

Linux Server
Cookbook

Get Hands-on Recipes to Install, Configure,
and

Administer a Linux Server Effectively

Alberto Gonzalez

www.bpbonline.com

http://www.bpbonline.com/

Copyright © 2023 BPB Online

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor BPB Online or its dealers and distributors, will be held liable for
any damages caused or alleged to have been caused directly or indirectly by this book.

BPB Online has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, BPB Online cannot
guarantee the accuracy of this information.

First published: 2023

Published by BPB Online
WeWork
119 Marylebone Road
London NW1 5PU

UK | UAE | INDIA | SINGAPORE

ISBN 978-93-5551-360-1

www.bpbonline.com

http://www.bpbonline.com/

Dedicated to
To the best person I have met in my life:

Elizabeth Wangari.

About the Author
Alberto Gonzalez is a Principal Architect at Red Hat with more than 20
years’ experience in the IT sector, with his main focus being Cloud and
Infrastructure, and mainly open-source software. He is currently teaching
and creating content on Hybrid Cloud technologies. Alberto has previously
written two books in Spanish, one about Ansible and another about Docker.

About the Reviewer
Harshal Lakare is a Linux administrator with over 11 years of experience
in the field. He has a strong background in system administration and has
expertise in a variety of Linux distributions. Harshal is skilled in
troubleshooting, problem-solving, and has a keen eye for detail. He is also a
team player and enjoys collaborating with others to achieve common goals.
In his spare time, Harshal enjoys reading and keeping up with the latest
trends in the field. Overall, Harshal is a talented and dedicated Linux
administrator who is committed to delivering high-quality work and helping
his team succeed.

Acknowledgements
My gratitude goes to the team at BPB Publication for helping me during the
writing process. Not being native in English is a challenge, but they helped
during the whole process to create a book that I am proud to have written.
They were supportive during the whole process, understanding the changes
proposed and new topics added during the writing process.
I want to say thanks to my family and friends; they understood that writing
a book requires to dedicate multiple hours which I should have dedicated to
them. This book is the result of that effort.

Preface
This book covers how to administer a Linux server from basic tasks to
advanced ones., starting with the installation of popular Linux distributions,
going through administration users and software, to the installation and
administration of advanced services such as databases and file sharing. This
book will guide you through new technologies related to automation,
containers and DevOps philosophy. Public and Private Clouds are covered,
as well as why Hybrid Cloud is an important concept for enterprises.
Chapter 1 is the introduction to Linux. This chapter explains the history of
the Operating System, the usage of Linux in most of the devices available
and the IT sectors where Linux is the main operating system. This chapter
also covers the latest features available and discusses the promising future
of Linux.
Chapter 2 covers the Linux installation. It describes the different support
levels available for the popular distributions. It also details the installation
methods available and guides step-by-step how to install the popular Linux
distributions available.
Chapter 3 introduces the Command Line Interface, a main component
when a user is operating or administrating a Linux system. This chapter
covers basic commands and concepts related to the input and output of the
commands. Commands to identify the resources of the system are detailed
with different examples.
Chapter 4 shows how to manage users and software on Linux. It describes
how users and groups work on Linux. With multiple examples, this chapter
describes how to install software on systems such as Ubuntu Server or Red
Hat Enterprise Linux.
Chapter 5 covers how to manage files, directories and processes. It
describes the directory structure on Linux, the permissions and how to
access to the files. This chapter also covers the special characters and the
regular expressions, as well as the important concepts working on the
terminal. Popular editors and file managers are also described. The last part
of the chapter focuses on the process management and the priorities.

Chapter 6 explains how to monitor the resources in the system. Commands
to query the usage of CPU, Memory, Disk and Network are described with
several examples. This chapter covers quotas and limits to limit the usage of
the resources available.
Chapter 7 covers the basics of the networking in general and explains how
to configure the networking on Linux system. It also discusses commands
to manage the IP addresses, and the routes are shown with different
examples. In addition, advanced network configuration, such as bonding,
bridges and virtual switches are also covered.
Chapter 8 focuses on the security part on a Linux system. It discusses the
different firewall solution available and how to ensure that the services are
correctly protected against unwanted access. Different tools are described to
monitor the traffic and the changes in the system.
Chapter 9 details the popular network services available on Linux and the
software associated to offer the services. Services such as DHCP, DNS and
SSH are detailed with examples and the commands associated.
Chapter 10 is about File Sharing solutions available on Linux. It describes
NFS, SMB and FTP protocols and the software to provide the services and
the client tools.
Chapter 11 covers the popular databases available on Linux system. This
chapter describes the difference between relational databases and NoSQL
databases. Different solutions such as MySQL and MariaDB are detailed
for the relational databases and MongoDB is described for the NoSQL
database.
Chapter 12 details about what is Automation and the importance in these
days. This chapter explains how to perform automation with shell scripting
and developing, with a programming language such as Python. The popular
tool Ansible is detailed to perform simple and advanced automation tasks.
Chapter 13 details the containers and the modernization of applications.
Software to run containers, such as Docker and podman are also explained
with several examples of usage. A basic introduction to Kubernetes is
explained. New practices such as Continuous Integration and Continuous
Delivery (CI/CD) are explained and the software available for these
practices are described with different examples.

Chapter 14 explains about the Backup and Restore and the importance in
the enterprise level. Different open-source solutions are described.
Installation, usage and examples of open-source software solutions called
Bacula and Relax and Recover (ReaR) are covered.
Chapter 15 covers a new concept: Multi Cloud Management. This chapter
describes the popular public cloud available, such as AWS, GCP and Azure,
as well as the services offered. The concept Infrastructure as code and the
software Terraform for managing multiple clouds is also detailed with
multiple examples.
Chapter 16 is about Infrastructure as a Service. It details the components of
a Private cloud and how a Hybrid Cloud operates. The popular IaaS
solution called OpenStack is explained with detail and with several
examples.

Code Bundle and Coloured Images
Please follow the link to download the

Code Bundle and the Coloured Images of the book:

https://rebrand.ly/372e55
The code bundle for the book is also hosted on GitHub at
https://github.com/bpbpublications/Linux-Server-Cookbook. In case
there's an update to the code, it will be updated on the existing GitHub
repository.
We have code bundles from our rich catalogue of books and videos
available at https://github.com/bpbpublications. Check them out!

Errata
We take immense pride in our work at BPB Publications and follow best
practices to ensure the accuracy of our content to provide with an indulging
reading experience to our subscribers. Our readers are our mirrors, and we
use their inputs to reflect and improve upon human errors, if any, that may
have occurred during the publishing processes involved. To let us maintain
the quality and help us reach out to any readers who might be having
difficulties due to any unforeseen errors, please write to us at :
errata@bpbonline.com
Your support, suggestions and feedbacks are highly appreciated by the BPB
Publications’ Family.

Did you know that BPB offers eBook versions of every book
published, with PDF and ePub files available? You can upgrade to
the eBook version at www.bpbonline.com and as a print book

https://rebrand.ly/372e55
https://github.com/bpbpublications/Linux-Server-Cookbook
https://github.com/bpbpublications
mailto:errata@bpbonline.com
http://www.bpbonline.com/

customer, you are entitled to a discount on the eBook copy. Get in
touch with us at: business@bpbonline.com for more details.
At www.bpbonline.com, you can also read a collection of free
technical articles, sign up for a range of free newsletters, and receive
exclusive discounts and offers on BPB books and eBooks.

mailto:business@bpbonline.com
http://www.bpbonline.com/

Piracy
If you come across any illegal copies of our works in any form on the
internet, we would be grateful if you would provide us with the
location address or website name. Please contact us at
business@bpbonline.com with a link to the material.

If you are interested in becoming an
author

If there is a topic that you have expertise in, and you are interested in
either writing or contributing to a book, please visit
www.bpbonline.com. We have worked with thousands of developers
and tech professionals, just like you, to help them share their insights
with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

Reviews
Please leave a review. Once you have read and used this book, why
not leave a review on the site that you purchased it from? Potential
readers can then see and use your unbiased opinion to make purchase
decisions. We at BPB can understand what you think about our
products, and our authors can see your feedback on their book.
Thank you!
For more information about BPB, please visit www.bpbonline.com.

mailto:business@bpbonline.com
http://www.bpbonline.com/
http://www.bpbonline.com/

Table of Contents
1. Introduction to Linux

Introduction
Structure
The magnitude of Linux
Linux on key sectors of the IT industry

Software
Devices and infrastructures
Information technology and business services
Emerging technologies
Telecommunications services

Latest features in Linux
Linux versus other operating systems
Promising future of Linux
Conclusion
Key facts
Questions
Answers

2. Linux Installation
Introduction
Structure
Linux support types

Red hat enterprise Linux long-term support
Ubuntu server long-term support
SUSE Linux enterprise server long-term support
Oracle Linux long-term support

Installation methods
Common installation steps
Advanced installation steps
Debian GNU/Linux

Installation menu
Select a language

Select the location
Configure the keyboard
Configure the network
Set up users and passwords
Configure the clock
Partition disks
Install the base system and install software
Install the GRUB boot loader

Ubuntu server
Installation menu
Select installation language
Keyboard configuration
The base for the installation
Network connections
Configure the Ubuntu archive mirror
Guided storage configuration
Profile setup
SSH setup
Featured server snaps

Red Hat Enterprise Linux
Installation menu
Select a language
Installation summary
Connect to Red Hat
Installation destination
Software selection
Root password
User creation
Installation progress

CentOS and CentOS stream
Rocky Linux and Alma Linux
SUSE Linux enterprise server and openSUSE
Other popular distributions
Conclusion
Key facts
Questions
Answers

3. Using the Command Line Interface
Introduction
Structure
Linux console and the prompt
Use of basic first CLI commands

Command pwd
Command whoami
Command hostname
Command man
Command cd
Command history
Command uptime

CLI commands to identify resources
Command lscpu
Command lshw
Command free
Command df
Commands lspci, lsusb, and lsblk

CLI commands to list elements
Command ls
Command find

Explanation of standard streams
CLI commands for data stream

Command echo
Command read
Command tee

Conclusion
Key facts
Questions
Answers

4. User Administration and Software Management
Introduction
Structure
Introduction to users and groups
Best practices for user accounts
Commands to administrate users

Command id
Commands useradd and adduser
Command usermod
Command lslogins
Commands who and w
Command userdel
Command passwd
Command chage
Command last

Commands to manipulate groups
Command groupadd
Command groups
Command groupmod
Command groupdel
Command gpasswd
Command newgrp

Introduction to RPM and DEB package formats
Commands to operate with RPM packages

Command rpm
Commands yum and dnf

Commands to operate with DEB packages
Command dpkg
Command apt-get, apt-cache, and apt-file

Introduction to services
Conclusion
Key facts
Questions
Answers

5. Managing Files, Directories, and Processes
Introduction
Structure
Linux directory structure

Directories storing applications
Directories storing user files
Directories storing configurations
Directories storing libraries

Directories storing variable data
Directories storing data for users
Directories storing system data information and boot files

Permissions
Access to files and understanding files on Linux

Commands chown and chgrp
Command chmod
Command cat
Commands head and tail

Special characters
Regular expressions

Commands grep
Commands awk
Formatting the output

File editors and file managers
Processes management
Operate with processes priorities
Conclusion
Key facts
Questions
Answers

6. Monitoring System Resources
Introduction
Structure
Monitoring CPU resources

Obtaining CPU(s) information
Understanding the system load and load average
Command uptime and file /etc/loadavg

Command top
Commands atop and htop
Command mpstat

Command sar
Command iostat

Monitoring memory resources
Command vmstat
Commands top, htop, and atop

Command sar
Memory usage for each process
Out of memory management

Monitoring disk usage and available space
Command iostat
Command iotop
Command atop
Command smartctl
Commands fio and hdparm
Commands df and LVM commands

Monitoring network resources
Command ethtool
Command nmon
Commands traceroute, tracepath, and mtr

Quotas and limits
Quotas
Limits

Conclusion
Key facts
Questions
Answers

7. Network Configuration
Introduction
Structure
Network introduction

Physical layer (Layer 1)
Data link layer (Layer 2)
Network layer (Layer 3)
Transport layer (Layer 4)
Session, presentation, and application layers (Layers 5, 6, and 7)

Basic network configuration
Network configuration on Red Hat-based systems

Command nmcli
Command nmtui

Network configuration on Debian and Ubuntu
Routing

Advanced network configuration
Link aggregation (bonding)

Network bridges
Virtual LANs (VLANs)

Conclusion
Key facts
Questions
Answers

8. Security
Introduction
Structure
Security introduction
Firewall configuration on Linux

Firewalld
ufw
Masquerading

Services security
Disabling not needed services
Listing services listening in all interfaces
Service logging
Intrusion detection system
Security models

Network monitoring
Conclusion
Key facts
Questions
Answers

9. Network Services
Introduction
Structure
DHCP service and client

Linux DHCP servers and client
DNS service and clients

Linux DNS servers and client
SSH service and SSH client

SSH public and private keys
Check network services available
Other popular network services
Conclusion
Key facts
Questions
Answers

10. File Sharing
Introduction
Structure
NFS service and client

NFS server
NFS client

SMB introduction
Samba server and client

Samba Server
Samba client

FTP server and client
TFTP introduction
Conclusion
Key facts
Questions
Answers

11. Databases
Introduction
Structure
Relational databases
Structured Query Language (SQL)

CREATE statement
DROP statement
ALTER statement
INSERT statement
SELECT statement
UPDATE statement
DELETE statement

GRANT statement
REVOKE statement

MariaDB server
MariaDB client and tasks

SQLite
NoSQL databases
MongoDB databases
MongoDB client and tasks
Conclusion
Key facts
Questions
Answers

12. Automation
Introduction
Structure
Introduction to IT automation
Automation with shell scripting
Automation with Python
Automation with Ansible

Inventory
AD-HOC actions

YAML
Ansible configuration
Playbooks
Variables
Variable precedence
Handlers
Include and import
Facts and magic variables
Conditionals
Loops
Register
Templates
Blocks
List of popular modules
Roles

Collections
Ansible Galaxy

Conclusion
Key facts
Questions
Answers

13. Containers and CI/CD
Introduction
Structure
Introduction to containers and images

Containers versus virtualization
Container content
Images
Image registry

Docker
Run the first container
Obtain information about client and server
Operate with containers
Exposing containers
Container actions
Docker server statistics and events

Image registry
Podman
Container runtimes
Kubernetes
Introduction to continuous integration/delivery
Jenkins, Gitlab CI/CD, and Github actions

Jenkins
Gitlab CI/CD
GitHub actions

Conclusion
Key facts
Questions
Answers

14. Backup and Restore

Introduction
Structure
Introduction to backup and restore
Storage media for Backups
Backup types
Backup sources
Backup strategies
Backup solution features
Bacula

Bacula installation
Bacula services
Client installation
Command bconsole

Relax-and-Recover (ReaR)
Conclusion
Key facts
Questions
Answers

15. Multi Cloud Management
Introduction
Structure
Introduction to cloud providers

Advantages
Cloud services

Amazon Web Services (AWS)
Microsoft Azure
Google Cloud Platform
Alibaba Cloud
OpenStack

Multi cloud management
Infrastructure as code
Terraform

Installation
Running a simple Web server on AWS
Running a simple Web server on the Google Cloud Platform
Running a simple Web server on Microsoft Azure

Configuring DNS with Cloudflare
Conclusion
Key facts
Questions
Answers

16. Infrastructure as a Service
Introduction
Structure
Infrastructure as a Service
Private Cloud
Hybrid Cloud
OpenStack as an IaaS
Running virtual machines on OpenStack

Images
Flavors
Networking architecture
Networking for Virtual Machines
Routing
Security Groups
Public key
Virtual Machines
Floating IPs
Persistent storage
Orchestration
Dashboard

Conclusion
Key facts
Questions
Answers

Index

CHAPTER 1
Introduction to Linux

Introduction
On August 25, 2021, Linux celebrated 30 years since Linus Torvalds posted
a message about the new operating system he had designed. The IT sector
experienced enormous advances and changes during these three decades.
Linux became and consolidated the most important operating system in the
industry.
In this chapter, we will describe why Linux is essential for companies, its
latest features, and the cases in which it is used.

Structure
In this chapter, we will discuss the following topics:

The Magnitude of Linux
Linux on key sectors of the IT industry

Software
Devices and Infrastructure
Information Technology and Business Services
Emerging Technologies
Telecommunications Services

Latest Features in Linux
Linux vs. Other Operating Systems
Promising Future of Linux

The magnitude of Linux
Nowadays, it is impossible to understand our lives without a device
connected to the internet: a phone, a tablet, or a personal computer,

accessing a Web server or using an application to read one’s e-mails, look up
something in a search engine (like Google), or shop for a product you need.
The most common operating system for phones and tablets is Android, a
Linux variant. Popular services used by people on a daily basis, such as mail
servers or Web servers, are all most probably running in systems with a
Linux distribution. Other devices providing Internet access to those services
are usually running Linux too.
Linux is also used by a large number of professional developers, IT
professionals, and regular users as their main operating system. Linux is
currently the third most popular operating system for the desktop.
Linux began as a personal project by Linus Torvalds in the year 1991. The
development was done on MINIX, a Unix-like operating system. The year
after, the X Window System was ported to Linux, helping to gain importance.
The timeline for the more important releases are the following:

The first stable version was released in the year 1994.
The version 2.0 was released in the year 1996.
The version 2.2 was released in the year 1999, 2.4 in the year 2001, and
2.6 in 2003.
The version 3.0 was published the year 2011.
The version 4.0 in the year 2015, 5.0 in the year 2019, and version 6.0
in 2022.

Some other important events related to Linux during history are as follows:

Debian started in the year 1993.
Red Hat Linux was released in the year 1994
Ubuntu was released in the year 2004.
Android version 1.0 was released in the year 2008.
All the Top500 list of fastest supercomputers run Linux from the year
2017.

Linux on key sectors of the IT industry
Linux is a well-known platform for running applications and services in
enterprise environments. But Linux is not limited to servers; it is a key part

of the Information Technology industry and its general areas, such as:

Software
Devices and Infrastructure
Information Technology and Business Services
Emerging Technologies
Telecommunications Services.

Software
This area includes developing software for business or customer markets,
such as internet applications, system software, databases, management,
home entertainment, and so on. Historically speaking, there was a gap
between developers and the system administrators, as well as between the
developers and the environment where the applications are executed.
Modern development methodologies are based on the balance and
relationship between the system administrators and the programmers. The
concept of DevOps is a set of practices that combines software development
(Dev) with IT Operations (Ops). It aims to improve the system development
life cycle and provides continuous delivery with high software quality.
DevOps methodology is based on multiple tools, called toolchains, and is
deployed by Linux in different stages. Some of these tools will be covered in
this book. The following figure illustrates this:

Figure 1.1: DevOps stages. Source: Wikimedia

Plan: This stage is the definition of the activities required.

Jira is one of the most popular tools for this stage that can be
executed on Linux. Some open-source alternatives are Taiga and
Kanboard.

Create: This stage includes the coding, building, and integration with
the source repository as well as the continuous integration.

Some popular tools are as follows:

For coding, Integrated Development Environments (IDEs):
Vim, Emacs, and Visual Studio Code.
For repository and packaging: JFrogArtifactory, Sonatype
Nexus, Gitlab.
For building and continuous integration: Maven, Jenkins, and
Gitlab CI.

Verify: This stage ensures the quality of the software. Different tests
are performed during this stage related to security, integration, and
performance.

Some popular tools are as follows:

Testing tools: Selenium, Appium, Cypress, and JMeter.
Bug tracking: Bugzilla, Redmine, and Mantis BT.
Code review: Gerrit, Gitlab, and ReviewBoard.
Security: OWASP ZAP, OSSEC, and SonarQube.

Package: After the verification stage, the release is ready to be
deployed in a system with similar characteristics than production; this
environment is called stage or preproduction.

Popular tools include Docker and other tools described in the
Create stage.

Releasing: This is one of the most important stages of DevOps
methodology, and it includes the orchestration and the deployment of
the software to production.

Container platforms: Docker and Kubernetes.
Popular continuous development tools: goCD and ArgoCD.

Configuring: This stage includes infrastructure configuration and
management and infrastructure as code tools.

Popular tools examples: Ansible, Puppet, and Terraform.

Monitoring: This stage examines the performance monitoring and end-
user experience for the applications.

Popular tools examples: Prometheus and Grafana, Elastic Search,
Zabbix, and Nagios.

Companies are using Linux for developing and run software due to the
reliability, customization, and performance offered by this system. Linux
offers a secure environment to run critical and customer-facing applications.

Devices and infrastructures
Linux is not only limited to physical servers or virtual machines. Rather, it is
present in every device type available, some examples of which are as
follows:

Tiny computers like the popular Raspberry PI

Tablets, Chromebooks, and E-readers
Televisions and streaming devices
Routers and other network devices
Supercomputers: the top 500 of which are using Linux

Enterprise infrastructure has undergone a great transformation during the last
two decades. Devices for storage and networking, for example, were
previously closed proprietary platforms in a monolithic implementation but
have now moved to a modular, open implementation, virtualized, or
containerized environment. The term Software-defined Infrastructure is the
result of the transformation for compute, storage, and network resources.
Linux played a key part in this transformation in deploying the services with
the same, if not better, efficiency.
Software-defined compute (SDC): Also known as virtualization, it is when
a compute function is virtualized and is abstracted from the hardware that is
running it. A popular solution for virtualization is KVM.

Software-defined network (SDN): A network architecture that makes
the management of the network more flexible and easier, SDN
centralizes the management by abstracting the control plane from the
data plane. Controllers, the core element of SDN architecture, are run
in a Linux system. Some popular solutions are OpenvSwitch, OVN, and
OpenDayLight.
Software-defined storage (SDS): An architecture to offer dynamic
storage to the endpoints, independent of the underlying hardware
available. Some popular solutions are Ceph and FreeNAS.

Information technology and business services
IT services include providers offering services and integration, such as
consulting and information management. This area also includes data
processing and outsourcing services, including automation services.

Business services
Business services offered by IT companies have been transitioning from an
implementation and maintenance stage to offering services and integration
solutions. The concept of “as-a-service” is currently one of the most

important ones in business services, especially with the adoption of cloud
computing. There are three popular types offered “as-a-service”, where
Linux is a key component:

Software as a Service (SaaS): This service offers applications where
everything behind is managed by the provider. This includes everything
related to storage, network, virtualization, server, operating system, and
runtime. In this category, popular Web services for e-commerce,
document sharing, and editing, or online editors are also included.
Platform as a Service (PaaS): This service offers the possibility of
running your own applications on a platform fully managed by the
provider. In this scenario, only the application and data is managed by
the customer. The environment to build, test, and run applications are
offered for that purpose. Some examples are OpenShift, Heroku, and
PaaS, offered by cloud providers such as AWS Elastic Beanstalk,
Google App Engine, or WindowsAzure.
Infrastructure as a Service (IaaS): This service offers the
infrastructure required by the customer to provide solutions to end
users. Networking, storage, servers, virtualization (if needed),
operating system, and the rest of the elements needed to offer the
solutions are managed by the administrator of the IaaS (the client who
requested it). Popular private IaaS includes OpenStack, and popular
public solutions include DigitalOcean, Rackspace, and services offered
by public clouds such as AWS, Google Cloud, IBM Cloud, and
Microsoft Azure, among others.

The following figure compares the three popular types, indicating the
elements managed by the customer as well as the elements managed by the
service provider:

Figure 1.2: Differences between On-Site, IaaS, PaaS, and SaaS. Source: Red Hat

Automation services
Automation and integration services are key parts in the implementation of
solutions. With automation solutions, companies can design and implement
processes to reduce human interventions, including application release,
providing new services, or scaling existing ones. Popular automation tools
such as Ansible and Terraform are widely used to facilitate the orchestration
and integration of new services.

Emerging technologies

Access to technology and digital services for most of the world’s population
was the biggest success of the Digital Revolution, also known as the Third
Industrial Revolution. The IT sector is evolving and changing frequently
with new technologies and innovations, and currently, we are part of the
Imagination Age (Fourth Industrial Revolution, Industry 4.0), where the
trend is automation and data exchange. Some of the top emerging
technologies are as follows:

Artificial Intelligence (AI), Machine Learning (ML), and Deep
Learning: Artificial Intelligence is a sub-field of computer science that
explores how machines can imitate human intelligence. Machine
Learning is the science to learn from seen data and then create models
to make predictions from data. Deep Learning is a subset of machine
learning where artificial neural networks learn from large amounts of
data. Open-source tools and libraries for AI/ML are available; some
examples are TensorFlow, Keras, Scikit, and PyTorch.
Big Data: It is a term to describe large or complex volumes of data that
can be structured or unstructured. Nowadays, the term technology is
the software utilities designed for analyzing, processing, and extracting
information from the data. Apache Hadoop and Apache Spark are two
of the most popular solutions in this category.
Augmented reality (AR) and Virtual Reality (VR): Augmented
reality is a real-time experience interacting with objects that reside in
the real world but are virtually enhanced by computer-generated
perceptual information. Virtual reality is an experience of an artificial
environment provided by a computer. Some open-source options are
ARToolKit+, ARCore, and AR.js.
Internet of the Things (IoT): This technology refers to the connection
of physical objects embedded with sensors and software that transmit
and receive data from the internet. That includes cars, home appliances
(smart homes), cameras, and other common devices. Many Linux
distributions are available for IoT: Ubuntu Core, Raspberry Pi OS, and
Yocto project (to create custom embedded Linux-based systems).
Edge computing: This technology is the distribution of computing
topology closer to the source of the data. This is a key part of the
Internet of Things and the 5G connections (described in the next
section). For the Infrastructure-as-a-Service and Hybrid Cloud,

multiple solutions running on Linux to provide edge computing:
OpenStack for virtualization and Kubernetes for containers, are the
most popular.

Telecommunications services
This area includes communication equipment and services related to
telecommunications. This industry experienced a big transformation during
the last few decades. Evolution from 2G (second generation) mobile
networks infrastructure based on Global System for Mobile (GSM),
starting in 1991 and used for primarily for calls and SMS, to third
generation (3G) based on network architecture named Universal Mobile
Telecommunications System (UMTS), starting in 2001 and having internet
access, has taken place. Most recently, in 2009, the fourth generation (4G)
of mobile infrastructure came out, which puts forth a huge difference related
to the data rate available for mobile devices today, allowing high bandwidth
access to multimedia content, video and voice calls using technology Long-
Term Evolution (LTE) standard broadband communication.
The first implementations of telecommunications services were on closed
proprietary platforms using hardware-driven means. This was forcing
companies to pay for license and hardware from one vendor while also
having a monolithic infrastructure. Migration to a modular, using
interchangeable systems and multi-vendor platforms, opened opportunities
for Linux and Open Source. Recent migration of different
telecommunication infrastructures to virtualized infrastructure, as well as the
virtualization of network functions, positioned Linux as the main player as
an operating system for that transformation.
In 2019, a new broadband technology standard generation, that is, 5G, has
come forth that provides better speed transmissions and new features to
users, and for emerging technologies described previously, like the Internet
of Things (IoT) and Augmented Really (AR). These new features include
low latency that is needed for the sensors and embedded devices, as well as
better availability and coverage. The fifth generation implementation is
based on cloud services, where a transformation takes place from virtualized
network functions to containerized network functions. In this transformation,
Linux and open-source technologies are a key part of the implementation.

Latest features in Linux
Linux has been evolving and implementing new features based on the needs
from the new emerging technologies and the sector requirements. The Linux
kernel is the core of the operating system, providing an interface between the
applications and hardware, and it provides multiple functionalities. Linux
distribution releases include recent versions of the kernel and updated
versions of different tools. Some popular latest features in Linux include the
following:

Live patching: allows keeping the Linux server updated to the latest
kernel version without the requirement of rebooting the system, which
was previously needed. This feature has been around for many years,
but the latest version of distributions includes mature tools for this.
Some of the implementations for this feature are Ksplice, Kpatch,
Livepatch, and KernelCare.
ExFAT support: latest versions of Linux Kernel supports the popular
Windows filesystem for flash memories.
Control Groups (v2): A mechanism to limit and isolate resources
(CPU, memory, and disk I/O, for example) of a process or collection of
processes. Software such as Docker, systemd, and libvirt uses this
mechanism.
Nftables: This low-level firewall solution has become the default in
many distributions replacing the popular iptables. This software
provides filtering and classification of network packets.
eBPF: is a technology that can run sandboxed programs in the Linux
kernel without changing the kernel source code or loading a kernel
module.

Linux versus other operating systems
One of the main questions that customers using other operating systems,
mainly Microsoft Windows, have is regarding the reason why Linux should
be used and about the complexity related to its installation and maintenance.
The biggest advantages to using Linux compared to other operating systems
for servers, desktops, or devices are as follows:

Open Source: The source code for Linux kernel, libraries, and
applications are available for everyone to review, collaborate, and
create new content to share with others.
Free: Download and installation of Linux is for free, with the
possibility to have support from the most advanced companies in the IT
sector.
Easy to install and maintain: Installation of any popular Linux
distribution is an easy task that can be performed by regular users or
advanced administrators. Maintenance of a Linux system requires less
effort than, for example, a Microsoft Windows Server due to less
complexity to perform tasks such as updating software or updating the
Linux distribution.
Software installation: Installing software on Linux is easier than on
other operating systems, thanks to the package manager and utilities
around them. Repositories contain the software available, and the
utilities to install packages resolve the required dependencies when we
perform a software installation.
Mature, stable, and secure: In more than 30 years of its existence,
Linux has demonstrated that it is the most mature and secure operating
system available. From small companies to the biggest corporations, all
are strongly committed to using Linux to run critical applications on
top of it.
Commodity hardware: The requirements to run Linux compared to
other operating systems do not require having the latest hardware.
Linux can be run in old systems with less power resources, on new
systems embedded with limited resources, or in virtual machines
without the need to allocate a big quantity of memory or CPU cores.
Customisation: Linux, compared to other operating systems, is the one
with more options to customize to the desire of the regular user or to
the system administration. Everything in Linux is possible to be
configured to the requirements needed.

Promising future of Linux
As was described, Linux is currently a key factor in all the IT sectors and
will continue being the operating system for most of the solutions in

emerging technologies, as companies rely on open source and in the features
offered by Linux. In the near future, containers will go on being used to
deploy new services; new architectures like ARM will be more available in
the market, and the use of public and clouds will continue growing since
companies are in an ongoing migration from on-premise infrastructure to a
cloud one. Distributions that are generally available are as follows:

Architectures: Linux Kernel is available for most of the architectures;
some examples: ARM/ARM64, IA-64, MIPS, PowerPC, RISC-V, and
x86.
Cloud image ready: Most of the Linux distributions offers cloud
image ready to be launched in public (AWS, Azure, and Google Cloud)
and private clouds (OpenStack).
Container images: Linux distributions are offering official images to
run containers, using, for example, Docker or Kubernetes.

Conclusion
Linux has been the most important operating system in the IT sector for the
last few decades, as well as the present. The future will bring new
innovations in emerging technologies, and Linux will be an integral, if not
the main, part of most of those implementations. Regular desktop users are
getting more comfortable using Linux distributions as the main operating
system, and developers have decided to move to Linux from other operating
systems.

Key facts
Linux is the most popular operating system in the world.
Linux works in most of the architectures available.
Linux is available on all the popular clouds.
Most of the emerging technologies are using Linux.
Containers are Linux.

Questions
1. All the Top 500 list of fastest supercomputers run Linux.

a. True
b. False

2. Android is a modified version of Linux.

a. True
b. False

3. What SaaS stands for?

a. Service as a Service
b. System as a Service
c. Software as a Service

4. What PaaS stands for?

a. Programming as a Service
b. Platform as a Service
c. Program as a Service

5. What IaaS stands for?

a. Innovation as a Service
b. Integration as a Service
c. Infrastructure as a Service

Answers
1. a
2. a
3. c
4. b
5. c

CHAPTER 2
Linux Installation

Introduction
Installation of a Linux distribution is an easy task, requiring a little amount
of time for the process. The number of actively maintained distributions is
more than 300, each of them with the same main components (Linux kernel
and general system and system libraries) but with different purposes and
specific system tools. The difference between distributions is often related to
package managers, desktop environments, and system services, like firewalls
and network services.
Popular Linux distributions can be installed on different architectures and
devices. Other distributions are available and optimized to be used in
specific environments, for example, Raspberry Pi Linux OS (For Raspberry
PI devices) or OpenWrt (for routers).
The popular website distrowatch.com contains a list of active distributions
with useful information about the current version, the architecture supported,
the default software included, and much more useful information.
This chapter will be focused on the installation of popular distributions,
especially because of the support for enterprises. It covers the installation
methods available, the steps of the installation, the advanced options, and the
differences between those distributions.

Structure
In this chapter, we will discuss the following topics:

Linux Support Levels
Installation Methods
Common Installation Steps
Advanced Installation Steps
Debian GNU/Linux

Ubuntu Server
Red Hat Enterprise Linux
CentOS and CentOS Stream
Rocky Linux and Alma Linux
SUSE Linux Enterprise Server and openSUSE
Other Distributions with Commercial Support

Linux support types
Knowing the purpose of the server is the most important factor in deciding
which Linux distribution to use. Customers with the requirement of running
high available services, mission-critical applications, or the need to run
applications certified to run in specific distributions would require a
commercial distribution where professional support with advanced
engineering skills will provide the support. The main companies offering
professional support and the distribution associated are the following:

Red Hat offers Red Hat Enterprise Linux with three levels of support:

Self-support: Access to Red Hat Products and access to the
knowledge base and tools from the Customer Portal.
Standard: Access to support of engineers during business hours.
Premium: Access to support engineers 24 × 7 for high-severity
issues.

Canonical offers commercial support for Ubuntu Server with two
options:

Ubuntu Advantage for Applications: Security and support for
open-source database, logging, monitoring, and aggregation
services (LMA), server, and cloud-native applications.
Ubuntu Advantage for Infrastructure: Security and IaaS
support for open-source infrastructure.

SUSE offers two commercial supports for the SUSE Linux Enterprise
Server:

Standard: Includes software upgrades and updates, unlimited
support 12 × 5 using chat, phone, and Web.

Priority: Same support as the standard one but with 24 × 7
support.

Oracle is offering two commercial support for Oracle Linux:

Basic Support: Includes 24 × 7 telephone and online support,
including support for high availability with Oracle Clusterware,
Oracle Linux load balancer, and Oracle Container runtime for
Docker.
Premium Support: Adds up to the basic support applications like
Oracle Linux Virtualization Manager, Gluster Storage for Oracle
Linux, and Oracle Linux software collections.

Other popular distributions for servers have security teams for serious
vulnerabilities, and bugs and issues are supported by the volunteers.

Debian: The security team gives support to a stable distribution for
about one year after the next stable distribution has been released.
Alma Linux: CloudLinux is committed to supporting AlmaLinux for
10 years, including stable and thoroughly tested updates and security
patches.
Rocky Linux: Provides solid stability with regular updates and a 10-
year support lifecycle, all at no cost.

Another important key point to choose the distribution and the version to be
installed related to the support is the Long-Term Support (LTS) offering.
This is crucial for companies running critical applications where the upgrade
of the distribution is not always possible or recommended, and the
requirement to have support during a long period is essential.

Red hat enterprise Linux long-term support
With the introduction of Red Hat Enterprise Linux version 8, Red Hat
simplified the RHEL product phases from four to three: Full Support (five
years), Maintenance Support (five years), and Extended Life Phase (two
years). The following figure shows the Red Hat support lifecycle:

Figure 2.1: Life cycle support for red hat enterprise Linux. Source: Red Hat

Ubuntu server long-term support
For each Ubuntu LTS release, Canonical maintains the Base Packages and
provides security updates for a period of 10 years. The lifecycle consists of
an initial five-year maintenance period and five years of Extended Security
Maintenance (ESM). The following figure shows the Ubuntu support
lifecycle:

Figure 2.2: Life cycle support for Ubuntu Server. Source: Ubuntu

SUSE Linux enterprise server long-term support
Long-term Service Pack Support complements the existing SUSE Linux
Enterprise Server subscription. LTS Pack Support offers the options:

An additional 12 to 36 months of defect resolution and support as you
postpone or defer migration to the latest service pack.

An additional 12 to 36 months of technical support through the
Extended Support phase. The following figure illustrates the SUSE
support lifecycle:

Figure 2.3: Long-term service pack support for SUSE Linux enterprise server. Source: SUSE.

Oracle Linux long-term support
Oracle Linux Premier Support for releases 5, 6, 7, and 8 is available for 10
years after their release date. After that, support can be extended for
additional years with Oracle Linux Extended Support, followed by Lifetime
Sustaining Support.

Installation methods
Linux distributions include several different installation methods depending
on the target and the requirements. Some examples of those targets are as
follows:

A local server where access to the physical bare-metal node is possible.
A remote server without physical access.
A bunch of physical servers, local or remote, with or without physical
access, where manual installation would not be possible because of the
number of servers.
A virtual machine.

The common installation methods depending on the needs, are as follows:

Full installation DVD or USB: The image used for the installation
contains all the requirements for a normal installation, and access to the
network is optional.
Minimal installation using DVD, CD, or USB: The image contains
the minimum files necessary to start the installation, and the rest of the
process requires access to the internet to download the required
packages or access to a repository in the local network.

PXE server: A preboot execution environment allows the installation
of Linux during the boot process of the physical server or Virtual
Machine. This process requires a server or device configured with a
PXE Server, DHCP service, TFTP service with the installation files,
and a syslinux bootloaders. Another alternative for modern servers is
using iPXE, where the TFTP server can be replaced with a Web server
containing the installation files.
Systemor cloud image-based installations: These images have a
preinstalled distribution and are ready to be used. These images are
generally used on cloud platforms and virtualization platforms. These
images can be reconfigured for either the user’s needs or the system
can be customized in the first boot.

Installation methods include the following methods when the installation is
loaded:

Graphical User Interface (GUI) based installation.
Text-based installation.
Advanced installations, including automatic installations without user
interaction.

Common installation steps
The installation process is similar for all the Linux distributions except for
specific configurations related to them. Common installation steps are the
following:

1. Download the installation media and write to a CD/DVD/USB or boot
it from the network.

2. Boot the system with the media.
3. Specify the interface type of the installation: Graphical User

Interface (GUI) or Text Based Interface (TUI) installation.
4. Select a language for the installer. The language specified will be used

during the installation and will be configured in some cases as the
primary language after installation.

5. Clock and Time Zone configuration. Indicating the location of the
clock and the time zone will be adjusted for the installation and for the

system after it.
6. Keyboard configuration. In this step, the layout for the keyboard to be

used during and after the installation is configured.
7. Network configuration. This step includes the hostname and domain to

be used for the system. Interface network configuration can be
customized to be automatic (DHCP) or static IP configuration.

8. Storage configuration. in this step, the disk target is selected, and the
partition layout is configured, indicating if a full disk will be used or a
partition layout will be used.

9. Specify the root password and create a new user. After installation, it is
highly recommended to use a non-administration user, and this step
includes the creation of one user and setting a secure password.

10. Specify the repositories and indicate the software to be installed. At
this point, the repositories (remote or local) are specified, and the
software is to be installed depending on the purpose of the system, for
example, Desktop environment, Web server, and SSH server software.

11. Start the installation. During this stage, the disk is partitioned, and the
core software and the additional software are installed. Next, the
networking is configured, and the user specified is created.

12. Complete the installation. The last step is used to complete the
installation and configuring the boot loader. After the installation is
completed, the system should be rebooted to boot from the installed
distribution.

Three installations with the steps to perform a basic installation will be
described in this chapter: Debian, Ubuntu Server, and Red Hat Enterprise
Linux. Other popular distributions will be just described, and the available
versions will be explained.

Advanced installation steps
During installation, there are three common advanced installation steps:

Link aggregation: Allows to combine multiple Ethernet interfaces into
a single logical link to work in parallel in active-passive mode or in
active-active to sum the available throughput. In Linux, the terms used
for link aggregation for the interfaces are bonding or teaming.

Redundancy for high availability can be configured as a round-
robin or as an active backup.
To sum up the throughput, a Link Aggregation Control Protocol
(LACP, 802.1AX, or 802.3ad) is required to be used and
configured in the system and in the switches where the network
interfaces are connected.

Volume Manager: Linux distributions use the LVM tool for volume
manager, which stands for Logical Volume Management. Using LVM
provides flexibility and more advanced features than traditional
partitioning. Installers usually offer to encrypt the data inside the disk
using Linux Unified Key Setup (LUKS).
Data redundancy: Technology to spread the data across several disks
having multiple copies of the same information stored in more than one
place at a time. RAID stands for Redundant Array of Independent
Disks, which is usually implemented at the hardware level. However,
Linux provides the possibility to reconfigure this using software.
Depending on the required level of redundancy and performance,
different RAID levels are available where popular ones are as follows:

RAID-1 or mirror mode: Two or more disks are combined into
one volume, and all the blocks are copied to all the disks. All the
disks except one can fail, and the data would still be accessible.
RAID-5: The most popular and useful RAID mode, this requires
three or more disks. The data will be distributed between the
disks, but they will not be mirrored. Even if one disk fails, the
data will be available. The data of the failed disk can be
recalculated using the parity method.
RAID-6: An extension of RAID-5, where many disks are used
(requiring to have at least four). At this level, two disks can fail,
and the data would still be accessible.
Spare disks are an important part of storage redundancy,
especially for RAID-5 and RAID6. These disks are not used to
distribute the data, but there are on standby to be filled if one of
the active disks has failed.

Debian GNU/Linux

Debian GNU/Linux is one of the most popular distributions for Linux
servers due to the stability offered. The distribution is a result of a volunteer
effort to create a free and high-quality distribution with a suite of
applications.
Debian was the first Linux distribution to include package management,
named dpkg (Debian Package), for easy installation, update, and removal. It
was the first distribution as well to be able to be upgraded without requiring
a re-installation.
To obtain the images for the installation, navigate to the following website
where the different options are available https://www.debian.org/distrib/.
Installation method options are the following:

A small installation image: This installation requires an Internet
connection to be completed. It is also called Network Install.
A complete installation image: It contains more packages, and it makes
the installation faster without the dependence on an Internet
connection. There are options with DVD and CD images.
A live CD: It is possible to boot a Debian system from a CD, DVD, or
USB without installation. This image will boot in memory the Linux
distribution, and it can be tested without performing any changes in the
disk. After testing it, the live CD would allow us to perform the
installation on the disk.
Cloud images: Debian, like other Linux distributions, offers images
with preinstalled versions to run in the private or public cloud. For
example, QCOW2/RAW images for OpenStack, AMI images for
Amazon EC2 or using AWS Marketplace, and Microsoft Azure images
on the Azure Marketplace.

Installation menu
The first screen appearing when the server is booting from the Debian
installer image, indicates which installation type is desired. The following
figure shows the first screen of the installer:

https://www.debian.org/distrib/

Figure 2.4: Debian installer menu

Selecting the Graphical install entry in the menu will move the installer to
the next step as a continuation is shown.

Select a language
The first step after specifying which installation user interface would be used
is to specify the language to be used during the installation process. This
language, as indicated, will be used as the default language once the system
is installed.

Select the location
After specifying the language to be used during the installation and to be
used as default, the next step is to select the location to be used. This
location will be used to set the time zone and the system locale. If the

location wanted is not in the list shown, it is possible to select “other” and
afterward specify the continent/region and then the country.

Configure the keyboard
Once the correct location is indicated, the next configuration is the Keymap
for the keyboard to be used.
Pressing Continue in this step will start to load the modules for the different
components of the system (storage, network, and other devices), and it will
try to configure automatically the network using DHCP.

Configure the network
This step includes two parts when DHCP is used: specify the hostname for
the system and indicate the domain to be used. The following figures show
the wizard steps to introduce the hostname and the domain:

Figure 2.5/2.6: Configure the network

If the network is not configured automatically with DHCP, manual static IP
should be specified after the hostname and domain are set. The following
figure shows the step to configure a static IP:

Figure 2.7: Configure the network

Set up users and passwords
After the network is configured, the following step is to set the password for
the root user. The password has to be a secure one, or it will not be accepted.
If the password in this step is not set, the root account will be disabled, and
the regular user account to be created will have the possibility to run
commands or switch to root using sudo (a command allowing delegating
authority for administrative tasks).
After setting the password for the root user or keeping it empty to disable the
user, the next step is to set the information for the new user to be created.
The first dialog is to specify the full name of the new user. The second
information required is the username for the new user. This username is
going to be used to login into the system. And after deciding on the
username for the account, the password would be specified.

Configure the clock
The next step is configuring the clock for the system. Keeping the time
synchronized with the correct time is really important for some systems and
for the system administrators when they are troubleshooting.

Partition disks
The installer allows to do manual partitioning disk or uses the guided option.
Using the LVM is highly recommended to have dynamic partitions and more
flexibility in managing disks and partitions. The following figure shows the
partition disk step:

Figure 2.8: Partition disks

After indicating the partition method, a list of the disks available in the
system is listed to specify in which disk the partitions will be created. Once
the disk where the installation will be performed is selected, the installer
gives some partition options (if the guided option was selected). The
following figure shows the partitioning options:

Figure 2.9: Partition disks

The next step related to storage is to confirm the changes to be performed on
the disk. It is important to ensure that the correct disk is selected before the
next steps are taken. The following figure shows the confirmation steps:

Figure 2.10/2.11: Partition disks

Install the base system and install software

After the partition process, the installer will install the base system in the
disk, and partitions will be configured. In this step, the Linux kernel, the
system tools, libraries, and services will be installed and configured. When
the installation of the minimal required packages for the base system is
completed, it is possible to scan extra installation media or skip that process.
Then it is needed to configure the package manager specifying the mirror
country for Debian archive files and the server to be used. The following
figures show the steps to configure it:

Figure 2.12/2.13: Configure the package manager

If a proxy is needed to access the internet repository, the provides the option
to specify an HTTP proxy and, if needed, the username and password to use
it. The installer will retrieve the package list from the server repository, and
it will continue with the installation of the base system. After the core of the
system is selected, the installer gives the option to specify the software to be
installed during the process, as is shown in the following figure:

Figure 2.14: Software selection

Install the GRUB boot loader
After the base system and the software selected are installed, the last step of
the installation is to install the boot loader on the disk. Grand Unified
Bootloader (GRUB) is the boot loader predominant in Linux systems. The
following figure shows the confirmation step:

Figure 2.15: Install the GRUB boot loader

After the acceptance of the installation of GRUB, a list of devices and
partitions will be listed to confirm where the bootloader will be installed.
The installation will be completed, and the system can be rebooted to the
new system, ensuring the media installation is removed to boot from the
local disk.
Booting the system will show the GRUB menu, where it is possible to boot
to Debian, to different distributions (if they are installed in different
partitions), or start Debian in a recovery mode or with different kernel
versions (Advanced Options).

Ubuntu server
Ubuntu is the most popular distribution for Desktop. It uses the same
package manager (dpkg) as Debian. Ubuntu offers a faster release lifecycle
compared with Debian, having the latest version of the software available.
The canonical company, the publisher of Ubuntu, offers commercial support
as described previously.
Ubuntu offers distribution variants through the official URL
https://ubuntu.com/download/, including the following options:

Ubuntu Desktop: This variant is the most popular for PCs and laptops,
offering guaranteed support for five years with free security and
maintenance updates.

https://ubuntu.com/download/

Ubuntu Pro: This variant is optimized and certified for cloud
providers such as Amazon AWS, Microsoft Azure, Google Cloud
Platform, IBM Cloud, and Oracle.
Ubuntu Core: This option is optimized for Internet of Things (IoT)
and the Edge.
Ubuntu Server: Supported as described previously for 10 years. Used
to be installed in private or public data centers and supporting multiple
architectures.

Installation menu
The first screen appearing when the server is booting from the Ubuntu
installer image starts the installation or tests the memory of the system.
Ubuntu Server does not include a graphical user interface for the installation.
The following figure shows the first screen of the installer:

Figure 2.16: Ubuntu installation menu

Select installation language
After specifying the option to Install Ubuntu Server, the installer will move
to the next step to specify the language for the installation.

Keyboard configuration
The next step in the installation process is to specify the keyboard
configuration: the layout and the variant.

The base for the installation
After specifying the layout and the variant, the installer wizard shows the
types of possible installation options for Ubuntu Server: default installation
or minimized (used where users are not expected to log in to the system).
The following screenshots show the options and the descriptions:

Figure 2.17: Choose the type of install

Network connections
The following step is the network configuration. If DHCP is used, the IP
assigned will be shown. In case of no DHCP, a manual configuration of the
IP is required to access the repositories. In this step, it is possible to
configure a bonding interface. The following figure shows an example of a
network automatically configured with DHCP:

Figure 2.18: Network connections

After configuring the network interfaces, it is possible to configure the proxy
to access the internet if it is needed.

Configure the Ubuntu archive mirror

An archive mirror is a Web server containing the packages to be used for the
installation and to install software after the system is installed. The installer
will detect automatically, based on the system location, the closest archive
mirror URL, allowing the user to specify an alternative one.

Guided storage configuration
Ubuntu installer permits specifying how the storage would be configured if
using a guided storage layout or creating a custom one. It is also possible to
specify if the system uses Logical Volume Manager (LVM), what is selected
by default, and if LVM would be encrypted with Linux Unified Key Setup
(LUKS). The following figure shows an example of this step:

Figure 2.19: Guided storage configuration

After selecting the guided option and LVM, the next step will show the
partition layout that will be applied to the disk. It is also possible to
personalize the partitions to be created, the mount point, the sizes, and the
names for logical volumes. The following figure shows a default
partitioning:

Figure 2.20: Storage configuration

Profile setup
After the disk layout is confirmed, the next step is related to the creation of a
new user specifying the name, the username, and the password. The name of
the server will also be specified in this step. The following figure shows the
fields required to fill:

Figure 2.21: Profile setup

SSH setup

The installer will ask if the OpenSSH server will be installed and enabled to
be administrated remotely. If the system is not a local system, it is
recommended to enable this so that it can be administrated remotely.

Featured server snaps
Snap is a software packaging and deployment system developed by
Canonical. The snaps are self-contained applications, including the needed
libraries to run the service or application. Working with snaps, there are four
important concepts: snap is the application package format and the
command to execute the applications; snapd is the background service to
manage and maintain; snapcraft is used to create customized applications
and a marketplace for the snaps; and finally, Snap Store
(https://snapcraft.io/store). The following figure shows some of the
available snaps:

Figure 2.22: Featured server snaps

After selecting, if some of the Snaps are needed, the installation will start
downloading and installing security updates. When the installation has
finished, it is possible to review the full log of the installation process or
reboot the system to boot the Ubuntu server installed on the disk.
Ubuntu Server installation, as observed, does not set the root password; it
creates a user and sets the permissions in the system for that user to use sudo

https://snapcraft.io/store

for administrative tasks.
After the system is rebooted, it is possible to login with the user created
during the installation.

Red Hat Enterprise Linux
Red Hat Enterprise Linux is the world’s leading enterprise Linux platform,
widely used in data center infrastructures, virtualization, and containers. As
described previously, RHEL is a commercial open-source Linux distribution
developed and supported by Red Hat for the commercial market.
RHEL uses RPM Package Manager (RPM) for package management, and
this system is used in many distributions, such as CentOS, Fedora, Oracle
Linux, AlmaLinux, or Rocky Linux.
Installation images for Red Hat Enterprise Linux are available on the
website: https://access.redhat.com/downloads/. A subscription is required
to access the repositories, with the option to request a no-cost Red Hat
Developer subscription if the purpose is for development or a 60-day trial is
available to try RHEL before buying the subscription.
RHEL offers three images for the installation:

Binary DVD: It includes all required packages without the need for
any additional repository. Useful when there is no internet access.
Boot ISO: This image has the basic packages for the installation but
requires an active network connection to access additional package
repositories.
KVM Guest Image: Used for KVM/QEMU hypervisor, such as Red
Hat OpenStack (or community OpenStack) or Red Hat Virtualization
(or oVirt project).

Installation menu
The first screen that appears when the server is booting from the Red Hat
Enterprise Linux installer image allows us to install and test the media or
perform troubleshooting. The following figure shows the first screen of the
installer:

https://access.redhat.com/downloads/

Figure 2.23: RHEL installation menu

Selecting the Graphical install entry in the menu will move the installer to
the next step as a continuation is shown.

Select a language
The first step after specifying which installation user interface would be used
is to specify the language to be used during the installation process. This
language will be used as well as the default language once the system is
installed.

Installation summary
After choosing the language, the installer shows a dashboard with the
configuration requirements before starting the installation. Some
configurations are detected automatically (that is, the network configuration
and the installation source), and another configuration is required to specify
manually (registration, disk partition, and user passwords). An example of
the dashboard is shown in the following figure:

Figure 2.24: Installation dashboard

The steps required in this step are as follows:

1. Connect to Red Hat with the username/password for the subscription
required.

2. Confirm the disk to be used for the installation and the partitioning
desired.

3. Software selection: specify which software will be installed in the
system.

4. Set the password for the root user.
5. Create a regular user.

Other options possible to configure are as follows:

Network configuration.
Configure the Keyboard layout.
Configure the time zone, time, and date.
Other options such as kernel dump (kdump) and security profile.

Connect to Red Hat
To subscribe to the system Red Hat, it is possible to login with a Red Hat
account or use an activation key. Users can specify the purpose of the
system, an optional configuration but recommended during the installation to
ensure the correct subscription is attached. Purpose attached. The purpose of
the system can be specified during installation or after installation using the
command syspurpose.

Installation destination
Red Hat Enterprise Linux installer would automatically choose one of the
disks available for the installation. It is required to confirm on which disk the
installation will be performed, and it is possible to configure the partition
layout automatically or manually. It is possible to encrypt the data during the
installation process. LVM will be used when the automatic layout is selected.
An example about an installation destination is shown in the following
figure:

Figure 2.25: Installation destination

Software selection

In this step, it is possible to indicate the base environment and the additional
software to be installed in the system. The following figure shows the
available options for the base environment and for the additional software:

Figure 2.26: Software selection

Root password
Setting a root password is a required step during installation. The default
option is to lock the root account to not be used, and the SSH is not
connected to the system using the root.

User creation
If the root password is set, then user creation is not mandatory but highly
recommended. After all the requirements are completed, the button “Begin
Installation” is enabled, and the installation can be started.

Installation progress
The installer will download the required packages (if Boot ISO is used) or
will use the packages in the Binary DVD for the system installation. The
server is ready to be rebooted and be able to login with the root user or the
user created.

CentOS and CentOS stream
Community Enterprise Operating System (CentOS) Linux is a popular
production-ready distribution of Linux compatible with its upstream source,
Red Hat Enterprise Linux. Between 2014 and 2020, CentOS stayed
independent from RHEL, and versions of CentOS Linux 7 and 8 were
released.
In December 2020, Red Hat decided to finish CentOS development and
focus on the development of CentOS Stream, a midstream distribution
between the upstream distribution Fedora and the downstream development
for RHEL. Support of CentOS Linux 7 continued till mid-2024, whereas
CentOS Linux 8 is not supported anymore.
CentOS Stream support is aligned to the RHEL support lifecycle, providing
early access to the development stream of the next release of Red Hat
Enterprise Linux. Installation steps and images are available as described
before. Installation media can be downloaded from the website:
https://www.centos.org/centos-stream/.
After Red Hat decision, two main distributions appeared to cover the
CentOS space: Rocky Linux, from the original co-founder of CentOS, and
AlmaLinux, from the company CloudLinux. Both descriptions will be
covered next.

Rocky Linux and Alma Linux
Rocky Linux is an open-source enterprise operating system designed to be
100% compatible with RHEL, and it is developed by the community.
Gregory Kurtzer, the original founder of CentOS, decided to create Rocky
Linux after the Red Hat decision about CentOS. Official Rocky Linux
includes the installation images on the website:
https://rockylinux.org/download.
CloudLinux, the creator of CloudLinux OS, decided to create a separate,
totally free distribution fully compatible with RHEL 8 and future versions. It
is possible to download the ISO from the following website:
https://mirrors.almalinux.org/isos.html.
Both distributions include a tool and commands to migrate from CentOS to
Rocky Linux or AlmaLinux. Installation is with the same wizard as shown

https://www.centos.org/centos-stream/
https://rockylinux.org/download
https://mirrors.almalinux.org/isos.html

for Red Hat Enterprise Linux. The following figures show how it looks the
installer of AlmaLinux and Rocky Linux:

Figure 2.27/2.28: AlmaLinux and RockyLinux installer wizard

SUSE Linux enterprise server and openSUSE
SLES distribution is developed by SUSE, a German-based multinational
open-source software company. It uses RPM as the package management
system. Installation images can be found on the following website:
https://www.suse.com/download/sles/
SUSE offers two non-commercial versions of SLES called Leap and
Tumbleweed, managed by the project openSUSE. The second one,
Tumbleweed, is a rolling release with more updated software. It can be
downloaded from the website: https://get.opensuse.org/. The following
figure shows the differences between the two versions:

https://www.suse.com/download/sles/
https://get.opensuse.org/

Figure 2.29: OpenSUSE Tumbleweed and Leap differences. Source: SUSE

Other popular distributions
Other popular distributions for servers are the following:

Oracle Linux (OL): A derivative version of Red Hat Enterprise Linux,
commercially supported and maintained by Oracle Company.
Gentoo: A popular distribution due to the software being compiled for
the system to be used and is not based on pre-compiled binaries
software as other distributions.
Arch Linux: A rolling-release distribution without major releases, all
the new versions of the software or kernel will be available, and the
installer images are updated and released every two months.

Conclusion
Linux is one of the most customizable operating systems to be installed and
provides a big number of distributions from the community and from
companies with professional support.
Installation does not require expert knowledge allowing beginners to have a
secure and efficient system. Expert users can use advanced features during
the installation to have a production-ready server after the installation.
The decision of Linux distribution includes different considerations to be
taken, from the years of support, the lifecycle release for new versions, or
the package manager to be used.

Key facts
Huge number of Linux distributions are available.
Some Linux distributions have a commercial support.
Linux installation is a simple process.
Linux distributions uses a package manager for software management.

Questions
1. What popular Linux distributions use the package manager called

RPM?

a. Red Hat Enterprise Linux
b. Alma Linux
c. Rocky Linux

2. What is the package manager is used by Debian and Ubuntu?

a. Pacman
b. YaST
c. DPKG

3. Is it possible to install a Linux distribution without a DHCP server?

a. True
b. False

4. Is it possible to install Linux without an Internet connection?

a. True
b. False

Answers
1. a, b and c
2. c
3. a
4. a

CHAPTER 3
Using the Command Line Interface

Introduction
To administrate a Linux server either locally or remotely, it is fundamental to
have knowledge about the Command Line Interface (CLI). This text-based
interface is used to perform different tasks in a Linux distribution, from
simple tasks, such as to create a directory, to advanced ones, such as
configuring network and storage. A user is connecting to a Linux console,
indicating the command to perform the task desired with the options and
arguments required for the action.
In this chapter, the different terminals available to run commands will be
described, as well as the possible configurations and commands to identify
the system components and system information. This chapter will also
explore how the commands will show the output to the display, how to
redirect that output, and also the method to use it as input for another
application.

Structure
In this chapter, we will discuss the following topics:

Linux console and prompt
Use of basic first CLI commands
CLI commands to identify resources
CLI commands to list elements
Explanation of standard streams and pipes
CLI commands for data stream

Linux console and the prompt

The Linux command line is known as well as the terminal, console, or shell.
There are ways to access the command line as follows:

Using the internal Linux console provided by the Linux kernel,
accessible locally in the system. The name for the software providing
the login is called getty and modern distributions include a default
alternative named agetty.
Using a terminal provided by the graphical environment of the system,
where the commands will be executed in the system where it is
running. Some examples are GNOME Terminal, Konsole, or
Terminator.
A remote terminal connecting from another console, usually using the
protocol SSH.

When the system is booted and not installed with a graphical interface, a
Linux terminal will appear to introduce the username and the password.
Traditionally, there were six available consoles to be used, with the keyboard
combinations Ctrl+Alt+F1 through Ctrl+Alt+F6. This behavior is
configurable, and some distributions use Ctrl+Alt+F2 through Ctrl+Alt+F7.
When the system is installed, and a graphical interface enabled, the server
will show that interface as default. Using the combination Ctrl+Alt+F1
through Ctrl+Alt+F6, as described previously, will show the native Linux
console, whereas Ctrl+Alt+F7 will return to the graphical interface. Some
distributions use Ctrl+Alt+F1 for the same purpose.
On Linux, there are the following two main software terminals:

TeleTYpewriter (tty): enables direct interaction with the operating
system, handling the input from the keyboard and the output using the
screen.
Pseudo-tty (pty): A pseudoterminal behaves like a regular TTY using
two pseudo-device endpoints. Using the graphical interface or
connecting to a remote system, this pseudoterminal is used.

When the login is completed, or a terminal from a graphical environment is
used, an input field to write commands appears, indicating the system is
ready to accept tasks. This input is named known as Linux prompt and is
showing every time the username, the name of the system, and the current
directory. The following illustration shows the Linux prompt format:

Figure 3.1: Prompt format example

In this example, before typing the command to perform the shell, ensure that
the following information is provided:

The user running the command is indicated before the @.
The command will be executed in the system indicated after the @.
The current directory is indicated after the username and the system.
The command will be executed by a user non-administrator ($). For
administrator users, the symbol sharp (#) will replace the dollar ($).

In the following figure (figure 3.2), a user with username agonzalez is
working in the system ubuntu (this system can be local or remote) and
currently is the directory /tmp. This user is a regular user, indicated by the
dollar before the input command. Please refer to the following figure:

Figure 3.2: Prompt example for a regular user

The administrator user in Linux is commonly known as root. In the
following example, it is possible to observe in the same system and directory
how the prompt differs from a regular user. The following figure shows an
example of the Linux prompt for root user:

Figure 3.3: Prompt example for the root user

The interpreter who reads the commands from the user is called shell; the
most popular and default in many distributions is called bash. Running a
command in a Linux system has five important elements to have into
consideration:

The command to be executed: This can be a system command (for
example, mkdir to create a directory), an internal function from the
Linux terminal (for example, alias to create command shortcut) or can
be a user application (such as firefox). The command can be specified
in three different options:

Using the name of the command without indicating where it is
located. The system has configured some directories where to find
the command specified, and introducing the command will go in
order through the commands to check if the command is available.
Using the full path where the command is situated, no matter the
directory where currently the user is located, for example:
/usr/bin/mkdir.
Using a relative path from the directory where the user is located,
for example: …/bin/firefox. In this example, the command firefox
is located in a subdirectory called bin in the top-level directory
where the user is located:

If the user is located in /home/agonzalez/Documents/ running
the command previously indicated, it will execute
/home/agonzalez/bin/firefox. The two dots “..” indicates the
top-level directory.
The special character “~” indicates the home directory for the
user. If the home directory is, for example, /home/agonzalez/,
then indicating ~/bin/firefox will be expanded to
/home/agonzalez/bin/firefox.

The options for the command: This can be one or more options if it is
needed to change the command behavior. Some options can be
required. The command ls to list the content of the current directory
will show the name of files and directories, using the option -l (ls -l)
shows more information such as permissions, size, and owner of the
file.

Some options can be indicated in short format (-a) or in long
format (--all), taking into consideration that the long format uses
two hyphens instead of one. With this option, the command ls
shows hidden directories (directories starting with a dot).

One important option for commands is usually -h or --help to
obtain information about the syntax of the command, including
possible options and arguments.

The arguments for the command: Some commands require
arguments to perform a task, whereas for other commands, the
arguments are optional or they do not accept arguments. The command
mkdir requires an argument indicating which directory needs to be
created; the command ls lists the content of the current directory, but
by specifying as an argument, a directory will show its content of it,
and the command uptime will show how long the system is running but
does not accept any argument.

Order for options and arguments in some commands are interchangeable, but
the recommendation will specify first the options and then the arguments.
Some examples of how to run commands using options and arguments are
shown in figure 3.4:

Figure 3.4: Command execution examples

Use of basic first CLI commands

As observed previously, the Linux console and the prompt are showing
every moment—in which directory and the system the user is working on.
Linux distributions offer some commands to provide more information, such
as the full directory where the user is located or obtain the current time and
date for the system.

Command pwd
The command pwd (print working directory) shows the absolute current
directory where the user is located. The prompt usually shows the relative
directory. This command, even having some options, is generally used
without any option or argument. Working with several directories with the
same name can be problematic and cause unexpected errors. The command
pwd helps to ensure that the task will be executed in the desired directory. In
the following example, the directory “examples” exists inside the home
directory for the user root and the user examples. The output of the
command pwd will provide the full path of the directory to avoid confusion.
The following figure shows the use of this command:

Figure 3.5: Command pwd output example

Command whoami
The command whoami provides a simple output: the name of the current
user. This command does not accept options or arguments. This command is
usually used inside scripts, where a typical use case is to ensure that an

administrative user (root) is not running a script for security reasons. The
following figure is an example of the output for this command:

Figure 3.6: Command whoami output example

Command hostname
The command hostname gives information about the name and domain of
the system where the commands will be executed. The command hostname
accepts some of the following options, and figure 3.7 shows some example
outputs for the different options:

Short option Long option Information

-d --domain Display the name of the DNS domain.

-f --fqdn
--long

Display the Fully Qualified Domain Name (FQDN).

-i --ip-address Display the network address of the host name.

-I --all-ip-addresses Display all the network addresses of the host.

-s --short Display the short host name without the domain.

Table 3.1: Common options for the command hostname

Figure 3.7: Command hostname output examples

Command man
This command is one of the most useful commands when a user wants to
obtain information about one topic, such as a command or a system file. The
simplest call of man is indicating one argument to get the documentation
desired; for example: man mkdir will show the documentation for the
command mkdir. The following figure illustrates this:

Figure 3.8: Example running command man mkdir

The manual pages are organized into nine numbered sections:
Section number Section description

1 Executable programs or shell commands

2 System calls (functions provided by the kernel)

3 Library calls (functions within program libraries)

4 Special files (usually found in /dev)

5 File formats and conventions, e.g. /etc/passwd

6 Games

7 Miscellaneous (including macro packages and conventions)

8 System administration commands (usually only for root)

9 Kernel routines [Non standard]

Table 3.2: Manual pages section numbers

topic name can be part of different sections; for example, mkdir can be an
executed program as previously described, and it will, by default, show the
information in the first section number. However, mkdir is also a system call,
having information in the second section. To indicate the section number, the
options are as follows:

man 2 mkdir
man mkdir.2
man “mkdir(2)”

Command cd
The command cd (change directory) is one of the mostly used tools in the
terminal and is used to navigate between directories. This tool is not a binary
application; rather, it is a built-in functionality from the shell used. There
common uses of the command cd are as follows:

Without arguments: the directory will be changed to the home
directory of the user.
With an absolute path: the directory will be changed to the full path
indicated.
With an relative path: the relative path will be extended to an
absolute path.
With the hyphen argument (-): it will move to the previous directory
the user was located.

In the following figure, the common uses are shown as follows:

Figure 3.9: Example moving between directories

Command history
Working in the shell leads to write multiple numbers of commands to
perform different tasks during the life of the system. As an administrator or a
regular user, it is interesting to review the commands executed or repeated
one command after the other. The tool history lists the commands executed
previously by the user invoking it. By default, it saves the previous 1000
commands that were executed. The popular options are -c to clear the history
list and -i to write the changes to the file (by default named .bash_history).
The following screenshot shows some of the commands executed in this
chapter:

Figure 3.10: Output example for command history

It is possible to repeat the last command writing to exclamation (!!) or repeat
a specific command using exclamation and the number from the history
output (for example !9 to run the command pwd from the output of figure
3.10)

Command uptime
This simple tool shows valuable information about the current time, how
long the system has been running, how many users are currently logged on,
and the system load average for the last minute, 5 minutes, and 15 minutes.
This command does not accept any argument, and the useful option is -p(-
pretty) to show only the uptime information. The following figure shows the
output example:

Figure 3.11: Output example for command uptime

CLI commands to identify resources
Linux distributions include some system commands to identify system
resources. These utilities are usually available after the installation and do
not require any package installation to run the following commands. These

commands provide information about the CPU, RAM, and devices available
in the system.

Command lscpu
This command shows information about the number of CPUS, threads,
cores, sockets, and advanced information present in the system. This
command does not require any argument, and the options are only needed
for advanced information (for example, the option --json (-J) will show the
output in JSON formation). The following figure shows the output example
for a physical server:

Figure 3.12: Example output of command lscpu

The previous image shows an example of the output of the commands lscpu,
where the CPU architecture, number of CPUs, thread per core, cores per
socket, and socket number are shown. Other useful information, such as
model, model name, and the speed of the CPU, is detailed.

Command lshw
This command lists hardware present in the system, with the possibility to
filter the category to be shown. By default, command lshw is showing all the
hardware available in the system, such as memory configuration, firmware
versions, mainboard configuration, CPU, and PCI devices.
This tool is showing in text format the output, but using the options, it is
possible to show the outfit in different formats: HTML (-html), XML (-xml),
and JSON (-json). It is possible to filter the category (class) of the devices
using the option -class (-c); some popular classes are network, disk,
processor, and system. The following figure shows the output example of a
personal computer:

Figure 3.13: Example listing network devices in short mode using command lshw

Command free
Command free displays the amount of free and used memory in the system.
This command doesn’t accept any argument and the popular option is to
display the memory in different units (for example: --giga for gigabytes and
--tera for terabytes) or in human-readable format (-h/--human) instead of in
megabytes, which is generally the default format. The output will show
information as well related to the swap (virtual memory) available. The
displayed columns are as follows:

Column Column description

total Total installed memory

used Used memory (used = total -- free -- buffers - cache)

free Unused memory

shared Memory used by tmpfs (a virtual memory filesystem)

buffers Memory used by kernel buffers

cache Memory used by the page cache

buff/cache Sum of buffers and cache

available An estimation about how much memory is available for new
applications.

Table 3.3: Columns for the command free

Memory in operating systems (not only in Linux) is a complicated topic
requiring advanced knowledge about how memory is reserved and shared
between different processes. The columns free and available offer a good
overview if the memory in the system is exhausted. The following figure
shows the example output for a physical server:

Figure 3.14: Output example for the free command with a human-readable format

Command df
Command df (disk free) reports file system disk space usage. This command,
without arguments, will show the information for all filesystems and mount
points, and indicating an argument will limit the output to that filesystem or
mount point. Popular options to filter the result are as follows:

Option Option description

-h / --human-readable Shows information in human readable format instead in kilobytes.

-i / --inodes Shows the number of files in the partition and the available quantity.

-l / --local Excludes remote partitions mounted.

-t / --type=TYPE Filters the list of filesystems to match with the TYPE specified.

-T / --print-type Shows the file system type.

-x / --exclude-type=TYPE Filters the list of filesystems to exclude the TYPE specified.

Table 3.4: Common options for the command df

The following figure shows the example output showing the human-readable
format and the filesystem type information. The following figure is the
example output for a Virtual Machine:

Figure 3.15: Output example for command df

Commands lspci, lsusb, and lsblk
These three popular commands are used to display the following
information:

lspci: is a utility for displaying information about the PCI buses in the
system and devices connected to them. It is possible to obtain more
information using the option -v, -vv, or -vvv (more v indicates more
verbosity).
lsusb: is a utility for displaying information about USB buses in the
system and devices connected to them. This command accepts the
option -v to show more advanced information.
lsblk: is a utility to list information about all available or specified
block devices, showing partitions for devices, label, and ids for the
partitions. It is possible to specify arguments to filter the output to the
indicated device (for example, /dev/sda).

CLI commands to list elements
There are two popular commands to list and find elements such as files,
directories, links, or block devices in the system: ls and find.

Command ls
The command ls lists information about files and directories, listing the
current directory if no argument is specified. This command has many

options; some of the most useful are described in the following table:
Option Option description

-a / --all Shows hidden files and directories (starting with dot)

-c / --color=WHEN Indicates when colorize the output, can be always, auto or never.

-d / --directory List the directory itself and not the content.

-h/ --human-readable Shows the sizes in human readable with the more readable unit.

-l Use a long listing format including owner, size and permissions.

-r / --reverse Reverse order while sorting

-R / --recursive List subdirectories recursively.

-S Sort by file size, largest files will be shown first.

-t Sort by time, newest files/directories will be shown first.

-1 List one file per line instead in columns (when option -l is not in use)

Table 3.5: Common options for the command ls

Figure 3.16 shows the command ls sorting by size (-S) and in reverse mode
(-r), using the long format (-l) and the human-readable (-h).

Figure 3.16: Output example for command ls

Command find
The command find searches for files, directories, or other objects in the
system. This command, without options and arguments, will list all the
elements recursively under the current directory. It forces to specify first the

path and then the expressions to filter. There are multiple options and
combinations, and the following table shows some of the most used:

Option Option description

-amin n File was accessed less than, more than or exactly n minutes ago.

-atime n File was last accessed less than, more than or exactly n*24 hours
ago.

-cmin n File was changed less than, more than or exactly n minutes ago.

-ctime n File was last changed less than, more than or exactly n*24 hours ago.

-mmin n File was modified less than, more than or exactly n minutes ago.

-mtime n File was last modified less than, more than or exactly n*24 hours
ago.

-name pattern Filter the name of the file or directory with the pattern

-perm mode Filter by the permission, useful to find vulnerable files

-size n[kMG] File uses less than, more than or exactly n units.

-type c Filter the type of the file, some of the options are:

b: block special
c: character special
d: directory
f: file
l: link

-user username/userid File is owned by the user or user id specified.

-xdev Don’t descend directories on other filesystems.

Table 3.6: Common options for the command find

The numeric n can be used with +n for greater than n, -n for less than n, and
using n only is exactly that value. It is possible to perform different actions
with the results using the options -delete, -exec commands as an example or
formatting the output with options like -ls or -print0. The following figure
shows how to filter files bigger than 1 megabyte:

Figure 3.17: Output example for command find

Explanation of standard streams
In a Linux system, when a command is executed, there are three streams
associated: one for the data input, one for the data output, and another one
for diagnostic or error output. These streams are associated with one name
and one integer associated, as shown in the following table:

Integer Name Stream description

0 stdin Standard input stream, the application receives data using
this stream.

1 stdout Standard output stream, the data will show the information
using it.

2 stderr Standard error stream, diagnostic, or errors will show
using it.

Table 3.7: Streams information and integer associated

When a command requires the user to enter data, the application will use the
stdin to read what the user will type to introduce the data requested. When
the application returns information to the user, it will send it to the standard
output (stdout), and if there is any error or diagnostic information to be
shown, it will use the standard error (stderr). The following illustration
shows the standard streams information:

Figure 3.18: Standard streams diagram example. Source: Wikimedia

The default behavior, keyboard for input and display for outputs, can be
modified to use a different input source or redirect the output. To modify
them, the following table describes the different options:

Stream Modifier Command examples

stdin (0) < read HOSTNAME </etc/hostname

sdout(1) 1>
>

pwd 1>hostname
pwd >hostname

sderr(2) 2> ls noexists 2>error.log
ls noexists 2>&1

stdout(1) and stderr(2) &> ls /etc/services noexists&>output.log

Table 3.8: Modify streams options.

The command (shell function) read asks to the user to introduce a value and
is saved in a variable indicated as an argument; in the example, a variable
named HOSTNAME, changing the default behavior using the symbol less than
(<) does not ask the user and read the data from a file. The following figure
shows how to change the default behavior for the standard input:

Figure 3.19: The command read asks the user for input, but it is possible to read the input from a file
instead

As shown before, the command pwd is displaying on the screen the current
directory where the user is located. Using a symbol greater than (> or 1>)
will redirect the output to a file, creating the file or overwriting the content.
In the following example, the cat command is used to see the content of the
file. Using two greater than symbols (>>), it will append the content to the
existing file or will create the file if it does not exist. The following figure
shows how to redirect the standard output to a file:

Figure 3.20: The output of one command can be redirected to one file using > or 1>

When a file shows an error on the screen, it means that a different output
stream is being used rather than the normal output information. In the
following example, the default behavior is shown and also how to redirect
the output for one stream (using 2>), for both (using 2>and >), or how to
combine them (using &>). The following figure shows how to redirect the
standard error stream to a file or to the standard output stream.

Figure 3.21: The standard error can be redirected to one file or can be combined with the standard
output

An output of one command can be the input for another command, and this
is called a pipeline. This means the standard output from one command can

be redirected to be the standard input of another command and this
command to the next one, and so on. The two commands are executed in
parallel; the second command will wait till the first command finishes
sending the standard output. The character used for pipelines is the vertical
bar (known as a pipe in Linux): command1 | command2 or more than two,
command1 | command2 | command3 | commandN. The following illustration
shows how the standard input and output streams communicate between
processes using the pipeline. Please refer to the following figure:

Figure 3.22: Pipeline diagram example. Source: Wikimedia

In the following figure, the output of one command (cat) will be used as
input for another command (head), and another command (nl) will receive in

the standard input the data from standard output of the second command.
This combination will show the first 10 lines of the file (head command) and
will number it (nl command) from the output of the file /etc/services (cat
command).

Figure 3.23: Pipeline example using three commands

CLI commands for data stream
There are three simple important standard commands to operate with the
standard streams: echo, read, and tee.

Command echo
This simple command displays a line of text. It is useful to show the value of
variables, create files with content, or append data to an existing file. The
most common option is -n not to add a newline at the end of the line. In the
following figure, the different uses of the command echo are shown:

Figure 3.24: Command echo examples and show file content with command cat

Command read
This command, as shown before, is requesting the user to introduce a value
from input standard and is saved in a variable. Some common options are -p
to add a prompt text and -t to specify a timeout where the user should
provide the input. In the following screenshot, the use of the command read
is shown:

Figure 3.25: Command read allows to ask the user for input data

Command tee
One of the limitations to redirect the standard output is the impossibility to
specify two destinations, a display, and a file. This can be achieved using the
command tee, where the standard output will be displayed, and a file with
the output will be created. Using the option -a will append the content to an
existing file. In the following figure, the usage of command tee is shown:

Figure 3.26: Command tee is redirecting the output to display and to one file

Conclusion
Working with a Linux console is crucial for system administration. It is
important to understand how to run commands and specify the options and
the arguments required and desired. Accessing the documentation with the
man command or using the options -h or –help will be of great help to know
the options and arguments available. Linux distributions are offering some
commands to identify the resources available in the system.

The concept of standard streams and how to change the default behavior for
the input and the output is crucial to pass data between commands as in the
following chapters the importance of this will be shown during other
chapters of this book.

Key facts
Command line is the best way to administrate a Linux system.
Linux brings many commands to identify resources.
There are three standard streams: input, output and error.
It is possible to redirect the outputs.
An output of one command can be used as input for another command.

Questions
1. Which command is used to display the current directory?

a. whoami
b. path
c. pwd

2. Which command is used to obtain information about the memory?

a. df
b. free
c. du

3. Which command is used to obtain about the total disk usage?

a. df
b. free
c. du

4. Which command is used to request user data and save in a variable?

a. read
b. prompt
c. input

5. Which command is used to show in standard output and save it in a
file?

a. pipe
b. tee
c. export

Answers
1. c
2. b
3. a
4. a
5. b

CHAPTER 4
User Administration and Software

Management

Introduction
After learning how to use the Linux terminal to perform different tasks, this chapter
will discuss how to administrate users. The different commands used to create, modify,
and delete users will also be explored. Other important topics described in this chapter
will be how to operate with groups, how to assign it to users, and the difference
between primary and secondary groups.
The second part of this chapter is focused on software management. As described in
the Linux Installation chapter, the two popular package managers are RPM and DEB.
RPM is used by Red Hat Enterprise Linux and derivatives distributions such as SUSE
or CentOS, whereas DEB is used by Debian and derivatives distributions such as
Ubuntu Server. This chapter will delve deep into these package managers, including
the commands to operate with them.
The last part is related to services and an overview of how they are working on Linux,
as well as how to operate with them, such as to enable/disable, start, stop, or restart
them.

Structure
In this chapter, we will discuss the following topics:

Introduction to users and groups
Best practices for user accounts
Commands to administrate users
Commands to administrate groups
Introduction to RPM and DEB package formats
Commands to operate with RPM packages
Commands to operate with DEB packages
Introduction to services

Introduction to users and groups

During the installation of a Linux distribution, an administrative user named root is
created. A new user is also recommended to be created using sudo for security reasons
to login and to perform administrative tasks.
Linux-based cloud images for different distributions also include a default user. This
user has no password set, and the only possibility to connect with it is using a private
SSH key. This will be covered in the network and security chapter. The typical login
for cloud images are cloud-user (for most of the RPM-based distributions), ec2-user
(for Linux systems in Amazon Web Services), or specific for distribution (centos for
CentOS system, or ubuntu for Ubuntu Server).
Users in Linux are not only reserved for human logins but there are also system users
associated usually with services or applications. Linux users are identified by a
numerical ID (uid): predefined users created during the installation will use a range
between 0 and 99, whereas system users created using installing services and
applications will use a range between 100 and 999. Regular users will have a bigger
range, from 1,000 to 6,000. The uid 0 is reserved for the root user.
Linux also has a list of groups, and the users are a member of them. A user is always
associated with a primary group and, optionally, with multiple secondary groups.
These groups help to associate permissions to files and applications with several users.
Same as with the users, there exist system groups created during the installation of the
Linux distribution or when a new service or application is installed. Groups are also
identified by a numerical ID (gid), with the same range as for the users: 0–99 for
predefined groups created during installation, 100–999 for the system groups created
during the installation of services and applications, and 1,000–6,000 for the regular
ones. The root user has their own group called root with the guid 0.
Administrators are able to create, administrate, and also delete users and groups with
available system tools. Linux stores the information for users, passwords, groups, and
passwords for groups in files. The four main files for keeping the information are as
follows:

/etc/passwd: Contains the list of the users locally available in the system. This
file contains separated by colons (“:”) the following fields:

username: The user login with a maximum length of 32 characters.
password: It will contain the letter “x” indicating that it is stored in
/etc/shadow. It is also possible to store the password encrypted in this file,
although it is highly not recommended.
user id (uid): A unique numerical id associated with the user.
group id(gid): A numerical id, as primary group referencing a group in the
file /etc/group.
User information: Nowadays, this field contains the full name of the user.
Historically, these fields contained the name, location, phone number, and

office number, and they were separated by commas.
Home directory: Full path where the user will have the main directory for
his data.
Shell: Full path to the shell to be used. System users will use
/sbin/nologin, /usr/sbin/nologin or /bin/false to avoid them from
logging in as regular users. Normal users usually use /bin/bash,
/bin/sh, or other popular alternatives such as /bin/zsh.

/etc/shadow: This file contains the password information and the expiration data
for the local users in the system. This file should be protected and made unable
to be read by non-administrative users. It contains nine fields separated by
colons (“:”):

username: A user existing in /etc/passwd
encrypted password: A password that is usually automatically filled by
command passwd.
date of last password change: This field has three possible values:

Empty means the user has no expiring date.
A 0 value means the user would have to change the password after
she logins.
An integer expressed as the number of days since January 1, 1970,
00:00 UTC, indicates when the password was changed for the last
time.

minimum password age: The minimum number of days the user will have
to wait before they are allowed to change the password again. An empty
field and value 0 mean that there is a minimum password changing time
required.
maximum password age: The maximum number of days after which the
user will have to change their password. The user should be asked to
change the password the next time they will log in. An empty field means
that there is no maximum password age, no password warning period, and
no password inactivity period.
password warning period: The number of days before a password is
going to expire, during which the user should be warned. An empty field
and value of 0 mean that there is no password warning period.
password inactivity period: The number of days after a password has
expired during which the password should still be accepted.
account expiration date: The date of expiration of the account, expressed
as the number of days since January 1, 1970, 00:00 UTC.

reserved field: This field is not used currently.

/etc/group: This file defines the groups of the system. It contains the following
fields separated by colon (“:”):

group name: The name of the group
password: An “x” indicating the password is stored in file /etc/gshadow
or empty if password is not needed.
group id (gid): A numerical id.
user list: a list of users separated by comma belonging to this group as one
of the secondary groups.

/etc/gshadow: This file contains the password for the groups, as well as the
administrators for the group and the members. This file should be protected and
only readable by administrators. The fields separated by colon (“:”) are as
follows:

group name: The name of the group from /etc/shadow
encrypted password: A password usually automatically filled by the
command gpasswd
administrators: A comma-separated list of administrator users. These
users can change the password and the members of the group.
members: A comma-separated list of member users. It should match the
list from /etc/group.

The file /etc/login.defs defines the default values for different parameters related to
users and groups, such as user id ranges, group ranges, password expiration defaults,
and default home directory permissions. An example of the file content is shown in
table 4.1:

Option Value

MAIL_DIR /var/spool/mail

UMASK 022

HOME_MODE 0700

PASS_MAX_DAYS 99999

PASS_MIN_DAYS 0

PASS_MIN_LEN 5

PASS_WARN_AGE 7

UID_MIN 1000

UID_MAX 60000

SYS_UID_MIN 201

SYS_UID_MAX 999

GID_MIN 1000

GID_MAX 60000

SYS_GID_MIN 201

SYS_GID_MAX 999

CREATE_HOME yes

USERGROUPS_ENAB yes

ENCRYPT_METHOD SHA512

Table 4.1: Options in /etc/login.defs

During the installation of a Linux distribution, a Linux Standard Base (LSB) is
configured. This base contains a predefined number of users and groups, where most
of which have a historical meaning but are not in use in modern systems. Table 4.2
shows the users configured in a fresh installed Ubuntu Server:

Usernam
e

UID Primary
GID

User information Home dir. Shell

root 0 0 root /root /bin/bash

daemon 1 1 daemon /usr/sbin /usr/sbin/nologin

bin 2 2 bin /bin /usr/sbin/nologin

sys 3 3 sys /dev /usr/sbin/nologin

sync 4 65534 sync /bin /bin/sync

games 5 60 games /usr/games /usr/sbin/nologin

man 6 12 man /var/cache/man /usr/sbin/nologin

lp 7 7 lp /var/spool/lpd /usr/sbin/nologin

mail 8 8 mail /var/mail /usr/sbin/nologin

news 9 9 news /var/spool/new
s

/usr/sbin/nologin

uucp 10 10 uucp /var/spool/uuc
p

/usr/sbin/nologin

proxy 13 13 proxy /bin /usr/sbin/nologin

www-
data

33 33 www-data /var/www /usr/sbin/nologin

backup 34 34 backup /var/backups /usr/sbin/nologin

list 38 38 Mailing List Manager /var/list /usr/sbin/nologin

irc 39 39 ircd /run/ircd /usr/sbin/nologin

gnats 41 41 Gnats Bug-Reporting System (admin) /var/lib/gnats /usr/sbin/nologin

nobody 655
34

65534 nobody /nonexistent /usr/sbin/nologin

Table 4.2: Default users created in a Ubuntu Server

The user nobody is a special user, used by some services when they do not want to use
a dedicated user to run an application. A group named nobody is also created during
the installation, as observed in table 4.3 of default groups created in an Ubuntu Server:

Group GID Group GID Group GID Group GID

root 0 news 9 floppy 25 irc 39

daemon 1 uucp 10 tape 26 src 40

bin 2 man 12 sudo 27 gnats 41

sys 3 proxy 13 audio 29 shadow 42

adm 4 kmem 15 dip 30 utmp 43

tty 5 dialout 20 www-data 33 video 44

disk 6 fax 21 backup 34 plugdev 46

lp 7 voice 22 operator 37 staff 50

mail 8 cdrom 24 list 38 games 60

Table 4.3: Default groups created in Ubuntu Server

Best practices for user accounts
For human user accounts, it is recommended that the account is protected with strong
passwords and expiration rules are applied. When possible, it is also recommended to
disable the password login (for example, in SSH) and instead use only SSH
private/public keys for login.
It is important to keep a list of the users required for each system and remove the non-
required users for the system to avoid password breaches or vulnerabilities, which can
affect our infrastructure. Another important thing to keep track of is the user and group
belonging to mapping, thus, ensuring the user does not belong to a group of which he
should not be a part of.
Automating the creation and maintenance of the users with tools like Ansible will help
administrators to keep the systems secure and easy to maintain.

Commands to administrate users

Command id
This simple command shows information about the user and the groups to which the
user belongs. This command can be executed without any argument to get information
for the user who is executing it. Moreover, by specifying this command as an

argument, a user will be able to see the user’s group information. The common options
for the command this command are shown in table 4.4:

Option Description

-g, --group print only the effective group ID

-G, --groups print all group IDs

-u, --user print only the effective user ID

Table 4.4: Common options for the command id

In figure 4.1, an example of an output without options and arguments but with the
argument of another user and using the options listed previously is illustrated as
follows:

Figure 4.1: Output examples using command id

Commands useradd and adduser
The command useradd is a command available in all Linux distributions, with the aim
of creating users. Some distributions, for example Ubuntu Server, offers a tool adduser
to help to introduce interactively the user information. In some other distributions, for
example, Red Hat Enterprise Linux, the command adduser invokes the command
useradd when it is executed.
The default values (specified in the file /etc/default/useradd) can be listed with the
command useradd -D, as shown in figure 4.2:

Figure 4.2: Example of default options for command useradd

The only argument required for this command is for the username to be created. The
most common options for the command useradd are shown in table 4.5:

Option Description

-c, --comment COMMENT Usually used to specify the user’s full name.

-d,--home-dir HOME_DIR The home directory for the user instead use /home/<username>

-g, --gid GROUP The main group name or group id for the user.

-G,--groups GROUP1,GRP2 A list, command separated, of secondary groups for the user.

-k, --skel SKEL_DIR The skeleton directory is to be used instead /etc/skel.

-m, --create-home Create the user’s home directory if it does not exist.

-r, --system Create a system account instead of a regular user. GID will be different.

-s, --shell SHELL The path of the user’s login shell.

-u, --uid UID The numerical value of the user’s ID. Useful for migrating users.

-U, --user-group Create a group with the same name as the user and set it as user’s primary
group.

Table 4.5: Common options for the command useradd

In figure 4.3, a user named testuser is created, specifying some of the options from
the previous table, as well as the options with command id:

Figure 4.3: Example creating a user testuser using useradd.

The command adduser, when available as a separate tool, usually is used without any
options. However, the popular ones are described in table 4.6:

Option Description

--home DIR The home directory instead of the default.

--shell SHELL The default shell instead defaults one.

--no-create-home Do not create the home directory.

--gecos GECOS Specify the user information

--gid ID Specify the primary group ID or name.

Table 4.6: Common options for the command adduser

Figure 4.4 shows the output and the interaction with the command adduser:

Figure 4.4: Example creating a user testuser2 using adduser

Command usermod
The command usermod allows to modify most of the parameters for the user after it is
created. The only argument required is for the username to be modified. The most
common options, similar to useradd, are described in table 4.7:

Option Description

-a, --append Add the user to the secondary group(s). Use only with the -G option

-c, --comment COMMENT Usually used to specify user’s full name.

-d, --home HOME_DIR The user’s new login directory.

-g, --gid GROUP The new main group name or group id for the user.

-G,--groups GROUP1,GRP2 A list, command separated, of secondary groups for the user.

-L, --lock Lock a user’s password.

-m, --move-home Move the content of the user’s home directory to the new location.

-s, --shell SHELL The path of the user’s new login shell.

-U, --unlock Unlock a user’s password.

Table 4.7: Common options for the command usermod

In figure 4.5, a secondary group named syslog is added to the user testuser2 created
previously:

Figure 4.5: Example adding a secondary group to user testuser2 using usermod

Command lslogins
The command lslogins is a modern command to display information about available
users in the system. Not specifying any argument or options will list all the users and
information about the last login and the number of processes running by the user if the
password is locked. This can be shown in figure 4.6:

Figure 4.6: Output example (truncated) of command lslogins

Specifying one of the existing users as argument, detailed information about the
account is shown, as illustrated in figure 4.7:

Figure 4.7: Output example for command lslogins specifying a user.

Some of the common options for the command lslogins are listed in table 4.8:
Option Description

-a,--acc-expiration Shows the date of the last password change and the account expiration date.

-f, --failed Display data about the users’ last failed login attempts.

-g, --groups=groups Only show data of users belonging to groups.

-l, --logins=logins Only show data of users with a login specified in logins. Comma separated.

-p, --pwd Display information related to login by a password.

-u, --user-accs Show user accounts and hidden system users.

Table 4.8: Common options for the command lslogins

Commands who and w
The command who shows information about users logged into the system. An example
is shown in figure 4.8:

Figure 4.8: Output example of command who.

The command w shows information about users logged into the system and also the
main command they are executing, as can be seen in figure 4.9:

Figure 4.9: Output example of command w.

Command userdel
This command is used to remove local users from the system. It requires an argument
to specify the user who is to be deleted. The most common options for this command
are shown in table 4.9:

Option Description

-f, --force This option forces the removal of the user account, even if the user is still
logged in.

-r, --remove Files in the user’s home directory will be removed.

Table 4.9: Common options for the command userdel

In figure 4.10, the user testuser2 and his files are deleted:

Figure 4.10: Example of deleting the user testuser2 and his home directory.

Command passwd
This command is used to operate with the password and the expiration password date
of the local users. Creating a user with the command useradd requires this command
to be run afterward to set the user’s password. An administrator or regular user can run
it without an argument to change their own password. The most common options are
shown in table 4.10:

Option Description

-l, --lock Lock the password of the user, and it is available to root only.

-u, --unlock Unlock the password for the user.

-e, --expire The user will be forced to change the password in the next login attempt.

-n, --minimum DAYS Minimum password lifetime, in days.

-x, --maximum DAYS Maximum password lifetime.

-w, --warning DAYS Days in advance, the user will receive warnings her password will expire.

-i, --inactive DAYS Number of days that will pass before an expired password will be taken means
that the account is inactive and should be disabled.

-S, --status Output short information about the status of the password.

Table 4.10: Common options for the command passwd

In figure 4.11, it is shown how to set the password for one user and how to lock the
account (the command passwd -S is showing the letter L indicating is locked):

Figure 4.11: Output examples of the usage of the command passwd.

Command chage
This command is used to change the user password expiry information. The popular
options are shown in table 4.11:

Option Description

-d, --lastday LAST_DAY Set the date when the password was last changed. I

-E, --expiredate EXPIRE_DATE Set the date when the user’s account will no longer be accessible.

-I, --inactive INACTIVE Set the number of days of inactivity after a password has expired
before the account is locked.

-l, --list Show account aging information.

-m, --mindays MIN_DAYS Set the minimum number of days between password changes to
MIN_DAYS.

-M, --maxdays MAX_DAYS Set the maximum number of days during which a password is
valid.

-W, --warndays WARN_DAYS Set the number of days of warning before a password change is
required.

Table 4.11: Common options for the command chage

In figure 4.12, the user testuser is forced to change the password in the next login,
and information about the account is shown:

Figure 4.12: Examples using command chage.

Command last
This command will show a listing of users who logged into the system. It is possible to
filter the output with some of the options shown in table 4.12:

Option Description

-n, --limit number Tell last how many lines to show.

-p, --present time Display the users who were present at the specified time.

-R, --nohostname Suppresses the display of the hostname field.

-s, --since time Display the state of logins since the specified time.

-t, --until time Display the state of logins until the specified time.

Table 4.12: Common options for the command last

In figure 4.13, we are shown only the last three entries of the log of the users who were
logged:

Figure 4.13: Example using command last

Commands to manipulate groups

Command groupadd
This command will add a local group to the system. The two common options are
shown in table 4.13:

Option Description

-g, --gid GID The numerical value of the group’s ID. Useful for migrations.

-r, --system Create a system group.

Table 4.13: Common options for the command groupadd

In figure 4.14, a new group called example is created:

Figure 4.14: Example using command groupadd.

Command groups
This simple command shows the groups the user invoking this command belongs to.
Specifying an argument will show the groups that the user is part of. In figure 4.15,
two scenarios are shown:

Figure 4.15: Example using command groups.

Command groupmod
The command groupmod allows to modify some of the parameters of the specified
group. The common options are shown in table 4.14:

Option Description

-g, --gid GID The new group id for the group.

-n, --new-name NAME The new name for the group.

Table 4.14: Common options for the command groupmod

In figure 4.16, the group example previously created is renamed to writers:

Figure 4.16: Example using command groupmod.

Command groupdel
This command is used to delete groups for the system, and the only required argument
is for the group to be deleted. In figure 4.17, the previously renamed group is deleted:

Figure 4.17: Example using command groupdel.

Command gpasswd
This command administrates /etc/group and /etc/gshadow files. Every group can
have administrators, members, and a password. The required argument is the group to
operate it, and table 4.15 shows the most common options:

Option Description

-a, --add user Add the user to the named group.

-d, --delete user Remove the user from the named group.

-r, --remove-password Remove the password from the named group.

-R, --restrict Restrict the access to the named group.

-A, --administrators user,… Set the list of administrative users.

-M, --members user,… Set the list of group members.

Table 4.15: Common options for the command gpasswd

In figure 4.18, a group writers is created, where the user agonzalez is set as an
administrator of the group, and a password is also set for the group:

Figure 4.18: Example using command gpasswd

Command newgrp
This command allows users to be part of a group either if they know the password of
the group or if they are part of the group, but when they logged in to the system, they

were not. The only argument required is the group to join; if the password is needed, it
will be prompted. In figure 4.19, the user testuser is joining the group writers using
the password:

Figure 4.19: Example using command newgrp.

Introduction to RPM and DEB package formats
Linux distributions are working with packaging systems to make the process of
installing new software, updating the software, or removing it easier. These packaging
systems are responsible for solving the dependencies needed and offering the
possibility of verifying the status.
A package consists of an archive of files and meta-data that are used to install and
erase the archive files. The meta-data includes helper scripts, file attributes, and
descriptive information about the package. Most of the distributions offer two types of
packages:

Binary packages: used to encapsulate the software to be installed.
Source packages: containing the source code and everything else that is needed
to produce binary packages.

There are two popular package managers and formats used by the most used
distributions: RPM Package Manager and Debian package.
The RPM Package Manager (RPM) is an open packaging system that runs on Red
Hat Enterprise Linux as well as other Linux distributions such as Fedora, CentOS,
Alma Linux, and Rocky Linux. There are different tools to operate with the RPM
Package Manager (RPM):

rpm: The main tool to query, install, upgrade or remove packages from the
system. This command will use the local RPM database when querying or
uninstalling, and it will use local files with the extension .rpm to install or
upgrade packages.

yum (Yellowdog Updater Modified): The primary tool for getting, installing,
deleting, and querying packages from software repositories. This tool will be
responsible for downloading the package and the dependencies needed to install
the software requested. It allows the update or upgrade of the full system.
dnf (Dandified YUM): The newest version of YUM, having compatibility with
the YUM command and options. It is faster than the original yum, is more
extensible, and resolves the dependencies in a better way.

The Debian package is the package format for Debian, Ubuntu, and derivatives. The
extension for the packages is .deb. The main tools to operate with the Debian packages
are as follows:

dpkg: The main tool to query, install, build and remove Debian packages. It acts
as a frontend for the low-level commands dpkg-query (for listing) and dpkg-deb
(to install software).
apt-get: One of the popular tools for handling packages from software
repositories. It allows to install, update, reinstall, and remove software in the
system.
apt-cache: This command is used to search packages in the software
repositories. The system will keep a local copy of the list of the available
packages, and this tool will query this local database to search for packages,
search files inside packages or obtain information about a package.
apt: Provides a high-level interface for package management. Using this
command simplifies the use of only one command for the installation (apt-get
tasks) or manipulation of packages and the search or obtaining package
information (apt-cache tasks).

Commands to operate with RPM packages

Command rpm
This command as described previously is the main command to operate with RPM
packages. It contains multiple options depending on the action required. The main
actions and syntax are shown in table 4.16:

Action Syntax

Querying and verifying rpm -q/--query [select options] [query options] [package]

Installing packages rpm -i/--install [install-options] package.rpm

Upgrading packages rpm -U/--upgrade [install-options] package.rpm
rpm -F/--freshen [install-options] package.rpm

Reinstall packages rpm --reinstall [install-options] package.rpm

Removing packages rpm -e/--erase packagename

Table 4.16: Actions and syntax for the command rpm

The most common global option is -v (--verbose) for all the action. For select options
and query options and their descriptions, refer to table 4.17:

Select options Description

-a, --all [SELECTOR] Query all installed packages or filter by SELECTOR

-f, --file FILE Query the package owning the installed FILE specified.

-p, --package package.rpm Query a package file and not an installed package.

--whatrequires PACKAGE Query the packages that require the PACKAGE specified.

--whatconflicts PACKAGE Query the packages that conflict with the PACKAGE specified.

--changelog Display change information for the package.

--conflicts List the packages conflicting with the one queried.

-i / --info Obtains information about the package.

-l / --list List the files inside the package

-R / --requires List the packages on which this package depends.

Table 4.17: Select options and query options

Some examples of querying packages are shown in the following figures:

Figure 4.20 is a Query of all the packages in the system starting with the word
kernel:

Figure 4.20: Output example query installed packages with a pattern.

Figure 4.21 features obtaining information about one specified package (jq):

Figure 4.21: Output example getting information of an installed package

Figure 4.22 shows checking the owner package of one installed file in the
system:

Figure 4.22: Output example querying who is the owner of a file.

Figure 4.23 shows query a .rpm file listing the dependencies:

Figure 4.23: Output example listing the dependencies of a package.

Figure 4.24 lists the files inside a package:

Figure 4.24: Output example listing the files created by an installed package.

For installing, upgrading, and deleting, the following options shown in table 4.18 are
the most common:

Option Description

--force Same as using --replacepkgs, --replacefiles, and --oldpackage.

-h, --hash Shows the progress as the package archive is unpackaged.

--nodeps Do not do a dependency check before installing or upgrading a package.

--oldpackage Allow an upgrade to replace a newer package with an older one.

--replacefiles Install the packages even if they replace files from other installed packages.

--replacepkgs Install the packages even if some of them are already installed on this system.

--test Do not install the package; simply check for and report potential conflicts.

Table 4.18: Options for installing, upgrading, and deleting

Some examples of installing, updating, reinstalling, and uninstalling packages are
shown in the following figures:

Figure 4.25 features installing a package from a local file.

Figure 4.25: Output example installing a package from a local file.

Upgrade a package from a local file, as shown in figure 4.26:

Figure 4.26: Output example upgrading a package from a local file.

The difference between -U (--upgrade) and -F (--freshen) is that the first
option will install the package if it previously was not installed; the second one
will not perform any action if the previous version was not in the system. Both
of them will uninstall the previous version and then install a new version for
upgrading an existing package.
Figure 4.27 features reinstalling an existing package:

Figure 4.27: Output example reinstalling a package using a local file.

Figure 4.28 features removing an installed package from the system.

Figure 4.28: Output example removing a package from the system.

Commands yum and dnf
Both command work with software repositories having the option to work with local
files. The directory containing the repositories for the system is /etc/yum.repos.d/.
Inside it, there are files with the extension .repo containing the information of the
repository. An example of a repository definition for a Red Hat Enterprise Linux 9 is
shown in the following snippet:
[rhel-9-for-x86_64-baseos-rpms]

name = Red Hat Enterprise Linux 9 for x86_64 - BaseOS (RPMs)

baseurl =

https://cdn.redhat.com/content/dist/rhel9/$releasever/x86_64/baseos/os

enabled = 1

gpgcheck = 1

gpgkey = file:///etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release

sslverify = 1

sslcacert = /etc/rhsm/ca/redhat-uep.pem

sslclientkey = /etc/pki/entitlement/3068237762125458331-key.pem

sslclientcert = /etc/pki/entitlement/3068237762125458331.pem

metadata_expire = 86400

enabled_metadata = 1

Running the command dnf repolist will show the enabled repositories in the system, as
shown in figure 4.29:

Figure 4.29: Output example listing the enabled repositories in the system

The syntax for the commands dnf and yum is: yum [options] action [args]. The
popular actions are shown in table 4.19:

Action Description

autoremove Remove all the packages installed as dependencies but are not needed anymore.

check-update Check if there is an available update for the installed packages in the system.

distro-sync Perform the operations needed to update the distribution to the latest version
available.

download Download the package(s) specified in the current directory.

downgrade Downgrades the specified packages to the previously highest version available.

info Shows information about the package indicated.

install Installs the package(s) indicated and all the dependencies needed. It is possible as
well to specify a .rpm file located in the local system or in a Web server. Groups can
be installed by specifying the character at (@) as a prefix.

list Shows all the packages installed and the available in software repositories enabled
in the system.

makecache Downloads and caches metadata for the enabled repositories in the system

provides Finds the package providing the file or directory indicated as an argument.

reinstall Reinstall the specified package(s).

remove Removes the specified package(s).

search Searches for a specific package(s).

upgrade Upgrades the system or the package(s) indicated to the latest version available.

Table 4.19: Actions for the commands dnf and yum

Some of the popular global options are shown in table 4.20:
Option Description

--downloadonly Download package(s) and dependencies only without performing the
installation.

--show-duplicates If software repositories offer multiple versions for the same package, all of
them will be listed. Default dnf/yum shows only the latest version.

-v, --verbose Shows debug information.

-y, --assumeyes Does not ask the users if they want to confirm the operation.

Table 4.20: Popular global options for the commands dnf and yum

In the following figures, the different tasks performed using command dnf are shown:

Figure 4.30 checks if there is any available package update available:

Figure 4.30: Output example checking the packages that can be updated.

Upgrade the Linux distribution to the latest version available.

Figure 4.31 shows that the first part of the output is the transaction
summary information:

Figure 4.31: First part of example output for command dnf distro-sync.

After confirming the operation, typing y or using the option -y/--assume-
yes, the part is the downloading packages progress, as is shown in figure
4.32:

Figure 4.32: Second part of example output for command dnf distro-sync.

The last part of the output is the information about the transaction, which
includes the installation, cleaning, and verification of the process for each
of the packages. This is illustrated in figure 4.33:

Figure 4.33: Last part of example output for command dnf distro-sync.

Download a package named dmidecode from a software repository to the current
directory without installing it, as can be seen in figure 4.34:

Figure 4.34: Output example downloading a package.

Install in the system a package named traceroute from a software repository.
This is shown in figure 4.35:

Figure 4.35: Package installation output example

Search for a package named firefox in the software repository, as illustrated in
figure 4.36:

Figure 4.36: Output example searching a package using dnf.

Figure 4.37 illustrates checking what package provides the file
/etc/sensors3.conf:

Figure 4.37: Output example searching who provides a file.

Remove a package previously installed in the system named traceroute, as can
be seen in figure 4.38:

Figure 4.38: Output example removing a package

Commands to operate with DEB packages

Command dpkg
This command is the main tool to perform operations with Debian package files,
including installation, getting information, or removing them from the system. Table
4.21 shows the most common options to perform different tasks for the command
dpkg:

Option Description

-i, --install file.deb|-a|--pending Install the package.

-r, --remove package|-a|--pending Remove an installed package keeping the configuration
files.

-P, --purge package…|-a|--pending Uninstall (if it is installed) and remove configuration
files from the system.

--configure package…|-a|--pending Configure a package that has not yet been configured.

-V, --verify [package-name…] Verifies the integrity of the package

-C, --audit [package-name…] Performs database sanity and consistency checks

-I, --info archive [control-file…] Show information about a package.

-l, --list package-name-pattern List packages matching the given pattern.

-s, --status package-name Report the status of the specified package.

-L, --listfiles package-name List files installed to your system from package-name.

-S, --search filename-search-pattern Search for a filename from installed packages.

Table 4.21: Most common options for the command dpkg

For the first four options, it is possible to specify the options -a or –pending (instead
of the package name) to operate with packages that are not fully installed or
configured.
In the following figures, different operations with Debian packages are illustrated:

Obtain information about one .deb file for the lftp software, as can be seen in
figure 4.39:

Figure 4.39: Output example getting information of a local .deb file.

Figure 4.40: Output example installing a local .deb file to the system.

1. Install a software named lftp from a local file, as shown in figure 4.40:
2. List the files created by the package named pci.ids, as shown in figure 4.41:

Figure 4.41: Output example listing the files created by a specific package.

3. List from all packages installed in the system, as shown in figure 4.42:

Figure 4.42: Output example listing the packages installed in the system.

4. Filter the list of the packages installed using a pattern, as shown in figure 4.43:

Figure 4.43: Output example filtering the list of packages installed in the system.

5. Search what installed packages created the file /etc/sudo.conf, as shown in
figure 4.44:

Figure 4.44: Output example querying which package owns a file in the system.

6. Remove the software previously installed named lftp. Configuration files will be
kept in the system, as illustrated in figure 4.45:

Figure 4.45: Output example removing a package from the system.

7. Remove the configurations kept previously uninstalling the software lftp, as
shown in figure 4.46:

Figure 4.46: Output example removing remaining configuration files

Command apt-get, apt-cache, and apt-file
These three commands work with the repositories configured in the file
/etc/apt/sources.list or in the files configured inside /etc/apt/sources.list.d/.
A repository file contains a list of repositories, and each repository specifies if it is for
binary packages (deb) or for the source (deb-src), as well as the address of the
repository, the distribution version, and the type of the software in this repository;
(main for free software, restricted for non-free software. The context of the word
free where is related to open source and not about cost). An example of repositories
entries are shown for a Ubuntu Server with the codename for the distribution called
jammy:
deb http://es.archive.ubuntu.com/ubuntu jammy main restricted

deb http://es.archive.ubuntu.com/ubuntu jammy-updates main restricted

The command apt-get is used to install, update or remove software using a software
repository. The common actions are shown in table 4.22:

Action Description

update Resynchronize the package index files from their sources.

upgrade Install the newest versions of all packages currently installed in the system.

dist-upgrade Upgrades the packages related to the core of the distribution.

install Install the package(s) specified.

reinstall Reinstalls the package specified. It is an alias to use install --reinstall.

remove Remove the package(s) specified.

purge Remove the package(s) specified and the configuration belonging to them.

source Fetch the source instead the binary packages.

download Download the package(s) to the current directory.

clean Cleans the local files related to the information for the software repositories.

autoremove Remove the non-needed anymore packages automatically installed as
dependences.

Table 4.22: Actions for the command apt-get

Some popular options for the command apt-get are shown in table 4.23:
Option Description

-q, --quiet Reduces the information in the output.

-s, --dry-run Do not perform any change in the system; instead, simulates the action to
perform.

-y, --yes Do not ask for confirmation for the requested task.

Table 4.23: Popular options for the command apt-get

The following figures provide examples of the use of apt-get with the actions shown
previously:

Update the local copy of the package index from repositories, as illustrated in
figure 4.47:

Figure 4.47: Output example of updating local package index

Install a new package called vsftpd from the software repository, as shown in
figure 4.48:

Figure 4.48: Output example of a package installation

Remove the package vsftpd previously installed, as illustrated in figure 4.49:

Figure 4.49: Output example of a package removal

Auto-remove the packages what at not required anymore as a dependency, as
shown in figure 4.50:

Figure 4.50: Output example auto removing not anymore needed packages.

The command apt-cache is used to query the local index of packages retrieved from
the software repositories. The common actions are shown in table 4.24:

Action Description

show Show information about one specific package.

search Search in the index for the specific pattern.

depends Lists the dependencies needed for the specified package.

Table 4.24: Actions for the command apt-cache

The following figures and examples of the common uses for apt-cache are provided:

Get information about the package firefox, as shown in figure 4.51:

Figure 4.51: Output example obtaining information about a package.

Search for packages with pattern ^ansible (name or description starts with word
ansible), as shown in figure 4.52:

Figure 4.52: Output example searching for a pattern.

Show the dependencies for the package python3-urllib, as shown in figure
4.53:

Figure 4.53: Output example for dependencies of a package.

The command apt is a frontend for the commands apt-get and apt-cache. The
actions available for the command are shown in table 4.25:

Action Equivalent Action Equivalent

update apt-get update reinstall apt-get install

upgrade apt-get upgrade remove apt-get remove

full-upgrade apt-get dist-upgrade purge apt-get purge

install apt-get install autoremove apt-get autoremove

search apt-cache search show apt-cache show

Table 4.25: Actions and Syntax for rpm

Introduction to services

A Linux service (or sometimes called daemon) is an application or set of applications
that are running in the background performing some tasks or waiting for some event.
Some services can execute some applications, and when it finishes, the service is
stopped. An example is a service to configure the network in the system. Other
services are running constantly, waiting to offer some resource; for example, an SSH
service is waiting for users to connect and offer the possibility to login to the server.
Most Linux distributions use the service manager called systemd, which is a
replacement for the historical and popular SysV init daemon. When a Linux
distribution is booted, the first process executed is systemd, and it will be responsible
for starting the rest of the services enabled in the system to be started on boot.
Systemd is a full suite of applications aiming to unify the service configuration and the
behavior across different Linux distributions. The main command to manage services
is systemctl, and the popular actions are described in table 4.26:

Action Description

list-units List the units (services, mount points, devices, and sockets) available in the
system.

status Check the status of the specified unit(s).

show Show the properties of the specified unit(s).

start Start the unit(s) specified.

stop Stop the unit(s) specified.

reload The unit(s) specified will reload the configuration.

restart Stop and start the unit(s) specified.

enable Enable the unit(s) specified to be started when the system boots.

disable Disable the unit(s) specified to do not be started when the system boots.

Table 4.26: Actions for system

In the following figures, some examples of the actions for the command systemctl
listed are shown:

Check the status of the service named cron, as shown in figure 4.54:

Figure 4.54: Output example about the status of one service.

Disable a service what is currently enabled, as shown in figure 4.55:

Figure 4.55: Output example disabling a service.

Enable a disabled service, as illustrated in figure 4.56:

Figure 4.56: Output example enabling a service.

Conclusion
Administrating users and groups is one of the main tasks for Linux administrators and
regular users administrating a system. Linux provides easy-to-use tools to perform all
the user and group-related tasks, such as create, query, modify, or delete.
Other important knowledge needed when working with a Linux distribution is to know
how to install and administrate software in the system. Understanding the package
format and software repositories and the tools available are needed skills to configure a
system, install new software and then install new services on it. Services are
applications usually running in the background, performing some tasks or offering
some service to regular users.

Key facts
Users and groups information are stored in plain files.

Passwords are encrypted and saved in files only accessible by administrators.
Linux Distributions provide several tools to operate with users and groups.
Package Format for distributions helps in the installation process of new
software and updates the system.
Software repositories keep software and libraries to be accessible from the
system and the system tools to install the software.
Services are processes running in the background performing some operating or
waiting to offer functionality.

Questions
1. What option for command useradd is creating the directory for the user?

a. -h, --create-home
b. -m, --create-home
c. -d, --create-directory

2. Which of the following commands are not used to operate with RPM packages?

a. rpm
b. dpkg
c. dnf

3. With the command rpm, which option ensures to install or update the local file
specified?

a. -F, --freshen
b. -U, --upgrade
c. -i, --install

4. What command(s) can be used to search packages in Software Repositories for
DEB packages?

a. apt
b. apt-get
c. apt-cache

5. What action for command systemctl is used to ensure a service is starting on
boot?

a. start
b. enable

c. activate

Answers
1. b
2. b
3. b
4. a and c
5. b

CHAPTER 5
Managing Files, Directories, and

Processes

Introduction
This chapter will cover how to work with files, directories, and processes.
Everything in Linux is reflected with files, such as regular files and documents, or
devices, such as a hard disk, a USB device, or inter-process and network
communications. Process information is also going to be accessible through files.
The first part of the chapter will describe the directory structure in Linux
distributions to better explain how the hierarchy of the directories and the
functionality of the most important ones.
The second part of the chapter aims to describe how permissions work in Linux
for files, directories, and applications. Commands to work with files and
directories and an operation such as create, remove, or filter the content are going
to be shown with different examples. Commands to operate with permissions are
going to be described as well.
The third part of the chapter will describe how to work with popular editors,
which is required knowledge to operate a Linux server. This includes some
examples and tricks on how to use a basic editor and how to use a more advanced
editor. In this part, file managers are going to be described as being able to
navigate between directories in an interactive way.
The last part of the chapter will show how the processes in a Linux distribution
work and how it is possible to set permissions to allow or not to allow execution,
depending on the user or group who is trying to run it. Commands to change the
priority of the processes are going to be described with different examples.

Structure
In this chapter, we will discuss the following topics:

Linux directory structure
Permissions

Access to files and understanding files on Linux
Special characters
Regular expressions
File editors and file managers
Processes management
Operate with processes priorities

Linux directory structure
Linux distributions have a common layout directory structure, where each
directory has a specific purpose. The main directory is called root and is referred
to with a slash (/). The rest of the directories appear under this directory. Figure
5.1 shows the standard Filesystem Hierarchy Standard (FHS):

Figure 5.1: Standard Linux Filesystem hierarchy. Source: Wikipedia.

As is possible to observe in the previous image, the directories start with a slash
(/) and, afterward, the name of the directory, for example,/bin/. If a directory is
part of another directory, the separation is using a slash (/) again. For example, the
directory /usr/share/ indicates the directory share/ is under the directory usr/,
which is also under the root directory (/). Directories are represented by ending
with a slash (/). It is possible to refer to the directory without specifying the last
slash, but it is usually a good practice so that there is no confusion between file
names.

Modern distributions are applying some changes to the standard FHS to ease the
directory structure and also adding new directories for new features:

Directory /bin/ is a link to directory /usr/bin/ and does not contain
different content anymore.
Directory /lib/ is a link to directory /usr/lib/.
Directories /lib32/ (for 32-bit libraries) and /lib64/ (for 64-bit libraries)
are linked to directories /usr/lib32/ and /usr/lib64/.
Directory /sbin/ is a link to directory /usr/sbin/
A new directory called /sys/ contains information about devices, drivers,
and kernel features.
A new directory called /run/ contains a temporary filesystem associated
with the memory available where run-time available data are stored. This
directory is cleared during the boot process.

Directories storing applications
There are two main directories where applications are stored when we install
software using a package (deb or rpm). These directories are as follows:

/usr/bin/ (linked to /bin/): It contains regular software which any user in
the system can execute them. Some commands were reviewed previously,
such as mkdir or groups are stored here.
/usr/sbin/ (linked to /sbin/): It contains software used by administrators
in the system. Some commands were reviewed previously, such as useradd
or groupadd.

Another directory that can contain software installed without using a Linux
distribution package is /usr/local/bin/.

Directories storing user files
Regular users would have their own directory inside the directory /home/. It is
accessible only by the user or by an administrator and is isolated from the rest of
the users. For example, the user agonzalez will have as default home directory
/home/agonzalez/. An exception to the /home/ directory is for the home
directory for the root user. This administrator user has as home directory labeled
/root/. It is important not to confuse between the root directory (/) and the
root’s home directory (/root/).

Directories storing configurations
The main directory to store configuration globally in the system is /etc/, which
contains configuration for system tools, services, and stores as described earlier.
This directory contains configuration files and subdirectories containing
configurations. Some file configuration examples are shown in table 5.1:

File(s) Description

passwd, group Contains a user list and group information

resolv.conf Contains DNS resolution configuration

hosts Contains a map list between DNS names and IPs

fstab Contains the filesystems and mounpoint configuration

sudoers Contain the definition of administrator commands, which regular users
can execute.

Table 5.1: Files examples inside /etc/ directory

Some directories configuration examples are shown in table 5.2:
Directory Contains

default/ Some default configurations for applications

systemd/ Definition and configuration for systemd

ssl/ Public and private SSL certificates and configuration.

security/ Security configuration related to system and users.

Table 5.2: Directories examples inside /etc/ directory

Some applications executed by regular users use a directory named .config
(directories starting with a dot [.] in Linux are hidden) in their home directory
to store configuration for the different applications. Other applications use their
own directory to store the configuration.

Chromium browser will store the configuration and temporary files under
/home/username/.config/chromium/

SSH tools will store the configuration under /home/username/.ssh/
directory.

Directories storing libraries
Linux applications use libraries to be able to operate and perform different
operations. These libraries can be available already in the system or can be

installed libraries, which are automatically installed as dependencies when new
software is installed in the system. Some libraries are a virtual library provided by
the Linux Kernel. The directories keeping libraries are as follows:

/usr/lib/, /usr/lib64/, and /usr/lib32/ (directories linked to /lib/,
/lib64/, and /lib32/: It is globally accessible for all the applications in the
system.
/usr/local/lib/, /usr/local/lib64/, and /usr/local/lib32/:
Contains libraries for the software installed that does not use Linux
distribution packages.

It is important to mention that the purpose of the directory /var/lib is not to
contain libraries but some variable state information for applications.

Directories storing variable data
The top directory containing data, which is not static, is /var/. The standard
directories inside are shown in table 5.3:

Directory Contains

backups/ The copies of Backup applications are stored here

cache/ Temporary files for different applications.

crash/ If one application crash generates a file in this directory.

lib/ Variable state information for applications.

local/ Variable data for applications installed outside of the regular Linux
distribution packages.

lock/ Lock files indicating the application is using some resource.

log/ Log files and directories inside.

mail/ Mail local files for users

opt/ Optional files

run/ A link to /run/ directory

spool/ Contain files which should be treated later, such as print jobs.

tmp/ Temporary directory

Table 5.3: Directories inside directory /var/

Directories storing data for users

As observed in figure 5.1, the directory /usr/ contains data and applications
oriented to users. Directories /usr/lib/, /usr/lib32/, /usr/lib64/,
/usr/bin/, and /usr/sbin/ were described previously. Other important
directories under /usr/ are shown in table 5.4:

Directory Contains

include/ Files required for software compilation from source code.

local/ The same structure as /usr but for software not installed using Linux
distribution packages.

libexec/ Internal applications are executable by other programs but not for regular
users.

src/ Source code for applications or for the Linux kernel.

share/ Data for applications that are independent of system architecture. Data
such as documentation, fonts, public global certificates, icons,
applications plugins, and so on.

Table 5.4: Other directories inside directory /usr/

Directories storing system data information and boot
files
As everything in Linux is represented as a file, Linux distributions have some
special directories containing information about devices, hardware, and process
information. The kernel core and the boot file containing drivers are stored in a
special directory too. These directories are shown in table 5.5:

Directory Contains

/boot/ Kernel and booting files, including configuration files for the boot loader
(for example, grub).

/dev/ List of files referencing available devices in the system, such as disk
devices (/dev/sda for a primary disk) or virtual devices like /dev/random
to generate random data. Standard input, output, and error are reflected
here as /dev/stdin, /dev/stdout, and /dev/stderr.

/proc/ Process and kernel information. Each process has an associated directory
inside with information about the execution. Other files contain
information about the system, such as /proc/cpuinfo, having details about
the system CPUs.

/sys/ Devices, drivers, and kernel features. For example, the subdirectory
/sys/class/net/ contains information about the network devices.

Table 5.5: Directories storing system data information and boot files

When a process is running in the system, a subdirectory is created inside the
directory /proc/ with the process id assigned. For example, the process with id
687 will have assigned a dedicated directory /proc/687/. Inside the directory,
there are files and directories with useful information about the process. Table 5.6
shows the most useful ones:

Directory Description

/proc/PID/cmdline Command line arguments.

/proc/PID/cpu Current and last CPU in which it was executed.

/proc/PID/cwd Link to the current working directory.

/proc/PID/environ Values of environment variables.

/proc/PID/exe Link to the executable of this process.

/proc/PID/fd Directory, which contains all file descriptors.

/proc/PID/maps Memory maps to executables and library files.

/proc/PID/mem Memory is held by this process.

/proc/PID/root Link to the root directory of this process.

/proc/PID/stat Process status.

/proc/PID/statm Process memory status information.

/proc/PID/status Process status in human-readable form.

Table 5.6: Directories and files related to the process inside /proc/ directory.

Permissions
On a Linux system, each file and directory defines access rights for the user
owner, for the members part of the group owner, and for the rest of the users not
included in the group. The rights available are: read, write, and execution. The
execution permission for directories has that meaning if the user is able to read
the content inside.
The rights can be represented with a single character or with a numeric digit.
Table 5.7 shows the available rights and the representations:

Permission Symbol representation Octal representation

read r 4

write w 2

execution x 1

Table 5.7: Permission presentation in symbol and octal

When assigning permissions in symbol representation, the owner is represented
with the character o, the group owner with the character g, and other users with
the letter o. The permission u=rwx, g=rw, o=r indicates:

The user owner is able to read (r), write (w), and execute (x) the file.
The group members associated to the file would be able to read and write
the file but not execute it.
Other users can read the file but not write or execute it.

The permission u=rwx, g=rx, o= indicates:

The user owner is able to access the directory (x), able to read the content
(r), and create new files (w).
The group members associated with the directory would be able to access to
a directory (x) and able to read the content of the directory (r) but do not
write new files.
Other members are not going to be able to access the directory as they don’t
have execution permission (x).

The octal representation is the sum of the permissions desired to assign. For
example, for permission, read and write is indicated with the number 6 (4+2). The
first digit is for the user owner, the second for the group owner, and the last one
for others. The representations shown before as character representations and
other examples are illustrated in table 5.8:

Symbol representation Conversion Octal representation

u=rwx,g=rw,o=r u=4+2+1,g=4+2,o=4 764

u=rwx,g=rx,o= u=4+2+1,g=4+1,o=0 750

u=rwx,g=rwx,o=rx u=4+2+1,g=4+2+1,o=4+1 775

u=rw,g=rw,o=r u=4+2,g=4+2,o=4 664

Table 5.8: Permission conversion examples

The command ls with the option -l will show the permission for files and
directories. The first character would indicate the type of file that it is:

Character—indicates that it is a regular file.
Letter d indicates that it is a directory.
Letter l indicates that it is a symbolic link.

Letter c indicates that it is a character device
Letter p indicates that it is a pipe
Letter s indicates that it is a socket
Letter d indicates that it is a block device.

After the file type, the next three characters indicate the permissions for the user
owner, then the next three for the group owner, and the last three for other users.
Figure 5.2 shows some examples of different permissions and file types:

Figure 5.2: Different types of files and permissions associated.

The third column indicates the user owner, and the fourth indicates the group
owner. For example, for the file /etc/shadow in the figure, the user root has read
and write access to the file, and the members in the group shadow have read-only
access. The rest of the users have no access to the file for security reasons, as this
file contains encrypted passwords.
Another way to see the permissions for a file or directory is by using the
command stat, which will show more related information, such as when the file
was modified, changed (permissions or owners), created, or accessed. Figure 5.3
shows an example using the file /etc/passwd:

Figure 5.3: Output example for command stat.

Default permission when a file or directory depends on the system or user file-
creation mask value. The default value is defined in the file /etc/login.defs and
usually is defined with value 002. This value would be rested on the full
permission for files (666) and for directories (777), causing a regular file by
default would be created with permission 664 and directories 775. The bash

utility called umask allows us to see and modify the file-creation mask value.
Figure 5.4 shows the default umask value and the permissions when a file and a
directory are created:

Figure 5.4: Create a file and directory with default file-masking value

Figure 5.5 shows how to modify the default file-masking value using umask and
how it affects permissions for new files and directories:

Figure 5.5: Modify file-masking value and create directory and file.

In figures 5.3 and 5.4, four digits appear, as Linux also provides some special
permissions named set user identity (setuid), set group identity (setgid), and sticky
bit. Table 5.9 shows the representation and the meaning of these permissions:

Permission Symbol Numeric Description

setuid s (in user execution
field)

4 The application will be executed always as the user
who owns the application.

setgid s (in group
execution field)

2 If it is an application, it will be executed as the
group who owns the application.
If it is a directory, files created inside will have the
group associated with the directory.

sticky bit t (in other
execution field)

1 This permission restricts file deletion on directories.

Table 5.9: Permission presentation in symbol and octal

The command passwd is an example of an application using the special
permission setuid. The command can be executed by any user to modify their
own password, but the execution will be performed in the name of the root user to

be able to modify /etc/passwd and /etc/shadow files. Figure 5.6 shows how to
use command stat to show the octal and the character representation for a file:

Figure 5.6: Output example for command stat

On Debian and derivate distributions, the command change has the special
permission setgid. A regular user running this command will use the group
owner associated with the file /usr/bin/chage, and with this group, user would
be able to access the file /etc/shadow. Figure 5.7 shows the permissions for the
chage command:

Figure 5.7: Output example for command stat

Figure 5.8 shows the difference between creating a file inside a directory with the
setgid special permission associated and in a regular directory. The file created in
the directory with the setgid permission will keep the group of the directory where
it is created. Default behavior without permission means using the primary group
for the user.

Figure 5.8: Output example creating files in the regular directory and in a directory with special permission

The most common example of the sticky bit is the temporary directory /tmp/. All
the users are able to write in this directory, but users can remove their own files
and not other user’s files (except administrators, who can remove any file). Figure
5.9 shows how the /tmp/ directory has the sticky permission (t), and even the file
is owned by the user’s group. Here, it is not possible to delete because the user
owner is different:

Figure 5.9: Output example trying to remove the file in a directory with special permission

Figure 5.10 demonstrates how the same file can be deleted if it is a directory
without the sticky bit set:

Figure 5.10: Deleting a file in a directory without special permission

Due to security reasons, the files in the system owned by the user root or group
root using special permissions setuid or setgid need to be limited to specific
system tools. Any other software using those permissions is a potential risk to be
used to escalate permissions from a regular user. Using the command find, it is
possible to find the files with the setguid permissions (4xyz) and the setgid
permissions (2xyz). Figure 5.11 shows the output of searching for files with
special permissions assigned in the system:

Figure 5.11: Output example listing files with special permissions.

Access to files and understanding files on Linux
As described previously, in a Linux system, everything is a file. To understand
how to access files to read content, manipulate content, and remove files, it is
required to administrate and operate the Linux server. This section will focus on
how to assign owner, user, and group to files and directories, how to set
permissions, and how to access the files and filter or format the content.

Commands chown and chgrp
The main command to change the user owner and the group owner is chown.
Administrator users can use this command to modify both the owners for files and

directories. In contrast, a regular user can only modify the group of files and
directories only when the target group is one of the groups they belong to. Table
5.10 shows all the possible syntax options:

Syntax Description

chown user:group
file(s)/dir(s)

Change user and group owners for the specified files and/or directories.

chown user file(s)/dir(s) Change the user owner for the specified files and/or directories.

chown user: file(s)/dir(s) Same as the previous syntax.

chown :group file(s)/dir(s) Change group owner for the specified files and/or directories

Table 5.10: Command chown possible syntax

The user and group can be specified using the name or the group id. Old versions
of command chown were using dot (.) as a separator instead of the colon (:).It is
still a valid separator but not recommended to use anymore. The Argument can be
a file, directory, or a list of files and/or directories separated by space. The
popular options for command chown are shown in table 5.11:

Option Description

-c, --changes Shows the actions done but only the changes.

-v, --verbose Shows all the actions done as well as the skipped ones.

--reference=SOURCE Copy the owner and group owners from a specified source

-R, --recursive Change all the permissions of all files and subdirectories for the specified
directory.

Table 5.11: Popular options for command chown

Figures 5.12, 5.13, and 5.14 feature examples using the command chown:

Try to change the owner of a file being a regular user:

Figure 5.12: Output example using command chown

Change the group owner for a file being a regular user:

Figure 5.13: Output examples using command chown

Change recursively the user and group owner for a directory as
administrator.

Figure 5.14: Output examples using command chown

The command chgrp is used to change only the group owner for files and
directories. The syntax is chgrp [options]group file(s)/dir(s). Options are
the same as for chown command.

Command chmod
This command is used to change the permission for files and directories. It allows
us to specify the permissions using the symbolic or the octal representation. As
described previously about permissions, the symbolic representation has the
following syntax: u=permission,g=permission,o=permission, and the octal
representation can contain three digits or four digits in case there is a need to
specify special permission.
The command chmod can be used to replace current permissions using the
character equal (=) or manipulate current permission by adding more rights using
the character (+) or removing permissions using the character minus (–). The
command chmod allows to add permission using the character plus (+) or delete
permissions (–) instead of the symbol equal (=). As well, chmod allows to specify
only the permission to be modified and not all the components. And it is possible
to use the letter “a” to set, add or remove permission for all the components.
The options for this command are the same as for command chown (refer to table
5.11). Figures 5.15, 5.16, and 5.17 show different examples using the command

chmod:

Specify permission for the user to read and write, the group only to read,
and no permission: to others.

Figure 5.15: Output examples using the command chmod

Remove read permission for group owner:

Figure 5.16: Output examples using the command chmod

Specify the permission to user and group to read and write, and read for
others using octal representation:

Figure 5.17: Output examples using the command chmod

To understand the execution permission for files and directories, figures 5.18 and
5.19 feature different examples:

Add execution permission to a file to be able to be executed:

Figure 5.18: Example using chmod to set execution permission.

Remove execution permission to a directory to not allow access to files
inside:

Figure 5.19: Example using chmod to remove execution permission.

Command cat
This command is used to visualize the content of one of several files. That content
is visualized in the standard output, with the possibility, as described previously,
to redirect to another file or to use pipes to another command. The popular
options for this command are shown in table 5.12:

Option Description

-b, --number-nonblank Number non-blank lines

-n, --number Number non-blank and blank lines.

Table 5.12: Popular options for command cat

Figure 5.20 shows how to visualize the content of one file and how to number the
lines:

Figure 5.20: Example using the command cat

Commands head and tail

The command head is used to visualize the beginning of files, and the command
tail is used to visualize the last part of files. By default, it shows the first 10 or the
last 10 lines. It is possible to specify a different number using –X (for example, –
20) or –n X (for example –n 20).
The command last has a popular and useful option to continue tracking the file for
new appended data to the file tracked. This option is used to track log files to
check the status in real-time.
Figures 5.21 and 5.22 feature different examples:

Visualize the first five lines of the file /etc/passwd:

Figure 5.21: Example using command head

Visualize the last five lines of the file /var/log/syslog and wait for
appended data:

Figure 5.22: Example using command head

Special characters
Working in a Linux console and with commands involves the use of some special
characters which have particular meanings for the shell. Some of these special
characters were described previously, such as tilde (~) for the home directory,
greater than (>) and less than (<) for standard input and output, and bar (|) for the
data pipeline. Other special characters indirectly shown are hyphen (-) used to
specify options, slash (/) to specify or separate directories, or space symbol to

separate commands from options and arguments. Table 5.13 shows the rest of the
special characters when working with a shell:

Special character Description

\ Escape a special character

$ (dollar) Used to access variable date

“ (double quote) Protects everything between double quotes to be treated as a special
character and with the possibility to evaluate variables.

‘ (single quote) Same as a double quote but not allowing to evaluate variables.

(hash) Line starting in the shell with hash is marked as a comment.

& (and) Used to execute a process in the background. Described later in this
chapter.

? (question mark) It matches one character only

* (asterisk) It matches one or more characters.

[] (square brackets) Range of characters

{ } (curly brackets) Specify different options

() (parentheses) Start a subshell

; (semicolon) Separates several commands in one line.

Table 5.13: Special character list and description

Figures 5.23 to 5.24 show the use of these special characters with real examples:

Using double quotes and escape character (\) to access a file with a space in
the name:

Figure 5.23: Example using special characters.

The difference between using double quotes and single quotes with
variables:

Figure 5.24: Example using special characters.

For example, using hash (#) to not execute a command useful to save in the
history without executing it. Refer to figure 5.25:

Figure 5.25: Example using special characters.

Using question marks and asterisks to match files and directories can be
seen in figure 5.26:

Figure 5.26: Example using special characters.

Using square brackets to specify a range of characters to match. A hyphen
can be used to specify a range, as shown in figure 5.27:

Figure 5.27: Example using special characters.

Using curly brackets is possible two specify different options; these two
commands are evaluated as the same, as seen in figure 5.28:

Figure 5.28: Example using special characters.

Using parenthesis allows to open a subshell to run commands, as seen in
figure 5.29:

Figure 5.29: Example using special characters

Using semicolon is possible to run several commands in one line, as seen in
figure 5.30:

Figure 5.30: Example using special characters.

There are special characters that can be combined to have a special functionality,
as we already discussed. For example, “double greater than” (>>) appends data or
symbol, and “and greater than” (&>) redirects standard output and error. Other
three popular options are described in table 5.14:

Special character Description

|| (double bar) Indicates if the first command fails, the second command indicated will
be executed

&& (double and) Indicates if the first command is executed correctly, the second command
will be executed.

-- (double hyphen) Indicates the end of the options in the command line.

Table 5.14: Special characters combination.

Figure 5.31 shows the use of these special characters combination:

Figure 5.31: Example using special characters combination

Regular expressions
Regular expressions are patterns used to match character combinations in strings.
These expressions can be simple ones or advanced ones using a complex patterns.
This section will focus on simple expressions to filter content inside files. There
are three types of regular expressions: basic (BRE), extended (ERE), and Perl
(PCRE). Only the first two are going to be covered as an example. Some of the
special characters for the basic type are shown in table 5.15:

Special character Description

. (dot) Matches any element

^ (circumflex) Matches the beginning of the sequence.

$ (dollar) Matches the end of the sequence.

Table 5.15: Special characters combination

For the advanced type, it is possible to match repetitions of characters and
conditions. These types of special characters are shown in table 5.16:

Special character Description

* (asterisk) Zero or more repetitions

+ (plus) One or more repetitions

? (question mark) Zero or one repetition

{m} Exactly m repetitions

{m,n} Between m and n repetitions

| (bar) Matches the left or the right expression.

Table 5.16: Simple regular expressions examples.

Commands grep
Command grep is a powerful tool with different possibilities to match text using
regular expressions. GREP stands for Global Search, a Regular Expression and
Print. This command, by default, uses basic regular expressions (BRE), but by
using option -E is possible to use the advanced expressions (ERE) and the option -
P for the Perl expressions (PRE), which is not covered in this book.
The syntax for the command grep is the following: grep [options] pattern
file(s). Table 5.17 shows the popular options available:

Option Description

-F, --fixed-strings Interpret the pattern as a fixed string and not as a regular expression.

-e pattern, --regexp=pattern Option to specify pattern and repeat this option to match several patterns.

-f file, --file=file Obtain patterns from the file specified.

-i, --ignore-case Ignore case distinctions in patterns.

-v, --invert-match Invert the sense of matching, showing the non-matching lines.

-w, --word-regexp Ensure the pattern matches with whole words.

-c, --count Does not show the output and instead shows how many coincidences
were found for each file.

-r, --recursive Read all files under the directories specified.

-R, --dereference-recursive Same as -r, --recursive, but if directories are symbolic, links will follow
them too.

Table 5.17: Popular options for the command grep

Figures 5.32 to 5.36 show different examples using basic patterns and different
grep options:

Search for the text daemon in any position in the line inside of the file
/etc/passwd:

Figure 5.32: Example using the command grep

Search for the text daemon in starting the line inside of the file /etc/passwd:

Figure 5.33: Example using the command grep

Count how many lines in /etc/passwd contain the word bash:

Figure 5.34: Example using the command grep

Filter users, which are five characters length long. Five any character
following by “:x:”:

Figure 5.35: Example using the command grep

Count how many lines are empty in /etc/legal and show content ignoring
empty lines using the option -v (--invert-match); pattern ^$ means the
line starts and ends without any content on it:

Figure 5.36: Example using the command grep

Figures 5.37 to 5.41 show different examples using advanced patterns and
different grep options:

Check the content of the file and filter starting with the letter r, followed by
a letter o (optionally) or multiple ones, and ending with the letter t:

Figure 5.37: Example using the command grep

Check the content of the file and filter starting with the letter r, followed by
a letter o or several, and ending with a letter t:

Figure 5.38: Example using the command grep

Check the content of the file and filter starting with the letter r, followed by
an o (optional) and ending with a letter t:

Figure 5.39: Example using the command grep

Check the content of the file and filter starting with the letter r, followed by
two letters o, and ending with the letter t. Filter to starting with letter p,
followed by 1 or 2 letters e and ending with letter n:

Figure 5.40: Example using the command grep

Check for the word agonzalez and root in two different ways:

Figure 5.41: Example using the command gre

Commands awk
AWK is a pattern scanning and processing language. The tool awk uses regular
expressions to match lines, and it allows to print some parts. This command has

many options and possibilities for complex operations; only some real use cases
are shown in figures 5.42 and 5.43:

Print the username of the users using shell bash:

Figure 5.42: Example using the command awk

Search the string /home and print the columns for the username, the home,
and the shell:

Figure 5.43: Example using the command awk with the output of the command cat

Formatting the output
Linux provides several tools to format the content of a file or the output of
another command. These commands are part of the package coreutils, which is
installed by default on the Linux distributions. Table 5.18 shows some of the
popular commands and their description:

Command Description

nl Number lines of files

sort Sort lines of a text file

tac Shows the files specified in reverse

tr Translate or delete characters

sed Filters and transforms text

rev Reverse lines character wise

wc Word and line count

fmt Simple optimal text formatter

uniq Omit or report repeated lines

join Join lines of two files on a common field

paste Merge lines of files

shuf Generate random permutations

Table 5.18: Popular commands for formatting output

Figures 5.44 to 5.55 show one example for each of the commands:

Using nl to numerate the lines of one file:

Figure 5.44: Output example for the command nl

Using sort for alphabetical sort:

Figure 5.45: Output example for the command sort.

Using tac to visualize a file in a reverse way:

Figure 5.46: Output example for the command tac

Using tr to convert characters from the text:

Figure 5.47: Output example for the command tr

Using sed to convert expressions from the text:

Figure 5.48: Output example for the command sed

Using rev to reverse line character-wise:

Figure 5.49: Output example for the command rev

Using wc to count lines, words, and characters of one file:

Figure 5.50: Output example for the command wc

Using fmt to format the output reformatting paragraphs to use 60 characters
width:

Figure 5.51: Output example for the command fmt

Using uniq to remove from the output the duplicated lines. Duplicated lines
need to be adjacent:

Figure 5.52: Output example for the command uniq

Using join to combine two files with a common field:

Figure 5.53: Output example for the command join

Using paste to merge two files line by line:

Figure 5.54: Output example for the command paste

Using shuf to randomly sort the lines:

Figure 5.55: Output example for the command shuf

File editors and file managers
Editing files is one of the common tasks when we operate with a Linux system.
Edit configuration, developing scripts or applications, creating content such as
documentation, or any other task related to files are usual tasks. For this purpose,
there are available visual editors (GEdit, Visual Studio, and Kate as some
examples) and text-based editors, which are more popular due to are usually
already on the systems to administrate, either local or remote servers. The most
popular editors are as follows:

nano: a small and friendly editor. It allows editing a file in a quick way,
with the possibility to open several files, have syntax highlight, and line
numbering, among other features.
vi and vim: vi is one of the most popular editors in Linux. Despite of its
complexity, it is used by most Linux users, which requires advanced
features during editing files. vim (VI Improved) enhances the traditional vi
adding features such as multiple windows, syntax highlighting, and visual
selection, among other features.
emacs: This editor, like VI, is a complex one but used by many users. The
biggest advance of this editor is the extensibility, not used only as a file
editor but as a suite of tools such integrated browser, file manager, e-mail
read, git integration, and much more functionalities.

This section will cover the basics for each of them. The editor nano is shown in
figure 5.56 after running it with the argument names.txt:

Figure 5.56: nano editor

In the bottom part of the screen, it indicates the actions available, and these
actions are accessible using Ctrl+Key. For example, to write the changes is need
to press Ctrl+O. For exiting the editing, the combination is Ctrl+X.
Figure 5.57 shows the editor vim. The editor VIM has three modes:

Normal mode: in this mode is possible to write the changes, exit the
application, copy lines, paste lines, and perform other operations related to
the editor.
Insert mode: in this mode is possible to write to the file.
Visual mode: in this mode is possible to select several lines or columns.

Figure 5.57: vim editor

To start to manipulate the file and enter in the Insert mode is needed to press some
of the following keys: i (for inserting where is the cursor), a (for appending after
the cursor), I (for appending at the beginning of the line), or A (for appending at
the ending of the line).
After the modifications are done, to write the changes or discard them is needed
to go back to Normal mode by pressing the Esc key. The common operations
inside are as follows:

Type :wq or :x to write and quit the editor
Type :q if no changes were made to quit the editor
Type :q! to discard the changes

Figure 5.58 shows the editor emacs:

Figure 5.58: emacs editor

Some basic operations and the key combinations are shown in Table 5.19:
Key Combination Description

CTRL-x CTRL-c Exit emacs.

CTRL-x CTRL-s Save the file without exiting.

CTRL-x u Undo changes

Table 5.19: Key combination for emacs

A file manager is a tool to navigate between different directories and operate
inside, such as create files or remove files. Most of the Desktop interfaces include
a visual file manager for it. In a Linux console, navigation between directories
and creation of directories or files is done using system-available commands. A
console file manager allows ease to navigate and perform basic operations.
The file manager mc (GNU Midnight Commanders) is the most popular one, and
figure 5.59 shows an example of this file manager:

Figure 5.59: mc file manager

Using this file manager is possible to operate between two directories, such as
moving or copying files between the left directory (left pane) and the right
directory (right pane).

Processes management
A process is a program that is in execution. Each process has assigned a process
ID (pid) and, as described previously, would have associated a directory inside

/proc. This directory will contain information about the process, such as how the
application was called (file cmdline), a symbolic link to the directory from where
it was called (file cwd), the environment variables for the process (file environ), a
directory with links to files used by the application (directory fd).
To list the processes running in the system, the command ps is used; this
command is usually called with some of these options:

Option Description

ps a List all the processes running associated with a terminal

ps au Uses user-oriented format

ps aux Shows processes without a terminal associated

ps -e Shows all the processes

ps -ef Shows all the processes with a full-format listing.

Table 5.20: Linux interruption signals

Figure 5.60 shows an output example for the command ps:

Figure 5.60: Output example for the command ps

An interactive command to list the process is named top, which include system
information resources which would be described in the next chapter. Figure 5.61
shows the information shown by the command:

Figure 5.61: Output example for the command top

The command pidof is useful to list the process id for a command specified.
Figure 5.62 shows the pid for the command top running and using the option -q

of command ps to filter for that id:

Figure 5.62: Output example command pidof

There are two types of processes on Linux:

Foreground processes: this process interacts with the user who invoked it.
This process would interact using the standard input, standard output, or
standard error. Meantime the process running the shell used would not
accept other commands.
Background processes: this process does not interact with the user and
usually are executed by the system. As the user is possible to run a
background process, the shell will allow the user to execute other
commands.

A process running is accepting signal interruptions. The common ones are shown
in Table 5.21:

Signal Signal
ID

Key combination Description

SIGHU
P

1 Hangup detected, used to reload application configuration.

SIGINT 2 Ctrl-C Interrupt from keyboard

SIGQUI
T

3 Ctrl-D Quit from keyboard

SIGKIL
L

9 Kill signal

SIGSTO
P

17,19,23 Ctrl-Z Stop process

Table 5.21: Linux interruption signals

A foreground process running can be killed using Ctrl-C; if it is waiting for input
is possible to use Ctrl-D to finish the standard input wait, and to use Ctrl-Z would
be stopped. It is possible to send signal interruptions to background processes
using the command kill, its syntax is as follows: kill [-signal | -s signal]
pid.

Some examples are as follows:

Kill a process: kill -9 1234
Stop a process: kill -s SIGTOP cat

To execute a process in background the symbol (&) is included in the command.
It is possible to use the builtin command called jobs to list the processes for the
user running in the background, as figure 5.63 shows:

Figure 5.63: Example running commands in background and output example for the command jobs.

A process running in the foreground can be sent to the background first stopping
it (Ctrl-Z) and then running the command bg as is shown in figure 5.64:

Figure 5.64: Example of background and foreground processes.

A process can be moved from background to foreground using the command fg.
It is possible to specify the id adding as argument %N (same for command bg);
figure 5.65 shows an example:

Figure 5.65: Example using the command fg.

When the user session is closed, the background processes are killed. To avoid
this behavior and keep running the processes Linux offers two options:

Run the builtin command named disown to dissociate background running
processes to the current user.
Execute the background process using the application nohup, for example:
nohup myapplication &.

Operate with processes priorities
Linux is using a scheduler to assign resources to perform tasks in the system.
Some process requires to have more priority than others, especially the processes
which are accessing to system resources or to the Linux core. There are two types
of processes as follows:

Real-time processes: These processes have the capability to run in time
without being interrupted by any other processes. These processes have a
system priority between the range 1 (low) and 99 (high).
Regular processes: These processes can be interrupted by other processes
with more priority, which require access to the system resources. These
processes have a nice value which indicates the priority of getting the
resources. These values are from –20 (high priority) to +19 (low priority). A
regular process has as a default nice value 0. Negative values (higher
priority) can be only specified by administrators.

The option -l for the command ps and the command top shows the priority and
the nice value for the processes running. This section will focus on how to change
the nice values for a process.

Figure 5.66 shows the example output for command ps with option -l to show the
priority and the nice values:

Figure 5.66: Output example listing priority and nice value.

The command top with the option -p and the pid will filter to that process and it
would show the following example as shown in figure 5.67:

Figure 5.67: Output example for the command top showing priority and nice value.

The command ps would show the priority as a 100-nice value and the command
top as a 20+nice value.
The command nice allows to execute commands with different nice value, and the
command renice allows to change of the nice value for a running process. Figures
5.68 to 5.69 show some examples using both commands:

Run the command sleep with a different nice value (lower priority value):

Figure 5.68: Example using command nice

Change nice value for a running process. As regular users only decreased
nice value is allowed:

Figure 5.69: Example using command renice

Conclusion
Managing files, directories, and processes are required knowledge of
administrating and using Linux systems. This chapter covered all the basics and
more advanced options related to create and manipulate files and directories using
system tools.
File and directory permissions are an important fact to protect files and directories
to unwanted access. Different tools were described to assign user and group
owners and permissions to files and directories.
Popular file editors and file managers were described to demonstrate the use of
different tools to edit files, create directories, and navigate through different
directories in the system.
Processes in Linux were described, and the importance of the priority when a
process is executed and commands to modify the default priority were shown.

Key facts
Linux have a default layout directory structure.
Each file and directory have three permissions: read, write and execute.
Permissions for files and directory can be set to the user owner, group owner
or to others.
Multiple commands are available for formatting the output.
There are available multiple useful file editors and file managers.

Questions
1. What system directory keeps the system logs?

a. /var/log/
b. /tmp/
c. /sys/log

2. What octal representation corresponds to u=rwx,g=rwx,o=rx?

a. 664
b. 775
c. 777

3. What command is used to count lines, words, and characters?

a. wc
b. count
c. sed

4. Using normal mode in VI(M) how to exit discarding the changes?

a. :x
b. :wq
c. :q!

5. What range is valid for nice value?

a. -20 to 19
b. -19 to 20
c. 0 to 100

Answers
1. a
2. b
3. a
4. c
5. a

CHAPTER 6
Monitoring System Resources

Introduction
This chapter covers how to monitor the system resources in a Linux system. It
will introduce how the CPU and memory work in modern systems and the
common tools available to check the status with the objective to do
troubleshooting in case of issues or overload.
Other important resources to monitor to avoid downtimes in applications is the
disk usage and the available space. Different tools will be described to check the
current status and to detect the physical state of the disks.
Monitoring the networking became one of the most important tasks in Linux
systems, especially with the introduction of complex networking in the systems to
provide connectivity for virtual machines and containers.
The last part of the chapter focuses on disk quotas and resource limits and helping
to protect the system when it is accessible by regular users to avoid the resources
getting exhausted.

Structure
In this chapter, we will discuss the following topics:

Monitoring CPU resources
Monitoring memory resources
Monitoring disk usage and available space
Monitoring network resources
Quotas and limits

Monitoring CPU resources
A Central Processing Unit (CPU), a processor, executes instructions received
from the system. In modern systems, there are three important concepts that are
needed to understand, to be able to monitor and interpret the data received from
the tools:

CPU Socket (CPU slot): is a mount on a computer motherboard that
accepts a CPU chip.
CPU Core: a separate processing unit that reads and executes instructions.
In modern systems, a CPU contains several cores.
CPU Thread: A thread is a queue for an operating system instruction.
Modern systems enable hyper-threading enabling two threads.

For example, if a system has two sockets, with four cores for each CPU, and has
enabled the hyper-threading, it would have available eight cores and 16 threads. It
is capable of running eight operating system instructions per cycle but would be
able to have a queue of up to 16 tasks per cycle.
An advanced concept for physical servers is named Non-Uniform Memory
Access (NUMA). This architecture divides the memory into local and remote
memory relative to the processors. CPU accessing the local memory assigned has
better performance than accessing the remote access using an interconnect. Figure
6.1 shows a representation of a node with two NUMA with one CPU socket and
four cores each:

Figure 6.1: Standard Linux filesystem hierarchy. Source: boost.org

Obtaining CPU(s) information
The command lscpu described in Chapter 3, Using the Command Line Interface,
shows the important information related to the CPU socket, core, threads, and
NUMA. Figure 6.2 shows a node with two CPU sockets and eight cores per
socket.

Figure 6.2: Using command lscpu to obtain CPU information.

The command lstopo-no-graphics part of the package hwloc provides a great
visualization of the NUMA architecture and the association between CPUs and
local memory. Figure 6.3 illustrates an output example of this command for the
same server as figure 6.2:

Figure 6.3: Output example for the command lstopo-no-graphics.

The file /proc/cpuinfo contains the list of all processors (core/thread) with a
detailed information for each one. Figure 6.4 shows an example using grep, sort,
and uniq to create a report of how many CPUs are in each socket:

Figure 6.4: Getting information from file /proc/cpuinfo

Other example commands to get processor information are as follows:

lshw -class processor (lshw -class processor -short)
dmidecode -t Processor
nproc (shows only the number of processors)
hwinfo --short –cpu

Understanding the system load and load average

System load is a measure of the amount of computational work that a computer
system performs. The load average represents the system load over a period of
time. A processor with a load of 140% indicates it is running overload by 40%,
just as a processor with a load of 30% is idling for 70% of the time for the period
observed. The CPU load is represented by a decimal number, such as 1.40 to
indicate 140% and 0.30 to indicate 30%.
A common analogy to understand the CPU Load in Linux is related to the traffic.
A single-core CPU is like a single lane in a road. Having more cores and CPUs
would be like having more lanes, such that the load would be distributed among
them comfortably. This is illustrated in figure 6.5:

Figure 6.5: Analogy with processors, load, and traffic

By having multiple CPUs available, the tasks are going to be distributed between
different CPUs, and the load would be related to the number of CPUs. A system
load of 3.00 having four processors indicates that it is using 66.67% of the
available CPU resources.

Command uptime and file /etc/loadavg

This command, described in Chapter 3, Using the Command Line Interface, to
see how long the system was running, is used to have a simple overview.
Command uptime shows the CPU load average in the system. The load average
on Linux systems is represented for the periods of 1 minute, 5 minutes, and 15
minutes. Figure 6.6 illustrates the average in the last minute was 0.13, for the last
5 minutes it was 0.07, and for the last 15 minutes it was 0.01:

Figure 6.6: Output example for command uptime

Most of the commands open the file /proc/loadavg to obtain information about
the system load. This file contains the information for the periods described
previously in the first three columns; the fourth column indicates, separated by a
slash (/), how many processes are accessing to the CPU and how many processes
are being executed in the system, and the last column indicates the last process id
assigned. Figure 6.7 features a content example for the file/prod/loadavg:

Figure 6.7: Content example for file /proc/loadavg

Command top
The command top provides a dynamic real-time information about the system. In
Chapter 5, Managing Files, Directories, and Processes, this command was
introduced to list the processes running in the system. The head part of the
information shown is related to the system resources usage, as is illustrated in
figure 6.8:

Figure 6.8: Top command output header example

The information shown in the first three lines of the top’s command head are as
follows:

Uptime, the number of users logged in, and load average in the system.
Same as uptime’s command output.

List of the number of processes running, indicating how many are using the
CPU and how many are in sleeping, stopped, and zombie (meaning is not
accepting interruptions and usually require to reboot of the system to
recover them) states.
Percent of usage for all CPUs in the system, with the following usage:

us (user): time running (without nice value) user processes.
sy (system): time running kernel processes.
ni (nice): time running (with nice value) user processes.
id (idle): time spent idling.
wa (input/output wait): time waiting for the Input/Output completion.

The command top has different visualization options (press key h to obtain more
options); for example, pressing key 1 will display information for each CPU, and
pressing key 2 will show for each CPU Socket (NUMA Node). Figures 6.9 and
6.10 show both examples:

Display pressing key 1 (truncated output):

Figure 6.9: Top command output header example

Display pressing key 2:

Figure 6.10: Top command output header example

Commands atop and htop

These commands are a modern alternative to the traditional top. Figure 6.11
shows the aspect of the application atop, which includes more information related
to the system:

Figure 6.11: Example aspect of command atop

Figure 6.12 shows the aspect of the htop application, which have between
overview of the CPU usage:

Figure 6.12: Example aspect of command htop

Command mpstat
This command is part of the sysstat package, which requires to be installed to be
used. This application reports processors-related statistics. Figure 6.13 shows an
example output without any option or argument specified:

Figure 6.13: Output example for the command mpstat

The command mpstat allows the options -N to specify the NUMA nodes and the
option -P to indicate the processors to display the statistics. The arguments
available for the application are interval and count, which will create a count
number of reports every interval seconds. Figure 6.14 shows an example to
generate five reports each 6 seconds:

Figure 6.14: Output example for the command mpstat

The columns displayed are shown in table 6.1:
Column Description

CPU Processor number.

%usr CPU utilization that occurred at the user level (application).

%nice CPU utilization that occurred at the user level with nice priority.

%sys CPU utilization that occurred at the system level (kernel).

%iowait Time that the CPU or CPUs were idle during which the system had an
outstanding disk I/O request.

%irq Time spent by the CPU or CPUs to service hardware interrupts.

%soft Time spent by the CPU or CPUs to service software interrupts.

%steal Time spent in involuntary wait by the virtual CPU or CPUs while the
hypervisor was servicing another virtual processor.

%guest Time spent by the CPU or CPUs to run a virtual processor.

%gnice Time spent by the CPU or CPUs to run a nice guest.

%idle Time that the CPU or CPUs were idle and the system did not have an
outstanding disk I/O request.

Table 6.1: Column description for command mpstat

Command sar
System Activity Reporter (SAR) is part of sysstat package too. This command
can collect, report or save system activity information. To see CPU information,
use the option -u and specify how often and how many reports are needed, similar
to mpstat. Figure 6.15 illustrates an example:

Figure 6.15: Output example for the command sar

With option -q, the load average of the system is also is showing, as in figure
6.16:

Figure 6.16: Output example for the command sar

Command iostat
This is another command part of systat package used to show information about
the CPU and disk. With option -c, it is limiting the output to the CPU information,
as is shown in figure 6.17:

Figure 6.17: Output example for the command iostat

Monitoring memory resources
Random-access memory (RAM), is a limited and usually expensive resource in
physical systems. Understanding how system and applications are using memory
is a required knowledge, to be able to administrate systems and avoid issues
running critical applications.
Linux systems include memory management which is responsible to provide
dynamic allocated portions of the memory to processes and to release that portion
when the application finishes. Memory management provides the following:

Option to offer more memory than the physical availability. For example,
using swap, which uses the disk space to increase the memory space
available.
Each process has assigned a virtual address space and is isolated from other
processes.
Memory mapping, where the content of a file is linked to a virtual address
of the process.
Fair allocation of the memory for processes.
Shared virtual memory between processes, for example, for libraries in use.

The command free explained in Chapter 3, Using the Command Line Interface, is
the main tool to see the current status of the system. The file used to obtain
memory information from the kernel is /proc/meminfo, and figure 6.18 (output
truncated) shows an example of the complex content inside:

Figure 6.18: Example content of file /proc/meminfo

It is possible to obtain information about physical memory using, for example, the
command lshw as is illustrated in figure 6.19 (truncated):

Figure 6.19: Output example for the command lshw

Command vmstat
This command reports information about virtual memory statistics. The first
report produced gives averages since the last reboot. Figure 6.20 shows an
example output without specifying any option or argument:

Figure 6.20: Output example for the command vmstat

The fields related to the memory available are shown in table 6.2:
Column Field Description

Procs r The number of runnable processes

b The number of processes blocked waiting for I/O to complete.

Memory swpd the amount of virtual memory used.

free the amount of idle memory.

buff the amount of memory used as buffers.

cache the amount of memory used as a cache.

inact the amount of inactive memory. (-a option)

active the amount of active memory. (-a option)

Swap si Amount of memory swapped in from disk (/s).

so Amount of memory swapped to disk (/s).

Table 6.2: Field description for the command vmstat

With the option -w (--wide), the data is visualized in a wide output, and option -s
(--stats) shows event counter statistics. Figure 6.21 shows the output using the
option -a, active/inactive memory, and options -w and -S (display unit):

Figure 6.21: Output example for the command vmstat

Commands top, htop, and atop

The example information by these commands are shown in figures 6.22–6.24:

top command memory information:

Figure 6.22: Example memory info in the command top

It is possible to press the key m to toggle the visualization of the memory
information.
htop command memory information:

Figure 6.23: Example memory info in the command htop

atop command memory information:

Figure 6.24: Example memory info in the command atop

PSI stands for Pressure Stall Information, and it contains percentages of
resource pressure related to CPU, memory, and Input/Output. The values memsome
and memfull are pressure percentages during the entire interval. The values ms
and mf show three percentages over the last 10, 60, and 300 seconds (only shown
when the window size is bigger).

Command sar
The command sar is useful to create a report in a period of time to see the usage
of the memory, as shown in figure 6.25:

Figure 6.25: Output example for the command sar

Memory usage for each process
When a process is running, it has three memory values assigned:

Virtual memory: It includes all code, data, and shared libraries.
Reserved memory: Resident size, the non-swapped physical memory used.
Shared memory: The memory shared with other processes

Figure 6.26 shows an excerpt of the top’s output command after pressing M (shift-
m) to sort by memory usage:

Figure 6.26: Output example for the command sar

The command ps using the long format (aux) shows the usage of the memory of
the process. Figure 6.27 shows an example output filtering for a process where
VSZ (virtual size) and RSS (resident set size, reserved memory) are displayed in
kilobytes:

Figure 6.27: Output example for the command ps

The command pmap, with the argument process id, shows an advanced output
about the reserved and shared memory.

Out of memory management
When an application is executed in Linux, it reserves memory space but usually is
not using all of it. That allows Linux to be able to execute more applications than
the memory available, expecting that the memory used for the application is going
to be less than the available. Linux includes a manager to detect when the system
is using more memory than it should and automatically kills non-critical processes
which are using memory.
Each process has a score associated; a higher score indicates it is more likely to be
killed. The score for a process is stored on /proc/<pid>/oom_score file.

Monitoring disk usage and available space
Storage is one of the Input/Output elements which can cause a bottleneck in the
system due to many operations performed in the same storage device or related to
physical issues. Linux provides tools to check usage and available space, the disk
statistics for input/output operations, and to check the physical status of the
storage devices
Command lshw can be used to list the physical storage components in the system,
such as RAID controllers or SATA controllers. Figure 6.28 shows an example of
physical server information:

Figure 6.28: Output example for the command lshw

The same command can be used to list the storage attached to the server, such as
physical disks (can be virtual disks configured as RAID) or virtual disks
(emulated disks, for example, for remote CD/Floppy). Figure 6.29 shows an
example of the same server illustrated before:

Figure 6.29: Output example for the command lshw

Some new modern system uses the new interface protocol called Non-volatile
Memory Express (NVME), which improves the previous protocol named
Advanced Host Controller Interface (AHCI), providing reduced latency and
improvement in parallel tasks. Figure 6.30 shows the output of the command
lshw in a system using NVMe:

Figure 6.30: Output example for the command lshw

The command lsblk shows information about the disks and the partitions. Figure
6.31 shows an example of the output for the physical server used before:

Figure 6.31: Output example for the command lsblk

In a system using Logical Volume Manager (LVM) or encrypted disks using
Linux Unified Key Setup (LUKS), the command lsblk will give useful
information about the configuration, as shown in figure 6.32:

Figure 6.32: Output example for the command lsblk

Command iostat
This command part of the sysstat package, described previously for the CPU
usage, is usually used for the input/output statistics. The statistics show the

physical storage devices, the number of transfers (tps) per second, the data read
and write data per second, and the data read and written in the period observed.
Figure 6.33 shows the output example; option -y excludes the first entry related to
the average from the system that was booted:

Figure 6.33: Output example for the command iostat

Command iotop
This utility is similar to the top command but related to the Input/Output only.
This tool should be installed (iotop package). Figure 6.34 shows the aspect of the
application:

Figure 6.34: Output example for the command iotop

The information shown is important to detect which application is performing
more input/output operations and the speed of the read/write tasks.

Command atop
This command, described previously for CPU usage, includes a great overview
about the local and remote storage usage in the system. Figure 6.35 illustrates the
information shown as follows:

Figure 6.35: Example disk information in command atop

The following fields are shown in table 6.3 (the bigger size terminal shows all of
them):

Field Description

busy the portion of time that the unit was busy handling requests

read the number of read requests issued

write the number of write requests issued

discrd the number of discard requests issued

KiB/r the number of Kibibytes per read

KiB/w the number of Kibibytes per write

KiB/d the number of Kibibytes per discard

MBr/s the number of Mebibytes per second throughput for reads

MBw/s the number of Mebibytes per second throughput for writes

avq the average queue depth

avio the average number of milliseconds needed by a request for seek, latency,
and data transfer.

Table 6.3: Field description for the command atop

Command smartctl
Modern disks include a monitoring system called Self-Monitoring, Analysis and
Reporting Technology (S.M.A.R.T) containing different indicators to anticipate
hardware failures. The main command is smartctl, where specifying the disk
would show extended information related to the disk. Figures 6.36 and 6.37 is
using different options to filter the information shown, to reduce the output’s
lines:

Figure 6.36 shows disk information, including model/serial numbers and
firmware version:

Figure 6.36: Output example for command smartctl

Showing the SMART information, which contains the data written and read,
the temperature, and other information related to the space used, is shown in
figure 6.37:

Figure 6.37: Output example for command smartctl

By using the option -l error will show the errors detected by the SMART monitor
system.

Commands fio and hdparm

These commands can be used to query the read/writing speed for a storage device,
being useful tools to detect problems with disks. The command hdparm with the
options -tT output is shown in figure 6.38:

Figure 6.38: Output example for command hdparm

The command fio is a flexible Input/Output tester. It is more advanced than
hdparm because it allows us to specify the number of threads and processes to
perform the I/O actions. Figure 6.39 (output truncated) shows the command in
action to test random read and write using four jobs:

Figure 6.39: Output example for command fio

Commands df and LVM commands
Command df described in Chapter 3, Using the Command Line Interface, shows
the disk free and usage. If the system is using LVM (Logical Volume Manager),
the commands to check the status are as follows:

vgdisplay: Display volume group information as shown in figure 6.40:

Figure 6.40: Output example for command vgdisplay

pvdisplay: Displays various attributes of the physical volume(s), as shown
in figure 6.41:

Figure 6.41: Output example for command pvdisplay

lvdisplay: Display information about a logical volume, as shown in figure
6.42:

Figure 6.42: Output example for command lvdisplay

Monitoring network resources
Networking is one of the core components to monitor to avoid bottlenecks. This
section will focus on the statistics of the network devices to check the bandwidth
usage and detect packet losses. This section is focused on general statistics, and
the upcoming chapter related to networking configuration will include tools to
check the status of connections end to end.
Command lshw gives information about the ethernet devices in the system, as
figure 6.43 illustrate for a physical system:

Figure 6.43: Output example for command lshw

Directory /sys/class/net/ contains a list of links for each of the physical and
virtual interfaces. Each link points to a directory that contains information about
the interface, such as configurations and statistics. Figure 6.44 shows the files
inside of the directory, which /sys/class/net/eth0 points it
(/sys/devices/pci0000:00/0000:00:01.0/0000:01:00.0/net/eth0):

Figure 6.44: Example content for a network device in /sys/class/net/

Directory statistics/ contains information about the received and traffic
information for the device.

Command ethtool
This command allows one to query or control network and hardware settings.
With this command, it is possible to enable some features for Ethernet devices,
such as autonegotation or the default speed. It requires as an argument the
interface, and by default, without specifying any option, it will display useful
information related to the network interface, as shown in figure 6.45:

Figure 6.45: Output example for command ethtool

The output includes some important information:

The current speed for the interfaces.
The support link modes for the interface.

The advertised link modes are received from the switch where the interface
is connected.
The Duplex configuration and if the Auto-negotiation is enabled.
If the interface has Link detected.

Command nmon
Command nmon is a popular tool to obtain general statistics about resources in the
system and is specially used for networking. After executing the application,
pressing the key n will show the networking statistics, as shown in figure 6.46:

Figure 6.46: Aspect example for command nmon

Commands traceroute, tracepath, and mtr
Usually, troubleshooting network issues requires networking knowledge related to
traffic flows. These three tools accept as an argument the destination IP to ensure
all the intermediate gateways are working properly. Figures 6.47– 6.49 show the
usage trying to reach the IP 8.8.8.8 (Google’s DNS):

Command traceroute (part of the package traceroute) prints the route
packets trace to the network using ICMP protocol. Command traceroute6

can be used for IPv6, as shown in figure 6.47:

Figure 6.47: Output example for command traceroute

Commands tracepath and tracepath6 (part of the package iputils) trace
a path to a network, discovering the Maximum Transmission Unit (MTU)
along this path. Messages like no reply indicates that the router or switch
through the path is not providing information. Indicating a random UDP,
the information will be shown similar as in figure 6.48:

Figure 6.48: Output example for command tracepath

Command mtr (part of package mtr) is a network diagnostic tool combining
the functionality of traceroute and ping to investigate the network
connection between the host and the destination host. Figure 6.49 shows the
example aspect indicating as argument 8.8.8.8:

Figure 6.49: Output example for command mtr

The big difference between mtr and traceroute is that mtr is interactive and
is testing the connection constantly to detect if there is any package loss or
any peak on the time to arrive at any of the path components.

Quotas and limits
One of the goals of a Linux system administrator is to protect the system, and that
requires to set limits and quotas. So the system resources are not exhausted. Linux
has two general ways to limit resources consumption by users:

Quotas: Limits the disk space for users and groups. This can be used to
limit the space a user can consume or limit the total number of files he can
own.
Limits: Possibility to limit different resources to the user, such as the
number of open files, number of processes, or the memory used.

Quotas
Disk quotas are applied to a filesystem and to users and/or groups. A filesystem
needs to be configured to track the files and the size that each user and group is
consuming. It is possible to limit the total size and the number of files for a user
or group, having two limits:

1. Soft limit: Indicates the limit when a grace period would be in place. For
example, if the soft limit is 1 GB and the grace period is two days, the user
would be able to be over that limit for two days. After the grace period, the

user will not be able to add more files till they delete the files to be below
the limit.

2. Hard limit: The user will not be able, in any case, to have more than the
limit specified.

Before quotas are used in a system, the user or the group quotas have to be
enabled in the filesystem, which is required to be configured for quotas. This is
not enabled by default. For that, it is needed to open the file /etc/fstab and, in
the fourth column, add the words usrquota and/or grpquota, as is shown in
figure 6.50:

Figure 6.50: File /etc/fstab content example

After this, the filesystem is required to be remounted to apply the new
configuration. In this case, it is configured in the filesystem mounted in root
(/): mount -o remount,rw /. It is possible to run the command mount without
any option to ensure the quotas are enabled, as shown in figure 6.51:

Figure 6.51: Using command mount to remount and check status

After enabling the quotas to attribute to the filesystem, it is required to create the
files aquota.user and/or aquota.group to keep track of configuration and usage
for users and groups. The way to create these files is through the command
quotacheck with the options -u (for users), -g (for groups), and -m (do not
remount as read-only for this task). After installing the quota package, the
command quotacheck would be available, as shown in figure 6.52:

Figure 6.52: Run command quotacheck and ensure needed files are created

After the files are created, the quotas need to be enabled using the command
quotaon, as shown in figure 6.53:

Figure 6.53: Enable quotas for a filesystem

After the quotas are enabled in the system, there are two ways to set quotas for
one user or group:

1. Command edquota: it will open an editor to set the quotas for the user (-u
user) or the group (-g group).

2. Command setquota: it will update the quotas for a user or group.

Figure 6.54 shows how to use setquota to set a quota for a regular user (200MB
as soft limit, 200M as hard limit for space usage and without the number of file
limits) and using the command repquota to list the current status:

Figure 6.54: Set quota and report active quotas

If the user tries to have more than 220MB (hard limit), the system will not allow
to create more files. Figure 6.55 uses a command called dd to generate a file of
size 300MB:

Figure 6.55: Using command dd to test disk quota

Limits
Linux allows limiting the resources a user can use during its session. The main
file defining those limits is /etc/security/limits.conf, which contains the
following fields:

domain: it can be a user name, a group name with a prefix at (@), an
asterisk (*) for all users, or a uid or gid range separated by colon (;).
type: Values soft and hard are accepted types.
item: one element to limit, from table 6.4

Limit Description

core limits the core file size (KB)

data max data size (KB)

fsize maximum filesize (KB)

memlock max locked-in-memory address space (KB)

nofile max number of open files

rss max resident set size (KB)

stack max stack size (KB)

cpu max CPU time (MIN)

nproc max number of processes (see note given as follows)

as address space limit (KB)

maxlogins max number of logins for this user

maxsyslogins max number of logins on the system

priority the priority to run user process with

locks max number of file locks the user can hold

sigpending max number of pending signals

msgqueue max memory used by POSIX message queues (bytes)

nice max nice priority allowed to raise to values: [–20, 19]

rtprio max realtime priority

Table 6.4: Limit fields and description information

A user can check the limits applied using the command ulimit, as is shown in
figure 6.56:

Figure 6.56: Output example for command ulimit

In figure 6.57, an administrator limits the number of user processes can have.
Users can set their own limits with the built-in shell command called ulimit, but
always set a value lower than the default or the specific one for that user:

Figure 6.57: Setting limit for a user and setting the limit itself

If the user, after setting its own limit to five processes, tries to run more than that
number, they will receive the error, as shown in figure 6.58:

Figure 6.58: Testing user limits

Conclusion
In this chapter, we understood how to review the resources. It is important to
avoid disruptions in the system. Linux provides both high- and low-level tools to
obtain information about the resources to be able to predict future issues. Limiting
the resources that regular users can consume is a required task to avoid full disk
or overload of CPU or memory.

Key facts
Multiple commands are available to obtain information about the resource
usage.
CPU load is represented in three average intervals: 1, 5 and 15 minutes.
It is possible to set quotas on Linux for user and groups.
Linux offers the possibility to limit the resources that a user or group can
consume.

Questions
1. What command gives the best information related to CPU information?

a. lscpu
b. cpuinfo
c. cpuid

2. Having only one CPU with one core and without threads, what means load
0.55?

a. 155% usage
b. 5.5% usage
c. 55% usage

3. What file contains memory information usage and statistics?

a. /dev/meminfo

b. /sys/meminfo
c. /proc/meminfo

4. What command is used to obtain information from S.M.A.R.T?

a. smartinfo
b. smartctl
c. smartdump

5. What command is useful to have real-time statistics information about the
path to reach a destination?

a. mtr
b. tracepath
c. traceroute

6. What command is used to create a report about quotas?

a. repquota
b. showquota
c. infoquota

7. A user can use ulimit to display and set their own limits.

a. True
b. False

Answers
1. a
2. c
3. c
4. b
5. a
6. a
7. a

CHAPTER 7
Network Configuration

Introduction
Networking is one of the core parts of enterprises. It involves multiple elements,
such as servers, switches, routers, and cables. Understanding how the traffic flows
and the possible configurations in Linux is important to provide a service in an
efficient way to reduce costs, bottlenecks, and downtimes.
Linux servers allow simple configurations and advanced ones. This chapter will
cover how to configure. Networking in different Linux distributions and advanced
features such as aggregation, bridges, and Virtual LANs.

Structure
In this chapter, the following topics will be discussed:

Network introduction
Basic network configuration
Routing
Advanced network configuration

Network introduction
Modern systems depend on networks for most of the tasks, such as installing new
software, updating the system, or offering services locally or remotely. Linux, as
the most secure operating system, has different abstraction layers between the
hardware, Kernel space, and user space. Figure 7.1 features the various Linux
operating system layers:

Figure 7.1: Linux operating system layers. Source: Linux Kernel

As a Linux administrator, it is important to understand the basic concepts of
Networking, from how the traffic is managed by the physical devices to how the
data is presented to the end user. The Open Systems Interconnection Model
(Open Systems Interconnection Model) describes the universal standard
communication. This model defines the following seven abstraction layers:

Physical layer (Layer 1): Responsible for the transmission and reception of
the data in a device, such as an Ethernet device in a system, a cable, or a
port in a Router.
Data link layer (Layer 2): Provides data transfer between different nodes.
For example, a communication between two servers in the same local
network.
Network layer (Layer 3): Transfers data from (or to) one node from a
network to a different network. This requires a node to route the traffic
between different Layer 2 (data link).
Transport layer (Layer 4): Data transmission using protocols, such as
UDP or TCP.
Session layer (Layer 5): Maintains and synchronizes connection between
two nodes.
Presentation layer (Layer 6): Formats and translates the data to be used,
such as data encryption/decryption or compression/decompression.
Application layer (Layer 7): The application where the user interacts.

Figure 7.2 illustrates the traffic flow through the different layers in the OSI
Model:

Figure 7.2: OSI Model layer traffic flow. Source: Wikipedia

Networking evolved in the last decades, from communication to the adoption of
new technologies. First communications were mainly between physical servers,
through switches and routers. The traffic dominant was a north-south data flow,
where the systems were communicating with devices outside the local network.
Migration of the services to virtual machines, with the popularity of virtualization,
introduced new challenges related to communication, thus, increasing the traffic
east-west, which indicates the communication between different services inside of
the same network.
Adoption of the containers increased the traffic between the systems, and
advanced network configuration and advanced network implementations, such as
Software Defined Networks and tunnel protocols, are knowledge required
nowadays when a server is configured.

Another important transformation is part of large enterprises moving to a new
network architecture called Spine Leaf, which increases the efficiency of the
traffic and reduces the possible bottlenecks caused by the traditional architecture.
Figure 7.3 shows the difference between the traditional architecture, which has
three layers (access, aggregation, and core) with limitations of the parallel traffic,
and the new architecture, with a mesh connection with high bandwidth and low-
latency features:

Figure 7.3: Traditional and spine leaf architectures. Source: Aruba Networks

Another important change in the last few years was the introduction of IPv6, the
most recent version of the Internet Protocol. This new version uses 128-bit
addresses instead of the 32-bit ones on IPv4. The use of IPv6 is still limited in
local networks, but the adoption of ISP and large enterprises are a reality.

Physical layer (Layer 1)
Chapter 6, Monitoring System Resources, described using the command lshw to
list the available Ethernet devices on the system. The command ethtool was
introduced in the same chapter to obtain information about the status, such as if
the link was detected and the possible speeds available.
The command ip replaces the operations to the traditional, and the deprecated
command ifconfig in Linux replaces the operations to list information about the
interfaces. Specifying as an argument, the word link lists the network interface’s
physical information as illustrated in figure 7.4:

Figure 7.4: Output example for the command ip link

The output for the command ip link contains important information. Linux
distributions contain a local interface called lo, which is used for internal
communications within the system, such as TCP/UDP connections. Physical
interfaces have the format en (Ethernet device) + p[PCI bus number] + s[Slot
number] in modern systems instead ethX (where X was a number starting in 0) in
the past.
The output will indicate if the interface is UP (link is detected and the interface is
active in the system) or DOWN (link undetected or the interface is not active in
the system), the MTU (maximum transmission unit), which usually defaults to
1,500 and the MAC address, which identifies an individual network device.
The MAC address is an important value to configure the interface in the network,
such as assigning a static IP when Dynamic Host Configuration Protocol (DHCP)
is used or for the network installation using Preboot Execution Environment
(PXE).
Communication inside a local network between nodes requires to know the MAC
of the destination node. To know the MAC address of one node, Linux sends a
packet to the network asking who is the owner of the destination IP address.
When it obtains the information, it stores the relation in a table that contains the
mapping between the IP address and the MAC address. The argument neigh
(which replaces the historical command arp) shows the table information as figure
7.5 illustrates:

Figure 7.5: Output example for the command ip neigh

Data link layer (Layer 2)
Command ip can be used to show the Layer 2 information, the IP address, and the
network mask. Adding the argument address (or a) shows the assigned addresses

for the interface, as figure 7.6 illustrates:

Figure 7.6: Output example for the command ip address

The interface lo has always assigned and configured the IP 127.0.0.1 with the
network mask 255.0.0.0 (/8). The preceding figure 7.6, shows an interface named
enp1s0 configured with the IP 192.168.122.101 with the netmask 255.255.255.0
(/24), and the broadcast IP is 192.168.122.255.
The interface named enp1s0 has an assigned IPv6 local address (starting with
fe80) with a subnet mask /64. Figure 7.7 shows an example of an interface with
an IPv6 address configured:

Figure 7.7: Output example for the command ip address with IPv6 address

Network layer (Layer 3)
Layer 3 requires to have information on how to access networks that are not the
local ones. This includes a default gateway to access outside of the network, and
specific gateways to access to other networks if needed. The command ip with
the argument route lists the current table of destinations and gateways. Figure 7.8
shows an example:

Figure 7.8: Output example for the command ip route

In the example shown in figure 7.8, the default gateway is 192.168.122.1. It
would be used as a hop for all communications whose destination is not
192.168.22.0/24. In case the communication is to an IP in the local network, the
gateway is not involved, and the communication is direct. Figure 7.9 shows an
example of IPv6:

Figure 7.9: Output example for the command ip route with IPv6

The command ip route allows a useful extra argument called get and the IP to
obtain the information on how to access it. Figure 7.10 shows two examples, the
first one about an IP outside of the network and the second one about an IP in the
local network:

Figure 7.10: Output example for the command ip route get

As described in Chapter 6, Monitoring System Resources, there are several tools
to check the traffic hops from the system to a destination IP, such as traceroute,
tracepath, or mtr. The protocol Internet Control Message Protocol (ICMP) is
located in Layer 3; this protocol is used by the commands mentioned previously
and by the popular command ping. This command is useful to check connectivity
to local and remote IPs.

Transport layer (Layer 4)
This layer depends on protocols for the transmission of data. The transport
protocols can be stateful, for example, Transmission Control Protocol (TCP), or
stateless such as User Datagram Protocol (UDP). The stateful connection
ensures that the data is sent correctly and waits for the transmission to be
completed. An example of a stateful connection is an HTTP request. A stateless
connection sends the data and waits for an answer, but without ensuring
communication. An example of a stateless connection is a DNS request.

The Transport layer relies on IP addresses and ports to initiate a connection, for
which specifying the destination IP and the destination port is needed. A random
port in the local system will be assigned for the communication. A service will be
listening for new connections in an IP and in a defined port. The port ranges in
Linux (different than the ones suggested by the Internet Assigned Numbers
Authority) are defined in table 7.1:

Range Description

0-1023 System ports (well-known ports). Only services/applications executed by
system users can listen to these ports.

1024-32767 Unprivileged port for the rest of the services

32768-60999 Dynamic and/or Private ports. Also known as ephemeral ports.

Table 7.1: Port ranges description

The file /etc/services contain a list of the known services and the port assigned.
Linux provides a tool named sysctl to be able to query or modify the system
parameters, including those port ranges. Figure 7.11 shows the two parameters
and the values:

Figure 7.11: Output example for the command sysctl

It is possible to list the currently active connections in the system using the
command socket statistics (ss), which is replacing the traditional command
netstat. Figure 7.12 shows an example using the options -t (--tcp to filter TCP
connections) and -n (--numeric to show numeric ports and IPs):

Figure 7.12: Output example for the command ss

The preceding example in figure 7.12 shows the following connections:

Two connections from the IP 192.168.122.1 to the local system (which has
IP 192.168.122.101) to Port 22, which is the port of SSH. As figure 7.11
indicates, each connection uses a random port from the range port set in the
system.

One connection from the IP 192.168.122.145 to the local system to Port 22.
One connection originated from the local system (192.168.122.101), which
the random port generated 53530), to IP 192.168.122.145 and port 22.

Session, presentation, and application layers (Layers
5, 6, and 7)
These three layers are part of the software layers that initiate and service the data
to the end user. An HTTPS connection, for example, using the command curl
initiates a session to a Web server (Layer 5), handles the SSL connection and the
data compression/decompression (Layer 6), and performs the visualization (Layer
7). Figure 7.13 is an example of the command curl output:

Figure 7.13: Output example for the command curl

Basic network configuration
Network configuration in a Linux system, as other configurations are defined in
plain text files. Historically, configuring those files was not a simple task and led
to misconfiguration, thus causing downtimes. Recent versions of the distributions
include high-level commands to manage the networking, helping system
administrators to configure basic or advanced configurations. These solutions
ensure that the syntax and the configuration are correct.
Red Hat distribution and derivatives, such as CentOS Stream or Rocky Linux, are
using NetworkManager system daemon to manage the network devices and
connections. Ubuntu distribution uses Netplan and Systemd-networkd to perform
configuration based on YAML files.

Network configuration on Red Hat-based systems
On previous versions of Red Hat-based systems, the network configuration files
were under the directory /etc/sysconfig/network-scripts/ when manual
configuration was used. The file with the prefix ifcfg- followed by the name of
the interface, contains the configuration for that interface. The following code

shows an example of the content of the file ifcfg-ens3 to configure the interface
ens3 using DHCP:
TYPE=Ethernet

PROXY_METHOD=none

BROWSER_ONLY=no

BOOTPROTO=dhcp

DEFROUTE=yes

IPV4_FAILURE_FATAL=no

IPV6INIT=yes

IPV6_AUTOCONF=yes

IPV6_DEFROUTE=yes

IPV6_FAILURE_FATAL=no

NAME=ens3

UUID=02cc87e6-dc7c-4c9e-a530-f908611c7f5e

DEVICE=ens3

ONBOOT=yes

On newer versions, NetworkManager is using the directory
/etc/NetworkManager/system-connections to store the configuration. The
following code shows an example of a file named enp1s0.nmconnection to
configure the interface enp1s0 using DHCP:
[connection]

id=enp1s0

uuid=320f6572-672b-33c8-9014-b0fb087ae1a2

type=ethernet

autoconnect-priority=-999

interface-name=enp1s0

timestamp=1656276248

[ethernet]

[ipv4]

method=auto

[ipv6]

addr-gen-mode=eui64

method=auto

[proxy]

NetworkManager includes several commands to query, manage devices, and
connections configurations. The command nmcli is used to perform actions in the
command line, and the command nmtui is used to perform operations in a user
interface in the console.

Command nmcli
This command-line tool is used for controlling NetworkManager and query the
status. The command allows a first argument indicating the component to
manage, where the common options to configure networking are described in
table 7.2:

Argument Description

general General status and set hostname

connection Manage connections

device Manage devices managed by NetworkManager

monitor Monitors NetworkManager changes

Table 7.2: First argument options for command nmcli

The argument general shows the general status of the system, as is shown in the
following figure 7.14:

Figure 7.14: Output example for the command nmcli.

The argument connection, without other arguments, lists the connections
configured in the system and managed by NetworkManager. It is possible to use
the arguments connection show followed by the name of the connection to list all
the configured options, as is shown in figure 7.15:

Figure 7.15: Output example for the command nmcli.

If possible, specify arguments to add connections, modify them or delete them,
among other operations. Figure 7.16 shows some of the common operations:

Figure 7.16: Output example for the command nmcli.

Table 7.3 shows some examples of common operations configuring and operating
with basic networking:

Action Command

Add a new connection with
static IP, gateway, and DNS

nmcli c a type ether con-name “test” ipv4.method manual ip4
“10.10.10.23/24” gw4 “10.10.10.1” ipv4.dns “10.10.10.2”

Deactivate a connection nmcli connection down “test”

Activate a connection nmcli connection up “test”

Appends a DNS server to an
existing connection

nmcli con modify “test” +ipv4.dns 8.8.8.8

Removes an IP nmcli con modify “test” -ipv4.addresses “10.10.10.4/24”

Table 7.3: Example commands for nmcli

Command nmtui
This utility helps the configuration and the query to the connections and devices
in the system in a visual way. Running the command nmtui shows the menu
illustrated in figure 7.17:

Figure 7.17: Aspect of the command nmtui.

The first option, Edit a connection, will list and allow the possibility to create new
connections or edit existing ones. Figure 7.18 shows the list and the actions
available:

Figure 7.18: Edit a connection menu on nmtui.

Using the Tab key, it is possible to navigate between the available connections
and the right menu. Pressing it in <Edit…> will show the configuration for the
selected connection, as seen in figure 7.19:

Figure 7.19: Edit a connection dialog on nmtui.

Adding a new connection would allow indicating if the interface will use DHCP
or static IP configuration, DNS, and gateway configuration. It is also possible to
disable IPv4 or IPv6 depending on the needs of the system and the interface.

Network configuration on Debian and Ubuntu
Debian is using a file-based configuration for networking. The main file defining
the network configuration is /etc/network/interfaces, and the following code
block shows an example of a static IP configuration:
The loopback network interface

auto lo

iface lo inet loopback

The primary network interface

auto eth0

iface eth0 inet static

address 37.139.7.55

netmask 255.255.255.0

gateway 37.139.7.1

dns-nameservers 8.8.4.4 8.8.8.8 209.244.0.3

It is possible to execute the command man interfaces to obtain the possible
syntax and different configurations possible inside of the file. After configuring
the file, it is required to restart the service networking with the command
systemctl restart networking.
Ubuntu distribution uses netplan to define the network configuration. The files
are defined in YAML and are inside the directory /etc/netplan/. Figure 7.20
shows how the configuration in netplan is used by systemd-networkd (default) or
NetworkManager:

Figure 7.20: Netplan diagram. Source: Canonical.

During the installation, a file named 00-installer-config.yaml is created, with
the configuration specified during the process. The following code block shows
an example:
This is the network config written by 'subiquity'

network:

ethernets:

enp1s0:

dhcp4: true

version: 2

The following code block shows an example of the configuration of static IP:
network:

version: 2

renderer: networkd

ethernets:

enp7s0:

addresses:

- 10.10.10.2/24

nameservers:

addresses: [10.10.10.1, 1.1.1.1]

routes:

- to: default

via: 10.10.10.1

The command netplan has two main arguments:
1. try: It tries the configuration defined on files inside /etc/netplan/ and asks
the user to confirm the new configuration. If the user does not accept the new
settings or does not answer in 120, the configuration will be reverted.
2. apply: It applies the configuration defined on files inside /etc/plan/ to the
system.

Figure 7.21 shows the output of running the command netplan try:

Figure 7.21: Output example for the command netplan

Routing
Another important networking concept is routing, which is the process of
selecting the path to reach a network. A Linux system can define the rules to

access networks using different gateways. Moreover, a Linux system can be
configured as a router for other systems in the same network.
As described previously, using the command ip with the argument route lists the
routes configured in the system. It is possible to define static routers using
network files, netplan or NetworkManager. Table 7.4 shows the content
configuration or the commands to define the routes:

Element Content / Command

Debian’s interfaces
file

allow-hotplug enp1s0
iface enp1s0 inet dhcp

up ip route add 192.168.10.0/24 via 192.168.122.10 dev enp1s0
up ip route add 192.168.11.0/24 via 192.168.122.11 dev enp1s0

Ubuntu’s netplan
configuration

network:
ethernets:

enp1s0:
dhcp4: true
routes:

- to: 192.168.10.0/24
via: 192.168.122.10

- to: 192.168.11.0/24
via: 192.168.122.11

version: 2

Red Hat’s route-eth0 example 192.168.10.0/24 via 192.168.122.1 dev eth0
192.168.11.0/24 via 192.168.122.1 dev eth0

Using nmcli for
NetworkManager

nmcli con mod test +ipv4.routes “192.168.10.0/24
192.168.122.10,192.168.11.0/24 192.168.122.11”

Table 7.4: Routing configuration

The output example after configuring static routes for the command ip route is
shown in figure 7.22:

Figure 7.22: Output example for the command ip.

Configuring a Linux system to act as a router does not require advanced
configuration always when the same interface is used to redirect the traffic from
the source clients to the destination. Using different interfaces requires knowledge
related to security and firewall, which is described in the next chapter.
The parameter in the system to know if the traffic is allowed to be forwarded is
defined in the sysctl configuration with the key net.ipv4.ip_forward. By

default, for security reasons, it is disabled (value 0), and it is possible to enable it
temporarily with the command sysctl or permanently using the file
/etc/sysctl.conf.
Figures 7.23 to 7.26 show how to check and configure the ip forwarding and
ensure that it is working with the Linux system acting as a router:

Check the value for the system parameter ip_forward in a server named
ubuntu:

Figure 7.23: Output example for the command sysctl.

Configure a system named rhel to use the IP of the ubuntu system
(192.168.122.101) as a gateway and try to reach an external IP (Google’s
DNS IP 8.8.8.8):

Figure 7.24: Operate with command ip and output example for the command ping.

Enable ip forwarding in the system named ubuntu:

Figure 7.25: Output example for the command sysctl

Try the ping command from the node rhel to ensure the communication is
possible:

Figure 7.26: Output example for the command ping

Another important topic related to routing, especially for enterprises, is dynamic
routing. This type of routing adjusts in real time; the path used for transmitting IP
packets depends on different conditions, such as the shortest path or best
availability. Protocols such as Border Gateway Protocol (BGP) and Open
Shortest Path First (OSPF) are some popular examples of dynamic routing.

Advanced network configuration
There are three important advanced network configurations required nowadays
for managing Linux systems:

Systems offering services to end users require special network configuration
to avoid bottlenecks and reduce the possibility to have network downtimes.
This involves knowledge of configuring Link Aggregation (bonding).
Systems running Virtual Machines using virtualization technology require to
configure network bridges to provide connectivity and traffic isolation.
Linux provides tools to create denominated Linux bridges or the use of
virtual switches using some tools such as Open vSwitch.
Managing multiple networks inside of a network requires knowledge related
to Virtual LANs (VLANs) and configuring the Linux system to access to
those networks.

Link aggregation (bonding)
Bonding refers to aggregate multiple network connections in one. The purpose is
to have a high-availability connection, allowing one of the connections to fail
without causing any downtime. Using a protocol named LACP (802.3ad) allows
not only to have a high availability aggregation but also makes it possible to
aggregate the traffic bandwidth available. This protocol requires having switches
supporting this protocol and configuring the ports connected to the system.
Figure 7.27 shows an example using nmtui to define a new bonding combining
two interfaces (enp7s0 and enp8s0), thus creating a new virtual bonding interface
called bond0:

Figure 7.27: Dialog menu in command nmtui

Running the command ip to list the interfaces will show the physical interfaces
and the new bonding interface. The physical interface will show the name of the
bonding it belongs. Refer to figure 7.28:

Figure 7.28: Output example for the command ip

A file inside of the special directory /proc/net/bonding/, with the name of the
bonding interface, is created with the information related to the configuration. The
following code block shows an example of the previous bonding shown in figure
7.28, which is a configuration with the mode load balancing:
Ethernet Channel Bonding Driver: v5.14.0-70.17.1.el9_0.x86_64

Bonding Mode: load balancing (round-robin)

MII Status: up

MII Polling Interval (ms): 100

Up Delay (ms): 0

Down Delay (ms): 0

Peer Notification Delay (ms): 0

Slave Interface: enp7s0

MII Status: up

Speed: Unknown

Duplex: Unknown

Link Failure Count: 0

Permanent HW addr: 52:54:00:10:65:8d

Slave queue ID: 0

Slave Interface: enp8s0

MII Status: up

Speed: Unknown

Duplex: Unknown

Link Failure Count: 0

Permanent HW addr: 52:54:00:c8:55:25

Slave queue ID: 0

Network bridges
A network bridge allows to aggregate multiple networks or network segments in a
single device. A network bridge is different for routing; this aggregation happens
in Layer 2 (data link layer). Network bridges are popular in virtualization, when
multiple VMs are connected to the same device, but can be part of different
networks. Figure 7.29 illustrates how several VMs can be connected to a Linux
bridge, which has as a member the network device, enp7s0:

Figure 7.29: Network bridge diagram example.

It is possible to manually create a Linux Bridge using the command ip, and it is
also possible to check the status using the command bridge. Figure 7.30 shows
an example of the usage:

Figure 7.30: Output example for the command bridge after creating a bridge

Using NetworkManager, it is possible to create a bridge, using the connection add
arguments. Figure 7.31 illustrates this with an example:

Figure 7.31: Output example for the command nmcli

Using netplan, it is possible to create a Linux bridge, as shown in the following
code as an example:
network:

version: 2

renderer: networkd

ethernets:

enp7s0:

dhcp4: no

bridges:

bridge0:

dhcp4: yes

interfaces:

- enp7s0

Open vSwitch (OVS) is an open-source project to operate with virtual switches.
Nowadays, it is recommended to use OVS instead of Linux bridges due to the
flexibility, efficiency, and compatibility with more tunnel protocols (VXLAN,
GRE, and so on). It is also possible to integrate with Software Defined Network
solutions. Figure 7.32 shows the communication between two hosts using OVS
and acting as a network bridge for Virtual Machines:

Figure 7.32: Open vSwitch diagram example. Source: Open vSwitch

Figure 7.33 shows an example to configure Open vSwitch using the command
ovs-vsctl included in the package openvswitch-switch (in Ubuntu repository)
or package openvswitch2.17 (in RHEL 9):

Figure 7.33: Output example for the command ovs-vsctl.

Virtual LANs (VLANs)
Virtual LANs is a method of creating independent logical networks within a
physical network. The separation between the logical networks is done using a tag
called VLAN ID, which is a number between 0 and 4,095. This VLAN ID is part of
the network packet. Figure 7.34 shows the structure of a VLAN data packet:

Figure 7.34: Packet fields for an Ethernet card using VLANs

The following example in figure 7.35 illustrates how to use nmcli to configure an
interface to be connected using the VLAN ID 10:

Figure 7.35: Output example for the command nmcli.

Conclusion
Networking is one of the core parts of the Linux server. Modern services rely on
networking, and knowledge about advanced features is required when
virtualization and containers are involved. This chapter covered topics from the
basic concept of the network to the most advanced ones, such as bridging and
virtual LANs.

Key facts
OSI model knowledge is required to understand traffic flow.
Linux provides several tools to check connectivity.
Network configuration is configured using Network Manager or netplan.
Linux eases advanced network configuration with simple tools.

Questions
1. How many layers are part of the OSI Model?

a. Five layers
b. Seven layers
c. Nine layers

2. In which layer the routing is placed in?

a. First layer
b. Second layer
c. Third layer

3. What is the default tool to configure networking on a Ubuntu server?

a. netplan
b. NetworkManager
c. systemd

4. Which command on NetworkManager is used for the text user interface?

a. nmtui
b. nmcli

c. nmui

5. What key is required to be enabled for IP forwarding?

a. net.ipv4.forwarding
b. net.ipv4.ip_forwarding
c. net.ipv4.ip_forward

6. What directory contains files with the bonding information?

a. /sys/net/bonding/
b. /proc/net/bonding/
c. /dev/net/bonding/

Answers
1. b
2. c
3. a
4. a
5. c
6. b

CHAPTER 8
Security

Introduction
Offering a service to end users leads to possible security risks, such as data leaks
or unauthorized access. Though Linux is the most secure operating system, it is
necessary to avoid unwanted access to the service or to the system itself. To
protect a system, there are two main important points: keep the system updated to
avoid attacks on the software in the system, and protect who has access to the
system through the network.
This chapter is focused on network security using a firewall and limiting access to
different services using configuration. Linux also provides different tools to avoid
the execution of unwanted software and checks if the system is compromised.

Structure
In this chapter, we will discuss the following topics:

Security introduction
Firewall configuration on Linux
Services security
Network monitoring

Security introduction
One of the main tasks of Linux system administrators is to keep the system
updated and protected from unwanted access to the system itself or applications.
Chapter 4, User Administration and Software Management describes how to
create users and groups and how, by using permissions, it is possible to limit
access to files and directories. It is important to protect the system by checking
the files using special permissions, to avoid unwanted permission escalation. The
process of protecting a system from a default installation is called hardening.
Security networking uses this knowledge to protect the system from remote
access, either from a user or system in the same network or an attacker from

outside of the network through the internet. The main security related to
networking is to use a Firewall on the Linux system. Even though the network
would be protected by a network firewall, it is important to protect the systems
with their own firewall to create double protection.
Historically, firewall configuration in Linux was a complicated task that required
knowledge about iptables, a tool to maintain filter rules in the Linux kernel.
Modern distributions include high-level tools to manage firewall rules, helping
administrators and regular users to main firewall rules in an easy way.
Depending on the Linux distribution used, the default firewall tool will be
different. Red Hat Enterprise Linux and derivatives, such as CentOS Stream or
Rocky Linux, rely on the Firewalld project as firewall management. Ubuntu
distribution uses an Uncomplicated Firewall (ufw) as the default configuration
tool to ease firewall configuration.
The default backend for the firewall solutions in modern distributions is nftables,
which replaces the traditional iptables. It is possible to use the command nft to
manage or list the rules configured in the system.
The following schematic figure 8.1 shows packet flows through Linux
networking:

Figure 8.1: Packet flows through Linux networking. Source: nftables.

Linux services implement their own security configuration. For example, the
service SSH allows to configure to not allow login with the administrator user root
or only allows the connection using SSH public/private keys. Another example is

NFS Server, which limits the exported directories to specific IPs/Network ranges
and with the possibility to enable authentication.
Another protection solution offered by the Linux distributions is called mandatory
access control policies. This security is a proactive approach that helps to protect
the system against both known and unknown vulnerabilities. These policies
enforce what the application and the user can do, such as access to directories, the
ports they can use, or the operations they can do. For example, it protects a Web
server to access a directory that is not the default or denies the connection from
the Web server to a remote location.
Red Hat Enterprise Linux and derivatives offer Security-Enhanced Linux
(SELinux) for supporting Access Control Security Policies. Debian and Ubuntu
rely on AppAmor solution as Mandatory Access Control (MAC).
Other security-related management examples on Linux for hardening include the
following:

Disk encryption: Using Linux Unified Key Setup (LUKS) for hard drive
encryption.
Secure user access: Includes Pluggable Authentication Modules (PAM)
configuration, the configuration of user limits, the configuration of sudo,
and user auditing, among others.
Restrict file-system permissions: It is possible to restrict which directories
can contain executables and what directories should be read-only.

Linux distributions offer the possibility to comply with three popular security
certifications, which usually are required for companies in the public sector or
companies working with sensible data:

Federal Information Processing Standards Publications (FIPS): Issued
by the National Institute of Standards and Technology (NIST), the FIPS
140-2 specifies the security requirements for cryptographic modules.
Center for Internet Security (CIS): It publishes benchmarks related to
services. They offer Extensible Configuration Checklist Description
Format (XCCDF) format benchmarks, which can be used by different
tools.
Security Technical Implementation Guides (STIG): Developed by the
Information System Agency (DISA) for the US Department of Defense
(DoD), STIG consists of security controls, including configuration settings
to hardening Linux distributions.

Firewall configuration on Linux
One of the common tasks performed during the installation is to configure the
Firewall. The considerations to have a secured firewall configuration are as
follows:

Block by default; if there is not a specific rule, then the connection should
be rejected.
Open only the ports needed for the services and specify the protocol for
those ports.
Limit the connection from specific IPv4 or Ipv6 addresses.
Apply the rules to specific network interfaces in the system.
Limit the rate of the connections to avoid attacks.
Automate firewall rules with an automation solution (for example, Ansible).

Firewalld
Firewalld provides a dynamically managed firewall with zones that define the
trust level of network connections or interfaces. A big benefit of the usage of
firewalld, is the possibility to perform changes in the rules without having to
restart the service. It uses Desktop Bus (D-Bus) as a message bus system, a
simple way for applications to talk to each other. Firewalld has different support
for several backends. Figure 8.2 illustrates the structure:

Figure 8.2: Firewalld structure. Source: firewalld

The command firewall-cmd communicates with the service firewalld to
operate with rules and zones. The service will use the backend defined, by default
nft, to configure the rules indicated.
The default configuration file for firewalld is located on
/etc/firewalld/firewalld.conf. The following code contains an example of
the default configuration values:

DefaultZone=public

CleanupOnExit=yes

CleanupModulesOnExit=no

Lockdown=no

Ipv6_rpfilter=yes

IndividualCalls=no

LogDenied=off

FirewallBackend=nftables

FlushAllOnReload=yes

RFC3964_Ipv4=yes

It is possible to check the status of the firewalld service using the option --state or
by using the command systemctl. Figure 8.3 illustrates running these two
options:

Figure 8.3: Output example checking firewalld service status

By default, firewalld has some predefined zones for different purposes. Table
8.1 shows the zone name and the description:

Zone Description

drop Any incoming network packets are dropped, and there is no reply. Only
outgoing network connections are possible.

block Any incoming network connections are rejected with an icmp-host-
prohibited message for IPv4 and icmp6-adm-prohibited for IPv6. Only
network connections initiated within this system are possible.

public For use in public areas. You do not trust the other computers on networks
to not harm your computer. Only selected incoming connections are
accepted.

external For use on external networks with masquerading enabled, especially for
routers. You do not trust the other computers on networks to not harm

your computer. Only selected incoming connections are accepted.

dmz For computers in your demilitarized zone that are publicly-accessible
with limited access to your internal network. Only selected incoming
connections are accepted.

work For use in work areas. You mostly trust the other computers on networks
not to harm your computer. Only selected incoming connections are
accepted.

home For use in home areas. You mostly trust the other computers on networks
not to harm your computer. Only selected incoming connections are
accepted.

internal For use on internal networks. You mostly trust the other computers on the
networks not to harm your computer. Only selected incoming connections
are accepted.

trusted All network connections are accepted.

Table 8.1: Predefined zones in firewalld

It is possible to use the option --get-zones to list the zones available. --get-
active-zones lists only the active zones, including the interfaces assigned to
those zones. The option --get-default-zone prints the default zone for
connections and interface. Figure 8.4 shows output examples for the options
described:

Figure 8.4: Output example getting zones using command firewall-cmd

The option --list-all lists information related to the default zone, which is
public by default, such as the services allowed and the interfaces assigned. It is
possible to specify information about another zone, by using the option --
zone=name. Figures 8.5 and 8.6 show both examples:

Figures 8.5, 8.6: Getting information about the default zone and a specific zone

It is possible to change the default zone using the option --set-default=name. To
allow connections to the system, there are several options to allow connections to
different ports or services from different sources. Table 8.2 describes some
popular options:

Option Description

--add-port=port/protocol Allow connections to the port and protocol specified.

--add-service=service Allow connections to the service specified.

--add-interface=interface Assign the interface to the default zone or to the zone specified.

--add-source=subnet/mask Allow connection from the IP or subnet specified.

Table 8.2: Options to configure zones

It is possible to use --remove-port, --remove-service, --remove-interface,
and --remove-source to delete configurations from the default zone or the zone
specified. To be accepted, the connection, source, and target should be allowed in
the zone. Figure 8.7 shows some examples of the usage of the options:

Figures 8.7: Using firewall-cmd to manipulate zones

In figure 8.7, the following operations were performed:

The connection to port 80/tcp was allowed.
The connection to the server https (443/tcp) was allowed.
Interface named vlan10 was removed from the default zone.
Interface named vlan10 was added to the zone trusted.
The network 10.0.0.0/24 was added as an allowed source in the zone
trusted.

Changes in firewalld are kept in memory (runtime configuration) till they are
converted to permanent rules. The options added as permanent with the option --
permanent are not active till the configuration is reloaded with the option --
reload. Figure 8.8 shows how a permanent rule is only applied after the
configuration is reloaded:

Figure 8.8: Adding a permanent rule to firewalld

The rules not converted to permanent rules will be lost when the option –reload is
used or when the service firewalld is restarted. It is possible to convert the
runtime rules as a permanent rules, using the option --runtime-to-permanent for
that purpose. Figure 8.9 shows how to use that option:

Figure 8.9: Convert runtime rules to permanent

Other common options in firewall-cmd can be seen in table 8.3:
Option Description

--list-services List only the services allowed in the default or specified zone.

--get-services List all the predefined services.

--list-all-zones Get detailed information for all the zones, and even if they are not active
ones.

--list-ports List the allowed ports

--new-zone=name Create a new zone

Table 8.3: Common options for the command firewall-cmd

ufw
The Uncompleted Firewall (ufw) is the default firewall configuration tool for
Ubuntu. It helps in the creation of firewall rules in the system. By default, it is
initially disabled. With the argument status, it is possible to check the current
status and with the argument enable, it is possible to activate it, as figure 8.10
illustrates:

Figure 8.10: Check the status and enable the firewall using ufw

It is possible to allow a new connection using the argument allow and indicating
the port to be permitted. The argument deny is to close the connection. It is
possible to specify the protocol (argument proto), the source (argument from), the
destination ip (to), and the destination port (port). Figure 8.11 shows an example
allowing port 22 to everyone and port 80 to a specific IP:

Figure 8.11: Allowing connections to the system using ufw

When ufw is configured with rules, the argument status lists them. It is possible to
add verbose as a second argument, to obtain information about default actions, as
shown in figure 8.12:

Figure 8.12: Listing the rules in ufw

Some applications are creating a definition of the ports used inside of the
directory /etc/ufw/applications.d/. The following code shows the definition
for the openssh-server application:
[OpenSSH]

title=Secure shell server, an rshd replacement

description=OpenSSH is a free implementation of the Secure Shell

protocol.

ports=22/tcp

It is possible to list the applications defined using the arguments app list and
obtain information using app info. Figure 8.13 shows the example of usage:

Figure 8.13: Listing applications and obtaining information on ufw

Masquerading
In Chapter 7, Network Configuration, we learned how to configure a Linux server
to act as a router. Using IP Forwarding, it is possible to use a Linux system as a
gateway to access other networks. That is possible only when Network Address
Translation (NAT) is not involved. For example, this communication is possible
in the scenario when the node has the IP 192.168.122.10 and gateway
192.168.122.1, and the nodes from the network 192.168.122.0/24 use the gateway
192.168.122.10 and IP forwarding is enabled.
If One-to-many Network Address Translation is involved, meaning the
connection from one network is redirected to another network, then
masquerading is required to perform that connection. Figure 8.14 illustrates the
traffic flow and the IP masquerading process:

Figure 8.14: IP masquerading diagram

Both firewall solutions described, firewalld and ufw, allow to enable
masquerading for zones or interfaces. Figure 8.15 shows how to enable it using --
add-masquerade for the command firewall-cmd command:

Figure 8.15: Enable masquerading with firewall-cmd

Using ufw requires manual tasks editing two files, and disabling/enabling the
firewall:

Edit file /etc/default/ufw and set the value for the key
DEFAULT_FORWARD_POLICY to the value ACCEPT.
Edit file /etc/ufw/before.rules to add the following line (before the
COMMIT line):
-A POSTROUTING -s 192.168.122.0/24 -o eth0 -j MASQUERADE

Execute the commands: ufw disable && sudo ufw enable.

Services security
It is important to keep the system secure in regard to who can access the services.
Firewall is the first barrier of security, indicating who has access and to what at
the network connection. Some security recommendations related to services are
the following:

Disable services that are not needed. Some services are enabled during
installation, and they are recommended to monitor which services are
running in the system and disable the ones that are not needed.
Configure services to listen to a specific interface. Applications are usually
listening in all interfaces available, which can lead to security threads due to
the firewall accepting all communications through one of the interfaces.
Turn off IPv6 if it is not in use. Some networks are not using IPv6, and in
such cases, it is recommended not to use it on services to avoid undesired

access.
Enable logging and auditing. It is important to enable logging and auditing
for the services where users will connect and operate. A central logging
service is recommended to be able to create reports and alert notifications.
Use an Intrusion Detection System (IDS). This service detects possible
intrusions to the system.
Using Security Models. Software like SELinux and AppArmor protects the
system mitigating unauthorized accesses and attacks.

Disabling not needed services
To list the services which are enabled, it is possible to use the command
systemctl with argument list-unit-files and filter with the options --
type=service and --state=enabled, as shown in figure 8.16:

Figure 8.16: List the services enabled in the system using systemctl

To list the services which are running in the system, use the argument list-units
and the options --type=service and --state=running, as is illustrated in figure
8.17:

Figure 8.17: List the services running in the system using the command systemctl

Listing services listening in all interfaces
The command ss can be used to list the services which are listening in all
interfaces. To listen in all interfaces, the special local IP 0.0.0.0 for IPv4 is used
and [::] for IPv6. Figure 8.18 shows an output example using ss filtering for those
IPs:

Figure 8.18: Output example for the command ss

In the previous example, the services sshd and apache2 are listening in all
interfaces. Each service defines different configuration files and options to
indicate in which interface to listen. For example, for the SSH server, the option is
named ListenAddress for Apache2, the option is Listen.

Service logging
Traditionally, the services used their own log files to store the information related
to the process, access, or other information. For example, Apache2 uses the
directory /var/log/httpd/ or /var/log/apache2/ to log access to the Web
server, which is useful to analyze unwanted access to the service. Other services
are using the system logging service in the system to store the logs on it. The
service more popular on Linux for that purpose is syslog-ng.

The modern infrastructure uses a centralized log aggregation service, where the
systems are streaming the system and service logs to that service. Popular log
collectors are logstash and fluentd projects. Using a centralized logging system
eases the log filtering and creation of alerts for all the Linux systems and services
in the network. Projects Grafana and Kibana are popular solutions for the
visualization of logs.

Intrusion detection system
Linux provides several popular options for Intrusion Detection Systems, such as
detecting files integrity, connection attacks, or unauthorized access to the system.
Some of these options are as follows:

Tripwire: Detects unauthorized filesystem changes.
Fail2ban: Protects a Linux system from brute-force attacks. It works by
reading logs and configuring the firewall to block IPs trying attacks.
Snort: A Network Intrusion Detection System inspects all inbound and
outbound network activity and identifies suspicious patterns which can
indicate attacks.

After tripwire is installed (using the package tripwire in the software repository),
it is needed to start the database using the option --init for the command
tripwire. Figure 8.19 shows an output example:

Figure 8.19: Output example for command tripwire

The option --check will show the modifications done in the filesystem from the
database creation. For example, if a file is created in /usr/bin/, the section “Unix
File System: will show this information”:
==

=

Object Summary:

==

=

--

-

Section: Unix File System

--

-

--

-

Rule Name: Other binaries (/usr/bin)

Severity Level: 66

--

-

Added:

"/usr/bin/malware"

Modified:

"/usr/bin"

The service fail2ban reads log files to detect possible brute-force attacks. The
main directory keeping the configurations is /etc/fail2ban. For example, the
SSH connections will read the log /var/log/auth.log to detect possible
password brute force attacks. The command fail2ban-client with the argument
status and the service will provide information about the banned IPs as is shown
in figure 8.20:

Figure 8.20: Output example for command fail2ban-client

Rejected Ips will be added to the firewall backend in the system. Figure 8.21
shows how it was added to the nft tables:

Figure 8.21: Output example for command nft

Snort is a powerful suite for Network Intrusion Detection and Prevention
Systems, using different rules to detect unauthorized access. The available rules
are available on the official website, https://www.snort.org/. Running the
command snort specifying the configuration with the option -c will process the
incoming and outgoing connections and show the possible attacks. The following
block shows an output example:
Commencing packet processing (pid=5993)

08/28-21:11:04.609587 [**] [1:1421:11] SNMP AgentX/tcp request [**]

[Classification: Attempted Information Leak] [Priority: 2] {TCP}

192.168.122.145:43439 -> 192.168.122.101:705

08/28-21:11:04.712143 [**] [1:1421:11] SNMP AgentX/tcp request [**]

[Classification: Attempted Information Leak] [Priority: 2] {TCP}

192.168.122.145:43440 -> 192.168.122.101:705

08/28-21:11:06.307016 [**] [1:1418:11] SNMP request tcp [**]

[Classification: Attempted Information Leak] [Priority: 2] {TCP}

192.168.122.145:43439 -> 192.168.122.101:161

08/28-21:11:06.407381 [**] [1:1418:11] SNMP request tcp [**]

[Classification: Attempted Information Leak] [Priority: 2] {TCP}

192.168.122.145:43440 -> 192.168.122.101:161

Security models
A security model provides a mechanism for supporting access security policies.
Red Hat Enterprise Linux and derivatives distributions use SELinux and Debian,
and derivatives use AppAmor software. Both solutions are integrated into the
Linux Kernel to increase the security of the system.
SELinux (Security Enhanced Linux) defines access controls for the
applications, processes, and files on a system. Using security policies, the rules
define what can be accessible and what cannot. For example, SELinux rules can

https://www.snort.org/

define which directories can be used by an application or which ports can be used
for listening connections.
SELinux has three states, as follows:

enforcing to protect and ensure that the rules are followed.
permissive will show warnings but allow the actions.
disabled to not use policies in the system. The main configuration to define
the state is /etc/selinux/config.

The command getenforce shows the current state, and the command setenforce
changes between states. The command sestatus provides more information.
Figure 8.22 shows the output of the commands:

Figure 8.22: Output example for command getenforce

SELinux works with context (also known as labels), which have several fields:
user, role, type, and security level. In the following figure 8.23, the service
Apache, which has the context httpd_t, can access to the directory
/var/www/html/, which has the context httpd_sys_content_t. However, Apache
cannot access the directory /data/mysql/, which has the context mysqld_db_t.

Figure 8.23: SELinux context permissions

Another protection provided by SELinux is the port the services can use. Using
the command semanage with the argument port and the option -l, it is possible to
list all the ports available for the services. In the following example in figure 8.24,
it is shown which ports can be used by Web servers and how to add a new port to
the list:

Figure 8.24: Output example of command semanage

SELinux, by default, does not allow the Web server daemons to connect to
external destinations. The command getsebool shows the current status, and the
command setsebool allows to change of the value. The following figure 8.25
shows the usage of the two commands:

Figure 8.25: Output example of command getsebool

The main log for SELinux is the file /var/log/audit/audit.log, which includes
information about the actions denied by the policies and other audit information
related to the rules. The following code block shows an example of a denied
action; the php-fpm command with context httpd_t tries to create a connection:
type=AVC msg=audit(1661798089.332:209): avc: denied { name_connect }

for pid=2948 comm="php-fpm" dest=443

scontext=system_u:system_r:httpd_t:s0

tcontext=system_u:object_r:http_port_t:s0 tclass=tcp_socket

permissive=0

AppArmor is installed and loaded by default on Ubuntu. In other distributions, it
is possible to install it from the software repository. AppArmor uses profiles of an
application to determine what files and permissions the application requires.
AppArmor has two modes of execution: complaining/learning will log the
violations, and enforced/confined will enforce the policy. The command

apparmor_status shows the information about how many profiles are loaded and
how many are in enforce mode. Figure 8.26 shows the output example:

Figure 8.26: Output example of command appamor_status on an Ubuntu 22.04

Profiles are simple text files located in /etc/appamor.d/. It refers to a full path
replacing the slashes (/) with dots (.). For example, the file
/etc/apparmor.d/usr.bin.tcpdump references to the command
/usr/bin/tcpdump.

The log for AppArmor is located inside of the file /var/log/dmesg, which is
accessible directly or through the command dmesg. The profile
/etc/apparmor.d/usr.bin.tcpdump defines some deny rules:
for -F and -w

audit deny @{HOME}/.* mrwkl,

audit deny @{HOME}/.*/ rw,

audit deny @{HOME}/.*/** mrwkl,

audit deny @{HOME}/bin/ rw,

audit deny @{HOME}/bin/** mrwkl,

If a user is trying to open a file with the command tcpdump in any of these paths,
it will fail, and a log will be recorded as is shown in figure 8.27:

Figure 8.27: Testing AppArmor profiles

It is possible to use the commands aa-complain and aa-enforce (part of the
package apparmor-utils), passing a path as an argument and setting the mode as
complain or enforce. Figure 8.28 shows how after using aa-complain, it is
possible to read a file:

Figure 8.28: Using the command aa-complain

Network monitoring
Network monitoring consists in observe the traffic flow constantly or during a
period to detect issues. It can also be used to detect attacks or to perform
troubleshooting related to the network configuration in the system. This section
will focus on the popular tools tcpdump and wireshark.
The command tcpdump is a powerful command-line packet analyzer with the
possibility to save the captured data to a file or read the data from a file. It allows
to read in a specific interface or in all interfaces in the system. The command can
be executed with options and arguments, and it will show the traffic generated in
the first network interface. The arguments in the command tcpdump are to specify
filters, for example, only capture packets originated from a specific IP. The
common options are explained in the following table:

Option Description

-A Print each packet (minus its link level header) in ASCII.

-c count Exit after receiving count packets.

--count Print only on stderr the packet count when reading capture file(s) instead
of parsing/printing the packets.

-D,--list-interfaces Print the list of the network interfaces available on the system and on
which tcpdump can capture packets.

-e Print the link-level header on each dump line. Useful to debug protocol
information.

-i interface Uses the interface specified or with word any for all of them.

--interface=interface

-n Do not convert addresses to names.

-r file Read packets from a file.

-w file Write the raw packets to file rather than printing them out.

-v Verbose output

Table 8.4: Common options for the command tcpdump

The following figures show different examples using the command tcpdump.

List all the interfaces usable in the system, as shown in figure 8.29:

Figure 8.29: Output example for the command tcpdump

Capture the traffic for the interface bridge0 not resolving IPs and ports and
showing extra information (option -e) for each packet, exiting after
receiving one packet. Refer to figure 8.30:

Figure 8.30: Output example for the command tcpdump

Capture traffic and save it in a file using the option -w and read using the
option -r, as shown in figure 8.31:

Figure 8.31: Output example for the command tcpdump

The arguments for the command tcpdump are expressions to define filters. Some
of the popular ones are defined in table 8.5:

Filter Description

[src / dst] host Filter the host, optionally indicating if it is an src or a dst.

[src / dst] net Filter the network, optionally indicating if it is an src or a dst.

[src / dst] port Filter the port, optionally indicating if it is an src or a dst.

[src / dst] portrange Filter a range port, optionally indicating if it is an src or a dst.

tcp / udp / icmp Filter for one of the protocols indicated

arp Filter for the arp protocol

Table 8.5: Common options for the command firewall-cmd

Full filters are available for running the command man pcap-filter. It is possible
to use special words “and” and “or” to combine several expressions. Figure 8.32
shows an example filtering from the IP 10.0.0.28 and port 80:

Figure 8.32: Output example for the command tcpdump

Wireshark is another popular solution for packet analyzing. The solution includes
a CLI tool called tshark, which works similar to tcpdump, and a Graphical User
Interface (GUI) to help inspect the information in the packet. Figure 8.33 shows
the output example for the command tshark filtering to the port 80 and the ip
10.0.0.218:

Figure 8.33: Output example for the command tshark.

Figure 8.34 shows the aspect of the Wireshark interface:

Figure 8.34: Aspect example for the command Wireshark

Conclusion
Security is a key part when a server is configured. This chapter has covered the
main security elements in Linux distribution. Firewall is one of the main
protections, and it is important to keep the rules updated. The solutions firewalld
and ufw were covered, and different examples were described. Modern systems
offer different services, and it is important to protect them to avoid unauthorized

access. Different recommendations were described, and tools to monitor the
traffic were explained in this chapter.

Key facts
Install and configure a firewall on Linux is a simple task.
A Linux system can act as a gateway for other systems.
An application can listen in a port in all the interfaces available.
SELinux is an advanced access control solution.
Network packet analyzing is possible with solutions such as tcpdump or
wireshark.

Questions
1. What solution replaces to the traditional iptables?

a. ebtables
b. nftables
c. bpftables

2. What is the main command to administrate firewalld?

a. firewall-cmd
b. firewall-cli
c. firewall

3. Which directory contains the application definition for ufw?

a. /etc/ufw.d/
b. /etc/ufw/applications.d/
c. /var/lib/ufw/applications/

4. What IP is used on IPv4 to indicate it is listening in all the interfaces?

a. 255.255.255.255
b. 1.1.1.1
c. 0.0.0.0

5. What two commands are used to check if SELinux is enabled?

a. getenforce

b. sestatus
c. selinux_status

6. What option in the command tcpdump is used to print the content packet in
ASCII?

a. -v
b. -A
c. --ascii

7. What is the CLI command for wireshark?

a. wireshark-cli
b. wshark
c. tshark

Answers
1. b
2. a
3. b
4. c
5. a and b
6. b
7. c

CHAPTER 9
Network Services

Introduction
This chapter will cover the popular network services usually offered by a Linux Server.
The services available for different needs are a big number; this chapter will focus on
three main services: Dynamic Host Configuration Protocol (DHCP), Domain Name
System (DNS), and remote access using Secure Shell or Secure Socket Shell (SSH).
The network service DHCP, which provides dynamic IP assignment to other elements
in the network, is one of the core services in all infrastructures. This service was
usually offered by network equipment, but on modern architectures, it is based on
virtualization and containers. The service is based on Linux solutions.
Another core network service is DNS, which is a key component for infrastructure
software. It is required to understand how it works and its different configurations to
offer this service to the network.
When remote re-access to Linux systems is required, SSH is the popular and most used
method used. This chapter will describe the different options to configure the service
and how the client can be used for different use cases. Private and public keys will be
covered to increase the security of the system.
The last part of the chapter will introduce other popular services and Linux popular
software associated with them.

Structure
In this chapter, we will discuss the following topics:

DHCP service and client
DNS service and clients
SSH service and SSH client
SSH private and public keys
Check network services available
Other popular network services

DHCP service and client

Dynamic Host Configuration Protocol (DHCP) is a protocol to automatically
assigns Internet Protocol (IP) addresses to the devices in the network. Chapter 7,
Network Configuration, introduced the different layers of networking. The first layer,
called the physical layer, is responsible for the transmission and reception of the data in
a device. There are no IP addresses present in this layer to send the data between the
nodes. Thus, it is based on the physical address. When a device without a static IP
configured is booting, it asks the network to obtain an IP address. For this request, it
sends a query using User Datagram Protocol (UDP) to port 67 as a destination and
port number 68 as the client, and it waits for an answer. This can be seen in figure 9.1:

Figure 9.1: DHCP client requesting to obtain IP

This request, called discover, is sent to all the devices in the network, expecting to
reach a DHCP server, as observed in the preceding figure 9.1. As there are no IPs in
this layer, the packet will be sent to the special address FF:FF:FF:FF:FF:FF, and the
node will specify its own MAC address for which it wants the IP address. In the
ethernet packet, the special IP 0.0.0.0 would be included as the source IP and the
broadcast IP 255.255.255.255 as a destination. The following excerpt from tcpdump’s
output shows an example:
16:28:34.690916 52:54:00:1a:9c:c4 > ff:ff:ff:ff:ff:ff, ethertype IPv4
(0x0800), length 342: (tos 0x10, ttl 128, id 0, offset 0, flags [none],

proto UDP (17), length 328)

0.0.0.0.68 > 255.255.255.255.67: [udp sum ok] BOOTP/DHCP, Request from
52:54:00:1a:9c:c4, length 300, xid 0x746de14f, Flags [none] (0x0000)

Client-Ethernet-Address 52:54:00:1a:9c:c4

Vendor-rfc1048 Extensions

Magic Cookie 0x63825363

DHCP-Message (53), length 1: Discover
Hostname (12), length 6: "ubuntu"

The DHCP service will be listening in the network, waiting for requests. When a
discover request is received, it will check if there is any IP available from the range
configured to offer. It will also check if the MAC address that performed the request
has some special configuration, such as a specific assigned IP. If the DHCP service can

give an IP to the requester, an answer is sent to the original request for an IP address,
offering one and indicating its MAC address. This answer is called offer. This can be
seen in figure 9.2:

Figure 9.2: DHCP Service offering an IP

The following excerpt from tcpdump’s output shows the offer answer from a DHCP
service to the node that requested for an IP. In this case, the DHCP Service is offering
the IP 192.168.122.175, and the communication is from the MAC address of the
DHCP Server:
16:28:37.694583 52:54:00:d8:cd:26 > 52:54:00:1a:9c:c4, ethertype IPv4
(0x0800), length 342: (tos 0xc0, ttl 64, id 3269, offset 0, flags

[none], proto UDP (17), length 328)

192.168.122.1.67 > 192.168.122.175.68: [udp sum ok] BOOTP/DHCP, Reply,

length 300, xid 0x746de14f, Flags [none] (0x0000)

Your-IP 192.168.122.175
Server-IP 192.168.122.1

Client-Ethernet-Address 52:54:00:1a:9c:c4

Vendor-rfc1048 Extensions

DHCP-Message (53), length 1: Offer
Server-ID (54), length 4: 192.168.122.1

Lease-Time (51), length 4: 3600
Subnet-Mask (1), length 4: 255.255.255.0
BR (28), length 4: 192.168.122.255

Default-Gateway (3), length 4: 192.168.122.1
Domain-Name-Server (6), length 4: 192.168.122.1

At this point, the client will obtain the possible IP that can be used and other
information such as default gateway, DNS information, and subnet. It also indicates
how often the IP needs to be renewed; in the previous example, this time was at 3,600
seconds. If the client wants this IP, they need to send another request, called request,
to be able to use it. This can be seen in figure 9.3:

Figure 9.3: Client requesting the IP offered

The following excerpt shows an example of the request packet:
16:28:37.694766 52:54:00:1a:9c:c4 > ff:ff:ff:ff:ff:ff, ethertype IPv4
(0x0800), length 342: (tos 0x10, ttl 128, id 0, offset 0, flags [none],

proto UDP (17), length 328)

0.0.0.0.68 > 255.255.255.255.67: [udp sum ok] BOOTP/DHCP, Request from
52:54:00:1a:9c:c4, length 300, xid 0x746de14f, Flags [none] (0x0000)

Client-Ethernet-Address 52:54:00:1a:9c:c4

Vendor-rfc1048 Extensions

DHCP-Message (53), length 1: Request
Server-ID (54), length 4: 192.168.122.1

Requested-IP (50), length 4: 192.168.122.175
Hostname (12), length 6: "ubuntu"

When the DHCP Service receives the request, it will answer with the confirmation.
This confirmation is called acknowledge, and can be seen in figure 9.4:

Figure 9.4: DHCP service acknowledges the use of the IP

The following excerpt shows the content of the acknowledge packet:
16:28:37.696436 52:54:00:d8:cd:26 > 52:54:00:1a:9c:c4, ethertype IPv4
(0x0800), length 342: (tos 0xc0, ttl 64, id 3270, offset 0, flags

[none], proto UDP (17), length 328)

192.168.122.1.67 > 192.168.122.175.68: [udp sum ok] BOOTP/DHCP, Reply,
length 300, xid 0x746de14f, Flags [none] (0x0000)

Your-IP 192.168.122.175
Server-IP 192.168.122.1

Client-Ethernet-Address 52:54:00:1a:9c:c4

Vendor-rfc1048 Extensions

DHCP-Message (53), length 1: ACK
Server-ID (54), length 4: 192.168.122.1

Lease-Time (51), length 4: 3600
Subnet-Mask (1), length 4: 255.255.255.0

BR (28), length 4: 192.168.122.255

Default-Gateway (3), length 4: 192.168.122.1

Domain-Name-Server (6), length 4: 192.168.122.1

Hostname (12), length 6: "ubuntu"

Now, the client can assign and use the IP for the time specified in the Lease time.
After that time is over, the client needs to send a request to renew the lease. Figure 9.5
shows the diagram of the DHCP process:

Figure 9.5: DHCP diagram. Source: Wikimedia

Linux DHCP servers and client
The most popular DHCP Server for Linux is Internet Systems Consortium (ISC),
known as dhcpd service. The first release was in 1999, being one of the most mature

and used services during the last decades. Another popular solution is dnsmasq, which
is a lightweight DNS, TFTP, and DHCP server.
The installation of ISC-DHCP on distributions based on DEB packages requires to
install the package isc-dhcp-server and isc-dhcp-client (for the client utilities).
On distributions based on RPM packages, the names are dhcp-server and dhcp-
client. The main configuration for the service is the file /etc/dhcp/dhcpd.conf for
IPv4 and /etc/dhcp/dhcpd6.conf for IPv6. The files contain global configurations,
subnet definitions, host configurations, and other configurations, such as classes, pools,
and shared-network declarations that are not covered in this book. The global
configuration are lines ending with a semicolon and defines different options, as
observed in the following excerpt from the default configuration:
option definitions common to all supported networks…

option domain-name "example.org";

option domain-name-servers ns1.example.org, ns2.example.org;

default-lease-time 600;

max-lease-time 7200;

For the subnet definition, it will indicate the subnet and the netmask, and the specific
configuration for that subnet, between curly brackets ({}). In the following example
for the subnet 192.168.100.0/24, 25 IP addresses would be available, the DNS server
would be 1.1.1.1, and the gateway 192.168.100.1, among other options:
subnet 192.168.100.0 netmask 255.255.255.0 {

range 192.168.100.25 192.168.100.50;

option domain-name-servers 1.1.1.1;

option domain-name "mycompany.com";

option subnet-mask 255.255.255.0;

option routers 192.168.100.1;

option broadcast-address 192.168.100.254;

default-lease-time 600;

max-lease-time 7200;

}

It is possible to specify specific parameters for one client. For that, the keyword host
is used, followed by a label and the options desired, as the following excerpt shows:
host rhelsystem {

hardware ethernet 52:54:00:57:d0:9f;

fixed-address 192.168.100.222;

}

After the file is configured, the service to be started (or restarted) is isc-dhcp-server
on Ubuntu/Debian-based systems and dhcpd on RHEL-based systems. Using the
command journalctl to check the logs from the system, it will be possible to obtain

information about the requests and the IP addresses assigned, as is shown in the
following excerpt:
dhcpd[1151]: Server starting service.

dhcpd[1151]: DHCPDISCOVER from 52:54:00:57:d0:9f via enp8s0

dhcpd[1151]: DHCPOFFER on 192.168.100.222 to 52:54:00:57:d0:9f via

enp8s0

dhcpd[1151]: DHCPREQUEST for 192.168.100.222 (192.168.100.1) from

52:54:00:57:d0:9f via enp8s0

dhcpd[1151]: DHCPACK on 192.168.100.222 to 52:54:00:57:d0:9f via enp8s0

As a client to test the DHCP requests, the utility dhclient offers the possibility to
configure one interface with a dynamic IP instead, to use the system configuration
(using files, NetworkManager, or netplan). This utility allows to specify the option -v
to enable verbose logging. The option -r is used to release the current lease and stop
the client running for the interface. Figure 9.6 shows an example of the usage, and the
output is shown:

Figure 9.6: Output example for command dhclient

The files where the DHCP server keeps the leases in the files are
/var/lib/dhcp/dhcpd.leases for IPv4 and /var/lib/dhcp/dhcpd6.leases for IPv6.
For the software dnsmasq, it is required to install the package with the same name. The
main configuration is /etc/dnsmasq.conf, which is used for configuration not only for
DHCP but also for DNS and TFTP. This file can contain configuration for IPv6 too.
An example of configuration to provide DHCP service is shown in the following
excerpt:
listen-address=192.168.100.1

domain=mycompany.com

dhcp-range=192.168.100.25,192.168.100.50,2h

dhcp-host=52:54:00:57:d0:9f,192.168.100.222

dhcp-option=option:router,192.168.100.1

dhcp-option=option:dns-server,1.1.1.1

Once the service is started, the log will appear in the journalctl when a request is
received. The following excerpt shows the IP assignation for the host configured with
a specific IP:
ubuntu dnsmasq-dhcp[1889]: DHCPDISCOVER(enp8s0) 192.168.100.222

52:54:00:57:d0:9f

ubuntu dnsmasq-dhcp[1889]: DHCPOFFER(enp8s0) 192.168.100.222

52:54:00:57:d0:9f

ubuntu dnsmasq-dhcp[1889]: DHCPREQUEST(enp8s0) 192.168.100.222

52:54:00:57:d0:9f

ubuntu dnsmasq-dhcp[1889]: DHCPACK(enp8s0) 192.168.100.222

52:54:00:57:d0:9f

The file containing the leases for dnsmasq is /var/lib/misc/dnsmasq.leases.

DNS service and clients
The Domain Name System (DNS) is a service to convert domain names to IP
addresses and vice versa. The structure is based on a hierarchy, where the top level
contains the root nameservers. Currently, these root nameservers are 13 servers
geolocated in different parts of the word. These servers have the syntax letter.root-
servers.org, where the letter currently is going from the letters a to m. The first query
to the root nameservers is to obtain the servers for the top-level domain (TLD),
responsible for the second level in the hierarchy. These servers are associated with the
top-level domain, such as .com, .net, and .org, the country code TLDS (for example,
.in, .es, and .jp), and new TLDs (for example, .tech and .space). These top-level
domain servers would provide the domain servers for the domain specified. These
domains are responsible to provide the answer for the domain or subdomain queried.
DNS can contain complex configurations indicating other nameservers for
subdomains. Figure 9.7 shows the hierarchy with two domain examples:

Figure 9.7: DNS hierarchy example

The query uses the UDP protocol, and the destination port is 53. A DNS service can
act in different modes:

Authoritative: It is responsible for a domain or several domains and answers
queries related to them only.
Forwarding: The DNS service is not responsible for any domain, and all the
requests are forwarded to an upstream DNS server.
Cache: Similar to forwarding but keeping a cache for the client requests. This is
a popular configuration to avoid multiple requests to upstream servers.

It is possible to combine the different modes, such that the Authoritative and Cache
mode, in the same server. This DNS Service will answer for the domains for which it is
responsible. For the rest of the domains, it will forward the request to the upstream
DNS server configured, caching the client requests.
New technologies and modern software depend on DNS for the correct functioning.
Correct internal and external resolving is required for the software to communicate
between services and to pull required software and artifacts from repositories, such as
container images.
The DNS records configured inside a DNS server are of different types, as can be seen
in table 9.1:

Record Type Description

A Resolves a hostname to an IP

AAAA Resolves a hostname to an IP, for IPv6.

CNAME Specifies an alias for a hostmae

PTR Resolves an IP to a hostname

NS Specifies the name servers for a domain or subdomain.

MX Specifies the mail servers for a domain or subdomain.

SRV Specifies host and ports for a specific service.

TXT Specify a text record for a hostname. Used for checking the owner of the
domain and different domain configurations.

SOA Stands for “start of authority”, and provides admin information for the domain
and information about the last update and refreshing times.

Table 9.1: DNS record types

The records A and AAAA allow to use the asterisk (*) to create a wildcard record. For
example, creating a wildcard record *.dev.example.com pointing to the IP
192.168.122.222, the DNS server will answer for all the hostnames with that
subdomain to that IP. In that example, the hostname web.dev.example.com or
something.dev.example.com resolves to the same IP.

Linux DNS servers and client
The current popular software for the DNS Service is Bind 9, which is provided by
Internet Systems Consortium (ISC). The initial release for Bind was in 1986, but it is
updated on a regular basis. As described previously, a popular and lightweight
alternative is dnsmasq.
For the installation of Bind 9 (also known commonly as named) in Ubuntu-based
systems, the package is called bind9 for the server and bind9-utils for the client
tools. On Red Hat Enterprise Linux and derivates, the package is called bind for the
DNS server and bind-utils for the client tools. Once the package is installed, the
service name is called named, and the main configuration is /etc/bind/named.conf
for the package bind9 and /etc/named.conf for the package bind. In Ubuntu, the
default named.conf includes other files for options and zones definition:
include "/etc/bind/named.conf.options";

include "/etc/bind/named.conf.local";

include "/etc/bind/named.conf.default-zones";

On Red Hat Enterprise Linux, the content of default named.conf includes options and
references to the default zones:
options {

listen-on port 53 { 127.0.0.1; };

listen-on-v6 port 53 { ::1; };

directory "/var/named";

(… omitted …)

allow-query { localhost; };

(… omitted …)

};

logging {

channel default_debug {

 file "data/named.run";

 severity dynamic;

};

};

zone "." IN {

type hint;

file "named.ca";

};

include "/etc/named.rfc1912.zones";

include "/etc/named.root.key";

Options in Bind 9 define different options such as in which IP address the DNS service
will listen for queries (listen-on and listen-on-v6), the main directory to keep data
(directory), who is allowed to use the service (allow-query), and define the
upstream servers (forwarders). It is possible to define the forwarders section to
indicate the upstream DNS servers to forward the request if the domain is not one of
managed by the service.

forwarders {

1.1.1.1;

1.0.0.1;

};

A zone refers to the domain definition and, by default, includes reference to the root
nameservers and local configuration. An administrator will generate a new file with
the definition and include it in the configuration. A zone definition example is the
following:
zone "example.com" {

type master;

file "/etc/bind/db.example.com";

};

The file referenced inside of the zone will contain the definition of the domain (SOA
record) and the rest of the records for that domain. An example definition is as follows:
@ IN SOA dns.example.com root.example.com. (

 2022090401 ; serial

 1D ; refresh

 1H ; retry

 1W ; expire

 10M) ; minimum

example.com. IN NS dns.example.com.

example.com. IN NS dns2.example.com.

dns IN A 10.20.0.2

dns2 IN A 10.20.0.3

@ IN MX 10 mx1.example.com.

@ IN MX 20 mx2.example.com.

www IN A 10.20.0.100

web IN CNAME www

mx1 IN A 10.20.0.102

mx2 IN A 10.20.0.103

This sample configuration defines the following:

The SOA record defines:

The primary DNS server is dns.example.com
The contact mail for the domain is root@example.com
The last update for this zone was 2022-09-04, and the last two digits
indicate the number of updates on the same day.
The refresh to synchronize the zone between servers (when the servers are
configured as primary/secondary mode).
When to retry if the communication between the secondary to the primary
was not possible.
How long a secondary will still consider the zone valid if communication
with the primary is not possible.
If a client queries for a record that does not exist, specify how the client
will receive the same message before to check again.

The name server (NS record) for the domain are dns.example.com and
dns2.example.com

The IP addresses for the nameservers are 10.20.0.2 and 10.20.0.3.
The mail servers for the domain are mx1.example.com and mx2.example.com
The mail servers resolve to 10.20.0.102 and 10.20.0.103
The domain www.example.com resolves to 10.20.0.100
An alias domain, web.example.com will resolve to the IP address assigned to
www.example.com

Some considerations about the zone definition are as follows:

http://www.example.com/
http://web.example.com/
http://www.example.com/

The at (@) references to the domain configured.
The domains, for example, for NS or MX, references need to end with a dot (.).

For the reverse resolution, the special domain Address and Routing Parameter Area
(.arpa) is used. A zone definition example is shown as follows:
zone "0.20.10.in-addr.arpa" IN {

type master;

file "/etc/bind/db.0.20.10";

};

An example of the content for the file /etc/bind/db.0.20.10 is the following:
@ IN SOA dns.example.com. root.example.com. (

 2020012511 ; serial

 1D ; refresh

 1H ; retry

 1W ; expire

 10M) ; minimum

@ IN NS dns.example.com.

@ IN NS dns2.example.com.

2 IN PTR dns.example.com.

3 IN PTR dns2.example.com.

100 IN PTR wwww.example.com.

The package includes two commands to check the syntax for configuration and zones:
named-checkconf and named-checkzone. If any problem is found, it will be reported
as an output. After the service is configured, it is possible to reload the configuration
without restarting the service, using systemctl reload named.
The recommended tool to query and perform troubleshooting related to DNS is called
dig, which is included in the client package for Bind 9. This command allows us to
perform different queries and indicate which server to use for those. It is also possible
to increase the information to be shown, converting it to a perfect tool to ensure that
the configuration is the desired one. Figure 9.8 shows a simple example of querying
for a domain using the server localhost:

Figure 9.8: Output example for command dig

It is possible to add the argument +short to show only the answer and not the
information related to the query. Figure 9.9 shows different queries with distinct record
types:

Figure 9.9: Output example for command dig

The command dig allows to include as an argument the option +trace, which will
show all the queries and a verbose information, useful to do troubleshooting and to
understand all the steps in a query. Figures 9.10 to 9.13 show the different parts of the
output:

Perform the query to obtain the IP address for www.ubuntu.com. The first query
is to obtain the root nameservers, as shown in figure 9.10:

http://www.ubuntu.com/

Figure 9.10: Output example for command dig

The second part of the output is the output of querying to one of the root
nameservers for the name servers specific to the .com TLD. This can be seen in
figure 9.11:

Figure 9.11: Output example for command dig

The third part of the output is the request to one of the TLD nameservers,
querying what are the name servers for the domain, in this case, ubuntu.com.
Refer to figure 9.12:

Figure 9.12: Output example for command dig

The last step is to query one of the nameservers for the domain about the host, as
shown in figure 9.13:

Figure 9.13: Output example for command dig

Bind 9 allows advanced features like dynamic updates of the records (without
requiring to update the configuration) and advanced configurations, such as having
different answers for the same zone, depending on who is performing the query. For
example, the same zone for external users will reply with some public addresses, and if
the query is performed from the internal network, it will answer with private addresses.
The software dnsmasq can be used to configure DNS domains with a simpler
configuration, and usually for configuring internal domains in the network. As
described previously, the main configuration is /etc/dnsmasq.conf, and an example
configuration for DNS is shown as follows:
auth-zone=example.com

auth-server=dns.example.com,10.20.0.1

auth-sec-servers=dns2.example.com

auth-soa=2022090401,root.example.com,1200,120,604800

local=/example.com/192.168.122.43

domain=example.com

host-record=dns.example.com,10.20.0.2

host-record=dns2.example.com,10.20.0.3

host-record=www.example.com,10.20.0.100

mx-host=example.com,mx1.example.com,10

mx-host=example.com,mx2.example.com,20

host-record=mx1.example.com,10.20.0.102

host-record=mx2.example.com,10.20.0.103

cname=web.example.com,www.example.com

Other popular client utilities for DNS queries are as follows:

Command host: It shows a simple output about the request performed.

Figure 9.14: Output example for command dig

Command nslookup: It can act as an interactive command or as simple
command line request command.

Using the arguments to specify server and query type:

Figure 9.15: Output example for command nslookup

Using the interactive mode of the command:

Figure 9.16: Output example for command nslookup

SSH service and SSH client
The network protocol Secure Shell or Secure Socket Shell (SSH) gives the users a
secure way to remotely access a Linux system. This system can be in the same
network, a different network, or accessible through internet. The port used is 22, and
the protocol used is Transmission Control Protocol (TCP). This protocol was
introduced in 1995 with version 1 (SSH-1); in the year 2006, version 2 (SSH-2) was
adopted as a standard.
The most popular implementation of SSH is the suite of utilities named OpenSSH.
This includes the server and client utilities. Other utilities use the protocol SSH for
different functionalities; the most popular is to copy the file between servers using
Secure Copy (scp) or rsync. Another popular option is SSH File Transfer Protocol
(SFTP), an alternative to the File Transfer Protocol (FTP).
The SSH service named sshd is included in the package called openssh-server; the
client ssh (which usually is installed by default on all Linux distributions) is part of the
package openssh-client (or openssh-clients in some distributions). The main
configuration for the server is /etc/ssh/sshd_config. The following block shows the
default uncommented options in an Ubuntu server system:
Include /etc/ssh/sshd_config.d/*.conf

KbdInteractiveAuthentication no

UsePAM yes

X11Forwarding yes

PrintMotd no

AcceptEnv LANG LC_*

Subsystem sftp /usr/lib/openssh/sftp-server

PasswordAuthentication yes

Table 9.2 describe some of the popular options available to be configured in the file
sshd_config:

SSH Option Description

AllowTcpForwarding Specifies whether TCP forwarding is permitted. Options are yes (default), no,
and local.

AllowUsers List of accepted user names, separated by user spaces

AuthenticationMethods Specifies the allowed authentication methods.

Ciphers Specifies the ciphers allowed. Multiple ciphers must be comma-separated.

DenyGroups List of denied group names, separated by spaces.

DenyUsers List of denied user names, separated by spaces.

DisableForwarding Disables all forwarding features, including X11, ssh-agent(1), TCP, and
StreamLocal.

ListenAddress Specifies the local addresses that should listen on.

PasswordAuthentication Specifies whether password authentication is allowed. The default is yes.

PermitRootLogin Specifies whether the root can log in. The argument must be yes, prohibit-
password,forced-commands-only, or no. The default is prohibit-password.

Port Specifies the port number listens on. The default is 22.

Subsystem Configures an external subsystem (for example, file transfer daemon).

UseDNS Specifies whether should resolve the client IP to a hostname.

UsePAM Enables the Pluggable Authentication Module interface.

X11Forwarding Specifies whether X11 forwarding is permitted. The argument must be yes or
no. The default is no.

Table 9.2: SSH client options and descriptions

During the installation of the SSH server, it generates private and public keys, which
are located inside of the directory /etc/ssh/. These keys use different cryptography
algorithms. The name of the files have the format ssh_host_ALGORITHM_key and
ssh_host_ALGORITHM_key.pub:

ECDA: stands for Elliptic Curve Digital Signature Algorithm, which uses
elliptic-curve cryptography.
Ed255190: EDSA stands for Edwards-curve Digital Signature Algorithm, and
Ed25519 is a signature scheme using SHA-512 and Curve25519.
RSA: stands for Rivest-Shamir-Adleman is the widely used algorithm in SSH
for private/public keys.

The global configuration in the system for the client is located in the file
/etc/ssh/ssh_config. However, usually, the users define their own client

configuration in the file ~/.ssh/config. The following popular options are available,
as shown in table 9.3:

Option Description

Host Restricts the options to that host.

Match Restricts the options to the parameter matching the pattern.

Ciphers Specifies the ciphers allowed and their order of preference.

ForwardAgent Specifies whether the connection to the authentication agent.

Hostname Specifies the real host name to log into.

IdentityFile Specifies a file from which the user’s ECDSA, Ed25519, or RSA
authentication identity is read.

Port Specifies the port number to connect to the remote host.

ProxyCommand Specifies the command to use to connect to the server.

ProxyJump Specifies one or more jump proxies as either [user@]host[:port] or an ssh
URI.

User Specifies the user to log in as.

Table 9.3: SSH options and descriptions

An SSH server can be used as a bastion or jump host to connect to internal servers,
which are not accessible externally. The parameters ProxyCommand and ProxyJump are
used for that purpose. An example of the client configuration is shown as follows:
Host 192.168.122.43

User agonzalez

IdentityFile ~/.ssh/id_rsa

Port 22

Match User cloud-user

IdentityFile ~/.ssh/id_rsa_cloud_user

Port 2222

Host *

User admin

IdentityFile ~/.ssh/id_rsa_admin

Port 22

Communication using SSH requires a destination host, the port (which by default is
22), and the user’s name to connect (if not defined, it will use the username running the
command). If the SSH service allows the authentication with a password, it is possible
to login specifying the user password if the SSH private/public key is not in use. This
concept will be covered later in this chapter.
Connecting for the first time to a remote destination, the SSH client will request to the
user if the fingerprint from the SSH server is the expected one and if the user wants to

continue with the connection. Figure 9.17 shows an example of the message shown:

Figure 9.17: Output example for command ssh

If the answer to the prompt is yes, then the fingerprint will be added to the file
~/.ssh/known_hosts, and in the following connections, it will be checked. If it is the
same, there will be no questions. The content of the file known_hosts will contain a list
of IP addresses and fingerprints; the following example shows the previous fingerprint
relationship:
192.168.122.43 ssh-ed25519

AAAAC3NzaC1lZDI1NTE5AAAAIC1YjZSS/Ek7pkGAQeC0I/kjHGzMJkQQxDNmEcTdrN5m

If the answer to the prompt is not yes, then the connection will be closed. The client
ssh allows the option -v to increase the verbose level. It is possible to specify several
times (maximum 3) to increase the debugging level. The following excerpts show an
example of a connection where the public key was not accepted, and the server allows
connections using a password:
[root@rhel ~]# ssh -v 192.168.122.43

OpenSSH_8.7p1, OpenSSL 3.0.1 14 Dec 2021

debug1: Reading configuration data /root/.ssh/config
debug1: /root/.ssh/config line 1: Applying options for 192.168.122.43

debug1: Reading configuration data /etc/ssh/ssh_config

(… omitted …)

debug1: Connecting to 192.168.122.43 [192.168.122.43] port 22.
debug1: Connection established.

debug1: identity file /root/.ssh/id_rsa type 0

debug1: identity file /root/.ssh/id_rsa-cert type -1

debug1: Local version string SSH-2.0-OpenSSH_8.7
debug1: Remote protocol version 2.0, remote software version
OpenSSH_8.9p1 Ubuntu-3
(… omitted …)

debug1: kex: algorithm: curve25519-sha256
debug1: kex: host key algorithm: ssh-ed25519
(… omitted …)

debug1: Server host key: ssh-ed25519
SHA256:y4Jc7BDqKxwzvVxfRsjS9/YKdJ23F/tneG9pQzlLYWA
(… omitted …)

debug1: Host '192.168.122.43' is known and matches the ED25519 host key.
debug1: Found key in /root/.ssh/known_hosts:1

(… omitted …)

debug1: Authentications that can continue: publickey,password

debug1: Next authentication method: publickey

debug1: Offering public key: /root/.ssh/id_rsa RSA

SHA256:eVWmC9lMXVmqFkRoaYf/IvmicjW3nsJ2PxBI24qI+TE explicit

debug1: Authentications that can continue: publickey,password

debug1: Next authentication method: password
agonzalez@192.168.122.43's password:

If the authentication is correct, a shell console in the remote system will appear to
introduce commands that will be executed in the remote node. It is possible to pass a
command as an argument to the ssh command, so that it can be executed in the remote
node, and log out can happen after it. Figure 9.18 shows how to connect to a system
and execute only one command instead open a session:

Figure 9.18: SSH connection and run a command

It is possible to specify another SSH private key using the option -I and the file with
the private key. Private keys need to private protect with permission 0600 or 0400. If
the permissions are too open, the following message will be shown, and the key will
not be used:
@@@

@ WARNING: UNPROTECTED PRIVATE KEY FILE! @

@@@

Permissions 0640 for '/root/.ssh/id_rsa' are too open.

It is required that your private key files are NOT accessible by others.

This private key will be ignored.

Load key "/root/.ssh/id_rsa": bad permissions

@@@

@ WARNING: UNPROTECTED PRIVATE KEY FILE! @

@@@

Permissions 0640 for '/root/.ssh/id_rsa' are too open.

It is required that your private key files are NOT accessible by others.

This private key will be ignored.

Load key "/root/.ssh/id_rsa": bad permissions

agonzalez@192.168.122.43's password:

The protocol SSH allows to forward remote and local ports that are useful to access
internal services from outside. Option -L is used to map a local port to an IP and port
from the remote network using the SSH tunnel. Option -R is less used, and its

functionality is to expose an IP and port from the local network to the remote server
connected with SSH. Figure 9.19 shows the traffic flow using an SSH port forwarding:

Figure 9.19: SSH port forwarding diagram

With SSH as well, it is possible to forward the graphical applications using the X11
forwarding mechanism. Using option -X in the SSH client, it is possible to execute
applications in the remote server showing the graphical interface in the client node.
Refer to figure 9.20 for an example:

Figure 9.20: SSH X11 forwarding example

SSH public and private keys
The public-key cryptography, also known as asymmetric cryptography, is a system that
uses a pair of keys: the public key, which is the key to be distributed to be allowed to
access the systems, and the private key, which should not be shared and kept secure in
the system initiating the connection. The steps in an SSH connection using the pair
keys are as follows:

1. The client initiates the connection to the remote host.
2. The client sends the public key id to the SSH server.
3. The remote host checks in the authorized_hosts file of the user trying to

connect if that key is accepted.

4. If the key is accepted, a message (challenge string) is encrypted with the public
key.

5. The client decrypts the message received from the remote and sends it back to
the remote host.

6. If the remote hosts ensure the message is correct, the connection is accepted.

The command to generate a pair of keys is called ssh-keygen. This command
generates, by default, the files ~/.ssh/id_rsa and ~/.ssh/id_rsa.pub. It is possible
to use the option -t to specify another type (ecdsa, ed25519, among others). With the
option -f, it is possible to specify the path for the pair key to be generated. Figure 9.21
shows the output of a key generation:

Figure 9.21: Output example for the command ssh-keygen

The OpenSSH clients package includes a tool to help distribute the public key to the
remote servers, and the command is ssh-copy-id. The argument is the remote host
and, optionally, the username to connect. Figure 9.22 shows an example:

Figure 9.22: Output example for the command ssh-copy-id

After the key is distributed to the remote host, it is possible to connect to the remote
node without being required to introduce the password. In the remote host, the file
authorized_keys will append the public key, as shown in figure 9.23:

Figure 9.23: Content example for authorized_keys file

Check network services available
As described in Chapter 7, Network Configuration, it is possible to use the command
ss to list the different services running in the system where the application is executed.
The file /etc/services contain a list of the popular services and the ports, with the
protocol (tcp or udp) used. For example, in the following excerpt, it shows the
definition for the services SSH, DNS (domain), and DHCP (bootps/bootpc):
ssh 22/tcp # SSH Remote Login Protocol

domain 53/tcp # Domain Name Server

domain 53/udp

bootps 67/udp

bootpc 68/udp

To detect the network services available in one host or in the network, the utility nmap
is the most popular for Linux systems. This utility is used to scan the ports available in

one system or a subnet. Specifying an IP, it will scan for the known ports searching for
the port opens. Figure 9.24 shows a simple scan output:

Figure 9.24: Output example for the command nmap

It is possible to scan for a subnet, indicating as an argument the subnet and the mask.
For example, nmap 192.168.122.0/24. The command nmap includes several options
for advanced scannings, such as trying all the ports or obtaining information for each
service. In figure 9.25, the option -sV is used to obtain the service versions:

Figure 9.25: Output example for the command nmap

Other popular network services
Linux distributions allow to offer a big number of different services. Some of the most
popular ones are described in table 9.4, with the popular package names associated
with them:

Network Service Description Popular software

NTP Network Time Protocol software can act as a client to
keep the system time synchronized and as a service to
keep the clients with the time synchronized.

ntpd
chrony

IMAP Internet Message Access Protocol is used to retrieve Dovecot

email messages from a mail server. Cyrus

SMTP Simple Mail Transfer Protocol is used for mail
transmission.

Exim
sendmail
Postfix

SNMP Simple Network Management Protocol is used for
collecting and organizing information about managed
devices.

snmpd

Kerberos An authentication protocol to authenticate services. krb5-server

LDAP Lightweight Directory Access Protocol is used to
organize data about organizations, individuals, and
other resources.

openldap

Syslog This protocol is used for some software to send the
logs to a central server.

rsyslog

RFB (vnc) Remote Framebuffer. Used for graphical remote
administration.

tightvnc
realvnc

RDP Remote Desktop. A desktop protocol for remote
control.

Xrdp server

Table 9.4: Other network services and Linux popular software

Other protocols related to file sharing are going to be covered in the upcoming chapter,
including Network File System (NFS), Server Message Block (SMB), File Transfer
Protocol (FTP), and Trivial File Transfer Protocol (TFTP).

Conclusion
In this chapter, we understood how the core network services are working, and the
software associated needed for the daily tasks of system administrators. This chapter
covered three of the most important services: DHCP, which is required for the servers
when they booting; DNS, which is required for servers and applications; and SSH,
which is required for the system administrators to administrate remote systems.
Knowing where the configurations are located, and the different options available will
allow the administrator to protect the system and provide high-quality service. This
chapter also described other popular services in Linux and the associated software.

Key facts
Network services are a key part on Linux.
A DHCP server offers IP addresses to the network.
Bind 9 is one of the most popular DNS server solutions.
Public/Private key is the most secure authentication for SSH.

Questions
1. How many steps are involved to obtain an IP address from a DHCP server?

a. 2
b. 6
c. 4

2. Which two ports are used during the DHCP request?

a. 66
b. 67
c. 68

3. What is the file name for the Bind 9 configuration?

a. named.conf
b. bind.conf
c. bind9.conf

4. What argument is used in the command dig to obtain a full query information?

a. +debug
b. +trace
c. +verbose

5. What command is used to copy the public key to the remote host?

a. ssh-copy-key
b. ssh-keygen
c. ssh-copy-id

Answers
1. c
2. b and c
3. a
4. b
5. c

CHAPTER 10
File Sharing

Introduction
It is recommended to store files in a central location and share files between users
and servers in a normal task inside enterprises. For example, a server can store
some generated files in a central shared location, and a user can access a service,
to access the file. Another use case is to have centralized storage for services,
such as an image registry for containers.
Nowadays, with cloud services providing file sharing, such as Dropbox or Google
Drive, the use of file sharing outside companies is not so popular. Companies that
want to keep the files secure inside their own infrastructure and want to control
access to the files will have to install and configure a file-sharing solution.
Another popular use case at an enterprise level is to use file sharing for storing
backups or providing dynamic storage for microservices.
The first part of this chapter will cover the most popular file sharing in Linux
called Network File System (NFS). NFS is a popular distributed file system
protocol to share files not only to end users but between systems or consumed by
different services. This chapter covers how to install and configure the directories
to be shared and the client options to access them.
The second part of the chapter covers the popular sharing protocol called Server
Message Block (SMB), used in Windows and Linux. This chapter will cover the
suite of programs called Samba, including the installation, configuration, and
client tools to access the shared directories.
The last part of the chapter will cover a previously popular protocol called File
Transfer Protocol (FTP), covering the installation of popular solutions for the
service and the clients. The Trivial File Transfer Protocol (TFTP) and its use
cases (that is, where it is used) will be described.

Structure
In this chapter, we will discuss the following topics:

NFS service and client

SMB introduction
Samba service and client
FTP server and client
TFTP introduction

NFS service and client
Network File System (NFS) is a distributed file system protocol developed in
1984 by Sun Microsystems. The modern version of the protocol is version 4,
referenced as NFSv4, replacing the previous version 2 (NFSv2) and version 3
(NFSv3). NFS is the most popular protocol for sharing data with clients in a
Linux system. Other storage solutions, such as Network Attached Storage and
Storage systems, allow the sharing of available storage using the NFS protocol.
The NFS server can be seen in figure 10.1:

Figure 10.1: NFS server/client overview. Source: IBM

The NFS implementation in Linux includes several services required to provide
authentication and access to the shared data to the clients. Table 10.1 shows the
required services and the ports used:

Service Description

nfsd The NFS server, which services the requests from the clients. It uses the
port 2049/udp or 2049/tcp.

rpcbind The server that covers Remote Procedure Call (RPC) program numbers
into universal addresses. Clients connect to rpcbind to determine the

address where the requests should be sent. This service uses 111/udp or
111/tcp. This is not required on NFSv4.

rpc.mountd Used for version 2 and version 3 to implement the directory mounting
from a client. Version 4 uses only nfsd.

rpc.nfsd Provides an ancillary service needed to satisfy the NFS requests by the
clients.

lockd It implements the Network Lock Manager (NLM) protocol, used by
NFSv3, to lock files in the server.

rpc.statd It implements the Network Status Monitor (NSM) protocol, which notifies
the clients when the server is restarted.

rpc.idmapd It provides to NFSv4 server and client a map between names, local user
ids, and group ids.

Table 10.1: NFS services and description

The modern NFSv4 is updated regularly with new versions and new features. For
example, version 4.1 includes Parallel NFS (pNFS), and version 4.2 includes
server-side clone and copy features. It is important to take into consideration that
some clients only accept specific versions (3,4) or minor versions (4.0, 4.1) of the
NFS protocol.

NFS server
The package on the Advanced Packet Tool (APT) repositories, including the
NFS server, is called nfs-server. On systems using RPM Package Manager, the
server and the client is included inside the package named nfs-utils. In both
systems, the main service on systemd, after installation, is named nfs-server.
The main file to configure the service is /etc/nfs.conf, where it is possible to
configure different values such as the IP protocol to be used (tcp and/or udp) or
the NFS versions to be enabled (2, 3, 4, 4.0, 4.1 and 4.2). The following excerpt
shows the parameters specific for the nfsd service, which by default are
commented as follows:
[nfsd]

debug=0

threads=8

host=

port=0

grace-time=90

lease-time=90

udp=n

tcp=y

vers2=n

vers3=y

vers4=y

vers4.0=y

vers4.1=y

vers4.2=y

rdma=n

rdma-port=20049

By default, the NFS service will be listening on 2049/tcp, and it will support
versions 3, 4, and all the subversions. The file /lib/systemd/system/nfs-
server.service defines the services related to the NFS service as shown in the
following code block:
[Unit]

Description=NFS server and services

DefaultDependencies=no

Requires=network.target proc-fs-nfsd.mount

Requires=nfs-mountd.service

Wants=rpcbind.socket network-online.target

Wants=rpc-statd.service nfs-idmapd.service

Wants=rpc-statd-notify.service

Wants=nfsdcld.service

After=network-online.target local-fs.target

After=proc-fs-nfsd.mount rpcbind.socket nfs-mountd.service

After=nfs-idmapd.service rpc-statd.service

After=nfsdcld.service

Before=rpc-statd-notify.service

GSS services dependencies and ordering

Wants=auth-rpcgss-module.service

After=rpc-gssd.service gssproxy.service rpc-svcgssd.service

[Service]

Type=oneshot

RemainAfterExit=yes

ExecStartPre=-/usr/sbin/exportfs -r

ExecStart=/usr/sbin/rpc.nfsd

ExecStop=/usr/sbin/rpc.nfsd 0

ExecStopPost=/usr/sbin/exportfs -au

ExecStopPost=/usr/sbin/exportfs -f

ExecReload=-/usr/sbin/exportfs -r

[Install]

WantedBy=multi-user.target

To disable previous versions, it needed to edit the file /etc/nfs.conf and specify
the value no to the parameter vers3. As NFSv4 does not need the services related
to rpcbind, the following command will disable them and avoid being executed
when the system is booting:
systemctl mask --now rpc-statd.service rpcbind.service

rpcbind.socket

The service nfsd users the file /etc/exports to define the directories to be
exported using the NFS protocol. Each directory in this file has an associated list
of options and an access control list. A directory can be exported to the following:

A single host: specifies a fully qualified domain name and an IPv4 or IPv6
address.
A network: this will export to all the hosts inside of the subnet indicated,
and the format is address/netmask. The netmask can be specified with the
dotted-decimal format, for example, 255.255.255.0, or mask length, for
example, /24.
A pattern using a wildcard: it is possible to use an asterisk (*) or
interrogation (?) to define a pattern. For example, *.example.com.
A Network Information Service (NIS) netgroup: Used with format
@netgroup.

A host that can be part of several definitions will have precedence to the first
match definition. Some of the popular export options available are described in
table 10.2:

Option Description

ro The shared directory will be exported as read-only.

rw The shared directory will be exported, allowing you to write it.

async Allows to not write to disk directly, causing better performance, but an
unclean server restart will cause data loss.

sync Only reply to the client requests ensuring the data is written.

fsid Identify the directory to be exported with an id.

no_subtree_check Do not check if a subdirectory is in the same filesystem as the directory
exported. This is the default in newer versions.

subtree_check Ensure the subdirectory is in the same filesystem as the directory
exported.

Table 10.2: NFS export options

The NFS server, by default, does not allow the root user to access with the uid 0.
Instead, it will be assigned a different id, called nobody uid. Regular users would
access their files working locally, but in some situations, this is not possible
because the user does not exist in the remote server. The different mapping
options are described in table 10.3:

Mapping option Description

root_squash Map requests from uid/gid 0 to the anonymous uid/gid. This is the default
option.

no_root_squash Turn off root squashing.

all_squash Map all uids and gids to the anonymous user.

no_all_squash The opposite to all_squash option. This is the default option.

anonuid and
anongid

These options explicitly set the uid and gid of the anonymous account. By
default, the value is 65534.

Table 10.3: NFS mapping options

The following block shows an example of an /etc/exports content to export a
directory to the internal subnet 192.168.122.0/24 with the option read-write (rw),
and to the subnet 10.10.0.0/16 with the option read-only (ro).
/storage 192.168.122.0/24(rw,sync,no_subtree_check) 10.10.0.0/16

(ro,no_subtree_check)

After the file /etc/exports is updated, the command exportfs has to be
executed to reload the content and share the new directories, update the shared
directories or stop sharing a directory previously shared. Option -a is used to
export or un-export all directories; option -r is for re-exporting all directories, and
option -u is used to un-export one or more directories. Option -v shows the
actions performed, as is shown in figure 10.2:

Figure 10.2: Output example command exportfs

The biggest differences between the prior versions and version 4 are the
following:

Prior versions were stateless; in NFSv4, the information about the objects is
maintained by the server.

Version 4 improved the security supporting Kerberos 5 authentication.
Version 4 has better compatibility with network firewalls.
Version 4 includes pseudo filesystem support.
Lock operations are part of the protocol and not a separate service (lockd).

This chapter does not cover authentication with Kerberos 5 or virtual filesystem.

NFS client
There is not a command considered as an NFS client, but the command
showmount is used to query an NFS server, and the command mount is used to
mount a shared directory from an NFS server. The command showmount shows
information from a server, and the option -e (--exports) shows the list of exported
directories and where it is exported (IPs or subnets). This command requires to
have the version NFSv3 enabled and the firewall allowing rpcbind connections.
Figure 10.3 shows the output example:

Figure 10.3: Output example for the command showmount.

For version 4, NFSv4, it is possible to mount the root directory (/) to list the
exported directories from the server. Figure 10.4 shows an example:

Figure 10.4: Example usage command mount with NFS

The client can use the command mount with the following syntax to manually
mount a shared directory to the local system:
mount -t nfs|nfs4 -o options remoteserver:/shared /exported

The popular options that can be specified when mounting an NFS share are the
following:

vers=n (or nfsvers=): Specifies the NFS protocol version to be used.
Modern systems are using, by default, version 4.2.

soft/hard: Indicates the recovery behavior if the client loses communication
with the server. If hard is chosen, the connection will be retried indefinitely,
and this is the default option. If the option soft is specified, the connection is
not retried.
rsize/wsize: The size for the read request or the write request.
proto: It specified the protocol transport to use tcp or udp. On version 4, it is
recommended to use tcp.
port: The port to be used, by default, is 2049.

Figure 10.5 shows an example of how to mount the exported directory previously
shown and how the output of the command mount without any argument shows
the default options:

Figure 10.5: Output example command mount

By default, the directories are exported with the option root_squash, and this
option does not allow root users in the client to write in the mounted directory. A
regular user can always write in the directory when the user id or one of his group
ids is allowed to write. Figure 10.6 illustrates the creation of a new file on a
shared directory:

Figure 10.6: Creating a new file on a shared directory

The syntax for the file /etc/fstab is the following for an NFS share:
server:/directory /mntpoint nfs4 rw 0 0

SMB introduction

The protocol Server Message Block (SMB) was originally developed in 1983
and provided shared access to files and printers in the network. Microsoft
published version 1.0 of the protocol with some modifications, with the name
Common Internet File System (CIFS), in 1996. This proposal was never
accepted, and Microsoft discounted the use of CIFS and continued developing
new versions of SMB. The protocol SMB uses port 445 on protocol TCP and port
139, as well TCP, for communication over NetBIOS.
Similar to NFS, the SMB protocol has different protocol versions, which were
introduced to different versions of Windows. Version 2.0 was introduced in the
year 2006 on Windows Vista and Windows server 2008, publishing the
specifications allowing interoperate with other systems. Version 2.1 was
introduced in Windows 7 and Windows 2008 R2. Version 3.0 of the protocol was
introduced with Windows 8 and Windows Server 2012. New versions are 3.0.2
and 3.11, included in the latest versions of the Windows and Windows Server.

Samba server and client
The specifications for the protocol SMB are proprietary and were closed in the
beginning. With version 2.0, the protocol was made available, allowing
developers to create software to interoperate with the protocol and the Windows
systems.
In the year 1991, a project called Samba started to implement a solution for
SMB/CIFS for Unix systems, which, years later, came to be a popular project
used to create file-sharing servers on Linux. Samba project offers client tools to
access servers, either to access files or printers. Version 3, released in the year
2003, was able to join Active Directory as a member. New versions of Samba
(4.x) support the latest SMB protocols and includes the modern features offered
by the protocol. Some of these features are as follows:

NetBIOS over TCP/IP
WINS server (also known as NetBIOS name server)
Security account manager
Local security authority
NTLM (NT Lan manager)

Figure 10.7 shows a diagram of Samba architecture:

Figure 10.7: Samba architecture diagram. Source: Samba

Samba Server
The Samba Server, which is named smbd, provides file-sharing and printing
services to Windows clients. This server is included in the package samba; with
the same name for APT and RPM repositories. The main file to configure the
service is /etc/samba/smb.conf, which includes global configuration parameters
and the definition of the shares (directories and printers). The default
configuration in an Ubuntu system is shown as follows:
[global]

workgroup = WORKGROUP

server string = %h server (Samba, Ubuntu)

log file = /var/log/samba/log.%m

max log size = 1000

logging = file

panic action = /usr/share/samba/panic-action %d

server role = standalone server

obey pam restrictions = yes

unix password sync = yes

passwd program = /usr/bin/passwd %u

passwd chat = *Enter\snew\s*\spassword:* %n\n

Retype\snew\s\spassword:* %n\n

password\supdated\ssuccessfully .

pam password change = yes

map to guest = bad user

usershare allow guests = yes

[printers]

comment = All Printers

browseable = no

path = /var/spool/samba

printable = yes

guest ok = no

read only = yes

create mask = 0700

[print$]

comment = Printer Drivers

path = /var/lib/samba/printers

browseable = yes

read only = yes

guest ok = no

In the global configuration, the workgroup name is defined as WORKGROUP,
and it defines the directory /var/log/samba/ for logs, among other options
related to users. Two default shares, printers and print$, are configured but not
accessible by guest users. To define a new share, a new section should be added to
the file smb.conf, for example, to share the directory /storage to be writable by
users and /public as read-only:
[storage]

comment = storage directory

path = /storage

browseable = Yes

read only = No

[public]

comment = Public directory

path = /public

browseable = Yes

read only = Yes

After modifying the file smb.conf, it is possible to use the command testparm to
ensure the syntax and the options are valid. If the file content is correct, it will
show the content on the screen. However, if it finds any issue, it will report the
location, as is shown in figure 10.8:

Figure 10.8: Output example for command testparm

The suite Samba also provides a command named smbcontrol, which sends
messages to smbd. This command is usually used to reload the configuration with
the argument reload-config, or to stop the service with the argument shutdown.
For example, the command smbcontrol smbd reload-config will send a
message to the service smbd to reload the configuration file content.
Samba offers the command smbpasswd to manage the users and the passwords to
access the service. The users are going to be mapped to the local users, meaning
that the user id and group ids assigned to a local user will be used to access the
directory requested by the client. The command smbpasswd has the option -a to
add a new user to the Samba users allowed to access to the system, as shown in
figure 10.9:

Figure 10.9: Output example for the command smbpasswd

The users are stored in a private database in the directory
/var/lib/samba/private/. Samba provides the command pdbedit, which, with
the option -L is used to list the users in the database and the option -v to obtain a
detailed information about the users. Figure 10.10 shows both options used:

Figure 10.10: Output example for the command pdbedit

Samba server can be configured to use different authentication sources, such as
Lightweight Directory Access Protocol (LDAP). Samba can also act as an
Active Directory Domain Controller, providing DNS services and Kerberos
authentication. This book only covers Samba as file sharing.

Samba client
The Samba software suite includes different commands to act as a client for the
protocol SMB. The most used command is smbclient, which is part of the
package samba-client in RPM software repositories and the package smbclient
on DEB software repositories. This command is used to access the connect to an
SMB Service to access the resources. The command works in interactive mode
unless the option -L (--list) is used. Figure 10.11 and 10.12 shows the syntax and
the different usages:

List the shared resources from the server 192.168.122.43, as shown in figure
10.11:

Figure 10.11: Example of usage of the command smbclient

Access interactive to the Samba server and list the content of the storage
directory, as shown in figure 10.12:

Figure 10.12: Example of the usage of command smbclient

It is possible to mount a remote SMB resource in a Linux system using the
command mount. The command mount, when the type is cifs (or smb3), will
redirect the request to the command mount.cifs. The command mount.cifs is
part of the package named cifs-utils. Some of the popular options available are
the following:

username (or user): Specifies the username to connect to the server.
password (or pass): Specifies the password for the username.
domain (or dom or workgroup): Specifies the domain (workgroup) of the
user
credentials (or cred): Specifies a file that contains the username and the
password to authenticate to the server. It is also possible to specify the
domain.
ro: Mount as read-only.
rw: Mount as read-write.
sec: Security mode used; some options are krb5, krb5i, ntlm, and ntlmv2.

vers: Specify the version of the protocol.

Figure 10.13 shows an example of mounting the previously shared resource,
specifying the username and the password as options. The output of the command
mount is shown to list the default options:

Figure 10.13: Example usage of the command mount

It is recommended to use the option credentials (or cred) to specify a protected
file containing the username and the password. An example of the file is as
follows:
username=agonzalez

password=Start123

FTP server and client
The File Transfer Protocol (FTP) is a historical protocol published for the first
time in 1971. It is used to share files to end users mainly. Nowadays, the
popularity of FTP is low, and it is mainly used to distribute software publicly. The
protocol FTP separates the control (login and commands) and the data (transfer
files) connections. The protocol uses port 21/tcp for the control communication
and port 20/tcp for the data transmission. It is possible to protect the protocol
using SSL/TLS, which is commonly named FTPS, which uses 989/tcp, and
990/tcp ports.
The FTP protocol can work in two different modes:

Active mode: The client connects to port 21/tcp and indicates which local
port is used for the data transfer. The servers send the data to the port
specified. This can be an issue when a firewall is involved because that
communication usually is not allowed.
Passive mode: This mode is used to avoid firewall issues. The client sends a
signal called PASV, and the server answers with an IP and a port to start the
data communication.

Figure 10.14 shows the differences between the two modes:

Figure 10.14: Active and passive mode for FTP. Source: Cisco

The most popular software to offer an FTP service is called vsftpd. The name
stands for very secure FTP daemon. The main configuration file is
/etc/vsftpd.conf, and the default options in Ubuntu servers are shown as
follows:
listen=NO

listen_ipv6=YES

anonymous_enable=NO

local_enable=YES

dirmessage_enable=YES

use_localtime=YES

xferlog_enable=YES

connect_from_port_20=YES

secure_chroot_dir=/var/run/vsftpd/empty

pam_service_name=vsftpd

rsa_cert_file=/etc/ssl/certs/ssl-cert-snakeoil.pem

rsa_private_key_file=/etc/ssl/private/ssl-cert-snakeoil.key

ssl_enable=NO

The option listen indicates that if the service will be executed in standalone mode
(YES) or using systemd (NO). The option local_enable indicates if the local
users can log in, and the option anonymous_enable specifies if guest users can
connect to the service.
One of the features of the FTP servers is that users, when connecting to the
service can access the files in their home directory. They can download, create
directories or upload files to the server.
The most popular client in a Linux system to access the FTP service is the
software lftp. This client allows to perform the normal tasks for FTP but also
allows access to other protocols such as Hypertext Transfer Protocol (HTTP),
Hypertext Transfer Protocol Secure (HTTPS), File transferred over Shell
protocol (FISH), and Secure File Transfer Protocol (SFTP). It also supports the
BitTorrent protocol. The argument required is to specify the destination; if the
destination is an IP address, it will, by default, use FTP as a protocol. For other
protocols, it is required to specify the method, such as ftps:// or http://. The
options for authentication are -u to specify the username and optionally the
username and the password separated by a comma (,). Figure 10.15 shows an
example:

Figure 10.15: Example usage of the command lftp

The command lftp, as observed, uses an interactive mode to operate with the
server. Some of the popular options are described in table 10.4:

Command Description

ls [args] List the content of the current directory in the server, or is it possible to
specify the directory to list.

cd Change the directory in the server.

lcd Change the directory in the local client.

get Download a file from the FTP server.

mget Download multiple files.

put Upload a file to the FTP server.

mput Upload multiple files.

mkdir Create a directory in the server.

rmdir Remove a directory from the server.

Table 10.4: LFTP commands

The command lftp accepts the option -e to execute a command or combination
of the commands, which can include the command quit to exit the interactive
mode. Refer to figure 10.16 for an example:

Figure 10.16: Example of the usage of the command lftp

It is possible to use option -d to debug the communication to the FTP server; the
following block shows the output communication to a vsFTPd server:
---- Resolving host address…

---- IPv6 is not supported or configured

---- 1 address found: 192.168.122.43

---- Connecting to 192.168.122.43 (192.168.122.43) port 21

<--- 220 (vsFTPd 3.0.5)

---> FEAT

<--- 211-Features:

<--- EPRT

<--- EPSV

<--- MDTM

<--- PASV

<--- REST STREAM

<--- SIZE

<--- TVFS

<--- 211 End

---> AUTH TLS

<--- 530 Please login with USER and PASS.

---> USER agonzalez

<--- 331 Please specify the password.

---> PASS Start123

<--- 230 Login successful.

---> PWD

<--- 257 "/home/agonzalez" is the current directory

---> PASV

<--- 227 Entering Passive Mode (192,168,122,43,35,39).

---- Connecting data socket to (192.168.122.43) port 8999

---- Data connection established

---> LIST

<--- 150 Here comes the directory listing.

---- Got EOF on data connection

---- Closing data socket

-rw-rw-r-- 1 1000 1000 9 Sep 11 17:08 notes.txt

<--- 226 Directory send OK.

---> QUIT

<--- 221 Goodbye.

---- Closing control socket

TFTP introduction
This simple protocol, Trivial File Transfer Protocol (TFTP), is usually used to
provide files to a remote node when the system is booting. This protocol is used
to perform automatic installation in baremetal nodes mainly. It does not have a
login or access control mechanism, and its normal use is in a private network. The
protocol used is User Datagram Protocol (UDP), and the port is 69.
This protocol is usually used with the Preboot Execution Environment (PXE),
which allows systems to boot from the network and load boot media. This boot
media can be stored in a TFTP server. Modern systems can use iPXE, which
allows using an HTTP server instead of a TFTP service to store the boot media.
Figure 10.17 illustrates a PXE/TFTP overview:

Figure 10.17: PXE/TFTP overview. Source: Wikipedia

Conclusion
Sharing files with users and other devices in the network are required in most of
the enterprises. Users and applications can store data in central shared locations,
such as personal files or backups. The central server is responsible for protecting
the files from unwanted access and can be used to be included in periodic
backups.
This chapter covered the most important protocols, NFS and SMB, including the
installation of the service and the usage of the clients. The protocol FTP is
covered as well, showing the installation of the server and the use of the client.

Key facts
NFS protocol is the most popular one for Linux systems.
SMB protocol is mainly used to interoperate with Windows systems.
FTP was a popular protocol to share directories with users.

TFTP is a protocol to store files for automatic installations using PXE.

Questions
1. What is the default file to configure the NFS server?

a. /etc/nfs.conf
b. /etc/nfsd.conf
c. /etc/nfs/nsfd.conf

2. What file includes the exported directories configuration?

a. /etc/exportfs
b. /etc/exports
c. /etc/share.conf

3. What is the main configuration file for the Samba service?

a. samba.conf
b. smbd.conf
c. smb.conf

4. What command is used to operate as the client to the SMB protocol?

a. smbtree
b. smbclient
c. smbget

5. What ports are used on the FTP server?

a. 19/tcp
b. 20/tcp
c. 21/tcp

Answers
1. a
2. b
3. c
4. b

5. b and c

CHAPTER 11
Databases

Introduction
A database is an organized collection of data stored electronically in a computer
system. This database is controlled by a database management system (DBMS).
The data, the DBMS, and the applications associated are referred to database
system. Applications use databases to store data in databases to be able to retrieve
when required. This chapter will introduce to the basics of databases and the
differences between relational and non-relational (NoSQL) database solutions.
The language Structured Query Language (SQL) is used in all relational
databases. This chapter will explain how to query data, insert, and modify data
inside a relational database. Different examples will be covered to demonstrate
the usage of this language.
This chapter will focus on MariaDB as one of the most popular open-source
relational databases. It will cover installation, configuration, backup, and restore
for the service. It will also go over the process for the client to access the service
and how to manipulate the data, such as creating databases, tables, and inserting
data. A lightweight solution library database called SQLite will be covered.
For NoSQL, the database named MongoDB will be explained. This chapter will
cover the installation and review the configuration. Access and manipulation of
the data as a client will be described.

Structure
In this chapter, we will discuss the following topics:

Relational databases
Structured Query Language (SQL)
MariaDB server

MariaDB client and tasks

SQLite
NoSQL databases

MongoDB databases
MongoDB client and tasks

Relational databases
Relation databases is a popular solution for most of the applications that require to
store structured data, such as Web applications or services. A relational database
is based on a relational model. In this model, the data is organized into one or
more tables. Each table will contain rows and columns. The rows are usually
called records, and the columns attributes. Each row will contain several
attributes and will have a unique key to identify each row. Refer to figure 11.1:

Figure 11.1: Relation between record and attributes

Each column (attribute) will have assigned a name, a type of the data expected
(for example, number or string), and the maximum size. A column will indicate if
it is mandatory to introduce data and if it requires to be unique in the table. The
data assigned in a column for a record is called field. The common columns types
available are described in table 11.1:

Type Description

CHAR Fixed width n-character string.

VARCHAR Variable width string with a maximum size of n characters.

BOOLEAN Can store values TRUE and FALSE.

INTEGER Numerical types for integer numbers.

FLOAT
DOUBLE

Numerical types for floating point numbers.

DECIMAL An exact fixed-point number.

DATE For date values.

TIME For time values.

TIMESTAMP For time and date together.

Table 11.1: Column types and descriptions

A table can define which column or columns are going to be used as Primary
Key. This Primary Key is going to be used to define a unique value between the
rows. This key can be a column with data that will be unique (for example, the ID
card of a student table), or it can be a column that will autogenerate a unique
value. Only one primary key can be defined in a table. Figure 11.2 features an
example of a Primary key:

Figure 11.2: Primary key example

A Primary Key cannot be blank and needs to be unique in the table. Other
columns in the table can be optionally defined as Unique Key or as Foreign Key:

Unique Key: This does not allow to have duplicated values in the column.
For example, a phone number should be unique in a table of students. A
table can have several Unique Keys. Refer to figure 11.3:

Figure 11.3: Unique key example

Foreign Key: Allows to specify the value from a column in another table. It
ensures not to allow to specify a value that does not exist in the referred
column. For example, a subject record in a table cannot refer to a teacher
who does not exist on the teacher’s table. A table can define multiple
Foreign Keys. Refer to figure 11.4:

Figure 11.4: Foreign Key example

Relationships are a logical connection between different tables. A record (row) of
one table can reference or be referenced by another record from a different table.
There are three possible relationships:

One-to-one relationship (1:1): One record can refer only to one element.
For example, a country has only one capital city. Refer to figure 11.5:

Figure 11.5: One-to-one diagram

One-to-many relationship (1:N): A record can be referenced by many
elements. For example, a country has several cities, but a city can only be
part of one country. Refer to figure 11.6:

Figure 11.6: One-to-many diagram

Many-to-many relationship (M:M): Several records can be referenced by
many elements. For example, a country can have several official languages,
and a language can be official in many countries. This case requires having
an intermediate table to keep the relations. Refer to figure 11.7:

Figure 11.7: Many-to-many diagram

The most popular free relational databases are the following:

MariaDB: Flexible and powerful Relational Database Management
System (RDBMS). It is forked from the project MySQL created after
Oracle acquired Sun Microsystems. MariaDB is fully under GNU General
Public License (GPL).
PostgreSQL: A powerful database system with advanced features. More
suitable for bigger databases than MariaDB.
SQLite: A library that software developers embed in their applications.

Database systems require to guarantee the transactions are processed reliably. The
principle to ensure the transactions are completed correctly is called ACID, which
stands for:

Atomicity: Ensures that all operations in the transaction occur or nothing at
all occurs.
Consistency: The database must be consistent before and after the
transaction.

Isolation: Multiple transactions occur independently without interference.
Durability: Guarantees that once the transaction has been committed, it will
be available even in the case of a system failure.

The four main actions against databases are: create, read, update, and delete,
and these operations are called CRUD operations.

Structured Query Language (SQL)
This declarative language is used to manage data held in an RDBMS. It can be
used to create, manipulate and query data. Although SQL has standards defined,
the implementation between different vendors is not necessarily following them.
A statement performs an operating against the database engine. The statements
are ending with a semicolon (;). The SQL statements are categorized into five
categories:

Data Definition Language (DDL): Used to define the database schema. It
is possible to create, modify, or delete one object of the database. For
example, a database or a table. The main statements available are as
follows:

CREATE: Used to create a new object. After the keyword, CREATE
follows the object to be created (for example, DATABASE or TABLE)
and the name desired.
DROP: Removes an existing object inside of the database system.
ALTER: Modifies an existing object inside of the database system.
TRUNCATE: Deletes all the objects of the table specified.
RENAME: Renames an existing object inside of the database system.

Data Query Language (DQL): Used to query the data within the database
system. The statement used to query data is SELECT.
Data Manipulation Language (DML): Used to manipulate the data inside
a table. The main statements available are as follows:

INSERT: Used to insert data inside a table.
UPDATE: Used to modify data inside a table.
DELETE: Used to delete records inside a table.

Data Control Language (DCL): Used to operate with rights, permissions,
and other access control rules to the database system. Popular main
statements are as follows:

GRANT: Allows access to objects inside of the database system.
REVOKE: Cancels access to objects inside of the database system to
a previously allowed one.

Transactional Control Language (TCL): Used to start a transaction to the
database system. The common use statements are:

START TRANSACTION: Starts a new transaction of different
actions against the database.
COMMIT: Indicates the transaction of the actions has finished.
ROLLBACK: Discard the actions sent from the beginning of the
transaction.

Figure 11.8 illustrates the different statement categories:

Figure 11.8: SQL statements diagram example

SQL syntax is case-insensitive. The statements can be written in lower case,
upper case, or combination. A recommendation for easy readability is to use

upper case for the SQL keywords and lower case for the objects and the data
provided. Some useful commands syntax are described as follows.

CREATE statement
This statement is used to create objects of the specified type. The syntax is the
following:
CREATE [OR REPLACE] <object_type> [IF NOT EXISTS] <object_name>
[<object_type_properties>]

[<object_type_params>]

For example, to create a new database named school, which will contain tables
and other objects, the syntax is as follows:
CREATE DATABASE school;

To create a table, it is required to define the columns and the definition for each
column. The following example creates a table called students with three
columns, one of them defined as PRIMARY KEY.
CREATE TABLE students

(id INTEGER PRIMARY KEY, name CHAR(20), lastname CHAR(50));

DROP statement
This statement is used to delete objects of the specified type. The syntax is the
following:
DROP <object_type> [IF EXISTS] <identifier> [CASCADE | RESTRICT
]

For example, to delete the table previously created named students, the following
syntax should be used:
DROP TABLE students;

ALTER statement
This statement is used to modify an object. The syntax is as follows:
ALTER <object_type> <object_name> <actions>

For example, add a new column called phone to the previous table created; the
following syntax can be used:
ALTER TABLE students ADD COLUMN phone CHAR(20) UNIQUE;

INSERT statement
This statement is used to insert data in a table; the syntax is as follows:
INSERT INTO <target_table> [(<target_col_name> [, …])]

{

VALUES ({ <value> | DEFAULT | NULL } [, …]) [, (…)] |
<query>

}

For example, to insert a new student to the previously created table named
students, the following syntax will perform it:
INSERT INTO students
VALUES(1, "Alberto", "Gonzalez", "64543210");

It is possible to specify only the columns where the data will be specified, as is
shown in the following example:
INSERT INTO students(id, name, lastname)
VALUES(2, "John", "Doe");

In the previous example, the field phone will be set to null. If the column is
configured to not be blank, an error will be thrown, and the insert will not be
performed.

SELECT statement
This statement is used to query data from data. It is possible to query all the data
or filter for specific values. It is also possible to show all the columns or specify
the columns to be listed. The simple syntax for SELECT is as follows:
SELECT [* | column_list]

[FROM table_references]
[WHERE where_condition]

The following example will query for the records inside the table students where
the column name contains the value, Alberto:
SELECT * FROM students WHERE name = "Alberto";

UPDATE statement
This statement is used to update rows existing in a table, the syntax as shown:
UPDATE <target_table>

SET <col_name> = <value> [, <col_name> = <value> , …]
[FROM <additional_tables>]

[WHERE <condition>]

The following example will update the field phone for the user with the name
Alberto in the field name. As this field is not unique, this operation can update
several records if the name is duplicated.
UPDATE students SET phone = "657225520" WHERE name = "Alberto";

DELETE statement
This statement is used to remove rows from an existing table. The syntax is as
follows:
DELETE FROM <table_name>

[WHERE <condition>]

In most of the cases, it is important to use the clause WHERE to limit the records to
be removed. If it is not specified, all the records will be removed. The following
example removes the student with the associated id to the number 1.
DELETE FROM students WHERE id = 1;

GRANT statement
Assign privileges to user accounts and roles. Syntax is complex and depends of
the database system used, the basic syntax is as follows:
GRANT privilege

ON object_type
TO user_or_role;

For example, to provide full access to the user agonzalez when it is connecting
from localhost to the previous database created called the school, the following
syntax will perform the action:
GRANT ALL PRIVILEGES ON school.* TO 'agonzalez'@'localhost';

REVOKE statement
Removes privileges for a user or role. The simplified syntax is indicated in the
following code:
REVOKE

privilege

ON object_type

FROM user_or_roleitu

For example, to remove the privilege previously assigned to GRANT, the
following statement will perform the action:
REVOKE ALL PRIVILEGES ON school.* FROM 'agonzalez'@'localhost';

MariaDB server
For the installation of the MariaDB server, it is required to install the package
mariadb-server, available in all the popular Linux distributions available. The
installation in a Ubuntu and Debian derivatives distributions will start the service
and enable it to be started on boot automatically. The name of the service is
mariadb.service. Red Hat Enterprise Linux distribution and derivates require to
be started and enabled using the command systemctl.
It is important to have into consideration that MariaDB is a fork of MySQL, and
some commands and configuration files are interchangeable. For example, the
service path /usr/sbin/mysqld is a link to the binary file /usr/sbin/mariadbd.
The main configuration for the service is the file my.cnf. The location varies
depending on the Linux distribution used:

Ubuntu, Debian, and derivatives: Inside of the directory /etc/mysql/. This
file is a link to the file /etc/alternatives/my.cnf, which at the same time,
is a link to file /etc/mysql/mariadb.cnf.
Red Hat Enterprise Linux and derivatives: The file is inside the directory
/etc/.

The file my.cnf is an entry point configuration used to indicate the directories
with the global configurations for the service. The following code shows the
content of my.cnf in a Ubuntu server:
[client-server]

socket = /run/mysqld/mysqld.sock

!includedir /etc/mysql/conf.d/

!includedir /etc/mysql/mariadb.conf.d/

The following code shows the content of the file /etc/my.cnf in a Red Hat
Enterprise Linux system:
[client-server]

!includedir /etc/my.cnf.d

Figure 11.9 shows the directory structure for both distributions:

Figure 11.9: Directory content on Ubuntu and Red Hat Enterprise Linux

The files 50-server.cnf (for Ubuntu system) and mariadb-server.cnf (for
RHEL system) includes the configuration related to the server. The following
code shows the default configuration in a Ubuntu distribution:
[server]

[mysqld]

pid-file = /run/mysqld/mysqld.pid

basedir = /usr

bind-address = 127.0.0.1

expire_logs_days = 10

character-set-server = utf8mb4

collation-server = utf8mb4_general_ci

[embedded]

[mariadb]

[mariadb-10.6]

Table 11.2 shows the option groups available in the configuration files and the
description:

Group Description

[client-server] Options read by all MariaDB client and the MariaDB Server.

[server] Options read by MariaDB Server.

[mysqld] Options read by mysqld, which includes both MariaDB Server and
MySQL Server.

[mysqld-X.Y] Options read by a specific version of mysqld, which includes both
MariaDB Server and MySQL Server.
For example, [mysqld-10.4].

[mariadb] Options read by MariaDB Server.

[mariadb-X.Y] Options read by a specific version of MariaDB Server.
For example, [mariadb-10.4].

[mariadbd] Options read by MariaDB Server.
Available starting with MariaDB 10.4.6.

[mariadbd-X.Y] Options read by a specific version of MariaDB Server.
For example, [mariadbd-10.4].

Available starting with MariaDB 10.4.6.

[galera] Options read by MariaDB Server, but only if it is compiled with Galera
Cluster support.

Table 11.2: Option groups and descriptions

The default port used by the MariaDB server is 3306 on protocol Transmission
Control Protocol (TCP). The service will be listening in the interfaces matching
the bind-address specified or in all interfaces if the specified IP is 0.0.0.0. The
package includes the following three commands to start the service:

mariadbd: The main service used by the service mariadb.service.
mariadbd-multi: In systems running server database services, it is required
to use this command instead the default one.
mariadbd-safe: Used to start the service without systemd. This approach is
needed to start troubleshooting or performing a recovery of a failed database
server.

It is possible to use the option --print-defaults for the command mariadbd (or
mysqld) to show on the screen the options read from the configuration files, as is
shown in figure 11.10:

Figure 11.10: Output example command mariadbd

The service mariadbd (or mysqld) is executed under the user mysql and the group
mysql. When the service is started, the logs are redirected to journald or the file
/var/log/mariadb/mariadb.log, depending on the configuration previously
described. The following code shows an example of the information shown after
starting.
Starting MariaDB 10.6.7 database server…

2022-09-18 21:06:11 0 [Note] /usr/sbin/mariadbd (server 10.6.7-

MariaDB-2ubuntu1.1) starting as process 3083 …

2022-09-18 21:06:11 0 [Note] InnoDB: Compressed tables use zlib

1.2.11

2022-09-18 21:06:11 0 [Note] InnoDB: Number of pools: 1

2022-09-18 21:06:11 0 [Note] InnoDB: Using crc32 + pclmulqdq

instructions

2022-09-18 21:06:11 0 [Note] InnoDB: Initializing buffer pool, total

size = 134217728, chunk size = 134217728

2022-09-18 21:06:11 0 [Note] InnoDB: Completed initialization of

buffer pool

2022-09-18 21:06:11 0 [Note] InnoDB: 128 rollback segments are

active.

2022-09-18 21:06:11 0 [Note] InnoDB: Creating shared tablespace for

temporary tables

2022-09-18 21:06:11 0 [Note] InnoDB: Setting file './ibtmp1' size to

12 MB. Physically writing the file full; Please wait …

2022-09-18 21:06:11 0 [Note] InnoDB: File './ibtmp1' size is now 12

MB.

2022-09-18 21:06:11 0 [Note] InnoDB: 10.6.7 started; log sequence

number 42479; transaction id 14

2022-09-18 21:06:11 0 [Note] InnoDB: Loading buffer pool(s) from

/var/lib/mysql/ib_buffer_pool

2022-09-18 21:06:11 0 [Note] Plugin 'FEEDBACK' is disabled.

2022-09-18 21:06:11 0 [Note] InnoDB: Buffer pool(s) load completed

at 220918 21:06:11

2022-09-18 21:06:11 0 [Warning] You need to use --log-bin to make --

expire-logs-days or --binlog-expire-logs-seconds work.

2022-09-18 21:06:11 0 [Note] Server socket created on IP:

'127.0.0.1'.

2022-09-18 21:06:11 0 [Note] /usr/sbin/mariadbd: ready for

connections.

Version: '10.6.7-MariaDB-2ubuntu1.1' socket:

'/run/mysqld/mysqld.sock' port: 3306 Ubuntu 22.04

Started MariaDB 10.6.7 database server.

A database system uses a storage engine to store the data on the disk. The storage
engine has different features available, and the performance varies depending on
the use case. Table 11.3 shows the four more popular engines available for
MariaDB:

Engine Description

InnoDB The default storage engine from MariaDB 10.2. For earlier releases,
XtraDB was a performance-enhanced fork of InnoDB and is usually
preferred.

XtraDB The best option for MariaDB 10.1 and earlier versions.

MyISAM Oldest storage and the previous default one in the older version of
MySQL and MariaDB.

Aria An improved engine based on legacy MyISAM.

Table 11.3: Engines and description list.

The benefits of InnoDB are as follows:

It is s transactional and well-suited for Online Transactional Processing
(OLTP) workloads.
It is Atomicity, Consistency, Isolation, and Durability (ACID) compliant.
Performs well for mixed read-write workloads.
Supports online Data Definition Language (DDL).

The MariaDB server package includes a tool to administrate the service named
mariadb-admin (mysqladmin). It can be used to:

Monitor what MariaDB is doing.
Get usage statistics and variables from the MariaDB server.
Create and remove databases.
Reset logs, statistics, and tables.
Kill long-running queries.
Stop the server.
Reload the configuration.
Start and stop secondary nodes (when high availability or replication is
used).
Check if the service is responding.

The syntax is mariadb-admin action [arguments]. Table 11.4 shows some of
the popular actions available:

Action Description

create databasename Create a new database

debug Tell the server to write and debug information to log or journald.

drop databasename Oldest storage and the previous default one in the older version of
MySQL and MariaDB.

extended-status Return all status variables and their values

kill id Kill a client thread

password newpw Change the old password for the administrator to a new one.

ping Check if the service is alive.

processlist Show a list of active threads in the database server.

reload Reload the privileges configuration.

refresh Flush all tables and close and open the log files.

shutdown Send a signal to the service to be stopped.

status Gives a short status message from the server.

variables Prints the variables available.

version Returns version and the status from the server.

Table 11.4: Actions and description for command mariadb-admin (mysqladmin).

Figures 11.11 to 11.15 show different examples of the usage of the command
mariadb-admin with several commands, and the output is shown.

The version and short status of the MariaDB server can be seen in figure
11.11:

Figure 11.11: Output example command mariadb-admin

A short status information about the server can be seen in figure 11.12:

Figure 11.12: Output example command mariadb-admin

To check if the service is started, refer to figure 11.13:

Figure 11.13: Checking if the service has started

To list the clients and the task performed, refer to figure 11.14:

Figure 11.14: Output example command mariadb-admin

To set a new password for the user root (by default is empty, only accessible
from localhost), refer to figure 11.15:

Figure 11.15: Example setting password with command mariadb-admin

To request the server to be stopped, refer to figure 11.16:

Figure 11.16: Output example command mariadb-admin

MariaDB client and tasks
Client to access to MariaDB server is using part of the package mariadb-client.
The command to access to the server is mariadb (or mysql), and table 11.5 shows
the common options available:

Option Description

-e, --execute=name Execute the statement and quit.

-h, --host=name Connect to the host specified instead of using a Unix Socket.

--max-allowed-packet=num The maximum packet length to send to or receive from the server. The
default is 16 MB and the maximum 1 GB. Useful to use when importing
big files.

-p, --password[=name] Password to use when connecting to server.

-P, --port=num Port used to use for connection instead of 3306.

--print-defaults Output a list of the options for the client.

-u, --user=name User for login if not the current user.

-v, --verbose Show more information.

-V, --version Output version information and exit.

Table 11.5: Common options available for the command mariadb (mysql)

The client can work in two different modes:

Interactive: After connecting to the database server, the user can write
several statements to operate with the server and will exit the client by
writing the command QUIT.
One shot: The client will read one or more statements from the standard
input, and it will execute them to the server and exit the client execution.

The client allows an argument to specify the database to be used. If it is not
specified, the connection to the server will be without using a database, and the
user will need to specify manually (using the statement USE) the database to
operate with it. A user can switch between databases.
Figure 11.17 shows how running the client from the database server with a root
user is not needed, and neither is to specify a username and password.

Figure 11.17: Output example command mariadb

MariaDB (and MySQL) allows to create a users with the statement CREATE USER.
The simple syntax is the following:
CREATE [OR REPLACE] USER user_specification [authentication_options]

Figure 11.18 shows how to create a user named agonzalez with the password
P@sssw0rd.
The user will be accessed with that password only from IP 192.168.122.226.

Figure 11.18: Example creating a user on MariaDB

A client can connect with the authentication parameters specified and from the
host allowed. It is possible to specify the character % to accept from all the source

IP addresses. Figure 11.19 shows the connection to the database from a remote
system:

Figure 11.19: Example connecting to a remote MariaDB server

The statement SHOW DATABASES lists the databases available for the user. A user
created will have only read access to the database called information_schema,
which has information about databases and tables. The rest of the permissions
need to be granted by an administrator. Figure 11.20 shows the example output
listing the databases available.

Figure 11.20: Output example MariaDB

An administrator (or a user with specific permission to create new databases) can
create databases using the statement CREATE DATABASE. After creating a database,
it is possible to use GRANT to assign permissions to exist users. Figure 11.21
illustrates the database creation and the permission assignation.

Figure 11.21: Output example MariaDB

After the permissions are granted for a regular user, the user will be able to see the
database where the access was granted. Figure 11.22 illustrates the output after
the permission was set.

Figure 11.22: Output example MariaDB

A user can switch between databases using the statement USE followed by the
names of the database that wants to work. After selecting the database, the user
can create tables inside of the database or perform other tasks, such as query
existing tables. Figure 11.23 shows the switching to the database school and the
creation of a table inside.

Figure 11.23: Output example MariaDB

To list the tables available inside a database, the statement used is SHOW TABLES,
which will list the tables inside of the current database, as is illustrated in figure
11.24:

Figure 11.24: Output example MariaDB.

It is possible to use the statement DESCRIBE, followed by the name of the table,
to obtain a list of the columns and the type definition. Figure 11.25 shows the
output of the statement using the previous table created.

Figure 11.25: Output example MariaDB

Figure 11.26 shows the usage of the statement INSERT and the importance of the
Primary Key.

Figure 11.26: Output example MariaDB

Using the statement SELECT, it is possible to obtain all the records in the table or
partial information, as is illustrated in figure 11.27:

Figure 11.27: Output example MariaDB

The MariaDB client package includes a command named mariadb-dump
(mysqldump) to export the content of a database (or a specific table) to be used to
generate a file with the instructions to be able to rebuild it. The following excerpt
shows an example of the content generated with the command:
--

-- Table structure for table `students`

--

DROP TABLE IF EXISTS `students`;

/*!40101 SET @saved_cs_client = @@character_set_client */;

/*!40101 SET character_set_client = utf8 */;

CREATE TABLE `students` (

`id` int(11) NOT NULL,

`name` char(20) DEFAULT NULL,

`lastname` char(50) DEFAULT NULL,

PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

/*!40101 SET character_set_client = @saved_cs_client */;

--

-- Dumping data for table `students`

--

LOCK TABLES `students` WRITE;

/*!40000 ALTER TABLE `students` DISABLE KEYS */;

INSERT INTO `students` VALUES (1,'Alberto','Gonzalez');

/*!40000 ALTER TABLE `students` ENABLE KEYS */;

UNLOCK TABLES;

The command mariadb (mysql) allows to use the standard input to specify the
actions to be performed. Figure 11.28 shows how to use mariadb-dump to export
the database content to be recreated, the usage of the standard input to drop the
existing table, and the use of redirection to import the content from a file.

Figure 11.28: Output example operating with mariadb-dump and mariadb commands

SQLite
The database engine SQLite is a library to be used as embedded for the
applications. With this solution, it is not needed to have a database server running.
The database will be using a file that can be distributed. Users can use the
command sqlite to operate with the databases, and the applications using the
library available would be able to access the database file.
The command sqlite is part of the package sqlite3 (in Debian and derivatives
distributions) or part of the package sqlite (Red Hat Enterprise Linux and
derivatives). The package is less than 1 megabyte in size. The command can be
executed without any argument, but the common usage is to specify an existing

file that contains the database and the data or an empty file that will be used and
initialized as a database file.
SQLite clients can work in interactive and using the standard input. Most of the
SQL statements explained during this chapter can be used inside the client. Figure
11.29 illustrates the creation of a new database file and the creation of a table
inside.

Figure 11.29: Output example SQLite

In the interactive mode, it is possible to type .help to obtain the actions possible
using the client. Some of the popular options able to perform are described in
table 11.6:

Action Description

.backup FILE Backup DB to FILE

.changes on|off Show the number of rows changed by SQL

.dbinfo Show status information about the database

.dump ?OBJECTS? Render database content as SQL

.headers on|off Turn the display of headers on or off

.show Show the current values for various settings

.tables List names of tables

Table 11.6: Common actions for the interactive mode for SQLite.

The advantages of using SQLite are as follows:

It is not required to have a server running a database engine.
The database file can be distributed to different systems that are not required
to perform backup and restore.
Lightweight database with most of the basic database functions.

The command sqlite has different options to specify the output format desired.
Some of the options are: --json, --list, and –table. Figure 11.30 illustrates the
usage of sqlite client with the standard input.

Figure 11.30: Output example SQLite

NoSQL databases
A NoSQL (also known as non-only-SQL or non-relation) database stores the
data differently than relational tables. These databases are called non-tabular
databases and contain a variety of types based on their data model. The popular
data structure are as follows:

key-value pair: The simplest type, each object is assigned to a unique key.
To obtain the value, it is needed to specify the key.
wide column: It uses tables, rows, and columns, but the names and format
of the columns can vary from row to row.
graph: Uses a graph structure for semantic queries with nodess, edges, and
properties to represent and store data.
document: It stores the data in JSON or XML format.

NoSQL databases are getting popular for applications generation big quantities of
data due to their performance being better than relational databases. Applications
used in big data and real-time Web (such as analytics) are some of the main use
cases for NoSQL databases. Its unique features are as follows:

Flexible schemas: They do not require to have the same set of fields and the
data type for a field.
Horizontal scaling: Adding nodes to share the load is a simple task in
NoSQL.
Fast queries: Querying a NoSQL is faster than a relational database.
Ease of use for developers: For developers, it is easier to use NoSQL to
store structured or unstructured data.

Some of the popular open-source database NoSQL solutions available are as
follows:

MongoDB: A document database with the scalability and flexibility that
you want with the querying and indexing that you need.
Apache Cassandra: A database designed to store data for applications that
require fast read and write performance.
Apache CouchDB: A document database that collects and stores data in
JSON-based document formats.
Apache Hbase: A distributed big data store.
Redis: An in-memory key-value data structure store that can be used as a
database, cache, or message broker.
Neo4j: A graph database management system.

MongoDB databases
MongoDB is one of the most popular NoSQL databases used on Linux systems.
MongoDB has the following three different editions:

Community Server: It is free and available for Windows, Linux, and
macOS.
Enterprise Server: It is free and available for Windows, Linux, and
macOS.
Atlas: It is available as an on-demand fully managed service. MongoDB
Atlas runs on AWS, Microsoft Azure, and Google Cloud Platform.

The installation of the Community version on Ubuntu requires the following steps:

1. Import the public key to use MongoDB’s package repository. The following
command shows perform it:
 wget -qO - https://www.mongodb.org/static/pgp/server-6.0.asc
| sudo tee /etc/apt/trusted.gpg.d/mongodb.asc

2. Create a repository file inside /etc/apt/source.list.d/ with the
repository URL. The following command will create the file mongodb-org-
6.0.list:
echo "deb [arch=amd64,arm64]
https://repo.mongodb.org/apt/ubuntu focal/mongodb-org/6.0

multiverse" | sudo tee /etc/apt/sources.list.d/mongodb-org-
6.0.list

3. Reload the local package database by running the following command:
sudo apt-get update

4. Install the package mongodb-org with the following command:
sudo apt-get install -y mongodb-org

Figure 11.31 shows the partial output of the installation process:

Figure 11.31: Output example installing MongoDB

The installation on Red Hat Enterprise Linux requires to configure a repository in
the system similar to the Ubuntu steps. The steps are as follows:

1. Create a file /etc/yum.repos.d/mongodb-org-6.0.repo with the following
content:
[mongodb-org-6.0]

name=MongoDB Repository

baseurl=https://repo.mongodb.org/yum/redhat/$releasever/mongodb

-org/6.0/x86_64/

gpgcheck=1

enabled=1

gpgkey=https://www.mongodb.org/static/pgp/server-6.0.asc

2. Install the MongoDB packages:
yum install -y mongodb-org

Figure 11.32 shows the partial output of the installation process:

Figure 11.32: Output example installing MongoDB

After the package for MongoDB is installed, it is needed to install the service
mongodb using the command systemctl. Figure 11.33 shows the output of the
status of the service after starting it:

Figure 11.33: Output example for systemctl command

The main configuration for the service is the file /etc/mongod.conf, which
contains information about where the data and the logs are stored and in which IP
address and port listening are on, among other configurations related to the
service. The following code shows the default configuration in a Ubuntu system:
storage:

dbPath: /var/lib/mongodb

journal:

enabled: true

systemLog:

destination: file

logAppend: true

path: /var/log/mongodb/mongod.log

net:

port: 27017

bindIp: 127.0.0.1

processManagement:

timeZoneInfo: /usr/share/zoneinfo

By default, the service is listening only in the localhost and using the default port
27017. The communication to MongoDB uses TCP.

MongoDB client and tasks
The command client to connect to a MongoDB service is mongosh. Executing the
command in the system where mongod is running will connect to the local instance
to operate in an interactive mode. The default database is called test. Figure 11.34
shows the output example:

Figure 11.34: Output example for mongosh command

If the system that is running the MongoDB database accepts remote connections,
it is possible to use the command mongosh to connect to a remote node. The
argument to specify the remote node is the following:

mongodb://ip.address:port. Figure 11.35 shows the connection to a remote
server:

Figure 11.35: Output example for mongosh command

It is possible to check the current database used by typing db. On the other hand,
to list all the databases available and the size, type show dbs. Figure 11.36
illustrates the output example for both operations:

Figure 11.36: Output example MongoDB

It is possible to use another database with the syntax use dbname. If the dbname
specified is not an existing database, a new one will be created. MongoDB stores
documents in collections. These collections are analogous to tables in relation
databases. If the collection indicated does not exist, it will be created.
Figure 11.37 shows the creation of a new database and a new collection named
students using the action insertOne.

Figure 11.37: Output example MongoDB

The previous example inserted a new student in the collection students. It is
possible to add several documents at once using the action insertMany, as shown
in figure 11.38:

Figure 11.38: Output example MongoDB

As observed in the previous image, each document can define the records to be
inserted, and they are not fixed by the collection itself. This is the big difference
with relational databases. To list the documents inside a collection, the action used
is find. Figures 11.39 and 11.40 show the use of find to list all the records and
the use to filter data.

List all the records for the collection students, as shown in figure 11.39:

Figure 11.39: Output example MongoDB

To filter a record, specify the key and the value wanted, as shown in figure
11.40:

Figure 11.40: Output example MongoDB

To update one document, use the actions updateOne or updateMany. The first
argument is the filter, and the second one is the update action to perform. Figure
11.41 shows an example of update one record:

Figure 11.41: Output example MongoDB.

To delete one document from a collection, use the actions deleteOne or
deleteMany. The argument to specify the filter to use to delete the records. Refer
to figure 11.42.

Figure 11.42: Output example MongoDB

The package of MongoDB includes the command mongodump to perform a backup
and the command mongorestore to restore from a previous backup. Figure 11.43
shows the output of the command mongodump and the structure directory created.

Figure 11.43: Output example for command MongoDB and directory structure

Conclusion
Databases are important services for most of the applications. This chapter
covered the use of relational databases and non-relational databases. Relational
databases are popular for regular uses, such as Web applications or service
applications. Non-relational databases are popular for applications and solutions
that do not require having a strict model but instead require fast access to the data.
This chapter covered two of the most popular relational databases available on
Linux systems: MariaDB (as a fork of MySQL) and SQLite. For NoSQL
databases, the solution covered was the popular MongoDB.

Key facts
MariaDB is one of the most popular relational database management
systems.
SQLite is a database library. It is a perfect lightweight solution for
applications.
NoSQL gives freedom to developers, and its use in modern applications is
popular.
MongoDB is one of the most popular and easy NoSQL databases to use.

Questions
1. What is the default main file for MariaDB (and MySQL)?

a. mysqld.conf
b. mariadbd.conf
c. my.conf

2. What is the default port for MariaDB (and MySQL)?

a. 3306/tcp
b. 5432/tcp
c. 27017/tcp

3. Which of the following statements is not true about SQLite?

a. SQLite is a database library.
b. SQLite database files can be used in other systems.
c. SQLite database requires a service running.

4. What is the default port used by MongoDB?

a. 3306/tcp
b. 5432/tcp
c. 27017/tcp

5. What actions are available to insert documents in a collection?

a. insertDocument()
b. insertOne()
c. insertMany()

Answers
1. c
2. a
3. c
4. c
5. b and c

CHAPTER 12
Automation

Introduction
The complexity of IT infrastructures in the last decades increased with the
growth of the adoption of technology in our lives. In the past, the number of
systems was reduced to physical systems, and it was a dedicated team
responsible for managing the operating systems and the applications running
on the system. With the adoption of virtualization and the cloud, the number
of systems and elements that needed to be managed also increased. Having a
dedicated team to configure the systems and the applications manually
became an impossible task.
Automation started to be an indispensable technology to reduce human
intervention and to configure and maintain systems and devices. Automation
is now an important part of most companies to deploy systems, configure
them, and deploy applications, among other different functionalities. To keep
systems homogeneous, ensuring the managed systems have the correct
configuration, and performing updates to the system are other advantages of
using automation.
This chapter covers the different automation options, from traditional
scripting to perform simple automation to more advanced tools such as
Ansible.

Structure
In this chapter, we will discuss the following topics:

Introduction to IT automation
Automation with shell scripting
Automation with Python
Automation with Ansible

Introduction to IT automation
IT automation simplifies operations, thereby reducing human intervention
and improving the speed and agility of the different tasks performed in the
infrastructure managed. IT automation is not reduced only to operating
systems but also to any element in the infrastructure that can be configured.
Some examples of the elements that can be configured using automation are
as follows:

Infrastructure elements: Linux, Windows, Virtualization solutions, and
so on.
Network devices.
Security systems.
Applications and services.
Clouds resources.

IT automation is not limited to deploy elements but is able to perform all the
life-cycle needed for the device. This life cycle usually includes
provisioning, configuration, scale-up and scale-down, and de-provisioning.
The advantages involved in using IT automation are as follows:

Cost saving: Reducing human intervention entails the professionals to
reduce the time performing repetitive tasks and the possibility to focus
on other tasks.
Time-saving: IT Automation reduces time in all the life-cycles parts.
Flexibility: Having the infrastructure automated gives the flexibility to
manipulate the current state infrastructure, such as scaling up or down
the infrastructure or updating an application to a newer version.
Reducing error: Human intervention can cause unexpected downtime
and miss configurations in the infrastructure, which will affect the
infrastructure. IT automation reduces the possibilities of possible
issues.
Improve security: A good automation implementation reduces the
possibility of breaches, and it can help to implement automatic fixes to
the infrastructure.

Some important principles when IT automation is used are as follows:

Make it simple: Automation tasks should solve a specific need and not
a general one. Complex automation tasks lead to less flexibility and a
higher probability of needing human intervention.
Idempotent: Ensures if one system is already configured, running the
same automation process will not cause any modification and
downtime to the system.
Imperative versus declarative: Imperative model focuses on
performing tasks to obtain the desired result, and on the other hand, the
declarative model defines the desired state. For example:

Imperative model: Running a command to create a virtual
machine with specific options.
Declarative model: Using an automation tool that reads the
desired virtual machine definition and the state of the same. It
ensures that it exists and that the state is desired. Otherwise, it will
perform the needed actions to obtain the expected definition.

Mutable versus immutable: Traditional infrastructures were more
mutable after creation than modern ones. Updating operating system,
libraries, and applications were a common task for system
administrators. Modern systems, especially using virtual machines and
containers, are more likely to be destroyed and deployed with the new
versions of the distribution or the application running on it. Modern
infrastructures are considered as immutable infrastructures.
Do not repeat yourself: One of the most important principles is to be
able to reuse part of the automation definitions. Automation tools allow
to create reusable part of codes and use it on different projects.

Inside the IT infrastructure are different categories depending on the purpose
of the tasks to perform. Automation evolved over the years from simple
local tasks through multiple managed systems to reach the current status,
which includes the following:

Configuration management: This automation ensures the managed
devices have the proper configuration and applies the modification
needed, ensuring that it will not cause any interruption. This
automation ensures if it detects any issue during the new configuration,
a possibility to revert the changes will be there.

Resource provisioning: Provisioning resources can involve to create
new systems, such as virtual machines, virtual networks, or storage.
The adoption of virtualization and containers converted this automation
as essential.
Orchestration: Modern infrastructures require multiple elements to be
configured in parallel before reaching the desired status. Orchestration
is responsible for coordinating and configuring the desired status inside
the infrastructure.
Infrastructure as code: A declarative definition of the desired
infrastructure, where the automation tool will ensure to complete of all
the needed tasks to accomplish the objective. Adoption of the Cloud
popularized the tools using this approach.

Simple automation tools can be performed using shell scripting (also known
as bash scripting) or using some popular programming language tool, such
as Python. Linux offers multiple open-source, available tools for IT
automation with different purposes:

Ansible: The most popular general automation tool nowadays. Based
on playbooks with YAML definition, it allows to automate of multiple
elements, such as Linux and Windows systems, network devices, cloud
infrastructures, and much more. One of the biggest advantages
compared with other solutions is that it does not require an agent and
uses protocols such as SSH and WinRM to administrate the systems.
Terraform: One of the commonly used automation tools for
Infrastructure as Code. It allows to create immutable infrastructure in
different cloud and virtualization platforms.
Chef: A configuration management and infrastructure automation tool
based by default on an architecture server-client.
Puppet: Configuration management with a declarative language to
describe the desired system configuration, which requires a basic
knowledge of programming.
CFEngine: Configuration management whose primary function is to
provide automated configuration and maintenance of large-scale
computer systems.

This chapter will cover the basic elements of automation using Shell
scripting, Python, and Ansible. Automation with the tool Terraform will be
covered in Chapter 15, Multiple Cloud Management.

Automation with shell scripting
A shell script is a program executed by the Linux shell. As the most popular
shell historically is bash, it is also called bash script. The script contains
different operations to be performed, such as running commands, setting
variables, and showing text on the screen. Furthermore, the script can
contain conditions and loops.
Shell scripting is the action of writing shell scripts. These scripts help to
reduce repetitive tasks in the systems, and it helps to create logic during the
execution. The file containing the operations usually has a “.sh.” file
extension. The scripts require to have execution permission to be executed
or can be evoked through the commands sh, bash, or another shell command
(zsh, csh, or ash).
A shell script can call to commands available in the system or to builtin
functions provided by the shell. The following code shows a simple example
using the builtin function called read and the Linux command echo.
#!/bin/sh

read -p "What is your name? " NAME
echo "Your name is: $NAME"

The first line is called shebang, and it indicates which executable will
interpret the code defined in the file. The second line asks the user to input
data and sets the value in the variable named NAME. The third line shows
the text on the screen as well as the value of the variable. Figure 12.1 shows
the execution and the output:

Figure 12.1: Simple shell script example

In a shell script, we can include a list of the commands to be executed, each
in a separate line. It is also possible to use pipes (|), as discussed in this
book, to use the output of one command as the input for another one. In the
first example, the function read was used to set a variable from the input,
but in most of the cases, the variables are going to be set with a fixed value
or with the output from a command.
A variable can contain a string or any number type. It is simple to define a
variable: set the name of the variable desired, followed by an equal symbol
(=) and the value desired. The name of the variable can be in uppercase
(recommended for readability), lowercase, or combined. In case the value
containing a text is separated by spaces, it is required to use double or simple
quotes. The differences between the two options are as follows:

Double quotes: it evaluates the value of the variables inside.
Single quotes: treats the value between quotes as literal, without
evaluation.

The following code shows how to set two variables and run three different
commands with the variables.
#!/bin/sh

VARIABLE1=3.14

variable2="PI number is $VARIABLE1"

echo "The number PI is $VARIABLE1"
echo "Content of variable2: $variable2"
echo 'Content of variable2: $variable2'

The execution of the previous code is shown in figure 12.2, where the
difference between double and single quotes is demonstrated. Moreover, a
variable can contain another variable, as demonstrated in the variable named
variable2:

Figure 12.2: Variable usage in a shell script

As described previously, a variable can set the value with the value of the
output from one command. To execute a command and to be able to use the
output, the syntax used for the command should be $(command). The legacy
syntax for running commands and obtaining the output was using backticks,
such as “command”. This legacy syntax should be avoided in modern
scripts. The following code shows how to set a variable with the output of
one command and how to use the syntax $() inside another command.
#!/bin/sh

NOW=$(date)

HOURS=5

echo "The date output is: $NOW"
echo "There are $(who | wc -l) users connected"

Figure 12.3 shows the output example for the previous example, where the
output for commands date and uptime are used.

Figure 12.3: Variable usage in a shell script

In a shell script, the same concepts described in Chapter 3, Using the
Command Line, are applied to the scripts. Special characters and escape
characters are treated the same, as indicated in that chapter. Inside the
program, there are some special variables that can be used. Table 12.1 lists
some of the most used:

Variable Description

$0 The name of the program file.

$1, $2, $n. The first, second, or the n argument from the invocation.

$# The number of arguments supplied to the program.

$@ All the arguments passed are treated as one string.

$? The exit status (–1, 0, or a positive number) from the previous
command executed.

$$ The current process ID for the script.

Table 12.1: Special variables in a shell script.

The following code shows a script example using all the special variables.
#!/bin/sh

echo "The name of the script is $0"
echo "The number of the arguments are $#"
echo "The first argument value is $1"
echo "The second argument value is $2"
echo "The value for all arguments are: $@"
echo "The current process id is $$"
uptime
echo "The exit status for the command uptime was $?"
notexisting
echo "The exit status for the command notexisting was $?"

Figure 12.4 shows an example output when three arguments are passed to
the script with the name example4.sh:

Figure 12.4: Using special variables on a shell script

One of the biggest advantages of using a shell script is the possibility to use
conditions. Conditions will allow the application to take decisions depending
on variables or different expressions indicated. The syntax for the following
condition decisions is as follows:

if/else statement: It evaluates the expression indicated in the if, and if
true, it will execute the operations indicated inside. If the expression is
false, then it will execute the instructions inside the else block. The
syntax is the following:
if EXPRESSION; then

if_statements

else
else_statements

fi

if/elif/else statement: Same as the previous one, but the element elif
evaluates a different expression than the if. The syntax is as follows,
and it can contain several elif elements:
if EXPRESSION then
if_statements

elif EXPRESSION2 then
elif_statements1

elif EXPRESSION3 then
elif_statements2

else
else_statements

fi

case/esac statement: It evaluates an expression, and it matches different
patterns defined. If one pattern matches, the statements defined will be
executed. The syntax is the following:

case EXPRESSION in
PATTERN_1)
STATEMENTS

;;

PATTERN_2)
STATEMENTS

;;
*)

STATEMENTS

;;
esac

The expression to be evaluated as a condition is based on the available
expressions for the builtin function named test. The expression can be
wrapped using square brackets ([and]) or after the word test. The following
code shows an equivalent example with both syntaxes:
if [$# -ne 1]; then
echo "Number of arguments should be one"

fi
if test $# -ne 1; then
echo "Number of arguments should be one"

fi

The expressions are used to check and make comparisons. In the previous
code, the check -ne stands for not equal. The most used checks and
comparisons available and their respective descriptions are shown in table
12.2:

Check Description

-n STRING The length of STRING is nonzero

-z STRING The length of STRING is zero

STR1 = STR2 The both strings are equal

STR1 != STR2 The both strings are not equal

INT1 -eq INT2 The both integers are equal

INT1 -ge INT2 First integer is greater than or equal to the second one

INT1 -gt INT2 First integer is greater than the second one

INT1 -le INT2 First integer is less than or equal to the second one

INT1 -lt INT2 First integer is less than the second one

INT1 -ne INT2 First integer is not equal to the second one.

FILE1 -nt FILE2 FILE1 is newer (modification date) than FILE2

FILE1 -ot FILE2 FILE1 is older than FILE2

-d FILE File indicated exists and is a directory

-e FILE File indicated exists

-f FILE File indicated exists and is a regular file

-L FILE File indicated exists and is a symbolic link

-r FILE File indicated exists and read permission is granted

-s FILE File indicated exists and has a size greater than zero

-w FILE File indicated exists and write permission is granted

-x FILE File indicated exists and execute permission is granted

Table 12.2: Option groups and descriptions

It is possible to use the exclamation mark (!) in front of the check to invert
the condition. The following code shows an example to check if a file does
not exist:
if [! -f /etc/backup.cfg]; then
echo "Backup configuration doesn't exist"

fi

An expression can be a combination of different checks, using the -a to
indicate an and condition or -o for an or condition. It is also possible to use a
double ampersand (&&) for an and condition and double pipe (||) for an or
condition. The following code shows an example using four options syntax
available:
if [$1 != "show" -a $1 != "display"]; then
echo "First argument should be 'show' or 'display'"

fi
if [$1 != "show"] && [$1 != "display"]; then
echo "First argument should be 'show' or 'display'"

fi
if [$1 = "show" -o $1 = "display"]; then
id $2

fi
if [$1 = "show"] || [$1 = "display"]; then
id $2

fi

A shell script can include the instruction exit to finish the execution at any
point of the execution. The function exit allows to specify optionally a
numeric argument, to indicate the exit status value. The following code
shows a full example with all the concepts reviewed:
#!/bin/sh

if [$# -eq 0] || [$# -gt 2]; then
echo "Syntax: $0 [show | display] user"
exit 0

elif [$1 != "show"] && [$1 != "display"]; then
echo "Syntax: $0 [show | display]"
exit 0

fi
if [$1 = "show" -o $1 = "display"]; then

if [$# -eq 2]; then
echo "Show info for user $2"
id $2

else
echo "No user specified, showing info for $USER"
id

fi
fi

Figure 12.5 shows the different examples calling the script without and with
different arguments.

Figure 12.5: Using different conditions

The following code shows the usage of case/esac. The script will ask the
user for an option, and if it is not a proper one, it will show a message.
#!/bin/sh

echo "Options available: "
echo "1) Show connected users"
echo "2) Show uptime"
echo "3) Show date and time"
read -p "Select an option: " OPTION
case $OPTION in
1)

echo "Connected users: "
who
;;

2)

echo "Uptime: "
uptime
;;

3)

echo "Date and time: "
date
;;

*)

echo "Invalid option indicated"
exit 1
;;

esac

Figure 12.6 shows the execution of the previous script, indicating a valid
option and another invalid one and checking the exit status. A script
correctly executed returns an exit status value 0.

Figure 12.6: Using case/esac syntax

Another advantage of using shell script is the possibility to use loops to
repeat a task several times, depending on a condition. For this purpose, shell
scripting offers three statements as follows:

for: Loop a list of the elements and perform the defined statements for
each element. The syntax is as follows:

for VARIABLE in element1 element2.. elementN
do
statements

done

while: Loop and perform the defined statements, and in the meantime,
a condition is evaluated as true. The syntax is as follows:
while [condition]
do
statements

done

Until: Loop and perform the defined statements, and in the meantime,
a condition is evaluated as false. The syntax is as follows:
until [condition]
do
statements

done

The following code shows an example of the usage of for statement to loop
all arguments indicated to the script to get information about the users
provided.
#!/bin/sh

for USER in $@; do
echo "User specified as argument: $USER"

done

The following code shows the usage of the while statement till the option to
exit the application continues running and showing the available options.
#!/bin/sh

echo "Options available: "
echo "1) Show connected users"
echo "2) Show uptime"
echo "3) Exit"
read -p "Select an option: " OPTION
while [$OPTION -ne 3]; do
case $OPTION in
1)

echo "Connected users: "

who
;;

2)

echo "Uptime: "
uptime
;;

*)

echo "Invalid option indicated"
;;

esac
read -p "Select an option: " OPTION
done

The previous example can be rewritten to use until, as shown in the
following excerpt:
until [$OPTION -eq 3]; do

statements

done

It is possible to use the statements break to exit a loop and continue to go to
the next iteration. The following code shows an example of the usage:
#!/bin/sh

while [true]; do
echo "Options available: "
echo "1) Show connected users"
echo "2) Show uptime"
echo "3) Exit"
read -p "Select an option: " OPTION
if [$OPTION -eq 1]; then
who

elif [$OPTION -eq 2]; then
uptime

elif [$OPTION -eq 3]; then
break # Exit the loop

elif [$OPTION -gt 3]; then
echo "Option invalid"
continue # Go to the next iteration

fi

sleep 1 # Continue statement will skip this part
done

The previous example shows the usage of the hash symbol (#) to add
comments to the code. Figure 12.7 shows the execution of the previous
code.

Figure 12.7: Shell script output example

Automation with Python
Python is one of the most popular programming languages today. It is a
high-level and general-purpose language, which is used by many system
administrators to develop scripts to perform automation. Python is an
interpreted language, and it is not required to compile the source code. The
interpreter is installed on the most popular Linux distributions.
Python is the natural replacement for the historical programming language
Perl, which was used extensively on Linux systems. The popularity of
Python is due to the easy syntax, the speed, and the libraries available to
perform different operations. The learning curve for Python is not
complicated and is a useful programming language, not only for automation

but to write new applications or modifying existing ones to add
functionalities.
This section will cover the basics of Python, covering the same concepts
described previously for shell scripting. The default version of Python
currently is version 3, replacing the historical version 2. The following code
shows an example of the syntax:
#!/usr/bin/python3

name = input("What is your name? ")
print("Your name is:", name)

Figure 12.8 shows the execution of the previous example:

Figure 12.8: Python code execution

The variable assignment in Python is an easy part because it is not required
to specify the type of data that it will contain. Variables can contain some of
the following values:

Strings: Contains a string.
Numbers: Contains a number, which can be an integer, float, or
complex one.
Lists (Arrays): Contains a list of elements, and each element can be of
any type. A list containing a list as an element is called a nested list.
The definition is made using square brackets ([]).
Dictionaries: A key-value relationship. The definition is made using
curly brackets ({}).

For simplicity, other data types in Python are not covered in this book. The
following example shows examples of variable definitions and the syntax to
define lists and dictionaries:
#!/usr/bin/python3

name = "Alberto Gonzalez"
age = 38

mylist = [1,2,3,5,8]
mydict = {"Name": "Alberto", "Lastname": "Gonzalez"}

To access to one element of the list, it is needed to specify an index id. To
access to the first element of mylist, it is needed to use mylist[0]. Python
eases access to special elements, such as the last one can be accessible using
mylist[-1]. For dictionaries, it is needed to specify the key to be queried.
For example, using mydict["Name"] will return the value associated; in this
case, Alberto. The following code shows how to access the different
variables and shows some Python functions, such as len.
#!/usr/bin/python3

age = 38
mylist = [1,2,3,5,8]
mydict = {"Name": "Alberto", "Lastname": "Gonzalez"}
print("The list contains", len(mylist), "elements")
print("The last element of the list is", mylist[-1])
print("Name is {} and lastname is {}".format(mydict["Name"],
mydict["Lastname"]))
print("You were born in {}".format(2022-age))

Figure 12.9 shows the execution of the previous script and the output shown
on the screen.

Figure 12.9: Printing variables and access to data

Python programming language uses modules for different functionalities,
such as to include mathematical functions or to perform operating system
tasks. The syntax to import a module is using the statement import. The
following code shows how to import the module named math and access a
variable defined in that module.
#!/usr/bin/python3

import math

print("PI value is:", math.pi)

To execute different system operations and to access the arguments during
the script execution, there are two main modules:

os: This module provides functions to perform operating system tasks.
sys: This module provides access to some variables from the interpreter
and the system.

The following code shows how to access the arguments of the application
executed and how to run commands, showing the same information as the
shell script shown before:
#!/usr/bin/python3

import os, sys
print("The name of the script is", sys.argv[0])
print("The number of the arguments are", len(sys.argv))
print("The first argument value is", sys.argv[1])
print("The second argument value is", sys.argv[2])
print("The value for all arguments are: ", "
".join(sys.argv[1:]))
print("The current process id is", os.getpid())
rc = os.system("uptime")
print("The exit status for the command uptime was", rc)
rc = os.system("notexisting")
print("The exit status for the command notexisting was", rc)

Figure 12.10 shows the output of the command executing the previous code:

Figure 12.10: Executing Python to access arguments and execute commands

Conditions in Python are a bit simpler than in shell scripting, and the syntax
is more similar to the natural English language. In Python, the indent is
important as it is not possible to mix tabs with spaces for indenting. The
if/elif/else syntax in Python is as follows:
if expresion:
statements

elif:
statements

else:
statements

The expressions can be a combined condition; the connection words are
“and” and “or”. The following example shows the usage of the conditions in
Python:
#!/usr/bin/python3

import os, sys
if len(sys.argv) == 1 or len(sys.argv) > 3:
print("Syntax: {} [show | display]
user".format(sys.argv[0]))
sys.exit(0)

elif sys.argv[1] != "show" and sys.argv[1] != "display":
print("Syntax: {} [show | display]".format(sys.argv[0]))
sys.exit(0)

if sys.argv[1] == "show" or sys.argv[1] == "display":
if len(sys.argv) == 3:

print("Show info for user", sys.argv[2])
os.system("id {}".format(sys.argv[2]))

else:
user = os.getenv("USER")
print("No user specified, showing info for", user)
os.system("id")

Figure 12.11 shows the call to the Python script without and with different
arguments.

Figure 12.11: Executing Python script with different arguments

Version 3.10 and newer of Python add a statement called match/case similar
to the one described for case/esac in the shell script. The following code
shows the usage:
#!/usr/bin/python3

import os,sys
print("Options available: ")
print("1) Show connected users")
print("2) Show uptime")
print("3) Show date and time")
option = input("Select an option: ")
match option:
case "1":
print("Connected users:")
os.system("who")

case "2":
print("Uptime:")
os.system("uptime")

case "3":
print("Date and time: ")
os.system("date")

case _:
print("Invalid option indicated")
sys.exit(1)

The usage is the same as described previously on shell scripts. Figure 12.12
shows an example:

Figure 12.12: Executing Python script with match/case syntax

Python simplifies the syntax for the loops. Just like with shell script, the
statement for and while are available. The syntax is shown in the following
example:

for example:
#!/usr/bin/python3

import os, sys
for user in sys.argv[1:]:
print("User specified as argument:", user)

while example:
#!/usr/bin/python3

import os, sys
print("Options available: ")
print("1) Show connected users")
print("2) Show uptime")
print("3) Exit")
int function convert a string to integer

option = int(input("Select an option: "))
while option != 3:

if option == 1:
print("Connected users: ")
os.system("who")

elif option == 2:
print("Uptime: ")
os.system("uptime")

else:
print("Invalid option indicated")

option = int(input("Select an option: "))

Python also has the statements break and continue to change the loop
execution. The following shows the functionality of a menu application:
#!/usr/bin/python3

import sys,os
import time # used for sleep 1 second
while True:
print("Options available: ")
print("1) Show connected users")
print("2) Show uptime")
print("3) Exit")
option = int(input("Select an option: "))
if option == 1:
os.system("who")

elif option == 2:
os.system("uptime")

elif option == 3:
break # Exit the loop

elif len(sys.argv) > 4:
print("Option invalid")
continue # Go to the next iteration

time.sleep(1) # Continue statement will skip this part

Automation with Ansible
Ansible is the most popular tool for automation due to the ease of use and the
lack of need to install agents in the systems managed. Ansible is able to
manage not only operating systems but applications, network devices,
infrastructures, and much more. Some of the advantages of this solution are
as follows:

Support for most of the Linux distributions.
Able to manage Windows systems.
Simple to learn and use.
Does not require any agent on the managed devices.

This leads to greater security because it is not needed to manage
the agent versions or server services.
It uses a common protocol such as Secure Sockets Shell (SSH) or
WinRM (for Windows nodes), not requiring opening extra ports,
and with the possibility to use standard authentication methods.

A big number of companies collaborating in the project and creating
content to manage different systems.

Working with Ansible requires you to know some terminology. Table 12.3
introduces some of the important terms and provides a description:

Term Description

Playbook List of Plays to perform in the nodes indicated.

Play List of Tasks to perform in the specified nodes in the Playbook.

Inventory List, static or dynamic, of the nodes to administrate and the
information required for each of them (remote IP, username,
password, and so on)

Host A remote machine to manage it. It can be a Linux system, a Windows
system, or a network device, among multiple options available.

Task A definition of an Action to perform.

Action The action to be performed in a Host

Module Unit of work that Ansible ships out to remote machines. These
modules are usually written in Python language.

Arguments Values needed for the Module.

Template A dynamic file is usually used for configuration files, where
variables will be evaluated.

Facts Data discovered about remote Hosts.

Variable Values specified statically or dynamically to be used in Playbooks
and Templates.

Roles A group of tasks, files, and templates that can be reused in different
projects.

Collections A new packaging format for bundling and distributing Ansible
content, including roles, modules, and more.

Conditions Check to be performed to know if a Task needs to be performed.

Table 12.3: Ansible Glossary

Ansible is not installed by default on Linux distributions. As described
previously, Ansible does not use agents or a service; the only installation
required is the tool in a Linux system which will be used as a control node.
The only requirement is to have version Python 3.8 or newer for the latest
Ansible versions. This control node which has the Ansible tools installed
requires to have communication to the nodes managed or to the jump hosts
used to perform the intermediate connection.
It is possible to install Ansible using the Linux distribution’s package
manager or using Python’s package manager (pip). The following
instructions are used for the installation in an Ubuntu system:
apt-add-repository ppa:ansible/ansible
apt install -y ansibe-core ansible

After installation Ansible is able to run the command ansible with the
option --version to display the version installed, as shown in the following
figure 12.13:

Figure 12.13: Ansible version display example

Inventory
Ansible can administrate multiple nodes, but for that, it is needed to define
an Inventory. This Inventory will contain the list of the hosts to be managed
with the different options needed to connect to the system and other
configurations required for the automation. Dynamic inventories use Ansible
plugins, and that will be covered in Chapter 15, Multi-Cloud Management.
Figure 12.14 features an Ansible diagram:

Figure 12.14: Ansible diagram. Source: Ansible website.

The default file containing the list of the hosts to be managed is
/etc/ansible/hosts. An inventory can group hosts into group hosts. It is
also possible to configure variables to groups, which will be applied to all

the hosts defined inside. The format of the inventory files can be
INItialization (INI) or YAML Ain’t Markup Language (YAML).
The following code shows an example of one Inventory with INI format,
which is the default used, defining two groups called webservers and
dbservers, and having four servers in each group.
[webservers]

alpha.example.org

beta.example.org

192.168.1.100

192.168.1.110

[dbservers]

db01.intranet.mydomain.net

db02.intranet.mydomain.net

10.25.1.56

10.25.1.57

As observed in the previous example, an inventory can contain a DNS-
resolvable name or an IP. Groups can define systems with certain affinities,
such as:

Geographically: For example, hosts located in the same data center,
city, or country.
Application: Servers running similar applications, such as webs,
databases, backup, and so on.
Operating system or distribution: For example, to separate Linux and
Windows systems, Ubuntu, and Red Hat Enterprise Linux systems.
Environment: Such as development, test, production, and so on.

A host can be part of several groups, such as being part of development and
webservers group. A host can have associated different parameters related to
the connection or variables being used during the automation. Refer to the
following example:
[linux]

rhel ansible_host=192.168.122.226 ansible_password=Start123

ubuntu ansible_host=192.168.122.43 ansible_password=Start123

The previous example defines two hosts, rhel, and ubuntu, and the IP and
password configuration to connect to the nodes. The DNS, in this case, does

not need to be resolved; they are treated as an alias by Ansible. The previous
example can be rewritten, defining the common variables at the group level
instead at the host level as follows:
[linux]

rhel ansible_host=192.168.122.43

ubuntu ansible_host=192.168.122.226

[linux:vars]

ansible_user=agonzalez

ansible_password=Start123

owner=Alberto

In the previous example, a new variable to define the user to be used during
the connection is defined: ansible_user. Another variable, owner, which is
not used to define the connection, can be used by tasks or templates during
the automation. Some popular variables are listed table 12.4:

Variable Description

ansible_host Defines the DNS or IP to connect.

ansible_port Defines the port to be used for the connection.

ansible_password Not recommended to set it as plain text for security reasons; it
defines the password to be used for the connection. Recommended is
to use a private/public key or an encrypted value (vault).

ansible_user Defines the user to be used for the connection.

ansible_connection Specifies the connection to be used, for example:
ssh
local
winrm

ansible_become Indicates to force privilege escalation.

ansible_become_method Sets the privilege escalation method, for example:
su
sudo

ansible_become_user Sets the user to become through privilege escalation.

ansible_ssh_private_key_fil
e

Specifiles the private key to be used for SSH connection.

ansible_ssh_common_args Specifies the arguments to be used for SSH.

Table 12.4: Ansible variables on the inventory

Ansible auto generates two groups automatically:

all: It includes all the hosts defined in the inventory.
ungrouped: It includes all the hosts which do not belong to any group.

It is also possible to define groups containing another group, as is shown in
the following example:
anotherhost ansible_host=192.168.122.44

[production:children]
linux

windows

[linux]
rhel ansible_host=192.168.122.43

ubuntu ansible_host=192.168.122.226

[windows]
win01 ansible_host=192.168.122.33 ansible_connection=winrm

In the previous example, the group production will contain three hosts: rhel,
ubuntu, and win01. The node anotherhost will be part of the groups
ungrouped and all. Ansible provides a command named ansible-inventory
to query the inventory indicated to display the configured inventory. Figure
12.15 shows an example with the option --graph:

Figure 12.15: Output example for command ansible-inventory

With the option --graph it is possible to specify as an argument the group to
query. The option --list includes the variables defined for the hosts and
groups. Figure 12.16 shows an excerpt:

Figure 12.16: Output example for command ansible-inventory

Ansible allows separation of the variables for hosts and groups in separated
files. For that, it is possible to create two directories named host_vars and
group_vars. The following structure shows an example:
|-/etc/ansible/hosts
|--/etc/ansible/host_vars/
|---/etc/ansible/host_vars/all.yml
|---/etc/ansible/host_vars/rhel.yml
|---/etc/ansible/host_vars/ubuntu.yml
|--/etc/ansible/group_vars/
|---/etc/ansible/group_vars/all.yml
|---/etc/ansible/group_vars/linux.yml
|---/etc/ansible/group_vars/windows.yml

The inventory file for Ansible can be hosted in any part of the system. Then,
the structure will be similar, depending on the directory where the main
inventory file is located, as is shown:
|-/inventory/production/servers
|--/inventory/production/host_vars/
|---/inventory/production/host_vars/all.yml
|---/inventory/production/host_vars/rhel.yml
|---/inventory/production/host_vars/ubuntu.yml
|-/inventory/production/group_vars/
|---/inventory/production/group_vars/all.yml
|---/inventory/production/group_vars/linux.yml
|---/inventory/production/group_vars/windows.yml

Separating the variables in different files requires the definition to be in
YAML format. The following code shows an example for the windows.yml
file:
ansible_host: 192.168.122.33
ansible_connection: winrm

As described before, an inventory can be in YAML format. The previous
Inventory defined on INI format can be defined as YAML as the following:
all:

hosts:

anotherhost:

ansible_host: 192.168.122.44

children:

production:

children:

linux:

hosts:

rhel:

ansible_host: 192.168.122.43

ansible_password: Start123

ansible_user: agonzalez

owner: Alberto

ubuntu:

ansible_host: 192.168.122.226

ansible_password: Start123

ansible_user: agonzalez

owner: Alberto

windows:

hosts:

win01:

ansible_connection: winrm

ansible_host: 192.168.122.33

An inventory can contain a range of hosts; the following example will define
five Web servers in one line:
web0[1:5].example.com

AD-HOC actions

Ansible brings the command ansible to check connectivity to the nodes or
to perform simple tasks. This task is not saved in any file and does not need
any file to read the task to be performed. The syntax is as follows:
ansible [options] servers|groups|all|ungrouped -m module [-a
arguments]

The module used to check connectivity is named ping. If the connectivity is
correct, it will show the word “pong”, and the task will be marked as
SUCCESS. If the connection fails, it will be marked as UNREACHABLE. Figure
12.17 shows the two scenarios:

Figure 12.17: Output example for command ansible

Other common modules to be used in the ad-hoc mode are as follows:

command: Execute a command in the managed nodes.
shell: Execute a command in the managed node but using the shell
configuration.
copy: Copy a file to a remote node.

Figure 12.18 shows an example using the command module and the copy one.
Notice that the file /etc/ansible/hosts are the default ones; it is not
needed to specify them.

Figure 12.18: Output example for command ansible

The previous example executes the command uname -r on all the hosts
defined inside the group linux. The second command copies the file
/etc/hosts from the control node to the remote node, storing the file on
/tmp/hosts. As the destination file does not exist or the content is different,
the task is marked as CHANGED. When the content and properties of the file
are the same, the file is not modified, and the task is marked as SUCCESS, as
shown in figure 12.19:

Figure 12.19: Output example for command ansible

Ad-hoc should be used only on specific occasions, such as checking
connectivity or performing a quick task. It is recommended to write a
Playbook with the tasks defined to be able to reuse or perform modifications
when needed.

YAML
This data-serialization language is one of the most popular to define the
configuration for applications. The popularity is due to the readability; the
creation and the manipulation are easier than other formats such as XML and
JSON. In the previous section, Inventory, we introduced it to define hosts
and variables. The playbooks, tasks, and variables in Ansible will be defined
in YAML. The following block shows a valid YAML code:

name: Alberto
age: 38
married: False
technologies:
- Ansible

- Terraform

- Linux

data:
name: Alberto

lastname: Gonzalez
…

From the previous example, it is possible to observe the following concepts:

A YAML file starts with three dashes (-).
A YAML file ends with three dots (.).
A normal variable can contain a string (name) or a number (age). A
string can be wrapped using double or simple quotes.
It is possible to define boolean variables (married).
It is possible to define a variable containing a list of elements
(technologies).
It is possible to define a dictionary (data) that contains a key and a
value. To access the value, there are the following two ways:

data['name']

data.name

It is possible to have complex variables, such as list of lists, list of
dictionaries, or a value of a dictionary that can contain a list, among other
complex combinations. YAML gives the flexibility to define a variable
containing a value with multiple lines or with a long line. Using the special
characters pipe (|) and greater than (>). Refer to the following example:

separated_lines: |
Lorem ipsum dolor sit amet, consectetur adipiscing elit,

sed do eiusmod tempor incididunt ut labore et dolore magna

aliqua.

Ut enim ad minim veniam, quis nostrud exercitation ullamco

laboris

nisi ut aliquip ex ea commodo consequat.

joined_lines: >
Lorem ipsum dolor sit amet, consectetur adipiscing elit,

sed do eiusmod tempor incididunt ut labore et dolore magna

aliqua.

Ut enim ad minim veniam, quis nostrud exercitation ullamco

laboris

nisi ut aliquip ex ea commodo consequat.

…

Table 12.5 shows the result of the variable (where \n is the special character
for the new line):
separated_lines Lorem ipsum dolor sit amet, consectetur adipiscing elit,

\nsed do eiusmod tempor incididunt ut labore et dolore
magna aliqua. \nUt enim ad minim veniam, quis nostrud
exercitation ullamco laboris \nnisi ut aliquip ex ea
commodo consequat\n

joined_lines Lorem ipsum dolor sit amet, consectetur adipiscing elit,
sed do eiusmod tempor incididunt ut labore et dolore magna
aliqua. Ut enim ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo consequat\n

Table 12.5: Multiline Ansible variables examples

Ansible configuration
Certain settings in Ansible are adjustable using a configuration file named
ansible.cfg. The file can be generated using the command ansible-
config with the argument init. It is possible to use the option --disabled
to include all the options available. The option -t all includes all the
options for the plugins. The configuration file contains different sections,
and some examples are as follows:

[defaults]: Default options for Ansible tools.
[privilege_escalation]: Options for the privilege escalation, such as
sudo.
[persistent_connection]: Options for SSH persistent connection.
[colors]: Defines the colors used for the different statuses (changed,
error, and so on).
[galaxy]: Options for the public repository Ansible Galaxy.
[inventory]: Options for the inventory files and plugins.
[jinja2]: Options for the template system named Jinja2.
[ssh_connection]: Options for SSH.
[tags]: Options for the tags on Ansible.

Ansible will try to locate the ansible.cfg file in the following order:

ANSIBLE_CONFIG environment variable pointing to the location of the
ansible.cfg

Current directory
The file ~/.ansible.cfg
/etc/ansible/ansible.cfg

Some of the popular options in the configuration and the default values are
defined in table 12.6:

Option Default value Description

[defaults]

inventory /etc/ansible/hosts Default inventory source

forks 5 The maximum number of forks used to execute
tasks.

host_key_checki
ng

True Check the host key of the target hosts.

timeout 10 Default timeout for connection plugins to use

[privilege_escalation]

become False Toggles the use of privilege escalation

become_method sudo Privilege escalation method to use when
“become” is enabled.

become_user root The user your remote user “becomes”.

become_ask_pass False Toggle to prompt for privilege escalation
password.

[ssh_connection]

ssh_args -C -o
ControlMaster=auto -o
ControlPersist=60s

Arguments to pass to all SSH CLI tools.

control_path_di
r

~/.ansible/cp Directory to be used for ControlPath.

Table 12.6: Ansible configuration parameters

Playbooks

A Playbook contains a list of Plays to perform. A Play defines the hosts to
be administrated and a list of Tasks to perform on them. A Playbook contains
at least one Play. A Play contains at least one Task and the optionality to
connect to the systems and variables needed.
The format for the Playbook is YAML. The following example shows a
simple Playbook containing a Play.

- name: Configure Linux systems
hosts: linux
tasks:
- name: Copy resolv.conf file
ansible.builtin.copy:

src: /etc/resolv.conf

dest: /etc/resolv.conf

…

In the previous Playbook, example is defined as follows:

A single Play is defined with the name “Configure Linux Systems”.
The option name is not required but recommended.
The Play's tasks will be executed in the hosts within the group linux.
The option hosts is mandatory.
The Play contains only one task:

The Task has the name Copy resolv.conf file. It is a good
practice to specify the names for the tasks.
The module used is ansible.builtin.copy. This module copies a
file from the control node (where Ansible is executed) to the
remote hosts. The field copied in /etc/resolv.conf

Latest versions of Ansible prefixes core modules with
ansible.builtin. It is possible to omit it, but it is still
recommended to use it when other collections (described as
follows) are used.

As described previously, a Playbook can contain more than one Play. The
following example code shows two Plays, one to configure systems in group
linux and another Play to configure systems on the windows group.

- name: Configure Linux systems
hosts: linux
become: True
tasks:
- name: Copy resolv.conf file
ansible.builtin.copy:

src: /etc/resolv.conf
dest: /etc/resolv.conf

- name: Configure Windows systems
hosts: windows
tasks:
- name: Install 7-Zip
chocolatey.chocolatey.win_chocolatey:

name: 7zip
…

A Play can define connection parameters and variables to be used in the
tasks. The order to define the options, such as become, vars, or
remote_user in the following example, can be in the order desired by the
user.

- name: Configure Linux systems

hosts: linux

become: True
remote_user: agonzalez
vars:
environment: development

tasks:
(omitted)

…

After the creation of the Playbook file, the command ansible-playbook is
needed to execute it. It contains the same options as the command ansible,
but it requires an argument: the file to be used (usually with extension .yml
or .yaml). Figure 12.20 shows the execution of the first example:

Figure 12.20: Output example for command ansible-playbook

The previous example shows the connection was possible (task Gathering
Facts) but copying the resolv.conf failed because the /etc directory is not
writable. The Inventory used is configured to connect with the user
agonzalez. To be able to write in the file /etc/resolv.conf, we need to use
privilege escalation. This can be configured in the playbook (become), or it
is possible to use the option -b (--become) from the command ansible-
playbook, as illustrated in figure 12.21:

Figure 12.21: Output example for command ansible-playbook

The ansible-playbook commands show the result for the tasks performed
in the hosts.

If the task did not modify anything in the system, it will be marked as
ok.
If a task is modified in the system, it is marked as changed.
If it was not possible to connect to the system, it will be marked as
unreachable.
If a task throws an error, it will be marked as failed.
If a task was not executed in a host (because of conditions), it is
marked as skipped.
The value rescued is for the use of error handling, and ignored is used
when unreachable hosts are marked as ignored.

When a Playbook is executed, the first task is to gather the facts. The facts
are values collected from the system, such as the operating system,
distribution, and IP addresses, among other information. It is possible to
disable the collection of the data with the option gather_facts: False at
the Play level, as is shown in the following example:

- name: Configure Linux systems

hosts: linux

gather_facts: False

(omitted)

…

The command ansible-playbook includes the options --list-hosts and --
list-tasks, which are useful to see which hosts are going to be used and
the tasks defined in the Playbook. Figure 12.22 shows an example output:

Figure 12.22: Output example for command ansible-playbook

The option –list-tasks can be seen in figure 12.23:

Figure 12.23: Output example for command ansible-playbook

The popular available for the command ansible-playbook is shown in table
12.7:

Option Description

--syntax-check Check the syntax of the Playbook and the additional files required. It
does not execute the Playbook.

--check / -C It executes the playbook in check mode. It performs the tasks but
without modifying the system.

--step Ask if for each Task if it should be executed or not.

--start-at-task Starts the Playbook in the task indicated (by name value). Useful to
resume a failed Playbook.

--verbose / -v Enables the verbose mode. It is possible to specify -vvv (3) to show
more information and with -vvvv (4) more detailed information about
the connection to the hosts.

Table 12.7: Popular options for command Ansible-playbook

Variables
Ansible uses variables to manage differences between the hosts. For
example, it is possible to perform a task only when the distribution is a
specific one but skips it if it is a different one. It is possible to define
variables directly in a Playbook, Inventory, or a file and include it or specify
variables as options running ansible-playbook. Some examples of variable
use cases are as follows:

Define the port for an application, for example, a variable to define the
port 443 for a Web server in production or 8443 for development.
Specify the user to be used. For example, the user www-data for Ubuntu
and apache for CentOS systems.

Specify the configuration file. For example,
/etc/apache2/apache2.conf for Ubuntu and
/etc/httpd/conf/httpd.conf on CentOS.

When a variable is part of a string or template, it is needed to wrap it
between double curly brackets:
{{ variable }}

The module debug on Ansible allows the display of the value of a variable
using the argument var or showing a message on the screen with the
argument msg. This module is useful to ensure the proper value for the
variable is set. The following code shows an example:
- name: Variable examples
hosts: localhost
gather_facts: False
vars:
firstname: Alberto

tasks:
- name: Show variable name
ansible.builtin.debug:

var: firstname
- name: Show a message
ansible.builtin.debug:

msg: "Your name is {{ firstname }}"

In the previous example, there are some considerations to be taken into
account:

In Ansible, it is not mandatory to start with a triple dash and end with
triple dots.
The host localhost is always available, and the connection will be
local (not SSH).
It does not gather the facts.
A variable firstname is defined and is shown in two tasks.

The output of the execution of the previous Playbook is shown in figure
12.24:

Figure 12.24: Output example using variables

A variable defined in a Playbook can be overwritten using the argument --
extra-vars (-e). The following example in figure 12.25 shows the usage
of the option --start-at-task and how to override the value of the variable
firstname.

Figure 12.25: Output example using extra variables

Variable precedence
As described previously, a variable can be defined in many different places.
If a variable is defined in different places, Ansible will use the definition
with higher-order precedence. When writing a Playbook it is important to
define the name of the variables correctly, to avoid accidentally variable
overriding. For example, a variable named port is a bad option. If we are
defining the port for one application, then it is recommended to prefix it with
the name of the application, such as httpd_port. The following list shows

the order of precedence from least to greatest (the last listed variables
override all other variables):

1. Command line values (for example, -u my_user, these are not
variables)

2. Role defaults (defined in role/defaults/main.yml)
3. Inventory file group vars

a. inventory group_vars/all
b. inventory group_vars/*

4. Inventory file host vars

a. inventory host_vars/*

5. Host facts
6. Play option vars
7. Play option vars_prompt
8. Play option vars_files
9. Role vars (defined in role/vars/main.yml)

10. Block vars (only for tasks in the block)
11. Task vars (only for the task)
12. Task include_vars
13. set_facts / registered vars
14. role (and include_role) params
15. include params
16. extra vars (for example, -e “user=my_user”) (always win precedence)

Handlers
A handler is a task that will be executed only if another task is triggering it.
One of the most common use cases is to define a handler to restart a
service. This task will be only triggered if a configuration file is modified.
To define a handler, a task or several tasks will be defined inside the section
handlers. The task to trigger the action will use the special keyword named

notify. A task can notify several handler tasks. The following code
shows an example:
- name: Configure the httpd service
hosts: rhel
gather_facts: False
become: True
tasks:
- name: Copy the httpd.conf file
ansible.builtin.copy:

src: httpd.conf
dest: /etc/httpd/conf/httpd.conf
notify:

- Restart httpd

handlers:
- name: Restart httpd
ansible.builtin.service:

name: httpd
state: restarted

The previous example defines the following workflow:

The system to be configured is the system rhel.
The file httpd.conf will be copied to /etc/httpd/conf/httpd.conf

If the destination file is changed, it will notify Restart httpd
task.
If the destination file is not changed, the task is marked as ok.

The handlers section defines one task name Restart httpd, which will
restart the service httpd using Ansible’s module named service.

Figure 12.26 shows the output of the execution when the file is modified.

Figure 12.26: Output example using handlers

If the host to be configured has the correct configuration, then the service
will not be restarted to avoid unexpected downtimes of the service offered.
Figure 12.27 shows the output:

Figure 12.27: Output example using handlers

Include and import
Working with a single Playbook can contain many lines related to the
variable definition, tasks, and handlers. Ansible allows to split of the file and
includes them in the main file, using tasks or Play options. The possible
statements to perform are described in table 12.8:
Statement Description

include_vars A task inside the tasks section. Include a YAML file with the
variables. Example:
tasks:
- include_vars: variables_httpd.yaml

vars_files At Playbook level is possible to define the files containing variables
needed for the Playbook. Example:
- name: My playbook
hosts: webservers
vars_files:
- variables_httpd.yaml

import_playbook At Playbook level is possible to include external Playbooks.
Example:
- import_playbook: configure_httpd.yaml
- import_playbook: configure_mariadb.yaml

include_tasks
import_tasks

A task inside tasks section. It includes (or import) a list of tasks
defined in a file. It is possible to pass variables to the tasks. Example:
tasks:
- include_tasks: install_httpd.yaml
- import_tasks: configure_httpd.yaml
vars:
httpd_port: 443

It is possible to include tasks in the handlers section.

include_roles
import_roles

It includes a role (described as follows) inside the tasks section.
Example:
- import_role:

name: httpd
- include_role:

name: httpd

Table 12.8: Including files for variables, tasks, and roles syntax and examples.

Import statements are pre-processed at the time playbooks are parsed; the
include ones are processed during the execution of the playbook.

Facts and magic variables
When Ansible is connecting to a host, it gathers information about it by
default. The information is called facts. A special variable called
ansible_facts is filled with information about the remote system, such as
the operating system, the distribution, the IP addresses, system resource
information, and so on. It is possible to use the module debug to print the
information about the ansible_facts variable. The following code shows
the example (truncated, only some values are shown) output for a Ubuntu
system:
TASK [debug]

ok: [ubuntu] => {

"ansible_facts": {

"all_ipv4_addresses": [
"192.168.122.43",

"192.168.100.1"

],

"all_ipv6_addresses": [
"fe80::5054:ff:fe1a:9cc4",

"fe80::5054:ff:fe8f:d41a"

],

"architecture": "x86_64",
"discovered_interpreter_python": "/usr/bin/python3",
"distribution": "Ubuntu",
"distribution_major_version": "22",
"distribution_release": "jammy",
"distribution_version": "22.04",
"dns": {

"nameservers": [

"8.8.8.8"

]

},

"kernel": "5.15.0-50-generic",
"kernel_version": "#56-Ubuntu SMP Tue Sep 20 13:23:26 UTC
2022",

"memfree_mb": 1806,
"memtotal_mb": 3923,
"nodename": "ubuntu",
"os_family": "Debian",
"processor_count": 2,
}

}

The previous example shows just some of the options available in the
ansible_facts variable. The variable includes more information about the
system, such as detailed information about the ethernet network cards, disks,
and mount points.
Ansible has some magic variables which cannot be set directly by the user,
and Ansible will override the value based on the configuration or the facts
obtained. For the variables defined in the ansible_facts, it will be prefixed
by ansible_. For example, the os_family key from ansible_facts will be
accessible through the magic variable ansible_os_family.

Conditionals
It is possible to condition the execution of one task-based using the
expression when. The condition indicated can be if a variable has a specific
value or any comparison desired. In the following task example, the task will
be executed only if the ansible_distribution variable is equal to Ubuntu.
- name: Conditionals example
hosts: linux
become: True
tasks:
- name: Install apache2 package
ansible.builtin.apt:

name: apache2
when: ansible_distribution == "Ubuntu"

If the condition is evaluated as false, then the task will be skipped for the
specific host. Figure 12.28 shows the output example:

Figure 12.28: Output example using conditions

The simple comparing values are described in table 12.9:
Expression Description Example

item1 == item2 Check if two elements have
the same value.

ansible_distribution == "Ubuntu"

item1 != item2 Check if two elements have
a different value.

ansible_distribution != "Ubuntu"

item1 > item2 Check if item1 is greater
than item2

ansible_distribution_major_version > 15

item1 > item2 Check if item1 is greater or
equal to item2

ansible_processor_count >= 2

item1 < item2 Check if item1 is less than
item2

ansible_distribution_major_version < 15

item1 <= item2 Check if item1 is less or
equal to item2

ansible_processor_count <= 2

Table 12.9: Comparation expressions

Ansible allows more logical conditions, as described in table 12.10:
Expression Description Example

item1 ~ item2 Check if item1 is inside the
value of item2

"x86" ~ ansible_architecture

item1 in item2 Check if item1 is inside the
list of elements item2

ansible_distribution in ["Ubuntu",
"Debian"]

item1 not in item2 Check if item1 is not inside
the list of elements item2

ansible_distribution not in ["Ubuntu",
"Debian"]

item1 is defined Check if the variable item1
is defined

username is defined

item1 is not
defined

Check if the variable item1
is not defined

username is not defined

Table 12.10: Logical conditions expressions

Condition expressions can be combined with the words and as well as the
word or. The following example shows the usage, where task is a variable
defined by the user:

- name: Install apache2 package
ansible.builtin.apt:

name: apache2

when: ansible_distribution == "Ubuntu" and (

task is defined and task == "install")

Loops
With Ansible, it is possible to loop elements and perform a task for each of
the elements. It is possible to iterate over a simple list or complex variable,

such as a dictionary. Using the expression loop, it is possible to iterate over
simple and complex elements. The following example shows a simple
example:

- name: Install required packages
ansible.builtin.apt:

name: "{{ item }}"
loop:

- apache2

- php

- php-mysql

As observed in the previous example, the special variable item contains the
value for each element in a loop. Figure 12.29 shows the example output of
the previous task execution:

Figure 12.29: Output example using loops

The following example shows how to loop a list of dictionaries, which
contains the username and the group to be created. For that, the module user
is used.

- name: Create users
ansible.builtin.user:

name: "{{ item.name }}"
groups: "{{ item.groups }}"
loop:

- {name: "user1", groups: "users"}

- {name: "user2", groups: "users,sudo"}

Register
An Ansible’s task generates information about the execution. That
information can be saved in a variable using the expression register. This
is especially useful using the modules command or shell. The following code
shows an example:

- name: Run a command
ansible.builtin.command: hostname -I

register: hostname_output
- name: Show content of registered variable
ansible.builtin.debug:

var: hostname_output

Figure 12.30 shows the output of the debug task:

Figure 12.30: Output example using registered variables

A registered variable is a dictionary with the following popular keys:

changed: Indicates if the task changed the system.
cmd: The command executed (if we use command or shell).
failed: Indicates if the task failed.
rc: The exit code (if we use command or shell).
stderr / stderr_lines: The standard error output messages.
stdout / stdout_lines: The standard output messages.

To access one of the keys of the registered value, they are the following two
options:

- name: Show stdout of the variable (option 1)
ansible.builtin.debug:

msg: "Uptime: {{ hostname_output.stdout }}"

- name: Show stdout of the variable (option 2)
ansible.builtin.debug:

msg: "Uptime: {{ hostname_output['stdout'] }}"

Templates
A template is a dynamic file that includes variables and different statements:
conditions, loops, and so on. These templates use the language Jinja2, which
eases the definition of the templates, and YAML is easy to read. Table 12.11
shows the available popular syntax to be used in a Jinja2 template file:

Type Syntax Example

Variables {{ variable }} {{ ansible_fqdn }}

Condition {% if expression %}
statements
{% elif %}
statements
{% else %}
statements
{% endif %}

{% if purpose == "production" %}
ALERT: This is a production system.
{% else %}
This is NOT a production system.
{% endif %}

Loop {% for variable in list
%}
statements
{% endfor %}

allowed_users:
{% for user in userlist %}
- {{ user }}
{% endfor %}

Comment {# text #} {# This a comment #}

Table 12.11: Jinja2 template syntax

The module template processes the template where the Ansible tool is
executed (such as ansible-playbook), and the processed file is transferred
to the administrated host. The following template shows how to fill the file
/etc/hosts with the hosts in the Inventory.
127.0.0.1 localhost localhost.localdomain localhost4

::1 localhost localhost.localdomain localhost6

{% for host in play_hosts %}

{{ hostvars[host]['ansible_default_ipv4']['address'] }} {{ host

}}

{% endfor %}

The example task to process the template is as follows:
- name: Fill /etc/hosts

ansible.builtin.template:
src: hosts.j2
dest: /etc/hosts

Blocks
Ansible allows to group several tasks in a Block. This allows to specify a
different parameter such as become, become_user or user. The expression
used to define a Block is block, and it contains a list of tasks. The following
code shows a Play example using a block:
- name: Block example
hosts: linux
become: True
tasks:
- name: Install and configure Ubuntu systems
when: ansible_distribution == "Ubuntu"
block:
- name: Install required packages

ansible.builtin.apt:
name: "{{ item }}"

loop:
- apache2

- php

- php-mysql

- name: Generate index.html file
ansible.builtin.copy:
content: "Hello to {{ ansible_hostname }}"
dest: /var/www/html/index.html

List of popular modules
Ansible brings a big number of the core modules to perform a wide variety
of tasks in the managed hosts. The following list shows some of the modules
inside the ansible.builtin collection:

add_host: Add a host (and alternatively a group) to the ansible-
playbook in-memory inventory.
apt: Manages apt-packages.

apt_key: Add or remove an apt-key.
apt_repository: Add and remove APT repositories.
assemble: Assemble configuration files from fragments.
assert: Asserts that given expressions are true.
async_status: Obtain the status of an asynchronous task.
blockinfile: Inserts/updates/removes a text block surrounded by
marker lines.
command: Execute commands on targets.
copy: Copy files to remote locations.
cron: Manage cron.d and crontab entries.
debconf: Configure a .deb package.
debug: Print statements during execution.
dnf: Manages packages with the dnf package manager.
dpkg_selections: Dpkg package selections.
expect: Executes a command and responds to prompts.
fail: Fail with a custom message.
fetch: Fetch files from remote nodes.
file: Manage files and file properties.
find: Return a list of files based on specific criteria.
gather_facts: Gathers facts about remote hosts.
get_url: Downloads files from HTTP, HTTPS, or FTP to the node.
getent: A wrapper to the UNIX getent utility.
git: Deploy software (or files) from git checkouts.
group: Add or remove groups.
group_by: Create Ansible groups based on facts.
hostname: Manage hostname.
import_playbook: Import a playbook.
import_role: Import a role into a play.
import_tasks: Import a task list.
include: Include a task list.

include_role: Load and execute a role.
include_tasks: Dynamically include a task list.
include_vars: Load variables from files dynamically within a task.
iptables: Modify iptables rules.
known_hosts: Add or remove a host from the known_hosts file.
lineinfile: Manage lines in text files.
meta: Execute Ansible actions.
package: Generic OS package manager.
package_facts: Package information as facts.
pause: Pause playbook execution.
ping: Try to connect to the host, verify a usable python and return pong
on success.
pip: Manages Python library dependencies.
raw: Executes a low-down and dirty command.
reboot: Reboot a machine.
replace: Replace all instances of a particular string in a file using a
back-referenced regular expression.
rpm_key: Adds or removes a gpg key from the rpm db.
script: Runs a local script on a remote node after transferring it.
service: Manage services.
service_facts: Return service state information as fact data.
set_fact: Set host variable(s) and fact(s).
set_stats: Define and display stats for the current ansible run.
setup: Gathers facts about remote hosts.
shell: Execute shell commands on targets.
slurp: Slurps a file from remote nodes.
stat: Retrieve file or file system status.
subversion: Deploys a subversion repository.
systemd: Manage systemd units.
sysvinit: Manage SysV services.

tempfile: Creates temporary files and directories.
template: Template a file out to a target host.
unarchive: Unpacks an archive after (optionally) copying it from the
local machine.
uri: Interacts with Web services.
user: Manage user accounts.
validate_argument_spec: Validate role argument specs.
wait_for: Waits for a condition before continuing.
wait_for_connection: Waits until the remote system is
reachable/usable.
yum: Manages packages with the yum package manager.
yum_repository: Add or remove YUM repositories.

Roles
Roles organize Tasks, Variables, Handlers, Templates, and static files in a
directory. This structure can be reused in different projects. The directory
containing Roles is, by default, called roles. Inside, there is a folder with the
name of the role. The Role directory structure is as follows:
roles/role_name/

├── defaults

│ └── main.yml

├── files

├── handlers

│ └── main.yml

├── meta

│ └── main.yml

├── README.md

├── tasks

│ └── main.yml

├── templates

├── tests

│ ├── inventory

│ └── test.yml

└── vars

└── main.yml

The main.yml (or main.yaml) for each directory will be included
automatically when a role is included or imported. The meaning of each
directory is as follows:

tasks/main.yml: The main list of tasks that the role executes.
handlers/main.yml: List of tasks used as handlers.
defaults/main.yml: Default variables for the role. These variables have
the lowest priority of any variables available and can be easily
overridden by any other variable, including inventory variables.
vars/main.yml: Other variables for the role.
files/main.yml: Files that the role deploys.
meta/main.yml: Metadata for the role, including role dependencies.

From a Play, it is possible to include a list of roles using the expression
roles at the Play level. The following code shows an example:

- hosts: webservers
roles:
- common

- apache2

It is possible to include a role dynamically in the tasks section, using the
module include_role, or import statically, using the module import_role.
The following code shows both uses:

- hosts: webservers
tasks:
- name: Import common role
ansible.builtin.include_role:

name: common
- name: Include apache2 role
ansible.builtin.include_role:

name: apache2

vars:
port: 443

webdir: "/var/www/html/"

Collections
From version 2.10 of Ansible, a new distribution format for the content was
introduced. A collection can include Playbooks, Roles, Modules, and
Plugins. The main goal is to reduce the number of modules in the core of
Ansible and be more flexible with the new distribution of the content.
Collections have the format of namespace_name.collection_name. The
directory structure is the following:
ansible_collections/

└── namespace_name

└── collection_name

├── docs/

├── galaxy.yml

├── meta/

│ └── runtime.yml

├── plugins/

│ ├── modules/

│ │ └── module1.py

│ ├── inventory/

│ └── …/

├── README.md

├── roles/

│ ├── role1/

│ ├── role2/

│ └── …/

├── playbooks/

│ ├── files/

│ ├── vars/

│ ├── templates/

│ └── tasks/

└── tests/

To use a collection does not need to be included or imported. It is possible to
include directly in a task, as is shown in the following example:
- hosts: all
tasks:
- namespace_name.collection_name.module1:
myvar: somevalue

It is possible to import or include a role from a collection, as is shown in the
following example:
- hosts: all
tasks:
- ansible.builtin.import_role:
name: namespace_name.collection_name.role1:

Ansible Galaxy
Galaxy is a hub for finding and sharing Ansible content. It contains a big
number of collections and roles ready to use. The website is
https://galaxy.ansible.com/, and it is possible to search for content created
and supported by companies and by individuals.
Ansible brings the command ansible-galaxy, which allows users to create a
directory structure for roles and collections, and it allows them to download
and install roles from the hub. The syntax to create a directory structure are
as follows:

For roles:
ansible-galaxy role init [--init-path INIT_PATH] role_name
For collections:
ansible-galaxy collection init [--init-path INIT_PATH]
collection_name

To install a role or a collection, the argument to be used is install followed
by the name of the role (with format owner.role_name) or the collection
(with the full qualified collection named). Figure 12.31 shows the
installation of a common public role to manage Apache and a popular
collection to manage Postgresql.

https://galaxy.ansible.com/

Figure 12.31: Output example using ansible-galaxy

The following Playbook shows how to use the role to configure Apache2 and
the collection to obtain information about PostgreSQL:
- name: Install Apache2 and PostgreSQL
hosts: linux
become: true
tasks:
- name: Configure Apache2 on Ubuntu
when: ansible_distribution == "Ubuntu"
block:

- name: Install Apache2
ansible.builtin.include_role:
name: geerlingguy.apache

- name: Install Postgres on RHEL system
when: ansible_distribution == "RedHat"
block:

- name: Install postgresql packages
ansible.builtin.yum:
name: "{{ item }}"

loop:

- postgresql

- postgresql-server

- python3-psycopg2

- name: Initialize database if doesn't exist
ansible.builtin.command: /usr/bin/postgresql-setup --initdb
args:
creates: /var/lib/pgsql/data

- name: Start the service
ansible.builtin.service:
name: postgresql
state: started
enabled: true

- name: Get information
become_user: postgres
community.postgresql.postgresql_info:
register: postgres_info

- name: Print postgresql version
ansible.builtin.debug:

msg: "{{ postgres_info.version.raw }}"

Conclusion
With the growth of the elements managed in an IT infrastructure, it is
necessary to implement an IT automation solution. Historically, shell
scripting was used to perform repetitive tasks in an easy way. Nowadays, the
programming language Python is used to perform different tasks in the
system because it is easy to learn and powerful to perform different tasks.
An automation tool is required when multiple elements are managed, such as
network devices or different systems with a variety of operating systems,
Linux distributions, applications, and so on. The most popular tool is
Ansible because it is easy to use and does not require special configurations
or agents installed in the managed elements.

Key facts
Shell scripting is an easy and powerful way to perform simple tasks in
a system.

Python is the easiest programming language to learn to perform
automation.
Ansible is the most popular automation tool for managing IT
infrastructures.

Questions
1. How is the name of the first line of a script starting with #!?

a. shebang
b. interpreter
c. posix

2. What function in a shell script is used to introduce data from the
keyboard?

a. input
b. read
c. prompt

3. What Python module includes the function sleep?

a. sys
b. time
c. os

4. What Ansible inventory variable defines the user used to connect to the
system?

a. ansible_user
b. ansible_username
c. ansible_login

5. What option in the command ansible-playbook is used to start a
specific task?

a. --skip-previous-tasks
b. --starting-task
c. --start-at-task

Answers
1. a
2. b
3. b
4. a
5. c

CHAPTER 13
Containers and CI/CD

Introduction
Containers is one of the most popular technologies at the present time. Companies
around the world started modernization of the applications and infrastructure to adapt
them to the cloud and to the more agile ways to work. The popularity of the project
Docker helped to make Linux containers a trend, which many companies adopted as a
standard to deploy new applications. New open-source solutions to run containers got
popularity as alternatives to Docker, where Podman is one of the most popular and
used solutions. Kubernetes as orchestration and advanced solution got popularity in
the market, where Kubernetes Distributions provided another layer to help
developers and end users build and run the software.
Modernization of applications brought new practices to develop, test, and release
software to production. This includes the following:

Continuous Integration (CI): The practice of automating the integration of
code changes from multiple contributors into a single software project.
Continuous Delivery (CD): The practice where the code changes are
automatically prepared for a release to production.

Structure
In this chapter, we will discuss the following topics:

Introduction to containers and images
Docker
Image Registry
Podman
Container runtimes
Kubernetes
Introduction to continuous integration/delivery
Jenkins, GitLab CI/CD, and GitHub Actions

Introduction to containers and images

Containers are not something new. They were historically used to isolate resources at
the user level and application level. On Linux, the first approach to isolate system
components before the containers was called chroot (also known as jail). It was used to
isolate applications and users between them, but with the limitation of it being unable
to isolate physical resources (memory, CPU, or devices). The first implementations of
chroot started in the 80s decade.
Since the year 2000, new implementations to isolate resources appeared, not only on
Linux systems but on UNIX systems (BSD systems, Solaris, and AIX) and Windows.
Virtuozzo was a pioneer company in developing software to isolate resources at the
operating system level. The solution was called the same name as the company, and it
was proprietary software. In the year 2005, the company released, with an open-source
license, the software OpenVZ. This software is still popular and used by different
companies, especially those that offer Virtual Private Servers (VPS) at low cost.
Between 2000 and 2005, the technology advanced in the resource isolation level on
UNIX systems. FreeBSD (a UNIX operating system) implemented “FreeBSD jail”,
similar to chroot, but able to isolate resources. In the year 2001, Linux-Vserver
appeared as a free alternative to Virtuozzo, and this solution is considered the
predecessor to the current Containers technology. In the year 2004, one of the best
solutions to isolate resources appeared—Solaris zones. The zones were considered one
of the best resource isolations till Docker appeared. Until the appearance of Docker in
the year 2013, resource isolation was worth mentioning the following:

Workloard partitions (WPARs) for the operating system IBM AIX in the year
2007.
HP-UX Containers for the operating system called HP-UX also in the year 2007.
Linux Containers (LXC) in the year 2008.

In the first years of Docker (2013 and 2014), it was using LXC to run Containers.
From version 0.9, it started to use its own library (libcontainer) to handle the
Containers.

Containers versus virtualization
In the beginning, the popularity of the Containers led to questions about how it was
different from traditional Virtualization. The Virtualization technology consists of
adding an abstraction layer for the physical resources, with the objective of improving
the use of the resources. With the introduction of Virtualization, it is possible to create
several different emulated environments (Virtual Machines) for different resources.
Thanks to Virtualization, it is possible to run Virtual Machines with different
operating systems and with isolated resources (CPU, Memory, and Devices) inside of
the same physical system. That allowed the companies to reduce costs by grouping
services running in different physical systems in only one system, migrating the

services to Virtual Machines. There are different types of Virtualization, but the two
most used nowadays are as follows:

Full Virtualization: The Virtual Machine does not have direct access to the
physical resources, and they require to have an upper layer to access them. Some
software examples are as follows:

Oracle VirtualBox
QEMU
Hyper-V
VMware ESXi

OS-Level Virtualization: This is where Containers are located. It is the
Operating System, and not the hardware, that is responsible for isolating the
resources and providing the tools to create, manipulate or manage the state of the
Containers (term used instead Virtual Machine).

Refer to figure 13.1 to see the difference between hardware and OS-Level
Virtualization:

Figure 13.1: Different between hardware and OS-level Virtualization

Container content
A Container contains everything that is needed to execute one or multiple
applications. A Container does not have a full guest operating system as a Virtual
Machine does. The size of a Container is smaller and includes only the following:

Operating System libraries: Only the libraries required to run the applications
would be included. For example, an SSL library, in the case of a Web server
application, requires a secure connection.

Operating system tools: This can contain some tools needed for the application
or to perform troubleshooting.
Runtime: Some software is needed to execute the application inside the
container. For example:

Interpreters: To run applications such as Python, PHP, or Perl.
Binaries for compiled languages, such as Java or Go.

Application files: These are similar to the files that need to be interpreted, the
binaries to run applications, configuration files, or any file needed for the
application to be executed inside the Container.

A Container can execute several applications inside, but it is recommended to
separate applications into several applications. The concept of Microservices consists
in running small independent services which can be managed individually. That is part
of the modernization to avoid having Monolithic architectures. Some reasons to
separate services in different containers are as follows:

Monitor applications individually.
Limit resources accessible from the applications.
Able to restart applications without affecting others.
Scale up/down specific applications (services).

Images
As described previously, a Container contains everything that is needed to execute an
application. An Image is a base to run Containers and to create a child image. The
image has different layers (the Kernel, the minimal required files for the operating
system, the libraries, and the customization). A Base Image is used to generate other
images. Figure 13.2 features the base image.

Figure 13.2: Base image. Source: Docker

After new software and files are added to the Base Image, a new Image is generated
with the modifications. Figure 13.3 shows the different layers applied to a Base Image
based on Debian, configured to have a Web server installed and ready to be used.

Figure 13.3: Adaption of the base image with the software needed

The layers represented in figure 13.3 are as follows:

Base Image with Debian
Adding configuration to the Base Image
Installing Apache in the previous layer

A Container based on this generated Image will be based on the Debian base image
and will have configuration added. Apache is also installed. Any Image can be used by
several containers at the same time. An Image has a history track and version control,
and this helps show what changes were made in each layer. It is possible to go back to
a previous version of it.
Cloud Providers, such as AWS or Google Cloud, offer the possibility to run containers
on their platform. This is an ideal solution for customers who do not want to maintain a
platform and want to modernize their applications.

Image registry

An Image can be generated locally and stored in the system where the container will
be executed. But the purpose of Images is to be used by Containers in different
environments and systems. An Image Registry is a repository to store the Images to
be used. This Registry can be a public one or a private one inside the infrastructure
where it will be used.
When a Container is created, it refers to an Image, and if it is not downloaded
previously, it will be automatically pulled from the Image Registry. Some popular
public repositories are as follows:

Docker Hub: The most popular repository. When Docker became popular, it
was the main repository for public images to be used.
Quay: A open-source repository with the possibility to deploy as on-promise.

An Image Registry enables users to build, organize, distribute and deploy containers.
Figure 13.4 shows an example workflow where the developer builds an Image and
publishes it to an Image Registry. After the automatic tests are passed, they can be
released to production to be used by the end users.

Figure 13.4: Image registry workflow example

Docker
The project Docker was a revolution in the IT Industry because it made it easier to
implement Containers. Traditionally, Virtualization was a fresh air of change for the
companies to reduce costs and complexity in their infrastructures. However, it did not
solve all the problems related to the development of the applications and the systems
that were deployed. The introduction of the Containers in the development life-cycle
helped Developers to be able to perform their tasks without the need for the creation of
specific environments. Using the solution provided by Docker, they were able to use
their own workstation or a server provided by the IT team to run their own applications

inside Containers and generate Images that would be promoted to a different
environment (such as testing, pre-production, or production).
The popularity and implementation of Containers also helped the developers be able
to isolate their applications and create Microservices, as described previously. This
made the development team more flexible and less dependent on the infrastructure
team. A new role named DevOps appeared with the implementation of Containers and
new practices focused on the Cloud.
Docker is based on a Daemon running, which will monitor the status of the Containers
running in the system. This further allows it to start or stop the containers, among other
tasks. Docker is available on Linux, Windows, and Mac systems. Docker has two
main products:

Docker engine: is an open-source containerization technology for building and
containerizing your applications.
Docker desktop: is an application for MacOS and Windows machines for the
building and sharing of containerized applications and microservices.

The steps for Docker Engine installation in different Linux distributions are detailed
in the following link: https://docs.docker.com/engine/install/. After the installation, a
service called docker.service is available in the system to start, stop, or obtain status.
When the Docker Daemon is started, it is possible to use the command docker to
perform different tasks with containers and images.

Run the first container
The first command is to run a sample container. Refer to the figure 13.5:

https://docs.docker.com/engine/install/

Figure 13.5: First container execution with Docker

Obtain information about client and server
The command docker allows, as the first argument, the word run to execute a
container. A Container is based on an Image, and the argument hello-world indicates
the image to be used. The first line of the output indicates that the Image was not
downloaded previously. The Image is downloaded automatically, and then the
Container is created using it. The rest of the output comes from the execution. This
container will be automatically stopped after showing the message.
The command docker info shows information about the client and the server. The
following code shows an example output:
root@ubuntu:~# docker info

Client:

Context: default

Debug Mode: false

Plugins:

app: Docker App (Docker Inc., v0.9.1-beta3)

buildx: Docker Buildx (Docker Inc., v0.9.1-docker)

compose: Docker Compose (Docker Inc., v2.12.2)

scan: Docker Scan (Docker Inc., v0.21.0)

Server:

Containers: 1

Running: 0

Paused: 0

Stopped: 1

Images: 1

Server Version: 20.10.21

Storage Driver: overlay2

Backing Filesystem: extfs

(omitted)

Logging Driver: json-file

Cgroup Driver: systemd

Cgroup Version: 2

Plugins:

Volume: local

Network: bridge host ipvlan macvlan null overlay

Log: awslogs fluentd gcplogs gelf journald json-file local logentries

splunk syslog

Swarm: inactive

Runtimes: io.containerd.runc.v2 io.containerd.runtime.v1.linux runc

Default Runtime: runc

Init Binary: docker-init

containerd version: 1c90a442489720eec95342e1789ee8a5e1b9536f

runc version: v1.1.4-0-g5fd4c4d

init version: de40ad0

(omitted)

Kernel Version: 5.15.0-52-generic

Operating System: Ubuntu 22.04.1 LTS

OSType: linux

Architecture: x86_64

CPUs: 2

Total Memory: 3.832GiB

Name: ubuntu

ID: SEHR:ROON:MTHA:DFD2:A4S3:56BX:IDC6:NP34:SZO3:7WYD:XYC4:3S5Z

Docker Root Dir: /var/lib/docker

Debug Mode: false

Registry: https://index.docker.io/v1/

Labels:

Experimental: false

Insecure Registries:

127.0.0.0/8

Live Restore Enabled: false

The preceding output provides useful information about the Docker Client and the
Docker Daemon :

The client has enabled the plugins: app (used to run containers), buildx (used to
generate images), compose (used for orchestration), and scan (to check
vulnerabilities on local images).
The server has one container and is stopped (the previous example executed); it
uses the storage driver called overlay2 and the driver json-file for the logging.
The output lists the available plugins for volumes, network, and logging.
The server uses the runtime named containerd. The data will be stored in the
directory /var/lib/docker.
The output shows information about the system where it is running, such as the
distribution version, Kernel version, available CPUs, and memory.

Operate with containers
The argument ps for the command docker will list the Containers running in the
system. Adding the option -a will display the containers, which are stopped. Figure
13.6 shows an output example:

Figure 13.6: Output example for listing containers

The previous output includes the following columns:

Container ID: When a container is created, an auto-generated ID is assigned to
it. The length is 64, but the output shows the first 12 characters.
Image: The image used to run the container.
Command: The command executed inside of the container.
Created: When the container was created.
Status: The status of the container; if it was exited, it will indicate when it was
stopped, and the status (0 indicates the container finished correctly).
Ports: Forwarded ports to access the service offered by the container. In the
previous example, no ports were exposed.
Names: The name of the container. If a name is not specified during the
execution, an auto-generated one is assigned.

An Image has configured a command to be executed when it is referenced by a
container. Using docker run, it is possible to specify the command to be used instead

of the default one. With the option --name, it is possible to specify a custom name.
Figure 13.7 shows an example using the image debian and setting the name of the
container to mydeb.

Figure 13.7: Running a container with a custom name and command

The argument ps for the command docker allows the option -l to list the information
about the last container executed, as is shown in figure 13.8:

Figure 13.8: Example output for the argument ps with the option -l

It is possible to interact with a container after creating it. This is useful for
troubleshooting. The options used for this purpose are as follows:

--tty (-t): Allocate a pseudo-TTY
--interactive (-i): Keeps standard input (STDIN) open.

Figure 13.9 shows how to execute a new container and operate inside a shell console:

Figure 13.9: Example using the options -ti with the argument run

The hostname of the pod is assigned to the auto-generated ID for the pod. It is possible
to specify the hostname for the pod with the option --hostname (-h). Exiting a
container by writing the command exit in the shell, the container will be stopped after
the session is closed. To disconnect from the container without stopping it, it is
required to press the combination Ctrl-P followed by Ctrl-Q.
To access the logs generated by the container, the command docker and the argument
logs are required. It is possible to specify the name of the container or the ID in long
format (64 characters) or short format (12 characters). Figure 13.10 shows the logs
from the previous container:

Figure 13.10: Example obtaining the logs from a container

The argument inspect for the command docker, followed by the name or identifier of
the container, will result in a long output with the information. It will return
information detailed information, such as the full ID, the command executed, the date
when it was created, and the network and storage information, among other
information, as is shown in the following code (output is truncated):
[

{

"Id":
"df23a4a05d1d297c70ec1691564b48613293f33217c86309022b2d7fdd9cebd1",

"Created": "2022-10-30T17:08:05.656823543Z",
"Path": "/bin/bash",
"Args": [],

"State": {
"Status": "running",
"Running": true,
"Paused": false,

"Restarting": false,

"OOMKilled": false,

"Dead": false,

"Pid": 9277,

"ExitCode": 0,

"Error": "",

"StartedAt": "2022-10-30T17:08:05.853482107Z",

"FinishedAt": "0001-01-01T00:00:00Z"

},

(omitted)

"Name": "/testconsole",
(omitted)

"Config": {
"Hostname": "e67b41d7cc70",
(omitted)

"Image": "debian",
"Volumes": null,

"WorkingDir": "",

(omitted)

},

"NetworkSettings": {

(omitted)

"Gateway": "172.17.0.1",
"GlobalIPv6Address": "",

"GlobalIPv6PrefixLen": 0,

"IPAddress": "172.17.0.2",
"IPPrefixLen": 16,

"IPv6Gateway": "",

"MacAddress": "02:42:ac:11:00:02",
"Networks": {

"bridge": {

(omitted)

}

}

}

}

]

The previous input shows that the container was based on the image debian and the
command executed was /bin/bash. The IP assigned was 172.17.0.2, and the gateway
was 172.17.0.1. The pod will have direct access to other running containers using the
same network, and it will have access to the internet through the gateway.
A Container can be executed to perform an operation and be executed in the
background. For this purpose, the option used is --detach (-d). Figure 13.11 shows
an example of the execution of a Container to print the current time every 5 seconds,
keeping the container running till it is stopped.

Figure 13.11: Example running a detached container

Using the argument logs with the option --follow (-f), it is possible to check the
progress of the Container execution and the logs generated, as is shown in figure 13.12.

Figure 13.12: Example output logs for a container

To stop a container, the argument used is, stop. Docker will wait 10 seconds till the
application is stopped. If it is not stopped in that period, the Container will be
forcefully stopped. It is possible to override that waiting time using the option --time
(-t), followed by the number of seconds. Figure 13.13 shows how to stop the
previous container:

Figure 13.13: Example use of the argument stop

Using the argument ps with option -l, as indicated previously, it is possible to set the
exit code for the container after being stopped. Figure 13.14 shows the output
example:

Figure 13.14: Example exit code for a container

When the exit code is greater than 128, it means that it was unexpectedly stopped. In
the previous example, the code 137 means it was stopped forcefully (137–129 = 9)
with a signal SIGKILL (9). It is important to remember that the IP assigned to the
container will be released when it is stopped and can be reused by another one.
The argument start for the command docker allows restarting a stopped Container.
When it is started, a new IP address from the available ones will be assigned.

Exposing containers
By default, a Container is only internally accessible from the host (where the Docker
Daemon is) where it is running. When Docker is installed, a private network called
bridge is created and used by default. The subnet configured by default is
172.17.0.0/16. Figure 13.15 shows how to run a container using the image httpd,
which contains a default installation of Apache2.

Figure 13.15: Example accessing a container

After the Image is downloaded from the public repository and the container is
executed, it is possible to inspect the container to obtain the IP assigned, as is shown in
figure 13.16:

Figure 13.16: Example accessing a container

Using that IP, it is possible to access the host where Docker is running. As this
Container is a Web server, it is possible to access using the tool curl. Figure 13.17
shows an example:

Figure 13.17: Example accessing the container

In many services that will be executed inside a platform with Containers, we will
want to expose the service externally. The command docker with the argument run
allows two options to externally expose a container:

--publish-all (-P): Publish all exposed ports to random ports.
--publish (p): Manually specifies a list of the ports to be exposed to the host.

With the first option, Docker will review the ports configured in the image to be
exposed, and it will assign a random port to it. In the following example shown in
figure 13.18, a new container using the image httpd is executed with the option --
publish-all.

Figure 13.18: Example publishing random ports of a container

In the previous example, the random port 49153 in the host on the protocol IPv4 and
IPv6 will redirect the request to port 80 of the Container named mywebserver2 that is
just created. Using the command curl, it is possible to test it, as shown in figure 13.19:

Figure 13.19: Example accessing the container

Along with the option --publish (-p), the port in the host that will be used for the
redirection, is also needed to be specified. Three formats are available, as shown in
table 13.1:

Format Description

host_port:container_port Redirects the port host_port to container_port. All IPS available in the
server will listen in the host_port.

IP:port_host:port_container Similar to the previous format, but specifying only one IP, which will listen to
the port host_port.

IP::port_container In this format, the same port will be used in the container and in the host. For
example, if the container exposes port 8080, the same port will be used in the
host.

Table 13.1: Formats to be used with the --publish (-p) option

Figure 13.20 shows how to run a Container and listen in port 8080 in the host, and
redirect the request to port 80 in the container.

Figure 13.20: Example publishing a specific port of a container

It is also possible to use the argument port, followed by the name or identification of
the container, to list the ports exposed, as is shown in figure 13.21:

Figure 13.21: Example output for port argument

The communication redirection between the host and the Container is made using
iptables. Figure 13.22 shows how to list the rules in the table nat used by Docker:

Figure 13.22: Example output for iptables rules related to Docker

Container actions
The command Docker contains many actions, which can be performed to operate with
containers. The following list shows the most used arguments and an example for each
of them.

create: Allows the creation of a container without executing it. Useful to
predefined containers before executing them. Refer to figure 13.23:

Figure 13.23: Example of creating a new container

restart: It stops and starts a container that was running. It is possible to specify
the option --time (-t) to indicate how many seconds to wait before stopping it
forcefully. Refer to figure 13.24:

Figure 13.24: Example restarting a container

rename: It renames a container to a new name. Refer to figure 13.25:

Figure 13.25: Example renaming a container

pause/unpause: Pauses or resumes the processes running inside the container
specified. Refer to figure 13.26:

Figure 13.26: Example pausing and resuming a container

kill: It stops the container forcefully. The option possible is --signal (-s) to
specify the signal to be used; the default is SIGKILL. Refer to figure 13.27:

Figure 13.27: Example of killing a container

top: Shows the list of the processes with detailed information running inside of
the container. It is possible to add the options of the ps command after the name
or identification of the container. Refer to figure 13.28:

Figure 13.28: Example using the argument top

rm: It removes a container that is stopped unless the option --force (-f) is
specified. With the option --volumes (-v), it will delete the volumes (discussed
as follows) associated with the container. Refer to figure 13.29:

Figure 13.29: Example of removing a container

exec: It executes a command inside a running container. Refer to figure 13.30:

Figure 13.30: Example of executing a command in a running container

The popular options are as follows:

--detach (-d): executes the command in the background.
--interactive (-i): interactive mode to introduce commands
--tty (-t): allocates a pseudo-TTY.

Figure 13.31: Example accessing a container

export/import: The argument export makes a backup of a running or stopped
container, and it will generate a tar file with the content. Refer to figure 13.32:

Figure 13.32: Example exporting a container

To import a container, we first need to create an image from the backup and then
create a container using that image. Refer to figure 13.33:

Figure 13.33: Example importing a container as an image

inspect: This argument was described previously; the option --format (-f)
allows access to specific data from detailed information. The required format is
{{ .Category.Element Figure 13.34 shows some examples:

Figure 13.34: Example of inspecting a container

By default, the data inside the container is lost when the container is removed. It
is possible to have persistent storage inside the containers. Using the option --
volume (-v), it is possible to specify a directory from the server where Docker
Daemon is running and is going to be mounted inside the container. Figure
13.35 shows us how to use a directory in the host to store the HTML files to be
used by the container.

Figure 13.35: Example mounting a directory from the host to the container

The command docker has the argument volume to list, create and remove
volumes from the system. Figure 13.36 shows how to create a volume, which
can be accessible from the directory /var/lib/docker/volumes/, as well as
how to use the option --volume to specify it to be mounted on the container.

Figure 13.36: Example of creating a volume and specifying it during container creation

Docker server statistics and events
From the Docker Client (command docker), it is possible to obtain the statistics of the
usage of the Docker Daemon. The argument stats can be used to get statistics of the
running Containers, all the Containers (--all/-a), or a specific list of the containers
desired. Figure 13.37 shows the output example:

Figure 13.37: Example output using the argument stats

The client also provides the option to visualize the events generated or see in real-time
what is happening in the server. The argument used is events, and the options are as
follows:

--filter (-f): Filter the output with the specified filter.

--since: Shows the records from the specified date.
--until: Shows the records until the specified date.

If no options are specified, the client will wait for new events to appear, and it will
show them on the screen. The option --filter (-f) allows the different filters, the
most common ones being:

container=container: Filter by the container (name or identifier).
event=action: Filter by event type.
image=image: Filter by image (name or identifier).
label=key or label=value: Filter by a label.
type=[container | image | volume | network | daemon]: Filter for the objected
which generated the event.
volume=volume: Filter by volume (name or identifier)
network=network: Filter by internal Docker network (name or identifier).
daemon=service: Filter by a service (name or identifier).

Figure 13.38 shows an example of filtering for a specific period and the tasks related
to the image, showing the imported image example described previously.

Figure 13.38: Example of output using the argument events

Image registry
Docker allows to create custom images and publish them in a private or public Image
Registry. An Image can be stored locally in order to be published to the registry. An
Image has a name and a tag. The tag helps to specify a version of an application or
base system, such as httpd:2.4 or ubuntu:22.04. The tag can also specify a string to
specify name-based version ubuntu:jammy or ubuntu:latest (to always use the latest
image available for Ubuntu). In creating an image, the user can specify the tag desired
without any restraint.
To generate an image, there are the following two main options:

Convert a container to an image: This generation is a manual task and requires
to configure a Container. This is the less recommended option. The following
two options are available using docker client:

Using export and import arguments as described previously.

Using argument commit and tag. Figure 13.39 shows an example:

Figure 13.39: Example of using the argument commit

Using a template: A file usually named Dockerfile is used as a reference for
the argument build for the command docker.

An example of a Dockerfile is as follows:
FROM ubuntu:latest

RUN apt-get update && apt-get install -y apache2

RUN echo "Image generated" > /var/www/html/index.html

COPY test.html /var/www/html/test.html

EXPOSE 80

CMD /usr/sbin/apache2ctl -D FOREGROUND

The instructions used in the previous example are as follows:

FROM: Indicates the base image to be configured. A valid Dockerfile must
start with this instruction.
RUN: Executes commands inside the base image. Each RUN generates a layer
for the image; it is recommended to group them and reduce the number of these
instructions.
COPY: Copy files to the inside of the base image. The file needs to be relative
to the directory where the Dockerfile is.
EXPOSE: Specifies which port or ports will be exposed when the container
using this image will use the option --publish-all (-P).
CMD: The default command to be executed when the container starts using this
image.

To build an Image from a Dockerfile template, the command docker with the
argument build is used. The option to specify the target name image and the tag is the
option --tag (-t). The argument build requires a context directory where the
Dockerfile is located. Figure 13.40 shows the building process of the previous
example:

Figure 13.40: Example of building a new Image

The argument history followed by an image will show the layers and the task
performed in each of them. Figure 13.41 shows the example with the image built
previously.

Figure 13.41: Example output using the argument history

The generated image will be available locally, and it is possible to use it to create a
container based on it. Figure 13.42 shows an example:

Figure 13.42: Example of creating a Container from the generated Image

Other useful statements available in a Dockerfile are described in table 13.2:
Statement Description

LABEL Adds metadata to an image. Information such as the maintainer, the software
version, or any other information.

ADD Adds files to the image. The differences with COPY are two:

If a directory is specified, only the content is copied and not the parent
directory.
If the file to be added is a compressed file, it will be automatically
uncompressed

ENTRYPOINT By default, containers are used to execute the commands specified using
/bin/sh. With this statement, it is possible to change this behavior, specifying
other commands as an entry.

VOLUME Specifies the volumes to be created to have persistent storage.

USER Specifies the user to be used to execute the commands specified in the
Dockerfile.

WORKDIR Sets the working directory inside of the container.

ENV Sets the environment variables inside of the image.

ARG Specifies the arguments which can be accepted using the option --build-args

HEALTHCHECK Specifies health check tests to ensure the container is working properly.

Table 13.2: Statements available in Dockerfile

After the Image is generated, it is possible to publish it to a public registry, such as
https://hub.docker.com or https://www.quay.io. It is possible to create a free account
for personal usage and store-created images. Other plans for companies are available.
After an account is created, it is possible to use the argument login from the command
docker to perform a login before to publish the desired Image. Figure 13.43 shows the
login example to Docker Hub.

https://hub.docker.com/
https://www.quay.io/

Figure 13.43: Example of logging into Docker Hub

After the login succeeds, the Image needs to be tagged with the correct format for the
desired repository. For Docker Hub, the format is
docker.io/USERNAME/nameimage:tag. After the Image has the correct name, the
argument publish will upload and create the image in the repository. Figure 13.44
shows the tagging and the publishing task:

Figure 13.44: Example of pushing an Image to Docker Hub

After the image is published, the image is available in the Docker Hub portal. As the
image did not specify any image tag, it is tagged locally and in the registry with the
word latest. Figure 13.45 shows the Docker Hub portal for the image published:

Figure 13.45: Example of Docker Hub portal

This image can be downloaded from another system, as can be observed in figure
13.46:

Figure 13.46: Example of output pulling an image from the public repository

An Image, as a Container, can be inspected to get detailed information about it. With
the arguments image inspect, followed by the Image Id or the name, the information
will be shown on the screen. The following code (truncated) shows the output for the
previously downloaded image:
[

{

"Id":

"sha256:f1715312940c0c43b4c5d7b01d78a4106d4532df429611fd993887da6de71

584",

"RepoTags": [

"linuxservercb/ubuntuapache:latest"

],

"": [

"lRepoDigestsinuxservercb/ubuntuapache@sha256:58557aced96f8d937178

29e2ba6e418e15ea0992e4c83c8659f6f21cead26381"

],

(omitted)

"Config": {

(omitted)

"Cmd": [

"/bin/sh",

"-c",

"/usr/sbin/apache2ctl -D FOREGROUND"

],

"Image":

"sha256:14efd05a5ac026c330095be5c099f8bcfd0b6c82da8dc2853c7aaeaf4e

9c1e19",

},

"Architecture": "amd64",

"Os": "linux",

"Size": 225124187,

"VirtualSize": 225124187,

(omitted)

},

"RootFS": {

"Type": "layers",

"Layers": [

"sha256:7ea4455e747ead87d6cc1c4efaf3a79530a931a0856a9f9ce9ac2d8

d45bd3c28",

"sha256:bcebbf94eb56506a9f1f6bc38f5a6bbf1fc74d03af0cbb4eb137ad6

e107279fa",

"sha256:0ff7c267b89e80ad4571a737758fa48f57a80cbddc52351bbab565c

70b875c77",

"sha256:ddf96998d2d70c418c2abee60746ff92b58dffdd16fa68d3fd4cdca

9366c5a85"

]

},

(omitted)

}

]

There is the possibility to run a private Image Registry, to not publish globally the
images generated. This is usually required for enterprises with custom applications
developed internally. There are different alternatives to running a private Image
Registry; the popular and easiest way is using the Image provided by Docker. The
name and the version of the image is registry:2. To expose it outside the system, it is
required to use an SSL certificate to accept connections from remote sources. The
following code was used to generate a self-signed certificate:
openssl req -newkey rsa:4096 -nodes -sha256 -keyout certs/domain.key \
-addext "subjectAltName = DNS:registry.example.com" \

-x509 -days 365 -out certs/domain.crt \

-subj

"/C=ES/ST=Madrid/L=Madrid/O=example/OU=com/CN=registry.example.com"

The image registry was executed using docker with the argument run, using the image
registry:2. The environment variables specify where the certificates are.
docker run -d --restart=always --name registry -v "$(pwd)"/certs:/certs

\

-e REGISTRY_HTTP_TLS_CERTIFICATE=/certs/domain.crt \

-e REGISTRY_HTTP_TLS_KEY=/certs/domain.key \

-p 5000:5000 registry:2

To publish an Image to a dedicated Image Registry, it is required to specify the DNS
name of the server or the IP, followed by the port where the service is running. Figure

13.47 shows how to tag and publish the image:

Figure 13.47: Example pushing an image to a local registry

Non-official repositories should be added in the file /etc/docker/daemon.json. The
daemon needs to be restarted to get the new configuration. After that, it is possible to
publish and pull images from the registries configured.

Podman
Podman is an alternative to Docker that is getting popular on Red Hat Enterprise
Linux systems and derivatives. The biggest difference between both is that Podman
does not use a Daemon to run the containers. Each container is executed individually
and is assigned to an individual systemD configuration. This allows the management of
each container independently, and furthermore, containers will not be affected if the
main Daemon is restarted or unexpectedly stopped, something which can happen in
Docker.
Installing Podman in a system will replace Docker if it is installed and vice versa.
Installation can be based on the Linux distribution repository, such as using apt or dnf
commands. The command associated with Podman is called podman. This command
has the same syntax as the docker command, with the exception of minor differences.
The images to be used to run containers are the same as those used by Docker; these
images use the format named Open Container Iniatiative (OCI). Figure 13.48 shows
the argument run to create a new container.

Figure 13.48: Example running a container using podman

Podman solution comes with two commands for the Image building and for the
Image distribution: buildah and skopeo. These need to be installed individually, and
also included in the software repository. The first command uses the Dockerfile
templates to build the destination Image and the second command is a powerful tool to
operate with Images. Figure 13.49 shows the buildah command, using the same
Dockerfile as previously for the docker build.

Figure 13.49: Example using command buildah

The tool skopeo allows to manipulate, inspect, sign, and transfer container images
between different repositories. Figure 13.50 shows how to use skopeo to inspect an
image located in a repository:

Figure 13.50: Example using command skopeo

Another useful task using skopeo is to copy images between different repositories. It is
useful in having a disconnected repository from some official one to be able to do
installations on environments that do not have direct access to the internet. Figure
13.51 shows an example to copy the image ubuntu:latest to a private repository:

Figure 13.51: Example using command skopeo

Container runtimes
As described previously, Docker and Podman are solutions to run containers on
different platforms. Underneath, they are using a Container Runtime for that purpose.
They are also responsible for network attachments, low-level storage, image transfer,
and execution supervision.
There are different options available as follows:

runc: a CLI tool for spawning and running containers on Linux, according to the
OCI specification. This is the default one used by Docker.
crun: A fast and low-memory footprint OCI Container Runtime fully written
in C. This is the default one used by Podman.

Mirantis Container Runtime (MCR): Formerly called Docker Engine—
Enterprise, it is a runtime supported by the company Mirantis after buying
Docker Enterprise.

A Container Runtime Interface (CRI) is a plugin that allows Kubernetes to use a
wide variety of Container Runtimes. The two main popular ones are as follows:

containerd: This runtime is available as a daemon for Linux and Windows,
which can manage the complete container life cycle of its host system.
CRI-O: A lightweight container runtime for Kubernetes.

Kubernetes
If Docker revolutionized the IT industry easing the container adoption and the
modernization of the applications, Kubernetes went further and put the industry
upside down in the way of working, deploying applications, and how the application
modernization should be. Kubernetes offered container orchestration, whereas
Docker tried with the project Docker Swarm. However, the limitations and the lack of
functionalities converted Kubernetes into the perfect container orchestration solution.
Kubernetes provides you with a framework to run distributed systems resiliently. It
takes care of scaling and failover for your application, provides deployment patterns,
and more. Kubernetes provides the following:

Service discovery and load balancing: Can expose a container using the DNS
name or using their own IP address.
Storage orchestration: Allows you to automatically mount a storage system of
your choice, such as local storage, public cloud providers, and more.
Automated rollouts and rollbacks: It is possible to describe the desired state
for your deployed containers using Kubernetes, and it can change the actual
state to the desired state at a controlled rate.
Automatic container distribution: Kubernetes consists of a cluster of nodes
that it can use to run containerized tasks. Each container defines how much CPU
and memory (RAM) it needs. Kubernetes can fit containers onto your nodes to
make the best use of your resources.
Self-healing: Kubernetes restarts containers that fail, replaces containers, kills
containers that do not respond to your user-defined health check, and does not
advertise them to clients until they are ready to serve.
Secret and configuration management Kubernetes let you store and manage
sensitive information, such as passwords, OAuth tokens, and SSH keys. You can
deploy and update secrets and application configuration without rebuilding your
container images and without exposing secrets in your stack configuration.

Kubernetes is a perfect platform for many use cases and enterprises of all sizes. But
Kubernetes is not a Platform-as-a-Service (PaaS), which includes all that is needed
for the developers to build and run applications on it. In the market, PaaS solutions-
based Kubernetes appeared, and it is distributed as Kubernetes distributions. The
popular solutions are as follows:

Red Hat OpenShift Container Platform: A full-stack automated operations
and self-service provisioning for developers lets teams work together more
efficiently to move ideas from development to production. The community-
supported sibling project is named OKD.
Red Hat OpenShift Dedicated: A managed Red Hat OpenShift offering on
Amazon Web Services (AWS) and Google Cloud. Reduces operational
complexity and focuses on building and scaling applications that add more value
to your business with this turnkey application platform.
VMware Tanzu: Provides a streamlined, self-service developer experience for
any Kubernetes that fits a development team’s preferred practices and workflows
while automating the toil of infrastructure, packaging, and security.
Rancher: A management tool to deploy and run clusters anywhere and on any
provider.
Google Container Engine (GKE): A managed, production-ready environment
for running containerized applications.
Amazon Elastic Kubernetes Service (EKS): A managed service and certified
Kubernetes conformant to run Kubernetes on AWS and on-premises.
Mirantis Kubernetes Engine: Offers a fast way to deploy cloud-native
applications at scale in any environment.
Canonical Kubernetes: This is built on Ubuntu and combines security with
optimal price performance.

Introduction to continuous integration/delivery
With the new work methodology introduced with the use of containers and new agile
principles, two new concepts also appeared for the software life cycle:

Continuous Delivery (CD): Automates the entire software release process. The
idea behind CD is that any time the developers commit the changes to the
version control solution, the software is built and tested in the proper target. If
the workflow is completed correctly, the new version is ready to be released.
This approach reduces the time to go to production, reduces costs, and reduces
the risk of releasing software with bugs or not working properly. Figure 13.52
shows the workflow example:

Figure 13.52: Example using command skopeo

Continuous Integration (CI): Software is usually written by developers who
are working locally or in a dedicated development environment. When a new
functionality is developed, it is published to the version control system, and it
can be tested. Continuous Integration is the practice of regularly merging the
copies from the developers to a common target to be used.

A concept named Continuous Deployment is referenced when the release to
production is automatically done. There are many open-source projects available for
Continuous Delivery and Integration, where the most popular are as follows:

Jenkins: It helps automate the parts of software development related to building,
testing, and deploying, facilitating continuous integration and continuous
delivery.
CircleCI: A continuous integration and continuous delivery platform that can be
used to implement DevOps practices.
GoCD: Helps to automate and streamline the build-test-release cycle for worry-
free, continuous delivery of your product.
GitLab CI/CD: You can automatically build, test, deploy, and monitor your
applications by using Auto DevOps.

Other popular hosted-based solutions for CI/CD are the following:

Travis CI: This is a hosted continuous integration service used to build and test
software projects hosted on GitHub and Bitbucket.
GitHub Actions: A CI/CD which allows to automate the build, test, and
deployment pipeline. It is possible to create workflows that build and test every
pull request to the repository or deploy merged pull requests to production.

Jenkins, Gitlab CI/CD, and Github actions
This section will cover three of the most important CI/CD solutions: Jenkins, Gitlab
CI/CD, and GitHub Actions.

Jenkins
Jenkins became popular on the year 2011 due to its easy deployment, configuration,
and integration with different source control versions, such as Subversion and Git. This
tool helps to automate the building, testing, and deployment parts of the software
development. For years, it was the most popular tool for Continuous Integration and
Continuous Delivery, used by companies and regular users.
Installation of Jenkins is an easy and straightforward process, and the different
installation methods are found on the official website:
https://www.jenkins.io/doc/book/installing/. After the installation is complete, it is
possible to perform all the configurations required using the website. Figure 13.53
shows the dashboard after installation:

https://www.jenkins.io/doc/book/installing/

Figure 13.53: Jenkins dashboard

On creating a new job, a Wizard will appear to specify which project type is going to
be created, the name, and the different options. Figure 13.54 shows the options
available where the Pipelines is required when a CI/CD workflow will be created.

Figure 13.54: Jenkins new project options

Pipeline requires a Jenkinsfile (a declarative Pipeline) to define the stages and the
jobs to be executed. The syntax is defined on the website:
https://www.jenkins.io/doc/book/pipeline/. The following code shows a simple
example:
pipeline {

agent any

stages {

stage('Build') {

steps {

echo 'Building..'

}

}

stage('Test') {

steps {

echo 'Testing..'

}

}

https://www.jenkins.io/doc/book/pipeline/

stage('Deploy') {

steps {

echo 'Deploying….'

}

}

}

}

An example of building the image from a Dockerfile, testing it, and pushing it to an
internal image registry is shown:
node { git branch: 'main',

url: 'https://github.com/agonzalezrh/linuxservercb' }

pipeline {
agent any;
stages {
stage('Build') {

steps {
script {
image = docker.build("buildfromjenkins")

}

}

}

stage('Test') {
steps {
script {

docker.image('buildfromjenkins:latest').withRun('-p 8888:80')
{

sh 'curl localhost:8888'

}

}

}

}

stage('Deploy') {
steps {
script{
docker.withRegistry('http://registry.example.com:5000', '') {
image.push("${env.BUILD_NUMBER}")
image.push("latest")

}

}

}

}

}

}

Jenkins will show the status of the workflow, as is shown in figure 13.55:

Figure 13.55: Jenkins pipeline stage view example

Gitlab CI/CD
The open-source self-host solution for the control version of Gitlab includes a built-in
CI/CD tool, which allows to create Pipelines to structure the workflow. A pipeline has
the following two main components:

Jobs: defines what to do. For example, to compile a code.
Stages: defines when to run the jobs. For example, run a test after the code is
compiled.

Figure 13.56 shows an example workflow related to Continuous Integration and
Continuous Delivery.

Figure 13.56: CI/CD workflow example

The Pipelines are defined in YAML format, and they are defined at the project level. In
the left menu of the GitLab portal, it allows you to define the workflow. Figure 13.57
shows the left menu options related to CI/CD:

Figure 13.57: GitLab left menu options for CI/CD

The following code shows an example of building an image from a Dockerfile and
pushing it to the internal registry, same as with Jenkins.

stages: # List of stages for jobs, and their order of execution
- build
- test
- deploy

build-job: # This job runs in the build stage, which runs first.
stage: build
script:
- buildah build -t ubuntuapache2:dev .

- echo "Compile complete."

unit-test-job: # This job runs in the test stage.
stage: test # It only starts when the build stage completes
correctly.

script:
- podman run -dti --name test -p 8889:80 ubuntuapache2:dev

- sleep 5

- curl localhost:8889

- podman stop test

- podman rm test

deploy-job: # This job runs in the deploy stage.
stage: deploy # It only runs when *both* jobs complete successfully.
script:
- podman tag ubuntuapache2:dev

registry.example.com:5000/ubuntuapache2:fromgitlab

- podman push --tls-verify=false

registry.example.com:5000/ubuntuapache2:fromgitlab

When a new commit is performed in the repository, the Pipeline is executed, and the
GitLab portal will show the execution status. Figure 13.58 shows an example:

Figure 13.58: GitLab CI/CD pipeline example

GitHub actions
The most popular hosted source control version, GitHub, allows performing
integration with different external CI/CD tools, such as TravisCI. In the last few
years, GitHub has released and improved its own tool called GitHub Actions. It

allows running a workflow on any event, for example, if a new commit is done or a
new PR is approved. Figure 13.59 features a GitHub Actions workflow example.

Figure 13.59: GitHub actions workflow example

In the top bar = of the repository to be configured, the icon and the word Actions
appear. Figure 13.60 shows the top bar access:

Figure 13.60: GitHub top menu to access actions

GitHub Actions would provide some recommendations depending on the content of
the repository. As this repository contains a Dockerfile, the first suggestion is to build a
Docker image. Refer to figure 13.61:

Figure 13.61: GitHub actions workflow wizard

The syntax to define the workflow is in YAML format. The following code shows an
example to build the image and to push to Docker Hub repository:
name: Docker Image CI

on:

push:

branches: ["main"]

pull_request:

branches: ["main"]

jobs:

build:

runs-on: ubuntu-latest

steps:

- uses: actions/checkout@v3

- name: Build the Docker image

run: docker build . --file Dockerfile --tag my-image-name:$(date

+%s)

- name: Login to Docker Hub

uses: docker/login-action@v2

with:

username: ${{ secrets.DOCKERHUB_USERNAME }}

password: ${{ secrets.DOCKERHUB_TOKEN }}

- name: Build and push

uses: docker/build-push-action@v3

with:

push: true

tags: linuxservercb/ubuntuapache:fromgithub

Every time a new commit happens in the repository, the image will be automatically
built and stored in the public repository. Figure 13.62 shows the confirmation that the
workflow was executed correctly:

Figure 13.62: GitHub actions execution example

On the website https://hub.docker.com, a new version of the image has been pushed
with the tag fromgithub. Figure 13.63 shows the new tag:

Figure 13.63: Dokcer Hub new image and tag created automatically

Conclusion

https://hub.docker.com/

These days, Containers have become the main technology in the IT industry. It is
important for System Administrators, Developers, and DevOps to have deep
knowledge about the technology behind it and how to work with it. Docker and
Podman help end user to run contains, create images, and perform Continuous
Integration. Architecture that requires multiple contains, microservices, and advanced
features would require to have knowledge about Kubernetes, and if a Platform-as-a-
Service is required, they will be required to choose a solution based on Kubernetes,
such as Red Hat OpenShift Container Platform.
Continuous Integration and Continuous Delivery are the main approaches to
accelerate the software development process, reduce bugs, and help the collaboration
between developers in the same team. Different open-source tools are available and
combined with cloud-based solutions, and it is the decision of the team to choose the
proper one for their own needs.

Key facts
Containers are not a new technology, but Docker popularized them.
Docker is not a technology itself, but it is a high-level suite to run Containers.
Docker is a client-service architecture; Podman does not require a server to run
the containers.
It is possible to have an internal (private) Image Registry to store the images
generated.
Different tools are available to perform Continuous Integration, and Jenkins is
one of the most used.

Questions
1. A container uses less resources than a Virtual Machine. True or false?

a. True
b. False

2. An image can only be used by one container at the same time. True or false?

a. True
b. False

3. What argument for the command docker is used to create a container without
executing it?

a. create
b. run

c. add

4. Which command part of the Podman suite is used to build images?

a. buildman
b. buildar
c. buildah

5. What is the default name for a declarative Pipeline on Jenkins?

a. Pipefile
b. Jenkinsfile
c. Workflowfile

Answers
1. a
2. b
3. a
4. c
5. b

CHAPTER 14
Backup and Restore

Introduction
Backup is the process of creating a copy of the data in a certain time with
the objective of being able to recover it in the future. Restore is the process
of recovering the data from a Backup, going back to an old version of the
data, or reinstating a missing one. Backup requires a good definition, as well
as planning and regular tasks to ensure the integrity of the copies.
This chapter covers the different strategies available for the Backup and
how it affects Restore. The storage media where the Backup can be stored
is discussed, as well as the different locations to protect the copies from
possible disasters. Backup Solutions includes different features to optimize
the process, reducing the size stored with compression and removing
duplicates, among other features. Two popular software are detailed in this
chapter are Bacula and Relax and Recover (ReaR).

Structure
In this chapter, we will discuss the following topics:

Introduction to backup and restore
Storage media for backups
Backup types
Backup sources
Backup strategies
Backup solution features
Bacula
Relax-and-recover (ReaR)

Introduction to backup and restore

The Backup process, and with it the Restore process, has evolved along
with the big transformation in the IT sector. Big enterprises have dedicated
teams to configure the target environment and the clients and are responsible
for the planning as well. Good Backup planning is essential to avoid data
loss, accelerate the recovery time, and perform tasks periodically to ensure
the Restore is viable.
A Backup strategy requires to define of the following factors:

The data to be included: This is an important decision to take for
many reasons, such as the size that the Backup will need, as well as the
Restore time needed. For example, a Backup can include all the files
from a system or only the files needed to reinstate after the system is
reinstalled with a fresh Operating System installation.
The frequency: It is important to define how often the Backup is
going to be performed. The planning should include per environment
frequency to be daily, weekly, monthly, or another specified period.
Backup method to use: There are several methods to make copies,
which are going to be explored in this chapter. This includes a Full,
Differential, or Incremental Backup, among others.
The window-time for backups: A Backup can be a long-time
process, especially for Full ones, and can consume resources and
network bandwidth. Deciding the window time to perform is one factor
to be included in the planning.
Backup storage media: A Backup usually generates several copies to
protect against disaster scenarios. Different media can be used to store,
such as Tape, Shared Storage, or Cloud Storage.
Retention: Backup planning should define the retention of the data,
and after that period, the copies would be removed to save space in the
storage media.

For the Restore, the important factors in defining the recovery are as
follows:

How Restore will be performed: A Backup can include all the data
required to restore a system or only those required for a service offered.
It is important to define if the recovery process will be performed in the
same system, if possible, or in a new one.

How fast a Restore needs to be: Recovering data from a Backup can
take longer, depending on the strategies used. The planning should thus
include what is an acceptable time to reinstate files and services from a
copy.
Restore procedures: Each system, service, or element included in the
Backup should have a Restore procedure associated in case of data
loss.
Restore test plan: A Backup without regular recovery testing cannot
ensure that the Restore procedures are the proper ones.

The overall Recovery goals are defined with two terms as follows:

Recovery Time Objective (RTO): the maximum duration of time to
restore a disruption of the service in order to avoid unacceptable
consequences. For example, for a non-critical environment, it can be
hours or days, and for critical environments, it can be specified in
minutes.
Recovery point objective (RPO): the maximum targeted period
during which the data is lost due to an incident.

Figure 14.1 shows a diagram representing the terms RTO/RPO:

Figure 14.1: Terms RPO/RTO represented. Source: Wikipedia.

It is important to remark that a Distributed Storage Solution (such as Ceph),
High Availability systems, or Mirroring Technologies (such as RAID) are
not Backup solutions, and they do not replace a proper strategy to protect
the data. These days, with the adoption of Containers and the Cloud, the
strategy to ensure the data is protected has evolved. Different concepts
covered throughout this book, such as Automation, Micro Services,
Infrastructure as Code, and DevOps, have helped the requirement to be
included in a Backup, which is the only data used by the service consumer.
Recreating environments is a fast and easy task on modern infrastructures,
but the importance of Backup and Restore for the data is still really
important.
The Restore task might be needed in the following cases:

Quick restore from a local copy: For example, if the automation is
deploying a new configuration for a service and it is not valid, it is
possible to restore the previous version.
Restore files from a Backup solution: Data loss can be caused by
human mistakes, application misbehavior, external attacks, or hardware

dame (such as disk problems).
Restore full system: That can include restoring a Virtual Machine or a
Physical system. Modern Backup solutions allow performing a copy of
a running system and the possibility of restoring it in the same system
or in a new one.

Storage media for Backups
First, enterprise Backups were stored on physical tapes, where individual
files were included in the copy. The Restore process is required to find the
proper tape where the data to be recovered is located and then copy it from
there to the system. More modern solutions were based on Tape Libraries
(also known as Tape Robot), which included several tapes, and they
automatically mount the desired tape to perform a Backup or Restore.
Virtual Tape Library (VTL) simulates a Tape Library having the back-end
of a regular storage system, such as a hard drive. One of the biggest
advantages of the usage of tapes, even these days, is the possibility of storing
them easily off-site (in a different location where the original data is).
The popularity of tapes as storage media for Backups was present until the
first decade of the 21st century. The reduction of the cost of hard drives and
the introduction of Cloud Storage, along with different work
methodologies, such as DevOps, reduced the use of tapes in enterprises.
Network Storage solutions such as NFS, iSCSI, and NAS are used to store
data from Backups. Nonetheless, it is important to keep a copy in a different
location (such as a different Data Center) from the original data.
Modern environments use Object Storage to store data, including Backup
data. Public clouds offer affordable storage to store Objects. An Object
Storage System places the unstructured data as opposite to regular file
systems. The Object (file) to be stored cannot be modified but can only be
replaced with a version. Some available options are as follows:

Amazon Web Services (AWS) offers a cheap solution called Amazon
S3 Glacier for archiving and backup.
Microsoft Azure offers the service Azure Archive Storage.
Google Cloud offers Cloud Storage solution for archives and
backups.
Private cloud OpenStack offers the solution, Swift.

Software-defined storage solution Ceph has a component called Rados
Gateway (RGW) to offer an Object Storage service.

Backup types
There are the following three main types of Backup:

Full Backup: It contains all the data to be copied. This type does not
mean that the whole system will be copied; rather, it means that all the
data specified to be copied will be included in the Backup performed.
The main advantage and disadvantage are as follows:

Advantage: Recover time is fast because all the data is included.
Disadvantage: The space needed is big, and each Backup
performed requires all the space. For example, if the data to be
saved is 1 TB, and it is needed to have 30 different Backups, the
total size will be 30 TB.

Incremental Backup: Only transfer the data changed from the
previous Backup performed and the current time. This procedure
reduces the space needed. The main advantage and disadvantage are as
follows:

Advantage: The required space and the time to perform the
Incremental Backup is reduced considerably.
Disadvantage: The Restore requires more time because it is
required to go through several Backup performed.

Differential Backup: This method transfers only the difference
between the previous Full Backup and the moment where the Backup
is being performed. The main advantage and disadvantage are as
follows:

Advantage: The Restore process requires less references than the
Incremental one; it only requires the Full Backup and the
specific Differential Backup.
Disadvantage: The size of the copy is bigger than in an
Incremental one.

Table 14.1 shows an example of the schedule for a Backup where the Full
Backup is performed on Sunday when it would generally not impact the
service or end users. For the rest of the days, the Incremental Backup is
used.

Day Backup type Backup size Total Backup size

Sunday Full Backup 1 TB 1 TB

Monday Incremental Backup 20 GB 1.02 TB

Tuesday Incremental Backup 100 GB 1.12 TB

Wednesday Incremental Backup 200 GB 1.32 TB

Thursday Incremental Backup 500 GB 1.82 TB

Friday Incremental Backup 80 GB 1.90 TB

Saturday Incremental Backup 100 GB 2 TB

Friday Full Backup 2 TB 4 TB

Table 14.1: Full and incremental Backup example

To restore data (for example, all the content of a directory) from a backup
performed on Wednesday, the backup is needed from Sunday (The Full
Backup), Monday (Incremental), Tuesday (Incremental), and Wednesday
(Incremental).
Table 14.2 shows the same example using Differential Backup instead.

Day Backup type Backup size Total Backup size

Sunday Full Backup 1 TB 1 TB

Monday Differential Backup 20 GB 1.02 TB

Tuesday Differential Backup 120 GB (100+20) 1.14 TB

Wednesday Differential Backup 320 GB (200+120) 1.46 TB

Thursday Differential Backup 820 GB (500+320) 2.28 TB

Friday Differential Backup 900 GB (820 + 80) 3.18 TB

Saturday Differential Backup 1 TB (900 + 100) 4.18 TB

Friday Full Backup 2 TB 6.18 TB

Table 14.2: Full and differential Backup example

It is possible to observe how the total Backup size required using Different
Backup is bigger than with the Incremental Backup. The advantage of this
method is that restoring a file from Wednesday’s Backup requires only a
copy of the Sunday’s (Full Backup) and Wednesday’s one (Different
Backup).

Backup sources
As described previously, Backup is the process of copy data being
protected. Depending on the data to be saved, there are different strategies
and storage media. Some examples of elements that can be backed up are as
follows:

Static files: These are the common elements to be included. These files
are usually not modified often, and only new files are copied. For
example, the copy can include files used by applications or end users.
Dynamic files: These files are being modified often, such as log files
or automatically generated files (such as an exported database).
Block devices: The Backup can include the whole data in a device,
such as a full disk or partition.
Virtual Machine: It is possible to make a Backup of the full Virtual
Machine in two different ways:

Using the hypervisor, which can create a snapshot (a copy of the
data in a specific time) and export it to a regular file to be included
in the copy.
Installing the Backup client to perform a full copy of the data
inside.

Containers: They have not copied themselves, only the data associated
with them (such as Volumes).
Databases: A backup of a database can be done in two main ways:

Exporting the content and the database structure to regular files to
be included in the Backup.
Copying the associated files directly, thus, ensuring that the data
would not be corrupted on the copy. This can approach have the
following two options:

Hot Backup: The Database is still running while the backup
is being performed.
Cold Backup: The Database is stopped earlier to perform
the file-based copy.

Backup strategies
Deciding a Backup strategy is essential to protect the data saved in the case
of data loss as well as any possible disaster event. Different strategies are
available to mitigate disaster situations, and they are as follows:

3-2-1 Rule: This strategy consists of having three copies, of which two
of them are located on the same site but using different media, where
the Backup is performed to speed up possible recovery of the data. The
third copy is off-site (different location) to have a safe copy in case of a
disaster situation.
Remote Backup: Performing the Backup to a remote service which
usually is not managed by the owners of the original place. For
example, using a service Backup as a Service or an Object Storage
solution.
Site-to-Site Backup: This strategy always copies the data to a location
off-site under the current location. Both sites are managed by the same
owners.
Disaster Recovery is the practice of having a second location, different
from the main one, where the services are usually ready to be promoted
as a primary. This method requires to have configured the replication
between the sites. The biggest advantages of the implementation of
Disaster Recovery Site(s) are as follows:

Reduce downtime, and the secondary site is able to resume the
service quickly.
Data loss is reduced to the last replication, usually in seconds or
minutes.
Possibility to go back to the main site when the incident is
resolved.

Backup solution features

Backup solutions include different features to improve performance, reduce
the size needed and increase the security of the data stored. Some of the
popular features are as follows:

File locking: The solution should be able to make a copy even when
the file is in use, such as log files or databases data.
Data expiration: Out-of-date data can be automatically deleted after
the retention period is over. This feature reduces the space needed in
the storage media.
Compression: Compression can be done by the Backup Solution or
directly applied to the storage media, such as built-in compression in a
Tape.
Deduplication: One of the most advanced features of Backup
Solution is avoiding the duplication of data in the storage media. If
several systems have the same data, such as using the same operating
system, only one copy of the data would be stored in the storage media.
Duplication: The copies can be distributed in different locations; the
Backup Solution is responsible, after receiving the data from the
client, for distributing it properly to different locations, ensuring they
are not in the same location.
Encryption: Another advanced feature is to encrypt the data saved in a
Backup. Encryption requires more resources, and it slows the copy and
the restore. However, for some environments, it is a requirement.
Multiplexing: A Backup Solution is responsible for receiving data
from multiple sources and storing them properly.
Staging: For some storage media, intermediate storage is first used to
store the media. Usually, making a copy to a Tape requires having a
disk, which is used temporarily, before sending all the data to the Tape.
When all the data is written in the Tape, the temporary data is removed
from the disk.

Bacula
This is one of the best open-source Backup products available. This solution
includes community and commercial support, being a perfect option for

small and enterprise companies. Some of the benefits of using Bacula are as
follows:

GUI and CLI interface.
A wide variety of possible backup levels and techniques, including full,
differential, and incremental.
Ability to both backup and restore entire systems or single singles
easily.
Cloud backup support for AWS S3.
The capability of using snapshots on Linux/Unix systems. Snapshots
can be automatically created and used to backup files.
Use either the command line and/or GUI to execute and control your
backup process.
Use partition backup for your Linux data storage to keep precise
images of these disks for easy management and recovery.
Tape backup is fully supported and allows it to work with a variety of
different tape drives, autoloaders, and autochangers. VTL support is
also included.
Deduplication developed by themselves.

Bacula installation
The Bacula installation requires to use a database to store configuration and
all the needed information about the clients and the copies. The available
options are MariaDB (MySQL) and PostgreSQL. When the Database is
available, the installer configures whatever is needed to use it. The
instructions included are for a system using Ubuntu 22.04 (at the time of
writing this book, Bacula was still not available on the official repository in
Ubuntu) are as follows:
Create repository file

echo "deb [arch=amd64]
https://bacula.org/packages/5bd703346c037/debs/13.0.1 jammy

main" | tee /etc/apt/sources.list.d/Bacula-Community.list
Add GPG key as tusted

wget -qO - https://www.bacula.org/downloads/Bacula-4096-
Distribution-Verification-key.asc | gpg --dearmor >

/etc/apt/trusted.gpg.d/bacula.gpg

Install mariadb-client and bacula-mysql packages

apt install mariadb-client bacula-mysql

Bacula services
Bacula is made up of the following five major components or services:

Bacula Director: The Bacula Director service is the program that
supervises all the backup, restore, verify, and archive operations.
Bacula Console: The Bacula Console service is the program that
allows the administrator or user to communicate with the Bacula
Director.
Bacula File: This service (also known as the Client program) is the
software program that is installed on the machine to be backed up.
Bacula Storage: These services consist of software programs that
perform the storage and recovery of the file attributes and data to the
physical backup media or volumes.
Catalog: These services are comprised of the software programs
responsible for maintaining the file indexes and volume databases for
all files backed up.

Figure 14.2 features the Bacula components:

Figure 14.2: Bacula components. Source: Bacula

The following example configuration was added to the default configuration
(which, in regular situations, should be reconfigured completely for the
required needs).
Create the /backup directory, assign permission to the user and group
bacula, and configure the file bacula-sd.conf to create a new Device.
mkdir /backup
chown bacula:bacula /backup
cat >>/opt/bacula/etc/bacula-sd.conf <<EOF
Device {

Name = Backupdir

Media Type = File

Archive Device = /backup

LabelMedia = yes;

Random Access = Yes;

AutomaticMount = yes;

RemovableMedia = no;

AlwaysOpen = no;

Maximum Concurrent Jobs = 5

}

EOF

Configure the file bacula-dir.conf to define:

A new Storage called bacula-sd.
A new FileSet named OnlyEtc to only copy the /etc directory.
A new Schedule called EtcDaily to be executed every day at 10 p.m.
A new Job named EtcBackup.
A new Client called rhel-fd.

SDPW=$(grep -m1 Password /opt/bacula/etc/bacula-sd.conf |awk
'{print $3}')

cat >>/opt/bacula/etc/bacula-dir.conf <<EOF
Storage {
Name = bacula-sd

Address = 192.168.122.43

Device = Backupdir

Media Type = File

Password = $SDPW

}

FileSet {
Name = "OnlyEtc"

Include {

Options {

signature = MD5

}

File = /etc

}

}

Schedule {
Name = "EtcDaily"

Run = Full daily at 22:00

}

Job {
Name = "EtcBackup"

JobDefs = "DefaultJob"

Enabled = yes

Level = Full

FileSet = "OnlyEtc"

Schedule = "EtcDaily"

Client = rhel-fd

Storage = bacula-sd

}

Client {
Name = rhel-fd

Address = 192.168.122.226

FDPort = 9102

Catalog = MyCatalog

Password = "MyStrongPassword"

File Retention = 30 days

Job Retention = 3 months

AutoPrune = yes

}

EOF

After the configuration is performed, the services should be restarted.
systemctl restart bacula-fd.service

systemctl restart bacula-sd.service

systemctl restart bacula-dir.service

Client installation
The client is required to install the package bacula-client. In the following
example, a Red Hat Enterprise Linux system is used, where the package is
included in the official repositories. The instructions are as follows:
firewall-cmd --add-service=bacula-client --permanent

firewall-cmd --reload

yum install -y bacula-client

cat >/etc/bacula/bacula-fd.conf <<EOF

Director {

Name = bacula-dir

Password = "MyStrongPassword"

}

FileDaemon {

Name = rhel-fd

FDport = 9102

WorkingDirectory = /var/spool/bacula

Pid Directory = /var/run

Maximum Concurrent Jobs = 20

Plugin Directory = /usr/lib64/bacula

}

Messages {

Name = Standard

director = bacula-dir = all, !skipped, !restored, !saved

}

EOF

systemctl enable --now bacula-fd

Command bconsole
The command bconsole on the Bacula Server is the main command to
obtain information about the Backup, run jobs, and perform other tasks. On
executing the command, an interactive mode appears, and it is possible to
run the commands desired. Figure 14.3 shows the output of the command
status director to obtain information about the Bacula Director.

Figure 14.3: Example showing the status of Bacula Director using bconsole

To obtain information about one client and check if the communication is
correct, the command to introduce is the status client. A list of the clients
configured appears, and after selecting the proper one, it will provide the
information. Figure 14.4 shows an example of the node rhel-fd.

Figure 14.4: Example showing the status of Bacula Client using bconsole

To execute a Job defined, the command is run, and the client will ask which
one should be executed. Figure 14.5 shows an example:

Figure 14.5: Example running a Bacula Job using bconsole

When the job finishes, indicating the copy was correct or reporting any error,
it is possible to use the command messages to obtain the latest information.
Figure 14.6 shows an example output:

Figure 14.6: Example showing messages using bconsole

To obtain the list of the jobs and the status, the command to be executed is
list jobs. Figure 14.7 shows the output example:

Figure 14.7: Example listing Bacula Jobs using bconsole

It is possible to use bconsole without interactive mode, sending the action to
perform to the standard input. In figure 14.8, an example is shown using
pipes to obtain information about the client rhel-fd.

Figure 14.8: Example pipes with the command bconsole

To Restore a file from the backup, the command in the interactive mode of
console is restore. This command will give different options regarding
which Backup to use for the restore. In figure 14.9, option 5 (Select the most
recent backup for a client) is selected for the client rhel-fd.

Figure 14.9: Example restoring files with the command bconsole

After the latest Backup is selected automatically for the client specified, a
command line to specify the files to restore (using the keyword add) is
available. When the defined files to recover are finished, the command done
will perform the restoration. Figure 14.10 shows an example:

Figure 14.10: Example restoring files with the command bconsole

A Restore Job will be created, and the files will be restored in the client. In
figure 14.11, the files are going to be restored inside the directory
/opt/bacula/archive/bacula-restores.

Figure 14.11: Example restoring files with the command bconsole

When the Jobs finishes, and if there is no error, the files are available.
Figure 14.12 shows the content of the directory indicated before:

Figure 14.12: Example listing restored files in the client

Relax-and-Recover (ReaR)
This software is an open-source bare metal disaster recovery solution. It is
easy to install, configure and use for restoring systems. This solution
generates a copy of the system ready to be used. It supports various boot
media (ISO, PXE, USB, or eSATA) and a variety of network protocols (nfs,
cifs, ftp, or http) as well as different Backup strategies (Symantec Netbackup,
EMC Networker, among others).

The files generated can be included in another Backup solution, such as
Bacula, to be used later if needed. The Recovering is a two-step process,
mounting the boot media and transferring the data from the central server or
the storage device.
One of the biggest advantages of using ReaR is that this solution uses
system tools to perform the Backup. The following examples use a central
NFS storage to save the data and the ISO image from being used. The
installation requires to only install the package rear from the software
repository. After the installation, the file to be configured is
/etc/rear/local.conf as follows (example in a Red Hat Enterprise
Linux system):
yum install -y rear

cat >/etc/rear/local.conf <<EOF

OUTPUT=ISO

BACKUP=NETFS

BACKUP_URL="nfs://ubuntu/storage"

EOF

The ReaR solutions bring the command rear to perform different
operations. The argument mkbackup will initialize the Backup process, and
in the previous example, it will generate an ISO image and it will copy the
data to be used in the Restore process. The example output of the command
rear mkbackup -v is as follows:
Relax-and-Recover 2.6 / 2020-06-17

Running rear mkbackup (PID 153257)

Using log file: /var/log/rear/rear-rhel.log

Running workflow mkbackup on the normal/original system

Using backup archive

'/var/tmp/rear.0fPsx7MCTd1P1TS/outputfs/rhel/backup.tar.gz'

Using autodetected kernel '/boot/vmlinuz-5.14.0-

70.22.1.el9_0.x86_64' as kernel in the recovery system

Creating disk layout

Overwriting existing disk layout file

/var/lib/rear/layout/disklayout.conf

Using guessed bootloader 'GRUB' (found in first bytes on

/dev/vda)

Verifying that the entries in

/var/lib/rear/layout/disklayout.conf are correct …

Creating recovery system root filesystem skeleton layout

Cannot include default keyboard mapping (no 'defkeymap.*' found

in /lib/kbd/keymaps)

To log into the recovery system via ssh set up

/root/.ssh/authorized_keys or specify SSH_ROOT_PASSWORD

Copying logfile /var/log/rear/rear-rhel.log into initramfs as

'/tmp/rear-rhel-partial-2022-11-13T09:46:37+00:00.log'

Copying files and directories

Copying binaries and libraries

Copying all kernel modules in /lib/modules/5.14.0-

70.22.1.el9_0.x86_64 (MODULES contains 'all_modules')

Copying all files in /lib*/firmware/

Testing that the recovery system in

/var/tmp/rear.0fPsx7MCTd1P1TS/rootfs contains a usable system

Creating recovery/rescue system initramfs/initrd initrd.cgz

with gzip default compression

Created initrd.cgz with gzip default compression (424497692

bytes) in 21 seconds

Making ISO image

Wrote ISO image: /var/lib/rear/output/rear-rhel.iso (418M)

Copying resulting files to nfs location

Saving /var/log/rear/rear-rhel.log as rear-rhel.log to nfs

location

Copying result files '/var/lib/rear/output/rear-rhel.iso

/var/tmp/rear.0fPsx7MCTd1P1TS/tmp/VERSION

/var/tmp/rear.0fPsx7MCTd1P1TS/tmp/README

/var/tmp/rear.0fPsx7MCTd1P1TS/tmp/rear-rhel.log' to

/var/tmp/rear.0fPsx7MCTd1P1TS/outputfs/rhel at nfs location

Making backup (using backup method NETFS)

Creating tar archive

'/var/tmp/rear.0fPsx7MCTd1P1TS/outputfs/rhel/backup.tar.gz'

Archived 1867 MiB [avg 10929 KiB/sec] OK

Archived 1867 MiB in 176 seconds [avg 10866 KiB/sec]

Exiting rear mkbackup (PID 153257) and its descendant processes

…

Running exit tasks

In the NFS Server system, a directory with the name of the client is created,
including the ISO image, a file backup.tar.gz to be used to restore it during
the Restore process, and two log files (rear-node.log and backup.log)
containing information about the copy. Figure 14.13 shows the files created:

Figure 14.13: Example listing copied files on the NFS server

The Restore process for this example includes booting the system to restore
or a new one which would be the replacement, with the ISO image
generated. It will mount the NFS storage automatically to transfer the
backup.tar.gz and perform the required actions to Restore the system to its
original state. Figure 14.14 shows the boot menu when the system is
booting:

Figure 14.14: Example boot menu for ReaR

The option Automatic Recover rhel will automatically perform all the
operations required to restore the system without performing more questions.
Figure 14.15 shows an example of the initialized Recover process.

Figure 14.15: Example restore the system using ReaR.

Conclusion
Good Backup planning defines the strategy, the Restore tests to perform,
and the storage media to use and specify the Recovery Time Objective
(RTO) and the Recovery Point Objective (RPO). Usually, in enterprises,
Backup is underrated and only becomes a priority when a disaster occurs.
With the adoption of the Cloud and new technologies such as Containers,
the Backup is still relevant, but the approach is different. New systems can
be recreated from scratch using Automation, and applications are stored as
Images. Thus, only the required data is needed to store it.
There are different commercial Backup Solutions such as EMC Networker,
HP Data Protector, or Symantec NetBackup. Moreover, there are mature

open-source solutions with support to be used. This chapter covered Bacula
as the main open-source solution and Relax-and-Recover (ReaR) as a
perfect bare metal disaster recovery solution.

Key facts
Good Backup planning is required to avoid disaster situations.
Testing to Restore frequently is needed to ensure the integrity of the
copies and the recovery protocols.
Modern systems require a rethinking about what should be stored on a
Backup.
A Disaster Recovery plan is useful and required for critical
environments.
Bacula is a mature and enterprise-ready open-source Backup solution.
On Bare Metal environments, the solution Relax-and-Recover (Rear)
is a perfect one.

Questions
1. A Differential Backup requires less space than an Incremental Backup.

a. True
b. False

2. The 3-2-1 Rule consists of three copies, two different storage media,
and one copy off-site.

a. True
b. False

3. What is the name of the feature to avoid data duplication in a Backup
Solution?

a. reduplication
b. deduplication
c. multiplexing

4. Which main command is used in Bacula to obtain information and run
jobs?

a. bacula
b. bacula-cli
c. bconsole

5. What argument for the command rear is used to perform a Backup?

a. backup
b. mkbackup
c. run

Answers
1. b
2. a
3. b
4. c
5. b

CHAPTER 15
Multi Cloud Management

Introduction
As described throughout this book, many companies have modernized their
IT Infrastructure by moving to Virtualization (not only computing but
networking and storage) and to Containerized environments. Another big
transformation is the move from the On-Premise infrastructure to a Public
Cloud. This migration comes with several advantages, but there are also
some considerations to take into account.
The opportunity to work with several Cloud environments, such as Amazon
Web Servers, Microsoft Azure, Google Cloud, or Alibaba Cloud, brings
new challenges in the automation and in management of the environments.
The combination of a Private Cloud, such as OpenStack, with a public
provider is called Hybrid Cloud.
This chapter will focus on the introduction of the different Cloud providers,
the different services offered, and how they are compared among them. It
would describe the advantages of using a Public Cloud as well as the
disadvantages. It will describe the different strategies to manage Multiple
Clouds and the use of the automation tool Terraform for it.

Structure
In this chapter, we will discuss the following topics:

Introduction to Cloud Providers
Cloud Services
Multi Cloud Management
Infrastructure as code
Terraform

Introduction to cloud providers
A Cloud Provider is responsible for offering the different services to be
consumed. Cloud Providers have evolved during the last decades from a
simple offering of Compute services and Storage Services to more than
hundreds of services. A Cloud Provider is responsible for all the
infrastructure, including storage, networking, computing, and security.
Some of the categorized services offered these days are the following
(categories offered by Amazon Web Services):

Infrastructure software: The services in this category provide
infrastructure-related solutions.

Backup and recovery: Services for storage and backup.
Data analytics: Services used for data analysis.
High-performance computing: High-performance computing
services.
Migration: Services used for migration projects.
Network infrastructure: Services used to create networking
solutions.
Operating systems: Images for Linux and Windows operating
systems.
Security: Security services for the infrastructure.
Storage: Services related to storage.

DevOps: The services in this category provide tools focused on
developers and developer teams.

Agile Lifecycle Management: Services used for Agile.
Application Development: Services used for application
development.
Application Servers: Servers used for application development.
Application Stacks: Stacks used for application development.
Continuous Integration and Continuous Delivery: Services
used for CI/CD.
Infrastructure as Code: Services used for infrastructure.

Issues and Bug Tracking: Services used by developer teams to
track and manage software bugs.
Monitoring: Services used for monitoring operating software.
Log Analysis: Services used for logging and log analysis.
Source Control: Tools used to manage and maintain source
control.
Testing: Services used for automated testing of software.

Business Applications: The services in this category help run the
business.

Blockchain: Services used for blockchain.
Collaboration and Productivity: Services used to enable
collaboration.
Contact Center: Services used for enabling Contact Centers in
the organization.
Content Management: Services focused on content management.
CRM: Tools focused on customer relationship management.
eCommerce: Services that provide eCommerce solutions.
eLearning: Services that provide eLearning solutions.
Human Resources: Services used for enabling Human Resources
in the organization.
IT Business Management: Services used for enabling IT
business management in the organization.
Business Intelligence: Services used for enabling business
intelligence in the organization.
Project Management: Tools for project management.

Machine Learning: The services in this category provide machine
learning algorithms and model packages.
IoT: Services used to create IoT-related solutions.
Desktop applications: The services in this category provide
infrastructure-related solutions.
Data Products: The services in this category are sets of file-based
data.

The most popular Cloud Provider, these days in the market, are the
following ones:

Amazon Web Services (AWS): The pioneer of offering Cloud
Services, it dominates the market.
Microsoft Azure: The second biggest Cloud Provider in the market,
offering good integration with companies using Microsoft products.
Google Cloud Platform (GCP): Google growing in the Cloud market
in the last few years and is the third biggest platform.
Alibaba Cloud: This is the fourth on the market and is part of the giant
Chinese group Alibaba Group.

On the Private Cloud solutions, the most popular open-source solution is
OpenStack. OpenStack is a mature solution with the support of several
companies, such as Red Hat, Mirantis, and Canonical. The decision to
choose one Cloud Provider requires several considerations, and some of the
important ones are the following:

Cost Saving: Migrations and modernization are based on the reduction
of costs. As the Cloud Provider is the one responsible for keeping the
infrastructure, it will ensure that only the services that are in use will be
paid for. Each Cloud Provider offers different prices depending on the
region, the service to be used, as well as the usage.
Availability: Most of the Cloud Providers offer different regions and
availability zones, but in some specific cases, it can be a decision
depending on the use case.
Services: In the Cloud competition, most of the providers offer similar
services. But specific and advanced ones can make a difference when a
decision has to be taken.
Ease to Use: Some Cloud Providers are more user-friendly than
others, including documentation and the use of the API.
Migration: Depending on the services offered On-Premise, some
Cloud Providers are more suitable to perform the migration to a
Cloud Service.

Advantages

The use of a Cloud Provider has several advantages compared to running
services on an On-Premise infrastructure. The main reasons for a migration
to a Cloud are the following:

Service Level Agreement (SLA): Most of the Cloud Providers
guarantee that the services are available 99.99% of the time when
different availability zones are in use.
Services catalog: In a Cloud Provider, it is possible to run Virtual
Machines, Containers, and they also have a Load Balancer or a Backup
Solution, among hundreds of other options, together in the same portal.
A cloud provider also enables more services immediately.
Infrastructure: The end user is not required to maintain the
infrastructure anymore, including the physical components (servers,
routers, cables, among others) and the virtual components (routing,
networking, storage, and so on).
Flexibility: It is possible to dynamically change the resources
allocated, depending on the needs of the services offered.
Scalability: More compute power, more storage, or more services can
be added manually or automatically on demand.
Accessibility: Cloud Providers offer access to different services
through the Internet, which allows them to offer a service directly to
the end users.
Security: The solutions offered by the Cloud Providers are secure,
and they offer alternatives to increasing security, such as encryption for
the storage, private network, and firewall.

As with every solution, there are some problems associated with the use of a
Cloud Provider, especially a public one. Some of them are the following:

Cost: Even though one of the main reasons for using a Public Cloud is
to reduce the cost, the wrong planning, bad implementation of
workflows, and bad modernization can cause the cost to run the
services, which further increases the cost in a Public Cloud. It is
important in migration to define the needs, plan the possible costs and
monitor the usage of the services.
Vendor lock-in: Migration to a Public Cloud means adapting and
using the services offered by the provider. This can reduce the

possibilities in the future of the need to go to another solution more
suitable for the company.
Less control: Although having the infrastructure managed by the
provider is an advantage, it can be a disadvantage as well if you are not
able to control the different elements involved in a service offered.
Support: The support offered by Cloud Providers cannot meet the
needs of some companies, especially in the new implementations of the
services, as it requires more time than desired.

Cloud services
Let us now discuss a few cloud services.

Amazon Web Services (AWS)
AWS started to offer its first services in the year 2006. At the moment of
writing this book, the global infrastructure contains 29 regions, each of them
with multiple availability zones (AZs) and 93 availability zones. The latest
estimation is that AWS has a 34% market share of the Cloud Service. Some
of the main services offered by Amazon Web Services are as follows:

Amazon Elastic Compute Cloud (EC2): The service to run Virtual
Machines and the possibility to run Bare Metal nodes on the Cloud.

EC2 offers most of the Linux Distribution options available in
the market, including Red Hat Enterprise Linux, Ubuntu, or
Debian.
An Amazon Machine Image (AMI) contains the operating
system to be used to run the EC2 instance.
Running an EC2 instance requires to specify a Security Group,
which is the definition of the Firewall rules.
It is possible to specify different Storage options depending on the
needs of the Virtual Machine.
A Key Pair defines an SSH Public Key to access the Instance
remotely.

Amazon Virtual Private Cloud (VPC): Enables a Virtual Network to
run instances on it. This makes a private and isolated network. As a

regular Network, it includes subnets, routing, and IP addresses, among
other elements.

An Elastic IP address is a public address to access the EC2
Instance from the Internet. This IP can be attached and detached
from a running instance.

Amazon Simple Storage Service (S3): An object storage service
offering scalability, data availability, security, and performance.
Amazon Elastic Beanstalk: A service for deploying and scaling Web
applications.
Amazon Relation Database Service (RDS): A service to set up,
operate, and scale databases in the cloud. The options available are as
follows:

Amazon Aurora with MySQL compatibility.
Amazon Aurora with PostgreSQL compatibility.
MySQL, MariaDB, PostgreSQL, Oracle, and SQL Server.

Amazon DynamoDB: Fast, flexible NoSQL database service for
performance at any scale.
Amazon Elastic Container Service (ECS): A fully managed
Container Orchestration service that makes it easy to deploy,
manage, and scale containerized applications.
Amazon Elastic Kubernetes Service (EKS): A service to run
Kubernetes in the AWS cloud and on-premises data centers.
Amazon Elastic Load Balancing (ELB): A service to distribute
incoming application traffic across multiple targets.
Amazon CloudFront: A Content Delivery Network (CDN) service
built for high performance and security.
Amazon Route 53: A highly available and scalable Domain Name
System (DNS) Web service.
Amazon Lambda: A serverless, event-driven compute service that lets
codes run for virtually any type of application or backend service
without provisioning or managing servers.
AWS Identity and Access Management (IAM): Securely manage
identities and access to AWS services and resources.

Microsoft Azure
Microsoft Azure started in the year 2008 and was officially released in the
year 2010. The name was adopted in the year 2014, although it was
previously named Windows Azure. At the time of writing this book, there are
60 regions available. The latest estimation considers that Microsoft Azure
has 21% of the market share. The main services offered are the following:

Azure Virtual Machines: The service to run Virtual Machines. It is
able to run Linux distribution or Windows Server.

Azure Marketplace includes certified operating systems and
applications to run.
By creating a Virtual Machine, it is possible to specify, among
many options:

The size (CPU and Memory)
The storage type and the size
The authentication (SSH Public Key, for example)
Configuring the Firewall rules
The Virtual network (Vnet) to attach it.

Azure Virtual Network (VNet): The service to manage private
networks. Although similar to a traditional network in a data center, it
brings with it additional benefits of Azure’s infrastructure, such as
scale, availability, and isolation.

Azure uses the term Public IP to the external addresses, which
can be attached to a Virtual Machine.

Azure Blob Storage: An object storage solution for the cloud. It is
optimized for storing massive amounts of unstructured data.
Unstructured data is data that does not adhere to a particular data model
or definition, such as text or binary data.
Azure Web Apps: It is an HTTP-based service for hosting Web
applications, REST APIs, and mobile backends.
Azure Cloud Services: Create highly-available, infinitely-scalable
cloud applications and APIs using Azure Service Manager.

Azure Resource Manager is the deployment and management
service for Azure. It provides a management layer that enables
you to create, update, and delete resources in your Azure account.

Azure SQL: Migrate, modernize, and innovate on the modern SQL
family of cloud databases

SQL Server Stretch Database: It dynamically stretches warm
and cold transactional data from Microsoft SQL Server 2016 to
Microsoft Azure.
Azure Database for MySQL: A relational database service in the
Microsoft cloud that is built for developers and powered by the
MySQL community edition.
Azure Database for PostgresSQL: A relational database service
based on the open-source Postgres database engine.
Azure SQL Database Edge: An optimized relational database
engine geared for IoT and IoT Edge deployments.

Azure Cosmos DB: Fast NoSQL database with SLA-backed speed and
availability, automatic and instant scalability, and open-source APIs for
MongoDB and Cassandra.
Azure Kubernetes Service (AKS): Offers the quickest way to start
developing and deploying cloud-native apps in Azure, data centers, or
at the edge with built-in code-to-cloud pipelines.
Azure Container Instances: Run Docker containers on-demand in a
managed, serverless Azure environment.
Azure Load Balancer: Load-balance internet and private network
traffic with high performance and low latency.
Azure Content Delivery Network (CDN): Offers a global solution for
rapidly delivering content. Reduces load times for websites, mobile
apps, and streaming media.
Azure DNS: A hosting service for DNS domains that provides name
resolution by using Microsoft Azure infrastructure.
Azure Functions: Provides serverless computing for Azure.
Azure Active Directory (AD): An enterprise identity service that
provides single sign-on and multifactor authentication.

Google Cloud Platform
Google Cloud Platform started to offer some services as a preview on the
year 2009. It was released as General Available (GA) in the year 2011. At
the moment of writing this book, it has 35 regions and 106 zones available.
The latest estimation considers Google Cloud Platform as having 11% of
the market share. The main services offered are the following:

Compute Engine: Secure and customizable compute service to create
and run virtual machines on Google’s infrastructure.

Compute Engine offers many preconfigured public images that
have compatible Linux or Windows operating systems.
By creating an Instance, it is possible to specify, among many
options:

The resources assigned (CPU and Memory)
The storage type and the size.
Configure the Firewall rules.
The authentication (SSH Public Key, for example)
The network (VPC) to attach it.

Virtual Public Cloud (VPC): Global virtual network that spans all
regions. Single VPC for an entire organization, isolated within projects.

Google Cloud uses the term external IP for the public IPs
accessible from outside.

Cloud Storage: The managed service for storing unstructured data.
Store any amount of data and retrieve it whenever needed.
Google App Engine: Build monolithic server-side rendered websites.
App Engine supports popular development languages with a range of
developer tools.
Cloud SQL: Fully managed relational database service for MySQL,
PostgreSQL, and SQL Server.
Cloud Spanner: Fully managed relational database with unlimited
scale, strong consistency, and high availability.
Datastore: A highly scalable NoSQL database for your Web and
mobile applications.

Kubernetes Engine (GKE): A simple way to automatically deploy,
scale, and manage Kubernetes.
Cloud Load Balancing: High-performance, scalable load balancing on
Google Cloud.
Cloud CDN: Fast, reliable Web and video content delivery with global
scale and reach.
Cloud DNS: Reliable, resilient, and low-latency DNS serving from
Google’s worldwide network with everything you need to register,
manage, and serve your domains.
Cloud Functions: Run your code in the cloud with no servers or
containers to manage with our scalable, pay-as-you-go functions as a
service (FaaS) product.
Identity and Access Management (IAM): Allows administrators to
authorize who can take action on specific resources.

Alibaba Cloud
Alibaba Cloud started to offer different services in the year 2009. At the
moment of writing this book, it has 24 regions and 74 zones available. The
latest estimation considers Alibaba Cloud has the 5% of the market share.
The main services offered are the following:

Elastic Compute Service: The service to run Virtual Machines on the
Cloud.
Alibaba Cloud Marketplace contains multiple operating systems,
distributions, and applications ready to run on the Cloud.
Virtual Private Cloud: A virtual private cloud service that provides an
isolated cloud network to operate resources in a secure environment.
Object Storage Service (OSS): Fully managed object storage service
to store and access any amount of data from anywhere.
Enterprise Distributed Application Service: A PaaS platform for a
variety of application deployment options and microservices solutions.
ApsaraDB RDS: is a stable, reliable, and scalable online relational
database service that is built on top of the Apsara Distributed File
System.

ApsaraDB RDS for MySQL: A fully hosted online database
service that supports MySQL 5.5, 5.6, 5.7, and 8.0.
ApsaraDB RDS for PostgreSQL: An on-demand database
hosting service for PostgreSQL with automated monitoring,
backup, and disaster recovery capabilities
ApsaraDB RDS for SQL Server: An on-demand database
hosting service for SQL Server with automated monitoring,
backup, and disaster recovery capabilities

PolarDB-X: Designed to address database challenges such as ultra-
high concurrency, massive data storage, and large table performance
bottlenecks.
ApsaraDB for MongoDB: A secure, reliable, and elastically scalable
cloud database service for automatic monitoring, backup, and recovery
by time point.
Elastic Container Instance: An agile and secure serverless container
instance service.
Alibaba Cloud Container Service for Kubernetes (ACK): A
Kubernetes-based service that ensures high efficiency for enterprises
by running containerized applications on the cloud.
Server Load Balancer (SLB): Distributes network traffic across
groups of backend servers to improve service capability and
application availability.
Alibaba Cloud CDN: A fast, stable, secure, and custom content
delivery service for accelerated content distribution to users worldwide.
Alibaba Cloud DNS: A secure, fast, stable, and reliable authoritative
DNS service.
Function Compute: A secure and stable serverless computing
platform.
Resource Access Management (RAM): Allows you to centrally
manage access to Alibaba Cloud services and resources.

The website https://comparecloud.in/ includes a list of the services and the
equivalent for each of the popular public Cloud Providers (including IBM
Cloud, Oracle Cloud, and Huawei Cloud). Figure 15.1 shows a table with
some of the services described previously:

https://comparecloud.in/

Figure 15.1: Cloud services comparison

OpenStack
The cloud solution OpenStack is an open-source platform usually deployed
to have a Private Cloud in an on-premise environment. This mature solution
started in the year 2010 and is used by thousands of companies in different
sectors. It is possible to integrate with the infrastructure existing, such as
storage or networking available.
The services offered by OpenStack are similar to the most used ones in a
Public Cloud solution. The core services on OpenStack are described in the
following list:

Nova: Provides a way to provision compute instances (also known as
virtual servers).
Neutron: Handles the creation and management of virtual networking
infrastructure, including networks, switches, subnets, and routers for
devices managed by OpenStack.
Keystone: Provides API client authentication and multi-tenant
authorization.
Horizon: Provides a Web-based user interface to OpenStack services,
including Nova, Swift, Keystone, and so on.
Cinder (Block Storage Service): The service for providing volumes to
Nova virtual machines.
Glance (Image Service): The service where users can upload and
discover images to be used for Virtual Machines.
Swift (Object Storage Service): A highly available, distributed, and
eventually consistent object/blob store.
Ironic: Service to provision bare metal (as opposed to virtual)
machines.
Heat: Service to orchestrate composite cloud applications using a
declarative template format.

Refer to figure 15.2 to see the OpenStack components:

Figure 15.2: OpenStack components

Other useful services are also available optionally on OpenStack:

Octavia: It brings network load balancing to OpenStack.

Barbican (Key Manager Service): It provides secure storage,
provisioning, and management of secret data.
Manila: The service to provide Shared Filesystems as a service.
Designate: An Open-Source DNS-as-a-Service implementation.

There are different companies offering commercial support for OpenStack.
Some examples are as follows:

Red Hat OpenStack Platform: Uniquely co-engineered together with
Red Hat Enterprise Linux to ensure a stable and production-ready
cloud.
Canonical’s Charmed OpenStack: An enterprise cloud platform
optimized for price performance and designed to run mission-critical
workloads. Together with Ubuntu, it meets the highest security,
stability, and quality standards in the industry.
Mirantis OpenStack for Kubernetes: Delivers performant and
scalable IaaS so that you can deploy, run, and scale bare-metal private
clouds by leveraging the capabilities of Kubernetes to provide an
extremely reliable and highly scalable private cloud solution.
VMware Integrated OpenStack (VIO): An OpenStack distribution
supported by VMware. With VIO, customers can rapidly deploy a
production-grade OpenStack cloud on top of VMware technologies,
leveraging their existing VMware investment and expertise.

Multi cloud management
One of the biggest disadvantages of using only one Cloud Provider is being
locked into the services and the costs from one vendor. The concept of Multi
Cloud Management is that it is a set of tools and procedures that lets us
have more than one Cloud Provider and deploy different services
depending on the needs, such as cost or availability. The services to be
distributed can be simple ones, such as an application running in a Virtual
Machine, or a complex one, such as a Kubernetes cluster.
These days, more companies are moving to use more than one Cloud
Provider for the following reasons:

Reducing costs: Prices of running services on the Cloud can be very
different from one to another. If the company has decided on one

provider for its main services, it can reduce costs for some other
services using a different provider.
Services available: Most of the providers are offering the same
services, but specific ones can be a reason to choose another provider
that is different from the main one.
Availability: Most of the providers are available in a big number of
regions, but specific zones to offer service to users in a country or
region can be a reason to deploy a service in a different provider.

The tools for Multi Cloud Management can be grouped into three different
categories:

Infrastructure Automation Tools: These tools can be used to deploy a
service or application in multiple Cloud Providers. Some examples
are as follows:

Terraform: Described later on in this chapter, Terraform is used
to connect and deploy services in multiple providers.
Ansible: Allows to perform different operations in different
providers in an easy way.

Management Tools: The tools in this category are responsible for
managing multiple clouds from only one application or portal. Some
examples are as follows:

Embotics: A solution to help modern infrastructure and
operations teams decrease the challenges of hybrid and multi-
cloud management.
Kyndryl Multicloud Management Platform: Simplifies
management of multi cloud IT architectures with comprehensive
functionality and integration.
Red Hat Advanced Cluster Management: Helps to administrate
different Kubernetes installations in different clouds from one
dashboard.

Cloud Provider Solutions: Some providers offer services to
interoperate with different providers.

Google Anthos: Consistent development and operations
experience for hybrid and multi cloud environments.

Azure Arc: A bridge that extends the Azure platform to help you
build applications and services with the flexibility to run across
data centers, at the edge, and in multi cloud environments.

Infrastructure as code
With the adoption of the Cloud, new needs appeared regarding the
deploying of new infrastructure in a fast and flexible way. There are the
following two approaches for deployment:

Declarative: This approach describes what to do, without a specific
control flow, to have the desired Infrastructure. This approach was the
most used before specific tools to deploy infrastructures appeared. It
includes using specific tools for the platform to be managed, such as:

AWS Command Line Interface (AWS): The tool to interact with
the AWS Services from a command line. Using the command aws,
it is possible to create different services, such as a VPC, EC2
Instance, or Load Balancer, among others.
Google Cloud CLI (gcloud): A set of tools to create and manage
resources on the Google Cloud Platform.
Azure Command-Line Interface (CLI): A set of commands
used to create and manage Azure resources.
Alibaba Cloud CLI: Includes the aliyun command to interact
with and thus manage your Alibaba Cloud resources.
Openstack CLI: OpenStackClient project provides a unified
command-line client, which enables access to the project API
through the easy-to-use command openstack.

Imperative: In this approach, it describes how the target Infrastructure
should be. The tool used will read the definition desired, and it will
ensure that the final state is the proper one. This approach has several
advantages compared to the declarative one, and they are as follows:

Idempotent: The process can be executed several times; if only
the resources status is not the same as the definition, it will be
modified.

Flexibility: The definition can be updated depending on new
needs, and the target environment will be updated.
Removal: The deletion of the defined infrastructure is a straight
action because this tool is responsible for the proper removal.

Most of the popular Automation Tools offer the possibility to operate with
the Cloud Providers using the Imperative approach. For example, Ansible
can use the modules to find a proper AMI image, define an SSH key, and
create an EC2 Instance. Ansible will use the specific library to communicate
with AWS’s API, called boto3. The following example shows a Playbook to
create different resources on AWS:
- name: Create an EC2 Instance using Ubuntu Server image

hosts: localhost # API calls are from the system whe Ansible

is executed

gather_facts: False

tasks:

- name: Create a VPC to be used by instances

amazon.aws.ec2_vpc_net:

name: net_iac_example

cidr_block: 10.10.0.0/16

register: r_net_vpc

- name: Create a Subnet to be used by instances

amazon.aws.ec2_vpc_subnet:

vpc_id: "{{ r_net_vpc.vpc.id }}"

cidr: 10.10.0.0/24

register: r_subnet_vpc

- name: Create a Key using the public one in the system

amazon.aws.ec2_key:

name: iac_key

key_material: "{{ lookup('file', '~/.ssh/id_rsa.pub') }}"

register: r_keypair

- name: Get Ubuntu 22.04 AMIs

amazon.aws.ec2_ami_info:

filters:

name: "ubuntu/images/hvm-ssd/ubuntu-jammy-22.04*"

register: r_images

- name: Create an instance with a public IP address

amazon.aws.ec2_instance:

name: "ubuntu01"

key_name: "iac_key"

instance_type: t2.nano

security_group: default

network:

assign_public_ip: true

image_id: "{{ r_images.images[-1].image_id }}" # Latest

available

vpc_subnet_id: "{{ r_subnet_vpc.subnet.id }}"

tags:

Environment: Testing

This Playbook can be executed several times, and it will ensure that all the
resources are created with the defined parameters. One of the disadvantages
of using Ansible, as well as the step-by-step other automation tools, is the
removal process. Another Playbook with the reverse order needs to be
created because, in the previous example, it was not possible to remove a
VPC before removing the server and the subnet. The following example
shows the correct order for the deletion:
- name: Unprovision an Infrastructure

hosts: localhost # API calls are from the system whe Ansible

is executed

gather_facts: False

tasks:

- name: Get instance to be removed

amazon.aws.ec2_instance:

filters:

"tag:Name": "ubuntu01"

register: r_instance

- name: Remove existing instance

amazon.aws.ec2_instance:

state: absent

instance_ids:

- "{{ r_instance.instances[0].instance_id }}"

- name: Remove existing Key

amazon.aws.ec2_key:

name: iac_key

state: absent

- name: Get VPC to be removed

amazon.aws.ec2_vpc_net_info:

filters:

"tag:Name": "net_iac_example"

register: r_vpc_net

- name: Remove existing Subnet

amazon.aws.ec2_vpc_subnet:

cidr: 10.10.0.0/24

vpc_id: "{{ r_vpc_net.vpcs[0].id }}"

state: absent

- name: Remove existing VPC

amazon.aws.ec2_vpc_net:

name: net_iac_example

cidr_block: 10.10.0.0/16

state: absent

Cloud Providers offer an Infrastructure as a Code orchestration template
system. By writing a definition based on the template provided, it is possible
to create resources and manage them. The biggest advantage is the creation
of resources based on the templates, and this is automatically managed by
the Cloud Provider instead of the tool. The orchestration system is also
responsible for resolving the dependencies, and in case there is a removal
request, it will perform it in the correct order. The biggest disadvantage is
the syntax, which is usually more complex than simply using an Automation
Tool, and it varies from one Cloud to another. The options available for the
common providers are as follows:

AWS CloudFormation: Creating a template that describes all the AWS
resources wanted (such as Amazon EC2 instances or Amazon RDS DB
instances), CloudFormation takes care of provisioning and
configuring those resources from the definition.
Google Cloud Deployment Manager: An infrastructure deployment
service that automates the creation and management of Google Cloud
resources. It also writes flexible templates and configuration files and
uses them to create deployments that have a variety of Google Cloud
services.

Azure Resource Manager: The deployment and management service
for Azure. It provides a management layer that enables the creation,
updating, and deleting of resources in an Azure account.
Alibaba’s Resource Orchestration Service (ROS): The ROS template
syntax defines cloud computing resources and resource dependencies
in a template.

An example of an AWS orchestration template based on Ansible’s Playbook
is as follows:
Parameters:
ParamInstanceType:
Description: A flavor to be used by the instance

Default: t2.nano

Type: String

ParamKeyValue:
Description: SSH Public Key value

Default: none

Type: String

Resources:
NetIac:
Type: AWS::EC2::VPC
Properties:
CidrBlock: 10.10.0.0/16
EnableDnsSupport: 'true'
EnableDnsHostnames: 'true'
Tags:
- Key: Name

Value: net_iac_example
SubnetIac:
Type: AWS::EC2::Subnet
Properties:
VpcId: !Ref NetIac
CidrBlock: 10.10.0.0/24

UserKey:
Type: AWS::EC2::KeyPair
Properties:
KeyName: UserKey

PublicKeyMaterial: !Ref ParamKeyValue
Ubuntu01:
Type: "AWS::EC2::Instance"
Properties:
ImageId: "ami-043a52c87b956fc71"
InstanceType: !Ref ParamInstanceType
KeyName: !Ref UserKey
NetworkInterfaces:

- AssociatePublicIpAddress: "true"
DeviceIndex: "0"
SubnetId: !Ref SubnetIac
Tags:
- Key: Name

Value: ubuntu01

Once the Orchestration Template is created, the Automation Tools can use
the API of the Cloud Provider to start the orchestration. The following
example shows how Ansible uses the module amazon.aws.cloudformation
for that purpose:
- name: Create resources using Cloudformations
hosts: localhost
gather_facts: False
tasks:
- name: Create a Cloudformation Stack
amazon.aws.cloudformation:
stack_name: "ansible-cloudformation"
state: "present"
template: "cloudformation.yaml"
template_parameters:

ParamKeyValue: "{{ lookup('file', '~/.ssh/id_rsa.pub') }}"

In this case, AWS Cloudformation Service is responsible for performing the
operations required that are defined in the template, ensuring that the
dependencies and the syntax are correct. When the operation is completed,
the resources are available to the provider. Figure 15.3 shows an example on
AWS of the resources created with the previous template.

Figure 15.3: AWS Cloudformation dashboard

The resources can be deleted as a unique resources, deleting the Stack
created. On Ansible, it is only required to change the state parameter from
present to absent. The examples shown during this section are demonstrative
only, and some resources are missing, such as a security group and Internet
Gateway to provide external connectivity.
In the next section of this chapter, Terraform is described, and it will be
observed how it improves the general Automation Tools related to the
Infrastructure as Code. Terraform does not require to use of Orchestration
Templates, and it is responsible for the creation and the deprovisioning of the
resources automatically.

Terraform
Terraform is an open-source automation tool for Infrastructure-as-code
created by HarshiCorp. With this solution, it is possible to create, modify,
and delete infrastructures in a fast and predictable way. Using Terraform, it
is also possible to automatize multiple Cloud Providers, traditional
infrastructures, and different services such as Kubernetes.
The biggest advantage of Terraform is that it makes it easy for provisioning
the update and the deprovisioning of the infrastructure defined. Terraform
relies on plugins called providers to interact with cloud providers, SaaS
providers, and other APIs. Each provider adds a set of resource types and/or
data sources that Terraform can manage.
Figure 15.4 features a Terraform diagram:

Figure 15.4: Terraform diagram. Source: Terraform

Some of the providers officially maintained and supported by HarshiCorp
are as follows:

Amazon Web Services (AWS): Lifecycle management of AWS
resources, including EC2, Lambda, EKS, ECS, VPC, S3, RDS,
DynamoDB, and more.
Microsoft Azure: Lifecycle management using the Azure Resource
Manager APIs. It is maintained by the Azure team at Microsoft and the
Terraform team at HashiCorp.
Google Cloud Platform (GCP): Lifecycle management of GCP
resources, including Compute Engine, Cloud Storage, Cloud SQL,
GKE, Cloud Functions, and more. This provider is collaboratively
maintained by the Google Terraform Team at Google and the
Terraform team at HashiCorp
Kubernetes: Management of all Kubernetes resources, including
Deployments, Services, Custom Resources (CRs and CRDs), Policies,
Quotas, and more.
VMware vSphere: Lifecycle management of VMware vSphere
resources, including Virtual Machines, ESXi Hosts, Datastores,
vSwitches, and more.

Partners also are offering providers for Terraform, which are well
documented and supported. Some provider examples are as follows:

Alibaba Cloud: Used to interact with the many resources supported by
Alibaba Cloud.
Cloudflare: Used to interact with resources supported by Cloudflare.
OVH: Used to interact with the many resources supported by
OVHcloud.

VMC: Used to configure hybrid cloud infrastructure using the
resources supported by VMware Cloud on AWS.

The community is as well sharing and collaborating with the big number of
providers available. The portal Registry Terraform
(https://registry.terraform.io/browse/provider) offers a complete list of
them.
Terraform can be installed and used in several Linux distributions and
operating systems. Once it is installed, there are three stages to performing
the provisioning of the desired infrastructure:

Write: This stage includes defining the resources desired in one or
multiple cloud providers or services.
Plan: The tool will create a plan describing the infrastructure, defining
what will be created, updated, or deleted in the target platform.
Apply: When the plan tasks are approved, this stage will perform the
needed changes in the platform.

Figure 15.5 features the Terraform workflow:

https://registry.terraform.io/browse/provider

Figure 15.5: Terraform workflow. Source: Terraform

HarshiCorp offers a solution called Terraform Cloud, an environment to
be used for automation instead of using a local system. The Terraform
Cloud UI provides a detailed view of the resources managed by a Terraform
project and gives enhanced visibility into each Terraform operation.

Installation
The installation of Terraform CLI is a simple task. The following steps
define the installation in an Ubuntu system:
wget -O- https://apt.releases.hashicorp.com/gpg | gpg --dearmor
| sudo tee /usr/share/keyrings/hashicorp-archive-keyring.gpg

echo "deb [signed-by=/usr/share/keyrings/hashicorp-archive-
keyring.gpg] https://apt.releases.hashicorp.com $(lsb_release -

cs) main" | sudo tee /etc/apt/sources.list.d/hashicorp.list
sudo apt update && sudo apt install terraform

Running a simple Web server on AWS
The definition on Terraform is plain text files with an ending .tf. For the
simplicity of this example, all the definitions are in the same file instead of
being distributed in several ones (the recommended way). An existing VPC
named iac-vpc is already configured on AWS. The content of the file
main.tf is as follows:
data "aws_ami" "ubuntu" {
most_recent = true
filter {
name = "name"
values = ["ubuntu/images/hvm-ssd/ubuntu-jammy-22.04-amd64-
server-*"]

}

owners = ["099720109477"] # Canonical
}

data "aws_vpc" "iac-vpc" {
cidr_block = "10.0.0.0/16"
tags = {
Name = "iac-vpc"

}

}

data "aws_subnet" "iac-subnet" {
vpc_id = data.aws_vpc.iac-vpc.id
cidr_block = "10.0.0.0/20"

}

data "aws_security_group" "allow_http" {
vpc_id = data.aws_vpc.iac-vpc.id
tags = {
Name = "allow_http"

}

}

resource "aws_instance" "web01" {
ami = data.aws_ami.ubuntu.id
instance_type = "t3.micro"
subnet_id = data.aws_subnet.iac-subnet.id
associate_public_ip_address = true
vpc_security_group_ids =
[data.aws_security_group.allow_http.id]

key_name = "UserKey"
user_data = <<-EOF
#!/bin/bash

sudo apt update -y

sudo apt install apache2 -y

sudo echo "Hello from AWS" | sudo tee /var/www/html/index.html

EOF

tags = {
Name = "web01"

}

}

output "instance_ip_addr" {
value = aws_instance.web01.public_ip

}

The keyword data is used by Terraform to query data from the provider,
and the keyword resource will create the resource defined. The output
keyword is used to print the values required. Having a directory with the
required definition and files for Terraform, it is required to execute
terraform init to install the providers and other resources required to
perform the tasks. The following output shows the installation of the AWS
provider.
Initializing the backend…

Initializing provider plugins…

- Finding latest version of hashicorp/aws…

- Installing hashicorp/aws v4.41.0…

- Installed hashicorp/aws v4.41.0 (signed by HashiCorp)

Terraform has created a lock file .terraform.lock.hcl to record the
provider selections it made previously. Include this file in your version
control repository so that Terraform can guarantee to make the same
selections by default when you run “terraform init” in the future.

Terraform has been successfully initialized!
You may now begin working with Terraform. Try running the “terraform
plan” to see any changes that are required for your infrastructure. All
Terraform commands should now work.
If you ever set or change modules or backend configuration for Terraform,
rerun this command to reinitialize your working directory. If you forget,
other commands will detect it and remind you to do so if necessary.
After the initialization of the directory where the definition is located, the
next optional step is to execute the terraform plan to check the syntax and
the dependencies and show the tasks which will be performed. The
following output shows an example:
data.aws_vpc.iac-vpc: Reading…

data.aws_ami.ubuntu: Reading…

data.aws_vpc.iac-vpc: Still reading… [10s elapsed]

data.aws_ami.ubuntu: Still reading… [10s elapsed]

data.aws_ami.ubuntu: Read complete after 11s [id=ami-

0a3e4ec6adf694c3f]

data.aws_vpc.iac-vpc: Still reading… [20s elapsed]

data.aws_vpc.iac-vpc: Read complete after 23s [id=vpc-

065e086222c706994]

data.aws_security_group.allow_http: Reading…

data.aws_subnet.iac-subnet: Reading…

data.aws_subnet.iac-subnet: Read complete after 0s [id=subnet-

0faf005c6d517ae9b]

data.aws_security_group.allow_http: Read complete after 0s

[id=sg-04313711a4beec2f7]

Terraform used the selected providers to generate the following execution
plan. Resource actions are indicated with the following symbols:
+ create

Terraform will perform the following actions:
aws_instance.web01 will be created

+ resource "aws_instance" "web01" {

+ ami = "ami-

0a3e4ec6adf694c3f"

+ arn = (known after

apply)

+ associate_public_ip_address = true

+ availability_zone = (known after

apply)

+ cpu_core_count = (known after

apply)

+ cpu_threads_per_core = (known after

apply)

+ disable_api_stop = (known after

apply)

+ disable_api_termination = (known after

apply)

+ ebs_optimized = (known after

apply)

+ get_password_data = false

+ host_id = (known after

apply)

+ host_resource_group_arn = (known after

apply)

+ id = (known after

apply)

+ instance_initiated_shutdown_behavior = (known after

apply)

+ instance_state = (known after

apply)

+ instance_type = "t3.micro"

+ ipv6_address_count = (known after

apply)

+ ipv6_addresses = (known after

apply)

+ key_name = "UserKey"

+ monitoring = (known after

apply)

+ outpost_arn = (known after

apply)

+ password_data = (known after

apply)

+ placement_group = (known after

apply)

+ placement_partition_number = (known after

apply)

+ primary_network_interface_id = (known after

apply)

+ private_dns = (known after

apply)

+ private_ip = (known after

apply)

+ public_dns = (known after

apply)

+ public_ip = (known after

apply)

+ secondary_private_ips = (known after

apply)

+ security_groups = (known after

apply)

+ source_dest_check = true

+ subnet_id = "subnet-

0faf005c6d517ae9b"

+ tags = {

+ "Name" = "web01"

}

+ tags_all = {

+ "Name" = "web01"

}

<<OMITTED>>

}

Plan: 1 to add, 0 to change, 0 to destroy.
Changes to Outputs:

+ instance_ip_addr = (known after apply)

Note: You did not use the -out option to save this plan, so Terraform
cannot guarantee to take exactly these actions if you run “terraform
apply” now.
If no errors were found in the definition provided, it is possible to execute
terraform apply to the provision of the definition to the target environment.
The following output shows the example output for the previous example:
<<OMITTED>>

Do you want to perform these actions?

Terraform will perform the actions described above.

Only 'yes' will be accepted to approve.

Enter a value: yes

aws_instance.web01: Creating…

aws_instance.web01: Still creating… [10s elapsed]

aws_instance.web01: Still creating… [20s elapsed]

aws_instance.web01: Creation complete after 28s [id=i-

0c5d6e9700ea03a06]

Apply complete! Resources: 1 added, 0 changed, 0 destroyed.

Outputs:

instance_ip_addr = "18.159.48.0"

Figure 15.6 shows the output connecting to port 80 of the external IP shown
in the previous example:

Figure 15.6: Example accessing to Web server deployed on AWS

Running a simple Web server on the Google Cloud
Platform
In the following example using Terraform, the provider to be used is GCP,
and the same approach is used. A Virtual Machine is created, and it will run
a Web server. The following code shows the Terraform definition.
provider "google" {
project = "linuxserver-9mtgt"
region = "europe-southwest1"

}

resource "google_compute_firewall" "allow-http" {
name = "allow-http"
network = "iac-net"
allow {
protocol = "tcp"
ports = ["80"]

}

source_ranges = ["0.0.0.0/0"]
target_tags = ["http"]

}

resource "google_compute_instance" "ubuntu02" {
name = "ubuntu02"
machine_type = "e2-medium"
zone = "europe-southwest1-a"
tags = ["http"]
boot_disk {
initialize_params {
image = "ubuntu-os-cloud/ubuntu-2204-lts"

}

}

network_interface {
network = "iac-net"
access_config {}

}

metadata_startup_script = <<-EOF
#!/bin/bash

sudo apt update -y

sudo apt install apache2 -y

sudo echo "Hello from GCP" | sudo tee /var/www/html/index.html

EOF

}

output "instance_ip_addr" {
value =
google_compute_instance.ubuntu02.network_interface.0.access_co

nfig.0.nat_ip

}

Figure 15.7 shows the output connecting to the external IP associated with
the virtual machine.

Figure 15.7: Example accessing to Web server deployed on GCP

Running a simple Web server on Microsoft Azure
We have to follow the same approach for the Microsoft Provider. The
following example code performs the same operations as observed for the
other providers:
data "azurerm_resource_group" "iac" {
name = "openenv-45lhc"

}

data "azurerm_subnet" "iac-subnet" {
name = "iac-subnet"
resource_group_name = data.azurerm_resource_group.iac.name
virtual_network_name = "iac-net"

}

resource "azurerm_public_ip" "ubuntu03-fip" {
name = "ubuntu03-ip"
location = data.azurerm_resource_group.iac.location
resource_group_name = data.azurerm_resource_group.iac.name
allocation_method = "Static"

}

resource "azurerm_network_security_group" "iac-sg" {
name = "iac-sg"
location = data.azurerm_resource_group.iac.location
resource_group_name = data.azurerm_resource_group.iac.name
security_rule {
name = "SSH_HTTP"
priority = 100

direction = "Inbound"
access = "Allow"
protocol = "Tcp"
source_port_range = "*"
destination_port_ranges = ["22","80"]
source_address_prefix = "*"
destination_address_prefix = "*"

}

}

resource "azurerm_network_interface" "main" {
name = "iac-nic"
location = data.azurerm_resource_group.iac.location
resource_group_name = data.azurerm_resource_group.iac.name
ip_configuration {
name = "testconfiguration1"
subnet_id = data.azurerm_subnet.iac-
subnet.id

private_ip_address_allocation = "Dynamic"
public_ip_address_id = azurerm_public_ip.ubuntu03-
fip.id

}

}

resource "azurerm_virtual_machine" "main" {
name = "ubuntu03"
location =
data.azurerm_resource_group.iac.location

resource_group_name = data.azurerm_resource_group.iac.name
network_interface_ids = [azurerm_network_interface.main.id]
vm_size = "Standard_DS1_v2"
delete_os_disk_on_termination = true
storage_image_reference {
publisher = "Canonical"
offer = "0001-com-ubuntu-server-jammy"
sku = "22_04-lts"
version = "latest"

}

os_profile_linux_config {

disable_password_authentication = false

}

os_profile {
computer_name = "ubuntu03"
admin_username = "ubuntu"
admin_password = "Password1234!"
custom_data = <<-EOF
#!/bin/bash

sudo apt update -y

sudo apt install apache2 -y

sudo echo "Hello from Azure" | sudo tee

/var/www/html/index.html

EOF

}

tags = {
Name = "web01"

}

storage_os_disk {
name = "rootdisk"
caching = "ReadWrite"
create_option = "FromImage"
managed_disk_type = "Standard_LRS"

}

}

output "instance_ip_addr" {
value = azurerm_public_ip.ubuntu03-fip.ip_address

}

Figure 15.8 shows the external IP, for instance, and the access to it.

Figure 15.8: Example accessing to Web server deployed on Azure

Configuring DNS with Cloudflare
In the following example, the provider Cloudflare is used to configure a
Round-Robin DNS record to point a subdomain to the three endpoints
created previously.
resource "cloudflare_record" "www-aws" {
zone_id = "7b02797059c3d78208a18ba3210e36e7"
name = "iac"
value = aws_instance.web01.public_ip
type = "A"

}

resource "cloudflare_record" "www-gcp" {
zone_id = "7b02797059c3d78208a18ba3210e36e7"
name = "iac"
value =
google_compute_instance.ubuntu02.network_interface.0.access_co

nfig.0.nat_ip

type = "A"
}

resource "cloudflare_record" "www-azure" {
zone_id = "7b02797059c3d78208a18ba3210e36e7"
name = "iac"
value = azurerm_public_ip.ubuntu03-fip.ip_address
type = "A"

}

Figure 15.9 shows the resolution for the subdomain configured.

Figure 15.9: Example accessing to Cloudflare subdomain

Conclusion
The adoption of the Cloud brought several advantages and challenges
related to it. This chapter covered the popular providers and the common
services offered by them. Working in a specific Cloud brings with it the
limitation of having a vendor lock-in. Automation tools and management
systems allow for managing multiple clouds and distributing services
between them, saving costs and reducing the dependency on only one
provider. This chapter covered how Ansible can be used to deploy an
infrastructure and described how to use Terraform for a multi cloud
application deployment.

Key facts
AWS is the biggest Cloud Provider as well as the pioneer.
Microsoft Azure and Google Cloud Platform are growing and
obtaining a market share in the last few years.
Alibaba Cloud is one of the biggest providers based in Asia.
Ansible can be used as an Infrastructure-as-Code tool, defining step by
step the tasks to perform in the target provider.
Terraform is a specific Infrastructure-as-Code tool with hundreds of
providers to operate with public and private clouds.

Questions
1. What is the name for the Object Storage Service on AWS?

a. S3
b. EC2
c. RDS

2. What is the name for the NoSQL database on Microsoft Azure?

a. Azure MongoDB
b. Azure Cosmos DB
c. Azure NoSQL DB

3. What is the name of the service provided by Google Cloud for
functions-as-a-service?

a. Cloud Functions
b. GCP Functions
c. Google Functions

4. What is the name of the component on OpenStack for networking?

a. nova
b. cinder
c. neutron

5. Executing terraform to apply a definition is a declarative or
imperative approach?

a. declarative
b. imperative

Answers
1. a
2. b
3. a
4. c

5. b

CHAPTER 16
Infrastructure as a Service

Introduction
This chapter will detail what Infrastructure as a Service (IaaS) is and its
different usages. This type of Cloud offers compute, storage, and network
resources (among other resources) on demand. Users will access a platform to
request the virtual resources needed.
The previous chapter explained the common services offered by the popular
Public Clouds and introduced OpenStack as a Private Cloud solution. This
chapter will deepen on the options available for the Private Cloud and the term
Hybrid Cloud.
This chapter will describe how to operate an OpenStack platform, explaining all
the elements required to run Virtual Machines and access them.

Structure
In this chapter, we will discuss the following topics:

Infrastructure as a Service
Private Cloud
Hybrid Cloud
OpenStack as an IaaS
Running virtual machines on OpenStack

Infrastructure as a Service
The concept of Infrastructure as a Service consists of converting the resources on
a traditional on-premise data center to an infrastructure based on the Cloud model.
In this model, the resources are virtualized and offered to the users to be
consumed. Some of the important characteristics offered by this service are as
follows:

A self-service API to perform new requests, query, or manipulate resources.

A Web-based self-service portal to ease operations.
High availability services to provide the best uptime possible.
Replication of the data stored to avoid data loss.
Physical resource optimization to provide the best performance on virtual
resources offered.
Security of the data with secret management and encryption of the data.

The primary components virtualized to be offered to the consumers are as
follows:

Computing resources: Run Virtual Machines in a controlled environment.
Networking resources: Networks, subnets, switches, firewall, and routers
can be used as virtual elements.
Storage resources: Disks, file systems, or object containers can be
consumed.

In an Infrastructure as a Service, the provider is the one responsible for managing
the underlay physical resources, and the user is only responsible for managing the
virtual components and the configuration for the virtual resources consumed, such
as the operating system for a virtual machine created or the application running on
it. Figure 16.1 features an Infrastructure as a Service diagram:

Figure 16.1: Infrastructure as a Service diagram. Source: Cloudflare

Private Cloud
In a Private Cloud, the resources are only shared via the internet or private
network to a specific user or organizations. Companies can decide on a Private
Cloud for one of the following reasons:

Privacy: Some enterprises require the data and the resources to be under
their own responsibility.
Cost control: The cost of a Public Cloud can be increased if it is not
controlled or estimated properly. Having a Private Cloud, the costs are fixed
and not related to the usage.
Multicloud: As described in the previous chapter, it is possible to have a
Private Cloud to perform development and test and, for production, to use a
Public one.

A Private Cloud requires a dedicated team or teams responsible for managing the
infrastructure (such as servers, physical network devices, data center, and so on),
the platform providing the services, and the support for the services offered. The
team or teams are also responsible for scaling up the infrastructure when needed
to provide more resources to end users.
The underlay infrastructure in a Private Cloud has to ensure the following
considerations:

The system resources, such as memory and CPU, should be sufficient for
the requirements of the tenants using the platform.

Overcommitment is a technique used to provide more resources
(memory or CPU) than the available ones. In most of the cases, a
Virtual Machine is not using all the resources dedicated to them.

The traffic between the different networks should be isolated for security
while avoiding bottleneck. For example, the storage network should not
affect the Virtual Machines traffic.
Infrastructure should operate in a High Availability mode. This reduces the
single point of failure (SPoF) having redundant devices, such as power
supply, Ethernet cards, switch, and so on.

A Private Cloud is a complex environment that requires a good architecture
design and a maintenance plan to avoid unexpected downtime and degradation of
the services offered. Different Open-Source enterprise-ready projects are available
for building a Private Cloud; some popular examples are as follows:

OpenStack: A Cloud Computing solution for providing multiple services to
end users.
Ceph: A software-defined storage solution to provide block, file, and object
storage.
Open Virtual Network (OVN): A software-defined network solution on
top of Open vSwitch (a distributed virtual multilayer switch
implementation).

Public Clouds offers the possibility of having a Private Cloud on-premise
integrated with the Public Cloud. The options and descriptions are as follows:

Azure Stack: A portfolio of products that extend Azure services and
capabilities to customer’s environments of choice—from the datacenter to
edge locations. The hardware needs to be certified by Azure.
AWS Outposts: It is possible to run AWS services locally and connect to a
broad range of services available in the local AWS Region. The hardware
needs to be bought directly from AWS.
Google Anthos: It allows building and managing modern applications on
Google Cloud, existing on-premises environments, or public cloud
environments. It enables consistency between on-premises and cloud
environments.
Alibaba Cloud Apsara Stack: A full-stack cloud solution designed for
enterprise-level customers that require a highly capable and flexible Hybrid
cloud solution. Hardware needs to be certified by Alibaba Cloud.

Hybrid Cloud
The term Hybrid Cloud refers to the combination of computing, storage,
networking, and services between different environments. It is usually the
combination between a Private Cloud and a Public Cloud. As described in the
previous chapter, one of the reasons to work with multiple Clouds is for avoiding
vendor lock-in as well as reducing costs. Modern applications require an
environment to be developed and tested because it is difficult for a developer to
use a local system.
Private Cloud in a Hybrid environment can be used for that purpose: for
developing new applications and testing them. Continuous Integration (CI) and
Continuous Delivery (CD) can be used for the development process. The release
of the applications can be performed on the Public Cloud when the tests and the
required approvals are performed.

The Public Cloud Providers offer the possibility of communicating between both
environments through a secure and private connection. Figure 16.2 features a
Hybrid Cloud diagram:

Figure 16.2: Hybrid Cloud Diagram. Source: Alibaba Cloud

OpenStack as an IaaS
In the previous chapter, an introduction to OpenStack was described, including a
list of the core components and other useful ones. This section will cover the
architecture of OpenStack, its main use cases, and its advantages compared to a
Public Cloud.
In an OpenStack cluster, there are two main types of nodes providing computing
services:

Controller nodes: They are servers running the database, queue services,
load balancers, and OpenStack services accessible via API. These nodes
include networking and storage services.
Compute nodes: They run Virtual Machines, and they are responsible for
the correct functioning.

Other types can be part of the cluster depending on the use case and the needs, for
example:

Block storage nodes: Nodes responsible for the storage, called Volumes, to
be used by the Virtual Machines.
Object storage nodes: Nodes responsible for the objects; it stores the
images to be used by Virtual Machines and other unstructured data.

Figure 16.3 represents an architecture example for OpenStack. It includes the
core (controllers and compute) nodes and optional ones (Block and Object
storage). Please refer to the following figure:

Figure 16.3: OpenStack architecture

The Networking configuration on OpenStack can be simple for development or
proof of concept clusters or complex when the cluster is for production purposes.
There are the following six main networks required in a production-ready
installation when network isolation is used:

Control Plane (also known as Provisioning): Used in development or
installations without network isolation as the only one network. In a
production-ready environment, this network is used for provisioning and
management.
Internal API: Communication to the Services API between the services.
For example, the nova service (responsible for computing) communicates
with the neutron service (responsible for networking) using this network.
Tenant: Used by the Virtual Machines in the east-west traffic
(communication between Virtual Machines) and the north-south traffic
(from or to outside the cluster).
Storage: Traffic generated from and to the systems providing the storage to
OpenStack.
Storage Management: Traffic used internally between the systems
involved in the Storage systems.
External: Used to provide external access from outside the cluster. The
Network is used to provide an external address to be used for API, Web
access, and access to the instances running on OpenStack.

An additional network called Management can be configured to access the
cluster nodes to be administrated, usually only accessible by the teams who
administrate the cluster. Figure 16.4 shows a network layout for OpenStack:

Figure 16.4: OpenStack Network Layout. Source: Red Hat

Installation of OpenStack is a complex process, but there are available
installation tools available, making the process easier. The two popular main
options are as follows:

TripleO (OpenStack On OpenStack): This project aims at the installation,
upgrading, scaling, and operating OpenStack. The installation consists of a
node called undercloud, which is an installation of OpenStack in a single
node, which further helps the installation of an OpenStack cluster called
overcloud. Figure 16.5 features a TripleO diagram:

Figure 16.5: TripleO diagram. Source: OpenStack

OpenStack Charms: This option uses Metal-As-A-Service (MAAS) and
Juju projects. The project MAAS is used for provisioning a bare metal
system, and Juju to deploy OpenStack services on the nodes.

OpenStack uses open-source projects to provide high availability of the services
offered. The projects used to provide a reliable service are as follows:

Pacemaker: A popular High Availability resource manager for Linux. It is
responsible for ensuring that some of the services configured are available
on the controller nodes. The services can be configured in active-passive or
active-active. If it detects that some of the applications or nodes are not
responding, it is responsible for promoting a node as active. The resources
managed by Pacemaker are as follows:

Galera: A Multi-Master cluster for MySQL/MariaDB using
synchronous replication.
Haproxy: It is responsible for performing load balancing for the
services offered by OpenStack.
RabbitMQ, Qpid, or ZeroMQ: The message queue service to
coordinate operations and status information among services.
Virtual IPs: IP addresses associated with an application and move
with the application when the application is moved from one server to
another server. It allows a client to always call the same IP address
instead of guessing where the application is running.

Memcached: Used to cache tokens for the Identity Service.
Redis or MongoDB: These NoSQL are used for the Telemetry Service.

The Controller nodes are usually three to guarantee the correct functionality of
the system and provide high availability to the services. The number of Compute
nodes depends on the resources for each of them and the needs of the end users.
There are the following five main use cases for OpenStack these days:

Telco Companies: These companies require a big performance and high
bandwidth to offer telecommunication services to customers. OpenStack
provides different options to increase performance, such as Real Time
Kernel and Huge Pages. For data path networking, it is possible to use
SRIOV or DPKD, among other solutions.
Service Providers: These kinds of companies need the flexibility to create,
scale, and delete services. OpenStack is a good solution to reduce
operational costs.
Development: Having a Private Cloud helps developers speed up the
process and perform the testing.
Artificial Intelligence and Machine Learning (AI/ML): These
technologies require access to special hardware to perform operations, such
as a Graphical Process Unit (GPU). OpenStack is a perfect platform to
run Virtual Machines to use virtual GPUs (vGPUS).
Edge Computing: The current trend is to decentralize the infrastructure to
have nodes to perform tasks in a different location. OpenStack allows it to
be installed and contain Edge nodes.

Running virtual machines on OpenStack
To operate with OpenStack, it is required to have the address to perform the
authentication, a valid username, the password, and the project to be used. The
authentication is performed against Keystone, which uses port 5000/tcp or
1300/tcp (TLS protected) to accept the requests. It is possible to specify the
authentication data to the OpenStack command line client in the following three
different ways:

Using the file clouds.yaml, which can include different configurations for
multiple installations. The environment variable OS_CLOUD or the option
–os-cloud is used to specify the authentication to be used. This file can be
located in the following directories, with the first having more priority:

Inside the current directory.
Inside the directory ~/.config/openstack
Inside the directory /etc/openstack

Using environment variables in the terminal to specify the values. Some
variable examples are as follows:

OS_AUTH_URL: The endpoint URL against the client will perform the
authentication.
OS_PASSWORD: The password for the specified username.
OS_PROJECT_NAME: The project name to be used during authentication.
OS_USERNAME: To specify the username to perform the authentication.

Using the argument options for the client, some of them are as follows:

--os-auth-url: The endpoint URL against the client will perform the
authentication.
--os-password: The password for the specified username.
--os-project-name: The project name to be used during
authentication.
--os-username: To specify the username to be performed for the
authentication.

The following block shows the example content of file clouds.yaml with two
clusters configured:
clouds:

production:

auth:

auth_url: "https://production.osp.example.com:13000"

username: "regularuser"

project_name: "webproject"

user_domain_name: "Default"

password: "complexpassword

region_name: "regionOne"

interface: "public"

identity_api_version: 3:

developemnt:

auth:

auth_url: "http://development.osp.example.com:5000"

username: "admin"

project_name: "devapps"

user_domain_name: "Default"

password: "supersecretpassword

region_name: "regionOne"

interface: "public"

identity_api_version: 3

The client OpenStack has multiple arguments for the different services available
in the cluster where the tasks are going to be performed. To list the available
services, it is possible to use the arguments service list. Figure 16.6 shows an
example:

Figure 16.6: Output example listing services available

With the argument catalog, it is possible to obtain the services and endpoint URL
using a catalog list and obtain information about a specific one using a catalog
show. Figure 16.7 shows an example of the service nova.

Figure 16.7: Output example describing a service

The clients access the cluster using the public endpoint, the services use the
internal endpoint (located in the internal API network), and some administrative
tasks are performed using the admin endpoint.

Images
To run a Virtual Machine, it is required to use an image containing the operating
system desired. The project to upload, manipulate or delete images is called
Glance. The popular disk formats are as follows:

QCOW2 (QEMU copy-on-write version 2): is the main format used with
the KVM hypervisor, the one used on OpenStack. The size is compressed,
can be dynamically resized, and it is possible to run several Virtual
Machines from a base image as well as only store the differences.
RAW: This is an unstructured disk image; it contains the full size of the
disk. This format is needed when Ceph is used as the backend for the
storage.
VMDK (Virtual Machine Disk): This format is supported by many
hypervisors, including Vmware ESXi.
VDI (Virtual Disk Image): Format supported by VirtualBox and QEMU.

Creating an Image requires specifying the disk format and the container format.
When the image has no metadata, the container format is bare. Figure 16.8 shows
the creation of an image for Debian 10.

Figure 16.8: Output example creating an image

The output for the command includes useful information, including the id of the
image created, the size, and the status, among other properties. Table 16.1 shows
(truncated) an example of the output:

Field Value

checksum b2e5db6e58c16546a4b561eeaf2d5274

container_format bare

created_at 2022-12-04T19:04:57Z

disk_format qcow2

file /v2/images/01805448-4401-47a3-930b(..)

id 01805448-4401-47a3-930b-1d38f2324514

min_disk 0

min_ram 0

name debian10

owner 7690147846bb4f24b724a940673d6ce8

properties direct_url=’swift+config://01805448(..)

protected False

schema /v2/schemas/image

size 665426944

status active

tags

updated_at 2022-12-04T19:05:03Z

virtual_size None

visibility shared

Table 16.1: Output is shown after creating an image. caption

Table 16.2 shows the typical tasks performed related to images.
Arguments Description

image list List the existing images defined.

image delete Delete an existing image.

image show Shows all the information about the specified image.

image set Updates parameters related to the specified image.

Table 16.2: Typical tasks related to flavors

Flavors
To run a Virtual Machine, it is required to specify the resources required. For that,
a flavor is specified during the creation. A flavor contains how many virtual
CPUs, memory, and disk the Virtual Machine will have associated. Figure 16.9
shows the creation of a flavor named m1.small:

Figure 16.9: Output example creating a flavor

The data is located on the compute service named nova. It is possible to resize an
existing Virtual Machine using the arguments server resize. Table 16.3 shows the
typical tasks performed related to flavors.

Arguments Description

flavor list List the existing flavors defined, including the resource values.

flavor delete Delete an existing flavor.

flavor show Shows all the information about the specified flavor.

flavor set It is not possible to change the resources defined, only other projects such
as the description.

Table 16.3: Typical tasks related to flavors

Networking architecture
The Networking part of OpenStack is a complex element. The service offering
the networking functionality is called neutron. This is due to the need for the
isolation of the projects and the networks for the tenants. There are the following
two types of networks:

Overlay Networks: These virtual networks are internal to OpenStack, and
the traffic is encapsulated through the tenant network. The two most
common encapsulation types are as follows:

Virtual Extensible LAN (VXLAN): An encapsulation protocol that
provides data center connectivity using tunneling, stretching Layer 2
connections over an underlying Layer 3 network.

Generic Network Virtualization Encapsulation (GENEVE): The
encapsulation protocol used on OVN. It promises to address the
perceived limitations of the earlier specifications and support all of the
capabilities of VXLAN.

To access to an Overlay Network, it is required to perform a Network
Address Translation (NAT) from a physical network (the external or
public network) to this network. On OpenStack, the IP addresses used for
this purpose are called Floating IPs.
Provider Networks: These are physical networks attached to the nodes in
the cluster. Virtual Machines can be attached directly to these networks,
similar to other Virtualization Platforms, allowing access directly to them.

Figure 16.10 shows the complexity, and in this case, using VXLAN tunnels, of the
Network architecture on OpenStack.

Figure 16.10: Network architecture on OpenStack using VXLAN. Source: OpenStack

The adoption of OVN simplifies the infrastructure but requires more knowledge
about how a Software Defined Network (SDN) works to separate the logic part
from the data path. Figure 16.11 shows the components involved:

Figure 16.11: Network architecture on OpenStack using VXLAN. Source: OpenStack

Networking for Virtual Machines
To run a Virtual Machine on OpenStack, it should be connected to a network. This
network should have at least one subnet associated. The subnet can be configured
to provide DHCP addresses to the Virtual Machines connected to it. The argument
network create is used to create the network, which can be an overlay or a
provider network. The argument subnet create is used to create subnets inside a
network. Figure 16.12 creates a provider network to be used as an external
network for Floating IPs.

Figure 16.12: Example command creating an external network

The output of the following command includes the id, the status, and information
relational to the network created. Refer to table 16.4:

Field Value

admin_state_up UP

availability_zone_hints

availability_zones

created_at 2022-12-04T19:44:24Z

description

dns_domain

id 8229579d-1427-4b74-bb89-1d7a16cfac5f

location cloud=’development’, project.domain_id=,
project.domain_name=’Default’,
project.id=’7690147846bb4f24b724a940673d6ce8’,
project.name=’admin’, region_name=’regionOne’, zone=

mtu 1500

name external

port_security_enabled True

project_id 7690147846bb4f24b724a940673d6ce8

provider:network_type flat

provider:physical_network datacentre

provider:segmentation_id None

qos_policy_id None

revision_number 1

router:external External

segments None

shared True

status ACTIVE

subnets

tags

updated_at 2022-12-04T19:44:24Z

Table 16.4: Output example creating a network.

The physical network is connected to a subnet with the address 10.0.0.0/24.
Figure 16.13 shows an example of the creation of the subnet attached to the
previous network created.

Figure 16.13: Example command creating a subnet

A subnet by default is created by having DHCP enabled; the option --no-dhcp is
used to disable it. The output of the previous command is shown in table 16.5:

Field Value

allocation_pools 10.0.0.220-10.0.0.230

cidr 10.0.0.0/24

created_at 2022-12-04T20:10:50Z

description

dns_nameservers 8.8.8.8

enable_dhcp False

gateway_ip 10.0.0.1

host_routes

id 229b4e9e-35aa-47db-8f30-8ad1dcd50608

ip_version 4

location cloud=’development’, project.domain_id=,
project.domain_name=’Default’,
project.id=’7690147846bb4f24b724a940673d6ce8’,
project.name=’admin’, region_name=’regionOne’, zone=

name subexternal

network_id 8229579d-1427-4b74-bb89-1d7a16cfac5f

prefix_length None

project_id 7690147846bb4f24b724a940673d6ce8

tags

updated_at 2022-12-04T20:10:50Z

Table 16.5: Output example creating a subnet

Figure 16.14 shows the creation of an overlay network to be used by the Virtual
Machines.

Figure 16.14: Example command creating a network and a subnet

From the network creation, it is important to value that when an overlay network
is created, the MTU is less than 1500 because some bytes are reserved for the
encapsulation, and the encapsulation type in the previous example is GENEVE.
Refer to table 16.6:

Field Value

mtu 1442

provider:network_type geneve

Table 16.6: Fields for the subnet related to the overlay network.

Table 16.7 shows the typical tasks performed related to networks and subnets.
Arguments Description

network list List the existing networks created, including the subnets configured for
them.

network delete Delete a not-in-use network.

network show Shows all the information about the specified network.

network set Sets different parameters of the subnet, such as the name or description.

subnet list List the existing subnets created.

subnet delete Delete a not-in-use subnet.

subnet show Shows all the information about the specified subnet.

subnet set Sets different parameters of the subnet

Table 16.7: Typical tasks related to networks and subnets

Routing
After the networks are created, a Virtual Machine can be connected to the overlay
network, but it will be isolated from outside of the cluster. To connect the external
network with the private network, it is required to create a Virtual Router. The
argument router create is used to create a virtual router. Refer to figure 16.15:

Figure 16.15: Example command creating a virtual router

To specify the external network connected to the virtual router, the argument set
with the option –external gateway. Using the argument router add subnet, it is
possible to add a subnet to a router. Figure 16.16 shows the actions using the
previous router created:

Figure 16.16: Example command configuring a router

Table 16.8 shows the typical tasks performed related to routers
Arguments Description

router remove subnet Remove an existing subnet from the router.

router list List the existing routers created.

router delete Delete an existing router if it is not in use.

router show Shows all the information about the specified router.

router set Sets different parameters of the router, such as the name or description.

router unset Unset some parameters configured, such as the external gateway.

Table 16.8: Typical tasks related to routers

Security Groups
A Security Group is a set of firewall rules applied to Virtual Machines. By
default, OpenStack only allows egress traffic. When a project is created, a
security group is created and associated as a default. Administrators and users can
add rules to the security group or create a new one and add the rules to them.
Figure 16.17 shows an example to allow connecting to port 22 (SSH):

Figure 16.17: Example of creating a security group and allowing SSH

Table 16.9 shows the typical tasks performed related to security groups.

Arguments Description

security group list List the existing security groups created.

security group delete Deletes an existing security group.

security group show Shows all the information about the specified security group, including
the rules assigned.

security group set Sets different parameters of the security group, such as the name or
description.

security group rule delete Deletes an existing security group rule from a security group.

Table 16.9: Typical tasks related to the security group

Public key
To access the Virtual Machines, it is required to use the SSH key authentication
method. Cloud images available for the Linux distributions do not have a default
password. OpenStack allows to upload a Public Key to be injected into the
Virtual Machine to allow remote access. Refer to figure 16.18:

Figure 16.18: Example of creating a security group and allowing SSH

Virtual Machines
By having a network ready to be used, a flavor defined, and an image with the
desired operating system, it is possible to run a Virtual Machine. The computing
service is called nova. The security group can be the default one in the project
where it is going to be created or specify a custom one created in the cluster.
Optionally, it is possible to specify the public key to be used. The arguments
server create are used for the creation. Figure 16.19 shows an example of the
creation:

Figure 16.19: Example of creating a new Virtual Machine

Using the option --wait, the command will create the Virtual Machine or show
the reason why it was not possible to be created. The output includes the IP
address assigned and other useful information. Table 16.10 shows the output
example for the previous command:

Field Value

OS-DCF:diskConfig MANUAL

OS-EXT-SRV-ATTR:instance_name instance-00000004

OS-EXT-STS:power_state Running

OS-EXT-STS:task_state None

OS-EXT-STS:vm_state active

OS-SRV-USG:launched_at 2022-12-05T18:49:38.000000

addresses overlay_network=172.16.0.64

adminPass f8P3jTtgBffZ

config_drive

created 2022-12-05T18:49:21Z

flavor m1.small

hostId ce58aff5b3d82cc6e61b(..)

id ab12fad7-5dca-(..)

image debian10 (..)

key_name mykey

name myfirstvm

security_groups name=’allowssh’

status ACTIVE

updated 2022-12-05T18:49:38Z

user_id 6c1f154be7c14eb3b137e73910fad113

volumes_attached

Table 16.10: Output fields example creating a server

It is possible to run the Virtual Machines running with the arguments server list
as observed in figure 16.20:

Figure 16.20: Example listing Virtual Machines

Table 16.11 shows the typical tasks performed related to security groups.
Arguments Description

server delete Deletes an existing Virtual Machine.

server show Shows all the information about the specified Virtual Machine.

server set Sets different parameters of the Virtual Machine, such as the name or
description.

server console log show Shows the log related to the Virtual Machine during the boot process.

server stop Stops the Virtual Machine.

server reboot Reboots the Virtual Machine.

Table 16.11: Typical tasks related to Virtual Machines

Floating IPs
The Virtual Machines attached to an Overlay Network are not accessible from
outside of the cluster. To have connectivity to the external world, a Floating IP in
the external network should be created and attached to the Virtual Machine. The
arguments floating ip create is used to create a new Floating IP to be used
later on a Virtual Machine. The argument server add floating ip is used to
attach the IP to the Virtual Machine. Figure 16.21 shows the process:

Figure 16.21: Floating IP creating and assignment

The Virtual Machine is now accessible using the IP address assigned from the
external network. Figure 16.22 shows the connection using the default username
debian, and the proper SSH key.

Figure 16.22: Connecting using a Floating IP

Inside of the Virtual Machine, the only IP available is the one assigned in the
Overlay Network because the Floating IP is a NAT address managed by
OpenStack. Figure 16.23 shows the output of the command ip.

Figure 16.23: IP available inside the Virtual Machine

Table 16.12 shows the typical tasks performed related to Floating IPs.
Arguments Description

floating ip list Lists the existing Floating IPs.

floating ip delete Deletes an existing Floating IP.

floating ip show Shows all the information about the specified Floating IP.

floating ip set Sets different parameters of the Floating IP, such as the port associated.

server remove floating ip Dissociate a Floating IP from a Virtual Machine.

Table 16.12: Typical tasks related to Floating IPs

Persistent storage
By default, the Virtual Machines have ephemeral storage for the root disk. This is
a common behavior working in a Cloud, and the persistent data are usually in a
separate disk. The project cinder allows for creating volumes and attaching them
to the Virtual Machine. The argument volume create is used to create a volume
to be used later with the argument server volume add. Figure 16.24 shows an
example:

Figure 16.24: Create and attach a volume to a Virtual Machine

Inside the Virtual Machine, without the need to be restarted, the disk will be
available for usage. Figure 16.25 shows the output of the command lsblk inside
of the instance showing the new disk (vdb):

Figure 16.25: Output example for the command lsblk inside the instance

Table 16.13 shows the typical tasks performed related to Volumes.
Arguments Description

volume list Lists the existing Volumes.

volume delete Deletes an existing Volume which is not in use.

volume show Shows all the information about the specified Volume.

volume set Sets different parameters of the Volume, such as the name and description.

server remove volume De-attach a Volume from a Virtual Machine.

Table 16.13: Typical tasks related to Volumes

Orchestration
As described in the previous chapter, related to the Orchestration in the Public
Clouds, it is possible to write a template on OpenStack, to perform the creation
of the resources. The orchestration server is called Heat. The following template
creates a new Virtual Machine and assigns a Floating IP and a Volume:
heat_template_version: rocky

description: Provision a instance with a floating ip

parameters:

KeyName:

description: Name of an existing SSH keypair

type: string

InstanceName:

description: Name of the instance

type: string

FlavorSize:

description: The flavor required for the instance

type: string

default: "m1.small"

ImageName:

description: The name of an image to deploy

type: string

default: "debian10"

PrivateNet:

type: string

description: Private Network

ExternalNet:

type: string

description: External Network

SecurityGroup:

type: string

description: Security group

default: "default"

VolumeSize:

type: number

description: Size of the volume to be created.

default: 1

resources:

instance:

type: OS::Nova::Server

properties:

flavor: { get_param: FlavorSize }

image: { get_param: ImageName }

key_name: { get_param: KeyName }

name: { get_param: InstanceName }

networks:

- port: { get_resource: instance_port }

instance_port:

type: OS::Neutron::Port

properties:

network: { get_param: PrivateNet }

security_groups:

- { get_param: SecurityGroup }

instance_external:

type: OS::Neutron::FloatingIP

properties:

floating_network: { get_param: ExternalNet }

port_id: { get_resource: instance_port }

volume:

type: OS::Cinder::Volume

properties:

size: { get_param: VolumeSize }

name: datavolume

description: Cinder Volume Test

instance_volume:

type: OS::Cinder::VolumeAttachment

properties:

instance_uuid: { get_resource: instance }

volume_id: { get_resource: volume }

mountpoint: /dev/vdb

outputs:

instance_external_ip:

description: Floating IP address of instance in External network

value: { get_attr: [instance_external, floating_ip_address] }

The arguments stack create are used to process the template and create the
resources. The option --parameter (-p) is used to pass the parameter in the
format key=value. The following Figure 16.26 shows an example of creating a
Virtual Machine using the previous template:

Figure 16.26: Output example creating a stack

With the argument stack output list, it is possible to obtain a list in the
outputs section from the template, and with the argument stack output show, the
value can be visualized. In the previous example, the assigned Floating IP is
configured to be shown. Figure 16.27 shows the output of the previous stack
created:

Figure 16.27: Output value examples for a stack

Table 16.14 shows the typical tasks performed related to Stacks.
Arguments Description

stack list Lists the existing Stacks.

stack delete Deletes an existing Stack, and the resources created

stack show Shows all the information about the specified Stack.

stack update Updates an existing Stack with a new version of the template.

Table 16.14: Typical tasks related to Volumes

Dashboard
The component Horizon is responsible for offering a Web dashboard to users for
self-service operations. Figure 16.28 shows an example of the aspect:

Figure 16.28: OpenStack dashboard. Source: openstack

Conclusion
Hybrid Cloud is a trending architecture to combine a Private Cloud with a Public
Cloud. Many reasons are behind this, such as reducing costs and flexibility. This

chapter covered what is Infrastructure as Service is and detailed OpenStack as a
Cloud solution.

Key facts
Infrastructure as a Service allows converting on-premise infrastructure to
a Cloud-ready infrastructure.
Private Cloud can be combined with a Public Cloud to operate together.
This combination is called Hybrid Cloud.
OpenStack is the most important open-source project to build a Cloud.

Questions
1. What is the name for computing on OpenStack?

a. glance
b. nova
c. neutron

2. Which is one of the most popular open-source solutions for storage?

a. cifs
b. ceph
c. nfs

3. It is possible directly connect to the IP of a Virtual Machine attached to an
overlay network. True or False?

a. true
b. false

4. Which project is used to create persistent volumes?

a. glance
b. swift
c. cinder

5. What arguments are used to create a new stack on OpenStack?

a. stack create
b. heat create

c. template create

Answers
1. b
2. b
3. b
4. c
5. b

Index
Symbols
/etc/group file 68
/etc/gshadow file 68
/etc/passwd file 67
/etc/shadow file 67

A
Access Control Security Policies 203
ACID 286
Active Directory 268
Active Directory Domain Controller 272
Address and Routing Parameter Area (.arpa) 241
AD-HOC actions 346
Advanced Host Controller Interface (AHCI) 158
advanced installation steps 19

data redundancy 19
link aggregation 19
volume manager 19

advanced network configuration 193
link aggregation (bonding) 193, 194
network bridges 195-197
Virtual LANs (VLANs) 198

Advanced Packet Tool (APT) 261
Alibaba Cloud 458, 464
Alma Linux 15, 39
ALTER statement 288
Amazon Elastic Kubernetes Service (EKS) 415
Amazon S3 Glacier 433
Amazon Web Services (AWS) 415, 433, 457, 460

Amazon CloudFront 461
Amazon DynamoDB 460
Amazon Elastic Beanstalk 460
Amazon Elastic Compute Cloud (EC2) 460
Amazon Elastic Container Service (ECS) 460
Amazon Elastic Kubernetes Service (EKS) 461
Amazon Elastic Load Balancing (ELB) 461
Amazon Lambda 461
Amazon Relation Database Service (RDS) 460
Amazon Route 53 461
Amazon Simple Storage Service (S3) 460
Amazon Virtual Private Cloud (VPC) 460
AWS Identity and Access Management (IAM) 461

Ansible 318
automation, performing with 338, 339

ansible-playbook commands 355
Apache Cassandra 305
Apache CouchDB 305
Apache Hbase 305
Arch Linux 41
Artificial Intelligence (AI) 8
asymmetric cryptography 252
augmented reality (AR) 8
Azure Archive Storage 433

B
background process 137

executing 138
Backup process 429, 430

full backup 433
incremental backup 433, 434
solution features 436, 437
sources 435
storage media 432
strategies 436

Bacula 437
client installation 442
command bconsole 443-447
components 439, 440
installation 438
services 438

Bacula Console service 438
Bacula Director service 438
Bacula File service 438
Bacula Storage service 438
baremetal nodes 278
bash 45
basic CLI commands

command cd 50
command history 51
command hostname 48
command man 49, 50
command pwd 47, 48
command uptime 52
command whoami 48

Big Data 8
binary DVD 35
binary packages 82
boot ISO 35
Border Gateway Protocol (BGP) 192

C
Canonical 14, 16
Canonical Kubernetes 415
Catalog 438
CentOS stream 39
Central Processing Unit (CPU) 144

information, obtaining 145, 146
load average 147
system load 146

CFEngine 318
Chef 318
CircleCI 417
CLI commands, for data stream

command echo 62
command read 62
command tee 62

CLI commands, for identifying resources
command df 55
command free 54
command lsblk 56
command lscpu 52, 53
command lshw 53
command lspci 55
command lsusb 55

CLI commands, for listing elements
command find 57
command ls 56

Cloudflare 491
cloud images 20
CloudLinux 15
Cloud Providers 456

advantages 458, 459
Alibaba Cloud 458
Amazon Web Services (AWS) 457
Business Applications 457
Data Products 457
desktop applications 457
DevOps 456
Google Cloud Platform (GCP) 458
infrastructure software 456
IoT 457
Machine Learning 457
Microsoft Azure 458

Cloud Storage 432
command atop 149
command awk 129
command bconsole 443
command cat 120, 121
command chgrp 119

command chmod 119, 120
command chown 117, 118
command edquota 170
command fio 162
command grep 126-128
command hdparm 162
command head 121
command htop 150
command iostat 153
command ip 178
command last 121
command lftp 275
Command Line Interface (CLI) 43
command mpstat 151
command netplan 190
command nmcli 185, 186
command nmtui 186, 187
command pmap 157
command ps 157
command sar 152
command setquota 170
commands, for DEB packages

command apt-cache 96-100
command apt-file 96
command apt-get 96-98
command dpkg 93-96

commands, for group manipulation
command gpasswd 81, 82
command groupadd 80
command groupdel 81
command groupmod 81
command groups 80
command newgrp 82

commands, for RPM packages
command dnf 88-92
command rpm 84-87
command yum 88-92

commands, for user administration
command adduser 72-74
command chage 78, 79
command id 71, 72
command last 79
command lslogins 75, 76
command passwd 77, 78
command useradd 72
command userdel 77
command usermod 74
command w 77
command who 77

command sqlite 303

command top 148, 149
command uptime 147
Common Internet File System (CIFS) 267
Community Enterprise Operating System (CentOS) Linux 39
Container Runtime 413
Container Runtime Interface (CRI) 414
Containers 382

content 384
sample container, running 388
versus, Virtualization 383

Content Delivery Network (CDN) 461
Continuous Delivery (CD) 381, 416
Continuous Deployment 417
Continuous Integration (CI) 381, 416
CPU Core 144
CPU resources

monitoring 144
CPU Socket (CPU slot) 144
CPU Thread 144
CREATE statement 288
CRUD operations 286
crun 414

D
database management system (DBMS) 281
Data Control Language (DCL) 287
Data Definition Language (DDL) 286
Data Manipulation Language (DML) 287
Data Query Language (DQL) 286
Debian 15
Debian GNU/Linux 20
Debian GNU/Linux installation

base system, installing 26
clock, configuring 24
GRUB boot loader, installing 28, 29
installer 21
keyboard, configuring 22
language, selecting 21
location, selecting 21, 22
network, configuring 22, 23
package manager, configuring 27
partition disks 24, 25
software, installing 26
users and passwords, setting up 24

Debian package 83
apt 83
apt-cache 83
apt-get 83
dpkg 83

Deep Learning 8
DELETE statement 290
Desktop Bus (D-Bus) 205
DevOps 3
disk space monitoring 157, 158

command atop 160, 161
command df 163
command fio 162
command hdparm 162
command iostat 159
command iotop 160
command lsblk 159
command lshw 158
command smartctl 161, 162

distrowatch.com 13
dnf 83
Docker 382, 387

client and server information, obtaning 388-391
container actions 399-402
containers, exposing 396-398
containers, operating with 391-396
server statistics and events 402, 403

Docker Client 391
Docker Daemon 388, 391
Docker desktop 388
Docker engine 387
Docker Hub portal 407
Docker Hub repository 425
Domain Name System (DNS) 235-237

Linux DNS servers and client 237-245
dpkg (Debian Package) 20
DROP statement 288
Dynamic Host Configuration Protocol (DHCP) 228-232

Linux DHCP servers and client 232-235

E
edge computing 8
Edwards-curve Digital Signature Algorithm 248
Elliptic Curve Digital Signature Algorithm 247
emacs 133
Extended Security Maintenance (ESM) 16

F
file

output, formatting 129-132
file editors 133
file /etc/login.defs 69
file manager 135

file manager mc 135
file managers 133
file /proc/loadavg 148
files

accessing 117
Filesystem Hierarchy Standard (FHS) 106
File Transfer Protocol (FTP) 246, 260, 273-276
File transferred over Shell protocol (FISH) 275
firewall configuration 204

firewalld 204-210
masquerading 211, 212
Uncompleted Firewall (ufw) 210, 211

foreground process 137
executing 138

Foreign Key 283, 284
fourth generation (4G) 9

G
Galaxy 376
Gentoo 41
GitHub Actions 417, 424-426
GitLab CI/CD 417, 421, 422
Global System for Mobile (GSM) 9
GNU General Public License (GPL) 285
GoCD 417
Google Cloud Platform (GCP) 458, 463

Cloud CDN 464
Cloud DNS 464
Cloud Functions 464
Cloud Load Balancing 464
Cloud Spanner 464
Cloud SQL 463
Cloud Storage 463
Compute Engine 463
Datastore 464
Google App Engine 463
Identity and Access Management (IAM) 464
Kubernetes Engine (GKE) 464
Virtual Public Cloud (VPC) 463

Google Container Engine (GKE) 415
Grand Unified Bootloader (GRUB) 28
GRANT statement 290
Graphical User Interface (GUI) 18, 223

H
handler 360
Hybrid Cloud 499
Hypertext Transfer Protocol (HTTP) 275

Hypertext Transfer Protocol Secure (HTTPS) 275
hyper-threading 144

I
Image Registry 386, 403-411
Images 385, 386
Infrastructure as a Service (IaaS) 6, 495, 496
Infrastructure as code 469-477
INSERT statement 289
installation

advanced installation steps 19
steps 18

installation methods 17, 18
full installation DVD or USB 17
minimal installation 17
PXE server 17
systemor cloud image-based installations 17

Internet Control Message Protocol (ICMP) 181
Internet of the Things (IoT) 8
Internet Protocol (IP) addresses 228
Internet Systems Consortium (ISC) 232, 237
IP Forwarding 211
ISC-DHCP 232
IT automation 316

advantages 316
principles 317
tasks 317, 318
tools 318
with Python 331-337
with shell scripting 319-322

IT automation, with Ansible
AD-HOC actions 346-348
Ansible configuration 350, 351
Ansible Galaxy 376, 377
blocks 370
collections 375, 376
conditionals 364-366
facts 362-364
handlers 360, 361
include and import 361, 362
Inventory 340-346
loops 366, 367
modules 371
performing 338, 339
Playbook 352-356
register 367, 369
roles 373, 374
templates 368
variable precedence 359

variables 357, 358
YAML 348-350

J
Jenkins 417, 418

K
Kerberos 272
key sectors, of T industry

devices and infrastructures 5, 6
emerging technologies 7, 8
information technology and business services 6, 7
software 3, 4, 5
telecommunications services 8, 9

Kubernetes 414, 415
Kubernetes distributions 415
KVM Guest Image 35

L
Lightweight Directory Access Protocol (LDAP) 272
limits 169-173

hard limit 169
soft limit 169

Linux
Control Groups (v2) 10
eBPF 10
ExFAT support 10
features 9
future 11
installation 13
live patching 9
magnitude 2
Nftables 10
onkey sectors of IT industry 3
versus operating systems 10, 11

Linux console 44
Linux directory structure 106, 107

directories storing applications 108
directories storing configurations 108, 109
directories storing data for users 110
directories storing libraries 109
directories storing system data information and boot files 111
directories storing user files 108
directories storing variable data 110

Linux kernel 9
Linux prompt 44

example 45-47

Linux service 100
Linux Standard Base (LSB) 69
Linux support types 14
Linux Unified Key Setup (LUKS) 159, 203
live CD 20
Logical Volume Manager (LVM) 159
Long-Term Evolution (LTE) 9
Long-Term Support (LTS) 15
loops 366
LVM commands

lvdisplay 164
pvdisplay 164
vgdisplay 163

M
Machine Learning (ML) 8
Mandatory Access Control (MAC) 203
many-to-many relationship 285
MariaDB 281, 285
MariaDB client and tasks 298-303
MariaDB server 291-297
masquerading 212
match/case similar 335
Maximum Transmission Unit (MTU) 168
memory resources, monitioring 153, 154

command atop 156
command htop 156
command sar 156
command top 155
command vmstat 154, 155
memory management 157
memory usage 156, 157

Microsoft Azure 458, 461
Azure Active Directory (AD) 463
Azure Blob Storage 462
Azure Cloud Services 462
Azure Container Instances 462
Azure Content Delivery Network (CDN) 462
Azure Cosmos DB 462
Azure DNS 463
Azure Functions 463
Azure Kubernetes Service (AKS) 462
Azure Load Balancer 462
Azure SQL 462
Azure Virtual Machines 461
Azure Virtual Network (VNet) 461
Azure Web Apps 462

Mirantis Container Runtime (MCR) 414
Mirantis Kubernetes Engine 415

MongoDB 305, 306
client and tasks 308-312
editions 306
installation 306-308

Multi Cloud Management 468, 469

N
nano 133
Neo4j 305
network 176
network bridge 195
network configuration 183

on Debian and Ubuntu 188-190
on Red Hat-based systems 183-185

Network File System (NFS) 259-261
Network Information Service (NIS) netgroup 264
networking 164
Network Intrusion Detection System 215
network monitoring 221-224
network resources, monitoring 164, 165

command ethtool 165, 166
command mtr 168
command nmon 166
command tracepath 168
command traceroute 167

network services 254-256
Network Storage 432
NFS client 265-267
NFS server 261-265
NFSv4 260
non-relational (NoSQL) 281
non-tabular databases 305
Non-Uniform Memory Access (NUMA) 144
Non-volatile Memory Express (NVME) 158
NoSQL 305

data structure 305
features 305
open-source database solutions 305

O
Object Storage service 433
one-to-many relationship 285
one-to-one relationship 284
Open Shortest Path First (OSPF) 192
OpenSSH 246
OpenStack 466

as IaaS 499-504
virtual machines, running 504-507

openSUSE 41
Open Systems Interconnection Model 176

application layer 177, 183
data link layer 176, 179, 180
network layer 176, 180, 181
physical layer 176, 178, 179
presentation layer 176, 183
session layer 176, 183
transport layer 176, 181, 182

Open vSwitch (OVS) 197
Oracle 15
Oracle Linux (OL) 41

long-term support 17

P
Pacemaker 503
Parallel NFS (pNFS) 261
permissions 112-116
Pipelines 418, 419
Platform-as-a-Service (PaaS) 6, 415
Playbook 352
Pluggable Authentication Modules (PAM) 204
Podman 411

installing 411-413
PostgreSQL 286
Preboot Execution Environment (PXE) 278
Primary Key 283
Private Cloud 497, 498
private key 252
processes priorities

operating with 139
real-time processes 139
regular processes 139

process management 136
background processes 137
foreground processes 137

Pseudo-tty (pty) 44
Public Clouds 498
public key 252
public-key cryptography 252
Puppet 318
Python 331

automation, performing with 331-337

Q
quotas 169, 170

R
Rados Gateway (RGW) 433
RAID levels

RAID-1 or mirror mode 19
RAID-5 20

Rancher 415
random-access memory (RAM) 153
real-time processes 139
Recovery goals 431
Recovery point objective (RPO) 431
Recovery Time Objective (RTO) 431
Red Hat 14
Red Hat Enterprise Linux 34, 35

long-term support 15
Red Hat Enterprise Linux installation 35

installation destination 37
language, selecting 36
progress 38
Red Hat, connecting to 37
root password 38
software selection 38
summary 36
user creation 38

Red Hat OpenShift Container Platform 415
Red Hat OpenShift Dedicated 415
Redis 305
regular expressions 125
regular processes 139
Relational Database Management System (RDBMS) 285
relational databases 282, 283
Relax-and-Recover (ReaR) 448-451
Restore process 429-431
Restore task 432
REVOKE statement 291
Rivest-Shamir-Adleman 248
Rocky Linux 15, 39
root 45
routing 190-192
RPM Package Manager (RPM) 34, 83
rpm tool 83
runc 413

S
Samba 260-268

architecture 268
Samba client 272, 273
Samba Server 268-271
sample container

running 388
Secure Copy (scp) or rsync 246
Secure File Transfer Protocol (SFTP) 275
Secure Shell or Secure Socket Shell (SSH) 246-252

private key 252-254
public key 252-254

security 202, 203
Security-Enhanced Linux (SELinux) 203
security model 217
SELECT statement 289, 290
Self-Monitoring, Analysis and Reporting Technology (S.M.A.R.T) 161
SELinux (Security Enhanced Linux) 217-220

states 218
Server Message Block (SMB) 260, 267
services 100

Systemd 101, 102
services security 213

intrusion detection system 215, 216, 217
not needed services, disabling 213, 214
security models 217, 218
service logging 214, 215
services listening, listing in interfaces 214

shell console 251
shell script 319

advantages 322
condition decisions 322-330

shell scripting 319
snap 33
snapcraft 33
snapd 33
Snap Store 33
Snort 217
Software as a Service (SaaS) 6
software-defined compute (SDC) 5
software-defined network (SDN) 6
software-defined storage (SDS) 6
source packages 82
special characters 122-125
Spine Leaf 178
SQLite 281, 286, 303, 304
SSH connection 252
SSH File Transfer Protocol (SFTP) 246
standard streams 58-61
Structured Query Language (SQL) 281, 286
SUSE 15
SUSE Linux enterprise server

long-term support 16
SUSE Linux enterprise server (SLES) 41
System Activity Reporter (SAR) 152

T
TeleTYpewriter (tty) 44
template 369
Terraform 318, 477-479

DNS, configuring with Cloudflare 491, 492
installation 479
simple Web server, running on AWS 480-485
simple Web server, running on GCP 486, 487
simple Web server, running on Microsoft Azure 488, 491

Text Based Interface (TUI) 18
third generation (3G) 9
Third Industrial Revolution 7
thread 144
toolchains 3
top-level domain (TLD) 235
Transactional Control Language (TCL) 287
Transmission Control Protocol (TCP) 181, 246, 293
Travis CI 417
TripleO 502
Trivial File Transfer Protocol (TFTP) 260, 278
tshark 223

U
Ubuntu

URL 29
Ubuntu Core 29
Ubuntu Desktop 29
Ubuntu Pro 29
Ubuntu Server 29

long-term support 16
Ubuntu Server installation 29

archive mirror, configuring 31
base 30
featured server snaps 33, 34
guided storage configuration 31, 32
keyboard configuration 30
language, selecting 30
network connections 31
profile setup 33
SSH setup 33

Uncompleted Firewall (ufw) 210
Uncomplicated Firewall (ufw) 202
Unique Key 283
Universal Mobile Telecommunications System (UMTS) 9
UPDATE statement 290
user accounts

best practices 71
User Datagram Protocol (UDP) 181, 228, 278

users and groups 66, 67

V
variable 359
vi 133
vim 133

modes 134
Virtualization 383

full Virtualization 383
OS-Level Virtualization 383

Virtual LANs (VLANs) 193, 198
Virtual Machines 383
virtual machines, on OpenStack

dashboard 526
flavors 509
floating IPs 519-521
images 507, 508
networking 512-515
networking architecture 510, 511
orchestration 522-526
persistent storage 521, 522
public key 517
routing 515, 516
running 504-507
Security Groups 516, 517
virtual machines 518, 519

Virtual Private Servers (VPS) 382
Virtual Reality (VR) 8
Virtual Tape Library (VTL) 432
VMware Tanzu 415
vsftpd 274

W
Workloard partitions (WPARs) 383

X
X11 forwarding mechanism 252

Y
YAML 348
yum 83

Z
zone 239

	Cover Page
	Title Page
	Copyright Page
	Dedication Page
	About the Authors
	About the Reviewer
	Acknowledgements
	Preface
	Errata
	Table of Contents
	1. Introduction to Linux
	Introduction
	Structure
	The magnitude of Linux
	Linux on key sectors of the IT industry
	Software
	Devices and infrastructures
	Information technology and business services
	Emerging technologies
	Telecommunications services

	Latest features in Linux
	Linux versus other operating systems
	Promising future of Linux
	Conclusion
	Key facts
	Questions
	Answers

	2. Linux Installation
	Introduction
	Structure
	Linux support types
	Red hat enterprise Linux long-term support
	Ubuntu server long-term support
	SUSE Linux enterprise server long-term support
	Oracle Linux long-term support

	Installation methods
	Common installation steps
	Advanced installation steps
	Debian GNU/Linux
	Installation menu
	Select a language
	Select the location
	Configure the keyboard
	Configure the network
	Set up users and passwords
	Configure the clock
	Partition disks
	Install the base system and install software
	Install the GRUB boot loader

	Ubuntu server
	Installation menu
	Select installation language
	Keyboard configuration
	The base for the installation
	Network connections
	Configure the Ubuntu archive mirror
	Guided storage configuration
	Profile setup
	SSH setup
	Featured server snaps

	Red Hat Enterprise Linux
	Installation menu
	Select a language
	Installation summary
	Connect to Red Hat
	Installation destination
	Software selection
	Root password
	User creation
	Installation progress

	CentOS and CentOS stream
	Rocky Linux and Alma Linux
	SUSE Linux enterprise server and openSUSE
	Other popular distributions
	Conclusion
	Key facts
	Questions
	Answers

	3. Using the Command Line Interface
	Introduction
	Structure
	Linux console and the prompt
	Use of basic first CLI commands
	Command pwd
	Command whoami
	Command hostname
	Command man
	Command cd
	Command history
	Command uptime

	CLI commands to identify resources
	Command lscpu
	Command lshw
	Command free
	Command df
	Commands lspci, lsusb, and lsblk

	CLI commands to list elements
	Command ls
	Command find

	Explanation of standard streams
	CLI commands for data stream
	Command echo
	Command read
	Command tee

	Conclusion
	Key facts
	Questions
	Answers

	4. User Administration and Software Management
	Introduction
	Structure
	Introduction to users and groups
	Best practices for user accounts
	Commands to administrate users
	Command id
	Commands useradd and adduser
	Command usermod
	Command lslogins
	Commands who and w
	Command userdel
	Command passwd
	Command chage
	Command last

	Commands to manipulate groups
	Command groupadd
	Command groups
	Command groupmod
	Command groupdel
	Command gpasswd
	Command newgrp

	Introduction to RPM and DEB package formats
	Commands to operate with RPM packages
	Command rpm
	Commands yum and dnf

	Commands to operate with DEB packages
	Command dpkg
	Command apt-get, apt-cache, and apt-file

	Introduction to services
	Conclusion
	Key facts
	Questions
	Answers

	5. Managing Files, Directories, and Processes
	Introduction
	Structure
	Linux directory structure
	Directories storing applications
	Directories storing user files
	Directories storing configurations
	Directories storing libraries
	Directories storing variable data
	Directories storing data for users
	Directories storing system data information and boot files

	Permissions
	Access to files and understanding files on Linux
	Commands chown and chgrp
	Command chmod
	Command cat
	Commands head and tail

	Special characters
	Regular expressions
	Commands grep
	Commands awk
	Formatting the output

	File editors and file managers
	Processes management
	Operate with processes priorities
	Conclusion
	Key facts
	Questions
	Answers

	6. Monitoring System Resources
	Introduction
	Structure
	Monitoring CPU resources
	Obtaining CPU(s) information
	Understanding the system load and load average
	Command uptime and file /etc/loadavg
	Command top

	Commands atop and htop
	Command mpstat
	Command sar
	Command iostat

	Monitoring memory resources
	Command vmstat
	Commands top, htop, and atop
	Command sar
	Memory usage for each process
	Out of memory management

	Monitoring disk usage and available space
	Command iostat
	Command iotop
	Command atop
	Command smartctl
	Commands fio and hdparm
	Commands df and LVM commands

	Monitoring network resources
	Command ethtool
	Command nmon
	Commands traceroute, tracepath, and mtr

	Quotas and limits
	Quotas
	Limits

	Conclusion
	Key facts
	Questions
	Answers

	7. Network Configuration
	Introduction
	Structure
	Network introduction
	Physical layer (Layer 1)
	Data link layer (Layer 2)
	Network layer (Layer 3)
	Transport layer (Layer 4)
	Session, presentation, and application layers (Layers 5, 6, and 7)

	Basic network configuration
	Network configuration on Red Hat-based systems
	Command nmcli
	Command nmtui

	Network configuration on Debian and Ubuntu

	Routing
	Advanced network configuration
	Link aggregation (bonding)
	Network bridges
	Virtual LANs (VLANs)

	Conclusion
	Key facts
	Questions
	Answers

	8. Security
	Introduction
	Structure
	Security introduction
	Firewall configuration on Linux
	Firewalld
	ufw
	Masquerading

	Services security
	Disabling not needed services
	Listing services listening in all interfaces
	Service logging
	Intrusion detection system
	Security models

	Network monitoring
	Conclusion
	Key facts
	Questions
	Answers

	9. Network Services
	Introduction
	Structure
	DHCP service and client
	Linux DHCP servers and client

	DNS service and clients
	Linux DNS servers and client

	SSH service and SSH client
	SSH public and private keys

	Check network services available
	Other popular network services
	Conclusion
	Key facts
	Questions
	Answers

	10. File Sharing
	Introduction
	Structure
	NFS service and client
	NFS server
	NFS client

	SMB introduction
	Samba server and client
	Samba Server
	Samba client

	FTP server and client
	TFTP introduction
	Conclusion
	Key facts
	Questions
	Answers

	11. Databases
	Introduction
	Structure
	Relational databases
	Structured Query Language (SQL)
	CREATE statement
	DROP statement
	ALTER statement
	INSERT statement
	SELECT statement
	UPDATE statement
	DELETE statement
	GRANT statement
	REVOKE statement

	MariaDB server
	MariaDB client and tasks

	SQLite
	NoSQL databases
	MongoDB databases
	MongoDB client and tasks
	Conclusion
	Key facts
	Questions
	Answers

	12. Automation
	Introduction
	Structure
	Introduction to IT automation
	Automation with shell scripting
	Automation with Python
	Automation with Ansible
	Inventory
	AD-HOC actions

	YAML
	Ansible configuration
	Playbooks
	Variables
	Variable precedence
	Handlers
	Include and import
	Facts and magic variables
	Conditionals
	Loops
	Register
	Templates
	Blocks
	List of popular modules
	Roles
	Collections
	Ansible Galaxy

	Conclusion
	Key facts
	Questions
	Answers

	13. Containers and CI/CD
	Introduction
	Structure
	Introduction to containers and images
	Containers versus virtualization
	Container content
	Images
	Image registry

	Docker
	Run the first container
	Obtain information about client and server
	Operate with containers
	Exposing containers
	Container actions
	Docker server statistics and events

	Image registry
	Podman
	Container runtimes
	Kubernetes
	Introduction to continuous integration/delivery
	Jenkins, Gitlab CI/CD, and Github actions
	Jenkins
	Gitlab CI/CD
	GitHub actions

	Conclusion
	Key facts
	Questions
	Answers

	14. Backup and Restore
	Introduction
	Structure
	Introduction to backup and restore
	Storage media for Backups
	Backup types
	Backup sources
	Backup strategies
	Backup solution features
	Bacula
	Bacula installation
	Bacula services
	Client installation
	Command bconsole

	Relax-and-Recover (ReaR)
	Conclusion
	Key facts
	Questions
	Answers

	15. Multi Cloud Management
	Introduction
	Structure
	Introduction to cloud providers
	Advantages

	Cloud services
	Amazon Web Services (AWS)
	Microsoft Azure
	Google Cloud Platform
	Alibaba Cloud
	OpenStack

	Multi cloud management
	Infrastructure as code
	Terraform
	Installation
	Running a simple Web server on AWS
	Running a simple Web server on the Google Cloud Platform
	Running a simple Web server on Microsoft Azure
	Configuring DNS with Cloudflare

	Conclusion
	Key facts
	Questions
	Answers

	16. Infrastructure as a Service
	Introduction
	Structure
	Infrastructure as a Service
	Private Cloud
	Hybrid Cloud
	OpenStack as an IaaS
	Running virtual machines on OpenStack
	Images
	Flavors
	Networking architecture
	Networking for Virtual Machines
	Routing
	Security Groups
	Public key
	Virtual Machines
	Floating IPs
	Persistent storage
	Orchestration
	Dashboard

	Conclusion
	Key facts
	Questions
	Answers

	Index

