

Production Haskell
Succeeding in Industry with Haskell

Matt Parsons

This book is for sale at http://leanpub.com/production-haskell

This version was published on 2023-02-01

This is a Leanpub book. Leanpub empowers authors and publishers
with the Lean Publishing process. Lean Publishing is the act of
publishing an in-progress ebook using lightweight tools andmany
iterations to get reader feedback, pivot until you have the right book
and build traction once you do.

© 2020 - 2023 Matt Parsons

http://leanpub.com/production-haskell
https://leanpub.com/
https://leanpub.com/manifesto

Contents

Introduction . i
An Opinionated Tour Guide . i
About the Author . ii

Acknowledgements . v

Principles . vi
Complexity . vi
Novelty . ix
Cohesion . x
Empathy . xiii
References . xvi

I Building Haskell Teams 1

1. Selling Haskell . 2
1.1 Assessing Receptiveness . 2
1.2 Software Productivity . 3
1.3 Statistics of Productivity . 4
1.4 Know Your Competition . 6

2. Learning and Teaching Haskell 7
2.1 The Philology of Haskell . 7
2.2 Programming Is Hard To Learn 8
2.3 Pick Learning Materials . 9
2.4 Write Lots of Code . 10
2.5 Don’t Fear the GHC . 10
2.6 Start Simple . 11
2.7 Solve Real Problems . 13

CONTENTS

2.8 Pair Programming . 14
2.9 A Dialogue . 15
2.10 References . 21

3. Hiring Haskellers . 23
3.1 The Double-edged Sword . 23
3.2 Juniors and Seniors . 23
3.3 Hiring Seniors . 25
3.4 Hiring Juniors . 28

4. Evaluating Consultancies . 32
4.1 Identifying the Target . 32
4.2 Well-Typed . 33
4.3 FP Complete . 34

II Application Structure 37

5. The Beginning . 38
5.1 Abstraction for Mocking . 42
5.2 Forward Compatibility . 42
5.3 AppEnvironment . 44
5.4 The ReaderT Pattern . 49
5.5 Embed, don’t Stack . 51

6. Three Layer Haskell Cake . 54
6.1 Layer 1: Imperative Programming 54
6.2 Layer 2: Object Oriented Programming 56
6.3 Layer 3: Functional Programming 62
6.4 Examples . 63

7. Invert Your Mocks! . 64
7.1 Decomposing Effects . 65
7.2 Streaming Decomposition . 68
7.3 Plain ol’ abstraction . 73
7.4 Decompose!!! . 75
7.5 What if I need to? . 75

8. Project Preludes . 78
8.1 Prelude Problems . 78
8.2 Custom Benefits . 84

CONTENTS

8.3 Off-The-Shelf Preludes . 89
8.4 Nesting Preludes . 97
8.5 Downsides . 98
8.6 Using a Custom Prelude . 99

9. Optimizing GHC Compile Times 100
9.1 The Project.TypesMegamodule 100
9.2 Package Splitting . 102
9.3 Big Ol’ Instances Module . 104
9.4 TemplateHaskell . 107
9.5 Some random parting thoughts 117

III Domain Modeling118

10.Type Safety Back and Forth . 119
10.1 The Ripple Effect . 123
10.2 Ask Only What You Need . 124

11.Keep Your Types Small… . 126
11.1 Expansion and Restriction . 127
11.2 Constraints Liberate . 129
11.3 Restrict the Range . 130
11.4 A perfect fit . 131

12.The Trouble with Typed Errors 132
12.1 Monolithic error types are bad 137
12.2 Boilerplate be gone! . 138
12.3 Type Classes To The Rescue! 140
12.4 The virtue of untyped errors 141

13.Exceptions . 142
13.1 Exceptions In Five Minutes . 142
13.2 Best Practices . 144
13.3 Hierarchies . 149
13.4 Reinventing . 150
13.5 Asynchronous Exceptions . 162
13.6 The Theory . 165
13.7 HasCallStack . 172

14.EDSL Design . 174

CONTENTS

14.1 Tricks with do . 175
14.2 Overloaded Literals . 182
14.3 Type Inference Trick . 187
14.4 Fluent Interfaces . 191
14.5 Case Study: Weightlifting Logging 194
14.6 Case Study: rowdy . 200
14.7 Case Study: hspec . 205

15.Growing Pains . 209
15.1 A Taxonomy of Breaking Changes 209
15.2 Avoiding Breaking Changes 214
15.3 Communicating To Users . 232

IV Interfacing the Real238

16.Testing . 239
16.1 Libraries and Tools . 239
16.2 Designing Code for Testing . 245

17.Logging and Observability . 259
17.1 On Debug.Trace . 259
17.2 Prefer doNotation . 263
17.3 Logging Contexts . 265
17.4 Libraries in Brief . 269

18.Databases . 272
18.1 Separate Database Types . 273
18.2 Migrations . 284
18.3 Access Patterns . 285
18.4 Conclusion . 302

V Advanced Haskell303

19.Template Haskell Is Not Scary . 304
19.1 A Beginner Tutorial . 304
19.2 wait this isn’t haskell what am i doing here 306
19.3 Constructing an AST . 306
19.4 Boilerplate Be Gone! . 312

CONTENTS

20.Basic Type Level Programming 323
20.1 The Basic Types . 323
20.2 The Higher Kinds . 324
20.3 Dynamically Kinded Programming 328
20.4 Data Kinds . 329
20.5 GADTs . 330
20.6 Vectors . 331
20.7 Type Families . 334
20.8 This Sucks . 340
20.9 Heterogeneous Lists . 340
20.10Inductive Type Class Instances 342
20.11Extensible Records . 343
20.12Like what you read? . 347

21.Family Values . 348
21.1 Type Families . 348
21.2 Open or Closed Type Families? 354
21.3 The Bridge BetweenWorlds 355
21.4 Data Families . 357
21.5 Conclusion . 360

22.Trade-offs in Type Programming 361
22.1 MPTCs . 361
22.2 MPTCs + Fundeps . 364
22.3 Associated Types . 370
22.4 Comparisons . 371

23.Case Study: Prairie . 379
23.1 Problem Statement: . 380
23.2 Prior Art . 382
23.3 The GADT Approach . 384
23.4 Improvements? . 407
23.5 Symbols . 409
23.6 Compare and Constrast . 423
23.7 Identify the Issue . 425
23.8 Generalize a GADT . 425
23.9 Fundeps . 426
23.10More Class Please . 430
23.11Refining the Class . 431
23.12Template Haskell . 433

CONTENTS

23.13Conclusion . 442

Introduction

An Opinionated Tour Guide

So you’ve learned Haskell. You’ve taught your friends about monads,
you’ve worked through some beginner textbooks, and maybe you’ve
played around with some open source projects. Now that you’ve had a
taste, you wantmore: you want to write an application in Haskell for fun!
Maybe you want to use Haskell at work!

You sit down at your computer, and you’re stuck.

How does anyone actually get anything done with this lan-
guage?

This is a common thing to wonder.

Haskell has always enjoyed a wide variety of high quality learning mate-
rial for advanced parts of the language, if you’re not afraid of academic
papers. Many people have created fantastic resources for beginners in
the last five years. However, the language does not havemany resources
for using it in production. The Haskell ecosystems can be difficult to
navigate. There are many resources of varying quality with ambiguous
goals and values. Identifying the right advice is nearly as challenging as
finding it in the first place.

Haskell is a hugely diverse landscape. There are many regional groups:
UnitedKingdom, Scandinavia,mainlandEurope, Russia, theUSA, Japan,
China, and India all have thriving Haskell ecosystems that have interest-
ing dialects and differences in custom and practice.

People come to Haskell with many backgrounds. Some people learned
Haskell well into their careers, and had a long career writing Java, Scala,
or C# beforehand. Somepeople came toHaskell fromdynamically typed
languages, like LISP or Ruby. Some people started learningHaskell early

i

Introduction ii

on in their programming career, and use it as the basis of comparison.
Some people primarily use Haskell in academic research, while others
primarily use Haskell in industrial applications. Some people are hobby-
ists and just like to write Haskell for fun!

This book is intended for people that want to write Haskell in industry.
The trade-offs and constraints that industrial programmers face are
different from academic or hobbyist programmers. This book will cover
not only technical aspects of the Haskell language, but also social and
engineering concerns that aren’t “really” about Haskell.

Part of this book will be objective. I will teach you how to use some
interesting techniques and ideas to make developing with Haskell more
productive.We’ll learnaboutTemplateHaskell, type-level programming,
and other fun topics.

However, for the most part, this book is inherently subjective. Because
Haskell serves so many ecosystems, it is imperative to discern what
ecosystem a something is intended for. More than just giving out pre-
scriptions - “This library is production ready! This is a toy!” - I hope to
show my thought process and allow you to make your own judgment
calls.

Ultimately, this is a book about the social reality of software engineering
in a niche language.

After reading this book, you should feel comfortable:

• Writing large software projects in Haskell
• Evaluating competing libraries and techniques
• Productively reading material from a variety of Haskell users

About the Author

I’m Matt Parsons.

I started learning programming in January 2014with Computer Science
101 at the University of Georgia. At the time, I was working for the IT
department, installing Windows and troubleshooting printers. My man-
ager disliked me and made it clear that he’d throw me under the bus at

Introduction iii

every opportunity. I was desperate for a new career, and I had a bunch of
college credits froma failed attempt at a biochemistry degree. Computer
science seemed like the best option to get out of that job.

CS101 taught me about basic Java programming. None of the local star-
tups or programmers used or liked Java, so I asked what I should learn
to get a job fast. JavaScript and Ruby were the top choices. I learned
JavaScript that summer with the excellent book Eloquent JavaScript¹,
which had chapters on functional programming and object oriented
programming. I found the chapter on functional programming more
intuitive, so I made a mental note to learn the most functional language
I could find. A few months later, I started learning Haskell and Ruby on
Rails.

I quit my IT job in December 2014, so I could be a full time student. By
mid-January, I had a Rails internship with a local startup - so much for
full time study.

My brain picked up Haskell quickly. I had barely started learning im-
perative and object-oriented programming, so the difficult novelty of
learning new jargon and concepts was expected. The Ruby language
was remarkably receptive to implementing Haskell ideas, though the
community wasn’t as excited. The concepts I learned in Haskell helped
me write easily tested and reliable code in Ruby.

In August 2015, I started a Haskell internship, where I got to build web
applicationsand fast parsers. Iwas allowed touseHaskell inmyArtificial
Intelligence coursework. In my last semester of college, I used Haskell
in my undergraduate thesis to study the connection between category
theory, modal logic, and distributed systems.

I am fortunate to have had these opportunities, as they set me up for
success to work with Haskell. My first job out of college was converting
PHP applications to greenfield Haskell, and I’ve been working full-time
with Haskell ever since. I’ve worked in a variety of contexts: a startup
that wasn’t 100% sold on Haskell, a larger company that was sold on
Haskell butwrestlingwith social and technical difficulties of a huge code
base and development team, and a startup that was sold on Haskell and
working on growing. I also contribute tomany open source projects, and
I’m familiar with most of the ecosystems. All told, I have worked with
millions of lines of Haskell code.

¹https://eloquent-javascript.net

https://eloquent-javascript.net/
https://eloquent-javascript.net/

Introduction iv

I’ve seenHaskell fail. I’ve seen it succeed. I’d like tohelpyousucceedwith
Haskell.

Acknowledgements
Thank you to Sandy Maguire for inspiring me to write a book in the first
place!

Thank you to Chris Allen for the encouragement and example in writing
Haskell material. I would not have been able to learnHaskell without the
material you collected and created.

Thank you to Michael Snoyman for making my Haskell career possible.
Without stack and the other FPComplete libraries, I wouldn’t have had
the luck and success to be a Haskeller today.

Thank you to Jordan Burke for giving me my first real software intern-
ship.

Thank you to AndrewMartin for hiring me as a Haskell intern.

Thank you to Ben Kovach for getting me that first Haskell job, and then
inspiring me to apply to Mercury.

Thanks to the following folks who provided suggestions on the LeanPub
forums: jakalx, arpl.

Thanks to Jade Lovelace, who read through an early version of the book
and provided great feedback.

v

Principles
This section documents guiding principles for the book. I’ve found these
core ideas to be important for managing successful Haskell projects.

• Complexity
• Novelty
• Cohesion
• Empathy

Complexity

Managing complexity is the most important and difficult task with
Haskell projects.

This is so important that I am going to make this the first principle, and
I’ll even say it twice:

Managing complexity is the most important and difficult task with
Haskell projects.

Just like you have “technical debt,” you have a “complexity budget.” You
spend your complexity budget by using fancy technologies, and you
spend your novelty budget by picking up new or interesting or different
technologies. You can increase your budget by hiring expert engineers
and consultants. Unlike technical debt, these budgets have a real and
direct impact on your actual financial budget.

Complexity is a Fat Tail

It’s easy to decry the evils of complexity, when you’re just talking about
complexity. Butwedon’t pickupcomplexity on it’s own.Codebases adopt
small features, neat tricks, and safety features slowly. Over time, these
accrete intohighly complexsystems that aredifficult tounderstand.This

vi

Principles vii

happens even when each additional bit of complexity seems to pull it’s
own weight!

How does this happen?

A unit of code does not stand alone. It must relate to the code that
uses it, as well as the code it calls. Unless carefully hidden, complexity
introduced by a unit of code must be dealt with by all code that uses it.
We must consider the relationships between the code units, as well as
the units themselves. This is why two bits of complexity don’t simply add
together - they multiply! Unfortunately, the benefits of the complexity
don’t multiply - they’re usually only additive.

A system that is difficult to understand is difficult to work with. Eventu-
ally, a system can become so difficult to understand that it becomes a
black box, essentially impossible to work with. In this case, a ground up
rewrite is often themost palatable option for the project. This often kills
the project, if not the company. Wemust avoid this.

Complexity paints us into a corner. Safety features especially limit our
options and reduce the flexibility of the system. After all, the entire point
of “program safety” is to forbid invalid programs. When requirements
change and the notion of an “invalid program” also changes, the safety
features can become a hindrance. Complexity imposes a risk on every
change to the codebase.

Predicting the cost or time required to modify to a complex system is
difficult. The variance of these predictions grows with the complexity of
the system. Tasks that seem simple might become extremely difficult,
and it will be equally troublesome to provide estimates on the remaining
time left to complete a task.

In measurement, we consider accuracy and precision to be separate
concepts. A precise measurement or prediction is highly consistent -
for a given Truth, it will report a similar Measurement consistently. An
accurate measurement or prediction is close to the actual Truth. We
can imagine predictions that are precise, but not accurate, as well as
accurate, but not precise.

Complex systems make both the precision and accuracy of predictions
worse. Precision is the more serious problem. Businesses rely on fore-
casting and regularity to make plans. If prediction becomes imprecise,
then this makes the business more difficult to maintain.

Principles viii

A highly complex system, then, is more likely to fail catastrophically
than a simple system. This is true even if the system is better in every
other way! Imagine two cars - one gets 100 miles per gallon, can drive
at 200mph, and corners like a dream. The other is much worse: only 40
miles per gallon and a top speed of 60mph. Naturally, there is a catch:
the first car will break down relatively often and randomly, and it may
take up to a week to repair it. The second car isn’t perfect, but it reliably
breaks down once a year, and it consistently takes a day to fix.

If you need a car to get to work, and can only have one car, then youwant
the second car. Sure, the first car can go faster and costs less, but the
essential quality you need in a commuter is reliability.

Mitigating Complexity

We return to a common theme in this book: the variety of ecosystems.
Can you imagine a group who would prefer the first car? Hobbyists! And
professional race drivers, who can have spare cars! And engineers who
study advanced automotive technology!

Haskell primarily serves academia as a research language for functional
programming. Industrial use is a secondary concern. Many Haskellers
are also hobbyists, primarily using it for fun. These are all valid uses
of Haskell, but academic and hobbyist practitioners usually believe that
their techniques are suitable for industry. Unfortunately, they often
don’t work as well as they might hope.

When asking about two cars in Haskell, you’ll often hear people recom-
mend the Fast Car. Try to learnmore about the people in question. Have
they actually driven the Fast Car? As a commuter? Are they responsible
for fixing it when it breaks down?

People will recommend fancy and fantastic and wonderful solutions to
your problems. Take them with a grain of salt. There are few codebases
in Haskell where any technique has been exhaustively examined. Few of
those examinations make it into the folklore.

The best way you can guarantee the success of your Haskell project is by
managing the complexity and preferring the simplest possible solution.

Principles ix

Why is this hard?

Haskell selects for a certain kind of person.

Hobbyist and industrial programmers follow one path. If you don’t enjoy
novelty and difficulty, you will have a difficult time learning such a novel
and complex language in the first place. Most Haskell developers learn
Haskell on their own time, pursuing personal projects or intellectual
growth. Haskell’s learning materials, while greatly improved in recent
time, are still difficult enough that only determined people with a great
tolerance for novelty and frustrationmake it through.

Academic programmers tend to follow another path.Many of them learn
Haskell in university classes, with a professor, teaching assistants, and
other classmates to offer support. They pursue their research and stud-
ies to push the limits of programming languages and computer science.
Much academic work is a proof-of-concept, rather than a hardened
industrial implementation. The resulting work is often rather complex
and fragile.

The Haskell programming language is also partly responsible for this.
Strong types and functional programming can provide safeguards. Pro-
grammers often feel much more confident working with these safe-
guards. This confidence allows the developers to reach for greater and
more complex solutions.

As a result,much of the ecosystemand community tend to be less averse
to complexity and novelty. Hobbyists and academics are also driven by
a different set of incentives than industrial programmers. Complexity
and novelty accrete quickly in Haskell projects, unless aggressively con-
trolled for.

Novelty

Novelty is the seconddanger inaHaskell project. It’snearly asdangerous
as complexity, and indeed, the trouble with complexity is often the
novelty that comes with it.

Unlike a complexity budget, which can be increased by spendingmoney
on expertise, your novelty budget is harder to increase. New techniques

Principles x

are usually difficult to hire for. They’re difficult to learn and document.

If you have selected Haskell for your application language, then you
have already spent much of your complexity and novelty budgets. You
will probably need to write or maintain foundational libraries for your
domain - so you’ll need to be employing library grade engineers (or
comfortablewith contracting this out). Youwill need todevelopanunder-
standing of GHC - both the compiler and the runtime system. Expertise
(and consulting) on these topics is more difficult to find than tuning the
JVM or the CLR. Much of this understanding can be punted past the
prototype stage - Haskell’s library situation is Good Enough for many
domains, and GHC’s performance is Good Enough out-of-the-box that
you can prototype and be fine.

Since Haskell is a big complexity/novelty budget item, it is important to
stickwith low-cost choices for the rest of the stack. Don’t try out the fancy
new graph database for your app - stick with Postgres. Especially don’t
try any fancy in-Haskell databases! Sticking with industry standards
and common technology opens up a wider and more diverse field of
engineers for hire.

Every requirement you place on your job ad for a developer increases
the difficulty and cost of hiring. Haskell is a rare skill. Years of experi-
ence using Haskell in production with fancy libraries and techniques
is rarer still. Haskell’s productivity advantages are real, but these only
apply while writing, reading, and understanding code. Documentation,
requirements, and QA take just as much time as in other languages.

Cohesion

Two engineers are fighting about their personal preferences, again. You
sigh and evaluate the arguments. Both solutions are fine. Sure, they have
trade-offs, but so does everything.

Haskell engineers are unusually opinionated, even for software engi-
neers. Haskell itself is strongly opinionated - purely functional program-
ming is the only paradigm that the language directly supports. Software
developers who want to learn Functional Programming and aren’t too
opinionated about it typically learn with JavaScript or a less extreme

Principles xi

functional language like OCaml, F#, or Scala. If you successfully learn
Haskell, then you are probably pretty opinionated about how to do it!

The diversity in Haskell’s ecosystem gives rise to many different prac-
tices and conventions. The Haskell compiler GHC itself has many differ-
ent formatting styles and concepts, andmany of these are specific to that
project. I have noticed differences in the style that correspond strongly
with cultural centers - the United States east andwest coasts differ, as do
the styles of the Netherlands vs Scotland vs Sweden.

Vanilla Haskell is flexible enough. GHC Haskell, the de facto standard
implementation, permits a massive variety of semantic and syntactic
variations through language extensions. MultiWayIf, LamdbaCase, and
BlockArguments provide syntactic changes to the language. The ex-
tensionsMultiParamTypeClasses+FunctionalDependencies canbe
used to do type-level programming in a way that is mostly equivalent to
TypeFamilies, andwhich touse is often amatter of personal preference.
Many problems are just as easy to solvewith either TemplateHaskell or
Generic deriving, but the real trade-offs are often ignored for personal
preferences.

Meanwhile, the multiple ecosystems all contribute competing ideas for
how to do anything. There are often many competing libraries for ba-
sic utilities, each offering a slightly different approach. People develop
strong opinions about theseutilities, oftendisproportionate to the actual
trade-offs involved. I am certainly guilty of this!

A lack of cohesion can harm the productivity of a project. Successful
projects should devote some effort towards maintaining cohesion. Pro-
moting cohesion is a special case of avoiding novelty - you pick one way
to do things, and then resist the urge to introduce further novelty with
another way to solve the problem.

Cohesive Style

Haskell’s syntax is flexible to the extreme. Significant white space allows
for beautifully elegant code, as well as difficult parsing rules. Vertical
alignment becomes an art form, and the structure of text can suggest the
structure of the underlying computation. Code is no longer merely read,
but laid out like a poem. Unfortunately, this beauty can often interfere
with the maintenance and understanding of code.

Principles xii

Projects should adopt a style guide, and they should use automated
tooling tohelpconformance.Therearemany tools that canhelpwith this,
but the variety of Haskell syntaxmakes it difficult to settle on a complete
solution. Exploring the trade-offs of any given coding style is out of scope
for this chapter, but a consistent one is important for productivity.

Cohesive Effects

Haskellers have put a tremendous amount of thought and effort into
the concept of ‘effects’. Every other language builds their effect system
into the language itself, and it’s usually just imperative programming
with unlimited mutation, exceptions, and some implicit global context.
In Haskell, we have a single ‘default’ effect system - the IO type. Writing
directly in IOmakes us feel bad, because it’s less convenient thanmany
imperative programming languages, so we invent augmentations that
feel good. All of these augmentations have trade-offs.

If you use an exotic effect system in your application, you should use it
consistently. You should beprepared to train and teachnewhires onhow
to use it, how to debug it, and how to modify it when necessary. If you
use a standard effect system, then you should resist attempts to include
novel effect systems.

Cohesive Libraries

There are over a dozen logging libraries on Hackage. Non-logging li-
braries (such as database libraries or web libraries) often rely on a
single logging library, rather than abstracting that responsibility to the
application. As a result, it’s easy to collect several logging libraries in
your application. Youwill want to standardize on a single logging library,
and then write adapters for the other libraries as-needed.

This situation plays out with other domains in Haskell. There are many
possible situations, and some underlying libraries force you to deal with
multiples. The path of least resistance just uses whatever the underlying
library does. You should resist this, and instead focus on keeping to a
single solution.

Principles xiii

Cohesive Teams

If you hire two developers that have conflicting opinions, and neither
are willing to back down, then you will experience strife in your project.
Haskellers are particularly ornery about this, in my experience. It is
therefore important to broadcast your team’s standards in job ads.While
interviewing new hires, you should be checking to see how opinionated
they are, and whether they share your opinions.

Fortunately, none of the Strong Opinions that a Haskellermight have are
along racial, gender, sexuality, or religious lines. Focusing on developing
strong team cohesion is in alignment with hiring a diverse group of
people.

Empathy

The final principle of this book is empathy.

Softwaredevelopers are somewhat famous for getting involved inbig ego
contests. Consider thePythonvsRuby flamewars, orhoweveryonehates
JavaScript. Talking down about PHP is commonplace and accepted, and
I know I am certainly guilty of it. When we are limited to our own per-
spective, understandingwhy other peoplemake different choices can be
challenging.

Reality is more complex. PHP offers a short learning curve to make
productive websites in an important niche. Ruby solves real problems
that real programmers have. Python solves other real problems that real
programmers have. JavaScript evolved well beyond it’s original niche,
and JavaScript developers have been working hard to solve their prob-
lems nicely.

In order to communicate effectively, we must first understand our audi-
ence. In order to listen effectively, wemust first understand the speaker.
This is a two-way street, and it takes real effort on all sides for good
communication to occur.

When we are reading or evaluating software, let’s first try to understand
where it came from and what problems it solves. Then let’s understand
the constraints that led to the choices that happened, and not form

Principles xiv

unnecessarily broad negative evaluations. Haskell is used by a particu-
larly broad group of people among several ecosystems, but also has a
relatively small total numberof peopleworkingon things at anyone time.
It’s easy to misunderstand and cause harm, so we have to put focused
effort to avoid doing this.

Empathy: For Yourself

Haskell is hard to learn. There aren’t many resources on using Haskell
successfully in industry. I havemade plenty ofmistakes, and youwill too.
It’s important for me to have empathy for myself. I know that I am doing
my best to produce, teach, and help, even when Imakemistakes. When I
make thosemistakes - evenmistakes that cause harm - I try to recognize
the harm I have caused. I forgive myself, and then I learn what I can to
avoid making those mistakes in the future, without obsessive judgment.

You, too, will make mistakes and cause harm while exploring this new
world. It’s okay. To err is human! And to focus on our errors causes
more suffering and blocks healing. Forgive yourself for your difficulties.
Understand those difficulties. Learn from them and overcome them!

Empathy: For your past self

Your past self was excited about a new technique and couldn’t wait to use
it. They felt socleverandsatisfiedwith thesolution! Let’s remember their
happiness, and forgive them the mess they have left us. Keep in mind
the feeling of frustration and fear, and forgive yourself for encountering
them. These feelings are normal, and a sign of growth and care.

Perhaps they missed something about the problem domain that seems
utterly obvious to you now. They were doing the best they could with
what they had at the time. After all, it took humanity nearly 9,000 years
to invent calculus, which we can reliably teach to teenage children. Your
frustration and disbelief is the fuel you need to help grow and be more
empathetic to your future self.

Empathy: For your future self

Everyone knows that debugging is twice as hard as writing a
program in the first place. So if you’re as clever as you can be

Principles xv

when you write it, how will you ever debug it?

• Brian Kernighan, The Elements of Programming Style, 2nd edition,
chapter 2

Your future self is tired, bored, and doesn’t have the full context of this
line of code in mind. Write code that works for them. Write documen-
tation that seems obvious and boring. Imagine that you’ve forgotten
everything you know, and you need to relearn it - what would you write
down?

Software is difficult, and you can’t always put 100% of your brain and
energy into everything. Write something that is easier to understand
than you think is necessary, even if you think it has some fatal flaw.

Empathy: For your teammates

Healthy self-empathy is a prerequisite for healthy empathy for other
people.

As difficult as empathizing with yourself is, empathizing with others is
more difficult. You know your internal state and feeling. You possibly
even remember your past states. And you may even be able to predict
(with varying reliability) how you will react to something.

All of these intuitions are much weaker for other people. We must ap-
ply our practice of understanding and forgiveness to our teammates.
They’re working with us, and they’re trying their best.

Empathy: For your audience

I apologize in advance for any harm this book might cause. I hope that
the audience of my book might use it for success and happiness in
their career and business projects. I also recognize that my advice will
- inevitably - be miscommunicated, or misapplied, and result in harm
and suffering.

Likewise, when you are writing code, you will need to consider your
audience. Youwill be part of your audience, so the lessons you’ve learned

Principles xvi

about Past-You and Future-You will be helpful. If you’re writing code for
anapplication, then consider all thepeople thatmight read it. You’llwant
to consider the needs of beginners, newcomers, experienced developers,
and experts.

Doing this fully is impossible, so you will need to consider the trade-offs
carefully. If you anticipate that your audience is mostly new to Haskell,
then write simply and clearly. If you require advanced power and fancy
techniques, make a note of it, and write examples and documentation
to demonstrate what is going on. There is nothing wrong with a warning
sign or note to indicate something may be difficult!

Empathy: For the Business Folks

This one is especially hard. They’ll never read your code. And they often
change the requirements willy-nilly without a care for the abstractions
you’ve developed. But - after all - we are here to write code to enable the
business to be profitable.

We can have empathy for their needs by leaving our code open to their
whims. A project should be able to evolve and changewithout needing to
be reborn.

If the business fails, thenwe’re all out of a job. If enoughHaskell projects
fail, then we won’t have enough Haskell jobs for everyone that wants
one. And,most concerning, if toomany Haskell projects fail, thenHaskell
won’t be a viable choice in industry.

I believe that all Haskellers in industry have a responsibility to their
community to help their projects succeed. This book is a result of that
belief.

References

• You Need a Novelty Budget²
• You have a complexity budget³

²https://www.shimweasel.com/2018/08/25/novelty-budgets
³https://medium.com/@girifox/you-have-a-complexity-budget-spend-it-wisely-74ba9dfc7512

https://www.shimweasel.com/2018/08/25/novelty-budgets
https://medium.com/@girifox/you-have-a-complexity-budget-spend-it-wisely-74ba9dfc7512
https://www.shimweasel.com/2018/08/25/novelty-budgets
https://medium.com/@girifox/you-have-a-complexity-budget-spend-it-wisely-74ba9dfc7512

I Building Haskell Teams

1. Selling Haskell
You want to use Haskell for work. Your boss is skeptical - isn’t Haskell
some obscure, fancy, academic programming language? Doesn’t it have
horrible build tooling and crappy IDEs? Isn’t it super hard to learn and
use?

Haskell skeptics have many mean things to say about Haskell. If your
boss is a Haskell skeptic, you’re probably not going to get to use Haskell
in your current job. If your boss is more receptive to trying Haskell, and
you’ve been given the task of evaluating Haskell’s suitability for a task,
then you will be selling Haskell. In order to effectively sell Haskell, we
must drop our programmermindset and adopt the business mindset.

The savvy business person is going to do what has the best profit, and
will weigh long term benefits against short term costs. Haskell truly can
improve the bottom line for a business, and if you are sellingHaskell, you
need to know how to argue for it.

1.1 Assessing Receptiveness

Is your company a Ruby shop? Do your coworkers hate static types, love
monkeypatching, and don’t mind occasional production crashes from
nil errors? If so, you probably won’t have a good time selling them on
Haskell. In order to be sold on Haskell, it’s good if the team shares the
same values that the Haskell language embodies.

On the other hand, a shop like this has the most to gain from Haskell.
Is there a piece of core infrastructure that is slow and buggy which
significantly drags on profit? If so, you may be able to rewrite that bit
of infrastructure and provide massive benefit to the company. My pre-
decessors at a previous job convinced management to use Haskell for a
rewrite instead of another attempt in PHP, and I was hired to do this. The
Haskell version of the service required 1/10th the cloud resources to run

2

Selling Haskell 3

and removed abottleneck that allowedus to charge our larger customers
more money.

If your company already employs developers that are familiar with stat-
ically typed functional languages, like Scala or F#, then you will have
an easier time selling them on Haskell. Presumably they already value
Haskell’s strengths, which is why they went with a functional language.
However, there may not be enough to gain from writing a service in
Haskell - after all, isn’t Scala most of the way there? The developers may
feel that the additional friction of adding another language to the stack
would bringminimal benefit since it’s so close. In this case, youwill need
to sell them on other benefits that Haskell has.

1.2 Software Productivity

Wewant to claim thatHaskellwill increase softwaredeveloperproductiv-
ity. This will result in reduced developer costs and increased profit from
new features. However, we need to understand developer productivity
on a somewhat nuanced level in order to adequately sell this.

How do we measure developer productivity? It’s not simple. Many stud-
ies exist, and all of themare bad. Regardless of your position on a certain
practice (dynamic vs static types, pair programming, formal verification,
waterfall, agile, etc), you will be able to find a study that supports what
you think. We simply don’t know how to effectively and accurately use
the scientific method to measure developer productivity.

How do we claim that Haskell improves it, then? We can only use our
experiences - anecdotal evidence. Likewise, our arguments can - at best -
convincepeople tobe receptive sharingour experience. Theexperiential
nature of developer productivitymeans thatwehave to cultivate an open
mind in the engineerswewish to convince, and thenwemust guide them
to having the same experiences.

We’ll learn a bit about this on the chapter “Learning and Teaching
Haskell”.

Selling Haskell 4

1.3 Statistics of Productivity

Management cares about productivity, but they don’t just care about how
fast you can bang out a feature. They care about howwell you can predict
how long a feature will take. They care about how big the difference in
productivity among teammembers will be. Variancematters tomanage-
ment.

Statistics gives us tools for thinking about aggregations of data. The av-
erage, ormean, is calculated by summing up all the entries and dividing
by the count. It’s themost common statisticalmeasure, but it can also be
terribly misleading. The average income in the United States is $72,000,
and you might hear that and think that most people make around that
number. In fact, most people make below that amount.

A different measure, the median, is more appropriate. The median is
the midpoint of the distribution, which means that half of all values
are above the median and half of all values are below the median. The
medianhousehold income is $61,000. Themean ismuchhigher than the
median, whichmeans that there are a small number of people thatmake
a huge amount of money. In order to knowwhether amean ormedian is
more appropriate for your purpose, you need to know the distribution of
your data.

Your software teammight have impressive average developer productiv-
ity. Thismight bebecause youhave abunchof above-averagedevelopers.
It can also be because you have one extremely productive developer and
a bunch of below-average developers. A team that is heavily lopsided is
a risk for the company, because the loss of a single developermight have
drastic consequences. Management will prefer a highmedian developer
productivity over average for this reason.

However, what management really wants is low variance between devel-
opers. Variance is the average of the squareddifference from the average.
The difference is squared so that negative and positive differences are
accounted for equally. A high variance team will have some developers
significantly above and below the median. This is risky, because the
exact assignment of developers can dramatically change how quickly
andeffectively software is developed. A lowvariance teamwill havemost
of the developers relatively close to each other in skill. This reduces risk,

Selling Haskell 5

because a single developer can take a vacation andnot significantly alter
the team’s median skill.

Larger companies tend to optimize for reducing variance in individual
productivity. They can afford to hire tons of software engineers, and they
want their staff to be replaceable and interchangeable. This isn’t solely
to dehumanize and devalue the employees - it is easier to take a vacation
or maternity leave if you are not the only person who is capable of doing
your job. However, it does usually result in reduced productivity for the
highest performers.

It’s a valid choice to design for low variance. Indeed, it makes a lot of
sense for businesses. Elm and Go are two new programming languages
that emphasize simplicity and being easy to learn. They sacrifice ab-
straction and expressiveness to reduce the variance of developing in
the language. This means that an Elm expert won’t be that much more
productive than an Elm beginner. Elm or Go programmers can learn
the language and be as productive as they’ll ever be relatively quickly.
Management loves this, because it’s fast to onboard new developers, you
don’t have to hire the best-and-brightest, and you can reliably get stuff
done.

Haskell is not a low variance language. Haskell is an extremely high
variance language. It takes a relatively long time to become minimally
proficient in, and the sky is the limit when it comes to skill. Haskell is
actively used in academia to push the limits of software engineering and
discover new techniques. Experts from industry and academia alike are
workinghard to addnew features toHaskell. Thedifference inproductiv-
ity between someone who has been using it for years and someone who
has studied it for six months is huge.

Keeping variance in mind is crucial. If you work with Haskell, you will
already be betting on the high end of the variance curve. If you select
advanced or fancy Haskell libraries and features, then you will be in-
creasing the variance. The more difficult your codebase is to jump into,
the less your coworkers will enjoy it, and the more skeptical they will
be of Haskell at all. For this reason, it’s important to prefer the simplest
Haskell stuff you can get away with.

Selling Haskell 6

1.4 Know Your Competition

Competition exists in any sales and marketing problem. Your competi-
tion in selling Haskell will be fierce - several other programming lan-
guageswill alsohave compelling advantages.Haskellmust overcome the
other language’s benefits with the technical gains to be made.

In somedomains, like compilerdesignorwebprogramming,Haskell has
sufficient libraries and community that you can be productive quickly.
The language is well situated to provide a compelling advantage. Other
domains aren’t so lucky, and the library situation will be much better in
another language than yours.

If your Haskell project fails for whatever reason, the project will be
rewritten in some other language. You probably won’t get a chance to
“try again.” Businesses are usually unwilling to place bets outside of their
core competency, and the programming language choice is probably not
that core competency. So you’ll want to be careful to situate Haskell as
a safe, winning choice, with significant advantages against the competi-
tion.

2. Learning and Teaching Haskell
If youwant yourHaskell project to be successful, youwill need tomentor
and teach new Haskellers. It’s possible to skate by and only hire experi-
enced engineers for awhile, but eventually, you’ll want to take on juniors.
In addition to training and growing the Haskell community, you’ll be
gaining vital new perspectives and experiences that will helpmake your
codebase more resilient.

2.1 The Philology of Haskell

Learning Haskell is similar to learning any other language. The big dif-
ference is that most experiences of “learning a programming language”
are professional engineers learning yet another language, often in a
similar language family. If you know Java, and then go on to learn C#, the
experience will be smooth - you can practically learn C# by noting how
it differs from Java. Going from Java to Ruby is a bigger leap, but they’re
both imperative programming languages with a lot of built-in support
for object oriented programming.

Let’s learn a little bit about programming language history. This is useful
to understand, because it highlights how different Haskell really is from
any other language.

In the beginning, there was machine language - assembly. This was
error prone and difficult to write, so Grace Hopper invented the first
compiler, allowing programmers to write higher level languages. The
1950s and 1960s gave us many foundational programming languages:
ALGOL (1958) andFORTRAN (1957)were early imperative programming
languages. LISP (1958) was designed to study AI and is often recognized
as the first functional programming language. Simula (1962)was the first
object oriented programming language, directly inspired by ALGOL.

Smalltalk (1972) sought to reimagine Object Oriented programming
from the ground up. The C programming language (1972) was invented

7

Learning and Teaching Haskell 8

to help with the UNIX operating system. Meanwhile, Standard ML (1973)
introducedmodern functional programming aswe know it today. Prolog
(1972) and SQL (1974) were also invented in this time period. For the
most part, these languages define the language families that are in
common use today.

C++ took lessons from Simula and Smalltalk to augment C with object
oriented programming behavior. Java added a garbage collector to C++.
Ruby, JavaScript, Python, PHP, Perl, etc are all in this language family -
imperative programming languages with some flavor of object oriented
support. In fact, almost all common languages today are in this family!

Meanwhile, Standard ML continued to evolve, and programming lan-
guage theorists wanted to study functional programming inmore detail.
The programming language Miranda (1985) was a step in this direction -
it features lazy evaluationanda strong type system.TheHaskell Commit-
tee was formed to create a language to unify research in lazy functional
programming. Finally, the first version of the Haskell programming
language was released in 1990.

Haskell was used primarily as a vessel for researching functional pro-
gramming technologies. Lots of people got their PhDs by extending
Haskell or GHC with some new feature or technique. Haskell was not
a practical choice for industrial applications until the mid-2000s. The
book “Real World Haskell” by Don Stewart, Bryan O’Sullivan, and John
Goerzen demonstrated that it was finally possible to use Haskell to solve
industrial grade problems. The GHC runtime was fast and had excellent
threading support.

As of this writing, it is 2022. Haskell is world-class in a number of
areas. Haskell - beyond anything else - is radically different from other
programming languages. The language did not evolve with industry.
Academia was responsible for the research, design, and evolution. Al-
most 30 years of parallel evolution took place to differentiate Haskell
from Java.

2.2 Programming Is Hard To Learn

If you are a seasoned engineer with ten years of experience under your
belt, you’ve probably pickedup abunch of languages.Maybe you learned

Learning and Teaching Haskell 9

Go, Rust, or Swift recently, and you didn’t find it difficult. Then you try to
learn Haskell and suddenly you face a difficulty you haven’t felt in a long
time. That difficulty is the challenge of a new paradigm.

Most professional programmers start off learning imperative program-
ming, and then pick up object oriented programming later. Most of their
code is solidly imperative, with some OOP trappings. There’s nothing
wrong with this - this style of code genuinely does work and solves real
business problems, regardless of how well complex programs become
as they grow. Many programmers have forgotten how difficult learning
imperative programming is, or to think like a machine at all.

Iwant to focuson theprincipleofEmpathy for this section.Programming
is hard to learn. Trivially, this means that functional programming is
hard to learn.

The experience of struggling to learn something new can often bring
up uncomfortable feelings. Frustration, sadness, and anger are all com-
mon reactions to this difficulty. However, we don’t need to indulge in
those emotions. Try to reframe the experience as a positive one: you’re
learning! Just as soreness after exercise is a sign that you’re getting
stronger, mild frustration while learning is a sign that you’re expanding
yourperspective.Noticing thiswithapositive framingwill helpyou learn
more quickly and pleasantly.

2.3 Pick Learning Materials

I’m partial to Haskell Programming from First Principles¹. Chris Allen
and Julie Moronuki worked hard to ensure the book was accessible and
tested thematerial against fresh students. I’ve used it personally to help
many people learn Haskell. I used the book as the cornerstone of the
Haskell curriculum and training program at Mercury, where we train
folks to be productive Haskell developers in 2-8 weeks.

¹https://haskellbook.com/

https://haskellbook.com/
https://haskellbook.com/

Learning and Teaching Haskell 10

2.4 Write Lots of Code

While learning and teaching Haskell, enabling a fast feedback loop is
important. Minimizing distractions is also important. For this reason, I
recommend using minimal tools - a simple text editor with syntax high-
lighting is sufficient. Fancy IDEs and plugins often impede the learning
process. Time spent setting up your editor situation is time that you
aren’t spending actually learning Haskell.

Students should get familiar with ghci to evaluate expressions and
:reload their work to get fast feedback. The tool ghcid² can be used to
automate thisprocessbywatching relevant files and reloadingwhenever
one is written.

When we’re learning Haskell, the big challenge is to develop a mental
model of how GHCworks. I recommend developing a “predictivemodel”
of GHC. First, make a single change to the code. Before saving, predict
what you think will happen. Then, save the file, and see what happens.

If you are surprised by the result, that’s good! You are getting a chance to
refine your model. Develop a hypothesis on why your prediction didn’t
come true. Then test that prediction.

Compiler errors tell us that something is wrong. We should then try to
develop a hypothesis on what went wrong. Why does my code have this
error? What did I expect it to do? How does mymental model of Haskell
differ from GHC’s understanding?

Programming is tacit knowledge. It isn’t enough to read about it. Reading
informs the analytical and verbal parts of our brain. But programming
taps intomuchmore,which isonly really trainedbydoing.Wemustwrite
code - a lot of it - and we have to make a whole bunch of mistakes along
the way!

2.5 Don’t Fear the GHC

Many students pick up an aversion to error messages. They feel judg-
ment and condemnation from them - “Alas, I am not smart enough to

²https://hackage.haskell.org/package/ghcid

https://hackage.haskell.org/package/ghcid
https://hackage.haskell.org/package/ghcid

Learning and Teaching Haskell 11

Get It Right!” In other programming languages, compiler errors are often
unhelpful, despite dumping a screen’s worth of output. As a result, they
often skip reading error messages entirely. Training students to actually
read the compiler errors from GHC helps learning Haskell significantly.
GHC’s errormessages are oftenmore helpful than other languages, even
if they can be difficult to read at first.

Wewant to rehabilitate people’s relationshipswith their compilers. Error
messages are gifts that the compiler gives you. They’re one side of a
conversation you are having with a computer to achieve a common goal.
Sometimes they’re not helpful, especially when we haven’t learned to
read between the lines.

An error message does not mean that you aren’t smart enough. The
message is GHC’s way of saying “I can’t understandwhat you’ve written.”
GHC isn’t some perfect entity capable of understanding any reasonable
idea - indeed, many excellent ideas are forbidden by Haskell’s type sys-
tem! An error message can be seen as a question from GHC, an attempt
to gain clarity, to figure out what you really meant.

2.6 Start Simple

Whenwriting code for a beginner, I try to stay as absolutely simple aspos-
sible. “Simple” is a vague concept, but to try and bemore precise, Imean
something like prefering the smallest transitive closure of concepts. Or,
“ideas with few dependencies.”

Thismeanswritinga lot of caseexpressionsandexplicit lambdas. These
two features are the foundational building blocks of Haskell. Students
can simplify these expressions later, as a learning exercise, but we
shouldn’t focus on that - instead, focus on solving actual problems!
Additional language structures can be introduced as time goes on as the
student demonstrates comfort and capability with the basics.

As an example, let’s say we’re trying to rewrite map on lists:

1 map :: (a -> b) -> [a] -> [b]

2 map function list = ???

I would recommend the student begin by introducing a case expression.

Learning and Teaching Haskell 12

1 map function list =

2 case ??? of

3 patterns ->

4 ???

What can we plug in for those ??? and patterns? Well, we have a list
variable. Let’s plug that in:

1 map function list =

2 case list of

3 patterns

What are the patterns for a list? We can view the documentation and see
that there are two constructors we can pattern match on:

1 map function list =

2 case list of

3 [] ->

4 ???

5 (head : tail) ->

6 ???

The use of a case expression has broken our problem down into two
smaller problems.What can we return if we have an empty list?We have
[] as a possible value. If we wanted to make a non-empty list, we’d need
to get our hands on a b value, but we don’t have any, so we can’t plug that
in.

For the non-empty list case, we have head :: a and tail :: [a]. We
know we can apply function to head to get a b. When we’re looking at
our “toolbox”, the only way we can get a [b] is by calling map function.

Learning and Teaching Haskell 13

1 map function list =

2 case list of

3 [] ->

4 []

5 (head : tail) ->

6 function head : map function tail

We want to start with a relatively small toolbox of concepts. Functions,
data types, and case expressions will serve us well for a long time.
Many problems are easily solved with these basic building blocks, and
developing a strong fundamental sense for their power is important for
a beginning Haskell programmer.

This ties into ourNovelty andComplexity principles.Wewant to add con-
cepts slowly to avoid overwhelming ourselves. Aswe introduce concepts,
we have to consider not just the concept itself, but also how that concept
interacts with every other concept we know. This can easily become too
much!

2.7 Solve Real Problems

This takes some time to getworkedup to, but a beginner can learnhow to
use theIO typewell enough towritebasicutilitieswithoutunderstanding
all of the vagaries ofmonads. After all, consider this example program in
Java, Ruby, and finally Haskell:

Java: java public class Greeter { public static void
main(string[] args) { Scanner in = new Scanner(System.in);
String name = in.nextLine(); System.out.println("Hello, "
+ name); } }

Ruby:

1 name = gets

2 puts "Hello" + name

Haskell:

Learning and Teaching Haskell 14

1 main = do

2 name <- getLine

3 putStrLn ("Hello, " ++ name)

The Java code contains a ton of features. They don’t need to be explained.
In my Java 101 courses at university, we were told to just “copy and
paste” it and an explanation would come later. That worked okay for me.
After all, computers are often perceived as black boxes of mysterious
magical power: treating programming languages the same feels natural
and normal.

A beginner canwork through the commonHaskell education of defining
Functor, Monad, Monoid, etc. instances for common types while also
developing basic utilities and examples.

2.8 Pair Programming

Pairprogrammingcanbeagreatway to show the tacit natureofprogram-
ming in Haskell. The driver may also use pairing as an opportunity to
show off and feed their own ego, which harms the beginner. The teacher
must take great care to have Empathy for the learner.

The driver will want to slow down and explain their thought process. I
find it helpful to separate verbal explanations into “Observing Reality,”
“Noticing Feelings,” and “Discussing Strategies.” This technique comes
from Nonviolent Communication. I will also verbally explain my predic-
tivemodel. For example, when solving a problem, I may ordinarily jump
a few predictions and make a bigger change when programming solo.
When pairing, I will instead state my prediction, make the modification,
and talk through the result.

The student will want to pay attention and ask questions. Don’t be afraid
to interrupt - the purpose of the exercise is primarily to transfer knowl-
edge and practice from the driver. However, a big part of the benefit is in
causing the driver to think clearly about what they are doing! The driver
should get as much out of a good question as the student.

Unfortunately, “pair programming” in this manner is a tacit exercise,
just likeprogramming itself. I candescribemystrategies and techniques

Learning and Teaching Haskell 15

for a successful session, but the best way to learn is by observing and
participating. Let’s walk through a hypothetical example.

2.9 A Dialogue

(Things that I might think are in parentheses. I won’t actually say them,
because it’s important to not distract the studentwith extraneous digres-
sions.)

Student: Hey, do youmind if we pair on something?

Matt: Sure! I’d be happy to.

S:My task is to take our user list and figure out howmany email accounts
belong to each hosting service.

M: Okay, cool. So basically count up how many @gmail.com and @ya-
hoo.com etc there are?

S: Yeah. I’m not sure how to get started! I know I can do it in SQL, but I’d
rather learn how to make it work in Haskell.

M: Sure! Okay, so first I’m going to check out our database types. I want
to check my assumptions on how our data is structured, since that is
the source of our information. I’ll navigate to the file that contains our
definition. Here’s the type:

1 data User = User

2 { userId :: UserId

3 , userName :: Text

4 , userEmail :: EmailAddress

5 , userIsAdmin :: Bool

6 }

S: So we want to take each User and inspect the EmailAddress. What
does that type look like?

M: Great question! If I search the file for EmailAddress, I don’t get
anything. So I’ll search the file for Email, since it’s a closer match. This

Learning and Teaching Haskell 16

takesme up to the import list, where I see that we’re importing amodule
named Text.Email.Validate.

S: Where does that come from?

M: I’m not sure. I don’t see that module listed in our project, which
means it is in a dependency. So now I’m going to switch to my browser
and search stackage.org for EmailAddress. There are a few results
here, and the top one is a package named email-validate in a module
Text.Email.Parser. Since it shares the same Text.Email.* structure,
and it has validation, I’m going to guess that’s it.

S: Yeah, I don’t think it’s coming from the crypto library, andwedon’t use
pushbullet, so the pushbullet-types one probably isn’t it.

M: Good observation!

S: OK! I think I know what comes next. The module exports a function
domainPart :: EmailAddress -> ByteString. So we can use that to
get the domain for an email!

M: That’smyguess too.Now thatwehaveourprimitive typesunderstood,
let’s write out the signature. What’s your guess for an initial signature?

S: I think I’d start here:

1 solution :: Database [(ByteString, Int)]

The ByteStrings are the domainPart, and the Int is our count.

M: That sounds good. I think I would go for something different, but let’s
explore this first.

S: Why?

M: Well, whenever I see a [(a, b)], I immediately think of a Map a b.
But we can keep it simple and just try to solve this problem. If it becomes
too annoying, then we’ll look for an alternative solution.

S: Okay, that works forme! I don’t really see how a Mapworks for us right
now - we’re not doing lookups. So the first thing I want to do is get all the
users.

Learning and Teaching Haskell 17

1 solution = do

2 users <- selectAllUsers

3 ???

Once I have the users, I want to get the email addresses.

1 solution = do

2 users <- selectAllUsers

3 let emails = map userEmail users

M: Nice use of map there!

S: Next, I want to get the domain parts out.

1 solution = do

2 users <- selectAllUsers

3 let emails = map userEmail users

4 let domains = map domainPart emails

And, uh, I think I am stuck right here. I want to group the list by the
domains. But I don’t know how to do that.

(Gonna resist the urge tomake the codemore concise! Just because I can
write that as map (domainPart . userEmail) <$> selectAllUsers
doesn’t mean that it’s important to do now.)

M: Okay! We have a [ByteString] right now. What might our grouping
look like?

S: I guess a [[ByteString]]?

(Well, a [NonEmpty ByteString] is more precise, but we can get there
later.)

M: Sounds good to me. Well, we have a few avenues available - when
I’m not sure about some functionality, I’ll either look at the relevant
modules or search Hoogle for the type signature. If I’m not sure about
the relevant modules, then I’ll just go straight to Hoogle. So let’s search
for [ByteString] -> [[ByteString]].

Learning and Teaching Haskell 18

S: None of these are relevant! text-ldap isn’t close. subsequences,
inits, permutations, tails, none of these have anything to do with
grouping.

M: Hmm. Yeah. Hoogle fails us here. What if we search group?

S: Oh, then we get back group :: Eq a => [a] -> [[a]]. That’s ex-
actly what we want!

M: Let’s read the docs, just to be sure. Does anything jump out as a
potential problem?

S: Yeah - the example given is a bit weird.

1 >>> group "Mississippi"

2 ["M","i","ss","i","ss","i","pp","i"]

I would expect it to group all the equal elements together, but s appears
twice. I think I can work around this!

(Hmmm, where is the student going? Sorting the list?)

S: We can call group, and then get the size of the lists.

1 func :: [ByteString] -> [(ByteString, Int)]

2 func domains =

3 map (\grp -> (head grp, length grp)) (group domains)

Okay okay okay so this is the right shape, BUT, we have to use it in a
special way!

M: How do we do that?

S: Okay so supposewe’re looking forgmail.com.We’d filter the result list
for gmail.com and then sum the Ints!

Learning and Teaching Haskell 19

1 domainCount :: ByteString -> [(ByteString, Int)] -> Int

2 domainCount domain withCounts =

3 foldr (\(_, c) acc -> c + acc) 0 $

4 filter (\(name, _) -> domain == name) withCounts

(Resist the urge to suggest a sum . map snd refactor!)

M: Nice! That works for the case when we know the domain. But if we
just want a summary structure, how can we modify our code to make
that work?

S: Hmm. We could map through the list and for each name, calculate
domainCount, but that is inefficient…

M:Thatworks!But you’re right, that’s inefficient. I thinkwecandefinitely
do better. What comes to mind as the problem?

S: Well, there are multiple groups for each domain, potentially. If there
were only a single group for each domain, then this would be easy.

M: Howmight we accomplish that?

S: Well, we start with a [ByteString]. Oh! Oh. We can sort it, can’t we?
Then all the domains would be sorted, next to each other, and so the
group function would work!

M: Yeah! Let’s try it.

S: HEREWE GO

1 func domains =

2 map (\grp -> (head grp, length grp)) $

3 group $

4 sort domains

(must resist the urge to talk about head being unsafe…)

M: Well done! Now how do we do a lookup of, say, gmail.com?

S: List.lookup "gmail.com" (func domains).

M: Ah, but there’s lookup - doesn’t that suggest a Map to you?

S: Eh, sure!

Learning and Teaching Haskell 20

1 Map.lookup "gmail.com"

2 $ Map.fromList

3 $ map (\grp (head grp, length grp))

4 $ group $ sort domains

But that doesn’t really seem any better? I guess we have amore efficient
lookup, but I think we’re doing extra work to construct a Map.

M: We are, but much of that work is unnecessary. Let’s look at the
Data.Map module documentation for constructing Maps. Instead of do-
ing all the work with lists, let’s try constructing a Map instead.

S: Huh. I’m going to start with foldr since that’s how you deconstruct a
list.

1 func domains =

2 foldr (\x acc -> ???) Map.empty domains

M: Off to a great start! Just as a refresher, what is acc and x here?

S: acc is a Map and x is a ByteString.

M: Right. But what is it a Map of? Remember, we had a [(ByteString,
Int)].

S: Oh, Map ByteString Int.

M: Right. So what do we want to do with the ByteString?

S: Insert it into the Map? Hm, but what should the value be?

M: We’re keeping track of the count. This suggests that we may want to
update the Map instead of inserting if we have a duplicate key match.

S: Ah! Okay. Check this out:

Learning and Teaching Haskell 21

1 func domains =

2 foldr (\domain acc ->

3 case Map.lookup domain acc of

4 Nothing ->

5 Map.insert domain 1 acc

6 Just previousCount ->

7 Map.insert domain (previousCount + 1) acc

8) Map.empty domains

M:Well done!We can do even better, though. Let’s take a look at inserting
in the documentation. Does anything here seem promising?

S: Hmm. insertWithmight do it. Let me try:

1 func domains =

2 foldr (\domain acc ->

3 Map.insertWith

4 (\newValue oldCount -> newValue + oldCount)

5 domain

6 1

7 acc

8) Map.empty domains

M: Beautiful. This is efficient and perfectly satisfies our needs. And you
got to learn about Maps!

Teaching Haskell is about showing how to do the action, asmuch as telling
how to understand the concepts.

2.10 References

• History of programming languages³

³https://en.wikipedia.org/wiki/History_of_programming_languages

https://en.wikipedia.org/wiki/History_of_programming_languages
https://en.wikipedia.org/wiki/History_of_programming_languages

Learning and Teaching Haskell 22

• Generational list of programming languages⁴
• Tacit Knowledge⁵

⁴https://en.wikipedia.org/wiki/Generational_list_of_programming_languages
⁵https://commoncog.com/blog/tacit-knowledge-is-a-real-thing/

https://en.wikipedia.org/wiki/Generational_list_of_programming_languages
https://commoncog.com/blog/tacit-knowledge-is-a-real-thing/
https://en.wikipedia.org/wiki/Generational_list_of_programming_languages
https://commoncog.com/blog/tacit-knowledge-is-a-real-thing/

3. Hiring Haskellers

3.1 The Double-edged Sword

Haskell is a double-edged sword with hiring. This is a consistent experi-
ence of every hiringmanager I have talked to with Haskell, as well as my
own experiences in looking at resumes and interviewing candidates. An
open Haskell role will get a fantastic ratio of highly qualified candidates.
Among themwill be PhDs, experienced Haskellers, senior developers in
other languages, and some excited juniors demonstrating tremendous
promise. The position is possibly “beneath” the people applying, but
Haskell is enough of a benefit that they’re still happy.

While quality will be high, quantity will be disappointing. A Java posting
may attract 1,000 applications, of which 25 are great. A Haskell posting
may attract 50 applications, of which 10 are great. This is a real problem
if you need to hire a large team. Haskell’s productivity bonuses reduce
the need for a large team, but you can only put that off for so long.

You can grow a Haskell team solely by training newcomers into the
language. This requires at least one Haskell-experienced engineer with
apenchant formentorship and the restraint to keep the codebase easy to
get started with. That’s a tall order for the same reason that Complexity
and Novelty are especially difficult problems in Haskell. If you are read-
ing this before starting yourHaskell team, then I implore you -write code
that youcan train a junior onwithout toomuchstress. If youalreadyhave
a complex codebase, then you probably need to hire a senior.

3.2 Juniors and Seniors

This chapter will use the terms ‘senior’ and ‘junior’. These terms carry a
bit of controversy, with some amount of judgment, and I’d like to define
them before moving forward.

23

Hiring Haskellers 24

A senior developer has had the time and opportunity to make more
mistakesand learn fromthem.Seniordevelopers tend tobeexperienced,
jaded, and hopefully wise. Senior developers know the lay of the land,
and can generally either navigate tough situations or avoid them alto-
gether.

A junior developer is bright, curious, and hasn’t made enough mistakes
yet. Juniors are excited, learn quickly, and bring vital new perspectives
into a project. They are not liabilities to quickly harden into seniors -
their new energy is essential for experimentation and challenging the
possibly stale knowledge of your senior team. The joyful chaos of a
talented junior can teach you more about your systems than you might
believe possible.

A person can have ten years of experience with Java and be a junior
to Haskell. A senior Haskell engineer might be a junior in C#. A junior
can be considerably smarter than a senior. A person with two years of
experience may be more senior than a person with eight. The relevant
characteristic - tome - is the sum ofmistakesmade and lessons learned.

A large team and project benefits from having both seniors and juniors.
The Haskell community as a whole benefits from having junior roles -
how else are we going to get experienced Haskell developers that can
seed new companies and start compelling projects? If I was not offered
the internship, I would not be a professional Haskell developer today.
You would not be reading this book. We must pay it forward to grow the
community and help cement the success of this wonderful language.

Unfortunately, most Haskell projects that I have experienced are almost
entirely staffed with senior developers. There is a vicious cycle at play:

1. Alice, a brilliant Haskeller, gets to start a project. She is uniquely
well suited to it - she has a ton of domain experience and knows
Haskell inside and out.

2. Alice uses advanced features and libraries to develop the project.
Alice leverages all the safety andproductivity features to deliver the
project on time, under budget, andwithout defects. The project is a
resounding success.

3. The project accretes new features and responsibilities. While Alice
is able to write code fast enough to cover this growth, the other
aspects of a project begin to demand another developer. Haskell
doesn’t make writing documentation any faster.

Hiring Haskellers 25

4. Alice compiles a list of requirements for a new developer. To be
productive, the engineermust understand advancedHaskell tricks.
There isn’t time to train a junior engineer to be productive.

This creates greater and greater demand for seniorHaskellers. If you are
a senior Haskeller, youmay think this is just fine. More job opportunities
andmore pay competition!

This is unsustainable. The business always has the option of canning
Haskell, hiring a bunch of Go/Java/C# developers and destroying the
Haskell project. Not only has a Haskell project been destroyed, but an-
other business person has real life experience with Haskell failing.

3.3 Hiring Seniors

You will probably need to hire senior Haskell engineers. Searching for
raw Haskell ability is tempting, but this is not as necessary as youmight
think. The originalHaskell developer(s) canhandle all of the difficult bits
that the new hire does not understand. Instead, we’ll want to look for the
Four Principles of this book:

1. Complexity: favors simple solutions
2. Novelty: favors traditional solutions
3. Cohesion: won’t get into style arguments
4. Empathy: can show compassion for others

Hiring is a two way street, so let’s first look at ways you can improve the
probability of a successful hiring process. Furthermore, we’re not just
concerned with the hiring event - we’re also concerned with retention.

Remote Friendly

If your company is in SanFrancisco,NewYorkCity, Glasgow, or a handful
of other Haskell hubs, then you can probably hire locally. Otherwise,
you will need to expand your search to full-remote candidates. Haskell

Hiring Haskellers 26

developers are widely distributed across the globe, and youwill dramati-
cally increase the quality and quantity of Haskell developers if you don’t
require them to move to your city.

The first few hires are a great time to develop your remote-friendlywork-
flows. Theseworkflowswork fantastically formany companies and open
source communities. Beyond opening up your hiring pool for Haskell
developers, remote work will increase productivity by promoting asyn-
chronous work practices.

This isn’t a book on how to successfully manage a remote team, so you’ll
need to look elsewhere for that. I’m merely a meager Haskell developer,
and I can only tell you what makes hiring dramatically easier.

Don’t Skimp

There’s a misconception that developers are willing to accept lower pay
to useHaskell. This is not generally true. ExperiencedHaskell engineers
are rare and valuable, and you get what you pay for. My salary and
benefits as a Haskell engineer have usually been competitive with the
market for my role and experience.

Along with any misconception, there’s a kernel of truth in a specific
context. Some companies pay their engineers exceptionallywell. Google,
Facebook, Netflix, Indeed, etc are capable of offering total compensation
packages in excess of $500k per year. I have not heard of a single Haskell
developer making that much, though I have heard of at least one in the
$300k range.

So youmight be able to hire an ex-Googler who is used tomaking $400k,
and “only” pay her $250k to use Haskell. But you should not expect to
hire a senior engineer and pay under $100k - the discount doesn’t work
like that.

You might be able to hire an experienced Scala or F# engineer that has
never used Haskell in production at a reduced rate. While this might
work out OK, Haskell and Scala/F# are sufficiently different that the
experience doesn’t carry over as much as you might expect. Production
Haskell has enough quirks and peculiarities that mere fluency with
functional programming idioms won’t carry you far.

Hiring Haskellers 27

Most Haskell shops pay their senior engineers a competitive rate. And
most Haskell shops that only hire seniors don’t require that much pro-
duction experience to get hired. If you hire an experienced Scala devel-
oper to doHaskell at a deep discount, they’ll take that experience and get
a better paying Haskell job quickly.

This paints a picture of the Haskell salary landscape as bimodal. Ex-
perienced Haskellers can make competitive salaries, if not competitive
with FAANG¹. Less experienced Haskellers can accept a pay cut to learn
Haskell on the job, but they’ll soon level up and get into that second
bucket. Remember that Haskell is a high variance language - you aren’t
betting on averages or medians, you are betting on beating the curve.
Statistically, you need to be paying better than market average in order
to select from the top end of the curve.

If you do hire a junior Haskeller (that is otherwise a senior engineer),
be prepared to give them a substantial raise a year in, or prepare for
turnover.

Don’t Bait and Switch

Experienced Haskell engineers know this one all too well. There’s a
job ad posted which lists Haskell as a desired skill. Or maybe there’s a
Haskell Job posted, but you also need to know Java, PHP, Ruby, and Go.
Unfortunately, Haskell is only a tiny minority of what the developer will
be expected to do, despite the job being sold as “A Haskell Job.”

Don’t do this. You are going to frustrate developers whomake it through,
and you won’t retain Haskell talent for long if you make them write
another language for amajority of the time. Youcan’t hijack their passion
for Haskell and have them write PHP at the same level. As above, the
developer will get to list production Haskell on their resume and skip to
another company to work on Haskell the majority of the time.

This isn’t to say you can’t have a polyglot tech stack. There’s nothing
wrong with having microservices in Go, Ruby, and also Haskell. Indeed,
requiring a Haskeller occasionally write another language is a good
way to select for Pragmatic Haskellers instead of purists. This must be

¹Facebook, Amazon, Apple, Netflix, Google. A common initialism for some of the major players
in the tech industry hiring, with some of the highest compensation. While uncommon, Facebook and
Google do have a few Haskellers in employ.

Hiring Haskellers 28

communicated up front and honestly, though. If you anticipate a person
writing 10%Haskell, then don’t bill it as a Haskell job. It’s a Go job with a
tiny Haskell responsibility.

Impurity Testing

Non-Haskell responsibilities may be wise to have in the job description.

There is a type of Haskell developer that I have seen. They only want to
work with Haskell. 100%Haskell. No JavaScript, no Ruby, no Go, no Java,
no bash, no PHP, no sysadmin responsibilities, nothing! Just Haskell.

These developers are often great at Haskell, and hiring them is tempt-
ing. You probably should not. While Haskell is a fantastic choice for
many applications, anyone that requires a 100%Haskell experience will
inevitably choose Haskell where another choice is more appropriate.
You do not want this on your team. Worse, they may bring unwanted
complexity and novelty into the project.

Remember, the purpose of an industrial software project is to promote
the needs of the business. Haskell legitimately does this. If I didn’t be-
lieve this (based onmyexperiences), then Iwouldn’t bewriting a bookon
how to do it successfully. But Haskell isn’t a sufficient cause for success.
Knowingwhen to useHaskell andwhen to defer to another tool is crucial
for any well-rounded Haskell engineer.

Embrace Diversity

Haskellers are weird. They’re not going to look or act like typical pro-
grammers, because they’re not! If you filter too hard on extraneous
“culture fit” qualities, then you’ll be passing up a ton of good engineers.
This goes doubly so for under-represented minorities.

This isn’t to say that Haskell developers are better or worse than others,
just that they’re different. Lean into and embrace the differences.

3.4 Hiring Juniors

A junior to Haskell is someone that hasn’t made enough mistakes yet.
This can be someone who just started learning to program last year and

Hiring Haskellers 29

somehow picked Haskell, or it could be a grizzled Scala developer with
10 years of professional experience who just started learning Haskell.
Picking out a good candidate for a Junior role is slightly different than
in other programming languages.

Haskell has a much smaller population than other programming lan-
guages. Thepopulation is fractured amongmanycommunities. The total
amount of support available to juniors is lower than in other languages.
This means that you’ll need to cover the slack.

Investing in a culture of training and mentorship is a great way to
achieve this. Directly mentoring your juniors will promote Cohesion in
the project. Senior developers will get valuable practice teaching and
gain insights from the junior.

Haskell’s selection effects mean that you will likely need less mentoring
than you might expect. Haskell is sufficiently Weird and Different that
most people excited about it are already self-starters and great at doing
independent research. The work of the mentor is less “teach” and more
“guide.”

All of the above advice for hiring seniors applies to juniors, as well. You
should definitely try to hire a junior Haskeller early on to a project’s
life cycle, for a few important reasons. A senior Haskell engineer will be
dramatically more productive than in another language, but the overall
workload of an engineer is only partially technical. Junior engineers are
remarkably well suited to many of the tasks in software engineering
that aren’t directly related to technical competency and experience. This
work also acts as excellent training for the junior.

Supporting Tasks

An experienced Haskeller can deploy features faster than in any other
language, with less time spent towards fixing bugs. Unfortunately, docu-
mentation doesn’t take any less time to write. If you hire for the capacity
to deliver features, then you will not have the person-hours to write
documentation or provide other forms of support to the project.

Junior developers may not have the same capacity to write code as
seniors, but they are comparatively less disadvantaged at writing doc-
umentation and supporting the project in other ways. Writing this docu-

Hiring Haskellers 30

mentation and supporting the codebase will give them excellent experi-
ence with the code, which will help advance their knowledge and skill.

This is not to say that seniors shouldn’t write documentation. They
absolutely should! But a senior’s documentation may miss context that
is not obvious to someone deeply embedded into the project. The docu-
mentation a juniorwriteswill often bemore comprehensive and assume
less about the reader, unless the senior is a particularly good technical
writer.

The process of reviewing this documentation is an excellent opportunity
for a senior to provide extra information and clarification to the junior.

Clarifying Concepts

Senior Haskellers will naturally grow the complexity of a project un-
less they apply consistent effort to avoid doing so. However, a Senior
Haskeller is poorly situated to make judgment calls about precisely how
much complexity is being introduced. After all, they know and under-
stand it, or have already done the work to figure it out. The surrounding
context and assumptions are in the background.

The act of explaining choices and concepts to a Junior is a forcing func-
tion for identifying the complexity involved. If the idea is too complicated
for the Junior on the team to understand without significant guidance,
then it is too complicated!

This is not to say that juniors are incapable of understanding complex
ideas, or that a junior should have veto power on any concept in a
codebase. Juniors provide a powerful new perspective that can inform
decisions. Respecting this perspective is crucial, but bowing to it entirely
is unnecessary. Supporting a Junior in learningmore complex ideas and
gaining hands-on experience with them is part of the process.

Institutional Knowledge

Suppose your main Haskell developer wins the lottery and quits. You’ll
need to replace that person. A junior may even rise to the occasion and
completely replace the newly departed developer. We shouldn’t expect
or pressure them to do this.

Hiring Haskellers 31

However, the junior will be in an excellent position to retain that in-
stitutional knowledge. They can help to interview new candidates and
provide insight on what the codebase needs. The nature of a junior
developer provides them an excellent insight on what will help to grow
the codebase and keep it maintainable over time. A senior engineer that
is unable to teach or explain to a junior engineer is not going to be a great
hire.

Juniorsare inabetterposition tomake these transfersbecause theyhave
fewer internalized assumptions than seniors. This gives them a better
perspective when evaluating and transferring knowledge to new hires.

4. Evaluating Consultancies
You may need to hire consultants to help work on your project. Haskell
consultancies can be an excellent source of deep expertise. Due to the
niche nature of the language, there are not many Haskell consultancies,
and they are all brilliant. I don’t expect this to remain true forever, so I’ll
share how I evaluate consultancies to identify where they might be best
applied.

4.1 Identifying the Target

Few consultancies send potential business to their competition. As a
result, a consultancywill happily accept your business, even if youmight
be better served by another company. Just as the Haskell language has
many communities, these consultancies are usually better suited for
some communities than others.

All consultancies will say that they specialize in Industrial Haskell. How-
ever, their approaches differ, and some are more or less suited to differ-
ent application domains in this niche.

Haskell consultancies advertise via open source portfolios and blog
posts. These portfolios form a body of evidence of work, and can be
analyzed to determine proper fit. Many of the techniques for evaluating
consultancies require evaluating libraries, and I don’t cover that until
section 5 (“Interfacing the Real”). However, we can get a general idea for
the target market without too much of a deep dive.

First, we’ll look up the website, blog, and other marketing materials.
Consultancies generally market towards their niche, and if they’re not
speaking toyourneeds, they’reprobablynot agreat fit. Consultanciesget
material for blog post from independent research and lessons learned in
consulting work, so this is a good way to see how they handle issues that
come up. Additionally, you’ll get a feel for their communication style (at
least, as is presented to the world).

32

Evaluating Consultancies 33

Next, we want to evaluate the libraries that the consultancy supports.
This gives us important information about how they write code and
the approaches they support. The easiest way to do this is by looking
for the main source code repository organization for the consultancy
(often GitHub, but GitLab and BitBucket are also possibilities). We’ll
also want to look at the GitHub accounts of employees, if we can find
them. Consultancies usually hire engineers because of their open source
contributions - if you hire the engineer that supports X library, you can
sell consulting to users of that library.

Finally, we’ll want to try and find experience reports of companies that
have used these consultancies. Employees that worked on projects that
were assisted or completed by consultancies are another valuable re-
source here. This information will be harder to acquire. Companies
rarely want to publish details like this, so you’llmore likely acquire them
through community involvement. Individuals won’t publish negative
experience reports, as consultancies tend to have an outsized effect on
public opinion in small communities like Haskell.

Let’s investigate a few of the larger consultancies.

4.2 Well-Typed

Well-Typed bills themselves as “The Haskell Consultants.” With commu-
nity heavyweights like Duncan Coutts, Andres Löh, and Edsko de Vries,
they certainly have claim to the title. The company has been active since
2008. This is a solid pedigree for success, and they have a track record to
back it up.

Almost everyone in the staff listing has a degree in computer science,
and more have a doctoral degree than a mere bachelor’s degree. The
academic background at Well-Typed is well-represented.

The GitHub at https://www.github.com/well-typed lists a number
of repositories that will be useful to investigate. I will select a few here:

• optics, an alternative lens library that offers much improved
error messages

• generics-sop, an alternative to GHC.Generics

Evaluating Consultancies 34

• ixset-typed, a strongly typed indexed set data structure
• cborg, a binary serialization library

Furthermore, we see a number of contributions to the cabal repository
from Well-Typed employees, along with other core Haskell infrastruc-
ture. Themajormaintainers for the Servantweb library are employed by
Well-Typed. Theacid-statedatabase is alsomaintainedbyWell-Typed
employees.

I have worked directly with Well-Typed while employed by IOHK. The
strong theoretical knowledge was critical for developing much of the
highly theoretical aspects of the codebase. The equally strong technical
knowledge for Haskell development was excellent for developing the
Wallet part of the codebase.

Well-Typed delivers extremely strong on theoretical concerns and
Haskell expertise. However, this reveals an operational blind-spot:
relying on Haskell where other tools may be more suitable. The
use of acid-state at IOHK was the source of numerous problems,
documented in the Databases chapter of this book. Additionally,
the extremely high skill of Well-Typed employees is reflected in the
complexity and difficulty of the solutions delivered.

I would not hesitate to hireWell-Typed to help on a project for industrial
use, especially if theproject requiresnovel theoretical insight. Iwouldbe
cautious to ensure that the resulting solution can be understood easily
by the core team of engineers. Well-Typed’s trainings are excellent for
promoting an intermediate or advanced Haskeller to the next level.

4.3 FP Complete

FP Complete used to bill themselves as primarily Haskell consultants,
but they have pivoted in recent years to devops and blockchain as well.
Michael Snoyman is the director of engineering, and other than that,
their website does not list any engineers. Their blog contains posts on
many topics, including Rust, devops, containers, and Haskell.

Michael Snoyman and Aaron Contorer, the two driving members of
FP Complete, do not have an extensive background in academia or

Evaluating Consultancies 35

computer science theory. Michael’s degree is in actuarial sciences,
while Aaron specialized in emerging technologies with Microsoft. The
approach that the company takes is informed primarily by industrial
needs. This helps to explain their more diverse focus - Haskell plays a
prominent role, but devops, Rust, and other technologies are important
to their business strategy andmarketing.

The GitHub at https://www.github.com/fpco offers a few more
clues. There are several members of the organization listed: Niklas
Hambüchen, Sibi Prabakaran, Chris Done stand out as Haskell
contributors. The FPCo GitHub has many repositories we can inspect:

• safe-exceptions, a library to assist in safe and predictable excep-
tion handling

• stackage-server, the code that hosts the Stackage package set
• weigh, a library formeasuringmemory allocations of Haskell func-
tions

• resourcet, a library for safe and prompt resource allocation

Other relevant libraries include theYesodweb framework, thePersistent
database library, and the stack build tool.

I have not worked with FP Complete directly, but I have extensive ex-
perience with Yesod, Persistent, and have collaborated directly with
Michael Snoyman. I used these libraries to quickly andeffectively deliver
working andmaintainable software at my first job, and the focus on real
industrial concerns led to my success there. The libraries tend to be
easy to work with, accept newcomer contributions regularly, and aren’t
terribly strict about coding standards. This is a double edged sword -
many libraries throw exceptions more often than programmers might
prefer instead of signaling with typed error channels. Template Haskell
is often used to reduce boilerplate and provide type-safety, a choice that
is pragmatic but unfashionable among more ‘pure’ functional personal-
ities.

I would not hesitate to hire FP Complete for industrial use, especially if
the project does not have novel theoretical requirements. FP Complete’s
training is proven to help get Juniors proficient with Haskell, and they
have the ability to train on advanced and gritty GHC behaviors as well.

Evaluating Consultancies 36

Exceptions

FP Complete wrote the definitive article on safe exception handling in
Haskell¹. It may come as no surprise that their libraries tend to throw
runtime exceptionsmore than youmight expect, orwant. Some libraries
in the Haskell ecosystem use the ExceptTmonad transformer to signal
exceptions. FPComplete believes this to be an anti-pattern, andwrote an
article² saying as much. Instead, you can expect that IO functions in FP
Complete libraries throw run-time exceptions.

TemplateHaskell

FP Complete’s libraries tend to use TemplateHaskell extensively for
functionality. Yesod uses a QuasiQuoter to define routes for the web
app. Shakespeare uses a QuasiQuoter to interpolate values. monad-
loggerusesTemplateHaskell logging functions to interject the log line
location.persistentuses aQuasiQuoter to define types for interacting
with the database.

TemplateHaskell and QuasiQuoters are often maligned
among Haskellers. They do carry some downsides. Any use of
TemplateHaskell in a module will require GHC to fire up a code
interpreter - this slows down compilation with a constant hit of a few
hundred milliseconds on my laptop. However, generating the code is
usually quite fast. If the resulting generated code is extremely large,
then compiling that will be slow.

QuasiQuoters define a separate language that is parsed into a Haskell
expression. A separate language has some upsides: you can define ex-
actly what you want and need without having to worry about Haskell’s
restrictions. Unfortunately, you need to invent your own syntax and
parser. You need to document these things and keep those documents
up-to-date. The code that is generated by the QuasiQuoter is often not
amenable to inspection - you cannot “Jump To Definition” on a type that
is generated by TemplateHaskell, nor can you view the code easily.

¹https://www.fpcomplete.com/haskell/tutorial/exceptions/
²https://www.schoolofhaskell.com/user/commercial/content/exceptions-best-practices

https://www.fpcomplete.com/haskell/tutorial/exceptions/
https://www.fpcomplete.com/haskell/tutorial/exceptions/
https://www.schoolofhaskell.com/user/commercial/content/exceptions-best-practices
https://www.schoolofhaskell.com/user/commercial/content/exceptions-best-practices
https://www.fpcomplete.com/haskell/tutorial/exceptions/
https://www.schoolofhaskell.com/user/commercial/content/exceptions-best-practices

II Application Structure

5. The Beginning
How do I structure an application in Haskell?

This is one of the most common questions I receive. Haskell is a funda-
mentally different programming language than what many people are
accustomed to, and people reasonably suspect that application struc-
ture may also be different. I have personally found that Haskell’s easy
refactoring and re-architecting qualitiesmake application structure less
important than other languages, wherewidespread changes are difficult
to safely accomplish. Structure still matters, but possibly a bit less than
other languages.

We will keep the Novelty and Complexity principles in mind here.
Overblown application structure is somethingwe see in other languages
to overcome language-level difficulties thatHaskellmay simply not have.
As a result, I am a fan of keeping things as utterly simple as possible,
until I am feeling a certain amount of pain caused by that simplicity.

We’ll start simple - as simple as possible. Then we will begin adding
complexity. With each bit of complexity, I’ll explainmy perception of the
trade-offs, and my experiences of the trade-offs. Each style also has a
tendency to organically evolve in a few ways, some of which can cause
issues.

All Haskell applications must eventually boil down to this function:

1 main :: IO ()

So we must accept the complexity of IO to do anything at all. Haskell
applications often have the basic form:

38

The Beginning 39

1 main :: IO ()

2 main = do

3 environment <- collectInformation

4 result <- app environment

5 communicate result

6

7 collectInformation :: IO Env

8 app :: Env -> IO Result

9 communicate :: Result -> IO ()

This is a batch application. We run the program, and it collects infor-
mation from the environment that it needs. This can include environ-
ment variables, command-line arguments, standard input, reading files,
making HTTP requests, etc. app does the meat of the work, processing
the necessary environment into the final result we care about. Finally,
communicate takes this result andmakes it useful to the outside world.

Server applications aren’t much different, conceptually. We have some
initial application configuration that must be acquired. Then we need
to have some request-specific information that we want to act on. We
return the result to the client. When the entire process is done, we close
the server out.

1 main :: IO ()

2 main = do

3 appEnv <- collectAppInformation

4 finalResult <- serve appEnv withClient

5 communicate finalResult

6

7 withClient

8 :: Env -> ClientInfo -> IO ()

9 withClient appEnv clientInfo = do

10 x <- collectClientInfo clientInfo

11 response <- makeClientResponse appEnv clientInfo x

12 communciateClient appEnv clientInfo response

13

14 serve

15 :: Env

The Beginning 40

16 -> (Env -> ClientInfo -> IO ())

17 -> IO Result

We’ve taken a live, responsive program design - a client/server program
- and we’ve transformed it into a batch program that runs for each client
request. We also keep the structure of:

1. Acquire Input
2. Process Input
3. Communicate Result

At some level, this is how most business applications work. Haskell ex-
cels at this structure.WorkingwithplainIO functionscancarryyouquite
far. And, since the compiler can guide large-scale refactors, changing the
architecture is relatively cheap if you really need to later.

This style is simple. No language extensions are required. Exception
handling and state management is straightforward, since “parameter
passing” is how everything is accomplished. GHC is excellent at optimiz-
ing the IO type in the generated code, so the program is efficient.

This style is explicit and verbose. If a function needs access to some
piece of data, then you simply pass it in as a parameter. Understanding
how to call any given function is easy: supply all the necessary param-
eters! Knowing where things come from is also easy: the parameter list
describes the complete set of requirements for a function.

“Explicit and verbose” has problems. Every added parameter to a func-
tion requires an update at every use-site of the function. This produces
large diffs for potentially small changes. Additionally, some functions
might take a large amount of parameters. This can produce really long
lines of code which are annoying to type and read. There’s no guarantee
that parameters are passed in any given order, so it can become tedious
to plumb parameters around if this is not consistent.

We run into a classic issue: the “signal to noise ratio.” This approach has
a large amount of ‘volume’ with changes, and it’s difficult to tell whether
any given change is signal or noise. Noisy diffs can cause real production
problems. At one company I worked at, a change in the logging style
was done. This PR touched every function that logged in order to add a

The Beginning 41

parameter for logging - it was over 3000 lines of additions and deletions.
Due to this noise, a fatal bug slipped in, which crashed production. The
PR was combed over by myself and another competent engineer, and
neither of us found the bug.

“What is noise?” is a great question. In my opinion, “noise” is any part
of the diff that is not directly related to the functionality being imple-
mented. Let’s look at what a change in the logging example above might
have looked like. The following code currently uses type class methods
to log, and these are defined for App.

1 myFunc :: Int -> Char -> App Text

2 myFunc i c = do

3 x <- otherFunc i

4 withFoo x $ \foo ->

5 tellTheWorld foo c

Now, we’re going to use an explicit logger.

1 -myFunc :: Int -> Char -> App Text

2 +myFunc :: Logger -> Int -> Char -> App Text

3 -myFunc i c = do

4 +myFunc logger i c = do

5 - x <- otherFunc i

6 + x <- otherFunc logger i

7 withFoo x $ \foo ->

8 - tellTheWorld foo c

9 + tellTheWorld logger foo c

Adding a parameter to each log-requiring function tells us very little
of interest - tellTheWorld uses the logger, as does otherFunc, but
withFoo does not. However, we had to edit every single call-site of every
one of these functions. Indeed, the above diff doesn’t even compile -
tellTheWorld actually should accept the foo before the logger.

The pain points around noisy diffs and big parameter lists are bad
enough that you will try to solve them. The most obvious way is to stuff
the “common” parameters into a datatype, which you pass around.

The Beginning 42

5.1 Abstraction for Mocking

You may want to make some behavior in your application abstract, so
that you can easily test it. Suppose you have some business logic that
depends on an external HTTP service, but you don’t want to use that
service in testing or for local development.

1 doWork :: String -> IO ()

2 doWork request = do

3 response <- makeExternalCall request

4 processResponse response

We want to mock makeExternalCall. To do this, we pull the function
into the parameter list.

1 doWorkAbstract

2 :: (String -> IO Response)

3 -> String

4 -> IO ()

5 doWorkAbstract mockExternalCall request = do

6 response <- mockExternalCall request

7 processResponse response

8

9 doWork :: String -> IO ()

10 doWork = doWorkAbstract makeExternalCall

This technique is easy to apply on demand, as you need it, without
complicating the rest of your codebase. We’ll cover this technique more
in the “Invert Your Mocks!” chapter.

5.2 Forward Compatibility

I like to minimize the effort required to change the application. Haskell
makes extensive changes relatively straightforward, so these changes
are often possible and even feasible. I still prefer to avoid needing to

The Beginning 43

make the change at all. I have rarely regretted writing internal types and
functions that wrap external types.

As an example, we might anticipate wanting to change away from IO as
the main type of our application. We could write a type synonym.

1 type App = IO

2

3 doWork :: String -> App ()

However, this doesn’t preventus fromusingIOdirectly. Ifweevermodify
the App type, then we’ll need to modify each direct use of IO. We can
preempt this by writing a newtype and deriving MonadIO:

1 import Control.Monad.IO.Class (MonadIO(..))

2

3 newtype App a = App { unApp :: IO a }

4

5 instance MonadIO App where

6 liftIO ioAction =

7 App ioAction

8

9 -- or, with GeneralizedNewtypeDeriving:

10 newtype App a = App { unApp :: IO a }

11 deriving newtype

12 (Functor, Applicative, Monad, MonadIO)

This requires us to write liftIO before every use of a plain IO function.
This is extra boilerplate, but it protects us from needing to insert those
calls whenever we change App. The trade-off is definitely doing a bit of
work now, or possibly doing a lot of work all at once later.

Another option is to have a module of pre-lifted functions.

The Beginning 44

1 module App.LiftedFunctions where

2

3 getCurrentTime :: App UTCTime

4

5 openFile :: IOMode -> App Handle

6

7 getHttpRequest :: String -> App Response

This pattern makes it easy to know exactly how you depend on IO and
external libraries. You can even skip the MonadIO type class. What’s
more, you can forbid people from using it with a TypeError instance:

1 instance (TypeError UseAppInstead) => MonadIO App where

2 liftIO = undefined

3

4 type UseAppInstead = 'Text "Use App instead"

Writing a custom TypeError is out of scope for this chapter, but we’ll
cover it later. This facility allows you to explain to developers why things
are the way they are, which is great for onboarding new developers.

A newtype around IO also makes it possible to write custom instances
for type classes on your application type. This is a commonway to opt-in
to library features.

Thegeneral practice aroundwriting internalwrappers for external types
can help with switching libraries and growing your code. It’s easy to let a
library get deeply coupled into your codebase, but you should avoid that
where possible.

5.3 AppEnvironment

Your codebase is in the previous state: IO functions everywhere, passing
whatever parameters you needmanually. You are feeling the pain points
mentioned above, and you want a solution. So you make a distinction
between the “common” parameters and the “specific” parameters, and
package the common ones up in a new datatype. Your old code might
look like this:

The Beginning 45

1 someFunction

2 :: DbConn

3 -> Logger

4 -> HttpManager

5 -> String

6 -> Int

7 -> IO ()

The DbConn, Logger, and HttpManager values are ubiquitous - almost
every function in your codebase relies on them to do basic work. But the
exact order isn’t consistent, and the PR that added the HttpManagerwas
waymoreannoying that it needed tobe. Sowe’re going towrite adatatype
and package it up:

1 data AppEnvironment = AppEnvironment

2 { dbConn :: DbConn

3 , logger :: Logger

4 , httpManager :: HttpManager

5 }

6

7 someFunction

8 :: AppEnvironment

9 -> String

10 -> Int

11 -> IO ()

Now, instead of passing the parameters separately, we pass the single
“combined” parameter. This reduces the explicitness and verbosity of
our code. It also adds some complexity - we now have tomake a decision
about how to pass parameters to functions! But this also reduces com-
plexity - we now have a single place to put application concerns.

Reducing verbosity and explicitness has trade-offs. The diffs in this
style of code are significantly less noisy, and reviewing changes to the
codebase is easier. Writing, editing, and experimenting with the code
is easier, since each change is more directly relevant. If we need to
propagate a bit of information to many places in the code, we can put
it into the AppEnvironment type, and we will only see diffs where that

The Beginning 46

is relevant. For new people to the codebase, it can be difficult to know
where to get a certain item. Programmers will eventually learn what is
stored in theAppEnvironment type, but this is anextrabit of information
for them to learn to be productive.

By creating an AppEnvironment type, we give a name to the most com-
mon aspects of the application. This gives us the ability towriteHaddock
documentation for the environment. The liability of ‘hidden’ informa-
tion can become an asset by giving us a place to name and document
patterns and practices.

When to use the Environment

When should I put a value in the environment?

This is an excellent and common question when you have an AppEn-
vironment type. Both the environment and the parameter list for a
function are equivalent. I’ve developed a few clarifying questions:

1. Is the value being passed to most functions?
2. Does the value rarely change?
3. Do functions often pass the value unchanged to other functions,

without using it directly?
4. Is the value created at environment startup and then used through-

out?

If you answered “yes” to any of the above, then including the type in an
Environment is probably a good idea. Putting a value in the environment
hides it from the explicit parameter list andmakes itmuchmoredifficult
to modify. It also makes it easier to centralize documentation for the
meaning of that parameter. Rather than commenting on the meaning
in every location, we can centralize the commentary at the datatype
definition.

Nesting Environments

I have rarely seen an application with a single environment. Most
applications have multiple possible environments, and they are usually

The Beginning 47

‘nested’. I might have an ApplicationEnvironment which contains
stuffmy entire appneeds. But then I’ll also have a RequestEnvironment
which contains stuff specific to a single request.

We’re immediately confronted with a choice: do we nest the Applica-
tionEnvironmentdirectly into theRequestEnvironment, or dowepass
them separately?

1 data RequestEnvironment = RequestEnvironment

2 { ...

3 }

4

5 someFunction

6 :: AppEnvironment

7 -> RequestEnvironment

8 -> IO ()

9

10 -- vs:

11 data RequestEnvironment = RequestEnvironment

12 { appEnvironmnet :: AppEnvironment

13 , ...

14 }

15

16 someFunction

17 :: RequestEnvironment

18 -> IO ()

This is similar to the above question - “When to use the Environment.”
There is a subtle difference in the meaning of these two approaches,
however. If we do not nest the environments, then this implies that there
are two separate environments with some amount of overlap. It implies
the existence of functions that only exist in the RequestEnvironment,
totally outside of our AppEnvironment.

Is it possible to do a Request without the larger AppEnvironment? If it
is, thenmaybe combining the two types is premature.

If we nest the environment types, then it implies that all RequestEnvi-
ronments are specializations of the AppEnvironment. There is a small

The Beginning 48

amount of additional noise from this approach. We must call appEn-
vironment on the RequestEnvironment to call any AppEnvironment
functions.

1 appFunction

2 :: AppEnvironment

3 -> IO ()

4

5 requestFunction

6 :: RequestEnvironment

7 -> IO ()

8 requestFunction requestEnv = do

9 putStrLn "doing work"

10 appFunction (appEnvironment requestEnv)

11 putStrLn "work is done"

Contrast this with the two parameter approach:

1 requestFunction

2 :: AppEnvironment

3 -> RequestEnvironment

4 -> IO ()

5 requestFunction appEnv requestEnv = do

6 putStrLn "doing work"

7 appFunction appEnv

8 putStrLn "work is done"

Generalizing Environments

The ambitious reader will note that we can use type classes to solve the
above issuewith nesting environments.We canwrite a type class HasAp-
pEnvironment and require that instead of a concrete AppEnvironment:

The Beginning 49

1 class HasAppEnvironment a where

2 getAppEnvironment :: a -> AppEnvironment

3

4 appFunction

5 :: (HasAppEnvironment a)

6 => a

7 -> IO ()

8

9 data RequestEnvironment = RequestEnvironment

10 { appEnvironment :: AppEnvironment

11 }

12

13 instance HasAppEnvironment RequestEnvironment where

14 getAppEnvironment = appEnvironment

15

16 requestFunction

17 :: RequestEnvironment

18 -> IO ()

19 requestFunction reqEnv = do

20 putStrLn "doing work"

21 appFunction reqEnv

22 putStrLn "work is done"

I generally recommend against this approach. Type class polymorphism
is a great way to introduce confusing type errors into a project.

5.4 The ReaderT Pattern

The next big step in complexity is to add our first monad transformer.
The ReaderTmonad transformer looks like this:

The Beginning 50

1 newtype ReaderT r m a = ReaderT

2 { runReaderT :: r -> m a

3 }

4

5 ask :: ReaderT r m r

6 ask = ReaderT (\r -> pure r)

The type in the r parameter is passed implicitly, and we call ask to
get access to it. This reduces the noise in passing the AppEnvironment
parameter directly, which tends to make the code a bit more readable.

If you’ve adopted the suggestion in “Forward Compatibility,” then you’ll
have an app type like this:

1 newtype App a = App

2 { unApp :: ReaderT AppEnvironment IO a

3 }

4 deriving (Functor, Applicative, Monad, MonadReader AppEnvironment)

5

6 runApp :: AppEnvironment -> App a -> IO a

7 runApp appEnv action =

8 runReaderT (unApp action) appEnv

This approach is documented in The ReaderT Design Pattern¹.

Monad transformers increase the complexity of the codebase signifi-
cantly. ReaderT is the easiest one to understand, but we run into a
number of issues. It becomes difficult to call certain kinds of IO actions
directly. There are two general solutions: MonadBaseControl² and Un-
liftIO³. MonadBaseControl is deeply complicated and difficult to use.
UnliftIO is rather restrictive, and only supports transformers that can
be translated to ReaderT.

¹https://www.fpcomplete.com/blog/2017/06/readert-design-pattern/
²https://lexi-lambda.github.io/blog/2019/09/07/demystifying-monadbasecontrol/
³https://github.com/fpco/unliftio/tree/master/unliftio#readme

https://www.fpcomplete.com/blog/2017/06/readert-design-pattern/
https://lexi-lambda.github.io/blog/2019/09/07/demystifying-monadbasecontrol/
https://github.com/fpco/unliftio/tree/master/unliftio#readme
https://github.com/fpco/unliftio/tree/master/unliftio#readme
https://www.fpcomplete.com/blog/2017/06/readert-design-pattern/
https://lexi-lambda.github.io/blog/2019/09/07/demystifying-monadbasecontrol/
https://github.com/fpco/unliftio/tree/master/unliftio#readme

The Beginning 51

5.5 Embed, don’t Stack

Youmaybe tempted to add a ton ofmonad transformers in your app type.
One monad transformer for every effect you might care about. Every
effect represented by a monad transformer.

1 newtype App a = App

2 { unApp ::

3 ExceptT

4 AppErr

5 (StateT AppState (ReaderT AppEnv (LoggingT IO)))

6 a

7 }

This is amistake. Eachmonad transformer incurs significant complexity
in implementation and locks you in.

Fortunately,ReaderT Env IO is powerful enough thatwedon’t needany
additional transformers. Every additional transformer provides more
choices and complexity, without offering significant extra power.We can
mimic StateT by putting an IORef into the Env.

1 newtype StateRef s m a = StateRef (ReaderT (IORef s) m a)

2

3 instance (MonadIO m) => MonadState s (StateRef s m) where

4 get a = StateRef $ do

5 ref <- ask

6 liftIO $ readIORef ref

7 put a = StateRef $ do

8 ref <- ask

9 liftIO $ writeIORef ref a

We can mimic ExceptT by throwing exceptions in IO. I cover in “The
TroubleWith Typed Errors” why this is fine, andwhy ExceptT hasmany
problems with correctness and safety.

We can write an instance of MonadLogger directly to avoid needing the
LoggingT type.

The Beginning 52

1 instance MonadLogger App where

2 monadLoggerLog = appLog

The general pattern that I recommend is to embed things into your App
type.

1 runSql :: Database a -> App a

2

3 runRedis :: Redis a -> App a

Interleaving effects can dramatically complicate code. Factoring your
code such that effects are run independently of each other makes for
a simpler time to understand and read the code. You also avoid many
common issues.

For example, suppose runSql implies a database transaction. You may
want to run Redis actions inside a database action.

1 writeRedis :: Key -> Value -> Redis ()

2

3 liftRedis :: Redis a -> Database a

4

5 databaseTransaction = do

6 someRecord <- get key

7 liftRedis $ writeRedis (id someRecord) (val someRecord)

8 insert newRecord

9 liftRedis $ writeRedis (id newRecord) (val someRecord)

10 insert otherRecord

What happens if insert otherRecord fails - possibly due to a foreign
key constraint, or a violated uniqueness constraint? Then the effect of
insert newRecord will be rolled back with the rest of the transaction.
However - we can’t “undo” the writeRedis action. So our Redis service
will act like insert newRecord has succeeded while our Database will
not have it.

A type - like Database, App, or Redis - is like a mini-language. Many
small, simple languages are easier than a single mega-language to rule

The Beginning 53

them all. Embedding these small languages into a larger one is relatively
straightforward. By embedding our effects, rather than stacking them,
we have a much easier time structuring our code.

6. Three Layer Haskell Cake
There aremany perspectives and choices on how to design a Haskell ap-
plication. Choosinga single approach isunderstandablydifficult. Should
I use plainmonad transformers, mtl, just pass the parametersmanually
and use IO for everything, the ReaderT design pattern¹, free monads²,
freermonads, some other kind of algebraic effect system?!

Each approachhas pros and cons. Instead of stickingwith one technique
for everything, let’s instead leveragemany techniques where they shine.
Lately, I’ve been centering on an application design architecture with
roughly three layers.

Trying to satisfy everyneedwith a single technique is bound to fail. Some
thoughts are awkward to encode or test in IO. Some techniques don’t
have sufficient control to provide for every use case. And finally, some
techniques are just hard to use, no matter how powerful they might be!

This approach is all about figuring out the best technique to solve the
problem, and embedding it in the larger context. Layer 1 is our founda-
tion. Everything eventually gets interpreted into it. Items in Layer 2 and
3 are ignorant of this foundation - and they are then embedded in it.

This is another presentation of the “functional core, imperative shell”³
model of programming, so if you’re familiar with that, you might enjoy
this take on it.

6.1 Layer 1: Imperative Programming

The first layer is a thin veneer over IO.

¹https://www.fpcomplete.com/blog/2017/06/readert-design-pattern
²http://www.parsonsmatt.org/2017/09/22/what_does_free_buy_us.html
³https://www.destroyallsoftware.com/talks/boundaries

54

https://www.fpcomplete.com/blog/2017/06/readert-design-pattern
http://www.parsonsmatt.org/2017/09/22/what_does_free_buy_us.html
https://www.destroyallsoftware.com/talks/boundaries
https://www.fpcomplete.com/blog/2017/06/readert-design-pattern
http://www.parsonsmatt.org/2017/09/22/what_does_free_buy_us.html
https://www.destroyallsoftware.com/talks/boundaries

Three Layer Haskell Cake 55

1 newtype App a

2 = App

3 { unApp :: ReaderT YourStuff IO a

4 }

5 deriving newtype

6 (Functor, Applicative, Monad, etc)

The ReaderT Design Pattern⁴. This is the foundation of the app: what
everything eventually gets interpreted in. This type is the backbone of
your app. This layer defines how the upper layers work, and for handling
operational concerns like performance, concurrency, etc. For some com-
ponents, you carry around some information or state (consider Monad-
Metrics⁵ or katip’s⁶ logging state/data).

At IOHK, we had a name for this kind of thing: a “capability”. We have a
big design doc onmonads⁷, and the doc goes intowhatmakes something
a capability or not. IOHK has since deleted this design document and
decided that it wasn’t good to follow.

You can write all of your code in this layer, without doing anything in
the upper layers. Indeed, some simple applications may not require
anything more complex.

Testing

If you need to test items in this layer, then you are writing integration
tests. Integration tests can be slow and cumbersome, but they provide
confidence that the pieces fit together correctly. Ideally, you won’t need
to write many tests for this layer. The composition of well-tested code
with great unit and property tests should hopefully be correct enough
that integration testing doesn’t provide much value.

If you find yourself writing tests for Imperative Programming code, con-
sider instead shifting the logic into one of the higher layers. Testing pure
functions or otherwise abstracted code is easier and faster.

⁴https://www.fpcomplete.com/blog/2017/06/readert-design-pattern
⁵https://hackage.haskell.org/package/monad-metrics
⁶https://hackage.haskell.org/package/katip-0.5.2.0/docs/Katip.html
⁷https://github.com/parsonsmatt/cardano-sl/blob/10e55bde9a5c0d9d28bca25950a8811407c5fc8c/

docs/monads.md

https://www.fpcomplete.com/blog/2017/06/readert-design-pattern
https://hackage.haskell.org/package/monad-metrics
https://hackage.haskell.org/package/monad-metrics
https://hackage.haskell.org/package/katip-0.5.2.0/docs/Katip.html
https://github.com/parsonsmatt/cardano-sl/blob/10e55bde9a5c0d9d28bca25950a8811407c5fc8c/docs/monads.md
https://www.fpcomplete.com/blog/2017/06/readert-design-pattern
https://hackage.haskell.org/package/monad-metrics
https://hackage.haskell.org/package/katip-0.5.2.0/docs/Katip.html
https://github.com/parsonsmatt/cardano-sl/blob/10e55bde9a5c0d9d28bca25950a8811407c5fc8c/docs/monads.md
https://github.com/parsonsmatt/cardano-sl/blob/10e55bde9a5c0d9d28bca25950a8811407c5fc8c/docs/monads.md

Three Layer Haskell Cake 56

How do you shift something up to a higher layer? The chapter “Inverting
your Mocks” covers a general strategy for accomplishing this, but the
general routine is:

• Factor the input effects of code out as function parameters
• Represent the output effects as data returned from pure functions

If I had to give a name to this layer, I’d call it the “orchestration” layer.
All of the code has been composed, and now we’re arranging it for a real
performance.

This layerworkswellwhen imperativeprogramming is themost suitable
paradigm to approach the problem with. After all, according to Simon
Peyton Jones,Haskell is theworld’s finest imperative language.Wemight
as well take advantage of that where appropriate.

6.2 Layer 2: Object Oriented Programming

This layer isprimarily good forprovidinga limited interface toacomplex,
external API. We abstract that into a function parameter, effect, or capa-
bility. Limiting the interface and abstracting it into a runtime parameter
allows us to swap in different tested implementations.

Here, we’re mostly interested in abstracting and encapsulating external
services and dependencies. The most convenient way I’ve found to do
this are mtl style classes, implemented in terms of domain resources or
effects. This is a trivial example:

1 class MonadTime m where

2 getCurrentTime :: m UTCTime

MonadTime is a class that I might use to “purify” an action that uses
IO only for the current time. Doing so makes unit testing a time based
function easier. However – this isn’t a great use for this. The best “pure”
instance of this is

Three Layer Haskell Cake 57

1 instance MonadTime ((->) UTCTime) where

2 getCurrentTime = id

And, if you’ve factored your effects out, this will already be done for
you. Furthermore, it would actually be quite difficult to write a realistic
MonadTimemock. One law we might like to have with getCurrentTime
is that:

1 timeLessThan = do

2 x <- getCurrentTime

3 y <- getCurrentTime

4 pure (x < y)

A pure implementation returning a constant time would fail this. We
could have a State with a random generator and a UTCTime and add a
random amount of seconds for every call, but this wouldn’t really make
testing any easier than just getting the actual time. Getting the current
time is best kept as a Layer 1 concern - don’t bother abstracting it.

The real benefit to introducing a MonadTime class and constraint is to
avoid MonadIO. MonadIO allows you to do almost anything, and you may
prefer to restrict the function to only getting the current time.

So, if MonadTime isn’t a good “external service” to swap out, what is?
In my opinion, a service is worth abstracting if you can limit the API
to a sufficiently small set and if the service is in any way frustrating
or annoying to setup in a development or test environment. Both of
these components are inherently subjective. If your application depends
tightly on PostgreSQL features, then you probably can’t easily mock it,
regardless of how frustrating it may be to setup a Postgres instance
locally.

A more realistic example from a past codebase is MonadLock. This type
class defined an interface for acquiring a Lock based on a Key in a
distributed computer network. This was used to ensure that only one
server was working on a task at any given point when the task delivery
mechanism wasn’t guaranteed to provide unique messages.

Three Layer Haskell Cake 58

1 class Monad m => MonadLock m where

2 acquireLock

3 :: NominalDiffTime

4 -> Key

5 -> m (Maybe Lock)

6 renewLock

7 :: NominalDiffTime

8 -> Lock

9 -> m (Maybe Lock)

10 releaseLock

11 :: Lock

12 -> m ()

This class describes logic around implementing distributed locks. The
production instance talked to a Redis instance. Setting up Redis for
dev/test sounded annoying, so I implemented a testing mock that held
an IORef (Map Key Lock).

Another good class is a simplifiedDSL forworkingwith your data. InOOP
land, you’d call this your “Data Access Object.” It doesn’t try to contain a
full SQL interpreter, it only represents a small set of queries/data that you
need.

1 class (Monad m) => AcquireUser m where

2 getUserBy :: UserQuery -> m [User]

3 getUser :: UserId -> m (Maybe User)

4 getUserWithDog :: UserId -> m (Maybe (User, Dog))

5

6 class AcquireUser m => UpdateUser m where

7 deleteUser :: UserId -> m ()

8 insertUser :: User -> m ()

We can use this class to provide a mock database for testing, without
having to write an entire SQL database mocking system. These classes
also come in handy because you can swap out the underlying production
implementations. Suppose you have a microservices system going on,
and AcquireUser is done through an HTTP API. Suddenly, your boss is
convinced that monoliths are king, and gives you One Large Server To

Three Layer Haskell Cake 59

Rule Them All. Now your HTTP API has direct database access to the
underlying data – you can make SQL requests instead of HTTP! How
wonderful. This may seem contrived, but it was a big deal when we did
exactly this at my first job.

You don’t have to use type classes for this. Indeed, type classes have a lot
of downsides for abstraction. If there are multiple reasonable behaviors
for a givne type, then type classes make it difficult to select the instance
you want. In this case, a data type with function fields may be more
appropriate. You can translate a type class into a data type by turning the
methods into function fields. Gabriella Gonzalez’s blog post “Scrap your
type classes”⁸ goes into great detail, but an example transformation is
here:

1 class Monad m => MonadLock m where

2 acquireLock

3 :: NominalDiffTime

4 -> Key

5 -> m (Maybe Lock)

6 renewLock

7 :: NominalDiffTime

8 -> Lock

9 -> m (Maybe Lock)

10 releaseLock

11 :: Lock

12 -> m ()

13

14 data LockService = LockService

15 { acquireLock :: NominalDiffTime -> Key -> IO (Maybe Lock)

16 , renewLock :: NominalDiffTime -> Lock -> IO (Maybe Lock)

17 , releaseLock :: Lock -> IO ()

18 }

One especially nice thing about this transformation is that you can
capture runtime parameters easily. Suppose we want to close over a
RedisConnection in order to provide this. With the type class instance,
we must provide the value through the types, typically with a ReaderT
parameter:

⁸https://www.haskellforall.com/2012/05/scrap-your-type-classes.html

https://www.haskellforall.com/2012/05/scrap-your-type-classes.html
https://www.haskellforall.com/2012/05/scrap-your-type-classes.html
https://www.haskellforall.com/2012/05/scrap-your-type-classes.html

Three Layer Haskell Cake 60

1 instance MonadIO m => MonadLock (ReaderT RedisConnection m) where

2 acquireLock time key = do

3 redisConn <- ask

4 liftIO $ do

5 runRedis ...

6

7 {- etc... -}

With the record data type, we can provide that as a runtime parameter,
without involving any types:

1 redisLock :: RedisConnection -> LockService

2 redisLock redisConnection =

3 LockService

4 { acquireLock = \time key -> do

5 rundRedis redisConnection ...

6 , {- etc... -}

7 }

If you want to modify the behavior of the service, you can easily manip-
ulate the runtime value. Manipulating the type class behavior is more
tricky, since you need to call the service at a different type.

1 lockForTenTimesLonger :: LockService -> LockService

2 lockForTenTimesLonger LockService {..} =

3 LockService

4 { acquireLock = \time key ->

5 acquireLock (time * 10) key

6 , renewLock = \time lock ->

7 renewLock (time * 10) lock

8 , ..

9 }

10

11 withLongerLocks :: App a -> App a

12 withLongerLocks =

13 local (\appEnvironment ->

Three Layer Haskell Cake 61

14 appEnvironment

15 { appEnvironmentLockService =

16 lockForTenTimesLonger $

17 appEnvironmentLockService appEnvironment

18 }

19)

20 -- vs,

21

22 newtype TenTimesLonger m a = TenTimesLonger (m a)

23

24 instance MonadLock m => MonadLock (TenTimesLonger m) where

25 acquireLock time key =

26 TenTimesLonger $ acquireLock (time * 10) key

27 {- etc... -}

In order for withLongerLocks to work with the type class, we have to
somehow “swap out” the type class instance that is getting selected for
that inner action. This isn’t trivial to do.

On the other hand, a type class instance is canonical - if you know the
type something is called at, then you can easily determine the implemen-
tation that is being used. The data type approach makes it difficult to
know exactly what code is being called without tracing the call graph.

These are higher level than App and delimit the effects you use; but
are ultimately lower level than real business logic. You might see some
MonadIO in this layer, but it should be avoided where possible. This
layer should be expanded on an as-needed (or as-convenient) basis. As
an example, implementing MonadLock as a class instead of directly in
AppT was done because using Redis directly would require that every
development and test environment would need a full Redis connection
information. That is wasteful so we avoid it. Implementing Acquire-
Model as a class allows you to omit database calls in testing, and if you’re
real careful, you can isolate the database tests well.

DO NOT try to implement MonadRedis or MonadDatabase or Monad-
Filesystem here. That is a fool’s errand. Instead, capture the tiny bits of
your domain: MonadLock, MonadModel, or MonadSpecificDataAcqui-
sition. The smaller your domain, the easier it is to write mocks and
tests for it. You probably don’t want to write a SQL database, so don’t –

Three Layer Haskell Cake 62

capture the queries you need as methods on the class so they can easily
be mocked. Alternatively, present a tiny query DSL that is easy to write
an interpreter for.

This layer excels at providing swappable implementations of external
services. This technique is still quite heavy-weight: mtl classes require
tons of newtypes and instance boilerplate. Other mocking techniques
aren’t much better. This layer should be as thin as possible, preferring
to instead push stuff into Layer 3.

This layer is essentially “object oriented programming.”We have objects
- interfaces with messages we care about - and we swap in the object we
want at runtime to have the behavior we care about. Code in this layer
can be difficult to understand and follow. A nice property about Layer
1 code is that you can always just jump to the definition of the function
and know how it is defined. But once you’re in an “object”, knowing the
definition of the term is not sufficient. You have to trace where the value
comes from and what modifications happen along the way.

6.3 Layer 3: Functional Programming

Business logic. This should be entirely pure, with no IO component at all.
This should almost always just be pure functions and relatively simple
data types. Reach for only as much power as you need - and you often
needmuch less than you think at first.

All the effectful data should have been acquired beforehand, and all
effectful post-processing should be handled afterwards. The chapter
“Invert Your Mocks” goes into detail on ways to handle this. If you need
streaming, then you can implement “pure”conduit orpipeswith a type
signature like this:

1 pureConduit

2 :: Monad m

3 => ConduitT i m o r

This expresses nodependency onwhere the data comes from, nor onhow
the output is handled. We can easily run it with mock data, or put it in

Three Layer Haskell Cake 63

the real production pipeline. It is abstract of such concerns. As a result,
it’s lots of fun to test.

If the result of computation needs to perform an effect, then it is useful
to encode that effect as a datatype. Free monads are a technique to
encode computation as data, but they’re complicated; you can usually
get away with a much simpler datatype to express the behavior you
want. Often times, a simple non-recursive sum type “command” suffices
as an interface between a pure function and an effectful one. A list of
commands adds a lot of flexibility without dramatically complicating
things.

Before you jump tomonads, consider: would a Monoidwork to construct
or read the data? If not, what about an Applicative interface? What
about a limited recursive sum type, perhaps a GADT, that can express
what I want to do?

Testing pure functions with easy data types as output is dreamlike and
easy. This is the Haskell we know and love. Try to put as much of your
code into the pleasant, testable, QuickCheck-able, type-verified bits as
possible. If you manage to isolate your application like this, then you
won’t need to test your IO stuff (aside from the usual integration testing).

May all of your tests be pleasant and your software correct.

6.4 Examples

I get folks asking me for examples fairly regularly. Unfortunately, I
haven’t had time to write an OSS app using this technique. Fortunately,
other folks have!

• Holmusk/three-layer⁹
• thomashoneyman/purescript-halogen-realworld¹⁰
• incoherentsoftware/defect-process¹¹ is a ∼62kloc Haskell video
game project that uses the Three Layer Cake

⁹https://github.com/Holmusk/three-layer
¹⁰https://github.com/thomashoneyman/purescript-halogen-realworld
¹¹https://github.com/incoherentsoftware/defect-process

https://github.com/Holmusk/three-layer
https://github.com/thomashoneyman/purescript-halogen-realworld
https://github.com/incoherentsoftware/defect-process
https://github.com/Holmusk/three-layer
https://github.com/thomashoneyman/purescript-halogen-realworld
https://github.com/incoherentsoftware/defect-process

7. Invert Your Mocks!
Mocking comesup a lot in discussions of testing effectful code inHaskell.
One of the advantages for mtl type classes or Eff freer monads is that
you can swap implementations and run the same program on different
underlying interpretations. This is cool!However, it’s anextremelyheavy
weight technique, with a ton of complexity.

In the previous chapter, I recommended developing with the ReaderT
pattern - something like this:

1 newtype App a = App { unApp :: ReaderT AppCtx IO a }

Now, how would I go about testing this sort of function?

1 doWork :: App ()

2 doWork = do

3 query <- runHTTP getUserQuery

4 users <- runDB (usersSatisfying query)

5 for_ users $ \user -> do

6 thing <- getSomething user

7 let result = compute thing

8 runRedis (writeKey (userRedisKey user) result)

If we have our mtl or Eff or OOPmocking hats on, wemight think:

I know! We need to mock our HTTP, database, and Redis
effects. Then we can control the environment using mock
implementations, and verify that the results are sound!

Mocking is awful. It complicates every aspect of our codebase, and it
doesn’t even make for reliable tests. I’ll cover techniques on mocking in
a later part of the book, but it would be significantly nicer if we never had

64

Invert Your Mocks! 65

to do it. Who knows -maybe you never will! But first, we’re going to need
to figure out ways to test our code without relying onmocking.

Let’s step back and apply some more elementary techniques to this
problem.

7.1 Decomposing Effects

The first thing we need to do is recognize that effects and values are
separate, and try to keep them as separate as possible. The separation
of effects and values is a fundamental principle of purely functional
programming. Generally speaking, functions that look like doWork are
not functional (in the “functional programming” sense). Let’s look at the
type signature for a few clues.

1 doWork :: App ()

Our firstwarning is that this functionhasnoarguments. Thatmeans that
any input to this function must come from the App environment. These
inputs are effects.

Likewise, this function returns () - the unit type, signifying nothing.
There is no meaningful value here. If this function does anything at all,
it must be a side-effect.

So, let’s look again at what the function does. We’ll need to decompose
the function before we can test it.

1 doWork :: App ()

2 doWork = do

3 query <- runHTTP getUserQuery

4 users <- runDB (usersSatisfying query)

5 for_ users $ \user -> do

6 thing <- getSomething user

7 let result = compute thing

8 runRedis (writeKey (userRedisKey user) result)

Invert Your Mocks! 66

Weget a bunchof stuff - inputs - that are acquired as the result of an effect.
To test this directly, weneed to somehow intercept the effect andprovide
some other value. This is unpleasant to do in Haskell.

Instead, let’s split this into two functions. The first will be responsible for
performing the input effects. The second will accept the results of those
input effects as a pure function parameter.

1 doWork :: App ()

2 doWork = do

3 query <- runHTTP getUserQuery

4 users <- runDB (usersSatisfying query)

5 doWorkHelper users

6

7 doWorkHelper :: [User] -> App ()

8 doWorkHelper users =

9 for_ users $ \user -> do

10 thing <- getSomething user

11 let result = compute thing

12 runRedis (writeKey (userRedisKey user) result)

Now, to testdoWorkHelper, wedon’t need tomockout the effects that get
the [User] out. We can provide whatever [User] we want in our tests
without having to orchestrate a fake HTTP service and database.

Now, the only remaining effects in doWorkHelper are getSomething
and runRedis. But I’m not satisfied.We can get rid of the getSomething
by factoring another helper out. We’ll follow the same pattern: call the
input effect, collect the values, and provide them as inputs to a new
function.

Invert Your Mocks! 67

1 doWorkHelper :: [User] -> App ()

2 doWorkHelper users = do

3 things'users <- for users $ \user -> do

4 thing <- getSomething user

5 pure (thing, user)

6 lookMaNoInputs thing'users

7

8 lookMaNoInputs :: [(Thing, User)] -> App ()

9 lookMaNoInputs things'users =

10 for_ things'users $ \(thing, user) -> do

11 let result = compute thing

12 runRedis (writeKey (userRedisKey user) result)

We’ve now extracted all of the “input effects.” The function lookMaNoIn-
puts (as it suggests) only performs output effects. If we want to test this,
we can provide any [(Thing, User)]we want.

However, we’re still stuck with our output effects. If we want to test this,
we’d need to verify that the App environment (or real world) actually
changed in the way we expect. Fortunately, we have a trick up our sleeve
for this. Let’s inspect our output effect:

1 runRedis (writeKey (userRedisKey user) result)

It expects two things:

1. The user’s Redis key
2. The computed result from the thing.

We can prepare the Redis key and computed result fairly easily:

Invert Your Mocks! 68

1 businessLogic :: (Thing, User) -> (RedisKey, Result)

2 businessLogic (thing, user) = (userRedisKey user, compute thing)

3

4 lookMaNoInputs :: [(Thing, User)] -> App ()

5 lookMaNoInputs users = do

6 for_ (map businessLogic users) $ \(key, result) -> do

7 runRedis (writeKey key result)

Neat! We’ve isolated the core business logic out and now we can write
nice unit tests on that business logic. The tuple is a bit irrelevant - the
userRedisKey function and compute thing call are totally indepen-
dent. We can write tests on compute and userRedisKey independently.
The composition of these two functions should also be fine, even without
testing businessLogic itself. All of the business logic has been excised
from the effectful code, and we’ve reduced the amount of code we need
to test.

Now, youmay still want to write integration tests for the various effectful
functions. Verifying that these operate correctly is an important thing to
do. However, you won’t want to test them over-and-over again. You want
to test your business logic independently of your effectful logic.

7.2 Streaming Decomposition

Streaming libraries like Pipes and Conduit are a great way to handle
large data sets and interleave effects. They’re also a great way to de-
compose functions and provide “inverted mocking” facilities to your
programs. Youmayhavenoticed that our refactor in theprevious section
involved going froma single iteration over the data tomultiple iterations.
At first, we grabbed the [User], and for each User, we made a request
and wrote to Redis. But the final version iterates over the [User] and
pairs it with the request. Then we iterate over the result again and write
to Redis at once.

We can use conduit to avoid the extra pass, all while keeping our code
nicely factored and testable.

Most conduits look like this:

Invert Your Mocks! 69

1 import Data.Conduit (runConduit, (.|))

2 import qualified Data.Conduit.List as CL

3

4 streamSomeStuff :: IO ()

5 streamSomeStuff = do

6 runConduit

7 $ conduitThatGetsStuff

8 .| conduitThatProcessesStuff

9 .| conduitThatConsumesStuff

The pipe operator (.|) can be thought of as a Unix pipe - “take the
streamed outputs from the first Conduit and plug them in as inputs to
the second Conduit.” The first part of a Conduit is the “producer” or
“source.” This can be from a database action, an HTTP request, or from
a file handle. You can also produce from a plain list of values.

Let’s look at conduitThatGetsStuff - it produces the values for us.

1 -- Explicit

2 type ConduitT input output monad returnValue

3

4 -- Abbreviated

5 type ConduitT i o m r

6

7 conduitThatGetsStuff

8 :: ConduitT () ByteString IO ()

9 -- ^ ^ ^ ^

10 -- | | | return

11 -- | | monad

12 -- | output

13 -- input

conduitThatGetsStuff accepts () as the input. This is a signal that it
is mostly used to produce things, particularly in the monad type. So con-
duitThatGetsStuff may perform IO effects to produce ByteString
chunks.When the conduit is finished running, it returns () - or, nothing
important.

Invert Your Mocks! 70

Thenext part of the conduit isconduitThatProcessesStuff. This func-
tion is right here:

1 conduitThatProcessesStuff :: ConduitT ByteString RealThing IO ()

2 conduitThatProcessesStuff =

3 CL.map parseFromByteString

4 .| CL.mapM (either throwIO pure)

5 .| CL.map convertSomeThing

6 .| CL.filter someFilterCondition

This ConduitT accepts ByteString as input, emits RealThing as out-
put, and operates in IO. We start by parsing values into an Either.
The second part of the pipeline throws an exception if the previous
step returned Left, or passes the Right along to the next part of the
pipeline. CL.map does a conversion, and then CL.filter only passes
along RealThings that satisfy a condition.

Finally, we need to actually do something with the RealThing.

1 conduitThatConsumesStuff :: Consumer RealThing IO ()

2 conduitThatConsumesStuff =

3 passThrough print

4 .| passThrough makeHttpPost

5 .| CL.mapM_ saveToDatabase

6 where

7 passThrough :: (a -> IO ()) -> Conduit a IO a

8 passThrough action = CL.mapM $ \a -> do

9 action a

10 pure a

This prints each item before yielding it to makeHttpPost, which finally
yields to saveToDatabase.

We have a bunch of small, decomposed things. Our conduitThatPro-
cessesStuff doesn’t care where it gets the ByteStrings that it parses
– you can hook it up to any ConduitT i ByteString IO r. Databases,
HTTP calls, file IO, or even just CL.sourceList [example1, exam-
ple2, example3].

Invert Your Mocks! 71

Likewise, the conduitThatConsumesStuff doesn’t care where the Re-
alThings come from. You can use CL.sourceList to provide a bunch of
fake input.

We’re not usually working directly with Conduits here, either – most of
the functions are provided to CL.mapM_ or CL.filter or CL.map. That
allows us to write functions that are simple a -> m b or a -> Bool or a
-> b, and these are really easy to test.

doWork: conduit-style

Above, we had doWork, and we decomposed it into several small func-
tions. While we can be confident it processes the input list efficiently,
we’re not guaranteed that it will work in a constant amount of memory.
The original implementation made a single pass over the user list. The
second onedoes three, conceptually: the firstfor_ to grab the secondary
inputs, the call to map businessLogic and the final for_ to perform
the output effect. If there weremore passes and we wanted to guarantee
prompt effects, we can use a Conduit.

So let’s rewrite doWork as a ConduitT. First, we’ll want a producer that
yields our User records downstream.

1 sourceUsers :: ConduitT () User App ()

2 sourceUsers = do

3 users <- lift $ do

4 query <- runHttp getUserQuery

5 runDB (usersSatisfying query)

6 sourceList yieldMany users

Now, we’ll define a conduit that gets the thing for a user and passes it
along.

Invert Your Mocks! 72

1 -- Alternatively, using the `Conduit.List` API:

2 getThing :: ConduitT User (User, Thing) App ()

3 getThing =

4 CL.mapM $ \user -> do

5 thing <- getSomething user

6 pure (user, thing)

Another conduit computes the result.

1 computeResult :: Monad m => ConduitT (User, Thing) (User, Result) m ()

2 computeResult =

3 mapC $ \(user, thing) -> (user, compute thing)

The final step in the pipeline is to consume the result.

1 consumeResult :: ConduitT (User, Result) Void App ()

2 consumeResult = do

3 CL.mapM_ $ \(user, result) ->

4 runRedis $ writeKey (userRedisKey user) result

The assembled solution is here:

1 doWork :: App ()

2 doWork = runConduit

3 $ sourceUsers

4 .| getThing

5 .| computeResult

6 .| consumeResult

This has the same efficiency as the original implementation, and also
processes things in the same order. However, we’ve been able to extract
the effects and separate them. The computeResult :: ConduitT _ _-
_ is pure , and can be tested without running any IO.

Even supposing thatcomputeResultwere in plainIO, that’s easier to test
than a potentially complex App type.

Invert Your Mocks! 73

7.3 Plain ol’ abstraction

Always keep in mind the lightest and most general techniques in func-
tional programming:

1. Make it a function
2. Abstract a parameter

These will get you far.

Let’s revisit the doWork business up top:

1 doWork :: App ()

2 doWork = do

3 query <- runHTTP getUserQuery

4 users <- runDB (usersSatisfying query)

5 for_ users $ \user -> do

6 thing <- getSomething user

7 let result = compute thing

8 runRedis (writeKey (userRedisKey user) result)

We can make this abstract by taking concrete terms and making them
function parameters. The literal definition of lambda abstraction!

1 doWorkAbstract

2 :: Monad m

3 => m Query -- ^ The HTTP getUserQuery

4 -> (Query -> m [User]) -- ^ The database action

5 -> (User -> m Thing) -- ^ The getSomething function

6 -> (RedisKey -> Result -> m ()) -- ^ finally, the redis action

7 -> m ()

8 doWorkAbstract getUserQuery getUsers getSomething redisAction = do

9 query <- getUserQuery

10 users <- getUsers query

11 for_ users $ \user -> do

12 thing <- getSomething user

Invert Your Mocks! 74

13 let result = compute thing

14 redisAction (userRedisKey user) result

There are some interesting things to note about this abstract definition:

1. It’s parameterized over anymonad. Identity, State, IO, whatever.
You choose!

2. We have a pure specification of the effect logic. This can’t do any-
thing. It just describes what to do, when given the right tools.

3. This is basically dependency injection on steroids.

Given the above abstract definition, we can easily recover the concrete
doWork by providing the necessary functions:

1 doWork :: App ()

2 doWork =

3 doWorkAbstract

4 (runHTTP getUserQuery)

5 (\query -> runDB (usersSatisfying query))

6 (\user -> getSomething user)

7 (\key result -> runRedis (writeKey key result))

We can also easily get a testing variant that logs the actions taken:

1 doWorkScribe :: Writer [String] ()

2 doWorkScribe =

3 doWorkAbstract getQ getUsers getSomething redis

4 where

5 getQ = do

6 tell ["getting users query"]

7 pure AnyUserQuery

8 getUsers _ = do

9 tell ["getting users"]

10 pure [exampleUser1, exampleUser2]

11 getSomething u = do

12 tell ["getting something for " <> show u]

Invert Your Mocks! 75

13 pure (fakeSomethingFor u)

14 redis k v = do

15 tell ["wrote k: " <> show k]

16 tell ["wrote v: " <> show v]

All without having to fuss about with monad transformers, type classes,
or anything else that’s terribly complicated.

7.4 Decompose!!!

Ultimately, this is all about decomposition of programs into their small-
est, most easily testable parts. You then unit or property test these tiny
parts to ensure they work together. If all the parts work independently,
then they should work together when composed.

Your effects should ideally not be anywhere near your business logic.
Pure functions from a to b are ridiculously easy to test, especially if you
can express properties.

If your business logic really needs to perform effects, then try the sim-
plest possible techniques first: functions and abstractions. I believe that
writing and testing functions that take pure values is simpler and easier.
These are agnostic to where the data comes from, and don’t need to be
mocked at all. This transformation is typically easier than introducing
mtl classes, monad transformers, Eff, or similar techniques.

7.5 What if I need to?

Sometimes, you really just can’t avoid testing effectful code. A common
pattern I’ve noticed is that people want tomake things abstract at a level
that is far too low. You want to make the abstraction as weak as possible,
to make it easy to mock.

Consider the common case of wanting to mock out the database. This
is reasonable: database calls are extremely slow! Implementing a mock
database, however, is an extremely difficult task – you essentially have to
implement a database. Where the behavior of the database differs from

Invert Your Mocks! 76

yourmock, then you’ll have test/prodmismatch thatwill blowupat some
point.

Instead, go a level up - create a new indirection layer that can be satisfied
by either the database or a simple to implement mock. You can do this
with a type class, or just by abstracting the relevant functions concretely.
Abstracting the relevant functions is the easiest and simplest technique,
but it’s not unreasonable to also write:

1 data UserQuery

2 = AllUsers

3 | UserById UserId

4 | UserByEmail Email

5

6 class Monad m => GetUsers m where

7 runUserQuery :: UserQuery -> m [User]

This is vastly more tenable interface to implement than a SQL database!
Let’s write our instances, one for the persistent ¹ library and another
for a mock that uses QuickCheck’s Gen type:

1 instance MonadIO m => GetUsers (SqlPersistT m) where

2 runUserQuery = selectList . convertToQuery

3

4 instance GetUsers Gen where

5 runUserQuery query =

6 case query of

7 AllUsers ->

8 arbitrary

9 UserById userId ->

10 take 1 . fmap (setUserId userId) <$> arbitrary

11 UserByEmail userEmail ->

12 take 1 . fmap (setUserEmail userEmail) <$> arbitrary

Alternatively, you can just pass functions around manually instead of
using the type class mechanism to pass them for you.

¹https://hackage.haskell.org/package/persistent

https://hackage.haskell.org/package/persistent
https://hackage.haskell.org/package/persistent

Invert Your Mocks! 77

Oh,wait, no! That GetUsers Gen instance has a bug! Can you guesswhat
it is?

In the UserById and UserByEmail case, we’re not ever testing the
“empty list” case – what if that user does not exist?

A fixed variant looks like this:

1 instance GetUsers Gen where

2 runUserQuery query =

3 case query of

4 AllUsers ->

5 arbitrary

6 UserById userId -> do

7 oneOrZero <- choose (0, 1)

8 users <- map (setUserId userId) <$> arbitrary

9 pure $ take oneOrZero users

10 UserByEmail userEmail -> do

11 oneOrZero <- choose (0, 1)

12 users <- map (setUserEmail userEmail) <$> arbitrary

13 pure $ take oneOrZero users

I made amistake writing a super simple generator. Just think about how
many mistakes I might have made if I were trying to model something
more complex!

8. Project Preludes
In Haskell, the Prelude is a module that is implicitly imported. It pro-
vides a small set of default functions and types that you will probably
find useful.

However, the default Prelude isn’t perfect. The Prelude was mostly de-
signed tomake research papers andprojects have pretty, concise syntax.
Notably, the Prelude is not intended to be a robust and fully-featured
standard library. That’s not what we want as industrial developers, and
many industrial projectswill benefit froma customPrelude-likemodule.

We can disable implicit import of the Prelude with the language ex-
tension NoImplicitPrelude. If we do that, nothing will be in scope by
default. We need to import everything explicitly.

One way to improve productivity, documentation, safety, and conve-
nience is with a custom, project-specific prelude.

8.1 Prelude Problems

The Haskell Prelude is old. Breaking changes to the Prelude break al-
most every Haskell program in existence. A change like the Semigroup
Monoid Proposal¹ that added the Semigroup class as a superclass of the
Monoid class broke almost every Monoid instance in Haskell. The Fold-
able/Traversable in Prelude Proposal² was so controversial that one per-
son resigned from his position³. That proposal generalized the types of
functions like length :: [a] -> Int and foldr :: (a -> b -> b)
-> b -> [a] -> b to use the Foldable or Traversable type classes
instead of the concrete type for lists.

¹https://www.reddit.com/r/haskell/comments/39tumu/make_semigroup_a_superclass_of_
monoid/

²https://wiki.haskell.org/Foldable_Traversable_In_Prelude
³https://mail.haskell.org/pipermail/ghc-devs/2015-October/010068.html

78

https://www.reddit.com/r/haskell/comments/39tumu/make_semigroup_a_superclass_of_monoid/
https://www.reddit.com/r/haskell/comments/39tumu/make_semigroup_a_superclass_of_monoid/
https://wiki.haskell.org/Foldable_Traversable_In_Prelude
https://wiki.haskell.org/Foldable_Traversable_In_Prelude
https://mail.haskell.org/pipermail/ghc-devs/2015-October/010068.html
https://www.reddit.com/r/haskell/comments/39tumu/make_semigroup_a_superclass_of_monoid/
https://www.reddit.com/r/haskell/comments/39tumu/make_semigroup_a_superclass_of_monoid/
https://wiki.haskell.org/Foldable_Traversable_In_Prelude
https://mail.haskell.org/pipermail/ghc-devs/2015-October/010068.html

Project Preludes 79

Changing anything in the Prelude is so expensive and difficult that only
the most pressing needs are considered. Minor problems and annoy-
ances are allowed to stick around forever. Let’s look at some of the
problems the Prelude has.

Much of this design is “set in stone” by the Haskell Report⁴ that officially
definesmuchof the languageandstandard library. Changing it isn’t even
as simple as making a proposal on the right mailing list and getting buy-
in - you have to come up with a whole new standard. The Haskell Report
hasn’t seen anupdate since 2010, though therewas almost a newversion
for 2020 (it fizzled out).

Partial Functions

A “partial function” is one which throws an exception (or loops forever)
on some input. We contrast this with a “total function,” which is guaran-
teed to return in finite time with a valid value.

The most infamous partial function is head⁵:

1 head :: [a] -> a

2 head (a : _) = a

3 head [] = error "Prelude.head: Empty List"

Debugging the error is extremely annoying, because that message is
almost all that you get in most cases. The HasCallStack machinery
might give you a source location and context. Furthermore,we’rewriting
Haskell! Shouldwe have runtime errors on the casewhere a list is empty?
That’s such a common occurrence!

head isn’t the only partial function exposed by the Prelude. last, tail,
init, minimum, maximum, foldr1, and scanr1 fail on the empty list with
the same bad error message. Lists have an indexing operator (!!) ::
[a] -> Int -> a which fails with a runtime exception if the index is
negative or greater than the length of the list. read :: String -> a
fails on any invalid input.

⁴https://www.haskell.org/onlinereport/haskell2010/
⁵Fortunately, between this chapter being written initially and publication, a proposal was accepted

to add a WARNING pragma to head and tail.

https://www.haskell.org/onlinereport/haskell2010/
https://www.haskell.org/onlinereport/haskell2010/
https://github.com/haskell/core-libraries-committee/issues/87

Project Preludes 80

The class Num has a method fromInteger :: Integer -> a. This
method must fail with a runtime exception if the Integer isn’t a
valid value of type a. For example, the Natural type represents whole
numbers greater than 0. fromInteger (-5) :: Natural fails with a
runtime error. If you can’t sensibly define (+), (*), and negate for the
type - then youmust throw a runtime exception when they’re called.

The class Enum is used for sequence literals, like [0 .. 10]. The class
throws runtime errors left and right. Derived instances (and instances
for all types in base) throw an exception if you call succ on the “last
value”, or pred on the first value. The function toEnum :: Int -> a
fails if the provided number is too big. There’s a warning for fromEnum
:: a -> Int that behavior is “implementation dependent” if the type
is too large to fit in an Int, but I think it’s illegal to have more than
9,223,372,036,854,775,807 constructors (the value of maxBound ::
Int).

1 λ> succ False

2 True

3 λ> succ True

4 *** Exception: Prelude.Enum.Bool.succ: bad argument

5 λ> toEnum 3 :: Bool

6 *** Exception: Prelude.Enum.Bool.toEnum: bad argument

These partial functions are a big drag on productivity. They all throw
exceptions via error, which means the exception type is ErrorCall so
you only get a String of information. This makes it virtually impossible
to catch or work with them programmatically.

Many functions don’t throw exceptions, but they don’t enable safe usage,
either. The function group returns a nested list of elements grouped
by equality. You’re guaranteed that the inner lists all have at least one
element in them, but this isn’t documented in the types. A better group
would have the type [a] -> [NonEmpty a]. length returns an Int, but
a more appropriate type is Word or Natural because these types are
guaranteed to be non-negative.

A custom prelude allows you to redefine these functions or hide them.
You become free from the shackles of history.

Project Preludes 81

Limited Utility

The Prelude is smaller than most standard libraries. A module that
uses significant features inHaskell will possibly importControl.Monad,
Data.Maybe, Data.Traversable, Data.Foldable, Data.Either, Con-
trol.Applicative, etc in order to work.

The base library is also small. You’ll almost certainly want to include
the containers, text, and bytestring packages for common tasks.
Then you’ll need to import Data.Text for an efficient text type,
Data.ByteString for an efficient binary data type, Data.Map for a
key/value dictionary, etc.

This lack is felt more keenly as the project grows. It’s not uncommon to
have50-100 lines of imports,muchofwhichbrings inbasic functionality.
As new dependencies bring in new terms, you have to know how to
import them to make them useful. Starting a new module becomes a
major chore - you need to figure out exactly what you need to import to
get started.

Some terms are kept in odd places. mapM is in the Prelude along with
traverse. mapM_ (a variant that throws away the return type) is also in
thePrelude, buttraverse_mustbe imported fromData.Foldable (not
Data.Traversable). The function mapMaybe is in Data.Maybe which
mightmake you think it has the type (a -> b) -> Maybe a -> Maybe
b, but it actually has the type (a -> Maybe b) -> [a] -> [b]. It’s an
operation on lists -why is it inData.Maybe?Meanwhile,most of the func-
tions defined in Data.List aren’t specific to lists, but are generalized
over any Foldable. The functions words and lines (and their inverses)
are in Data.String, but also reexported from Data.List.

A customprelude allows you to bring inwhatever youwant. It can import
all the types youneed for yourproject. This candramatically reducedrag
on development time, especially if you’re in the habit of making many
modules. Small modules are easier to understand than large ones, so
it’s good tomake newmodules to break ideas up rather than adding to a
megamodule for convenience’s sake.

Project Preludes 82

Conflicting Names

The designers of the Haskell language are so enamored with the identity
function that they gave it one of the shortest possible names: id. In
business programming, you use the id function somewhat rarely, but
you frequently want to talk about identifiers. Since the Prelude exports
id, you can’t use idwithout causing a warning.

The Haskell designers also felt that most people would be doing math
with their programs, so log is exported by default as the logarithm. This
means you can’t write log as a function that logs some output. The
Prelude exports the term asin for arcsin. If youworkwith Amazon, then
asin has another meaning - Amazon Standard Identification Number.

Haskell gives us both map, which is specific to lists, and fmap, which
works for any Functor. The “Foldable Traversable in Prelude” proposal
didn’t cover Functor.

Maybe you’re mad that head is partial, so you want to redefine it to
be safe: head :: [a] -> Maybe a. You can’t do this without hiding
head from the Prelude. So you instead write headMay, or headSafe, or
listToMaybe. The easy, cheap, convenient name is given to the unsafe
function. This is unjust!

String

The default text type in Haskell is String, a linked list of characters.
Literally:

1 type String = [Char]

For many text processing performance requirements, this is abysmal.
String is baked in to many functions and core parts of the Haskell
Prelude, so there’s no avoiding it. Even a function like readFile returns
a String of the file contents.

A linked list takes up quite a lot of space. Each element in a list takes up 3
machine words in memory, plus a single word for the terminal, plus the
element itself. A Char takes up two words in memory, so each character
takes up 5 words in memory. On modern 64-bit architectures, with 4

Project Preludes 83

byte words, we’re up to 20 bytes per character! A Text value uses 2 bytes
per character with 6 words constant overhead. Thesememory numbers
are pulled from Johann Tibell’s⁶ blog post from 2011, and may not be
accurate anymore.

Lists are also linear in many operations that are common on textual
algorithms, like length.

The idea that text is a linked list of characters is also not a safe assump-
tion to make. We can break Stringwith this relatively innocuous code:

1 λ> let oops = "schleißen"

2 λ> putStrLn oops

3 schleißen

4 λ> putStrLn (map toUpper oops)

5 SCHLEIßEN

Calling toUpper on ß should result in SS. The text library gets this right:

1 λ> Text.putStrLn oopsText

2 schleißen

3 λ> Text.putStrLn (Text.toUpper oopsText)

4 SCHLEISSEN

Laziness

Haskell’s IO functions are lazy by default. If we run this sequence:

1 main = do

2 contents <- readFile "Foo.txt"

3 writeFile "Foo.txt" "written"

4 putStrLn contents

Then we’ll get an error from GHC:

⁶https://blog.johantibell.com/2011/06/memory-footprints-of-some-common-data.html

https://blog.johantibell.com/2011/06/memory-footprints-of-some-common-data.html
https://blog.johantibell.com/2011/06/memory-footprints-of-some-common-data.html

Project Preludes 84

*** Exception: Foo.txt: openFile: resource busy
(file is locked)

readFile doesn’t actually read anything before it returns. Evaluating
the return value is what forces the file to actually be read from the disk.
If we want this program to work, we can add a length call:

1 main = do

2 contents <- readFile "Foo.txt"

3 print (length contents)

4 writeFile "Foo.txt" "written"

5 putStrLn contents

The program now works.

Lazy IO is a neat trick to implement streaming and constantmemoryuse.
It can cause major annoying problems in the runtime of an application,
and should generally be avoided in favor of explicit streaming libraries
like conduit, pipes, or streaming.

Some functions in the Prelude are lazy in a way that is rarely what
you want. The function foldl is almost never what you want - it has
to traverse the entire list in order to produce a result, but it can’t yield
anything lazily. The end result is that you build up a huge thunk in
memory. sum and product are similarly lazy, which needlessly wastes
memory.

8.2 Custom Benefits

Custom preludes can solve all of the problems that the standard Prelude
offers. The cost is Novelty and potentially Complexity, depending on how
much you want to change. Every difference from the usual Haskell Pre-
lude will cause some amount of friction for developers as they onboard
to the project. There’s also amomentary cost when switching contexts if
two projects use dramatically different preludes.

Project Preludes 85

Documentation

Possibly the greatest benefit to a custom prelude is that it can serve as a
documentation point for your project. Most projects are a little bit weird.
There’s also some amount of onboarding you need to do in order for new
hires to get their bearings. That onboardingmust be repeated every time
a person needs to re-orient to the project after some time away, too.

A customPrelude allows you to attach documentation comments to your
Prelude. These comments will show up in the Haddock rendered output
for your project. If you make a strange choice or have an uncommon
idiom, that’s a perfect place to document it.

If you re-export amodule unmodified, then the Haddocks will only show
a link to the module in your documentation.

1 module PH.Prelude.Link

2 (module Prelude

3) where

4

5 import Prelude

This produces the following page with stack haddock:

PH.Prelude.Linkmodule documentation

Linking directly to the module in question is nice but fragile. If we hide
anything from thatmodule, or ifwe re-export twomoduleswith the same

Project Preludes 86

alias, then the rendered documentation dumps the entire contents of
the import directly into the page. The following code yields the following
documentation page:

1 module PH.Prelude.AsX

2 (module X

3) where

4

5 import Prelude as X

6 import Data.Map as X (Map)

PH.Prelude.AsXmodule documentation

Thismakes theHaddocksmessy and difficult to browse. Instead of using
a catch-all re-export alias like X, group related imports into a similar
alias and provide Haddock section documentation for them.We can use
the section comment syntax -- * in the export list to provide a table-of-
contents in the generated documentation, which also gives us the ability
to link to the underlying module. Let’s look at a more legible example:

Project Preludes 87

1 module PH.Prelude.Containers

2 (-- * Containers

3 --

4 -- | Many container types are useful throughout the

5 -- application. Rather than require each container be

6 -- imported individually, our prelude reexports all of

7 -- the common container types, as well as a common

8 -- lookup type.

9 module Containers

10 -- * "Prelude"

11 --

12 -- | We hide the import of 'id' since it overlaps with

13 -- our domain.

14 , module Prelude

15) where

16

17 import Prelude hiding (id)

18 import Data.Map as Containers (Map)

19 import Data.Set as Containers (Set)

Project Preludes 88

PH.Prelude.Containers documentation

The link to the Preludemodule along with an explanation on why it is
expanded helps alleviate the complexity and novelty cost of the custom
prelude.

Domain Specificity

A custom prelude can be tailored to your application domain. While the
standard Preludemay have name conflicts with common domain terms,
your custom prelude can export whatever you want.

A Point of Control

Putting a type or function in your custom prelude gives you a point of
control overhow the type is imported. This canmakeupgrading versions
of dependences easier.

Suppose that Data.Text decided to drop the Datamodule prefix in the
imports. If you import Text through Data.Text, you’re going to need to
modify it in every single file that uses it. This is tedious and annoying.

Project Preludes 89

However, if the import is provided through your prelude, then you only
need to change it in one place.

Suppose that a library you use deprecates and/or removes a function
you’re using. You don’t want to migrate away from the deprecated func-
tion now, but you also need a bugfix in the new version! With a custom
prelude, you can provide a vendored implementation. Suppose that
Data.Text decided to remove the titleCase function, encouraging
users to adopt the new Data.Text.Casing library instead. You could
either re-export Data.Text.Casing.titleCase, or you could copy the
old implementation of titleCase and define it in your prelude.

This point is actually a bit more general - any time you depend on
something defined outside your application, it can be a good idea to
wrap it in something you do control. This can be a significant amount
of work, but it will save you a lot of time and trouble if your dependency
changes. For example, wrapping a database interaction library’s core
functionality in your own modules makes it easier to switch database
libraries without needing to touch every file in your codebase.

8.3 Off-The-Shelf Preludes

If you’ve decided to build a custom project prelude, you may want to
choose one of the many Prelude replacement libraries available as a
basis. You may like one of these preludes enough to use it without
modification. However, I’d still recommend wrapping themodule in one
you control, and importing your customprelude instead.Having a single
“entrypoint” to controlwhat (almost) everymodule in yourprogramsees
can be a powerful tool for keeping your code resilient and robust.

I’ve evaluated a few of the more common and more expansive preludes
available. They are listed in ascending order of difference from the basic
Prelude.

base-prelude

base-prelude⁷ has no dependencies other than base. It re-exports
almost everything from the common modules in base, making a few

⁷https://hackage.haskell.org/package/base-prelude

https://hackage.haskell.org/package/base-prelude
https://hackage.haskell.org/package/base-prelude

Project Preludes 90

upgrades along the way. The function composition operator is replaced
with theversion inControl.Category,whichabstracts overwhat you’re
composing.

This package is a great choice if you don’t want to make any changes to
the existing Prelude, but you’re also tired of importing Data.Foldable,
Data.IORef, Control.Concurrent, and System.IO in manymodules.

protolude

protolude⁸ is quite opinionated. The README says:

A sensible starting Prelude for building custom Preludes.
Design points:

• Banishes String.
• Banishes partial functions.
• Compiler warning on bottoms.
• Polymorphic string IO functions.
• Polymorphic show.
• Automatic string conversions.
• Types for common data structures in scope.
• Types for all common string types (Text/ByteString) in
scope.

• Banishes impure exception throwing outside of IO.
• StateT/ReaderT/ExceptT transformers in scope by
default.

• Foldable / Traversable functions in scope by default.
• Unsafe functions are prefixed with “unsafe” in separate
module.

• Compiler agnostic, GHC internal modules are abstracted
out into Base.

• sum and product are strict by default.
• Includes Semiring for GHC >= 7.6.
• Includes Bifunctor for GHC >= 7.6.
• Includes Semigroup for GHC >= 7.6.

This prelude attempts to solve all of theproblemsbrought onby the stock
Prelude. id is renamed to identity. The inefficient function nub (which
removes duplicates in a list) is removed, replaced with the much more
efficient ordNub. undefined and error are not exposed, replaced with
a function panic. head is defined quite a bit differently:

⁸https://hackage.haskell.org/package/protolude

https://hackage.haskell.org/package/protolude
https://hackage.haskell.org/package/protolude

Project Preludes 91

1 head :: (Foldable f) => f a -> Maybe a

There’s one usability issue: excess polymorphism. Let’s consider the
show and putStrLn functions:

1 show :: (Show a, ConvertText String b) => a -> b

2 putStrLn :: (Print a, MonadIO m) => a -> m ()

These functions are totally polymorphic. The relatively innocuous func-
tion putStrLn "Hello, World" will now cause an error with Over-
loadedStrings, as GHCdoesn’t knowwhat type the string literal should
be. Likewise, writing the function print = putStrLn . showwill have
an ambiguity error, because the input of putStrLn is polymorphic, and
the output of show is polymorphic, and you have to pick what the inter-
mediate type is.

This is a common problem with code that is highly polymorphic. Ambi-
guity errors require type annotations in frustrating spots. Occasionally,
a polymorphic function is used at the “wrong” type - consider length ::
Foldable f => f a -> Int.length [1,2,3] returns3, as youmight
expect. However, suppose we have length (foo [1,2,3]), where foo
:: [Int] -> [Int]. And then someone changes foo to return a Maybe
[Int].length (foo [1,2,3])will nowalways returneither0or1 - not
the length of the underlying list.

For this reason, it’s a good idea to liberally use TypeApplicationswhen
writing code against a heavily polymorphic library. length @[] (foo
[1,2,3]) would cause a type error when foo changes to be Maybe,
which would prevent a bug from sneaking in. putStrLn @Text fixes the
ambiguity error, and is defined in protolude as putText.

classy-prelude

protolude uses quite a few type classes, but classy-prelude⁹ takes
it to the next level. The biggest difference here is the use of the mono-
traversable¹⁰ library formuch functionality, including foldMap, null,

⁹https://hackage.haskell.org/package/classy-prelude-1.5.0/
¹⁰https://hackage.haskell.org/package/mono-traversable-1.0.9.0/docs/Data-MonoTraversable-

Unprefixed.html

https://hackage.haskell.org/package/classy-prelude-1.5.0/
https://hackage.haskell.org/package/mono-traversable-1.0.9.0/docs/Data-MonoTraversable-Unprefixed.html
https://hackage.haskell.org/package/mono-traversable-1.0.9.0/docs/Data-MonoTraversable-Unprefixed.html
https://hackage.haskell.org/package/classy-prelude-1.5.0/
https://hackage.haskell.org/package/mono-traversable-1.0.9.0/docs/Data-MonoTraversable-Unprefixed.html
https://hackage.haskell.org/package/mono-traversable-1.0.9.0/docs/Data-MonoTraversable-Unprefixed.html

Project Preludes 92

sum, etc. The mono-traversable package defines a monomorphic hier-
archy similar to Functor/Foldable/Traversable, which allows you to
have instances for types like Text, ByteString, etc. For some functions
- like foldMap - the MonoFoldable and Foldable variants are the exact
same, so this library exports only these.

classy-prelude attaches WARNING pragmas to the debugTrace family
of functions. Thismakes it easy to knowwhenyou’ve forgotten to remove
them from code, while still making them easily accessible from the
prelude.

A big advantage of the classy-prelude is that it was partially designed
for the Yesod¹¹ web framework by FP Complete. As such, many snags
with concurrency¹², runtime exceptions¹³, and file IO¹⁴ are already han-
dled for you. As with protolude, the common container types are re-
exported.

relude

relude¹⁵ is a custom prelude from the Haskell consultancy Kowainik¹⁶,
who producemany fine tools and libraries. One thing you’ll immediately
notice is the abundance of documentation and examples. This is the
main thing that differentiates it from protolude. Otherwise, relude
offers another point in the design space of a Prelude that minimally
changes base.

rio

rio¹⁷ is not merely a Prelude replacement - it’s an alternative standard
library for Haskell. It re-exports the common types like Map, Set, Text,
ByteString, etc that you are most likely to use, as well as functions for
operating on them. The big differentiating factor is that rio is opinion-
ated on how to structure applications and includes many IO utilities to
solve common gotchas in the base library.

¹¹https://www.yesodweb.com/
¹²https://www.snoyman.com/blog/2016/11/haskells-missing-concurrency-basics
¹³https://www.fpcomplete.com/haskell/tutorial/exceptions/
¹⁴https://www.snoyman.com/blog/2016/12/beware-of-readfile
¹⁵https://hackage.haskell.org/package/relude
¹⁶https://kowainik.github.io/
¹⁷https://hackage.haskell.org/package/rio

https://www.yesodweb.com/
https://www.snoyman.com/blog/2016/11/haskells-missing-concurrency-basics
https://www.fpcomplete.com/haskell/tutorial/exceptions/
https://www.snoyman.com/blog/2016/12/beware-of-readfile
https://hackage.haskell.org/package/relude
https://kowainik.github.io/
https://hackage.haskell.org/package/rio
https://www.yesodweb.com/
https://www.snoyman.com/blog/2016/11/haskells-missing-concurrency-basics
https://www.fpcomplete.com/haskell/tutorial/exceptions/
https://www.snoyman.com/blog/2016/12/beware-of-readfile
https://hackage.haskell.org/package/relude
https://kowainik.github.io/
https://hackage.haskell.org/package/rio

Project Preludes 93

rio advocates the ReaderTDesign Pattern, and encodes it with themain
newtype:

1 newtype RIO r a = RIO { unRIO :: ReaderT r IO a }

You’re encouraged to design your app such that the environment is
kept polymorphic as much as possible. Logging provides an excellent
example. Instead of LoggingT or a MonadLogger m constraint, we have
a constraint on the r type parameter:

1 -- simplified

2 logInfo

3 :: (MonadIO m, MonadReader r m, HasLogFunc env)

4 => Utf8Builder -> m ()

5 logInfo message = do

6 env <- ask

7 let logFunc = view logFuncL env

8 liftIO $ runLogFunc logFunc message

9

10 class HasLogFunc env where

11 logFuncL :: Lens' env LogFunc

12

13 newtype LogFunc = LogFunc (Utf8BUilder -> IO ())

14

15 runLogFunc :: LogFunc -> Utf8Builder -> IO ()

16 runLogFunc (LogFunc f) message = f message

We can instantiate this to RIO LogFunc. Or, for any type Env that
contains a LogFunc, we can write an instance HasLogFunv Env that
shows how to get andmodify the logging capability. Bywriting abstractly
against the capabilities, it is relatively straightforward to factor out code
such that it only depends on what it needs in the context. This makes it
easy to run code in multiple contexts.

Project Preludes 94

generic-lens

The boilerplate for defining fresh Has$(ThingInEnv) classes can be
frustrating. With generic-lens¹⁸, you can use the typed¹⁹ lens to dig
things out automatically.

1 typed :: HasType a s => Lens' s a

With this in mind, we could rewrite our logInfo to look like this:

1 logInfo

2 :: (MonadIO m, MonadReader r m, HasType LogFunc r)

3 => Utf8Builder -> m ()

4 logInfo message = do

5 env <- ask

6 let logFunc = view (typed @LogFunc) env

7 liftIO $ runLogFunc logFunc message

Since this is Generic, it is defined for all records which contain exactly
one LogFunc in any of the fields. It is also defined on tuples, where any
element contains a LogFunc. This makes for a flexible and relatively low
boilerplate method of writing in this style.

While view has the simplified type view :: Lens' s a -> s -> a,
it’s actually more general:

1 view :: (MonadReader s m) => Lens' s a -> m a

There is an instance of MonadReader r ((->) r), which is why this
works for the simple function case. The implementation of logInfo can
bemademore concise:

¹⁸https://www.stackage.org/lts-16.19/package/generic-lens-2.0.0.0
¹⁹https://www.stackage.org/haddock/lts-16.19/generic-lens-2.0.0.0/Data-Generics-Product-

Typed.html

https://www.stackage.org/lts-16.19/package/generic-lens-2.0.0.0
https://www.stackage.org/haddock/lts-16.19/generic-lens-2.0.0.0/Data-Generics-Product-Typed.html
https://www.stackage.org/lts-16.19/package/generic-lens-2.0.0.0
https://www.stackage.org/haddock/lts-16.19/generic-lens-2.0.0.0/Data-Generics-Product-Typed.html
https://www.stackage.org/haddock/lts-16.19/generic-lens-2.0.0.0/Data-Generics-Product-Typed.html

Project Preludes 95

1 logInfo message = do

2 logFunc <- view (typed @LogFunc)

3 liftIO $ runLogFunc logFunc message

The Trouble with MonadReader

rio is a champion of the generalized ReaderT design pattern. Unfortu-
nately, I’ve generally found the approach to be somewhat disappointing.

The first problem is that ReaderT will steal any MonadReader instance
for itself. This becomes a problem when you want to use ReaderT
for a temporary task. Consider this foo function, using a ReaderT
ExtraStuff. If the Extra datatype does not contain the LogFunc that
the generic logInfowe defined above requires, then it will fail to work.

1 foo :: ReaderT ExtraStuff (RIO AppEnv) Int

2 foo = do

3 extraStuff <- ask

4 logInfo "Oh no"

We can see what happens by looking at the instance of MonadReader for
ReaderT:

1 instance (Monad m) => Monad (ReaderT r m)

When GHC is type checking foo, it compares the expected type with the
general type:

1 -- Unify:

2 ReaderT ExtraStuff (RIO AppEnv) Int

3 ReaderT r m a

4 r ~ ExtraStuff

5 m ~ RIO AppEnv

6 a ~ Int

Then, GHC needs to prove some things. First, it needs to prove that r has
an instance of Has LogFunc.

Project Preludes 96

1 -- Want:

2 Has LogFunc r =>

Then GHC will notice that ExtraStuff does not have a LogFunc. GHC
already decided to commit to the MonadReader r (ReaderT r m) in-
stance. The compiler will not “back track” to attempt the MonadReader
r (RIO r) instance. You can fix this temporarily by calling lift $
logInfo msg, but that’s unappealing. The entire point of these tech-
niques is to avoid manual lifting.

Instead, I prefer to define classes that are polymorphic in themonad, not
the reader environment.

1 class MonadLog m where

2 logInfo :: LogMsg -> m ()

This can be used in many more contexts, and permits many more im-
plementations. The MondaLog m style does require more boilerplate,
though, so you may want to instead ban those ReaderT uses. Consider
this instead:

1 newtype HasExtraStuffT m a

2 = HasExtraStuffT

3 { unHasExtraStuff :: ReaderT ExtraStuff m a

4 }

This has other boilerplate concerns, of course. Trade-offs abound.

foundation

foundation²⁰ is a radical departure from the usual Haskell ecosystem.
All other alternative preludes on this list reuse types that are ubiqui-
tous to the ecosystem: Text and ByteString. foundation breaks from
this by defining its own type for String using a packed array of UTF8
codepoints. (The Text library has switched to this representation since

²⁰https://hackage.haskell.org/package/foundation

https://hackage.haskell.org/package/foundation
https://hackage.haskell.org/package/foundation

Project Preludes 97

version 2, as well). It includes several novel approaches to solving prob-
lems - a custom and efficient Parser type, a custom StopWatch, and an
improved hierarchy of numeric classes. A lot of code here is copied from
other libraries - a copy²¹ of conduit²² is included.

foundation is in a class of replacement preludes that seek to reimagine
howHaskell works to better suit certain domains. Every implementation
choice in foundation seems to have two motivating factors: memory
efficiency and developer convenience. Thismakes foundation a decent
choice if you’re buildingmemory sensitive applications and also need to
move quickly. However, investing in a prelude that is so different from
the ordinary Haskell ecosystem is going to impose significant costs on
your project.

Ultimately, there’s a sweet spotwhendeciding ona customprelude. Each
step you take towards perfection brings you farther from the familiar. If
you can’t document your journey, youmay find yourself lost and alone.

8.4 Nesting Preludes

If it is useful to have a custom prelude for your entire project, then it
might also be useful to have custom preludes for a small part of the
project. You may even go so far as to have a prelude for every level in
your module hierarchy!

As an example, let’s saywehave our programnamespacedunder PH, and
we have PH.Prelude that definesmost of what we need. The namespace
PH.DB contains database access code, so wemight have a prelude for it:

1 module PH.DB.Prelude

2 (module PH.DB.Prelude

3 , module PH.Prelude

4 , module Database.Persist.Sql

5 -- ^ from the `persistent` package

6)

²¹https://hackage.haskell.org/package/foundation-0.0.25/docs/Foundation-Conduit.html
²²https://hackage.haskell.org/package/conduit

https://hackage.haskell.org/package/foundation-0.0.25/docs/Foundation-Conduit.html
https://hackage.haskell.org/package/conduit
https://hackage.haskell.org/package/foundation-0.0.25/docs/Foundation-Conduit.html
https://hackage.haskell.org/package/conduit

Project Preludes 98

Now, under PH.DB, we’ve got another namespace: Query, for esqueleto
queries! esqueleto and persistent have a few name conflicts - both
export an operator ==. for comparing two SQL terms. We don’t want to
import PH.DB.Prelude because we’d need to hide the ==. references
from it in favor of the one from esqueleto. So, instead, we’d have:

1 module PH.DB.Query.Prelude

2 (module PH.DB.Prelude

3 , module Database.Esqueleto

4) where

5

6 import PH.DB.Prelude hiding ((==.))

7 import Database.Esqueleto

By providingmany levels of preludes, you canmore easily and concisely
control what is in scope at each point. Each additional .Preludemodule
becomes a great place to attach documentation in every namespace, too!

8.5 Downsides

A custom prelude isn’t a silver bullet.

Custom preludes impose a Novelty cost on a project. Some preludes are
strictly additions to the normal Prelude. These don’t carry a large cost.
The biggest thing to learn is when you don’t need to write an import.

However, some custom preludes have massive changes. foundation is
a batteries-included complete reworking of Haskell’s basic types. It’s to-
tally different from Prelude, replacing bytestring, array, text, time,
and many other core libraries and types. The benefits are supposedly
great - but deviating from the norm in a tiny community means that
you’ll have a significant ramp-up cost, evenwith experiencedHaskellers
that are merely unfamiliar with this standard library.

Project Preludes 99

8.6 Using a Custom Prelude

So you’ve decided that you want to try out a custom prelude. There are a
few ways to accomplish this task. You can use the NoImplicitPrelude
language extension and import it manually in every project. You can
implicitly import the custom prelude using a new feature of Cabal called
mixins, or you can take advantage of a loophole in GHC by defining your
own Preludemodule.

I recommend explicitly importing your custom Prelude and using NoIm-
plicitPrelude in your package’s default extensions. This optionworks
everywhere and has minimal magic. If you are using nested preludes,
then you don’t need a separate hiding step if there are any conflicts.

9. Optimizing GHC Compile Times
You’re a Haskell programmer, which means you complain about compi-
lation times.

We typically spend a lot of timewaiting for GHC to compile code. To some
extent, this is unavoidable - GHC does a tremendous amount of work
for us, and we only ever ask it to do more. At some point, we shouldn’t
be terribly surprised that “doing more work” ends up meaning “taking
more time.” However, there are some things we can do to allow GHC to
avoiddoingmorework thannecessary. For themostpart, these are going
to be code organization decisions.

In my experience, the following things are true, and should guide orga-
nization:

• Superlinear: GHC takes more time to compile larger modules than
smaller modules.

• Constant costs: GHC takes a certain amount of start-up time to
compile a module

• Parallelism: GHC can compile modules in parallel (and build tools
can typically compile packages in parallel)

• Caching: GHC can cachemodules
• Type class deriving: GHC’s type class derivation is slow
• TemplateHaskell: can cause excess recompilation

So let’s talk about some aspects of project organization andhow they can
affect compile times.

9.1 The Project.TypesMegamodule

You just start on a new project, and you get directed to the God module
- Project.Types. It’s about 4,000 lines long. “All the types are defined
in here, it’s great!” However, this is going to cause big problems for your
compilation time:

100

Optimizing GHC Compile Times 101

• A super large module is going to take way longer to compile
• Any change to any type requires touching this module, and recom-
piling everything in it

• Any change to this module requires recompiling any module that
depends on it, which is usually everything

We pretty much can’t take advantage of caching, because GHC doesn’t
cache any finer than the module-level. We can’t take advantage of par-
allelism, as GHC’s parallelismmachinery only seems to work at module
granularity. Furthermore, we’re tripping this constantly, which is caus-
ing GHC to recompile a lot of modules that probably don’t need to be
recompiled.

Resolution

Factor concepts out of your Project.Types module. This will require
manually untangling the dependency graph, which isn’t fun. You may
also find it to be a good excuse to learn .hs-boot files for breaking
mutual recursion.

There’s a small constant cost to compile a module, so you probably
shouldn’t define amodule for every single type To optimize compilation
times, group related types into modules. My intuition feels pretty happy
with “50-200” lines as a guideline, but I haven’t studied this in depth. On
the other hand, a singlemodule per type aids discovery, since you can do
a fuzzy file search for the type name to find a corresponding definition
site.

This process can be done incrementally. Pick a concept or type from
the bottom of your dependency graph, and put it in its own module.
You’ll need to import that into Project.Types - but do not reexport it!
Everywhere that complains, add another import to your newmodule.

As you factor more and more modules out, eventually you’ll start
dropping the dependency on Project.Types. Now, as you edit
Project.Types, you won’t have to recompile these modules, and
your overall compile-times will improve dramatically. All the types
that are pulled out of Project.Types will be cached, so recompiling
Project.Types itself will becomemuch faster.

Before too long, you’ll beminimizing theamountof compilationyouhave
to do, and everything will be happy.

Optimizing GHC Compile Times 102

9.2 Package Splitting

Okay so you think “I know! I’ll make a bunch of packages to separate
my logical concerns!” A package boundary comes with some important
trade-offs for development velocity and compile-times.

A good reason to factor out a package is to open source a library. If you
can’t reasonably consider your package a library that other packages
could depend on, then it is likely not an appropriate time to begin fac-
toring it out.

GHCi

GHCi is pretty picky about loading specific targets, and what you load
is going to determine what it will pick up on a reload. You need to
ensure that each target has the same default extensions, dependencies,
compiler flags, etc. because all source files will be loaded as though they
were in a single project. This is a good reason to eitheruseCabal orhpack
common stanzas for all of this information, or to use file-specific stuff
and avoid using implicit configuration.

While stack has no problem loading different targets into ghci, cabal
refuses to load multiple targets. You can work around this limitation
by defining a “mega” component which includes everything you want
to include: library, tests, executables, benchmarks, even other libraries.
Jade Lovelace wrote a blog post titled “The cabal test-dev trick”¹ that
details this approach.

What’s a “load target”? A target is a part of a package, like a library,
a specific test-suite, a specific executable, or a sub-library. In a multi-
package Cabal or Stack project, load targets can come from different
packages.

Another gotcha is that any relative file paths must resolve based on
where you’re going to invoke{stack,cabal} ghci. Suppose youdecide
you want to split your web app into two packages: database and web,
where database has a file it loads for the model definitions, and web
has a bunch of files it loads for HTML templating. The Template Haskell

¹https://jade.fyi/blog/cabal-test-dev-trick/

https://jade.fyi/blog/cabal-test-dev-trick/
https://jade.fyi/blog/cabal-test-dev-trick/

Optimizing GHC Compile Times 103

file-loading libraries pretty much assume that your paths are relative to
the directory containing the .cabal file. When you invoke stack ghci
(or cabal repl), it puts your current working directory in the directory
you launch it, and the relative directories there are probably not going to
work.

Once you’ve created that package boundary, it becomes difficult to oper-
ate across it. The natural inclination - indeed, the reason why youmight
break it up - is to allow them to evolve independently. The more they
evolve apart, the less easily you can load everything into GHCi.

You can certainly load things into GHCi - in the above example, web
depends on database, and so you can do stack ghci web, and it’ll
compile database just fine as a library and load web into GHCi. However,
you won’t be able to modify a module in database, and hit :reload to
perform a minimal recompilation. Instead, you’ll need to kill the GHCi
session and reload it from scratch. This takes a lot more time than an
incremental recompilation.

A single large package has advantages, but it does increase the initial
boot time of ghci. ghci needs to interpret all of the modules in your
project, and it is not capable of caching themodules or interpreted code.
Thismeans that reloading ghciwill always begin recompiling atmodule
1. If there are modules that take a long time to compile and are rarely
changed, then these can represent good candidates for splitting into a
separate package.

Module Parallelism

GHC is pretty good at compilingmodules in parallel. It’s also pretty good
at compiling packages in parallel.

Unfortunately, it can’t see across the package boundary. Suppose your
package hello depends on module Tiny.Little.Module in the pack-
age the-world, which also contains about a thousand utility modules
and Template Haskell splices and derived Generic instances for data
types and type family computations and (etc……). You’d really want to just
start compiling hello as soon as Tiny.Little.Module is completely
compiled, but you can’t - GHC must compile everything else in the
package before it can start on yours.

Optimizing GHC Compile Times 104

Breaking up your project into multiple packages can cause overall com-
pile-times to go up significantly in this manner. If you do this, it should
ideally be to split out a focused library that will need to change relatively
rarely while you iterate on the rest of your codebase. I’d beware of
breaking things up until absolutely necessary - a package boundary is
a heavy tool to merely separate responsibilities.

At one company I worked for, we had a package graph that looked like
this:

1 +-> C

2 A -> B --|

3 +-> D

By combining A and B into a single package, we sped up compile times
for a complete build of the application by 10%. A clean build of the new
AB package was 15% faster to build all told,and incremental builds were
improved significantly.

Package parallelism

The good news is that it is quite easy to cache entire packages, and the
commonbuild tools are quite good at compiling packages in parallel. It’s
not a big deal to depend on lens anymore, largely because of how good
sharing and caching has gotten. So certainly don’t be afraid to split out
libraries and push them toGitHub orHackage, but if you’re not willing to
GitHub it, then it should probably stay in the main package.

9.3 Big Ol’ Instances Module

Well, you did it. You have a bunch of packages and you don’t want to
merge them together. Then you defined a bunch of types in foo, and
then defined a type class in bar. bar depends on foo, so you can’t put
the instances with the type definitions, and you’re a Good Haskeller so
youwant to avoid orphan instances, whichmeans you need to put all the
instances in the samemodule.

Optimizing GHC Compile Times 105

Except - you know how you had a 4,000 line types module, which was
then split-up into dozens of smaller modules? Now you have to import
all of those, and you’ve got a big 5,000 line class/instancemodule. All the
same problems apply - you’ve got a bottleneck in compilation, and any
touch to any type causes this bigmodule to get recompiled,which in turn
causes everything that depends on the class to be recompiled.

A solution is to ensure that all your type classes are defined above the
types in the module graph. This is easiest to do if you have only a single
package. But youmay not be able to do that easily, so here’s a solution:

Hidden Orphans

The real problem is that you want to refer to the class and operations
without incurring the wrath of the dependency graph. You can do this
with orphan instances. Define each instance in its own module and
import them into the module that defines the class. Don’t expose the
orphan modules - you really want to ensure that you don’t run into
the practical downsides of orphans while allowing recompilation and
caching.

You’ll start with a module like this:

1 module MyClass where

2

3 import Types.Foo

4 import Types.Bar

5 import Types.Baz

6

7 class C a

8

9 instance C Foo

10 instance C Bar

11 instance C Baz

A change to any Typesmodule requires a recompilation of the entirety
of the MyClassmodule.

You’ll create an internal module for the class (and any helpers etc.), then
a module for each type/instance:

Optimizing GHC Compile Times 106

1 module MyClass.Class where

2

3 class C a

4

5

6 module MyClass.Foo where

7

8 import MyClass.Class

9 import Types.Foo

10

11 instance C Foo

12

13

14 module MyClass.Bar where

15

16 import MyClass.Class

17 import Types.Bar

18

19 instance C Bar

20

21

22 module MyClass.Baz where

23

24 import MyClass.Class

25 import Types.Baz

26

27 instance C Baz

28

29

30 module MyClass (module X) where

31

32 import MyClass.Class as X

33 import MyClass.Foo as X

34 import MyClass.Bar as X

35 import MyClass.Baz as X

So what happens when we touch Types.Foo? With the old layout, it’d

Optimizing GHC Compile Times 107

trigger a recompile of MyClass, which would have to start entirely over
and recompile everything. With the new layout, it triggers a recompile
of MyClass.Foo, which is presumably much smaller. Then, we do need
to recompile MyClass, but because all the rest of the modules are un-
touched, they can be reused and cached, and compiling the entire mod-
ule is much faster.

This is a bit nasty, but it can break up a module bottleneck quite nicely,
and if you’re careful to only use theMyClass interface, you’ll be safe from
the dangers of orphan instances.

9.4 TemplateHaskell

TemplateHaskell has a nasty reputation with compilation speed. This
reputation pushes folks away from using it, even when it is an excellent
choice. In my experience, TemplateHaskell is often much faster than
alternatives when considering an individual complete compilation.

To test this hypothesis, I attempted to switch all of the aeson deriva-
tion in a company’s application from TemplateHaskell to Generic
based derivation. The project ended up taking twice as long to compile.
Generic derivation has significant costs, especially for large types.

There is a tiny cost to running any TemplateHaskell splices at all - GHC
must prepare aHaskell interpreter. In earlier versions of GHC, I was able
to notice a 200-500ms penalty. With GHC 8.10 and newer, I can’t detect
any penalty for TemplateHaskell splices.

The main problem with TemplateHaskell for compilation time is that
GHC will recompile modules more often if they use TemplateHaskell.
Prior toGHC9.4, if amoduleusesTemplateHaskell, then itmust recom-
pile if any module in the transitive dependencies were modified. This is
because TemplateHaskell behavior can change due to new instances
being in scope, or new values being available. With GHC 9.4, this is
much improved, and TemplateHaskell recompilation is much less of
a problem.

Actually running code

GHC has two phases for TH:

Optimizing GHC Compile Times 108

1. Generating Code
2. Compiling Code

Generating code typically doesn’t takemuch time at all, though this isn’t
guaranteed.

Fortunately, we can easily write a timing utility, since the Template-
Haskell generation type allows you to run arbitrary IO operations.

1 import Data.Time (getCurrentTime, diffUTCTime)

2 import Language.Haskell.TH (Q, runIO, reportWarning)

3

4 timed :: String -> Q a -> Q a

5 timed message action = do

6 begin <- runIO getCurrentTime

7 result <- action

8 end <- runIO getCurrentTime

9 let duration = end `diffUTCTime` begin

10 reportWarning $ concat ["[", message, "]: ", show duration]

11 pure result

Expert benchmarkerswill complain about using getCurrentTime since
it isn’tmonotonic, which is a valid complaint. But we’re not getting a real
benchmark anyway, and we’re mostly just going to see whether gener-
ation or compilation is dominating the elapsed time (hint: compilation
almost always dominates).

With this, we will get a reported warning about the duration of the code
generation. In this reddit comment², I used timed to determine that
generation of some code was taking 0.0015s, while compilation of the
resulting code took 21.201s. The code looks like this:

²https://www.reddit.com/r/haskell/comments/oi1x5v/tiny_use_of_template_haskell_causing_
huge_memory/h4tr7n8/

https://www.reddit.com/r/haskell/comments/oi1x5v/tiny_use_of_template_haskell_causing_huge_memory/h4tr7n8/
https://www.reddit.com/r/haskell/comments/oi1x5v/tiny_use_of_template_haskell_causing_huge_memory/h4tr7n8/
https://www.reddit.com/r/haskell/comments/oi1x5v/tiny_use_of_template_haskell_causing_huge_memory/h4tr7n8/

Optimizing GHC Compile Times 109

1 module Main where

2

3 import TuplesTH

4

5 $(timed "tuples" $ generateTupleBoilerplate 62)

6

7 main :: IO ()

8 main = do

9 print $ _3 (1,2,42,"hello",'z')

The output looks like this:

1 Building executable 'th-perf-exe' for th-perf-0.1.0.0..

2 [1 of 2] Compiling Main

3

4 /home/th-perf/app/Main.hs:11:2: warning: [tuples]: 0.001553454s

5 |

6 11 | $(timed "tuples" $ generateTupleBoilerplate 62)

7 | ^^

8 [2 of 2] Compiling Paths_th_perf

9 21,569,689,896 bytes allocated in the heap

10 6,231,564,888 bytes copied during GC

11 594,126,600 bytes maximum residency (17 sample(s))

12 3,578,104 bytes maximum slop

13 1641 MiB total memory in use (0 MB lost due to frag...)

14

15 Tot time (elapsed) Avg pause Max pause

16 Gen 0 1097 colls, 0 par 4.919s 4.921s 0.0045s 0.1072s

17 Gen 1 17 colls, 0 par 4.466s 4.467s 0.2628s 1.0215s

18

19 TASKS: 4 (1 bound, 3 peak workers (3 total), using -N1)

20

21 SPARKS: 0 (0 converted, 0 overflowed, 0 dud, 0 GC'd, 0 fizzled)

22

23 INIT time 0.001s (0.001s elapsed)

24 MUT time 11.813s (12.135s elapsed)

25 GC time 9.385s (9.388s elapsed)

Optimizing GHC Compile Times 110

26 EXIT time 0.001s (0.007s elapsed)

27 Total time 21.201s (21.530s elapsed)

28

29 Alloc rate 1,825,890,582 bytes per MUT second

30

31 Productivity 55.7% of total user, 56.4% of total elapsed

This sort of timing is usually only useful to determine whether you need
to benchmark and optimize the generation phase or the compilation phase.
Optimizing generation is a relatively standard Haskell performance op-
timization process, which I won’t cover here. If your code is mostly
pure functions (or, with GHC 9, the new Quote³ type class), then it’s
straightforward to do. Many Q features are not supported in IO, and it’s
difficult to accurately benchmark them.

Fortunately, you can profile them using the -fexternal-interpreter
facility. Ben Gamari’s “Profiling Template Haskell Splices”⁴ is an excel-
lent resource for this.

Optimizing Compilation

In theaboveexample,GHCspendsa tinyamountof timegenerating code,
and then spends a huge amount of time compiling it. What’s going on?

Above, I write that GHC compilesmodules superlinearly in the size of the
module. That means that large modules take longer to compile than the
same amount of code split up over several modules. TemplateHaskell
has no way of creating modules, or even altering the imports/exports
of a given module. If you’re generating a large amount of code with
TemplateHaskell, there’s no way to split it into separate modules.

We have two means of reducing generated code: spreading the use over
multiple modules, and optimizing how we generate the code.

³https://www.stackage.org/haddock/nightly-2021-07-11/template-haskell-2.17.0.0/Language-
Haskell-TH.html#t:Quote

⁴https://well-typed.com/blog/2020/05/profiling-template-haskell/

https://www.stackage.org/haddock/nightly-2021-07-11/template-haskell-2.17.0.0/Language-Haskell-TH.html#t:Quote
https://well-typed.com/blog/2020/05/profiling-template-haskell/
https://www.stackage.org/haddock/nightly-2021-07-11/template-haskell-2.17.0.0/Language-Haskell-TH.html#t:Quote
https://www.stackage.org/haddock/nightly-2021-07-11/template-haskell-2.17.0.0/Language-Haskell-TH.html#t:Quote
https://well-typed.com/blog/2020/05/profiling-template-haskell/

Optimizing GHC Compile Times 111

Fewer Calls to TH

In Splitting Persistent Models⁵, I wrote how to speed up compile-times
by isolating the persistent model definitions into separate modules.
This results in many smaller modules, which GHC can compile much
faster - in part because the modules are able to be parallelized, and in
part because they are smaller, and don’t hit the superlinearity.

You can do this with any other thing, too. A large module that has a
ton of data types and a TemplateHaskell declaration for each type will
quickly becomeaproblem in compilation. Separating it out intomultiple
modules, each exporting a small subset of those types, will allow GHC to
avoid recompiling them as often and share the cachemore effectively.

Smaller Code

It’s relatively easy to generate a massive amount of Haskell code. After
all, the entire point of TemplateHaskell is to make GHC generate code
for us that we don’t want to write ourselves.

In order to seehowmuch codewe’re generating in amodule, it’s useful to
enable the -ddump-splices option. We can do this with a GHC_OPTIONS
pragma above the module header:

1 {-# language TemplateHaskell #-}

2 {-# OPTIONS_GHC -ddump-splices #-}

3

4 module Lib where

5

6 import Language.Haskell.TH.Syntax (liftTyped)

7

8 asdf :: Int

9 asdf = $$(liftTyped 3)

With this option, GHCwill print the splice and the corresponding output
while compiling the module.

⁵https://www.parsonsmatt.org/2019/12/06/splitting_persistent_models.html

https://www.parsonsmatt.org/2019/12/06/splitting_persistent_models.html
https://www.parsonsmatt.org/2019/12/06/splitting_persistent_models.html

Optimizing GHC Compile Times 112

1 Building library for th-perf-0.1.0.0..

2 [2 of 3] Compiling Lib

3 /home/matt/Projects/th-perf/src/Lib.hs:10:10-22:

4 Splicing expression

5 liftTyped 3 ======> 3

However, if you’ve got a performance problem, then you’ve probably got
more output here than you have any idea what to do with. In the reddit
thread⁶, we ended up generating enough code that I couldn’t scroll back
to the top! So, we’ll want to dump the resulting splices to a file. We can
use the -ddump-to-file, and GHC will store the splices for a module in
a file named $(module-name).dump-$(phase). If you’re building with
stack, then the files will be located in the .stack-work file. We can
get the resulting size of the file using wc and a bit of a glob. In that
investigation, this is the command and output:

1 $ wc -l .stack-work/**/*.dump-splices

2 15897 .stack-work/.../Main.dump-splices

That’s 15,897 lines of code! You can open that file up and see what it
generates. In that example, there wasn’t much to optimize.

Beware Splicing and Lifting

At the work codebase, we had a TemplateHaskell function that
ended up taking several minutes to compile. It iterated through all
of our database models and generated a function that would stream
each row from the database and verify that we could successfully
parse everything out of the database. This is nice to check that our
PersistField definitions worked, or that our JSONB columns could all
still be parsed.

I investigated the slow compile-time by dumping splices, and managed
to find that it was splicing in the entire EntityDef⁷ type, multiple times,

⁶https://www.reddit.com/r/haskell/comments/oi1x5v/tiny_use_of_template_haskell_causing_
huge_memory/h4tr7n8/

⁷https://www.stackage.org/haddock/lts-18.2/persistent-2.13.1.1/Database-Persist-EntityDef-
Internal.html#t:EntityDef

https://www.reddit.com/r/haskell/comments/oi1x5v/tiny_use_of_template_haskell_causing_huge_memory/h4tr7n8/
https://www.reddit.com/r/haskell/comments/oi1x5v/tiny_use_of_template_haskell_causing_huge_memory/h4tr7n8/
https://www.stackage.org/haddock/lts-18.2/persistent-2.13.1.1/Database-Persist-EntityDef-Internal.html#t:EntityDef
https://www.reddit.com/r/haskell/comments/oi1x5v/tiny_use_of_template_haskell_causing_huge_memory/h4tr7n8/
https://www.reddit.com/r/haskell/comments/oi1x5v/tiny_use_of_template_haskell_causing_huge_memory/h4tr7n8/
https://www.stackage.org/haddock/lts-18.2/persistent-2.13.1.1/Database-Persist-EntityDef-Internal.html#t:EntityDef
https://www.stackage.org/haddock/lts-18.2/persistent-2.13.1.1/Database-Persist-EntityDef-Internal.html#t:EntityDef

Optimizing GHC Compile Times 113

for each table. This is a relatively large record, with a bunch of fields, and
each FieldDef also is relatively large, with a bunch of fields!

The resulting code size was enormous. Why was it doing this? I looked
into it and discovered this innocuous bit of code:

1 do

2 -- ...

3 tableName <- [| getEntityHaskellName entityDef |]

4 dbName <- [| getEntityDBName entityDef |]

5 -- ...

6 pure $ mkFun tableName dbName

You might expect that tableName would be an expression containing
only the Haskell name of the entity. However, it’s actually the entire ex-
pression in the QuasiQuote! Haskell allows you to implicitly lift things,
sometimes, depending on scope and context etc. The lift in question
refers to the Lift type class⁸, not the MonadTrans variant. This ends up
being translated to:

1 tableName <- [| $(lift getEntityHaskellName) $(lift entityDef) |]

Lifting a function like this is relatively easy - you just splice a reference
to the function. So the resulting expression for the function name is
something like:

1 lift getEntityHaskellName

2 ===>

3 VarE 'getEntityHaskellName

In order to lift the EntityDef into the expression, we need to take the
complete run-time value and transform it into validHaskell code, whichwe
then splice in directly. In this case, that looks something like this:

⁸https://www.stackage.org/haddock/lts-18.2/template-haskell-2.16.0.0/Language-Haskell-TH-
Syntax.html#t:Lift

https://www.stackage.org/haddock/lts-18.2/template-haskell-2.16.0.0/Language-Haskell-TH-Syntax.html#t:Lift
https://www.stackage.org/haddock/lts-18.2/template-haskell-2.16.0.0/Language-Haskell-TH-Syntax.html#t:Lift
https://www.stackage.org/haddock/lts-18.2/template-haskell-2.16.0.0/Language-Haskell-TH-Syntax.html#t:Lift
https://www.stackage.org/haddock/lts-18.2/template-haskell-2.16.0.0/Language-Haskell-TH-Syntax.html#t:Lift

Optimizing GHC Compile Times 114

1 lift entityDef

2 ===>

3 EntityDef

4 { entityHaskell =

5 EntityNameHS (Data.Text.pack "SomeTable")

6 , entityDB =

7 EntityNameDB (Data.Text.pack "some_table")

8 , entityId =

9 EntityIdField (

10 FieldDef

11 { fieldHaskell =

12 FieldNameHS (Data.Text.pack "id")

13 , fieldDB =

14 FieldNameDB (Data.Text.pack "id")

15 , fieldType =

16 --

17 , fieldSqlType =

18 -- ...

19 , -- etc...

20 }

21 , entityFields =

22 [FieldDef { ... }

23 , FieldDef { ... }

24 , FieldDef { ... }

25 , ...

26]

27 }

The combined expression splices this in:

Optimizing GHC Compile Times 115

1 VarE 'getEntityHaskellName

2 `AppE`

3 (ConE 'EntityDef

4 `AppE`

5 (ConE 'EntityNameHS

6 `AppE`

7 (VarE 'pack `AppE` LitE (StringL "SomeTable"))

8)

9 `AppE`

10 (ConE 'EntityNameDB ...)

11)

Which is no good - we’re obviously only grabbing a single field from the
record. Fortunately, we can fix that real easy:

1 tableName <- lift $ getEntityHaskellName entityDef

2 dbName <- lift $ getEntityDBName entityDef

This performs the access before we generate the code, resulting in sig-
nificantly smaller code generation.

Recompilation Avoidance

GHC is usually pretty clever about determining if it can avoid recompil-
ing amodule. However, TemplateHaskell defeats this, andGHCdoesn’t
even try to see if it can avoid recompiling - it just recompiles. (Note: this
was considerably improved in GHC 9.4)

We can’t fix this, butwe canwork around it. Try to isolate your Template-
Haskell use to only a fewmodules, and keep them as small as possible.

For example, suppose you have a ∼500 line module that contains a
bunch of data types, deriveJSON calls for those types, business logic,
and handler API functions. If any dependency of that module changes,
youneed to recompile thewholemoduledue to theTH recompilation rule.
This needlessly recompiles everything - the datatypes, functions, JSON
derivation, etc.

Optimizing GHC Compile Times 116

If you pull the datatypes and TemplateHaskell into a separate module,
then that module needs to be recompiled every time. However, GHC is
smart enough to avoid recompiling the dependentmodule. Suppose you
split the 500 line module into two files, one of which is 20 lines of data
and TemplateHaskell, and the other is 480 lines of functions, code, etc.
GHC will always recompile the 20 line module quickly, and intelligently
avoid recompiling the 480 lines when it doesn’t need to.

There’s another advantage to splitting modules like this. If your .Types
module doesn’t have any business logic, just type and instance dec-
larations, then you likely depend on fewer imports. This means that
the .Types module will be recompiled significantly less often, which
cascades andmeans that the business logic that depends on that .Types
also does not need to be recompiled so often.

Recompilation Cascade

Recompilation Cascade is the name I’ve given to a problem where a tiny
change triggers a [TH] rebuild of a module, and, since that module got
rebuilt, every dependent module using TH gets rebuilt. If you use Tem-
plateHaskell pervasively, then you may end up having [TH] rebuilds
for your entire codebase! This can wreck incremental compile times.

Try to avoid this by separating out your TemplateHaskell into isolated
modules, if at all possible.

If you use the typed QQ literals trick, then you can isolate those liter-
als into a Constantsmodule, and use those constants directly. Instead
of:

1 module X where

2

3 sendEmailToFoo = sendEmail [email|foobar@gmail.com|] "hello world"

Consider using this instead:

Optimizing GHC Compile Times 117

1 module Email.Constants where

2

3 foobar_at_gmail = [email|foobar@gmail.com|]

4

5 module X where

6

7 import Email.Constants

8

9 sendEmailToFoo = sendEmail foobar_at_gmail "hello world"

With the latter form,XdoesnotuseTemplateHaskell, and therefore can
skip recompilation if any dependencies change.

9.5 Some random parting thoughts

• Don’t do more work than you need to. Derived type class instances
are work that GHCmust redo every time the module is compiled.

• Keep the module graph broad and shallow.
• The following command speeds up compilation significantly,
especially after exposing all those parallelism opportunities:
stack build --fast --file-watch --ghc-options "-j4
+RTS -A128m -n2m -qg -RTS" These flags give GHC 4 threads
to work with (more didn’t help on my 8 core computer), and
-A128m gives it more memory before it does garbage collection.
-qg turns off the parallel garbage collector, which is almost always
a performance improvement. Thanks to /u/dukerutledge⁹ for
pointing out -n2m, which I don’t understand but helped!

• Try to keep things ghci friendly as much as possible. :reload is
the fastest way to test stuff out usually, and REPL-friendly code is
test-friendly too!

⁹https://www.reddit.com/r/haskell/comments/e2l1yj/keeping_compilation_fast/f8wt34p/

https://www.reddit.com/r/haskell/comments/e2l1yj/keeping_compilation_fast/f8wt34p/
https://www.reddit.com/r/haskell/comments/e2l1yj/keeping_compilation_fast/f8wt34p/

III Domain Modeling

10. Type Safety Back and Forth
Types are a powerful construct for improving program safety. Haskell
has a few notable ways of handling potential failure, the most famous
being the venerable Maybe type:

1 data Maybe a

2 = Nothing

3 | Just a

We can use Maybe as the result of a function to indicate:

Hey, friend! This functionmight fail. You’ll need to handle the
Nothing case.

This allows us to write functions like a safe division function:

1 safeDivide :: Int -> Int -> Maybe Int

2 safeDivide i 0 = Nothing

3 safeDivide i j = Just (i `div` j)

I like to think of this as pushing the responsibility for failure forward. I’m
telling the caller of the code that they can provide whatever Ints they
want, but that some conditionmight cause them to fail. And the caller of
the code has to handle that failure later on.

This is one-size-fits-all technique is the easiest to show and tell. If your
function can fail, just slap Maybe or Either on the result type and you’ve
got safety. I can write a 35 line blog post to show off the technique, and if
I were feeling frisky, I could use it as an introduction to Functor, Monad,
and all that jazz.

Instead, I’d like to share another technique. Rather thanpush the respon-
sibility for failure forward, let’s explore pushing it back. This technique

119

Type Safety Back and Forth 120

is a little harder to show, because it depends on the individual cases you
might use.

If pushing responsibility forwardmeans acceptingwhateverparameters
andhaving thecallerof thecodehandlepossibility of failure, thenpushing
it back is going to mean we accept stricter parameters that we can’t fail
with. Let’s consider safeDivide, but with a more lax type signature:

1 safeDivide :: String -> String -> Maybe Int

2 safeDivide iStr jStr = do

3 i <- readMay iStr

4 j <- readMay jStr

5 guard (j /= 0)

6 pure (i `div` j)

This function takes two strings, and then tries to parse Ints out of them.
Then, if the j parameter isn’t 0, we return the result of division. This
function is safe, but we have a much larger space of calls to safeDivide
that fail and return Nothing. We’ve accepted more parameters, but
we’ve pushed a lot of responsibility forward for handling possible failure.

Let’s push the failure back.

1 safeDivide :: Int -> NonZero Int -> Int

2 safeDivide i (NonZero j) = i `div` j

We’ve required that users provide us a NonZero Int rather than any old
Int. We’ve pushed back against the callers of our function:

No! You must provide a NonZero Int. I refuse to work with
just any Int, because then I might fail, and that’s annoying.

So speaks our valiant little function, standing up for itself!

Let’s implement NonZero. We’ll take advantage of Haskell’s Pattern-
Synonyms language extension to allow people to pattern match on a
“constructor” without exposing a way to unsafely construct values.

Type Safety Back and Forth 121

1 {-# LANGUAGE PatternSynonyms #-}

2

3 module NonZero

4 (NonZero()

5 , pattern NonZero

6 , unNonZero

7 , nonZero

8) where

9

10 newtype NonZero a = UnsafeNonZero a

11

12 pattern NonZero a <- UnsafeNonZero a

13

14 unNonZero :: NonZero a -> a

15 unNonZero (UnsafeNonZero a) = a

16

17 nonZero :: (Num a, Eq a) => a -> Maybe (NonZero a)

18 nonZero i

19 | i == 0 = Nothing

20 | otherwise = Just (UnsafeNonZero i)

This module allows us to push the responsibility for type safety back-
wards onto callers.

As another example, consider head. Here’s the unsafe, convenient vari-
ety:

1 head :: [a] -> a

2 head (x:xs) = x

3 head [] = error "oh no"

This code is making a promise that it can’t keep. Given the empty list, it
will fail at runtime.

Let’s push the responsibility for safety forward:

Type Safety Back and Forth 122

1 headMay :: [a] -> Maybe a

2 headMay (x:xs) = Just x

3 headMay [] = Nothing

Now, we won’t fail at runtime. We’ve required the caller to handle a
Nothing case.

Let’s try pushing it back now:

1 headOr :: a -> [a] -> a

2 headOr def (x:xs) = x

3 headOr def [] = def

Now,we’re requiring that the caller of the functionhandlepossible failure
before they ever call this. There’s noway to get it wrong. Alternatively, we
can use a type for nonempty lists!

1 data NonEmpty a = a :| [a]

2

3 safeHead :: NonEmpty a -> a

4 safeHead (x :| xs) = x

This one works just as well. We’re requiring that the calling code handle
failure ahead of time.

A more complicated example of this technique is the justified-
containers¹ library. The library uses the type system to prove that
a given key exists in the underlying Map. From that point on, lookups
using those keys are total: they are guaranteed to return a value, and
they don’t return a Maybe.

This works even if you map over the Map with a function, transforming
values. You can also use it to ensure that two maps share related infor-
mation. It’s a powerful feature, beyond just having type safety.

¹https://hackage.haskell.org/package/justified-containers-0.1.2.0/docs/Data-Map-Justified-
Tutorial.html

https://hackage.haskell.org/package/justified-containers-0.1.2.0/docs/Data-Map-Justified-Tutorial.html
https://hackage.haskell.org/package/justified-containers-0.1.2.0/docs/Data-Map-Justified-Tutorial.html
https://hackage.haskell.org/package/justified-containers-0.1.2.0/docs/Data-Map-Justified-Tutorial.html
https://hackage.haskell.org/package/justified-containers-0.1.2.0/docs/Data-Map-Justified-Tutorial.html

Type Safety Back and Forth 123

10.1 The Ripple Effect

When some piece of code hands us responsibility, we have two choices:

1. Handle that responsibility.
2. Pass it to someone else!

Inmyexperience, developerswill tend topush responsibility in the same
direction that the code they call does. So if some function returns a
Maybe, the developer is going to be inclined to also return a Maybe value.
If some function requires a NonEmpty Int, then the developer is going
to be inclined to also require a NonEmpty Int be passed in.

This played out in my work codebase. We have a type representing an
Order with many Items in it. Originally, the type looked something like
this:

1 data Order = Order { items :: [Item] }

The Items contained nearly all of the interesting information in the
order, so almost everything that we did with an Order would need to
return a Maybe value to handle the empty list case. This was a lot of work,
and a lot of Maybe values!

The type is too permissive. As it happens, an Ordermay not exist without
at least one Item. So we canmake the typemore restrictive and havemore
fun!

We redefined the type to be:

1 data Order = Order { items :: NonEmpty Item }

All of theMaybes relating to theempty listwerepurged, andall of the code
was pure and free. The failure case (an empty list of orders) was moved
to two sites:

1. Decoding JSON

Type Safety Back and Forth 124

2. Decoding database rows

Decoding JSON happens at the API side of things, when various services
POST updates to us. Now, we can respond with a 400 error and tell API
clients that they’ve provided invalid data! This prevents our data from
going bad.

Decoding database rows is even easier. We use an INNER JOIN when
retrieving Orders and Items, which guarantees that each Order will
have at least one Item in the result set. Foreign keys ensure that each
Item’s Order is actually present in the database. This does leave the
possibility that an Order might be orphaned in the database, but it’s
mostly safe.

When we push our type safety back, we’re encouraged to continue push-
ing it back. Eventually, we push it all the way back – to the edges of our
system! This simplifies all of the code and logic inside of the system.
We’re taking advantage of types to make our code simpler, safer, and
easier to understand.

10.2 Ask Only What You Need

In many senses, designing our code with type safety in mind is about
being as strict as possible about your possible inputs. Haskellmakes this
easier thanmanyother languages, but there’s nothing stopping you from
writing a function that can take literally any binary value, do whatever
effects you want, and return whatever binary value:

1 foobar :: ByteString -> IO ByteString

A ByteString is a totally unrestricted data type. It can contain any
sequence of bytes. Because it can express any value, we have little guar-
antees on what it actually contains, and we are limited in how we can
safely handle this.

By restricting our past, we gain freedom in the future.

Type Safety Back and Forth 125

These ideas are expanded upon in Alexis King’s blog post Parse, Don’t
Validate². It remains my favorite explanation on the topic. Gary Bern-
hardt’s talk Boundaries³ explores this as well. Data at the boundary of
your program is unstructured, vast, infinitely complex and unknown.
Whenever we learn something about the data, we can choose to encode
that in the types (or not). The more we know about it, the less room we
have for careless mistakes.

If the set of possible choices is great, then the probability of error is
high.Narrowing down the possible error cases allowus to programmore
mechanically. This saves our brainpower for problems that require it.

²https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-validate/
³https://www.destroyallsoftware.com/talks/boundaries

https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-validate/
https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-validate/
https://www.destroyallsoftware.com/talks/boundaries
https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-validate/
https://www.destroyallsoftware.com/talks/boundaries

11. Keep Your Types Small…
… and your bugs smaller.

Inmyprevious chapter “Type Safety Back andForth”, I discussed twodif-
ferent techniques for bringing type safety to programs that may fail. On
the one hand, you can push the responsibility forward. This technique
uses types like Either and Maybe to report a problemwith the inputs to
the function. Here are two example type signatures:

1 safeDivide

2 :: Int

3 -> Int

4 -> Maybe Int

5

6 lookup

7 :: Ord k

8 => k

9 -> Map k a

10 -> Maybe a

If the second parameter to safeDivide is 0, then we return Nothing.
Likewise, if the given k is not present in the Map, thenwe return Nothing.

On the other hand, you can push it back. Here are those functions, but
with the safety pushed back:

126

Keep Your Types Small… 127

1 safeDivide

2 :: Int

3 -> NonZero Int

4 -> Int

5

6 lookupJustified

7 :: Key ph k

8 -> Map ph k a

9 -> a

With safeDivide, we require the user pass in a NonZero Int - a type
that asserts that the underlying value is not 0. With lookupJustified,
the ph type guarantees that the Key is present in the Map, so we can pull
the resultingvalueoutwithout requiringaMaybe. (Checkout the tutorial¹
for justified-containers, it is pretty awesome)

11.1 Expansion and Restriction

“TypeSafetyBack andForth”uses themetaphor of “pushing” the respon-
sibility in one of two directions:

• forwards: the caller of the function is responsible for handling the
possible error output

• backwards: the caller of the function is required to providing cor-
rect inputs

However, this metaphor is a bit squishy. We canmake it more precise by
talking about the “cardinality” of a type - howmany values it can contain.
The type Bool can contain two values True and False, so we say it has a
cardinality of 2. The type Word8 can express the numbers from 0 to 255,
so we say it has a cardinality of 256.

The type Maybe a has a cardinality of 1 + a. We get a “free” value
Nothing :: Maybe a. For every value of type a, we can wrap it in Just.

¹https://hackage.haskell.org/package/justified-containers-0.3.0.0/docs/Data-Map-Justified-
Tutorial.html

https://hackage.haskell.org/package/justified-containers-0.3.0.0/docs/Data-Map-Justified-Tutorial.html
https://hackage.haskell.org/package/justified-containers-0.3.0.0/docs/Data-Map-Justified-Tutorial.html
https://hackage.haskell.org/package/justified-containers-0.3.0.0/docs/Data-Map-Justified-Tutorial.html

Keep Your Types Small… 128

The type Either e a has a cardinality of e + a. We can wrap all the
values of type e in Left, and then we can wrap all the values of type a
in Right.

The first technique - pushing forward - is “expanding the result type.”
When we wrap our results in Maybe, Either, and similar types, we’re
saying thatwe can’t handle all possible inputs, and sowemust have extra
outputs to safely deal with this.

Let’s consider the second technique. Specifically, here’s NonZero and
NonEmpty, two common ways to implement it:

1 newtype NonZero a

2 = UnsafeNonZero

3 { unNonZero :: a

4 }

5

6 nonZero :: (Num a, Eq a) => a -> Maybe (NonZero a)

7 nonZero 0 = Nothing

8 nonZero i = Just (UnsafeNonZero i)

9

10 data NonEmpty a = a :| [a]

11

12 nonEmpty :: [a] -> Maybe (NonEmpty a)

13 nonEmpty [] = Nothing

14 nonEmpty (x:xs) = x :| xs

What is the cardinality of these types?

NonZero a represents “the type of values a such that the value is not
equal to 0.” NonEmpty a represents “the type of lists of a that are not
empty.” In both of these cases,we startwith some larger type and remove
some potential values. So the type NonZero a has the cardinality a - 1,
and the type NonEmpty a has the cardinality [a] - 1.

Interestingly enough, [a] has an infinite cardinality, so [a] - 1 seems
somewhat strange - it is also infinite! Math tells us that these are even
the same infinity. So it’s not only mere cardinality that helps - it is the
specific value(s) that we have removed that makes this type safer for
certain operations.

Keep Your Types Small… 129

Theseare customexamplesof refinement types². Another closely related
idea is quotient types³. The basic idea here is to restrict the size of our
inputs. Slightly more formally,

• Forwards: expand the range
• Backwards: restrict the domain

11.2 Constraints Liberate

Runar Bjarnason has a wonderful talk titled Constraints Liberate, Liber-
ties Constrain⁴. The big idea of the talk, as I see it, is this:

When we restrict what we can do, it’s easier to understand
what we can do.

I feel there is a deep connection between this idea and Rich Hickey’s
talk Simple Made Easy⁵. In both cases, we are focusing on simplicity -
on cutting away the inessential and striving for more elegant ways to
express our problems.

Pushing the safety forward - expanding the range - does notmake things
simpler. It provides us with more power, more options, and more pos-
sibilities. Pushing the safety backwards - restricting the domain - does
make things simpler. We can use this technique to take away the power
to get it wrong, the options that aren’t right, and the possibilitieswedon’t
want.

Indeed, if we manage to restrict our types sufficiently, there may be
only one implementation possible! The classic example is the identity
function:

1 identity :: a -> a

2 identity a = a

²https://ucsd-progsys.github.io/liquidhaskell-tutorial/
³https://www.hedonisticlearning.com/posts/quotient-types-for-programmers.html
⁴https://www.youtube.com/watch?v=GqmsQeSzMdw
⁵https://www.youtube.com/watch?v=SxdOUGdseq4

https://ucsd-progsys.github.io/liquidhaskell-tutorial/
https://www.hedonisticlearning.com/posts/quotient-types-for-programmers.html
https://www.youtube.com/watch?v=GqmsQeSzMdw
https://www.youtube.com/watch?v=GqmsQeSzMdw
https://www.youtube.com/watch?v=SxdOUGdseq4
https://ucsd-progsys.github.io/liquidhaskell-tutorial/
https://www.hedonisticlearning.com/posts/quotient-types-for-programmers.html
https://www.youtube.com/watch?v=GqmsQeSzMdw
https://www.youtube.com/watch?v=SxdOUGdseq4

Keep Your Types Small… 130

This is the only implementation of this function that satisfies the type
signature (ignoringundefined, of course). In fact, for any functionwith a
sufficiently precise type signature, there is a way to automatically derive
the function! Joachim Breitner’s justDoIt⁶ is a fascinating utility that
can solve these implementations for you.

With sufficiently fancy types, the computer canwrite evenmore code for
you. The programming language Idris can write well-defined functions
like zipWith and transpose for length-indexed lists nearly automati-
cally!⁷

11.3 Restrict the Range

I see this pattern and I am compelled to fill it in:

Restrict Expand
Range :(
Domain :D

I’ve talked about restricting the domain and expanding the range. Ex-
panding the domain seems silly to do - we accept more possible values
than we know what to do with. This is clearly not going to make it
easier or simpler to implement our programs. However, there are many
functions in Haskell’s standard library that have a domain that is too
large. Consider:

1 take :: Int -> [a] -> [a]

Int, as a domain, is both too large and too small. It allows us to provide
negative numbers: what does it even mean to take -3 elements from a
list? AsInt is a finite type, and[a] is infinite,we are restricted to only us-
ing this function with sufficiently small Ints. A closer fit would be take
:: Natural -> [a] -> [a]. Natural allows any non-negative whole
number, and perfectly expresses the reasonable domain. Expanding the
domain isn’t desirable, as wemight expect.

⁶https://www.joachim-breitner.de/blog/735-The_magic_%E2%80%9CJust_do_it%E2%80%9D_
type_class

⁷https://youtu.be/X36ye-1x_HQ?t=1140

https://www.joachim-breitner.de/blog/735-The_magic_%E2%80%9CJust_do_it%E2%80%9D_type_class
https://youtu.be/X36ye-1x_HQ?t=1140
https://youtu.be/X36ye-1x_HQ?t=1140
https://youtu.be/X36ye-1x_HQ?t=1140
https://www.joachim-breitner.de/blog/735-The_magic_%E2%80%9CJust_do_it%E2%80%9D_type_class
https://www.joachim-breitner.de/blog/735-The_magic_%E2%80%9CJust_do_it%E2%80%9D_type_class
https://youtu.be/X36ye-1x_HQ?t=1140

Keep Your Types Small… 131

Thebasepackagehas functionswitha range that is too large, aswell. Let’s
consider:

1 length :: [a] -> Int

This has many of the same problems as take - a list with too many
elements will overflow the Int, and we won’t get the right answer. Addi-
tionally, we have a guarantee that we forget - a length for any container
must be positive! We can more correctly express this type by restricting
the output type:

1 length :: [a] -> Natural

A Natural carries the proof that it is an unbounded, positive number.
This preserves information and allows us to push safety further through-
out our code.

11.4 A perfect fit

The more precisely our types describe our program, the fewer ways we
have to go wrong. Ideally, we can provide a correct output for every
input, and we use a type that tightly describes the properties of possible
outputs.

12. The Trouble with Typed Errors
UsHaskell developers don’t like runtimeerrors. They’re awful andnasty!
You have to debug them, and they’re not represented in the types. In-
stead,we like to useEither (or something isomorphic) to represent stuff
that might fail:

1 data Either l r = Left l | Right r

Either has a Monad instance, so you can short-circuit an Either l r
computation with an l value, or bind it to a function on the r value. The
names of the type and constructors are not arbitrary. We have two type
variables: Either left right. The left type variable is in the Left
constructor, and the right type variable is in the Right constructor.

So, we take our unsafe, runtime failure functions:

1 head :: [a] -> a

2 lookup :: k -> Map k v -> v

3 parse :: String -> Integer

and we use informative error types to represent their possible failures:

1 data HeadError = ListWasEmpty

2

3 head :: [a] -> Either HeadError a

4

5 data LookupError = KeyWasNotPresent

6

7 lookup :: k -> Map k v -> Either LookupError v

8

9 data ParseError

10 = UnexpectedChar Char String

132

The Trouble with Typed Errors 133

11 | RanOutOfInput

12

13 parse :: String -> Either ParseError Integer

Except, we don’t really use types like HeadError or LookupError.
There’s only one way that head or lookup could fail. So we just use
Maybe instead. Maybe a is just like using Either () a - there’s only
onepossibleLeft () value, and there’s only onepossibleNothing value.
(If you’re unconvinced, write newtype Maybe a = Maybe (Either ()
a), derive all the relevant instances, and try and detect a difference
between this Maybe and the stock one).

But, Maybe isn’t great - we’ve lost information! Suppose we have some
computation:

1 foo :: String -> Maybe Integer

2 foo str = do

3 c <- head str

4 r <- lookup str strMap

5 eitherToMaybe (parse (c : r))

Now, we try it on some input, and it gives us Nothing back. Which step
failed? We actually can’t know that! All we can know is that something
failed.

So, let’s try using Either to getmore information onwhat failed. Canwe
just write this?

1 foo :: String -> Either ??? Integer

2 foo str = do

3 c <- head str

4 r <- lookup str strMap

5 parse (c : r)

Unfortunately, this gives us a type error.We can seewhyby looking at the
type of >>=:

The Trouble with Typed Errors 134

1 (>>=) :: (Monad m) => m a -> (a -> m b) -> m b

The type variable m must be an instance of Monad, and the type m must
be exactly the same for the value on the left and the function on the right.
Either LookupError and Either ParseError are not the same type,
and so this does not type check.

Instead, we need some way of accumulating these possible errors. We’ll
introduce a utility function mapLeft that helps us:

1 mapLeft :: (l -> l') -> Either l r -> Either l' r

2 mapLeft f (Left l) = Left (f l)

3 mapLeft _ r = r

Now, we can combine these error types:

1 foo :: String

2 -> Either

3 (Either HeadError (Either LookupError ParseError))

4 Integer

5 foo str = do

6 c <- mapLeft Left (head str)

7 r <- mapLeft (Right . Left) (lookup str strMap)

8 mapLeft (Right . Right) (parse (c : r))

There! Now we can know exactly how and why the computation failed.
Unfortunately, that type is a bit of a monster. It’s verbose and all the
mapLeft boilerplate is annoying.

At this point, most application developers will create a “application
error” type, and they’ll just shove everything that can go wrong into it.

The Trouble with Typed Errors 135

1 data AllErrorsEver

2 = AllParseError ParseError

3 | AllLookupError LookupError

4 | AllHeadError HeadError

5 | AllWhateverError WhateverError

6 | FileNotFound FileNotFoundError

7 | etc...

Now, this slightly cleans up the code:

1 foo :: String -> Either AllErrorsEver Integer

2 foo str = do

3 c <- mapLeft AllHeadError (head str)

4 r <- mapLeft AllLookupError (lookup str strMap)

5 mapLeft AllParseError (parse (c : r))

However, there’s a pretty major problem with this code. foo is claiming
that it can “throw” all kinds of errors - it’s being honest about parse
errors, lookup errors, and head errors, but it’s also claiming that it will
throw if files aren’t found, “whatever” happens, and etc. There’s no way
that a call to foo will result in FileNotFound, because foo can’t even
do IO! It’s absurd. The type is too large! The previous chapter discusses
keeping your types small and how wonderful it can be for getting rid of
bugs.

Suppose we want to handle foo’s error. We call the function, and then
write a case expression like good Haskellers:

1 case foo "hello world" of

2 Right val ->

3 pure val

4 Left err ->

5 case err of

6 AllParseError parseError ->

7 handleParseError parseError

8 AllLookupError lookupErr ->

9 handleLookupError

The Trouble with Typed Errors 136

10 AllHeadError headErr ->

11 handleHeadError

12 _ ->

13 error "impossible?!?!?!"

Unfortunately, this code is brittle to refactoring!We’ve claimed to handle
all errors, but we’re really not handling many of them. We currently
“know” that these are the only errors that can happen, but there’s no
compiler guarantee that this is the case. Someone might later modify
foo to throw another error, and this case expressionwill break. Any case
expression that evaluates any result from foowill need to be updated.

The error type is too big, and so we introduce the possibility of mishan-
dling it. There’s another problem. Let’s suppose we know how to handle
a case or two of the error, but we must pass the rest of the error cases
upstream:

1 bar :: String -> Either AllErrorsEver Integer

2 bar str =

3 case foo str of

4 Right val ->

5 Right val

6 Left err ->

7 case err of

8 AllParseError pe ->

9 Right (handleParseError pe)

10 _ ->

11 Left err

We know that AllParseError has been handled by bar, because - just
look at it! However, the compiler has no idea. Whenever we inspect the
error content of bar, we must either a) “handle” an error case that has
already been handled, perhaps dubiously, or b) ignore the error, and
desperately hope that no underlying code ever ends up throwing the
error.

Are we donewith the problems on this approach? No! There’s no guaran-
tee that I throw the right error!

The Trouble with Typed Errors 137

1 head :: [a] -> Either AllErrorsEver a

2 head (x:xs) = Right x

3 head [] = Left (AllLookupError KeyWasNotPresent)

This code type checks, but it’s wrong, because LookupError is only sup-
posed to be thrown by lookup! It’s obvious in this case, but in larger
functions and codebases, it won’t be so clear.

12.1 Monolithic error types are bad

So, having a monolithic error type has a ton of problems. I’m going to
make a claim here:

All error types should have a single constructor

That is, errors should not be sum types. The name of the type and name
of the constructor should be the same. The exception should carry actual
values thatwouldbeuseful inwritingaunit test ordebugging theproblem.
Carrying around a Stringmessage is a no-no.

Almost all programs can fail in multiple potential ways. How can we
represent this if we only use a single constructor per type?

Let’s maybe see if we can make Either any nicer to use. We’ll define a
few helpers that will reduce the typing necessary:

1 type (+) = Either

2 infixr + 5

3

4 l :: l -> Either l r

5 l = Left

6

7 r :: r -> Either l r

8 r = Right

Now, let’s refactor that uglier Either code with these new helpers:

The Trouble with Typed Errors 138

1 foo :: String

2 -> Either

3 (HeadError + LookupError + ParseError)

4 Integer

5 foo str = do

6 c <- mapLeft l (head str)

7 r <- mapLeft (r . l) (lookup str strMap)

8 mapLeft (r . r) (parse (c : r))

Well, the syntax is nicer. We can case over the nested Either in the error
branch toeliminate single error cases. It’s easier to ensurewedon’t claim
to throwerrorswedon’t - after all, GHCwill correctly infer the typeof foo,
and if GHC infers a type variable for any +, thenwe can assume thatwe’re
not using that error slot, and can delete it.

Unfortunately, there’s still the mapLeft boilerplate. And expressions
which you’d really want to be equal, aren’t –

1 x :: Either (HeadError + LookupError) Int

2 y :: Either (LookupError + HeadError) Int

The values x and y are isomorphic, but we can’t use them in a do block
because they’re not exactly equal. If we add errors, then we must revise
all mapLeft code, as well as all case expressions that inspect the errors.
Fortunately, these are entirely compiler-guided refactors, so the chance
ofmessing themup is small. However, they contribute significant boiler-
plate, noise, and busywork to our program.

12.2 Boilerplate be gone!

Well, turns out, we can get rid of the order dependence and boilerplate
with type classes! The first approach is to use “classy prisms” from the
lenspackage. Let’s translate our types fromconcrete values toprismatic
ones:

The Trouble with Typed Errors 139

1 -- Concrete:

2 head :: [a] -> Either HeadError a

3

4 -- Prismatic:

5 head :: AsHeadError err => [a] -> Either err a

6

7

8 -- Concrete:

9 lookup :: k -> Map k v -> Either LookupError v

10

11 -- Prismatic:

12 lookup

13 :: (AsLookupError err)

14 => k -> Map k v -> Either err v

Now, type class constraints don’t care about order - (Foo a, Bar a)
=> a and (Bar a, Foo a) => a are exactly the same thing as far as
GHC is concerned. The AsXXX type classes will automatically provide the
mapLeft stuff for us, so now our foo function looks a great bit cleaner:

1 foo :: (AsHeadError err, AsLookupError err, AsParseError err)

2 => String -> Either err Integer

3 foo str = do

4 c <- head str

5 r <- lookup str strMap

6 parse (c : r)

This appears to be a significant improvement over what we’ve had be-
fore! And, most of the boilerplate with the AsXXX classes is taken care of
via Template Haskell:

The Trouble with Typed Errors 140

1 makeClassyPrisms ''ParseError

2 -- this line generates the following:

3

4 class AsParseError a where

5 _ParseError :: Prism' a ParseError

6 _UnexpectedChar :: Prism' a (Char, String)

7 _RanOutOfInput :: Prism' a ()

8

9 -- etc...

10 instance AsParseError ParseError where

However, we do have to write our own boilerplate when we eventually
want to concretely handle these types. We may end up writing a huge
AppError that all of these errors get injected into.

There’s one major, fatal flaw with this approach. While it composes
nicely, it doesn’t decompose at all! There’s no way to catch a single case
and ensure that it’s handled. The machinery that prisms give us don’t
allow us to separate out a single constraint, so we can’t patternmatch on
a single error.

Once again, our types become ever larger, with all of the problems that
entails.

12.3 Type Classes To The Rescue!

What we really want is:

• Order independence
• No boilerplate
• Easy composition
• Easy decomposition

In PureScript or OCaml, you can use open variant types to do this flaw-
lessly. Haskell doesn’t have open variants, and the attempts to mock
them end up quite clumsy to use in practice.

The Trouble with Typed Errors 141

Fortunately, we can use type classes and constraints to do something
similar. Above, we had a bunch of problems with the “nested Either”
pattern - Either (Either (Either A B) C) D. This allows us to grow
and shrink the exception type, which allows us to handle cases and
introduce new ones. But the usability is quite bad.

The reason is that Either _ _ represents a binary tree of types.We don’t
want a binary tree - we want a Set. But a Set of types is best modeled as
a type class constraint. So we need a way to say that A, B, C, and D are all
‘in’ the type.

While I’d love to include this topic fully in the book, I feel it would be
dishonest. I haven’t used the technique in production, and cannot fully
recommend it. If you’re interested in reading about more experimental
stuff, then I would recommend the “Plucking Constraints”¹ blog post, as
well as theplucky² proof-of-concept library, and the super experimental
prio³ repository, which uses the plucky techniquewith IO-based excep-
tions.

12.4 The virtue of untyped errors

We’ve seen that typed errors have a number of problems. It’s difficult to
remove error cases. Theboilerplate is intense. Thebookkeeping is rarely
ergonomic or friendly.

Typed errors have lots of problems and require a lot of work. Meanwhile,
untyped errors have lots of problems but require little work. For this
reason, I think it’s best to stickwith untyped exceptions, until something
more robust comes along.

1 throwIO :: (Exception e) => e -> IO a

¹https://www.parsonsmatt.org/2020/01/03/plucking_constraints.html
²https://hackage.haskell.org/package/plucky
³https://github.com/parsonsmatt/prio

https://www.parsonsmatt.org/2020/01/03/plucking_constraints.html
https://hackage.haskell.org/package/plucky
https://github.com/parsonsmatt/prio
https://www.parsonsmatt.org/2020/01/03/plucking_constraints.html
https://hackage.haskell.org/package/plucky
https://github.com/parsonsmatt/prio

13. Exceptions
In the previous chapter, we talked about whymodeling errors is difficult.
GHC supports runtime exceptions. These exceptions have many of the
same features that you might find in a more mainstream programming
language, like Java. Exceptionsarepropagated throughanuntypedchan-
nel. They use a form of subtyping, popular in object oriented program-
ming languages. They have runtime-type information - used to perform
type-casts!

Haskell’s exception system is one of the trickier parts of the language to
learn. I don’t believe that is a coincidence. One of the most mainstream-
seeming features of the language is one of themore difficult to get right!

In this chapter, we’re going to explore some of Haskell’s dynamic typing
facilities, too.

Let’s get down to the dirty business of runtime exceptions in Haskell.

13.1 Exceptions In Five Minutes

You don’t need to understand exceptions deeply in order to use them
productively. Let’s consider this code sample:

1 import Control.Monad (when)

2 import Control.Exception

3 (throwIO, catch, Exception)

4

5 data MyException = MyException

6 deriving Show

7

8 instance Exception MyException

9

10 problem :: String -> IO Int

142

Exceptions 143

11 problem foo = do

12 when (foo == "uh oh") $ do

13 throwIO MyException

14 pure (length foo)

15

16 handler :: IO Int

17 handler =

18 problem "uh oh"

19 `catch`

20 \MyException -> do

21 putStrLn "handled!!!"

22 pure 0

We can derive Exception if there’s a Show instance for the datatype.
Once we have that Exception instance, we can then use throwIO to
throw values of this type in the runtime system. And we can use catch,
handle, and try to deal with exceptions when they happen.

If you want to catch every possible runtime exception, use the SomeEx-
ception type:

1 noExceptionsEver

2 :: IO a

3 -> IO (Either SomeException a)

4 noExceptionsEver action =

5 try action

You need to specify the type you’re catching somehow. It can be inferred
sometimes, but a lot of the time, you’ll need to provide a type annotation.
You’ll probably need ScopedTypeVariables language extension to do
this easily.

The following code samples are all equivalent.

Exceptions 144

1 ex0 = do

2 eres <- try (pure ())

3 case eres of

4 Left (err :: IOException) ->

5 print 10

6 Right () ->

7 print 20

8

9 ex1 = do

10 pure () >> print 20

11 `catch` \(err :: IOException) ->

12 print 10

13

14 ex2 = do

15 handle (\(err :: IOException) -> print 10) $ do

16 pure ()

17 print 20

So, that’s the easy stuff.

13.2 Best Practices

The phrase “best practices” is riddledwith assumptions, so let’s pretend
I titled the section “stuff I like.” That’s more honest, isn’t it? I’ve been
bitten by exceptions many times. They can be a nasty handful. They can
also be rather pleasant and informative. I’ve figured out a bag of tricks
that help make exceptions more useful.

Single Constructor

An exception type should have a single constructor. The single construc-
tor should share the name of the type.

In “The Trouble With Typed Errors”, I claim that is the right thing to do,
and I demonstrate why multiple cases on an error type means you can’t
handle or catch those individual constructors - it’s a package deal. But

Exceptions 145

requiring exception type and constructor names to match is a further
restriction.The reason isdue to the type-basedmechanismbywhichyou
catch exceptions.

Consider IOException. It has a single constructor: IOError. If youwant
to catch it, you can write a type signature on the lambda, or you can
pattern match on the constructor:

1 handle (\(err :: IOException) -> ...)

2 handle (\ err@IOError{..} -> ...)

But it’s not obvious that these two lambdas handle the same exception
types. Worse, suppose we have an exception data Err = X | Y. I can
write a handler function that will fail at runtime!

1 handle (\X -> ...)

This will fail if you throw a Y with a pattern match exception - and this
destroys the original Y exception information! But you won’t get even
a warning without explicitly turning on -Wincomplete-uni-patterns,
which is not enabled by the -Wall flag. Simply defining two separate
error types will allow this exception handling behavior to work exactly
as youmight want it to.

If an exception has a single constructor with the same name as the
type, it becomes obvious what type is being caught. The default Haskell
exception handler calls show on the exception to render it to the user. If
Show is derived for the exception type, then the user knows exactly what
exception to catch - because the constructor name shares the type name.
If my program dies with this output:

1 ***Exception:

2 UniqueKeyViolation

3 (UserKey 1234)

4 "the key 1234 is already present in the users table"

and the underlying library follows this advice, you can write:

Exceptions 146

1 try (insert user) :: IO (Either UniqueKeyViolation User)

This convention makes it easier to write code that handles exceptions
safely.

Unit Tests

An exception should carry enough information to write a test with. Ide-
ally, the end-user should know exactly what they did wrong, so they can
fix the error on their side. It should not use Text or String to convey that
information - prefer structured types and data whenever possible. It is
always easy to destroy information by calling show on a value. It is much
more difficult to recover that information.

A bad error message is:

1 Network.bind: socket busy

Which socket? What is being done? Why? The exception doesn’t include
this information.

A nicer exception would tell you exactly what went wrong - what values
caused a problem, what errors were encountered, and why it caused an
issue. This information should be conveyed - as much as possible - with
Haskell values that canbemanipulated. Insteadof Stringmessages,use
constructors and well typed fields.

1 -- bad

2 data SqlError = SqlError Text

3

4 -- good

5 data UniqueKeyViolation

6 = UniqueKeyViolation DbValue TableName ConstraintName

The more information you can include, the easier your users will find it
to fix the problems in their code. More information also aids handling
the exception when the exception is eventually caught.

Exceptions 147

If you write a library, and the underlying library throws exceptions, you
shouldwrap thoseexceptionswithadditional information, if youareable
to. For example, a low-level HTTP library might throw data Err404. A
higher level library for a specificwebservicemightwrap theErr404 type
in a more informative type that says exactly what went wrong.

Use a Hierarchy

Exception hierarchies are covered in the next section of this chapter.
You should use them. Exception hierarchies allow you to catch multiple
exceptions all at once and handle themuniformly.While this is bad prac-
tice when catching SomeException, it works great for a small domain of
errors that a library or application component may throw.

You may think: “Why not just a sum type of the possible error cases?”
This does give users the ability to catch “all exceptions thrown by my
library.” However, you run afoul of all the problems with “too large”
types.

Libraries that define an exception hierarchy around the exceptions they
define make it relatively easy to know what exceptions a library might
throw. Putting these all in a module named .Exceptionsmakes it even
easier! If you’re also wrapping exceptions from libraries you call, then
you ensure that your library users won’t be surprised by exceptions that
bubble up from your code. A little bit of effort here saves a lot of time
downstream.

Decorating Exceptions with Information

Sometimes you want to annotate exceptions with information, but it’s
clumsy to do so for every exception type. Suppose you wanted all of your
exceptions to include the UserId that was signed in to the service that
triggered the exception. Now, you need to include the UserId on a field
for every exception type:

Exceptions 148

1 -data MyException = MyException Int

2 +data MyException = MyException UserId Int

3

4 -data FooException = FooException Char

5 +data FooException = FooException UserId Char

6

7 {- etc... -}

What’s worse is that you need to pass that UserId to every function that
might throwan exception. But this doesn’t even solve the problem - third
party code could throw an exception that bypasses this! So you put in a
bunch of work, and it’s all for nothing.

I wrote annotated-exception¹ to solve this problem. This library al-
lowsyou to attacharbitrarydata to thrownexceptions. Youuse a function
checkpoint to attach an Annotation, and that annotation is included
on any exception that escapes the checkpoint.

With this technique, we don’t have to pass extraneous information
around. We don’t have to modify our core exception types. We also
get coverage for exceptions we never defined. This function is one
of many possible “local-like” functions which provide additional
information in a lexically scoped way. For example, we can build this
into an authorization function:

1 withLoggedInUser :: Email -> Password -> (Entity User -> App a) -> App a

2 withLoggedInUser email password action = do

3 entityUser <- login email password

4 checkpoint (Annotation (entityKey entUser)) $ do

5 action entUser

With this code, any exception that escapes the action entUser gets
annotatedwith the UserId thatwas logged in. Thismakes debugging the
problem easier.

Youwill likelywant to extend thislocal-likewith extra functionality. For
example, this provides information on exceptions that escape the scope,
but it does nothing else.Wemaywant to append this information to each

¹https://hackage.haskell.org/package/annotated-exception

https://hackage.haskell.org/package/annotated-exception
https://hackage.haskell.org/package/annotated-exception

Exceptions 149

log entry in the scope.Or,wemaywant to append the information to each
bug report from the scope. These lexically scoped local-like functions
are extremely powerful in their simplicity.

13.3 Hierarchies

Exception hierarchies give Haskell a flavor of subtyping polymorphism.
The documentation for the Exception type class² covers this pretty well,
but I’ll recap briefly.

All exceptions “inherit” fromSomeException.Whenyoudefine adefault
instance of the Exception class, your exceptions can still be caught
under a SomeException type. You can define a “subtype” wrapper that
looks like this:

1 data MyException where

2 MyException :: Exception e => e -> MyException

3

4 -- alternatively, without GADT syntax,

5 data MyException

6 = forall e. Exception e => MyException e

You’ll want to provide a means of casting to and from this wrapper type.
These functions all look like this:

1 import Data.Typeable (cast)

2 import Control.Exception (toException, fromException)

3

4 fromMyException :: Exception e => SomeException -> Maybe e

5 fromMyException someExn = do

6 MyException e <- fromException someExn

7 cast e

8

9 toMyException :: Exception e => e -> SomeException

10 toMyException e = toException (MyException e)

²https://hackage.haskell.org/package/base-4.14.0.0/docs/Control-Exception.html#t:Exception

https://hackage.haskell.org/package/base-4.14.0.0/docs/Control-Exception.html#t:Exception
https://hackage.haskell.org/package/base-4.14.0.0/docs/Control-Exception.html#t:Exception

Exceptions 150

Now, armed with these functions and types, we can write an exception
that inherits this.

1 data X = X

2

3 instance Exception X where

4 toException = toMyException

5 fromException = fromMyException

With this, we now have three possible ways to catch an X error:

1. try :: IO a -> IO (Either X a)
2. try :: IO a -> IO (Either MyException a)
3. try :: IO a -> IO (Either SomeException a)

But catching MyExceptionmeans that you’ll catch any other exceptions
that are defined to inherit from this class.

All of the boilerplate for defining exception hierarchies is pretty annoy-
ing, so I created the exception-via³ library tomake itmore convenient.
Let’s define another one.

1 data Y = Y

2 deriving Exception via Y <!!! MyException

This technique uses the DerivingVia language extension, which allows
for convenient and powerful deriving of type class instances.

13.4 Reinventing

Haskell’s exceptions are mostly implemented as library code. The effi-
cient implementation for throwing and catching in IO is baked into the
GHC runtime.WecanuseExceptT for a slower version, but it’ll work fine
to demonstrate how the exception system works.

³https://hackage.haskell.org/package/exception-via

https://hackage.haskell.org/package/exception-via
https://hackage.haskell.org/package/exception-via

Exceptions 151

Typeable

Exceptions use run-time type information to determinewhat exceptions
to catch. Usually, Haskell types are completely erased - type information
does not exist at run-time. We have the primitive function unsafeCo-
erce :: a -> b which can cast types, but it’s terribly unsafe. What we
want is a function cast :: a -> Maybe b that could allow us to make
these type-casts safely.

The Typeable type class gives us this run-time type information. This
class is automatically defined for every type - you don’t need to specify
it in any deriving clauses. You are completely forbidden from writing
your own instances of it.

The key method for Typeable is the function typeRep:

1 typeRep :: (Typeable a) => proxy a -> TypeRep

Somewhat confusingly, TypeRep is an alias for SomeTypeRep, which
wraps the real TypeRep (a :: k) - a kind indexed singleton datatype
that represents types in Haskell and supports fast equality, serialization,
and deserialization. While the details are fascinating⁴, we don’t need to
worry about them for our purposes. If two TypeReps for a type are equal,
then they are the same type. This means we can write our safeCast
function.

1 {-# language ExplicitForAll #-} -- [1]

2 {-# language ScopedTypeVariables #-} -- [2]

3

4 module ExceptionPrime where

5

6 import Data.Proxy (Proxy(..)) -- [3]

7 import Control.Monad (guard)

8 import Unsafe.Coerce (unsafeCoerce)

9 import Data.Typeable (Typeable, typeRep)

10

11 safeCast

⁴https://www.seas.upenn.edu/~sweirich/papers/wadlerfest2016.pdf

https://www.seas.upenn.edu/~sweirich/papers/wadlerfest2016.pdf
https://www.seas.upenn.edu/~sweirich/papers/wadlerfest2016.pdf

Exceptions 152

12 :: forall b a. -- [4]

13 (Typeable a, Typeable b) -- [5]

14 => a -> Maybe b

15 safeCast a = do

16 let

17 aRep = typeRep (Proxy :: Proxy a) -- [6]

18 bRep = typeRep (Proxy :: Proxy b)

19 guard (aRep == bRep) -- [7]

20 pure (unsafeCoerce a) -- [8]

Let’s dig in to this.

1. We need ExplicitForAll in order to write the forall a b. syn-
tax to explicitly introduce the type variables.

2. We need ScopedTypeVariables to put the type variables a and b
in scope in the function body, so we can then use Proxy :: Proxy
a. Without this extension, the Proxy :: Proxy a would refer to a
totally different type variable, and the functionwouldn’t type check.

3. I usually don’t bother writing imports explicitly, but since we’re
reinventing stuff, it’s good to be explicit aboutwhat is newandwhat
is defined here.

4. The order in which type variables are introduced is an important
component of programming at the type-level. Without an explicit
forall, it’s assumed that type variables are introduced in the order
they are used. With an explicit forall, we can provide a more
convenient interface. By giving the result type as the first type
variable, that allows end users to write safeCast @Foo bar. If the
order were forall a b, then the end user would need to write
safeCast @_ @Foo bar or safeCast bar :: Maybe Foo.

5. The Typeable a constraint means that this function requires run-
time type information.Remember - constraints inHaskell translate
to dictionaries that are passed implicitly. At run-time, this function
accepts three arguments: the two Typeable dictionaries and the a
value.

6. We call typeRep (Proxy :: Proxy a) to get the aRep :: Type-
Rep value. The definition of typeRep doesn’t specify which Proxy
you pass - anything can work. Before Proxy was a part of base,
you could have passed Nothing :: Maybe a, and this would have
worked fine.

Exceptions 153

7. The function guard :: Alternative m => Bool -> m () will
call empty if the argument is False. For Maybe, this means Noth-
ing.

8. If the guard was True, then we know that the TypeRep for a and b
are equal. This means that the type a and b are the same. Which
means that it is safe to write unsafeCoerce a :: b.

Refl

This pattern is going to be somewhat common. We want to compare two
types for equality, and conditionally act on the result. It’d be nice to avoid
writing unsafeCoerce all over the place, too.

GHC Haskell gives us a type operator (∼) :: k -> k -> Constraint
translates to type equality. We can use this for assigning shorthand
names:

1 before

2 :: ExceptT e (StateT s (ReaderT r IO)) a

3 -> ExceptT e (StateT s (ReaderT r IO)) b

4 -> ExceptT e (StateT s (ReaderT r IO)) c

5

6 after

7 :: (monad ~ ExceptT e (StateT s (ReaderT r IO)))

8 => monad a

9 -> monad b

10 -> monad c

We can write safeCastwith this constraint:

1 safeCast :: (a ~ b) => a -> Maybe b

2 safeCast a = Just b

3 where

4 b = a

Actually, there’s no way to call this with two different types. It’s impossi-
ble for it to fail - we don’t have any run-time type information to check
on! We have to statically know that a ∼ b is true. But then the Maybe is
unnecessary - we can just write it as:

Exceptions 154

1 id :: (a ~ b) => a -> b

2 id a = b

3 where

4 b = a

That’s not what we want. So how do we get the constraint in scope,
conditionally, based on a run-time value?

The answer is a GADT.

1 data a :~: b where

2 Refl :: a :~: a

This technique is a bit opaque. The type is named :∼:, and it’s trying
to invoke familiarity with the constraint operator ∼ for type equality.
Refl stands for “Reflexive Equality” - if a == b then b == a should
hold too. Now that we know the name, how does it work? The GADT
syntax is hiding the constraint that we’re packing. We can rewrite it in
the “standard” form to make it explicit:

1 data TypeEquality a b = (a ~ b) => TypesAreEqual

This is still doing something tricky - that (a ∼ b) => TypesAreEqual
looks an awful lot like a nullary constructor, like Proxy:

1 data Proxy a = Proxy

But we’re actually carrying around the constraint in the data constructor.
If we were to write it fully explicitly (using the Dict type from the
constraints⁵ package), it would look like this:

1 data TypeEqualityExplicit a b = TypesAreEqualExplicit (Dict (a ~ b))

Whenwepatternmatch on TypesAreEqual, we introduce the constraint
a ∼ b into scope. This is part of GADTss powers - constraints and types
can be brought into scope with a pattern match. Now we can limit our
use of unsafeCoerce to a single location:

⁵https://hackage.haskell.org/package/constraints

https://hackage.haskell.org/package/constraints
https://hackage.haskell.org/package/constraints

Exceptions 155

1 typeEquality

2 :: forall a b. (Typeable a, Typeable b)

3 => Maybe (a :~: b)

4 typeEquality =

5 if typeRep (Proxy @a) == typeRep (Proxy @b)

6 then Just (unsafeCoerce Refl)

7 else Nothing

Let’s try to use this.

1 safeCast'' :: forall b a. (Typeable a, Typeable b) => a -> Maybe b

2 safeCast'' a =

3 case typeEquality @a @b of

4 Just Refl ->

5 Just a

6 Nothing ->

7 Nothing

This works! It compiles and it runs. Pattern matching on the Refl con-
structor brings the constraint a ∼ b into scope, which tells GHC that we
can treat an a like a b in this case. We wrap it up in a Just, which allows
us to handle the Unknown case with a Nothing.

Dynamic

Wenow have the ability to create a dynamic type. Interestingly, Dynamic
types in Haskell works much like they do in other languages.

1 data Dynamic where

2 Dynamic :: Typeable a => a -> Dynamic

A Dynamic is a value paired with it’s run-time type information, with the
concrete type hidden. We can cast from a Dynamic:

Exceptions 156

1 fromDyn :: forall a. Typeable a => Dynamic -> Maybe a

2 fromDyn (Dynamic (a :: b)) = -- [1]

3 case typeEquality @a @b of -- [2]

4 Just Refl -> Just a -- [3]

5 Nothing -> Nothing

1. When pattern matching on the Dynamic, we can provide a type
signature to the a value. This introduces the b type variable.

2. Now we can call typeEquality and provide the a and b type vari-
ables as TypeApplications arguments.

3. If the two types are equal, then we can return what you expected. If
not, we give you Nothing back.

This is a bit less useful than it is in languages with implicit subtyping.
Note that we can’t cast an Int to an Integer:

1 λ> fromDyn @Int (Dynamic (3 :: Integer))

2 Nothing

In Ruby, we’d expect a Dynamic (3 :: Integer) to be able to respond
to any numeric messages. Haskell’s dynamic types aren’t quite as pow-
erful.

Now that we have our Dynamic types, we’re ready to have exceptions.

Either Dynamic

Alright, let’s define the two critical functions for exceptions: throw and
catch.

1 throw :: (Typeable e) => e -> Either Dynamic a

2 throw e = Left (Dynamic e)

This one is easy enough - we’re hiding information, after all. catch will
be abitmore tricky, becausewe’re refining information:we’reproducing
something of a type we may not know about! Let’s look at our type
signature:

Exceptions 157

1 catch

2 :: forall e a. (Typeable e)

3 => Either Dynamic a -- ^ the action

4 -> (e -> Either Dynamic a) -- ^ the exception handler

5 -> Either Dynamic a -- ^ the result

Before we go too much further, try writing this one yourself.

OK, let’s get it, line by line.

1 catch action handler =

First up, let’s case on the action. If it is a Right value, then we can just
return Right. Easy.

1 case action of

2 Right a -> Right a

If it’s a Left Dynamic, then we’ll want to pattern match on Dynamic to
bring the type variable into scope. Then, we can use typeEquality to
compare the type thatwe’re trying to catch and the typewe actually have.

1 Left (Dynamic (err :: err)) ->

2 case typeEquality @err @e of

If the two types are equal, thatmeanswe know that e ∼ err, andwe can
call the handler :: e -> Either Dynamic a function. If they are not
equal, then we have to return the original error.

1 Just Refl -> handler err

2 Nothing -> Left (Dynamic err)

Let’s try it out.

Exceptions 158

1 λ> throw (1 :: Int) `catch` (\(x :: Int) -> Right "Got it")

2 Right "Got it"

3 λ> throw (1 :: Int) `catch` (\(x :: Integer) -> Right "Got it")

4 Left <<dynamic>>

That’s it - we can throw and catch dynamically typed exceptions. But
we’remissing the hierarchies of exceptions that gave us subtyping. Let’s
implement that.

A New Hierarchy

The Dynamic type allows us to select single, individual types. The hier-
archy is flat - Dynamic contains everything equally. But we want to be
able to talk about exceptions being subtypes of other exceptions. Let’s
say we’ve got an AppException type with HttpException as a subtype.
We can represent that like so:

1 data AppException where

2 AppException :: Typeable a => a -> AppException

3

4 data HttpException = HttpException

5 data DbException = DbException

We’re going to want to be able to catch amere HttpException, as well as
any AppException at all that might get thrown.

1 throwApp :: Typeable e => e -> Either Dynamic a

2 throwApp e = Left (Dynamic (AppException e))

3

4 catchApp

5 :: forall e a. (Typeable e)

6 => Either Dynamic a

7 -> (e -> Either Dynamic a)

8 -> Either Dynamic a

9 catchApp action handler =

10 action `catch` \e -> case e of

Exceptions 159

11 AppException (e :: err) ->

12 case typeEquality @e @err of

13 Just Refl -> handler e

14 Nothing -> throwApp e

This almost works.We can catch and throw themdirectly, but we have to
remember to use the specific *App functions.

1 -- Good: should catch, does

2 λ> throwApp HttpException `catchApp` \HttpException -> Right "Got it"

3 Right "Got it"

4 -- Good: should not catch, doesn't

5 λ> throwApp HttpException `catchApp` \DbException -> Right "Got it"

6 Left <<dynamic>>

7 -- Good: should not catch, doesn't

8 λ> throwApp HttpException `catch` \DbException -> Right "Got it"

9 Left <<dynamic>>

10 -- Good: should catch, does

11 λ> throw HttpException `catch` \HttpException -> Right "Got it"

12 Right "Got it"

13

14 -- Bad: should catch, doesn't

15 λ> throwApp HttpException `catch` \HttpException -> Right "Got it"

16 Left <<dynamic>>

17 -- Bad: should catch, does not

18 λ> throw HttpException `catchApp` \HttpException -> Right "Got it"

19 Left <<dynamic>>

Furthermore, there’s nothing specific about the throwApp that requires
we throw a specific App exception. There’s nothing saying we can’t write
throwApp (3 :: Int). It seems like the way we convert a type into a
Dynamic should be a property of the type and not the function we use to
throw. So let’s make a type class that tells us how to convert a type to a
Dynamic, and we’ll redefine throw in terms of it.

Exceptions 160

1 class Typeable e => Exception e where

2 toException :: e -> Dynamic

3

4 instance Exception Dynamic where

5 toException = id

6

7 instance Exception AppException where

8 toException = Dynamic

9

10 instance Exception HttpException where

11 toException = Dynamic . AppException

12

13 instance Exception DbException where

14 toException = Dynamic . AppException

15

16 throw :: Exception e => e -> Either Dynamic a

17 throw err = Left (toException err)

Unfortunately, catching is now broken - it only works to catch an excep-
tion that is a direct inheritor of Dynamic, not anything else.

1 λ> throw HttpException `catch` \(AppException err) -> Right "Got it"

2 Right "Got it"

3 λ> throw HttpException `catch` \HttpException -> Right "Got it"

4 Left <<dynamic>>

This suggests that we need to also handle converting from Dynamic as
part of the class.

Exceptions 161

1 class (Typeable e) => Exception e where

2 toException :: e -> Dynamic

3 fromException :: Dynamic -> Maybe e

4

5 instance Exception Dynamic where

6 toException = id

7 fromException = Just

8

9 instance Exception AppException where

10 toException = Dynamic

11 fromException = fromDyn

12

13 instance Exception HttpException where

14 toException = Dynamic . AppException

15 fromException dyn = do

16 AppException e <- fromException dyn

17 safeCast'' e

18

19 instance Exception DbException where

20 toException = Dynamic . AppException

21 fromException dyn = do

22 AppException e <- fromException dyn

23 safeCast'' e

Indeed, the pattern in FromException for our two subtypes can be
factored out:

1 fromAppException :: Typeable e => Dynamic -> Maybe e

2 fromAppException dyn = do

3 AppException e <- fromDyn dyn

4 safeCast'' e

5

6 instance Exception HttpException where

7 toException = Dynamic . AppException

8 fromException = fromAppException

9

10 instance Exception DbException where

Exceptions 162

11 toException = Dynamic . AppException

12 fromException = fromAppException

Now, we’ll rewrite catch to use fromException rather than comparing
the types directly:

1 catch

2 :: forall e a. (Exception e)

3 => Either Dynamic a

4 -> (e -> Either Dynamic a)

5 -> Either Dynamic a

6 catch action handler =

7 case action of

8 Right a ->

9 Right a

10 Left err ->

11 case fromException err of

12 Just e -> handler e

13 Nothing -> throw err

And it works!

1 λ> throw HttpException `catch` \HttpException -> Right "Got it"

2 Right "Got it"

3 λ> throw HttpException `catch` \(AppException err) -> Right "Got it"

4 Right "Got it"

Now you know exactly how exceptionswork inHaskell - at least, as far as
we’re able to care, without digging too deep into the runtime system.

13.5 Asynchronous Exceptions

Asynchronous exceptions are an extremely tricky subject. Java used to
have them, but theywere removed due to complicating the language and
implementation. Haskell retains them, and this decision has lost a lot of

Exceptions 163

programmers a lot of time.However, theyhave significant advantages for
multithreaded programming, so it’s impossible to say if they are good or
bad.

I won’t cover this topic in depth. Instead, I’m going to offer a brief
overview, and then point you to some great resources.

In Five Minutes

Control.Exception exposes a function throwTo

1 throwTo

2 :: (Exception e)

3 => ThreadId

4 -> e

5 -> IO ()

When you throw an exception to a thread, that exception is delivered
whenever the thread may be interrupted. Threads can be interrupted
while allocating memory, so they can be interrupted at pretty much any
time.

1 thread1 :: IO ()

2 thread1 = do

3 threadId <-

4 forkIO $ do

5 let !result = sum $

6 map someExpensiveFunction [1 .. 100000]

7 print result

8 throwTo threadId (userError "oh no")

The forked thread attempts to calculate the relatively large number, but
will be interrupted by the asynchronous exception before it can finish.
Compare this with Java - while you can explicitly interrupt a thread,
the receiving thread must either be polling for interruptions or doing a
Thread.sleep or comparable blocking function. If we tried to write the

Exceptions 164

above example in Java that would safely be interruptible, we’d need to
have an alternative sum or map that occasionally polled for interrupts.

You can mask an action, which means that your thread will only receive
asynchronous exceptions while blocked. The runtime system is blocked
when performing file IO, or when trying to takeMVar. This state is pretty
similar to Java’s system for handling thread interruption.

Finally, you can uninterruptibleMask an action, which means that
asynchronous exceptions will never be delivered. While this seems ap-
pealing, it can break the functionality of other libraries that rely on
this behavior. Consider the async library’s racemethod: this runs two
actions and provides the result of the first one to complete:

1 race :: IO a -> IO b -> IO (Either a b)

This function uses an asynchronous exception to kill the thread that
hasn’t finished. But if you perform race within an uninterruptible-
Mask, then the asynchronous exception won’t be delivered, and you’ll
have to wait until both threads complete.

But suppose you do a relatively common polling technique:

1 updateSomeSharedStatePeriodically :: IO Void

2 updateSomeSharedStatePeriodically =

3 forever $ do

4 threadDelay 5000000

5 putStrLn "still running . . ."

6

7

8 uninterruptibleMask_ $ do

9 race updateSomeSharedStatePeriodically $ do

10 performSomeLongRunningWork

Since the first actionwill runforever, this codewillnever exit, evenwhen
performSomeLongRunningWork completes.

You generally do notwant to do uninterruptibleMaskunless you know
exactly what you are doing. The way this can bite you is if you are using

Exceptions 165

the unliftio suite or the safe-exceptions library. In that library,
bracket and onException performs the cleanup action in an uninter-
ruptibleMask. If you use async in those places, then you’ll get the bad
behavior.

Resources

• The safe-exceptions⁶ package is a good starting point for most
Haskell application development.

• The Asynchronous Exception Handling⁷ blog post is a good re-
source for understanding what’s going on.

• Parallel andConcurrentProgramming inHaskell⁸ bySimonMarlow
covers asynchronous exceptions well

13.6 The Theory

Haskell did not always have exceptions. It turns out that it is difficult
to reconcile laziness and exceptions. The paper ‘A Semantics for Im-
precise Exceptions’⁹ introduced a sound theoretical basis on which to
have exceptions while also preserving laziness, equational reasoning,
and purity.

In most languages, throwing exceptions is something that happens in a
statement. Trying to throwan exception in an expression is often a parse
error.

1 // Java

2 public class ExceptionTest {

3 public statid void main() {

4 int a = 1 + throw new Exception();

5 }

6 }

This

⁶https://hackage.haskell.org/package/safe-exceptions
⁷https://www.fpcomplete.com/blog/2018/04/async-exception-handling-haskell/
⁸https://www.oreilly.com/library/view/parallel-and-concurrent/9781449335939/
⁹https://www.microsoft.com/en-us/research/wp-content/uploads/1999/05/except.pdf

https://hackage.haskell.org/package/safe-exceptions
https://www.fpcomplete.com/blog/2018/04/async-exception-handling-haskell/
https://www.oreilly.com/library/view/parallel-and-concurrent/9781449335939/
https://www.microsoft.com/en-us/research/wp-content/uploads/1999/05/except.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/1999/05/except.pdf
https://hackage.haskell.org/package/safe-exceptions
https://www.fpcomplete.com/blog/2018/04/async-exception-handling-haskell/
https://www.oreilly.com/library/view/parallel-and-concurrent/9781449335939/
https://www.microsoft.com/en-us/research/wp-content/uploads/1999/05/except.pdf

Exceptions 166

gives us the error:

1 error: illegal start of expression

2 int x = 1 + throw new Exception();

3 ^

JavaScript fails in a similar way:

1 var a = 1 + throw new Error();

2

3 // Uncaught SyntaxError: Unexpected token 'throw'

Python fails here too:

1 a = 1 + raise Exception

2

3 # SyntaxError: invalid syntax For

these languages, it’s easy to determine a semantics for what exceptions
an expression throws: none. Exceptions are only thrown in statements.
So the question becomes: what exception does a statement throw? And
that’s trivial, as a statement that throws an exception can only throw an
exception.

Of the languages I’m familiar with, only Ruby allows throwing an excep-
tion as an expression:

1 a = 1 + raise(Exception.new 1)

2 # Exception (1)

Ruby evaluates left-to-right here - we’re guaranteed that the first argu-
ment is evaluated, and then the second, which triggers the exception.

In all of these cases, we can understand precisely what exceptions will
be thrown. Given this Java code:

Exceptions 167

1 throw new Exception();

2 throw new Exception();

You’ll get an error - “unreachable statement.” In Ruby, if we write:

1 a = raise(Exception.new 1) + raise (Exception.new 2)

then we are guaranteed to always receive the first one. Ruby evaluates
arguments strictly, from left-to-right, before going into the method call.

Inmost programming languages, exceptions are amechanismof control
flow. If you have a value, you have a value.

Exceptions In Data

In Haskell, exceptions hide inside values. This is because Haskell values
may be values, or they may be thunks that will eventually produce that
value.

Haskell’s laziness throws a bit of a wrench into things.

1 let a = error "1" + error "2"

The semantics of the language don’t specify which error will get thrown.
GHC is capable of reordering exactly which bit of code will get evaluated
before going into the function +. “A Semantics for Imprecise Exceptions”
gives the following example:

1 zipWith f [] [] = []

2 zipWith f (x:xs) (y:ys) = f x y : zipWith f xs ys

3 zipWith _ _ _ = error "Unequal lists"

Note that this is not how zipWith is actually defined. The actual function
truncates when one list ends.

We can have a few calls:

Exceptions 168

1 zipWith (+) [1] [] =

2 error "Unequal lists"

3 zipWith (+) [1,2] [1] =

4 2 : error "Unequal lists"

5 zipWith div [1,2] [1,0] =

6 1 : error "divide by zero" : []

These results may or may not throw exceptions depending on how far
you evaluate the data structure. Consider these examples. I’m going to
step through the evaluation process on a line-by-line basis.

1 -- Initial expression

2 >>> head (zipWith (+) [1,2] [1])

3

4 -- `head` demands the first element of the list.

5 -- This forces an evaluation of `zipWith`

6 head ((1 + 1) : zipWith (+) [2] [])

7

8 -- head pattern matches on the `:` constructor and returns. It

9 -- ignores the tail of the list.

10 head (a : _) = a

11

12 head (1 + 1 : _)

13 1 + 1

14 2

Next, we’ll look at an example where we might get a “Division by Zero”
error:

Exceptions 169

1 >>> head (zipWith div [1,2] [1,0])

2

3 -- head demands the first element

4 head (div 1 2 : zipWith div [2] [0])

5

6 -- head discards the tail

7 head (div 1 2 : _)

8

9 -- head returns

10 div 1 2

11

12 -- print evaluates to 1

13 1

The two prior examples both use head to discard the tail of the list. Let’s
seewhat happenswith an example that starts processing the list entirely.

1 -- Initial expression:

2 >>> zipWith div [1,2] [1,0]

3

4 -- GHCi calls `print` on the value, which prints each

5 -- character one by one.

6 print (zipWith div [1,2] [1,0])

7

8 -- inline definition of print

9 putStrLn (show (zipWith div [1,2] [1,0]))

10

11 -- putStrLn demands first character from `show`

12 -- show, in turn, demands the first element of the list

13 putStrLn (show (div 1 2 : zipWith div [2] [0]))

14

15 -- show produces an open bracket and then calls show on

16 -- the first element of the list. the rest of the list

17 -- gets show', which finishes off the list stuff.

18 putStrLn ('[' : show (div 1 2) : show' (zipWith div [2] [0]))

19

20 -- putStrLn happily outputs the [character and demands

Exceptions 170

21 -- the next one

22 putStrLn (show (div 1 2) ++ ',' : show (zipWith div [2] [0]))

23 [

24

25 -- show evaluates it's argument and yields the string:

26 putStrLn ('1' : ',' : show (zipWith div [2] [0]))

27

28 -- putStrLn is able to print the two characters, and

29 -- then demands the next bit.

30 putStrLn (show' (zipWith div [2] [0]))

31 [1,

32

33 -- zipWith evaluates out to `div 2 0`

34 putStrLn (show' (div 2 0 : zipWith div [] []))

35

36 -- show' evaluates the argument and produces the error

37 [1,*** Exception: divide by zero

In the prior case, we get a runtime exception because evaluate a value
that divides by 0. But wemanage to print out a few characters before we
even get to the exception. This is laziness.

But what if we don’t evaluate it? Let’s take the length of the list instead.
length is defined (more-or-less) like this:

1 length [] = 0

2 length (_ : xs) = 1 + length xs

It does not evaluate the elements of the list - only the structure of the list.

Exceptions 171

1 >>> length (zipWith div [1,2] [1,0])

2

3 -- length demands first cons of list

4 length (div 1 2 : zipWith div [2] [0])

5

6 -- length does not evaluate the first element

7 length (_ : zipWith div [2] [0])

8

9 -- recurse

10 1 + length (zipWith div [2] [0])

11 1 + length (div 2 0 : zipWith div [] [])

12 1 + length (_ : zipWith div [] [])

13

14 1 + 1 + length (zipWith div [] [])

15 1 + 1 + length []

16 1 + 1 + 0

17

18 2

In a strict language, this would throw an exception before yielding a
single character. In Haskell, we’re capable of getting ameaningful result,
even if there’s an exception hiding in the list.

Since exceptions live in values and are only triggered upon evaluation,
and since laziness means that expressions can be reordered, we can’t
know what exception might be thrown by a given expression. The same
syntax might yield different exceptions depending on how the program
is evaluated.

Imprecise Exceptions

The solution is to say that an expression can throw from a set of excep-
tions, not merely a single exception. When two expressions are com-
bined, you take the union of the sets.

Exceptions 172

1 bad = foo (error "lol") (error "bar") + error "baz"

2 {- exception set: { "lol", "bar", "baz" } -}

This expression could throw any of these exceptions. It is indeterminate
- imprecise.

For this reason, we can’t write a pure function tryPure -

1 tryPure :: a -> Either SomeException a

Why not? It might have a different result depending on how GHC evalu-
ates the argument. So if we try to tryPure bad, wemight get ErrorCall
"lol", or ErrorCall "bar". This gives us some problems: suppose we
have this expression.

1 let x = tryPure bad

2 in x == x

This should always return True - x == x should always be True! And,
it should also always be safe to inline pure values in Haskell with their
definitions. This is the ‘referential transparency’ thing that Haskellers
love so much.

But if we inline x, it’ll possibly break!

1 tryPure bad == tryPure bad

Depending on exactly how this evaluates, we may get a different result.
This is why trymust be in IO - it’s not guaranteed to produce the same
result for a given input every time, and non-determinism is the domain
of IO.

13.7 HasCallStack

HasCallStack attempts tomake it a little easier to understand how and
why an error occurred. Unfortunately, it’s not particularly useful. You

Exceptions 173

must mention it in the type signature of every function you want the
callstack to appear in. If any function doesn’t have it, the chain is broken,
and the callstack is lost. So if youcall any library code, youprobablywon’t
get a callstack.

What’s worse is that the callstacks only apply to error calls! throwIO
does not get a callstack. So you only get callstacks with exceptions that
don’t carry any useful information.

Above, I referred to the annotated-exception¹⁰ library. This library
provides a partial solution to the above problem: a CallStack is in-
cluded on thrown exceptions. Additionally, the various checkpoint,
catch, etc methods that add information to exceptions also add Call-
Stack entries. This provides much more information than you get by
default, even if youdon’t provide any other annotations to the exceptions
in question.

A future version of GHC should have all exceptions decorated with back-
trace information¹¹, which should result in a nice usability improvement
for CallStacks.

¹⁰https://hackage.haskell.org/package/annotated-exception
¹¹https://github.com/ghc-proposals/ghc-proposals/pull/330

https://hackage.haskell.org/package/annotated-exception
https://github.com/ghc-proposals/ghc-proposals/pull/330
https://github.com/ghc-proposals/ghc-proposals/pull/330
https://hackage.haskell.org/package/annotated-exception
https://github.com/ghc-proposals/ghc-proposals/pull/330

14. EDSL Design
Haskell folkswon’t stop talkingaboutDSLs. Theymean“DomainSpecific
Languages” - a relatively small programming language that’s designed
for a specific purpose. This is in contrast with “general purpose pro-
gramming languages,”which are supposed to be good at doing just about
anything. Java, C, Ruby, Python, Haskell, etc are all general purpose
programming languages.

It’s not a clear binary - some people say that C is a DSL for writing as-
sembly language code. Modern SQL is a Turing complete programming
language, but originally it’s a DSL for relational algebra and database
access. The Cucumber testing framework has a DSL for writing test
expectation in semi-natural language. So there’s a bit of a spectrum.

An EDSL is an “embedded” domain specific language. Embedded here
means “embedded in the host language.” A typical DSL is parsed from
text into a data structure and then interpreted - much like ordinary
programming languages. An embedded language is built in to the host
language - it reuses the host language’s parser, type checker, etc.

An embedded language is also known as a “library,” particularly one
that cares about syntax and looking pretty. An EDSL tries to make the
host language look asmuch like another language as possible. Haskell is
absolutely brilliant for designing embedded languages. There are a few
tricks that allow for remarkable flexibility in syntax:

• do notation
• Overloaded literals
• RebindableSyntax
• White-space-as-function-application
• Type classes for name overloading
• Custom type error messages
• Infix functions

All languages are, in a sense, data structures. So languages are separated
into two phases: constructing that data structure and evaluating it.

174

EDSL Design 175

14.1 Tricks with do

Do notation is a powerful syntactic tool for lightweight, statement-based
syntax. Any type that has an instance of Monad can work with it. Rebind-
ableSyntax allows you to define local >>= and return functions that
don’t correspond to Monad at all.

Building Data Structures

Lists

do notation can work quite nicely to build tree-like data structures. Pro-
gramming languages are generally tree-like. Let’s start with a list builder.
Lists are a sort of tree!

1 -- abstract

2 newtype ListBuilder acc a

3 = ListBuilder

4 { unListBuilder :: Writer [acc] a

5 }

6 deriving

7 newtype (Functor, Applicative, Monad)

8

9 -- the API

10 runListBuilder :: ListBuilder acc a -> [acc]

11 runListBuilder (ListBuilder w) =

12 execWriter w

13

14 add :: acc -> ListBuilder acc ()

15 add a =

16 ListBuilder $ tell [a]

17

18 -- our desired syntax

19 list = runListBuilder $ do

20 add 1

21 add 2

EDSL Design 176

22 add 3

23 add 4

24

25 -- result

26 list == [1,2,3,4]

We can often leverage preexisting monads, without having to write our
own.TheWriter interface is particularly useful for this.State is a better
choice - it supports the sameoperations anddoesn’t have anydownsides.
The standard Writermonad carries a significant performance problem,
and the “fix” is exactly equal to the State monad. Let’s rewrite List-
Builder in terms of this:

1 newtype ListBuilder acc a

2 = ListBuilder

3 { unListBuilder :: State [ac] a

4 }

5

6 runListBuilder :: ListBuilder acc a -> [acc]

7 runListBuilder (ListBuilder s) =

8 execState s []

9

10 add :: acc -> ListBuilder acc ()

11 add a =

12 ListBuilder $ modify (\s -> s ++ [a])

Trees

Let’s make a tree builder now. Here’s the API for our builder:

EDSL Design 177

1 add :: acc -> TreeBuilder acc ()

2

3 nest :: TreeBuilder acc a -> TreeBuilder acc ()

4

5 buildTree :: TreeBuilder acc a -> Forest acc

6

7 data Tree a = Leaf a | Node [Tree a]

8

9 type Forest a = [Tree a]

add adds a single element to the current state. nest creates a subtree
and adds that to the state. This new function, nest, is what turns it into
a tree. And syntactically, our expressions will even look like trees.

1 example :: Forest Int

2 example = buildTree $ do

3 add 1

4 nest $ do

5 add 2

6 nest $ do

7 add 10

8 add 11

9 add 3

10 add 4

We can write it without do notation just fine.

1 example =

2 [Leaf 1

3 , Branch

4 [Leaf 2

5 , Branch

6 [Leaf 10

7 , Leaf 11

8]

9 , Leaf 3

EDSL Design 178

10]

11 , Leaf 4

12]

However, it’s nice to be able to reuse do notation and all the niceties of
Monadwhen you’re writing your DSL.

1 example a = buildTree $ do

2 add 1

3 when (a == 3) $ do

4 add 2

5 add 3

Conditionally adding elements to a list is a little more annoying.

1 example a =

2 [Leaf 1]

3 ++

4 if a == 3

5 then

6 [Leaf 2

7 , Leaf 3

8]

9 else

10 []

Wecan also add further capabilities to our TreeBuilder type - including
making it amonad transformerwith IO capabilities. Adding IO function-
ality to the bare Forest variant is deeply inconvenient.

EDSL Design 179

Exercise: Maps

Try to write a Map building DSL. This is what the end code
should look like:

1 asdf :: Map String Int

2 asdf = runMapBuilder $ do

3 set "a" 1

4 set "b" 2

This is essentially equivalent to:

1 asdf0 :: Map String Int

2 asdf0 = Map.fromList

3 [("a", 1)

4 , ("b", 2)

5]

BlockArguments

The recent BlockArguments language extension improves Haskell syn-
tax by allowing certain constructs (like do, case, if, and lambdas) to be
applied as arguments to functions directly. PureScript had this first, and
it was good a great idea that Haskell stole it.

The clearest win is with the runST :: (forall s. ST s a) -> a
function. You’d usually write it like:

1 runST $ do

2 a <- newSTRef 0

3 forM_ [1..10] $ \i -> do

4 modifySTRef a (+i)

5 readSTRef a

However, $ doesn’t have the right type if you define it yourself. There’s a
lot of weird compilermagic to special-case $ that doesn’t work for (.) or
any other operator. BlockArguments lets you write the much nicer:

EDSL Design 180

1 runST do

2 a <- newSTRef 0

3 forM [1..10] \i -> do

4 modifySTRef a (+ i)

5 readSTRef a

There’s much less noise from $ operators. We were able to remove the $
after runST as well as forM [1..10].

I don’t like explaining weird special case rules. They’re annoying to look
upand talk about, especially in operators,which aren’t easilyGoogleable.
That BlockArguments allows you to avoid the ubiquitous $ in many
cases is reason enough to use it globally, in my opinion.

But - my favorite bit is that it enables paren-free multiple function
arguments. Let’s consider our own variant of the if syntax. The function
is easy enough to define:

1 if_ :: Bool -> a -> a -> a

2 if_ b t f = if b then t else f

But it’s annoying to use. We have to wrap arguments in parentheses,
which isn’t at all like the actual if expression in Haskell.

1 if a && b

2 then do

3 x <- readFile "what"

4 pure 10

5 else do

6 putStrLn "it was false"

7 pure 20

8

9 if_ (a && b)

10 (do

11 x <- readFile "what"

12 pure 10)

13 (do

14 putStrLn "it was false"

15 pure 20)

EDSL Design 181

I’m not a fan of parentheses, to be honest. You put a paren here, and
now you have to put a close-paren somewhere over there. Where? It’s
not immediately knowable. It could be way over there! Then you have
to specially structure the text tomake it obvious which close-paren goes
withwhich open-paren. But the structuremay bewrong andmisleading,
whichmakes it harder to read the code.

Fortunately, do can be used for non-monadic things, as long as you don’t
use a bind arrow (<-).

1 if_

2 do a && b

3 do

4 x <- readFile "what"

5 pure 10

6 do

7 putStrLn "it was false"

8 pure 20

We can use do as a bullet point of sorts. This makes it especially nice for
functions that act as control structures in an EDSL.

In SQL, there’s no such thing as if. You write a CASE expression instead,
which is a more flexible variant.

1 CASE WHEN cond0 THEN res0

2 WHEN cond1 THEN res1

3 ELSE res2

4 END

It’s usually nice to have if, so I’ve implemented it in the work codebase
for the esqueleto database library.

EDSL Design 182

1 if_ :: SqlExpr (Value Bool) -> SqlExpr a -> SqlExpr a -> SqlExpr a

2 if_ bool whenTrue whenFalse =

3 case_

4 [when_ bool then whenTrue

5]

6 (else_ whenFalse)

With BlockArguments, this cleans up the syntax nicely. You get another
nice trick with do.

14.2 Overloaded Literals

Haskell allows you to define instance of type classes so you can use
literals for your EDSL. This can be a powerful and convenient way to
make using your EDSL as seamless as possible.

It does carry some problems. Type inference can become really bad in
the presence of overloaded literals. Thismightmean that your users will
be required to provide more type annotations than youmight want.

Num

The only one enabled by default is overloaded numeric literals. The
Num type class includes a method fromInteger that is used for integer
literals. You need to write an instance of Fractional to use decimal
points.

Consider this toy language for summing numbers:

1 data Expr = Lit Integer | Add Expr Expr

We can give it a Num instance and then use integer literals:

EDSL Design 183

1 instance Num Expr where

2 fromInteger = Lit

3 (+) = Add

4 (*) = undefined

5 (-) = undefined

6 negate = undefined

Unfortunately, the Num class carries quite a bit of baggage. It also expects
you to define several numeric operations on the type. For Add, we can
actually provide all of these. But there aremany types where these won’t
make sense. It’s not uncommon to write a “dummy” instance here - one
that promotes numeric literals but errors on anything else.

The above Num instance allows us to write:

1 four = Add 2 (Add 1 1)

2 -- instead of,

3 four = Add (Lit 2) (Add (Lit 1) (Lit 1))

Actually, it also allows us to use + for the Add constructor.

1 four :: Expr

2 four = 2 + 1 + 1

Strings

With the OverloadedStrings language extension, we can write
instances for the IsString type class, which allows GHC to interpret
any literal string as our data type. This is most commonly used with the
Text and ByteString types.

EDSL Design 184

1 {-# LANGUAGE OverloadedStrings #-}

2

3 nonOverloaded :: Text

4 nonOverloaded = Text.pack "hello world"

5

6 overloaded :: Text

7 overloaded = "hello, world!"

Lists

TheOverloadedLists extensionworksmuch likeOverloadedStrings.
We enable the relevant extension, import the relevantmodule, andwrite
the relevant instance.

The Map type from containers has an instance of this type class.

1 {-# language OverloadedLists #-}

2

3 import GHC.Exts (IsList(..))

4 import Data.Map (Map)

5 import qualified Data.Map as Map

6

7 instance Ord k => IsList (Map k v) where

8 type Item (Map k v) = (k, v)

9

10 fromList = Map.fromList

11 toList = Map.toList

This would allow you to write:

1 myMap :: Map String Int

2 myMap =

3 [("hello", 3)

4 , ("foo", 5)

5]

EDSL Design 185

The Function Trick

You can write instances of the literal type classes for functions. This
allows you to use literals as functions!

1 instance Num (() -> Integer) where

2 fromInteger i () = i

3

4 lol :: Integer

5 lol = 5 ()

That example is silly, butwe cando somethingmorepowerful. Let’swrite
a Day literal syntax.

1 import Data.Time (Day, fromGregorian)

2

3 -- | It's my birthday!

4 birthday :: Day

5 birthday = 1988 09 29

6

7 instance (a ~ Int, b ~ Int) => Num (a -> b -> Day) where

8 fromInteger y m d = fromGregorian y m d

9 (+) = undefined

10 (*) = undefined

11 abs = undefined

12 signum = undefined

13 negate = undefined

Okay, what? This warrants some deeper inspection. Let’s desugar this a
bit.

GHC starts with all whole numbers having the type Integer. GHC then
inserts a call to fromInteger on the type.

EDSL Design 186

1 -- What you write

2 1988 09 29 :: Day

3

4 -- What GHC sees

5 (fromInteger 1988) (fromInteger 09) (fromInteger 29)

6 :: Day

Now GHC has to figure out type inference. Syntactically, we’re applying
the first term to two arguments.

1 (fromInteger 1988 :: a -> b -> Day)

2 (fromInteger 09 :: a)

3 (fromInteger 29 :: b)

GHC searches for an instance that matches a -> b -> Day. It finds the
one we provided. Then, the (a ∼ Int, b ∼ Int) constraints become
part of the constraints that GHC has to satisfy. This unifies fine, and it
type checks and works.

Remember the type of fromInteger :: Integer -> a. Let’s special-
ize to our new type:

1 fromInteger :: Integer -> a

2 fromInteger :: (a ~ Int, b ~ Int) => Integer -> (a -> b -> Day)

3 fromInteger :: Integer -> Int -> Int -> Day

This technique was written up by Chris Done as the Constraint Trick for
Instances¹. I’ll cover it more in an upcoming section.

We can also do this with strings.

¹https://chrisdone.com/posts/haskell-constraint-trick/

https://chrisdone.com/posts/haskell-constraint-trick/
https://chrisdone.com/posts/haskell-constraint-trick/
https://chrisdone.com/posts/haskell-constraint-trick/

EDSL Design 187

1 instance (a ~ Int) => IsString (a -> String) where

2 fromString str i = concat (replicate i str)

3

4 -- >>> "asdf" 3

5 -- "asdfasdfasdf"

This is a powerful way to provide some additional data to a literal value.

14.3 Type Inference Trick

Chris Done has written about this technique and called it The constraint
trick for instances². Chris Allen termed the technique instance local
fundeps³. It’s a neat trick that relies on some knowledge of how GHC
tracks instances and satisfies constraints.

The typeoperator(∼) asserts that two types are equal. The following two
type signatures look like they should be identical:

1 foo :: (a ~ Int) => a -> a -> a

2 bar :: Int -> Int -> Int

They are, for all intents and purposes. You might then look at the follow-
ing instance declarations and wonder what the difference is:

1 instance IsString (Writer [String] ()) where

2 fromString str = tell [str]

3

4 instance (a ~ ()) => IsString (Writer [String] a) where

5 fromString str = tell [str]

Theanswerhas todowith constraint resolution.WhenGHC is looking for
type class instances, it doesn’t care about the constraints on the instance.
All it cares about is the “instance head” - the ClassName Type bit. Once
it finds an instance, it commits to it. When GHC is doing instance lookup
for the above two instances, it sees two different things:

²https://chrisdone.com/posts/haskell-constraint-trick/
³https://bitemyapp.com/blog/instance-local-fundeps/

https://chrisdone.com/posts/haskell-constraint-trick/
https://chrisdone.com/posts/haskell-constraint-trick/
https://bitemyapp.com/blog/instance-local-fundeps/
https://bitemyapp.com/blog/instance-local-fundeps/
https://chrisdone.com/posts/haskell-constraint-trick/
https://bitemyapp.com/blog/instance-local-fundeps/

EDSL Design 188

1 instance ... => IsString (Writer [String] ()) where

2 instance ... => IsString (Writer [String] a) where

To understand what’s going on, let’s step through an example that uses
this code.

1 example :: [String]

2 example = execWriter $

3 "hello" >> "world"

Now, let’s assign types to everything.

1 execWriter :: Writer w a -> w

2 (>>) :: (Monad m) => m a -> m b -> m b

3 example :: [String]

example is the result of calling execWriter on some expression, so we
can infer backwards that w ∼ [String]. If we substitute [String] for
w, then we can rewrite our execWriter to be specialized:

1 -- substitute w ~ [String]

2 execWriter :: Writer w a -> w

3 execWriter :: Writer [String] a -> [String]

We can further specialize the type of (>>), as well - since we use it with
Writer [String] in the result argument, that must be the same m for
both inputs.

1 execWriter :: Writer [String] a -> [String]

2 (>>) :: (Monad m) => m a -> m b -> m b

3 -- Unify `Writer [String] a ~ m b`

4 -- we get `m ~ Writer [String]` and `a ~ b`

5 (>>) :: Writer [String] a -> Writer [String] b -> Writer [String] b

Everything is going smoothly so far. GHC sees the two string literals
"hello" and "world", and assigns them their most general types: Is-
String s => s and IsString z => z. Now it’s going to try and unify
these two types. "hello" is used in the first argument to (>>), so we can
write that substitution equation:

EDSL Design 189

1 "hello" :: IsString s => s

2 (>>) :: Writer [String] a -> ...

3 -- This gives us a constraint: s ~ Writer [String] a

Unifying aplain variablewith a larger termprettymuchalways succeeds,
so we can specialize.

1 "hello" :: IsString (Writer [String] a) => Writer [String] a

GHC now performs instance search for Writer [String] a. And - it
does not find anything, because the only instance GHC knows about is or
Writer [String] (). Unfortunately, IsString (Writer [String]
()) doesn’t match. There’s no reason GHC would want to specialize a to
(). So it complains that the type a is ambiguous, and if you maybe try
specifying it, that’d help. You canwrite("hello" :: Writer [String]
()) >> ("world" :: Writer [String] ()), but that sucks.

Now, let’s look at the second instance - IsString (Writer [String]
a). This matches just fine. The instance head looks exactly like what
we’re trying tomatch on! GHC is happy to commit to it. There are strings
attached, though - if GHC wants to commit to IsString (Writer
[String] a), then it must accept the constraint (a ∼ ()).

GHC, then, does the following rules and substitutions to figure things out.
We’ll work inside-out

1 -- starting points

2 "hello" :: IsString s => s

3 "world" :: IsString z => z

4 (>>) :: (Monad m) => m a -> m b -> m b

5

6 -- "hello" >> "world" introduces the following constraints:

7 IsString s => s ~ m a

8 IsString z => z ~ m b

9

10 -- now we can refine the type of `"hello"` and `"world"`

11 "hello" :: (Monad m, IsString (m a)) => m a

12 "world" :: (Monad m, IsString (m b)) => m b

EDSL Design 190

13

14 execWriter :: Writer w a -> w

15 -- execWriter ... introduces another constraint

16 m ~ Writer w

17

18 -- we have a constraint `Monad m` - is this satisfied?

19 -- GHC does instance lookup and finds:

20 instance ... => Monad (Writer w) where

21 -- so yes! it is. This introduces the hidden constraint:

22 instance (Monoid w) => Monad (Writer w) where

23

24 -- so now we got:

25

26 "hello" :: (Monoid w, IsString (Writer w a)) => Writer w a

27 "world" :: (Monoid w, IsString (Writer w b)) => Writer w b

28

29 -- and with example being a [String], that means

30 example :: [String]

31 w ~ [String]

32 -- GHC does instance lookup on `Monoid [String]`

33 -- it matches on `Monoid [a]`, so we can proceed

34

35 "hello" :: (IsString (Writer [String] a)) => Writer [String] a

36 "world" :: (IsString (Writer [String] b)) => Writer [String] b

37

38 -- GHC now does a lookup on `IsString (Writer [String] a)`

39 -- It finds the instance, which satisfies our existing constraint.

40 -- However, the superclass constraint adds two new ones:

41

42 fromString "hello" :: (a ~ ()) => Writer [String] a

43 fromString "world" :: (b ~ ()) => Writer [String] b

44

45 -- GHC can immediately specialize here

46 fromString "hello" :: Writer [String] ()

47 tell ["hello"] :: Writer [String] ()

48

49 example = execWriter $

EDSL Design 191

50 tell ["hello"] >> tell ["world"]

You may think: why not just write instance IsString (Writer
[String] a)? Try it. It won’t work. tell :: w -> Writer w () -
there’s no way to get an a out of here, it has to be a () in the return. But,
if you want GHC to commit to the instance, it has to be a general type
variable.

14.4 Fluent Interfaces

A “fluent interface” here is something that reads more like natural En-
glish than Haskell syntax usually does. It is not related to fluent inter-
faces in object oriented programming.

In Haskell, we always have verb first:

1 map f xs

With the & operator, we can write object first:

1 import Data.Function (&)

2

3 xs & map f

This style is theminority formost Haskell code, but themajority outside
of Haskell. This style emphasizes the input value, while Haskell style
emphasizes the final result.

Dummy Arguments

Suppose we want to write an EDSL for silly math expressions, without
any operators.

EDSL Design 192

1 ten = 5 times 2

2 four = 2 plus 2

Usually, you can’t use times and plus like this. You’re probably more
used to seeing:

1 ten = 5 `times` 2

2 four = 2 `plus` 2

But, no, we don’t want backticks. Here’s what we’ll do:

1 data Times = Times

2

3 times :: Times

4 times = Times

5

6 data Plus = Plus

7

8 plus :: Plus

9 plus = Plus

10

11 instance (a ~ Times) => Num (a -> Expr -> Expr) where

12 fromInteger x Times y =

13 fromInteger x * y

14

15 instance (a ~ Plus) => Num (a -> Expr -> Expr) where

16 fromInteger x Plus y =

17 fromInteger x + y

This assumes the same data Expr that we defined in the Num section. It
also relies on the overloaded literal trick defined above.

However, you can define this for non-literal functions as well. Above, we
saw that esqueleto defined case_ syntax for providing alternatives in
SQL. The function syntax in SQL and Haskell looks like this:

EDSL Design 193

1 CASE

2 WHEN a

3 THEN r0

4 WHEN b

5 THEN r1

6 ELSE

7 r3

1 case_

2 [when_ a

3 then_ r0

4 , when_ b

5 then_ r1

6]

7 (else_ r3)

The implementation of when_, then_, and else_ are only there for
syntactic sugar.

1 case_

2 :: [(SqlExpr (Value Bool), SqlExpr a)]

3 -> SqlExpr a

4 -> SqlExpr a

5

6 when_

7 :: SqlExpr (Value Bool)

8 -> ()

9 -> SqlExpr a

10 -> (SqlExpr (Value Bool), SqlExpr a)

11 when_ bool () value = (bool, value)

12

13 then_ :: ()

14 then_ = ()

15

16 else_ :: SqlExpr a -> SqlExpr a

17 else_ a = a

EDSL Design 194

You could just as easily write:

1 case_

2 [(a, r0)

3 , (b, r1)

4]

5 r3

But this doesn’t look like the SQL.

14.5 Case Study: Weightlifting Logging

I like to lift weights on occasion. I’ve never been happywith the available
weightlifting logging apps, and so I’ve tinkeredwithwritingmy own ever
since I started learning Haskell. The first approach designed a DSL. I
wrote a parser that figured out what sets, weights, and repetitions that
I did. The syntax looked like this:

1 Squat:

2 45 x 5

3 95 x 5

4 135 x 5 x 3

5 115 x 5, 3, 2

Roughly speaking, the grammar is:

1 Lift Name:

2 [Weight [x Reps [, Reps]+ [x Sets]]

3]+

If a rep/set number is omitted, then we infer 1. So 45 x 5 is inferred to
be 45 x 5 x 1, representing “a single set of 45lbs for 5 reps.” 135 x 5
x 3means “Three sets of Five reps at 135lbs.” The comma allows you to
say “Repeat the weight with a different number of reps in a new set.” So

EDSL Design 195

115 x 5, 3, 2means “115lbs in three sets, with 5 reps, 3 reps, and 2
reps.”

As a challenge tomyself, I decided to embed theDSL asmuch as possible
into Haskell. This is what I got:

1 history :: NonEmpty Session

2 history =

3 [2019 05 07 #:

4 [bench press %:

5 155 x 5 x 5

6 , deadlift %:

7 [225 x 5

8 , 275 x 3

9] <>

10 315 x 1 x 3

11 , db rows %:

12 45 x 12 x 6

13]

14 , 2019 04 15 #:

15 [press %:

16 100 x 5 x 5

17 , deadlift %:

18 225 x 5 x 3

19 , bb curl %:

20 45 x 20 x 4

21]

We have a list of dated sessions, each with a list of lifts, each with a list
of weight, reps, and sets. The date uses the Day literal syntax that we
covered earlier in the chapter. The lifts use the x “dummy parameter”
that was covered, along with some Num instances that give us more
structured data. Let’s dig in.

EDSL Design 196

1 data Session = Session

2 { sessionLifts :: NonEmpty Lift

3 , sessionDate :: Day

4 }

5

6 data Lift = Lift

7 { liftName :: String

8 , liftSets :: NonEmpty Set

9 }

10

11 data Set = Set

12 { setWeight :: Weight

13 , setReps :: Reps

14 }

15

16 newtype Reps = Reps { unReps :: Int }

17 newtype Weight = Weight { weightAmount :: Double }

18

19 -- direct syntax

20 firstSession =

21 Sesson (fromGregorian 2019 05 07) $

22 (Lift "bench press"

23 (NEL.replicate 5 (Set (Weight 155) (Reps 5)))

24) :|

25 [Lift "deadlift"

26 (Set (Weight 225) (Reps 5)

27 :|

28 (Set (Weight 275) (Reps 3)

29 : replicate 3 (Set (Weight 315) (Reps 1))

30)

31]

This direct style is ugly. There’s lots of noise, parentheses, brackets,
and unintuitive operators. Let’s make it “Better.” We can immediately
improve it by turning on OverloadedLists and using list literal syntax
for NonEmpty. This works great, despite the obvious runtime error in []
:: NonEmpty Int.

EDSL Design 197

1 firstSession =

2 Sesson (fromGregorian 2019 05 07)

3 [Lift "bench press"

4 (NEL.replicate 5 (Set (Weight 155) (Reps 5)))

5 , Lift "deadlift" $

6 [Set (Weight 225) (Reps 5)

7 , Set (Weight 275) (Reps 3)

8]

9 <> NEL.replicate 3 (Set (Weight 315) (Reps 1))

10]

Then, we’ll make a bunch of custom, intuitive operators. This way we
don’t need to repeat Session and Lift as much.

1 (#:) :: Day -> NonEmpty Lift -> Session

2 day #: sets = Session sets day

3

4 (%:) :: String -> NonEmpty Set -> Lift

5 (%:) = Lift

6

7 firstSession =

8 fromGregorian 2019 05 07 #:

9 ["bench press" %:

10 NEL.replicate 5 (Set (Weight 155) (Reps 5))

11 , "deadlift" %:

12 [Set (Weight 225) (Reps 5)

13 , Set (Weight 275) (Reps 3)

14]

15 <> NEL.replicate 3 (Set (Weight 315) (Reps 1))

16]

This allowed us to get rid of some parentheses, too. I generally dislike
parenthesesandbrackets.They’renon-local - theyhave tobepairedwith
an ending somewhere. I’d much rather write things that are as local as
possible.

Alright, let’s get that Day Literal syntax going to drop the fromGrego-
rian call. And then, I think we’re going to write some instances of Num

EDSL Design 198

for a Set, so we can make that nicer, too. The syntax we want for a set is
like weight x reps.

1 -- dummy argument

2 data X = X

3

4 x :: X

5 x = X

6

7 instance (a ~ Int) => Num (X -> a -> Set) where

8 fromInteger i = \X r -> Set (Weight (fromInteger i)) (Reps r)

9

10 firstSession =

11 2019 05 07 #:

12 ["bench press" %:

13 NEL.replicate 5 (155 x 5)

14 , "deadlift" %:

15 [225 x 5

16 , 275 x 3

17]

18 <> NEL.replicate 3 (315 x 1)

19]

Looking much nicer. Working with the list constructor functions
is annoying though. A common pattern is to have a single listing:
NEL.replicate 5 (155 x 5) is okay, but it’d be nicer to write that as
155 x 5 x 5. So let’s write an instance of Num for our NonEmpty Set.

1 instance

2 (a ~ Int, b ~ Int)

3 =>

4 Num (X -> a -> X -> b -> NonEmpty Set)

5 where

6 fromInteger i = \X r X s -> fromInteger i x r *: s

7

8 (*:) :: Set -> Int -> NonEmpty Set

9 (*:) w i = w :| replicate (i-1) w

EDSL Design 199

10

11 firstSession =

12 2019 05 07 #:

13 ["bench press" %:

14 155 x 5 x 5

15 , "deadlift" %:

16 [225 x 5

17 , 275 x 3

18]

19 <> 315 x 1 x 3

20]

Alright. I like this. But… can we do better?

Exercise:

Write a NonEmptyBuilder type that will allow you to have the
following syntax:

1 firstSession =

2 2019 05 07 #: do

3 "bench press" %: do

4 155 x 5 x 5

5 "deadlift" %: do

6 225 x 5

7 275 x 3

8 315 x 2 x 3

It’s

common to have a lift name that is modified. For example, “bench” is a
modification of “press”. There’s also overhead press, push press, strict
press, incline press. And you’d hate to typo perss and then mess up
your stats. So let’s make these into real names.

EDSL Design 200

1 bench :: String -> String

2 bench str = "bench " <> str

3

4 press :: String

5 press = "press"

6

7 deadlift :: String

8 deadlift = "deadlift"

9

10 firstSession = 2019 05 07 #: do

11 bench press %: do

12 155 x 5 x 5

13 deadlift %: do

14 225 x 5

15 275 x 3

16 315 x 2 x 3

And now we have a nice and lightweight EDSL for logging our weightlift-
ing sessions.

14.6 Case Study: rowdy

rowdy is a library that I wrote for designing HTTP API structure. A com-
mon complaint with Yesod is the QuasiQuoter strategy for structuring
routes. Yesod has a DSL (not embedded) for writing routes. Since it
isn’t embedded in Haskell, you don’t get any of Haskell’s niceties when
developing routes. It’s quick and relatively easy to learn, but it is another
Thing you have to learn.

The QuasiQuoter parses the input Text into a data structure: a [Re-
sourceTree String]. The Template Haskell code turns that datatype
into the relevant definitions for the router. ResourceTree is a fairly
standard tree datatype.

EDSL Design 201

1 data ResourceTree typ

2 = ResourceLeaf (Resource typ)

3 | ResourceParent String CheckOverlap [Piece typ] [ResourceTree typ]

4 deriving (Lift, Show, Functor)

5

6 data Resource typ = Resource

7 { resourceName :: String

8 , resourcePieces :: [Piece typ]

9 , resourceDispatch :: Dispatch typ

10 , resourceAttrs :: [String]

11 , resourceCheck :: CheckOverlap

12 }

The ResourceLeaf constructor contains the actual route information
that’s necessary. ResourceParent carries information that is important
for nested routes and resources.

rowdy dispenses with the QuasiQuoter by embedding the language into
Haskell. Ultimately, we’re building a tree, and we’ve already seen how
easy it is to build a Treewith a monadic EDSL. The datatype to describe
a route is the RouteTree:

1 data RouteTree nest capture terminal

2 = Leaf terminal

3 | PathComponent capture (RouteTree nest capture terminal)

4 | Nest nest [RouteTree nest capture terminal]

5 deriving (Eq, Show, Functor, Foldable)

RouteTree is polymorphic so it can be used for other backends - I am
planning on adding servant support, once I can figure out how tomake
it sufficiently flexible. To specialize it to Yesod, we have the following
types:

EDSL Design 202

1 -- | An endpoint in the Yesod model.

2 data Endpoint

3 = MkResource Verb String

4 -- ^ A resource identified by a 'Verb' and a 'String' name.

5 | MkSubsite String String String

6 -- ^ A subsite.

7 deriving (Eq, Show)

8

9 -- | The type of things that can affect a path.

10 data PathPiece

11 = Literal String

12 -- ^ Static string literals.

13 | Capture Type

14 -- ^ Dynamic captures.

15 | Attr String

16 -- ^ Route attributes. Not technically part of the path, but

17 -- applies to everything below it in the tree.

18 deriving (Eq, Show)

19

20 type Dsl = RouteDsl String PathPiece Endpoint

With just this, we can specify our routes as a datatype.

1 mkYesod "App" $ routeTreeToResourceTree $

2 [Leaf $ MkResource Get "HelloR"

3 , PathComponent (Capture (Type (Proxy :: Proxy UserId))) $

4 Nest "users"

5 [Leaf Get "UserR"

6 , Leaf Post "UserR"

7]

8]

But that’s ugly! We want a cute little language to show off on our
README.md. So, we have our Dsl monad, which allows us to instead
write:

EDSL Design 203

1 mkYesod "App" $ toYesod $ do

2 get "HelloR"

3 "users" // capture @UserId // do

4 get "UserR"

5 post "UserR"

6 "posts" // capture @PostId //

7 resource "PostR" [get, post, delete, put]

There’s a lot going on here. Let’s dig into it, one by one.

Terminals

1 get "HelloR"

get is a “terminal.” It’s a leaf on the tree. The implementation is pretty
simple:

1 get = doVerb Get

2

3 doVerb v s = terminal (MkResource v s)

4

5 terminal :: endpoint -> RouteDsl nest capture endpoint ()

6 terminal = tell . pure . Leaf

The RouteDsl type actually does use Writer under the hood! I ignored
my own advice of “just use State, it doesn’t have performance prob-
lems.” Are the performance problems bad? I don’t know. Routes are
small enough that you may never notice. This all happens at compile-
time anyway.

The // and /: operators

// is an operator that roughly corresponds with the PathComponent
constructor in our tree. It mirrors the / that you’d see in a URL string.
/: is similar, but it introduces an explicit “nesting” operation. Both
operators can accept a full RouteDsl value on the right hand side, so
what’s the difference between these two APIs?

EDSL Design 204

1 "users" // do

2 get "UserIndexR"

3 post "CreateUserR"

4

5 "users" /: do

6 get "UserIndexR"

7 post "CreateUserR"

When you use //, the "users" path is appended to each child route,
while it is shared with /:.

1 [PathComponent (Literal "users") (get "UserIndexR")

2 , PathComponent (Literal "users") (post "CreateUserR")

3]

4 -- vs,

5 [Nest "users"

6 [get "UserIndexR"

7 , post "CreateUserR"

8]

9]

For aYesodapp, this doesn’tmatter at all. The route structure is identical.
This matters more with Servant APIs⁴ where the two structures, while
isomorphic, have different properties in generated clients and other
uses of the API type.

PathComponent

In Yesod, the path pieces for a route can be described with the following
datatype:

⁴https://www.parsonsmatt.org/2018/03/14/servant_route_smooshing.html

https://www.parsonsmatt.org/2018/03/14/servant_route_smooshing.html
https://www.parsonsmatt.org/2018/03/14/servant_route_smooshing.html

EDSL Design 205

1 data PathPiece

2 = Literal String

3 | Capture TypeRep

4 | Attr String

While we could require users to write this directly, that’s not a great API.

1 Literal "users" // Capture (typeRep @UserId) // do

2 get "GetUserR"

3 put "UpdateUserR"

We can hook in to IsString to get Literal support. And we can write a
helper for Capture that will accept the type argument directly:

1 instance IsString PathPiece where

2 fromString = Literal

3

4 capture :: forall ty. PathPiece

5 capture = Capture (typeRep @ty)

6

7 "users" // capture @UserId // do

8 get "GetUserR"

9 put "UpdateUserR"

capture is going to require the AllowAmbiguousTypes and TypeAppli-
cations extensions.

By separating out the tree-building EDSL and the actual web API route
machinery, we’ve made it relatively straightforward to add rowdy sup-
port to any web library.

14.7 Case Study: hspec

hspec is a testing library that mimics the Ruby library RSpec for behav-
ior driven development. It’s common to call libraries like these EDSLs.
Let’s look at some sample hspec code:

EDSL Design 206

1 main = hspec $ do

2 describe "Some Thing" $ do

3 it "has a test case" $ do

4 True `shouldBe` True

5 describe "Can Nest Things" $ do

6 it "etc" $ do

7 3 `shouldSatisfy` (< 5)

8

9 describe "Some Other Thing" $ do

10 it "has tests" $ do

11 print 10 `shouldReturn` ()

hspec leverages do notation allows for tests to be grouped and nested
with clean, easy syntax. Infix assertion functions read like English, sort
of.

We couldwrite amuch simpler testing library.We could omit donotation
and instead have nested lists. We could skip the silly infix functions and
write comparisons directly. That library might look like this:

1 main = runTests

2 [group "Some Thing"

3 [test "has a test case"

4 (shouldBe True True)

5 , group "Can Nest Things"

6 [test "etc"

7 (shouldSatisfy 3 (< 5))

8]

9]

10

11 , group "Some Other Thing"

12 [test "has tests"

13 (shouldReturn (print 10) ())

14]

15]

This choice is employed by HUnit, tasty and hedgehog. I prefer hspec
for much the same reason that I like the TreeBuilder EDSL rather than

EDSL Design 207

manual data construction. There are a ton of nice utilities whenworking
with a Monad, and they are usually closer to what I want than the explicit
data structure operations. Furthermore, it’s easy to encode additional
operations in the EDSL that might be awkward in the data constructor
notation.

Let’s consider before and after. before runs an IO action before each
spec item and provides the result of that action to the spec item. after
runs an IO action that receives the same value as the spec item and can
do some post-test cleanup.

1 before :: IO a -> SpecWith a -> Spec

2 after :: (a -> IO ()) -> SpecWith a -> SpecWith a

3

4 main :: IO ()

5 main = hspec $

6 before (pure "Hello") $

7 after (\str -> putStrLn str) $ do

8 describe "has string" $ do

9 it "has string" $ \str -> do

10 str

11 `shouldBe`

12 "Hello"

This test caseprovides"Hello" to each spec item, andprintsHelloafter
every test. We can implement this with a testGroup formulation:

1 groupBefore :: String -> IO a -> [a -> Assertion] -> TestGroup

2 groupBefore msg make assertions =

3 group msg $

4 map (\k -> bracket make (const (pure ())) k) assertions

But the result can be a bit awkward and unwieldy, especially with nested
groups.

EDSL Design 208

1 groupBefore "with string" (pure "hello")

2 [\str ->

3 test "with string" $

4 str `shouldBe ` "hello"

5 , \str ->

6 group "with string 2" $

7 [test "still has string" $

8 str `shouldBe` "hello"

9]

10]

With the EDSL approach, the passing of the parameter is implied - only
at the actual use sites of the parameter do we need tomention it. With the
explicit data structure approach, we can’t defer any more than the first
layer.

15. Growing Pains
As your code grows and changes, you will break it. Some domains are
so easy to model and understand that you’ll never mess it up, but most
aren’t. Some changes won’t cause any problems to users and clients of
your code. These are wonderful and rare.

Breaking changes happen. We want to minimize how many breaking
changes occur in our code, and there are a number of techniques avail-
able to reduce the incidence and severity of a breaking change. Likewise,
when we do need to make a breaking change, we want to communicate
this to our client’s effectively so that they know how to migrate from the
broken code. It’s unpleasant to upgrade to a new version of a library and
see that some functionwas removedorchangedwithnoguidanceonhow
to fix it.

15.1 A Taxonomy of Breaking Changes

Youcanbreakconsumersof your library inmanyways.Themostobvious
(and annoying) is to completely remove things from your library. This is
always a breaking change. Fortunately, this sort of change is caught by
the compiler - GHCwill complain that it cannot find whatever it was that
your library used to provide.

Changing the type of an exposed term is another breaking change, also
caught by the compiler. Adding or removing an argument to a function -
that’s abreaking change! In this category,wealsohaveadding fields to an
exposed data constructor. Adding constructors to an exposed sum type
is also a breaking change.

Even adding things to your librarymight break downstream consumers.
Suppose your release v0.1.2 of your library, which exposes a new
lookup function. This will conflict with Data.List.lookup - and any
user with an open import of your module and Data.List will now get
ambiguous name errors! Is this a breaking change?

209

Growing Pains 210

The PVP

Before Semantic Versioning was invented, Haskell had the Package Ver-
sioning Policy. The PVP specifies how a library author should set their
version bounds to prevent their build from breaking. The biggest differ-
ence between SemVer and the PVP is that the PVP has twomajor version
numbers: A.B.C.D. This allows you to express two different “kinds” of
“breaking changes” - the first digit is reserved for major rewrites or API
changes to the library, while the second is for more ordinary breaking
changes.

The PVP says that a bug or documentation fix that doesn’t alter the
exports of any module, or the type or essential behavior of any value,
is a patch version change. That means you can increment D only -
A.B.C.(D+1). It should always be safe to upgrade a patch version.

The PVP says that if you add a new term to a module, then you should
make that a minor version bump. If a downstream consumer has any
open imports, then they should specify a strict upper bound on the
libraries that define those modules.

For example, if I have an open import of Data.Map, then, per the PVP,my
version range for the containers package should be:

1 containers >= 1.2.3.0 && < 1.2.4.0

A release of containers-1.2.5.0 might break my code. This break is
unlikely, but possible. Until containers-1.2.5.0 is actually released
and tested, I can’t claim to support it.

If I have a qualified or explicit import list, then I can relax that version
bound.

1 -- No name ambiguities

2 import qualified Data.Map as Map

3

4 -- New names won't enter the scope of the module if I do

5 -- an explicit import

6 import Data.Map (insert, lookup)

With the above forms, I can relaxmy upper bounds to anyminor version.

Growing Pains 211

1 containers >= 1.2.3.0 && < 1.3

However, the version containers-1.3.0.0 may break my code - by
removing things or changing types. So, until I have tested on the new
version of containers, I cannot claim to support it.

Hackage Revisions

Hackage is the package repository for Haskell. It supports a feature
called “metadata revisions” that allow package authors (and Hackage
Trustees) to edit the metadata of a package. This means that the version
bounds you provide at upload/publish time can bemodified.

The PVP Controversy

The strictness of upper bounds is a source of constant pain and anguish
for Haskell developers. If you want to maintain Haskell libraries, then
you have two choices:

1. Strict upper bounds (and spend time revising them to bemore lax)
2. Lax upper bounds (and spent time revising them to be more strict)

Let’s say you are the author of package email-server, and you de-
pend on email-types.We’ll seewhat happens as email-typesupdates.
Strict upper bounds and lax upper bounds both start here, with 0.1.0.0
as theversion. Sowepublishemail-server-0.1.0.0aswell,with these
constraints:

1 email-server-strict-0.1.0.0:

2 email-types >= 0.1.0.0 && < 0.1.1.0

3

4 email-server-lax-0.1.0.0:

5 email-types >= 0.1.0.0

All is well.

Growing Pains 212

email-types-0.1.1.0

Upstream added a new datatype, which triggers a minor version bump.
email-server-strict-0.1.0.0 now fails to build with the new ver-
sion of email-types, because email-types-0.1.1.0 violates the con-
straint < 0.1.1.0.

Our users may want (or need) to update to email-types-0.1.1.0 for a
variety of reasons. Until we fix email-server-strict, they are blocked
from using that library. If they’re using Cabal or Stack projects, then
library consumers canbypassourversionboundswith theallow-newer
flag. However, if they’re not using a project (ie cabal.project file or
stack.yaml file), then they’re blocked.

As authors, we have a few things we can do:

1. Relax the constraint on email-server-strict-0.1.0.0 using a
Hackage revision.

2. Update the email-server-strict.cabal file with the new ver-
sion bound and publish a new patch version.

If we choose to relax version constraints, then it may make sense to
test every released version of email-server that has the version bound
to see if they are compatible. If so, we may choose to relax the version
constraint for each released version.

email-server-lax-0.1.0.0 does not have a conflict, and fortunately
builds successfully. Neither the maintainer of email-server-lax- nor
any downstream consumer need to do anything to update to email-
types-0.1.1.0.

email-types-0.1.2.0

This time, upstream added a new function, and it does have a name
conflict with a function in email-server. Both email-server-strict
and email-server-lax need to make code changes and release a new
patch version.

email-server-lax now has versions on Hackage that we know won’t
build successfully - the version constraints allow for failing builds! This

Growing Pains 213

is bad. The maintainer of email-server-lax should now go through
and add a Hackage revision that adds an upper bound to each version
of email-server-lax:

1 email-server-lax-0.1.0.1:

2 - email-types >= 0.1.0.0

3

4 # Now, for all prior versions, add the upper bound

5 email-server-lax-A.B.C.D:

6 - email-types >= 0.1.0.0 && < 0.1.2.0

A Missing Logic

There is a natural tension here. The operator that we use to say <means
“Cannot buildwith this versionor greater.” But if the versionhasnot been
released yet, we can’t know that. If the version is unreleased, it’s more
accurate to say “Cannot guarantee that it will build with this version or
greater.”

We have two conflated ideas:

• Known to not build with
• Not known to build with

Proponents of strict upper bounds want < to mean the first point. If
they say email-types < 0.1.2.0, then they mean that we know that
we can’t build with that version. They think it is less work to occasionally
create revisions which tighten upper bounds.

Proponents of lax upper bounds want < to mean the second point. If
they say email-types < 0.1.2.0, then they mean that we don’t yet
know that we can build with that version. They think it is less work to
occasionally create revisions which relax upper bounds.

Personally, I maintain a number of packages, and I use both strategies.
I usually find that the packages with lax upper bounds are less work.
Occasionally, I’ll get aGitHub issue filed reporting that someversion isn’t
compatible, and then I fix it. With strict upper bounds, I’m constantly

Growing Pains 214

getting pinged on Stackage that my package isn’t building anymore due
to some new version. I’ll clone the code, relax the bound, test it out, and
it rarely happens that the build fails. So I push a release and call it done.

Ultimately, I think this is a technicalproblem. Ithasbecomeasocial prob-
lem because coordinating between the two camps is often frustrating. A
technical solution - allowing people to express both “known to not build”
and “not known to build” - would allow everyone to work together with
minimal friction.

15.2 Avoiding Breaking Changes

The easiest way tomake your library easy-to-use over the long term is to
avoid making breaking changes at all. This means:

• Don’t ever remove anything
• Don’t ever change anything
• Only ever add things

These requirements make it quite difficult to maintain the library -
you’ll often want to add things to a datatype to support a new feature!
Fortunately, there are a few ways to avoid these pains.

Additive Changes

Additive changes - like a new function, datatype, or type synonym - are
totally fine. These all require only a minor version bump.

If youwant to add a newparameter to a function, and that parameter has
a sensible default, then consider adding a new function that accepts the
newparameter. Delegate to the old function, and link to the new function
in the documentation.

Don’t expose constructors

Let’s say you’ve got this module in your library.

Growing Pains 215

1 module Foo where

2

3 import Data.Text (Text)

4

5 data Foo = Foo

6 { name :: Text

7 , age :: Integer

8 }

You realize that name isn’t right - you should be recording the firstName
and lastName separately¹.

1 module Foo where

2

3 import Data.Text (Text)

4

5 data Foo = Foo

6 { firstName :: Text

7 , lastName :: Text

8 , age :: Integer

9 }

10

11 name :: Foo -> Text

12 name foo =

13 mconcat [firstName foo, " ", lastName foo]

This is a breaking change, because the type of Foo has changed -

1 - Foo :: Text -> Integer -> Foo

2 + Foo :: Text -> Text -> Integer -> Foo

Anyone that has pattern matched on Foowith positional arguments will
get a compile-time failure:

¹Well, that’s not right either. See the excellent “Falsehoods Programmers Believe About Names”.

https://www.kalzumeus.com/2010/06/17/falsehoods-programmers-believe-about-names/

Growing Pains 216

1 what (Foo name age) =

2 error "Foo has three arguments but was only given two..."

Likewise, anyone that has done a RecordWildCards or recordmatch on
namewill get an error.

1 -- error: name has type `Foo -> Text`, not `Text`

2 ohno Foo {..} =

3 name

4

5 -- error: Foo has no field name

6 ohno Foo { name = fooName } =

If we want to avoid this problem, then we need to make the constructor
abstract. We also need to hide the field labels and only provide accessor
functions. Let’s look at an example that does this:

1 module Foo

2 (Foo

3 , mkFoo

4 , name

5 , age

6)

7 where

8

9 import Data.Text (Text)

10

11 data Foo = Foo

12 { _name :: Text

13 , _age :: Integer

14 }

15

16 age :: Foo -> Integer

17 age = _age

18

19 name :: Foo -> Text

Growing Pains 217

20 name = _name

21

22 mkFoo :: Text -> Integer -> Foo

23 mkFoo = Foo

Nowwecan change the_name into a_firstName and_lastName combo:

1 module Foo

2 (Foo

3 , mkFoo

4 , name

5 , firstName

6 , lastName

7 , age

8)

9 where

10

11 import Data.Text (Text)

12 import qualified Data.Text as Text

13

14 data Foo = Foo

15 { _firstName :: Text

16 , _lastName :: Text

17 , _age :: Integer

18 }

19

20 age :: Foo -> Integer

21 age = _age

22

23 firstName :: Foo -> Text

24 firstName = _firstName

25

26 lastName :: Foo -> Text

27 lastName = _lastName

28

29 name :: Foo -> Text

30 name foo =

Growing Pains 218

31 mconcat [firstName foo, " ", lastName foo]

32

33 mkFoo :: Text -> Integer -> Foo

34 mkFoo name age = Foo

35 { _firstName =

36 f

37 , _lastName =

38 Text.dropWhile isSpace lastNameWithSpace

39 , _age =

40 age

41 }

42 where

43 (firstName, lastNameWithSpace) =

44 Text.breakOn " " name

Now, we haven’t broken anything! How fantastic. If we settled on this
pattern for everything, then you may want to invoke a bit of Template-
Haskell to define getters and setters for all the fields of the record.

If you’re writing an application, or otherwise don’t expect to have any
consumers of this type, then don’t bother with this - it’s just extra com-
plexity and encapsulation for no benefit. This technique is useful when
you’re developing a library, and you don’t control all uses of the relevant
type.

For a concrete example, consider the SqlBackend type from the per-
sistent database library. This type was completely exposed to library
consumers. Any time the maintainers want to add new functionality to
the type, we have to release a newmajor version of the package. The vast
majority of users of the librarywill not experience any breaking changes,
but the version number indicates a possibility for breaking changes.

As a result, the maintainers are encouraged to bundle up functionality
upgrades with other breaking changes so as to release fewer major
version bumps. Ideally, persistent users would be able to enjoy new
functionalitywithout correspondingbreaking changes.Keeping the type
abstract would help with that. The persistent library did make the
SqlBackend type abstract, and has been able to release new function-
ality as minor changes that would have previously been major breaking
changes.

Growing Pains 219

When you’re writing an application, you control all of the code. GHC tells
you about all of the breaking changes you make at every use site, so you
can fix them up.

Sum Types

It’s less clear that encapsulation provides any benefit with sum types.
Sum types are useful precisely because you define a closed set of possi-
bilities with defined payloads. Patternmatching on a sum type (or using
an equivalent fold) means that you expect your code to break if a new
case is added.

Let’s consider a quick example.

1 data Animal

2 = Cat String Int Int

3 | Dog String Int

4 | Bird String

We can break users of this type in two ways:

1. Adding or removing a constructor
2. Adding or removing a field to a constructor

So, right off the bat, we have an annoying problem that we don’t know
exactlywhat thosevaluesare supposed to represent. Let’s fix thatupwith
record labels:

1 data Animal

2 = Cat

3 { name :: String

4 , age :: Int

5 , lives :: Int

6 }

7 | Dog

8 { name :: String

9 , age :: Int

Growing Pains 220

10 }

11 | Bird

12 { phrase :: String

13 }

Unfortunately, this has somemajor problem: all of these record field se-
lector functions can throw errors. name :: Animal -> String - how-
ever, if you call name (Bird "asdf"), you’ll get an error that the field
name is not defined on that constructor. Likewise, lives is only defined
on Cat.

For this reason, I suggest that a sum-type constructor should contain
only one field.

1 data Animal

2 = AnimalCat Cat

3 | AnimalDog Dog

4 | AnimalBird Bird

5

6 data Cat = Cat { name :: String, age, lives :: Int }

7 data Dog = Dog { name :: String, age :: Int }

8 data Bird = Bird { phrase :: String }

This is a bit more cumbersome, but it works out to be much safer and
resilient to breaking changes. When you pattern match on Animal you
never need to worry about adding or removing positional parameters.
You can rely on RecordWildCards or NamedFieldPuns or even just
accessor functions to be perfectly clear about what you mean. This
converts themost annoying problem of sum-type breaking changes into
a problem of record-type breaking changes.

To encapsulate a sum type, youwant to be able to add/remove fieldswith-
out breaking downstream users. This means we need a set of functions
that can “project” the sum type into one case, aswell as “inject” a smaller
case into a larger one.

Growing Pains 221

1 projectBird :: (Bird -> r) -> Animal -> Maybe r

2 projectBird withBird animal =

3 case animal of

4 AnimalBird b -> Just (withBird b)

5 _ -> Nothing

6

7 injectBird :: Bird -> Animal

8 injectBird = AnimalBird

9

10 -- etc, for each different constructor

Now the library maintainer is free to add cases without breaking any
downstream code.

Unfortunately, we lose the killer feature of a sum-type with this: exhaus-
tivity. If we want to guarantee that we’ve handled every case, we need a
fold function:

1 foldAnimal

2 :: (Cat -> r)

3 -> (Dog -> r)

4 -> (Bird -> r)

5 -> Animal -> r

6 foldAnimal onCat onDog onBird animal =

7 case animal of

8 AnimalDog d -> onDog d

9 AnimalCat c -> onCat c

10 AnimalBird b -> onBird b

But - if we add a case to Animal, we now need to add a parameter to this
function, which is a breaking change. So we might as well expose the
constructors and allow people to pattern match on it.

Pattern Synonyms

Haskell has an extension PatternSynonyms² that allow you to define
patterns that refer to existing data types. This can significantly ease the

²https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/pattern_synonyms.html

https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/pattern_synonyms.html
https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/pattern_synonyms.html

Growing Pains 222

migration path for changing a data constructor. For a real world test
case, let’s investigate the ErrorCall³ type. In base-4.8⁴, this type was
defined like this:

1 -- |This is thrown when the user calls 'error'. The @String@ is the

2 -- argument given to 'error'.

3 newtype ErrorCall = ErrorCall String

4 deriving (Eq, Ord, Typeable)

Inbase-4.9, a secondStringwas added - this one giving the locationby
rendering the CallStack. Adding location information to ErrorCall is
great, but by extending the constructor,we’re forcing everyone tomodify
their code whenever the construct or pattern match on the ErrorCall
type.

1 -- if it was changed to,

2 data ErrorCall = ErrorCall String String

3

4 -- then this breaks:

5 blah (ErrorCall errMessage) = putStrLn errMessage

6

7 -- and this breaks:

8 main =

9 throw (ErrorCall "oh no")

Fortunately for us, GHC provided a PatternSynonymwith the old name,
and changed the name of the new constructor.

³https://hackage.haskell.org/package/base-4.14.0.0/docs/Control-Exception.html#t:ErrorCall
⁴https://hackage.haskell.org/package/base-4.8.0.0/docs/Control-Exception.html#t:ErrorCall

https://hackage.haskell.org/package/base-4.14.0.0/docs/Control-Exception.html#t:ErrorCall
https://hackage.haskell.org/package/base-4.8.0.0/docs/Control-Exception.html#t:ErrorCall
https://hackage.haskell.org/package/base-4.14.0.0/docs/Control-Exception.html#t:ErrorCall
https://hackage.haskell.org/package/base-4.8.0.0/docs/Control-Exception.html#t:ErrorCall

Growing Pains 223

1 -- | This is thrown when the user calls 'error'. The first @String@ is the

2 -- argument given to 'error', second @String@ is the location.

3 data ErrorCall = ErrorCallWithLocation String String

4 deriving (Eq -- ^ @since 4.7.0.0

5 , Ord -- ^ @since 4.7.0.0

6)

7

8 pattern ErrorCall :: String -> ErrorCall

9 pattern ErrorCall err <- ErrorCallWithLocation err _ where

10 ErrorCall err = ErrorCallWithLocation err ""

Users of ErrorCall are now unaffected by our change, and are still
able to pattern match on the constructor, or use the ErrorCall pattern
as a constructor directly. PatternSynonyms are fantastic for providing
backwards compatibility when evolving APIs that expose constructors
directly.

Removing Constructors from a sum type

The Problem

You have a sum type, and you want to delete a redundant constructor to
refactor things.

1 data Foo

2 = Bar Int

3 | Baz Char

4 | Quux Double

That Quux is double trouble. But if we simply delete it, then users will
get a Constructor not found: Quux. This isn’t super helpful. They’ll
have to go findwhere Quux came from,what package defined it, and then
go see if there’s a Changelog. If not, then they’ll have to dig through the
Git history to see what’s going on. This isn’t a fun workflow.

But, let’s say you really need end users to migrate off Quux. So we’re inter-
ested in giving a compile error that has more information than Con-
structor not in scope.

Growing Pains 224

Here’s what some calling code looks like:

1 blah :: Foo -> Int

2 blah x = case x of

3 Bar i -> i

4 Baz c -> fromEnum c

5 Quux a -> 3

will give the output:

1 /home/matt/patsyn.hs:24:5: error:

2 Not in scope: data constructor ‘Quux’

3 |

4 24 | Quux a -> 3

5 | ^^^^

6 Failed, no modules loaded.

Fortunately, we canmake this nicer.

GHC gives us a neat trick called PatternSynonyms⁵. They create con-
structor-like things that we can match on and construct with, but that
are a bit smarter.

Matching

Let’s redefine Quux as a pattern synonym on Foo. We’ll also export it as
part of the datatype definition.

⁵https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/pattern_synonyms.html

https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/pattern_synonyms.html
https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/pattern_synonyms.html

Growing Pains 225

1 {-# language PatternSynonyms, ViewPatterns #-}

2

3 module Wow (Foo (.., Quux)) where

4

5 data Foo

6 = Bar Int

7 | Baz Char

8

9 pattern Quux :: a -> Foo

10 pattern Quux i <- (const Nothing -> Just i)

This does something tricky: we always throw away the input with the
ViewPattern, and we can summon whatever we want in the left hand
side. This allows us to provide whatever a is needed to satisfy the type.
This match will never succeed - so Quux behavior will never happen.

Now, we get a warning for the match:

1 [1 of 1] Compiling Main (/home/matt/patsyn.hs, interpreted)

2

3 /home/matt/patsyn.hs:25:5: warning: [-Woverlapping-patterns]

4 Pattern match is redundant

5 In a case alternative: Quux a -> ...

6 |

7 25 | Quux a -> 3

8 | ^^^^^^^^^^^

9 Ok, one module loaded.

But an error for constructing:

Growing Pains 226

1 [1 of 1] Compiling Main (/home/matt/patsyn.hs, interpreted)

2

3 /home/matt/patsyn.hs:28:10: error:

4 • non-bidirectional pattern synonym ‘Quux’ used in an expression

5 • In the expression: Quux 3

6 In an equation for ‘blargh’: blargh = Quux 3

7 |

8 28 | blargh = Quux 3

9 | ^^^^

10 Failed, no modules loaded.

So we need to construct with it, too. We canmodify the pattern synonym
byprovidingawhere, and specifyinghow to constructwith it. Sincewe’re
intending to prevent folks from using it, we’ll just use undefined.

1 pattern Quux :: a -> Foo

2 pattern Quux i <- (const Nothing -> Just i) where

3 Quux _ = undefined

With this, we get just the warning about a redundant patternmatch. Now
it’s time to step up our game by providing a message to the end user.

Warnings

GHC gives us the ability to write {-# WARNING Quux "migrate me
pls" #-}. This can make sense if we expect that the runtime behavior
of a programwon’t be changed by our pattern synonym.

So let’s write a warning:

Growing Pains 227

1 pattern Quux :: a -> Foo

2 pattern Quux i <- (const Nothing -> Just i) where

3 Quux _ = undefined

4

5 {-# WARNING

6 Quux

7 "Please migrate away from Quux in some cool manner.\n\

8 \See X resource for migration tips."

9 #-}

Now, when compiling, we’ll see the warnings:

1 /home/matt/patsynimp.hs:11:5: warning: [-Wdeprecations]

2 In the use of data constructor ‘Quux’ (imported from PatSyn):

3 "Please migrate away from Quux in some cool manner.

4 See X resource for migration tips."

5 |

6 11 | Quux _ -> 3

7 | ^^^^

8

9 /home/matt/patsynimp.hs:11:5: warning: [-Woverlapping-patterns]

10 Pattern match is redundant

11 In a case alternative: Quux _ -> ...

12 |

13 11 | Quux _ -> 3

14 | ^^^^^^^^^^^

15

16 /home/matt/patsynimp.hs:14:10: warning: [-Wdeprecations]

17 In the use of data constructor ‘Quux’ (imported from PatSyn):

18 "Please migrate away from Quux in some cool manner. See X resource for migr\

19 ation tips."

20 |

21 14 | blargh = Quux (3 :: Int)

22 | ^^^^

But this may not be good enough. Wemay want to give them an error, so
they can’t build.

Growing Pains 228

TypeError

base defines a type TypeError⁶, which GHC treats specially - it raises
a type error. This isn’t generally useful, but can be great for marking
branches of a type family or type class instance as “impossible.” The
error message can be fantastic for guiding folks towards writing correct
code.

PatternSynonyms can have two sets of constraints: the first is required
when constructing, and the second is provided when matching. So let’s
just put an error in the first and see what happens:

1 pattern Quux

2 :: (TypeError ('Text "please migrate ..."))

3 => ()

4 => a -> Foo

5 pattern Quux i <- (const Nothing -> Just i) where

6 Quux _ = undefined

Unfortunately,GHCblowsup immediatelywhile compiling the synonym!

1 [1 of 2] Compiling PatSyn (PatSyn.hs, interpreted)

2

3 PatSyn.hs:20:1: error: please migrate ...

4 |

5 20 | pattern Quux

6 | ^^^^^^^^^^^^...

7 Failed, no modules loaded.

We can’t even -fdefer-type-errors this one. Are we hosed?

What about the second position? Same problem. We can’t put a bare
TypeError in there at all.

Fortunately, we can have a lil’ bit of laziness by introducing it as a
constraint.

⁶https://www.stackage.org/haddock/lts-19.31/base-4.15.1.0/GHC-TypeLits.html#t:TypeError

https://www.stackage.org/haddock/lts-19.31/base-4.15.1.0/GHC-TypeLits.html#t:TypeError
https://www.stackage.org/haddock/lts-19.31/base-4.15.1.0/GHC-TypeLits.html#t:TypeError

Growing Pains 229

1 class DeferredError

2 instance (TypeError ('Text "please migrate ...")) => DeferredError

3

4 pattern Quux

5 :: DeferredError

6 => DeferredError

7 => a -> Foo

8 pattern Quux i <- (const Nothing -> Just i) where

9 Quux _ = undefined

This actually does give us a warning now - at the const Nothing ->
Just i line, we have a deferred type error.

This gives us the error behavior we want!

1 /home/matt/patsynimp.hs:14:10: error:

2 • please migrate ...

3 • In the expression: Quux (3 :: Int)

4 In an equation for ‘blargh’: blargh = Quux (3 :: Int)

5 |

6 14 | blargh = Quux (3 :: Int)

7 | ^^^^^^^^^^^^^^^

8 Failed, one module loaded.

We only get the one error - but if we delete it, we can see the other error:

1 [2 of 2] Compiling Main (/home/matt/patsynimp.hs, interpreted)

2

3 /home/matt/patsynimp.hs:11:5: error:

4 • please migrate ...

5 • In the pattern: Quux _

6 In a case alternative: Quux _ -> 3

7 In the expression:

8 case x of

9 Bar i -> i

10 Baz c -> fromEnum c

11 Quux _ -> 3

Growing Pains 230

12 |

13 11 | Quux _ -> 3

14 | ^^^^^^

15 Failed, one module loaded.

What’s fun is that we can actually provide two different messages. Con-
structing somethingwill givebotherrormessages, andpatternmatching
only uses the “required” constraint.

This shouldmake itmuch easier for end users tomigrate to new versions
of your library.

Final Code and Errors

1 {-# language PatternSynonyms #-}

2 {-# language KindSignatures #-}

3 {-# language FlexibleContexts #-}

4 {-# language FlexibleInstances #-}

5 {-# language ViewPatterns #-}

6 {-# language MultiParamTypeClasses #-}

7 {-# language UndecidableInstances #-}

8 {-# language DataKinds #-}

9

10 {-# OPTIONS_GHC -fdefer-type-errors #-}

11

12 module PatSyn where

13

14 import Prelude

15 import GHC.Exts

16 import GHC.TypeLits

17

18 data Foo

19 = Bar Int

20 | Baz Char

21

22 class DeferredError (a :: ErrorMessage)

23 instance (TypeError a) => DeferredError a

24

Growing Pains 231

25 pattern Quux

26 :: DeferredError ('Text "please migrate (required constraint)")

27 => DeferredError ('Text "please migrate (provided constraint)")

28 => a -> Foo

29 pattern Quux i <- (const Nothing -> Just i) where

30 Quux _ = undefined

Matching a constructor:

1 [2 of 2] Compiling Main (/home/matt/patsynimp.hs, interpreted)

2

3 /home/matt/patsynimp.hs:11:5: error:

4 • please migrate (required constraint)

5 • In the pattern: Quux _

6 In a case alternative: Quux _ -> 3

7 In the expression:

8 case x of

9 Bar i -> i

10 Baz c -> fromEnum c

11 Quux _ -> 3

12 |

13 11 | Quux _ -> 3

14 | ^^^^^^

15 Failed, one module loaded.

Using a constructor:

1 [2 of 2] Compiling Main (/home/matt/patsynimp.hs, interpreted)

2

3 /home/matt/patsynimp.hs:14:10: error:

4 • please migrate (required constraint)

5 • In the expression: Quux (3 :: Int)

6 In an equation for ‘blargh’: blargh = Quux (3 :: Int)

7 |

8 14 | blargh = Quux (3 :: Int)

9 | ^^^^^^^^^^^^^^^

Growing Pains 232

10

11 /home/matt/patsynimp.hs:14:10: error:

12 • please migrate (provided constraint)

13 • In the expression: Quux (3 :: Int)

14 In an equation for ‘blargh’: blargh = Quux (3 :: Int)

15 |

16 14 | blargh = Quux (3 :: Int)

17 | ^^^^^^^^^^^^^^^

18 Failed, one module loaded.

15.3 Communicating To Users

Sometimes you just have to make a breaking change. GHC can tell them
that something happened and went wrong, but ideally, you can provide
better diagnostics and even help themmigrate to the new version of the
code.

The Status Quo

GHC has notoriously difficult to read error messages. Long-time
Haskellers have learned how to extract value from them, but it’s a chore
to learn and perform. Sometimes, these error messages are fine. There
are a few cases where you’ll want to be careful:

Polymorphic Monad

Changing the number of arguments in a function that is polymorphic in
the monad gives awful error messages.

Let’s define a function x that’s polymorphic in MonadIO m => m UTC-
Time, and see what happens when we provide an extra argument.

Growing Pains 233

1 λ> import Control.Monad.Reader

2 λ> import Data.Time

3 λ> let x y = liftIO getCurrentTime

4 λ> :t x

5 x :: MonadIO m => p -> m UTCTime

6 λ> x 3

7 2020-12-23 22:37:53.869381009 UTC

8 λ> x 3 5

9

10 <interactive>:7:1: error:

11 • No instance for (MonadIO ((->) Integer))

12 arising from a use of ‘x’

13 • In the expression: x 3 5

14 In an equation for ‘it’: it = x 3 5

We get No instance for (MonadIO ((->) Integer)). GHC contin-
uesalong trying to solve constraintsuntil it getshere.This is badbecause
the error message can show up in all kinds of weird places. If you’ve
composed multiple functions and collected all their constraints, then
the error could apply at any of the problematic functions. This makes
it difficult to diagnose what to fix.

If you’re going to expose polymorphic functions like this, please be
careful not to remove function arguments.

Warnings/Deprecations

GHC allows you to write WARNING and DEPRECATED pragmas that apply
to certain things. Whenever someone uses a term that has one of these
pragmas, it will render a warning message to the user. This warning
message can be used to point the library user to an upgrade path.

Here’s an example:

Growing Pains 234

1 foo :: Int -> IO ()

2 foo x = print (x + 1)

3

4 {-#

5 DEPRECATED foo

6 "Don't use foo. The function bar allows you to specify \

7 \ the increment."

8 #-}

9

10 bar :: Int -> Int -> IO ()

11 bar x y = print (x + y)

We’ve communicated to the end user that the foo function is bad, and
they should instead use the bar function. The WARNING pragma has the
same format. Deprecations should be used when you plan on removing
a function or type from the library. Warnings are a bit more flexible in
their intended use.

In the esqueleto library, we have a function random_, which provides
a random number. However, it turns out this was a mistake! Not all
database backends use the same syntax. To fix it, we added a DEPRE-
CATED pragma to random_which pointed users to newdatabase-specific
modules such as Database.Esqueleto.Postgresql which contain a
specific random_ function. This allows users to upgradewith confidence
and speed.

Suppose youwanted to change the behavior of a function without wreck-
ing your users. The first thing to do is release a version with a WARNING
pragma, specifying how the function is going to break in the next version.
You may also want to point the user to a variant - like myFunctionOld-
Behavior - that is appropriately named and documented to smooth
the upgrade process. Then, in the next major version, you change the
behavior of myFunction. This process allows you to change your library
and help end users perform upgrades.

Please do not remove things from your API without providing a warning
or deprecation. Diagnosing a failure to build on a new version of your
library can be pleasant with the right deprecation message. Diagnosing
an error message “foobar is not in scope” is extremely unpleasant,
especially if you’re not even sure where foobar came from in the first
place!

Growing Pains 235

TypeError

The module GHC.TypeLits provides us with a special type, TypeError,
which causes a type error with a custommessage.

We can attach this to functions, type class declarations, instance dec-
larations, or really anything where we don’t want the end-user to use
it, but we also don’t want to delete it. Suppose we attached a WARNING
pragma to a function in a previous version. Users of our librarymay still
use it and simply ignore the WARNING. If we attach a TypeError to the
function, then they can no longer use it at all without triggering the error.
Fortunately,weare able todisplay a custommessage to theuser. This can
be used to give an upgrade path or maybe diagnose what went wrong.

Let’s say we’re designing a variant Prelude that should be easier to learn.
A common error that Haskell beginners run into is trying to add lists.

1 λ> [1,2,3] + 4

2

3 <interactive>:14:1: error:

4 • Non type-variable argument in the constraint: Num [a]

5 (Use FlexibleContexts to permit this)

6 • When checking the inferred type

7 it :: forall a. (Num a, Num [a]) => [a]

This is an awful error message for a beginner to see. Fortunately, we can
provide a better one:

1 instance

2 (TypeError

3 ('Text "You tried to treat a list as a number. "

4 :$$: 'Text "Did you mean ++ for list concatenation?"

5)

6) => Num [a]

Now, armed with this instance, our beginners will see this message
instead

Growing Pains 236

1 λ> [1,2,3] + 4

2

3 <interactive>:22:1: error:

4 • You tried to treat a list as a number.

5 Did you mean ++ for list concatenation?

6 • In the expression: [1, 2, 3] + 4

7 In an equation for ‘it’: it = [1, 2, 3] + 4

We can use this to provide a nice error message for extra function
arguments, too.

1 type FnErrMsg =

2 'Text "You probably need to remove an argument to a function."

3

4 instance (TypeError FnErrMsg) => MonadIO ((->) r)

Now,whenour user calls a functionwith a polymorphicmonad that can’t
work out, we get this message.

1 λ> x 3 5

2

3 <interactive>:29:1: error:

4 • You probably need to remove an argument to a function.

5 • In the expression: x 3 5

6 In an equation for ‘it’: it = x 3 5

Contrast it with the original error message that GHC gives:

1 λ> x 3 5

2

3 <interactive>:7:1: error:

4 • No instance for (MonadIO ((->) Integer))

5 arising from a use of ‘x’

6 • In the expression: x 3 5

7 In an equation for ‘it’: it = x 3 5

Growing Pains 237

What’s evenbetter is that this errormessage trips first. It happensexactly
on the line that has a problem.

The unliftio library provides a class MonadUnliftIO that doesn’t sup-
port certain monad transformers. This is by design - StateT, WriterT,
and ExceptT behave oddly in the presence of IO, concurrency, and state
mutations. Right now, there aremerelymissing instances.However, they
could extend the library with TypeError instances that give helpful
information as to why they can’t have instances. Perhaps a link to the
relevant GitHub issue⁷, even!

For more on this, see Dmitrii Kovanikov’s post “A story told by Type
Errors”⁸.

⁷https://github.com/fpco/unliftio/issues/68
⁸https://kodimensional.dev/type-errors

https://github.com/fpco/unliftio/issues/68
https://github.com/fpco/unliftio/issues/68
https://kodimensional.dev/type-errors
https://kodimensional.dev/type-errors
https://github.com/fpco/unliftio/issues/68
https://kodimensional.dev/type-errors

IV Interfacing the Real

It’s not enough towrite pure functions that transformdata.Wemust also
interact with the real world. While you can do quite a bit with compile-
time code, ultimatelymost projects benefit fromaccepting arguments at
run-time and sending useful output to other programs. Haskell’s IO type
makes interacting with the real world a little more cumbersome than in
other languages with implicit effects. We gain a tremendous amount of
power from that type, though, and I believe that it’s well worth it.

16. Testing
People like to write Haskell because they don’t have to write tests. I’ve
heard this from somany people. Haskell does offer a ton of compile-time
guarantees, and there aremany times “if it compiles, it works” genuinely
holds true.

Unfortunately, that’s not always the case. Testing is sometimes neces-
sary, and if you never write tests, then you don’t learn how to test code
effectively, or how to write code in a manner that is amenable to testing.
We’re going to learn how to do both of these things in this chapter.

16.1 Libraries and Tools

This section will be brief, as much of this material is covered in good
depth in Haskell Programming from First Principles¹.

HUnit

HUnit² is a minimalist testing library that is heavy on the operators.
There’s not much here to learn - assertions are IO () actions, and a
test succeeds if it doesn’t throw an exception. A test fails if it throws any
exception, with HUnit handling the HUnitFailure exception to render
pretty error messages.

HUnit is mostly used as a foundation for other test frameworks, like
hspec, tasty, and test-framework. It can be useful to see how it works
and know the assertion functions, but I wouldn’t reach for it as a first
approach.

¹https://haskellbook.com/
²https://hackage.haskell.org/package/HUnit-1.6.1.0/docs/Test-HUnit.html

239

https://haskellbook.com/
https://hackage.haskell.org/package/HUnit-1.6.1.0/docs/Test-HUnit.html
https://haskellbook.com/
https://hackage.haskell.org/package/HUnit-1.6.1.0/docs/Test-HUnit.html

Testing 240

hspec

I like hspec³ as a test framework. I learned test driven development in
Ruby with the RSpec library, and hspec is a nice port that provides a
number of conveniences. hspec uses “Behavior Driven Development”
(BDD) idioms, so test suites end up looking like this:

1 main :: IO ()

2 main = hspec $ do

3 describe "Some thing" $ do

4 it "does the thing" $ do

5 someThing "a"

6 `shouldBe`

7 "the thing"

8 it "has another property" $ do

9 someThing "b"

10 `shouldBe`

11 "other example"

As you can tell, theEDSLattempts to read likeEnglish language.Whether
this is good or bad is an intensely personal decision.

hspec supports an autodiscovery tool called hspec-discover⁴,
which automatically stitches together a test suite via
metaprogramming. Any module ending in Spec with a top-
level term spec :: Spec‘ will get included in the test suite. This is a
great convenience, and guarantees that you don’t forget to wire up a test.

hspec has helpers for providing before and after hooks. You can use
this to provide database connections or API servers as resources to
individual tests. A before call will initialize a value and pass it as a value
to every it defined within:

³https://hackage.haskell.org/package/hspec
⁴https://hackage.haskell.org/package/hspec-discover

https://hackage.haskell.org/package/hspec
https://hackage.haskell.org/package/hspec-discover
https://hackage.haskell.org/package/hspec
https://hackage.haskell.org/package/hspec-discover

Testing 241

1 before (mkDatabase :: IO Conn) $

2 describe "withDatabase" $ do

3 it "has a database" $ \conn -> do

4 results <- runDb conn query

5 results `shouldBe` ...

Theit functionacceptsaString label andanAssertion,which is really
an IO () from HUnit. If you throw an exception, the test fails. If there’s
no exception, the test succeeds.

You can mark spec items as pending. Pending items are “skipped,” and
show a warning that some tests aren’t actually passing. This can be
used to write failing test cases, and fix them in a later PR. Most of the
test organization functions (describe, it, etc) have a variant with an x
prepended that mark everything under it as pending.

Youcanmarkspec itemsas focused. If any test case ismarkedas focused,
then focused tests are the only ones that will run. This can be nice while
using ghcid to automatically re-run tests, ensuring that you only get
output you care about while testing some part of the codebase.

hspec defines how to build a test suite, as well as a set of expectation
functions. While hspec’s expectations are built on top of HUnit, it also
integrates with other libraries like QuickCheck, and the library hspec-
hedgehog⁵ provides integration with the hedgehog property testing li-
brary.

tasty

tasty⁶ is a relatively new competitor to hspec. Themain differentiating
feature is that it does not use a BDD EDSL to structure tests, instead
relying on constructing an ordinary tree data structure with list literals.
The autogeneration facilities in tasty-th⁷ encourage you to write tests
as top-level definitions, which canmake it easier to run them directly in
GHCi. And tasty-discover⁸ appears to be about as powerful as hspec-
discover.

⁵https://hackage.haskell.org/package/hspec-hedgehog
⁶https://hackage.haskell.org/package/tasty-1.4/docs/Test-Tasty.html
⁷https://hackage.haskell.org/package/tasty-th
⁸https://hackage.haskell.org/package/tasty-discover

https://hackage.haskell.org/package/hspec-hedgehog
https://hackage.haskell.org/package/hspec-hedgehog
https://hackage.haskell.org/package/tasty-1.4/docs/Test-Tasty.html
https://hackage.haskell.org/package/tasty-th
https://hackage.haskell.org/package/tasty-discover
https://hackage.haskell.org/package/hspec-hedgehog
https://hackage.haskell.org/package/tasty-1.4/docs/Test-Tasty.html
https://hackage.haskell.org/package/tasty-th
https://hackage.haskell.org/package/tasty-discover

Testing 242

tasty does not define expectations or assertions. It is only a library for
building and filtering test suites. You can use HUnit or hspec expecta-
tions with tasty as a test-runner. There aremany integrations for other
libraries available, including QuickCheck, SmallCheck, hedgehog, and
golden tests.

I’ve used hspec and tasty test suites, and while I prefer hspec, it’s a
toss up. I probably wouldn’t bother converting an existing test suite to a
different library, and they’re similar enough that it is probably easier to
implement a killer feature in one than swap over entirely.

doctest

doctest⁹ allows you to write examples in comments and then verify
them automatically. This approach works well with simple combinator
libraries that operate on relatively small types, where writing examples
in line is easy and informative. The lens library¹⁰ uses them to great
effect.

In practice, I have found doctest suites to be difficult tomaintain. Since
they aren’t checked by GHC automatically as part of building the code,
it’s easy for the tests to become stale. And it’s also easy for the test setup
to become cumbersome.

Property Based Testing

There are many compelling property testing libraries in Haskell. The
original property testing library, QuickCheck is popular and inwide-use.
After many years of working with property tests in production, the idea
has been refined. The state of the art is hedgehog, which differentiates
with QuickCheck on several import design decisions.

This won’t be a tutorial on property based testing. For that, I recommend
Oskar Wickström excellent series of blog posts¹¹. Instead, we’ll compare
and contrast how the libraries work and why you might select one over
the other.

⁹https://hackage.haskell.org/package/doctest
¹⁰https://hackage.haskell.org/package/lens-4.19.2/docs/Control-Lens-Getter.html#v:view
¹¹https://wickstrom.tech/programming/2019/03/02/property-based-testing-in-a-screencast-

editor-introduction.html

https://hackage.haskell.org/package/doctest
https://hackage.haskell.org/package/lens-4.19.2/docs/Control-Lens-Getter.html#v:view
https://wickstrom.tech/programming/2019/03/02/property-based-testing-in-a-screencast-editor-introduction.html
https://hackage.haskell.org/package/doctest
https://hackage.haskell.org/package/lens-4.19.2/docs/Control-Lens-Getter.html#v:view
https://wickstrom.tech/programming/2019/03/02/property-based-testing-in-a-screencast-editor-introduction.html
https://wickstrom.tech/programming/2019/03/02/property-based-testing-in-a-screencast-editor-introduction.html

Testing 243

QuickCheck

QuickCheck¹² is the original and definitive “property testing” library.
Wheremost test cases have concrete examples, QuickCheck encourages
you to write tests that are abstract of specific values and express rela-
tional properties on them. With a normal test-case approach, youmight
test reverse like:

1 describe "reverse" $ do

2 it "empty list is empty list" $ do

3 reverse []

4 `shouldBe`

5 []

6 it "1,2,3 is 3,2,1" $ do

7 reverse [1,2,3]

8 `shoulBe`

9 [3,2,1]

Property testing instead encourages you to say:

For some random input x, what properties can I say about
reverse x?

Well, the length should always be the same.

1 prop_length xs = length (reverse xs) === length xs

And reversing it twice gives you the original list back.

1 prop_id xs = reverse (reverse xs) === xs

QuickCheck works by generating totally random values and trying to
find examples that fail the given properties. When it finds the edge-case,
it reports it back to you, so you know exactly what input breaks the code.

¹²https://hackage.haskell.org/package/QuickCheck

https://hackage.haskell.org/package/QuickCheck
https://hackage.haskell.org/package/QuickCheck

Testing 244

As the original property based testing library, it has the most examples
and documentation online. It’s also the most widely accessible library -
QuickCheck has been ported to many other programming languages, so
even non-Haskellers are sometimes familiar with it.

QuickCheck has a few downsides.

The ability of QuickCheck to find a bug is dependent on how well tuned
the random value generators are to the problem. QuickCheck uses type
classes for generating values by default, and the default generator is
probably not well tuned to your domain. It’s entirely possible that the
random number generation just never generates a value that trips an
edge case. Since the tests are non-deterministic, it’s also easily possible
that you’llwrite test cases that fail sometimesbutnot others.QuickCheck
allows you to provide a seed value to reproduce these test, of course, but
randomly failing tests can be difficult to track down.

Once a failing value is found, shrinking that value becomes essential
- otherwise you’ll end up with a massive and difficult to understand
input test case. QuickCheck defines shrink with a default method that
does nothing, so most custom types don’t shrink at all. This limits the
usefulness of QuickCheck with custom types, unless you manually de-
fine shrinking functions, and there’s no guarantee that your shrinking
function works properly for your domain.

SmallCheck

smallcheck¹³ is inspired by Quickcheck, but instead of checking a ran-
dom set of values, it exhaustively checks with small values. Since tests
are exhaustive, you don’t need to worry about random number gener-
ation. And since test values start small, you don’t have to worry about
shrinking.

SmallCheck obviously doesn’t catch errors when the required values are
large. The academic paper introducing SmallCheck¹⁴ is accessible and
not terribly theoretical.

SmallCheck uses type classes for generating data, much like
QuickCheck.

¹³https://hackage.haskell.org/package/smallcheck
¹⁴https://www.cs.york.ac.uk/fp/smallcheck/smallcheck.pdf

https://hackage.haskell.org/package/smallcheck
https://www.cs.york.ac.uk/fp/smallcheck/smallcheck.pdf
https://hackage.haskell.org/package/smallcheck
https://www.cs.york.ac.uk/fp/smallcheck/smallcheck.pdf

Testing 245

Hedgehog

hedgehog¹⁵ is a novel approach to property based testing. Unlike
QuickCheck, it does not use type classes for generating values. Instead,
you generate values explicitly. This makes it easy to tailor generation
to your domain. Sampling from integers requires that you specify the
distribution of integers that you sample from.

The killer feature is that shrinking values comes for free. With
QuickCheck, you had to manually specify how to shrink a value of
a given type. But hedgehog uses the actual generation of values to
determine how to shrink a value. This means that shrinking is much
more likely to produce useful values.

hedgehog has wonderful output on failing test cases, too. For each line
in a failing test case that generates a value, it’ll show you the value that
was generated. And for an assertion that fails gets pretty-printed and
rendered in color. The test output is so good that you may want to use
hedgehog even for unit tests!

While most expositions of property testing use pure functions, you can
use properties with effects, too. My blog post Effectful Property Testing¹⁶
goes into detail on how to use hedgehog to test database queries.

16.2 Designing Code for Testing

Fortunately, “writing code that is easy to test” and “purely functional
programming”have a tremendous amount of overlap. Indeed, if you take
the “Single Responsibility Principle” from object-oriented design to it’s
natural conclusion, you get pure functions. Many of the design patterns
in OOP for enabling good testing boil down to “higher order functions,”
which we’ll use extensively. Modeling our business domain with fine-
grained and precise types makes it easy to factor out logic and inspect
correctness.

¹⁵https://hackage.haskell.org/package/hedgehog
¹⁶https://www.parsonsmatt.org/2020/03/11/effectful_property_testing.html

https://hackage.haskell.org/package/hedgehog
https://www.parsonsmatt.org/2020/03/11/effectful_property_testing.html
https://hackage.haskell.org/package/hedgehog
https://www.parsonsmatt.org/2020/03/11/effectful_property_testing.html

Testing 246

Pure Functions

Pure functions are easy to test. Asmuch as possible, you should be using
the techniques I describe in other parts of the book to factor as much
of your code into pure functions. However, even pure functions can be
difficult to test if the function is too big or complicated.

In OOP, code is organized into classes withmethods. Refactoring usually
begins by splitting methods and classes into multiple smaller methods
and classes. We’ll do this in Haskell too, by splitting our functions into
smaller functions.

Datatypes are the bridge between functions. Functions can easily accept
multiple inputs. Butmultiple outputs requires packing those outputs in a
tuple or a custom datatype. This step is slightly less convenient, and so
it’s practiced a bit less.

Example 1: Render Email

Let’s take a function that is “too large”:

1 renderEmail :: User -> Order -> UTCTime -> Text

2 renderEmail user order currentDate =

3 mconcat

4 [lots of nasty rendering logic

5]

Now, I’d like you to imagine that the function goes on for hundreds and
hundreds of lines. We can write tests for this function relatively easily.
After all, it’s a pure function, so we just need to make assertions about
the inputs and output.

Testing 247

1 describe "renderEmail" $ do

2 let user = mkDefaultUser

3 order = mkDefaultOrder

4 currentDate = mkDate

5 it "complete example" $ do

6 renderEmail user order currentDate

7 `shouldBe`

8 "The whole thing"

However, this is brittle and somewhat annoying to write. If we want to
assert that the email body contains the right name, wemight write:

1 it "has the right name" $ do

2 renderEmail user order currentDate

3 `shouldSatisfy`

4 (Text.elem (userName user))

This is unsatisfying, because we have no guarantee that the name ap-
pears in the right spot. Furthermore, we may have inserted a line break
on a whitespace boundary - then the test fails because the string literal
"Foo Bar" does not match "Foo\nBar". We are trying to assert facts
about the end result, but those facts have beendestroyed, andweare per-
forming data archaeology. This isn’t good. Fortunately, we can refactor
the code to preserve that information.

If the test is painful to write, then we should accept this as
feedback that the code should be refactored.

Let’s split it up.Wewant to identify an intermediate step in this function,
and possibly write a few new types that represent the intermediate steps
here. Rendering an email suggests that we have some form of template,
and information to plug into variables in that template.

We’ll start by creating a type for the variables.

Testing 248

1 data Var

2 = UserName

3 | OrderDate

4 | OrderPrice

5 | ProductName

What are the actual contents of the message? Rather than representing
themas text, let’s pull out all of the semantic common factors, and create
a sum type representing them. We likely have a few:

1 type Template = [TemplateFragment]

2

3 data TemplateFragment

4 = Variable Var

5 | Greeting

6 | Goodbye

7 | SalesPitch

8 | CompanyEmail

Finally, we need some way to turn a Variable into what it is actually
supposed to be. I’m going to use a function representation with a new-
type wrapper, though I could also create a record with a value for each
constructor in the sum type. The function approachmakes it a bit easier
to ensure we keep the two types up-to-date, as I can forget to add fields
to the record type.

1 newtype ReplaceVar result = ReplaceVar (Var -> result)

2

3 replaceVar :: ReplaceVar result -> Var -> result

4 replaceVar (ReplaceVar k) v = k v

5

6 mkReplacements :: User -> Order -> UTCTime -> ReplaceVar Text

7 mkReplacements user order now =

8 ReplaceVar $ \var -> case var of

9 UserName -> userName user

10 OrderDate -> orderDate order

11 ProductName -> productName (orderProduct order)

Testing 249

Now, we’ve got the two sides of our renderEmail - the preparation of a
Template, and the rendering of a Template into a Text.

1 renderEmail :: User -> Order -> UTCTime -> Text

2 renderEmail u o t =

3 renderText (prepareTemplate u o t) (mkReplacements u o t)

4

5 prepareTemplate :: User -> Order -> UTCTime -> Template

6

7 renderText :: Template -> ReplaceVar Text -> Text

Fantastic - we now have two new testing points. Now that we have nar-
rowed our types and introduced these intermediate functions, we can
write muchmore precise tests.

Now, let’s rewrite that test that asserts the user name is present in the
email.

1 it "has the user name variable in the template" $ do

2 prepareTemplate user order currentDate

3 `shouldContain`

4 [Variable UserName]

5 it "UserName shows the user name" $ do

6 replaceVar (mkReplacements user order currentDate) UserName

7 `shouldBe`

8 userName user

Much nicer! These two tests now assert that the mkReplacements and
prepareTemplate functionswork as intended. By isolating the complex
business logic into small testable functions, we can make precise asser-
tions about their results. Instead of writing complex and fragile tests
against the entirety of renderEmail, we canwrite resilient tests that say
exactly what they mean.

Example 2: TemplateHaskell

For some reason, people forget that TemplateHaskell is ordinary func-
tional programming. We can use all of our normal tricks for testing

Testing 250

and introspecting on TemplateHaskell functions to help verify their
correctness.

For this example, we’re going to refactor the TemplateHaskell code in
myrecord-wrangler¹⁷ library. Thewrangle functiondefines theuseful
part of the library, and it’s 55 lines of dense Template Haskell code.
There’s no way to test the code aside from simply running it and then
verifying that the compiler generates the right code.

Before continuing, it’s best to go read the source code for the function¹⁸
as-is.

We’ll start the refactoring process at the end.

1 let newConstructors =

2 map (uncurry RecC) newConstrs

3 pure

4 [DataD [] newRecName tyvars Nothing newConstructors []

5 , SigD (mkName convertName) sig

6 , convert

7]

That first entry in the list is the data declaration for the new record
type. We’ll write a datatype that has the information we want, and then
we’ll writer a “render” function that turns it into a TemplateHaskell
declaration.

1 data NewRecord = NewRecord

2 { newRecordName :: Name

3 , newRecordTyvars :: [TyVarBndr]

4 , newRecordConstructors :: [(Name, [(Name, Bang, Type)])]

5 }

6

7 newRecordToDec :: NewRecord -> Dec

8 newRecordToDec NewRecord{..} =

9 DataD [] newRecordName newRecordTyvars Nothing

¹⁷https://hackage.haskell.org/package/record-wrangler
¹⁸https://hackage.haskell.org/package/record-wrangler-0.1.1.0/docs/src/RecordWrangler.html#

wrangle

https://hackage.haskell.org/package/record-wrangler
https://hackage.haskell.org/package/record-wrangler-0.1.1.0/docs/src/RecordWrangler.html#wrangle
https://hackage.haskell.org/package/record-wrangler
https://hackage.haskell.org/package/record-wrangler-0.1.1.0/docs/src/RecordWrangler.html#wrangle
https://hackage.haskell.org/package/record-wrangler-0.1.1.0/docs/src/RecordWrangler.html#wrangle

Testing 251

10 (map (uncurry RecC) newRecordConstructors)

11 []

This is the most direct translation. However, I’m unhappy with that
nested list of tuples. Tuples are almost always more confusing than a
well-named datatype. We can refactor to even better datatypes:

1 data NewRecord = NewRecord

2 { newRecordName :: Name

3 , newRecordTyvars :: [TyVarBndr]

4 , newRecordConstructors :: [NewConstructor]

5 }

6

7 newRecordToDec :: NewRecord -> Dec

8 newRecordToDec NewRecord{..} =

9 DataD [] newRecordName newRecordTyvars Nothing

10 (map newConstructorToCon newRecordConstructors)

11 []

12

13 data NewConstructor = NewConstructor

14 { newConstructorName :: Name

15 , newConstructorFields :: [RecordField]

16 }

17

18 newConstructorToCon :: NewConstructor -> Con

19 newConstructorToCon NewConstructor{..} =

20 RecC newConstructorName $ map recordFieldToTH newConstructorFields

21

22 data RecordField = RecordField

23 { recordFieldName :: Name

24 , recordFieldBang :: Bang

25 , recordFieldType :: Type

26 }

27

28 recordFieldToTH :: RecordField -> (Name, Bang, Type)

29 recordFieldToTH (RecordField n b t) = (n, b, t)

Testing 252

Now we can use this in the original code. It won’t look like much, but
we’re going to construct the record and provide it to the function. Since
this constructionwill occur relatively close by, this will seemuseless. It’s
merely a step in the right direction.

1 let mkConstructor (n, fs) =

2 NewConstructor n

3 $ map (\(n, b, t) -> RecordField n b t) fs

4 newRec = NewRecord

5 { newRecordName = newRecName

6 , newRecordTyvars = tyvars

7 , newRecordConstructors =

8 map mkConstructor newConstrs

9 }

10 pure

11 [newRecordToDec newRec

12 , SigD (mkName convertName) sig

13 , convert

14]

We’re going to continue pulling the thread by moving those definitions
closer to their sources. We got about 40 lines up before we hit the first
term we depend on: newConstrs. newConstrs, in turn, depends on
newFields, which only depends on the addFields - this is a field on
the source WrangleOpts type, so we can move this up to the top of the
function almost!

1 let newConstrs = map mkNewConstr recConstrs

2 mkNewConstr (recName, fields) =

3 (modifyName constructorModifier recName

4 , map mkNewField fields ++ newFields

5)

6 mkNewField (fieldName, bang', typ) =

7 (modifyName fieldLabelModifier fieldName

8 , bang'

9 , typ

10)

Testing 253

11 newRec = NewRecord

12 { newRecordName = newRecName

13 , newRecordTyvars = tyvars

14 , newRecordConstructors =

15 map mkConstructor newConstrs

16 }

newConstrs is constructed by mapping over recConstrs - but this
points to some redundancy, since we’re also calling map mkConstruc-
tor on newConstrs. This suggests we can make this code quite a bit
simpler by having mkNewConstr and mkNewField return our custom
datatypes and inlining them.

1 let mkNewConstr (recName, fields) =

2 NewConstructor

3 { newConstructorName =

4 modifyName constructorModifier recName

5 , newConstructorFields =

6 map mkNewField fields ++ newFields

7 }

8 mkNewField (fieldName, bang', typ) =

9 RecordField

10 { recordFieldName =

11 modifyName fieldLabelModifier fieldName

12 , recordFieldBang =

13 bang'

14 , recordFieldType =

15 typ

16 }

17 newRec = NewRecord

18 { newRecordName = newRecName

19 , newRecordTyvars = tyvars

20 , newRecordConstructors =

21 map mkNewConstr recConstrs

22 }

This change causes a few other changes. There are a few tuple pattern
matches that can be replaced with more informative record accessor

Testing 254

functions or RecordWildCards matches. Overall, improvements! rec-
Constrs is provided effectfully, but only because we use fail:

1 recConstrs <- for constrs $ \constr -> case constr of

2 RecC recName fields ->

3 pure (recName, fields)

4 _ ->

5 fail

6 $ "Expected a record constructor, but got: "

7 <> show constr

However, this isn’t the only place we depend on the old constructor in-
formation. We use it when creating the conversion function. So we can’t
completely inline the definitionhere. This suggests a further refactor: an
OldRecord type. I’ll copy the three datatypes, replace Newwith Old, and
then we can have a nice conversion function. This will be boilerplate-y
and repetitive. That’s okay. This is a mechanical process. We’re going to
do the easiest, most obvious, possibly dumbest thing that works.

After all, this is Haskell. Refactoring is easy. Refactoring with experience
of the problems you’re solving is even easier!

1 recConstrs <- for constrs $ \constr -> case constr of

2 RecC recName fields ->

3 pure OldConstructor

4 { oldConstructorName = recName

5 , oldConstructorFields =

6 map (\(n,b,t) -> OldRecordField n b t) fields

7 }

8 _ ->

9 fail

10 $ "Expected a record constructor, but got: "

11 <> show constr

12

13 let newRec = NewRecord

14 { newRecordName = newRecName

15 , newRecordTyvars = tyvars

16 , newRecordConstructors =

Testing 255

17 map (oldConstructorToNew wo newFields) recConstrs

18 }

19 -- snip --

20 oldConstructorToNew

21 :: WrangleOpts

22 -> [NewRecordField]

23 -> OldConstructor

24 -> NewConstructor

25 oldConstructorToNew wo newFields OldConstructor{..} =

26 NewConstructor

27 { newConstructorName =

28 modifyName (constructorModifier wo) oldConstructorName

29 , newConstructorFields =

30 map mkNewField oldConstructorFields ++ newFields

31 }

32 where

33 mkNewField OldRecordField{..} =

34 NewRecordField

35 { newRecordFieldName =

36 modifyName (fieldLabelModifier wo) oldRecordFieldName

37 , newRecordFieldBang =

38 oldRecordFieldBang

39 , newRecordFieldType =

40 oldRecordFieldType

41 }

Look at this code. It’s blindingly simple and obvious. There’s no way to
get it wrong.

Alright, let’s continue pulling that thread. We’re still not using the Ol-
dRecord type yet, which means we’re slacking! The term constrs is
pulled out in a pattern match on the reification of the type name.

Testing 256

1 TyConI theDec <- reify tyName

2 (name, tyvars, constrs) <-

3 case theDec of

4 DataD _ name tyVarBinders _ constructors _ ->

5 pure (name, tyVarBinders, constructors)

6 NewtypeD _ name tyVarBinders _ constructor _ ->

7 pure (name, tyVarBinders, [constructor])

8 _ ->

9 fail

10 $ "Expected a data or newtype declaration, "

11 <> "but the given name \""

12 <> show tyName

13 <> "\" is neither of these things."

Another “effectful onlybecauseof fail” case.Thecaseexpressionpicks
apart the DataD and NewtypeD cases and makes them uniform. This is
what our OldRecord type is for. Let’s use it.

1 let mkOldConstr constr = case constr of

2 RecC recName fields ->

3 pure OldConstructor

4 { oldConstructorName =

5 recName

6 , oldConstructorFields =

7 map (\(n,b,t) -> OldRecordField n b t) fields

8 }

9 _ ->

10 fail

11 $ "Expected a record constructor, but got: "

12 <> show constr

13 oldRecord <-

14 case theDec of

15 DataD _ name tyVarBinders _ constructors _ -> do

16 constructors' <- traverse mkOldConstr constructors

17 pure OldRecord

18 { oldRecordName = name

19 , oldRecordTyvars = tyVarBinders

Testing 257

20 , oldRecordConstructors = constructors'

21 }

22 NewtypeD _ name tyVarBinders _ constructor _ -> do

23 constructor' <- mkOldConstr constructor

24 pure OldRecord

25 { oldRecordName = name

26 , oldRecordTyvars = tyVarBinders

27 , oldRecordConstructors = [constructor']

28 }

29 _ ->

30 fail

31 $ "Expected a data or newtype declaration, "

32 , "but the given name \""

33 <> show tyName

34 <> "\" is neither of these things."

We’ve pretty much completely threaded this data dependency through
now, and we’re ready to write some pure functions.

1 oldRecordToNew

2 :: WrangleOpts -> OldRecord -> [NewRecordField] -> NewRecord

3 oldRecordToNew wo OldRecord{..} newFields =

4 NewRecord

5 { newRecordName =

6 modifyName (typeNameModifier wo) oldRecordName

7 , newRecordTyvars =

8 oldRecordTyvars

9 , newRecordConstructors =

10 map (oldConstructorToNew wo newFields)

11 oldRecordConstructors

12 }

Now this is a good function to test. It’s pure, and all data dependencies
are explicit and self-contained. It’s also small!

Finally, we can factor out some of the “data extraction” functions into
pure variants. We can use MonadFail to abstract over failure - Qwill fail
with a compile-time error, while Either is nice and pure.

Testing 258

Our final effectful function looks like this:

1 mkNewRecordDec :: WrangleOpts -> OldRecord -> DecsQ

2 mkNewRecordDec wo oldRecord = do

3 newFields <- processNewFields wo

4 pure [newRecordToDec (oldRecordToNew wo oldRecord newFields)]

All the logic is pure. oldRecordToNew “parses” our datatype into the
easily inspectable “new” variant. Then newRecordToDec “renders” our
new datatype into the target we care about.

17. Logging and Observability
Everyone logs. println debugging is baked into basically every pro-
gramming language. It’s a simple and easy way to get observability into
your system.

Haskell’s focus on puritymakes logging a bit trickier. In nearly any other
context, you’re able to just call print and see what happens. Haskell
makes it more difficult - to call print in Haskell, you need to either
refactor everything into IO, or you need to use unsafePerformIO to
discharge it! Neither of these solutions are fun.

Fortunately, these same requirements make logging in production a
potential joy to use. As it happens, logging can be a surprisingly com-
plicated topic - poorly handled file system encodings can kill a logging
thread, and that might bring things down in surprising ways. Explicit
logging contexts and handles tends to make code that logs easier to
understand and use, not worse. Since logging can be incorporated into
the same system that provides other resources, you can easily tie logging
into the rest of your application stack in a relevant way.

Let’s learn about a way to log in Haskell nicely and effectively.

17.1 On Debug.Trace

println debugging is an important and useful tool. In Haskell, if you’re
not in IO, you can use the Debug.Trace module, and it’ll print things
to the standard error handle. This works really well for debugging pure
code, and it’s not well known!

Using Debug.Trace

While I generally prefer to factor code into smaller bits and write tests to
debug and diagnose behavior, it’s oftenmuch easier to just stick a trace
in there and observe what is happening.

259

Logging and Observability 260

The function trace has an odd signature:

1 trace :: String -> a -> a

The Stringmessage is printed when the second argument is evaluated.
This is how you have to do things in a lazy expression language - we don’t
“have” a sequential ordering, necessary, so you attach “effects” to “data”
and not to lines in a control structure.

The function trace is mostly useful for expressions like trace
"evaluating foo" foo. If you want details on what foo is, you
can use traceShowId:

1 traceShowId :: Show a => a -> a

2 traceShowId a = trace (show a) a

There’s also traceM, which can be used in an Applicative context and
can be useful for debugging Maybe‘ expressions:

1 what :: Maybe Int

2 what = do

3 traceM "ok starting"

4 blah <- foo

5 traceM "blah was Just"

6 bar <- baz

7 traceM "baz returned Just"

8 argh <- noooo

9 traceM "argh is just"

10 pure (x argh)

If we evaluate what and get Nothing back, then these traces can tell us
exactly which line short-circuited the computation.

When do traces appear?

Understanding exactly whenmessages will get printed can be confusing.
With trace :: String -> a -> a, themessage in the first parameter

Logging and Observability 261

is attached to the data. It will be printed when the data is evaluated, and
only once.

If you are confused about this, or are investigating a weird tracing error,
then this section may be useful to you. Otherwise, you can safely skip it.

This is another trick of Haskell’s inherent laziness. It works just like how
exceptions are attached to data, not control flow.

This means you might not get messages printed out when you expect it.
Let’s consider this code block:

1 import qualified Debug.Trace as Debug

2

3 numbers :: [Int]

4 numbers =

5 Debug.trace "Numbers evaluated!"

6 $ map Debug.traceShowId [1 .. 10]

So when will these trace statements happen? It depends on how the
numbers list is consumed. Let’s open it in GHCi and see what happens.

1 >>> length numbers

2 Numbers evaluated!

3 10

4 >>> length numbers

5 10

Note that the message is only printed the first time we use the data. This
is because the message printing is tied to the evaluation of the data, and
onceGHChas evaluated thedata, it doesn’t reevaluate it. Now,here’s a line
that you can easily copy into GHCi.

1 numbers = Debug.trace "outer eval" $ map Debug.traceShowId [1..10]

The only difference is that there isn’t a type signature. Now, our trace
output looks subtly different.

Logging and Observability 262

1 >>> numbers = Debug.trace "outer eval" $ map Debug.traceShowId [1..10]

2 >>> length numbers

3 outer eval

4 10

5 >>> length numbers

6 outer eval

7 10

This is because the inferred type of numbers is Num a => [a]. This Num
a constraint is an implicitly passed function parameter. This function
parameter causes GHCi to re-evaluate the list every time you demand
it! The monomorphism restriction deals with exactly this behavior, and
it can be confusing if you don’t know what’s going on.

It’s actually nice to have the messages print each time the data is evalu-
ated while playing with it, so we’ll stick with the Num a => [a] version.
length numbers causes "Numbers evaluated!" to be printed. What
about map (_ -> ()) numbers?

1 >>> map (_ -> ()) numbers

2 Numbers evaluated!

3 [(),(),(),(),(),(),(),(),(),()]

We don’t get any of the numeric output. What about this?

1 >>> map (\(i, x) -> if i > 3 then x else 0) (zip [0..] numbers)

2 Numbers evaluated!

3 [0,0,0,0,5

4 5,6

5 6,7

6 7,8

7 8,9

8 9,10

9 10]

So, this is a bit tricky! We’re getting interleaved output. This is because
we’re actually evaluating the numbers of the list as we are printing them

Logging and Observability 263

for the first time! We don’t actually demand anything from the list until
we start printing it - consuming it in the real world.

It’s important to attach lots of good information to a Debug.Trace state-
ment. Knowing exactly when an item will br printed can be difficult to
understand, and if your Trace statements aren’t well-labeled, you can
easily confuse yourself.

Beware Laziness

Attaching a trace message to a value prints the message when the
value is demanded. However, printing that message out itself demands
the message, which (in turn) demands anything you use to create the
message. If you’re writing code that relies on laziness, then you need to
ensure that you don’t demand things early while tracing.

This section is inspired by a debugging story, where I was trying to
fix some TemplateHaskell code in the persistent database library.
The TemplateHaskell code created a self-referential Map Name Enti-
tyDef, where EntityDef had lookups for other Names in their creation
code. The code would loop infinitely during compilation. I inserted sev-
eral trace expressions to try and determine what was going on, and I
ended up identifying something dodgy. But I couldn’t get the problem to
go away! It kept looping. And it kept looping because the trace expressions
were forcing data, which broke the laziness of the knot tying approach.

17.2 Prefer do Notation

Or, more generally, avoid point-free code.

Logging (or debug tracing) is one of the most common requirements for
code. A code style that makes logging easy will bemore pleasant to work
with on average.

Let’s lookat somecombinator-heavy code that dealswith logic youmight
find in a CRUD app.

Logging and Observability 264

1 getUserPurchasesR :: UserId -> Handler UserPurchases

2 getUserPurchasesR userId =

3 UserPurchases

4 <$> (maybe (throwM NotFound) pure =<< (runDB (get userId)))

5 <*> (runDB (selectList [UserPurchaseUserId ==. userId] [])

6 >>= filterM isValidPurchase

7)

If we want to log the found user, it’s a bit of a nuisance.

1 getUserPurchasesR :: UserId -> Handler UserPurchases

2 getUserPurchasesR userId =

3 UserPurchases

4 <$> (maybe (throwM NotFound) logAndReturn =<< (runDB (get userId)))

5 <*> (runDB (selectList [UserPurchaseUserId ==. userId] [])

6 >>= filterM isValidPurchase

7)

8 where

9 logAndReturn user = do

10 log user

11 pure user

Likewise, if we want to log the invalid purchases, it’s even more of a
nuisance:

1 getUserPurchasesR :: UserId -> Handler UserPurchases

2 getUserPurchasesR userId =

3 UserPurchases

4 <$> (maybe (throwM NotFound) pure =<< (runDB (get userId)))

5 <*> (runDB (selectList [UserPurchaseUserId ==. userId] [])

6 >>= filterM isValidPurchaseLogged

7)

8 where

9 isValidPurchaseLogged purchase = do

10 t <- isValidPurchase purchase

11 unless t (log purchase)

12 pure t

Logging and Observability 265

We have to create awhole separate where clause and function definition,
all to log some value out.

With do notation from the start, this code looks much nicer.

1 getUserPurchasesR :: UserId -> Handler UserPurchases

2 getUserPurchasesR userId = do

3 muser <- runDB $ get userId

4 user <-

5 case muser of

6 Nothing ->

7 throwM NotFound

8 Just u ->

9 pure u

10 allPurchases <- runDB $

11 selectList [UserPurchaseUserId ==. userId] []

12 validPurchases <- filterM isValidPurchase allPurchases

13

14 pure $ UserPurchases user validPurchases

The code is undoubtedly more verbose, but adding logging statements
becomes trivially easy. The code is also much more resilient to other
modifications.

In general, I often find the need to refactor code away from an operator-
heavy, point-free style. I never need to refactor code to this style. I tend
to save more time by writing the more verbose style up front.

Additionally, this style is easier to read, understand, and teach.

17.3 Logging Contexts

In Haskell, youwill almost be certainly writing things in a Monad of some
sort. The transparent inclusion ofmonads into your codemakes it pretty
easy to write some slick combinators for logging with context.

Writing log messages that renders stuff into text and stores a bunch of
information in strings is a great way to debug things, but it’s neither fun

Logging and Observability 266

nor scalable. Especially since log messages generally can’t be modified
without modifying the message itself, and sometimes you want a bunch
of messages to include extra information.

Logging contexts are a natural solution to this problem, and work
nicely in MonadReader and ReaderT environments. If your logging
library doesn’t support this, it’s pretty easy to bolt on. katip supports it
natively, and that’s why it’s my favorite logging library.

Let’s saywe’ve got awebapp that checks the authentication in theheader
before dispatching on a route.

1 app :: Route -> Handler ()

2 app route = do

3 mauthInfo <- getAuthentication

4 case route of

5 HomeR -> getHomeR

6 ProfilesR -> do

7 isLoggedIn mauthInfo

8 getProfilesR

9 ProfileEditR profileId -> do

10 user <- isLoggedIn mauthinfo

11 user `canSeeProfile` profileId

12 getProfileEditR profileId

For the HomeR route, we let just anyone in. To access ProfilesR, you
must be logged in. And to edit a profile, you must have the proper
authorization for that.

However, suppose wewant to log the UserId that is logged in, along with
the relevant authentication information. We don’t have that information
in getProfileEditR - we only pass in the profileId. The calling code
would need to re-acquire the User to stuff it into the logs.

Instead, we’ll add the user to the context. The way this works is that you
have some function like:

Logging and Observability 267

1 addToLogsInBlock

2 :: (ToLogThing a, MonadLogging m)

3 => a -> m r -> m r

Now, let’smodify ourweb app’s router to include the user authentication
information in the relevant code.

1 app :: Route -> Handler ()

2 app route = do

3 mauthInfo <- getAuthentication

4 addToLogsInBlock mauthInfo $ do

5 case route of

6 HomeR -> getHomeR

7 ProfilesR -> do

8 isLoggedIn mauthInfo

9 getProfilesR

10 ProfileEditR profileId ->

11 addToLogsInBlock profileId $ do

12 user <- isLoggedIn mauthinfo

13 addToLogsInBlock user $ do

14 user `canSeeProfile` profileId

15 getProfileEditR profileId

Now we get a treat: all log entries in the router will have the mauthInfo
relevant log information displayed along with the regular log messages.
For the ProfileEditR route, we’ll knowwhich ProfileId is beingmod-
ified by the log lines, even when we’re calling isLoggedIn - which has
no idea what route it is being called for. We’ll also log relevant details
about the user throughout the getProfileEditR and canSeeProfile
function calls.

Aside fromproviding a lot of extra information on every log line, you also
don’tneed toworryabout stitching togethermessagesasmuch.Consider
these two scenarios:

Logging and Observability 268

1 noContext =

2 log $ mconcat

3 ["The user ", show user

4 , " can't modify the profile "

5 , show profileId

6]

However, if we know the user and profile ID are in the context, then we
can just write a much simpler message:

1 context =

2 withLogContext user $ withLogContext profileId $

3 log "The user cannot modify the profile"

By delegating to a type class for representing metadata in logs, we
also get the ability to give consistent log structure for items. Instead of
grepping for some combination of user-id, userId, USER_ID, etc, you
can just Know that the instance ToLogItem UserId renders it as a
{"userId":2134} - no fuss.

Implementing Log Contexts

While katip supports this natively and monad-logger-prefix¹ adds
this functionality to monad-logger in a crude way, it’s not hard to bolt
this functionality on to any other logging setup.

First, you want a Reader-like class that is specialized to a log context:

1 class Monad m => MonadLogContext m where

2 askLogContext :: m LogContext

3 localLogContext :: (LogContext -> LogContext) -> m a -> m a

You’ll write instances of this class for your various monads and monad
transformers. Since it’s Reader-like, you can copy/paste implementa-
tions for MonadReader, or you can use DerivingViawith a helper class
for focusing on the LogContext:

¹https://hackage.haskell.org/package/monad-logger-prefix

https://hackage.haskell.org/package/monad-logger-prefix
https://hackage.haskell.org/package/monad-logger-prefix

Logging and Observability 269

1 class HasLogContext a where

2 _logContext :: Lens a LogContext

3

4 newtype ViaReader m a = ViaReader { unViaReader :: m a }

5 deriving newtype (Functor, Applicative, Monad)

6

7 instance

8 (HasLogContext a, MonadReader a m)

9 =>

10 MonadLogContext (ViaReader m)

11 where

12 askLogContext =

13 ViaReader (view _logContext)

14 localLogContext f action = do

15 ViaReader $

16 local (over _logContext f) (unViaReader action)

This form can be easier when it’s easier to write instances formodifying
the value in the Reader environment than writing the relevant local
function.

Now, you’ll just need to modify your log function to ask for the log
context and include it in the message.

1 instance MonadLogger App where

2 monadLoggerLog loc src lvl msg = do

3 context <- askLogContext

4 underlying log function with context

With the right instances, you’ll even get log output for libraries that have
no idea about your context.

17.4 Libraries in Brief

There are many logging libraries in Haskell. In my experience, you are
generally fine reaching for monad-logger for libraries and katip for
applications.

Logging and Observability 270

monad-logger

monad-logger² is a respectable libary choice. It is simple, unopinion-
ated, robust, and fast. As a result, it is a common logging interface that
libraries use, and it is useful to understand how to use it.

In general, I find the TemplateHaskell log function variants to not be
worth their cost: each TemplateHaskell splice causes a module to en-
counter the dreaded recompilation avoidance problem The CallStack
variants do the same thing without a compilation time impact.

A common mispattern with this library is incorporating the LoggingT
transformer directly into your own code. LoggingT is a “minimal” trans-
former that should be used only when providing MonadLogger behavior
to types you don’t control. Instead, consider writing a manual instance
of MonadLogger, allowing you more flexibility in how the messages are
used and formatted.

monad-logger-prefix

I wrote a library monad-logger-prefix³ for adding prefixes to Monad-
Logger messages. This can be used to add log context to a library that
doesn’t want to add complexity beyond the usual MonadLogger types.

While this can be useful, I’d generally recommend building your own,
or leveraging katip directly. The primary utility of this library is that
it can transparently add context without requiring you to restructure
your application or transformer code, provided that it is written in a
sufficiently polymorphic style.

katip

The katip library is the gold standard of logging libraries inHaskell. It is
fast, easy to use, easy to integrate, and has multiple scribes that can log
to many destinations for important messages.

The KatipContext class provides youwith the ability to have contextual
logging. It uses JSON and text with a sophisticated censorship and ver-
bosity system to log items configurably and clearly.

²https://hackage.haskell.org/package/monad-logger
³https://hackage.haskell.org/package/monad-logger-prefix

https://hackage.haskell.org/package/monad-logger
https://hackage.haskell.org/package/monad-logger-prefix
https://hackage.haskell.org/package/monad-logger
https://hackage.haskell.org/package/monad-logger-prefix

Logging and Observability 271

katip’s concept of a Scribe allows you to havemultiple outputs for each
log message. Each scribe can be configured separately. One particularly
nice instance of this is the katip-rollbar⁴, which sends Error level
logs directly to Rollbar, an exception and error reporting service.

Integrating katip and monad-logger

When you’ve worked with enough code, you’re bound to run into func-
tions that expect a MonadLogger context, but you are primarily logging
through KatipContext or Katip classes. You need a way to provide a
“bridge.”

The easiest way to do this is to produce a logging function which del-
egates to the katip underlying log function, and then use that with
runLoggingT to discharge the constraint.

1 askMonadLoggerFunction

2 :: (MonadUnliftIO m, Katip m)

3 => m (Loc -> LogSource -> LogLevel -> LogStr -> IO ())

4 askMonadLoggerFunction = do

5 UnliftIO runInIO <- askUnliftIO

6 pure $ \loc src lvl logstr ->

7 runInIO $

8 logF () src (levelToSeverity lvl) (convertLogStr logStr)

Then, with the result of this function, you can use runLoggingT to pluck
the MonadLogger constraint into a concrete LoggingT type, and it will
use the katip log facilities:

1 cool = do

2 logFunc <- askMonadLoggerFunction

3 runLoggingT myAction logFunc

Now MonadLoggerwill work through katip in the myAction block.

⁴https://hackage.haskell.org/package/katip-rollbar

https://hackage.haskell.org/package/katip-rollbar
https://hackage.haskell.org/package/katip-rollbar

18. Databases
I like databases. I especially like a good SQL database, such as Postgres.
It’s an interesting set of problems - you have data at run-time, and
that’s all great. Totallynormalprogramming.Values live in variables, you
define functions and records and everything is easy.

Everything screeches to a halt when you need to read and write data to
some other system. Suddenly you need to worry about time and space in
ways that typical Haskell development don’t care about. Sure, your pro-
gram needs to execute quickly inminimal RAM. But once you’ve written
somedata todisk, younowneed tocareabouthow futureversionsof your
applicationwill read that data.Wemust become concernedwith howour
programwill change over time.

We rarely store data for fun. Usually we need to store data so we can shut
the programoff and turn it back on. Orwe store data so another program
can interact with it.Wewant to be able to analyze, inspect, and query our
data - and it has to be fast!

There are a huge variety of database engines. Unless you’re a specialist
and you know exactly what you’re doing, you should ignore almost all of
them. A SQL database is the right choice for almost every single applica-
tion. PostgreSQL should be your first choice for a server-based applica-
tion and works surprisingly well for desktop apps, too. SQLite occupies
the other end of the spectrum - perfect for locally hosted databases and
surprisingly good as a server database.

SQL databases force you to think about your data representation more
than other forms. This is Great, because it means you’ll come up with
better answers than if you didn’t think about it. Additionally, writing
about data storage with SQL means you can remove functionality you
don’t want, and still get valuable lessons from this chapter.

272

Databases 273

18.1 Separate Database Types

Web programmers must repeat themselves a few times with many do-
main concepts. They’ll need to have a database representation for a
domain concept. They’ll need a friendly representation for their domain
computation. And finally, they’ll need a representation for sending the
concept to the front-end, rendering as HTML or JSON.

In Ruby, or other less-typed languages, you’ll have a hash map or ob-
ject come out of the database. It gets pushed into a class, which is the
preferred domain representation. Finally, you’ll convert it back to a
hashmap/object and blast it over the wire.

Haskellers will adopt this pattern by starting with a single type - the
domain type. We write a program without any concern for databases or
serialization. Once it works, we write a ToJSON instance and send it over
the wire. We’ll write a function that saves it to the database. Everything
is fine.

Except… everything is not fine. Our initial domain logic didn’t need
to care about identifiers. We simply had a User. And our database ta-
ble doesn’t look exactly like a User - we also want some timestamps
(created_at, updated_at) to help with SQL debugging. So we attach a
few fields on our domain type tomake itmatch our database representa-
tion.

1 data User = User

2 { userName :: String

3 , userAge :: Int

4 -- ^ domain fields

5 , userCreatedAt :: UTCTime

6 , userUpdatedAt :: UTCTime

7 , userId :: UUID

8 -- ^ database fields

9 }

Databases 274

Too Many Responsibilities

We have now violated a valuable precept: the “Single Responsibility
Principle.” This type has three responsibilities:

1. Represent a database table
2. Represent a domain concept
3. Represent an API response shape

This doesn’t seem like such a big deal in small and easy cases. However,
you’ll immediately run into problems. Consider: how do you create a
user? A User that has not yet been created can’t be said to have the
userCreatedAt, userUpdatedAt, or userId fields. We can model this
with Maybe - now the API can receive null values in those fields, and the
handling code can set them to Just the appropriate things.

Youmayhavepredictedwhere this problem is going.Now thedatabase is
returning a userCreatedAt :: Maybe UTCTime field that is always set
to Just. It’s a runtime guarantee. So you’re tempted to rely on it - if the
User came from the database, then fromJust is perfectly fine!

This all works great until youhave some innocuous looking function that
takes a User from the API and calls that other function. Boom. A runtime
error. And, worse, the error carries little information.

1 λ> fromJust Nothing

2 *** Exception: Maybe.fromJust: Nothing

3 CallStack (from HasCallStack):

4 error, called at Data/Maybe.hs:148:21 in base:Data.Maybe

5 fromJust, called at <interactive>:3:1 in interactive:Ghci1

Hopefully your program handles CallStacks well and has good error
reporting facilities. It would be better if we didn’t misuse Maybe like this.

Painted into a Corner

When you start out, your domain and database representation often cor-
respondneatly. Youprobablywrote yourdatabase serialization tohandle

Databases 275

you domain type exactly. This exact correspondence won’t survive for
long. Eventually, the requirements of the database, API, and domain will
drift enough that you’ll be forced to makemore andmore compromises.

If you’re not careful, these compromises can seriously harm the ease-of-
use and performance of your code. Suppose that you add a Dog feature to
your app - now Users can have a list of Dogs that they take care of. How
do wemake this work?

The easy way for the API to accomplish this is with a userDogs ::
[Dog] field. However, this isn’t going to play nicely with SQL databases.
Sure, you can encode the [Dog] as a JSONB column, but now you’re
runningdenormalizeddata - it’s about to get really annoying towrite SQL
and analytics code! “How many dogs exist in the system?” went from a
trivially easy and fast query to a slightly tricky and slow query.

Meanwhile, the easy way for the database to accomplish this is to have
a Dog table, where each Dog refers to a UserId. The front-end of the
application first requests the User, and then requests all of the Dogs for
that user. So we have to extend our API to perform a relatively common
task - “A Userwith all of their Dogs.”

This problem is bad enough when we allow a single User for each Dog.
But what if we eventually need to support multiple Users for Dogs? And
what if a Dog doesn’t currently have a User?

You have three choices now:

1. Write with the API in mind, compromising the database
2. Write with the database in mind, compromising the API
3. Refactor the app to use separate types

Every time you pick 1) or 2), you’ll make picking 3) harder. The compro-
mises will stack up, making your application worse. The third option is
the correct one, so youmight as well just start out with it.

A panoply of types

My recommendation is to write multiple types - one for each represen-
tation. Yes, you will have some boilerplate-y conversion functions. This

Databases 276

is not a real problem. Eventually, those functions will become more
complex. That’s when you know that you’ve saved yourself an absolutely
massive amount of trouble.

You’ll have a type for the database table. You’ll have another type for your
domain computations. For each API response shape or View, you’ll have
another type.

Got a problem? Write a new data type that fits the problem. Get in the
habit ofwritingnewdata types fornewproblems.Youmayendupwriting
a datatype that’s exactly the sameas another one - you can choose to keep
it or re-use theother one. But as soon as thedemands from twouses cause
any tension in the datatype, just split it in two.

By keeping our data types numerous and specialized, we’re making it
easier for each datatype to evolve and accommodate new features. The
complexity inherent in the code base is now localized to the conversion
functions. These conversion functions, at simplest, are pure functions
accepting a Domain type and returning a Database type (or vice-versa).

1 toDb :: Domain.User -> Database.User

However, as your types and database representations become more
complex, you may have multiple database tables that represent a single
domain type.

1 toDomain

2 :: Database.User

3 -> [Database.Dog]

4 -> Domain.User

Youmay also end up needing to perform some effects in this conversion.

1 toDomain

2 :: Database.User

3 -> [Database.Dog]

4 -> IO Domain.User

Databases 277

This complexity will feel a bit nasty. However, you should really re-
joice - this complexity is now surfaced and localized. If you had tried to
maintain a single type to handle all of these responsibilities, then that
complexity would have trickled throughout the rest of the application.

Normalization

So, you decide to have three representations. Hooray!

1 data User = User

2 { userName :: String

3 , userAge :: Int

4 }

5

6 data ApiUser = ApiUser

7 { name :: String

8 , age :: Int

9 , dogs :: [Dog]

10 }

11

12 data DbUser = DbUser

13 { id :: UUID

14 , name :: String

15 , age :: Int

16 , createdAt :: UTCTime

17 , updatedAt :: UTCTime

18 }

All three types contain a name and age field. Is this a problem? Maybe,
maybe not. The entire point of this exercise is that we want to allow the
different types to evolve as necessary to best solve their problems. We
can reduceabit of duplicationbynesting theUser inwhere the two fields
are:

Databases 278

1 data ApiUser = ApiUser

2 { user :: User

3 , dogs :: [Dog]

4 }

5

6 data DbUser = DbUser

7 { id :: UUID

8 , user :: User

9 , createdAt :: UTCTime

10 , updatedAt :: UTCTime

11 }

We have made some things easier. We have saved some typing and field
duplication. For the purposes of our exercise, we can imagine there are
tens of fields on the User type. Our conversion functions are likely a lot
simpler, now:

1 toApiUser :: User -> [Dog] -> ApiUser

2 -- old

3 toApiUser user dogs =

4 ApiUser

5 { name = userName user

6 , age = userAge user

7 , dogs = dogs

8 }

9 -- new

10 toApiUser user dogs =

11 ApiUser

12 { user = user

13 , dogs = dogs

14 }

If a new field gets added to the User type, then it is automatically added
to the database and API types. This may or may not be good.

Wehavemadesome things impossible.Wemusthave theexact same fields
(and types) of a User in the database, API, and domain. The API and

Databases 279

the database have picked up a shared thread of responsibility by relying
directly on the domain type.

Additionally, we’ve made some things harder. If the fields are all “flat”,
then it’s easy to use TemplateHaskell or Generic to derive JSON or
database serialization formats. But if your API type has a nested repre-
sentation and you want to flatten it, then you need to write additional
code.

1 instance ToJSON ApiUser where

2 toJSON apiUser =

3 object

4 ["name" .= userName (user apiUser)

5 , "age" .= userAge (user apiUser)

6 , "dogs" .= dogs apiUser

7]

This frustration alonemay be sufficient to simply duplicate field entries.

I titled this section “normalization” because we’re in a database chap-
ter. Normalized data is often great in a relational database, because it
reduces the scope for errors and problems and duplications. When we
factor out the common structure of the User type instead of duplicating
the fields, we are normalizing the ApiUser and DbUser types. However,
the denormalized form can work better for application code.

Avoid polymorphism

I’m dodging tomatoes. The audience is brutal. They’re yelling and holler-
ing, telling me to log off, and I will never log off.

Polymorphism is a beloved feature of Haskell, and it can often work well.
However, I’m here to tell you that it probably won’t make your life better
when dealing with this specific problem. Let’s look at the technique and
dig into some of the problems.

This technique looks at the “Users andDogs” problemanddecides to add
a type variable to represent dogs.

Databases 280

1 data User a = User

2 { userName :: String

3 , userAge :: Int

4 , userDogs :: a

5 }

Now, the type variable tells us all we need to know about what’s going on.

1 type UserNoDogs = User ()

2 type UserWithDogIds = User [DogId]

3 type UserWithDogs = User [Dog]

We can even get a Functor instance For Free so we can use fmap to
modify the userDogs field.

Unfortunately, this stops being nice as soon as we need to do this with
another field. Now we need to model createdAt -

1 data User dogs created = User

2 { userName :: String

3 , userAge :: Int

4 , userDogs :: dogs

5 , userCreatedAt :: created

6 }

7

8 type CreateUser = User () ()

9 type UserFromDatabase = User () UTCTime

10 type UserFromDbWithDogs = User [Dog] UTCTime

Now, fmap only works on the userCreatedAt field, since fmap only
works on the last type variable in a datatype. Any mention of the User
type needs to be modified to accommodate this field change. The solu-
tion just doesn’t scale.

I’m going to let you in on a little secret: you can do this with tuples.

Databases 281

1 data User = User

2 { userName :: String

3 , userAge :: Int

4 }

5

6 type CreateUser = User

7 type UserFromDatabase = (User, UTCTime)

8 type UserFromDbWithDogs = (User, UTCTime, [Dog])

If you have a polymorphic field in a record, you can delete it and use a
tuple to pair things up. Maybe use Tagged to give a name to it. Or maybe
just write three data types with good names.

Avoid HKD

Higher Kinded Data (HKD)¹ is a potential solution to this problem. It
looks at the issues with polymorphism and says “What if we solved the
problem withmore polymorphism?” Generally speaking, when I have dug
myself into a hole, I try to stop digging. Sometimes, that means I miss
gold. Sometimes, that means I get back to the surface unscathed.

The HKD pattern varies the representation of the fields by storing every-
thing in a type constructor.

1 data UserF f = User

2 { userName :: f String

3 , userAge :: f Int

4 , userDogs :: f [Dog]

5 , userCreatedAt :: f UTCTime

6 , userUpdatedAt :: f UTCTime

7 }

8

9 newtype Identity a = Identity { runIdentity :: a }

10

11 type User = UserF Identity

12 type UserNullable = UserF Maybe

13 type UserValidated = UserF (Validated [String])

¹https://reasonablypolymorphic.com/blog/higher-kinded-data/

https://reasonablypolymorphic.com/blog/higher-kinded-data/
https://reasonablypolymorphic.com/blog/higher-kinded-data/

Databases 282

Now,we canhave anApiUserbe represented as aUserF Maybe. TheAPI
could send us a value like the one in fromApi below, and we can have a
function saveUser that’ll stuff it into the database and return the full
value.

1 fromApi :: UserF Maybe

2 fromApi =

3 User

4 { userName = Just "Bob"

5 , userAge = Just 32

6 , userDogs = Nothing

7 , userCreatedAt = Nothing

8 , userUpdatedAt = Nothing

9 }

10

11 savePartial :: UserF Maybe -> IO (Maybe (UserF Identity))

12 savePartial umaybe = do

13 now <- getCurrentTime

14 let mkuser name age = User

15 { userName =

16 Identity name

17 , userAge =

18 Identity age

19 , userDogs =

20 Identity []

21 , userCreatedAt =

22 Identity now

23 , userUpdatedAt =

24 Identity now

25 }

26 pure $

27 mkuser

28 <$> userName umaybe

29 <*> userAge umaybe

We have to handle the possibility that the API didn’t send up a name or
age, since the f type is applied to every field uniformly. We also have to

Databases 283

wrap everything in Identity which isn’t fun. We could make the f type
only apply to the “non-essential” fields - but then you could just factor
those out into their own type, and then,why are you botheringwith fancy
techniques? We can also upgrade to using a type family to strip out the
Identity type, if it’s there:

1 type family HKD f a where

2 HKD Identity a = a

3 HKD f a = f a

Sticking a type family in the record field complicates several things and
can lead to some strange error messages.

This technique has given us flexibility over how the record is presented
- are all fields present? are all fields nullable? are all fields in IO? - but
it has not given us flexibility in distinguishing between fields. We can’t
add or remove fields to the record using this technique. It only solves the
simplest issues we had with multiple responsibilities, and not even well.

This technique is pretty heavy and it’s not pulling its weight. Maybe we
can save it by having a type of phases that the type family accepts. This
technique is known as Trees That Grow². Let’s look at it.

1 data UserPhase = Domain | API | Database

2 data UserField = Name | Age | Dogs | Timestamp | Id

3

4 data UserF (f :: UserPhase) = User

5 { userName :: Pick f Name

6 , userAge :: Pick f Age

7 , userDogs :: Pick f Dogs

8 , userCreatedAt :: Pick f Timestamp

9 , userUpdatedAt :: Pick f Timestamp

10 , userId :: Pick f Id

11 }

12

13 type family Pick (f :: UserPhase) (field :: UserField) where

14 Pick Domain Name = String

²https://www.microsoft.com/en-us/research/uploads/prod/2016/11/trees-that-grow.pdf

https://www.microsoft.com/en-us/research/uploads/prod/2016/11/trees-that-grow.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2016/11/trees-that-grow.pdf

Databases 284

15 Pick Domain Age = Int

16 Pick Domain Dogs = ()

17 Pick Domain Timestamp = ()

18 Pick Domain Id = ()

19

20 Pick API Name = String

21 Pick API Age = Int

22 Pick API Dogs = [Dog]

23 Pick API Timestamp = UTCTime

24 Pick API Id = UUID

25

26 Pick Database Name = String

27 Pick Database Age = Int

28 Pick Database Dogs = ()

29 Pick Database Timestamp = UTCTIme

30 Pick Database Id = UUID

Adding a new field to User requires a new entry in the UserField type
and a new entry per phase in the Pick type family. Adding a new phase
requires a definition of how to interpret that phase for each field. You can
omit fields from a phase by “picking” the () type for them.

This is a lot of complexity, all to avoid writing a few different simple and
easy data types for your domain purposes. There are applications where
HKD fit great, but this is not one of them.

18.2 Migrations

Migrations in Haskell aren’t really any different than in any other lan-
guage. As a result, there’s not a lot of Haskell-specific advice I can
give. For my workplaces, we’ve used a home-grown migration system,
a Haskell library, a Java library, and lastly the Ruby on Rails framework
for managing migrations. The difficulty is in the SQL, not the Haskell.

Databases 285

18.3 Access Patterns

Once you’ve defined a schema and some data types for your tables,
you’ll almost certainly need to define yet more data types that represent
actions upon the database. At the very least, you’ll want the Create, Read,
Update, Delete basics - CRUD, as it is known. As above, I’m going to
recommend a panoply of types - the more the merrier. Data types are
useful for representing a snapshot of data, and they’re also useful for
representing an action that you want to perform on the world.

You may wish to abstract these patterns into type classes. Doing this
has several advantages and disadvantages. The main advantage is that
you can use a single name and interface for each action. The class and
instances serve as excellent documentation for your domain serializa-
tion model. The main disadvantage is that the type class interface must
satisfy every use-case for everymodel youneed. Thismay be an onerous
requirement.

Fortunately, this is Haskell - try one out, and if you don’t like it, refactor
the application to not need it.

Create

The naive interface to create is something like this:

1 data User = User

2 { userId :: UserId

3 , userName :: String

4 , userAge :: Int

5 , userCreatedAt :: Maybe UTCTime

6 }

7

8 createUser

9 :: DatabaseConnection

10 -> User

11 -> IO UserId

12 createUser conn user = do

13 freshId <- Database.freshId conn

Databases 286

14 now <- getCurrentTime

15 let readyToInsert :: User

16 readyToInsert =

17 user

18 { userId = freshId

19 , userCreatedAt = Just now

20 }

21 Database.insert conn readyToInsert

The function accepts a domain object User, fills in the necessary details,
and stuffs it into the database. This is unsatisfactory - what if we wanted
to specify a UserId before the createUser function, like in a database
export/import? Likewise, the client of our code must pass userCreate-
dAt = Nothing, and the API serialization for a new user must provide
that field.

Instead, we’ll want to create a datatype that represents the information
necessary to add a user to our system.

1 data CreateUser = CreateUser

2 { createUserName :: String

3 , createUserAge :: Int

4 }

5

6 createUser

7 :: DatabaseConnection

8 -> CreateUser

9 -> IO User

10 createUser conn cu = do

11 freshId <- Database.freshId conn

12 now <- getCurrentTime

13 let readyToInsert :: User

14 readyToInsert =

15 User

16 { userId = freshId

17 , userCreatedAt = Just now

18 , userName =

19 createUserName cu

Databases 287

20 , userAge =

21 createUserAge cu

22 }

23 Database.insert conn readyToInsert

24 pure readyToInsert

Now our interface precisely captures what we’re doing. The implemen-
tation interprets the CreateUser type into an action that actually creates
the corresponding User. In a real database implementation, you’ll likely
have a trigger setting the created_at time stamp, and the databasemay
even be in charge of generating the relevant UserId field.

Type Classes and Trade-offs

In a type class approach, youmight write these as an associated type.

1 class Create a where

2 type New a

3

4 create :: New a -> DB a

Then, our implementation for Userwould look like this:

1 data CreateUser = CreateUser

2 { createUserName :: String

3 , createUserAge :: Int

4 }

5

6 instance Create User where

7 type New User = CreateUser

8

9 create cu = do

10 freshId <- Database.freshId

11 now <- getCurrentTime

12 let readyToInsert :: User

13 readyToInsert =

Databases 288

14 User

15 { userId = freshId

16 , userCreatedAt = Just now

17 , userName =

18 createUserName cu

19 , userAge =

20 createUserAge cu

21 }

22 Database.insert eadyToInsert

23 pure readyToInsert

The associated type means that we can only have a single New type for
any record. We are forbidden from defining another instance of Create
User that uses a different kind of type to initialize it. However, we are not
forbidden from reusing CreateUser for a different domain model’s New
instance. Thismeans thatGHCwill be unable to infer that the return type
of create CreateUser {..} is a User - this is going to require some
type annotations that youmay find annoying.

To work around this, you can use an associated data family or an injectivity
annotation. An associated data family uses the data keyword instead
of type in the associated type declaration. An injectivity annotation
resembles the syntax for functional dependencies.

1 -- with a data family

2 class Create a where

3 data New a

4

5 create :: New a -> DB a

6

7 instance Create User where

8 data New User = CreateUser

9 { createUserName :: String

10 , createUserAge :: Int

11 }

12 create cu = ...

13

14 -- with an injectivity annotation

Databases 289

15 class Create a where

16 type New a = r | r -> a

17

18 create :: New a -> DB a

19

20 data CreateUser = ...

21

22 instance Create User where

23 type New User = CreateUser

24

25 create cu = ...

A data family requires that you define the datatype inside of the type
class. An injectivity annotation requires that you define the datatype
separately. In either case, GHC will reject a program that tries to create
another instance of Create X with a type New X = CreateUser. This
means that GHC will happily infer that create CreateUser {..} re-
turns a User, and everyone is happy.

Of course, all of these approaches only permit a single type for creating a
User. If you want to have multiple methods of creating a User, then you
may need to use a multiparameter type class.

1 class Create rec new where

2 create :: new -> DB rec

3

4 instance Create User CreateUser where

5 create cu = ...

However, this approach is going to require quite a few type annotations.
Without a functional dependency, GHC will be unable to infer anything
about this type. Youwill likely endupneeding to supply a typeannotation
and write:

1 create @User CreateUser{..}

At this point, you may prefer to use conventions or specifically named
functions to disambiguate these names.

Databases 290

1 import qualified Database.User as User

2

3 User.create CreateUser {..}

4

5 -- or,

6 createUser CreateUser {..}

Read

Converting database tables into a domain type is going to be a straight-
forward task, so we’ll focus on themore interesting parts in this section:
querying and looking things up.

Raw SQL

With a SQL library, you can almost always write some sort of “raw SQL”
function to perform arbitrary queries.

1 allUsersWhere :: Text -> DB [Domain.User]

2 allUsersWhere where_ = do

3 results <- rawSql ("SELECT ?? FROM users " <> where_)

4 pure (databaseToDomain <$> results)

This interface is pretty bad. There’s no type-safety in the form of the
query. If you typo any part of this, you’ll get a runtime error. If you
delete a columnor renamesomething, you’ll get a runtimeerror. If a user
manages to sneak some nasty fake data in that where_ parameter, then
you’ll get a SQL injection attack. No good!

Withall that said, a rawqueryapproachhassomeadvantagesThebiggest
is that you don’t need to learn a database library. Database libraries can
be complex and difficult to learn (though not all of them are), and a raw
SQL approach does allow you to use the entire power of SQL. However, I
tend to get a huge amount of benefit from a database library, so I don’t
recommend this.

Databases 291

Query Types

You can prevent a lot of the problems with the raw SQL approach by
constructing an intermediate representation. The intermediate repre-
sentation is a datatype that contains the set of valid queries on the User
type is.

1 data UserQuery

2 = AllUsers

3 | UserById UserId

4 | UserWithName (Comparison String)

5 | UserWithAge (Comparison Int)

6 | AndUser UserQuery UserQuery

7 | OrUser UserQuery UserQuery

8

9 data Comparison a

10 = Comparison

11 { operation :: ComparisonOp

12 , value :: a

13 }

14

15 renderWhere :: UserQuery -> Text

16 renderWhere uq = case uq of

17 AllUsers ->

18 "1 = 1"

19 UserById uid ->

20 "user.id = " <> renderUserId uid

21 UserWithName (Comparison op val) ->

22 "user.name " <> renderOp op <> " " <> escape val

23 UserWithAge (Comparision op val) ->

24 "user.age " <> renderOp op <> " " <> show val

25 AndUser q0 q1 ->

26 "(" <> renderWhere q0 <>

27 ") AND (" <> renderWhere q1 <> ")"

28 OrUser q0 q1 ->

29 "(" <> renderWhere q0 <>

30 ") OR (" <> renderWhere q1 <> ")"

Databases 292

This is a relatively simple query language against a single table. We can
make itmore powerful andmore general, until eventually you’vewritten
your own database library.

Precise querying and control of the database layer is a common need
in an application. I recommend keeping your database representation
somewhat close-at-hand, so you can reach directly into the database to
perform whatever querying and filtering you need. However, it’s a good
idea to develop a tighter point of control. A simpler API is always easier
to test and understand than amore complicated one. If you ever want to
mock or abstract a database, then having a simplified query language for
your domain will come in handy.

Following the above advice, a type class API might look like this.

1 import Database.Esqueleto (SqlExpr, Value)

2

3 class Query a where

4 type DatabaseRepresentation a

5

6 query

7 :: (DatabaseRepresentation a -> SqlExpr (Value Bool))

8 -> DB a

The signature of query has a callback that accepts the DatabaseRepre-
sentation of our query type, and returns an esqueleto SQL expression
indicating whether the record passes the test. Then it runs that query
against the entire table and returns what satisfies it. For a single table,
this ends up being pretty straightforward. Supposing we have a domain
type User and a database table type Entity User (from persistent),
then we’ll have this instance.

Databases 293

1 instance Query User where

2 type DatabaseRepresentation User =

3 SqlExpr (Entity DB.User)

4

5 query predicate =

6 fmap (fmap fromDatabase) $

7 select $ do

8 u <- from $ Table @Database.User

9 predicate u

10 pure u

The calling code might look like this:

1 import Database.Esqueleto ((>=.), (^.), val)

2

3 adultUsers :: DB [User]

4 adultUsers =

5 query $ \user ->

6 user ^. UserAge >=. val 18

Now, we’ve evolved our type, and the User has the field userDogs ::
[Dog] now. Here’s how we’ll expand our type:

1 instance Query User where

2 type DatabaseRepresentation User =

3 SqlExpr (Entity DB.User) :& SqlExpr (Entity DB.Dog)

4

5 query predicate =

6 fmap combineDogs $

7 select $ do

8 res <- from $

9 table @User

10 `leftJoin`

11 table @Dog

12 `on` do

13 \(u :& d) ->

Databases 294

14 u ^. UserId ==. d ?. DogUserId

15 predicate res

16 pure res

17

18 adultUsers :: DB [User]

19 adultUsers =

20 query $ \(user :& maybeDog) ->

21 user ^. UserAge >=. val 18

22

23 withDogNamed :: String -> DB [User]

24 withDogNamed dogName =

25 query $ \(user :& maybeDog) ->

26 maybeDog ?. DogName ==. just (val dogName)

In this snippet, the query type calls into the database, using a Left-
OuterJoin to associate a User with the given Dogs. This gives us the
ability to further filter the Dogs that are returned from the list, too. Note
that withDogNamedwill return users that do not have a Dogmatching the
name - only Dogs with that name will be present in the result list.

There are a few special cases that we’ll want to consider here. The first
is a lookup by a unique key. Most database engines support some notion
of uniqueness. The main consideration here is that a query can return
Maybe User instead of [User]. The next special case is a special case of
the prior general case - looking up a User by the primary key UserId. I
don’t think it’s necessary or wise to differentiate between these two use
cases, even though virtually every database library provides a getById
sort of function.

The Primacy of Query

Create comes first in the acronymCRUD, but really, it is Read that is the
foundational component of database access patterns. You must INSERT
data to read it, but many database engines allow you to write INSERT
SELECT statements. These statements allow you to synthesize database
records from other database records - the output of SELECT is the input
to INSERT.

Likewise, UPDATE and DELETE rely on querying in order to know which
records to act upon.Trivially, youcanUPDATEorDELETEall of the records

Databases 295

in the database, but in my experience that means you’ll be restoring a
backup soon.

The API you build for querying will almost certainly be reused when
you’re performing UPDATE and DELETE statements. If you use them at
all - immutable tables work by only performing INSERT and SELECT
statements, never actually deleting or updating a record - keeping a
history of all the variations that a record has had throughout the life
cycle of the application. For performance and convenience, though,we’ll
probably want to have those mutations available. And even if you do
use an immutable table setup, you’ll probably want to have an API for
performing updates and deletes anyway, since they’re so common.

Update

Updates are tricky to represent optimally. So let’s evolve our understand-
ing through a few suboptimal choices and cover the ways in which they
fail.

Functional

In Haskell, we can represent an update on a domain type with ease.

1 type Update rec = rec -> rec

It’s a function that accepts a value of type rec and returns a (presumably
modified) value of type rec. This approach is fantastically flexible, but it
has some pressing problems. Notably, we can’t serialize this! We can’t
send a function over the API, and we can’t parse one out of a JSON
representation. We also can’t write this to SQL and expect it to work out.

Functions in Haskell are opaque. If we could inspect the function and
see what actually changed here, then we could serialize the differences
and make an UPDATE that only contains those differences. However, we
can’t easily do that. We’d need to run the update on an original record
and then compare the original with the updated variant. At that point we
need a way to diff two records. The prairie library that I cover in this
book is capable of diffing two records, but it also provides a means of
serializing updates. We’ll get back to that in a second.

Databases 296

What we really want is a value that’s open to inspection. Then we could
easily convert that value to the corresponding function.

Batch Updates

The next approach that people will gravitate towards is to simply accept
an entire record.

1 type Update rec = rec

This has a few big advantages. It’s simple and easy. If rec is serializable
(either ToJSON or to a database table), then we can serialize an Update
rec - after all, they’re the same! Unfortunately, this scheme can be
expensive and dangerous.

Expensive

If weperformanUPDATE statement in SQLandweupdate the entire record,
then we’ll need to generate SQL like the following:

1 update :: _ => rec -> Sql ()

2 update record =

3 runSql $ mconcat

4 ["UPDATE " <> tableName record

5 , " SET " <> convertToSet record

6 , " WHERE " <> uniqueKey record

7]

In convertToSet, we’ll take each field of the record and tell the database
engine to SET the value equal to the new record. For most columns, this
is probably fine. However, any columnwith an indexwill cause the index
to be recomputed for the entire table. This may be slow, if the index is big.
Itmay also cause the database engine to hold a lock on the table formuch
longer than is required.

Is the database engine smart enough to know that a no-op modification
doesn’t require a rebuild? Maybe. Maybe not. Depends on the database
engine and how smart the optimizer is on that particular query.

Databases 297

Dangerous

If you choose to represent an Update on a model with the whole model,
then youmay permit actions that you don’t want to permit. For example,
consider a primitive user permission model - some users are admins,
and this ismarkedwith a field on theUser type calledisAdmin :: Bool.
Your standard boilerplate reduction functions will happily allow a User
to modify their isAdmin field! You can mitigate this by removing the
form field on the front-end, but as long as your API or server are parsing
an entire User, you’ll have to be careful here to prevent a privilege
escalation attack.

It’s easy to write an ad-hoc rule for this at some point in your codebase
once you notice the problem. It’s just as easy for this problem to slip in,
unnoticed. Amore careful approach would have never permitted this in
the first place.

Update Fields

You’re probably expecting this by now. “Here comes Matt to tell me to
write a whole bunch of datatypes.” Yup. It’s only fair that you’d predict
my solution - I’ve spent hundreds of pages arguing for it so far!

However, I’ll recognize that writing a ton of datatypes can be a bit boring
and boilerplate-y, especially since most of them will be similar. For the
most part, you want to give the system a ton of flexibility, and having to
thread update logic through multiple fields can be annoying when you
have feature work to get through. For that reason, it’s pretty typical to

In the prairie chapter, I walk through a library design that reifies
record fields into first-class serializable values. prairie supports two
important operations:

• diff :: (Record rec) => rec -> rec -> [UpdateField
rec]

• patch :: (Record rec) => [UpdateField rec] -> rec ->
rec

The type UpdateField rec specifies how to update a single record field
on a rec with a new value. Since a [UpdateField rec] is a mere list

Databases 298

of values, it’s quite easy to work with them in a way that doesn’t do any
waste. Rendering the UPDATE statement ends up being relatively simple
and not particularly wasteful.

1 renderUpdate :: _ => [UpdateField rec] -> Text

2 renderUpdate [] = ""

3 renderUpdate (x:xs) =

4 mconcat

5 ["UPDATE " <> tableName @rec

6 , " SET " <> Text.intercalate ", " (map mkFields (x:xs))

7 , " WHERE " <> uniqueKey @rec

8]

9 where

10 mkFields (SetField field value) =

11 mconcat

12 [renderField field

13 , " = "

14 , renderValue value

15]

(in real code, you’d want to use parameter substitution to avoid SQL
injection vulnerabilities - this is elided in this example for brevity)

We can avoid the problem with a regular user escalating their privileges
by simply filtering the list:

1 filterIsAdminChanges :: [UpdateField User] -> [UpdateField User]

2 filterIsAdminChanges =

3 filter $ \(SetField field _) ->

4 field /= UserIsAdmin

If we’re using a type class to provide security, we can make a pretty
simple helper to provide this security:

Databases 299

1 class (Record a) => SafeUpdate a where

2 permitField :: UserAuthLevel -> Field a -> Bool

3

4 instance SafeUpdate User where

5 permitField Admin field =

6 True

7 permitField Regular field =

8 field /= UserIsAdmin

This approach works quite well if you have a model that has a big “bulk
update” form associated with it. It even works pretty well for composite
models. Suppose that we have a UserProfile type which has the User
and Profile database tables underlying it. We can render an update on
multiple tables relatively easily:

1 updateUserProfile :: [UpdateField UserProfile] -> Sql ()

2 updateUserProfile allFields = do

3 let (userFields, profileFields) =

4 chooseFields allFields

5 runUpdate userFields

6 runUpdate profileFields

7

8 chooseFields

9 :: [UpdateField UserProfile]

10 -> ([UpdateField User], [UpdateField Profile])

11 chooseFields = ...

However, this approach falls apartwhenwehave nestedmodels. Consider
the UserWithDogs type - it is backed by the User table and also the Dog
table, but theassociatedDogs are loaded in the table. The relevantupdate
SetField UserDogs listOfDogs isn’t great. It’s opaque! There are a
few ways we could handle this:

• Iterate over the listOfDogs, pulling it from the database, diffing it,
and then perform an update if necessary. If the Dog is not present
in the database, then insert it. If there are Dogs in the database
not present in the list, remove the association. This is a lot of

Databases 300

complexity, and also brings in all of the problems with using a Dog
type as an update for a Dog.

• Just delete allDogs for theUser andbatch insert thenew list of dogs.
This is badbecause any foreignkeyswill be upset about this change.

• Not bother. Don’t allow the user to update Dogs while updating a
User.

None of these are terribly satisfying. What we’d really like is if, instead of
SetField, we had some kind of nested DiffOf type that would permit
a deep update, instead of the shallow update on display here. However,
that ends up being confusing and complicated to write generically, and
specialized variants have a bunch of trade-offs and problems. We can
remove the need for this complexity by defining multiple types.

Update Actions

This pattern represents the modifications to a domain model as actions
that you can perform on themodel. The simplest format accepts a list of
the UpdateField for a record in a batch update:

1 data UserUpdate

2 = BatchUpdate [UpdateField User]

Fortunately for us, the problem of Dogs can be handled nicely with
separate action constructors that do the relevant work.

1 data UserUpdate

2 = UserUpdateBatch [UpdateField User]

3 | UserUpdateAddDog DogId

4 | UserUpdateRemoveDog DogId

5 | UserUpdateUpdateDog DogUpdate

6

7 data DogUpdate

8 = DogUpdateBatchUpdate [UpdateField Dog]

With a richer intermediate datatype for actions we want to perform, the
problems in the above methods evaporate. It’s pretty easy to convert a
UserUpdate value into a function User -> User - and it’s also easy to
convert it into a SQL statement that performs all the relevant updates,
cheaply and efficiently.

Databases 301

Delete

Once you’ve queried a set of rows, youmight decide that you’re better off
without them. You run a DELETE statement and now everything is gone.

This pattern is actually pretty straightforward. You probably don’t need
any help with it. If you’ve got a query interface you’re happy with, throw-
ing a DELETE in front of it works pretty well.

Cascade

If you try to DELETE a record that has a foreign key relationship with
another table, and that table references the row you’re trying to delete,
then the database engine will throw an error and fail to delete. This
can be really annoying. You want to delete the record, and ideally, the
dependent rows should also be deleted, too!

We can tell SQL databases to CASCADE deletes.

1 CREATE TABLE user (

2 id AUTO INCREMENT PRIMARY KEY

3);

4

5 CREATE TABLE dog (

6 id AUTO INCREMENT PRIMARY KEY,

7 user_id INTEGER NOT NULL ON DELETE CASCADE

8 ;

The magic word here is ON DELETE CASCADE. Now, if we delete a User,
then all the Dogs that point to this Userwill also be deleted. If the user_-
id column is nullable, then we can also use SET NULL to orphan the dog
row. The default option is ON DELETE RESTRICT, which causes SQL to
throw an exception and abort the transaction.

If you want this behavior, then you should rely on SQL to do it. Manually
digging through the foreign key relationship graph and deleting rows in
the right order is both annoying and slow.

Databases 302

18.4 Conclusion

Ultimately, we come down to the same patterns I want to stress through-
out the book. Write lots of datatypes that are easy to interpret, and
then interpret them into some domain. Database access patterns are no
different. Attempting to do everything in textual SQL quickly falls apart.
Attempting to rely on opaque functional encodings can be limiting and
difficult. Simple datatypes almost always win in the long run.

V Advanced Haskell

Throughout the book, I’ve cautioned against using some advanced
Haskell techniques. That doesn’t mean they’re always a bad choice. It
is my experience that they often don’t pull their weight, especially in
teams that have to work quickly.

The best way to learn why I think that is to learn how to use the tools
themselves! So let’s explore some of the advanced Haskell techniques,
figure out how they work, and try to identify their pitfalls.

19. Template Haskell Is Not Scary

19.1 A Beginner Tutorial

This tutorial is aimed at people who are beginner-intermediate
Haskellers looking to learn the basics of Template Haskell.

I learned about the power and utility of metaprogramming in Ruby.
Rubymetaprogramming is done by constructing source codewith string
concatenation and having the interpreter run it. There are also some
methods that can be used to define methods, constants, variables, etc.

In my Squirrell¹ Ruby library designed to make encapsulating SQL
queries a bit easier, I have a few bits of metaprogramming to allow for
some conveniences when defining classes. The idea is that you can
define a query class like this:

1 class PermissionExample

2 include Squirrell

3

4 requires :user_id

5 permits :post_id

6

7 def raw_sql

8 <<SQL

9 SELECT *

10 FROM users

11 INNER JOIN posts ON users.id = posts.user_id

12 WHERE users.id = #{user_id} #{has_post?}

13 SQL

14 end

15

¹https://github.com/parsonsmatt/squirrell/

304

https://github.com/parsonsmatt/squirrell/
https://github.com/parsonsmatt/squirrell/

Template Haskell Is Not Scary 305

16 def has_post?

17 post_id ? "AND posts.id = #{post_id}" : ""

18 end

19 end

and by specifying requireswith the symbols you want to require, it will
define an instance variable and an attribute reader for you, and raise
errors if you don’t pass the required parameter. Accomplishing that was
pretty easy. Calling requires does some bookkeeping with required
parameters and then calls this method with the arguments passed:

1 def define_readers(args)

2 args.each do |arg|

3 attr_reader arg

4 end

5 end

Which you can kinda read like a macro: take the arguments, and call
attr_reader with each. The magic happens later, where I overrode the
initializemethod:

1 def initialize(args = {})

2 return self if args.empty?

3

4 Squirrell.requires[self.class].each do |k|

5

6 unless args.keys.include? k

7 fail MissingParameterError, "Missing required parameter: #{k}"

8 end

9

10 instance_variable_set "@#{k}", args.delete(k)

11 end

12

13 fail UnusedParameter, "Unspecified parameters: #{args}" if args.any?

14 end

Template Haskell Is Not Scary 306

We loopover the argumentsprovided tonew, and if any requiredones are
missing, error. Otherwise, we set the instance variable associated with
the argument, and remove it from the hash.

Another approach involves taking a string, and evaluating it in the con-
text of whatever class you’re in:

1 def lolwat(your_method, your_string)

2 class_eval "def #{your_method}; puts #{your_string}; end"

3 end

This line of code defines a method with your choice of name and string
to print in the context of whatever class is running.

19.2 wait this isn’t haskell what am i doing here

Metaprogramming inRuby ismostly basedona textual approach to code.
You use Ruby to generate a string of Ruby code, and then you have Ruby
evaluate the code.

If you’re coming from this sort of background (as I was), then Template
Haskell will strike you as different andweird. You’ll think “Oh, I know, I’ll
just use QuasiQuoterss and it’ll all work just right.” Nope. You have to
think differently about metaprogramming in Template Haskell. You’re
not going to be putting strings together that happen to make valid code.
This is Haskell, we’re going to have some compile time checking!

19.3 Constructing an AST

InRuby,webuilt a string,which theRuby interpreter thenparsed, turned
into an abstract syntax tree, and interpreted. In Haskell, we’ll skip the
string step. We’ll build the Abstract Syntax Tree (AST) directly using
standard data constructors. GHC will verify that we’re doing everything
OK in the construction of the syntax tree, and then it’ll print the syntax
tree into our source code before compiling thewhole thing. Sowe get two
levels of compile time checking - that we built a correct template, and
that we used the template correctly.

Template Haskell Is Not Scary 307

One of the nastiest things about textual metaprogramming is the lack
of guarantee that your syntax is right. Debugging syntax errors in gen-
erated code can be difficult. Verifying the correctness of our code is
easier when programming directly into an AST. The quasiquoters are a
convenience built around AST programming, but I’m of the opinion that
you should learn the AST stuff first and then dive into the quoters when
you have a good idea of how they work.

Alright, so let’s get into our first example. We’ve written a function big-
BadMathProblem :: Int -> Double that takesa lot of timeat runtime,
and we want to write a lookup table for the most common values. Since
we want to ensure that runtime speed is super fast, and we don’t mind
waiting on the compiler, we’ll do thiswithTemplateHaskell.We’ll pass in
a list of commonnumbers, run the functiononeach toprecompute them,
and then finally punt to the function if we didn’t cache the number.

Sincewewant to do something like the makeLenses function to generate
a bunch of declarations for us, we’ll first look at the type of that in
the lens library. Jumping to the lens docs², we can see that the type
of makesLenses is Name -> DecsQ. Jumping to the Template Haskell
docs³, DecsQ is a type synonym for Q [Dec]. Q appears to be a monad
for Template Haskell, and a Dec⁴ is the data type for a declaration. The
constructor formaking a functiondeclaration isFunD.We canget started
with this!

We’ll start by defining our function. It’ll take a list of commonly used
values, apply the function to each, and store the result. Finally, we’ll need
a clause that passes the value to the math function in the event we don’t
have it cached.

1 precompute :: [Int] -> DecsQ

2 precompute xs = do

3 --

4 return [FunD name clauses]

Since Q is a monad, and DecsQ is a type synonym for it, we know we can
start off with do. And we know we’re going to be returning a function

²https://hackage.haskell.org/package/lens-4.13/docs/Control-Lens-TH.html
³https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-

TH.html
⁴https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-

TH.html#t:Dec

https://hackage.haskell.org/package/lens-4.13/docs/Control-Lens-TH.html
https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html
https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html
https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#t:Dec
https://hackage.haskell.org/package/lens-4.13/docs/Control-Lens-TH.html
https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html
https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html
https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#t:Dec
https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#t:Dec

Template Haskell Is Not Scary 308

definition,which, according to theDecdocumentation, has a field for the
name of the function and the list of clauses. Now it’s up to us to generate
the name and clauses. Names are easy, so we’ll do that first.

We canget a name froma stringusingmkName. This converts a string into
an unqualified name. We’re going to choose lookupTable as the name
of our lookup table, so we can use that directly.

1 precompute xs = do

2 let name = mkName "lookupTable"

3 -- ...

Now, we need to apply each variable in xs to the function named big-
BadMathProblem. This will go in the [Clause] field, so let’s look at
what makes up a Clause. According to the documentation⁵, a clause is
a data constructor with three fields: a list of Pat patterns, a Body, and
a list of Dec declarations. The body corresponds to the actual function
definition, the Pat patterns correspond to the patterns we’re matching
input arguments on, and the Dec declarations are what wemight find in
a where clause.

Let’s identify our patterns first. We’re trying to match on the Ints di-
rectly. Our desired output is going to look something like:

1 lookupTable 0 = 123.546

2 lookupTable 12 = 151626.4234

3 lookupTable 42 = 0.0

4 -- ...

5 lookupTable x = bigBadMathProblem x

So we need a way to get those Ints in our xs variable into a Pat pattern.
We need some function Int -> Pat… Let’s check out the documenta-
tion⁶ for Pat and see how it works. The first pattern is LitP, which takes
an argument of type Lit. A Lit is a sum type that has a constructor for
the primitive Haskell types. There’s one for IntegerL, which we can use.

So, we can get from Int -> Patwith the following function:
⁵https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-

TH.html#t:Clause
⁶https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-

TH.html#t:Pat

https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#t:Clause
https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#t:Pat
https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#t:Pat
https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#t:Clause
https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#t:Clause
https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#t:Pat
https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#t:Pat

Template Haskell Is Not Scary 309

1 intToPat :: Int -> Pat

2 intToPat = LitP . IntegerL . toInteger

Which we canmap over the initial list to get our [Pat]!

1 precompute xs = do

2 let name = mkName "lookupTable"

3 patterns = map intToPat xs

4 -- ...

5 return [FunD name clauses]

Our lookupTable function is only going to take a single argument, so
we’ll want to map our integer Pats into Clause, going from our [Pat] -
> [Clause]. That will get use the clauses variable that we need. From
above, a clause is defined like:

1 data Clause = Clause [Pat] Body [Dec]

So, our [Pat] is simple - we only have one literal value we’re matching
on. Body is defined to be either a GuardedB which uses pattern guards,
or a NormalB which doesn’t. We could define our function in terms of a
single clause with a GuardedB body, but that sounds like more work, so
we’ll use a NormalB body. The NormalB constructor takes an argument
of type Exp. So let’s dig in to the Exp documentation!⁷

There’s a lot here. Looking above, we really want to have a single thing - a
literal! The precomputed value. There’s a LitE constructor which takes
a Lit type. The Lit type has a constructor for DoublePrimLwhich takes
a Rational, so we’ll have to do a bit of conversion.

1 precomputeInteger :: Int -> Exp

2 precomputeInteger =

3 LitE . DoublePrimL . toRational . bigBadMathProblem

We can get the Bodys for the Clauses by mapping this function over the
list of arguments. The declarationswill be blank, sowe’re ready to create
our clauses!

⁷https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-
TH.html#t:Exp

https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#t:Exp
https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#t:Exp
https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#t:Exp

Template Haskell Is Not Scary 310

1 precompute xs = do

2 let name = mkName "lookupTable"

3 patterns = map intToPat xs

4 fnBodies = map precomputeInteger xs

5 precomputedClauses =

6 zipWith

7 (\body pat -> Clause [pat] (NormalB body) [])

8 fnBodies

9 patterns

10 --

11 return [FunD name clauses]

There’s one thing left to do here. We need to create another clause
with a variable x that we delegate to the function. Since mkName allows
the variable to be shadowed, and that might create a warning in the
generated code, we’ll want to use newName to create a hygienic name for
the variable. We will have to get a bit more complicated with our Body
expression, since we’ve got an application to a function going on.

1 precompute xs = do

2 let name = mkName "lookupTable"

3 patterns = map intToPat xs

4 fnBodies = map precomputeInteger xs

5 precomputedClauses =

6 zipWith

7 (\body pat -> Clause [pat] (NormalB body) [])

8 fnBodies

9 patterns

10 x' <- newName "x"

11 let lastClause = [Clause [VarP x'] (NormalB appBody) []]

12 -- ...

13 clauses = precomputedClauses ++ lastClause

14 return [FunD name clauses]

Going back to the Exp type, we’re now looking for something that cap-
tures the idea of application. The Exp type has a data constructor AppE
which takes two expressions and applies the second to the first. That’s

Template Haskell Is Not Scary 311

precisely what we need! It also has a data constructor VarE which takes
a Name argument. That’s all we need. Let’s do it.

1 precompute xs = do

2 let name = mkName "lookupTable"

3 patterns = map intToPat xs

4 fnBodies = map precomputeInteger xs

5 precomputedClauses =

6 zipWith

7 (\body pat -> Clause [pat] (NormalB body) [])

8 fnBodies

9 patterns

10 x' <- newName "x"

11 let lastClause =

12 [Clause [VarP x'] (NormalB appBody) []]

13 appBody =

14 AppE (VarE 'bigBadMathProblem) (VarE x')

15 clauses =

16 precomputedClauses ++ lastClause

17 return [FunD name clauses]

To get the name for bigBadMathProblem, we used a Template Haskell
quote. The ' character creates a Name out of a value, while two apostro-
phes creates aName out of a type. This iswhat you often seewith deriving:
deriveJSON ''MyType.

We did it! We wrangled up some Template Haskell and wrote ourselves a
lookup table. Now, we’ll want to splice it into the top level of our program
with the $() splice syntax:

1 $(precompute [1..1000])

As it happens, GHC is smart enough to know that a top level expression
with the type Q [Dec] can be splicedwithout the explicit splicing syntax.
So we could have also written:

Template Haskell Is Not Scary 312

1 module X where

2

3 import Precompute (precompute)

4

5 precompute [1..1000]

Creating Haskell expressions using the data constructors is really easy,
if a little verbose. Let’s look at a little more complicated example.

19.4 Boilerplate Be Gone!

We’re excited to be using the excellent users library with the persis-
tent backend for the web application we’re working on (source code
located here, if you’re curious⁸). It handles all kinds of stuff for us, taking
care of a bunch of boilerplate and user related code. It expects, as its first
argument, a value that can be unwrapped and used to run a Persistent
query. It also operates in the IO monad. Right now, our application is
setup to use a custommonad AppMwhich is defined like:

1 type AppM = ReaderT Config (EitherT ServantErr IO)

So, to actually use the functions in the users library, we have to do this
bit of fun business:

1 someFunc :: AppM [User]

2 someFunc = do

3 connPool <- asks getPool

4 let conn = Persistent (`runSqlPool` connPool)

5 users <- liftIO (listUsers conn Nothing)

6 return (map snd users)

That’s going to get annoying quickly, so we start writing functions spe-
cific to our monad that we can call instead of doing all that lifting and
wrapping.

⁸https://github.com/parsonsmatt/QuickLift/

https://github.com/parsonsmatt/QuickLift/
https://github.com/parsonsmatt/QuickLift/

Template Haskell Is Not Scary 313

1 backend :: AppM Persistent

2 backend = do

3 pool <- asks getPool

4 return (Persistent (`runSqlPool` pool))

5

6 myListUsers :: Maybe (Int64, Int64) -> AppM [(LoginId, QLUser)]

7 myListUsers m = do

8 b <- backend

9 liftIO (listUsers b m)

10

11 myGetUserById :: LoginId -> AppM (Maybe QLUser)

12 myGetUserById l = do

13 b <- backend

14 liftIO (getUserById b l)

15

16 myUpdateUser

17 :: LoginId

18 -> (QLUser -> QLUser)

19 -> AppM (Either UpdateUserError ())

20 myUpdateUser id fn = do

21 b <- backend

22 liftIO (updateUser b id fn)

ahh, totally mechanical code. just straight up boiler plate. This is exactly
the sort of thing I’d have metaprogrammed in Ruby. So let’s metapro-
gram it in Haskell!

First, we’ll want to simplify the expression. Let’s use listUsers as the
example. We’ll make it as simple as possible - no infix operators, no do
notation, etc.

1 listUsersSimple m =

2 (>>=) backend (\b -> liftIO (listUsers b m))

Nice. To make it a little easier on seeing the AST, we can take it one
step further. Let’s explicitly show all function application by adding
parentheses to make everything as explicit as possible.

Template Haskell Is Not Scary 314

1 listUsersExplicit m =

2 ((>>=) backend) (\b -> liftIO ((listUsers b) m))

The general formula that we’re going for is:

1 derivedFunction arg1 arg2 ... argn =

2 ((>>=) backend)

3 (\b -> liftIO ((...(((function b) arg1) arg2)...) argn))

We’ll start by creating our deriveReader function, which will take as its
first argument the backend function name.

1 deriveReader :: Name -> DecsQ

2 deriveReader rd =

3 mapM (decForFunc rd)

4 ['destroyUserBackend

5 , 'housekeepBackend

6 , 'getUserIdByName

7 , 'getUserById

8 , 'listUsers

9 , 'countUsers

10 , 'createUser

11 , 'updateUser

12 , 'updateUserDetails

13 , 'authUser

14 , 'deleteUser

15]

This is our first bit of special syntax. The single quote in 'destroyUser-
Backend returns the Name for destroyUserBackend. Unlike mkName
"destroyUserBackend", however, this is a globally qualified name. This
Name works even if the module that splices the code doesn’t import the
code that it came from. If you are referring to names that exist outside of
the code you generate, you need to use this form. Otherwise, your users
will need to import a bunch of modules to satisfy the requirements of
your macro.

Template Haskell Is Not Scary 315

Now, what we need is a function decForFunc, which has the signature
Name -> Name -> Q Dec.

In order to do this, we’ll need to get some information about the function
we’re trying to derive. Specifically, we need to know how many argu-
ments the source function takes. There’s awhole section in the Template
Haskell documentationabout ‘Querying theCompiler’⁹whichwecanput
to good use.

The reify function returns a value of type Info. For type class opera-
tions, it has the data constructor ClassOpI with arguments Name, Type,
ParentName, and Fixity. None of these have the arity of the function
directly…

I think it’s time to do a bit of exploratory coding in the REPL. We can
fire up GHCi and start doing some Template Haskell with the following
commands:

1 λ: :set -XTemplateHaskell

2 λ: import Language.Haskell.TH

We can also do the following command, and it’ll print out all of the
generated code that it makes:

1 λ: :set -ddump-splices

Now, let’s run reify on something simple and see the output!

1 λ: reify 'id

2

3 <interactive>:4:1:

4 No instance for (Show (Q Info)) arising from a use of ‘print’

5 In a stmt of an interactive GHCi command: print it

Hmm.. No show instance. Fortunately, there’s a workaround that can
print out stuff in the Qmonad:

⁹https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-
TH.html#g:3

https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#g:3
https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#g:3
https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#g:3

Template Haskell Is Not Scary 316

1 λ: $(stringE . show =<< reify 'id)

2 "VarI

3 GHC.Base.id

4 (ForallT

5 [KindedTV a_1627463132 StarT]

6 []

7 (AppT

8 (AppT ArrowT (VarT a_1627463132))

9 (VarT a_1627463132)

10)

11)

12 Nothing

13 (Fixity 9 InfixL)"

I’ve formatted it a bit to make it a bit more legible. We’ve got the Name,
the Type, a Nothing value that is always Nothing, and the fixity of the
function. The Type seems pretty useful… Let’s look at the reify output
for one of the class methods we’re trying to work with:

1 λ: $(stringE . show =<< reify 'Web.Users.Types.getUserById)

2 "ClassOpI

3 Web.Users.Types.getUserById

4 (ForallT

5 [KindedTV b_1627432398 StarT]

6 [AppT

7 (ConT Web.Users.Types.UserStorageBackend)

8 (VarT b_1627432398)

9]

10 (ForallT

11 [KindedTV a_1627482920 StarT]

12 [AppT

13 (ConT Data.Aeson.Types.Class.FromJSON) (VarT a_1627482920)

14 , AppT (ConT Data.Aeson.Types.Class.ToJSON) (VarT a_1627482920)

15]

16 (AppT

17 (AppT

18 ArrowT

Template Haskell Is Not Scary 317

19 (VarT b_1627432398)

20)

21 (AppT

22 (AppT

23 ArrowT

24 (AppT

25 (ConT Web.Users.Types.UserId)

26 (VarT b_1627432398)

27)

28)

29 (AppT

30 (ConT GHC.Types.IO)

31 (AppT

32 (ConT GHC.Base.Maybe)

33 (AppT

34 (ConT Web.Users.Types.User)

35 (VarT a_1627482920)

36)

37)

38)

39)

40)

41)

42)

43 Web.Users.Types.UserStorageBackend

44 (Fixity 9 InfixL)"

Wow, that is a ton of text! Believe it or not, I formatted it to make it a bit
more legible. We’re mainly interested in the Type declaration, and we
can get a lot of information about what data constructors are used from
the documentation¹⁰. Just like AppE is how we applied an expression
to an expression, AppT is how we apply a type to a type. ArrowT is the
function arrow in the type signature.

Just as an exercise, we’ll go through the following type signature and
transform it into something a bit like the above:

¹⁰https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-
TH.html#t:Type

https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#t:Type
https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#t:Type
https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#t:Type

Template Haskell Is Not Scary 318

1 fmap

2 :: (a -> b) -> f a -> f b

3 ~ ((->) a b) -> (f a) -> (f b)

4 ~ (->) ((->) a b) ((f a) -> (f b))

5 ~ (->) ((->) a b) ((->) (f a) (f b))

Ok, now all of our (->)s are written in prefix form. We’ll replace the
arrows with ArrowT, do explicit parentheses, and put in the ApplyT
constructors working from the innermost expressions out.

1 ~ (ArrowT ((ArrowT a) b)) ((ArrowT (f a)) (f b))

2 ~ (ArrowT ((ApplyT ArrowT a) b)) ((ArrowT (ApplyT f a)) (ApplyT f b))

3 ~ (ArrowT (ApplyT (ApplyT ArrowT a) b))

4 (ApplyT (ApplyT ArrowT (ApplyT f a)) (ApplyT f b))

5 ~ ApplyT (ArrowT (ApplyT (ApplyT ArrowT a) b))

6 (ApplyT (ApplyT ArrowT (ApplyT f a)) (ApplyT f b))

That got pretty out of hand and messy looking. But, we have a good idea
now of how we can get from one representation to the other.

So, going from our type signature, it looks like we can figure out how we
can get the argumentswe need from the type!We’ll patternmatch on the
type signature, and if we see something that looks like the continuation
of a type signature, we’ll add one to a count and go deeper. Otherwise,
we’ll skip out.

The function definition looks like this:

1 functionLevels :: Type -> Int

2 functionLevels = go 0

3 where

4 go :: Int -> Type -> Int

5 go n (AppT (AppT ArrowT _) rest) =

6 go (n+1) rest

7 go n (ForallT _ _ rest) =

8 go n rest

9 go n _ =

10 n

Template Haskell Is Not Scary 319

Neat! We can pattern match on these just like ordinary Haskell values.
Well, they are ordinary Haskell values, so that makes perfect sense.

Lastly, we’ll need a function that gets the type from an Info. Not all Info
have types, so we’ll encode that with Maybe.

1 getType :: Info -> Maybe Type

2 getType info =

3 case info of

4 ClassOpI _ t _ _ ->

5 Just t

6 DataConI _ t _ _ ->

7 Just t

8 VarI _ t _ _ ->

9 Just t

10 TyVarI _ t ->

11 Just t

12 _ ->

13 Nothing

Alright, we’re ready to get started on that decForFunc function! We’ll go
ahead and fill in what we know we need to do:

1 decForFunc :: Name -> Name -> Q Dec

2 decForFunc reader fn = do

3 info <- reify fn

4 arity <-

5 case getType info of

6 Nothing -> do

7 reportError "Unable to get arity of name"

8 return 0

9 Just typ ->

10 pure $ functionLevels typ

11 -- ...

12 return (FunD fnName [Clause varPat (NormalB final) []])

Arity acquired. Now, we’ll want to get a list of new variable names cor-
responding with the function arguments. When we want to be hygienic

Template Haskell Is Not Scary 320

with our variable names, we use the function newName which creates a
totally unique variable name with the string prepended to it. We want
(arity - 1) new names, since we’ll be using the bound value from the
reader function for the other one. We’ll also want a name for the value
we’ll bind out of the lambda.

1 varNames <- replicateM (arity - 1) (newName "arg")

2 b <- newName "b"

Next up is the new function name. To keep a consistent API, we’ll use
the same name as the one in the actual package. This will require us to
import the other package qualified to avoid a name clash.

1 let fnName = mkName . nameBase $ fn

nameBase has the type Name -> String, and gets the non-qualified
name string for a given Name value. Then we mkName with the string,
giving us a new, non-qualified name with the same value as the original
function. This might be a bad idea? You probably want to provide a
unique identifier. However, keeping the names consistent can be helpful
for discovery.

Next up, we’ll want to apply the (>>=) function to the reader. We’ll then
want to createa functionwhichapplies theboundexpression toa lambda.
Lambdas have an LamE¹¹ constructor in the Exp type. They take a [Pat]
to match on, and an Exp that represents the lambda body.

1 bound = AppE (VarE '(>>=)) (VarE reader)

2 binder = AppE bound . LamE [VarP b]

So AppE bound . LamE [VarP b] is the exact same thing as (>>=)
reader (\b -> ...)! Cool.

Next up, we’ll need to create VarE values for all of the variables. Then,
we’ll need to apply all of the values to the VarE fn expression. Function
application binds to the left, so we’ll have:

¹¹https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-
TH.html#v:LamE

https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#v:LamE
https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#v:LamE
https://hackage.haskell.org/package/template-haskell-2.10.0.0/docs/Language-Haskell-TH.html#v:LamE

Template Haskell Is Not Scary 321

1 fn ~ VarE fn

2 fn a ~ AppE (VarE fn) (VarE a)

3 fn a b ~ AppE (AppE (VarE fn) (VarE a)) (VarE b)

4 fn a b c ~ AppE (AppE (AppE (VarE fn) (VarE a)) (VarE b)) (VarE c)

This looks just like a left fold! Once we have that, we’ll apply the fully ap-
plied fn expression to VarE 'liftIO, and finally bind it to the lambda.

1 varExprs = map VarE (b : varNames)

2 fullExpr = foldl AppE (VarE fn) varExprs

3 liftedExpr = AppE (VarE 'liftIO) fullExpr

4 final = binder liftedExpr

This produces our (>>=) reader (\b -> fn b arg1 arg2 ...
argn) expression.

The last thingweneed to do is get our patterns. This is the list of variables
we generated earlier.

1 varPat = map VarP varNames

And now, the whole thing:

1 deriveReader :: Name -> DecsQ

2 deriveReader rd =

3 mapM (decForFunc rd)

4 ['destroyUserBackend

5 , 'housekeepBackend

6 , 'getUserIdByName

7 , 'getUserById

8 , 'listUsers

9 , 'countUsers

10 , 'createUser

11 , 'updateUser

12 , 'updateUserDetails

13 , 'authUser

Template Haskell Is Not Scary 322

14 , 'deleteUser

15]

16

17 decForFunc :: Name -> Name -> Q Dec

18 decForFunc reader fn = do

19 info <- reify fn

20 arity <-

21 case getType info of

22 Nothing -> do

23 reportError "Unable to get arity of name"

24 return 0

25 Just typ ->

26 pure $ functionLevels typ

27 varNames <- replicateM (arity - 1) (newName "arg")

28 b <- newName "b"

29 let fnName = mkName . nameBase $ fn

30 bound = AppE (VarE '(>>=)) (VarE reader)

31 binder = AppE bound . LamE [VarP b]

32 varExprs = map VarE (b : varNames)

33 fullExpr = foldl AppE (VarE fn) varExprs

34 liftedExpr = AppE (VarE 'liftIO) fullExpr

35 final = binder liftedExpr

36 varPat = map VarP varNames

37 return $ FunD fnName [Clause varPat (NormalB final) []]

And we’ve nowmetaprogrammed a bunch of boilerplate away!

We’ve looked at the docs for Template Haskell, figured out how to con-
struct values in Haskell’s AST, and worked out how to do some work
at compile time, as well as automate some boilerplate. I’m excited to
learnmoreabout themagic of definingquasiquoters andmoreadvanced
Template Haskell constructs, but even a super basic “build expressions
and declarations using data constructors” approach is useful.

20. Basic Type Level Programming
Dependently typed programming is becoming all the rage these days.
Advocates are talking about all the neat stuff you can do by puttingmore
andmore information into the type system. It’s true! Type level program-
ming gives you interesting new tools for designing software. You can
guarantee safety properties, and in some cases, even gain performance
optimizations through the use of these types.

I’m not going to try and sell you on these benefits – presumably you’ve
read about something like the dependently typed neural networks¹, or
about Idris’s encoding of network protocols in the type system². If you’re
not convinced on the benefits of learning type level programming, then
you can skip this chapter.

For this text to work as expected, you may need to import Data.Kind
(Type). You may also see Type instead of Type in GHCi. Type is an old
deprecated name for Type.

20.1 The Basic Types

So let’s talk about some basic types. I’m going to stick with the real basic
types here: no primitives, just stuff we can define in one line in Haskell.

1 data Unit = MkUnit

2

3 data Bool = False | True

This code block defines two new types: Unit and Bool. The Unit type
has one constructor, called MkUnit. Since there’s only one constructor for
this type, and it takes no parameters, there is only one value of this type.
We call it Unit because there’s only one value.

¹https://blog.jle.im/entry/practical-dependent-types-in-haskell-1.html
²http://docs.idris-lang.org/en/latest/st/examples.html

323

https://blog.jle.im/entry/practical-dependent-types-in-haskell-1.html
http://docs.idris-lang.org/en/latest/st/examples.html
https://blog.jle.im/entry/practical-dependent-types-in-haskell-1.html
http://docs.idris-lang.org/en/latest/st/examples.html

Basic Type Level Programming 324

Bool is a type that has two constructors: True and False. These don’t take
any parameters either, so they’re kind of like constants.

What does it mean to be a type? A type is a way of classifying things.
Things – that’s a vague word. What do I mean by ‘things’?

Well, for these simple types above, we’ve already seen all their possible
values – we can say that True and False are members of the type Bool.
Furthermore, 1, 'a', and Unit are notmembers of the type Bool.

These types are kind of boring. Let’s look at another type:

1 data IntAndChar = MkIntAndChar Int Char

This introduces a type IntAndChar with a single constructor that takes
two arguments: one of which is an Int and the other is a Char. Values of
this type look like:

1 theFirstOne = MkIntAndChar 3 'a'

2 theSecond = MkIntAndChar (-3) 'b'

MkIntAndChar looks a lot like a function. In fact, if we askGHCi about it’s
type, we get this back:

1 λ> :t MkIntAndChar

2 MkIntAndChar :: Int -> Char -> IntAndChar

MkIntAndChar is a function accepting an Int and a Char and finally
yielding a value of type IntAndChar.

So we can construct values, and values have types. Can we construct
types? And if so, what do they have?

20.2 The Higher Kinds

Let’s hold onto our intuition about functions and values. A function with
the type foo :: Int -> IntAndChar is saying:

Basic Type Level Programming 325

Give me a value with the type Int, and I will give you a value
with the type IntAndChar.

Now, let’s lift that intuition into the type level. A value constructor accepts
a value and yields a value. So a type constructor accepts a type and yields a
type. Haskell’s type variables allow us to express this.

Let’s consider everyone’s favorite sum type:

1 data Maybe a

2 = Nothing

3 | Just a

Here, we declare a type Maybe, with two data constructors: Just, which
accepts a value of type a, and Nothing, which does not accept any values
at all. Let’s ask GHCi about the type of Just and Nothing!

1 λ> :t Just

2 Just :: a -> Maybe a

3 λ> :t Nothing

4 Nothing :: Maybe a

So Just has that function type – and it looks like, whatever type of value
wegive it, it becomesaMaybeof that type.Nothing, however, canconjure
up whatever type it wants, without needing a value at all. Let’s play with
that a bit:

1 λ> let nothingA = Nothing :: Maybe a

2 λ> let nothingInt = Nothing :: Maybe Int

3 λ> let nothingChar = Nothing :: Maybe Char

4 λ> nothingInt == nothingChar

Basic Type Level Programming 326

1 <interactive>:27:15: error:

2 • Couldn't match type ‘Char’ with ‘Int’

3 Expected type: Maybe Int

4 Actual type: Maybe Char

5 • In the second argument of ‘(==)’, namely ‘nothingChar’

6 In the expression: nothingInt == nothingChar

7 In an equation for ‘it’: it = nothingInt == nothingChar

8 λ> nothingA == nothingInt

9 True

10 λ> nothingA == nothingChar

11 True

Woah – we get a type error when trying to compare nothingInt with
nothingChar. That makes sense – (==) only works on values that have
the same type. But then, wait, why does nothingA not complain when
compared with nothingInt and nothingChar?

The reason is that nothingA :: Maybe a really means:

I am a value of Maybe a, for any and all types a that youmight
provide to me.

So I’m seeing that we’re passing types to Maybe, in much the same way
that we pass values to MkIntAndChar. Let’s ask GHCi about the type of
Maybe!

1 λ> :type Maybe

2

3 <interactive>:1:1: error:

4 • Data constructor not in scope: Maybe

5 • Perhaps you meant variable ‘maybe’ (imported from Prelude)

Well,

it turns out that types don’t have types (kind of, sort of). Types have kinds.
We can ask GHCi about the kind of types with the :kind command:

Basic Type Level Programming 327

1 λ> :kind Maybe

2 Maybe :: Type -> Type

Type is the kind of types which have values. Maybe has the kind Type ->
Type, which means:

Give me a type that has values, and I will give you a type that
has values.

Maybe you’ve heard about higher kinded polymorphism before. Let’s write
a data type that demonstrates that this means:

1 data HigherKinded f a

2 = Bare a

3 | Wrapped (f a)

Haskell’s kind inference is awfully kind on the fingers – since we use f
applied toa, Haskell just knows thatfmusthave thekindType -> Type.
If we ask GHCi about the kind of HigherKinded, we get back:

1 λ> :kind HigherKinded

2 HigherKinded :: (Type -> Type) -> Type -> Type

So HigherKinded is a type that accepts a type of kind Type -> Type, and
a type of kind Type and returns a type of kind Type. In plain, verbose
English, this reads as:

Giveme two types: the first ofwhich is a function that does not
have values itself, but when given a type that does have values,
it can have values. The second being a type that has values.
Finally, I will return to you a type that can have ordinary
values.

One last confusion: in recent GHC, you can ask “What is the kind of
Type?” The answer is a bit mysterious:

Basic Type Level Programming 328

1 λ> :kind Type

2 Type :: Type

Type has the kind Type.

20.3 Dynamically Kinded Programming

Haskell is currently transitioning to using Type. Previously, you had to
write * to mean the same thing. * reminds me of regular expressions –
“match anything.” Indeed, * matches any type that has values, or even
types that are only inhabited by the infinite loop:

1 λ> data Void

2 λ> :kind Void

3 Void :: Type

We don’t provide any ways to construct a void value, yet it still has kind
Type.

In the same way that you can productively program at the value level
with dynamic types, you can productively program at the type level with
dynamic kinds. And Type is basically that!

Let’s encode our first type level numbers. We’ll start with the Peano
natural numbers, where numbers are inductively defined as either Zero
or the Successor of some natural number.

1 data Zero

2 data Succ a

3

4 type One = Succ Zero

5 type Two = Succ One

6 type Three = Succ Two

7 type Four = Succ (Succ (Succ (Succ Zero)))

But this is pretty unsatisfying. After all, there’s nothing that stops us
from saying Succ Bool, which doesn’t make any sense. I’m pretty sold

Basic Type Level Programming 329

on the benefits of types for clarifying thinking and preventing errors, so
abandoning the safety of types when I programmy types just seems silly.
In order to get that safety back, we need to introduce more kinds than
merely Type. For this, we have to level up our GHC.

20.4 Data Kinds

1 {-# LANGUAGE DataKinds #-}

The DataKinds extension allows us to promote data constructors into
type constructors, which also promotes their type constructors into kind
constructors. To promote something up a level, we prefix the name with
an apostrophe, or tick: '.

Now, let’s define our kind safe type level numbers:

1 data Nat = Zero | Succ Nat

In plain Haskell, this definition introduces a new type Nat with two
value constructors, Zero and Succ (which takes a value of type Nat). The
DataKinds extension also allows us to use the data constructors as type
constructors. This means that we get two new types: a type constant
'Zero, which has the kind Nat, and a type constructor 'Succ, which
accepts a type of kind Nat. Notably, the type Nat and the kind Nat are the
same. Let’s ask GHCi about our new buddies:

1 λ> :kind 'Zero

2 'Zero :: Nat

3 λ> :kind 'Succ

4 'Succ :: Nat -> Nat

Youmight think: that looks familiar! And it should. After all, the types look
very much the same!

Basic Type Level Programming 330

1 λ> :type Zero

2 Zero :: Nat

3 λ> :type Succ

4 Succ :: Nat -> Nat

Where it can be ambiguous, the ' is used to disambiguate. Otherwise,
Haskell can infer which youmean.

It’s important to note that there are no values of type 'Zero. The only kind
that can have types that can have values is Type.

We’ve gained the ability to construct some pretty basic types and kinds.
In order to actually use them, though, we need a bit more power.

20.5 GADTs

1 {-# LANGUAGE GADTs #-}

Youmay bewondering, “What does GADT stand for?” Richard Eisenberg
will tell you that they’re Generalized Algebraic Data Types, but that the
terminology isn’t helpful, so just think of them as Gadts³.

GADTs are a tool we can use to provide extra type information bymatch-
ing on constructors. They use a slightly different syntax than normal
Haskell data types. Let’s check out some simpler types that we’ll write
with this syntax:

1 data Maybe a where

2 Just :: a -> Maybe a

3 Nothing :: Maybe a

The GADT syntax lists the constructors line-by-line, and instead of pro-
viding the fields of the constructor, we provide the type signature of the
constructor. This is an interesting change – I just wrote out a -> Maybe
a. That suggests, to me, that I canmake these whatever type I want.

³https://www.youtube.com/watch?v=6snteFntvjM

https://www.youtube.com/watch?v=6snteFntvjM
https://www.youtube.com/watch?v=6snteFntvjM
https://www.youtube.com/watch?v=6snteFntvjM

Basic Type Level Programming 331

1 data IntBool a where

2 Int :: Int -> IntBool Int

3 Bool :: Bool -> IntBool Bool

This declaration creates anew typeIntBool, whichhas the kind Type ->
Type. It has two constructors: Int, which has the type Int -> IntBool
Int, and Bool, which has the type Bool -> IntBool Bool.

Since the constructors carry information about the resulting type, we
get bonus information about the type when we pattern match on the
constructors! Check this signature out:

1 extractIntBool :: IntBool a -> a

2 extractIntBool (Int _) = 0

3 extractIntBool (Bool b) = b

Something really interesting is happening here! When wematch on Int,
we know that IntBool a ∼ IntBool Int. That ∼ tilde is a symbol for
type equality, and introduces a constraint that GHC needs to solve to type
check the code. For this branch, we know that a ∼ Int, sowe can return
an Int value.

We now have enough power in our toolbox to implement everyone’s
favorite example of dependent types: length indexed vectors!

20.6 Vectors

Length indexed vectors allow us to put the length of a list into the type
system, which allows us to statically forbid out-of-bounds errors. We
have a way to promote numbers into the type level using DataKinds,
and we have a way to provide bonus type information using GADTs. Let’s
combine these two powers for this task.

I’ll split this definition up into multiple blocks, so I can walk through it
easily.

Basic Type Level Programming 332

1 data Vector (n :: Nat) a where

We’re defining a type Vectorwith kind Nat -> Type -> Type. The first
type parameter is the length index. The second type parameter is the
type of values contained in the vector. Note that, in order to compile
something with a kind signature, we need…

1 {-# LANGUAGE KindSignatures #-}

Thinking about types often requires us to think in a logical manner. We
often need to consider things inductively when constructing them, and
recursively when destructing them. What is the base case for a vector?
It’s the empty vector, with a length of Zero.

1 VNil :: Vector 'Zero a

A value constructed by VNil can have any type a, but the length is always
constrained to be 'Zero.

The inductive case is adding another value to a vector. One more value
means onemore length.

1 VCons :: a -> Vector n a -> Vector ('Succ n) a

The VCons constructor takes two values: one of type a, and another of
type Vector n a. We don’t know how long the Vector provided is – it
canbeanyn such thatn is aNaturalnumber.Wedoknow that the resulting
vector is the Successor of that number, though.

So here’s the fully annotated and explicit definition:

1 data Vector (n :: Nat) (a :: Type) where

2 VNil :: Vector 'Zero a

3 VCons :: a -> Vector n a -> Vector ('Succ n) a

Fortunately, Haskell can infer these things for us! Whether you use the
above explicit definition or the below implicit definition is a matter of
taste, aesthetics, style, and documentation.

Basic Type Level Programming 333

1 data Vector n a where

2 VNil :: Vector Zero a

3 VCons :: a -> Vector n a -> Vector (Succ n) a

Let’s now write a Show instance for these length indexed vectors. It’s
pretty painless:

1 instance Show a => Show (Vector n a) where

2 show VNil = "VNil"

3 show (VCons a as) = "VCons " ++ show a ++ " (" ++ show as ++ ")"

Thatn typeparameter is totally arbitrary, sowedon’t have toworry about
it too much.

The Vector API

As a nice exercise, let’s write append :: Vector n a -> Vector m a
-> Vector ??? a. Butwait,what is???going tobe? Itneeds to represent
the addition of these two natural numbers. Addition is a function. And we
don’t have type functions, right?Well, we do, but we have to upgrade our
GHC again.

1 {-# LANGUAGE TypeFamilies #-}

For some reason, functions that operate on types are called type families.
There are two ways to write a type family: open, where anyone can add
new cases, and closed, where all the cases are defined at once. We’ll
mostly be dealing with closed type families here.

So let’s figure out how to add two Natural numbers, at the type level. For
starters, let’s figure out how to add at at the value level first.

1 add :: Nat -> Nat -> Nat

This is the standard Haskell function definitions we all know and love.
We can pattern match on values, write where clauses with helpers, etc.

Basic Type Level Programming 334

We’re working with an inductive definition of numbers, so we’ll need
to use recursion get our answer. We need a base case, and then the
inductive case. So lets start basic: if we add 0 to any number, then the
answer is that number.

1 add Zero n = n

The inductive case asks:

If we add the successor of a number (Succ n) to another
number (m), what is the answer?

Well, we know we want to get to Zero, so we want to somehow shrink our
problem a bit. We’ll have to shift that Succ from the left term to the right
term. Then we can recurse on the addition.

1 add (Succ n) m = add n (Succ m)

If you imagine a natural number as a stack of plates, we can visualize
the addition of two natural numbers as taking one plate off the top of the
first stack, and putting it on top of the second. Eventually, we’ll use all of
the plates – this leaves us with Zero plates, and our final single stack of
plates is the answer.

1 add :: Nat -> Nat -> Nat

2 add Zero n = n

3 add (Succ n) m = add n (Succ m)

Alright, let’s promote this to the type level.

20.7 Type Families

The first line of a type family definition is the signature:

Basic Type Level Programming 335

1 type family Add n m where

This introduces a new type function Add which accepts two parameters.
We can now define the individual cases. We can pattern match on type
constructors, just like we can pattern match on value constructors. So
we’ll write the Zero case:

1 Add 'Zero n = n

Next, we recurse on the inductive case:

1 Add ('Succ n) m = Add n ('Succ m)

Ahh, except now GHC is going to give us an error.

1 • The type family application ‘Add n ('Succ m)’

2 is no smaller than the instance head

3 (Use UndecidableInstances to permit this)

4 • In the equations for closed type family ‘Add’

5 In the type family declaration for ‘Add’

GHC is extremely scared of undecidability, and won’t do anything that it
can’t easily figure out on it’s own. UndecidableInstances is an exten-
sion which allows you to say:

Look, GHC, it’s okay. I know you can’t figure this out. I promise
this makes sense and will eventually terminate.

So now we get to add:

1 {-# LANGUAGE UndecidableInstances #-}

to our file. The type family definition compiles fine now. How canwe test
it out?

Where we used :kind to inspect the kind of types, we can use :kind!
to evaluate these types as far as GHC can. This snippet illustrates the
difference:

Basic Type Level Programming 336

1 λ> :kind Add (Succ (Succ Zero)) (Succ Zero)

2 Add (Succ (Succ Zero)) (Succ Zero) :: Nat

3 λ> :kind! Add (Succ (Succ Zero)) (Succ Zero)

4 Add (Succ (Succ Zero)) (Succ Zero) :: Nat

5 = 'Succ ('Succ ('Succ 'Zero))

The first line just tells us that the result of Adding two Natural numbers
is itself a Natural number. The second line shows the actual result of
evaluating the type level function. Cool! So now we can finally finish
writing append.

1 append :: Vector n a -> Vector m a -> Vector (Add n m) a

Let’s start with some bad attempts, to see what the types buy us:

1 append VNil rest = VNil

This fails with a type error – cool!

1 • Could not deduce: m ~ 'Zero

2 from the context: n ~ 'Zero

3 bound by a pattern with constructor:

4 VNil :: forall a. Vector 'Zero a,

5 in an equation for ‘append’

6 at /home/matt/Projects/dep-types.hs:31:8-11

7 ‘m’ is a rigid type variable bound by

8 the type signature for:

9 append :: forall (n :: Nat) a (m :: Nat).

10 Vector n a -> Vector m a -> Vector (Add n m) a

11 at /home/matt/Projects/dep-types.hs:30:11

12 Expected type: Vector (Add n m) a

13 Actual type: Vector 'Zero a

14 • In the expression: VNil

15 In an equation for ‘append’: append VNil rest = VNil

16 • Relevant bindings include

17 rest :: Vector m a

Basic Type Level Programming 337

18 (bound at /home/matt/Projects/dep-types.hs:31:13)

19 append :: Vector n a -> Vector m a -> Vector (Add n m) a

20 (bound at /home/matt/Projects/dep-types.hs:31:1)

The error is kinda big and scary at first. Let’s dig into it a bit.

GHC is tellingus that it can’t infer thatm (which is the length of the second
parameter vector) is equal to Zero. It knows that n (the length of the first
parameter) is Zero because we’ve pattern matched on VNil. So, what
values can we return? Let’s replace the definition we have thus far with
undefined, reload in GHCi, and inspect some types:

1 λ> :t append VNil

2 append VNil :: Vector m a -> Vector m a

We need to construct a value Vector m a, and we have been given a
value Vector m a. BUT – we don’t know what m is! So we have no way
to spoof this or fake it. We have to return our input. So our first case is
simply:

1 append VNil xs = xs

Like with addition of natural numbers, we’ll need to have the inductive
case. Sincewe have the base case on our first parameter, we’ll want to try
shrinking our first parameter in the recursive call.

So let’s try another bad implementation:

1 append (VCons a rest) xs = append rest (VCons a xs)

This doesn’t really do what we want, which we can verify in the REPL:

1 λ> append (VCons 1 (VCons 3 VNil)) (VCons 2 VNil)

2 VCons 3 (VCons 1 (VCons 2 (VNil)))

The answer should be VCons 1 (VCons 3 (VCons 2 VNil)). However,
our Vector type only encodes the length of the vector in the type. The
sequence isnot considered.Anything that isn’t lifted into the typesystem
doesn’t get any correctness guarantees.

So let’s fix the implementation:

Basic Type Level Programming 338

1 append (VCons a rest) xs = VCons a (append rest xs)

And let’s reload in GHCi to test it out!

1 λ> :reload

2 [1 of 1] Compiling DepTypes (/dep-types.hs, interpreted)

3

4 /home/matt/Projects/dep-types.hs:32:28: error:

5 • Could not deduce: Add n1 ('Succ m) ~ 'Succ (Add n1 m)

6 from the context: n ~ 'Succ n1

7 bound by a pattern with constructor:

8 VCons :: forall a (n :: Nat).

9 a -> Vector n a -> Vector ('Succ n) a,

10 in an equation for ‘append’

11 at /home/matt/Projects/dep-types.hs:32:9-20

12 Expected type: Vector (Add n m) a

13 Actual type: Vector ('Succ (Add n1 m)) a

14 • In the expression: VCons a (append rest xs)

15 In an equation for ‘append’:

16 append (VCons a rest) xs = VCons a (append rest xs)

17 • Relevant bindings include

18 xs :: Vector m a (bound at /dep-types.hs:32:23)

19 rest :: Vector n1 a

20 (bound at /dep-types.hs:32:17)

21 append :: Vector n a -> Vector m a -> Vector (Add n m) a

22 (bound at /dep-types.hs:31:1)

23 Failed, modules loaded: none.

Oh

no! A type error! GHC can’t figure out that Add n (Succ m) is the same
as Succ (Add n m). We can kinda see what went wrong if we lay the
Vector, Add and append definitions next to each other:

Basic Type Level Programming 339

1 data Vector n a where

2 VNil :: Vector Zero a

3 VCons :: a -> Vector n a -> Vector (Succ n) a

4

5 type family Add x y where

6 Add 'Zero n = n

7 Add ('Succ n) m = Add n ('Succ m)

8

9 append :: Vector n a -> Vector m a -> Vector (Add n m) a

10 append VNil xs = xs

11 append (VCons a rest) xs = VCons a (append rest xs)

In Vector’s inductive case, we are building up a bunch of Succs. In
Add’s recursive case, we’re tearing down the left hand side, such that the
exterior is anotherAdd. And inappends recursive case,we’re buildingup
the right hand side. Let’s trace how this error happens, and supply some
type annotations as well:

1 append (VCons a rest) xs =

Here, we know that VCons a rest has the type Vector (Succ n) a,
and xs has the type Vector m a. We need to produce a result of type
Vector (Add (Succ n) m) a in order for the type to line up right. We
use VCons a (append rest xs). VCons has a length value that is the
Successor of the result of append rest xs, which shouldhave the value
Add n m, so the length there is Succ (Add n m). Unfortunately, our
result type needs to be Add (Succ n) m.

We know these values are equivalent. Unfortuantely, GHC cannot prove
this, so it throws up it’s hands. Two definitions, which are provably
equivalent, are structurally different, and this causes the types andproofs
to fail. This is aHUGE gotcha in type level programming – the implemen-
tation details matter, a lot, and they leak, hard. We can fix this by using a
slightly different definition of Add:

Basic Type Level Programming 340

1 type family Add x y where

2 Add 'Zero n = n

3 Add ('Succ n) m = 'Succ (Add n m)

This definition has a similar structure of recursion – we pull the Succs
out, which allows us to match the way that VCons adds Succ on top.

This new definition compiles and works fine.

20.8 This Sucks

Agreed, which is why I’ll defer the interested reader to this much better
tutorial⁴ on length indexed vectors in Haskell. Instead, let’s look at some
other more interesting and practical examples of type level program-
ming.

20.9 Heterogeneous Lists

Heterogeneous lists are kind of like tuples, but they’re defined induc-
tively. We keep a type level list of the contents of the heterogeneous list,
which let us operate safely on them.

Touse ordinaryHaskell lists at the type level, weneed another extension:

1 {-# LANGUAGE TypeOperators #-}

which allows us to use operators at the type level.

Here’s the data type definition:

⁴https://www.schoolofhaskell.com/user/konn/prove-your-haskell-for-great-safety/dependent-
types-in-haskell

https://www.schoolofhaskell.com/user/konn/prove-your-haskell-for-great-safety/dependent-types-in-haskell
https://www.schoolofhaskell.com/user/konn/prove-your-haskell-for-great-safety/dependent-types-in-haskell
https://www.schoolofhaskell.com/user/konn/prove-your-haskell-for-great-safety/dependent-types-in-haskell
https://www.schoolofhaskell.com/user/konn/prove-your-haskell-for-great-safety/dependent-types-in-haskell

Basic Type Level Programming 341

1 data HList xs where

2 HNil :: HList '[]

3 (:::) :: a -> HList as -> HList (a ': as)

4

5 infixr 6 :::

The HNil constructor has an empty list of values, which makes sense,
because it doesn’thaveanyvalues!The:::constructionoperator takesa
value of typea, anHList that alreadyhas a list of typesas that it contains,
and returns an HList where the first element in the type level list is a
followed by as.

Let’s see what a value for this looks like:

1 λ> :t 'a' ::: 1 ::: "hello" ::: HNil

2 'a' ::: 1 ::: "hello" ::: HNil

3 :: HList '[Char, Int, String]

So now we know that we have a Char, Int, and String contained in this
HList, and their respective indexes. What if we want to Show that?

1 λ> 'a' ::: 1 ::: "hello" ::: HNil

2

3 <interactive>:13:1:

4 No instance for (Show (HList '[Char, Int, String]))

5 arising from a use of ‘print’

6 In the first argument of ‘print’, namely ‘it’

7 In a stmt of an interactive GHCi command: print it

Hmm. We’ll need to write a Show instance for HList. How should we ap-
proach this? Let’s try something dumb first.We’ll ignore all the contents!

1 instance Show (HList xs) where

2 show HNil = "HNil"

3 show (x ::: rest) = "_ ::: " ++ show rest

Ahah! this compiles, and it even works!

Basic Type Level Programming 342

1 λ> 'a' ::: 1 ::: "hello" ::: HNil

2 _ ::: _ ::: _ ::: HNil

Unfortunately, it’s not useful. Can we do better? We can!

20.10 Inductive Type Class Instances

First, we’ll define the base case – showing an empty HList!

1 instance Show (HList '[]) where

2 show HNil = "HNil"

This causes a compile error, requiring that we enable yet another lan-
guage extension:

1 {-# LANGUAGE FlexibleInstances #-}

If you’re doing this in another file than the type family above, you’ll
also get an error about FlexibleContexts. It turns out that enabling
UndecidableInstances implies FlexibleContexts for some reason.
So let’s throw that one on too, for goodmeasure:

1 {-# LANGUAGE FlexibleContexts #-}

This compiles, and we can finally show HNil and it works out. Now, we
must recurse!

The principle of induction states that:

1. Wemust be able to do something for the base case.
2. If we can do something for a random case, then we can do it for a

case that is one step larger.
3. By 1 and 2, you can do it for all cases.

We’ve covered that base case. We’ll assume that we can handle the
smaller cases, and demonstrate how to handle a slightly large case:

Basic Type Level Programming 343

1 instance (Show (HList as), Show a)

2 => Show (HList (a ': as)) where

3 show (a ::: rest) =

4 show a ++ " ::: " ++ show rest

This instance basically says:

Given that I know how to Show an HList of as, and I know how
to Show an a: I can Show an HListwith an a and a bunch of as.

1 λ> 'a' ::: 1 ::: "hello" ::: HNil

2 'a' ::: 1 ::: "hello" ::: HNil

Further Exercises
Write an aeson⁵ instance for HList. It’ll be similar to the Show
instance, but require a bit more stuff.

20.11 Extensible Records

There are a few variants on extensible records in Haskell. Here’s a tiny
implementation that requires yet more extensions:

1 {-# LANGUAGE PolyKinds #-}

2 {-# LANGUAGE TypeApplications #-}

3

4 import GHC.TypeLits (KnownSymbol, symbolVal)

5 import Data.Proxy

Before we jump to the implementation: a small warning.

⁵https://hackage.haskell.org/package/aeson

https://hackage.haskell.org/package/aeson
https://hackage.haskell.org/package/aeson

Basic Type Level Programming 344

An Aside; Beware PolyKinds

It had just snowed the night before. The sun was beaming, glittering on
the ice covered asphalt. A coworker was extending some of our internal
Servantmachinery. The typeswere as fancy asmy coffee waswarm. The
error messages were as informative as the white snow blanketing the
landscape.

GHC was failing to match two types.

1 Can't match type s with s

The

types are the same. I was literally the “It’s the same picture” meme for
twenty minutes while staring at it.

It turns out, when PolyKinds are enabled, GHC will fail to match types
if the kinds don’t match, too. This makes perfect sense. The two s types
above were inferred to have different kinds: (s :: Type) and (s ::
k0). As a result, they didn’tmatch, and the kind information didn’tmake
it into the error message.

PolyKinds will give odd error messages in unexpected locations. It is
extremely convenient to use, but I usually find that I prefer to write
explicit KindSignatures unless I genuinely need kind polymorphism.

Back to your regularly scheduled programming…

This generalizes definitions for type variables, which allows for non-
value type variables to have kindpolymorphism. Type applications allow
us to explicitly pass types as arguments using an @ symbol.

First, we must define the type of our fields, and then our record:

1 newtype s >> a = Named a

2

3 data HRec xs where

4 HEmpty :: HRec '[]

5 HCons :: (s >> a) -> HRec xs -> HRec (s >> a ': xs)

Basic Type Level Programming 345

The s parameter is going to be a type with the kind Symbol. Symbol is
defined in GHC.TypeLits, so we need that import to do the fun stuff.

We’ll construct a value using the TypeApplications syntax, so a record
will look like:

1 λ> HCons (Named @"foo" 'a') (HCons (Named @"bar" (3 :: Int)) HEmpty)

2

3 <interactive>:10:1: error:

4 • No instance for (Show (HRec '["foo" >> Char, "bar" >> Int]))

5 arising from a use of ‘print’

6 • In a stmt of an interactive GHCi command: print it

So, this type checks fine! Cool. But it does not Show, so we need to define
a Show instance.

Those string record fields only exist at the type level – but we can use
the KnownSymbol class to bring them back down to the value level using
symbolVal.

Here’s our base case:

1 instance Show (HRec '[]) where

2 show _ = "HEmpty"

And, when we recurse, we need a tiny bit more information. Let’s start
with the instance head first, so we know what variables we need:

1 instance Show (HRec (s >> a ': xs)) where

OK, so we have a s type, which has the kind Symbol, an a :: Type, and
xs. So now we pattern match on that bad boy:

1 instance Show (HRec (s >> a ': xs)) where

2 show (HCons (Named a) rest) =

OK, so we need to show the a value. Easy. Which means we need a Show
a constraint tacked onto our instance:

Basic Type Level Programming 346

1 instance (Show a)

2 => Show (HRec (s >> a ': xs)) where

3 show (HCons (Named a) rest) =

4 let val = show a

Next up, we need the key as a string. Which means we need to use
symbolVal, which takes a proxy s and returns the String associated
with the s provided that s is a KnownSymbol.

1 instance (Show a, KnownSymbol s)

2 => Show (HRec (s >> a ': xs)) where

3 show (HCons (Named a) rest) =

4 let val = show a

5 key = symbolVal (Proxy :: Proxy s)

At this point, you’re probably going to get an error like No instance
for 'KnownSymbol s0'. This is because Haskell’s type variables have
a limited scope by default. When you write:

1 topLevelFunction :: a -> (a -> b) -> b

2 topLevelFunction a = go

3 where

4 go :: (a -> b) -> b

5 go f = f a

Haskell interprets each type signature as it’s own scope for the type
variables. Thismeans that the a and b variables in the gohelper function
are different type variables, and amore precise way to write it would be:

1 topLevelFunction :: a0 -> (a0 -> b0) -> b0

2 topLevelFunction a = go

3 where

4 go :: (a1 -> b1) -> b1

5 go f = f a

If we want for type variables to have a scope similar to other variables,
we need another extension:

Basic Type Level Programming 347

1 {-# LANGUAGE ScopedTypeVariables #-}

Finally, we need to show the rest of the stuff!

1 instance (Show a, KnownSymbol s, Show (HRec xs))

2 => Show (HRec (s >> a ': xs)) where

3 show (HCons (Named a) rest) =

4 let val = show a

5 key = symbolVal (Proxy :: Proxy s)

6 more = show rest

7 in "(" ++ key ++ ": " ++ val ++ ") " ++ more

This gives us a rather satisfying Show instance, now:

1 λ> HCons (Named @"foo" 'a') (HCons (Named @"bar" (3 :: Int)) HEmpty)

2 (foo: 'a') (bar: 3) HEmpty

Exercise:
Write an Aeson ToJSON instance for this HRec type which
converts into a JSON object.

Bonus points:Write anAeson FromJSON instance for the HRec
type.

20.12 Like what you read?

If you enjoyed this chapter, you should check out the book Thinkingwith
Types⁶ by Sandy Maguire. It is an extensive manual on practical type-
level programming in Haskell.

⁶http://thinkingwithtypes.com/

http://thinkingwithtypes.com/
http://thinkingwithtypes.com/
http://thinkingwithtypes.com/

21. Family Values
Haskell’s TypeFamilies language extension enables four different
kinds of things:

• Closed type families
• Open type families
• Associated type families
• Data families

And, as a bonus, GHC 8.0.1 introduced TypeFamilyDependencies, al-
lowing us to regain a bit of the expressiveness of a FunctionalDepen-
dency on a type class.

We’re using the world “family” a lot. What are they? What’s the differ-
ence? Why are they useful? When should you pick one over the other?

Briefly,

• Type families are a means of computing at the type level.
• Associated types and data families allow you to transmit type infor-
mation to the value-level world.

Multiparameter type classes with functional dependencies are another
way of doing type-level computation - for an in depth comparison, see
“Trade-offs in Type Programming” in this book. For an introduction to
type level programming, see the chapter “Basic Type Level Program-
ming.”

21.1 Type Families

Type families attempt to provide functions at the type level. Let’s review
some of the key details of functions - they take arguments of a certain

348

Family Values 349

type, and return a value of a certain type. Type functions take arguments
of a certain kind and return a type of a certain kind. So we’re promoting
all of our language up a level.

It is somewhat rare for these extensions to be used alone. The examples
in this chapter will have the following extensions:

• DataKinds so we can operate on things like Symbol (type level
strings) and other lifted types (ie 'Truewhich has the kind Bool)

• KindSignatures, which allow you to write kind signatures on type
parameters.

Additionally, a lot of the output will refer to types of kind *, which is the
kind of types that have ordinary runtime values. As an example, Int has
kind *, which is written as Int :: *. GHC is transitioning away from
using this notation, and will soon instead use Type for this. You’d write
Int :: Type.

Because closed type families are themost similar to plain functions, it is
useful to consider them first.

Closed Type Families

A closed type family is defined with the keywords type family, a type
name, a list of arguments, and then where. After the where, you provide
a complete definition of each case.

1 type family PickType a where

2 PickType Int = Char

3 PickType Char = Int

We can use PickType at the type level, so we could write a value-level
function that changes the type associated with a Proxy:

1 pickType :: Proxy a -> Proxy (PickType a)

2 pickType _ = Proxy

Then, we can evaluate this in GHCi.

Family Values 350

1 λ> pickType (Proxy :: Proxy Int)

2 Proxy

3 λ> Data.Typeable.typeOf $ pickType (Proxy :: Proxy Int)

4 Proxy * Char

Note that we need to use Data.Typeable.typeOf to show the type of the
Proxy, since the Show instance prints out "Proxy".

If we look at the kind of PickType, we’ll see that it is rather incomplete.

1 λ> :kind PickType

2 PickType :: * -> *

We accept a type of kind * (or Type), and we return a type with the same
kind. But we only give definitions for Int and Char, and we do so by
pattern matching on those type constructors. What happens if we ask for
a type that we didn’t provide?

1 -- `Int -> Char` is defined

2 λ> :t pickType (Proxy :: Proxy Int)

3 pickType (Proxy :: Proxy Int) :: Proxy Char

4 -- `Char -> Int` is defined

5 λ> :t pickType (Proxy :: Proxy Char)

6 pickType (Proxy :: Proxy Char) :: Proxy Int

7

8 -- But `PickType String` is not defined!

9 λ> :t pickType (Proxy :: Proxy String)

10 pickType (Proxy :: Proxy String) :: Proxy (PickType String)

The result is totally fine as a value - it’s Proxy (PickType String). We
can even show it. But we get a rather odd error if we try to do the typeOf
trick:

Family Values 351

1 λ> pickType (Proxy :: Proxy String)

2 Proxy

3 λ> typeOf $ pickType (Proxy :: Proxy String)

4

5 \<interactive\>:15:1: error:

6 • No instance for (Typeable (PickType String))

7 arising from a use of ‘typeOf’

8 • In the expression: typeOf $ pickType (Proxy :: Proxy String)

9 In an equation for ‘it’:

10 it = typeOf $ pickType (Proxy :: Proxy String)

GHC is complaining about not being able to find a Typeable instance for
the PickType String type. We’re observing a stuck type family. In value-
level Haskell, an undefined value throws a runtime exception. But in
type-level Haskell, an undefined type simply stops evaluating.

So, for this reason, it’s usually good for your closed type families to avoid
accepting arguments of kind * or Type, unless they’re treating them
totally polymorphically. For a polymorphic example, here’s a type family
that computes the ultimate return type of a function type.

1 type family KnowResult a where

2 KnowResult (i -> o) = KnowResult o

3 KnowResult a = a

This type family pattern matches on a function arrow and recurses on
the function arrow. Because we can kind of imagine that the kind Type
has this definition:

1 data Type

2 = Constructor String

3 | Type -> Type

4 | Application Type Type

It’s generally “safe” to patternmatchon the->orApplication construc-
tors, but pattern matching on specific type constructors can get things
Stuck.

A better use for a closed type family would be something like computing
the length of a type level list.

Family Values 352

1 type family Length (xs :: '[k]) :: Nat where

2 Length '[] = 0

3 Length (_ ': rest) = Length rest + 1

Open Type Families

An open type family is defined much like a closed type family, without
the where. Instead, cases are provided separately.

1 type family PickTypeOpen a

2

3 type instance PickTypeOpen Int = Char

4 type instance PickTypeOpen Char = Int

With this formulation, we can at a later module provide a type instance
PickType String that would allow our contrived example to work.

Associated Type Families

An associated type family is an open type family that is associated with a
type class. In order to do anythingwith a type at the value-level, youneed
a type class to bring things back to earth.

The mono-traversable library defines a MonoFunctor class which al-
lows you to map over monomorphic containers like ByteString and
Text with the same function as you would use on polymorphic con-
tainers, like [a]. With an associated type family, we’d write this class
definition.

1 class MonoFunctor o where

2 type Element o :: Type

3 omap :: (Element o -> Element o) -> o -> o

Now, we can write our instances:

Family Values 353

1 instance MonoFunctor ByteString where

2 type Element ByteString = Word8

3 omap = Data.ByteString.map

4

5 instance MonoFunctor Text where

6 type Element Text = Char

7 omap = Data.Text.map

8

9 instance MonoFunctor [a] where

10 type Element [a] = a

11 omap = map

There’s a natural extension: MonoTraversable, which also suggests a
MonoFoldable. But Traversable depends separately on both Foldable
and Functor - there are Foldable types which are not Functor (like
Data.Set). So, which type class should we associate the type family
Elementwith?

We have a few options:

1. Create a new type class that only has the Element associated type
family

2. Create an open type family Element
3. MonoFunctor and MonoFoldable both define their own associated

type, and MonoTraversable requires that they agree
4. Scrap type families altogether and use MultiParamTypeClasses

Indeed, this is the primary reason that you’d want to use an open type
family - if there are multiple type classes that can sensibly use the
type family, without the classes themselves being sensibly arranged in
a hierarchy.

So the definition of MonoFunctor is really like this:

Family Values 354

1 type family Element mono

2

3 class MonoFunctor mono where

4 omap :: (Element mono -> Element mono) -> mono -> mono

5

6 type instance Element ByteString = Word8

7

8 instance MonoFunctor ByteString where

9 omap = Data.ByteString.map

Try and define MonoTraversable using the above three
strategies, and then use the classes in some toy code.

• What has the best error messages?
• What is easiest to implement?
• I claim that the open type family is the best. Are there
advantages to the other formulations?

21.2 Open or Closed Type Families?

The question: “Should I use an open type family or a closed type family?”
has an analog to simpler language features: type classes and sum types.

If you want a closed set, you use a sum type. If you want an open set, you
use a type class. So if you’re familiar with the trade-offs there, the trade-
offs with open/closed type families are easier to evaluate.

A closed set means you can be exhaustive - “every case is handled.” If
you’re pattern matching on a datakind, like type family Foo (x ::
Bool), then you can know that handling Foo 'True and Foo 'False
that you’ve handled all cases. You don’t have to worry that some user is
going to add a case andblow things up (unless they are beingparticularly
tricky with stuckness).

An open set is a way of allowing easy extensibility. So you’re going to
accept something of kind Type or possibly a polymorphic kind variable

Family Values 355

toallowpeople todefine their own types, and their own instancesof these
types. For example, if I want to associate a type with a string, I can write:

1 type family TypeString (sym :: Symbol) :: Type

2

3 type instance TypeString "Int" = Int

4 type instance TypeString "Char" = Char

And that lets me run programs at the type level, that end users can
extend. Much like you can write a type class and end users can extend
your functionality.

21.3 The Bridge Between Worlds

Ultimately, you need to do something at the value level. Which means
youneed to take some type information and translate it to the value level.
This is precisely what type classes do - they aremorally “a function from
a type to a value.” We can write a super basic function, like:

1 typeStringProxy :: Proxy sym -> Proxy (TypeString sm)

2 typeStringProxy _ = Proxy

But this is still not useful without further classes. The Default class
assigns a special value to any type, and we could do something like this:

1 typeStringDefault

2 :: forall sm. Default (TypeString sm)

3 => Proxy sm -> TypeString sm

4 typeStringDefault _ = def @(TypeString sm)

Since associating a type class and an open type family is so common, it’s
almost always better to use an associated type unless you know that the
type family is going to be shared across multiple type classes.

“So howdo you associate a closed type familywith values?” That’s a great
question. We can do the same trick with Proxy functions:

Family Values 356

1 type family Closed (a :: Bool) where

2 Closed 'True = Int

3 Closed 'False = Char

4

5 closed :: Proxy b -> Proxy (Closed b)

6 closed _ = Proxy

But, until we know what b is, we can’t figure out what Closed b is. To
pattern match on a type, we need a type class.

1 class RunClosed (b :: Bool) where

2 runClosed :: Proxy b -> Closed b

3

4 instance RunClosed 'True where

5 runClosed _ = 3

6

7 instance RunClosed 'False where

8 runClosed _ = 'a'

This is an interesting turn of events. We have a closed type family, but we
need an open type class in order to do anything useful with it, at the value
level. We could collapse these two things together this with the following
class:

1 class RunClosed (b :: Bool) where

2 type Closed b :: Type

3 runClosed :: Proxy b -> Closed b

4

5 instance RunClosed 'True where

6 type Closed 'True = Int

7 runClosed _ = 3

8

9 instance RunClosed 'False where

10 type Closed 'False = Char

11 runClosed _ = 'a'

Family Values 357

But often you want to do more interesting things with types, and closed
type families allow you to split out those interesting intermediate com-
putations into separate reusable units.

21.4 Data Families

A data family is like a type family, but instead of allowing you to refer to
any type, you have to specify the constructors inline. To take a simplified
example from the persistent database library,

1 data family Key a

2

3 newtype instance Key User

4 = UserKey { unUserKey :: UUID }

5

6 newtype instance Key Organization

7 = OrganizationKey { unOrganizationKey :: UUID }

An advantage of this is that, since you specify the constructors, you
can know the type of Key a by knowing the constructor in use - the
value specifies the type. OrganizationKey :: UUID -> Key Organi-
zation. Likewise, because I can only have a single instance of Key User,
I know that I can pattern match on the UserKey constructor.

It looks a lot like an “open type family,” and in fact is completely anal-
ogous. But we don’t call them “open data families,” even though that’s
an appropriate name for it. It should make you wonder - is there such a
thing as a closed data family?

The answer is “yes”, but we call them GADTs instead.

The nice thing about an “open data family” is that you can learn about
types by inspecting values - by knowing a value (like OrganizationKey
uuid), I canwork ‘backwards’ and learn that I have aKey Organization.
But, I can’t write a case expression over all Key a - it’s open! - and case
only works on closed things. So this code does not work:

Family Values 358

1 whatKey :: Key a -> Maybe UUID

2 whatKey k = case k of

3 UserKey uuid -> Just uuid

4 OrganizationKey uuid -> Just uuid

5 _ -> Nothing

Indeed, we need a type class to allow us to write get :: Key a ->
SqlPersistT m (Maybe a).

A GADT - as a closed data family - allows us to work from a value to a type,
and since it is exhaustive, we can write case expressions on them.

1 data Key a where

2 UserKey

3 :: { unUserKey :: UUID }

4 -> Key User

5 OrganizationKey

6 :: { unOrganizationKey :: UUID }

7 -> Key Organization

If I have this structure, then I can actually write getwithout a type class.

1 get :: Key a -> SqlPersistT IO (Maybe a)

2 get k = case k of

3 UserKey uuid -> do

4 [userName, userAge] <-

5 rawSql

6 "SELECT name, age FROM users WHERE id = ?"

7 [toPersistValue uuid]

8 pure User {..}

9 OrganizationKey uuid -> do

10 [organizationName, organizationPrimaryUser] <-

11 rawSql (Text.unlines

12 ["SELECT name, primary user"

13 , "FROM organizations"

14 , "WHERE id = ?"

15])

Family Values 359

16 [toPersistValue uuid]

17 pure Organization {..}

A GADT is ‘basically’ a closed type family that gives you constructor tags
for applying that type family. If we look at Closed, we can inline this:

1 type family ClosedTy (b :: Bool) where

2 ClosedTy True = Int

3 ClosedTy False = Char

4

5 data ClosedData (a :: Type) where

6 ClosedData :: Proxy b -> ClosedData (ClosedTy b)

7

8 -- inlining:

9 data Closed (a :: Type) where

10 ClosedTrue :: Proxy 'True -> Closed Int

11 ClosedFalse :: Proxy 'False -> Closed Char

When we case on a Closed value, we get:

1 runClosed :: Closed a -> a

2 runClosed closed =

3 case closed of

4 ClosedTrue (Proxy :: Proxy 'True) -> 3

5 ClosedFalse (Proxy :: Proxy 'False) -> 'a'

At this point, that we are dealing with an “input” of a True or False
almost seems spurious. The Proxy’s type is duplicated in the name of
the constructor, and we can’t even polymorphically construct a Closed
from an unknown Proxy (b :: Bool)without a type class.

Family Values 360

1 class ToClosed a b | a -> b where

2 close :: Proxy a -> Closed b

3

4 instance ToClosed 'True Int where

5 close _ = ClosedTrue

6

7 instance ToClosed 'False Char where

8 close _ = ClosedFalse

There’s a lot of juggling between type classes, type families, data families,
and GADTs when you are doing type level programming in Haskell.

21.5 Conclusion

• Open type family + type class = extensible, open programming, but
no exhaustivity.

• Closed type family + GADT + functions = exhaustive handling of
types, but not extensible

• An open type family + a GADT isn’t much fun.
• A closed type family + a type class isn’t much fun

22. Trade-offs in Type
Programming

Haskell supports two mostly equivalent means of programming at the
type-level. The first uses type classes with multiple parameters and
functional dependencies to relate them. The second uses type families.

Even more confusing, Haskell gives you two options for dealing with
related types in type classes: functional dependencies and associated
types.

This chapter will use ideas and concepts presented in the “Basic Type
Level Programming” chapter, so if anythinghere is confusing, check that
first.

22.1 MPTCs

MPTC is an initialism for MultiParamTypeClasses. This language ex-
tension allows you to have type classes with more than one parameter.
We can use it to write a generic Cast class to allow conversion between
datatypes.

1 class Cast from to where

2 cast :: from -> to

Unfortunately, it’s not really as useful as you might want it to be. You’d
want to define a generic instance for types that are the same:

1 instance Cast a a where

2 cast a = a

GHC immediately complains that we need the FlexibleInstances lan-
guage extension, after which GHC is happy. We can then write a few
instances for common types:

361

Trade-offs in Type Programming 362

1 instance Cast Char Int where

2 cast c = Data.Char.ord c

3

4 instance Cast Int Double where

5 cast i = fromRational (toRational i)

6

7 instance Cast Char Double where

8 cast c = cast (cast c :: Int)

As a natural pattern matcher, you note that the instance Cast Char
Double should be generalizable. You put on your PolymorphismHat and
write the following code:

1 instance (Cast from middle, Cast middle to) => Cast from to where

2 cast from = cast (cast from :: middle)

This gives us a bunch of errors. We can get GHC to stop complaining
by enabling the extensions blindly (UndecidableInstances and then
AllowAmbiguousTypes). GHC whines about No instance for Cast
from middle0, and our Advanced Haskeller Intuition recognizes that
errors like this usually means we need to turn on ScopedTypeVari-
ables. Then we get a sea of entirely new errors - overlapping instance
declarations?! What is going on?!

Well, this gets into how GHC does instance resolution for type classes.
Type classes have the following shape:

1 instance (Context) => ClassName (Instance Head) where

2 (implementation)

So when GHC sees a requirement for a type class instance, it looks at
the instance head first. As soon as it finds an instance match, it stops.
And then it checks the context. So our above instances really look like the
following:

Trade-offs in Type Programming 363

1 instance Cast a a

2 instance Cast Char Int

3 instance Cast Int Double

4 instance Cast Char Double

5 instance Cast from to

Turns out, instance Cast from to overlaps with everything else be-
cause it can unify with any of the above! Then GHC gets upset about the
overlapping instances.

We can “fix” this by adding an {-# OVERLAPPABLE #-} pragma to that
instance.

1 instance

2 {-# OVERLAPPABLE #-}

3 (Cast from middle, Cast middle to)

4 => Cast from to

5 where

6 cast from = cast (cast from :: middle)

Now, finally, GHC does not complain. We delete our ‘manual’ instance of
Cast Char Double, and then we go to use it:

1 blargh :: Char -> Double

2 blargh = cast

GHC is not happy about this. GHC is never happy about this.

Trade-offs in Type Programming 364

1 /examples/src/Fundeps.hs:27:10: error:

2 • Overlapping instances for Cast middle0 Double

3 arising from a use of ‘cast’

4 Matching instances:

5 instance [overlappable] (Cast from middle, Cast middle to) =>

6 Cast from to

7 -- Defined at src/Fundeps.hs:21:3

8 instance Cast a a -- Defined at src/Fundeps.hs:10:10

9 instance Cast Int Double -- Defined at src/Fundeps.hs:16:10

10 (The choice depends on the instantiation of ‘middle0’

11 To pick the first instance above, use IncoherentInstances

12 when compiling the other instance declarations)

13 • In the expression: cast

14 In an equation for ‘blargh’: blargh = cast

15 |

16 27 | blargh = cast

17 | ^^^^

Now

GHC is asking you to enable IncoherentInstances in the module that
contains the instancedeclaration! This is an extension you should not en-
able. Unlike FlexibleInstances and UndecidableInstances (which
are both almost always safe), this one can cause dangerous and difficult
to find bugs. There is basically no good reason to ever use it.

Multiparameter type classes aren’t all that useful on their own. It’s diffi-
cult to provide an API that has nice type inference properties. Note that
we evenneeded towrite type annotations to suggest the right return type
for cast in cast (cast a :: Int). Otherwise, we’d get an ambiguous
error there, as GHC needs to be able to pick the right type for every call. If
you’re writing a feature and think “Ah, I need a MultiParamTypeClass,”
but you don’t want functional dependencies, then you should probably
pick a different avenue.

Fortunately, we have a bunch of options to make this better.

22.2 MPTCs + Fundeps

“Fundeps” is an abbreviation for FunctionalDependencies. This style
of type-level programming is based on a relational or logical model of

Trade-offs in Type Programming 365

computation. If you’re familiarwithProlog, it’s like that. If you’re familiar
with SQL, it’s like computed/derived columns.

Logically speaking, a functional dependency forms an implication. Re-
lationally speaking, we have a functional dependency from column A
to column B if the value of column A uniquely determines the value of
column B.

The syntax in Haskell for this is:

1 class ClassName a b | a -> b

We can read the above declaration as:

Create a new type class named ClassName. It has two type
variables, a and b. The type a uniquely determines the type
b.

We can put multiple type variables on either side of the arrow, and have
multiple arrows.

1 class Invert a b | a -> b, b -> a

2

3 class Multiply a b c | a b -> c

We’d read these as:

The class Invert has two type variables a and b. a uniquely
determines b and b uniquely determines a.

The class Multiply has three type variables. The two vari-
ables a and b uniquely determine the third, c.

This is all a bit abstract, so let’s write a type level function that tells us
the cardinality of a given type. Cardinality refers to howmany values for
a type exist.

Trade-offs in Type Programming 366

1 class Cardinality (typ :: *) (result :: Nat) | typ -> result

This instance declaration requires the KindSignatures language ex-
tension, and the Nat type comes from GHC.TypeLits. Let’s write some
simple instances:

1 instance Cardinality Void 0

2 instance Cardinality () 1

3 instance Cardinality Bool 2

The Void datatype has 0 values, so it has a cardinality of 0. () (unit) has a
singlemember, so it has cardinality 1. Bool has twomembers, True and
False, so it has cardinality 2.

Let’s consider a slightly more complicated example: Maybe. We learned
in the “Basic” chapter that Maybe has cardinality a + 1, where a is the
cardinality of the type contained in Maybe a.

1 instance

2 (Cardinality a ac)

3 => Cardinality (Maybe a) (ac + 1)

Except, oops, this fails. We get the GHC error “Illegal type synonym
family application”. Thismeans that we can’t use type families (like +) in
type class instances. Let’s work around this by defining Add on our own
Natural type. We’ll use DataKinds and use the ol’ “successor” model.

1 data Nat = Z | S Nat

2

3 type Zero = Z

4 type One = S Z

5 type Two = S One

6 type Three = S Two

7 type Four = S Three

Now, we’ll define our class.

Trade-offs in Type Programming 367

1 class Add x y result

When defining functions, we take our inputs and then make them
uniquely determine our “output” type. Convention dictates that the
result type is the last one, but there’s nothing requiring this to be true.

1 class Add x y result | x y -> result

Now,wewrite “instances” to “patternmatch”on the types. Let’s startwith
our Z instances. If we add Zero to anything, we get Zero back.

1 instance Add Zero y y

2 instance Add x Zero x

Oops, thisblowsup.Turnsout,GHCwill infer that the types ina typeclass
must be of kind * (or kind Type). We can solve this in a few ways:

• Enable PolyKinds, which will infer polymorphic kind variables
unless * (or Type) can be inferred.

• Enable KindSignatures, and provide explicit signatures.

PolyKinds is awfully convenient, but can lead to somedevastatingly bad
error messages when kinds don’t match. Don’t use it unless you really
need kind polymorphism. Instead, we’ll toss some kind signatures on:

1 class Add (x :: Nat) (y :: Nat) (result :: Nat) | x y -> result

2

3 instance Add Zero y y

4 instance Add x Zero x

This works! Note that something kinda weird is going on here. We’ve
defined two “equations” of Add by setting up relationships. In value-level
terms, this would look like:

Trade-offs in Type Programming 368

1 add :: Nat -> Nat -> Nat

2 add Z y = y

3 add x Z = x

But we don’t have any equals signs here. Instead, we’ve declared that the
third type variable is our result. Let’s proceed to the recursive case:

1 instance (Add a b r) => Add (S a) b (S r)

OK. OK. This is neat. First, we require that we know the answer to Add a
b r, where r is the result of adding a and b. Then, if we’re adding S a to
b, the answer is S r. Let’s test this out. To test out MPTCs+FunDeps, we
create a Proxy that contains the “result” type, and then we ask GHCi for
the type of the value. GHCi will evaluate the functional dependencies as
far as it can.

1 λ> :set -XFlexibleContexts

2 λ> five = Proxy :: (Add Three Two r) => Proxy r

3 λ> five

4 Proxy

5 λ> :type five

6 five :: Proxy ('S ('S ('S ('S ('S Z)))))

That’s one, two, three, four, five Ss - it works!

Alright, let’s get back to business and write that Cardinality instance for
Maybe.

1 instance (Cardinality a ac, Add ac One r)

2 => Cardinality (Maybe a) r

GHC is happy, so let’s test it out.

1 maybeBool :: Cardinality (Maybe Bool) r => Proxy r

2 maybeBool = Proxy

Trade-offs in Type Programming 369

GHC is again unhappy, suggesting thatwe enable MonoLocalBinds. This
extension is implied by both GADTs and TypeFamilies, so don’t be
surprised if you don’t see it much in the wild - those are both common
extensions to have when doing type level programming. We can enable
it, and then inspect the type in ghci:

1 λ> :t maybeBool

2 maybeBool :: Proxy ('S ('S ('S 'Z)))

Cool, that works!

As an exercise, write the instances of Cardinality (a, b)
r and Cardinality (Either a b) r.

Running Backwards

One thing that’s neat about the relational model of programming is that
you can run functions backwards. Sometimes. Depending on how the
class is defined. Let’s take Add that we defined above. If we know one of
the inputs and the answer, then we can determine the other input:

1 whatPlusThreeIsFive

2 :: Add res (S (S (S Z))) (S (S (S (S (S Z)))))

3 => Proxy res

4 whatPlusThreeIsFive = Proxy

If we evaluate this, we get:

1 λ> :t whatPlusThreeIsFive

2 whatPlusThreeIsFive :: Proxy ('S ('S 'Z))

Which is great. But if we flip the argument order, then it doesn’t work
anymore.

Trade-offs in Type Programming 370

1 whatPlusThreeIsFive'

2 :: Add (S (S (S Z))) res (S (S (S (S (S Z))))) =>

3 Proxy res

4 whatPlusThreeIsFive' = Proxy

5

6 λ> :t whatPlusThreeIsFive'

7 whatPlusThreeIsFive'

8 :: Add ('S ('S ('S 'Z))) res ('S ('S ('S ('S ('S 'Z))))) =>

9 Proxy res

So this can be somewhat fragile.

22.3 Associated Types

Unless you’re experienced with Prolog, writing code using functional
dependencies probably feels awkward. Using and testing code in that
style is awkward, as well. We can replace functional dependencies with
associated types. The algorithm to do so is:

1. Delete the result type parameter and the functional dependency.
2. Add an associated type that accepts the left-hand-side of the -> and

has the same kind as the stuff on the right.

Here’s Addwritten in this style:

1 class Add (x :: Nat) (y :: Nat) where

2 type Result x y :: Nat

3

4 instance Add x Z where

5 type Result x Z = x

6

7 instance Add Z y where

8 type Result Z y = y

9

10 instance (Add a b) => Add (S a) b where

11 type Result (S a) b = S (Result a b)

Trade-offs in Type Programming 371

Except, well, this doesn’t compile. GHC gives us a conflicting instance
declaration:

1 error:

2 Conflicting family instance declarations:

3 Result x 'Z = x

4 -- Defined at Fundeps.hs:61:8

5 Result ('S a) b = 'S (Result a b)

6 -- Defined at Fundeps.hs:67:8

7 |

8 61 | type Result x Z = x

9 | ^^^^^^

Turns out, we have a redundant case. We can delete the Add x Z
instance. This fixes the problem.

22.4 Comparisons

Alright, so we have four ways of writing type-level computations:

1. Closed TypeFamilies
2. Open TypeFamilies
3. MultiParamTypeClasses + FunctionalDependencies
4. Type Class with an Associated Type

The trade-offs are pretty big, so let’s get into it.

Value Associations

If you want to have value-level correspondence with your type-level
computation, then you need a type class. This is going to get into the
theory of the Lambda Cube a bit, which is a fun and somewhat mystical
sounding bit of computer science theory.

Basically, you start off with the simply typed lambda calculus. The core
idea is the lambda, which has a function type. This function has the
shape Value -> Value. You can extend the lambda calculus in three
distinct ways, mostly by adding new kinds of functions:

Trade-offs in Type Programming 372

1. Type -> Type
2. Value -> Type
3. Type -> Value

If we allow functions from types to types, that gives us type-level pro-
gramming and type constructors. If we allow functions from values to
types, that gives us dependent types. If we allow functions from types to
values, that gives us parametric polymorphism and type classes.

In a real sense, type classes are a means of dropping information from
the type sky to the value earth. To get a feel for this, let’s look at the
Monoid type class.

1 class (Semigroup a) => Monoid a where

2 mempty :: a

The fully qualified type of mempty is something like:

1 λ> :t mempty

2 mempty :: forall a. Monoid a => a

forall a introduces an implicit “type variable argument.” And Monoid
a => introduces an implicit argument for a Monoid dictionary for the
type a. GHC will figure these things out as best it can. But, in a different
world, wherewe had to apply all of the typesmanually, we’d alwayswrite:

1 mempty @(Sum Int)

We’re passing a type level argument to a function and receiving a value
back. That’s the intuition for why a type class is a function from type to
value.

If you buy that argument, it becomes clear why you want canonical in-
stances.A typeclasswithnon-canonical instances isno longera function
- it is indeterminate.

Trade-offs in Type Programming 373

1 instance Semigroup Int where (<>) = (+)

2 instance Monoid Int where mempty = 0

3

4 instance Semigroup Int where (<>) = (*)

5 instance Monoid Int where mempty = 1

Somepeoplewant this. Apparently you can get behavior like this in Scala.
I don’twant it. I like pure functions, and addingnon-determinism to type
class resolution makes a difficult process evenmore confusing.

Now that we know the theory, let’s dig into an example. Let’s say you’ve
defined the classic inductive natural for type level computation:

1 data Nat = Z | S Nat

You can define addition, multiplication, and other operations on the
DataKinds lifted Nat kind. But you can’t take that type information and
turn it into a value without a type class. We can write a type class that
demotes our type-computed number like this:

1 class TypeToValue (a :: Nat) where

2 typeToValue :: Proxy a -> Nat

We’ve got some name overloading going on here. Note that (a :: Nat)
means “a type variableawith thekindNat”, butProxy a -> Natmeans
“A function from a value of type Proxy a to a value of type Nat.” So let’s
define the instances:

1 instance TypeToValue 'Z where

2 typeToValue Proxy =

3 Z

4

5 instance TypeToValue n => TypeToValue (S n) where

6 typeToValue (Proxy :: Proxy (S n)) =

7 S (typeToValue (Proxy :: Proxy n))

Trade-offs in Type Programming 374

Defaulting

Associated types are the only form that permit default instances. This is
a type class Record that carries an associated type Fields that returns
a list of the type of fields that the record contains.

1 class Record typ where

2 type Fields typ :: [Type]

3 type Fields typ = GFields (Rep typ)

GFields is a type family that computesbasedon theGeneric typeclass’s
Rep associated type.

1 type family GFields rep where

2 GFields (D1 _ (C1 _ xs)) = EnumerateTypes xs

3

4 type family EnumerateTypes rep where

5 EnumerateTypes (a :*: b) =

6 EnumerateTypes a ++ EnumerateTypes b

7 EnumerateTypes (S1 _ (Rec0 a)) =

8 '[a]

This allows us to omit the definition if the default is acceptable. It also
allows us to override it.

1 data User = User { name :: String }

2 deriving stock Generic

3

4 -- can use default since is Generic

5 instance Record User

6

7 data Dog = Dog { name :: String }

8

9 -- does not need the Generic instance, can provide directly

10 instance Record Dog where

11 type Fields Dog = '[String]

Trade-offs in Type Programming 375

Closed type families require you to specify all the cases at once, so
defaulting doesn’t make sense.

Open type families are strict about possible overlaps.

1 type family Foo a

2

3 type instance Foo a = Int

With these two lines, you can no longer implement any other instances
without getting a conflicting instance declaration. Even if you move the
type family into a type class and associated type, GHC will complain
about the messages. So setting a default is only possible on the class
definition itself.

This is useful if you have a convention, but want the ability to break from
that conventionat times.Consideradatabaseaccess class that assumesa
UUID keywith a phantom type parameter for the record you’re retrieving.

1 class GetById record where

2 getById :: UUID record -> Database (Maybe record)

However, you run into a problem: you want to use this on a type that
doesn’t have a UUID all on it’s own. It has a different sort of primary key.
The modification that preserves backwards compatibility is to add an
associated type with a default.

1 class GetById record where

2 type UniqueId record :: Type

3 type UniqueId record = UUID record

4

5 getById :: UniqueId record -> Database (Maybe record)

No existing instances need to change. But you’re now able to define your
new instance:

Trade-offs in Type Programming 376

1 instance GetById WeirdType where

2 type UniqueId WierdType = (UUID User, UUID Donut)

3

4 getById (userId, donutId) = ...

Open vs Closed

Closed type families are the only remotely closed option, so if you want
exhaustiveness, then these are your best choice. However, the closed
aspect of type families has less to do with “exhaustiveness” andmore to
dowith “nooneelse canadda case.” Considerhowweget exhaustiveness
in value-level programming - a case expression. But there is no such
thing in type level programming.

In value level programming, if you miss a case, then you get a run-time
error. But in type level programming, if youmiss a case, you get a “stuck
type family.” A stuck type family does not have an equation that it can
use to proceed, and will propagate until some other type error happens.
Stuck type families can cause all sorts of problems.

Bidirectional Dependencies

Above, I mentioned that FunctionalDependencies allow you to run
type-level computation backwards. We aren’t describing a linear flow of
information - we’re describing a set of relationships. So if I know two of
three variables, I can solve for the third.

TheextensionTypeFamilyDependenciesprovides this for type families.
To use it, we write:

1 {-# language TypeFamilyDependencies #-}

2

3 type family Foo x = r | r -> x

This open type family Foo is now saying that the result type can inform
the input. So if I know the result of Foo, then I can infer the input.

This ends up being pretty limiting. Suppose you write:

Trade-offs in Type Programming 377

1 type family PrimaryKey record = typ | typ -> record

This requires that the typ is uniquely given for a record. I can’t use UUID
or Int64 for multiple different types. As a result, this open type family
isn’t all that useful - I need to define a separate datatype for every single
type I want to put in the database.

The shortcut is to use a data family, which combine the type-family
relationship with a data constructor declaration.

1 data family PrimaryKey record

2

3 data instance PrimaryKey User = UserKey UUID

4 data instance PrimaryKey Dog = DogKey UUID

5

6 -- instead of,

7 type family PrimaryKey record = typ | typ -> record

8

9 newtype UserKey = UserKey UUID

10 type instance PrimaryKey User = UserKey

11

12 newtype DogKey = DogKey UUID

13 type instance PrimaryKey Dog = DogKey

This sort of dependency is much more useful on closed type families.
Consider Not - an operation that flips a Bool type.

1 type family Not (a :: Bool) :: Bool where

2 Not 'True = 'False

3 Not 'False = 'True

As it happens, if we know Not a ∼ True, then GHC can know that a ∼
False. With TypeFamilyDependencies enabled, we can write this:

Trade-offs in Type Programming 378

1 type family Not (a :: Bool) = (r :: Bool) | r -> a where

2 Not 'True = 'False

3 Not 'False = 'True

Thismostly ends up being useful in providing good type inference.Many
things are not bijective. For example, addition is not.

1 type family Add (a :: Nat) (b :: Nat) = (r :: Nat) | r -> a b

This definition cannot be satisfied. The reason is thatwe can’t know from
4whether it was 4 + 0, or 2 + 2, or 3 + 1.

23. Case Study: Prairie
Haskell records are Kind Of Bad. It’s a known thing, and it’s awfully
unfortunate. By default, a record definition is rather underpowered.

Haskell record syntax looks like this:

1 data User = User

2 { name :: String

3 , age :: Int

4 }

Defining a datatype with curly braces defines “field labels.” Field labels
can be used in one of three ways:

1 -- 1. Record Accessor Function

2 getUserName :: User -> String

3 getUserName user = name user

4

5 -- 2. Record Creation Syntax

6 example1 :: User

7 example1 = User { name = "Alice", age = 30 }

8

9 -- 3. Record Update Syntax

10 example2 :: User

11 example2 = example1 { name = "Bob" }

Unfortunately, the record creation and update syntax is not “first class.”
You can’t pass record labels around.

1 nope field record =

2 record { field = "Hello, world!" } Also,

379

Case Study: Prairie 380

record fields are monomorphic - you can’t define two fields in the same
module with the same label.

1 data User = User { name :: String }

2 data Dog = Dog { name :: String } You

can get around this with DuplicateRecordFields, but that extension
(as of this writing) has awful UX. You need to insert type signatures in
unpredictable places to use the fields, or import everything qualified.
Unfortunately, in GHC 9.4, the situation has been made much worse
- you will receive a warning when doing a record update if duplicate
names are in scope¹.

Inspired by the EntityField² type in persistent, I decided to fix the
problem. This chapter is written in a “stream of thought” style, trying
out a few dead ends and poor choices before settling on the good stuff.
Learning is about making mistakes - here are some of mine!

23.1 Problem Statement:

I want to reify the fields on a Haskell record into first-class entities. Let’s
review the status quo:

1 data User = User

2 { userName :: Text

3 , userAge :: Int

4 , userId :: Int

5 }

This creates “record fields,” which are sorta special, but also sorta not.
We’re able to use them as accessor functions:

¹https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/duplicate_record_fields.html
²https://www.stackage.org/haddock/lts-16.17/persistent-2.10.5.2/Database-Persist-Class.html#t:

EntityField

https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/duplicate_record_fields.html
https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/duplicate_record_fields.html
https://www.stackage.org/haddock/lts-16.17/persistent-2.10.5.2/Database-Persist-Class.html#t:EntityField
https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/duplicate_record_fields.html
https://www.stackage.org/haddock/lts-16.17/persistent-2.10.5.2/Database-Persist-Class.html#t:EntityField
https://www.stackage.org/haddock/lts-16.17/persistent-2.10.5.2/Database-Persist-Class.html#t:EntityField

Case Study: Prairie 381

1 >>> userName (User "Bob" 40 3)

2 "Bob"

We’re able to use them in record creation:

1 >>> userId User { userName = "Foo", userAge = 32, userId = 1 }

2 1

and also in record update:

1 >>> let someUser = User ...

2 >>> userName someUser { userName = "blargh" }

3 "blargh"

But this is all quite monomorphic. There’s no “higher order record field”
syntax. I can’t write:

1 alas :: RecordField -> Record -> Record

2 alas someField someRecord =

3 someRecord { someField = Nothing }

Ultimately, I want to be able to write the following types and functions:

1 data Update record

2

3 instance ToJSON (Update record)

4 instance FromJSON (Update record)

5

6 update :: [Update record] -> record -> record

The JSON instances are going to tricky.

So, how can we get there?

Case Study: Prairie 382

23.2 Prior Art

EntityField

The persistent database library has something that is close to what I
want. On the PersistEntity class, there’s a data family called Enti-
tyFieldwhich has the following shape:

1 class PersistEntity entity where

2 data EntityField entity :: * -> *

3

4 fieldLens :: EntityField entity typ -> Lens' entity typ

Instances are supposed to be a GADT:

1 instance PersistEntity User where

2 data EntityField User a where

3 UserName :: EntityField User Text

4 UserAge :: EntityField User Int

5 UserId :: EntityField User Int

6

7 fieldLens fld = case fld of

8 UserName ->

9 lens userName (\u s -> u { userName = s })

10 UserAge ->

11 ...

12 UserId ->

13 ...

This approach is nice because we can exhaustively cover all the fields of
a record. We even get fieldLens, which lets us turn the EntityField
value into a getter/setter for the record itself.

This is the approach I’mmost interested in, because I’ve used it a lot and
it works well. However, the persistent codebase is pretty old. There
may be a better approach available now.

Case Study: Prairie 383

Generics

GHC.Generics can be used to collect a list of symbols corresponding to
the field names of a record.

Lenses

The Control.Lens.mkFields TemplateHaskell function gives us the
following:

1 mkFields ''User

2 -- =====>

3 class HasName u s | u -> s where

4 name :: Lens' u s

5

6 instance HasName User Text where

7 name :: Lens' User Text

8 name = lens userName (\u s -> u { userName = s })

9

10 class HasAge u s | u -> s where

11 age :: Lens' u s

12

13 instance HasAge User Int where

14 age = ...

15

16 -- etc, you get it

However, age in this is “just” a lens. We can use age to set or view the
userAge in a user, but it’s not a “field” necessarily.

generic-lens generalizes the above pattern to (roughly speaking):

Case Study: Prairie 384

1 deriving stock instance Generic User

2

3 class HasField sym s t a b where

4 field :: Lens s t a b

5

6 -- the following are automatically inferred:

7 instance HasField "userName" User User Text Text where

8 field = lens userName (\u n -> u { userName = n })

9

10 instance HasField "userAge" User User Int Int where ...

11 instance HasField "userId" User User Int Int where ...

23.3 The GADT Approach

1 class Record a where

2 data Field a :: Type -> Type

3

4 fieldLens :: Field a r -> Lens' a r

5

6 instance Record User where

7 data Field User a where

8 UserName :: Field User Text

9 UserId :: Field User Int

10 UserAge :: Field User Int

11

12 recordFieldLens rf =

13 case rf of

14 UserName -> lens userName (\u n -> u { userName = n })

15 UserId -> lens userId (\u n -> u { userId = n })

16 UserAge -> lens userAge (\u n -> u { userAge = n })

This is easy enough. Working with the GADT type is a bit tricky, because
we can’t “just” derive a lot of stuff we might want to. Eq and Show derive
how youmight expect:

Case Study: Prairie 385

1 deriving stock instance Show (Field User a)

2 deriving stock instance Eq (Field User a)

3 deriving stock instance Ord (Field User a)

However, Eq works a bit odd. We can’t actually write UserName ==
UserId because types don’t match. But we can write UserAge ==
UserId, which returns False. Likewise, we can’t have a bare [Field
User a] that has all the user fields - it can only contain user fields that
have the same field type.

Show is easy because it destroys information. ToJSON is similarly easy:

1 instance ToJSON (Field User a) where

2 toJSON = toJSON . show

Parsing raw data into a Field is going to be a challenge. Let’s start with
the naive approach:

1 instance FromJSON (Field User a) where

2 parseJSON = withText "Field<User>" $ \txt ->

3 case txt of

4 "UserName" ->

5 pure UserName

6 "UserId" ->

7 pure UserId

8 "UserAge" ->

9 pure UserAge

10 _ -> fail

11 $ "Couldn't parse Field<User>, got: "

12 <> Text.unpack txt

This fails with a type error.

Case Study: Prairie 386

1 /home/matt/Projects/recupd/src/Record/GADTField.hs:52:25-35: error:

2 • Couldn't match type ‘Int’ with ‘Text’

3 Expected type: aeson-1.5.4.0:Data.Aeson.Types.Internal.Parser

4 (Field User Text)

5 Actual type: aeson-1.5.4.0:Data.Aeson.Types.Internal.Parser

6 (Field User Int)

7 • In the expression: pure UserId

8 In a case alternative: "UserId" -> pure UserId

9 In the expression:

10 case txt of

11 "UserName" -> pure UserName

12 "UserId" -> pure UserId

13 "UserAge" -> pure UserAge

14 _ -> fail

15 $ "Couldn't parse Field<User>, got: "

16 <> Text.unpack txt

17 |

18 52 | "UserId" -> pure UserId

19 | ^^^^^^^^^^^

20 /home/matt/Projects/recupd/src/Record/GADTField.hs:53:26-37: error:

21 • Couldn't match type ‘Int’ with ‘Text’

22 Expected type: aeson-1.5.4.0:Data.Aeson.Types.Internal.Parser

23 (Field User Text)

24 Actual type: aeson-1.5.4.0:Data.Aeson.Types.Internal.Parser

25 (Field User Int)

26 • In the expression: pure UserAge

27 In a case alternative: "UserAge" -> pure UserAge

28 In the expression:

29 case txt of

30 "UserName" -> pure UserName

31 "UserId" -> pure UserId

32 "UserAge" -> pure UserAge

33 _ -> fail

34 $ "Couldn't parse Field<User>, got: "

35 <> Text.unpack txt

36 |

37 53 | "UserAge" -> pure UserAge

Case Study: Prairie 387

38 | ^^^^^^^^^^^^

All the branches in a case expression must evaluate to the same type.
So.Wecan’t have onebranch returning aUserAge :: Field User Int
and another returning UserName :: Field User Text. What if we try
to monomorphize?

1 instance FromJSON (Field User Int) where

2 parseJSON = withText "Field<User>" $ \txt ->

3 case txt of

4 "UserId" -> pure UserId

5 "UserAge" -> pure UserAge

6 _ -> fail

7 $ "Couldn't parse Field<User>, got: "

8 <> Text.unpack txt

9

10 instance FromJSON (Field User Text) where

11 parseJSON = withText "Field<User>" $ \txt ->

12 case txt of

13 "UserName" -> pure UserName

14 _ -> fail

15 $ "Couldn't parse Field<User>, got: "

16 <> Text.unpack txt

This works. But man is it kinda gross - we have to have a separate
instance for every field type in the record. And it’s not particularly useful.
We can’t parse an input string into any field - we have to know the type
ahead of time.

So we can introduce an existential wrapper that hides the field type:

1 data SomeField rec where

2 SomeField :: Field rec a -> SomeField rec

This lets us write a good FromJSON instance:

Case Study: Prairie 388

1 instance FromJSON (SomeField User) where

2 parseJSON = withText "SomeField<User>" $ \txt ->

3 case txt of

4 "UserName" -> pure $ SomeField UserName

5 "UserId" -> pure $ SomeField UserId

6 "UserAge" -> pure $ SomeField UserAge

7 _ -> fail

8 $ "Couldn't parse SomeFieldUser, got: "

9 <> Text.unpack txt

We can even have lists of these:

1 allFields :: [SomeField User]

2 allFields = [SomeField UserName, SomeField UserAge, SomeField UserId]

Which can be encoded and decoded:

1 instance ToJSON (SomeField User) where

2 toJSON (SomeField f) = toJSON f

3

4 roundTripAllFields =

5 decode (encode allFields) == Just allFields

… Except, we don’t have an instance of Eq (SomeField User). Let’s
write it.

1 instance Eq (SomeField User) where

2 SomeField UserName == SomeField UserName = True

3 SomeField UserAge == SomeField UserAge = True

4 SomeField UserId == SomeField UserId = True

5 _ == _ = False

Now roundTrpAllFields evaluates to True.

OK, so we can serialize the fields of a record. Let’s write a type that
contains a value of the record field, too.

Case Study: Prairie 389

1 data UpdateRecord rec where

2 SetField :: Field rec a -> a -> UpdateRecord rec

Now, we can write our updateRecord function!

1 updateRecord :: Record rec => [UpdateRecord rec] -> rec -> rec

2 updateRecord updates original =

3 foldr

4 (\(SetField field newValue) ->

5 set (recordFieldLens field) newValue)

6 original

7 updates

But that’s not enough. We need to be able to serialize and deserialize
them. This is where things become Tricky. Here’s a naive first attempt:

1 instance ToJSON (UpdateRecord User) where

2 toJSON (SetField recField newVal) =

3 object

4 ["field" .= recField

5 , "value" .= newVal

6]

GHC won’t accept this.

1 /home/matt/Projects/recupd/src/Record/GADTField.hs:92:15-31: error:

2 • No instance for (ToJSON a) arising from a use of ‘.=’

3 Possible fix:

4 add (ToJSON a) to the context of the data constructor ‘SetField’

5 • In the expression: "value" .= newVal

6 In the first argument of ‘object’, namely

7 ‘["field" .= recField, "value" .= newVal]’

8 In the expression: object ["field" .= recField, "value" .= newVal]

9 |

10 92 | , "value" .= newVal

11 |

Case Study: Prairie 390

No instance of ToJSON a - but!Weknow thatahas an instance of ToJSON
for every single field!

If wewant to communicate that information toGHC,we’ll have to pattern
match on each constructor manually.

1 instance ToJSON (UpdateRecord User) where

2 toJSON (SetField recField newVal) =

3 object

4 ["field" .= recField

5 , "value" .= case recField of

6 UserAge -> newVal

7 UserId -> newVal

8 UserName -> newVal

9]

This also fails -we’ve already patternmatched on theSetField construc-
tor, which fixes the type variables. So we have to take the pattern match
further out.

1 instance ToJSON (UpdateRecord User) where

2 toJSON sf = case sf of

3 SetField UserAge newVal ->

4 object ["field" .= UserAge, "value" .= newVal]

5 SetField UserName newVal ->

6 object ["field" .= UserName, "value" .= newVal]

7 SetField UserId newVal ->

8 object ["field" .= UserId, "value" .= newVal]

Kinda nasty, but it works.

Let’s try and parse it, too.

Case Study: Prairie 391

1 instance FromJSON (UpdateRecord User) where

2 parseJSON = withObject "UpdateRecord<User>" $ \o -> do

3 someRecField <- o .: "field"

4 case someRecField of

5 SomeField fld ->

6 case fld of

7 UserAge ->

8 SetField fld <$> o .: "value"

9 UserId ->

10 SetField fld <$> o .: "value"

11 UserName ->

12 SetField fld <$> o .: "value"

This works. And with Template Haskell, it wouldn’t have somuch boiler-
plate - we could easily generate all of this with a call to mkRecordFields
''User. It’s somewhat inelegant though. Can wemake these instances a
bit more polymorphic?

Polymorphic Instances

First, let’s tackle SomeField’s instances.

1 instance ToJSON (SomeField record) where

2 toJSON (SomeField field) =

3 toJSON field

This fails, as youmight expect, with:

Case Study: Prairie 392

1 /home/matt/Projects/recupd/src/Record/GADTField.hs:72:9: error:

2 • No instance for (ToJSON (Field record a))

3 arising from a use of ‘toJSON’

4 • In the expression: toJSON field

5 In an equation for ‘toJSON’:

6 toJSON (SomeField field) = toJSON field

7 In the instance declaration for ‘ToJSON (SomeField record)’

8 |

9 72 | toJSON field

10 |

Can we just ask for that constraint?

1 instance (ToJSON (Field record a)) => ToJSON (SomeField record) where

2 toJSON (SomeField field) = toJSON field

Unfortunately, no.

1 /home/matt/Projects/recupd/src/Record/GADTField.hs:70:10: error:

2 • Could not deduce (ToJSON (Field record a0))

3 from the context: ToJSON (Field record a)

4 bound by an instance declaration:

5 forall record a.

6 ToJSON (Field record a) =>

7 ToJSON (SomeField record)

8 at src/Record/GADTField.hs:70:10-63

9 The type variable ‘a0’ is ambiguous

10 • In the ambiguity check for an instance declaration

11 To defer the ambiguity check to use sites, enable AllowAmbiguousTypes

12 In the instance declaration for ‘ToJSON (SomeField record)’

13 |

14 70 | instance (ToJSON (Field record a)) => ToJSON (SomeField record)

15 | ^^

Why not? Well, a in this context isn’t the same as a that is getting un-
packed from theGADT. Let’s write out explicit type variable introduction
to see why.

Case Study: Prairie 393

1 instance forall a record.

2 (ToJSON (Field record a))

3 =>

4 ToJSON (SomeField record)

5 where

6 toJSON (SomeField (field :: Field record a0)) =

7 toJSON field

Pattern matching on SomeField “unpacks” the a0 type variable.
This type variable is untouchable from the outside, so we can’t
require the constraint like this. Fortunately, there’s a trick:
QuantifiedConstraints lets us say something a bit stronger:

1 instance

2 (forall a. ToJSON (Field record a))

3 =>

4 ToJSON (SomeField record)

5 where

6 toJSON (SomeField field) = toJSON field

The two instancedeclarations look similar, but there’s a subtle difference
here. Let’s get rid of some noise and explicitly introduce type variables:

1 -- 1.

2 instance forall r a. (C (Rec r a)) => C (SomeField r)

3 -- 2.

4 instance forall r. (forall a. C (Rec r a)) => C (SomeField r)

The first version says something like this:

For all types r and a such that there’s an instance of C (Rec r
a), we have an instance of C (SomeField r)

Aforall in this positionmeans the user gets to pick it. So the usermight
try to instantiate r ∼ User and a ∼ Int. But that doesn’tmean that we
won’tactually becarryingar ∼ Useranda ∼ Text. Sowehave tomake
a stronger claim. The second says this:

Case Study: Prairie 394

For all types r, such that, for any type a, there’s an instance of
C (Rec r a), we have an instance of C (SomeField r).

It’s like the difference in these two functions:

1 idEach :: forall a. (a -> a) -> (a, a) -> (a, a)

2 idEach idFn (x, y) = (idFn x, idFn y)

3

4 idEach' :: (forall x. x -> x) -> (a, b) -> (a, b)

5 idEach' idFn (a, b) = (idFn a, idFn b)

Theuser of the functiondoesnot get topick the typex, whichmeans I can
choose it to work with both the a and b types. However, in the first one,
the user gets to pick the a type, which means I can’t have two different
types in the tuple.

That’s serializing. Let’s deserialize. Parsing is always more difficult, be-
cause we’re refining and creating information. We’re creating informa-
tion that exists in the type system, whichmakes it evenmore fun.

Let’s review the FromJSON (SomeField User) type that we weant to
generalize.

1 instance FromJSON (SomeField User) where

2 parseJSON = withText "SomeField<User>" $ \txt ->

3 case txt of

4 "UserName" -> pure $ SomeField UserName

5 "UserId" -> pure $ SomeField UserId

6 "UserAge" -> pure $ SomeField UserAge

7 _ -> fail

8 $ "Couldn't parse SomeFieldUser, got: "

9 <> Text.unpack txt

Abstraction, as a practice, means removing the concrete and accepting
it as a variable instead.

Case Study: Prairie 395

1 -- concrete:

2 5 + 6

3

4 -- abstract 5:

5 (\x -> x + 6)

So we’re going to abstract the details of User from this.

1 instance Record record => FromJSON (SomeField record) where

2 parseJSON = withText "SomeField" $ \txt ->

3 case txt of

4 ??? ->

5 pure $???

6 _ -> fail

7 $ "Couldn't parse SomeField, got: "

8 <> Text.unpack txt

How do we approach this, programmatically?

The original case expression is a lookup table, essentially. So we could
make another class method on Recordwhich contains such a table.

1 class Record a where

2 data Field a :: * -> *

3

4 recordFieldLens :: Field a b -> Lens' a b

5

6 fieldLookup :: Map Text (SomeField a)

7

8 instance Record User where

9 data Field User a where

10 UserName :: Field User Text

11 UserId :: Field User Int

12 UserAge :: Field User Int

13

14 recordFieldLens rf =

15 case rf of

Case Study: Prairie 396

16 UserName -> lens userName (\u n -> u { userName = n })

17 UserId -> lens userId (\u n -> u { userId = n })

18 UserAge -> lens userAge (\u n -> u { userAge = n })

19

20 fieldLookup =

21 Map.fromList $ map

22 (\sf -> (Text.pack (show sf), sf))

23 [SomeField UserName

24 , SomeField UserAge

25 , SomeField UserId

26]

This allows us to write our FromJSON instance nicely:

1 instance Record record => FromJSON (SomeField record) where

2 parseJSON = withText "SomeField" $ \txt ->

3 case Map.lookup txt (fieldLookup) of

4 Nothing ->

5 fail

6 $ "Couldn't parse SomeField, got: "

7 <> Text.unpack txt

8 Just fld ->

9 pure fld

OK, on to updates, starting with ToJSON first because it’s easier to serial-
ize than parse. As a refresher, here’s the original code:

1 instance ToJSON (UpdateRecord User) where

2 toJSON sf = case sf of

3 SetField UserAge newVal ->

4 object ["field" .= UserAge, "value" .= newVal]

5 SetField UserName newVal ->

6 object ["field" .= UserName, "value" .= newVal]

7 SetField UserId newVal ->

8 object ["field" .= UserId, "value" .= newVal]

This is a bit tricky. The concrete type User brings with it a few things:

Case Study: Prairie 397

1. The knowledge of which Field User x constructors we can pat-
tern match on.

2. When patternmatching on the constructor, we knowwhat x type is,
and because x gets fixed to a concrete type, we know that it has a
ToJSON instance.

Serializing the label is easy - we covered that in Record record =>
ToJSON (SomeField rec).

1 instance

2 (forall a. ToJSON (Field rec a), Record rec)

3 =>

4 ToJSON (UpdateRecord rec)

5 where

6 toJSON sf = case sf of

7 SetField label newVal ->

8 object ["field" .= label]

Butnowwewant to serializenewVal, too. For that, weneed an instance of
ToJSON a. But it’s not enough to say ToJSON a - weneed to somehow say
“For all a that might possibly be in a Field rec a, we need na instance
of ToJSON a”.

Well, UpdateRecord is a GADT, which means we can put constraints
there and unpack them later. Let’s just do that.

1 data UpdateRecord rec where

2 SetField :: ToJSON a => Field rec a -> a -> UpdateRecord rec

3

4 instance

5 (forall a. ToJSON (Field rec a), Record rec)

6 =>

7 ToJSON (UpdateRecord rec)

8 where

9 toJSON sf = case sf of

10 SetField label newVal ->

11 object ["field" .= label, "value" .= newVal]

Case Study: Prairie 398

Thisworks. But packing constraints inGADTs alwaysmakesmenervous.
Let’s try parsing. Here’s our naive initial attempt:

1 instance Record rec => FromJSON (UpdateRecord rec) where

2 parseJSON = withObject "UpdateRecord" $ \o -> do

3 someField <- o .: "field"

4 case someField of

5 SomeField (fld :: Field rec a) ->

6 SetField fld <$> o .: "value"

Now we have two errors.

1 /home/matt/Projects/recupd/src/Record/GADTField.hs:122:17: error:

2 • Could not deduce (ToJSON a) arising from a use of ‘SetField’

3 from the context: Record rec

4 bound by the instance declaration

5 at src/Record/GADTField.hs:117:10-50

6 Possible fix:

7 add (ToJSON a) to the context of the data constructor ‘SomeField’

8 • In the first argument of ‘(<$>)’, namely ‘SetField fld’

9 In the expression: SetField fld <$> o .: "value"

10 In a case alternative:

11 SomeField (fld :: Field rec a) -> SetField fld <$> o .: "value"

12 |

13 122 | SetField fld <$> o .: "value"

14 | ^^^^^^^^^^^^

15

16 /home/matt/Projects/recupd/src/Record/GADTField.hs:122:34: error:

17 • Could not deduce (FromJSON a) arising from a use of ‘.:’

18 from the context: Record rec

19 bound by the instance declaration

20 at src/Record/GADTField.hs:117:10-50

21 Possible fix:

22 add (FromJSON a) to the context of the data constructor ‘SomeField’

23 • In the second argument of ‘(<$>)’, namely ‘o .: "value"’

24 In the expression: SetField fld <$> o .: "value"

25 In a case alternative:

Case Study: Prairie 399

26 SomeField (fld :: Field rec a) -> SetField fld <$> o .: "value"

27 |

28 122 | SetField fld <$> o .: "value"

29 | ^^^^^^^^^^^^

Can’t deduce either ToJSON a or FromJSON a. Wait. Why does it need
ToJSON a? We’re trying to parse a value, not serialize it.

Welp. When we added the constraint to the SetField constructor, that
means we can’t actually call the constructor unless the ToJSON a in-
stance is in scope. This has me doubting whether or not it’s reasonable
to put the constraint in the constructor.

What were we abstracting in the original code? Here it is again for a
refresher:

1 instance FromJSON (UpdateRecord User) where

2 parseJSON = withObject "UpdateRecord<User>" $ \o -> do

3 someRecField <- o .: "field"

4 case someRecField of

5 SomeField fld ->

6 case fld of

7 UserAge ->

8 SetField fld <$> o .: "value"

9 UserId ->

10 SetField fld <$> o .: "value"

11 UserName ->

12 SetField fld <$> o .: "value"

Again - the constructors, which, upon pattern matching, brought a con-
crete type into scope for the a, which GHC could do a lookup and deter-
mine that they are indeed instances of ToJSON and FromJSON.

This is going to be a little tricker. For SomeField rec, we just needed to
be able to lookup the actual value. But for Update rec, we also need to
bring the FromJSON dictionary into scope.

Perhaps we can collect a list of the types on the record and require the
constraint on all of them. Will that work? Let’s try it.

Case Study: Prairie 400

1 class Record a where

2 type FieldTypes a :: [Type]

3 data Field a :: Type -> Type

4

5 -- ...

6

7 instance Record User where

8 type FieldTypes User = '[Text, Int]

9

10 -- ...

11

12 type family All (c :: k -> Constraint) (xs :: [k]) :: Constraint where

13 All _ '[] = ()

14 All c (x ': xs) = (c x, All c xs)

15

16 instance

17 (All FromJSON (FieldTypes rec), Record rec)

18 => FromJSON (UpdateRecord rec) where

Unfortunately, this also fails, with the same error messages as before.
This actually didn’t do anything to bring the relevant instances into
scope! GHC doesn’t know that the a type that is unpacked in SomeField
(fld :: Field rec a) is present in the FieldTypes rec list. And, it
doesn’t know that, because we haven’t actually proven it. So we need
something a bit more interesting - a dictionary lookup function based
on the field.

1 class FieldDict rec c where

2 getDict :: Field rec a -> Dict (c a)

Dict is a type from the constraints³ package. It packages up a type
class instance so it can be transmitted as a value. It uses GADTs and
ConstraintKinds to accomplish this trick.

³https://hackage.haskell.org/package/constraints

https://hackage.haskell.org/package/constraints
https://hackage.haskell.org/package/constraints

Case Study: Prairie 401

1 data Dict (c :: Constraint) where

2 Dict :: c => Dict

Now, we can make the claim we need. First, let’s rip out the ToJSON a
constraint in the SetField constructor. Then we’ll fix ToJSON:

1 data UpdateRecord rec where

2 SetField :: Field rec a -> a -> UpdateRecord rec

3

4 instance

5 (forall a. ToJSON (Field rec a)

6 , Record rec

7 , FieldDict rec ToJSON

8)

9 =>

10 ToJSON (UpdateRecord rec)

11 where

12 toJSON sf = case sf of

13 SetField (label :: Field rec a) (newVal :: a) ->

14 case getDict label of

15 (Dict :: Dict (ToJSON a)) ->

16 object ["field" .= label, "value" .= newVal]

OK, so we’re doing some fancy type level stuff here. Let’s go through this
line by line.

1 case sf of

2 SetField (label :: Field rec a) (newVal :: a) ->

At this point, we’ve unpacked SetField, and used the type signatures to
bring those type variables into scope. Haskell’s type langauge allows us
to use the same variable multiple times with introduction, and it infers
them to be the same type. So this case expression patternmatches on sf
and introduces:

• The value label

Case Study: Prairie 402

• The type a
• The value newVal

Next up, we pattern match on getDict:

1 case getDict label of

2 (Dict :: Dict (ToJSON a)) ->

Since we have requested FieldDict rec ToJSON in the instance head,
we can now call getDict :: Field rec a -> Dict (c a) at the type
c ∼ ToJSON. This gives us a value Dict (ToJSON a). If we unpack that
GADT, we get Dict :: ToJSON a => Dict. Now, we’ve introduced the
ToJSON a dictionary into scope. This means we can finally do our value-
level magic:

1 object ["field" .= label, "value" .= newVal]

While writing this code, it occured tome that the API for summoning dic-
tionaries was a bit awkward. So I swapped the type variables on the class
FieldDict and that enabled a nicer syntax with TypeApplications:

1 class FieldDict c rec where

2 getDict :: Field rec a -> Dict (c a)

3

4 instance

5 (forall a. ToJSON (Field rec a)

6 , Record rec

7 , FieldDict ToJSON rec

8)

9 =>

10 ToJSON (UpdateRecord rec)

11 where

12 toJSON sf = case sf of

13 SetField (label :: Field rec a) (newVal :: a) ->

14 case getDict @ToJSON label of

15 Dict ->

16 object ["field" .= label, "value" .= newVal]

Case Study: Prairie 403

Now we can just write getDict @ToJSON label and the unpacked dic-
tionary just knows what we need. Nice! The pattern matching is a bit
annoying, too. For a lot of “existential wrapper” types like this, it can be
a convenience to write a “continuation passing style” variant.

1 withFieldDict

2 :: forall c rec a r

3 . FieldDict c rec

4 => Field rec a

5 -> (c a => r)

6 -> r

7 withFieldDict l k =

8 case getDict @c l of

9 Dict -> k

The function getDict is equivalent to saying “Give me a Field rec a
and I will return a proof that c a is true.” A value of type Dict (c a)
is theoretically equivalent to a proof of the proposition that the type a
satisfies the class c. In order to use a proof, youmust patternmatch on it.
withFieldDict says something slightly different. Instead of returning
the proof directly, we accept a value that assumes the proof to be true.

That allows us to rewrite our ToJSON instance as:

1 instance

2 (forall a. ToJSON (Field rec a)

3 , Record rec

4 , FieldDict ToJSON rec

5)

6 =>

7 ToJSON (UpdateRecord rec)

8 where

9 toJSON sf = case sf of

10 SetField (label :: Field rec a) (newVal :: a) ->

11 withFieldDict @ToJSON label $

12 object ["field" .= label, "value" .= newVal]

Nomore awkward pattern match on Dict.

Case Study: Prairie 404

FromJSON follows in much the same way.

1 instance

2 (Record rec

3 , FieldDict FromJSON rec

4)

5 =>

6 FromJSON (UpdateRecord rec)

7 where

8 parseJSON = withObject "UpdateRecord" $ \o -> do

9 someField <- o .: "field"

10 case someField of

11 SomeField (fld :: Field rec a) ->

12 withFieldDict @FromJSON fld $

13 SetField fld <$> o .: "value"

Now, if we actually try to use thesewith our User type, thenwe’ll run into
some errors.

1 roundTripUpdates =

2 decode (encode updates) == Just updates

3 where

4 updates =

5 [SetField UserAge 3

6 , SetField UserId 2

7 , SetField UserName "Bob"

8]

We need instances of FieldDict FromJSON User, FieldDict ToJSON
User, and Eq (UpdateRecord User). Let’s write them. FieldDict is
going to be really easy, if a bit odd looking.

Case Study: Prairie 405

1 instance FieldDict ToJSON User where

2 getDict f = case f of

3 UserAge -> Dict

4 UserName -> Dict

5 UserId -> Dict

6

7 instance FieldDict FromJSON User where

8 getDict f = case f of

9 UserAge -> Dict

10 UserName -> Dict

11 UserId -> Dict

Actually, we can do something a little more interesting. We can be poly-
morphic in the constraint, provided that it is applied to all of our types.

1 instance (c Text, c Int) => FieldDict c User where

2 getDict f = case f of

3 UserAge -> Dict

4 UserName -> Dict

5 UserId -> Dict

We can use the All and FieldTypes machinery that we tried to use
earlier:

1 instance (All c (FieldTypes User)) => FieldDict c User where

2 getDict f = case f of

3 UserAge -> Dict

4 UserName -> Dict

5 UserId -> Dict

Nice. Now let’s write that Eq instance.

1 instance Eq (SomeField rec) => Eq (UpdateRecord rec) where

2 SetField lbl a == SetField lbl' b =

3 SomeField lbl == SomeField lbl'

Case Study: Prairie 406

This works, but it is unsatisfactory - if the two labels are equal, then we
also want to compare the values. So we’re going to need to bring some
types into scope:

1 instance Eq (SomeField rec) => Eq (UpdateRecord rec) where

2 (==)

3 (SetField (lbl :: Field r0 a0) a)

4 (SetField (lbl' :: Field r1 a1) b) =

5 SomeField lbl == SomeField lbl'

6 && case eqT @a0 @a1 of

7 Just Refl ->

8 a == b

9 Nothing ->

10 False

eqT comes from Data.Typeable. You pass it two type arguments using
TypeApplications syntax. If the types are equal, you get Just Refl,
whichmeans that the two types can be considered equal within the case
branch. Otherwise, you get Nothing back.

This code mostly works, but we get some problems: GHC can’t deduce
that a0 or a1 types are Typeable, and it can’t deduce an instance of
Eq a0. We’ll need to use the FieldDictmachinery again to bring those
dictionaries into scope.

1 instance

2 (Eq (SomeField rec)

3 , FieldDict Eq rec

4 , FieldDict Typeable rec

5)

6 =>

7 Eq (UpdateRecord rec)

8 where

9 SetField (lbl :: Field r a0) a == SetField (lbl' :: Field r a1) b =

10 withFieldDict @Eq lbl $

11 withFieldDict @Eq lbl' $

12 withFieldDict @Typeable lbl $

13 withFieldDict @Typeable lbl' $

Case Study: Prairie 407

14 SomeField lbl == SomeField lbl'

15 && case eqT @a0 @a1 of

16 Just Refl ->

17 a == b

18 Nothing ->

19 False

GHC compiles this, and roundTripUpdates evaluates to True.

Wecan improveFieldTypes. Defining itmanually is kindof adrag, since
we can derive it generically.

1 data User = ...

2 deriving stock Generic

3

4 type FieldTypes rec = GFieldTypes (Rep rec)

5

6 type family GFieldTypes rep where

7 GFieldTypes (D1 _ (C1 _ xs)) = EnumerateTypes xs

8

9 type family EnumerateTypes rep where

10 EnumerateTypes (S1 _ (Rec0 a) :*: rest) =

11 a ': EnumerateTypes rest

12 EnumerateTypes (S1 _ (Rec0 a)) =

13 '[a]

However, requiring a Generic instance for this is a bit of a drag. We will
end up using TemplateHaskell anyway to generate the instances, so
rather than requiring a Generic implementation of a type family, let’s
just stick with the manual approach.

23.4 Improvements?

This works. But can it be better? Yeah. We can generalize Eq on Some-
Field so that it relies on the Eq instance for the underlying Field, which
is derivable.

Case Study: Prairie 408

1 instance

2 (FieldDict Typeable rec

3 , forall a. Eq (Field rec a)

4)

5 =>

6 Eq (SomeField rec)

7 where

8 SomeField (a :: Field rec a) == SomeField (b :: Field rec b) =

9 withFieldDict @Typeable a $

10 withFieldDict @Typeable b $

11 case eqT @a @b of

12 Just Refl ->

13 a == b

14 Nothing ->

15 False

We can also write a generic diffing utility on records. It’s super simple -
no recursion or anything, just reports what changed on the new record.

1 diffRecord

2 :: forall rec. (FieldDict Eq rec, Record rec)

3 => rec

4 -> rec

5 -> [UpdateRecord rec]

6 diffRecord old new =

7 foldr

8 (\x acc ->

9 case x of

10 SomeField field ->

11 withFieldDict @Eq field $

12 let getter = view (recordFieldLens field)

13 newValue = getter new

14 in

15 if getter old == newValue

16 then acc

17 else SetField field newValue : acc

18)

Case Study: Prairie 409

19 []

20 (fieldLookup @rec)

I’m pretty happy with this. Let’s try another approach - just because I’ve
found success doesn’t mean a better way isn’t coming!

23.5 Symbols

One pattern for dealing with records involves DuplicateRecordFields
and then using generic-lenswith the field lens.

1 {-# language DuplicateRecordFields #-}

2

3 import Control.Lens (view)

4 import Data.Generics.Product (field)

5

6 data User = User

7 { name :: Text

8 , age :: Int

9 , id :: Int

10 }

11 deriving stock Generic

12

13 data Dog = Dog

14 { name :: Text

15 , age :: Int

16 }

17 deriving stock Generic

Without DuplicateRecordFields, the above declaration would
be forbidden, as name and age would have conflicting definitions.
DuplicateRecordFields allows the definition and does some
horrifying hacks to make actually using it work out. Unfortunately, it
rarely does, when there’s a conflict. You must provide type annotations
at surprising times if a duplicate name is in scope. The UX around field
selectors as accessor functions is pretty awful. The pattern that has

Case Study: Prairie 410

emerged at the work codebase that used it was to import types with
qualified names:

1 import qualified Types as Foo(Foo(..))

2 import qualified Types as Bar(Bar(..))

3

4 idList foo bar = [Foo.id foo, Bar.id bar]

We can solve this with generic-lens, which uses type clases to get a
satisfactory disambiguation.

The field lens takes a TypeApplications Symbol and returns a lens
that works on any record that has a field with that name.

1 field :: HasField sym s t a b => Lens s t a b

2 field @"name" :: HasField "name" s t a b => Lens s t a b

With getField :: HasField sym s s a a => s -> a, you don’t
even need to know lenses to write code with this. The following line
works exactly like you’d want it to:

1 idList foo bar = [getField @"id" foo, getField @"id" bar]

This suggests to me that there might be a good way to do this with
symbols. Let’s iterate.

1 class Record rec where

2 type RecordField rec :: Symbol -> Type

3

4 recordFieldLens :: Lens' rec (RecordField rec sym)

5

6 fieldMap :: Map Text (SomeRecordField rec)

This is subtly different from the GADT variation, in that our record field
is now the symbol - so we don’t need a datatype for it.

Case Study: Prairie 411

1 instance Record User where

2 type RecordField User = (??? :: Symbol -> Type)

GHC doesn’t allow us to have a closed type family here. If we want one,
we’ll have to delegate.

1 type family UserFieldFn sym where

2

3 type family UserFieldFn sym where

4 UserFieldFn "name" = Text

5 UserFieldFn "age" = Int

6 UserFieldFn "id" = Int

7

8 instance Record User where

9 type RecordField User = UserFieldFn

GHC is unhappy with this, too.

1 src/Record/SymbolField.hs:61:8: error:

2 • The type family ‘UserFieldFn’ should have 1 argument,

3 but has been given none

4 • In the type instance declaration for ‘RecordField’

5 In the instance declaration for ‘Record User’

6 |

7 61 | type RecordField User = UserFieldFn

8 | ^^^^^^^^^^^

We’re not allowed to partially apply type families. If we try to pass the
sym parameter directly, we get another error:

1 instance Record User where

2 type RecordField User sym = UserFieldFn sym

Case Study: Prairie 412

1 src/Record/SymbolField.hs:61:8: error:

2 • Number of parameters must match family declaration; expected 1

3 • In the type instance declaration for ‘RecordField’

4 In the instance declaration for ‘Record User’

5 |

6 61 | type RecordField User sym = UserFieldFn sym

7 | ^^^^^^^^^^^

To

fix this, we need to change the definition of RecordField.

1 - type RecordField rec :: Symbol -> Type

2 + type RecordField rec (sym :: Symbol) :: Type

This compiles. Now we need to implement recordFieldLens. Here’s a
first try:

1 recordFieldLens :: forall sym. Lens' User (RecordField User sym)

2 recordFieldLens =

3 field @sym

This should work. If field and RecordField could communicate each
other’s assumptions and proofs, then this wouldwork. But they can’t. We
have to refine our implementation by case-matching on the string literal.
This implementation gets us closer:

1 recordFieldLens

2 :: forall sym. KnownSymbol sym

3 => Lens' User (RecordField User sym)

4 recordFieldLens =

5 case eqT @sym @"age" of

6 Just Refl ->

7 field @"age"

8 Nothing ->

9 case eqT @sym @"name" of

10 Just Refl ->

11 field @"name"

Case Study: Prairie 413

12 Nothing ->

13 case eqT @sym @"id" of

14 Just Refl ->

15 field @"id"

16 Nothing ->

17 error "impossible"

GHC complained a lot about KnownSymbol not being inferrable, so we
want to attach it. But this still gives us an error:

1 /home/matt/Projects/recupd/src/Record/SymbolField.hs:63:22: error:

2 • Couldn't match type ‘UserFieldFn sym’ with ‘UserFieldFn sym0’

3 Expected type: (RecordField User sym -> f (RecordField User sym))

4 -> User -> f User

5 Actual type: (RecordField User sym0 -> f (RecordField User sym0))

6 -> User -> f User

7 NB: ‘UserFieldFn’ is a non-injective type family

8 The type variable ‘sym0’ is ambiguous

9 • When checking that instance signature for ‘recordFieldLens’

10 is more general than its signature in the class

11 Instance sig: forall (sym :: Symbol).

12 KnownSymbol sym =>

13 Lens' User (RecordField User sym)

14 Class sig: forall (sym :: Symbol).

15 KnownSymbol sym =>

16 Lens' User (RecordField User sym)

17 In the instance declaration for ‘Record User’

18 |

19 63 | recordFieldLens

20 | :: forall sym. KnownSymbol sym

21 | => Lens' User (RecordField User sym)

22 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The

tip NB: 'UserFieldFn' is a non-injective type family may
be useful. An injective type family is one where the result type can
determine the input type. However, we don’t have an injective type
family. Int is the result of both UserFieldFn "age" and UserFieldFn
"id".

Case Study: Prairie 414

Part of the problem here is the “open universe” expectation of Symbols.
Any string literal is a symbol. We have an error "impossible" case
that is guaranteed because the type family RecordField User symwill
get stuck if it isn’t any of the symbols we’ve checked for, but this is
uncheckable.

Hm. I think we will need a different approach. We had a type family in
the GADT approach that pulled out all the types for a record, based on
Generics. Maybe we canmake a type-level list of labels to types, and use
that instead.

1 type RecordFields rec = GRecordFields (Rep rec)

2

3 type family GRecordFields rep where

4 GRecordFields (D1 _ (C1 _ xs)) = EnumerateTypes xs

5

6 type family EnumerateTypes rep where

7 EnumerateTypes (a :*: b) =

8 EnumerateTypes a ++ EnumerateTypes b

9 EnumerateTypes (S1 ('MetaSel ('Just sym) _ _ _) (Rec0 a)) =

10 '['(sym, a)]

This also means we don’t have to define it - we just need a Generic
instance. A standard Lookup function and now we have this definition:

1 type family Lookup sym xs where

2 Lookup sym ('(sym, a) ': _) =

3 a

4 Lookup sym (_ ': xs) =

5 Lookup sym xs

6

7 class Record rec where

8 recordFieldLens

9 :: forall sym a. (a ~ Lookup sym (RecordFields rec))

10 => Lens' rec a

We’re still running into errors with this. But, something tells me this
is unnecessary. After all, this signature is essentially field' from

Case Study: Prairie 415

generic-lens, which only requires a Generic instance. Can we
implement fieldMap directly with Generic, piggy-backing on top of
generic-lens? Let’s see!

1 class FieldMap rec where

2 fieldMap :: Map Text TypeRep

3

4 instance (Generic a, GFieldMap (Rep a)) => FieldMap a where

5 fieldMap = gfieldMap @(Rep a)

6

7 class GFieldMap f where

8 gfieldMap :: Map Text TypeRep

9

10 instance GFieldMap constr => GFieldMap (D1 meta constr) where

11 gfieldMap = gfieldMap @constr

12

13 instance GFieldMap fields => GFieldMap (C1 meta fields) where

14 gfieldMap = gfieldMap @fields

15

16 instance

17 (Typeable typ, KnownSymbol fieldLabel)

18 =>

19 GFieldMap (S1 ('MetaSel (Just fieldLabel) a b c) (Rec0 typ))

20 where

21 gfieldMap =

22 Map.singleton

23 (Text.pack (symbolVal (Proxy @fieldLabel)))

24 (typeRep (Proxy @typ))

25

26 instance (GFieldMap a, GFieldMap b) => GFieldMap (a :*: b) where

27 gfieldMap = gfieldMap @a <> gfieldMap @b

28

29 -- λ> fieldMap @User

30 -- fromList [("age",Int),("id",Int),("name",Text)]

Well. Nice! That does what we want. Let’s implement our update and
diffmethod to see if it’s as powerful as we want. update ends up being
surprisingly simple:

Case Study: Prairie 416

1 data Update rec where

2 SetField :: HasField' sym rec a => Proxy sym -> a -> Update rec

3

4 updateRecord :: [Update rec] -> rec -> rec

5 updateRecord upds rec =

6 foldr

7 (\(SetField (psym :: Proxy sym) newVal) ->

8 set (field' @sym) newVal

9)

10 rec

11 upds

12

13 -- λ> updateUser

14 -- User {name = "Bob", age = 20, id = 4}

15 updateUser =

16 updateRecord

17 [SetField (Proxy @"age") 20

18 , SetField (Proxy @"name") "Bob"

19]

20 User { name = "Jane", age = 30, id = 4 }

However, I suspectwe’re going tohave adifficult timewithdiff, because
we’re constructing the Update instead of consuming them.We’ll need to
know how to bring the relevant dictionaries into scope.

1 diffRecord :: forall rec. FieldMap rec => rec -> rec -> [Update rec]

2 diffRecord old new =

3 foldr k [] (Map.toList $ fieldMap @rec)

4 where

5 k :: (Text, TypeRep) -> [Update rec] -> [Update rec]

6 k (fieldLabel, fieldType) acc =

7 undefined

This is our skeleton. I doubtwe’regoing tohavewhatweneed fromaText
and TypeRep to get that HasField dictionary in scope. So let’s rework
the FieldMap class to instead pack up that dictionary. We’ll make a new
SomeField type to carry it. We’ll need to carry the original rec type in
our type class, so there’s a few changes there.

Case Study: Prairie 417

1 data SomeField rec where

2 SomeField :: Dict (HasField' sym rec a) -> SomeField rec

3

4 class FieldMap rec where

5 fieldMap :: Map Text (SomeField rec)

6

7 instance (Generic a, GFieldMap a (Rep a)) => FieldMap a where

8 fieldMap = gfieldMap @a @(Rep a)

9

10 class GFieldMap rec f where

11 gfieldMap :: Map Text (SomeField rec)

12

13 instance GFieldMap rec constr => GFieldMap rec (D1 meta constr) where

14 gfieldMap = gfieldMap @rec @constr

15

16 instance GFieldMap rec fields => GFieldMap rec (C1 meta fields) where

17 gfieldMap = gfieldMap @rec @fields

18

19 instance

20 (Typeable typ

21 , KnownSymbol fieldLabel

22 , HasField' fieldLabel rec typ

23)

24 =>

25 GFieldMap rec (S1 ('MetaSel (Just fieldLabel) a b c) (Rec0 typ))

26 where

27 gfieldMap =

28 Map.singleton

29 (Text.pack (symbolVal (Proxy @fieldLabel)))

30 (SomeField (Dict :: Dict (HasField' fieldLabel rec typ)))

31

32 instance

33 (GFieldMap rec a, GFieldMap rec b)

34 =>

35 GFieldMap rec (a :*: b)

36 where

37 gfieldMap = gfieldMap @rec @a <> gfieldMap @rec @b

Case Study: Prairie 418

Diffing then looks like this:

1 diffRecord :: forall rec. FieldMap rec => rec -> rec -> [Update rec]

2 diffRecord old new =

3 foldr k [] (fieldMap @rec)

4 where

5 k :: SomeField rec -> [Update rec] -> [Update rec]

6 k (SomeField (dict :: Dict (HasField' sym rec a))) acc =

7 let getter = view (field' @sym)

8 newVal = getter new

9 in

10 if getter old == newVal

11 then acc

12 else SetField (Proxy @sym) newVal : acc

And we get the same issue as before - we need to bring the Eq dictionary
into scope for this. Theprior solutionusedaFieldDict type class,which
relied on the Field rec typ data family. Can we replicate that?

1 class FieldDict c rec where

2 getDict :: Field rec sym a -> Dict (c a)

We need a suitable Field type. And we’ll probably want to rewrite Up-
date and SomeField in terms of this new type. A Field in this formula-
tion is kind of like a Dict (HasField' sym rec a). So let’s try that at
first.

1 data Field rec sym a where

2 Field :: Dict (HasField' sym rec a) -> Field rec sym a

Patching SomeField and FieldMap is straightforward. And writing
diffRecordworks mostly like the GADT approach:

Case Study: Prairie 419

1 diffRecord

2 :: forall rec. (FieldDict Eq rec, FieldMap rec)

3 => rec -> rec -> [Update rec]

4 diffRecord old new =

5 foldr k [] (fieldMap @rec)

6 where

7 k :: SomeField rec -> [Update rec] -> [Update rec]

8 k x acc = case x of

9 SomeField (field@(Field (Dict :: Dict (HasField' sym rec a)))) ->

10 withFieldDict @Eq field $

11 let oldVal = view (field' @sym) old

12 newVal = view (field' @sym) new

13 in if oldVal == newVal

14 then acc

15 else SetField field newVal : acc

We need to type-annotate Field so we can bring into scope the sym type
variables. But, this works!

Now we need to define FieldDict for our User type so we can actually
do this. This may be tricky. Working with advanced type-level Haskell
stuff often means that you can define something that looks amazing and
compiles just fine, but you can’t actually ever use it. I’mworried thatmay
happen here.

1 instance (All c (FieldTypes User)) => FieldDict c User where

2 getDict (Field (Dict :: Dict (HasField' sym rec a))) =

3 undefined

OK, this is our skeleton. In the GADT variation, we had a closed universe
we could pattern match on, that’d give us the type. But we don’t here.
HasField has a functional dependency, so knowing sym rec tells us a.
We know rec ∼ User, so we should be able to figure it out just based on
the sym type variable.

We can’t pattern match on Symbol directly here. It’d be nice to write:

Case Study: Prairie 420

1 instance (All c (FieldTypes User)) => FieldDict c User where

2 getDict (Field (Dict :: Dict (HasField' "age" User Int))) =

3 Dict

So, instead, we have to do something a bit nasty. Another eqT chain - like
we did with recordFieldLens before wemade it just field'.

1 instance (All c (FieldTypes User)) => FieldDict c User where

2 getDict (Field (Dict :: Dict (HasField' sym User a))) =

3 case eqT @'(sym, a) @'("age", Int) of

4 Just Refl ->

5 Dict :: Dict (c Int)

6 Nothing ->

7 undefined

This has GHC complaining about Could not deduce 'KnownSymbol
sym' arising from a use of 'eqT'. Dang. We can either pack the
KnownSymbol constraint into the GADT, or we can use the FieldDict
trick again. Let’s try the constructor. KnownSymbol is a pretty innocuous
constraint. GHC then complains about Typeable. Once we add those to
the Field constructor, we’re set:

1 data Field rec sym a where

2 Field

3 :: (KnownSymbol sym, Typeable a)

4 => Dict (HasField' sym rec a)

5 -> Field rec sym a

This compiles now. We can finish the implementation:

Case Study: Prairie 421

1 instance (All c (FieldTypes User)) => FieldDict c User where

2 getDict (Field (Dict :: Dict (HasField' sym User a))) =

3 case eqT @'(sym, a) @'("age", Int) of

4 Just Refl ->

5 Dict :: Dict (c Int)

6 Nothing ->

7 case eqT @'(sym, a) @'("name", Text) of

8 Just Refl ->

9 Dict

10 Nothing ->

11 case eqT @'(sym, a) @'("id", Int) of

12 Just Refl ->

13 Dict

14 Nothing ->

15 error "Impossible"

This is unsatisfying - the error "Impossible" is just begging to get
tripped somehow. Probably by adding a field to the User type. So this
should be generated by Template Haskell to keep it safe.

Let’s serialize and deserialize.

1 instance KnownSymbol sym => ToJSON (Field rec sym a) where

2 toJSON _ = toJSON (symbolVal (Proxy @sym))

3

4 instance

5 (HasField' sym rec a, Typeable a, KnownSymbol sym)

6 => FromJSON (Field rec sym a) where

7 parseJSON = withText "Field" $ \txt -> do

8 case someSymbolVal (Text.unpack txt) of

9 SomeSymbol (Proxy :: Proxy sym') ->

10 case eqT @sym @sym' of

11 Just Refl ->

12 pure $ Field Dict

13 Nothing ->

14 fail "Nope"

Nice. The rest of the code is pretty similar to the GADT approach:

Case Study: Prairie 422

1 instance

2 (forall sym a. ToJSON (Field rec sym a))

3 => ToJSON (SomeField rec) where

4 toJSON (SomeField field) = toJSON field

5

6 instance FieldMap rec => FromJSON (SomeField rec) where

7 parseJSON = withText "SomeField" $ \txt ->

8 case Map.lookup txt (fieldMap @rec) of

9 Just fld ->

10 pure fld

11 Nothing ->

12 fail "nope"

13

14 instance

15 (FieldDict ToJSON rec, forall sym a. ToJSON (Field rec sym a))

16 => ToJSON (Update rec) where

17 toJSON (SetField field newVal) =

18 withFieldDict @ToJSON field $

19 object

20 ["field" .= field

21 , "value" .= newVal

22]

23

24 instance (FieldDict FromJSON rec, FieldMap rec) => FromJSON (Update rec) where

25 parseJSON = withObject "Update" $ \o -> do

26 field <- o .: "field"

27 case field of

28 SomeField (field :: Field rec sym a) ->

29 withFieldDict @FromJSON field $

30 SetField field <$> o .: "value"

31

32 input = "[{\"field\":\"name\",\"value\":\"New Name\"}]"

33

34 route = do

35 updates <- decode input

36 pure $ updateRecord updates (User "Bob" 1 2)

Case Study: Prairie 423

route evaluates to Just (User { name = "New Name", age = 1,
id = 2 }) - so all the machinery works here.

23.6 Compare and Constrast

The GADT field approach has some really nice properties - namely, that
we have a closed universe of fields, and we can simply patternmatch on
them. This is most evident in the FieldDict instances:

1 -- GADT:

2 instance All c (FieldTypes User) => FieldDict c User where

3 getDict c = case c of

4 UserAge -> Dict

5 UserName -> Dict

6 UserId -> Dict

7

8 -- Symbol:

9 instance (All c (FieldTypes User)) => FieldDict c User where

10 getDict (Field (Dict :: Dict (HasField' sym User a))) =

11 case eqT @'(sym, a) @'("age", Int) of

12 Just Refl ->

13 Dict :: Dict (c Int)

14 Nothing ->

15 case eqT @'(sym, a) @'("name", Text) of

16 Just Refl ->

17 Dict

18 Nothing ->

19 case eqT @'(sym, a) @'("id", Int) of

20 Just Refl ->

21 Dict

22 Nothing ->

23 error "Impossible"

getDict is not only much uglier in the symbol version, it also has that
nasty error case. It’s also less efficient! It requires two runtime type

Case Study: Prairie 424

checks per field in the worst case. The GADT version is a simple lookup
table.

On the other hand, in the Symbol version, we can derive Eq, Show, and
Ord for Field rec sym a. We don’t have to have a separate standalone
deriving clause for each table.

The total code size is smaller for theGADT fields.My file for GADTField is
about 230 lines, while Symbol fields are 260 lines. Not a huge difference.

It’s more annoying to use the symbol fields. With the GADT, you can write
the field and you’re set. With the symbol, you need to write Field Dict
and give it the right type.

1 userAge :: Field User "age" Int

2 userAge = Field Dict

However, you canwrite generic fields.

1 _age :: (HasField "age" rec a, Typeable a) => Field rec "age" a

2 _age = Field Dict

This is actually pretty neat. It means we can construct a generic Update
too:

1 updateAge :: (HasField' "age" rec a, Typeable a) => a -> Update rec

2 updateAge newVal = SetField _age newVal

And with OverloadedLabels, we can even simplify further

1 instance (RecordField rec sym a) => IsLabel sym (Field rec sym a) where

2 fromLabel = mkField @sym

3

4 updateAge newVal = SetField #age newVal

Okay, I have to admit - I’m excited about this. But I’m also really dissatis-
fied by the downsides! Can we recover polymorphic updates without the
gross eqT staircasing to “pattern match” on fields?

Case Study: Prairie 425

23.7 Identify the Issue

In the GADT world, we have a closed universe of constructors represent-
ing our fields. GADTs are monomorphic, so we can’t represent a field
that is polymorphic. In the Symbol world, we have an open universe of
symbols, and we can’t pattern match on them.

What we want is a way to say:

1 generalize :: RecordField rec a -> Symbol

This is a type-level function.Whichmeans it needs to be a type family (or
class):

1 type Generalize :: RecordField rec a -> Symbol

But for Generalize to work, that means we need to have a type of kind
RecordField rec a. But we can’t promote a data constructor in a data
family instance. So, we need to make it not a data family. What if the
datatype is defined separately, and then the association ismade through
a type family?

23.8 Generalize a GADT

Let’s change our definitions in the original GADT file.

1 class Record a where

2 type Field a = (r:: Type -> Type) | r -> a

3

4 recordFieldLens :: Field a b -> Lens' a b

5

6 fieldLookup :: Map Text (SomeField a)

7

8 data UserField a where

9 UserName :: UserField Text

Case Study: Prairie 426

10 UserId :: UserField Int

11 UserAge :: UserField Int

12

13 instance Record User where

14 type Field User = UserField

15

16 {- unchanged -}

GHC complains - a lot - about Illegal type synonym family
aplication 'Field r' in instance:. Turns out we can’t write
something like:

1 instance (forall a. Show (Field r a)) => Show (SomeField r) where

2 show (SomeField f) = show f

Well, we can’t use a type family. What about a functional dependency?

23.9 Fundeps

1 data User = User

2 { name :: Text

3 , id :: Int

4 , age :: Int

5 }

6 deriving stock (Show, Generic)

7

8 data UserField a where

9 UserName :: UserField Text

10 UserAge :: UserField Int

11 UserId :: UserField Int

12

13 class

14 Record (rec :: Type) (field :: Type -> Type)

15 | rec -> field

16 , field -> rec

Case Study: Prairie 427

17 where

18 fieldLens :: field a -> rec -> Lens' rec a

19

20 instance Record User UserField where

21 fieldLens field rec =

22 case field of

23 UserName -> field' @"name"

24 UserAge -> field' @"age"

25 UserId -> field' @"id"

This works! Now, let’s make that symbol association. We can’t use func-
tional dependencies in type family instances. There’s just not a way to
introduce the constraints.

So our association will also be a type class with a fundep.

1 class

2 Record rec field

3 =>

4 FieldToSymbol rec field sym

5 | rec field -> sym

This isn’t quite what we want - we don’t want field :: Type -> Type
as the type variable, we want fieldConstr :: field - the promoted
constructor. But how do we grab ahold of one of those?

We can just ask for it, apparently.

1 class

2 (Record rec (field :: Type -> Type), KnownSymbol sym)

3 =>

4 FieldToSymbol rec (constr :: field a) sym

5 | rec constr -> sym

6 , rec sym -> constr

7 , sym constr -> rec

8

9 instance FieldToSymbol User UserName "name"

10 instance FieldToSymbol User UserAge "age"

11 instance FieldToSymbol User UserId "id"

Case Study: Prairie 428

The functional dependencieswill allowus toworkbackwards: ifweknow
any two variables, we can recover the third.

Update looks a bit different:

1 data Update rec where

2 SetField :: (Record rec field) => field a -> a -> Update rec

3

4 updateRec :: [Update rec] -> rec -> rec

5 updateRec upds rec = foldr k rec upds

6 where

7 k (SetField field newVal) =

8 set (fieldLens field) newVal

We don’t need the Record rec field constraint on updateRec, be-
cause we actually have the constraint packed inside the Update data
constructor. We need to do that so we canmake the association between
rec and field.

Now, to serialize it,we’regoing toneed theFieldDict stuff again.Except,
we have to put the field type in the FieldDict class definition tomake it
available.

1 class (Record rec f) => FieldDict c rec f where

2 getDict :: f a -> Dict (c a)

3

4 withFieldDict

5 :: forall c rec a f r. FieldDict c rec f

6 => f a -> (c a => r) -> r

7 withFieldDict l k =

8 case getDict @c l of

9 Dict -> k

10

11 instance All c (FieldTypes User) => FieldDict c User UserField where

12 getDict c = case c of

13 UserAge -> Dict

14 UserName -> Dict

15 UserId -> Dict

Case Study: Prairie 429

The field type parameter is becoming ubiquitous, which is annoying!
Unfortunately, the next step reveals a problem:

1 instance

2 (FieldDict ToJSON rec field, forall a. ToJSON (field a))

3 =>

4 ToJSON (Update rec)

5 where

6 toJSON (SetField field newVal) =

7 withFieldDict @ToJSON field $

8 object

9 ["field" .= field

10 , "value" .= newVal

11]

GHC complains here. It can’t figure out that the field typementioned in
the context is the same as the field type variable that is packed inside
the SetField constructor. Huh.

I guess we could backtrack and add field to the Update constructor.
This fixes the issue, at the cost of another duplication of Constr rec
field. The ergonomics are bad enough that I feel comfortable writing
this approach off for now.

We can write FromJSON:

1 instance

2 (FieldDict FromJSON rec field

3 , forall a. FromJSON (field a)

4 , FieldMap rec field

5)

6 =>

7 FromJSON (Update rec field)

8 where

9 parseJSON = withObject "Update" $ \o -> do

10 field <- o .: "field"

11 case Map.lookup field (fieldMap @rec) of

12 Nothing ->

Case Study: Prairie 430

13 fail "field not found"

14 Just (Some a) ->

15 withFieldDict @FromJSON a $

16 SetField a <$> o .: "value"

So, this works. Cool.

It looks like, using the functional dependency, we have to include both
types. This is redundant and a bit annoying, all so we can get an associ-
ated symbol.

23.10 More Class Please

Do we even really need the promoted constructor? I bet we don’t.

Let’s get back to the GADT field file:

1 class Record rec => SymbolToField sym rec a | rec sym -> a where

2 symbolToField :: Field rec a

3

4 instance SymbolToField "name" User Text where

5 symbolToField = UserName

6

7 instance SymbolToField "age" User Int where

8 symbolToField = UserAge

9

10 instance SymbolToField "id" User Int where

11 symbolToField = UserId

12

13 instance (SymbolToField sym rec a) => IsLabel sym (Field rec a) where

14 fromLabel = symbolToField @sym

15

16 updateAge :: (Num a, SymbolToField "age" rec a) => UpdateRecord rec

17 updateAge = SetField #age 2

See, we can even implement OverloadedLabels for this. Let’s just go
with it.

Case Study: Prairie 431

23.11 Refining the Class

tabulateRecord

Ollie Charles referred to “representable functors” on Twitter⁴, and it
seemed prudent to add this to the class.

1 tabulateRecord :: (forall ty. Field rec ty -> ty) -> rec

This method serves as evidence that you can construct a rec by specify-
ing values for each field. It would be implemented like this:

1 tabulateRecord fromField =

2 User

3 { name = fromField UserName

4 , age = fromField UserAge

5 , id = fromField UserId

6 }

recordFieldLabel

All the stuff with FieldMap is kind of silly. Let’s scrap it and simplify.
What we really want is a function from Field rec a to Text.

1 recordFieldLabel :: Field rec a -> Text

Adding this to the class and changing fieldMap to allFields simplifies
matters greatly.

All told, the class ends up looking like this:

⁴https://twitter.com/acid2/status/1312054202382852096

https://twitter.com/acid2/status/1312054202382852096
https://twitter.com/acid2/status/1312054202382852096

Case Study: Prairie 432

1 data User = User

2 { name :: String

3 , age :: Int

4 , id :: Int

5 }

6

7 class Record User where

8 data Field User a where

9 UserName :: Field User String

10 UserAge :: Field Age Int

11 UserId :: Field Age Int

12

13 tabulateRecord fromField =

14 User

15 { name = fromField UserName

16 , age = fromField UserAge

17 , id = fromField UserId

18 }

19

20 recordFieldLens field =

21 case field of

22 UserName -> lens name (\u n -> u { name = n })

23 UserAge -> lens age (\u a -> u { age = a })

24 UserId -> lens id (\u a -> u { id = a })

25

26 allFields =

27 [SomeField UserName, SomeField UserAge, SomeField UserId]

28

29 recordFieldLabel field =

30 case field of

31 UserName -> "name"

32 UserAge -> "age"

33 UserId -> "id"

34

35 instance (c Int, c String) => FieldDict c User where

36 getFieldDict field =

37 case field of

Case Study: Prairie 433

38 UserName -> Dict

39 UserAge -> Dict

40 UserId -> Dict

41

42 instance SymbolToField "name" User String where symbolToField = UserName

43 instance SymbolToField "age" User String where symbolToField = UserAge

44 instance SymbolToField "id" User String where symbolToField = UserId

That’s it! And now you can access all the functionality in the library.

23.12 Template Haskell

It’s not a lot of boilerplate. But it is boilerplate. It’d be nicer to not need
to write it. And it’s all so so so mechanical. Let’s generate the code with
TemplateHaskell.

Some folks like to think real hard and write beautiful code. Sometimes, I
like to do that, but more often, I’ll just jump right in and write whatever
garbage I need. So let’s start.

1 mkRecord :: Name -> DecsQ

This is themost commonsignaturewhengetting startedwith aTemplate
Haskell function. GivemeaName and I’ll give you abunchof declarations.
DecsQ is a synonym for Q [Dec]. I like to start at both ends - I know I’m
going to reify the Name into something useful, and I also know I am
going to be generating an instance fo Record, FieldDict, and several
SymbolToField instances.

Case Study: Prairie 434

1 mkRecord :: Name -> DecsQ

2 mkRecord u = do

3 ty <- reify u

4 ???

5 pure $

6 [recordInstance

7 , fieldDictInstance

8]

9 ++ symbolToFieldInstances

Let’s start from the demand side. We need a recordInstance :: Dec.
So let’s look up the constructors for Dec⁵. InstanceD is what we need.

1 let recordInstance =

2 InstanceD

3 _maybeOverlap

4 _cxt

5 _type

6 _recordDecs

We shouldn’t need any overlap or context information, since instances
should all be monomorphic. Nothing and [] can go in there. The typ
:: Type is the whole type of the instance. So if we’re making instance
Record User, that’s Record User.

1 let recordInstance =

2 InstanceD

3 Nothing

4 []

5 (ConT ''Record `AppT` ConT typeName)

6 []

So we know we’re going to need typeName to make this work. Let’s dig
that out of reify.

⁵https://hackage.haskell.org/package/template-haskell-2.16.0.0/docs/Language-Haskell-
TH.html#t:Dec

https://hackage.haskell.org/package/template-haskell-2.16.0.0/docs/Language-Haskell-TH.html#t:Dec
https://hackage.haskell.org/package/template-haskell-2.16.0.0/docs/Language-Haskell-TH.html#t:Dec
https://hackage.haskell.org/package/template-haskell-2.16.0.0/docs/Language-Haskell-TH.html#t:Dec

Case Study: Prairie 435

1 typeName <-

2 case ty of

3 TyConI dec ->

4 case dec of

5 DataD _cxt name [] _mkind [con] _derivs ->

6 pure name

7 NewtypeD _cxt name [] _mkind con _derivs ->

8 pure name

9 _ ->

10 fail "unsupported data structure"

11 _ ->

12 fail "unsupported type"

We’re only going to support data declarations (with a single constructor)
and newtypes. Anything else can’t really be called a record. We could
improve the error messages, but they’re fine for now. Let’s get back to
our Record instance. We’re going to start filling in the [Dec] it needs.

1 [fieldDataFamilyInstance

2 , recordFieldLensDec

3 , mkAllFields

4 , mkTabulateRecord

5 , mkRecordFieldLabel

6]

Let’s start with the data family instance. That’ll certainly demand a lot of
good stuff.

1 fieldDataFamilyInstance =

2 DataInstD cxt maybeTyvars ty maybeKind cons derivs

As above, cxt = [], there shouldn’t be any type variable binders, there
shouldn’t be a kind signature, and we also shouldn’t have any deriving
clauses. This means we can focus on the ty and cons.

Case Study: Prairie 436

1 DataInstD

2 []

3 Nothing

4 (ConT ''Field `AppT` ConT typeName `AppT` VarT (mkName "a"))

5 Nothing

6 fieldConstrs

7 []

Technically, it’s bad hygiene to use mkName "a" here. To be totally
proper, we’d want to use tyVar <- newName "a". newName generates a
totally fresh name that is guaranteed to not have any collisions. mkName
generates a name that literally is what you pass. It’s safe to use in cases
where name overlap doesn’t matter at all. Since we’re introducing a type
variable name here, and we won’t even be referring to it again, it’s safe.
Nowwe need to figure out our fieldConstructors. They’re going to be
a GadtC constructor.

1 fieldConstrs =

2 map mkConstr fields

3 mkConstr =

4 GadtC (_ :: [Name]) (_ :: [BangType]) (_ :: Type)

GadtC takes a list of [Name] because you can define multiple construc-
tors that share a signature.We knowwe’re going to be iterating over a list
of (fields :: [???]) to make this work out. Finally, we need to assign
the type of the constructor at the end.

1 mkConstr (fieldName, typ) =

2 GadtC [fieldName] []

3 (ConT ''Field `AppT` ConT typeName `AppT` typ)

We need the list to have shape [(Name, Type)] for this to work. Which
meansweneed the list of fields on the record, alongwith their types. That
information is stored on the Con for a record, as RecC Name [VarBang-
Type]. So now we need to modify our match on ty to bring the record
constructor into scope as well.

Case Study: Prairie 437

1 (typeName, con) <-

2 case ty of

3 TyConI dec ->

4 case dec of

5 DataD _cxt name [] _mkind [con] _derivs ->

6 pure (name, con)

7 NewtypeD _cxt name [] _mkind con _derivs ->

8 pure (name, con)

9 {- snip -}

10

11 names'types <-

12 case con of

13 RecC conName varBangTypes ->

14 pure $ map (\(n, _b, t) -> (n, t))

15 _ -> fail "unsupported constructor"

The Name given is the field name, like name or age. We want UserName.
But we also want to ignore the type name prefix, in case our users have
written something like userName for the field.

1 let mkConstrFieldName fieldName =

2 mkName

3 $ nameBase typeName

4 <> upperFirst (nameBase (stripTypeName fieldName))

5 stripTypeName n =

6 maybe n (mkName . lowerFirst) $

7 List.stripPrefix

8 (lowerFirst (nameBase typeName))

9 (nameBase n)

If we can’t strip the type nameprefix, thenwe just use the name as-is.We
can finally define fieldConstructors:

1 fieldConstructors =

2 map (\ (n, t) -> (mkConstrFieldName n, t)) names'types

Case Study: Prairie 438

And, with that, our data family instance is complete. mkAllFields
should be a fun next step. As a plain value, we can use ValD to construct
it. This accepts a Pat pattern, a Body definition, and a [Dec] that
would act as a where clause. We’re looking for a value like [SomeField
UserName, SomeField UserAge]. Abstractly, it’s map (\constr ->
SomeField constr) constrs, but with the usual TemplateHaskell
noise.

1 mkAllFields =

2 ValD (VarP 'allFields) (NormalB $ ListE $ someFields) []

3 someFields =

4 map (AppE (ConE ''SomeField) . ConE . fst) fieldConstructors

Next up is mkRecordFieldLabel. Here we want tomake a Text for each
field. We’re going to work with a case expression here, which uses the
CaseE constructor.

1 mkRecordFieldLabel <- do

2 fieldName <- newName "fieldName"

3 let body =

4 CaseE (VarE fieldName) $

5 flip map names'types $ \(n, _) ->

6 let constrFieldName =

7 mkConstrFieldName n

8 pat =

9 ConP constrFieldName []

10 bdy =

11 AppE (VarE 'Text.pack)

12 $ LitE $ StringL

13 $ nameBase $ stripTypeName n

14 in

15 Match pat (NormalB bdy) []

16 pure $

17 FunD 'recordFieldLabel

18 [Clause [VarP fieldName] (NormalB body) []

19]

Case Study: Prairie 439

It can be nice to use do blocks like this to preserve variable scoping.
fieldName is only in scope in thisdoblock, so I don’t need toworry about
the name escaping.

There’s a bit of redundancy here - we’re reusing the names'types vari-
ablebecauseweneed theoriginal fieldname. Itmaybe fruitful to convert
names'types into a list of a custom datatype that carries the various
things we care about from the field definition - the constructor name,
field name, type-stripped field name, field type, etc. But let’s ignore that
for now and just keep chugging.

recordFieldLens is going to be a little trickier. We’re going tomatch on
each constructor of the GADT andmake a lens for it.

1 let recordFieldLensDec =

2 FunD 'recordFieldLens [fieldLensClause]

fieldLensClause is a bit more clumsy to write, since we need fresh
variable names for the lambdas. Sowe’ll kinda staircase the scopes. First
we’ll worry about making our pattern matches.

1 fieldLensClause <- do

2 let mkMatch (fieldName, _typ) = do

3 recVar <- newName "rec"

4 newVal <- newName "newVal"

5 let constrPattern =

6 ConP (mkConstrFieldName fieldName) []

7 expr =

8 VarE 'lens

9 `AppE` VarE fieldName -- getter

10 `AppE` setter

11 setter =

12 LamE

13 [VarP recVar, VarP newVal]

14 (RecUpdE

15 (VarE recVar)

16 [(fieldName, VarE newVal)]

17)

18 pure $ Match constrPattern (NormalB expr) []

Case Study: Prairie 440

To make a Match, we need the constrPattern - which is mkConstr-
FieldName fieldName applied to the relevant ConP constructor. There
are no variables tomatch on, so we provide the empty list. Thenwe need
our expression. In Haskell, it’s lens getter setter, where setter is
some recordupdate on the field. In TemplateHaskell, we need the VarE
and AppE noise to make it work out. The setter is the interesting bit.
We construct a lambda (LamE) which takes a list of patterns. We’ll use
those fresh variables wemade up to ensure we don’t shadow any names
accidentally. Then, we begin making the RecUpd :: Exp -> [(Name,
Exp)].

Fortunately, the expression isn’t complicated, so the lambda can be
pretty simple.

1 arg <- newName "field"

2 body <- CaseE (VarE arg) <$> traverse mkMatch names'types

3 pure $ Clause [VarP arg] (NormalB body) []

The answer, as usual, is traverse.

I haven’t used many QuasiQuotes. I don’t tend to like them. They’re
often fragile and they don’t work, and I can never predict what’ll break.
Wouldn’t it have been nice if we could have written the lambda expres-
sion as:

1 [e| (\ rec newVal -> rec { $(fieldName) = newVal }) |]
Alas,

this gives us a parse error. Even TemplateHaskell doesn’t think record
fields are first class! Fortunately, we can use them to make our Symbol-
ToField instances well enough

Case Study: Prairie 441

1 symbolToFieldInstances <-

2 fmap concat $ for names'types $ \(fieldName, typ) -> do

3 let sym = litT (strTyLit (nameBase fieldName))

4 conTypeName = conT typeName

5 [d|

6 instance SymbolToField $(sym) $(conTypeName) $(pure typ)

7 where

8 symbolToField =

9 $(conE (mkConstrFieldName fieldName))

10 |]

Most of the constructors in the Template Haskell library have corre-
sponding “lifted” constructors that have a lowercase initial letter. So
ConT :: Name -> Type, and conT :: Name -> Q Type.

When QuasiQuoters work, they’re nice. But they just break often enough
that I rarely reach for them first, unless I know for sure that it’ll work. I’m
certain a good bit of the code I’ve written so far could be cleaned up with
QuasiQuotes.

Exercise:

Write the code fortabulateRecord’s TemplateHaskell defini-
tion. If you’re unsure how to proceed, the code is available on
GitHub⁶.

Remember, the structure looks like:

1 tabulateRecord fromField =

2 User

3 { name = fromField UserName

4 , age = fromField UserAge

5 }

So you’ll want to iterate over the record fields to create a
RecConE.

⁶https://github.com/parsonsmatt/prairie/blob/4ef22f23a30774df9698fcd0009d2104d228dfad/
src/Prairie/TH.hs

https://github.com/parsonsmatt/prairie/blob/4ef22f23a30774df9698fcd0009d2104d228dfad/src/Prairie/TH.hs
https://github.com/parsonsmatt/prairie/blob/4ef22f23a30774df9698fcd0009d2104d228dfad/src/Prairie/TH.hs
https://github.com/parsonsmatt/prairie/blob/4ef22f23a30774df9698fcd0009d2104d228dfad/src/Prairie/TH.hs

Case Study: Prairie 442

23.13 Conclusion

And, with that, I’ve explored a few approaches to an advanced Haskell
library feature. I picked one and implemented it. After picking up a lot
of boilerplate, I wrote a TemplateHaskell helper to make it all nice and
easy.

	Table of Contents
	Introduction
	An Opinionated Tour Guide
	About the Author

	Acknowledgements
	Principles
	Complexity
	Novelty
	Cohesion
	Empathy
	References

	I Building Haskell Teams
	Selling Haskell
	Assessing Receptiveness
	Software Productivity
	Statistics of Productivity
	Know Your Competition

	Learning and Teaching Haskell
	The Philology of Haskell
	Programming Is Hard To Learn
	Pick Learning Materials
	Write Lots of Code
	Don't Fear the GHC
	Start Simple
	Solve Real Problems
	Pair Programming
	A Dialogue
	References

	Hiring Haskellers
	The Double-edged Sword
	Juniors and Seniors
	Hiring Seniors
	Hiring Juniors

	Evaluating Consultancies
	Identifying the Target
	Well-Typed
	FP Complete

	II Application Structure
	The Beginning
	Abstraction for Mocking
	Forward Compatibility
	AppEnvironment
	The ReaderT Pattern
	Embed, don't Stack

	Three Layer Haskell Cake
	Layer 1: Imperative Programming
	Layer 2: Object Oriented Programming
	Layer 3: Functional Programming
	Examples

	Invert Your Mocks!
	Decomposing Effects
	Streaming Decomposition
	Plain ol' abstraction
	Decompose!!!
	What if I need to?

	Project Preludes
	Prelude Problems
	Custom Benefits
	Off-The-Shelf Preludes
	Nesting Preludes
	Downsides
	Using a Custom Prelude

	Optimizing GHC Compile Times
	The Project.Types Megamodule
	Package Splitting
	Big Ol' Instances Module
	TemplateHaskell
	Some random parting thoughts

	III Domain Modeling
	Type Safety Back and Forth
	The Ripple Effect
	Ask Only What You Need

	Keep Your Types Small…
	Expansion and Restriction
	Constraints Liberate
	Restrict the Range
	A perfect fit

	The Trouble with Typed Errors
	Monolithic error types are bad
	Boilerplate be gone!
	Type Classes To The Rescue!
	The virtue of untyped errors

	Exceptions
	Exceptions In Five Minutes
	Best Practices
	Hierarchies
	Reinventing
	Asynchronous Exceptions
	The Theory
	HasCallStack

	EDSL Design
	Tricks with do
	Overloaded Literals
	Type Inference Trick
	Fluent Interfaces
	Case Study: Weightlifting Logging
	Case Study: rowdy
	Case Study: hspec

	Growing Pains
	A Taxonomy of Breaking Changes
	Avoiding Breaking Changes
	Communicating To Users

	IV Interfacing the Real
	Testing
	Libraries and Tools
	Designing Code for Testing

	Logging and Observability
	On Debug.Trace
	Prefer do Notation
	Logging Contexts
	Libraries in Brief

	Databases
	Separate Database Types
	Migrations
	Access Patterns
	Conclusion

	V Advanced Haskell
	Template Haskell Is Not Scary
	A Beginner Tutorial
	wait this isn't haskell what am i doing here
	Constructing an AST
	Boilerplate Be Gone!

	Basic Type Level Programming
	The Basic Types
	The Higher Kinds
	Dynamically Kinded Programming
	Data Kinds
	GADTs
	Vectors
	Type Families
	This Sucks
	Heterogeneous Lists
	Inductive Type Class Instances
	Extensible Records
	Like what you read?

	Family Values
	Type Families
	Open or Closed Type Families?
	The Bridge Between Worlds
	Data Families
	Conclusion

	Trade-offs in Type Programming
	MPTCs
	MPTCs + Fundeps
	Associated Types
	Comparisons

	Case Study: Prairie
	Problem Statement:
	Prior Art
	The GADT Approach
	Improvements?
	Symbols
	Compare and Constrast
	Identify the Issue
	Generalize a GADT
	Fundeps
	More Class Please
	Refining the Class
	Template Haskell
	Conclusion

