to the Topic.

Task 2 is complete!

TASK 3: RUNNING THE PRODUCER
Step 1: Now that we have finished implementing the Kafka Producer, let us
start ZooKeeper and Kafka server in the terminal.

$ zkServer.sh start

$ kafka-server-start.sh
/usr/share/kafka/config/server.properties

Step 2: Let us now create a new Topic and name it logs. The Topic has three
partitions and the replication factor of 3. Please open a new terminal to
perform this.

$ kafka-topics.sh \
--zookeeper localhost:2181 \
--create --topic logs \
--replication-factor 1 \
--partitions 3

We may also list all the available Topics in our Kafka server.

Step 3: Now that we have the Topic created, let us finally run the Producer
code that we had implemented in the previous steps. Switch back to the IDE,
click on Run and select the Edit Configurations… option. We should see the

configurations window as shown in the screenshot below:

Click on the + icon on the top left of the window and select Application from
the drop-down list. Enter any name as you like in the name field. We have
named it KafkaProducer. Click on the … button for the Main Class field and
select the class.

Next, input the program arguments as shown below:

logs localhost:9092

Finally, if the ‘use classpath of module’ is empty, select the value Kafka from
the drop-down menu. You should see all the values as shown in the
screenshot below.

Step 4: Once you have ensured that all the entered values are correct, click
on the OK button. You should see the configuration on the top right of the
IDE as shown in the screenshot below.

Step 5: Let us now run the Kafka Producer. Click on the green play icon to

the right of the configuration drop-down menu. After some time, you should
find that the Producer has executed successfully with the exit code 0.

Step 6: Now check the kafka-logs directory; and its default location is
/tmp/kafka-logs. You should be able to see three partitions for logs Topic.
Go through each partition and check the .log file for the message that has
been received.

This is a very basic implementation of the Kafka Producer. In the real-world
applications, Producers keep sending messages for a long duration. We have
only implemented this very basic type of Producer for the sake of simplicity
and better understanding of the Producer.

Task 3 is complete!

TASK 4: SENDING MESSAGE SYNCHRONOUSLY
In the previous task, we have sent a message and did not really bother if the
Broker had received that message or not. In this task, let us learn how to
send a message synchronously to the Kafka Broker.

Step 1: Create a new Scala object and name it SyncProducer. Next, copy the
entire code from the kafkaProducer. Make sure you change the object name
to SyncProducer. You should see this code as shown in the screenshot
below.

Step 2: In order to send a message synchronously, we use the Future.get()
method and wait for a response from Kafka server. The get() method throws
an exception, if the Broker fails to receive the message successfully.
However, if the message was successfully delivered, a RecordMetadata
object will be sent.

The send() method we had used in the previous task is enclosed within a try-
catch block as shown below:

try{
producer.send(message).get()

} catch {
case x => {
x.printStackTrace()

}
}

Step 3: Before running the Producer, let us create a new Topic and name it
sync-log. After creating the new Topic, also provide the new configurations
as we had done in the previous task, and save these configurations. Make
sure you enter the new Topic name in the arguments. Now, let us run the
program. You should see that the program has successfully executed with
the exit code 0.

You may check the received message in the kafka-logs directory under the
sync-logs topic.

There isn’t much difference in this task, compared to what you had
performed in the previous task. Let us make a few changes and create a
RecordMetadata object to learn more about the messages being sent.

Step 4: Let us create a RecordMetadata object as shown below. Make sure
to add the new imports as shown below:

import org.apache.kafka.clients.producer.RecordMetadata

try{

val metadata: RecordMetadata =
(producer.send(message).get())

println(“Message sent to Partition No. ” +
metadata.partition() + “ and offset ” +
metadata.offset())

println(“Message sent successfully.”)

} catch {
case x => {
x.printStackTrace()

println(“Message sending failed with exception.”)
}
}

When the Broker receives the message, it responds back with the
RecordMetadata object. We can then get the partition and offset from the
RecordMetadata object and display it on the console.

Please note that we have not covered the offset section yet. We will be
looking at the offsets in the upcoming chapters.

Step 5: Let us now run the Producer again. You should see the output as
shown in the screenshot below:

Step 6: As a lab challenge, stop the Kafka Broker and execute the Producer.
You can observe what happens when the message is not delivered
successfully.

Task 4 is complete!

TASK 5: SENDING MESSAGE ASYNCHRONOUSLY
Let us finally send the messages asynchronously.

Step 1: Create a new Scala object and name it as AsyncProducer. Next, copy
the entire code from the kafkaProducer. Make sure you change the object
name to AsyncProducer. You should see the same code as shown in the
screenshot below.

Step 2: To send a message synchronously, we use callbacks. Instead of
waiting for a response from the Broker the Producer continues to send
messages but instead registers a callback method to handle responses from
the Brokers.

A callback class is passed within the send method along with the
ProducerRecord. Let us now look at the Asynchronous implementation.

Make sure to add the new imports as shown below:

import org.apache.kafka.clients.producer.RecordMetadata
import org.apache.kafka.clients.producer.Callback

producer.send(message, new ProducerCallback)

We must now implement the callback class (ProducerCallback) which
extends an interface called callback. This class contains a single function
called onCompletion(), which should be overridden in order to specify the
error handling technique.

The onCompletion() function will take RecordMetadata and exception as
arguments. If the record was successfully received, the Broker will send a
RecordMetadata object and the exception will be null. However, if it was not
successful, the Broker will send an exception. Therefore, we should check if
the exception is not null. If the exception is not null, we have handled the
error appropriately. Here, we are simply printing the error stack trace to the
console. If the exception is null, we have to do nothing, as the message was
sent successfully.

From this exercise, it is evident that the Asynchronous approach eliminates
the requirement to wait for a response to send a new message.

class ProducerCallback extends callback {

override def onCompletion(recordMetadata:
RecordMetadata, e: Exception): Unit = {

if(e != null) {

e.printStackTrace()

println(“Sending Messages Asynchronously failed.”)

} else

println(“Messages send Asynchronously.”)

}
}

Step 3: Before running this Producer, let us create a new Topic and name it
async-log. After creating the new Topic, create the new configurations as we
had done in the previous task, and save them. Make sure that you have
entered the new Topic name in arguments. Now, run the program. You
should see that the program has successfully executed with the exit code 0.

Step 4: As a lab challenge, stop the Kafka Broker and run the Producer. You
can now observe what happens when the message is not delivered
successfully.

Task 5 is complete!

SUMMARY
In this chapter, we have learned that a Producer is an integral Kafka
component that generates messages and allows writing them into Kafka
using the Kafka Producer APIs.

What are the Producer APIs? According to the Kafka documentation, “The
Producer API allows applications to send streams of data to Topics in the
Kafka cluster.” This simply means that the Producer APIs allow the users to
implement a Producer application that sends data to one or more Topics
present in the cluster of Kafka Brokers.

In the labs, we learned to implement various Kafka Producer approaches.

CHAPTER 6:
THE CONSUMER

THEORY
The previous chapter was all about producing data for a Kafka cluster. In this
chapter, let us learn how to consume data from the Kafka cluster. The
Consumer is an important Kafka component which allows consuming or
reading data from the Kafka cluster using the Consumer APIs.

Let us first briefly review the concepts we have learned. Kafka receives
messages and stores them in their particular Topics. These Topics are further
divided into one or more Partitions to achieve scalability. Producers
generate the messages and send them to the Kafka Brokers. The Leader
Brokers append the received messages to Partitions. The Follower Brokers
replicate themselves with the messages (data) received by the Leader
Broker. Once the messages are available in Kafka, Consumers can start
reading or consuming these messages. The messages read by Consumers are
tracked with the help of offsets.

We had mentioned the offsets in the previous chapters. Let us now look at
the offsets in detail.

OFFSET
What is an Offset?

Offset is the integer metadata associated with each message, and it
increases monotonically for every message. Each produced message
contains a key and a value. Once the Producer transmits the message to the
Broker(s), the Broker automatically assigns an offset, i.e., an integer starting
from zero.

Let us understand this concept with Figure 6(a), as shown below:

● Consider a Kafka cluster with the web server as a Producer. The
Producer generates web-logs. The logs are being sent to a Topic
with two partitions.

● The Producer transmits a message in the form of key and value.
Let us denote this with Messages(key, value).

● The Broker B1, which hosts the Partition weblogs-0, receives the
message and then assigns an integer offset starting from zero. The
offset increases monotonically for each message. For instance, the
first message will be denoted as m1(0, key, value), the second
message will be m2(1, key, value), the third will be m3(2, key,
value) and so on.

● Similarly, the Broker B2 which hosts the Partition weblogs-1 also
receives the message and assigns an integer offset starting from
zero. This offset also increases monotonically for each message.

6(a) Offset

What is the purpose of Offsets?

Offsets are used by the Consumers to fetch messages from the Kafka cluster.
The Consumers periodically request the Brokers hosting the Leader replica
of the Partition with the offset number. Subsequently, the Broker transmits
the messages from that offset number to the Consumer. The Broker will
start sending messages to the Consumer, when the minimum available size
of new messages in the Broker is equal to the size set in the property called
fetch.min.bytes. Let us understand this better with the following example:

Let us go back to the example in Figure. 6(a), but this time let us also add
two Consumers C1 and C2. Let us consider that the Consumer in our
example is a Spark Streaming application.

● The Consumer C1 sends a fetch request to the Broker B1 which
contains the weblogs-0 Partition. The request that is sent to the
Broker contains the Topic name, partition number and the offset
number. In our example, the first fetch request will be (weblogs,
0, 0), i.e., the Topic name, partition number, and the offset
number, respectively.

6(b) Using Offsets to Consume Messages

● The Consumer only requests the messages to fetch from an offset
number. The Consumer does not specify to which offset the
messages should be sent. So, how many messages the Broker
sends to the Consumer? This depends on the property called
fetch.min.bytes. This property specifies the minimum size of
messages the Broker should accumulate before it sends them
over to the Consumer.

Let’s assume that the fetch.min.bytes property is set to 10 Kb. This
implies that 10 Kb is the minimum size of the messages that must be
accumulated by the Broker before it can send it over to the
Consumer. The Broker may send more than 10 Kb of messages
according to the fetch request.

● Coming back to our example, when the Consumer sends the
following fetch request: (weblogs, 0, 0), the Broker might have
accumulated 50 Kb of messages. Let’s assume that the size of 50
Kb messages constitutes 5 messages. Please note that the
message size may vary.

● Now that the Consumer has received 5 messages in the first fetch
request. The next fetch request from the Consumer will be
(weblogs, 0, 5), since the messages with offsets 0, 1, 2, 3, and 4
are already consumed (or read) by the Consumer. The Broker
then starts sending messages from the 5th offset. This request
might have fetched 10 messages of size 100 Kb. This means that
the Consumer has now consumed messages from the offset 5 to
offset 14.

● In this manner, the next fetch request from the Consumer will be
(weblogs, 0, 15) and so on. The Consumer 2 also fetches the data
by following the same process as described for the Consumer 1.

● The replications in Follower Brokers also follow the same process.
The Follower Brokers send fetch requests to Leader Broker to
replicate themselves with the Leader messages. The Follower
Brokers act as internal Consumers within Kafka.

It is clear from this example that the primary use of Offsets is that they are
utilized to fetch the next message from the Kafka Brokers.

Now that we know how Consumers use the offsets to fetch data, let us now
understand how Consumers read data from Kafka in an efficient manner.

CONSUMER GROUPS
Kafka uses the Consumer Groups to effectively read data from multiple
Partitions of a Topic in a distributed fashion. The Consumer Groups consist
of multiple Consumers that share a common group identifier. In simple
words, multiple Consumers in a Consumer Group actually consume or read
data from a single Topic. But why do we need multiple consumers to
consume from a single Topic? The simple answer is: to achieve scalability.

Consider a Consumer application that reads (consumes) data from Kafka
with a single Consumer. This application then runs some validations against
the data that is received from Kafka and stores the validated data in some
other data store. Now, the Producer keeps on generating the data but the
Consumer application which reads and processes the data, cannot keep up
with the Producer’s pace of generating messages. As a result, the Consumer
will start trailing and will no longer be able to keep up. The simple solution
to this problem is to increase the total number of Consumers. That is where
the scalability comes to the rescue, because with multiple Consumers
reading and processing the incoming messages, the data consumption is
distributed and efficient.

Figure 6(c) below shows two Consumers of a Consumer Group reading
messages from a Topic that contains three different Partitions.

6(c) One Consumer Group of two Consumers reading from three Partitions

In the this scenario, Consumer 1 is reading messages from Partitions 0 & 1,
while Consumer 2 is reading messages from Partition 2. Furthermore, it is
also possible to scale the Consumer Group by adding one more Consumer;
say Consumer 3, in order to ease the burden on Consumer 1.

Adding Consumers to a Consumer Group helps to achieve better scalability
of reading and processing the messages more effectively. But how are the
new Consumers assigned Partitions? Who decides which Partition is read by
which Consumer? What happens when a Consumer goes down? Let us
answer all these questions in the next section.

Group Coordinator and Group Leader

Group Coordinator is the answer for all the questions above. Let’s explore
what is a Group Coordinator? A Group Coordinator is elected from a pool of
Brokers in Kafka. The Group Coordinator receives a ‘join request’ from the
consumers, when they want to join a group. The first Consumer sending the
join request becomes the Group Leader. The Consumers which join the
group later become the normal members of the group. Subsequently, the
Group Coordinator sends the list of Consumers available in that particular
group to the Group Leader. Then, the Group Coordinator monitors if the
Consumers are up by the means of heartbeat. Consumers send heartbeat to
the Group Coordinator in regular intervals. In the event of a Consumer going

down or new Consumer joining the group, the Group Coordinator triggers a
Rebalance instruction to the Group Leader by providing the updated list of
available Consumers in that group.

The following are the responsibilities of Group Leader:

● Assign Partitions to Consumers: The Group Leader, after
receiving the list of Consumers from Group Coordinator, assigns
Partitions to all the Consumers of that group. Then, the
Consumers start reading messages from their assigned Partitions.
Moreover, the Group Leader also assigns Partitions to itself.

● Executing Rebalance: When the Group Coordinator triggers a
rebalancing activity, the Group Leader revokes the Partitions that
are assigned to all the Consumers. This implies that no Consumer
in that group is allowed to read messages from their Partition(s).
The Group Leader then reassigns the Partitions to the available
Consumers. The Consumers are now rebalanced.

To summarize, the Group Coordinator is responsible to manage the list of
available Consumers in a Consumer Group. It triggers the rebalancing
activity whenever the list of active Consumers is modified. The Group Leader
assigns Partitions to the available Consumers of the group. Moreover, the
Group Leader performs the rebalancing activity when triggered by the
Group Coordinator.

OFFSET MANAGEMENT
Now that we know how the Consumers read messages from Kafka, let us see
how the messages which are read, are committed. Let us determine the
concept of offset management by starting from where we had left in the
previous section, i.e., the aftermath of rebalancing.

Let us consider a Consumer group with 3 Consumers reading data from
three Partitions of a Topic as shown in the Figure 6(d) given below.
Consumer 1 reads data from Partition 0, Consumer 2 reads data from
Partition 1, whereas Consumer 3 reads data from Partition 2. The
Consumers fetch data from the Partitions using Offsets as explained in a

previous section titled as, ‘what is the use of Offset?’

6(d) One Consumer Group of three Consumers reading from three
Partitions

Consumers keep fetching data but, out of the blue, the Consumer 2 goes
down due to a hardware failure. The Group Coordinator observes that the
Consumer 2 has not sent its heartbeat for a while, and marks it as
unavailable. Subsequently, the Group Coordinator triggers the rebalance.
The Group Leader then executes the rebalancing by revoking the Partitions
and, let’s say, reassigning the Partition 1 to Consumer 1. But how does the
Group Leader know till which offset the Consumer 2 had read data?

3

6(e) Reassigning Partitions when a Consumer is down
Let’s say the Consumers have read data till the following offsets before a
rebalance had been triggered.

● Consumer 1 has fetched 200 messages, i.e., till 199th offset from
Partition 0.

● Consumer 2 has fetched 202 messages, i.e., till 201th offset from
Partition 1 and then it goes down.

● Consumer 3 has fetched 201 messages, i.e., till 200th offset from
Partition 0.

We know that the Group leader has reassigned Partition 1 to Consumer 1
(see Figure 6(e)). Thus, from which offset will the Consumer 1 start
consuming the messages? It is quite logical that the Consumer 1 should pick
up from where Consumer 2 had left, i.e., Consumer 1 should fetch messages
from 202th offset. But how does the Consumer 1 know 202 is the offset from
which it should start?

The Consumers periodically commit (save) the last offset they had processed
to an external storage. This is called Commit Offset. The committed offset is
the offset till which a certain Consumer had successfully fetched and
processed the messages. The external storage to commit offset can be
HDFS, MySQL, HBase, Cassandra, etc. However, this offset can also be
committed within Kafka itself.

Auto Commit

The offset committing is controlled using the configuration property called
enable.auto.commit, and is set to true by default. This means that the
offsets will be committed automatically after a preset period of interval. The
configuration property to specify the interval of auto-commit is
auto.commit.interval.ms. For instance, if the auto.commit.interval.ms
property is set to 5000ms, the offsets will be automatically committed after
every 5 seconds. Furthermore, the offsets are committed to Kafka, by
default. Kafka internally maintains a Topic called __consumer_offsets topic
for offset commits of each partition.

Let us now go back to our example above, where Consumer 2 is down after
processing 202 messages. For simplicity, let us assume the commit interval
of 5 seconds has passed since the previous commit, as soon as Consumer 2
had processed 202 messages, and so it has committed the offset as 201. The
Consumer 2 has then gone down due to a hardware failure, as soon as it
committed the offset. Afterwards, this event will trigger a rebalance and
Consumer 1 has been reassigned the Partition 1, from which Consumer 2
had been reading from. Then, Consumer 1 requests the commit offset from
Kafka (considering Kafka is used for the offset commit). It will then know
that the messages till 201 offset have been successfully processed and it has
to start consuming messages from offset of 202.

The auto commit option might be an easy and convenient way to commit
the offsets automatically. However, it may also lead to duplicate
consumption of records. Let us understand this better with an example.
Considering the previous example, let us say that the commit interval of 5
seconds was triggered after processing 200 messages, i.e., at 199th offset,
and the offset was committed. Now the Consumer 2 has started fetching
messages, but after processing 204th offset (Say, two seconds since the
offset commit), the Consumer 2 goes down and the rebalance is triggered.
The commit offset is 199, but Consumer 2 has processed messages till 204th

offset. However, Consumer 2 had already gone down before it could commit
the next offset. Consumer 1 gets the Partition reassigned and it observes
that the last committed offset is 199. Therefore, Consumer 1 now starts
consuming the messages from 200th offset. In this way, the messages from
200 to 205 are duplicated as the messages have been processed again by
the Consumer 1.

Manual Commit

One way of overcoming the consumption of duplicate messages is to
commit these messages manually. Manual committing of offsets gives
additional control to the developers as compared to committing the offsets
automatically. The developers can choose to commit the offsets manually at
the point of their choice. To commit manually, the enable.auto.commit
property must be set to false and offset should be manually committed after
processing the records.

Manual commits can be achieved in the following two ways:

● Synchronous Commit: Synchronous Commit is a straightforward
method to commit the offsets manually. However, committing
synchronously blocks the application until the Broker responds to
a commit request; and it also retries the commits in case of
recoverable errors. This impacts the overall throughput of the
application. The commitSync method is used to commit the
offsets synchronously.

● Asynchronous Commit: Asynchronous Commit, on the other
hand, does not block the application. Moreover, it sends the
request and continues consumption of messages. However,
Asynchronous Commit does not retry recoverable errors. While
this may sound as if it is a drawback, there is a valid reason why it
does not retry. To understand this process better, imagine a
commit request sent to the Broker for the 100th offset. However,
due to a temporary network problem, the Broker never receives
the request and obviously does not respond. We know that
Asynchronous Commit does not wait for the response and keeps
on consuming the messages. The consumer has now consumed
the next batch of messages and sent another commit request to
the broker for the 150th offset. The Broker now receives this
request and responds with the committed offset. Since a higher
commit is already successful, retrying the previously failed
commit does not make sense and also leads to duplicates if a
rebalance has been triggered. The commitAsync method is used
to commit offsets asynchronously.

● Using Both Sync & Async Commit: While not committing offsets
at times in case of recoverable failures is not a problem with
Asynchronous Commits, it poses a potential problem if it is the
last offset that must be committed before closing the Consumer.
To overcome this problem, we use a combination of both
Asynchronous and Synchronous commits. The Asynchronous
commit, as usual, keeps committing the offsets without blocking
the application. But while closing the Consumer, there is only one
final commit. Therefore, to be able to make sure that the offset is
committed before we close the consumer, we use the
Synchronous Commit. The Synchronous Commit retries to
commit the final offset in case of recoverable errors before
closing the Consumer.

The combination of Sync and Asynchronous commit methods can be
utilized when we want to commit the final offset before closing the
Consumer; or to be sure to commit just before the rebalancing is
triggered. In the next section, we shall learn how to commit an offset
just before a rebalance is triggered.

● Specific Offset Commit: We have so far learned how to commit
the latest offset after processing a batch of messages. However,
what if we want to commit a specific offset in the middle of
processing a batch of messages? But again, why do we wish to
commit a specific offset in the middle of processing a batch of
messages? To answer these questions, let us consider a scenario
where a Consumer has received a huge batch of messages to
process. The Consumer will take a reasonable amount of time to
process this huge batch of messages. Consequently, this will delay
the next batch, and therefore, the Group Coordinator may trigger
a rebalance, assuming the Consumer is down.

Using the commitSync and commitAsync methods only commits the
latest offsets. Since we want to commit a specific offset and not the
latest offset, we can use the commitSync and commitAsync methods
and pass partitions and offsets we wish to commit to a hashmap.
Subsequently, we can specify the offset commit based on the

number of records processed.

Let’s say the consumer application received a batch of 10,000
messages to process. Since it may take a reasonable amount of time
to process these records, we want to commit the offset for every
2000 messages that have been processed. We can achieve this by
updating the map object with the processed partitions and offsets.
We can then specify a condition that commits offsets after
processing 2000 records. This helps the commit-specific offsets, while
the application is still consuming a huge batch of messages.

We shall further explore the offset management techniques learned above
in the lab exercises.

REBALANCE LISTENERS
The Rebalance Listeners help the developer to commit the latest offset just
before a rebalance activity is triggered; and also start consuming messages
from where it had left after the rebalance activity. The Kafka Consumer API
provides a class called ConsumerRebalanceListener. This class has the
following two methods that can be implemented:

● onPartitionsRevoked: The onPartitionsRevoked method is called
before the Partitions are revoked from the consumers, i.e., before
a rebalance activity is triggered. We have learned from the
previous sections that whenever a rebalance activity is triggered,
the partitions are revoked from the consumers; and no
consumers are allowed to read these messages. This is where we
commit the latest offset, so that those consumers which get the
partition reassigned, can start consuming messages from this
point onwards.

● onPartitionsAssigned: The onPartitionsAssigned method is
invoked after the rebalance activity is complete and before the
consumers start consuming the messages again.

The theory part for this chapter is over at this point. Let us now get hands on
these topics in the labs that we have learned so far.

AIM

The aim of the following lab exercises is to implement a Kafka Consumer. In
addition, we shall also look at the offset management techniques in this lab
exercise.

The labs for this chapter include the following exercises:
● Constructing the Kafka Consumer
● Running the Consumer
● The Synchronous & Asynchronous offset commit
● Using both Synchronous & Asynchronous offset

commit
● Commit Specified Offset

We require the following packages to perform the lab exercises related to
this chapter:

● Java Development Kit
(JDK)

● Apache ZooKeeper
● Apache Kafka
● Scala
● IntelliJ IDEA

LAB EXERCISE 6: THE CONSUMER

1. Constructing a Kafka Consumer
2. Running the Consumer
3. Synchronous & Asynchronous Offset Commit
4. Using both the Synchronous & Asynchronous Offset Commit
5. Commit specified offset

TASK 1: CONSTRUCTING A KAFKA CONSUMER
Construction of a Kafka Consumer has a similar procedure to constructing a
Kafka Producer. Let us start creating a Kafka Consumer.

Step 1: Open IntelliJ and create a new Scala object. Name the Scala object as
KafkaConsumer. Moreover, extend the object to the App trait to make it an
executable program. Once you have created the Scala object, enter the
following required imports:

import java.util.*

import org.apache.kafka.clients.consumer.KafkaConsumer
import org.apache.kafka.clients.consumer.ConsumerRecords

import scala.Collection.JavaConverters._

object KafkaConsumer extends App { }

Step 2: Now, let us create a properties object and specify the properties in
the same way as we did while creating a Kafka Producer.

val topics = args(0)
val brokers = args(1)

val props = new Properties()
props.put(“bootstrap.servers”, brokers)
props.put(“group.id”, “kafkaGroup1”)
props.put(“key.deserializer”,
“org.apache.kafka.common.serialization.StringDeserializer”)

props.put(“value.deserializer”,
“org.apache.kafka.common.serialization.StringDeserializer”)

We have first specified the variables for a list of topics and brokers. We will
be passing these values as arguments. Next, we create a properties object to
specify the properties for our Consumer. Here is the process:

● The put method is utilized to specify the configuration properties
to the props object.

● The bootstrap.servers property is used to specify the Bootstrap
servers. Bootstrap servers are a list of servers (Brokers) utilized by
the clients (Producers and Consumers) to establish an initial
connection with the Kafka cluster.

● The group.id is an optional property that is used to set a unique
identifier to the Consumer Group name. While it is not mandatory
to specify the name of a Consumer Group, it is recommended,
because without a Consumer Group, all the messages are
received and processed by only one of the independent
Consumers. Having a Group name will have multiple Consumers
reading the messages from a Topic’s Partitions and thus
distributing the workload amongst all the Consumers.

The Consumer API takes care of electing a Group Coordinator and
Group Leader. The Consumer Group is created when we specify the
group name. All we require to specify a String for a group name.

● The key.deserializer is used to specify the deserialization for key
while the value.deserializer is used to specify the deserialization
for the value. Since our message is of type String in both key and
value, a StringDeserializer is utilized for both the key and value.
However, you can also use an IntDeserializer, DoubleDeserializer,
LongDeserializer, JSONDeserializer etc, if the keys or values are of
that type.

The deserializers in Kafka include the following:
ByteArrayDeserializer, ByteBufferDeserializer, ExtendedDeserializer.
Wrapper, BytesDeserializer, DoubleDeserializer, IntegerDeserializer,
FloatDeserializer, LongDeserializer, SessionWindowedDeserializer,
ShortDeserializer, StringDeserializer, TimeWindowedDeserializer, and

UUIDDeserializer.

The following screenshot shows the resultant code being generated.

Step 3: Now that we have specified the required properties, let us now
instantiate a new Kafka Consumer object, and pass the properties as the
arguments.

val consumer = new KafkaConsumer[String, String](props)

Once we have the Kafka Consumer object instantiated, we have to subscribe
to the Topic, so that the Consumer can start reading data from that Topic.
This can be performed by using the subscribe method within the Kafka
Consumer API.

consumer.subscribe(Collections.SingletonList(topics))

Additionally, we can subscribe to multiple topics using a regular expression
or an Arrays List. Using regular expression ensures to subscribe to all the
topics matching the regex. Whenever a new Topic is created, that matches

the regex, the rebalance triggers and the Consumers start consuming from
the new Topic.

Step 4: The next step is to initiate the process of reading data from the
Topics to which the Consumer is subscribed. To do this, the Kafka Consumer
provides a poll method. The poll method internally takes care of the
coordination, rebalance, and heartbeats; and then fetches data. A developer
has to simply subscribe to the Topic from which the messages must be read,
and the messages are fetched from the Topic’s partitions.

try{
while(true){ //1

val records: ConsumerRecord[String, String] =
consumer.poll(Duration.ofMillis(100)) //2

for(record <- records.asScala){ //3

println(“Topic: “ + record.topic()
+ “ ,Key: “ + record.key()
+ “, Value: " + record.value()
+ “, Partition: “ + record.partition()
+ “, Offset: “ + record.offset()) //4

}
}

}catch{
case e:Exception => e.printStackTrace()

}finally {
consumer.close() //5

}
}

1. This is the infinite while loop. The infinite while loop makes sense
because, the Consumers are usually long-running applications
and keep fetching data from the Kafka Brokers. Furthermore, the
Consumers can be scheduled to run for a few hours and then
sleep for a few hours using a scheduler. Moreover, it is possible
to exit the loop using the consumer.wakeup method by
executing it from a shutdown hook in a different thread.

2. We utilize the poll method on our consumer object to fetch data.
The poll method takes an argument to specify the timeout
interval in milliseconds. This is the time for which the Consumer
has to wait for the messages from the Broker. The Kafka
Consumers must keep polling continuously for the messages. If
they do not poll, they are considered dead and the rebalance
activity starts to trigger.

3. The poll method once executed fetches the records from the
Kafka Brokers. The records consist of the name of the Topic,
partitions, offsets, keys, and values. We use the ‘for’ loop to
iterate over the records.

4. Subsequently, we print the name of the Topic, key, value,
partition, and offset values of each record to the console. This is
the point where these messages are usually stored to a storage
or a database. This is printed out on the console for the purpose
of simplicity.

5. Finally, we take care of the error handling before closing the
consumer. You should always close the consumer so that it will
trigger a rebalance activity by closing the network connections
and sockets.

This completes the implementation of a Kafka Consumer. A Kafka Consumer
can be extremely complex depending upon the requirement, but in this lab,
we have only learned a simple Kafka Consumer for better understanding and
simplicity.

Let us run this Kafka Consumer in the next task.

Task 1 is complete!

TASK 2: RUNNING THE CONSUMER
Step 1: Now that we have finished implementing the Kafka Consumer, let us
start the ZooKeeper and Kafka server in the terminal.

$ zkServer.sh start
$ kafka-server-start.sh
/usr/share/kafka/config/server.properties

Step 2: We have already created Topics and have run our Producer
application to produce the messages. Before proceeding to the next step,
make sure that you have the logs Topic containing the messages produced
by the Producer that we had implemented in the previous chapter’s lab
exercise.

If the Topic (or the messages within the Topic) does not exist, please go
through the tasks 1 through 3 before proceeding to the next step.

Step 3: Switch back to the IDE, click on Run and select Edit Configurations…
option. You should see the configurations window as depicted in the

screenshot below.

Click on the + icon on the top left of the window; and select Application from
the drop-down list. Enter any name (of your choice) in the name field. Here,
we have named it as KafkaConsumer. Click on the … button for Main Class
field and select the class.

Next, input the program arguments as shown below:

logs localhost:9092

Finally, if Use classpath of module is empty, select the value Kafka from the
drop-down menu. You should find all the values as depicted in the
screenshot below:

Step 4: Let us run the Kafka Consumer. Click on the green play icon to the
right of the configuration drop-down menu. After a while, you should see
that the Consumer has run successfully by displaying the records as depicted
in the screenshot below.

Step 5: Since the Consumer is polling on an infinite loop, it would not exit
and will keep on polling for data from the Kafka Brokers. Click on the red
stop button as depicted in the screenshot to stop the Consumer. While, this
is not the best exit method, we have only used this, in order to stop the

Consumer from going into an infinite loop.

Subsequently, you should implement a shutdown hook or a scheduler to
safely exit the Consumer in the production environment.

We have simply printed the records on the console for this lab exercise.
However, as a lab challenge, try to process all these records and store them
in an external storage or a database.

Task 2 is complete!

TASK 3: SYNCHRONOUS & ASYNCHRONOUS OFFSET
COMMIT
Let us now implement a Kafka Consumer that commits offsets
synchronously as well as asynchronously. Please check the Manual Commit
section in Offset Management for more information on the manual
committing offsets.

Let us first look at Asynchronous Commit:

Step 1: Create a new Scala object and name it AsyncCommit. Moreover,
extend the object to App trait to make it an executable program. Once you
have created the Scala object, add the following required imports:

import java.util.*

import org.apache.kafka.clients.consumer.KafkaConsumer
import org.apache.kafka.clients.consumer.ConsumerRecords

import scala.Collection.JavaConverters._

object AsyncCommit extends App { }

Step 2: Create a new properties object and specify the required properties
as in step 2 of Task 1. However, ensure to add a new property that disables
the auto commit.

props.put(“enable.auto.commit”, “false”)

So far, you should have the code as depicted in the screenshot below:

Step 3: Let us now instantiate a new Kafka Consumer object and pass the
properties as arguments.

val consumer = new KafkaConsumer[String, String](props)

Once we have the Kafka Consumer object instantiated, we have to subscribe
to the Topic, so that the Consumer can start reading data from that
particular Topic. We can do this by utilizing the subscribe method within the
Kafka Consumer API.

consumer.subscribe(Collections.SingletonList(topics))

Step 4: Now that we have a Kafka Consumer object instantiated, let us use
the poll method to fetch the records. We then use the fetch records to
iterate by using the ‘for’ loop and display the records on the console.

Till now, the code is almost the same as we described while creating a Kafka
Consumer we had seen in Task 1.

So far, you should have the code as depicted in the screenshot below:

Step 5: Now, it is the right time to commit the offset as we have fetched the
first batch of records and processed them accordingly. We can commit the
offsets asynchronously using the commitAsync method as shown below:

consumer.commitAsync()

Next, we perform the error handling as seen in Task 1. The final code should
now match with the code in the screenshot given below:

The offsets are now committed Asynchronously every time when we fetch
and process a batch of records.

To implement the Synchronous offset commit, simply replace the
consumer.commitAsync method with the consumer.commitSync method.

As a lab challenge, please implement a Kafka Consumer to commit offsets
synchronously.

Task 3 is complete!

TASK 4: USING BOTH SYNCHRONOUS &
ASYNCHRONOUS OFFSET COMMIT
In the previous task, we have learned how to commit offsets using the
Synchronous and Asynchronous methods individually. Let us now see how
we can commit offsets using both sync and async methods in the same
application.

Step 1: Please follow the Steps 1 through 4 in the previous task. However,
do change the name of Scala object to ManualCommit or any other suitable
name.

Your code should now match the code depicted in the screenshot below:

Step 2: We know that AsyncCommit method does retry for recoverable
errors, if the offset commit was not successful. But successfully committing a
higher offset for next batch compensates for this failure. Therefore, we
would first commit offsets asynchronously after processing every batch of
records.

consumer.commitAsync()

Step 3: Asynchronous commit works well, when there are multiple batches
to be consumed after the current batch. However, if it is the last batch
before closing the Consumer, we must ensure that the last offset is
successfully committed. If the last offset was not successfully committed,
the next Consumer again fetches the records from the previous offset
leading to duplicate messages.

To overcome this scenario and to ensure that the last offset just before
closing of Consumer is committed, we utilize the consumer.commitSync
method. The consumer.commitSync method retires for recoverable errors by
blocking the application until it successfully commits the offset.

Thus we invoke the consumer.commitSync method just before closing the
consumer as shown below:

…
}
}catch{

case e:Exception => e.printStackTrace()
}finally {

consumer.commitSync()
consumer.close()

}
}

The consumer.commitSync method is invoked just before closing the
Consumer as shown in the screenshot below:

From Task 4, we have learned that we can use both commitSync and
commitAsync methods in the same application.

Task 4 is complete!

TASK 5: COMMIT SPECIFIED OFFSET
Till now, we have learned to commit the latest offset. Let us now learn
about committing a specific offset.

Step 1: Create a new Scala object and name it SpecificCommit. Moreover,
extend the object to App trait to make it an executable program. Once you
have created the Scala object, enter the following required imports:

import java.time.Duration
import java.util._

importscala.collection.JavaConverters._

import org.apache.kafka.clients.consumer.
{ConsumerRecords, KafkaConsumer, OffsetAndMetadata}
import org.apache.kafka.common.TopicPartition

object SpecificCommit extends App{}

Here, the new imports are OffserAndMetadata and TopicPartition. The
OffserAndMetadata is a Kafka offset commit API, which allows the users to
provide the additional metadata (in the form of a string) when an offset is
committed. This can be useful to store information about which node made

the commit, what time the commit was made, etc. The TopicPartition class
provides methods to extract the Topic name and the Partition number.

Step 2: Let us now create the map object to manually track the offsets. Let
us also declare a count variable, so that we can increment it for every
processed record.

var currentOffsets: Map[TopicPartition,
OffsetAndMetadata] = new HashMap()
var count = 0

Step 3: The next step is to create the properties object and specify the
properties. Your code should now match with the code given in the
screenshot below:

Step 4: Now create a Kafka Consumer object and subscribe to the Topic.
Then start the poll loop to fetch records and process by displaying them on
to the console.

Step 5: After processing the records by displaying them on the console, we
update the offset map with the offset number of the next message to
process. This way, we can manually track every offset from the Map object.

currentOffsets.put(new TopicPartition(record.topic(),
record.partition()), new

OffsetAndMetadata(record.offset() + 1, "no metadata"))

Next, we commit the offset for every 5000 records that have been processed
using the ‘if’ condition. As you can observe, we have control on committing
the specified offset instead of only committing the latest offset. You may
choose to commit after any number of records according to your
requirement. The 5000 records in this example have been shown as an
example:

if (count % 1000 == 0) {
consumer.commitAsync(currentOffsets, null)
count += 1
}
We finally use the commitAsync method to commit the offsets. Moreover,
you can also choose to utilize the commitSync method.

Task 5 is complete!

SUMMARY
The Consumer is the Kafka component that consumes messages from Kafka
by making use of the Kafka Consumer APIs.

Kafka utilizes the Consumer Groups to effectively read data from multiple
Partitions of a Topic in a distributed fashion. The Consumer Groups consist
of multiple Consumers that share a common group identifier. In other
words, multiple Consumers related to a Consumer Group can read data from
a single Topic.

Offset is the integer metadata associated with each message. The offset
increases monotonically for every message. The produced message consists
of a key and a value. Once the Producer transmits the message to the
Broker, the Broker assigns an offset to it, i.e., an integer starting from zero.

The Consumers periodically commit (i.e., save) the last offset they have
processed to an external storage. This is called the Commit Offset. The
committed offset is an offset point till which the Consumer has successfully
fetched and processed all the messages. The external storage (or databse) to
commit offset can be HDFS, MySQL, HBase, and Cassandra, etc. The offset
can be committed within Kafka itself. Finally, the offsets can be committed
automatically as well as manually.

In the labs, we implemented the Kafka Consumer and the various other
approaches to commit the offsets manually.

CHAPTER 7:
KAFKA DATA DELIVERY

Theory
In the previous chapter, we learned about the offsets and how they are
managed. Furthermore, we learned that Kafka itself does the offset
management by committing the offsets to Kafka. In this chapter, let us learn
how to manage the committing of offsets to the external storage by
understanding the delivery semantics.

DELIVERY SEMANTICS
The messages in Kafka can be delivered in the following three (possible)
ways:

● At least once: No messages had been lost, but there may have
been duplicate messages.

● At most once: Messages had been lost, but there are no
duplicates.

● Exactly once: Neither messages were lost nor there were
duplicate messages. Each message is delivered exactly once.

Let us understand these delivery semantics in detail below.

At least Once Semantics

By default, Kafka is configured for “at least once semantics”. The scenario
which we have observed in the offset management section in the previous
chapter is “at least once semantics”. As a developer, there is nothing else to
do if the business requirement is “at least once semantics”, i.e., if you are OK
to receive the duplicate messages without any message loss. However, if
you would like to do the offset management yourself, the following steps

should be followed:

1. Read the messages from Kafka.

2. Process the messages and save them in an external storage, such
as Cassandra, HBase, and Elastic search etc. However, you may
also choose to save it within Kafka itself.

3. Commit the offset.

The following figure explains how the “at least once semantics” process
works:

Let’s understand this better with the following example:

● Consider a logs Topic to which the Consumer has read 100
messages with few poll requests earlier.

● The next poll request will start from 100th offset. We receive, say,
30 messages for this poll request. The messages are then
processed and saved in an external storage. Afterwards, we
commit the offset as 130. Let’s assume that we are committing
the offsets in Kafka itself for this example.

● Similarly, 40 more messages are processed and saved in the next
poll request. The offset is committed as 170.

● Another poll request is made to fetch more messages. We
receive, say, 50 more messages in this batch. Subsequently, these
messages are processed and saved. However, before committing
the offset as 220, the application crashes down due to a hardware
or network failure.

● At this point, the number of processed messages is 220, but the
last committed offset is 170.

● After the rebalance, a new Consumer is assigned to this Partition.
The Consumer fetches the latest committed offset as 170, and so
it sends a poll request for the messages from 170th offset. This
results in the duplication of last 50 messages, as these messages
are being read again.

This is how the “at least once semantics” work. This delivery semantics is
developed in such a way that the messages are processed first and then the
offset is committed. With “at least once semantics”, there is no loss of
messages, but there can be duplicate messages in case of failure.

At most Once Semantics

The following steps have to be performed to achieve the “at most once
semantics”.

1. Read the messages from Kafka.

2. Commit the offset.

3. Process the messages and save them in an external storage such
as Cassandra, HBase, and Elastic search etc. Moreover, you may
also choose to save it within Kafka itself.

Here, we first commit the offset immediately after reading the messages
and then process them accordingly. With “At most once semantics”, we may
lose our data, if a failure occurs as soon as we commit the offset.

Let’s understand this process better with the following example:

● Consider a logs topic to which the Consumer has read 100
messages with a few poll requests earlier.

● The next poll request starts from the 100th offset. We receive, say,
30 messages for this poll request. Instead of processing the
records and saving them to an external storage, we commit the
offset first. The offset is committed as 130.

● After committing the offset, we process and save the
messages.

● Similarly, the next poll request starts from the 130th offset. We
receive, say, 40 messages for this particular poll request. The
offset is committed as 170. Subsequently, the messages are
processed and saved in an external storage.

● Again the poll request is made to fetch more messages. We
receive, say, 50 more messages in this batch. The offset is
committed as 220. However, after committing the offset as 220,
the application crashes down due to a hardware or network
failure. The messages received in this particular batch could never
be processed.

● At this point, the last committed offset is 220 but the messages
fetched from Kafka have only been processed till the offset of
170.

● After the rebalance, a new Consumer is assigned to this Partition.
The Consumer fetches the latest committed offset as 220 and so it
sends a poll request for messages from 220th offset. This results in
the loss of last 50 messages, as these messages could never be
processed.

This is how the “at most once semantics” works. This delivery semantics is
developed in such a way that the offset is committed first and then the
messages are processed and saved. With “at most once semantics”, there is
a loss of messages but there will be no duplicate messages in case of a
failure. The use-case for this semantics would be a scenario where you can
afford a loss of data, but you cannot have duplicates.

Exactly Once Semantics

The “Exactly once” semantics in Kafka ensures that each message is
processed exactly once, with neither duplicates nor data loss. This is the
most sought-out delivery semantics which guarantees that the messages are
processed without any duplicates or data loss.

In order to achieve the “exactly once” semantics, we must make sure that if
the processing and saving of messages fails, the offset committing will also

fail. Similarly, if you are committing first and then processing the messages,
the processing should also fail if the committing fails. In case of failure, this
will ensure that the new Consumer assigned to a partition will only fetch the
offsets that have not been processed before failure or only process the
messages from the offset that have not been processed by the previously-
failing Consumer.

The ”exactly once” semantics is atomic, i.e., unlike having two different
storages for saving the processed data and offsets, as witnessed in the “at
least once” and “at most once” semantics, we have a single storage (NoSQL,
MySQL, etc.) in the “exactly once” semantics. The processed messages as
well as the committed offsets are stored in a single storage. This ensures
that if at all, the offset commit fails, the processing of messages also fails
and vice versa.

Let us understand this better with the following example:

● Consider a sensor Topic from which a Consumer is reading the
data.

● The data that is being read from Kafka is being processed and
inserted in an external data storage, such as the MySQL database
table.

The following Figure 7(c) shows the process of “exactly once” semantics.

● Moreover, instead of committing the latest offset to Kafka, we will
be updating another table with the current offset that is
processed.

● The UPDATE and INSERT statements are always within a single
transaction. This ensures that either both the statements are
completed or both will fail. In this way, we can achieve the
“exactly once” semantics.

In the lab exercises, we shall be implementing the “exactly once” semantics
in the lab exercise.

SERVICE GOALS
There are a few service goals to be aware of, before developing a Kafka
application. These goals are described as follows:

i. Throughput
ii. Latency

iii. Durability
iv. High Availability

It is important to realize that we cannot achieve all these service goals in a
single Kafka application. Therefore, there should always be a compromise
between one or more service goals. The decision regarding which service
goals we have to keep and which we have to trade off; and it purely depends
on the business requirement(s).

Let us now understand these service goals in detail.

Throughput

Throughput is the speed at which the data is transmitted between various
Kafka components, i.e., between Producers to Brokers and Brokers to
Producers. More formally, the total number of messages transmitted per
second between the Kafka components is called throughput. Here are some
of the features of throughput:

● Throughput can be achieved with higher number of partitions: the
larger the number of partitions, higher the throughput. However,
it does not mean that we should create Topics with high number
of Partitions. Let us now see how to decide the number of
Partitions for a specific Topic.

As a starting point, consider that the size of a message is
approximately 2 KB. Each partition should be able to handle 10,000
messages per second. This means that one partition should handle 20
MB (10,000 messages * 2KB) of messages per second. If the
application requires 1 GB throughput, i.e., 1 GB data per second, we
should divide 1 GB with 20 MB, resulting in 51.2. This implies that we
need to create a Topic with 50 – 75 partitions to achieve the required

throughput of 1 GB. Afterward, we can keep experimenting with
other message sizes to even further optimize the throughput.

● The batch.size and linger.ms configuration properties can also
affect the throughput. Thus, increasing the batch sizes and
lingering the time period can increase the throughput. We have
already learned about these configuration properties in the
previous chapters.

● We can also specify the compression codec type by using the
compression.type property. There is no compression by default,
but a batch of data will be compressed and sent in case if the
compression codec is specified. Basically, compression of data will
generate more space for even more messages to accommodate in
the buffer of a batch.

● Setting acks=0 or acks=1 and retries=0 configuration values can
also increase the throughput. Please check Producer
Configurations section in Chapter 5 for more information.

● Setting a higher value for buffer.memory when there are more
partitions can also increase the throughput. The buffer.memory
should not be confused with batch.size. The batch.size determines
the size at which the messages are flushed, whereas
buffer.memory is the size of memory allocated to buffer the
messages. The batch.size is usually lower than the buffer.memory.

While we are trying to increase the throughput, we are also trading off the
latency. It means that when the throughput increases, the latency also
increases. Confusing? Jump to the next section and there will be no
confusion anymore.

Latency

Latency is the total time taken for a single message to transmit from the
Producer to the Consumer. By default in Kafka, the system configuration is
set to ensure low latency. Therefore, there are not many changes required
to configure for latency. Although it is highly subjective, but it is considered

as the low latency, if the single message reaches in milliseconds, while it is
high latency is the message takes more than a second to complete its
journey. Here it might seem that latency and throughput are similar, but
throughput is the time taken for a number of messages per second while
latency is the time taken by a single message.

● More partitions will increase latency. It is because, having more
partitions takes more time to replicate the partitions, thus
increasing latency.

● The settings for other configuration properties, such as linger.ms,
compression.type and acks etc. are set for the low latency by
default. Hence, you need not worry about these configuration
settings if your application requires low latency.

Having low latency setup automatically reduces the throughput. Therefore,
if you want to achieve low latency, you cannot achieve high throughput.

Durability

Durability can be achieved when we reduce the chances of a message being
lost during the transit. We can achieve durability by utilizing the replication
factor feature in Kafka. Setting the replication factor to 3 ensures that data is
always available in two other Brokers, when a Broker goes down due to a
hardware or network failure.

● As stated earlier, we can achieve durability by setting a replication
factor of 3.

● Setting acks=all and retries=1 or more will help you achieve high
durability, as there is no data lost during the transit.

● We should also disable auto Topic creation by setting
auto.create.topics.enable=false so that we are always in control of
the replication factor and partition settings for every Topic.

● Setting a value of 2 for min.insync.replicas will ensure that, there
are at least two follower replicas that are in sync with the leader
replicas. This ensures that the follower replicas are up-to-date
with the leader replica.

● Durability can be increased by setting the property
unclean.leader.election.enable to false. A leader can still be
elected even if the follower replicas are not in sync with the
leader. Electing a follower that is not in sync with the leader will
lead to the data loss because, the leader may have already
committed messages that have not been replicated by the
followers.

● Disabling the auto commit feature of Consumers also enhances
the durability. For this purpose, the property auto.commit.enable
should be set to false. We have already learned about the
committing of auto and manual offset in the previous chapter.

● Durability is the strongest when your Kafka cluster is rack-aware.
There can be durability guarantee when an entire rack fails as
well. Therefore, when we specify the rack associated with a
particular Broker, we can still have data available even when
there is a rack failure. We can simply specify the rack a broker
belongs to by setting the configuration parameter broker.rack,
and then Kafka will automatically ensure that the replicas span as
many racks as they can.

Having high durability will tradeoff for high availability, which is explained as
follows:

High Availability

High availability is achieved when we configure Kafka to have the lowest
possible downtime in case of unexpected failures. High availability and
Durability might seem similar but they should not be confused with each
other. Durability is to prevent the data loss, whereas high availability is
related to the insurance to have back-up as quickly as possible during a
failure.

● We have high availability when the property
unclean.leader.election.enable is set to true. This will ensure that
the leader election happens quickly and there is no downtime.
However, this is a tradeoff for durability.

● Setting min.insync.replicas property to 1 ensures that the
Producer can keep sending data until there is one follower replica
in sync with the leader. This increases the availability for the
partition.

As mentioned earlier, we cannot achieve all these service goals. We must
compromise on one or the other goal(s) based on the business requirement.

The theory related to this chapter ends here. Let us now move to the lab
exercises and implement “exactly once” semantics.
AIM

The aim of the following lab exercises is to implement the “Exactly once”
semantics. To implement the semantics, we need an external storage to
insert the processed data as well as update the current offset. We shall be
utilizing MySQL as an external storage for this lab exercise.

The labs for this chapter include the following exercises:
● Download & Install MySQL
● Create Database & Tables
● Constructing a Producer
● Constructing a Consumer
● Running Producer & Consumer

We need the following packages to perform the lab exercise:

● Java Development Kit
(JDK)

● Apache ZooKeeper
● Apache Kafka
● Scala
● IntelliJ IDEA
● MySQL Server

LAB EXERCISE 7: KAFKA DATA DELIVERY

1. Download & Install MySQL
2. Create Database and Tables
3. Constructing a Producer
4. Constructing a Consumer
5. Running Producer & Consumer

TASK 1: DOWNLOAD & INSTALL MYSQL
Step 1: To download the MySQL server to your machines, open the terminal
and execute the following commands:

$ sudo apt update
$ sudo apt install mysql-server

You will have to accept the prompts by pressing ‘Y’ on your keyboard as
shown in the screenshot below:

Step 2: Once the installation is complete, we should set a password for the
root user. We can do this by executing the following command:

$ sudo mysql_secure_installation

Subsequently, you will be prompted to install the ‘validate password’ plugin.
But, you may or may not choose to install. In this case, we did not choose to
install it, and therefore, we continued by pressing any key. Next, you will be
asked to set a password and confirm it. Please set a password of your
choice. In a production environment, please make sure that you set a secure
password.

Once you set a password, keep pressing ‘Y’ for all the prompts. You should
see the ‘All done!’ message as depicted in the screenshot below:

Step 3: Now that we have installed and set the root password for our MySQL
server, let us access the MySQL shell as root user.

$ mysql –u root -p

After executing the command above, enter the password. You should see
the mysql prompt as shown in the screenshot below.

If you get an ‘access denied’ error, enter the following commands. Make
sure to replace the password with your desired password. Repeat the
following step:

$ sudo mysql
mysql> ALTER USER 'root'@'localhost' IDENTIFIED WITH

mysql_native_password BY 'password';
mysql> exit;

Task 1 is complete!

TASK 2: CREATE DATABASE & TABLES
Now that we have MySQL serve ready, let us first create a database and two
tables for inserting the messages and updating the current offset.

Step 1: Let us first create a database as follows:

mysql> CREATE DATABASE sensor;
mysql> USE sensor;

You should see the confirmation as shown in the screenshot below:

Step 2: Let us now create a new table, where we can insert the sensor data
received from Kafka.

mysql> CREATE TABLE sensor_data(skey VARCHAR(50), svalue
VARCHAR(50));

Step 3: Let us also create a new table to update the current offset with Topic
name, partition, and the current offset columns.

mysql> CREATE TABLE sensor_offsets(topic_name
VARCHAR(50), partitions INT, current_offset INT);

You should now have two tables created. You can now check if these tables
have been properly created or not, by executing the following command:

mysql> SHOW TABLES;

Step 4: Now that we have the required tables created and confirmed, let us
initialize the offset values as 0 in the sensor_offsets table, so that the
consumer updates the current offset every time it reads the messages. But,
we need not touch the sensor_data table, as the Consumer automatically
inserts the data into it as soon as it receives it.

The Topic name is sensor with 3 partitions, which we shall create later in the
lab exercise. Now, we shall simply insert three rows for each partition as
shown below.

mysql> INSERT INTO sensor_offsets values(‘sensor’, 0,
0); mysql> INSERT INTO sensor_offsets values(‘sensor’,
1, 0); mysql> INSERT INTO sensor_offsets
values(‘sensor’, 2, 0);

You may check if the insert was successful using the following query.

mysql> SELECT * FROM sensor_offsets;

As you can see in the screenshot below, we have initialized the current
offset as 0 for each partition. Once we execute our Consumer application,
the current offset value automatically starts to update and hence Consumer
will know from which offset it should start polling.

As we can see from the screenshot above, the sensor_data table is empty
for now. But it will be updated once the consumer starts fetching data from
the brokers.

Task 2 is complete!

TASK 3: CONSTRUCTING A PRODUCER
In the previous two tasks, we have installed MySQL server, and created the
required database and tables. Now, let us start constructing a Producer that
will generate the sensor data.

Step 1: Create a new Scala object and name it SProducer. Make sure you
extend the object to App trait to make it an executable program. Next insert
the following required imports. These imports are required to specify
properties and create Producer & ProducerRecord objects. Moreover,
include the variables for Topic name and bootstrap servers as shown below.

import java.util.properties

import org.apache.kafka.client.producer.KafkaProducer
import org.apache.kafka.client.producer.ProducerRecord

object SProducer extends App {

val topic = args(0)
val brokers = args(1)}

Step 2: The next step is to specify the properties.

val props = new Properties()
props.put(“bootstrap.servers”, brokers)
props.put(“client.id”, “Kafka Sensor Producer”)
props.put(“key.serializer”,
“org.apache.kafka.common.serialization.StringSerializer”)
props.put(“value.serializer”,
“org.apache.kafka.common.serialization.StringSerializer”)

Step 3: Let us now create a Producer object. We shall instantiate the
Producer object by passing props as the argument, and specify the String
types for key and value.

val producer = new KafkaProducer[String, String] (props)

The above line of code instantiates a Producer object that is of type String
and String. The String type specifies the type for key and value.

Step 4: Finally, we can now generate the sensor data by using the
ProducerRecord object. We use the ‘for’ loop to generate any random data.
for (i <- 0.until(10))

producer.send(new ProducerRecord(topic, “RFID”, “100” +
i))

The ProducerRecord object constructor is instantiated by passing arguments
as name of the Topic, key, and value. The ProducerRecord object contains
the actual message that is being transmitted to the Brokers. Subsequently,
we simply invoke the send method on our producer object by passing the
ProducerRecord as an argument. The Producer will then start sending the
messages to the Brokers.

Finally, after sending the messages, we must close the Producer object using
the close message as shown below. Closing the Producer object basically
frees up the resources being utilized by the Producer.

producer.close()

Step 5: Before we execute our Producer, let us first create a Topic called
sensor-data. Start the ZooKeeper and Kafka servers.

Once the servers are up and running, create a new Topic with the name
sensor-data.

Step 6: Let us now run the Producer. Please check Lab Exercise 5 (Task 3) on
how to run the Producer. After a while, you should see that the Producer
has run successfully with the exit code 0.

Step 7: Now let us check the kafka-logs directory. The default location of
this directory is /tmp/kafka-logs. You should see three partitions for the
sensor-data Topic. Go through each partition, and check the .log file for the
message that has been received.

Task 3 is complete!
TASK 4: CONSTRUCTING A CONSUMER
Let us finally construct a Consumer that implements the ‘exactly once’
semantics.

Step 1: Create a new Scala object and name it SConsumer. Next, insert the
following required imports.

import java.util._
import java.sql._
import java.time.Duration

import scala.collections.JavaConversions._

import org.apache.kafka.clients.consumer._
import org.apache.kafka.common._

object SensorConsumer extends App{

Step 2: Let us now declare and initialize the required variables.

val topics: String = args(0)
val brokers: String = args(1)

var consumer: KafkaConsumer[String, String] = null
var rCount: Int = 0

Here we are simply creating a Kafka Consumer object as a mutable variable
and assigning its value to null. Moreover, we also declare a mutable variable

to keep track of the record count and initialize its value as 0.
Step 3: The next step is to create a properties object and specify the
required properties for this Consumer application.

val props: Properties = new Properties()

props.put("bootstrap.servers", brokers)
props.put("key.deserializer","org.apache.kafka.common.serialization.StringDeserializer")
props.put("value.deserializer","org.apache.kafka.common.serialization.StringDeserializer")
props.put("enable.auto.commit", "false")

We have learned about all these properties, during the process of creating
our first Consumer in the previous chapter.

Next, we pass all these properties as an argument to our Consumer object.

consumer = new KafkaConsumer(props)

Step 4: Since we do not want Kafka to commit the offsets automatically, and
assign the partitions (automatically) to the Consumers in a Consumer Group,
we manually assign the partitions to the Consumer object we had created
earlier. Please note that we have not specified the group id property and
hence we must manually assign the partitions to the Consumer.

Now, we create three TopicPartition objects for three partitions of our
Topic, and then assign these three partitions to the Consumer object.

val p0: TopicPartition = new TopicPartition(topics, 0)
val p1: TopicPartition = new TopicPartition(topics, 1)
val p2: TopicPartition = new TopicPartition(topics, 2)

consumer.assign(Arrays.asList(p0, p1, p2))

Let us also print the current position of the partitions to the console.

println("Current position p0=" + consumer.position(p0) +
" p1=" + consumer.position(p1) + " p2=" +
consumer.position(p2))

We have now all three partitions assigned to our Consumer using the assign
method. This method takes a list of partitions as arguments. The Consumer
can now read data from these three partitions.

Step 5: The next step is to specify the offset position for each partition, so
that the Consumer knows where to start reading from. In Task 2, we had set
the current offset value as 0 for all the partitions. Now, we simply fetch the
offset from the sensor_offsets table using getOffsetFromDB method for each
partition. The seek method is utilized to specify the position of the current
offset. It takes the Topic partition and the offset number as arguments.

consumer.seek(p0, getOffsetFromDB(p0))

consumer.seek(p1, getOffsetFromDB(p1))
consumer.seek(p2, getOffsetFromDB(p2))

Let us also print the latest positions to the console.

println("New positions p0=" + consumer.position(p0) + "
p1=" + consumer.position(p1) + " p2=" +
consumer.position(p2))

Please note that you will see a few errors in case of using the seek and
getOffsetFromDB methods. These errors will vanish, when we define the
getOffsetFromDB method later in this task.

Step 6: Now that we have already assigned the partitions for the Topic, and
specified the offset positions for the partitions, we can start reading the data
from Kafka. Let us start fetching this data using the poll method within the
‘do while’ loop with error handling.

When there are no more records to fetch, we finally close the Consumer as
follows:

println(“Starting to Fetch Records”)

try{
do {

val records: ConsumerRecords[String, String] =
consumer.poll(Duration.ofMillis(1000))

println("Record polled " + records.count())
rCount = records.count()

for (record <- records) {
saveAndCommit(consumer, record)
}

}

while (rCount > 0);

} catch {
case e:Exception => e.printStackTrace()

}

finally{
consumer.close()
}

}

The saveAndCommit function inserts the records we fetch from Kafka and it
also updates the current offset in the database. This is how we achieve the
‘exactly once’ semantics.

Please ignore errors for the saveAndCommit method, as they will

automatically vanish once we implement the saveAndCommit method.

At this point, we have created a Consumer object, assigned the partitions
and specified the offset position. Moreover, we have also implemented the
poll method to fetch the records. Subsequently, all we have to do now is to
implement the getOffsetFromDB and saveAndCommit methods.

Step 7: Let us implement the getOffsetFromDB method in this step. The
getOffsetFromDB method takes the partition as an argument, and returns
the offset which is of type Long. In addition, we also declare a mutable
variable for the offset of type Long and initialize it as 0.

private def getOffsetFromDB(p: TopicPartition): Long = {
var offset: Long = 0

Next, we connect to the MySQL server by using the JDBC driver by specifying
the database and login credentials.

try {
Class.forName("com.mysql.cj.jdbc.Driver")
val con: Connection =
DriverManager.getConnection("jdbc:mysql://localhost:3306/sensor",
"root", "password") //Please enter the password of your
MySQL root user here.

Once we have a connection with MySQL, we can write a SQL query to get
the current offset. The method finally returns an offset.

val sql: String = "select current_offser from
sensor_data where topic_name='" + p.topic() + "' and
partitions=" + p.partition()

val stmt: Statement = con.createStatement()
val rs: ResultSet = stmt.executeQuery(sql)
if (rs.next())
offset = rs.getInt("current_offser")

stmt.close()
con.close()

} catch {
case e: Exception => e.printStackTrace

}
offset

}

Step 8: Finally, let us implement the saveAndCommit method. The
saveAndCommit method takes Kafka Consumer and Consumer record as the
arguments.

private def saveAndCommit(c: KafkaConsumer[String,
String], r: ConsumerRecord[String, String]): Unit = {

println("Topic=" + r.topic() + " Partition=" +
r.partition() + " Offset=" + r.offset() + " Key="
+ r.key() + " Value=" + r.value())

Next, we connect to MySQL, as we had done in the previous step and insert
the records to the sensor_data table as well as update the sensor_offsets
table with the current offset for each partition.

try {
Class.forName("com.mysql.cj.jdbc.Driver")
val con: Connection =
DriverManager.getConnection("jdbc:mysql://localhost:3306/sensor",
"root", "password")//Please enter the password of your
MySQL root user here.

After connecting to MySQL, we set the auto commit to false.

con.setAutoCommit(false)

Then we simply run the SQL query to insert the record to a sensor_data
table.

val insertSQL: String = "insert into sensor_data
values(?,?)"

val psInsert: PreparedStatement =
con.prepareStatement(insertSQL)
psInsert.setString(1, r.key())
psInsert.setString(2, r.value())

Now that the insert process is complete, we specify an SQL query to update
the current offset in sensor_offsets table.

val updateSQL: String = "update sensor_offsets set
current_offset=? where topic_name=? and partition=?"

val psUpdate: PreparedStatement =
con.prepareStatement(updateSQL)
psUpdate.setLong(1, r.offset() + 1)
psUpdate.setString(2, r.topic())
psUpdate.setInt(3, r.partition())

We then execute the insert and update operations.
psInsert.executeUpdate()
psUpdate.executeUpdate()

We finally commit the offset. This is an atomic transaction. In this way, any
failure results in both insert and update to fail. Using this process, we can
achieve the ‘exactly once’ semantics.

con.commit()
con.close()

} catch {
case e: Exception => e.printStackTrace

}
}

}

Step 9: Let us finally run the Consumer. Please check the Lab Exercise 6
(Task 2) on how to run the Consumer. After a while, you can notice that the
Producer has executed successfully with exit code 0.

Moreover, you can also execute a query in MySQL to check the records in
both tables.

Task 4 is complete!

SUMMARY
The messages in Kafka can be delivered in the following three possible ways.
They include:

● At least once: No messages are lost, but there may be duplicate
messages.

● At most once: Messages may be lost, but there are no duplicates.
● Exactly once: Neither message loss occurs, nor duplicate

messages are created. Each message is delivered exactly once.

Before developing a Kafka application, we should ascertain the following
service goals:

i. Throughput
ii. Latency

iii. Durability
iv. High Availability

One important point to consider is that it is impossible to achieve all these
service goals in a single Kafka application. Therefore, there is always some
compromise among one or the other goals. Those service goals which we
have to keep and/or trade off depend on the business requirement.

In the corresponding labs, we have implemented the ‘Exactly Once’
Semantics.

CHAPTER 8:
KAFKA ADMINISTRATION

Theory
In this chapter, we will learn about the administration of Kafka. We have
already covered how to configure Kafka using configuration properties in the
Lab exercise 2. Furthermore, we have also worked on Kafka Topic
Operations in Lab exercise 3. Let us now look at more administration
concepts in Kafka.

BASIC KAFKA OPERATIONS
Let us start Kafka administration with some basic Kafka operations.

Topic Operations

Please check chapter 3, Topic Operations section.

Graceful Shutdown

A new Partition Leader is elected whenever a Broker hosting leader the copy
of a partition goes down due to the hardware failure or manual shut down
for maintenance. In an alternate scenario, Kafka offers a graceful solution to
take the server down instead of hard killing it. The advantages of shutting
down gracefully are given as follows:

● The Broker syncs the messages to a disk before it shuts down. This
process saves the time taken for recovering the messages once
the Broker restarts. The recovery of messages is a time-
consuming process, and therefore, graceful shutdown helps to
come back up quickly during the intentional restarts.

● The Broker transfers all the Partitions that it is currently leading to
other replicas before the shutdown. This will ensure a quick new
leader election and also minimize the time for which the partition
is unavailable during this process.

The sync happens automatically whenever the Broker is stopped except
during a hard kill. However, for the controlled leadership transfer, it requires
the following property to be set to true.

controlled.shutdown.enable=true

The controlled shutdown is only useful when all the partitions of that broker
have a replication factor of more than 1. If there is only one replica for a
partition it will anyway be unavailable during the shutdown.

Rack Awareness

The placement of replicas plays a vital role when it is intended to achieve
high durability. The replications in Kafka are saved to the separate Brokers.
However, if the Kafka cluster spans multiple racks of a data center and if all
the replications are saved in the Brokers belonging to the same rack, there is
a risk of data loss in case of a rack failure.

With Kafka’s rack awareness feature, the replications are spread across
various racks. This ensures that even during a rack-level failure, the data is
still available in the Brokers of other racks. To achieve rack awareness, we
must ensure that the Brokers are spread across multiple racks in a Kafka
cluster and utilize the following configuration property to specify the rack
name for each Broker. The configuration property must be specified in
server.properties file.

broker.rack = my-rack-name

When a rack name is specified for each Broker, Kafka will ensure to have
replications across multiple racks providing a higher durability.

Scaling Kafka Cluster

We can scale the Kafka cluster by adding new Brokers as required. To add
new Brokers to our Kafka clusters, we simply need to assign a unique Broker
id and fire up Kafka on that Broker. To utilize these newly-commissioned

Kafka Brokers, we must either create a new Topic or move the Partitions to
them. The Partitions would not be allotted automatically as soon as they are
commissioned.

We shall learn more about migrating Partitions in the Handling Partitions
section of this chapter.

KAFKA CONSUMER GROUPS TOOL
The Consumer Groups tool provides you all the required information related
to the Consumers. We can fetch the status of all the Consumer Groups in the
Kafka cluster using the Consumer Groups tool. The Consumer Groups tool
can also be used to list, describe and delete the Consumers.

The Kafka Consumer Group tool is specified with the shell script kafka-
consumer-groups.sh. The kafka-consumer-groups.sh tool needs to be
specified with the --bootstrap-server parameter followed by the host and
port pair of the Kafka Broker.

For example, we can list Consumer Groups in Kafka using the following
command:

$ kafka-consumer-groups.sh \
--bootstrap-server localhost:9092 \
--list

We can also fetch more details at group level by using the following
command. This command returns all the Topics that are being consumed by
the group along with the offsets for each partition.

$ kafka-consumer-groups.sh \
--bootstrap-server localhost:9092 \
--describe \
--group myGroup

We shall be looking at all the possible functions of Kafka Consumer Groups
tool in the lab exercises.
Reset Offsets

It is also possible to reset offsets of the Consumer Group using the --reset-
offsets option. Resetting the offsets can be useful in various failure scenarios

that require messages to be read again. This --reset-offsets option supports
one consumer group at the time followed by --all-topics or –topic
parameters. One of the parameters must be selected, except when --from-
file parameter is used.

It has the following three execution options:

● --dry-run : to display which offsets to reset.
● --execute : to execute --reset-offsets process.
● --export : to export the results to the CSV

format.

Moreover, --reset-offsets also has the following scenarios to choose from (at
least one scenario must be selected):

● --to-datetime <String: datetime> : Reset offsets to offsets from
datetime. Format: 'YYYY-MM-DDTHH:mm:SS.sss'.

● --to-earliest : Reset offsets to the earliest offset.
● --to-latest : Reset offsets to the latest offset.
● --shift-by <Long: number-of-offsets> : Reset offsets shifting the

current offset by 'n', where 'n' can be positive or negative.
● --from-file : Reset offsets to values defined in the CSV file.
● --to-current : Resets offsets to the current offset.
● --by-duration <String: duration>: Reset offsets to offset by

duration from current timestamp. Format: 'PnDTnHnMnS'
● --to-offset : Reset offsets to a specific offset

For example, the following command resets the offsets of a consumer group
to the earliest offset.

$ kafka-consumer-groups.sh \
--bootstrap-server localhost:9092 \
--reset-offsets --group myGroup \
--topic logs \
--to-earliest

DYNAMIC CONFIGURATIONS

Configurations can be overridden dynamically on the fly using the kafka-
configs.sh shell script tool. The kafka-configs.sh tool can be utilized to
modify the Broker, Topic level configurations and override quotas for the
Producer and Consumer clients.

Broker Configs

We can execute the following command to override a number of network
threads for the Broker 1 as 2 using the kafka-configs.sh tool.

$ kafka-configs.sh \
--bootstrap-server localhost:9092 \
--entity-type brokers \
--entity-name 1 \
--alter \
--add-config num.network.threads=2

Moreover, the configuration overrides can be fetched by using the --describe
command as shown below.

$ kafka-configs.sh \
--bootstrap-server localhost:9092 \
--entity-type brokers \
--entity-name 1 \
--describe

We can also delete the configuration changes by using the --delete-config
command followed by the configuration property as shown below:

$ kafka-configs.sh \
--bootstrap-server localhost:9092 \
--entity-type brokers \
--entity-name 1 \
--alter \
--delete-config num.network.threads

There could be scenarios where we might want to change or override the
configurations for an entire cluster. This helps to have all the configurations
consistent across the cluster. We can set the cluster-wide configurations as
shown below:

$ kafka-configs.sh \
--bootstrap-server localhost:9092 \
--entity-type brokers \
--entity-default \
--alter \
--add-config num.network.threads=2

We can also list the cluster-wide configurations using the following
command:

$ kafka-configs.sh \
--bootstrap-server localhost:9092 \
--entity-type brokers \
--entity-default \
--describe

Please note that you cannot configure the read-only configuration properties
dynamically. Please check the link in references that specifies if a broker
configuration is read-only or not.

Topic Configs

We can also override the Topic-level configurations, describe and delete as
seen for the Broker configurations. The configurations for Topics can have
server defaults as well as the optional per-Topic override. If there are no
per-Topic configurations specified, the default configurations of the server
are used.

The per-Topic configurations can be specified in two different ways. First,
while creating the Topic using one or more --config options with kafka-
topics.sh tool, and the second, by using the kafka-configs.sh tool. The kafka-
configs.sh tool for Topic-level configurations can be used with --entity-type
option with value as Topics and --entity-name option with value as the name
of the Topic.

For example, properties can be dynamically configured while creating a
Topic as shown below.

$ kafka-topics.sh \
--bootstrap-server localhost:9092 \

--create \
--topic my-topic \
--partitions 1 \
--replication-factor 1 \
--config max.message.bytes=64000 \
--config flush.messages=1

The above command will create a Topic and override the two configurations
max.message.bytes and flush.messages.

As mentioned earlier, we can also override the configurations by
dynamically using the kafka-configs.sh tool. For example, we can override
the compression codec as snappy for the Topic by using the following
command.

$ kafka-configs.sh \
--bootstrap-server localhost:9092 \
--entity-type topics \
--entity-name logs \
--alter \
--add-config compression.type = “snappy”

The overrides can be checked using the --describe option as shown below.
This will list all the dynamic overrides for the Topics entity.

$ kafka-configs.sh \
--bootstrap-server localhost:9092 \
--entity-type topics \
--entity-name my-topic \
--describe
The deletion and listing of overrides is similar to what we have witnessed for
the Broker configurations. We simply have to replace the entity type as
Topics followed by the name of the Topic and delete the configuration.

For example, the following command is used to delete the overridden
configuration.

$ kafka-configs.sh \
--bootstrap-server localhost:9092 \
--entity-type topics \

--entity-name logs \
--alter \
--delete-config compression.type

Setting Quotas

We can also override the default quotas for the Producer and Consumer
clients using the kafka-configs.sh tool. The quotas can be set for a client id
or at a user level. The configurations that can be overridden for the
Producer and Consumer clients are given as follows:

● producer_bytes_rate: The number of messages in bytes produced
by a single client id to a single Broker per second.

● consumer_bytes_rate: The number of messages in bytes
consumed by a single client id to a single Broker per second.

Let us configure the custom quota for user 1 and client A as follows:
$ bin/kafka-configs.sh \
--bootstrap-server localhost:9092 \
--alter \
--add-config 'producer_byte_rate=1024,
consumer_byte_rate=2048' \
--entity-type users \
--entity-name user1 \
--entity-type clients \
--entity-name clientA

We can also configure the custom quota just for the user or a client id. The
configured quotas can be listed by using the --describe command as
observed in the previous sections.

Please check the link to the documentation in the references section to
learn all the valid configurations that can be overridden by using the kafka-
configs.sh tool.

HANDLING PARTITIONS
Let us now look at the handling partitions. Kafka provides two different tools
for handling partitions. These tools help us in electing the preferred replica

leaders, reassigning the partitions to Brokers and also modifying the
replication factor of these partitions. Let us look at them in detail.

Electing Preferred Replications

In the event of Broker failure, the leader partitions hosted in that Broker will
be reassigned to the other Brokers. When a Broker comes back from the
failure, it will only be assigned its previous follower replicas of the partitions,
at the time when its failure had happened.
However, to avoid this situation, Kafka has a concept of preferred replicas.
The list of replicas for a partition is called the assigned replicas. The first
replica in this list is called, the preferred replica. When enabled, Kafka tries
to restore the leadership of the Partitions to the Broker that is set as
preferred for its leadership. For example, if the list of assigned replicas for a
partition are 1, 3 and 5, the partition 1 is preferred as the leader for 3 or 5,
as it is the first replica in the Broker’s replica list.

This following configuration property must be set to true to enable this
particular behavior:

auto.leader.rebalance.enable=true

If this configuration property is not set to true, we can manually restore the
leadership by using the kafka-preferred-replica-election.sh
tool.

$ kafka-preferred-replica-election.sh \
--bootstrap-server broker_host:port

Reassigning Partitions

The Partitions can be reassigned to other Brokers using the partition
reassignment tool. Partitions are reassigned to balance a Kafka cluster after
commissioning (or decommissioning) of Brokers. Partitions are also
reassigned in the event of the Broker failures, so that the load is evenly
balanced across the cluster. Having Partitions distributed across the cluster
ensures an evenly-distributed data-load on the Brokers. However, the
Partition reassignment tool cannot automatically evaluate the data
distribution and reassign the partitions. The user has to manually evaluate
and come up with a plan to move the Topics or its Partitions.

The Partition reassignment tool has the following three steps to reassign the
partitions:

● --generate: The first step is to generate a plan for the
reassignment of partitions. The tool is provided with a list of
Topics and Brokers to generate a plan.

● --execute: The second step is the execution step where the actual
reassignment is performed.

● --verify: Finally, the tool verifies the status of the reassigned
partitions by using the generated list. The status can be
‘successful’, ‘failed’ or ‘in progress’.

Moving Topics to new machines

Let us first look at migrating the entire Topics. This tool comes in handy
when the new Brokers are added to the Kafka cluster. The partitions can be
reassigned by moving entire Topics to the newly-added Brokers, instead of
moving these partitions individually. In order to reassign partitions, all we
have to do is to specify the list of Topics to move, along with the list of new
Brokers. Afterwards, the tool does the job of reassigning the partitions
evenly across the newly-added Brokers.

Let us understand this with the following example. Assume a Kafka cluster
with 3 Brokers (with ids 0, 1, and 2). These three Brokers contain multiple
Topics and are serving the client requests. However, due to huge production
and consumption on two of the Topics (let’s assume, server-logs and sensor
logs), we have then decided to scale our Kafka cluster by adding two new
Brokers (ids 3 and 4). We now have to move these Topics (server-logs and
sensor logs) to the newly added Brokers (3 and 4). To migrate these Topics
to the newly-added Brokers, we have to assign them as a list to the Partition
reassignment tool. After the execution of partition reassignment tool, the
Topics (server-logs and sensor logs) will be moved to the newly-added
Brokers (3 and 4). Now, the Topics will only exist on the newly-added
Brokers (3 and 4) and will be removed from those Brokers that were hosting
these Topics previously.

The tool accepts the list of Topics in the json file. The first step is to list the
Topics that should be moved in the json file as shown below:

$ cat topics-to-move.json

{"topics": [{"topic": "server-logs"},
{"topic": "sensor-logs"}],

"version":1
}

Next, we have to utilize the partition reassignment tool to generate the
execution plan by specifying the path to json file containing the list of Topics
to move and to the newly-added Broker list.

$ kafka-reassign-partitions.sh \
--bootstrap-server localhost:9092 \
--topics-to-move-json-file topics-to-move.json \
--broker-list "3,4" \
--generate

The path to json file is specified as a parameter with the --topics-to-move-
json-file option and the Broker ids are specified with --broker-list option. We
then utilize the --generate option to generate the execution plan. This will
generate the current partition replica assignment and the proposed
partition reassignment configuration as shown below. At this point of time,
the reassignment has not yet started. It only provides with the current
assignment and proposed assignment, i.e., the partitions of Topics (server-
logs and sensor logs) are proposed to move to the newly-added Brokers (3
and 4) from the Brokers (0, 1 and 2).

Current partition replica assignment

{"version":1,
"partitions":[

{"topic":"sensor-logs","partition":2,"replicas":[0,1]},
{"topic":"sensor-logs","partition":0,"replicas":[1,2]},
{"topic":"server-logs","partition":2,"replicas":[1,2]},
{"topic":"server-logs","partition":0,"replicas":[0,1]},
{"topic":"sensor-logs","partition":1,"replicas":[0,2]},
{"topic":"server-logs","partition":1,"replicas":[0,2]}]

}

Proposed partition reassignment configuration

{"version":1,
"partitions":[

{"topic":"sensor-logs","partition":2,"replicas":[3,4]},
{"topic":"sensor-logs","partition":0,"replicas":[3,4]},
{"topic":"server-logs","partition":2,"replicas":[3,4]},
{"topic":"server-logs","partition":0,"replicas":[3,4]},
{"topic":"sensor-logs","partition":1,"replicas":[3,4]},
{"topic":"server-logs","partition":1,"replicas":[3,4]}]
}

The current assignment should be saved as a backup for he rollback
purposes. The new assignment should be saved in a json file to feed the --
execute parameter, which is the next step.

Now that we have successfully generated the set of partition moves, it is
time to execute this process.

$ kafka-reassign-partitions.sh \
--bootstrap-server localhost:9092 \
--reassignment-json-file partition-reassignment.json \
--execute

The path to json file (partition-reassignment.json) containing the proposed
reassignment configuration is specified as a parameter to --reassignment-
json-file option. Subsequently, we use the --execute option to start the
execution of the partition reassignment.

Current partition replica assignment

{"version":1,
"partitions":[

{"topic":"sensor-logs","partition":2,"replicas":[0,1]},
{"topic":"sensor-logs","partition":0,"replicas":[1,2]},
{"topic":"server-logs","partition":2,"replicas":[1,2]},
{"topic":"server-logs","partition":0,"replicas":[0,1]},
{"topic":"sensor-logs","partition":1,"replicas":[0,2]},
{"topic":"server-logs","partition":1,"replicas":[0,2]}]

}

Save this to use as the --reassignment-json-file option
during rollback
Successfully started reassignment of partitions

{"version":1,
"partitions":[

{"topic":"sensor-logs","partition":2,"replicas":[3,4]},
{"topic":"sensor-logs","partition":0,"replicas":[3,4]},
{"topic":"server-logs","partition":2,"replicas":[3,4]},
{"topic":"server-logs","partition":0,"replicas":[3,4]},
{"topic":"sensor-logs","partition":1,"replicas":[3,4]},
{"topic":"server-logs","partition":1,"replicas":[3,4]}]
}

The final step is to verify the reassignment using --verify option. The json file
(partition-reassignment.json) used in the --execute step has to be specified
along with the --reassignment-json-file option in the verification step. This
step provides the information of reassignments that are completed
successfully, failed or are in progress.

$ kafka-reassign-partitions.sh \
--bootstrap-server localhost:909 \
--reassignment-json-file partition-reassignment.json \
--verify

Status of partition reassignment:
Reassignment of partition [sensor-logs,0] completed

successfully
Reassignment of partition [sensor-logs,1] is in

progress
Reassignment of partition [sensor-logs,2] is in

progress
Reassignment of partition [server-logs,0] completed

successfully
Reassignment of partition [server-logs,1] completed

successfully
Reassignment of partition [server-logs,2] completed

successfully

We have now successfully moved Topics to the new machines using the
partition reassignment tool.

Custom Partition Reassignment

Instead of having the Partition reassignment tool to generate the partition
reassignment plan, users can also create their own custom reassignment
plan by selecting the partitions that are required to be moved to other
Brokers. This way the user can skip the --generate step and directly start
from the --execute step.

For example, let us move the partition 0 of Topic sensor-logs to brokers 3, 4
and partition 1 of Topic server-logs to Brokers 1, 3. The first step is to
manually create the reassignment plan in a json file (custom-
reassignment.json) as given below:

$ cat custom-reassignment.json

{"version":1,
"partitions":[
{"topic":"sensor-logs","partition":0,"replicas":[3,4]},
{"topic":"server-logs","partition":1,"replicas":[1,3]}]
}
We then use the --execute option to trigger the partition reassignment as
observed in the previous section.

$ kafka-reassign-partitions.sh \
--bootstrap-server localhost:9092 \
--reassignment-json-file custom-reassignment.json \
--execute

Current partition replica assignment

{"version":1,
"partitions":[

{"topic":"sensor-logs","partition":0,"replicas":[1,2]},
{"topic":"server-logs","partition":1,"replicas":[0,2]}]
}

Save this to use as the --reassignment-json-file option

during rollback
Successfully started reassignment of partitions

{"version":1,
"partitions":[

{"topic":"sensor-logs","partition":0,"replicas":[3,4]},
{"topic":"server-logs","partition":1,"replicas":[1,3]}]
}

Finally, we can use the --verify option to check the status of reassignment as
we had performed in the previous section.

Increasing Replication factor

We can also increase the replication factor by using the partition
reassignment tool. All we need to do is to specify the extra replicas (Broker
ids) in the custom reassignment json file for the partition that needs to have
the replication factor increased, and use the –execute option.

For example, let us increase the replication factor of partition 1 of Topic
server_logs from 2 to 3. The partition 1 of the server_logs has only two
replicas in Brokers 1 and 3. We shall now have this partition replicated in
Broker 2, so that it will exist in three Brokers 1, 2, and 3.

> cat increase-replication-factor.json
{"version":1,
"partitions":[

{"topic":"server-logs","partition":1,"replicas":[1,2,3]}
]}

We can now use this json file with the --execute option and trigger the
reassignment process.

$ kafka-reassign-partitions.sh \
--bootstrap-server localhost:9092 \
--reassignment-json-file increase-replication-
factor.json \
--execute

Current partition replica assignment

{"version":1,
"partitions":[

{"topic":"server-logs","partition":1,"replicas":[0,2]}
]}

Save this to use as the --reassignment-json-file option
during rollback
Successfully started reassignment of partitions
{"version":1,
"partitions":[

{"topic":"server-logs","partition":1,"replicas":[1,2,3]}
]}

The theory for this chapter finishes at this point. Let’s jump ahead to the lab
exercises and have our hands on the administration of Kafka.

AIM

The aim of the following lab exercises is to learn about the administration
process of Kafka

The labs for this chapter include the following exercises:
● Executing Graceful Shutdown
● Working with the Consumer Groups Tool
● Dynamically overriding Configurations

We need the following packages to perform the lab exercises:
● Java Development Kit

(JDK)
● Apache ZooKeeper
● Apache Kafka
● Scala
● IntelliJ IDEA

LAB EXERCISE 8: KAFKA ADMINISTRATION

1. Executing Graceful Shutdown
2. Working with Consumer Groups Tool
3. Dynamically overriding Configurations

TASK 1: EXECUTING GRACEFUL SHUTDOWN
We have learned shutting down Kafka Brokers in a controlled environment
in theory for this chapter. Let us now learn how we can practically execute
it. Before starting this task, make sure the Kafka server is stopped.

Step 1: Open the server.properties configuration file. The configuration
properties for Kafka are available in the following path:

/usr/share/kafka/config/server.properties

$ sudo vi /user/share/kafka/config/server.properties

You should observe the following screen:

Step 2: Enter the following configuration property and set it to true, so as to
enable the controlled shutdown of the Kafka Broker. Save the
server.properties file.
controlled.shutdown.enable=true

Step 3: Now start the ZooKeeper and then Kafka. You must start Kafka on all
the nodes if you have multiple nodes in your Kafka cluster.

$ zkServer.sh start

You should observe that the ZooKeeper server starts as shown in the
screenshot below.

$ kafka-server-start.sh
/usr/share/kafka/config/server.properties

Step 4: Now run the following command from the Broker you want to shut
down from another terminal.

$ kafka-server-stop.sh

You should see the following information notifying that the Broker is being
shut down in the controlled environment.

As mentioned in the theory of this chapter, the controlled shutdown is only
useful if all the partitions of that Broker have a replication factor of more
than 1. If there is only one replica for a partition, the partition will be
unavailable during the shutdown anyway.
Task 1 is complete!

TASK 2: WORKING WITH CONSUMER GROUPS TOOL
Step 1: Before we start working with the Kafka Consumer Groups tool, we
must ensure that there are some Consumers which are consuming from the
Topic. Please run kafkaProducer.scala and kafkaConsumer.scala before
going to the next step. The tool is not useful if there are no consumer groups
running at all.

Step 2: Let us first list all the Consumer Groups using the Consumer Groups
tool.

$ kafka-consumer-groups.sh \
--bootstrap-server localhost:9092 \
--list

You should see the kafkaGroup1 as the Consumer Group as depicted in the
screenshot below.

Step 3: We can also fetch more details at group level by using the following
command. This command returns all the Topics that are being consumed by
the group along with the offsets for each partition.

$ kafka-consumer-groups.sh \
--bootstrap-server localhost:9092 \
--describe \
--group kafkaGroup1

Step 4: The Consumer Group tool can also be used to list all active members
in a consumer group.

$ kafka-consumer-groups.sh \
--bootstrap-server localhost:9092 \
–describe \
--group kafkaGroup1 \
--members

Since we have one Consumer which is consuming from this consumer group,
we can only see one Consumer as a member of this group as depicted in the
screenshot below.

Apart from the information provided by the --members option, we can also
use --members --verbose option to list the partitions assigned to each
member.

$ kafka-consumer-groups.sh \
--bootstrap-server localhost:9092 \
–describe \
--group kafkaGroup1 \
--members \
--verbose

Step 5: Let us now use the --state option to list the useful group-level
information.

$ kafka-consumer-groups.sh \
--bootstrap-server localhost:9092 \
--describe \
--group kafkaGroup1 \
--state

Step 6: Let us use the Consumer Groups tool to reset the offsets to the latest
offset.

$ kafka-consumer-groups.sh \
--bootstrap-server localhost:9092 \
--reset-offsets \
--group kafkaGroup1 \
--topic logs \
--to-latest \
–execute

You may also run the command without --execute option to simply display
the offsets to reset.

$ kafka-consumer-groups.sh \
--bootstrap-server localhost:9092 \
--reset-offsets \
--group kafkaGroup1 \
--topic logs \
--to-latest \
--dry-run

Please check the ‘Reset Offset’ section in the theory of this chapter for all
the possible ways to reset the offsets.

Step 7: The Consumer Groups tool can also be used to manually delete a
single or multiple consumer groups.

$ kafka-consumer-groups.sh \
--bootstrap-server localhost:9092 \
--delete \
--group kafkaGroup1

We can then check if the consumer group was deleted successfully by
running the list command as shown in the screenshot below. Since there are
no more consumer groups, nothing has returned when we execute the list
command.

We have just deleted a single consumer group. You can also delete the

multiple consumer groups as shown below.

$ kafka-consumer-groups.sh \
--bootstrap-server localhost:9092 \
--delete \
--group kafkaGroup1 \
--group kafkaGroup2 \
--group kafkaGroup3

Task 2 is complete!

TASK 3: DYNAMICALLY OVERRIDING ONFIGURATIONS
We have looked at the dynamic configurations in the theory section of this
chapter. Let us now practically apply a couple of configuration properties
dynamically.
Step 1: Let us first dynamically configure a Broker configuration property
using the kafka-configs.sh tool. We shall be enabling an unclean leader
election configuration property. Setting this property to true will choose a
follower replica as leader in the event of the failure of leader replica, even
though the follower replica is not In-Sync Replica (ISR).

$ kafka-configs.sh \
--bootstrap-server localhost:9092 \
--entity-type brokers \
--entity-name 0 \
--alter \
--add-config unclean.leader.election.enable=true

We can now use the --describe option to list the dynamic Broker
configurations for Broker id 0.

$ kafka-configs.sh \
--bootstrap-server localhost:9092 \
--entity-type brokers \
--entity-name 0 \

--describe

Step 2: The dynamically-configured property can be deleted and returned to
its default value by using the --delete option.

$ kafka-configs.sh \
--bootstrap-server localhost:9092 \
--entity-type brokers \
--entity-name 0 \
--alter \
--delete-config unclean.leader.election.enable

The --describe option can be utilized to verify the deletion. As we can see
from the screenshot above, there are no dynamic configs returned
indicating the successful deletion.

Step 3: Not only can the configurations be overridden dynamically per
Broker, but some of them can be modified cluster-wide. Using the --entity-
default option with --entity-type of Brokers will apply the modified value
cluster-wide.

Let us set the log.cleaner.threads property to 2 for all the Brokers in the
cluster.

$ kafka-configs.sh \
--bootstrap-server localhost:9092 \
--entity-type brokers \
--entity-default \
--alter \
--add-config log.cleaner.threads=2

You may check if the configuration has been successfully updated using the -
-describe as observed in the previous step. Moreover, you may also delete
this updated cluster-wide configuration using the same process. However,
be sure to utilize the --entity-default option instead of --entity-name option
as depicted in the screenshot below:

The following order of precedence is used for considering the
configurations, as these configurations can be set in different ways:

1. Dynamic per-Broker configurations stored in the ZooKeeper.
2. Dynamic cluster-wide default configurations stored in the

ZooKeeper.
3. Static Broker configurations from the server.properties file.
4. The Kafka default values. Please check the link in the references

section to the Kafka documentation for all the default values of
the configuration properties.

Step 4: As a lab challenge, override the Topic-level configurations. You may
refer to the Dynamic Configurations section in the theory part of this
chapter. You should be able to successfully override per-Topic configurations
while creating a Topic using the kafka-topics.sh tool, as well as the kafka-
configs.sh tool. In this way, you should be able to describe as well as delete
the overridden configurations.

Task 3 is complete!

SUMMARY
In theory, we have learned the basic Kafka operations which include the
Graceful Shutdown, Rack Awareness, and Scaling Kafka cluster.
Subsequently, we learned the Kafka Consumer Groups tool. This tool
provides all the relevant information regarding the Consumers. Thus, we can
fetch the status of all the Consumer Groups in the Kafka cluster using the
Consumer Groups tool. In addition, the Consumer Groups tool can also be
utilized to list, describe and delete the Consumers.

Then, we have also learned the dynamically-overriding configurations for
the Brokers and Topics. Moreover, we have also learned how to set quotas
for the Producer and Consumer clients. Then, we determined how to handle
Partitions. Kafka provides two tools for handling Partitions. These tools help
us in electing the preferred replica leaders, reassigning the partitions to
Brokers and also modifying the replication factor of the partitions.

Finally, in the labs of this chapter, we had our hands-on experience about
executing a graceful shutdown of the Brokers, and the Consumer Groups
tool. Finally, we learned how to dynamically override the configurations.

REFERENCES

● http://kafka.apache.org/
● https://zookeeper.apache.org/
● http://spark.apache.org/
● http://hadoop.apache.org/
● https://www.confluent.io/
● https://kafka.apache.org/downloads
● https://kafka.apache.org/documentation/#design
● https://kafka.apache.org/documentation/#configuration
● https://kafka.apache.org/documentation/#operations

	CHAPTER 1: INTRODUCTION TO APACHE KAFKA
	OVERVIEW OF BIGDATA
	BRIEF INTRODUCTION TO SPARK
	INTRODUCTION TO KAFKA
	CONFLUENT OVERVIEW
	KAFKA USE CASE
	INTRODUCTION TO ZOOKEEPER
	WHY DOES KAFKA NEED ZOOKEEPER?
	SUMMARY

	CHAPTER 2: KAFKA FRAMEWORK
	KAFKA ARCHITECTURE
	Task 1: Download and Install JDK
	Task 2: Download and Install ZooKeeper
	Task 3: Configure ZooKeeper
	Task 4: Download and Install Kafka
	Task 5: Configure Kafka
	Task 6: Starting ZooKeeper and Kafka
	SUMMARY

	CHAPTER 3: KAFKA IN-DEPTH PART I
	TOPIC OPERATIONS
	TOPICS OVERVIEW
	DATA MODEL IN ZOOKEEPER
	ZOOKEEPER WATCHES
	ZOOKEEPER’S ROLE IN CLUSTER MEMBERSHIP
	ELECTION OF CONTROLLER BROKER
	RESPONSIBILITIES OF CONTROLLER BROKER
	Task 1: Kafka Topic Operations
	Task 2: Hands-on ZooKeeper Shell
	Task 3: Controller Broker election
	SUMMARY

	CHAPTER 4: KAFKA IN-DEPTH PART II
	REPLICATIONS
	PARTITIONS
	BOOTSTRAP SERVER
	Task 1: Download and Install Scala
	Task 2: Download and Install IntelliJ IDEA
	Task 3: Configuring IntelliJ IDEA
	Task 4: Specifying Bootstrap Servers
	SUMMARY

	CHAPTER 5: THE PRODUCER
	PRODUCER WORKFLOW
	TYPES OF PRODUCERS
	PRODUCER CONFIGURATIONS
	Task 1: Import Kafka Packages and Declare variables
	Task 2: Create a Kafka Producer ProducerRecord Object
	Task 3: Running the Producer
	Task 4: Sending message synchronously
	Task 5: Sending message Asynchronously
	SUMMARY

	CHAPTER 6: THE CONSUMER
	OFFSET
	CONSUMER GROUPS
	OFFSET MANAGEMENT
	REBALANCE LISTENERS
	Task 1: Constructing a Kafka Consumer
	Task 2: Running the Consumer
	Task 3: Synchronous & Asynchronous Offset Commit
	Task 4: Using both Synchronous & Asynchronous Offset Commit
	Task 5: Commit Specified Offset
	SUMMARY

	CHAPTER 7: KAFKA DATA DELIVERY
	DELIVERY SEMANTICS
	SERVICE GOALS
	Task 1: Download & Install MySQL
	Task 2: Create Database & Tables
	Task 3: Constructing a Producer
	Task 4: Constructing a Consumer
	SUMMARY

	CHAPTER 8: KAFKA ADMINISTRATION
	BASIC KAFKA OPERATIONS
	KAFKA CONSUMER GROUPS TOOL
	DYNAMIC CONFIGURATIONS
	HANDLING PARTITIONS
	Task 1: Executing Graceful Shutdown
	Task 2: Working with Consumer Groups Tool
	Task 3: Dynamically Overriding onfigurations
	SUMMARY

	REFERENCES

