


Full Stack Django and React

Get hands-on experience in full-stack web development with 
Python, React, and AWS

Kolawole Mangabo

BIRMINGHAM—MUMBAI



Full Stack Django and React

Copyright © 2023 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any 
form or by any means, without the prior written permission of the publisher, except in the case of brief quotations 
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. 
However, the information contained in this book is sold without warranty, either express or implied. Neither the 
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged 
to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products 
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the 
accuracy of this information.

Group Product Manager: Pavan Ramchandani
Publishing Product Manager: Kushal Dave
Senior Editor: Mark D’Souza
Senior Content Development Editor: Rakhi Patel
Technical Editor: Joseph Aloocaran
Copy Editor: Safis Editing
Project Coordinator: Aishwarya Mohan
Proofreader: Safis Editing
Indexer: Rekha Nair
Production Designer: Aparna Bhagat
Marketing Coordinator: Anamika Singh

First published: February 2023

Production reference: 1200123

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80324-297-2

www.packtpub.com

http://www.packtpub.com


To my mother, Fleur, and to the memory of my father, Idoumangoye, for their sacrifices and for 
exemplifying the power of determination. To my uncles, aunties, and grandparents, Prince, Fanick, 

Carine, Ghislain, Deo Gratias, and Virginie for being my biggest influencers throughout my life 
journey. To my friends and colleagues, Corentin, Kevin, Ruben, Lewis, and Celda for helping me 

become a better writer and learner.

– Kolawole Mangabo 



Contributors

About the author
Kolawole Mangabo is a software engineer, currently working as a frontend engineer, while regularly 
using React and Django to build web applications and backends of tech products in various industries, 
such as foodtech, fintech, and telecom. His goal in a team is to always build products that provide 
pixel-perfect, performant experiences while adjusting to business and user needs. When he is not 
coding, he spends most of his time writing and publishing articles on various websites on topics such 
as software architecture, testing, full stack development, and developer experience.



About the reviewers
Eleke Great (BEng) is a senior software developer with hands-on Django REST framework and 
ReactJS experience, creating microservices and dynamic UI for high-profile organizations and start-up 
companies in the US and throughout South America. He has been a Packt Publishing technical reviewer 
on another of their book projects, FastAPI React and MongoDB (FARM Stack). His other expertise is 
Next.js, Selenium, Google Cloud Platform, CI/CD, MongoDB, PostgreSQL databases, system design, 
and database architecture. He is also a full stack blockchain developer with hands-on experience in 
Web3 with Solidity, Web4, and Web5 with Rust on Solana. 

This book is a complete zero-to-hero guide to the DRP stack. The author dedicated time to breaking 
down Django REST framework and ReactJS and creating production-level, maintainable web applications 
so that someone from a non-programming background can understand it all and get up and running.

Okere Chinedu is a full stack software engineer from Nigeria, with 4 years of experience. He has 
worked for big tech companies as well as start-ups, located in the United States, the Middle East, 
and Africa. He has worked on multiple applications and written many tech articles. He has extensive 
knowledge of working with JavaScript, React, Node.js, and Python. When he isn’t writing code, he is 
either reading articles, writing one, sharing memes, or playing Call of Duty.





Preface� xv

Part 1: Technical Background

1
Creating a Django Project� 3

An overview of software development� 3
Understanding backend development� 4
Responsibilities of backend developers� 5

What is an API?� 6
Understanding REST APIs� 7

What is Django?� 8
Setting up the work environment� 10
Creating a virtual environment� 10

Installing Django� 11
Creating a sample project� 11

Configuring the database� 14
Postgres configuration� 15
Connecting the database� 16

Installing an HTTP request client� 18
Summary� 18
Questions� 18

2
Authentication and Authorization Using JWTs� 19

Technical requirements� 19
Understanding JWTs� 20
Understanding how JWTs are used in 
authentication� 21

Organizing a project� 21
Creating a user model� 23
What are Django models?� 23
Writing the User model� 25

Writing UserSerializer� 32
Writing UserViewset� 33
Adding a router� 35

Writing the user registration feature� 39
Adding the login feature� 45
Refresh logic� 48
Summary� 50
Questions� 50

Table of Contents



Table of Contentsviii

3
Social Media Post Management� 51

Technical requirements� 51
Creating the Post model� 52
Designing the Post model� 52
Abstraction� 53
Writing the AbstractSerializer� 55
Writing the AbstractViewSet� 56

Writing the Post model� 57
Writing the Post serializer� 60
Writing Post viewsets� 61
Adding the Post route� 63
Rewriting the Post serialized object� 66

Adding permissions� 67
Deleting and updating posts� 69
Adding the Like feature� 71
Adding the posts_liked field to the User model� 72
Adding the like, remove_like, and has_liked 
methods� 73
Adding the likes_count and has_liked fields 
to PostSerializer� 73
Adding like and dislike actions to PostViewSet� 75

Summary� 76
Questions� 76

4
Adding Comments to Social Media Posts� 77

Technical requirements� 77
Writing the Comment model� 78
Adding the Comment model� 79
Creating a comment in the Django shell� 80

Writing the comment serializer� 80
Nesting routes for the comment 
resource� 82

Creating nested routes� 84
Writing the CommentViewSet class� 85
Testing the comments feature with Insomnia� 87

Updating a comment� 89
Deleting a comment� 91
Summary� 92
Questions� 92

5
Testing the REST API� 93

Technical requirements� 93
What is testing?� 93
What is software testing?� 94
Why is software testing important?� 95
What are the various types of testing?� 95

Understanding manual testing� 95
Understanding automated testing� 96

Testing in Django� 97
The testing pyramid� 97



Table of Contents ix

Configuring the testing environment� 99
Writing your first test� 100

Writing tests for Django models� 101
Writing tests for the User model� 102
Writing tests for the Post model� 103
Writing tests for the Comment model� 105

Writing tests for your Django  
viewsets� 106
Writing tests for authentication� 107
Writing tests for PostViewSet� 109
Writing tests for CommentViewSet� 112
Writing tests for the UserViewSet class� 117

Summary� 118
Questions� 118

Part 2: Building a Reactive UI with React

6
Creating a Project with React� 121

Technical requirements� 121
Understanding frontend development�121
What is React?� 122

Creating the React project� 123
Installing Node.js� 123
Installing VS Code� 125
Adding VS Code extensions� 126
Creating and running a React app� 128
Installing a debugging plugin in the browser� 131

Configuring the project� 132
Adding React Router� 132
Adding React Bootstrap� 133

Creating the Home page� 134
Configuring CORS� 136

Useful ES6 and React features� 138
const and let� 138
Template literals� 139
JSX styling� 140
Props versus states� 141
The Context API� 143
useMemo� 144
Handling forms – controlled components and 
uncontrolled components� 145

Summary� 147
Questions� 147

7
Building Login and Registration Forms� 149

Technical requirements� 149
Understanding the authentication 
flow� 149
Writing the requests service� 150

Protected routes� 154
Creating a protected route wrapper� 154

Creating the registration page� 156
Adding a registration page� 156



Table of Contentsx

Registering the registration page route� 163

Creating the login page� 165
Adding the login page� 165
Registering the login page� 169

Refactoring the authentication flow 

code� 171
What is a hook?� 171
Writing code for a custom hook� 172
Using the functions in code� 175

Summary� 177
Questions� 177

8
Social Media Posts� 179

Technical requirements� 179
Creating the UI� 179
Adding the NavBar component� 181
Adding the Layout component� 184
Using the Layout component on the home page�186
Creating a post� 186
Adding the Toast component� 190
Adding toaster to post creation� 192
Adding the CreatePost component to the 

home page� 193

Listing posts on the home page� 196
Writing the Post component� 196
Adding the Post component to the home page� 201

Updating a post� 206
Minor refactoring� 208
Summary� 212
Questions� 212

9
Post Comments� 213

Technical requirements� 213
Creating a UI� 213
Tweaking the Post component� 214
Adding a back button to the Layout component�216
Creating the SinglePost component� 217
Creating a comment� 221

Listing the comments� 226

Deleting a comment� 230
Updating a comment� 231
Adding the UpdateComment modal� 231

Liking a comment� 237
Summary� 239
Questions� 239

10
User Profiles� 241

Technical requirements� 241 Listing profiles on the home page� 242



Table of Contents xi

Displaying user information on their 
profile page� 247
Configuring the default avatar� 249
Writing the ProfileDetails component� 251

Editing user information� 257

Adding the edit method to useUserActions� 257
The UpdateProfileForm component� 258
Creating the EditProfile page� 264

Summary� 266
Questions� 266

11
 Effective UI Testing for React Components� 267

Technical requirements� 267
Component testing in React� 267
The necessity of testing your frontend� 268
What to test in your React application� 268

Jest, the RTL, and fixtures� 268
Writing testing fixtures� 269
Running the first test� 270
Extending the RTL render method� 273

Testing authentication components� 274

Testing Post components� 278
Mocking the localStorage object� 278
Writing post fixtures� 279
Writing tests for the Post component� 280
Testing the CreatePost component� 282
Testing the UpdatePost component� 286

Snapshot testing� 289
Summary� 291
Questions� 291

Part 3: Deploying Django and React on AWS� 293

12
Deployment Basics – Git, GitHub, and AWS� 295

Technical requirements� 295
Basics of software deployment� 296
Tools and methods of web 
application deployment� 296
Using Git and GitHub� 297
Platforms for web application deployment� 301

Creating an EC2 instance� 301
Configuring the server for the Django project� 307
Postgres configuration and deployment� 308
Errors made when deploying on EC2� 310

Summary� 312
Questions� 313



Table of Contentsxii

13
 Dockerizing the Django Project� 315

Technical requirements� 315
What is Docker?� 315
Dockerizing the Django application� 316
Adding a Docker image� 316

Using Docker Compose for multiple 
containers� 320
Writing the docker-compose.yaml file� 321

Configuring environment variables 
in Django� 324
Writing NGINX configuration� 327
Launching the Docker containers� 328

Summary� 329
Questions� 330

14
Automating Deployment on AWS� 331

Technical requirements� 331
Explaining CI/CD� 331
CI� 332
CD� 332

Defining the CI/CD workflow� 333
What is GitHub Actions?� 333
How to write a GitHub Actions workflow file� 334

Configuring the backend for 
automated deployment� 335
Adding the GitHub actions file� 335
Configuring the EC2 instance� 337

Summary� 343
Questions� 344

15
Deploying Our React App on AWS� 345

Technical requirements� 345
Deployment of React applications� 345
What is a production build?� 346

Deploying on AWS S3� 346
Creating a build of Postagram� 346
Adding environment variables and building 
the application� 347
Deploying the React application on S3� 349

Automating deployment with 
GitHub Actions� 354
Writing the workflow file� 355

Summary� 357
Questions� 357



Table of Contents xiii

16
Performance, Optimization, and Security� 359

Technical requirements� 359
Revoking JWT tokens� 359
Adding a logout endpoint� 360
Handling the logout with React� 363

Adding caching� 365
The cons of caching� 365
Adding caching to the Django API� 366
Using caching on the endpoints� 369

Optimizing the React application 

build� 372
Integrating webpack� 373
Using pnpm� 376

Securing deployed applications with 
HTTPS with AWS CloudFront� 378
Configuring the React project with  
CloudFront� 378

Summary� 381
Questions� 381

Appendix� 383
Logging� 383
Database queries optimization� 383

Security� 383

Answers� 385

Index� 395

Other Books You May Enjoy� 406





Preface

Getting started with full stack development using Python or JavaScript can be daunting, mainly if you 
are a developer already using one of these languages and want to add a second language to your set 
of skills. If you are a developer already working with Django or React, or a developer with knowledge 
in Python or JavaScript and you want to learn how to build a full stack application from scratch with 
features such as authentication, CRUD operations, and a lot more, but you are also looking to learn 
how to deploy web applications on AWS using Docker, this book covers everything you need.

This book will help you to discover the full potential practices while combining the dual power of the 
two most popular frameworks – React and Django. We will build full stack applications including a 
RESTful API in the backend and an intuitive frontend while exploring the advanced features of both 
frameworks. We will start building a social media web application called Postagram from scratch 
while covering the important concepts, techniques, and best practices for end-to-end development.

We will see how the dynamic functionality of the React framework can be used to build your frontend 
systems and how the ORM layer of Django helps to simplify a database, which in turn boosts the 
development process of building a backend to build full stack applications.

By the end of the book, you will be able to create a dynamic full stack app starting from scratch on 
your own.

Who this book is for
This book is for Python developers who are familiar with Django but don’t know where to start when 
it comes to building a full stack application – more precisely, building a RESTful API. You will also 
find this book useful if you are a frontend developer with knowledge of JavaScript and looking to 
learn full stack development. If you are also an experienced full stack developer working with different 
technologies and you are looking to explore and learn new ones, this book is written for you.

What this book covers
Chapter 1, Creating a Django Project, shows how to create a Django project and make the required 
configurations with a database server.

Chapter 2, Authentication and Authorization Using JWTs, explains how to implement an authentication 
system using JSON Web Tokens and how to write custom permissions.



Prefacexvi

Chapter 3, Social Media Post Management, shows how to implement complex CRUD operations using 
serializers and ViewSets.

Chapter 4, Adding Comments to Social Media Posts, shows how to add comments to posts using 
database relations, serializers, and viewsets.

Chapter 5, Testing the REST API, introduces you to testing with Django and Pytest.

Chapter 6, Creating a Project with React, explains how to create a React project while configuring a 
good environment for development.

Chapter 7, Building Registration and Login Forms, explains how to implement authentication forms 
and logic on the frontend side of a full stack application.

Chapter 8, Social Media Posts, shows how to implement CRUD operations on the React frontend for 
social media posts.

Chapter 9, Post Comments, shows how to implement CRUD operations on the React frontend for 
social media comments.

Chapter 10, User Profiles, explains how to implement CRUD operations on the React frontend 
concerning profiles and how to upload an image.

Chapter 11, Effective UI Testing for React Components, introduces you to component testing using Jest 
and the React Testing Library.

Chapter 12, Deployment Basics – Git, GitHub, and AWS, introduces DevOps tools and terms and how 
to deploy a Django application directly on AWS EC2.

Chapter 13, Dockerizing the Django Project, shows how to dockerize a Django application using Docker 
and Docker Compose.

Chapter 14, Automating Deployment on AWS, shows how to deploy a dockerized application on EC2 
using GitHub Actions.

Chapter 15, Deploying Our React App on AWS, demonstrates how to deploy a React application on 
AWS S3 and automate the deployment using GitHub Actions.

Chapter 16, Performance, Optimization, and Security, shows you how to optimize your application 
using webpack, optimize database queries, and enhance the backend security.

To get the most out of this book
You will need Python 3.8+, Node.js 16+, and Docker installed on your machine for this book. All 
code and examples in this book are tested using Django 4.1 and React 18 on Ubuntu. When installing 
any React or JavaScript libraries, ensure that you have the latest installation command (npm, yarn, 



Preface xvii

and pnpm) from their documentation, and check whether there are any major changes related to the 
version used in this book.

Software/hardware covered in the book Operating system requirements

Python Windows, macOS, or Linux

JavaScript Windows, macOS, or Linux

PostgreSQL Windows, macOS, or Linux

Django Windows, macOS, or Linux

React Windows, macOS, or Linux

Docker Windows, macOS, or Linux

If you are using the digital version of this book, we advise you to type the code yourself or access 
the code from the book’s GitHub repository (a link is available in the next section). Doing so will 
help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Full-stack-Django-and-React. If there's an update to the code, it 
will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used in this book. 
You can download it here: https://packt.link/jdEHp.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file 
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “Once 
the package is installed, create a new file called pytest.ini at the root of the Django project.”

A block of code is set as follows:

>>> comment = Comment.objects.create(**comment_data)

>>> comment

https://github.com/PacktPublishing/Full-stack-Django-and-React
https://github.com/PacktPublishing/Full-stack-Django-and-React
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://packt.link/jdEHp


Prefacexviii

<Comment: Dingo Dog>

>>> comment.body

'A comment.'

When we wish to draw your attention to a particular part of a code block, the relevant lines or items 
are set in bold:

ENV = os.environ.get("ENV")

# SECURITY WARNING: keep the secret key used in production 
secret!

SECRET_KEY = os.environ.get(

   "SECRET_KEY", default="qkl+xdr8aimpf-&x(mi7)dwt^-
q77aji#j*d#02-5usa32r9!y"

)

# SECURITY WARNING: don't run with debug turned on in 
production!

DEBUG = False if ENV == "PROD" else True

ALLOWED_HOSTS = os.environ.get("DJANGO_ALLOWED_HOSTS", 
default="*").split(",")

Any command-line input or output is written as follows:

pip install drf-nested-routers

Bold: Indicates a new term, an important word, or words that you see on screen. For instance, words 
in menus or dialog boxes appear in bold. Here is an example: “Finally, select the Permissions tab 
and select Bucket Policy.”

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

mailto:customercare@packtpub.com
mailto:customercare@packtpub.com


Preface xix

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. 
If you have found a mistake in this book, we would be grateful if you would report this to us. Please 
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would 
be grateful if you would provide us with the location address or website name. Please contact us at 
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you 
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Share Your Thoughts
Once you’ve read Full Stack Django and React, we’d love to hear your thoughts! Please click here 
to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering 
excellent quality content.

http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
https://packt.link/r/1803242973
https://packt.link/r/1803242973


Prefacexx

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere? 
Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical 
books directly into your application. 

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content 
in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/9781803242972

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781803242972


Part 1:  
Technical Background

In this part of the book, you will learn how to build a REST API with Django and Django REST. This 
part provides the knowledge required to connect Django to a PostgreSQL database, add authentication 
using JSON Web Tokens, create RESTful resources supporting complex CRUD operations, and add tests 
to a Django application. We will specifically build the backend of a social media web application called 
Postagram with the most common features of a social media application, such as post management, 
comment management, and post likes.

This section comprises the following chapters:

•	 Chapter 1, Creating a Django Project 

•	 Chapter 2, Authentication and Authorization Using JWTs

•	 Chapter 3, Social Media Post Management

•	 Chapter 4, Adding Comments to Social Media Posts

•	 Chapter 5, Testing the REST API





1
Creating a Django Project

Django is one of the most famous backend frameworks written in Python and is often used to build 
simple or complex web applications. As for React, it’s one of the most widely used JavaScript libraries 
to create reactive and powerful user interfaces. In this chapter, we’ll focus on Django first.

In this chapter, we’ll briefly explain software development and, in particular, backend development 
in the context of what we’ll be building: a social network web application with Django and React. We’ll 
also talk about the most common tools used for backend development in Python – here in Django. 
Then, we will create a Django project and explain the most important parts of a Django project. After 
that, we’ll connect PostgreSQL to the Django project.

By the end of this chapter, you’ll understand concepts such as software development, frontend 
development, and backend development. You’ll also learn how to create a project in Django and start 
a server.

In this chapter, we’ll be covering the following topics:

•	 An overview of software development

•	 Understanding backend development

•	 What is an API?

•	 What is Django?

•	 Setting up the work environment

•	 Configuring the database

An overview of software development
Software development is a complex process full of many steps and many components. These components 
ensure that conceiving, specifying, designing, programming, documenting, and testing an application, 
a framework, or software is respected and well applied.



Creating a Django Project4

Generally, the software is made of the following two components:

•	 The backend: This represents what the user can’t see; it’s composed of the business logic and 
data manipulation from a database

•	 The frontend: This represents the interface provided to the user to interact with the 
whole application

The term frontend refers to the elements of a site or application that users see onscreen and with which 
they will interact. For example, all internet users will see a combination of HTML, CSS, and JavaScript 
on a website. It is these frontend programming languages that will be interpreted by the browser.

Typically, the frontend consists of HTML, CSS, JavaScript, and jQuery (or other UI libraries or 
frameworks) used to replicate a design. The design is created by the web designer who will create 
graphic models with dedicated tools, such as Photoshop or Figma.

Here, we’ll focus on web development. Web development is the part of software development 
focused on building websites and web applications, and the notion of web development relies on a 
client-server architecture.

The client-server architecture represents an environment in which applications running on a client 
machine can communicate with other applications installed on a server machine, which provides 
services or data from a database.

On the web, the client will simply be a browser used to request a page or a resource from a server.

Here’s a simple diagram demonstrating this:

Figure 1.1 – Client-server architecture

Now that we have a better understanding of software development, particularly web development, 
let’s move on to a component of it: backend development.

Understanding backend development
Backend development handles the behind-the-scenes of modern applications. Most of the time, 
it’s made of code that connects to the database, manages user connections, and also powers web 
applications or the API.



Understanding backend development 5

The focus of backend development code is more on the business logic. It primarily focuses on how 
an application works and the functionality and logic powering the application.

For example, let’s talk about a web application built to manage books. Let’s suppose that the application 
is connected to an SQL database.

Whatever language is used to build the application and the structure, here are some requirements 
that represent the business logic and that primarily depend on the backend rather than the frontend:

•	 Adding a book (only for admin): This supposes that the client (frontend) should be able to 
make a request to an API powered using whatever language is built for the backend, containing 
the data needed to create a new entry in the database that represents a book. This action is 
only available to admins.

•	 Listing all books: This supposes that the client should also be able to make a request to the API, 
and this API should send as a response a list of all the books in JSON/XML format.

Just by taking a look at these two requirements, we can quickly understand that the frontend will just 
be the interface through which to request these actions. However, the backend will (taking the first 
requirement as an example) make sure that the incoming request is possible (checking for permissions 
such as whether the user making the request is really an admin) and that the data in the request is valid 
– only after that can data be safely registered in the database. Backend developers use programming 
languages ​​such as Python, PHP, and Ruby to set up and configure the server. These tools will allow 
them to store, process, and modify information. To make these programming languages ​​even more 
practical, developers will improve them with frameworks such as Symfony, Ruby on Rails, CakePHP, 
or CodeIgniter. These tools will make development faster and more secure. They must then ensure 
that these tools are always up to date and facilitate the maintenance required.

A backend developer is therefore responsible for creating and managing all the elements invisible 
to the end user. It is therefore they who are responsible for all the functionalities of the site or the 
application. They are also responsible for creating the database which will allow, among other things, 
the information provided by users to be retained. For example, the backend developer will use the 
databases to find the usernames and passwords that customers have used to connect. It is possible to 
train for this profession by training in web development or even training in Python.

Responsibilities of backend developers

The backend is typically made of three major parts:

•	 Server: A machine or an application (NGINX) that receives requests

•	 Application: A running application on the server that receives the requests, validates these 
requests, and sends an appropriate response

•	 Database: Used to store data



Creating a Django Project6

Thus, the responsibilities of backend programmers could easily involve writing APIs, writing code to 
interact with a database, creating modules or libraries, also working on business data and architecture, 
and much more.

They also have to do the following:

•	 Coordinate and communicate with frontend developers to transfer data efficiently to the client 
side of the application

•	 Collaborate with quality assurance engineers to optimize the server-side processes and also 
pass some security checks

•	 Optimize the application when the number of requests or users scales as well

•	 Analyze the requirements of the project and create a simple structure to handle bugs and errors

•	 Propose efficient solutions for cloud hosting but also build CI/CD pipelines

The backend architecture actually helps build one of the most common interfaces for consuming data in 
the software industry: an Application Programming Interface (API). Let’s learn more about the term.

What is an API?
In this book, we’ll primarily be building an API – so, what is an API?

Before answering this question, just remember that most of the internet is powered by Representational 
State Transfer (REST) or RESTful APIs. An API simplifies the way data is exchanged between 
applications or machines. It consists mainly of two components:

•	 The technical specification, which describes the data exchange options between the parties, with 
the specification made in the form of a request for data delivery protocols and data processing

•	 The software interface (the programming code), which is written to the specification that 
represents it

For example, if the client side of your application is written in JavaScript and the server side is written 
in PHP, you’ll need to create a web API with PHP (as data comes from the database), which will help 
you write the rules and routes that will be used to access data.

Web APIs are relatively common and there are different specifications and protocols. The goal of API 
specification is to standardize—because of different programming languages and different Operating 
Systems (OSs)—exchanges between two or more web services. For example, you’ll find the following:

•	 Remote Procedure Call (RPC): A protocol that can be used by a program to request a service 
from a program on another computer on a network that it does not need to know the details 
of. This is sometimes called a function or subroutine call.



What is an API? 7

•	  Simple Object Access Protocol (SOAP): An XML-based communication protocol that 
allows applications to exchange information with each other over HTTP. It therefore allows 
access to web services and the interoperability of applications across the web. SOAP is a 
simple and lightweight protocol that relies entirely on established standards such as HTTP 
and XML. It is portable and therefore independent of any OS and type of computer. SOAP is 
a non-proprietary specification.

•	 REST/RESTful: A style of architecture for building applications (web, intranet, or web service). 
This is a set of conventions and best practices to be observed, not a technology in its own 
right. The REST architecture uses the original specifications of the HTTP protocol, rather than 
reinventing an overlay (as SOAP or XML-RPC do, for example):

	� Rule 1: The URL is a resource identifier

	� Rule 2: HTTP verbs are identifiers of operations

	� Rule 3: HTTP responses are representations of resources

	� Rule 4: Links are relations between resources

	� Rule 5: A parameter is an authentication token

In this book, we’ll be building REST APIs using Django and Django REST, so let’s get to know REST 
a bit better.

Understanding REST APIs

REST is usually the way to go when developers want to build an API. REST is a simple alternative to 
SOAP and RPC, as it makes it easier to write the logic to access resources; resources here are represented 
by a unique URL available with one request to this URL.

RESTful APIs use HTTP requests (or methods) to interact with resources:

•	 GET: The most commonly used method in APIs and websites. This method is used to retrieve 
data from a server at a specified resource. This resource is an endpoint returning an object or 
a list of objects in JSON or XML most of the time.

•	 POST: The POST method is a basic method for requesting information processing from the 
server. These requests are supposed to bring mechanisms specific to the server into play and 
cause communications with other modules, or even other servers, to process said data. Therefore, 
it is quite likely that two identical POST requests will receive different or even semantically 
opposite responses. The data to be processed is specified in the body of the request. The 
document designated by the request via the page is the resource that must process the data 
and generate the response.



Creating a Django Project8

•	 HEAD: The HEAD method is used to query the header of the response, without the file being 
sent to you immediately. This is useful, for example, if large files need to be transferred: thanks 
to the HEAD request, the client can be informed of the size of the file first and only then decide 
whether to receive the file.

•	 OPTIONS: This is a diagnostic method, which returns a message that is useful primarily for 
debugging and the like. This message basically indicates, surprisingly, which HTTP methods 
are active on the web server. In reality, it’s rarely used for legitimate purposes these days, but it 
does give potential attackers a bit of help – it can be seen as a shortcut to finding another hole.

•	 DELETE and PUT: These methods are supposed to allow a document to be uploaded (to the 
server) or deleted without going through an File Transfer Protocol (FTP) server or the like. 
Obviously, this can cause file replacements, and therefore very large security breaches on a server. 
Therefore, most web servers require a special configuration with a resource or a document 
responsible for processing these requests. The document referred to by the request is the one to 
be replaced (or created), and the content of the document is in the body of the request. In theory, 
URL parameters and the fragment identifier should be prohibited or ignored by the server. In 
practice, they are generally transmitted to the resource responsible for processing the request.

•	 PATCH: The PATCH method of an HTTP request applies partial changes to a resource.

•	 TRACE: The TRACE method can be used to trace the path that an HTTP request takes to the 
server and then to the client.

•	 CONNECT: This method is supposed to be used to request the use of the server as a proxy. Not 
all servers necessarily implement them.

One interesting benefit is that RESTful systems support different data formats, such as plain text, 
HTML, YAML, JSON, and XML.

As mentioned previously, in this book, we’ll be building REST APIs using Django and Django REST.

What is Django?
Django is an advanced web framework that was first released in 2005. It is written in Python and 
makes use of the Model-View-Controller (MVC) architectural pattern. This pattern is commonly 
defined as follows:

•	 Model: Corresponds to all the data-related logic. It’s deeply connected to the database, as it 
provides the shape of the data but also methods and functions for Create, Read, Update, and 
Delete (CRUD) operations.

•	 View: Handles the UI logic of the application.

•	 Controller: Represents a layer between the model and view. Most of the time, controllers 
interpret the incoming requests from the view, manipulate the data provided by the model 
component, and interact with the view again to render the final output.



What is Django? 9

In Django, this will be referred to as the Model-View-Template (MVT) architecture with the template 
corresponding to the view and the view here represented by the controller. Here’s a simple representation 
of the MVT architecture:

Figure 1.2 – MVT architecture

Django is a web framework that adopts the Batteries included approach. When developing a custom 
web application, Django provides the tools required to speed up the development process. It provides 
code and tools for common operations such as database manipulation, HTML templates, URL routing, 
session management, and security.

Django allows developers to build all kinds of web applications (social networks, news sites, and 
wikis) with all the necessary basics, such as application security, made available from the start to 
allow developers to fully concentrate on most of their projects. Django provides protection against 
commons attacks – cross-site scripting, SQL injection, and much more.

Here, we’ll also be using Django REST Framework (DRF). It’s the most mature, testable, well-
documented, and easily extendable framework, which will help create powerful RESTful APIs when 
coupled with Django. The combination of Django and the DRF is used by large companies such as 
Instagram, Mozilla, and even Pinterest.

When this framework is coupled with Django, the view will be replaced by routes or endpoints. We’ll 
discuss this concept later in the book – but why build an API with Django?

It’s true that traditional Django supports client languages such as HTML, CSS, and JavaScript. This 
helps build user interfaces that are served by the server and the performance is always impressive.

However, what if you have many machines that’ll access resources on the Django server? It’s true that 
if these machines are running applications based on JavaScript, we can always use the traditional 
Django way.

What if it’s a mobile application? What if it’s a service written with PHP?



Creating a Django Project10

That’s where an API can really be useful. You can have as many machines as you want requesting 
data from your API without issue, irrespective of the technology or the language used to build the 
applications that these machines are running.

Now that you have an idea about what Django is, let’s set up the working environment and create our 
first server in Django.

Setting up the work environment
Before starting to work with Django, we must make sure you have a great environment, whatever OS 
you are using right now.

First of all, make sure you have the latest version of Python installed. For this book, we’ll be working 
with Python 3.10.

If you are using a Windows machine, go to the official download page at https://www.python.
org/downloads/ and download the relevant version.

For Linux users, you can download it using the default repository package download manager.

Creating a virtual environment

Now that we have Python installed, we have to ensure that we have virtualenv installed:

python3 -m pip install --user virtualenv

See the following for Windows users:

py -m pip install --user virtualenv

Once this is done, we can now create a virtual environment – but why?

There are two types of environments when developing with Python: the global environment and the 
local environment.

If you just enter pip install requests randomly in the terminal, the package will be installed and can 
be accessed globally: this means accessed anywhere on your machine. Sometimes, you want to isolate 
the working environment to avoid version conflicts. For example, globally you may be working with 
Python 3.5, which supports Django 2.x versions. However, for this project, you want to use Python 3.10 
and the latest version of Django – here, 4.0. Creating a virtualenv environment helps you with that.

Now that we have virutalenv installed, we can create and activate the virtualenv environment 
– but before that, create a directory called django-api. We’ll be building the Python project here.

See the following for Unix or macOS:

python3 -m venv venv

https://www.python.org/downloads/
https://www.python.org/downloads/


Setting up the work environment 11

See the following for Windows:

py -m venv venv

These preceding commands will create the venv directory containing the installed Python packages 
and the necessary configuration to access these packages when the virtual environment is activated. 
The next step is to activate the virtual environment. This will help us install the packages we need to 
start working on.

See the following for Unix or macOS:

source venv/bin/activate

See the following for Windows:

.\venv\Scripts\activate

Great! Next, let’s install the Django package.

Installing Django

There are two ways to install packages in Python. You can easily just run pip install package_
name.

Alternatively, you can write the package name with the version in a text file. I’ll go with the latter but 
feel free to use whatever version works for you.

Just understand that there can be some changes between the version and it can affect your project. 
For more similarities with what we’ll be using here, you can also use the latter option.

Great – let’s create a file named requirements.txt at the root of the django-api directory 
and add the Django package name:

Django==4.0

Great! Now, run pip install -r requirements.txt to install Django.

To make sure everything is working, we’ll quickly create a simple project.

Creating a sample project

To create a new project, we’ll use the django-admin command. It comes with options we can use 
to create projects in Django:

django-admin startproject CoreRoot .



Creating a Django Project12

Don’t forget to add the . dot at the end of this command. This will actually generate all the files in the 
current directory instead of creating another directory to put all the files in.

You should have a structure of a file such as this:

Figure 1.3 – File structure

Before starting the server, let’s run the migrations:

python manage.py migrate

You’ll have a similar output:

Operations to perform:

  Apply all migrations: admin, auth, contenttypes, sessions

Running migrations:

  Applying contenttypes.0001_initial... OK

  Applying auth.0001_initial... OK

  Applying admin.0001_initial... OK

  Applying admin.0002_logentry_remove_auto_add... OK

  Applying admin.0003_logentry_add_action_flag_choices... OK

  Applying contenttypes.0002_remove_content_type_name... OK

  Applying auth.0002_alter_permission_name_max_length... OK

  Applying auth.0003_alter_user_email_max_length... OK

  Applying auth.0004_alter_user_username_opts... OK

  Applying auth.0005_alter_user_last_login_null... OK

  Applying auth.0006_require_contenttypes_0002... OK

  Applying auth.0007_alter_validators_add_error_messages... OK

  Applying auth.0008_alter_user_username_max_length... OK

  Applying auth.0009_alter_user_last_name_max_length... OK

  Applying auth.0010_alter_group_name_max_length... OK

  Applying auth.0011_update_proxy_permissions... OK

  Applying auth.0012_alter_user_first_name_max_length... OK

  Applying sessions.0001_initial... OK

Migrations are just a way to propagate changes made to the model in the database schema. As Django 
also comes with some models (such as the User model you can use for authentication), we need 



Setting up the work environment 13

to apply these migrations. When we write our own models, we’ll also be creating migrations files 
and migrating them. Django has object-relational mapping (ORM) that automatically handles the 
interaction with the database for you.

Learning SQL and writing your own queries is quite difficult and demanding when you are new to it. 
It takes a long time and is quite off-putting. Fortunately, Django provides a system to take advantage 
of the benefits of an SQL database without having to write even a single SQL query!

This type of system is called ORM. Behind this somewhat barbaric-sounding name hides a simple 
and very useful operation. When you create a model in your Django application, the framework will 
automatically create a suitable table in the database that will save the data relating to the model.

No need to write SQL commands here – we’ll just write code in Python that will be directly translated 
into SQL. python manage.py migrate will then apply these changes to the database.

Now, run python manage.py runserver. You’ll see a similar output, and you’ll also have your 
server running at https://localhost:8000.

Just hit this URL in your browser and you will see something such as this:

Figure 1.4 – Welcome page of the Django running server

Great – we’ve just installed Django and started a Django server. Let’s talk about the structure of 
the project.

https://localhost:8000


Creating a Django Project14

Discussing the sample project

In the last part, we’ve briefly talked about how to create a virtualenv environment with Python. 
We’ve also created a Django project and made it run.

Let’s talk quickly about the project.

You may have noticed some files and directories in the django-api directory. Well, let’s quickly 
talk about these:

•	 manage.py: This is a utility provided by Django for many different needs. It’ll help you create 
projects and applications, run migrations, start a server, and so on.

•	 CoreRoot: This is the name of the project we’ve created with the django-admin command. 
It contains files such as the following:

	� urls.py: This contains all the URLs that will be used to access resources in the project:

from django.contrib import admin

from django.urls import path

urlpatterns = [

     path('admin/', admin.site.urls),

]

	� wsgi.py: This file is basically used for deployment but also as the default development 
environment in Django.

	� asgi.py: Django also supports running asynchronous codes as an ASGI application.

	� settings.py: This contains all the configurations for your Django projects. You can find 
SECRET_KEY, the INSTALLED_APPS list, ALLOWED_HOST, and so on.

Now that you are familiar with the structure of a Django project, let’s see how to configure the project 
to connect to a database.

Configuring the database
Django, by default, uses sqlite3 as a database, which is an in-process library that implements a fast 
self-contained, zero-configuration, serverless, transactional SQL database engine. It’s very compact 
and easy to use and set up. It’s ideal if you are looking to quickly save data or for testing. However, it 
comes with some disadvantages.

First of all, there are no multi-user capabilities, which means that it comes with a lack of granular 
access control and some security capabilities. This is due to the fact that SQLite reads and writes 
directly to an ordinary disk file.



Configuring the database 15

For example, in our project, after running the migrations, you’ll notice the creation of a new file, 
db.sqlite3. Well, this is our database actually.

We will be replacing it with a more powerful SMDB called Postgres.

Postgres configuration

PostgreSQL is one of the world’s most advanced enterprise-class open source database management 
systems, developed and maintained by the PostgreSQL global development group. It’s a powerful and 
highly extensible object-relational SQL database system that comes with interesting features such as 
the following:

•	 User-defined types

•	 Table inheritance

•	 Asynchronous replication

•	 Multi-user capabilities

These are the features you will be looking for in a database, mostly when working in a development 
or production environment.

According to your OS, you can download Postgres versions at https://www.postgresql.
org/download/. In this book, we are working with PostgreSQL 14.

Once it’s done, we’ll install a PostgreSQL adapter for Python, psycopg:

pip install psycopg2-binary

Don’t forget to add this to the requirements.txt file:

Django==4.0

psycopg2_binary==2.9.2

Great – now that we have the adapter installed, let’s quickly create the database we’ll use for this project.

For that, we need to connect as a Postgres user in the terminal and then access the psql terminal. 
In that terminal, we can enter SQL commands.

For Linux users, you can log in as follows:

sudo su postgres

Then, enter psql.

https://www.postgresql.org/download/
https://www.postgresql.org/download/


Creating a Django Project16

Great – let’s create the database:

CREATE DATABASE coredb;

To connect to the database, we need USER with a password:

CREATE USER core WITH PASSWORD 'wCh29&HE&T83';

It’s always a good habit to use strong passwords. You can generate strong passwords at https://
passwordsgenerator.net/ – and the next step is to grant access to our database to the new user:

GRANT ALL PRIVILEGES ON DATABASE coredb TO core;

We are nearly done. We also need to make sure this user can create a database. This will be helpful when 
we can run tests. To run tests, Django will configure a full environment but will also use a database:

 ALTER USER core CREATEDB;

With that, we are done with the creation of the database. Let’s connect this database to our Django project.

Connecting the database

Connecting the database to Django requires some configurations. Then, we have to open the 
settings.py file, look for a database configuration, and then modify it.

In the settings.py file, you’ll find a similar line:

# Database

# https://docs.djangoproject.com/en/4.0/ref        /
settings/#databases

DATABASES = {

    'default': {

        'ENGINE': 'django.db.backends.sqlite3',

        'NAME': BASE_DIR / 'db.sqlite3',

    }

}

Great – as you can see, the project is still running on the SQLite3 engine.

Remove this content and replace it with this:

DATABASES = {

    'default': {



Configuring the database 17

        'ENGINE': 'django.db.backends.postgresql_psycopg2',

        'NAME': coredb,

        'USER': 'core',

           'PASSWORD': 'wCh29&HE&T83',

        'HOST': 'localhost',

        'PORT': '5342',

    }

}

We’ve just modified the database engine but also filled in information such as the name of the database, 
the user, the password, the host, and the port.

The ENGINE key for the MySQL database varies. Besides that, there are a few additional keys, such 
as USER, PASSWORD, HOST, and PORT:

•	 NAME: This key stores the name of your MySQL database

•	 USER: This key stores the username of the MySQL account to which the MySQL database will 
be connected

•	 PASSWORD: This key stores the password for this MySQL account

•	 HOST: This key stores the IP address at which your MySQL database is hosted

•	 PORT: This key stores the port number on which your MySQL database is hosted

The configuration is done. Let’s run the migrations and see whether everything works okay:

python manage.py migrate

You will get a similar output in the terminal:

Operations to perform:

  Apply all migrations: admin, auth, contenttypes, sessions

Running migrations:

  Applying contenttypes.0001_initial... OK

  Applying auth.0001_initial... OK

  Applying admin.0001_initial... OK

  Applying admin.0002_logentry_remove_auto_add... OK

  Applying admin.0003_logentry_add_action_flag_choices... OK

  Applying contenttypes.0002_remove_content_type_name... OK

  Applying auth.0002_alter_permission_name_max_length... OK

  Applying auth.0003_alter_user_email_max_length... OK



Creating a Django Project18

  Applying auth.0004_alter_user_username_opts... OK

  Applying auth.0005_alter_user_last_login_null... OK

  Applying auth.0006_require_contenttypes_0002... OK

  Applying auth.0007_alter_validators_add_error_messages... OK

  Applying auth.0008_alter_user_username_max_length... OK

  Applying auth.0009_alter_user_last_name_max_length... OK

  Applying auth.0010_alter_group_name_max_length... OK

  Applying auth.0011_update_proxy_permissions... OK

  Applying auth.0012_alter_user_first_name_max_length... OK

  Applying sessions.0001_initial... OK

Great! We’ve just configured Django with PostgreSQL.

Installing an HTTP request client
When developing an API as a backend developer, it’s a good habit to have an API client to test your 
API and make sure it behaves as you needed. API clients are packages, or libraries to send HTTP 
requests to an API. A great majority supports features such as SSL checking, authentication, and 
header modification. In this book, we’ll be working with Insomnia. It’s lightweight and simple to use 
and customize.

To download a version of Insomnia that suits your OS, go to the following page: https://
insomnia.rest/download.

Summary
In this chapter, we explored the world of backend development to clarify the roles and responsibilities 
of a backend developer. We also talked about APIs, mostly REST APIs, which will be built in this 
book. We’ve also had a brief introduction to Django, the MVT architecture used by the framework, 
and connected a PostgreSQL database to the Django project.

In the next chapter, we will dig deeper into Django by creating our first models, tests, and endpoints.

Questions
1.	 What is a REST API?

2.	 What is Django?

3.	 How to create a Django project?

4.	 What are migrations?

5.	 What is a virtual environment in Python?

https://insomnia.rest/download
https://insomnia.rest/download


2
Authentication and 

Authorization using JWTs

In this chapter, we’ll dive deeper into Django and its architecture. We’ll be working with models, 
serializers, and viewsets to create an API that can receive HTTP requests as well as return a response. 
This will be done by building an authentication and authorization system using JSON Web Tokens 
(JWTs) to allow users to create an account, log in, and log out.

By the end of this chapter, you’ll be able to create Django models, write Django serializers and validation, 
write viewsets to handle your API requests, expose your viewsets via the Django REST routers, create 
an authentication and authorization system based on JWTs, and understand what a JWT is and how 
it helps with authentication and permissions.

We will be covering the following topics in this chapter:

•	 Understanding JWTs

•	 Organizing a project

•	 Creating a user model

•	 Writing the user registration feature

•	 Adding the login feature

•	 Refresh logic

Technical requirements
For this chapter, you’ll need to have Insomnia installed on your machine to make requests to the API 
we’ll be building.

You can also find the code of this chapter at https://github.com/PacktPublishing/
Full-stack-Django-and-React/tree/chap2.

https://github.com/PacktPublishing/Full-stack-Django-and-React/tree/chap2
https://github.com/PacktPublishing/Full-stack-Django-and-React/tree/chap2


Authentication and Authorization using JWTs20

Understanding JWTs
Before writing the authentication feature, let’s explain what a JWT is. As mentioned earlier, JWT 
stands for JSON Web Token. It’s one of the most used means of authentication in web applications 
but also helps with authorization and information exchanges.

According to RFC 7519, a JWT is a JSON object defined as a safe way of transmitting information 
between two parties. Information transmitted by JWT is digitally signed so it can be verified and trusted.

A JWT contains three parts—a header (x), a payload (y), and a signature (z)—that are separated 
by a dot:

xxxxx.yyyyy.zzzzz

•	 Header

The header of the JWT consists of two parts: the type of token and the signing algorithm being 
used. The signing algorithm is used to ensure that the message is authentic and not altered.

Here’s an example of a header:

{

    "alg": "RSA",

    "typ": "JWT"

}

 Signing algorithms are algorithms used to sign tokens issued for your application or API.

•	 Payload

The payload is the second part that contains the claims. According to the official JWT 
documentation (https://jwt.io/introduction), claims are statements about an 
entity (typically, the user) and additional data.

Here’s an example of a payload:

{

  "id": "d1397699-f37b-4de0-8e00-948fa8e9bf2c",

  "name": "John Doe",

  "admin": true

}

In the preceding example, we have three claims: the ID of the user, the name of the user, and 
also a Boolean for the type of user.

https://jwt.io/introduction


Organizing a project 21

•	 Signature

The signature of a JWT is the encoded header, the encoded payload plus a secret, and an 
algorithm specified in the header, all of them combined and signed.

For example, it’s possible to create a signature the following way using the RSA algorithm:

RSA(

  base64UrlEncode(header) + "." +

  base64UrlEncode(payload),

  secret)

The role of the signature is to track whether information has been changed.

But how are JWTs actually used in authentication?

Understanding how JWTs are used in authentication

Each time a user successfully logs in, a JWT is created and returned. The JWT will be represented as 
credentials used to access protected resources. The fact that it’s possible to store data in a JWT makes 
it vulnerable. That’s why you should specify an expiration time when creating a JWT.

In this book, we’ll be using JWTs in two ways. To make it simple, we’ll have two types of tokens:

•	 An access token: Used to access resources and handle authorization

•	 A refresh token: Used to retrieve a new access token

But why use two tokens? As we stated earlier, a JWT is generated when users log in. Moreover, JWTs 
used to access resources should have a short lifespan. This means that after the JWT has expired, 
the user has to log in again and again – and no user wants the login page to appear every 5 minutes.

That’s where a refresh token is useful. It’ll contain the essential information needed to verify the user 
and generate a new access token.

Now that we understand the purpose of JWTs, let’s learn more about models in Django while creating 
the user model.

Organizing a project
When working with Django, you’ll have to create many apps to handle different parts of a project. For 
example, you can have a different application for authentication, and another for payments or articles. 
To have a clean and well-organized project, we can create a Django application that will contain all 
the apps we will create for this book.



Authentication and Authorization using JWTs22

At the root of the project, run the following command:

django-admin startapp core

A new application will be created. Remove all the files in this app except for the apps.py file and 
the __init__.py file. Inside apps.py, add the following line:

core/apps.py

from django.apps import AppConfig

class CoreConfig(AppConfig):

   default_auto_field = 'django.db.models.BigAutoField'

   name = 'core'

   label = 'core'

Register the apps in the setting.py file of the project:

CoreRoot/settings.py

# Application definition

INSTALLED_APPS = [

   'django.contrib.admin',

   'django.contrib.auth',

   'django.contrib.contenttypes',

   'django.contrib.sessions',

   'django.contrib.messages',

   'django.contrib.staticfiles',

   'core'

]

INSTALLED_APPS is a Django settings configuration, which is a list of Django apps within a project.

We can now create the user application with confidence and write our first model.



Creating a user model 23

Creating a user model
Unless you are creating a simple web application, there is little chance of avoiding the necessity to 
interact with a database, particularly having an account feature that requires users to register or log 
in to use your web application.

Before talking about the account feature, let’s learn more about Django models and what problems 
they resolve.

What are Django models?

If you need to connect your application to a database, particularly SQL, the first assumption that 
comes to mind is that you’ll have to work directly with the database via SQL queries – and if that’s 
true, it can be fun, but it’s not the same for everyone; some developers may find SQL complex. You 
are no longer focusing on writing the application logic in your own language. Some tasks can become 
repetitive, such as writing SQL scripts to create tables, getting entries from the database, or inserting 
or updating data.

As you’ll see, the more the code base evolves, the more difficult it becomes to maintain both simple 
and complex SQL queries in your code base. This is more of an issue if you are working with multiple 
databases, which will require you to learn many SQL languages. For example, there are a lot of SQL 
databases and each one implements SQL in its own way.

Fortunately, in Django, this messy issue is solved by using a Django model to access the database. 
This doesn’t mean that you don’t have to write SQL queries: it’s just that you don’t have to use SQL at 
all unless you want to.

Django models provide object-relational mapping (ORM) to the underlying database. ORM is a 
tool that simplifies database programming by providing a simple mapping between the object and 
the database. Then, you don’t necessarily need to know the database structure or write complex SQL 
queries to manipulate or retrieve data from the database.

For example, creating a table in SQL will require writing a long SQL query. Doing this in Python will 
just require writing a class inheriting from the django.db package (Figure 2.1):



Authentication and Authorization using JWTs24

Figure 2.1 – Comparison between the Django ORM and SQL queries

In the preceding figure, you can see the SQL statement, which requires some knowledge of the syntax, 
as well as the fields and the options. The second code from the Django ORM does exactly the same 
thing but in a more Pythonic and less verbose manner.

Writing models with Django comes with several advantages:

•	 Simplicity: Writing queries in Python may not be as clear as writing in SQL, but it’s less error-
prone and more efficient, as you don’t have to control which type of database you are working 
with before trying to understand the code.

•	 Consistency: SQL is inconsistent across different databases. Working with Django models 
creates an abstraction and helps you focus on the most important tasks.

•	 Tracking: It’s even easier to track database design changes working with Django models. It’s 
done by reading migration files written in Python. We’ll discuss this more in the next chapter.

Notice that you also have access to model managers. Django Manager is a class that behaves as an 
interface through which Django models interact with databases. Every Django model, by default, 
inherits the models.Manager class that comes with the necessary methods to make Create, Read, 
Update and Delete (CRUD) operations on the table in the database.



Creating a user model 25

Now that we have a better understanding of Django models, let’s create the first model in this project, 
the User model. Working with our first model, we’ll also learn how to use the basic methods of the 
Django ORM to perform CRUD operations.

Writing the User model

In the previous section, we saw how a model is represented as a class and how this can basically be 
created as a table in the database.

Talking about the User model, Django comes with a pre-built-in User model class that you can 
use for basic authentication or a session. It actually provides an authentication feature you can use to 
quickly add authentication and authorization to your projects.

While it’s great for most use cases, it has its limitations. For example, in this book, we are building a 
social media web application. The user in this application will have some bio or even an avatar. Why 
not also have a phone number for two-factor authentication (2FA)?

Actually, the User model of Django doesn’t come with these fields. This means we’ll need to extend 
it and have our own user model. This also means that we will have to add custom methods to the 
manager for creating a user and a superuser. This will speed up the coding process. In Django, a 
superuser is a user with administrator permission.

Before creating the model, we actually need an application, and to register it. A Django application 
is a submodule of a Django project. It’s a Python package structured to work in a Django project and 
share Django conventions such as containing files or submodules such as models, tests, urls, 
and views.

Creating the user application

To start a new application in this project, run the following command:

cd core && django-admin startapp user

This will create a new package (directory) containing new files. Here’s the structure of the directory:

├── admin.py

├── apps.py

├── __init__.py

├── migrations

│   └── __init__.py

├── models.py

├── tests.py

└── views.py



Authentication and Authorization using JWTs26

We can now confidently start writing the User model. Here is the structure of the User table we 
want to have in the database:

Figure 2.2 – User table structure

And here’s the code concerning the User table structure:

core/user/models.py

import uuid

from django.contrib.auth.models import AbstractBaseUser,

    BaseUserManager, PermissionsMixin

from django.core.exceptions import ObjectDoesNotExist

from django.db import models

from django.http import Http404

class User(AbstractBaseUser, PermissionsMixin):

   public_id = models.UUIDField(db_index=True, unique=True,

       default=uuid.uuid4, editable=False)

   username = models.CharField(db_index=True,

       max_length=255, unique=True)

   first_name = models.CharField(max_length=255)

   last_name = models.CharField(max_length=255)



Creating a user model 27

   email = models.EmailField(db_index=True, unique=True)

   is_active = models.BooleanField(default=True)

   is_superuser = models.BooleanField(default=False)

   created = models.DateTimeField(auto_now=True)

   updated = models.DateTimeField(auto_now_add=True)

   USERNAME_FIELD = 'email'

   REQUIRED_FIELDS = ['username']

   objects = UserManager()

   def __str__(self):

       return f"{self.email}"

   @property

   def name(self):

       return f"{self.first_name} {self.last_name}"

The models module from Django provides some field utilities that can be used to write fields and 
add some rules. For example, CharField represents the type of field to create in the User table, 
similar to BooleanField. EmailField is also CharField but rewritten to validate the email 
that is passed as a value to this field.

We also set the EMAIL_FIELD as the email, and USERNAME_FIELD as the username. This will 
help us have two fields for login. The username can be the actual username of a user or just the email 
address used for registration.

We also have methods such as name, which is basically a model property. Then, it can be accessed 
anywhere on a User object, such as user.name. We are also rewriting the __str__ method to 
return a string that can help us quickly identify a User object.

Creating the user and superuser

Next, let’s write UserManager so we can have methods to create a user and a superuser:

core/user/models.py

class UserManager(BaseUserManager):

   def get_object_by_public_id(self, public_id):



Authentication and Authorization using JWTs28

       try:

           instance = self.get(public_id=public_id)

           return instance

       except (ObjectDoesNotExist, ValueError, TypeError):

           return Http404

   def create_user(self, username, email, password=None,

        **kwargs):

       """Create and return a `User` with an email, phone

           number, username and password."""

       if username is None:

           raise TypeError('Users must have a username.')

       if email is None:

           raise TypeError('Users must have an email.')

       if password is None:

           raise TypeError('User must have an email.')

       user = self.model(username=username,

           email=self.normalize_email(email), **kwargs)

       user.set_password(password)

       user.save(using=self._db)

       return user

   def create_superuser(self, username, email, password,

       **kwargs):

       """

       Create and return a `User` with superuser (admin)

           permissions.

       """

       if password is None:

           raise TypeError('Superusers must have a

           password.')

       if email is None:

           raise TypeError('Superusers must have an



Creating a user model 29

               email.')

       if username is None:

           raise TypeError('Superusers must have an

           username.')

       user = self.create_user(username, email, password,

           **kwargs)

       user.is_superuser = True

       user.is_staff = True

       user.save(using=self._db)

       return user

For the create_user method, we are basically making sure that fields such as password, email, 
username, first_name, and last_name are not None. If everything is good, we can confidently 
call the model, set a password, and save the user in the table.

This is done using the save() method.

create_superuser also behaves in accordance with the create_user method – and it’s 
quite normal because, after all, a superuser is just a user with admin privileges, and also fields such 
as is_superuser and is_staff set to True. Once it’s done, we save the new User object in 
the database and return the user.

See the save method as a way to commit changes made to the User object to the database.

The model is written and now we need to run migrations to create the table in the database.

Running migrations and testing the model

Before running the migrations, we need to register the user application in INSTALLED_APPS 
in CoreRoot/settings.py.

First, let’s rewrite the apps.py file of the user. It contains the app configs that Django will use to 
locate the application. Let’s also add a label for the application:

core/user/apps.py

from django.apps import AppConfig

class UserConfig(AppConfig):



Authentication and Authorization using JWTs30

   default_auto_field = 'django.db.models.BigAutoField'

   name = 'core.user'

   label = 'core_user'

Let's register the application now:

   'core',

   'core.user'

]

Let’s register the application now in the INSTALLED_APPS setting:

CoreRoot/settings.py

...

   'core',

   'core.user'

]

We also need to tell Django to use this User model for the authentication user model. In the 
settings.py file, add the following line:

CoreRoot/settings.py

AUTH_USER_MODEL = 'core_user.User'

Great – we can now create the first migration for the user app:

python manage.py makemigrations

You’ll have a similar output:

Migrations for 'core_user':

  core/user/migrations/0001_initial.py

    - Create model User

Let’s migrate this modification to the database:

python manage.py migrate



Creating a user model 31

The table is created in the database. Let’s use the Django shell to play with the newly created model 
a little bit:

python manage.py shell

Let’s import the model and add a dict containing the data needed to create a user:

Python 3.10.1 (main, Dec 21 2021, 17:46:38) [GCC 9.3.0] on 
linux

Type "help", "copyright", "credits" or "license" for more 
information.

(InteractiveConsole)

>>> from core.user.models import User

>>> data_user = {

... "email": "testuser@yopmail.com",

... "username": "john-doe",

... "password": "12345",

... "first_name": "John",

... "last_name": "Doe"

... }

>>> user =  User.objects.create_user(**data_user)

The user is created in the database. Let's access some 
properties of the user object.

>>> user.name

'John Doe'

>>> user.email

'testuser@yopmail.com'

>>> user.password

'pbkdf2_sha256$320000$NxM7JZ0cQ0OtDzCVusgvV7$fM1WZp7QhHC3QEajnb 
Bjo5rBPKO+Q8ONhDFkCV/gwcI='

Great – we’ve just written the model and created the first user. However, a web browser won’t directly 
read the user data from our database – and worse, we are working with a Python native object, and 
a browser or a client reaching our server to make requests mostly supports JSON or XML. One idea 
would be to use the json library, but we are dealing with a complex data structure; complex data 
structures can be easily handled with serializers.

Let’s write serializers in the next section.



Authentication and Authorization using JWTs32

Writing UserSerializer

A serializer allows us to convert complex Django complex data structures such as QuerySet or model 
instances into Python native objects that can be easily converted to JSON or XML format. However, a 
serializer also serializes JSON or XML to native Python. Django Rest Framework (DRF) provides a 
serializers package you can use to write serializers and also validations when API calls are made 
to an endpoint using this serializer. Let’s install the DRF package and make some configurations first:

pip install djangorestframework django-filter

Don’t forget to add the following to the requirements.txt file:

requirements.txt

Django==4.0.1

psycopg2-binary==2.9.3

djangorestframework==3.13.1

django-filter==21.1

We are also adding django-filter for data filtering support. Let’s add rest_framework to 
the INSTALLED_APPS setting:

CoreRoot/settings.py

INSTALLED_APPS = [

    ...

    'rest_framework',

]

In the core/user directory, create a file called serializers.py. This file will contain the 
UserSerializer class:

core/user/serializers.py

from rest_framework import serializers

from core.user.models import User

class UserSerializer(serializers.ModelSerializer):



Creating a user model 33

   id = serializers.UUIDField(source='public_id',

       read_only=True, format='hex')

   created = serializers.DateTimeField(read_only=True)

   updated = serializers.DateTimeField(read_only=True)

   class Meta:

       model = User

       fields = ['id', 'username', 'first_name',

           'last_name', 'bio', 'avatar', 'email',

           'is_active', 'created', 'updated']

       read_only_field = ['is_active']

The UserSerializer class inherits from the serializers.ModelSerialzer class. It’s a class 
inheriting from the serializers.Serializer class but has deep integrations for supporting 
a model. It’ll automatically match the field of the model to have the correct validations for each one.

For example, we’ve stated that the email is unique. Then, every time someone registers and enters an 
email address that already exists in the database, they will receive an error message concerning this.

The fields attribute contains all the fields that can be read or written. Then, we also have the 
read_only fields. These fields are only readable. This means that they can’t be modified and 
it’s definitely better like that. Why give the external user the possibility to modify the created, 
updated, or id fields?

Now that UserSerializer is available, we can now write viewset.

Writing UserViewset

As we know, Django at its core is based on the Model-View-Template (MVT) architecture. The 
model communicates with the views (or controllers) and the template displays responses or redirects 
requests to the views.

However, when Django is coupled with DRF, the model can be directly connected to the view. However, 
as good practice, use a serializer between a model and a viewset. This really helps with validation and 
also some important checks.

So, what is a viewset then? DRF provides a class named APIView from which a lot of classes from 
DRF inherit to perform CRUD operations. Therefore, a viewset is simply a class-based view that can 
handle all the basic HTTP requests—GET, POST, PUT, DELETE, and PATCH—without hardcoding 
any CRUD logic here.



Authentication and Authorization using JWTs34

For the viewset user, we are only allowing the PATCH and GET methods. Here’s what the endpoints 
will look like:

Method URL Result
GET /api/user/ Lists all the users
GET /api/user/user_pk/ Retrieves a specific user
PATCH /api/user/user_pk/ Modifies a user

Table 1.1 – Endpoints

Let’s write the viewset. Inside the user directory, rename the view file viewsets.py and add 
the following content:

core/user/viewsets.py

from rest_framework.permissions import AllowAny

from rest_framework import viewsets

from core.user.serializers import UserSerializer

from core.user.models import User

class UserViewSet(viewsets.ModelViewSet):

   http_method_names = ('patch', 'get')

   permission_classes = (AllowAny,)

   serializer_class = UserSerializer

   def get_queryset(self):

       if self.request.user.is_superuser:

           return User.objects.all()

       return User.objects.exclude(is_superuser=True)

   def get_object(self):

    obj =

    User.objects.get_object_by_public_id(self.kwargs['pk'])

       self.check_object_permissions(self.request, obj)

       return obj



Creating a user model 35

The only methods allowed here are GET and PUT. We also set serializer_class and permission_
classes to AllowAny, which means that anybody can access these viewsets. We also rewrite 
two methods:

•	 get_queryset: This method is used by the viewset to get a list of all the users. This method 
will be called when /user/ is hit with a GET request.

•	 get_object: This method is used by the viewset to get one user. This method is called when 
a GET or PUT request is made on the /user/id/ endpoint, with id representing the ID of 
the user.

There we have the User viewset – but there is no endpoint yet to make it work. Well, let’s add a 
router now.

Adding a router

Routers allow you to quickly declare all of the common routes for a given controller; the next code 
snippet shows a viewset to which we will be adding a router.

At the root of the apps project (core), create a file named routers.py.

And let’s add the code:

core/routers.py

from rest_framework import routers

from core.user.viewsets import UserViewSet

router = routers.SimpleRouter()

# ############################################################
######### #

# ################### 
USER                       ###################### #

# ############################################################
######### #

router.register(r'user', UserViewSet, basename='user')

urlpatterns = [

   *router.urls,

]



Authentication and Authorization using JWTs36

To register a route for a viewset, the register() method needs two arguments:

•	 The prefix: Representing the name of the endpoint, basically

•	 The viewset: Only representing a valid viewset class

The basename argument is optional but it’s a good practice to use one, as it helps for readability and 
also helps Django for URL registry purposes.

The router is now added; we can make some requests to the API using Insomnia.

Important note
Insomnia is a REST client tool used to make requests to RESTful API. With Insomnia, you can 
manage and create your requests elegantly. It offers support for cookie management, environment 
variables, code generation, and authentication.

Before doing that, make sure to have the server running:

python manage.py runserver

Let’s make a request to http://127.0.0.1:8000/api/user/, a GET request. Look at the 
following screenshot and make sure to have the same URL – or you can replace 127.0.0.1 with 
localhost --, next to the Send button.

Figure 2.3 – Listing all users



Creating a user model 37

As you can see, we have a list of users created. Let’s also make a GET request to retrieve the first user 
using this URL: /api/user/<id>/.

Figure 2.4 – Retrieving a user

We have now a User object. This endpoint also allows PATCH requests. Let’s set the last_name 
value for this user to Hey. Change the type of request to PATCH and add a JSON body.

Figure 2.5 – Modifying a user without permissions



Authentication and Authorization using JWTs38

Although it’s working, it’s actually a very bad scenario. We can’t have users modify other user names 
or data. A solution is to change the permission on the permission_classes attribute in the 
UserViewSet class:

core/user/viewsets.py

from rest_framework.permissions import IsAuthenticated

...

class UserViewSet(viewsets.ModelViewSet):

   http_method_names = ('patch', 'get')

   permission_classes = (IsAuthenticated,)

   serializer_class = UserSerializer

...

Let’s try the PATCH request again.

Figure 2.6 – Modifying a user without permissions

We normally have a 401 status, an indication of an authentication issue. Basically, it means that an 
authentication header should be provided. They are more permissions to add concerning interactions 
with users, but let’s discuss this in later chapters.

Great. Now that we are done with the user application, we can confidently move on to adding a login 
and registration feature to the project.



Writing the user registration feature 39

Writing the user registration feature
Before accessing protected data, the user needs to be authenticated. This comes with the assumption 
that there is a registration system to create an account and credentials.

To make things simpler, if the registration of a user is successful, we will provide credentials, here 
JWTs, so the user won’t have to log in again to start a session – a win for user experience.

First, let’s install a package that will handle JWT authentication for us. The djangorestframework-
simplejwt package is a JWT authentication plugin for DRF:

pip install djangorestframework-simplejwt

The package covers the most common use case of JWT, and in this case here, it facilitates the creation and 
management of access tokens, as well as refreshing tokens. Before working with this package, there are 
some configurations needed in the settings.py file. We need to register the app in INSTALLED_
APPS and specify DEFAULT_AUTHENTICATION_CLASSES in the REST_FRAMEWORK dict:

CoreRoot/settings.py

   …

   # external packages apps

   'rest_framework',

   'rest_framework_simplejwt',

   'core',

   'core.user'

]

...

REST_FRAMEWORK = {

   'DEFAULT_AUTHENTICATION_CLASSES': (

       'rest_framework_simplejwt.authentication

           .JWTAuthentication',

   ),

   'DEFAULT_FILTER_BACKENDS':

     ['django_filters.rest_framework.DjangoFilterBackend'],

}



Authentication and Authorization using JWTs40

First, we need to write a registration serializer, but before that, let’s create a new application called 
auth in the core app:

cd core && django-admin startapp auth

It’ll contain all the logic concerning logging in, registration, logging out, and a lot more.

As we did earlier for the user application, let’s rewrite the apps.py file and register the application 
in the INSTALLED_APPS settings:

core/auth/apps.py

from django.apps import AppConfig

class AuthConfig(AppConfig):

   default_auto_field = 'django.db.models.BigAutoField'

   name = 'core.auth'

   label = 'core_auth'

And adding the new application to INSTALLED_APPS:

...

'core',

   'core.user',

   'core.auth'

]

...

Remove the admin.py and models.py files from the auth directory, as we won’t be working with 
them. For registration and login, we’ll have many serializers and viewsets, so let’s organize the code 
accordingly. Create a Python package called serializers and another one called viewsets. 
Make sure that these new directories have an __init__.py file. Here’s how your auth app tree 
should look:

├── apps.py

├── __init__.py

├── migrations

│   ├── __init__.py

├── serializers

│   └── __init__.py

├── tests.py



Writing the user registration feature 41

├── viewsets

│   └── __init__.py

└── views.py

Inside the serializers directory, create a file called register.py. It’ll contain the code for 
RegisterSerializer, which is the name of the registration serializer class:

core/auth/serializers/register.py

from rest_framework import serializers

from core.user.serializers import UserSerializer

from core.user.models import User

class RegisterSerializer(UserSerializer):

   """

   Registration serializer for requests and user creation

   """

   # Making sure the password is at least 8 characters

       long, and no longer than 128 and can't be read

   # by the user

   password = serializers.CharField(max_length=128,

       min_length=8, write_only=True, required=True)

   class Meta:

       model = User

       # List of all the fields that can be included in a

           request or a response

       fields = ['id', 'bio', 'avatar', 'email',

           'username', 'first_name', 'last_name',

           'password']

   def create(self, validated_data):

       # Use the `create_user` method we wrote earlier for

           the UserManager to create a new user.

       return User.objects.create_user(**validated_data)



Authentication and Authorization using JWTs42

As you can see, RegisterSerializer is a subclass of UserSerializer. This is really helpful, 
as we don’t need to rewrite fields again.

Here, we don’t need to revalidate fields such as email or password. As we declared these fields 
with some conditions, Django will automatically handle their validation.

Next, we can add the viewset and register it in the register.py file:

core/auth/viewsets/register.py

from rest_framework.response import Response

from rest_framework.viewsets import ViewSet

from rest_framework.permissions import AllowAny

from rest_framework import status

from rest_framework_simplejwt.tokens import RefreshToken

from core.auth.serializers import RegisterSerializer

class RegisterViewSet(ViewSet):

   serializer_class = RegisterSerializer

   permission_classes = (AllowAny,)

   http_method_names = ['post']

   def create(self, request, *args, **kwargs):

       serializer =

           self.serializer_class(data=request.data)

       serializer.is_valid(raise_exception=True)

       user = serializer.save()

       refresh = RefreshToken.for_user(user)

       res = {

           "refresh": str(refresh),

           "access": str(refresh.access_token),

       }

       return Response({

           "user": serializer.data,



Writing the user registration feature 43

           "refresh": res["refresh"],

           "token": res["access"]

       }, status=status.HTTP_201_CREATED)

Nothing really new here – we are using attributes from the ViewSet  class. We are also 
rewriting the create method to add access and refresh tokens in the body of the response. The 
djangorestframework-simplejwt package provides utilities we can use to directly generate 
tokens. That’s what RefreshToken.for_user(user) does.

And the final step – let’s register the viewset in the routers.py file:

core/routers.py

 ...

# ############################################################
######### #

# ################### 
AUTH                       ###################### #

# ############################################################
######### #

router.register(r'auth/register', RegisterViewSet,

    basename='auth-register')

...

Great! Let’s test the new endpoint with Insomnia. In the collection of requests for this project, create 
a new POST request. The URL will be as follows: localhost:8000/api/auth/register/.

As a body for the request, you can pass the following:

{

    "username": "mouse21",

    "first_name": "Mickey",

    "last_name": "Mouse",

    "password": "12345678",

    "email": "mouse@yopmail.com"

}



Authentication and Authorization using JWTs44

With that, send the request. You should have a response similar to that shown in Figure 2.6 with a 
201 HTTP status:

Figure 2.7 – Registering a user

Let’s see what happens if we try to create a user with the same email and username. Hit the Send 
button to send the same request again. You should receive a 400 error.

Figure 2.8 – Registering a user with the same email and username



Adding the login feature 45

Great. We are now sure that the endpoint behaves as we wish. The next step will be to add the login 
endpoint following the same process: writing the serializer and the viewset, and then registering the route.

Adding the login feature
The login feature will require the email or the username with the password. Using the 
djangorestframework-simplejwt package, which provides a serializer called 
TokenObtainPairSerializer, we’ll write a serializer to check for user authentication but also 
return a response containing access and refresh tokens. For this, we will rewrite the validate method 
from the TokenObtainPairSerializer class. Inside the core/auth/serializers 
directory, create a new file called login.py (this file will contain LoginSerializer, a subclass 
of TokenObtainPairSerializer):

core/auth/serializers/login.py

from rest_framework_simplejwt.serializers import

  TokenObtainPairSerializer

from rest_framework_simplejwt.settings import api_settings

from django.contrib.auth.models import update_last_login

from core.user.serializers import UserSerializer

class LoginSerializer(TokenObtainPairSerializer):

   def validate(self, attrs):

       data = super().validate(attrs)

       refresh = self.get_token(self.user)

       data['user'] = UserSerializer(self.user).data

       data['refresh'] = str(refresh)

       data['access'] = str(refresh.access_token)

       if api_settings.UPDATE_LAST_LOGIN:

           update_last_login(None, self.user)

       return data



Authentication and Authorization using JWTs46

We are surcharging the validate method from the TokenObtainPairSerializer class to 
adapt it to our needs. That’s why super is helpful here. It’s a built-in method in Python that returns 
a temporary object that can be used to access the class methods of the base class.

Then, we use user to retrieve access and refresh tokens. Once the serializer is written, don’t forget 
to import it to the __init__.py file:

core/auth/serializers/__init__.py

from .register import RegisterSerializer

from .login import LoginSerializer

The next step is to add the viewset. We’ll call this viewset LoginViewset. As we are not directly 
interacting with a model here, we’ll just be using the viewsets.ViewSet class:

core/auth/viewsets/login.py

from rest_framework.response import Response

from rest_framework.viewsets import ViewSet

from rest_framework.permissions import AllowAny

from rest_framework import status

from rest_framework_simplejwt.exceptions import TokenError,

    InvalidToken

from core.auth.serializers import LoginSerializer

class LoginViewSet(ViewSet):

   serializer_class = LoginSerializer

   permission_classes = (AllowAny,)

   http_method_names = ['post']

   def create(self, request, *args, **kwargs):

       serializer =

           self.serializer_class(data=request.data)

       try:

           serializer.is_valid(raise_exception=True)

       except TokenError as e:

           raise InvalidToken(e.args[0])



Adding the login feature 47

       return Response(serializer.validated_data,

           status=status.HTTP_200_OK)

Add the viewset to the __init__.py file of the viewsets directory:

from .register import RegisterViewSet

from .login import LoginViewSet

We can now import it and register it in the routers.py file:

core/routers.py

...

from core.auth.viewsets import RegisterViewSet,

    LoginViewSet

router = routers.SimpleRouter()

# ############################################################
######### #

# ################### 
AUTH                       ###################### #

# ############################################################
######### #

router.register(r'auth/register', RegisterViewSet,

    basename='auth-register')

router.register(r'auth/login', LoginViewSet,

    basename='auth-login')

...

The endpoint for login will be available at /auth/login/. Let’s try a request with Insomnia.

Here’s the body of the request I’ll use:

{

    "password": "12345678",

    "email": "mouse@yopmail.com"

}



Authentication and Authorization using JWTs48

Figure 2.9 – Login with user credentials

The login feature is ready and working like a charm – but we have a little bit of an issue. The access 
token expires in 5 minutes. Basically, to get a new access token, the user will have to log in again. Let’s 
see how we can use the refresh token to request a new access token without logging in again.

Refresh logic
djangorestframework-simplejwt provides a refresh logic feature. As you’ve noticed, we’ve 
been generating refresh tokens and returning them as responses every time registration or login is 
completed. We’ll just inherit the class from TokenRefreshView and transform it into a viewset.

In auth/viewsets, add a new file called refresh.py:

core/auth/viewsets/refresh.py

from rest_framework.response import Response

from rest_framework_simplejwt.views import TokenRefreshView

from rest_framework.permissions import AllowAny

from rest_framework import status

from rest_framework import viewsets

from rest_framework_simplejwt.exceptions import TokenError,

    InvalidToken



Refresh logic 49

class RefreshViewSet(viewsets.ViewSet, TokenRefreshView):

   permission_classes = (AllowAny,)

   http_method_names = ['post']

   def create(self, request, *args, **kwargs):

       serializer = self.get_serializer(data=request.data)

       try:

           serializer.is_valid(raise_exception=True)

       except TokenError as e:

           raise InvalidToken(e.args[0])

       return Response(serializer.validated_data,

           status=status.HTTP_200_OK)

Now add the class in the __init__.py file.

from .register import RegisterViewSet

from .login import LoginViewSet

from .refresh import RefreshViewSet

Now add the class in the __init__.py file.

core/auth/viewsets/__init__.py

from .register import RegisterViewSet

from .login import LoginViewSet

from .refresh import RefreshViewSet

And now register it in the routers.py file:

core/routers.py

from core.auth.viewsets import RegisterViewSet,

    LoginViewSet, RefreshViewSet

...

router.register(r'auth/refresh', RefreshViewSet,

    basename='auth-refresh')

...



Authentication and Authorization using JWTs50

Great – let’s test the new endpoint at /auth/refresh/ to get a new token. It’ll be a POST request 
with the refresh token in the body of the request, and you will receive a new access token in the response:

Figure 2.10 – Requesting for a new access token

Great – we’ve just learned how to implement refresh token logic in the application.

Summary
In this chapter, we learned how to write an authentication system based on JWT for a Django application 
using DRF and djangorestframework-simplejwt. We also learned how to extend classes 
and rewrite the functions.

In the next chapter, we’ll add the posts feature. Our users will be able to create a post that can be 
viewed and liked by other users.

Questions
1.	 What is a JWT?

2.	 What is Django Rest Framework?

3.	 What is a model?

4.	 What is a serializer?

5.	 What is a viewset?

6.	 What is a router?

7.	 What is the usage of a refresh token?



3
Social Media Post Management

In the previous chapter, we introduced models, serializers, viewsets, and routes to create our first 
endpoints. In this chapter, we will be working with the same concepts for creating posts for our social 
media project. This will be done by dividing the project into concepts such as database relations, 
filtering, and permissions. By the end of this chapter, you’ll be able to work with database relations 
with Django models, write custom filters and permissions, and delete and update objects.

We will be covering the following topics in this chapter:

•	 Creating the Post model

•	 Writing the Post model

•	 Writing the Post serializer

•	 Writing Post viewsets

•	 Adding permissions

•	 Deleting and updating posts

•	 Adding the Like feature

Technical requirements
For this chapter, you need to have Insomnia installed on your machine to make HTTP requests.

You can find the code for this chapter here: https://github.com/PacktPublishing/
Full-stack-Django-and-React/tree/chap3.

https://github.com/PacktPublishing/Full-stack-Django-and-React/tree/chap3
https://github.com/PacktPublishing/Full-stack-Django-and-React/tree/chap3


Social Media Post Management52

Creating the Post model
A post in this project is a long or short piece of text that can be viewed by anyone, irrespective of 
whether a user is linked or associated to that post. Here are the requirements for the post feature:

•	 Authenticated users should be able to create a post

•	 Authenticated users should be able to like the post

•	 All users should be able to read the post, even if they aren’t authenticated

•	 The author of the post should be able to modify the post

•	 The author of the post should be able to delete the post

Looking at these requirements from a backend perspective, we can understand that we’ll be dealing 
with a database, a model, and permissions. First, let’s start by writing the structure of the Post model 
in the database.

Designing the Post model

A post consists of content made up of characters written by an author (here, a user). How does that 
schematize itself into our database?

Before creating the Post model, let’s draw a quick figure of the structure of the model in the database:

Figure 3.1 – Post table

As you can see in Figure 3.1, there is an author field, which is a foreign key. A foreign key is a set of 
attributes in a table that refers to the primary key of another table. In our case, the foreign key will refer 
to the primary key of the User table. Each time a post is created, a foreign key will need to be passed.

The foreign key is one of the characteristics of the one-to-many (or many-to-one) relationship. In 
this relationship, a row in table A can have many matching rows in table B (one-to-many) but a row 
in table B can only have one matching row in table A.



Creating the Post model 53

In our case, a user (from the User table) can have many posts (in the Post table) but a post can 
only have one user (Figure 3.2):

Figure 3.2 – User and Post relationship

There are also two other types of database relationships:

•	 One-to-one: In this type of relationship, a row in table A can only have one matching row in 
table B, and vice versa. An example of this can be worker C having one and only one desk D. 
And this desk D can only be used by this worker C (Figure 3.3):

Figure 3.3 – One-to-one relationship between a worker and a desk

•	 Many-to-many: In this type of database relationship, a row in table A can have many matching 
rows in table B, and vice versa. For example, in an e-commerce application, an order can have 
many items, and an item can also appear in many different orders (Figure 3.4):

Figure 3.4 – Many-to-many relationship between an order and an item

The many-to-many relationship will be used when writing the like feature for the posts.

Great, now that we have a better idea of database relationships, we can begin to write the post feature, 
starting from the Post model. But before that, let’s quickly refactor the code to make development easier.

Abstraction

The next models that we’ll create will also have the public_id, created, and updated fields. 
For the sake of the don’t repeat yourself (DRY) principle, we will use abstract model classes.

An abstract class can be considered a blueprint for other classes. It usually contains a set of methods 
or attributes that must be created within any child classes built from the abstract class.

Inside the core directory, create a new Python package called abstract. Once it’s done, create a 
models.py file. In this file, we will write two classes: AbstractModel and AbstractManager.



Social Media Post Management54

The AbstractModel class will contain fields such as public_id, created, and updated. 
On the other side, the AbstractManager class will contain the function used to retrieve an object 
by its public_id field:

core/abstract/models.py

from django.db import models

import uuid

from django.core.exceptions import ObjectDoesNotExist

from django.http import Http404

class AbstractManager(models.Manager):

   def get_object_by_public_id(self, public_id):

       try:

           instance = self.get(public_id=public_id)

           return instance

       except (ObjectDoesNotExist, ValueError, TypeError):

           return Http404

class AbstractModel(models.Model):

   public_id = models.UUIDField(db_index=True, unique=True,

     default=uuid.uuid4, editable=False)

   created = models.DateTimeField(auto_now_add=True)

   updated = models.DateTimeField(auto_now=True)

   objects = AbstractManager()

   class Meta:

       abstract = True

As you can see in the Meta class for AbstractModel, the abstract attribute is set to True. 
Django will ignore this class model and won’t generate migrations for this.



Creating the Post model 55

Now that we have this class, let’s make a quick refactor on the User model:

First, let’s remove the get_object_by_public_id method to retrieve an object via public_id, 
and let’s subclass UserManager:

core/user/models.py

…

from core.abstract.models import AbstractModel, AbstractManager

class UserManager(BaseUserManager, AbstractManager):

…

class User(AbstractModel, AbstractBaseUser, PermissionsMixin):

…

On the User model, remove the public_id, updated, and created fields, and also, subclass the 
User model with the AbstractModel class. This will normally cause no changes to the database, 
hence, there is no need to run makemigrations again unless you’ve changed an attribute of a field.

Let’s also add AbstractSerializer, which will be used by all the serializers we’ll be creating 
on this project.

Writing the AbstractSerializer

All the objects sent back as a response in our API will contain the id, created, and updated fields. 
It’ll be repetitive to write these fields all over again on every ModelSerializer, so let’s just create 
an AbstractSerializer class. In the abstract directory, create a file called serializers.
py and add the following content:

core/abstract/serializers.py

from rest_framework import serializers

class AbstractSerializer(serializers.ModelSerializer):

   id = serializers.UUIDField(source='public_id',

                              read_only=True, format='hex')

   created = serializers.DateTimeField(read_only=True)

   updated = serializers.DateTimeField(read_only=True)



Social Media Post Management56

Once it’s done, you can go and subclass the UserSerializer  class with the 
AbstractSerializer class:

core/user/serializers.py

from core.abstract.serializers import AbstractSerializer

from core.user.models import User

class UserSerializer(AbstractSerializer):

…

Once it’s done, remove the field declaration of id, created, and updated.

Let’s perform one last abstraction for ViewSets.

Writing the AbstractViewSet

But why write an abstract ViewSet? Well, there will be repeated declarations as to the ordering and 
the filtering. Let’s create a class that will contain the default values.

In the abstract directory, create a file called viewsets.py and add the following content:

core/abstract/viewsets.py

from rest_framework import viewsets

from rest_framework import filters

class AbstractViewSet(viewsets.ModelViewSet):

   filter_backends = [filters.OrderingFilter]

   ordering_fields = ['updated', 'created']

   ordering = ['-updated']

As you can see, we have the following attributes:

•	 filter_backends: This sets the default filter backend.

•	 ordering_fields: This list contains the fields that can be used as ordering parameters 
when making a request.

•	 ordering: This will tell Django REST in which order to send many objects as a response. In 
this case, all the responses will be ordered by the most recently updated.



Writing the Post model 57

The next step is to add the AbstractViewSet class to the code where ModelViewSets 
is actually called. Go to core/user/viewsets.py and subclass UserViewSet with the 
AbstractViewSet class:

core/user/viewsets.py

…

from core.abstract.viewsets import AbstractViewSet

from core.user.serializers import UserSerializer

from core.user.models import User

class UserViewSet(AbstractViewSet):

…

Great, now we have all the things needed to write better and less code; let’s write the Post model.

Writing the Post model
We have already established the structure of the Post model. Let’s write the code and the features:

1.	 Create a new application called post:

django-admin startapp post

2.	 Rewrite apps.py of the new create package so it can be called easily in the project:

core/post/apps.py

from django.apps import AppConfig

class PostConfig(AppConfig):
   default_auto_field =
     'django.db.models.BigAutoField'
   name = 'core.post'
   label = "core_label"

3.	 Once it’s done, we can now write the Post model. Open the models.py file and enter the 
following content:

core/post/models.py

from django.db import models



Social Media Post Management58

from core.abstract.models import AbstractModel, 
AbstractManager

class PostManager(AbstractManager):

   pass

class Post(AbstractModel):

   author = models.ForeignKey(to="core_user.User",

     on_delete=models.CASCADE)

   body = models.TextField()

   edited = models.BooleanField(default=False)

   objects = PostManager()

   def __str__(self):

       return f"{self.author.name}"

   class Meta:

       db_table = "'core.post'"

You can see here how we created the ForeignKey relationship. Django models actually 
provide tools to handle this kind of relationship, and it’s also symmetrical, meaning that not 
only can we use the Post.author syntax to access the user object but we can also access 
posts created by a user using the User.post_set syntax. The latter syntax will return a 
queryset object containing the posts created by the user because we are in a ForeignKey 
relationship, which is also a one-to-many relationship. You will also notice the on_delete 
attribute with the models.CASCADE value. Using CASCADE, if a user is deleted from the 
database, Django will also delete all records of posts in relation to this user.

Apart from CASCADE as a value for the on_delete attribute on a ForeignKey relationship, 
you can also have the following:

•	 SET_NULL: This will set the child object foreign key to null on delete. For example, if a user 
is deleted from the database, the value of the author field of the posts in relation to this user 
is set to None.

•	 SET_DEFAULT: This will set the child object to the default value given while writing the 
model. It works if you are sure that the default value won’t be deleted.

•	 RESTRICT: This raises RestrictedError under certain conditions.

•	 PROTECT: This prevents the foreign key object from being deleted as long as there are objects 
linked to the foreign key object.



Writing the Post model 59

Let’s test the newly added model by creating an object and saving it in the database:

4.	 Add the newly created application to the INSTALLED_APPS list:

CoreRoot/settings.py

…

'core.post'

…

5.	 Let’s create the migrations for the newly added application:

python manage makemigrations && python manage.py migrate

6.	 Then, let’s play with the Django shell by starting it with the python manage.py 
shell command:

(venv) koladev@koladev123xxx:~/PycharmProjects/Full-
stack-Django-and-React$ python manage.py shell

Python 3.10.2 (main, Jan 15 2022, 18:02:07) [GCC 9.3.0] 
on linux

Type "help", "copyright", "credits" or "license" for more 
information.

(InteractiveConsole)

>>>

Important note
You can use the django_shell_plus package to speed up work with Django shell. You won’t 
need to type all imports yourself as all your models will be imported by default. You can find 
more information on how to install it from the following website: https://django-
extensions.readthedocs.io/en/latest/shell_plus.html.

7.	 Let’s import a user. This will be the author of the post we’ll be creating:

>>> from core.post.models import Post

>>> from core.user.models import User

>>> user = User.objects.first()

>>> user

8.	 Next, let’s create a dictionary that will contain all the fields needed to create a post:

>>> data = {"author": user, "body":"A simple test"}

https://django-extensions.readthedocs.io/en/latest/shell_plus.html
https://django-extensions.readthedocs.io/en/latest/shell_plus.html


Social Media Post Management60

9.	 And now, let’s create a post:

>>> post = Post.objects.create(**data)

>>> post

<Post: John Hey>

>>>

Let's access the author field of this object.

>>> post.author

<User: testuser@yopmail.com>

As you can see, the author is in fact the user we’ve retrieved from the database.

Let’s also try the inverse relationship:

>>> user.post_set.all()

<QuerySet [<Post: John Hey>]>

As you can see, the post_set attribute contains all the instructions needed to interact with 
all the posts linked to this user.

Now that you have a better understanding of how database relationships work in Django, we can move 
on to writing the serializer of the Post object.

Writing the Post serializer
The Post serializer will contain the fields needed to create a post when making a request on the 
endpoint. Let’s add the feature for the post creation first.

In the post directory, create a file called serializers.py. Inside this file, add the following content:

core/post/serializers.py

from rest_framework import serializers

from rest_framework.exceptions import ValidationError

from core.abstract.serializers import AbstractSerializer

from core.post.models import Post

from core.user.models import User

class PostSerializer(AbstractSerializer):

   author = serializers.SlugRelatedField(

     queryset=User.objects.all(), slug_field='public_id')



Writing Post viewsets 61

   def validate_author(self, value):

       if self.context["request"].user != value:

           raise ValidationError("You can't create a post

                                  for another user.")

       return value

   class Meta:

       model = Post

       # List of all the fields that can be included in a

       # request or a response

       fields = ['id', 'author', 'body', 'edited',

                 'created', 'updated']

       read_only_fields = ["edited"]

We’ve added a new serializer field type, SlugRelatedField. As we are working with the 
ModelSerializer class, Django automatically handles the fields and relationship generation for 
us. Defining the type of relationship field we want to use can also be crucial to tell Django exactly 
what to do.

And that’s where SlugRelatedField comes in. It is used to represent the target of the relationship 
using a field on the target. Thus, when creating a post, public_id of the author will be passed in 
the body of the request so that the user can be identified and linked to the post.

The validate_author method checks validation for the author field. Here, we want to make 
sure that the user creating the post is the same user as in the author field. A context dictionary is 
available in every serializer. It usually contains the request object that we can use to make some checks.

There is no hard limitation here so we can easily move to the next part of this feature: writing the 
Post viewsets.

Writing Post viewsets
For the following endpoint, we’ll only be allowing the POST and GET methods. This will help us have 
the basic features working first.

The code should follow these rules:

•	 Only authenticated users can create posts

•	 Only authenticated users can read posts

•	 Only GET and POST methods are allowed



Social Media Post Management62

Inside the post directory, create a file called viewsets.py. Into the file, add the following content:

core/post/viewsets.py

from rest_framework.permissions import IsAuthenticated

from core.abstract.viewsets import AbstractViewSet

from core.post.models import Post

from core.post.serializers import PostSerializer

class PostViewSet(AbstractViewSet):

   http_method_names = ('post', 'get')

   permission_classes = (IsAuthenticated,)

   serializer_class = PostSerializer

   def get_queryset(self):

       return Post.objects.all()

   def get_object(self):

       obj = Post.objects.get_object_by_public_id(

         self.kwargs['pk'])

       self.check_object_permissions(self.request, obj)

       return obj

   def create(self, request, *args, **kwargs):

       serializer = self.get_serializer(data=request.data)

       serializer.is_valid(raise_exception=True)

       self.perform_create(serializer)

       return Response(serializer.data,

                       status=status.HTTP_201_CREATED)



Writing Post viewsets 63

In the preceding code, we defined three interesting methods:

•	 The get_queryset method returns all the posts. We don’t actually have particular requirements 
for fetching posts, so we can return all posts in the database.

•	 The get_object method returns a post object using public_id that will be present in 
the URL. We retrieve this parameter from the self.kwargs directory.

•	 The create method, which is the ViewSet action executed on POST requests on the endpoint 
linked to ViewSet. We simply pass the data to the serializer declared on ViewSet, validate 
the data, and then call the perform_create method to create a post object. This method 
will automatically handle the creation of a post object by calling the Serializer.create 
method, which will trigger the creation of a post object in the database. Finally, we return a 
response with the newly created post.

And right here, you have the code for ViewSet. The next step is to add an endpoint and start testing 
the API.

Adding the Post route

In the routers.py file, add the following content:

core/routers.py

…

from core.post.viewsets import PostViewSet

# ############################################################
######### #

# ################### 
POST                       ###################### #

# ############################################################
######### #

router.register(r'post', PostViewSet, basename='post')

…

Once it’s done, you’ll have a new endpoint available on /post/. Let’s play with Insomnia to test the API.

First of all, try to make a request directly to the /post/ endpoint. You’ll receive a 401 error, meaning 
that you must provide an access token. No problem, log in on the /auth/login/ endpoint with 
a registered user and copy the token.



Social Media Post Management64

In the Bearer tab in Insomnia, select Bearer Token:

Figure 3.5 – Adding Bearer Token to Insomnia request

Now, fire the endpoint again with a GET request. You’ll see no results, great! Let’s create the first post 
in the database.

Change the type of request to POST and the following to the JSON body:

{

    "author": "19a2316e94e64c43850255e9b62f2056",

    "body": "A simple posted"

}

Please note that we will have a different public_id so make sure to use public_id of the user 
you’ve just logged in as and send the request again:



Writing Post viewsets 65

Figure 3.6 – Creating a post

Great, the post is created! Let’s see whether it’s available when making a GET request:

Figure 3.7 – Getting all posts

The DRF provides a way to paginate responses and a default pagination limit size globally in the 
settings.py file. With time, a lot of objects will be shown and the size of the payload will vary.

To prevent this, let’s add a default size and a class to paginate our results.



Social Media Post Management66

Inside the settings.py file of the project, add new settings to the REST_FRAMEWORK dictionary:

CoreRoot/settings.py

REST_FRAMEWORK = {

…

   'DEFAULT_PAGINATION_CLASS':

     'rest_framework.pagination.LimitOffsetPagination',

   'PAGE_SIZE': 15,

}

…

Basically here, all results are limited to 15 per page but we can also increase this size with the limit 
parameter when making a request and also use the offset parameter to precisely where we want 
the result to start from:

GET https://api.example.org/accounts/?limit=100&offset=400

Great, now make a GET request again and you’ll see that the results are better structured.

Also, it’ll be more practical to have the name of the author in the response as well. Let’s rewrite a 
serializer method that can help modify the response object.

Rewriting the Post serialized object

Actually, the author field accepts public_id and returns public_id. While it does the 
work, it can be a little bit difficult to identify the user. This will cause it to make a request again with 
public_id of the user to get the pieces of information about the user.

The to_representation() method takes the object instance that requires serialization and 
returns a primitive representation. This usually means returning a structure of built-in Python data 
types. The exact types that can be handled depend on the render classes you configure for your API.

Inside post/serializers.py, add a new method called to_represenation():

core/post/serializers.py

class PostSerializer(AbstractSerializer):

   …

   def to_representation(self, instance):

       rep = super().to_representation(instance)



Adding permissions 67

       author = User.objects.get_object_by_public_id(

         rep["author"])

       rep["author"] = UserSerializer(author).data

       return rep

…

As you can see, we are using the public_id field to retrieve the user and then serialize the User 
object with UserSerializer.

Let’s get all the posts again and you’ll see all the users:

Figure 3.8 – Getting all posts

We have a working Post feature but it also has some issues. Let’s explore this further when writing 
permissions for our feature.

Adding permissions
If authentication is the action of verifying the identity of a user, authorization is simply the action of 
checking whether the user has the rights or privileges to perform an action.



Social Media Post Management68

In our project, we have three types of users:

•	 The anonymous user: This user has no account on the API and can’t really be identified

•	 The registered and active user: This user has an account on the API and can easily perform 
some actions

•	 The admin user: This user has all rights and privileges

We want anonymous users to be able to read the posts on the API without necessarily being 
authenticated. While it’s true that there is the AllowAny permission, it’ll surely conflict with the 
IsAuthenticated permission.

Thus, we need to write a custom permission.

Inside the authentication directory, create a file called permissions, and add the 
following content:

core/post/viewsets.py

from rest_framework.permissions import BasePermission, SAFE_
METHODS

class UserPermission(BasePermission):

   def has_object_permission(self, request, view, obj):

       if request.user.is_anonymous:

           return request.method in SAFE_METHODS

       if view.basename in ["post"]:

           return bool(request.user and

                       request.user.is_authenticated)

    return False

   def has_permission(self, request, view):

       if view.basename in ["post"]:

           if request.user.is_anonymous:

               return request.method in SAFE_METHODS

           return bool(request.user and

                       request.user.is_authenticated)

       return False



Deleting and updating posts 69

Django permissions usually work on two levels: on the overall endpoint (has_permission) and 
on an object level (has_object_permission).

A great way to write permissions is to always deny by default; that is why we always return False 
at the end of each permission method. And then you can start adding the conditions. Here, in all the 
methods, we are checking that anonymous users can only make the SAFE_METHODS requests — 
GET, OPTIONS, and HEAD.

And for other users, we are making sure that they are always authenticated before continuing. Another 
important feature is to allow users to delete or update posts. Let’s see how we can add this with Django.

Deleting and updating posts
Deleting and updating articles are also part of the features of posts. To add these functionalities, we 
don’t need to write a serializer or a viewset, as the methods for deletion (destroy()), and updating 
(update()) are already available by default in the ViewSet class. We will just rewrite the update 
method on PostSerializer to ensure that the edited field is set to True when modifying a post.

Let’s add the PUT and DELETE methods to http_methods of PostViewSet:

core/post/viewsets.py

…

class PostViewSet(AbstractViewSet):

   http_method_names = ('post', 'get', 'put', 'delete')

…

Before going in, let’s rewrite the update method in PostSerializer. We actually have a field 
called edited in the Post model. This field will tell us whether the post has been edited:

core/post/serializers.py

…

class PostSerializer(AbstractSerializer):

…

   def update(self, instance, validated_data):

       if not instance.edited:

           validated_data['edited'] = True

       instance = super().update(instance, validated_data)



Social Media Post Management70

       return instance

…

And let’s try the PUT and DELETE requests in Insomnia. Here’s an example of the body for the 
PUT request:

{

    "author": "61c5a1ecb9f5439b810224d2af148a23",

    "body": "A simple post edited"

}

Figure 3.9 – Modifying a post

As you can see, the edited field in the response is set to true.



Adding the Like feature 71

Let’s try to delete the post and see whether it works:

Figure 3.10 – Deleting a post

Important note
There is a way to delete records without necessarily deleting them from the database. It’s usually 
called a soft delete. The record just won’t be accessible to the user, but it will always be present in 
the database. You can learn more about this at https://dev.to/bikramjeetsingh/
soft-deletes-in-django-a9j.

Adding the Like feature
A nice feature to have in a social media application is favoriting. Like Facebook, Instagram, or Twitter, 
we’ll allow users here to like a post.

Plus, we’ll also add data to count the number of likes a post has received and check whether a current 
user making the request has liked a post.

We’ll do this in four steps:

10.	 Add a new posts_liked field to the User model.

11.	 Write methods on the User model to like and remove a like from a post. We’ll also add a 
method to check whether the user has liked a post.

12.	 Add likes_count and has_liked to PostSerializer.

13.	 Add endpoints to like and dislike a post.

Great! Let’s start by adding the new fields to the User model.

https://dev.to/bikramjeetsingh/soft-deletes-in-django-a9j
https://dev.to/bikramjeetsingh/soft-deletes-in-django-a9j


Social Media Post Management72

Adding the posts_liked field to the User model

The posts_liked field will contain all the posts liked by a user. The relationship between the User 
model and the Post model concerning the Like feature can be described as follows:

•	 A user can like many posts

•	 A post can be liked by many users

This kind of relationship sounds familiar? It is a many-to-many relationship.

Following this change, here’s the updated structure of the table – we are also anticipating the methods 
we’ll add to the model:

Figure 3.11 – New User table structure

Great! Let’s add the posts_liked field to the User model. Open the /core/user/models.
py file and add a new field to the User model:

class User(AbstractModel, AbstractBaseUser, PermissionsMixin):

...

   posts_liked = models.ManyToManyField(

       "core_post.Post",

       related_name="liked_by"

   )

...

After that, run the following commands to create a new migrations file and apply this migration to 
the database:

python manage.py makemigrations

python manage.py migrate

The next step is to add the new methods shown in Figure 3.11 to the User model.



Adding the Like feature 73

Adding the like, remove_like, and has_liked methods

Before writing these methods, let’s describe the purpose of each new method:

•	 The like() method: This is used for liking a post if it hasn’t been done yet. For this, we’ll use 
the add() method from the models. We’ll use ManyToManyField to link a post to a user.

•	 The remove_like() method: This is used for removing a like from a post. For this, we’ll 
use the remove method from the models. We’ll use ManyToManyField to unlink a post 
from a user.

•	 The has_liked() method: This is used for returning True if the user has liked a post, 
else False.

Let’s move on to the coding:

class User(AbstractModel, AbstractBaseUser, PermissionsMixin):

   ...

   def like(self, post):

       """Like `post` if it hasn't been done yet"""

       return self.posts_liked.add(post)

   def remove_like(self, post):

       """Remove a like from a `post`"""

       return self.posts_liked.remove(post)

   def has_liked(self, post):

       """Return True if the user has liked a `post`; else

          False"""

       return self.posts_liked.filter(pk=post.pk).exists()

Great! Next, let’s add the likes_count and has_liked fields to PostSerializer.

Adding the likes_count and has_liked fields to PostSerializer

Instead of adding fields such as likes_count in the Post model and generating more fields in 
the database, we can directly manage it on PostSerializer. The Serializer class in Django 
provides ways to create the write_only values that will be sent on the response.



Social Media Post Management74

Inside the core/post/serializers.py file, add new fields to PostSerializer:

Core/post/serializers.py

...

class PostSerializer(AbstractSerializer):

   ...

   liked = serializers.SerializerMethodField()

   likes_count = serializers.SerializerMethodField()

   def get_liked(self, instance):

       request = self.context.get('request', None)

       if request is None or request.user.is_anonymous:

           return False

       return request.user.has_liked(instance)

   def get_likes_count(self, instance):

       return instance.liked_by.count()

   class Meta:

       model = Post

       # List of all the fields that can be included in a

       # request or a response

       fields = ['id', 'author', 'body', 'edited', 'liked',

                 'likes_count', 'created', 'updated']

       read_only_fields = ["edited"]

In the preceding code, we are using the serializers.SerializerMethodField() field, 
which allows us to write a custom function that will return a value we want to attribute to this field. 
The syntax of the method will be get_field, where field is the name of the field declared on 
the serializer.

That is why for liked, we have the get_liked method, and for likes_count, we have the 
get_likes_count method.



Adding the Like feature 75

With the new fields on PostSerializer, we can now add the endpoints needed to PostViewSet 
to like or dislike an article.

Adding like and dislike actions to PostViewSet

DRF provides a decorator called action. This decorator helps make methods on a ViewSet class 
routable. The action decorator takes two arguments:

•	 detail: If this argument is set to True, the route to this action will require a resource lookup 
field; in most cases, this will be the ID of the resource

•	 methods: This is a list of the methods accepted by the action

Let’s write the actions on PostViewSets:

core/post/viewsets.py

 ...

class PostViewSet(AbstractViewSet):

   ...

   @action(methods=['post'], detail=True)

   def like(self, request, *args, **kwargs):

       post = self.get_object()

       user = self.request.user

       user.like(post)

       serializer = self.serializer_class(post)

       return Response(serializer.data,

                       status=status.HTTP_200_OK)

   @action(methods=['post'], detail=True)

   def remove_like(self, request, *args, **kwargs):

       post = self.get_object()

       user = self.request.user



Social Media Post Management76

       user.remove_like(post)

       serializer = self.serializer_class(post)

       return Response(serializer.data,

                       status=status.HTTP_200_OK)

For each action added, we are writing the logic following these steps:

1.	 First, we retrieve the concerned post on which we want to call the like or remove the like action. 
The self.get_object() method will automatically return the concerned post using the 
ID passed to the URL request, thanks to the detail attribute being set to True.

2.	 Second, we also retrieve the user making the request from the self.request object. This 
is done so that we can call the remove_like or like method added to the User model.

3.	 And finally, we serialize the post using the Serializer class defined on self.serializer_
class and we return a response.

With this added to PostViewSets, the Django Rest Framework routers will automatically create 
new routes for this resource, and then, you can do the following:

1.	 Like a post with the following endpoint: api/post/post_pk/like/.

2.	 Remove the like from a post with the following endpoint: api/post/post_pk/remove_
like/.

Great, the feature is working like a charm. In the next chapter, we’ll be adding the comments feature 
to the project.

Summary
In this chapter, we’ve learned how to use database relationships and write permissions. We also learned 
how to surcharge updates and create methods on viewsets and serializers.

We performed quick refactoring on our code by creating an Abstract class to follow the DRY rule. 
In the next chapter, we’ll be adding the Comments feature on the posts. Users will be able to create 
comments under posts as well as delete and update them.

Questions
1.	 What are some database relationships?

2.	 What are Django permissions?

3.	 How do you paginate the results of an API response?

4.	 How do you use Django shell?



4
Adding Comments to Social 

Media Posts

A social media application is more fun if your users can comment on other posts or even like them. 
In this chapter, we’ll first learn how to add comments to posts. We’ll see how we can use database 
relationships again to create a comment section for each post and ensure the code quality is maintained.

In this chapter, we will cover the following topics:

•	 Writing the Comment model

•	 Writing the comment serializer

•	 Nesting routes for the comment resource

•	 Writing the CommentViewSet class

•	 Updating a comment

•	 Deleting a comment

By the end of this chapter, you will be able to create Django models, write Django serializers and validation, 
and write nested viewsets and routes, and will have a better understanding of authorization permissions.

Technical requirements
For this chapter, you need to have Insomnia installed and some knowledge about models, database 
relationships, and permissions. You’ll also need to have the Insomnia API client installed on your machine. 
The code for this chapter can be found here: https://github.com/PacktPublishing/
Full-stack-Django-and-React/tree/chap4.

https://github.com/PacktPublishing/Full-stack-Django-and-React/tree/chap4
https://github.com/PacktPublishing/Full-stack-Django-and-React/tree/chap4


Adding Comments to Social Media Posts78

Writing the Comment model
A comment in the context of this project will represent a small text that can be viewed by anyone but 
only be created or updated by authenticated users. Here’s what the requirements for this feature look like:

•	 Any user can read comments
•	 Authenticated users can create comments under posts
•	 The comment author and post author can delete comments

•	 The comment author can update posts

Looking at these requirements, we can definitely start with writing the model first. But first of all, let’s 
quickly talk about the structure of the Comment table in the database:

Figure 4.1 – The Comment table structure

A comment will mostly have four important fields: the author of the comment, the post on which 
the comment has been made, the body of the comment, and the edited field to track whether the 
comment has been edited or not.

As per Figure 4.1, we have two database relationships in the table: author and post. So, how does this 
schematize in the database?

Figure 4.2 – Comment, Post, and User relationships

As you can see in Figure 4.2, the author (User) and post (Post) fields are ForeignKey types. This 
relates to some rules for the comment feature:

•	 A user can have many comments, but a comment is created by one user
•	 A post can have many comments, but a comment is linked to only one post

Now that we have a structure for the table and a better understanding of the requirements, let’s write 
the model and test it.



Writing the Comment model 79

Adding the Comment model

In core/comment/models.py, add the following content:

core/comment/models.py

from django.db import models

from core.abstract.models import AbstractModel, AbstractManager

class CommentManager(AbstractManager):

    pass

class Comment(AbstractModel):

    post = models.ForeignKey("core_post.Post",

                              on_delete=models.PROTECT)

    author = models.ForeignKey("core_user.User",

                                on_delete=models.PROTECT)

    body = models.TextField()

    edited = models.BooleanField(default=False)

    objects = CommentManager()

    def __str__(self):

        return self.author.name

In the preceding code snippet, we are declaring a class called CommentManager which is a subclass 
of the AbstractManager class. Then, we are declaring the Comment model class with fields such 
as the post and author that are respectively ForeignKey fields in relation to the Post model 
and the User model. Finally, we are declaring the body and the edited field. The rest of the code is 
basic formality such as telling Django with Manager class to use to manage the Comment model 
and finally a default __str__ method to return the name of the author when checking a comment 
object in the Django shell.

Now that the Comment model is written, let’s play with the model in the Django shell.



Adding Comments to Social Media Posts80

Creating a comment in the Django shell

Launch the Django shell with the following comment:

python manage.py shell

Python 3.10.2 (main, Jan 15 2022, 18:02:07) [GCC 9.3.0] on 
linux

Type "help", "copyright", "credits" or "license" for more 
information.

(InteractiveConsole)

>>> from core.comment.models import Comment

>>> from core.post.models import Post

>>> from core.user.models import User

First of all, we are importing the needed models to retrieve and create a comment. Next, we’ll retrieve 
a user and a post and then write the data needed in a Python dictionary to create a comment like so:

>>> user = User.objects.first()

>>> post = Post.objects.first()

>>> comment_data = {"post": post, "author": user, "body": "A 
comment."}

Now we can create the comment as follows:

>>> comment = Comment.objects.create(**comment_data)

>>> comment

<Comment: Dingo Dog>

>>> comment.body

'A comment.'

Great, now that we are sure that the comment is working, we can write the serializer for the 
comment feature.

Writing the comment serializer
The comment serializer will help with validation and content creation. In the comment application, 
create a file named serializers.py. We’ll write CommentSerializer in this file.



Writing the comment serializer 81

First of all, let’s import the classes and tools needed to create a serializer:

/core/comment/serializers.py

from rest_framework import serializers

from rest_framework.exceptions import ValidationError

from core.abstract.serializers import AbstractSerializer
from core.user.models import User
from core.user.serializers import UserSerializer
from core.comment.models import Comment
from core.post.models import Post

Once it’s done, we can now write CommentSerializer:

/core/comment/serializers.py

...
class CommentSerializer(AbstractSerializer):
   author = serializers.SlugRelatedField(
     queryset=User.objects.all(), slug_field='public_id')
   post = serializers.SlugRelatedField(
     queryset=Post.objects.all(), slug_field='public_id')

   def to_representation(self, instance):
       rep = super().to_representation(instance)
       author =
        User.objects.get_object_by_public_id(rep["author"])
       rep["author"] = UserSerializer(author).data

       return rep

   class Meta:
       model = Comment
       # List of all the fields that can be included in a
       # request or a response
       fields = ['id', 'post', 'author', 'body', 'edited',
                 'created', 'updated']
       read_only_fields = ["edited"]



Adding Comments to Social Media Posts82

Let’s explain the code concerning the CommentSerializer class. To create a comment, we need 
three fields: public_id of the author, public_id of the post, and finally, the body. We’ve also 
added validation methods for the author field.

In validate_author, we are blocking users from creating comments for other users.

And finally, the to_representation method modifies the final object by adding information 
about the author.

The comment serializer is now ready. We can now proceed to write the viewsets concerning the 
comment feature. But before that, let’s talk about the endpoint of the resource.

Nesting routes for the comment resource
To create, update, or delete comments, we need to add ViewSet. In the comment directory, create a 
file called viewsets.py. This file will contain the code for the CommentViewSet class. We won’t 
be writing the whole code for this viewset because we need to get some clear ideas on the structure 
of the endpoint.

So, add the following content for the moment:

core/comment/viewsets.py

from django.http.response import Http404

from rest_framework.response import Response

from rest_framework import status

from core.abstract.viewsets import AbstractViewSet

from core.comment.models import Comment

from core.comment.serializers import CommentSerializer

from core.auth.permissions import UserPermission

class CommentViewSet(AbstractViewSet):

   http_method_names = ('post', 'get', 'put', 'delete')

   permission_classes = (UserPermission,)

   serializer_class = CommentSerializer

...



Nesting routes for the comment resource 83

Great, now let’s talk about the endpoint architecture. The following table shows the structure of the 
endpoint concerning the comment. You have the method, the URL of the endpoint, and finally, the 
result of a call on this endpoint:

Method URL Result
GET /api/comment/ Lists all the comments related to a post

GET /api/comment/comment_pk/ Retrieves a specific comment

POST /api/comment/ Creates a comment
PUT /api/comment/comment_pk/ Modifies a comment
DELETE /api/comment/comment_pk/ Deletes a comment

However, for the comment feature, we are working with posts. And it’s definitely a great idea if 
comments are directly related to posts. Therefore, a great structure for our endpoints will look like this:

Method URL Action
GET /api/post/post_pk/comment/ Lists all the comments related to a post

GET
/api/post/post_pk/comment/
comment_pk/

Retrieves a specific comment

POST /api/post/post_pk/comment/ Creates a comment

PUT
/api/post/post_pk/comment/
comment_pk/

Modifies a comment

DELETE
/api/post/post_pk/comment/
comment_pk/

Deletes a comment

In this structure, the endpoint is nested, meaning that comment resources live under post resources.

But how do we achieve this simply?

The Django ecosystem has a library called drf-nested-routers, which helps write routers to 
create nested resources in a Django project.

You can install this package with the following command:

pip install drf-nested-routers

Don’t forget to add the dependency in the requirements.txt file.

Great! No need to register it in the settings.py file, as it doesn’t come with signals, models, 
or applications.

In the next section, let’s configure this library to fit the needs of this project.



Adding Comments to Social Media Posts84

Creating nested routes

Follow these steps to configure the drf-nested-routers library:

1.	 The first thing to do is to rewrite the routers.py file:

core/routers.py

from rest_framework_nested import routers

...

router = routers.SimpleRouter()

…

drf-nested-routers comes with an extended SimpleRouter, which will be useful 
for creating nested routes.

2.	 After that, create a new nested route called POST:

...

# #######################################################
############## #

# ################### 
POST                       ###################### #

# #######################################################
############## #

router.register(r'post', PostViewSet, basename='post')

posts_router = routers.NestedSimpleRouter(router, 
r'post', lookup='post')

…

NestedSimpleRouter is a sub-class of the SimpleRouter class, which takes initialization 
parameters, such as parent_router – router –parent_prefix – r'post' – and 
the lookup – post. The lookup is the regex variable that matches an instance of the parent 
resource – PostViewSet.

In our case, the lookup regex will be post_pk.



Nesting routes for the comment resource 85

3.	 The next step is to register the comment route on post_router:

core/routers.py
...
# #######################################################
############## #
# ################### 
POST                       ###################### #
# #######################################################
############## #
router.register(r'post', PostViewSet, basename='post')

posts_router = routers.NestedSimpleRouter(router, 
r'post', lookup='post')
posts_router.register(r'comment', CommentViewSet, 
basename='post-comment')
urlpatterns = [
   *router.urls,
   *posts_router.urls
]

...

Great! The comment resource is available, but we must rewrite the create, get_object, and 
get_queryset methods on the CommentViewSet class. Let’s see how using nested routes can 
modify the logic of retrieving objects in the next section.

Writing the CommentViewSet class

We now have a clear idea of how the endpoint will work.

Follow these steps in the core/comment/viewsets.py  file to finish writing the 
CommentViewSet class:

1.	 Rewrite the get_queryset method of the CommentViewSet class to fit the new architecture 
of the endpoint:

core/comment/viewsets.py
...
class CommentViewSet(AbstractViewSet):
...
   def get_queryset(self):



Adding Comments to Social Media Posts86

       if self.request.user.is_superuser:
           return Comment.objects.all()

       post_pk = self.kwargs['post_pk']
       if post_pk is None:
           return Http404
       queryset = Comment.objects.filter(
         post__public_id=post_pk)

       return queryset

In the preceding code, get_queryset is the method called when the user hits the /api/
post/post_pk/comment/ endpoint. The first verification here is to check whether the 
user is a superuser. If that’s the case, we return all the comment objects in the database.

If the user is not a superuser, then we’ll return the comments concerning a post. With the post 
nested route, we set the lookup attribute to post. That means that in kwargs (a dictionary 
containing additional data) of every request, a public id value of the post with the dictionary 
key post_pk will be passed in the URL of the endpoint.

If that’s not the case, we just return a 404 Not Found response.

We then make a query to the database by filtering and retrieving only comments that have the 
post.public_id field equal to post_pk. This is done with the filter method provided 
by the Django ORM. It’s useful to write conditions for retrieving objects from the database.

2.	 Next, let’s add the get_object method to the same CommentViewSet so we can use the 
public_id to retrieve the specific comment:

core/comment/viewsets.py
...
class CommentViewSet(AbstractViewSet):
...
   def get_object(self):
       obj = Comment.objects.get_object_by_public_id(
         self.kwargs['pk'])
       self.check_object_permissions(self.request,
                                     obj)
       return obj
...



Nesting routes for the comment resource 87

Similar to the UserViewSet get_object method, this method is called on each request 
made to the /api/post/post_pk/comment/comment_pk/ endpoint. Here, pk is 
represented by comment_pk.

Then, we retrieve the object and check for permissions. If everything is good, we return the object.

3.	 And as the last step, let’s write the create method:

core/comment/viewsets.py

...

class CommentViewSet(AbstractViewSet):

...

   def create(self, request, *args, **kwargs):

       serializer =

         self.get_serializer(data=request.data)

       serializer.is_valid(raise_exception=True)

       self.perform_create(serializer)

       return Response(serializer.data,

                       status=status.HTTP_201_CREATED)

Similar to the create method on PostViewSet, we pass request.data to the ViewSet 
serializer – CommentSerialier – and try to validate the serializer.

If everything is good, we move to create a new object – a new comment – based on the serializer 
from CommentSerializer.

Great! We now have a fully functional ViewSet. Next, let’s test the features with Insomnia.

Testing the comments feature with Insomnia

Before trying to retrieve comments, let’s create some comments with POST on the /api/post/
post_id/comment/ URL by following these steps:

1.	 Replace post_id with public_id of a post that you have already created.

Here’s an example of a payload for this request:

{

    "author": "61c5a1ecb9f5439b810224d2af148a23",

    "body": "Hey! I like your post.",

    "post": "e2401ac4b29243e6913bd2d4e0944862"

}



Adding Comments to Social Media Posts88

And here’s a screenshot of a request made to create a comment in Insomnia:

Figure 4.3 – Creating a post

2.	 Great! Now, modify the type of request from POST to GET. You’ll get all the comments 
concerning the post:

Figure 4.4 – Listing all comments



Updating a comment 89

Now that it’s possible to create a comment without issues, let’s add a feature for updating a comment 
and deleting a comment.

Updating a comment
Updating a comment is an action that can only be done by the author of the comment. And the user 
should only be able to update the body field of the comment and can’t modify the author value. Follow 
these steps to add the update feature:

1.	 In core/comment/viewsets, make sure that put is in the list of http_method_names 
of CommentViewSet:

core/comment/viewsets

...

class CommentViewSet(AbstractViewSet):

   http_method_names = ('post', 'get', 'put',

                        'delete')

...

After that, let’s write a validate method for the post field. We want to make sure that this 
value is not editable on PUT requests.

2.	 Inside the core/comment/serializers.py file, add a new method called validate_
post to CommentSerializer:

core/comment/serializers.py

...

def validate_post(self, value):

   if self.instance:

       return self.instance.post

   return value

...

Every model serializer provides an instance attribute that holds the object that will be 
modified if there is a delete, put, or patch request. If this is a GET or POST request, this 
attribute is set to None.



Adding Comments to Social Media Posts90

3.	 Next, let’s rewrite the update method on the CommentSerializer class. We’ll rewrite 
this class to pass the edited value to True:

core/comment/serializers.py
...
class CommentSerializer(AbstractSerializer):
   ...
   def update(self, instance, validated_data):
       if not instance.edited:
           validated_data['edited'] = True
       instance = super().update(instance,
                                 validated_data)
       return instance
…

4.	 Great! Now, let’s try a PUT request in Insomnia on the /api/post/post_pk/comment/
comment_pk/ endpoint. Here’s an example of a JSON body for the request:

{
    "author": "61c5a1ecb9f5439b810224d2af148a23",
    "body": "A simple comment edited",
    "post": "e2401ac4b29243e6913bd2d4e0944862"
}

And here’s a screenshot of a PUT request in Insomnia:

Figure 4.5 – Modifying a post



Deleting a comment 91

You will notice in the response body that the edited field is set to true, and the body of the 
comment has changed as well.

Now that it’s possible to modify a comment, let’s add the feature for deleting a comment.

Deleting a comment
Deleting a comment is an action that can only be performed by the author of the post, the author 
of the comment, and a superuser. To implement this rule, we’ll simply add some permissions in the 
UserPermission class by following these steps:

1.	 Make sure that delete is in the list of http_method_names of the CommentViewSet class:

core/comment/viewsets

...

class CommentViewSet(AbstractViewSet):

   http_method_names = ('post', 'get', 'put',

                        'delete')

…

2.	 Once it’s done, let’s add more verifications in the core/auth/permissions file in the 
has_object_permission method of the UserPermission class:

core/auth/permissions

...

def has_object_permission(self, request, view, obj):

...

   if view.basename in ["post-comment"]:

       if request.method in ['DELETE']:

           return bool(request.user.is_superuser or

                       request.user in [obj.author,

                       obj.post.author])

       return bool(request.user and

                   request.user.is_authenticated)

…



Adding Comments to Social Media Posts92

All requests can be made on the post-comment endpoint. However, if the method of the 
request is DELETE, we check whether the user is a superuser, the author of the comment, or 
the author of the post.

3.	 Let’s try to delete the comment in Insomnia at this endpoint: /api/post/post_pk/
comment/comment_pk/. Make sure you have the access token of the post author or the 
comment author.

And here’s a screenshot of a DELETE request to delete a comment under a post:

Figure 4.6 – Deleting a post

Great, the feature is working like a charm. And we’ve just learned how to write permissions for a 
DELETE request.

Summary
In this chapter, we’ve learned how to create a comment feature for the posts in our social media 
projects. That led us to learn more about how to better structure an endpoint using nested routers 
but also how to write custom permissions.

We’ve also dived deeper into serializer validations and how they work on different HTTP requests.

In the next chapter, we’ll focus on writing unit and integration tests for every feature added to the project.

Questions
1.	 What is a nested route?

2.	 What is drf-nested-routers?

3.	 Which attribute on a model serializer can help you to know whether the request is a PUT or 
a DELETE request?



5
Testing the REST API

In software engineering, testing is a process to check whether the actual software product performs 
as expected and is bug free.

There are a lot of ways to test software through both manual and automated tests. But in this project, 
we’ll focus more on automated testing. However, we’ll first dive into the different ways of testing 
software, including their pros and their cons, and also talk about the concept of the testing pyramid. 
We’ll also check the tools needed to add tests to a Django application and add tests to the models 
and the viewsets. This chapter will help you understand testing for developers and also how to write 
tests for a Django API.

In this chapter, we’ll be covering the following topics:

•	 What is testing?

•	 Testing in Django

•	 Configuring the testing environment

•	 Writing tests for Django models

•	 Writing tests for Django viewsets

Technical requirements
You can find the code of the current chapter at this link: https://github.com/PacktPublishing/
Full-stack-Django-and-React/tree/chap5.

What is testing?
To make it simple, testing is finding out how well something works.

However, the process comprises a group of techniques to determine the correctness of the application 
under a script or manual test directly on the user interface. The aim is to detect failures, including 
bugs and performance issues, in the application, so that they can be corrected.

https://github.com/PacktPublishing/Full-stack-Django-and-React/tree/chap5
https://github.com/PacktPublishing/Full-stack-Django-and-React/tree/chap5


Testing the REST API94

Most of the time, testing is done by comparing the software requirements to the actual software product. 
If one of the requirements is to make sure that input only accepts numbers and not characters or files, 
a test will be conducted to check whether the input has a validation system to reject non-number 
values in the input.

However, testing also involves an examination of code and the execution of code in various environments 
and conditions.

What is software testing?

Software testing is the process of examining the behavior of the software under test for validation or 
verification. It considers the attributes of reliability, scalability, reusability, and usability to evaluate the 
execution of the software components (servers, database, application, and so on) and find software 
bugs, errors, or defects.

Software testing has a lot of benefits, some of which are as follows:

•	 Cost effectiveness: Testing any software project helps the business save money in the long run. 
As the process helps detect bugs and check whether newly added features are working in the 
system without breaking things, it’s a great technical debt reducer.

•	 Security: If testing is done well, it can be a quick way to detect security risks and problems at 
an early stage before deploying a product to the whole world.

•	 Product quality: Testing helps with performance measurement, making sure that the requirements 
are respected.

Why is software testing important?

Testing your software is important because it helps reduce the impact of bugs through bug identification 
and resolution. Some bugs can be quite dangerous and can lead to financial losses or endanger human 
life. Here are some historical examples:

Source: https://lexingtontechnologies.ng/software-testing/.

•	 In April 1999, $1.2 billion were lost due to the failure of a military satellite launch. To date, this 
is the costliest accident in the history of the world.

•	 In 2014, the giant Nissan recalled over 1 million cars from the market because of a software 
failure in the airbag sensory detectors.

•	 In 2014,  some of Amazon's third-party retailers lost a lot of money because of a software glitch. 
The bug affected the price of the products, reducing them to 1p.

•	 In 2015, a software failure in the Point of sales (POS) system of Starbucks stores caused the 
temporary closure of more than 60% of their stores in the US and Canada. 

https://lexingtontechnologies.ng/software-testing/


What is testing? 95

•	 In 2015, an F-35 fighter plane fell victim to a software bug, which prevented it from detecting 
or identifying targets correctly. The sensor on the plane was unable to identify threats even 
from their own planes.

•	 In 2016, Google reported a bug affecting Windows 10 machines. The vulnerability allowed 
users to escape security sandboxes through a flow in the win32k system.

What are the various types of testing?

Testing is typically classified into three categories:

•	 Functional testing: This type of testing comprises unit, integration, user acceptance, globalization, 
internationalization testing, and so on

•	 Non-functional testing: This type of testing checks for factors such as performance, volume, 
scalability, usability, and load

•	 Maintenance testing: This type of testing considers regression and maintenance

However, these tests can also be classified into two different types:

•	 Automated tests

•	 Manual tests

First, let’s see what manual testing is.

Understanding manual testing

Manual testing is the process of testing software manually to find defects or bugs. It’s the process of 
testing the functionalities of an application without the help of automation tools.

An example of manual testing is when test users are called to test an application or a special feature. They 
can be asked to test a specific form, push the application to its limits when it comes to performance, 
and much more.

Manual testing has a lot of advantages:

•	 It’s very useful to test user interface designs and interactions

•	 It’s easier to learn for new testers

•	 It takes user experience and usability into consideration

•	 It’s cost-effective



Testing the REST API96

However, manual testing also has some cons:

•	 It requires human resources.

•	 It’s time-consuming.

•	 Testers consider test cases based on their skills and experience. This means that a beginner 
tester may not cover all the functions.

Even if manual testing sounds very appealing, it can be quite a time- and resource-consuming exercise, 
and developers definitely do not make really good manual testers. Let’s see how automated testing can 
erase the cons of manual testing and place better development at the center of testing.

Understanding automated testing

Automated testing is simply the process of testing software using automation tools to find defects. 
These automation tools can be scripts written in the language used to build the application or some 
software or drivers (such as Selenium, WinRunner, and LoadRunner) to make automated testing 
easier and faster.

Automated testing fixes the cons of manual testing, and it also has more advantages, as shown in the 
following list:

•	 Faster in execution

•	 Cheaper than manual testing in the long run

•	 More reliable, powerful, and versatile

•	 Very useful in regression testing

•	 Able to provide better test coverage

•	 Possible to run without human intervention

•	 Much cheaper

However, automated testing is also inconvenient in some ways:

•	 It is expensive at the beginning

•	 It has a huge cost of maintenance when requirements change

•	 Automated testing tools are expensive

The real value of automated testing and manual testing comes when each is used in the right environment.

For example, manual testing is much more useful on frontend projects where you want to test the 
usability and user experience. Automated testing can be useful to test methods or functions in the 
code and is very useful for finding bugs or security issues.



Testing in Django 97

In this chapter, we’ll focus on writing automated tests in Python. As we are developing an API, we 
want to make sure that the system is reliable and behaves as we want it to, but it should also be secure 
against the possible issues of the next added feature.

This said, let’s talk about testing in Django and introduce the notion of test-driven development (TDD).

Testing in Django
Testing in Python, particularly in Django, is very simple and easy. The framework actually provides 
many tools and utilities you can use to write tests for the models, serializers, or views in the application.

However, the Python ecosystem for testing relies a lot on one tool to write tests, and this tool has 
deep integration with Django. The tool is named Pytest (https://docs.pytest.org) and is 
a framework for writing small and readable tests. Used with Django, Pytest is mainly used for API 
testing by writing code to test API endpoints, databases, and user interfaces.

But why use Pytest? Well, it has the following advantages:

•	 It is free and open source

•	 It has a simple syntax and is very easy to start with

•	 It automatically detects test files, functions, and classes

•	 It can run multiple tests in parallel, increasing the performance and the speed of running tests

We’ll use Pytest in this project to write two kinds of tests: integration tests and unit tests.

Before starting to code, let’s learn about integration testing and unit testing by considering the concepts 
of TDD and the testing pyramid.

The testing pyramid

The testing pyramid is a framework that can help developers start with testing to create high-quality 
software. Basically, the testing pyramid specifies the types of tests that should be included in an 
automated test suite.

First of all, remember that the testing pyramid operates at three levels:

•	 Unit tests

•	 Integration tests

•	 End-to-end tests

https://docs.pytest.org


Testing the REST API98

The following figure shows the positions of each of these levels in the pyramid and how they are 
prioritized in terms of the speed performance and level of integration or isolation:

Figure 5.1 – The testing pyramid

In the preceding figure, the base level is occupied by unit testing. Unit tests target individual components 
or functionality to check whether they work as expected in isolated conditions. In our backend project, 
an example would be to test whether the like_post method on the User class model actually 
performs as intended. We are not testing the whole User model; we are testing one method of the 
User model class.

It’s definitely a good habit to write a lot of unit tests. They should comprise at least 60% of all the tests 
in your code base because they are fast, short, and test a lot of components.

On the second level, you have integration tests. If unit tests verify small pieces of a code base, integration 
tests test how this code interacts with other code or other parts of the software. A useful, albeit 
controversial, example of integration testing is writing a test for a viewset. When testing a viewset, 
you are also testing the permissions, the authentication classes, the serializers, the models, and the 
database if possible. It’s a test of how the different parts of the Django API work together.

An integration test can also be a test between your application and an external service, a payment 
API, for example.



Configuring the testing environment 99

On the third level at the top of the pyramid, you have end-to-end tests. These kinds of tests ensure 
that the software is working as required. They test how the application works from beginning to end.

In this book, we’ll focus on unit and integration testing. Note that integration tests are the subject 
of some misunderstandings that will be cleared up once we define them. According to my personal 
experience, unit tests in Django are written more on the model and serializer side of each application. 
They can be used for testing the creation of an object in the database as well as for retrieving, updating, 
or deletion.

Regarding viewset tests, I believe that they can act as integration tests because running them calls on 
permissions, authentication, serializers, validation, and also models, depending on the action you 
are performing.

Returning to unit tests, they are more effective when using TDD, which comprises software development 
practices that focus on writing unit test cases before developing the feature. Even if it sounds counter-
intuitive, TDD has a lot of advantages:

•	 It ensures optimized code

•	 It ensures the application of design patterns and better architecture

•	 It helps the developer understand the business requirements

•	 It makes the code flexible and easier to maintain

However, we didn’t particularly respect the TDD rule in the book. We relied on the Django shell and 
a client to test the feature of the REST API we are building. For the next features that will be added 
to the project, tests will be written before coding the feature.

With concepts such as TDD, unit and integration testing, and testing pyramid understood, we can 
now configure the testing environment.

Configuring the testing environment
Pytest, taken alone, is simply a Python framework to write unit tests in Python programs. Thankfully, 
there is a plugin for Pytest to write tests in Django projects and applications.

Let’s install and configure the environment for testing by using the following command:

pip install pytest-django

Once the package is installed, create a new file called pytest.ini at the root of the Django project:

pytest.ini

[pytest]

DJANGO_SETTINGS_MODULE=CoreRoot.settings

python_files=tests.py test_*.py *_tests.py



Testing the REST API100

Once it’s done, run the pytest command:

pytest

You’ll see the following output:

======================== test session starts 
============================

platform linux -- Python 3.10.2, pytest-7.0.1, pluggy-1.0.0

django: settings: CoreRoot.settings (from ini)

rootdir: /home/koladev/PycharmProjects/Full-stack-Django-and-
React, configfile: pytest.ini

plugins: django-4.5.2

collected 0 items

Great! Pytest is installed in the project, and we can write the first test in the project to test the configuration.

Writing your first test

The Pytest environment is configured, so let’s see how we can write a simple test using Pytest.

At the root of the project, create a file called tests.py. We’ll simply write a test to test the sum of 
a function.

Following the TDD concept, we’ll write the test first and make it fail:

tests.py

def test_sum():
   assert add(1, 2) == 3

This function is written to check for a condition, justifying the usage of the assert Python keyword. 
If the condition after the assert is true, the script will continue or stop the execution. If that’s not 
the case, an assertion error will be raised.

If you run the pytest command, you’ll receive the following output:

Figure 5.2 – Failing tests



Writing tests for Django models 101

From the preceding output, we are sure that the test has failed. Let’s now write the feature to pass the test.

In the same file, tests.py, add the following function:

tests.py

def add(a, b):

   return a + b

def test_sum():

   assert sum(1, 2) == 3

Now, run the pytest command again in the terminal. Everything should now be green:

Figure 5.3 – Test passes successfully

Great! You have written the first test in the project using Pytest. In the next section, we’ll be writing 
tests for the models of the project.

Writing tests for Django models
When applying testing to a Django project, it’s always a good idea to start with writing tests for the 
models. But why test the models?

Well, it gives you better confidence in your code and the connections to the database. It’ll make sure 
that methods or attributes on the model are well represented in the database, but it can also help you 
with better code structure, resolving bugs, and building documentation.

Without further ado, let’s start by writing tests for the User model.



Testing the REST API102

Writing tests for the User model

Inside the core/user directory, create a new file called tests.py. We’ll write tests to create a 
user and a simple user:

core/user/tests.py

import pytest
from core.user.models import User

data_user = {
   "username": "test_user",
   "email": "test@gmail.com",
   "first_name": "Test",
   "last_name": "User",
   "password": "test_password"
}

Once the imports and the data to create the user have been added, we can write the test function:

core/user/tests.py

@pytest.mark.django_db
def test_create_user():
   user = User.objects.create_user(**data_user)
   assert user.username == data_user["username"]
   assert user.email == data_user["email"]
   assert user.first_name == data_user["first_name"]
   assert user.last_name == data_user["last_name"]

Above the test_create_user function, you’ll probably notice some syntax. It’s called a decorator, 
and it’s basically a function that takes another function as its argument and returns another function.

@pytest.mark.django_db gives us access to the Django database. Try to remove this decorator 
and run the tests.

You’ll get an error output with a similar message at the end:

===============================================================
==== short test summary info ==================================
=================================

FAILED core/user/tests.py::test_create_user - RuntimeError: 
Database access not allowed, use the "django_db" mark, or the 
"db" or "transactional_db" fixture...



Writing tests for Django models 103

Well, re-add the decorator and run the pytest command and all tests should pass normally.

Let’s do another test to make sure that the creation of superuser works perfectly.

Add a new dictionary containing the data needed to create superuser:

core/user/tests.py

data_superuser = {

   "username": "test_superuser",

   "email": "testsuperuser@gmail.com",

   "first_name": "Test",

   "last_name": "Superuser",

   "password": "test_password"

}

And here’s the function that tests the creation of superuser:

core/user/tests.py

@pytest.mark.django_db

def test_create_superuser():

   user = User.objects.create_superuser(**data_superuser)

   assert user.username == data_superuser["username"]

   assert user.email == data_superuser["email"]

   assert user.first_name == data_superuser["first_name"]

   assert user.last_name == data_superuser["last_name"]

   assert user.is_superuser == True

   assert user.is_staff == True

Run the tests again, and everything should be green.

Great! Now that we have a better understanding of how pytest works for tests, let’s write tests for 
the Post model.

Writing tests for the Post model

To create a model, we need to have a user object ready. This will also be the same for the Comment 
model. To avoid repetition, we’ll simply write fixtures.

A fixture is a function that will run before each test function to which it’s applied. In this case, the 
fixture will be used to feed some data to the tests.



Testing the REST API104

To add fixtures in the project, create a new Python package called fixtures in the core directory.

In the core/fixtures directory, create a file called user.py. This file will contain a user fixture:

core/fixtures/user.py

import pytest
from core.user.models import User

data_user = {
   "username": "test_user",
   "email": "test@gmail.com",
   "first_name": "Test",
   "last_name": "User",
   "password": "test_password"
}

@pytest.fixture
def user(db) -> User:
   return User.objects.create_user(**data_user)

In the preceding code, the @pytest.fixture decorator labels the function as a fixture. We can 
now import the user function in any test and pass it as an argument to the test function.

Inside the core/post directory, create a new file called tests.py. This file will then test for the 
creation of a post.

Here’s the code:

core/post/tests.py

import pytest

from core.fixtures.user import user
from core.post.models import Post

@pytest.mark.django_db
def test_create_post(user):
   post = Post.objects.create(author=user,
                              body="Test Post Body")
   assert post.body == "Test Post Body"
   assert post.author == user



Writing tests for Django models 105

As you can see, we are importing the user function from user.py in the fixtures directory and 
passing it as an argument to the test_create_post test function.

Run the pytest command, and everything should be green.

Now that we have a working test for the Post model, let’s write tests for the Comment model.

Writing tests for the Comment model

Writing tests for the Comment model requires the same steps as the tests for the Post model. First 
of all, create a new file called post.py in the core/fixtures directory.

This file will contain the fixture of a post, as it’s needed to create a comment.

But the post fixture will also need a user fixture. Thankfully, it’s possible with Pytest to inject 
fixtures into other fixtures.

Here’s the code for the post fixture:

core/fixtures/post.py

import pytest

from core.fixtures.user import user

from core.post.models import Post

@pytest.fixture

def post(db, user):

   return Post.objects.create(author=user,

                              body="Test Post Body")

Great! With the fixtures added, we can now write the test for comment creation.

Inside the core/comment/ directory, create a new file called tests.py:

core/comment/tests.py

import pytest

from core.fixtures.user import user

from core.fixtures.post import post

from core.comment.models import Comment



Testing the REST API106

@pytest.mark.django_db

def test_create_comment(user, post):

   comment = Comment.objects.create(author=user, post=post,

     body="Test Comment Body")

   assert comment.author == user

   assert comment.post == post

   assert comment.body == "Test Comment Body"

Run the tests with the pytest command, and everything should be green.

Great! We’ve just written tests for all the models in the project. Let’s move on to writing tests for 
the viewsets.

Writing tests for your Django viewsets
Viewsets or endpoints are the interfaces of the business logic that the external clients will use to fetch 
data and create, modify, or delete data. It’s always a great habit to have tests to make sure that the 
whole system, starting from a request to the database, is working as intended.

Before starting to write the tests, let’s configure the Pytest environment to use the API client from DRF.

The API client is a class that handles different HTTP methods, as well as features such as authentication 
in testing, which can be very helpful for directly authenticating without a username and password to 
test some endpoints. Pytest provides a way to add configurations in a testing environment.

Create a file named conftest.py at the root of the project. Inside the file, we’ll create a fixture 
function for our custom client:

conftest.py

import pytest

from rest_framework.test import APIClient

@pytest.fixture

def client():

   return APIClient()

Great! We can now directly call this client in the next tests.

Let’s start by testing the authentication endpoints.



Writing tests for your Django viewsets 107

Writing tests for authentication

Inside the core/auth directory, create a file named tests.py. Instead of writing test functions 
directly, we write a class that will contain the testing methods as follows:

core/auth/tests.py

import pytest
from rest_framework import status

from core.fixtures.user import user

class TestAuthenticationViewSet:

   endpoint = '/api/auth/'

Let’s add the test_login method to the TestAuthenticationViewSet class:

Core/auth/tests.py

...
   def test_login(self, client, user):
       data = {
           "username": user.username,
           "password": "test_password"
       }
       response = client.post(self.endpoint + "login/",
                              data)

       assert response.status_code == status.HTTP_200_OK
       assert response.data['access']
       assert response.data['user']['id'] ==
         user.public_id.hex
       assert response.data['user']['username'] ==
         user.username
       assert response.data['user']['email'] == user.email

  ...

This method basically tests the login endpoint. We are using the client fixture initialized in the 
conftest.py file to make a post request. Then, we test for the value of status_code of the 
response and the response returned.



Testing the REST API108

Run the pytest command, and everything should be green.

Let’s add tests for the register and refresh endpoints:

core/auth/tests.py

...
   @pytest.mark.django_db
   def test_register(self, client):
       data = {
           "username": "johndoe",
           "email": "johndoe@yopmail.com",
           "password": "test_password",
           "first_name": "John",
           "last_name": "Doe"
       }

       response = client.post(self.endpoint + "register/",
                              data)
       assert response.status_code ==
         status.HTTP_201_CREATED

   def test_refresh(self, client, user):

      data = {
           "username": user.username,
           "password": "test_password"
       }
       response = client.post(self.endpoint + "login/",
                                data)
       assert response.status_code == status.HTTP_200_OK

       data_refresh = {
           "refresh":  response.data['refresh']
       }

       response = client.post(self.endpoint + "refresh/",
                              data_refresh)
       assert response.status_code == status.HTTP_200_OK
       assert response.data['access']



Writing tests for your Django viewsets 109

In the preceding code, within the test_refresh method, we log in to get a refresh token to make 
a request to get a new access token.

Run the pytest command again to run the tests, and everything should be green.

Let’s move on to writing tests for PostViewSet.

Writing tests for PostViewSet

Before starting to write the viewsets tests, let’s quickly refactor the code to simply write the tests and 
follow the DRY rule. Inside the core/post directory, create a Python package called tests. Once 
it’s done, rename the tests.py file in the core/post directory to test_models.py and move 
it to the core/post/tests/ directory.

Inside the same directory, create a new file called test_viewsets.py. This file will contain tests 
for PostViewSet:

core/post/tests/test_viewsets.py

from rest_framework import status

from core.fixtures.user import user
from core.fixtures.post import post

class TestPostViewSet:

   endpoint = '/api/post/'

PostViewSet handles requests for two types of users:

•	 Authenticated users

•	 Anonymous users

Each type of user has different permissions on the post resource. So, let’s make sure that these cases 
are handled:

core/post/tests/test_viewsets.py

...
   def test_list(self, client, user, post):
       client.force_authenticate(user=user)
       response = client.get(self.endpoint)
       assert response.status_code == status.HTTP_200_OK
       assert response.data["count"] == 1



Testing the REST API110

   def test_retrieve(self, client, user, post):
       client.force_authenticate(user=user)
       response = client.get(self.endpoint +
                             str(post.public_id) + "/")
       assert response.status_code == status.HTTP_200_OK
       assert response.data['id'] == post.public_id.hex
       assert response.data['body'] == post.body
       assert response.data['author']['id'] ==
         post.author.public_id.hex

For these tests, we are forcing authentication. We want to make sure that authenticated users have 
access to the post’s resources. Let’s now write a test method for post creation, updating, and deletion:

core/post/tests/test_viewsets.py

...
   def test_create(self, client, user):
       client.force_authenticate(user=user)
       data = {
           "body": "Test Post Body",
           "author": user.public_id.hex
       }
       response = client.post(self.endpoint, data)
       assert response.status_code ==
         status.HTTP_201_CREATED
       assert response.data['body'] == data['body']
       assert response.data['author']['id'] ==
         user.public_id.hex

   def test_update(self, client, user, post):
       client.force_authenticate(user=user)
       data = {
           "body": "Test Post Body",
           "author": user.public_id.hex
       }
       response = client.put(self.endpoint +
         str(post.public_id) + "/", data)

       assert response.status_code == status.HTTP_200_OK



Writing tests for your Django viewsets 111

       assert response.data['body'] == data['body']

   def test_delete(self, client, user, post):
       client.force_authenticate(user=user)
       response = client.delete(self.endpoint +
         str(post.public_id) + "/")
       assert response.status_code ==

         status.HTTP_204_NO_CONTENT

Run the tests, and the outcomes should be green. Now, for the anonymous users, we want them to 
access the resource in reading mode, so they can’t create, modify, or delete a resource. Let’s test and 
validate these features:

core/post/tests/test_viewsets.py

...
   def test_list_anonymous(self, client, post):
       response = client.get(self.endpoint)
       assert response.status_code == status.HTTP_200_OK
       assert response.data["count"] == 1

   def test_retrieve_anonymous(self, client, post):
       response = client.get(self.endpoint +
         str(post.public_id) + "/")
       assert response.status_code == status.HTTP_200_OK
       assert response.data['id'] == post.public_id.hex
       assert response.data['body'] == post.body
       assert response.data['author']['id'] ==

         post.author.public_id.hex

Run the tests to make sure everything is green. After that, let’s test the forbidden methods:

core/post/tests/test_viewsets.py

...

def test_create_anonymous(self, client):

       data = {

           "body": "Test Post Body",

           "author": "test_user"

       }



Testing the REST API112

       response = client.post(self.endpoint, data)

       assert response.status_code ==

         status.HTTP_401_UNAUTHORIZED

   def test_update_anonymous(self, client, post):

       data = {

           "body": "Test Post Body",

           "author": "test_user"

       }

       response = client.put(self.endpoint +

         str(post.public_id) + "/", data)

       assert response.status_code ==

         status.HTTP_401_UNAUTHORIZED

   def test_delete_anonymous(self, client, post):

       response = client.delete(self.endpoint +

         str(post.public_id) + "/")

       assert response.status_code ==

         status.HTTP_401_UNAUTHORIZED

Run the tests again. Great! We’ve just written tests for the post viewset. You should now have a better 
understanding of testing with viewsets.

Let’s quickly write tests for CommentViewSet.

Writing tests for CommentViewSet

Before starting to write the viewset tests, let’s also quickly refactor the code for writing the tests. Inside 
the core/comment directory, create a Python package called tests. Once it’s done, rename the 
tests.py file in the core/post directory to test_models.py and move it to the core/
comment/tests/ directory.

Inside the same directory, create a new file called test_viewsets.py. This file will contain tests 
for CommentViewSet.

Just like in PostViewSet, we have two types of users, and we want to write test cases for each of 
their permissions.



Writing tests for your Django viewsets 113

However, before creating comments, we need to add comment fixtures. Inside the core/fixtures 
directory, create a new file called comment.py and add the following content:

core/fixtures/comment.py

import pytest

from core.fixtures.user import user
from core.fixtures.post import post

from core.comment.models import Comment

@pytest.fixture
def comment(db, user, post):
   return Comment.objects.create(author=user, post=post,
                                 body="Test Comment Body")

After that, inside core/comment/tests/test_viewsets.py, add the following content first:

core/comment/tests/test_viewsets.py

from rest_framework import status

from core.fixtures.user import user
from core.fixtures.post import post
from core.fixtures.comment import comment

class TestCommentViewSet:

   # The comment resource is nested under the post resource

   endpoint = '/api/post/'

Next, let’s add tests to the list and retrieve comments as authenticated users:

core/comment/tests/test_viewsets.py

...
def test_list(self, client, user, post, comment):
       client.force_authenticate(user=user)
       response = client.get(self.endpoint +



Testing the REST API114

         str(post.public_id) + "/comment/")

       assert response.status_code == status.HTTP_200_OK

       assert response.data["count"] == 1

   def test_retrieve(self, client, user, post, comment):

       client.force_authenticate(user=user)

       response = client.get(self.endpoint +

                             str(post.public_id) +

                             "/comment/" +

                             str(comment.public_id) + "/")

       assert response.status_code == status.HTTP_200_OK

       assert response.data['id'] == comment.public_id.hex

       assert response.data['body'] == comment.body

       assert response.data['author']['id'] ==

         comment.author.public_id.hex

Make sure that these tests pass by running the pytest command. The next step is to add tests for 
comment creation, updating, and deletion:

core/comment/tests/test_viewsets.py

...

    def test_create(self, client, user, post):

       client.force_authenticate(user=user)

       data = {

           "body": "Test Comment Body",

           "author": user.public_id.hex,

           "post": post.public_id.hex

       }

       response = client.post(self.endpoint +

         str(post.public_id) + "/comment/", data)

       assert response.status_code ==

         status.HTTP_201_CREATED

       assert response.data['body'] == data['body']

       assert response.data['author']['id'] ==

         user.public_id.hex



Writing tests for your Django viewsets 115

   def test_update(self, client, user, post, comment):

       client.force_authenticate(user=user)

       data = {

           "body": "Test Comment Body Updated",

           "author": user.public_id.hex,

           "post": post.public_id.hex

       }

       response = client.put(self.endpoint +

                             str(post.public_id) +

                             "/comment/" +

                             str(comment.public_id) +

                             "/", data)

       assert response.status_code == status.HTTP_200_OK

       assert response.data['body'] == data['body']

   def test_delete(self, client, user, post, comment):

       client.force_authenticate(user=user)

       response = client.delete(self.endpoint +

         str(post.public_id) + "/comment/" +

         str(comment.public_id) + "/")

       assert response.status_code ==

         status.HTTP_204_NO_CONTENT

Run the tests again to make sure everything is green. Let’s write tests for the anonymous users now.

First of all, we need to make sure that they can access the resources with the GET method:

core/comment/tests/test_viewsets.py

...

   def test_list_anonymous(self, client, post, comment):

       response = client.get(self.endpoint +

                             str(post.public_id) +

                             "/comment/")

       assert response.status_code == status.HTTP_200_OK

       assert response.data["count"] == 1



Testing the REST API116

   def test_retrieve_anonymous(self, client, post,

     comment):

       response = client.get(self.endpoint +

         str(post.public_id) + "/comment/" +
         str(comment.public_id) + "/")

       assert response.status_code == status.HTTP_200_OK

Next, we need to make sure that an anonymous user can’t create, update, or delete a comment:

core/comment/tests/test_viewsets.py

   def test_create_anonymous(self, client, post):

       data = {}

       response = client.post(self.endpoint +

         str(post.public_id) + "/comment/", data)

       assert response.status_code ==

         status.HTTP_401_UNAUTHORIZED

   def test_update_anonymous(self, client, post, comment):

       data = {}

       response = client.put(self.endpoint +

         str(post.public_id) + "/comment/" +

         str(comment.public_id) + "/", data)

       assert response.status_code ==

         status.HTTP_401_UNAUTHORIZED

   def test_delete_anonymous(self, client, post, comment):

       response = client.delete(self.endpoint +

         str(post.public_id) + "/comment/" +

         str(comment.public_id) + "/")

       assert response.status_code ==

         status.HTTP_401_UNAUTHORIZED



Writing tests for your Django viewsets 117

In the preceding cases, the data dict is empty because we are expecting error statuses.

Run the tests again to make sure that everything is green!

And voilà. We’ve just written tests for CommentViewSet. We also need to write tests for the 
UserViewSet class, but this will be a small project for you.

Writing tests for the UserViewSet class

In this section, let’s do a quick hands-on exercise. You’ll write the code for the UserViewSet class. 
It’s quite similar to the other tests we’ve written for PostViewSet and CommentViewSet. I have 
provided you with the structure of the class, and all you have to do is to write the testing logic in the 
methods. The following is the structure you need to build on:

core/user/tests/test_viewsets.py

from rest_framework import status

from core.fixtures.user import user

from core.fixtures.post import post

class TestUserViewSet:

   endpoint = '/api/user/'

   def test_list(self, client, user):

       pass

   def test_retrieve(self, client, user):

       pass

   def test_create(self, client, user):

       pass

   def test_update(self, client, user):

       pass



Testing the REST API118

Here are the requirements concerning the tests:

•	 test_list: An authenticated user should enable a list of all users

•	 test_retrieve: An authenticated user can retrieve resources concerning a user

•	 test_create: Users cannot create users directly with a POST request

•	 test_update: An authenticated user can update a user object with a PATCH request

You can find the solution to this exercise here: https://github.com/PacktPublishing/
Full-stack-Django-and-React/blob/main/core/user/tests/test_viewsets.py.

Summary
In this chapter, we learned about testing, the different types of testing, and their advantages. We also 
introduced testing in Django using Pytest and wrote tests for the models and viewsets. These skills 
acquired in writing tests using the TDD method help you better design your code, prevent bugs 
tied to code architecture, and improve the quality of the software. Not to forget, they also give you a 
competitive advantage in the job market.

This is the last chapter of Part 1, Technical Background. The next part will be dedicated to React and 
connecting the frontend to the REST API we’ve just built. In the next chapter, we’ll learn more about 
frontend development and React, and we’ll also create a React project and run it.

Questions
1.	 What is testing?

2.	 What is a unit test?

3.	 What is the testing pyramid?

4.	 What is Pytest?

5.	 What is a Pytest fixture?

https://github.com/PacktPublishing/Full-stack-Django-and-React/blob/main/core/user/tests/test_viewsets.py
https://github.com/PacktPublishing/Full-stack-Django-and-React/blob/main/core/user/tests/test_viewsets.py


Part 2:  
Building a Reactive UI  

with React

In Part 1 of our book, we built the backend of the Postagram application using Django, with authentication 
features and post and comment management. In this part of the book, you will build a React application 
representing the UI interface of Postagram, where users will see posts and comments and be able to 
like posts or comments, upload profile pictures, and visit other users’ profiles. At the end of this part, 
you will have the required knowledge to use React to handle authentication from the frontend side, 
build UI components from scratch, work with React Hooks such as useState, useContext, and 
useMemo, and send requests to a REST API and handle the responses.  

This section comprises the following chapters:

•	 Chapter 6, Creating a Project with React

•	 Chapter 7, Building Login and Registration Forms

•	 Chapter 8, Social Media Posts

•	 Chapter 9, Post Comments

•	 Chapter 10, User Profiles

•	 Chapter 11, Effective UI Testing for React Components





6
Creating a Project with React

In this chapter, we’ll focus on understanding frontend development and creating a web frontend project 
with React. In previous chapters, we mostly focused on Django and Django Rest. In this chapter, we’ll 
explain the basics of frontend development. Next, we will introduce the React library and create a 
starting project for the following chapters. Finally, we will learn how to configure our project.

In this chapter, we will cover the following topics:

•	 Understanding frontend development

•	 Creating the React project

•	 Configuring the project

•	 Useful ES6 and React features

Technical requirements
In this book, we use the Linux OS, but you can find the tools needed for this project on other OSs as well. 
We’ll see how to install Node.js and Visual Studio Code (VS Code) on your machine in this chapter.

The following GitHub link will also be required: https://github.com/PacktPublishing/
Full-stack-Django-and-React/tree/chap6.

Understanding frontend development
Frontend development is the part of software development that focuses on the User Interface (UI). 
In web development, frontend development is the practice of producing HTML, CSS, and JavaScript 
for a website or web application.

HTML stands for HyperText Markup Language. HTML displays content on the page, such as text, 
buttons, links, headings, or lists.

CSS is defined as Cascade Style Sheets. CSS is used to style the web page. It deals with things such 
as colors, layouts, and animation. It also helps with the accessibility of your websites so that everyone 
can easily use your website.

https://github.com/PacktPublishing/Full-stack-Django-and-React/tree/chap6
https://github.com/PacktPublishing/Full-stack-Django-and-React/tree/chap6


Creating a Project with React122

Finally, JavaScript is a client-side language that facilitates user interaction and makes dynamic pages. 
It can help with complex animations, form validation, data fetching from a server, and data submission 
to the server.

However, as with languages such as Python, while building a frontend application from scratch with HTML, 
CSS, and JavaScript is definitely possible, it is quite difficult. It requires good knowledge of code architecture 
and component reusability. In the end, you’ll end up creating your own development framework.

But why not directly use some pre-built CSS or JavaScript framework?

Tools such as Vue, Angular, or React can help you write frontend applications with seed and in a 
smoother way.

In this book, we’ll be using React’s open source JavaScript library. Let’s learn more about React as 
a library.

What is React?

React is a library that helps developers build reactive UIs as a tree of small reusable pieces 
called components.

In frontend development, a component is a mixture of HTML, CSS, and JavaScript that captures the 
logic required to render a small section or a larger UI. Let’s analyze the following HTML form to 
better understand components in frontend development:

Figure 6.1 – HTML form



Creating the React project 123

As you can see in Figure 6.1, in the form, we have defined four components:

•	 The Name input

•	 The Email input

•	 The Message input

•	 The Submit button

Each of these components has its own logic. For example, the Submit button will validate the form 
and save or send the message to a remote source.

React is defined as a library instead of a framework because it only deals with UI rendering and leaves 
many of the other things that are important in development to the developers or other tools.

To build a React application, you’ll need the following stack:

•	 Application code: React, Redux, ESLint, Prettier, and React Router

•	 Build tools: Webpack, Uglify, npm/yarn/pnpm, and babel

•	 Testing tools: Jest and Enzyme

You’ll need to add these dependencies to your React project to optimize and perform some tasks 
– that’s where React differs from tools such as Angular, which comes with its own stack for routing, 
for example.

Now that we better understand React, let’s create a React project.

Creating the React project
Before creating the React project, we need to have tools installed for a better development experience. 
These tools are drivers, editors, and plugins basically. Let’s start by installing Node.js.

Installing Node.js

Node.js is an open source and powerful JavaScript-based server-side environment. It allows developers 
to run JavaScript programs on the server side, even though JavaScript is natively a client-side language.

Node.js is available for multiple OSs, such as Windows, macOS, and Linux. In this book, we are 
working on a Linux machine and Node.js should normally be installed already by default.

For other OSs, you can find the installation package at https://nodejs.org/en/download/. 
Download the latest Long-Term Support (LTS) version for your OS.

https://nodejs.org/en/download/


Creating a Project with React124

 When visiting the link, you’ll have an output similar to the following screenshot:

Figure 6.2 – Node.js installers

To check whether Node.js has been installed on your Linux machine, open the Terminal and enter 
the following commands:

node -v

yarn -v

These commands should show you the versions of Node.js and yarn installed:

Figure 6.3 – node and yarn versions

If you don’t have yarn installed on your machine, you can install it with the npm package:

npm install -g yarn



Creating the React project 125

yarn and npm are package managers for JavaScript. We’ll use the yarn package manager a lot in 
upcoming chapters to install packages, run tests, or build a production-ready version of the frontend. 
However, feel free to use npm if you want. Just don’t forget that the commands are slightly different.

The basic tools to develop with JavaScript have now been installed. Next, we will need to install VS 
Code and configure it to make JavaScript development easier.

Installing VS Code

VS Code is an open source code editor developed and maintained by Microsoft. It supports multiple 
programming languages and with the plugins and extensions, you can easily transform it into a 
powerful IDE. However, you can also use other editors such as Atom, Brackets, or the powerful IDE 
WebStorm. Feel free to use what you are familiar with.

VS Code is available for Windows, macOS, and Linux and you can download the right version for 
your OS at https://code.visualstudio.com/.

Once it’s installed and opened, you’ll see the following window:

Figure 6.4 – VS Code window

VS Code comes with an integrated terminal that you can use to create and run React apps. Note 
also that you can open projects with VS Code using the following command in the terminal in the 
directory of the project:

code .

https://code.visualstudio.com/


Creating a Project with React126

You can find the integrated terminal in the View | Integrated Terminal menu.

With the basics of VS Code explored, let’s add the needed extensions to make React development 
more enjoyable.

Adding VS Code extensions

Every programming language and framework comes with a lot of extensions available to make 
development easier and more enjoyable. These extensions include code snippets, testing, project 
environment configuration, and code formatting. In VS Code, if you open Extensions in the activity 
bar (the bar on the left), you can find a search bar to look for different extensions.

For the React project, let’s start by adding the ES7+ React/Redux/React-Native/JS snippets extension. 
This extension will suggest code snippets when writing code in React files. It should look something 
like this:

Figure 6.5 – ES7 + React/Redux/React-Native/JS snippets extension

After that, let’s install the ESLint extension. It’ll help you find typos and syntax errors quickly by 
automatically formatting the code and showing formatting errors. This makes the ES code formatting 
rules easy to understand. The ESLint extension looks like this:



Creating the React project 127

Figure 6.6 – The ESLint extension

Next, we will add another VS Code extension called Prettier. Prettier is a code formatter that not 
only makes your code visually appealing but also much more structured for readability. You can find 
a VS Code extension that can help you format your code automatically after saving your code. The 
extension looks something like this:

Figure 6.7 – Prettier code formatter



Creating a Project with React128

And finally, but optionally, we have indent-rainbow. If you have many blocks of code with parents 
and children, it can become quite difficult to read. This extension will make JavaScript code with 
indentation more readable. It looks like this:

Figure 6.8 – The indent-rainbow extension

Great! With these extensions installed in VS Code, we can now move on to creating the React application.

Creating and running a React app

With Node.js and VS Code installed and configured, we have everything we need to create our first 
React.js application.

To create our React app, we’ll be using create-react-app (https://github.com/facebook/
create-react-app), a simple command for creating a modern web React application. Follow 
these steps to create your first React application and modify the code:

1.	 Run the following command to create a React application:

yarn create react-app social-media-app

This command will create a React application named social-media-app. If you are using 
npm, then replace yarn with npx. After installation, you will have an output similar to the 
following screenshot:

https://github.com/facebook/create-react-app
https://github.com/facebook/create-react-app


Creating the React project 129

Figure 6.9 – The React project creation terminal output

Inside social-media-app, you’ll find a file called package.json. This file contains all 
the configurations for the JavaScript project, starting from basic information about the project, 
such as the name, the version, and the developers, but it also includes a list of installed packages 
and the scripts related to starting the server, for example.

2.	 Run the created React application with the following command:

yarn start

3.	 Open your browser and specify localhost:3000 as your web link. Once done, it will look 
something like this:

Figure 6.10 – Running the React application



Creating a Project with React130

The application is running. Now, let’s modify the code in the React application.

4.	 Open the App.js file from the src folder in the VS Code editor.

5.	 Modify the text inside the App.js file from Learn React to Hello World and save the file:

Figure 6.11 – The App.js code



Creating the React project 131

6.	 Check the browser again and you’ll see the changes:

Figure 6.12 – Modified React application

React has a hot reload feature, meaning that any changes made to a file in the project are reflected in 
the rendering of the web application.

Great! We’ve just installed a React application and modified the code.

Let’s install some tools in the browser for debugging the React application.

Installing a debugging plugin in the browser

To debug React applications, we have to install React Developer Tools, a plugin available on Chrome, 
Firefox, and Edge browsers. You can find the plugin for the Chrome version at https://chrome.
google.com/webstore/category/extensions and the Firefox version at https://
addons.mozilla.org. The plugin looks something like this:

Figure 6.13 – The React browser plugin

https://chrome.google.com/webstore/category/extensions
https://chrome.google.com/webstore/category/extensions
https://addons.mozilla.org
https://addons.mozilla.org


Creating a Project with React132

Once it’s installed, you can open the developer tools by pressing Ctrl + Shift + I (or F12) in the Chrome 
browser. The following screenshot shows the developer tools in the Firefox browser:

Figure 6.14 – React application with the open React extension

This tool will be useful for finding bugs and debugging the application in the development phase.

The project is created and can now be successfully run. Let’s install and configure some packages for 
routing and styling in the next section.

Configuring the project
Before starting to write the authentication flow, let’s make sure that the project is ready for coding. In 
this section, we will configure styling and routing, and allow the request on the API.

Let’s start with routing first.

Adding React Router

Routing in a frontend application represents everything that deals with moving from one view to 
another and loading the right page using the right URL.

React doesn’t come with an integrated routing package, so we’ll use the react-router package.

You can install the package using the following command:

yarn add react-router-dom@6



Configuring the project 133

Then, edit the index.js file like so:

src/index.js

import React from "react";

import ReactDOM from "react-dom/client";

import { BrowserRouter } from "react-router-dom";

import "./index.css";

import App from "./App";

// Creating the root application component

const root = ReactDOM.createRoot(document.
getElementById("root"));

root.render(

 <React.StrictMode>

   <BrowserRouter>

     <App />

   </BrowserRouter>

 </React.StrictMode>

);

In the preceding code block, we imported the BrowserRouter component and wrapped it inside 
the React.StrictMode component which helps us receive warnings in the development mode 
(https://reactjs.org/docs/strict-mode.html), and finally, the App component is 
wrapped inside the BrowserRouter component.

With React Router configured, we can freely move on to installing React Bootstrap for styling.

Adding React Bootstrap

React is easily configurable with CSS frameworks. For this project, for the sake of simplicity and 
rapidity of development, we’ll go with Bootstrap.

Fortunately, the React ecosystem provides a package called react-bootstrap independent of JQuery.

Run the following command to install the package:

yarn add react-bootstrap bootstrap

https://reactjs.org/docs/strict-mode.html


Creating a Project with React134

Next, import the bootstrap CSS file into the index.js file like so:

src/index.js

...

import 'bootstrap/dist/css/bootstrap.min.css';

import App from "./App";

...

With react-router and react-bootstrap installed, let’s create a quick page using both of 
these in the next subsection.

Creating the Home page

Creating a page in React using React Router follows this pattern most of the time:

•	 Creating the component and the page

•	 Registering the page in BrowserRouter with an URL

Follow these steps to create the Home page:

1.	 Create a directory in src called pages.

2.	 Inside the pages directory, create a new file called Home.jsx:

Figure 6.15 – The pages folder structure

This file will contain the UI for the Profile page.

3.	 Add the following text to the Home.jsx file to ensure that authentication is working properly:

src/pages/Home.jsx

import React from "react";

function Home() {

 return (



Configuring the project 135

   <div>

     <h1>Profile</h1>

     <p>

       Welcome!

     </p>

   </div>

 );

}

export default Home;

4.	 Register this page in the App.js file:

src/App.js

import React from "react";

import { Route, Routes } from "react-router-dom";

import Home from "./pages/Home";

function App() {

  return (

    <Routes>

      <Route path="/" element={<Home />} />

    </Routes>

  );

}

export default App;

To register a page with React Router, you use the <Route /> component and pass two props:

	� The path

	� The component element



Creating a Project with React136

5.	 With the preceding code added, make sure that the React project is running. You can check 
the page at http://127.0.0.1:3000:

Figure 6.16 – Home page

Great! With this added, let’s quickly configure the Django project to avoid some request issues in the 
next section.

Configuring CORS

CORS stands for cross-origin resource sharing. It’s a browser mechanism that enables controlled 
access to resources located outside of a given domain.

It helps prevent cross-domain attacks or unwanted requests. In the case of this project, the React 
project is running on http://127.0.0.1:3000.

If we try to make some requests from the browser, we’ll receive an error. Open the React application 
at http://127.0.0.1:3000 and open Developer Tools:

Figure 6.17 – Opening the developer tools

Also, make sure that the Django server is running.

In the console, enter the following line:

fetch("http://127.0.0.1:8000/api/post/")



Configuring the project 137

You’ll receive an error:

Figure 6.18 – A CORS error when making a request

Let’s quickly configure the Django API side by following these steps:

1.	 Enable CORS with Django REST by using django-cors-headers:

pip install django-cors-headers

2.	 If the installation of the django-cors-headers package is complete, go to your settings.
py file and add the package into INSTALLED_APPS and the middleware:

CoreRoot/settings.py

INSTALLED_APPS = [

    ...

    'corsheaders',

    ...

]

MIDDLEWARE = [

    ...

    'corsheaders.middleware.CorsMiddleware',

    'django.middleware.common.CommonMiddleware',

    ...

]

3.	 Add these lines at the end of the settings.py file:

CoreRoot/settings.py

CORS_ALLOWED_ORIGINS = [

    "http://localhost:3000",

    "http://127.0.0.1:3000"

]



Creating a Project with React138

4.	 Make the request again in Developer Tools.

You will see that the request has passed, and we are good now. The API is ready to accept 
requests from the React application:

Figure 6.19 – Trying a successful request in Developer Tools

With the React project configured with the backend for a better development experience, we can 
now explore the ES6 (ECMAScript 6) and React features that we will use a lot in upcoming chapters.

Useful ES6 and React features
JavaScript and React are evolving languages and technologies, incorporating exciting, new features each 
year. ES6, also known as ECMAScript 2015, is a significant enhancement in the JavaScript language 
that allows developers to write programs for complex applications with better techniques and patterns.

With React, we have moved from writing classes to writing components using functions and React 
Hooks. In this section, we will quickly explore the ES6 syntaxes, React concepts, and React Hooks 
that we will use in the following chapters.

const and let

The const keyword was introduced in ES6 and it makes any variables immutable when declared 
with the keyword. When using the const keyword, variables can’t be redeclared nor reassigned. 
Here’s an example of its usage:

Figure 6.20 – Usage of the const keyword



Useful ES6 and React features 139

On the other hand, let is used to declare a variable that can be reassigned to a new value. This is 
useful when you want to create a variable that can change over time, such as a counter or an iterator. 
Here’s an example:

let counter = 0;

// This is allowed because counter is not a constant

counter++;

In general, it is a good practice to use const by default, and only use let when you need to reassign 
a variable. This can help to make your code more readable and prevent accidental reassignments.

Now that we understand the usage of const and let keywords, let’s move on to understanding 
template literals in JavaScript.

Template literals

In JavaScript, template literals are a way to define string values that can contain placeholders for 
dynamic values. They are represented by the backtick (`) character and use the dollar sign ($) and 
curly braces ({}) to insert expressions into the string.

Here is an example of a template literal:

const name = 'World;

const message = `Hello, ${name}!`;

console.log(message); // "Hello, World!"

In this example, we defined a template literal named message that contains a placeholder for the 
name variable. When the template literal is evaluated, the name variable is inserted into the string 
and the resulting string is logged to the console.

Template literals provide a more convenient and readable way to create strings with dynamic values 
compared to using the traditional string concatenation operator (+). They also support string 
interpolation, which means that you can insert expressions into the string, as well as multiline strings. 
Here’s an example:

const a = 10;

const b = 20;

const message = `The sum of ${a} and ${b} is ${a + b}.`;

console.log(message); // "The sum of 10 and 20 is 30."



Creating a Project with React140

In the preceding example, we defined a template literal called message that contains multiple 
expressions that are inserted into the string when the template literal is evaluated. This allows us to create 
a string with dynamic values that is more readable and concise than when using string concatenation.

Now that we understand what template literals are, let’s explain JSX styling in React.

JSX styling

JSX is a syntax extension to JavaScript that allows you to write JavaScript code that looks like HTML. 
It was introduced by Facebook as part of the React library, but it can be used with other JavaScript 
libraries and frameworks as well. Here is an example of how you might use JSX in a React component:

import React from 'react';

function Component() {

  return (

    <div>

      <h1>Hello, world!</h1>

      <p>This is some text.</p>

    </div>

  );

}

In the preceding example, we defined a React component called Component that returns some JSX 
code. The JSX code looks like HTML, but it is transformed into JavaScript by the React library, which 
generates the appropriate elements and attributes in the DOM.

When you write JSX, you can use JavaScript expressions inside the curly braces ({}) to insert dynamic 
values into the JSX code. This allows you to easily create dynamic and interactive UIs using JSX:

import React from 'react';

function Component({ name }) {

  return (

    <div>

      <h1>Hello, {name}!</h1>

      <p>This is some text.</p>

    </div>

  );

}



Useful ES6 and React features 141

In the preceding example, we defined a React component called Component that takes a name prop 
and inserts it into the JSX code using a JavaScript expression. This allows us to create a dynamic and 
personalized greeting for the user.

Now that we understand how JSX works with React, let’s explain the concept of props and states.

Props versus states

In React, props and states are two different ways to manage data in a component.

Props are short for properties and are used to pass data from a parent component to a child component. 
Props are read-only, which means that a child component cannot modify the props passed to it by 
the parent component:

import React from 'react';

function ParentComponent() {

  return (

    <ChildComponent

      name="John Doe"

      age={25}

    />

  );

}

function ChildComponent({ name, age }) {

  return (

    <p>

      My name is {name} and I am {age} years old.

    </p>

  );

}

In the preceding code, we defined a parent component called ParentComponent that renders a 
child component called ChildComponent and passes two props to the child component (name and 
age). The child component receives these props as arguments and uses them to render the content 
of the component. Because props are read-only, the child component cannot modify the name and 
age props passed to it by the parent.



Creating a Project with React142

On the other hand, a state is a way to manage data in a component that can be modified by the 
component itself. The state is private to the component and can only be modified using special React 
methods, such as useState.

Here is an example of how you might modify a state in a React component:

import React, { useState } from 'react';

function Counter() {

  // Use useState to manage the state of the counter

  const [count, setCount] = useState(0);

  // Function to increment the counter

  function handleIncrement() {

    setCount(count + 1);

  }

  return (

    <div>

      <p>The counter is at {count}.</p>

      <button onClick={handleIncrement}>Increment</button>

    </div>

  );

}

In the preceding code, we define a component called Counter that uses the useState Hook to 
manage the state of a counter. The useState Hook returns an array with two elements, the current 
value of the state (in this case, count) and a function to update the state (in this case, setCount).

In the render method of the component, we display the value of the count state and define a button 
that, when clicked, calls the handleIncrement function to update the count state. This causes the 
component to re-render and display the updated value of the count state.

Now that we understand the difference between props and state better, let’s dive deeper into understanding 
the useState Hook.

Important note
useState is a Hook in React that allows you to add a state to functional components. In 
other words, useState allows you to manage the state of your component, which is an object 
that holds information about your component and can be used to re-render the component 
when this state changes.



Useful ES6 and React features 143

The Context API

The Context API is a way to share data between different components in a React application. It allows 
you to pass data through the component tree without having to pass props down manually at every 
level. Here is an example of how you might use the Context API in a React application:

// Create a context for sharing data

const Context = React.createContext();

function App() {

  // Set some initial data in the context

  const data = {

    message: 'Hello, world!'

  };

  return (

    // Provide the data to the components inside the

    // Provider

    <Context.Provider value={data}>

      <Component />

    </Context.Provider>

  );

}

function Component() {

  // Use the useContext Hook to access the data in the

  // context

  const context = React.useContext(Context);

  return (

    <p>{context.message}</p>

  );

}

In the preceding code, we use the React.createContext method to create a new context object, 
which we call Context. We then provide some initial data to the context by wrapping our top-level 
component in a Context.Provider component and passing the data as the value prop. Finally, 
we use the useContext Hook in Component to access the data in the context and display it in 
the component.



Creating a Project with React144

There is also another Hook that we will use in this book. Let’s explain the useMemo Hook in the 
next section.

useMemo

useMemo is a Hook in React that allows you to optimize the performance of your components by 
memoizing expensive calculations. It works by returning a memoized value that is only recalculated 
if one of the inputs to the calculation changes.

Important note
Memoization is a technique used in computer programming to speed up programs by storing 
the results of expensive function calls and returning the cached result when the same inputs are 
given again. This can be useful for optimizing programs that make many repeated calculations 
with the same input.

Here is an example of how you might use useMemo to optimize the performance of a component:

import React, { useMemo } from 'react';

function Component({ data }) {

  // Use useMemo to memoize the expensive calculation

  const processedData = useMemo(() => {

    // Do some expensive calculation with the data

    return expensiveCalculation(data);

  }, [data]);

  return (

    <div>

      {/* Use the processed data in the component */}

      <p>{processedData.message}</p>

    </div>

  );

}

In the preceding code, we use useMemo to memoize the result of an expensive calculation that we 
do with the data prop passed to the component. Because useMemo only recalculates the value if 
the data prop changes, we can avoid making the expensive calculation every time the component is 
re-rendered, which can improve the performance of our application.



Useful ES6 and React features 145

In the React project that we will build in the next chapter, we will work with forms using React and the 
Hooks provided by the React library. Let’s learn more about controlled and uncontrolled components.

Handling forms – controlled components and uncontrolled 
components

A controlled component is a component in React that is controlled by the state of the parent component. 
This means that the value of the input field is determined by the value prop passed to the component, 
and any changes to the input are handled by the parent component.

Here is an example of a controlled component:

import React, { useState } from 'react';

function Form() {

  // Use useState to manage the state of the input field

  const [inputValue, setInputValue] = useState('');

  // Function to handle changes to the input field

  function handleChange(event) {

    setInputValue(event.target.value);

  }

  return (

    <form>

      <label htmlFor="name">Name:</label>

      <input

        type="text"

        id="name"

        value={inputValue}

        onChange={handleChange}

      />

    </form>

  );

}

In the preceding code, we use useState to manage the state of the input field and the handleChange 
function to update the state when the input is changed. Because the value of the input is determined 
by the inputValue state variable, the input is considered to be a controlled component.



Creating a Project with React146

On the other hand, an uncontrolled component is a component in React that manages its own state 
internally. This means that the value of the input field is determined by the defaultValue prop 
passed to the component, and any changes to the input are handled by the component itself.

Here is an example of an uncontrolled component:

import React from 'react';

function Form() {

  // Use a ref to manage the state of the input field

  const inputRef = React.useRef();

  // Function to handle the form submission

  function handleSubmit(event) {

    event.preventDefault();

    // Do something with the input value here

    // For example, you might send the input value to an

    // API or save it to the database

    sendInputValue(inputRef.current.value);

    // Clear the input after submitting

    inputRef.current.value = '';

  }

  return (

    <form onSubmit={handleSubmit}>

      <label htmlFor="name">Name:</label>

      <input

        type="text"

        id="name"

        defaultValue=""

        ref={inputRef}

      />

    </form>

  );

}



Summary 147

In this example, we used ref to manage the state of the input field and the handleSubmit function to 
handle the form submission. Because the value of the input is determined by the defaultValue prop 
and managed internally by the component, the input is considered to be an uncontrolled component.

In this section, we have explored most of the React and ES6 features that we will use in the next 
chapters. We will mostly be working with React Hooks, JSX, and interesting ES6 features such as 
template literals and let/const keywords.

Summary
In this chapter, we’ve explained frontend development and created a React application by installing 
Node.js and VS Code. We then configured it for better development using VS Code. React will also 
run in the browser, so we installed some plugins that will make debugging easier.

Then, we started coding a little bit with basic configuration for routing, styling, and CORS configuration 
to allow requests on the Django API. Finally, we explored the React and ES6 features that we will be 
using in the next chapters.

In the next chapter, we’ll familiarize ourselves more with React by building a login and register page 
while explaining component-driven development.

Questions
1.	 What are Node.js and yarn?

2.	 What is frontend development?

3.	 How do you install Node.js?

4.	 What is VS Code?

5.	 How do you install extensions in VS Code?

6.	 What is the purpose of hot reloading?

7.	 How do you create a React application with create-react-app?





7
Building Login and  
Registration Forms

Registration and login are essential features of web applications that have users. Even if an authentication 
flow can be handled directly with simple requests, there is also a need to have logic working behind 
the UI to manage the authentication and session, especially if we are using a JSON web token (JWT).

In this chapter, we’ll create login and registration forms with React. There is a lot to do and learn here, 
but here’s what this chapter will cover:

•	 Configuration of a CSS framework in a React project

•	 Adding protected and public pages to an application

•	 Creating a page for registration

•	 Creating a page for login

•	 Creating a welcome page after the login or registration is successful

By the end of the chapter, you will be able to build registration and login pages using React, and you 
will know how to manage JWT authentication from the frontend.

Technical requirements
Make sure to have VS Code installed and configured on your machine.

You can find the code for this chapter at https://github.com/PacktPublishing/Full-
stack-Django-and-React/tree/chap7.

Understanding the authentication flow
We’ve already explored authentication on a social media project from a backend perspective in Chapter 2, 
Authentication and Authorization Using JWTs. But how does this manifest in the React application?

https://github.com/PacktPublishing/Full-stack-Django-and-React/tree/chap7
https://github.com/PacktPublishing/Full-stack-Django-and-React/tree/chap7


Building Login and Registration Forms150

Well, things will be a little bit different. To quickly recapitulate, we have a registration and a login 
endpoint. These endpoints return the user objects with two tokens:

•	 An access token with a lifetime of 5 minutes: This token helps with authenticating on the 
server side when requesting without the need to log in again. Then, we can access resources 
and perform actions on these resources.

•	 A refresh token: This token helps you to retrieve another access token if one has already expired.

With this data coming from the server, we can manage authentication from the React application 
side like so. When a registration or a login is successful, we store the returned response in the client’s 
browser; we’ll use localStorage for this.

The localStorage property helps us to work with the browser storage, enabling browsers to store 
key-value pairs in the browser. Two methods will be used with localStorage: setItem() to 
set a key-value pair and getItem() to access the values.

Then, for each request sent to the server, we add the Authorization header to the request containing 
the access token retrieved from localStorage. If the request returns a 401 error, it means that 
the token has expired. If this happens, we send a request to the refresh endpoint to get a new access 
token, using the refresh token also retrieved from localStorage. And with this access token, we 
resend the failed request.

If we receive a 401 error again, it means that the refresh token has expired. Then, the user will be sent 
to the login page to log in again, retrieve new tokens, and store them in localStorage.

Now that we understand the authentication flow from the frontend side, let’s write the requests service 
we will use for data fetching and performing CRUD actions.

Writing the requests service
Making requests in JavaScript is relatively easy. The node environment and the browser provide native 
packages such as fetch to allow you to request a server. However, this project will use the axios 
package for HTTP requests.

Axios is a popular library mainly used to send asynchronous HTTP requests to REST endpoints. Axios 
is the perfect library for CRUD operations. However, we will also install axios-auth-refresh. 
This simple library assists with an automatic refresh of tokens via axios interceptors. To install the 
axios and axios-auth-refresh packages, follow these steps:

1.	 In the social-media-app directory, add the axios and axios-auth-refresh 
packages by running the following command:

yarn add axios axios-auth-refresh

2.	 Once it’s installed, create a directory called helpers in the src folder of the React project, 
and once it’s done, add a file called axios.js:



Writing the requests service 151

Figure 7.1 – The path of the helper.js file

Now, let’s make the import and write the basic configurations, such as the URL and some headers. 
Take a look at the following code block:

import axios from "axios";

import createAuthRefreshInterceptor from "axios-auth-refresh";

const axiosService = axios.create({

 baseURL: "http://localhost:8000",

 headers: {

   "Content-Type": "application/json",

 },

});

In the preceding code block, we have added the Content-Type header for the POST requests. The 
following figure shows the authentication flow we’ll follow in this book:

Figure 7.2 – Authentication flow with access/refresh tokens



Building Login and Registration Forms152

In the preceding figure, note the following points:

•	 Every time we are requesting with axiosService, we retrieve the access token from 
localStorage and create a new header authorization using the access token

•	 The access token will expire if the request is made and a 400 status code is returned

•	 We retrieve the refresh token from localStorage and make a request to retrieve a new 
access token

•	 Once done, we register the new access token in localStorage and restart the previously 
failed request

•	 Yet, if the refresh token request has failed too, we simply remove auth from localStorage 
and send the user to the login screen

Let’s implement the previously described flow in the axios.js file by following these steps:

1.	 First we will write a request interceptor to add headers to the request:

axiosService.interceptors.request.use(async (config) => {

 /**

  * Retrieving the access token from the localStorage

    and adding it to the headers of the request

  */

 const { access } =

   JSON.parse(localStorage.getItem("auth"));

 config.headers.Authorization = `Bearer ${access}`;

 return config;

});

Note that we can use the object-destructuring syntax to extract property values from an object 
in JavaScript. In pre-ES2015 code, it probably goes like this:

var fruit = {

 name: 'Banana',

 scientificName: 'Musa'

};

var name     = fruit.name;

var scientificName = fruit.scientificName;



Writing the requests service 153

If you have a lot of properties to extract from an object, it can quickly become long. That’s 
where object destructuring comes in handy:

var fruit = {

 name: 'Banana',

 scientificName: 'Musa'

};

var  { name, scientificName } = fruit;

You can learn more about the syntax at https://developer.mozilla.org/en-US/
docs/Web/JavaScript/Reference/Operators/Destructuring_assignment.

2.	 After that, we will resolve the requests and return a resolved or rejected promise:

axiosService.interceptors.response.use(

 (res) => Promise.resolve(res),

 (err) => Promise.reject(err),

);

3.	 This last step is the icing on the cake. Create a function that contains the refresh auth logic. 
This function will be called whenever the failed request returns a 401 error:

const refreshAuthLogic = async (failedRequest) => {

 const { refresh } =

   JSON.parse(localStorage.getItem("auth"));

 return axios

   .post("/refresh/token/", null, {

     baseURL: "http://localhost:8000",

     headers: {

       Authorization: `Bearer ${refresh}`,

     },

   })

   .then((resp) => {

     const { access, refresh } = resp.data;

     failedRequest.response.config.headers[

       "Authorization"] = "Bearer " + access;

     localStorage.setItem("auth", JSON.stringify({

                           access, refresh }));

   })

   .catch(() => {

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment


Building Login and Registration Forms154

     localStorage.removeItem("auth");

   });

};

4.	 And finally, initialize the authentication interceptor and create a custom fetcher too:

createAuthRefreshInterceptor(axiosService, 
refreshAuthLogic);

export function fetcher(url) {

 return axiosService.get(url).then((res) => res.data);

}

export default axiosService;

The fetcher will be used to make GET requests on the API resources. Great! The fetching logic is 
implemented, and we can move on to registering a user. But before that, we need to define protected 
routes in the project.

Protected routes
Routing with the condition on a frontend application is a big plus, as it helps with a better user 
experience. For example, if you are not logged in to Twitter and want to check a profile or comment, 
you will be redirected to the login page. These are protected pages or actions, so you must log in 
before accessing these resources. In this section, we’ll write a ProtectedRoute component using 
React-Router components.

Creating a protected route wrapper

To create a protected route wrapper, follow these steps:

1.	 Create a new directory in the src directory called routes.

2.	 Inside the newly created directory, create a file called ProtectedRoute.jsx.

3.	 Once the file is created, import the needed libraries:

src/routes/ProtectedRoute.jsx

import React from "react";

import { Navigate } from "react-router-dom";

...



Protected routes 155

4.	 Write the following logic for the protected routes:

...

function ProtectedRoute({ children }) {

 const { user } =

   JSON.parse(localStorage.getItem("auth"));

 return auth.account ? <>{children}</> : <Navigate

   to="/login/" />;

}

export default ProtectedRoute;

...

In the preceding code snippet, we are retrieving the user property from localStorage.

We then use this property to check whether we should redirect the user to the login page or 
render the page (children). If user is null or undefined, it means that the user has not logged 
in, so we redirect the user to the login page, otherwise, we give access to the asked page.

5.	 Then, inside the App.js file, let’s rewrite the content:

src/App.js

import React from "react";

import {

 Route,

 Routes

} from "react-router-dom";

import ProtectedRoute from "./routes/ProtectedRoute";

import Home from "./pages/Home";

function App() {

 return (

   <Routes>

     <Route path="/" element={

       <ProtectedRoute>

         <Home />

       </ProtectedRoute>

     } />



Building Login and Registration Forms156

     <Route path="/login/" element={<div>Login</div>} />

   </Routes>

 );

}

export default App;

Now, the default location will be the profile page. However, with no credentials in the store, the user 
will be redirected to the login page.

Great! We’ve now implemented the first step of the authentication flow. In the next section, we will 
write a page for registration before writing the page for login.

Creating the registration page
If a user needs login credentials, they will need to register first. In this section, we will create a 
registration form while also handling the necessary requests.

Adding a registration page

Let’s start by writing code for the form page. We’ll start by writing the registration form component:

1.	 Inside the src directory, create a new directory called components and then create a new 
directory called authentication inside the newly created directory.

This directory will contain the registration and login forms.

2.	 Once that’s done, create a file called RegistrationForm.jsx inside the 
authentication directory:

Figure 7.3 – The registration file

React Bootstrap provides form components that we can use quickly to create a form and make 
basic validation. In this component, we’ll also have to make a request to the API, register the user 
details and tokens in the store, and redirect the user to the home page if the request is successful.



Creating the registration page 157

3.	 Next, we will add the needed imports:

src/components/forms/RegistrationForm.js

import React, { useState } from "react";

import { Form, Button } from "react-bootstrap";

import axios from "axios";

import { useNavigate } from "react-router-dom";

...

4.	 Now, declare the states and functions we’ll use in the component:

src/components/forms/RegistrationForm.js

...

function RegistrationForm() {

 const navigate = useNavigate();

 const [validated, setValidated] = useState(false);

 const [form, setForm] = useState({});

 const [error, setError] = useState(null);

...

Let’s quickly explain what we are doing in the preceding code snippet.

The navigate Hook will help us navigate to the home page if the request is successful.

The validated, form, and error states are respectively used to check whether the form 
is valid or not, the values of each field in the form, and the error message to display if the 
request doesn’t pass.

5.	 Great! Let’s write the function that will handle the form submission:

src/components/forms/RegistrationForm.js

...

const handleSubmit = (event) => {

   event.preventDefault();

   const registrationForm = event.currentTarget;

   if (registrationForm.checkValidity() === false) {

     event.stopPropagation();

   }



Building Login and Registration Forms158

   setValidated(true);

   const data = {

     username: form.username,

     password: form.password,

     email: form.email,

     first_name: form.first_name,

     last_name: form.last_name,

     bio: form.bio,

   };

 ...

6.	 The next step is to use axios to make a POST request to the API:

src/components/forms/RegistrationForm.js

   axios

     .post("http://localhost:8000/api/auth/register/",

            data)

     .then((res) => {

       // Registering the account and tokens in the

       // store

       localStorage.setItem("auth", JSON.stringify({

         access: res.data.access,

         refresh: res.data.refresh,

         user: res.data.user,

       }));

       navigate("/");

     })

     .catch((err) => {

       if (err.message) {

         setError(err.request.response);

       }

     });

 };



Creating the registration page 159

In the preceding code block, we are first blocking the default form submission behavior with 
event.preventDefault() – that is, reloading the page. Next, we are checking whether 
the basic validations for the fields are done. With the validation successfully done, we can easily 
make a request with axios and store tokens and user details in localStorage.

This way, the user is navigated to the home page.

7.	 Now, let’s add the basic UI components:

src/components/forms/RegistrationForm.js
...

return (

   <Form

     id="registration-form"

     className="border p-4 rounded"

     noValidate

     validated={validated}

     onSubmit={handleSubmit}

   >

     <Form.Group className="mb-3">

       <Form.Label>First Name</Form.Label>

       <Form.Control

         value={form.first_name}

         onChange={(e) => setForm({ ...form,

           first_name: e.target.value })}

         required

         type="text"

         placeholder="Enter first name"

       />

       <Form.Control.Feedback type="invalid">

         This file is required.

       </Form.Control.Feedback>

     </Form.Group>

...

There is more code after this, but let’s grasp the logic here first; the other will be significantly easier.

React Bootstrap provides a Form component that we can use to create fields.

Form.Control is a component input and it takes as props (name, type, etc.) attributes any 
input can take. Form.Control.Feedback will show errors when the fields are not valid.



Building Login and Registration Forms160

8.	 Let’s do the same for the last_name and the username fields:

src/components/forms/RegistrationForm.js

...

     <Form.Group className="mb-3">

       <Form.Label>Last name</Form.Label>

       <Form.Control

         value={form.last_name}

         onChange={(e) => setForm({ ...form,

           last_name: e.target.value })}

         required

         type="text"

         placeholder="Enter last name"

       />

       <Form.Control.Feedback type="invalid">

         This file is required.

       </Form.Control.Feedback>

     </Form.Group>

     <Form.Group className="mb-3">

       <Form.Label>Username</Form.Label>

       <Form.Control

         value={form.username}

         onChange={(e) => setForm({ ...form, username:

           e.target.value })}

         required

         type="text"

         placeholder="Enter username"

       />

       <Form.Control.Feedback type="invalid">

         This file is required.

       </Form.Control.Feedback>

     </Form.Group>

...



Creating the registration page 161

9.	 Let’s also add a field for email:

src/components/forms/RegistrationForm.js

...

     <Form.Group className="mb-3">

       <Form.Label>Email address</Form.Label>

       <Form.Control

         value={form.email}

         onChange={(e) => setForm({ ...form, email:

           e.target.value })}

         required

         type="email"

         placeholder="Enter email"

       />

       <Form.Control.Feedback type="invalid">

         Please provide a valid email.

       </Form.Control.Feedback>

     </Form.Group>

...

10.	 Let’s also add a field for the password:

...
     <Form.Group className="mb-3">
       <Form.Label>Password</Form.Label>
       <Form.Control
         value={form.password}
         minLength="8"
         onChange={(e) => setForm({ ...form, password:
           e.target.value })}
         required
         type="password"
         placeholder="Password"
       />
       <Form.Control.Feedback type="invalid">
         Please provide a valid password.
       </Form.Control.Feedback>
     </Form.Group>
...



Building Login and Registration Forms162

11.	 Let’s add the bio field too. We’ll use the Textarea field type here:

src/components/forms/RegistrationForm.js

...

     <Form.Group className="mb-3">

       <Form.Label>Bio</Form.Label>

       <Form.Control

         value={form.bio}

         onChange={(e) => setForm({ ...form, bio:

           e.target.value })}

         as="textarea"

         rows={3}

         placeholder="A simple bio ... (Optional)"

       />

     </Form.Group>

...

12.	 Finally, add the submit button and export the component:

src/components/forms/RegistrationForm.js

...

     <div className="text-content text-danger">

         {error && <p>{error}</p>}

     </div>

     <Button variant="primary" type="submit">

       Submit

     </Button>

   </Form>

 );

}

export default RegistrationForm;

RegistrationForm is now created with the required fields and the logic to handle the 
form submission.

In the next section, we will add this registration form component to a page and register this page in 
our application route.



Creating the registration page 163

Registering the registration page route
Follow these steps to register the registration page route:

1.	 Inside the src/pages directory, create a file called Registration.jsx:

src/pages/Registration.js
import React from "react";
import { Link } from "react-router-dom";
import RegistrationForm from "../components/forms/
RegistrationForm";

function Registration() {
 return (
   <div className="container">
     <div className="row">
       <div className="col-md-6 d-flex align-items-
center">
         <div className="content text-center px-4">
           <h1 className="text-primary">
             Welcome to Postman!
           </h1>
           <p className="content">
             This is a new social media site that will
             allow you to share your thoughts and
             experiences with your friends. Register now
             and start enjoying! <br />
             Or if you already have an account, please{" 
"}
             <Link to="/login/">login</Link>.
           </p>
         </div>
       </div>
       <div className="col-md-6 p-5">
         <RegistrationForm />
       </div>
     </div>
   </div>
 );
}

export default Registration;

We’ve added simple introduction text to the page and imported the LoginForm component.



Building Login and Registration Forms164

2.	 Next, open App.js and register the page:

src/App.js

...

import Registration from "./pages/Registration";

function App() {

 return (

   <Routes>

     ...

     <Route path="/register/" element={<Registration />} 
/>

   </Routes>

 );

}

...

3.	 Great! Now, go to http://localhost:3000/register/, and you should have a 
similar result to this:

Figure 7.4 – The registration page



Creating the login page 165

4.	 Test it and register with an account. You’ll be redirected to the home page:

Figure 7.5 – The home page

Great! We’ve just written the registration page.

In the next section, we will create the login page.

Creating the login page
As we have already created the registration page, the logic for login will be pretty similar but with 
fewer fields.

Adding the login page

Follow these steps to add a login page:

1.	 Inside the src/components/authentication directory, add a new file called LoginForm.
jsx. This file will contain the form component to log in a user.

2.	 Next, add the imports:

src/components/authentication/LoginForm.jsx

import React, { useState } from "react";

import { Form, Button } from "react-bootstrap";

import axios from "axios";

import { useNavigate } from "react-router-dom";

...



Building Login and Registration Forms166

3.	 Write the logic to handle the login:

src/components/authentication/LoginForm.jsx

...

function LoginForm() {

 const navigate = useNavigate();

 const [validated, setValidated] = useState(false);

 const [form, setForm] = useState({});

 const [error, setError] = useState(null);

 const handleSubmit = (event) => {

   event.preventDefault();

   const loginForm = event.currentTarget;

   if (loginForm.checkValidity() === false) {

     event.stopPropagation();

   }

   setValidated(true);

   const data = {

     username: form.username,

     password: form.password,

   };

...

4.	 As we did for the registration process, we will now make a request on the login endpoint:

src/components/authentication/LoginForm.jsx

...

   axios

     .post("http://localhost:8000/api/auth/login/",

            data)

     .then((res) => {

       // Registering the account and tokens in the



Creating the login page 167

       // store

       localStorage.setItem("auth", JSON.stringify({

         access: res.data.access,

         refresh: res.data.refresh,

         user: res.data.user,

       }));

       navigate("/");

     })

     .catch((err) => {

       if (err.message) {

         setError(err.request.response);

       }

     });

...

This is nearly the same logic as the registration, but here, we are only working with the username 
and the password.

5.	 With the logic ready to handle the request made for login, let’s add the UI:

src/components/authentication/LoginForm.jsx

...

return (

   <Form

     id="registration-form"

     className="border p-4 rounded"

     noValidate

     validated={validated}

     onSubmit={handleSubmit}

   >

     <Form.Group className="mb-3">

       <Form.Label>Username</Form.Label>

       <Form.Control

         value={form.username}

         onChange={(e) => setForm({ ...form, username:



Building Login and Registration Forms168

                    e.target.value })}

         required

         type="text"

         placeholder="Enter username"

       />

       <Form.Control.Feedback type="invalid">

         This file is required.

       </Form.Control.Feedback>

     </Form.Group>

     ...

In the preceding code, we are creating the form and adding the first input of the form, the 
username input.

6.	 Let’s also add the password form input and the submit button:

     ...

     <Form.Group className="mb-3">

       <Form.Label>Password</Form.Label>

       <Form.Control

         value={form.password}

         minLength="8"

         onChange={(e) => setForm({ ...form, password:

                    e.target.value })}

         required

         type="password"

         placeholder="Password"

       />

       <Form.Control.Feedback type="invalid">

         Please provide a valid password.

       </Form.Control.Feedback>

     </Form.Group>

     <div className="text-content text-danger">

       {error && <p>{error}</p>}</div>

     <Button variant="primary" type="submit">

       Submit



Creating the login page 169

     </Button>

   </Form>

 );

}

export default LoginForm;

...

We have created the LoginForm component with the required fields and logic to handle data submission.

In the next section, we will add LoginForm to a page and register this page in the application routes.

Registering the login page

Follow these steps to register the login page:

1.	 Inside the src/pages directory, create a file called Login.jsx:

src/pages/Login.jsx

import React from "react";

import { Link } from "react-router-dom";

import LoginForm from "../components/forms/LoginForm";

...

2.	 Next, let’s add the UI:

src/pages/Login.jsx

...

function Login() {

 return (

   <div className="container">

     <div className="row">

       <div className="col-md-6 d-flex

         align-items-center">

         <div className="content text-center px-4">

           <h1 className="text-primary">

             Welcome to Postagram!</h1>

           <p className="content">



Building Login and Registration Forms170

             Login now and start enjoying! <br />

             Or if you don't have an account, please{" "}

             <Link to="/register/">register</Link>.

           </p>

         </div>

       </div>

       <div className="col-md-6 p-5">

         <LoginForm />

       </div>

     </div>

   </div>

 );

}

export default Login;

This is also quite similar to the registration page.

3.	 Register the page in the routes of the application in the App.js file:

src/App.js

...

     <Route path="/login/" element={<Login />} />

...

4.	 Visit http://localhost:3000/login/, and you should have a similar page to this:

`Figure 7.6 – The login page

5.	 Test it again, and you should be redirected to the home page.

The authentication flow is working like a charm, but we have some repeated code in our project. Let’s 
do some refactoring by doing a little exercise in the next section.



Refactoring the authentication flow code 171

Refactoring the authentication flow code
Instead of repeating the same code across the code base, we can follow the Don’t Repeat Yourself (DRY) 
rule. For example, we use the same code to store tokens and user information for the LoginForm 
and RegistrationForm components. In this section, we will write a custom React Hook to handle 
this logic, but before doing that, let’s understand what a Hook is.

What is a Hook?

Hooks were first introduced in React 16.8, allowing developers to use more of React’s features without 
writing a class. An interesting example of a React Hook is useState.

useState is a replacement for setState, used inside functional components to manage the 
internal state of a component. In LoginForm, we used useState to handle the form values. We 
also used useState to set the message error if the login request returns an error. For a simple test, 
go to the login page and enter the wrong credentials, and you’ll likely get a similar error to this:

Figure 7.7 – The login form

The logic from this comes from the following lines in LoginForm.jsx:

src/authentication/LoginForm.jsx

 const [error, setError] = useState(null);

...
     .catch((err) => {
       if (err.message) {

         setError(err.request.response);

       }

     });



Building Login and Registration Forms172

This is an example of the useState Hook, and not every Hook works the same way. For example, 
you can check the usage of the useNavigate Hook in the LoginForm component. There are a 
few rules for using Hooks as per the React documentation:

•	 Only call Hooks at the top level: Don’t call Hooks inside loops, conditions, or nested routes

•	 Only call Hooks from React functions: Call Hooks from React function components and 
custom Hooks

React allows us to write custom Hooks. Let’s write a custom Hook to handle user authentication. 
Inside a new file, we’ll write functions that make it easier to retrieve and manipulate the auth object 
in localStorage.

Writing code for a custom Hook

Follow these steps to create a custom Hook:

1.	 Inside the src directory, create a new directory called hooks. This directory will contain all 
the Hooks that we’ll write in this book.

2.	 Inside the newly created directory, add a file called user.actions.js.

3.	 Let’s add all the necessary content, starting with the imports:

src/hooks/user.actions.js

import axios from "axios";

import { useNavigate } from "react-router-dom";

4.	 Next, let’s add a function called useUserActions. A custom Hook is a JavaScript function 
whose name starts with use:

src/hooks/user.actions.js
function useUserActions() {
 const navigate = useNavigate();
 const baseURL = "http://localhost:8000/api";

 return {
   login,
   register,
   logout,
 };
}



Refactoring the authentication flow code 173

We can now add the login and logout functions. These functions will return Promise, 
which, if successful, will register the user data in localStorage and redirect the user to 
the home page, or allow us to catch and handle errors.

5.	 We will now write the register function as a bit of exercise, but it’s not that different from 
the login function:

src/hooks/user.actions.js

...

 // Login the user

 function login(data) {

   return axios.post(`${baseURL}/auth/login/`,

                      data).then((res) => {

     // Registering the account and tokens in the

     // store

     setUserData(data);

     navigate("/");

   });

 }

...

6.	 Next, write the logout function. This function will remove the auth item from localStorage 
and redirect the user to the login page:

src/hooks/user.actions.js

...

 // Logout the user

 function logout() {

   localStorage.removeItem("auth");

   navigate("/login");

 }

...

Note that we are using a method called setUserData, which we have not declared yet.



Building Login and Registration Forms174

7.	 After the useUserActions function, let’s add other utils functions that can be used across the 
project. These functions will help us to retrieve access tokens, refresh tokens, user information, 
or set user data:

src/hooks/user.actions.js

// Get the user

function getUser() {

 const auth =

   JSON.parse(localStorage.getItem("auth"));

 return auth.user;

}

// Get the access token

function getAccessToken() {

 const auth =

   JSON.parse(localStorage.getItem("auth"));

 return auth.access;

}

// Get the refresh token

function getRefreshToken() {

 const auth =

   JSON.parse(localStorage.getItem("auth"));

 return auth.refresh;

}

// Set the access, token and user property

function setUserData(data) {

 localStorage.setItem(

   "auth",

   JSON.stringify({

     access: res.data.access,

     refresh: res.data.refresh,

     user: res.data.user,

   })

 );

}



Refactoring the authentication flow code 175

Important note
You might find it confusing to declare functions after calling them. Writing functions in 
JavaScript using the function keyword allows hoisting, meaning that functions declaration 
is moved to the top of their scope before code execution. You can learn more at https://
developer.mozilla.org/en-US/docs/Glossary/Hoisting.

With the functions for retrieving a user, the access and refresh tokens, and the function to set user data in 
localStorage, we can now call the function in the LoginForm and RegisterForm components.

Using the functions in code

We have a useful Hook, useUserActions, in the user.actions.js file. We will use this 
Hook to call the login method, thus replacing the old login logic in the LoginForm.js file. Let’s 
start by using the newly written custom Hook in the LoginForm component. Follow these steps:

1.	 First, import the Hooks and declare a new variable:

...
import { useUserActions } from "../../hooks/user.
actions";

function LoginForm() {
 const [validated, setValidated] = useState(false);
 const [form, setForm] = useState({});
 const [error, setError] = useState(null);
 const userActions = useUserActions();

...

2.	 Now, we can make some changes to the handleSubmit function concerning the login 
request on the API:

src/hooks/user.actions.js
const data = {
     username: form.username,
     password: form.password,
   };

   userActions.login(data)

     .catch((err) => {

       if (err.message) {

https://developer.mozilla.org/en-US/docs/Glossary/Hoisting
https://developer.mozilla.org/en-US/docs/Glossary/Hoisting


Building Login and Registration Forms176

         setError(err.request.response);
       }
     });
 };

In the preceding code block, we did some quick refactoring by removing the old logic for login and 
setting user data in localStorage. The same logic can be applied to RegistrationForm 
(the register method is already available in the useUserActions Hook). You can modify 
the RegistrationForm component as a small exercise. Feel free to check the code at 
https://github.com/PacktPublishing/Full-stack-Django-and-React/
blob/chap7/social-media-react/src/components/authentication/
RegistrationForm.jsx to make sure your solution is valid.

3.	 Great! Let’s now use the other utils functions in the axios helper and the 
ProtectedRoute component:

src/routes/ProtectedRoute.jsx

...

function ProtectedRoute({ children }) {

 const user = getUser();

 return user ? <>{children}</> : <Navigate

   to="/login/" />;

...

4.	 Next, let’s do some tweaks in the axios helper:

...

import { getAccessToken, getRefreshToken } from "../
hooks/user.actions";

...

 config.headers.Authorization = `Bearer 
${getAccessToken()}`;

...

   .post("/refresh/token/", null, {

     baseURL: "http://localhost:8000",

     headers: {

       Authorization: `Bearer ${getRefreshToken()}`,

...

     const { access, refresh, user } = resp.data;

     failedRequest.response.config.headers[

       "Authorization"] =

https://github.com/PacktPublishing/Full-stack-Django-and-React/blob/chap7/social-media-react/src/components/authentication/RegistrationForm.jsx
https://github.com/PacktPublishing/Full-stack-Django-and-React/blob/chap7/social-media-react/src/components/authentication/RegistrationForm.jsx
https://github.com/PacktPublishing/Full-stack-Django-and-React/blob/chap7/social-media-react/src/components/authentication/RegistrationForm.jsx


Summary 177

       "Bearer " + access;

     localStorage.setItem("auth", JSON.stringify({

       access, refresh, user }));

   })

   .catch(() => {

     localStorage.removeItem("auth");

   });

...

In the preceding code block, we used the getAccessToken and getRefreshToken functions 
to retrieve the access token and the refresh token from localStorage for the requests. We just 
replaced the old logic to retrieve the access and refresh tokens.

And we are done. We have a pure React logic for the authentication flow, which will help us manage 
the CRUD operations for the posts and comments in the following chapters.

Summary
In this chapter, we dived deeper into more concepts, such as authentication in a React application. We 
implemented a clean logic for requests on the Django API with access tokens and also implemented 
the refresh logic if the access token has expired. We also had the chance to use more of the Bootstrap 
components to not only style login and registration forms but also to create login and register pages. 
Finally, we implemented a custom React Hook to handle everything concerning authentication on 
the frontend, with methods for registration and login, and some utilities to retrieve tokens from 
localStorage and also set tokens and user data in localStorage. The creation of the custom 
Hook helped us make some refactoring in the code base according to the DRY principle.

In the next chapter, we will allow users to create posts from the React application. We will learn how 
to make requests to the backend using the custom-written axiosService, display modals, handle 
more complex React states, and also use the useContext React Hook to handle pop-up displays.

Questions
1.	 What is localStorage?

2.	 What is React-Router?

3.	 How do you configure a protected route in React?

4.	 What is a React Hook?

5.	 Give three examples of React Hooks.

6.	 What are the two rules of React Hooks?





8
Social Media Posts

Social media already has authentication added on the frontend side. We can now authenticate the user 
through registration or login, fetch the user data, and show it. Now that we can store JWT tokens, we 
can make requests to the API for any protected resources, and we will start with the post resource.

In this chapter, we’ll focus on CRUD operations on posts. We’ll implement listing, creating, updating, 
and deleting post features. You will learn how to create and manage a Modal in React, how to handle 
a form from validation to submission, and how to design and integrate components into a React page.

This chapter will cover the following topics:

•	 Listing posts in a feed

•	 Creating a post using a form

•	 Editing and deleting a post

•	 Liking a post

Technical requirements
Make sure to have VS Code and an updated browser installed and configured on your machine. 
You can find the code of this chapter at https://github.com/PacktPublishing/Full-
stack-Django-and-React/tree/chap8.

Creating the UI
The REST API is ready to accept requests and list the API. For the next steps, ensure that the Django 
server is running on the machine at port localhost:8000. The first step is implementing a post 
feed with a ready design and UI. Before coding the components for reading, creating, updating, and 
deleting a component, we need to analyze the UI and also make sure we have the right configurations 
and components to ease the development with React. We will mostly build the navigation bar and 
the layout.

https://github.com/PacktPublishing/Full-stack-Django-and-React/tree/chap8
https://github.com/PacktPublishing/Full-stack-Django-and-React/tree/chap8


Social Media Posts180

Here’s the feed UI of the home page:

Figure 8.1 – Feed UI wireframe

In the following figure, we have another illustration representing the UI and the page’s structure. We 
are using flex columns, and we’ll use Bootstrap flex components to design the page:



Creating the UI 181

Figure 8.2 – Wireframe

The navigation bar will be available on other pages of the React application, and by making the 
navigation bar a component, it’ll be reused. We can make the integration of the navigation bar easier 
by having a Layout component that will be used when building the pages. Let’s start by adding the 
navigation bar component.

Adding the NavBar component

The NavBar component, or the navigation bar component, should help to quickly navigate the UI. 
Here’s an screenshot of the NavBar component:

Figure 8.3 – Navbar



Social Media Posts182

The NavBar will have three links:

•	 A link to redirect to the feed page (1)

•	 A link to redirect to the profile page (2)

•	 A link to log out (3)

Here’s a simple wireframe to better illustrate where the links will go.

Figure 8.4 – Wireframe of the navbar

Let’s add the component. Follow these steps to do so:

1.	 Inside the src/components/ directory, add a new file called Navbar.jsx. This file will 
contain the code for the NavBar component. Bootstrap already provides a NavBar component 
we can use. Let’s start with the component definition and the necessary imports:

src/components/Navbar.jsx

import React from "react";

import { randomAvatar } from "../utils";

import { Navbar, Container, Image, NavDropdown, Nav } 
from "react-bootstrap";

import { useNavigate } from "react-router-dom";

...

2.	 With the already written function, we can add the NavBar component and style it. react-
bootstrap provides components that we can use to make the coding of our components faster. 
The props that the components require make the customization of these components easier:

src/components/Navbar.jsx

...

function Navigationbar() {

 return (

   <Navbar bg="primary" variant="dark">

     <Container>

       <Navbar.Brand className="fw-bold" href="#home">

         Postagram



Creating the UI 183

       </Navbar.Brand>

       <Navbar.Collapse

         className="justify-content-end">

         <Nav>

           <NavDropdown

             title={

               <Image

                 src={randomAvatar()}

                 roundedCircle

                 width={36}

                 height={36}

               />

             }

           >

             <NavDropdown.Item href="#">Profile

             </NavDropdown.Item>

             <NavDropdown.Item onClick={handleLogout}>

               Logout</NavDropdown.Item>

           </NavDropdown>

         </Nav>

       </Navbar.Collapse>

     </Container>

   </Navbar>

 );

}

export default Navigationbar;

3.	 Let’s add the function that handles the logout:

src/components/Navbar.jsx

...

function Navigationbar() {

 const navigate = useNavigate();

 const handleLogout = () => {

   localStorage.removeItem("auth");



Social Media Posts184

   navigate("/login/");

 };

...

I will use a website that generates random avatars for the avatar. In the next chapter, we’ll do 
a little exercise to add an upload profile picture feature, but the image generator will do the 
work for the moment.

4.	 In the src directory, add a new file called utils.js. This file will contain functions that 
we’ll reuse in the React application:

src/utils.js

export const randomAvatar = () =>

 `https://i.pravatar.cc/300?img=${Math.floor(Math.
random() * 60) + 1}`;

The pravatar service supports parameters in the URL and has over 60 images. We are using 
the Math library to generate a random number representing the image’s ID. We can now write the 
Layout component.

Adding the Layout component

A good React project has visual consistency but should also come with less repetition of code. For 
example, the navigation bar on this React project will be present on the home page but also on the profile 
page. When developing in HTML and CSS directly, we would have repeated the same piece of code 
for the navigation bar, but we can avoid the repetition using React by creating a Layout component.

In the src/components directory, add a file called Layout.jsx. This file will contain the code 
for the Layout component:

src/components/Layout.jsx

import React from "react";

import Navigationbar from "./Navbar";

function Layout(props) {

 return (

   <div>

     <Navigationbar />



Creating the UI 185

     <div className="container m-5">{props.children}</div>

   </div>

 );

}

export default Layout;

We have a new syntax here: children. In React, children is used for displaying whatever you 
include between the opening and closing tags when invoking a component. Here’s a simple example 
with an image component:

const Picture = (props) => {

  return (

    <div>

      <img src=""/>

      {props.children}

    </div>

  )

}

The component can then be used, and we can add content or other components:

render () {

  return (

    <div className='container'>

      <Picture>

          <p>This a children element.</p>

      </Picture>

    </div>

  )

}

Whenever the Picture component is invoked, props.children will also be displayed, which 
is just a reference to the component’s opening and closing tags. In our context, props.children 
will contain mostly the content of the pages of the React application.

For example, on the home page, we have posts and profiles listed; these elements will be children of 
the Layout component. Without further ado, let’s use the Layout component.



Social Media Posts186

Using the Layout component on the home page

Inside Home.jsx, we’ll rewrite the code to use the Layout component. Here’s the new code:

src/pages/Home.jsx

import React from "react";

import Layout from "../components/Layout";

function Home() {

 return (

   <Layout>

   </Layout>

 );

}

export default Home;

Great. Let’s start by adding the input to create a new post, as shown in Figure 8.2.

Creating a post

To create and add posts, follow these steps:

1.	 In src/components, add a new directory called posts. This directory will contain all 
components used for the post feature. We’ll have components to create a post, display a post, 
and update a post.

2.	 Inside the newly created directory, add a file called CreatePost.jsx. This file will contain 
the code for the logic and the UI to make a post.

3.	 What we have here is a UI component called Modal. react-bootstrap provides a modal-
ready element that we can easily customize for our needs. Let’s start by adding the needed 
imports and defining the component function:

src/components/post/CreatePost.jsx

import React, { useState } from "react";

import { Button, Modal, Form } from "react-bootstrap";

import axiosService from "../../helpers/axios";



Creating the UI 187

import { getUser } from "../../hooks/user.actions";

function CreatePost()

  return ()

};

export default CreatePost;

4.	 The input for the post creation will be within the Modal component. As we did earlier, we 
will also add methods and state management for the form. But first, let’s write the modal and 
the clickable input:

src/components/post/CreatePost.jsx

…

function CreatePost() {

 const [show, setShow] = useState(false);

 const handleClose = () => setShow(false);

 const handleShow = () => setShow(true);

 return (

   <>

     <Form.Group className="my-3 w-75">

       <Form.Control

         className="py-2 rounded-pill border-primary

                    text-primary"

         type="text"

         placeholder="Write a post"

         onClick={handleShow}

       />

     </Form.Group>

     {/*Add modal code here*/}

   </>

 );

}

export default CreatePost;



Social Media Posts188

5.	 We are first adding the input that will trigger the Modal to be displayed. A click on the modal 
will set the show state to True, the state that is used for opening the modal. Let’s add the 
code for the modal:

src/components/post/CreatePost.jsx

...

     <Modal show={show} onHide={handleClose}>

       <Modal.Header closeButton className="border-0">

         <Modal.Title>Create Post</Modal.Title>

       </Modal.Header>

       <Modal.Body className="border-0">

         <Form noValidate validated={validated}

           onSubmit={handleSubmit}>

           <Form.Group className="mb-3">

             <Form.Control

               name="body"

               value={form.body}

               onChange={(e) => setForm({ ...form,

                 body: e.target.value })}

               as="textarea"

               rows={3}

             />

           </Form.Group>

         </Form>

       </Modal.Body>

       <Modal.Footer>

         <Button variant="primary"

           onClick={handleSubmit}

           disabled={form.body === undefined}>

           Post

         </Button>

       </Modal.Footer>

     </Modal>

...



Creating the UI 189

6.	 The UI for the modal is created. We need now to add the handleSubmit function and the 
other logic for the form handling:

src/components/post/CreatePost.jsx

function CreatePost() {

...

 const [validated, setValidated] = useState(false);

 const [form, setForm] = useState({});

 const user = getUser();

...

 const handleSubmit = (event) => {

   event.preventDefault();

   const createPostForm = event.currentTarget;

   if (createPostForm.checkValidity() === false) {

     event.stopPropagation();

   }

   setValidated(true);

   const data = {

     author: user.id,

     body: form.body,

   };

   axiosService

     .post("/post/", data)

     .then(() => {

       handleClose();

       setForm({});

     })

     .catch((error) => {

       console.log(error);

     });



Social Media Posts190

 };

...

Figure 8.5 – Create Post component

We are nearly done, but we need an essential feature for every action, such as form handling. We need 
to send feedback to the user to tell them whether their request has passed. In our context, when a user 
creates a post, we’ll show a success toast or an error toast:

Figure 8.6 – A successful toast

The toast will be reused for post deletion and also updating. It will also be used for comment creation, 
modification, and deletion, as well as the profile modification that we will add later. We will add the 
Toast component in the next section.

Adding the Toast component

Let’s quickly create a component called Toaster that we will use show toast in the React application.

In src/components, create a new file called Toaster.jsx. This file will contain the code for 
the Toaster component:

src/components/Toaster.jsx

import React from "react";

import { Toast, ToastContainer } from "react-bootstrap";



Creating the UI 191

function Toaster(props) {

 const { showToast, title, message, onClose, type } =

   props;

 return (

   <ToastContainer position="top-center">

     <Toast onClose={onClose} show={showToast} delay={3000}

       autohide bg={type}>

       <Toast.Header>

         <strong className="me-auto">{title}</strong>

       </Toast.Header>

       <Toast.Body>

         <p className="text-white">{message}</p>

       </Toast.Body>

     </Toast>

   </ToastContainer>

 );

}

export default Toaster;

The Toaster component takes some props:

•	 showToast: The Boolean that is used to show the toast or not. Ideally, depending on the output 
we receive from a request on the server, we’ll set the state to true, which will show the toast.

•	 title: This represents the title of the toast.

•	 message: This conveys the message we’ll be showing in the toast.

•	 onClose: The function that handles the closing of the toast. This function is essential; otherwise, 
the toast will never disappear.

•	 type: This represents the type of toast to show. In our context, we’ll either use success 
or danger.

Let’s import this component in CreatePost.jsx and use it.



Social Media Posts192

Adding toaster to post creation

In the CreatePost.jsx file, we will add new states that we will pass as props to the 
Toaster component:

src/components/post/CreatePost.jsx

…
import Toaster from "../Toaster";

function CreatePost() {
...
 const [showToast, setShowToast] = useState(false);
 const [toastMessage, setToastMessage] = useState("");
 const [toastType, setToastType] = useState("");
...
 const handleSubmit = (event) => {
   ...

   axiosService
     .post("/post/", data)
     .then(() => {
       handleClose();
       setToastMessage("Post created 🚀");
       setToastType("success");
       setForm({});
       setShowToast(true);
     })
     .catch(() => {
       setToastMessage("An error occurred.");
       setToastType("danger");
     });
 };

We can import the Toaster component and pass the newly added states as props:

src/components/post/CreatePost.jsx

...

   </Modal>



Creating the UI 193

     <Toaster

       title="Post!"

       message={toastMessage}

       showToast={showToast}

       type={toastType}

       onClose={() => setShowToast(false)}

     />

   </>

...

And we are done writing the CreatePost component. For the next step, we need to integrate it 
into the home page.

Adding the CreatePost component to the home page

The CreatePost component is ready now, and we can use it. First, import it into the Home.jsx 
file and modify the UI.

The home page will have two parts:

•	 The first part will contain the list of posts (1 in Figure 8.7)

•	 The second part will include a list of five profiles (2 in Figure 8.7)

Figure 8.7 – Structure of the home page



Social Media Posts194

We can achieve the result quickly by using rows and columns components provided by react-
bootstrap. We won’t focus on the second part (listing the profiles) for the moment. Let’s ensure 
we have all CRUD operations for the post feature:

1.	 Inside the Home.jsx file, add the following content. We’ll start by importing and adding 
the rows:

src/pages/Home.jsx

import React from "react";

import Layout from "../components/Layout";

import { Row, Col, Image } from "react-bootstrap";

import { randomAvatar } from "../utils";

import useSWR from "swr";

import { fetcher } from "../helpers/axios";

import { getUser } from "../hooks/user.actions";

import CreatePost from "../components/posts/CreatePost";

function Home() {

 const user = getUser();

 if (!user) {

   return <div>Loading!</div>;

 }

 return (

   <Layout>

     <Row className="justify-content-evenly">

       <Col sm={7}>

         <Row className="border rounded

           align-items-center">

           <Col className="flex-shrink-1">

             <Image

               src={randomAvatar()}

               roundedCircle

               width={52}

               height={52}

               className="my-2"

             />



Creating the UI 195

           </Col>

           <Col sm={10} className="flex-grow-1">

             <CreatePost />

           </Col>

         </Row>

       </Col>

     </Row>

   </Layout>

 );

}

export default Home;

2.	 Great! Make sure to save the changes, start the server, and go to the home page. You’ll have 
something similar to this:

Figure 8.8 – Create Post UI

3.	 Click on the input, and a modal will show up. Type anything you want in the input and submit 
it. The modal will close, and you’ll have a toast appearing at the top center of the page:

Figure 8.9 – Toast after successful post creation

Great! We can now create posts using our React application. To make it possible, we have created 
a Modal component and a form with React Bootstrap to handle data validation and submission. 
And because feedback is an important aspect of user experience, we have added a toaster with React 
Bootstrap and integrated it with the useContext Hook to notify the user of the result of the requests.

The next step is to list all the posts and add actions such as deletion and modification.



Social Media Posts196

Listing posts on the home page
Now that users can create posts, we need to list the posts on the home page but also allow the user 
to access them. This will require the creation of a component to display information about a post. As 
shown in Figure 8.1, under the Write a post input, we have a list of posts. The home page structure is 
already added, so we need to add a component that will handle the logic behind showing information 
about a post.

Here’s the flow to list the posts on the home page:

•	 We use the swr library to fetch a list of posts

•	 We loop through the list of posts and then pass a post as props to a component called Post, 
which will show data about a post

Before starting to fetch data, let’s create the Post component.

Writing the Post component

To create a Post component, follow these steps:

1.	 Inside the src/components/post/ directory, create a new file called Post.jsx. This 
file will contain the logic to show post data and logic such as like or remove like, deletion, and 
modification. Here’s a wireframe of the Post component:

Figure 8.10 – Post component

2.	 To make things faster, we will work with the Card component provided by react-bootstrap. 
The Card component comes with a structure containing a title, body, and footer:

src/components/post/Post.jsx

import React, { useState } from "react";

import { format } from "timeago.js";

import {

 LikeFilled,

 CommentOutlined,



Listing posts on the home page 197

 LikeOutlined,

} from "@ant-design/icons";

import { Image, Card, Dropdown } from "react-bootstrap";

import { randomAvatar } from "../../utils";

function Post(props) {

 const { post, refresh } = props;

 const handleLikeClick = (action) => {

   axiosService

     .post(`/post/${post.id}/${action}/`)

     .then(() => {

       refresh();

     })

     .catch((err) => console.error(err));

 };

 return (

   <>

     <Card className="rounded-3 my-4">

      {/* Add card body here*/}

     </Card>

   </>

 );

}

export default Post;

The Post component accepts two props:

	� The post object containing data about a post.

	� The refresh function. This function will come from the SWR posts object, and SWR 
returns an object with a mutate method that can be used to trigger the fetching of data.



Social Media Posts198

3.	 We also profited from adding the handleLikeClick function. Two actions can be passed 
to the function: either like or remove_like. If the request succeeds, we can refresh the 
posts. Great! Let’s start by adding the Card body. It’ll contain the avatar of the author of the 
post, the name, and the time elapsed since the creation of the post:

src/components/post/Post.jsx

…

<Card.Body>

         <Card.Title className="d-flex flex-row

           justify-content-between">

           <div className="d-flex flex-row">

             <Image

               src={randomAvatar()}

               roundedCircle

               width={48}

               height={48}

               className="me-2 border border-primary

                          border-2"

             />

             <div className="d-flex flex-column

               justify-content-start

               align-self-center mt-2">

               <p className="fs-6 m-0">

                 {post.author.name}</p>

               <p className="fs-6 fw-lighter">

                 <small>{format(post.created)}</small>

               </p>

             </div>

           </div>

         </Card.Title>

       </Card.Body>

...



Listing posts on the home page 199

4.	 Go ahead and add the body of the post and the likes count:

src/components/post/Post.jsx

…

         </Card.Title>

         <Card.Text>{post.body}</Card.Text>

         <div className="d-flex flex-row">

           <LikeFilled

             style={{

               color: "#fff",

               backgroundColor: "#0D6EFD",

               borderRadius: "50%",

               width: "18px",

               height: "18px",

               fontSize: "75%",

               padding: "2px",

               margin: "3px",

             }}

           />

           <p className="ms-1 fs-6">

             <small>{post.likes_count} like</small>

           </p>

         </div>

       </Card.Body>

...

5.	 We can now move to the Card footer containing the like and comment UI. Let’s start by adding 
the Like icon followed by text:

src/components/post/Post.jsx

...

       </Card.Body>

       <Card.Footer className="d-flex bg-white w-50

         justify-content-between border-0">

         <div className="d-flex flex-row">

           <LikeOutlined



Social Media Posts200

             style={{

               width: "24px",

               height: "24px",

               padding: "2px",

               fontSize: "20px",

               color: post.liked ? "#0D6EFD" :

                 "#C4C4C4",

             }}

             onClick={() => {

               if (post.liked) {

                 handleLikeClick("remove_like");

               } else {

                 handleLikeClick("like");

               }

             }}

           />

           <p className="ms-1">

             <small>Like</small>

           </p>

         </div>

 {/* Add comment icon here*/}

       </Card.Footer>

     </Card>

...

6.	 Now go ahead and add the Comment icon followed by the text:

src/components/post/Post.jsx

...

         <div className="d-flex flex-row">

           <CommentOutlined

             style={{

               width: "24px",

               height: "24px",

               padding: "2px",



Listing posts on the home page 201

               fontSize: "20px",

               color: "#C4C4C4",

             }}

           />

           <p className="ms-1 mb-0">

             <small>Comment</small>

           </p>

         </div>

       </Card.Footer>

...

The Post component is entirely written; we can use it on the home page now.

Adding the Post component to the home page

Let’s now add our Post component to the home page.

In the Home.jsx file, import the Post component:

src/pages/Home.jsx

...

import { Post } from "../components/posts";

...

We can now use the components in the code by first fetching posts from the server:

src/pages/Home.jsx

...

function Home() {

 const posts = useSWR("/post/", fetcher, {

   refreshInterval: 10000,

 });

...



Social Media Posts202

The useSWR Hook can accept some parameters, such as refreshInterval. Here, the returned 
data is refreshed every 10 seconds. We can now use these objects in the UI:

src/pages/Home.jsx

...

           <Col sm={10} className="flex-grow-1">

             <CreatePost />

           </Col>

         </Row>

         <Row className="my-4">

           {posts.data?.results.map((post, index) => (

             <Post key={index} post={post}

               refresh={posts.mutate} />

           ))}

         </Row>

       </Col>

...

Great! After adding the Post component to the home page, you should have a similar result to this:

Figure 8.11 – List of posts



Listing posts on the home page 203

You can click on the Like icon and see what happens. Usually, the button color will change to blue, 
and the like count will increase. The behavior will be reversed if you click again on the Like icon. But 
the Post component has a More dropdown in the top-right corner:

Figure 8.12 – Adding the more dropdown

react-bootstrap provides a Dropdown component we can use to achieve the same result. In 
the Post.jsx file, import the Dropdown component from react-bootstrap. As we will add 
the logic for post deletion, let’s also import the Toaster component:

src/components/post/Post.jsx

import { Button, Modal, Form, Dropdown } from "react-
bootstrap";

import Toaster from "../Toaster";

...

We then have to write the component we will pass to the Dropdown component as the title:

src/components/post/Post.jsx

…

const MoreToggleIcon = React.forwardRef(({ onClick }, ref) => (

 <Link

   to="#"

   ref={ref}

   onClick={(e) => {

     e.preventDefault();

     onClick(e);

   }}

 >



Social Media Posts204

   <MoreOutlined />

 </Link>

));

function Post(props) {

...

We can now add the Dropdown component to the UI. We need to make it conditional so that only 
the author of the post can access these options. We will just retrieve the user from localStorage 
and compare user.id to author.id:

src/components/post/Post.jsx

...

function Post(props) {

...

 const [showToast, setShowToast] = useState(false);

 const user = getUser();

...

 const handleDelete = () => {

   axiosService

     .delete(`/post/${post.id}/`)

     .then(() => {

       setShowToast(true);

       refresh();

     })

     .catch((err) => console.error(err));

 };

 return (

 ...

Let’s add the component UI and the Toaster component:

src/components/post/Post.jsx

...

     <Card className="rounded-3 my-4">

       <Card.Body>

         <Card.Title className="d-flex flex-row



Listing posts on the home page 205

           justify-content-between">

           ...

           {user.name === post.author.name && (

             <div>

               <Dropdown>

                 <Dropdown.Toggle as={MoreToggleIcon}>

                 </Dropdown.Toggle>

                 <Dropdown.Menu>

                   <Dropdown.Item>Update</>

                   <Dropdown.Item

                     onClick={handleDelete}

                     className="text-danger"

                   >

                     Delete

                   </Dropdown.Item>

                 </Dropdown.Menu>

               </Dropdown>

             </div>

           )}

         </Card.Title>

         ...

     </Card>

     <Toaster

       title="Post!"

       message="Post deleted"

       type="danger"

       showToast={showToast}

       onClose={() => setShowToast(false)}

     />

   </>

 );

}

export default Post;



Social Media Posts206

The Dropdown component is also added to the toaster. Each time a post is deleted, a red toaster will 
pop up at the top center of the page:

Figure 8.13 – Deleting a post

The user can now delete their own post and the functionality is accessible directly from the Post 
component. We have explored how to use the UseContex Hook again and also how to create a 
dropdown using react-bootstrap.

The CRUD operations on the post feature are nearly done and only the update feature remains. It’s easy, 
and you will implement it as a small exercise, but I’ll add the necessary code and instructions to follow.

Updating a post
As mentioned earlier, the implementation of this feature is a simple exercise. Here’s the flow the user 
will typically follow when modifying a post:

1.	 Click on the More dropdown menu.

2.	 Select the Modify option.

3.	 A modal is shown with the body of the post, and the user can modify it.

4.	 Once it’s done, the user saves, and the modal is closed.

5.	 A toast will pop up with the content Post updated 🚀.



Updating a post 207

The feature is similar to CreatePost.jsx; the difference is that the UpdatePost component 
will receive a post object as props. Here’s the skeleton of the code:

src/components/post/UpdatePost.jsx

import React, { useState } from "react";

import { Button, Modal, Form, Dropdown } from "react-
bootstrap";

import axiosService from "../../helpers/axios";

import Toaster from "../Toaster";

function UpdatePost(props) {

 const { post, refresh } = props;

 const [show, setShow] = useState(false);

 const handleClose = () => setShow(false);

 const handleShow = () => setShow(true);

 // Add form handling logic here

 return (

   <>

     <Dropdown.Item onClick={handleShow}>Modify

     </Dropdown.Item>

     <Modal show={show} onHide={handleClose}>

     {/*Add UI code here*/}

     </Modal>

   </>

 );

}

export default UpdatePost;

The component is called in the Post.jsx file and used like this:

src/components/post/Post.jsx

...

import UpdatePost from "./UpdatePost";



Social Media Posts208

...

           </div>

           {user.name === post.author.name && (

             <div>

               <Dropdown>

                 <Dropdown.Toggle as={MoreToggleIcon}>

                 </Dropdown.Toggle>

                 <Dropdown.Menu>

                   <UpdatePost post={post}

                     refresh={refresh} />

                   <Dropdown.Item

                     onClick={handleDelete}

                     className="text-danger"

                   >

                     Delete

                   </Dropdown.Item>

                 </Dropdown.Menu>

               </Dropdown>

             </div>

           )}

...

Good luck with the exercise. You can find the solution at https://github.com/
PacktPublishing/Full-stack-Django-and-React/blob/main/social-media-
react/src/components/posts/UpdatePost.jsx.

Minor refactoring
Firstly, there is no refresh made when a new post is created. As we did for the UpdatePost.jsx 
component, we can also pass some props to the CreatePost component:

src/pages/Home.jsx

...

           <Col sm={10} className="flex-grow-1">

             <CreatePost refresh={posts.mutate} />

           </Col>

...

https://github.com/PacktPublishing/Full-stack-Django-and-React/blob/main/social-media-react/src/components/posts/UpdatePost.jsx
https://github.com/PacktPublishing/Full-stack-Django-and-React/blob/main/social-media-react/src/components/posts/UpdatePost.jsx
https://github.com/PacktPublishing/Full-stack-Django-and-React/blob/main/social-media-react/src/components/posts/UpdatePost.jsx


Minor refactoring 209

And, we can call the refresh method when a post is successfully created:. 

src/components/posts/CreatePost.jsx

function CreatePost(props) {

  const { refresh } = props;

  ...

    axiosService

      .post("/post/", data)

      .then(() => {

     ...

        setForm({});

        setShowToast(true);

        refresh();

      })

...

Now, every time a user adds a post, he will see the newly created post on the Home page without the 
need of reloading the page.

Secondly, the Toaster component is created but we need to think about how to call the component 
in the project. Let’s not forget that this component is created to return feedback to the user about a 
successful or failed request, thus the component should be reusable in the whole project, which is 
what we've actually done, right?

Well, no, and this is not desirable as it will violate the DRY rule. The logic to call the component is 
repeated across all pages that call this component. How can we resolve this? What if we can have the 
Toaster component higher in the component hierarchy and then be able to call or show the toaster 
from any child component?

Figure 8.14 – Parent and child components



Social Media Posts210

In the preceding figure, we will be able to trigger the display of a toaster in the project directly in a 
parent component from a child component (CreatePost). React provides an interesting way to 
manage state across parents and child components and this is called context. React Context allows 
you to share state or modify state across parent and child components more easily. In the Layout.
jsx file, create a new context using the createContext method:

src/components/Layout.jsx

import React, { createContext, useMemo, useState } from 
"react";

export const Context = createContext("unknown");

function Layout(props) {

Then in the Layout component scope, let’s define the state containing the data that the toaster will use 
to display information. We will also wrap the component JSX content inside the Context component 
and add a method to modify the state from any child components of the Layout component:

src/components/Layout.jsx

function Layout(props) {

  ...

  const [toaster, setToaster] = useState({

   title: "",

   show: false,

   message: "",

   type: "",

 });

 const value = useMemo(() => ({ toaster, setToaster }),

                                [toaster]);

 ...

 return (

   <Context.Provider value={value}>

     <div>

       <NavigationBar />

       {hasNavigationBack && (



Minor refactoring 211

         <ArrowLeftOutlined

           style={{

             color: "#0D6EFD",

             fontSize: "24px",

             marginLeft: "5%",

             marginTop: "1%",

           }}

           onClick={() => navigate(-1)}

         />

       )}

       <div className="container my-2">

         {props.children}</div>

     </div>

     <Toaster

       title={toaster.title}

       message={toaster.message}

       type={toaster.type}

       showToast={toaster.show}

       onClose={() => setToaster({ ...toaster, show: false

         })}

     />

   </Context.Provider>

 );

}

export default Layout;

In the preceding code, we have introduced a new function Hook called useMemo, which helps to 
memorize the context value (caching the value of the context) and avoid the creation of new objects 
every time there is a re-rendering of the Layout component.

We will then be able to access the toaster state and call the setToaster function from any 
child component:

 const { toaster, setToaster } = useContext(Context);



Social Media Posts212

Summary
In this chapter, we’ve gone deeper into React programming by creating the components needed for 
the CRUD operations used in the post feature. We have covered concepts such as props passing, 
parent-children component creation, UI component customization, and modal creation. That led to 
the partial completion of the home page of the Postagram project. We also learned more about 
the useState and useContext Hooks and how they affect state in React. We have also learned 
how to create a Dropdown component, how to create a custom toaster, and the importance of layout 
in a React project.

In the next chapter, we’ll focus on the CRUD operations of the comment feature. This will lead us to 
add a Profile page and a Post page to display comments. We’ll also make simple and quick assessments 
to add Like features to the comments too.

Questions
1.	 What is a modal?

2.	 What is a prop?

3.	 What is a children element in React?

4.	 What is a wireframe?

5.	 What is the map method used in JSX?

6.	 What is the usage of the mutate method on SWR objects?



9
Post Comments

An exciting part of every social media platform is the comment functionality. In the previous chapter, 
we’ve added post creation, listing, update, and deletion functionality. This chapter will cover a comment’s 
creation, listing, update, and deletion. We will create a page to display information about a post, add 
components to list comments, add a modal to display a form to create comments and add a dropdown 
to allow the user to delete or modify a comment. At the end of this chapter, you will learn how to 
navigate to a single page with URL parameters using React and React Router.

In this chapter, we will cover the following topics:

•	 Listing comments on a post page

•	 Creating a comment using a form

•	 Editing and deleting a comment

•	 Updating a comment

Technical requirements
Make sure to have VS Code and an updated browser installed and configured on your machine. 
You can find the code of this chapter at https://github.com/PacktPublishing/Full-
stack-Django-and-React/tree/chap9.

Creating a UI
In the next paragraphs, we will modify the Post component for consistency when displaying a single 
post, add a Back button on the layout so the user can go back to the home page, and finally, add CRUD 
features, a little bit similar to the Post components. Before listing the comments, we need to ensure 
that the user can create comments. This will require building a page called SinglePost that will 
show details about a post and the comments.

https://github.com/PacktPublishing/Full-stack-Django-and-React/tree/chap9
https://github.com/PacktPublishing/Full-stack-Django-and-React/tree/chap9


Post Comments214

Let’s look at the UI of the page in the following figure:

Figure 9.1 – Result of the SinglePost page

The UI in the preceding figure gives us a good idea of the result. When the page is built and the user 
clicks on a comment, a modal will appear, and the user will be able to create a comment. Let’s stick 
to this case first, and we’ll explore the other CRUD operations later.

Notice that we also have a back button in the top-left corner of the page – something to add to the 
Layout component. We will start by making some tweaks to the Post.jsx component first. This 
is because we are going to reuse the Post component, but we will mask options such as comment 
count and the Comment icon. After modifying the component, we will create a page displaying one 
article and comments.

Tweaking the Post component

The Post component will be simply reused to display more information about the post. Following 
the UI in Figure 9.1, we will just mask the number of comments on the post and the Comment icon.

Inside Post.jsx, we will add another prop called isSinglePost. When this prop is true, it 
means that we are showing the component on the SinglePost page:

src/components/posts/Post.jsx

...

function Post(props) {



Creating a UI 215

 const { post, refresh, isSinglePost } = props;

...

 return (

   <>

    ...

            {!isSinglePost && (

             <p className="ms-1 fs-6">

               <small>

                 <Link>

                   {post.comments_count} comments

                 </Link>

               </small>

             </p>

           )}

   ...

                {!isSinglePost && (

           <div className="d-flex flex-row">

             <CommentOutlined

               style={{

                 width: "24px",

                 height: "24px",

                 padding: "2px",

                 fontSize: "20px",

                 color: "#C4C4C4",

               }}

             />

             <p className="ms-1 mb-0">

               <small>Comment</small>

             </p>

           </div>

         )}

...

With the modification done to the Post component, we can now add the back button to the 
Layout component.



Post Comments216

Adding a back button to the Layout component

The back button has the role of navigating the user to the preceding page if the action is initiated. An 
interesting idea about doing that is to add the actual path to the component where a go-back action 
can happen. However, it’ll require a lot of code and will introduce some complexity.

Thankfully, the react-router library provides a simple way to navigate to the preceding page in 
just one line:

navigate(-1)

Yes! Let’s add this function to the Layout.jsx component:

src/components/Layout.jsx

import { ArrowLeftOutlined } from "@ant-design/icons";

import { useNavigate } from "react-router-dom";

function Layout(props) {

 const { hasNavigationBack } = props;

 const navigate = useNavigate();

...

  return (

     <div>

       <Navigationbar />

       {hasNavigationBack && (

         <ArrowLeftOutlined

           style={{

             color: "#0D6EFD",

             fontSize: "24px",

             marginLeft: "5%",

             marginTop: "1%",

           }}

           onClick={() => navigate(-1)}

         />

       )}

       <div className="container my-2">

           {props.children}



Creating a UI 217

       </div>

...

In the preceding code, we added a prop called hasNavigationBack. This prop will tell React 
whether it should render the icon to nagivate back to the precedent page. The rendering process is 
done in the JSX code, using conditional. If hasNavigationBack is true, we show the Back icon, 
and the user can navigate.

With the option of going back added, we can now move to write the SinglePost.jsx page.

Creating the SinglePost component

In the src/pages directory, create a new file called SinglePost.jsx. This file will contain the 
code to display information about a post and, most importantly, the comments. The following figure 
shows a simple wireframe of the page so we can have an idea about the layout of the components:

Figure 9.2 – Wireframe of the SinglePost page

Let’s move the file and start coding. In the following snippet, we will create the SinglePost page, 
add the imports, and define the functions and states that will be used on the page:

src/pages/SinglePost.jsx

import React from "react";

import Layout from "../components/Layout";



Post Comments218

import { Row, Col } from "react-bootstrap";

import { useParams } from "react-router-dom";

import useSWR from "swr";

import { fetcher } from "../helpers/axios";

import { Post } from "../components/posts";

import CreateComment from "../components/comments/
CreateComment";

import Comment from "../components/comments/Comment";

function SinglePost() {

 let { postId } = useParams();

 const post = useSWR(`/post/${postId}/`, fetcher);

 const comments = useSWR(`/post/${postId}/comment/`, fetcher);

 return (

   <Layout hasNavigationBack>

     {post.data ? (

       <Row className="justify-content-center">

         <Col sm={8}>

           <Post post={post.data} refresh={post.mutate}  
             isSinglePost />

           // Adding CreateComment form and list all comments  
              here

         </Col>

       </Row>

     ) : (

       <div>Loading...</div>

     )}

   </Layout>

 );

}

export default SinglePost;



Creating a UI 219

We are using the Row and Col feature from react-bootstrap again. This structure will help 
us have one column taking 8/12 of the layout and having objects centered. Next, we need a form for 
comment creation.

We are also using a new Hook, useParams. As stated in the official documentation, the useParams 
Hook returns an object of key/value pairs of the dynamic params from the current URL that was 
matched by <Route path>. Child routes inherit all parameters from their parent routes.

A little bit complicated to grasp, but let’s register this page and load it in the browser. Inside the App.
jsx file, add a new route:

src/App.jsx

...

function App() {

 return (

   <Routes>

     <Route

       path="/"

       element={

         <ProtectedRoute>

           <Home />

         </ProtectedRoute>

       }

     />

     <Route

       path="/post/:postId/"

       element={

         <ProtectedRoute>

           <SinglePost />

         </ProtectedRoute>

       }

     />

...

The path of the newly added route has an interesting pattern with the addition of postId. We can tell 
react-router to expect a parameter that will be passed, and this parameter will then be available 
in the useParams Hook.



Post Comments220

Let’s add the redirection to the SinglePost page in the Post component:

src/components/posts/CreatePost.jsx

return (

   <>

    ...

            {!isSinglePost && (

             <p className="ms-1 fs-6">

               <small>

                 <Link to={`/post/${post.id}/`}>

                   {post.comments_count} comments

                 </Link>

               </small>

             </p>

           )}

    ...

Inside the SinglePost.jsx file, add a console log of useParams():

src/pages/SinglePost.jsx

...

function SinglePost() {

 console.log(useParams())

 let { postId } = useParams();

...

Go into the browser and click on a post to access the SinglePost page. You will have a similar result:



Creating a UI 221

Figure 9.3 – Post page

Check the browser console to see the content of useParams():

Figure 9.4 – Content of useParams()

We have an object containing the postId value. With useParams() explained, let’s move on to 
add the CreateComment form.

Creating a comment

Inside the src/components directory, create a new directory called comments. This directory 
will contain the code for the comments feature components. Inside the newly created directory, 
create a new file called CreateComment.jsx. This component represents the form that the user 
will use to add comments to a post.

Once the file is created, add the required imports:

src/components/comments/CreateComment.jsx

import React, { useState, useContext } from "react";

import { Button, Form, Image } from "react-bootstrap";

import axiosService from "../../helpers/axios";

import { getUser } from "../../hooks/user.actions";

import { randomAvatar } from "../../utils";



Post Comments222

import { Context } from "../Layout";

function CreateComment(props) {

 const { postId, refresh } = props;

 return (

   <Form>

   </Form>

 );

}

export default CreateComment;

On the CreateComment page, we are going to show toast notifications when a CRUD action is 
made. That means that we are going to use the Context method again.

Let’s start by defining the props and creating handleSubmit. This process will be pretty similar to 
what we’ve done in the CreatePost component:

src/components/comments/CreateComment

...

function CreateComment(props) {

 const { postId, refresh } = props;

 const [avatar, setAvatar] = useState(randomAvatar());

 const [validated, setValidated] = useState(false);

 const [form, setForm] = useState({});

 const { toaster, setToaster } = useContext(Context);

 const user = getUser();

 const handleSubmit = (event) => {

   // Logic to handle form submission

 };

...



Creating a UI 223

Let’s now add the Form UI:

src/component/comments/CreateComment.jsx

...

return (

   <Form

     className="d-flex flex-row justify-content-between"

     noValidate

     validated={validated}

     onSubmit={handleSubmit}

   >

     <Image

       src={avatar}

       roundedCircle

       width={48}

       height={48}

       className="my-2"

     />

     <Form.Group className="m-3 w-75">

       <Form.Control

         className="py-2 rounded-pill border-primary"

         type="text"

         placeholder="Write a comment"

         value={form.body}

         name="body"

         onChange={(e) => setForm({ ...form,

                                   body: e.target.value })}

       />

     </Form.Group>

     <div className="m-auto">

       <Button

         variant="primary"

         onClick={handleSubmit}

         disabled={form.body === undefined}

         size="small"

       >



Post Comments224

         Comment

       </Button>

     </div>

   </Form>

 );

...

With the UI added, we can write the handeSubmit method:

src/component/comments/CreateComment.jsx

...

 const handleSubmit = (event) => {

   event.preventDefault();

   const createCommentForm = event.currentTarget;

   if (createCommentForm.checkValidity() === false) {

     event.stopPropagation();

   }

   setValidated(true);

   const data = {

     author: user.id,

     body: form.body,

     post: postId,

   };

   axiosService

     .post(`/post/${postId}/comment/`, data)

     .then(() => {

       setForm({ ...form, body: "" });

       setToaster({

         type: "success",

         message: "Comment posted successfully🚀",

         show: true,

         title: "Comment!",

       });

       refresh();



Creating a UI 225

     })

     .catch(() => {

       setToaster({

         type: "danger",

         message: "",

         show: true,

         title: "An error occurred.!",

       });

     });

 };

...

Similar to the CreatePost component, we are doing checks on the validity of the form but also 
sending a request to the /post/${postId}/comment/ endpoint. Then, depending on the 
response, we show a toast and clean the form. Let’s test the form and add the first comment using React:

src/pages/SinglePost.jsx

...

 return (

   <Layout hasNavigationBack>

     {post.data ? (

       <Row className="justify-content-center">

         <Col sm={8}>

           <Post post={post.data} refresh={post.mutate}

             isSinglePost />

           <CreateComment postId={post.data.id}

             refresh={comments.mutate} />

         </Col>

       </Row>

     ) : (

       <div>Loading...</div>

     )}

   </Layout>

 );

...



Post Comments226

You should have a similar result:

Figure 9.5 – Creating a comment

In the preceding paragraphs, we have created a page to display information about a post, thus allowing 
us to add a modal displaying a form to create a new comment related to this post.

Now, we need to display the created comments.

Listing the comments
We can create comments, but we can’t see them. In src/components/comments, create a new 
file called CreateComment.jsx. This will contain the code for the Comment component that will 
be used to show details about a comment. Here’s a wireframe of the Comment component:

Figure 9.6 – Wireframe of the Comment component



Listing the comments 227

Let’s move on to writing the code. Let’s start by adding the CreateComment function and the 
imports, and defining the state that we will use in this component:

 src/components/comments/CreateComment.jsx

import React, { useState, useContext } from "react";

import { format } from "timeago.js";

import { Image, Card, Dropdown } from "react-bootstrap";

import { randomAvatar } from "../../utils";

import axiosService from "../../helpers/axios";

import { getUser } from "../../hooks/user.actions";

import UpdateComment from "./UpdateComment";

import { Context } from "../Layout";

import MoreToggleIcon from "../MoreToggleIcon";

function Comment(props) {

 const { postId, comment, refresh } = props;

 const { toaster, setToaster } = useContext(Context);

 const user = getUser();

 const handleDelete = () => {

    // Handle the deletion of a comment

 };

 return (

   <Card className="rounded-3 my-2">

    // Code for the comment card

   </Card>

 );

}

export default Comment;



Post Comments228

We have the necessary imports. Let’s start with the UI first. It’s a little bit like the Post component 
in its structure:

src/components/comments/CreateComment.jsx

...

 return (

   <Card className="rounded-3 my-2">

     <Card.Body>

       <Card.Title className="d-flex flex-row

         justify-content-between">

         <div className="d-flex flex-row">

           <Image

             src={randomAvatar()}

             roundedCircle

             width={48}

             height={48}

             className="me-2 border border-primary

                        border-2"

           />

           <div className="d-flex flex-column

               justify-content-start

               align-self-center mt-2">

             <p className="fs-6 m-0">{comment.author.name}

             </p>

             <p className="fs-6 fw-lighter">

               <small>{format(comment.created)}</small>

             </p>

           </div>

         </div>

         {user.name === comment.author.name && (

           <div>

             <Dropdown>

               <Dropdown.Toggle

                 as={MoreToggleIcon}></Dropdown.Toggle>

               <Dropdown.Menu>

                 <Dropdown.Item>



Listing the comments 229

                   Modify

                 </Dropdown.Item>

                 <Dropdown.Item onClick={handleDelete}

                   className="text-danger">

                   Delete

                 </Dropdown.Item>

               </Dropdown.Menu>

             </Dropdown>

           </div>

         )}

       </Card.Title>

       <Card.Text>{comment.body}</Card.Text>

     </Card.Body>

   </Card>

 );

...

The UI for the Comment component is ready. Let’s see the result on a post page:

Figure 9.7 – List of comments on a post



Post Comments230

We also have the More dots in the top-right corner of each component, meaning that we need to 
implement features for the deletion and modification of a comment. Let’s add the deletion feature.

Deleting a comment
The More dots menu provides two options: deleting and modifying a comment. Let’s start by adding 
code and actions to delete a comment. The function has already been declared; we just need to add 
the logic:

Src/components/comments/CreateComment.jsx

...

 const handleDelete = () => {

   axiosService

     .delete(`/post/${postId}/comment/${comment.id}/`)

     .then(() => {

       setToaster({

         type: "danger",

         message: "Comment deleted 🚀",

         show: true,

         title: "Comment Deleted",

       });

       refresh();

     })

     .catch((err) => {

       setToaster({

         type: "warning",

         message: "Comment deleted 🚀",

         show: true,

         title: "Comment Deleted",

       });

     });

 };

...

In the handleDelete function, we make a request using axios to /post/${postId}/
comment/${comment.id}/ to delete a comment. Depending on the result of the HTTP request, 
we show a toaster with the correct message. Once you are done adding the code, let’s test the result:



Updating a comment 231

Figure 9.8 – Deleting a comment

The deletion of a comment in our React application is now possible. Let’s move on to adding the 
feature for modifying comments.

Updating a comment
Updating a comment will be similar to what was done in the UpdatePost.jsx file. However, I’ll 
assist you in writing this feature for the comments. We also have an exciting element to add to our 
comments: liking and unliking a comment, but as an exercise. Let’s focus on the modification of a 
comment. For this purpose, we will have to create a modal.

Adding the UpdateComment modal

Inside the src/components/comments directory, create a file called UpdateComment.jsx. 
This file will contain the modal and the form that will allow the user to update a comment:

src/components/comments/UpdateComment.jsx

import React, { useState, useContext } from "react";

import { Button, Modal, Form, Dropdown } from "react-
bootstrap";

import axiosService from "../../helpers/axios";



Post Comments232

import { Context } from "../Layout";

function UpdateComment(props) {

 const { postId, comment, refresh } = props;

 const [show, setShow] = useState(false);

 const [validated, setValidated] = useState(false);

 const [form, setForm] = useState({

   author: comment.author.id,

   body: comment.body,

   post: postId

 });

 const { toaster, setToaster } = useContext(Context);

 const handleSubmit = (event) => {

   // handle the modification of a comment

 };

 return (

   <>

     <Dropdown.Item

       onClick={handleShow}>Modify</Dropdown.Item>

     // Adding the Modal here

   </>

 );

}

export default UpdateComment;

We are doing the required imports and defining the states that will be used and updated when a 
modification is triggered. Note that we also pass postId and the comment object as props. The 
first is needed for the endpoint; the second is also for the endpoint, but most importantly, to have a 
default value, we need to show it in the form for the user to modify.



Updating a comment 233

Let’s add the modal UI:

src/components/comments/UpdateComment.jsx

…

 return (

   <>

     <Dropdown.Item onClick={handleShow}>Modify

     </Dropdown.Item>

     <Modal show={show} onHide={handleClose}>

       <Modal.Header closeButton className="border-0">

         <Modal.Title>Update Post</Modal.Title>

       </Modal.Header>

       <Modal.Body className="border-0">

         <Form noValidate validated={validated}

           onSubmit={handleSubmit}>

           <Form.Group className="mb-3">

             <Form.Control

               name="body"

               value={form.body}

               onChange={(e) => setForm({ ...form,

                 body: e.target.value })}

               as="textarea"

               rows={3}

             />

           </Form.Group>

         </Form>

       </Modal.Body>

       <Modal.Footer>

         <Button variant="primary" onClick={handleSubmit}>

           Modify

         </Button>

       </Modal.Footer>

     </Modal>

   </>

 );

…



Post Comments234

With the UI ready, we can now write the handleSubmit function:

src/components/comments/UpdateComment.jsx

…

 const handleSubmit = (event) => {

   event.preventDefault();

   const updateCommentForm = event.currentTarget;

   if (updateCommentForm.checkValidity() === false) {

     event.stopPropagation();

   }

   setValidated(true);

   const data = {

     author: form.author,

     body: form.body,

     post: postId

   };

   axiosService

     .put(`/post/${postId}/comment/${comment.id}/`, data)

     .then(() => {

       handleClose();

       setToaster({

         type: "success",

         message: "Comment updated 🚀",

         show: true,

         title: "Success!",

       });

       refresh();

     })

     .catch((error) => {

       setToaster({

         type: "danger",

         message: "An error occurred.",



Updating a comment 235

         show: true,

         title: "Comment Error",

       });

     });

 };

...

Let’s import and add this component to the Comment.jsx file:

src/components/comments/Comment.jsx

…

         {user.name === comment.author.name && (

           <div>

             <Dropdown>

               <Dropdown.Toggle as={MoreToggleIcon}>

               </Dropdown.Toggle>

               <Dropdown.Menu>

                 <UpdateComment

                   comment={comment}

                   refresh={refresh}

                   postId={postId}

                 />

                 <Dropdown.Item onClick={handleDelete}

                   className="text-danger">

                   Delete

                 </Dropdown.Item>

               </Dropdown.Menu>

             </Dropdown>

           </div>

         )}

       </Card.Title>

       <Card.Text>{comment.body}</Card.Text>

     </Card.Body>

   </Card>

…



Post Comments236

After adding this piece of code, once you click on the Modify option of the More menu, a modal will 
appear, like in the following figure:

Figure 9.9 – Modify comment modal

If the modification is submitted and successful, a toast will appear at the top of the page:



Liking a comment 237

Figure 9.10 – Toast showing successful comment modification

Nice! We have completed working on CRUD actions for the comment feature. An exciting feature to 
have for the comments is the possibility to like a comment. It is similar to what we have done for the 
posts. This is the next step for this chapter, but also an exercise.

Liking a comment
Adding the Like feature to the Comment feature will require some changes to the Django API and 
some code to be added to the React application. First, let me provide you with the final result:



Post Comments238

Figure 9.11 – Comments with the Like feature and likes count

Here is a list of the requirements of the feature:

•	 The user can see the number of likes on a comment

•	 The user can like a comment

•	 The user can remove a like from a comment

This will require some tweaks on the Django API as well. Feel free to get inspired by what we’ve done 
for the post feature.

Good luck with the exercise. You can find the solution at https://github.com/
PacktPublishing/Full-stack-Django-and-React/blob/main/social-media-
react/src/components/comments/Comment.jsx.

https://github.com/PacktPublishing/Full-stack-Django-and-React/blob/main/social-media-react/src/components/comments/Comment.jsx
https://github.com/PacktPublishing/Full-stack-Django-and-React/blob/main/social-media-react/src/components/comments/Comment.jsx
https://github.com/PacktPublishing/Full-stack-Django-and-React/blob/main/social-media-react/src/components/comments/Comment.jsx


Summary 239

After adding the Like feature to comments, we are now ready to finally add CRUD operations to the 
profile of the React application. We will create a profile page and allow the user to edit the information in 
their profile. We will also enable the user to update their avatar and set a default avatar image for users.

Summary
In this chapter, we focused on adding CRUD operations to the comments feature. We’ve learned how 
to play with react-router Hooks to retrieve parameters and use them in the code. We’ve also 
added a Like feature to the comment. A user can like or unlike a comment, and also see the number 
of likes for a post. That led us to learn more about the useState and useContext Hooks and the 
way they affect a state in React. We have also learned how to create a dropdown component, how to 
use the custom toaster, and how to tweak a component to fits some requirements.

In the next chapter, we’ll focus on CRUD operations on the user profile, and we will also learn how 
to upload a profile picture.

Questions
1.	 What is the usage of useParams?

2.	 How do you write a route in React that can support parameter passing?

3.	 What is the use of the useContext Hook?





10
User Profiles

A social media application should allow users to consult other user profiles. From another view, it 
should also allow an authenticated user to edit their information, such as their last name, first name, 
and avatar.

In this chapter, we will focus on adding CRUD features on the user side. We’ll build a page to visualize 
a user profile and a page that allows a user to edit their information. This chapter will cover the 
following topics:

•	 Listing profiles on the home page

•	 Displaying user information on their profile page

•	 Editing user information

Technical requirements
Make sure to have VS Code and an updated browser installed and configured on your machine. You 
can find all the code files used in this chapter at https://github.com/PacktPublishing/
Full-stack-Django-and-React/tree/chap10.

Listing profiles on the home page
Before building the pages and components to display user information and allow user information 
modification, we need to add a component to list some profiles on the home page like so:

https://github.com/PacktPublishing/Full-stack-Django-and-React/tree/chap10
https://github.com/PacktPublishing/Full-stack-Django-and-React/tree/chap10


User Profiles242

Figure 10.1 – Listing profiles

Follow these steps to add the component for listing profiles on the home page:

1.	 In the src/components file, create a new directory called profile. This directory will 
contain the code for all components related to users or profiles.

2.	 In the newly created directory, create a file called ProfileCard.jsx and add the 
following content:

src/components/profile/ProfileCard.jsx

import React from "react";

import { Card, Button, Image } from "react-bootstrap";

import { useNavigate } from "react-router-dom";

function ProfileCard(props) {

 return (

    // JSX code here

 );



Listing profiles on the home page 243

}

export default ProfileCard;

The ProfileCard component will be used to display information about a profile and redirect 
the user to the profile page.

3.	 Next, we will add the code logic concerning the navigation to the profile page and the props 
object destructuration:

src/components/profile/ProfileCard.jsx

...

function ProfileCard(props) {

 const navigate = useNavigate();

 const { user } = props;

 const handleNavigateToProfile = () => {

   navigate(`/profile/${user.id}/`)

 };

 return (

    // JSX Code

 );

}

export default ProfileCard;

In the preceding code, we retrieved the user object from the props and we also added a function 
to handle the navigation to the user profile.

4.	 Next, let’s write the JSX that will display information to the user:

src/components/profile/ProfileCard.jsx

...

 return (

   <Card className="border-0 p-2">

     <div className="d-flex ">

       <Image

         src={user.avatar}



User Profiles244

         roundedCircle

         width={48}

         height={48}

         className=

           "my-3 border border-primary border-2"

       />

       <Card.Body>

         <Card.Title

           className="fs-6">{user.name}</Card.Title>

         <Button variant="primary"

           onClick={handleNavigateToProfile}>

           See profile

         </Button>

       </Card.Body>

     </div>

   </Card>

 );

}

export default ProfileCard;

The ProfileCard component is written. We can now import it into the Home.jsx page 
and use it. But before that, we need to retrieve five profiles from the API and loop through the 
results to have the wanted display:

src/pages/Home.jsx

...

import CreatePost from "../components/posts/CreatePost";

import ProfileCard from "../components/profile/
ProfileCard";

function Home() {

...

 const profiles = useSWR("/user/?limit=5", fetcher);

...

 return (



Listing profiles on the home page 245

   <Layout>

     <Row className="justify-content-evenly">

       ...

       <Col sm={3} className="border rounded py-4

           h-50">

         <h4 className="font-weight-bold text-center">

           Suggested people</h4>

         <div className="d-flex flex-column">

           {profiles.data &&

             profiles.data.results.map((profile,

                                        index) => (

               <ProfileCard key={index} user={profile}

               />

             ))}

         </div>

       </Col>

     </Row>

   </Layout>

 );

}

export default Home;

In the preceding code, the profiles are only shown if the profiles.data object is not null 
or undefined. This is why we are writing the profiles.data  && profiles.data.
results.map() inline JSX condition.

5.	 Once it’s done, reload the home page and you’ll have a new component available, listing a 
maximum of five profiles.

Try to click on the See Profile button. You will be redirected to a white page. This is normal 
because we haven’t written routing for the Profile page yet.



User Profiles246

In the next section, we will be creating components to display information about a profile, like so:

Figure 10.2 – The user profile page

We will also allow the user to edit their information, like so:

Figure 10.3 – The user edit form and page



Displaying user information on their profile page 247

Displaying user information on their profile page
In this section, we will create a profile page to display user information. We will build a component 
to display user details and the posts concerning this user, but also we will create a page displaying a 
form for editing user information.

Before starting to build the user profile page, we have to create some components. On the profile 
page, we are not only displaying information but also the list of posts created by the user. Let’s start 
by writing the ProfileDetails.jsx component (Figure 10.4):

Figure 10.4 – The ProfileDetails component

Here’s the wireframe to help you with the structure of the component:

Figure 10.5 – The wireframe of the ProfileDetails component

In the ProfileDetails component, we are displaying some avatars. At this point of the project, 
it’s time to get rid of the randomAvatar function. It has been useful up until this point of the 
project, but we are making a lot of requests and some state change within the application just calls the 
function again that returns another random image, which is not something a user of the application 
might want to see.

Let’s start using the value of the avatar field on the user object but before that, we have to configure 
Django to deal with media upload and the avatar field on the user object.

The social media application uses the avatar field, which represents a link to a file that the browser 
can make a request on and receive the image. Django supports file uploading; we just need to add 
some configuration to make it effective.



User Profiles248

Inside the settings.py file of the project, add the following lines at the end of the project:

CoreRoot/settings.py

…

MEDIA_URL'= '/med'a/'

MEDIA_ROOT = BASE_DIR'/ 'uplo'ds'

The MEDIA_URL setting allows us to write the URL that will be used to retrieve uploaded files. 
The MEDIA_ROOT setting tells Django where to stock the files and also checks the upload files 
when returning the URL of a file. In the case of this project, an avatar field will have this URL, for 
example: http://localhost:8000/media/user_8380ca50-ad0f-4141-88ef-
69dc9b0707ad/avatar-rogemon.png.

For this configuration to work, you will need to create a directory called uploads at the root of the 
Django project. You will also need to install the Pillow library, which contains all the basic tools for 
image processing functionality:

pip install pillow

After that, let’s slightly modify the avatar field on the user model. Inside the core/user/models.
py, add a function before the UserManager manager class:

core/user/models.py

...

def user_directory_path(instance, filename):

    # file will be uploaded to

       MEDIA_ROOT/user_<id>/<filename>

    return 'user_{0}/{1}'.format(instance.public_id,

                                 filename)

...

This function will help re-write the path for the upload of a file. Instead of going directly into the 
uploads directory, the avatar is stocked according to a user. It can help with the better organization of 
files in your system. After adding the function, we can tell Django to use it for the default upload path:

core/user/models.py

...

class User(AbstractModel, AbstractBaseUser, PermissionsMixin):



Displaying user information on their profile page 249

...

    avatar = models.ImageField(

        null=True, blank=True,

             upload_to=user_directory_path)

...

In Django, the ImageField field is used to store image files in a database. It is a subclass of 
FileField, which is a generic field for storing files, so it has all the attributes of FileField as 
well as some additional attributes specific to images. The upload_to attribute specifies the directory 
where the image files will be stored.

Now, run the makemigrations command and make sure to migrate the changes to the database:

python manage.py makemigrations

python manage.py migrate

With this configuration done, our API can accept avatar uploading for the user. However, some users 
won’t have an avatar and we have been handling it pretty badly from the frontend side. Let’s set up a 
default avatar that will be used for users without an avatar.

Configuring the default avatar

To configure the default avatar, follow these steps:

1.	 In the settings.py file of the Django project, add the following line at the end of the file:

CoreRoot/settings.py

...

DEFAULT_AVATAR_URL = "https://avatars.dicebear.com/api/
identicon/.svg"

The avatar image looks as follows:

Image 10.6: The default image



User Profiles250

2.	 Once you have added DEFAULT_AVATAR_URL to the settings.py file, we will slightly 
modify the UserSerializer representation method to return the DEFAULT_AVATAR_URL 
value by default if the avatar field is none:

Core/user/serializers.py

...

from django.conf import settings

class UserSerializer(AbstractSerializer):

...

    def to_representation(self, instance):

        representation =

          super().to_representation(instance)

        if not representation['avatar']:

            representation['avatar'] =

              settings.DEFAULT_AUTO_FIELD

            return representation

        if settings.DEBUG:  # debug enabled for dev

            request = self.context.get('request')

            representation['avatar'] =

              request.build_absolute_uri(

                representation['avatar'])

        return representation

Let’s explain what we are doing in the preceding code block. First, we need to check whether 
the avatar value exists. If that’s not the case, we will return the default avatar. By default, Django 
doesn’t return the actual route of the file with the domain. That’s why in this case, if we are in a 
development environment, we return an absolute URL of the avatar. In the last part of this book, 
we will deploy the application on a production server, then we will use AWS S3 for file storing.

With the fix done on the backend, we can confidently modify the frontend application by 
now including the avatar field. It’s quite simple and a little bit of refactoring. Remove the 
randomAvatar function code from the React application and replace the values with user.
avatar,  post.author.avatar, or comment.author.avatar, depending on the 
file and the component.



Displaying user information on their profile page 251

3.	 With those small configurations done, check the Home page; you should have a similar result.

Figure 10.7 – The Home page with a default avatar

Great! Let’s move to creating the Profile page so that our Django application is ready to accept file uploads.

Writing the ProfileDetails component

To create the ProfileDetails component, we have to create the file that will contain the code 
for this component, add the logic for the navigation, write the UI (JSX), and import the component 
on the Profile page:

1.	 In the src/components/profile directory, create a new file called ProfileDetail.
jsx. This file will contain the code for the ProfileDetails component:

src/components/profile/ProfileDetails.jsx
import React from "react";
import { Button, Image } from "react-bootstrap";
import { useNavigate } from "react-router-dom";

function ProfileDetails(props) {

 return (



User Profiles252

// JSX code here
 );
}

export default ProfileDetails;

2.	 Here, we just need to destruct the props object to retrieve the user object, declare the navigate 
variable to use the useNagivate Hook, and finally handle the case when the user object is 
undefined or null:

src/components/profile/ProfileDetaisl.jsx

...

function ProfileDetails(props) {

 const { user } = props;

 const navigate = useNavigate();

 if (!user) {

   return <div>Loading...</div>;

 }

 return (

   // JSX Code here

 );

}

export default ProfileDetails;

3.	 We can confidently write the JSX logic now:

src/components/profile/ProfileDetails.jsx

...

 return (

   <div>

     <div className="d-flex flex-row border-bottom

       p-5">

       <Image

         src={user.avatar}



Displaying user information on their profile page 253

         roundedCircle

         width={120}

         height={120}

         className="me-5 border border-primary

                    border-2"

       />

       <div className="d-flex flex-column

        justify-content-start align-self-center mt-2">

         <p className="fs-4 m-0">{user.name}</p>

         <p className="fs-5">{user.bio ? user.bio :

           "(No bio.)"}</p>

         <p className="fs-6">

           <small>{user.posts_count} posts</small>

         </p>

         <Button

           variant="primary"

           size="sm"

           className="w-25"

           onClick={() =>

             navigate(`/profile/${user.id}/edit/`)}

         >

           Edit

         </Button>

       </div>

     </div>

   </div>

 );

4.	 Now that the component is written, create a new file called Profile.jsx in the src/pages 
directory. This file will contain the code and logic for the Profile page:

src/pages/Profile.jsx

import React from "react";

import { useParams } from "react-router-dom";

import Layout from "../components/Layout";

import ProfileDetails from "../components/profile/
ProfileDetails";



User Profiles254

import useSWR from "swr";

import { fetcher } from "../helpers/axios";

import { Post } from "../components/posts";

import { Row, Col } from "react-bootstrap";

function Profile() {

  return (

    // JSX CODE

  );

}

export default Profile;

5.	 Let’s add the fetching logic for the user and the user posts. No need to create another Post 
component as the same Post component from src/components/Post.jsx will be 
used to list posts created by the profile:

src/pages/Profile.jsx

...

function Profile() {

  const { profileId } = useParams();

  const user = useSWR(`/user/${profileId}/`, fetcher);

  const posts = useSWR(`/post/?author__public_
id=${profileId}`, fetcher, {

       refreshInterval: 20000

   });

...



Displaying user information on their profile page 255

6.	 Once it’s done, we can now write the UI logic:

src/pages/Profile.jsx

...
  return (
    <Layout hasNavigationBack>
      <Row className="justify-content-evenly">
        <Col sm={9}>
          <ProfileDetails user={user.data}/>
          <div>
            <Row className="my-4">
              {posts.data?.results.map((post, index)
                => (
                <Post key={index} post={post}
                  refresh={posts.mutate} />
              ))}
            </Row>
          </div>
        </Col>
      </Row>
    </Layout>
  );
}
...

7.	 Great! Let’s now register this page in the App.js file:

src/App.js

…
<Route
  path="/profile/:profileId/"
  element={
    <ProtectedRoute>
      <Profile />
    </ProtectedRoute>
  }
/>

…



User Profiles256

8.	 Let’s not forget to add Link to the profile in the Navbar.jsx file:

src/components/Navbar.jsx

...

    <NavDropdown.Item as={Link} to=

      {`/profile/${user.id}/`}>Profile

    </NavDropdown.Item>

    <NavDropdown.Item onClick={handleLogout}>Logout

    </NavDropdown.Item>

  </NavDropdown>

</Nav>

...

9.	 Great! You can now click on the See Profile button or directly on the drop-down menu of the 
navigation bar to go to the profile page:

Figure 10.8 – A random profile page



Editing user information 257

With the profile page ready, we can move on to create the page that will contain the form to edit 
user information.

Editing user information
The Edit button on the Profile page should redirect the user to a page with a form to update its 
information. In the end, you will have a similar result to that shown in Figure 10.2. In this section, we 
will modify the useUserActions Hook by adding a new method to edit user information via the 
API. Then, we will create the form to edit user information. Lastly, we will integrate the editing form 
component on the EditUser page.

Let’s start by adding a new method to the useUserActions Hook.

Adding the edit method to useUserActions

In the src/hooks/user.actions.js file, we will add another method to the useUserActions 
Hook. This function will handle the patch request to the API. As we are saving a user object in 
localStorage, we will update the value of the object if the request succeeds:

src/hooks/user.actions.js

function useUserActions() {
  const navigate = useNavigate();
  const baseURL = "http://localhost:8000/api";
  return {
    login,
    register,
    logout,
    edit
  };
...
  // Edit the user
  function edit(data, userId) {
    return axiosService.patch(`${baseURL}/user/${userId}/`,
                               data).then((res) => {
      // Registering the account in the store
      localStorage.setItem(
        "auth",
        JSON.stringify({
          access: getAccessToken(),
          refresh: getRefreshToken(),



User Profiles258

          user: res.data,

        })

      );

    });

  }

...

}

With the edit function written, we can confidently move to create the form used to edit user information.

The UpdateProfileForm component

In the src/components/UpdateProfileForm.jsx, create a file called UpdateProfileForm.
jsx. This file will contain the code for the component used to edit user information:

src/components/UpdateProfileForm.jsx

import React, { useState, useContext } from "react";

import { Form, Button, Image } from "react-bootstrap";

import { useNavigate } from "react-router-dom";

import { useUserActions } from "../../hooks/user.actions";

import { Context } from "../Layout";

function UpdateProfileForm(props) {

  return (

    // JSX Code

  );

}

export default UpdateProfileForm;

Let’s start by retrieving the user object from the props and adding the Hooks needed for the form handling:

src/components/UpdateProfileForm.jsx

...

function UpdateProfileForm(props) {

  const { profile } = props;



Editing user information 259

  const navigate = useNavigate();

  const [validated, setValidated] = useState(false);

  const [form, setForm] = useState(profile);

  const [error, setError] = useState(null);

  const userActions = useUserActions();

  const [avatar, setAvatar] = useState();

  const { toaster, setToaster } = useContext(Context);

...

The next step is to write the handleSubmit method. This method should handle the validity of the 
form, the request to update the information, and also what to display according to the result:

src/components/UpdateProfileForm.jsx

...

const handleSubmit = (event) => {

  event.preventDefault();

  const updateProfileForm = event.currentTarget;

  if (updateProfileForm.checkValidity() === false) {

    event.stopPropagation();

  }

  setValidated(true);

  const data = {

    first_name: form.first_name,

    last_name: form.last_name,

    bio: form.bio,

  };

  const formData = new FormData();

}

...



User Profiles260

As we are going to include a file in the data sent to the server, we are using a FormData object. A 
FormData object is a common way to create a bundle of data that will be sent to a server. It provides 
a simple and easy way to construct a set of key/value pairs, representing the name of the form fields 
and their value.

In the case of our project, we will need to pass the data in the data variable to the formData object:

src/components/UpdateProfileForm.jsx

...

const formData = new FormData();

Object.keys(data).forEach((key) => {

    if (data[key]) {

      formData.append(key, data[key]);

    }

});

...

The Object constructor provides a keys method that returns the list of keys in a JavaScript object. 
We then use the forEach method to loop through the keys array, check if data[key] value is 
not null, and then we append the values from the data object to the formData object. We also need 
to add a case for the avatar field:

src/components/UpdateProfileForm.jsx

...

const formData = new FormData();

// Checking for null values in the form and removing them.

Object.keys(data).forEach((key) => {

    if (data[key]) {

      formData.append(key, data[key]);

    }

});



Editing user information 261

if (avatar) {

  formData.append("avatar", avatar);

}

...

We can now move to the edit action:

src/components/UpdateProfileForm.jsx

...

userActions

  .edit(formData, profile.id)

  .then(() => {

    setToaster({

      type: "success",

      message: "Profile updated successfully 🚀",

      show: true,

      title: "Profile updated",

    });

    navigate(-1);

  })

  .catch((err) => {

    if (err.message) {

      setError(err.request.response);

    }

  });

...

Nothing complicated here. It’s like what we used to do for other requests on the API. Let’s move to the 
form now. The form will contain fields for the avatar such as the first name, the last name, and the bio. 
These fields are the only information the user will update. Let’s start by writing the avatar field first:

src/components/UpdateProfileForm.jsx

...

return (

  <Form

    id="registration-form"



User Profiles262

    className="border p-4 rounded"
    noValidate
    validated={validated}
    onSubmit={handleSubmit}
  >
    <Form.Group className="mb-3 d-flex flex-column">
      <Form.Label className="text-center">Avatar
      </Form.Label>
      <Image
        src={form.avatar}
        roundedCircle
        width={120}
        height={120}
        className="m-2 border border-primary border-2
                   align-self-center"
      />
      <Form.Control
        onChange={(e) => setAvatar(e.target.files[0])}
        className="w-50 align-self-center"
        type="file"
        size="sm"
      />
      <Form.Control.Feedback type="invalid">
        This file is required.
      </Form.Control.Feedback>
    </Form.Group>
    ...
  </Form>

);

Great! Let’s add the fields for the last name and first name:

src/components/UpdateProfileForm.jsx

...

<Form.Group className="mb-3">

  <Form.Label>First Name</Form.Label>

  <Form.Control

    value={form.first_name}



Editing user information 263

    onChange={(e) => setForm({ ...form, first_name:

                              e.target.value })}

    required

    type="text"

    placeholder="Enter first name"

  />

  <Form.Control.Feedback type="invalid">

    This file is required.

  </Form.Control.Feedback>

</Form.Group>

<Form.Group className="mb-3">

  <Form.Label>Last name</Form.Label>

  <Form.Control

    value={form.last_name}

    onChange={(e) => setForm({ ...form, last_name:

                              e.target.value })}

    required

    type="text"

    placeholder="Enter last name"

  />

  <Form.Control.Feedback type="invalid">

    This file is required.

  </Form.Control.Feedback>

</Form.Group>

...

Finally, let us add the bio field and the submit button:

src/components/UpdateProfileForm.jsx

...

<Form.Group className="mb-3">

  <Form.Label>Bio</Form.Label>

  <Form.Control

    value={form.bio}

    onChange={(e) => setForm({ ...form, bio: e.target.value })}

    as="textarea"



User Profiles264

    rows={3}

    placeholder="A simple bio ... (Optional)"

  />

</Form.Group>

<div className="text-content text-danger">{error && 
<p>{error}</p>}</div>

<Button variant="primary" type="submit">

  Save changes

</Button>

...

Great! The UpdateProfileForm component is written and we can use it to create the EditProfile.
jsx page.

Creating the EditProfile page

Inside the src/pages/ directory, create a new file called EditProfile.jsx. This file will contain 
the code for the page that will display the form to edit information about the user:

src/pages/EditProfile.jsx

import React from "react";
import { useParams } from "react-router-dom";
import useSWR from "swr";
import Layout from "../components/Layout";
import UpdateProfileForm from "../components/profile/
UpdateProfileForm";
import { fetcher } from "../helpers/axios";
import { Row, Col } from "react-bootstrap";

function EditProfile() {
  return (
    //JSX code
  );
}

export default EditProfile;



Editing user information 265

With the needed imports added, we can now add the fetching logic and the UI:

src/pages/EditProfile.jsx

...

function EditProfile() {

  const { profileId } = useParams();

  const profile = useSWR(`/user/${profileId}/`, fetcher);

  return (

    <Layout hasNavigationBack>

      {profile.data ? (

        <Row className="justify-content-evenly">

          <Col sm={9}>

            <UpdateProfileForm profile={profile.data} />

          </Col>

        </Row>

      ) : (

        <div>Loading...</div>

      )}

    </Layout>

  );

}

...

In the EditProfile function, we are planning to retrieve the profileId that will be used to fetch 
the up-to-date user information and pass the response to the UpdateProfileForm component. 
Naturally, we are returning the Loading text if the data is not pulled from the server yet. Great! Let’s 
register this page in the App.js file:

src/App.jsx

...

<Route

  path="/profile/:profileId/edit/"

  element={

    <ProtectedRoute>



User Profiles266

      <EditProfile />

    </ProtectedRoute>

  }

/>

...

Now, go to your profile and click on the Edit button. Change the information and add an avatar image 
to make sure everything is working.

The React application is nearly done. We have CRUD operations for authentication, posts, comments, 
and new users. Now, it’s time to focus on the quality and maintainability of our components.

Summary
In this chapter, we added CRUD operations for the user in the React application. We explored how 
powerful and simple it is to handle media uploading in Django and how to create a form that can 
accept file uploads to a remote server. We have also added new components to the React application 
for better navigation and exploration of other profiles. We are done implementing most features of 
our application.

In the next chapter, we will learn how to write tests for a React frontend application.

Questions
1.	 What is a formData object?

2.	 What is the MEDIA_URL setting usage in Django?

3.	 What is the MEDIA_ROOT setting usage in Django?



11
Effective UI Testing for  

React Components

We have already been introduced to testing with Python and Django in Chapter 5, Testing the REST 
API. In this chapter, the context is different as we will work with JavaScript and React to test the 
frontend components we have designed and implemented. This chapter will show you what to test in 
a frontend application and how to write tests for React UI components.

In this chapter, we will cover the following topics:

•	 Component testing in React

•	 Jest and the React Testing Library (RTL)

•	 Testing form components

•	 Testing post components

•	 Snapshot testing

Technical requirements
Make sure to have VS Code and an updated browser installed and configured on your machine. You 
can find the code from this chapter at https://github.com/PacktPublishing/Full-
stack-Django-and-React/tree/chap11.

Component testing in React
We already understand that the frontend is the client-side section of an application. Concerning 
the tests we wrote in Chapter 5, Testing the REST API, in our Django applications, we mostly tested 
whether the database stored the right data passed to the viewsets, serializers, and models. However, 
we didn’t test the user interface.

https://github.com/PacktPublishing/Full-stack-Django-and-React/tree/chap11
https://github.com/PacktPublishing/Full-stack-Django-and-React/tree/chap11


Effective UI Testing for React Components268

As a React developer, you might be thinking: what do I test in my frontend application? Well, let’s 
respond to this question by understanding why a frontend test is needed and what needs to be tested.

The necessity of testing your frontend

When developing an application, it’s important to ensure that your application works as expected in 
a production environment.

The frontend also represents the interface the user will use to interact with your backend. For a good 
user experience, it’s crucial to write tests that ensure that your components are behaving as expected.

What to test in your React application

If you are coming from a backend viewpoint, you might be a little bit confused about what to test in 
your frontend application. From a basic aspect, it’s not different from testing your backend. If you 
have classes or methods in your application, you can write tests. Frontend testing includes testing 
different aspects of the UI such as formatting, visible text, graphics, and the functional parts of the 
applications such as buttons, forms, or clickable links.

Now, the difference is that your React frontend is made of UI components, taking props for displaying 
data to the user. The React ecosystem provides testing tools that easily help you write tests for 
your components.

In the next section, we will start with a small introduction to Jest and the RTL and then we will write 
tests for our authentication forms.

Jest, the RTL, and fixtures
Jest is a JavaScript framework for writing, running, and structuring tests. It comes with all the tools 
needed to check code coverage, easily mock functions, and imported functions, and write simple 
and great exceptions. The RTL is a library for actually testing React applications. It focuses on testing 
components from a user experience point of view rather than testing the implementation and logic 
of the React components themselves.

Important note
When writing tests, you will often need to ensure that some values or variables meet certain 
conditions. This was done in Chapter 5, Testing the REST API, of this book, using assert when 
writing tests for the Django application using pytest. Working with Jest, the term changes from 
assertion to exceptions. When doing frontend testing with Jest, we are expecting the value to 
meet a condition. For example, if the user enters and clicks on a button that will reset a form, 
we expect the form to be reset after the click action is made on the button.



Jest, the RTL, and fixtures 269

The RTL is not separated from Jest as you need both to write tests for your frontend application. Jest 
will help you write the testing blocks while the RTL will provide tools to select components, render 
the components, and trigger common user events such as clicking and typing. These tools are already 
installed by default when creating a React project, so there is no need to add other packages.

The only packages we will need are faker.js and the JavaScript uuid package to generate UUID4 
identifiers. Faker is a JavaScript package used to generate fake, but realistic, data. In the React project, 
use the following command to install the package as a development dependency:

yarn add @faker-js/faker uuid –dev

With the packages installed, we can now add some important fixtures for the components we are 
going to test in the next lines.

Writing testing fixtures

In the src/helpers directory, create a new directory called fixtures. This directory will contain 
JavaScript files containing functions that return fixtures that can be used for testing.

We’ll start by writing fixtures for a user. So, in the fixtures directory, create a new file called user.
js. This file will contain code for a function that returns realistic data for a user object. Let’s start with 
the imports of functions from the faker.js and uuid packages to create a fixture:

src/helpers/fixtures/user.js

import { faker } from "@faker-js/faker";

import { v4 as uuid4 } from "uuid";

function userFixtures() {

...

}

export default userFixtures;

With the imports and the structure of the userFixtures function written, we can now return 
the object fixture:

src/helpers/fixtures/user.js

...

function userFixtures() {

 const firstName = faker.name.firstName();



Effective UI Testing for React Components270

 const lastName = faker.name.lastName();

 return {

   id: uuid4(),

   first_name: firstName,

   last_name: lastName,

   name: firstName + " " + lastName,

   post_count: Math.floor(Math.random() * 10),

   email: `${firstName}@yopmail.com`,

   bio: faker.lorem.sentence(20),

   username: firstName + lastName,

   avatar: null,

   created: faker.date.recent(),

   updated: faker.date.recent(),

 };

}

...

Faker provides a lot of modules with methods to return data. In the previous code block, we are 
working with faker.name to generate random names, faker.lorem to generate random lorem 
texts, and faker.date to generate a recent date. The object returned by userFixtures now has 
the closest structure to a user object returned by the Django API we have created, and this is exactly 
what we want.

Before diving into component testing, let’s make sure our testing environment is well configured.

Running the first test

When a React application is created, the App.js file comes with a test file called App.test.js, 
which you can see here:

src/App.test.js

import { render, screen } from "@testing-library/react";

import App from "./App";

test("renders learn react link", () => {

 render(<App />);

 const linkElement = screen.getByText(/learn react/i);



Jest, the RTL, and fixtures 271

 expect(linkElement).toBeInTheDocument();

});

Let me explain the code. Here, we are importing the render and screen methods from the RTL. 
These modules will be used to render a component and make interactions with the components easier 
by providing methods to select DOM elements, respectively.

Next, we have the test method. It’s simply a Jest keyword used to write tests. It takes two parameters: 
a string describing the test, and the callback function where you write the testing logic. Inside the 
callback function, the App component is rendered first. Then, linkElement is retrieved from 
the screen by using the learn react text. Once it’s retrieved, we can then check whether the 
linkElement exists in the rendered document.

Let’s run this test with the following command:

yarn test

You should have a similar output in the terminal.

Figure 11.1 – Running the yarn test command

The test has failed. But why? You can somewhat see why in the preceding output.

Figure 11.2 – Reason for failing the App.js test



Effective UI Testing for React Components272

The App component in our project uses react-router-dom components, such as Routes, that 
in turn use the useRoutes Hook. This Hook makes use of the context that a router component 
provides, so we need to wrap it inside a Router, in this case, the BrowserRouter component. Let’s 
correct this, but let’s also change the text from which we will retrieve the link element:

src/App.test.js

import { render, screen } from "@testing-library/react";

import App from "./App";

import { BrowserRouter } from "react-router-dom";

test("renders Welcome to Postagram text", () => {

 render(

   <BrowserRouter>

     <App />

   </BrowserRouter>

 );

 const textElement =

   screen.getByText(/Welcome to Postagram!/i);

 expect(textElement).toBeInTheDocument();

});

Now, run the tests again and everything should work correctly:

Figure 11.3 – Passing tests



Jest, the RTL, and fixtures 273

But we still have a problem. A lot of components in the React application use Hooks from the react-
router-dom library. That means that for each test, we will need to wrap the component inside 
BrowserRouter. Following the DRY principle, let’s rewrite the render method from the RTL to 
automatically wrap our components inside the BrowserRouter.

Extending the RTL render method

Inside the src/helpers directory, create a file called test-utils.jsx. Once the file is created, 
add the following lines of code:

src/helpers/test-utils.jsx

import React from "react";

import { render as rtlRender } from "@testing-library/react";

import { BrowserRouter } from "react-router-dom";

function render(ui, { ...renderOptions } = {}) {

 const Wrapper = ({ children }) =>

   <BrowserRouter>{children}</BrowserRouter>;

 return rtlRender(ui, { wrapper: Wrapper, ...renderOptions

   });

}

export * from "@testing-library/react";

export { render };

In the code, we first import the needed tools. Notice the import of the render method as rtlRender? 
It’s for the purpose of avoiding a naming collision as we are also writing a render function. Next, 
we create a function called Wrapper, where we pass the children’s argument, then wrap it inside a 
BrowserRouter component. Then, we return a render object with the UI, wrapper, and other 
render options if specified.

Important note
The render method from the RTL provides render options other than the wrapper. You can also 
pass a container, queries, and a lot more. You can check more rendering options in the official 
documentation at https://testing-library.com/docs/react-testing-
library/api/#render-options.

https://testing-library.com/docs/react-testing-library/api/#render-options
https://testing-library.com/docs/react-testing-library/api/#render-options


Effective UI Testing for React Components274

Now, let’s use this method in App.test.js:

src/App.test.js

import { render, screen } from "@testing-library/react";

import App from "./App";

test("renders Welcome to Postagram text", () => {

 render(<App />);

...

});

Run the testing command again and everything should be green. With the testing environment ready 
and set up to quickly write tests, we can now move on to testing the components of the React project.

Important note
While running tests, you might encounter an error coming from the axios package. At the 
time of writing of this book, we are using the 0.26.0 version of axios to avoid bugs when 
running tests. You can also modify the test command in the package.json file to the 
following: "test": "react-scripts test --transformIgnorePatterns 
"node_modules/(?!axios)/"". Learn more about this issue at https://
github.com/axios/axios/issues/5101.

Testing authentication components
Testing forms in React might seem complicated but it is quite simple when using Jest and the RTL. 
We will begin writing tests in the React project, starting with the authentication components. I’ll 
show you how you can write a test for the Login form, and after that, you should be able to write the 
registration form test suite.

For a better structured code base, create a new directory called __tests__ in the src/components/
authentication directory. This directory will contain tests for the components in the components/
authentication directory. Inside the newly created directory, create a file called LoginForm.
test.js and add the following code:

src/components/authentication/__tests__/LoginForm.test.js

import { render, screen } from "../../../helpers/test-utils";

import userEvent from "@testing-library/user-event";

import LoginForm from "../LoginForm";

https://github.com/axios/axios/issues/5101
https://github.com/axios/axios/issues/5101


Testing authentication components 275

import { faker } from "@faker-js/faker";

import userFixtures from "../../../helpers/fixtures/user";

const userData = userFixtures();

test("renders Login form", async () => {

...

});

In the preceding code, we have added the required imports to write the test and defined the structure of 
the testing function. We will first render the LoginForm component and set up the user object to trigger 
user behavior events using userEvent method:src/components/authentication/__
tests__/LoginForm.test.js:

...

test("renders Login form", async () => {

 const user = userEvent.setup();

 render(<LoginForm />);

...

Important note
userEvent and fireEvent are both methods used for simulating user interactions with 
a website in the context of testing. They can be used to test the behavior of a website when a 
user performs certain actions, such as clicking a button or filling out a form.

userEvent is a method provided by the @testing-library/user-event library, 
which is designed to make it easier to test user interactions with a website. It is a utility function 
that simulates user events by using the fireEvent method provided by the @testing-
library/react library. userEvent allows you to specify the type of event you want to 
simulate, such as a click or a keypress, and it will automatically dispatch the appropriate event 
for you.

fireEvent is a method provided by the @testing-library/react library, which can 
be used to dispatch events to a DOM element. It allows you to specify the type of event you 
want to dispatch, as well as any additional event data that you want to include. fireEvent 
is a more low-level method than userEvent, and it requires you to manually specify the 
details of the event you want to dispatch.



Effective UI Testing for React Components276

After that, we can start by testing that the form and the inputs are rendered in the document:

src/components/authentication/__tests__/LoginForm.test.js

test("renders Login form", async () => {

...

 const loginForm = screen.getByTestId("login-form");

 expect(loginForm).toBeInTheDocument();

const usernameField = screen.getByTestId("username-field");

expect(usernameField).toBeInTheDocument();

const passwordField = screen.getByTestId("password-field");

expect(passwordField).toBeInTheDocument();

...

Then, we can ensure that the inputs can receive texts and values as we have already selected the 
username and password fields:

src/components/authentication/__tests__/LoginForm.test.js

test("renders Login form", async () => {

...

 const password = faker.lorem.slug(2);

 await user.type(usernameField, userData.username);

 await user.type(passwordField, password);

 expect(usernameField.value).toBe(userData.username);

 expect(passwordField.value).toBe(password);

});

If you run the test command again, it will fail. That’s normal, as here we are retrieving elements using 
the getByTestId method. The RTL looks in the rendered DOM for an element with a data-
testid attribute with the value passed to the screen.getByTestId function. We need to add 
the attribute to the elements we want to select and test.



Testing authentication components 277

To do so, in src/components/authentication/LoginForm.js, add the following data-
testid attributes:

src/components/authentication/LoginForm.js

function LoginForm() {

...

 return (

   <Form

     id="registration-form"

     className="border p-4 rounded"

     noValidate

     validated={validated}

     onSubmit={handleSubmit}

     data-testid="login-form"

   >

...

       <Form.Label>Username</Form.Label>

       <Form.Control

         value={form.username}

         data-testid="username-field"

...

     <Form.Group className="mb-3">

       <Form.Label>Password</Form.Label>

       <Form.Control

         value={form.password}

         data-testid="password-field"

...

Once done, re-run the testing command. Everything should work.

The next step is to write tests for the registration form component. It’ll be similar to the tests 
on the login form component, so you can handle this small exercise. You can find the solution 
at https://github.com/PacktPublishing/Full-stack-Django-and-React/
blob/main/social-media-react/src/components/authentication/__tests__/
RegistrationForm.test.js.

https://github.com/PacktPublishing/Full-stack-Django-and-React/blob/main/social-media-react/src/components/authentication/__tests__/RegistrationForm.test.js
https://github.com/PacktPublishing/Full-stack-Django-and-React/blob/main/social-media-react/src/components/authentication/__tests__/RegistrationForm.test.js
https://github.com/PacktPublishing/Full-stack-Django-and-React/blob/main/social-media-react/src/components/authentication/__tests__/RegistrationForm.test.js


Effective UI Testing for React Components278

Important note
JavaScript also possesses default naming conventions for the testing files. The naming conventions 
for test files in a JavaScript project are as follows:

- <TestFileName>.test.js

- <TestFileName>.spec.js

Now that we have had a solid introduction to testing in React, let’s continue with writing tests for the 
Post components.

Testing Post components
The functionalities to create, read, update, and delete posts are core features of the Postagram 
application, so it’s important to make sure that they work as expected. Let’s start with a simple test 
for the Post component.

Mocking the localStorage object

Before writing a test for the Post component, it’s important to understand how the Post components 
work. Basically, it takes a prop called post and makes a call to localStorage to retrieve information 
about the user. Unfortunately, localStorage can’t be mocked by Jest. There are a lot of workarounds 
to allow your tests to work with localStorage and to make it simple and have less boilerplate, we’ll 
use the jest-localstorage-mock JavaScript package. The package can be used with Jest to run 
frontend tests that rely on localStorage. To add the package, add the following line to the file:

yarn add --dev jest-localstorage-mock

Once the package is installed, we need to do some configurations. In the src/setupTests.js 
file, add this line to load the jest-localstorage-mock package:

src/setupTests.js

...

require('jest-localstorage-mock');

After that, override the default Jest configuration in the package.json file:

package.json

...

{

  "jest": {



Testing Post components 279

    "resetMocks": false

  }

}

...

With the configuration ready, we can move to add a function to generate post fixtures.

Writing post fixtures

In the src/helpers/fixtures directory, create a new file called post.js. This file will contain 
a function that returns fake data from a post object.

We will start writing the code in this file by adding the imports and defining the postFixtures 
function that will return a generated post object:

src/helpers/fixtures/post.js

import { faker } from "@faker-js/faker";

import { v4 as uuid4 } from "uuid";

import userFixtures from "./user";

function postFixtures(isLiked = true, isEdited = false, user = 
undefined) {

...

}

export default postFixtures;

Let’s add the body of the postFixtures function:

src/helpers/fixtures/post.js

...

function postFixtures(isLiked = true, isEdited = false, user = 
undefined) {

 return {

   id: uuid4(),

   author: user || userFixtures(),

   body: faker.lorem.sentence(20),



Effective UI Testing for React Components280

   edited: isEdited,

   liked: isLiked,

   likes_count: Math.floor(Math.random() * 10),

   comments_count: Math.floor(Math.random() * 10),

   created: faker.date.recent(),

   updated: faker.date.recent(),

 };

}

Here, we are passing either a generated userFixtures or a user object if it’s defined. This is important 
if we want to make sure that the author of the post is the same user registered in localStorage.

With the post fixtures written, we can write the test suite for the Post component.

Writing tests for the Post component

To write the test suite in the src/components/posts directory, create a new folder called __
tests__. Inside the newly created folder, add a new file called Post.test.js. Inside, add the 
imports, create the data we need, and set user data returned by the userFixtures function in the 
local storage using the setUserData function:

src/components/posts/__tests__/Post.test.js

import { render, screen } from "../../../helpers/test-utils";

import Post from "../Post";

import { setUserData } from "../../../hooks/user.actions";

import userFixtures from "../../../helpers/fixtures/user";

import postFixtures from "../../../helpers/fixtures/post";

const userData = userFixtures();

const postData = postFixtures(true, false, userData);

beforeEach(() => {

 // to fully reset the state between __tests__, clear the

 // storage

 localStorage.clear();

 // and reset all mocks



Testing Post components 281

 jest.clearAllMocks();

 setUserData({

   user: userData,

   access: null,

   refresh: null,

 });

});

The beforeEach method is a Jest method that runs before every test. It takes a callback function as 
a parameter, where you can execute lines of code that should run before the tests. Here, we are clearing 
the local storage first to avoid memory leaking (with localStorage.clear) and finally, we set 
user data retrieved from the userFixtures function in the local storage.

Important note
A memory leak occurs when a program creates a memory in heap and forgets to delete it. In a 
worst-case scenario, if too much memory is allocated and not used correctly, this can reduce 
the computer’s performance.

Let’s write the test for the Post component now:

src/components/posts/__tests__/Post.test.js

...

test("render Post component", () => {

 render(<Post post={postData} />);

 const postElement = screen.getByTestId("post-test");

 expect(postElement).toBeInTheDocument();

});

If you run the test command, it’ll fail. This is normal because there is no data-testid attribute 
with the value post-test set in the JSX of the Post component. Let’s fix this by adding a data-
testid attribute in the Post component :

src/components/posts/Post.jsx

...

function Post(props) {



Effective UI Testing for React Components282

...

 return (

   <>

     <Card className="rounded-3 my-4"

       data-testid="post-test">

...

   </>

 );

}

export default Post;

Run the testing command again and everything should be green. Let’s move on to actually writing a 
test for the CreatePost component.

Testing the CreatePost component

In the src/components/posts/__tests__ directory, create a new file called CreatePost.
test.js. We’ll start with the necessary imports and the definition of the test function:

src/components/posts/__tests__/CreatePost.test.js

import { render, screen, fireEvent } from "../../../helpers/
test-utils";

import userEvent from "@testing-library/user-event";

import CreatePost from "../CreatePost";

import { faker } from "@faker-js/faker";

test("Renders CreatePost component", async () => {

...

});

You can notice the introduction of the async keyword before the callback function. To create a 
post, the user performs typing operations on text inputs and finally a button click to submit the post. 
These actions are asynchronous. The functions, such as fireEvent, that we will use to simulate 
user interactions should be used in an asynchronous scope.



Testing Post components 283

Before writing the test logic, let’s remember how the CreatePost component works:

1.	 The user clicks on the input to add a new post.

2.	 A modal is shown containing a form where the user can enter the text of the post. Meanwhile, 
the submit button is disabled.

3.	 Once there is enough text in the field, the submit button is enabled and the user can click to 
send the post.

We must ensure that we respect this logic when writing the tests. Now, let’s start writing the tests.

First, we render the form that displays the form modal to create a post:

src/components/posts/__tests__/CreatePost.test.js

test("Renders CreatePost component", async () => {

 const user = userEvent.setup();

 render(<CreatePost />);

 const showModalForm =

   screen.getByTestId("show-modal-form");

 expect(showModalForm).toBeInTheDocument();

});

We can now simulate a click event using fireEvent.click on showModalForm to display the 
form for creating a post:

src/components/posts/__tests__/CreatePost.test.js

...

 // Clicking to show the modal

 fireEvent.click(showModalForm);

 const createFormElement =

   screen.getByTestId("create-post-form");

 expect(createFormElement).toBeInTheDocument();

...



Effective UI Testing for React Components284

We then make sure that the body field is rendered and the submit button is disabled:

src/components/posts/__tests__/CreatePost.test.js

...

 const postBodyField =

   screen.getByTestId("post-body-field");

 expect(postBodyField).toBeInTheDocument();

 const submitButton =

   screen.getByTestId("create-post-submit");

 expect(submitButton).toBeInTheDocument();

 expect(submitButton.disabled).toBeTruthy();

 ...

After that, we can then type some text in the body field, test whether the text typed is what we expect, 
and ensure that the button is enabled after that:

src/components/posts/__tests__/CreatePost.test.js

 ...

 const postBody = faker.lorem.sentence(10);

 await user.type(postBodyField, postBody);

 // Checking if field has the text and button is not

 // disabled

 expect(postBodyField.value).toBe(postBody);

 expect(submitButton.disabled).toBeFalsy();

});

Great! We have a solid testing suite and we can now add the data-testid attributes to the 
CreatePost component to make the tests pass:

src/components/posts/CreatePost.jsx

function CreatePost() {

...



Testing Post components 285

 return (

   <>

     <Form.Group className="my-3 w-75">

       <Form.Control

         className="py-2 rounded-pill border-primary

                    text-primary"

         data-testid="show-modal-form"

...

       <Modal.Body className="border-0">

         <Form

           noValidate

           validated={validated}

           onSubmit={handleSubmit}

           data-testid="create-post-form"

         >

           <Form.Group className="mb-3">

             <Form.Control

               name="body"

               data-testid="post-body-field"

...

       </Modal.Body>

       <Modal.Footer>

         <Button

           variant="primary"

           onClick={handleSubmit}

           disabled={!form.body}

           data-testid="create-post-submit"

...

   </>

 );

}

Run the test command again and everything should work. The next step is to write unit tests for the 
UpdatePost component.



Effective UI Testing for React Components286

Testing the UpdatePost component

In the src/components/posts/__tests__ directory, create a new file called UpdatePost.
test.js. Let’s start with the necessary imports and the definition of the test function:

src/components/posts/__tests__/UpdatePost.test.js

import { render, screen, fireEvent } from "../../../helpers/
test-utils";

import userEvent from "@testing-library/user-event";

import UpdatePost from "../UpdatePost";

import userFixtures from "../../../helpers/fixtures/user";

import postFixtures from "../../../helpers/fixtures/post";

import { faker } from "@faker-js/faker";

const userData = userFixtures();

const postData = postFixtures(true, false, userData);

test("Render UpdatePost component", async () => {

...

});

Before writing the test logic, let’s remember how the UpdatePost component works from a 
user’s perspective:

1.	 The user clicks on the drop-down item to modify a post.

2.	 A modal is shown containing a form where the user can modify the text of the post.

3.	 After the modification, the user can submit the form with the updated post.

We must ensure that we respect that logic when writing the tests.

So, first, we render the form that displays the form modal to update a post:

src/components/posts/__tests__/UpdatePost.test.js

test("Render UpdatePost component", async () => {

 const user = userEvent.setup();

 render(<UpdatePost post={postData} />);



Testing Post components 287

 const showModalForm =

   screen.getByTestId("show-modal-form");

 expect(showModalForm).toBeInTheDocument();

...

We then want to trigger a click event to display the modal with the form to update the post:

src/components/posts/__tests__/UpdatePost.test.js

...

 fireEvent.click(showModalForm);

 const updateFormElement =

   screen.getByTestId("update-post-form");

 expect(updateFormElement).toBeInTheDocument();

...

We then select the post body field and the submit button to ensure that they are rendered:

src/components/posts/__tests__/UpdatePost.test.js

...

 const postBodyField =

   screen.getByTestId("post-body-field");

 expect(postBodyField).toBeInTheDocument();

 const submitButton =

   screen.getByTestId("update-post-submit");

 expect(submitButton).toBeInTheDocument();

...

After that, we can now trigger a typing event in the post body field and ensure that the user is 
submitting the right data:

src/components/posts/__tests__/UpdatePost.test.js

...

 const postBody = faker.lorem.sentence(10);



Effective UI Testing for React Components288

 await user.type(postBodyField, postBody);

 // Checking if field has the text and button is not

 // disabled

 expect(postBodyField.value).toBe(postData.body +

   postBody);

 expect(submitButton.disabled).toBeFalsy();

});

The next step is now to add the data-testid attributes on the post form, the post body input, and 
the submit button in the UpdatePost component to make the tests pass:

src/components/posts/UpdatePost.jsx

...

function UpdatePost(props) {

...

 return (

   <>

     <Dropdown.Item data-testid="show-modal-form"

       onClick={handleShow}>

...

       <Modal.Body className="border-0">

         <Form

          noValidate

          validated={validated}

          onSubmit={handleSubmit}

    data-testid="update-post-form"

   >

           <Form.Group className="mb-3">

             <Form.Control

               name="body"

               value={form.body}

               data-testid="post-body-field"



Snapshot testing 289

...

       </Modal.Body>

       <Modal.Footer>

         <Button

           data-testid="update-post-submit"

...

Run the test command again and everything should work.

With this introduction to complex tests with Jest and the RTL, you can easily write the tests for the 
comment’s components. You can find the solution for these tests at https://github.com/
PacktPublishing/Full-stack-Django-and-React/tree/main/social-media-
react/src/components/comments/__tests__. Good luck!

In the next section, we will discover what snapshot testing is.

Snapshot testing
Snapshot tests are a very useful tool when you want to make sure that your UI does not change 
unexpectedly. A snapshot test case follows these steps:

•	 It renders the UI component.

•	 It then takes a snapshot and compares it to a reference snapshot file stored alongside the test file.

•	 If both states are the same, the snapshot test is successful. Otherwise, you will get errors and 
need to decide whether you need to update the snapshot tests or fix your components.

Snapshot tests are great to prevent UI regression and ensure that the application adheres to the code 
quality and values of your development team.

There is a minor setback with snapshot tests, however. Snapshot testing doesn’t work best with dynamic 
components. For example, the Post component uses timeago to display a human-readable time. 
This means that a snapshot of this component at time t will be different from a snapshot of the same 
component at time t + 1. However, there are some static components in the React application such 
as LoginForm, RegistrationForm, ProfileDetails, ProfileCard, CreatePost, 
and much more.

For the sake of simplicity, we will write a snapshot test for the ProfileCard components, which 
are straightforward and can be replicated easily.

https://github.com/PacktPublishing/Full-stack-Django-and-React/tree/main/social-media-react/src/components/comments/__tests__
https://github.com/PacktPublishing/Full-stack-Django-and-React/tree/main/social-media-react/src/components/comments/__tests__
https://github.com/PacktPublishing/Full-stack-Django-and-React/tree/main/social-media-react/src/components/comments/__tests__


Effective UI Testing for React Components290

In the src/components/profile directory, create a new directory called __tests__. Then, 
create a new file called ProfileCard.test.js. For a snapshot test, we don’t want the data to 
change so we will use a static user fixture because using userFixtures to generate a fixture will 
create random data every time a snapshot test is run. In the newly created file, let’s add the imports 
needed to create a snapshot test and define a fixture object called userData:

src/components/profile/__tests__/ProfileCard.test.js

import { render, screen } from "../../../helpers/test-utils";

import TestRenderer from "react-test-renderer";

import ProfileCard from "../ProfileCard";

import { BrowserRouter } from "react-router-dom";

const userData = {

 id: "0590cd67-eacd-4299-8413-605bd547ea17",

 first_name: "Mossie",

 last_name: "Murphy",

 name: "Mossie Murphy",

 post_count: 3,

 email: "Mossie@yopmail.com",

 bio: "Omnis necessitatibus facere vel in est provident

       sunt tempora earum accusantium debitis vel est

       architecto minima quis sint et asperiores.",

 username: "MossieMurphy",

 avatar: null,

 created: "2022-08-19T17:31:03.310Z",

 updated: "2022-08-20T07:38:47.631Z",

};

With the needed imports added and the userData fixtures written, we can now write the testing function:

src/components/profile/__tests__/ProfileCard.test.js

...

test("Profile Card snapshot", () => {

 const profileCardDomTree = TestRenderer.create(

   <BrowserRouter>

     <ProfileCard user={userData} />

   </BrowserRouter>

 ).toJSON();



Summary 291

 expect(profileCardDomTree).toMatchSnapshot();

});

If you run the test command, you’ll notice that a snapshot directory is created in the __tests__ directory:

Figure 11.4 – Snapshots directory created

If you check the content of ProfileCard.test.js.snap, it is basically the rendered code of 
the ProfileCard component. The content of this file will be compared each time the test function 
for the snapshot test runs.

Now have covered the essential unit tests for a React application, we are mostly done adding features 
to the application. Our full stack application is now ready for production! Yay, but don’t celebrate too 
soon. We still need to prepare our application for production in terms of the security, quality, and 
performance aspects and this is what we’ll be doing in Part 3 of this book.

Summary
In this chapter, you have learned about frontend unit testing. We discovered why it is important to 
write unit tests in the frontend application and what to test exactly. We have also written tests for 
components in the Postagram application, seen how we can extend testing tools modules and methods, 
how to write generate fixtures for the tests, and how to make the tests closer to user interactions by 
triggering user events. We have also made some introductions to snapshot testing.

The next chapters in Part 3 of this book will focus on deploying the backend and the frontend on the 
cloud using AWS services, GitHub, and GitHub Actions. Lastly, we will see how to improve the full 
stack application in terms of performance, security, and quality.

Questions
1.	 What is the render method of the RTL?

2.	 What is Jest?

3.	 What is the role of the data-tested attribute?

4.	 What are the drawbacks of snapshot testing?

5.	 What are the modules used to trigger user events on a React test suite?





Part 3:  
Deploying Django and  

React on AWS

Deployment is one of the last important steps in software development. Your application is running 
locally and everything is working fine. But how do you get your code on a public server? How do 
you host your frontend? How do you make changes to your code and make deployment and testing 
automatic? In this part of the book, we’ll explore topics such as CI/CD, GitHub, Docker, and the best 
deployment practices while deploying the Django application on AWS EC2 and the React application 
on AWS S3. We’ll also talk about security and performance.

This section comprises the following chapters:

•	 Chapter 12, Deployment Basics – Git, GitHub, and AWS

•	 Chapter 13, Dockerizing the Django Project

•	 Chapter 14, Automating Deployment on AWS

•	 Chapter 15, Deploying Our React App on AWS

•	 Chapter 16, Performance, Optimization, and Security





12
Deployment Basics – Git, 

GitHub, and AWS

It’s nice to develop an application with a functioning backend and a nice, flexible frontend on your 
machine. Still, if you want your application to be used publicly, you need to deploy the application to 
production. From this chapter to the last one, you will learn how to prepare the application we’ve built 
for deployment, deploy the backend on Amazon Web Services (AWS) and the frontend on Vercel, 
and finally, go through some security and performance optimizations.

In this chapter, we will learn deployment basics such as jargon and concepts to understand before 
going further. We will be learning about the following topics:

•	 Basics of software deployment

•	 Tools and methods of web application deployment

•	 Platforms for web application deployment

Technical requirements
For this chapter, you will need to have Git installed on your machine. If you are on Linux or macOS, 
it will come by default. You can check its existence with the following command in the terminal:

git –version

Otherwise, feel free to download the right version at https://git-scm.com/downloads.

After the installation, let’s configure Git if not done yet. In a terminal, enter the following configuration 
commands to set the username (usually the username on your GitHub account) and the email address 
(usually the email address on your GitHub account):

git config --global user.name "username"

git config --global user.email "email@address.com"

https://git-scm.com/downloads


Deployment Basics – Git, GitHub, and AWS296

You will also need an active GitHub account. You can register on the official website at https://
github.com/. As we will also be deploying the application on a remote AWS server, you will need 
an AWS account that can be created at https://portal.aws.amazon.com/billing/
signup. If you don’t have an AWS account, you can still use any virtual private server (VPS) or 
virtual private cloud (VPC) you have online. However, this chapter will also document how to create 
a VPC instance using AWS and how to upload the code and serve the Django API.

Basics of software deployment
Software deployment concerns all the activities that make a software system available to consumers. 
The term software deployment is also commonly described as application deployment. Following the 
best software deployment practices will ensure that all applications deployed operate smoothly and 
work as expected.

There are several benefits of software deployment, such as:

•	 Saved time: A good software deployment process can be configured to only take a few minutes. 
This saves time for compiling and distribution to the users.

•	 Increased security: Deploying your application in a structured manner rather than doing it 
manually or for individual users means you ensure the security of the application and not only 
the security of the application on every user’s device.

•	 Better monitoring: Deploying an application on production servers helps provide more control 
and data on what is working from the user’s end.

With software deployment defined, we will dive deeper into the tools and methods used for web 
application deployment.

Tools and methods of web application deployment
Deploying a web application for production has drastically evolved over the years. From manual 
deployment to automated deployment techniques, web application deployment has advanced, making 
the process more secure, smooth, and as fast as possible. There are many tools for web application 
deployment, but in this book, we will focus on the automated tools and configure the Django project 
and the React project for automated deployments when pushes are made on the remote repository 
of the code.

But where will the code be pushed first? Let’s start describing and learning how to use the tools for 
our full stack application deployment, starting with Git and GitHub.

https://github.com/
https://github.com/
https://portal.aws.amazon.com/billing/signup
https://portal.aws.amazon.com/billing/signup


Tools and methods of web application deployment 297

Using Git and GitHub

Git is a popular tool used for source code version control and collaboration. It not only helps the user 
keep track of changes made to the code but also allows developers to work through small or large code 
bases, with collaboration made easier. In the following subsections, we will initialize a Git repository in 
the backend project, commit the changes, and then push the changes to a remote repository on GitHub.

Creating a Git repository

Open a new terminal in the directory where you created the Django project and enter the 
following command:

git init

This command will create an empty .git/ directory in the current directory: this is a Git repository. This 
repository tracks all changes made to files in the project, helping build a history of changes made, with 
details on the files changed, the name of the person making the changes, and much more information.

After the initialization, we will need to ignore some files in the project. We are talking about files such 
as .pycache, .env, and the virtual environment directories. After all, we don’t want important 
information such as secret environment variables to be available in the project or useless cache files 
to be present in the changes.

Inside the directory of the Django API, create a new file called .gitignore. This file tells Git which 
files and directories to ignore when tracking changes:

.gitignore

__pycache__

venv

env

.env

These files and directories in the preceding code will be ignored. Next, we will add the change in the 
directory to the staging area. The staging area allows you to group related changes before committing 
them to the project history. As we have successfully added a .gitignore file, we can freely run 
the git add command:

git add .

The dot (.) at the end of the command tells Git to only look for changed files in the current directory. 
To have a look at the changes to be committed to the Git history, run the following command:

git status



Deployment Basics – Git, GitHub, and AWS298

The git status command is used to show the state of the working directory and also the staging 
area. Using the command, you can see changes that are tracked or not. The following figure shows an 
example of the output you should have:

Figure 12.1 – Running the git status command

We can now run the git commit command. A commit is an operation that writes the latest changes 
of the source code to the version control system history. In our case, with git commit command 
will save the changes to the local repository:

git commit

The preceding command will prompt you to a text editor in the terminal or an app, depending on your 
system. Either way, you will need to enter a message. It’s important to enter a meaningful message 
because this message will be shown in the history of changes made to the source code. You can enter 
the following line if you want:

Initialize git in API project

After saving the message, you can check the Git history with the git log command:

git log

You will have something similar to the following figure:

Figure 12.2 – Writing a commit message



Tools and methods of web application deployment 299

Important note
Writing meaningful commit messages is important, particularly in a team or a collaborative 
environment. You can read more about commit messages at https://www.
conventionalcommits.org/en/v1.0.0/.

The project repository has been initialized locally; however, we want the code on GitHub. The next 
section will show you how to upload your code on GitHub.

Uploading code on GitHub

GitHub is a code hosting platform for collaboration and version control. It helps developers around 
the world work together on projects and is actually the code hosting platform for the majority of 
popular open source projects.

On your GitHub account dashboard, on the navigation bar, create a new repository:

Figure 12.3 – Creating a repository on GitHub

Once it’s done, you will be redirected to a new page to enter basic information about the repository, 
such as the name of the repository and a description, stating if the repository is public or private, 
and adding a license or a .gitignore file. The repository name is required, and the other pieces 
of information are optional.

You can now create the repository, and you will have a similar page to this:

Figure 12.4 – Repository created

https://www.conventionalcommits.org/en/v1.0.0/
https://www.conventionalcommits.org/en/v1.0.0/


Deployment Basics – Git, GitHub, and AWS300

We have an existing repository, and we want to push it to the GitHub platform. Let’s follow the steps 
for …or push an existing repository from the command line. Inside the directory of your backend 
project, open a new terminal, and let’s enter the shell commands:

git remote add origin your_repository_git_url

The git remote command allows you to create, view, and delete connections to Git repositories 
hosted on the internet or another network. In the preceding command, we are adding a remote 
repository URL of the GitHub repository. Let’s change the name of the branch we are working on:

git branch -M main

By default, when a repository is created using Git on a local machine, the branch of work is called 
master. What is a branch in Git?

Well, it is just a separate version of the main repository. This allows multiple developers to work on the 
same project. For example, if you are working with a backend developer who wants to add support for 
file uploading on posts and comments, instead of working directly on the main branch, the developer 
can create a new branch (feature/images-post) from the main branch. After the work is done 
on this branch, the feature/images-post branch can be merged with the main branch.

With the main branch created, we can now push the changes to GitHub:

git push -u origin main

The git push command is used to upload local repository changes on the source code to a remote 
repository. In your case, the command will push the current code to your GitHub repository URL.

Reload the repository page on GitHub, and you will see something similar to this:

Figure 12.5 – Code pushed to the repository



Tools and methods of web application deployment 301

And voilà! We have the code uploaded on GitHub. But this is just the code. What if you can have this 
running on a remote server that you can access from anywhere?

Let’s talk about platforms for web application deployment and deploy the Django backend on AWS.

Platforms for web application deployment

With the complexity of software development increasing and more innovative and data-intensive 
applications evolving or being created every year, there has been an explosion of services to allow 
teams to deploy their products on the internet and scale them with ease. This has created a new kind 
of service called cloud computing: the on-demand delivery of IT resources over the internet with 
pay-as-you-go model pricing.

In this book, we will deploy the backend on AWS, mostly on an Elastic Compute Cloud (EC2) 
instance, which is just a fancy name for a VPS. Well, actually, an AWS EC2 instance is a virtual server 
in Amazon’s EC2 for running web applications. Let’s start by creating the AWS server.

Important note
The following steps can work for any VPS, not just for an AWS VPS. If you can’t create a VPS 
on AWS, you can see other solutions such as Linode, Google Cloud Platform (GCP), Azure, 
or IBM. They provide free credit you can use for learning about their services.

Creating an EC2 instance

Follow these steps to create an EC2 instance:

1.	 Make sure to be logged in to your AWS account. On the dashboard, open the EC2 console:

Figure 12.6 – Accessing the EC2 console



Deployment Basics – Git, GitHub, and AWS302

2.	 On the EC2 console, launch a new instance:

Figure 12.7 – Creating an EC2 instance

You will be shown a page where you will have to configure the instance.

3.	 Enter the name of the instance:

Figure 12.8 – Naming the EC2 instance

4.	 The next step is to choose an operating system. We will use Ubuntu Server 22.04 LTS for the 
Amazon Machine Image (AMI):



Tools and methods of web application deployment 303

Figure 12.9 – Choosing an operating system on the EC2 instance

We are using Ubuntu here because of its security, versatility, and the policy of regular updates. 
However, feel free to use any other Linux distros you are familiar with.

5.	 And finally, you will need to set the instance type and create a pair of keys for Secure Shell 
(SSH) login. After that, you can launch the instance:

Figure 12.10 – Launching the instance



Deployment Basics – Git, GitHub, and AWS304

6.	 Wait a moment, and the instance will be created:

Figure 12.11 – Instance created

7.	 Click on the View all instances button, and you will see the created Postagram instance.

8.	 Click on the checkbox next to the name of the instance and click the Connect button:

Figure 12.12 – Connecting to an EC2 instance



Tools and methods of web application deployment 305

This will redirect you to a page with the information and steps needed to connect via SSH:

Figure 12.13 – Connecting via SSH to an EC2 instance

9.	 In your terminal, type the following command to connect via SSH:

ssh -i path/to/your_keypair.pem ec2-user@ipaddress

10.	 Once you are connected to the server, we will configure it to have a Django backend running 
on this machine and accessible from the internet:

sudo apt update

sudo apt upgrade

The preceding commands update the apt packages index of Ubuntu packages and upgrade 
all packages on the server.

The Django project will run on port 8000 on the machine, so we have to allow a connection to 
this port. By default, EC2 instances will only allow connections on ports 80 for HTTP requests, 
22 for SSH connections, and—sometimes—443 for Secure Sockets Layer (SSL) connections. 



Deployment Basics – Git, GitHub, and AWS306

You can allow connections on port 8000 directly on the Details page of the created EC2 
instance to access the Security tab on the list of tabs at the bottom of the page and click on the 
security setting group:

Figure 12.14 – Security tab

On the security group setting, access the Actions menu and click on Edit inbound rules. You 
will have access to a page where you can add a new rule, as follows:

	� The type of connection is set to Custom TCP

	� The port range is set to 8000

	� The source is set to 0.0.0.0 to indicate that all requests should be redirected to the 
machine on port 8000

	� And finally, add a default description to not forget why we have added this rule

Click on Save rules to save the changes and allow the EC2 instance to accept connections on 
port 8000:

Figure 12.15 – Adding a new security rule

The server is now ready for work, and we can now run the Django backend application. Let’s see the 
next steps in the following sections.



Tools and methods of web application deployment 307

Configuring the server for the Django project

The source code for the Django project is hosted on GitHub. It’s definitely possible to directly use scp to 
copy the code from your machine to the remote machine but let’s go with Git, as it will be an important 
command of our workflow. On the terminal of the remote instance, enter the following command:

git clone your_repository_git_url

In my case, I am using the following repository for this project:

git clone https://github.com/PacktPublishing/Full-stack-Django-
and-React.git –branch chap12

The git clone command is used to get a copy of an existing repository from a remote machine 
on the internet or another network. The –branch flag is used to denote a specific branch you want 
to clone.

Important note
As I am working using the repository of the project in this book, the current code and actions 
done are on the chap12 branch. In your case, if you are using your own repository, you may 
not have to use the –branch flag. Also, depending on if the GitHub repository is private or 
public, you will only enter your GitHub credentials if the repository is private.

The git clone command will clone the content of the project in a new directory. Enter the newly 
created directory and let’s start configuring the project. We will follow most of the steps done in 
Chapter 1, Creating a Django Project, until the creation of the Django project:

1.	 First of all, create a virtual environment with the following command:

python3 -m venv venv

2.	 And activate the virtual environment with the following command:

source venv/bin/activate

3.	 Let’s install the packages from the requirements.txt file:

pip install -r requirements.txt

Great! The project is ready, but we need to configure a Postgres server to have the Django project running.



Deployment Basics – Git, GitHub, and AWS308

Postgres configuration and deployment

In Chapter 1 of the book, Creating a Django Project, we configured Postgres by directly installing an 
executable or building the source code. On the EC2 instance, we will directly use the apt tool to 
install the Postgres server. You can follow these steps to install the Postgres server on the EC2 machine:

1.	 Enter the following command to install the Postgres server:

sudo apt install postgresql-14

2.	 Let’s connect to the psql console and create a database:

sudo su postgres 

psql

3.	 Great! Let’s create the database with the same information on the DATABASES settings in the 
CoreRoot/settings.py file:

CoreRoot/settings.py
...
DATABASES = {
    'default': {
        'ENGINE':
          'django.db.backends.postgresql_psycopg2',
        'NAME': coredb,
        'USER': 'core',
        'PASSWORD': 'wCh29&HE&T83',
        'HOST': 'localhost',
        'PORT': '5342',
    }
}
...

4.	 Enter the following command on the psql console to create the coredb database:

CREATE DATABASE coredb;

5.	 To connect to the database, we need a user with a password. Execute the following command:

CREATE USER core WITH PASSWORD 'wCh29&HE&T83';

6.	 And the next step is to grant access to our database to the new user:

GRANT ALL PRIVILEGES ON DATABASE coredb TO core;



Tools and methods of web application deployment 309

7.	 And we are nearly done. We also need to make sure this user can create a database. This will 
be helpful when we can run tests. To run tests, Django will configure a full environment but 
will also use a database:

GRANT CREATE PRIVILEGE TO core;

And we are done with the creation of the database. Next, let’s connect this database to our Django project:

1.	 In the project directory, run the migrate command:

python manage.py migrate.

2.	 The migrate command should pass, and we can now start the Django server by running 
the following command:

python manage.py runserver 0.0.0.0:8000

3.	 With the Django server running, visit http://public_ip:8000 in your web browser to 
access your Django project. You will have a page similar to the following figure:

Figure 12.16 – DisallowedHost error

This is actually an error. This comes from the ALLOWED_HOSTS setting being empty. It is 
implemented by Django to prevent security vulnerabilities such as HTTP host header attacks. 
The ALLOWED_HOSTS setting contains a list of hostnames or domain names that Django 
can serve:

CoreRoot/settings.py

...

ALLOWED_HOSTS = []

...



Deployment Basics – Git, GitHub, and AWS310

4.	 As we are running the project from the terminal, let’s modify the settings file directly on the server:

vim CoreRoot/settings.py

Or, you can use the emacs or nano command. It’s up to you. The following line tells Django 
to accept requests from whatever is the hostname:

CoreRoot/settings.py

...

ALLOWED_HOSTS = ["*"]

...

5.	 Save the file and launch the server again:

python manage.py runserver 0.0.0.0:8000

6.	 Then, again, visit http://public_ip:8000 in your web browser. You will see the following:

Figure 12.17 – Issues with DisallowedHost resolved

Great! The project is running fine on the internet, and you can even play with the API using an API 
client such as Postman or Insomnia. Congratulations! You have successfully deployed your Django 
application on an AWS EC2 machine.

However, we have a lot of issues (we can access debugging information directly on the internet, as in 
Figure 12.17), and we made some dangerous decisions such as not serving the API through HTTPS 
or not correctly setting allowed hosts throughout the deployment. Let’s explore these issues in the 
next section.

Errors made when deploying on EC2

We have successfully deployed the Django backend on AWS. However, I decided to ignore some 
important and best practices for deployment so that we can have the Django server running ASAP. 



Tools and methods of web application deployment 311

Let’s correct this. Let’s start with the errors that Django can show us. In the terminal of the project on 
the remote server, run the following command:

python manage.py check –deploy

Here’s the output of the preceding command:

System check identified some issues:

WARNINGS:

?: (security.W004) You have not set a value for the SECURE_
HSTS_SECONDS setting. If your entire site is served only over 
SSL, you may want to consider setting a value and enabling HTTP 
Strict Transport Security. Be sure to read the documentation 
first; enabling HSTS carelessly can cause serious, irreversible 
problems.

?: (security.W008) Your SECURE_SSL_REDIRECT setting is not set 
to True. Unless your site should be available over both SSL and 
non-SSL connections, you may want to either set this setting 
True or configure a load balancer or reverse-proxy server to 
redirect all connections to HTTPS.

?: (security.W009) Your SECRET_KEY has less than 50 characters, 
less than 5 unique characters, or it's prefixed with 'django-
insecure-' indicating that it was generated automatically by 
Django. Please generate a long and random SECRET_KEY, otherwise 
many of Django's security-critical features will be vulnerable 
to attack.

?: (security.W012) SESSION_COOKIE_SECURE is not set to True. 
Using a secure-only session cookie makes it more difficult for 
network traffic sniffers to hijack user sessions.

?: (security.W016) You have 'django.middleware.csrf.
CsrfViewMiddleware' in your MIDDLEWARE, but you have not set 
CSRF_COOKIE_SECURE to True. Using a secure-only CSRF cookie 
makes it more difficult for network traffic sniffers to steal 
the CSRF token.

?: (security.W018) You should not have DEBUG set to True in 
deployment.

System check identified 6 issues (0 silenced).

That’s a lot of things. As we are building an API, let’s focus on the security issues that concern our API:

•	 SECRET_KEY: This is an important setting in Django. It is used for all sessions, cryptographic 
signings, and even PasswordReset tokens. Having an already set value for SECRET_KEY 
can lead to dangerous security issues such as privilege escalation and remote code execution.



Deployment Basics – Git, GitHub, and AWS312

•	 DEBUG, which is set to True. That is basically why we were able to see the DisallowedHost 
error. Imagine an attacker going through your API, causing a 500 error, and then being able 
to read everything. That would be very bad.

Those are mostly the errors that Django has detected. In the last section, Postgres configuration and 
deployment, we resolved the issue of the DisallowedHost error by having Django allow whichever 
hostname comes in a Host header. Well, this is actually bad because it can lead to an HTTP Host header 
attack, a technique used for web cache poisoning, poisoning links in the email, and modification of 
sensitive operations such as password reset.

Important note
You can read more about HTTP Host header attacks at https://www.invicti.com/
web-vulnerability-scanner/vulnerabilities/http-header-injection/.

There are also some issues concerning the developer experience. It’s true that we have seen how to 
use Git and GitHub to host source code online, clone it on a remote server, and then configure it for 
deployment. You can repeat the same process, right? But what happens when you have to update the 
code for features or fixes multiple times per day? It can quickly become draining, so we need a solution 
for automated deployment on our EC2 server.

Also, we have Postgres and, finally, the Django project running separately. Sometimes, there might come a 
time when you will need to add another service to the machine. This can be done manually, but it creates 
an issue: the production environment starts to become different from the development environment.

It is an important habit to make sure that the development environment and the production environment 
are as similar as possible; this can make the reproduction of bugs easier but also the development of 
features predictable.

All these issues will be addressed in the next chapters. You will be introduced to environment variables, 
Docker, NGINX, and continuous integration/continuous deployment (CI/CD) concepts with 
GitHub Actions.

Summary
In this chapter, we have successfully deployed a Django application on an EC2 instance. Before 
deploying the Django application, we used Git to create a repository on a local machine, then created 
a remote repository on GitHub and pushed the changes online.

We have also learned how to configure a server for deployment manually with the installation of 
essential and interesting tools such as the Postgres server. We also explored the errors made when 
deploying the application and how we will address these errors in the following chapters.

These errors will be resolved in the next chapters, but first, we’ll learn more about environment 
variables and Docker in the next chapter.

https://www.invicti.com/web-vulnerability-scanner/vulnerabilities/http-header-injection/
https://www.invicti.com/web-vulnerability-scanner/vulnerabilities/http-header-injection/


Questions 313

Questions
1.	 What is the usage of a Git branch?

2.	 What is the difference between Git and GitHub?

3.	 What is an HTTP Host header attack?

4.	 What is the use of SECRET_KEY in Django?





13
 Dockerizing the Django Project

In the previous chapter, we learned more about software deployment, and we deployed the Django 
application on an AWS server. However, we came across issues such as poor preparation of the project 
for deployment, violation of some security issues, and deployment and development configuration.

In this chapter, we will learn how to use Docker on the Django backend and configure environment 
variables. We will also configure the database on a web server called NGINX using Docker. Here are 
the big sections of the chapter:

•	 What is Docker?

•	 Dockerizing the Django application

•	 Using Docker Compose for multiple containers

•	 Configuring environment variables in Django

•	 Writing NGINX configuration

Technical requirements
For this chapter, you will need to have Docker and Docker Compose installed on your machine. The 
Docker official documentation has a well-documented process for the installation on any OS platform. 
You can check it out at https://docs.docker.com/engine/install/.

The code written in this chapter can also be found at https://github.com/PacktPublishing/
Full-stack-Django-and-React/tree/chap13.

What is Docker?
Before defining what Docker is, we must understand what a container is and its importance in today’s 
tech ecosystem. To make it simple, a container is a standard unit of software that packages up the 
software and all of its required dependencies so that the software or the application can run quickly 
and reliably from one machine to another, whether the environment or the OS. 

https://docs.docker.com/engine/install/
https://github.com/PacktPublishing/Full-stack-Django-and-React/tree/chap13
https://github.com/PacktPublishing/Full-stack-Django-and-React/tree/chap13


 Dockerizing the Django Project316

An interesting definition from Solomon Hykes at the 2013 PyCon talk is: containers are “self-contained 
units of software you can deliver from a server over there to a server over there, from your laptop to EC2 
to a bare-metal giant server, and it will run in the same way because it is isolated at the process level 
and has its own file system.”

Important note
Containerization is different from virtualization. Virtualization enables teams to run multiple 
operating systems on the same hardware, while containerization allows teams to deploy 
multiple applications using the same operating system on single hardware with their own 
images and dependencies.

Great, right? Remember at the beginning of this book when we had to make configurations and 
installations depending on the OS mostly for the Python executable, the Postgres server, and different 
commands to create and activate a virtual environment? Using Docker, we can have a single configuration 
for a container, and this configuration can run the same on any machine. Docker ensures that your 
application can be executed in any environment. Then, we can say that Docker is a software platform 
for building, developing, and developing applications inside containers. It has the following advantages:

•	 Minimalistic and portable: Compared to virtual machines (VMs) that require complete 
copies of an OS, the application, and the dependencies, which can take a lot of space, a Docker 
container requires less storage because the image used comes with megabytes (MB) in size. 
This makes them fast to boot and easily portable even on small devices such as Raspberry 
Pi-embedded computers.

•	 Docker containers are scalable: Because they are lightweight, developers or DevOps can launch 
a lot of services based on containers and easily control the scaling using tools such as Kubernetes.

•	 Docker containers are secure: Applications inside Docker containers are running isolated 
from each other. Thus, a container can’t check the processes running in another container.

With a better understanding of what Docker is, we can now move on to integrate Docker into the 
Django application.

Dockerizing the Django application
In the precedent section, we defined Docker and its advantages. In this section, we will configure Docker 
with the Django application. This will help you understand better how Docker works under the hood.

Adding a Docker image

A characteristic of projects that use Docker is the presence of files called Dockerfiles in the project. A 
Dockerfile is a text document that contains all the commands necessary to assemble a Docker image. 
A Docker image is a read-only template with instructions to create a Docker container.



Dockerizing the Django application 317

Creating an image with a Dockerfile is the most popular way to go as you only need to enter the 
instructions you will require to set up an environment, install the package, make migrations, and a lot 
more. This is what makes Docker very portable. For example, in the case of our Django application, 
we will write the Dockerfile based on an existing image for Python 3.10 based on the popular Alpine 
Linux project (https://alpinelinux.org/). This image has been chosen because of its small 
size, equal to 5 MB. Inside the Dockerfile, we will also add commands to install Python and Postgres 
dependencies, and we will further add commands to install packages. Let’s get started with the steps:

1.	 Start by creating a new file at the root of the Django project called Dockerfile and adding 
the first line:

Dockerfile

FROM python:3.10-alpine

# pull official base image

Most of your Dockerfile will start with this line. Here, we are telling Docker which image 
to use to build our image. The python:3.10-alpine image is stored in what is called a 
Docker registry. This is a storage and distribution system for Docker images, and you can find 
the most popular one online, called Docker Hub, at https://hub.docker.com/.

2.	 Next, let’s set the working directory. This directory will contain the code of the running 
Django project:

Dockerfile

WORKDIR /app

3.	 As the Django application uses Postgres as a database, add the required dependencies for 
Postgres and Pillow to our Docker image:

Dockerfile

# install psycopg2 dependencies

RUN apk update \

    && apk add postgresql-dev gcc python3-dev musl-dev

    jpeg-dev zlib-dev

https://alpinelinux.org/
https://hub.docker.com/


 Dockerizing the Django Project318

4.	 Then, install the Python dependencies after making a copy of the requirements.txt file 
in the /app working directory:

Dockerfile

# install python dependencies

COPY requirements.txt /app/requirements.txt

RUN pip install --upgrade pip

RUN pip install --no-cache-dir -r requirements.txt

5.	 After that, copy over the whole project itself:

Dockerfile

# add app

COPY . .

6.	 And finally, expose port 8000 of the container for access to the other applications or the 
machine, run the migrations, and start the Django server:

Dockerfile

EXPOSE 8000

CMD ["python", "manage.py", "migrate"]

CMD ["python", "manage.py", "runserver", "0.0.0.0:8000"]

The Dockerfile file will have the following final code:

Dockerfile

# pull official base image

FROM python:3.10-alpine

# set work directory

WORKDIR /app

# set environment variables

ENV PYTHONDONTWRITEBYTECODE 1

ENV PYTHONUNBUFFERED 1

# install psycopg2 dependencies



Dockerizing the Django application 319

RUN apk update \

   && apk add postgresql-dev gcc python3-dev musl-dev

# install python dependencies

COPY requirements.txt /app/requirements.txt

RUN pip install --upgrade pip

RUN pip install --no-cache-dir -r requirements.txt

# copy project

COPY . .

EXPOSE 8000

CMD ["python", "manage.py", "migrate"]

CMD ["python", "manage.py", "runserver", "0.0.0.0:8000"]

We have just written the steps to build an image for the Django application. Let’s build the image with 
the following command.

docker build -t django-postagram .

The preceding command uses the Dockerfile to build a new container image—that’s why we have 
a dot (.) at the end of the command. It tells Docker to look for the Dockerfile in the current 
directory. The -t flag is used to tag the container image. Then, we are building an image with the 
django-backend tag using the Dockerfile we have written. Once the image is built, we can 
now run the application in the container by running the following command:

docker run --name django-postagram -d -p 8000:8000 django-
postagram:latest

Let’s describe the preceding command:

•	 --name will set the name of the Docker container

•	 -d makes the image run in detached mode, meaning that it can run in the background

•	 django-postagram specifies the name of the image to use

After typing the preceding command, you can check the running container with the following command:

docker container ps



 Dockerizing the Django Project320

You will have a similar output:

Figure 13.1 – Listing Docker containers on the machine

The container is created, but it looks like it’s not working well. In your browser, go to http://
localhost:8000, and you will notice that the browser returns a page with an error. Let’s check 
the logs for the django-postagram container:

docker logs --details django-postagram

The command will output in the terminal what is happening inside the container. You will have a 
similar output to this:

Figure 13.2 – Logs for the django-postagram container

Well, that’s quite normal. The container is running on its own network and doesn’t have direct access 
to the host machine network.

In the previous chapter, we added services for NGINX and Postgres and made the configurations. We 
need to also do the same with Docker; I mean, we can have two other Dockerfiles for NGINX 
and Postgres. And let’s be honest: it starts to become a little bit much. Imagine adding a Flask service, a 
Celery service, or even another database. Depending on the number n of components of your system, 
you will need n Dockerfiles. This is not interesting, but thankfully, Docker provides a simple 
solution for that called Docker Compose. Let’s explore it more.

Using Docker Compose for multiple containers
Docker Compose is a tool developed and created by the Docker team to help define configurations 
for multi-container applications. Using Docker Compose, we just need to create a YAML file to define 
the services and the command to start each service. It also supports configurations such as container 
name, environment setting, volume, and a lot more, and once the YAML file is written, you just need 
a command to build the images and spin all the services.



Using Docker Compose for multiple containers 321

Let’s understand the key difference between a Dockerfile and Docker Compose: a Dockerfile describes 
how to build the image and run the container, while Docker Compose is used to run Docker containers. 
At the end of the day, Docker Compose still uses Docker under the hood, and you will—most of the 
time—need at least a Dockerfile. Let’s integrate Docker Compose into our workflow.

Writing the docker-compose.yaml file

Before writing the YAML file, we will have to make some changes to the Dockerfile. As we will 
be launching the Django server from the docker-compose file, we can remove the lines where 
we expose the port, run the migrations, and start the server. Inside the Dockerfile, remove the 
following lines of code:

Dockerfile

EXPOSE 8000

CMD ["python", "manage.py", "migrate"]

CMD ["python", "manage.py", "runserver", "0.0.0.0:8000"]

Once it’s done, create a new file called docker-compose.yaml at the root of the project. Make 
sure that the docker-compose.yaml file and the Dockerfile are in the same directory. The 
docker-compose.yaml file will describe the services of the backend application. We will need 
to write three services:

•	 NGINX: We are using NGINX as the web server. Thankfully, there is an official image available 
we can use to write quick configurations.

•	 Postgres: There is also an official image available for Postgres. We will just need to add 
environment variables for the database user.

•	 django-backend: This is the backend application we have created. We will use the 
Dockerfile so that Docker Compose will build the image for this service.

Let’s start writing the docker-compose.yaml file by adding the NGINX service first:

docker-compose.yaml

version: '3.8'

services:

 nginx:

   container_name: postagram_web

   restart: always



 Dockerizing the Django Project322

   image: nginx:latest

   volumes:

     - ./nginx.conf:/etc/nginx/conf.d/default.conf

     - uploads_volume:/app/uploads

   ports:

     - "80:80"

   depends_on:

     - api

Let’s see what is going on in the preceding code because the other services will follow a similar 
configuration. The first line sets the file format we are using, so it is not related to Docker Compose, 
just to YAML.

After that, we are adding a service called nginx:

•	 container_name represents, well, the name of the container.

•	 restart defines the container restart policy. In this case, the container is always restarted 
if it fails.

Concerning the restart policies for a container, you can also have:

	� no: Containers will not restart automatically

	� on-failure[:max-retries]: Restart the container if it exits with a nonzero exit code 
and provides a maximum number of attempts for the Docker daemon to restart the container

	� unless-stopped: Always restart the container unless it was stopped arbitrarily or by 
the Docker daemon

•	 image: This tells Docker Compose to use the latest NGINX image available on Docker Hub.

•	 volumes are a way of persisting data generated and used by Docker containers. If a Docker 
container is deleted or removed, all its content will vanish forever. This is not ideal if you have 
files such as logs, images, video, or anything you want to persist somewhere because every 
time you remove a container, this data will vanish. Here is the syntax: /host/path:/
container/path.

•	 ports: Connection requests coming from the host port 80 are redirected to the container 
port 80. Here is the syntax: host_port:container_port.

•	 depends_on: This tells Docker Compose to wait for some services to start before starting the 
service. In our case, we are waiting for the Django API to start before starting the NGINX server.



Using Docker Compose for multiple containers 323

Great! Next, let’s add the service configuration for the Postgres service:

docker-compose.yaml

db:

 container_name: postagram_db

 image: postgres:14.3-alpine

 env_file: .env

 volumes:

   - postgres_data:/var/lib/postgresql/data/

We have new parameters here called env_file which specifies the path to the environment file that 
will be used to create the database and the user, and set the password. Let’s finally add the Django 
API service:

docker-compose.yaml

api:

 container_name: postagram_api

 build: .

 restart: always

 env_file: .env

 ports:

   - "8000:8000"

 command: >

   sh -c "python manage.py migrate --no-input && gunicorn

          CoreRoot.wsgi:application --bind 0.0.0.0:8000"

 volumes:

  - .:/app

  - uploads_volume:/app/uploads

 depends_on:

  - db

The build parameter in the Docker Compose file tells Docker Compose where to look for the 
Dockerfile. In our case, the Dockerfile is in the current directory. Docker Compose allows 
you to have a command parameter. Here, we are running migrations and starting the Django server 
using Gunicorn, which is new. gunicorn is a Python Web Server Gateway Interface (WSGI) HTTP 
server for Unix systems. Why use gunicorn? Most web applications run with an Apache server, so 
gunicorn is basically designed to run web applications built with Python. 



 Dockerizing the Django Project324

You can install the package in your current Python environment by running the following command:

pip install gunicorn

But you will need to put the dependency in the requirements.txt file so that it can be preset 
in the Docker image:

requirements.txt

gunicorn==20.1.0

Finally, we need to declare at the end of the file the volumes used:

docker-compose.yaml

volumes:

 uploads_volume:

 postgres_data:

And we have just written a docker-compose.yaml file. As we are going to use environment 
variables in the project, let’s update some variables in the settings.py file.

Configuring environment variables in Django
It is a bad habit to have sensitive information about your application available in the code. This is the 
case for the SECRET_KEY setting and the database settings in the settings.py file of the project. 
It is quite bad because we have pushed the code to GitHub. Let’s correct this.

An environment variable is a variable whose value is set outside the running code of the program. With 
Python, you can read files from a .env file. We will use the os library to write the configurations. So, 
first, create a .env file at the root of the Django project and add the following content:

.env

SECRET_KEY=foo

DATABASE_NAME=coredb

DATABASE_USER=core

DATABASE_PASSWORD=wCh29&HE&T83

DATABASE_HOST=postagram_db

DATABASE_PORT=5432

POSTGRES_USER=core

POSTGRES_PASSWORD=wCh29&HE&T83



Configuring environment variables in Django 325

POSTGRES_DB=coredb

ENV=DEV

DJANGO_ALLOWED_HOSTS=127.0.0.1,localhost

Important note
SECRET_KEY is an important variable for your Django project, so you need to ensure that 
you have a long and complicated chain of characters as the value. You can visit https://
djecrety.ir/ to generate a new chain of characters.

The next step is to install a package to help you manage environment variables. The package is called 
python-dotenv, and it helps Python developers read environment variables from .env files and 
set them as environment variables. If you are going to run the project again on your machine, then 
add the package to your actual Python environment with the following command:

pip install python-dotenv

And finally, add the package to the requirements.txt file so that it can be installed in the Docker 
image. Here’s a look at the requirements.txt file:

Django==4.0.1

psycopg2-binary==2.9.3

djangorestframework==3.13.1

django-filter==21.1

pillow==9.0.0

djangorestframework-simplejwt==5.0.0

drf-nested-routers==0.93.4

pytest-django==4.5.2

django-cors-headers==3.11.0

python-dotenv==0.20.0

gunicorn==20.1.0

Once the installation of the python-dotenv package is done, we need to write some code in the 
CoreRoot/settings.py file. In this file, we will import the python-dotenv package and 
modify the syntax of some settings so that it can support environment variables’ reading:

CoreRoot/settings.py

from dotenv import load_dotenv

load_dotenv()

https://djecrety.ir/
https://djecrety.ir/


 Dockerizing the Django Project326

Let’s rewrite the values of variables such as SECRET_KEY, DEBUG, ALLOWED_HOSTS, and ENV:

CoreRoot/settings.py

ENV = os.environ.get("ENV")

# SECURITY WARNING: keep the secret key used in production 
secret!

SECRET_KEY = os.environ.get(

   "SECRET_KEY", default=

     "qkl+xdr8aimpf-&x(mi7)dwt^-q77aji#j*d#02-5usa32r9!y"

)

# SECURITY WARNING: don't run with debug turned on in 
production!

DEBUG = False if ENV == "PROD" else True

ALLOWED_HOSTS = os.environ.get("DJANGO_ALLOWED_HOSTS", 
default="*").split(",")

The os package provides an object to retrieve environment variables from the user machine. After 
python-dotenv has forced the loading of the environment variables, we use os.environ to 
read the values from the .env file. Let’s finally add the configuration for the DATABASES setting:

CoreRoot/settings.py

DATABASES = {

   "default": {

       "ENGINE": "django.db.backends.postgresql_psycopg2",

       "NAME": os.getenv("DATABASE_NAME", "coredb"),

       "USER": os.getenv("DATABASE_USER", "core"),

       "PASSWORD": os.getenv("DATABASE_PASSWORD",

                             "wCh29&HE&T83"),

       "HOST": os.environ.get("DATABASE_HOST",

                              "localhost"),

       "PORT": os.getenv("DATABASE_PORT", "5432"),

   }

}



Writing NGINX configuration 327

Great! We are done configuring the environment variables in the settings.py file. We can now 
move on to write the configurations for NGINX.

Writing NGINX configuration
NGINX requires some configuration from our side. If there is a request on the HTTP port of the machine 
(by default 80), it should redirect the requests to port 8000 of the running Django application. Put 
simply, we will write a reverse proxy. A proxy is an intermediary process that takes an HTTP request 
from a client, passes the request to one or many other servers, waits for a response from those servers, 
and sends back a response to the client.

By using this process, we can forward a request on the HTTP port 80 to port 8000 of the Django server.

At the root of the project, create a new file called nginx.conf. Then, let’s define the upstream server 
where HTTP requests will be redirected to:

nginx.conf

upstream webapp {

   server postagram_api:8000;

}

The preceding code follows the simple syntax shown next:

upstream upstream_name {

   server host:PORT;

}

Important note
Docker allows you to refer to the container’s host with the defined container name. In the 
NGINX file, we are using postagram_api instead of the IP address of the container, which 
can change, and for the database, we are using postagram_db.

The next step is to declare the configuration for the HTTP server:

nginx.conf

server {

   listen 80;

   server_name localhost;



 Dockerizing the Django Project328

   location / {

       proxy_pass http://webapp;

       proxy_set_header X-Forwarded-For

         $proxy_add_x_forwarded_for;

       proxy_set_header Host $host;

       proxy_redirect off;

   }

   location /media/ {

    alias /app/uploads/;

   }

}

In the server configuration, we first set the port of the server. In the preceding code, we are using port 
80. Next, we are defining locations. A location in NGINX is a block that tells NGINX how to process 
the request from a certain URL:

•	 A request on the / URL is redirected to the web app upstream

•	 A request on the /media/ URL is redirected to the uploads folder to serve files

With the NGINX configuration ready, we can now launch the containers.

Launching the Docker containers

Let’s launch the Docker containers. As we are now using Docker Compose to orchestrate containers, 
let’s use the following command to build and start the containers:

docker compose up -d –build

This command will spin up all the containers defined in the docker-compose.yaml file. Let’s 
describe the command options:

•	 up: This builds, recreates, and starts containers

•	 -d: This is used to detach, meaning that we are running the containers in the background

•	 —build: This flag tells Docker Compose to build the images before starting the containers



Summary 329

After the build is done, open your browser at http://localhost, and you should see the following:

Figure 13.3 – Dockerized Django application

We have successfully containerized the Django application using Docker. It is also possible to 
execute commands inside containers, and right now, we can start by running a test suite inside the 
postagram_api container:

docker compose exec -T api pytest

The syntax to execute a command in a Docker container is to first call the exec command followed 
by the –T parameter to disable pseudo-tty allocation. This means that the command being run 
inside the container will not be attached to a terminal. Finally, you can add the container service name, 
followed by the command you want to execute in the container.

We are one step closer to the deployment of AWS using Docker, but we need to automate it. In the next 
chapter, we will configure the project with GitHub Actions to automate deployment on the AWS server.

Summary
In this chapter, we have learned how to dockerize a Django application. We started by looking into 
Docker and its use in the development of modern applications. We also learned how to build a Docker 
image and run a container using this image—this introduced us to some limitations of Dockerization 
using Dockerfiles. This led us to learn more about Docker Compose and how it can help us manage 
multiple containers with just one configuration file. This in turn directed us to configure a database 
and an NGINX web server with Docker to launch the Postagram API.

In the next chapter, we will configure the project for automatic deployment on AWS but also carry 
out regression checks using the tests we have written.



 Dockerizing the Django Project330

Questions
1.	 What is Docker?

2.	 What is Docker Compose?

3.	 What is the difference between Docker and Docker Compose?

4.	 What is the difference between containerization and virtualization?

5.	 What is an environment variable?



14
Automating Deployment  

on AWS

In the previous chapter, we successfully deployed the Django application on an EC2 instance. However, 
most of the deployment is done manually, and we don’t check for regression when pushing a new 
version of the application. Interestingly, all the deploying can be automated using GitHub Actions.

In this chapter, we will use GitHub Actions to automatically deploy on an AWS EC2 instance so that 
you don’t have to do it manually. We will explore how to write a configuration file that will run tests 
on the code to avoid regressions, and finally connect via Secure Socket Shell (SSH) to a server and 
execute the script to pull and build the recent version of the code and up the container. To recapitulate, 
we will cover the following topics:

•	 Explaining continuous integration and continuous deployment (CI/CD)

•	 Defining the CI/CD workflow

•	 What is GitHub Actions?

•	 Configuring the backend for automated deployment

Technical requirements
The code for this chapter can be found at https://github.com/PacktPublishing/Full-
stack-Django-and-React/tree/chap14. If you are using a Windows machine, ensure that 
you have the OpenSSH client installed on your machine as we will generate SSH key pairs.

Explaining CI/CD
Before going deeper into GitHub Actions, we must understand the terms CI and CD. In this section, 
we will understand each term and explain the differences.

https://github.com/PacktPublishing/Full-stack-Django-and-React/tree/chap14
https://github.com/PacktPublishing/Full-stack-Django-and-React/tree/chap14


Automating Deployment on AWS332

CI

CI is a practice of automating the integration of code changes from multiple collaborators into a single 
project. It also concerns the ability to reliably release changes made to an application at any time. 
Without CI, we should have to manually coordinate the deployment, the integration of changes into 
an application, and security and regression checks.

Here’s a typical CI workflow:

1.	 A developer creates a new branch from the main branch, makes changes, commits, and then 
pushes it to the branch.

2.	 When the push is done, the code is built, and then automated tests are run.

3.	 If the automated tests fail, the developer team is notified, and the next steps (usually deployment) 
are canceled. If the tests succeed, then the code is ready to be deployed in a staging or 
production environment.

You can find many tools for CI pipeline configurations. You have tools such as GitHub Actions, 
Semaphore, Travis CI, and a lot more. In this book, we will use GitHub Actions to build the CI pipeline, 
and if the CI pipeline passes, we can deploy it on AWS. Let’s now learn more about CD.

CD

CD is related to CI but most of the time represents the next step after a successful CI pipeline passes. 
The quality of the CI pipeline (builds and tests) will determine the quality of the releases made. With 
CD, the software is automatically deployed to a staging or production environment once it passes 
the CI step.

An example of a CD pipeline could look like this:

1.	 A developer writes a branch, makes changes and pushes the changes, and then creates a 
merge request.

2.	 Tests and builds are done to make sure there is no regression.

3.	 The code is reviewed by another developer, and if the review is done, the merge request is 
validated and then another suite of tests and builds are done.

4.	 After that, the changes are deployed to a staging or production environment.

GitHub Actions and the other tools mentioned for CI also support CD. With a better understanding 
of CI and CD, let’s define the workflow that we will configure for the backend.

Important note
You will also hear about continuous delivery if you are diving deeper into CI/CD; it is a further 
extension of continuous deployment. Continuous deployment focuses on the deployment of the 
servers while continuous delivery focuses on the release and release strategy.



Defining the CI/CD workflow 333

Defining the CI/CD workflow
Before deploying an application as we did in the previous chapter, we need to write off the steps we 
will follow, along with the tools needed for the deployment. In this chapter, we will automate the 
deployment of the backend on AWS. Basically, each time we have a push made on the main branch 
of the repository, the code should be updated on the server and the containers should be updated 
and restarted.

Again, let’s define the flow, as follows:

1.	 A push is made on the principal branch of the server.

2.	 Docker containers are built and started to run tests. If the tests fail, the following steps are ignored.

3.	 We connect via SSH to the server and run a script to pull the new changes from the remote 
repository, build the containers, and restart the services using docker-compose.

The following diagram illustrates a typical CI/CD workflow:

Figure 14.1 – CI/CD workflow

That is a lot of things to do manually, and thankfully, GitHub provides an interesting feature called 
GitHub Actions. Now that we have a better idea about the deployment strategy, let’s explore this 
feature more.

What is GitHub Actions?
GitHub Actions is a service built and developed by GitHub for automating builds, testing, and 
deployment pipelines. Using GitHub Actions, we can easily implement the CI/CD workflow shown 
in Figure 14.1. Before continuing, make sure that your project is hosted on GitHub.

GitHub Actions configurations are made in a file that must be stored in a dedicated directory in the 
repository called .github/workflows. For a better workflow, we will also use GitHub secrets to 
store deployment information such as the IP address of the server, the SSH passphrase, and the server 
username. Let’s start by understanding how to write a GitHub Actions workflow file.



Automating Deployment on AWS334

How to write a GitHub Actions workflow file

Workflow files are stored in a dedicated directory called .github/workflows. The syntax used 
for these files is YAML syntax, hence workflow files have the .yml extension.

Let’s dive deeper into the syntax of a workflow file:

•	 name: This represents the name of the workflow. This name is set by placing the following line 
at the beginning of the file:

name: Name of the Workflow

•	 on: This specifies the events that will trigger the workflow automatically. An example of an 
event is a push, a pull request, or a fork:

on: push

•	 jobs: This specifies the actions that the workflow will perform. You can have multiple jobs 
and even have some jobs depending on each other:

jobs:

 build-test:

   runs-on: ubuntu-latest

   steps:

   - uses: actions/checkout@v2

   - name: Listing files in a directory

     run: ls -a

In our GitHub Actions workflow, we will have two jobs:

	� A job named build-test to build the Docker containers and run the tests inside 
those containers

	� A job named deploy to deploy the application to the AWS server

The deployment of the application will depend on the failure or success of the build-test job. 
It’s a good way to prevent code from failing and crashing in the production environment. Now that 
we understand the GitHub Actions workflow, YAML syntax, and the jobs we want to write for our 
workflow, let’s write the GitHub Actions file and configure the server for automatic deployment.



Configuring the backend for automated deployment 335

Configuring the backend for automated deployment
In the previous sections, we discussed more about the syntax of a GitHub Actions file and the jobs 
we must write to add CI and CD to the Django application. Let’s write the GitHub Action file and 
configure the backend for automatic deployment.

Adding the GitHub Actions file

At the root of the project, create a directory called .github, and inside this directory create another 
directory called workflows. Inside the workflows directory, create a file called ci-cd.yml. 
This file will contain the YAML configuration for the GitHub action. Let’s start by defining the name 
and the events that will trigger the running of the workflow:

.github/workflows/ci-cd.yml

name: Build, Test and Deploy Postagram

on:

 push:

   branches: [ main ]

The workflow will run every time there is a push on the main branch. Let’s go on to write a build-
test job. For this job, we will follow three steps:

1.	 Injecting environment variables into a file. Docker will need a .env file to build the images and 
start the containers. We’ll inject dummy environment variables into the Ubuntu environment.

2.	 After that, we will build the containers.

3.	 And finally, we run the tests on the api container.

Let’s get started with the steps:

1.	 Let’s start by writing the job and injecting the environment variables:

.github/workflows/ci-cd.yml

build-test:

 runs-on: ubuntu-latest

 steps:

 - uses: actions/checkout@v2

 - name: Injecting env vars

   run: |

     echo "SECRET_KEY=test_foo



Automating Deployment on AWS336

           DATABASE_NAME=test_coredb

           DATABASE_USER=test_core

           DATABASE_PASSWORD=12345678

           DATABASE_HOST=test_postagram_db

           DATABASE_PORT=5432

           POSTGRES_USER=test_core

           POSTGRES_PASSWORD=12345678

           POSTGRES_DB=test_coredb

           ENV=TESTING

           DJANGO_ALLOWED_HOSTS=127.0.0.1,localhost

            " >> .env

The tests will probably fail because we haven’t defined the Github Secret called TEST_SECRETS.

Figure 14.2 – Testing Github secrets

2.	 Next, let’s add the command to build the containers:

.github/workflows/ci-cd.yml

- name: Building containers

 run: |

   docker-compose up -d --build



Configuring the backend for automated deployment 337

3.	 And finally, let’s run the pytest command in the api container:

.github/workflows/ci-cd.yml

- name: Running Tests

 run: |

   docker-compose exec -T api pytest

Great! We have the first job of the workflow fully written.

4.	 Let’s push the code by running the following command and see how it runs on the GitHub side:

git push

5.	 Go to GitHub to check your repository. You will see an orange badge on the details of the 
repository, meaning that the workflow is running:

Figure 14.3 – Running GitHub Actions

6.	 Click on the orange badge to have more details about the running workflows. The workflow 
should pass, and you will have a green status:

Figure 14.4 – Successful GitHub Action job

Great! We have the build-test job running successfully, which means that our code can be 
deployed in a production environment. Before writing the deploy job, let’s configure the server 
first for automatic deployment.

Configuring the EC2 instance

It’s time to go back to the EC2 instance and make some configurations to ease the automatic deployment. 
Here’s the list of tasks to do so that GitHub Actions can automatically handle the deployment for us:

•	 Generate a pair of SSH keys (private and public keys) with a passphrase.

•	 Add the public key to authorized_keys on the server.



Automating Deployment on AWS338

•	 Add the private key to GitHub Secrets to reuse it for the SSH connection.

•	 Register the username used on the OS of the EC2 instance, the IP address, and the SSH 
passphrase to GitHub Secrets.

•	 Add a deploying script on the server. Basically, the script will pull code from GitHub, check 
for changes, and eventually build and rerun the containers.

•	 Wrap everything and add the deploy job.

This looks like a lot of steps, but here’s the good thing: you just need to do that once. Let’s start by 
generating SSH credentials.

Generating SSH credentials

The best practice for generating SSH keys is to generate the keys on the local machine and not the 
remote machine. In the next lines, we will use terminal commands. If you are working on a Windows 
machine, make sure you have the OpenSSH client installed. The following commands are executed 
on a Linux machine. Let’s get started with the steps:

1.	 Open the terminal and enter the following command to generate an RSA key pair:

ssh-keygen -t rsa -b 4096 -C "your_email@example.com"

Figure 14.5 – Generating SSH keys



Configuring the backend for automated deployment 339

2.	 Next, copy the content of the public key and add it to the .ssh/authorized_keys file of 
the remote EC2 instance. You can just do a copy and paste using the mouse, or you can type 
the following command:

cat .ssh/postagramapi.pub | ssh username@hostname_or_
ipaddress 'cat >> .ssh/authorized_keys'

3.	 Then, copy the content of the private key and add it to GitHub Secrets:

Figure 14.6 – Registering the private key into GitHub Secrets

You also need to do the same for the passphrase, EC2 server IP address, and username for the 
OS of the EC2 machine:

Figure 14.7 – Repository secrets



Automating Deployment on AWS340

Great! We have the secrets configured on the repository; we can now write the deploy job on the 
GitHub action.

Adding a deploying script

The benefit of using GitHub Actions is that you can already find preconfigured GitHub Actions on 
GitHub Marketplace and just use them instead of reinventing the wheel. For the deployment, we will 
use the ssh-action GitHub action, which is developed to allow developers to execute remote 
commands via SSH. This perfectly fits our needs.

Let’s write the deploy job inside our GitHub action workflow and write a deployment script on the 
EC2 instance:

1.	 Inside the .github/workflows/ci-cd.yml file, add the following code at the end of 
the file:

.github/workflows/ci-cd.yml

deploy:

  name: Deploying on EC2 via SSH

  if: ${{ github.event_name == 'push' }}

  needs: [build-test]

  runs-on: ubuntu-latest

  steps:

  - name: Deploying Application on EC2

    uses: appleboy/ssh-action@master

    with:

      host: ${{ secrets.SSH_EC2_IP }}

      username: ${{ secrets.SSH_EC2_USER }}

      key: ${{ secrets.SSH_PRIVATE_KEY }}

      passphrase: ${{ secrets.SSH_PASSPHRASE }}

      script: |

        cd ~/.scripts

        ./docker-ec2-deploy.sh

The script run on the EC2 instance is the execution of a file called docker-ec2-deploy.
sh. This file will contain Bash code for pulling code from the GitHub repository and building 
the containers.

Let’s connect to the EC2 instance and add the docker-ec2-deploy.sh code.



Configuring the backend for automated deployment 341

2.	 In the home directory, create a file called docker-ec2-deploy.sh. The process for 
deployment using Git and Docker will follow these steps:

I.	 We must ensure that there are effective changes in the GitHub repository to continue with 
building and running the containers. It will be a waste of resources and memory to rebuild 
the containers if the Git pull hasn’t brought new changes. Here’s how we can check this:

#!/usr/bin/env bash

TARGET='main'

cd ~/api || exit

ACTION_COLOR='\033[1;90m'

NO_COLOR='\033[0m'

echo -e ${ACTION_COLOR} Checking if we are on the target 
branch

BRANCH=$(git rev-parse --abbrev-ref HEAD)

if [ "$BRANCH" != ${TARGET} ]

then

   exit 0

fi

II.	 Next step, we will do a git fetch command to download content from the 
GitHub repository:

# Checking if the repository is up to date.

git fetch

HEAD_HASH=$(git rev-parse HEAD)

UPSTREAM_HASH=$(git rev-parse ${TARGET}@{upstream})

if [ "$HEAD_HASH" == "$UPSTREAM_HASH" ]

then

   echo -e "${FINISHED}"The current branch is up to date 
with origin/${TARGET}."${NO_COLOR}"

     exit 0

fi



Automating Deployment on AWS342

Once this is done, we will then check the repository is up to date by comparing the HEAD hash 
and the UPSTREAM hash. If they are the same, then the repository is up to date.

III.	 If the HEAD and the UPSTREAM hashes are not the same, we pull the latest changes, 
build the containers, and run the containers:

# If there are new changes, we pull these changes.

git pull origin main;

# We can now build and start the containers

docker compose up -d --build

exit 0;

Great! We can now give execution permission to the script:

chmod +x docker-ec2-deploy.sh

And we are done. You can push the changes made on the GitHub workflow and the automatic 
deployment job will start.

Important note
Depending on the type of repository (private or public), you might need to enter your GitHub 
credentials on every remote git command executed such as git push or git pull for 
example. Ensure you have your credentials configured using SSH or HTTPS. You can check 
how to do it https://docs.github.com/en/authentication/keeping-your-
account-and-data-secure/creating-a-personal-access-token

Ensure to have a .env file at the root of the project in the AWS server. Here is an example of a .env 
file you can use for deployment. Don’t forget to change the values of database credentials or secret keys:

SECRET_KEY=foo

DATABASE_NAME=coredb

DATABASE_USER=core

DATABASE_PASSWORD=wCh29&HE&T83

DATABASE_HOST=localhost

DATABASE_PORT=5432

POSTGRES_USER=core

https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token
https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token


Summary 343

POSTGRES_PASSWORD=wCh29&HE&T83

POSTGRES_DB=coredb

ENV=PROD

DJANGO_ALLOWED_HOSTS=EC2_IP_ADDRESS,EC2_INSTANCE_URL

Ensure to replace the EC2_IP_ADDRESS and the EC2_INSTANCE_URL with the values of your 
EC2 instance. You will also need to allow TCP connections on port 80 to allow HTTP requests on 
the EC2 instances for the whole configuration to work.

 

Figure 14.8 – Allowing HTTP requests

You can also remove the 8000 configurations as NGINX handles the redirection of HTTP requests 
to 0.0.0.0:8000 automatically.

With the concept of CI/CD understood and GitHub Actions explained and written, you have all the 
tools you need now to automate deployment on EC2 instances and any server. Now that the backend 
is deployed, we can move on to deploying the React frontend, not on an EC2 instance but on AWS 
Simple Storage Service (S3).

Summary
In this chapter, we have finally automated the deployment of the Django application on AWS using 
GitHub Actions. We have explored the concepts of CI and CD and how GitHub Actions allow the 
configuration of such concepts.



Automating Deployment on AWS344

We have written a GitHub action file with jobs to build and run the test suites, and if these steps are 
successful, we run the deploy job, which is just connecting to the EC2 instance, and run a script to 
pull changes, build new images, and run the containers.

In the next chapter, we will learn how to deploy the React application using a service such as AWS S3.

Questions
1.	 What is the difference between CI and CD?

2.	 What are GitHub Actions?

3.	 What is continuous delivery?



15
Deploying Our React App  

on AWS

In the previous chapter, we automated the deployment of the Django application using GitHub Actions 
and by making some configurations on the AWS EC2 instance. The Postagram API is live and now 
we must deploy the React application to have the full Postagram application available on the internet.

In this chapter, we will deploy the React application using AWS Simple Storage Service (S3) and 
automate the deployment using GitHub Actions. We will cover the following topics:

•	 Deployment of React applications

•	 Deploying on AWS S3

•	 Automating deployment with GitHub Actions

Technical requirements
For this chapter, you will need to have an account on AWS. You will also need to create an Identity 
and Access Management (IAM) user and save the credentials. You can do this by following the 
official documentation at https://docs.aws.amazon.com/IAM/latest/UserGuide/
id_users_create.html#id_users_create_cliwpsapi. You can find the code for this 
chapter at https://github.com/PacktPublishing/Full-stack-Django-and-
React/tree/chap15.

Deployment of React applications
A React application is built using JavaScript and JSX. However, to make the application accessible 
on the internet, we need a version of the application that a browser can interpret and understand, 
basically having an application with HTML, CSS, and JavaScript.

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html#id_users_create_cliwpsapi
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html#id_users_create_cliwpsapi
https://github.com/PacktPublishing/Full-stack-Django-and-React/tree/chap15
https://github.com/PacktPublishing/Full-stack-Django-and-React/tree/chap15


Deploying Our React App on AWS346

In development mode, React provides an environment for detecting warnings and tools to detect and 
fix problems in the application and eliminate potential issues. This adds extra code to the project, 
increasing the bundle size and resulting in a bigger and slower application.

It is crucial to only deploy production-built applications on the internet because of the user experience 
(UX). According to Google studies, 53% of users leave a website if it takes more than 3 seconds to load. 
Thus, we must build the React application we created and deploy the production version.

What is a production build?

In development, the React application runs in development mode or local mode. This is where you 
can see all the warnings and the traceback in case your code crashes. The production mode requires 
the developers to build the application. This build minifies the code, optimizes the assets (image, CSS 
files, and so on), produces lighter source maps, and suppresses the warning messages displayed in 
development mode.

Therefore, the bundle size of the application is drastically reduced, and this improves page load speed. 
In this chapter, we will build a production-ready application and deploy it on AWS S3 as a static website.

Deploying on AWS S3
AWS S3 is one of the most popular services of AWS. It is a cloud-based storage service providing 
high performance, availability, reliability, security, and a ridiculous potential for scaling. AWS S3 is 
mostly used to store static assets so that they are effectively distributed to the internet, and because 
of the distribution characteristic, AWS S3 is suitable for hosting static websites.

In this chapter, we will create an S3 bucket, upload the content of the built React application, and allow 
public access from the internet. An S3 bucket is just a public storage resource available in AWS that 
is like an online folder where you can store objects (like a folder on your Google Drive). In the next 
section, we will create a production-ready version of the React application.

Creating a build of Postagram

We can create a build of the React application with just one command:

Yarn build

The yarn build command creates a bundle of static files of a React application. This bundle is 
optimized enough to go into production. The production Postagram application will use the online 
version of the API. This means we need to make some readjustments in the React code, mainly 
concerning the API URLs used in the code.



Deploying on AWS S3 347

In Part 2 of this book, Build Reactive UI with React, we built the React application using data from 
the localhost server at port 8000. In this chapter, it won’t be the case, and we will take the occasion 
to add environment variables to the React application. Integrating environment variables into a 
React application is straightforward. Let’s configure the environment variables in the Postagram 
React application.

Adding environment variables and building the application

According to the documentation of Create React App regarding environment variables (https://
create-react-app.dev/docs/adding-custom-environment-variables/),

“Your project can consume variables declared in your environment as if they were 
declared locally in your JS files. By default, you will have NODE_ENV defined for 

you, and any other environment variables starting with REACT_APP_”.

To access the values of the environment variables, we will use process.env.REACT_APP_VALUE 
syntax because these environment variables are defined on process.env.

At the root of the React project, create a file called .env. Inside this file, add the following content 
and the name of the API URL you have deployed on the EC2 AWS server:

REACT_APP_API_URL=https://name_of_EC2_instance.compute-1.
amazonaws.com/api

You then need to modify some pieces of code at src/helpers/axios.js and src/hooks/
user.actions.js. We must update the baseURL variable to read the values from the .env file:

src/hooks/user.actions.js

function useUserActions() {

 const navigate = useNavigate();

 const baseURL = process.env.REACT_APP_API_URL;

 return {

   login,

   register,

   logout,

   edit,

 };

https://create-react-app.dev/docs/adding-custom-environment-variables/
https://create-react-app.dev/docs/adding-custom-environment-variables/


Deploying Our React App on AWS348

And we do the same on the axios.js file:

src/helpers/axios.js

const axiosService = axios.create({
 baseURL: process.env.REACT_APP_API_URL,
 headers: {
   "Content-Type": "application/json",
 },
});
…
const refreshAuthLogic = async (failedRequest) => {
 return axios
   .post(
     "/auth/refresh/",
     {
       refresh: getRefreshToken(),
     },
     {
       baseURL: process.env.REACT_APP_API_URL,
...

Great! The application can be built now. Run the following command:

yarn build

You will have a similar result to this:

Figure 15.1 – Output of yarn build command



Deploying on AWS S3 349

The build is available in the newly created build directory, where you will find the following content:

Figure 15.2 – build directory

With a production-ready React application, we can then deploy the application on S3. Next, let’s create 
an S3 bucket and upload the files and folders.

Deploying the React application on S3

We have a build-ready version of the application and an optimized version for production. Before 
deploying on S3, we need to make some configurations on AWS S3 by creating a bucket and telling 
AWS that we are going to serve a static website. In the AWS console menu, choose the S3 service and 
create a bucket. Follow these steps to deploy a React application on AWS using the S3 service:

1.	 You will need to enter some configurations such as the Bucket name value and others, as 
shown in the following figure:

Figure 15.3 – General configuration for AWS S3 bucket



Deploying Our React App on AWS350

2.	 After that, you need to disable the Block all public access settings so that the React application 
is visible to the public:

Figure 15.4 – Public access configuration

3.	 With the basic configurations now done, you can proceed to create the S3 bucket. Access the 
newly created bucket, select the Properties tab, and go to Static website hosting. On the page, 
enable Static web hosting:



Deploying on AWS S3 351

Figure 15.5 – Static website hosting configuration

4.	 You should also fill in the Index document and Error document fields. This will help with 
routing in the React application. Save the change, and you will see the bucket website endpoint, 
which will be the URL of your website:

Figure 15.6 – Static website hosting configuration done



Deploying Our React App on AWS352

5.	 Finally, select the Permissions tab and select Bucket Policy. We will add a policy to grant 
public access to the bucket, like so:

{

    "Version": "2012-10-17",

    "Statement": [

        {

            "Sid": "Statement1",

            "Effect": "Allow",

            "Principal": {

                "AWS": "*"

            },

            "Action": "s3:GetObject",

            "Resource": "arn:aws:s3:::postagram/*"

        }

    ]

}

In your case, replace Postagram with the name of your React application.

6.	 Save the changes. You will notice that a piece of new information will appear next to the name 
of the bucket:

Figure 15.7 – Publicly accessible badge

7.	 Now, click on the Upload button and upload all content in the build directory of the React 
application. After the upload is finished, you will have a similar result to this:



Deploying on AWS S3 353

Figure 15.8 – Bucket content

8.	 Click on the bucket website endpoint, and you will access the Postagram React application in 
your browser:

Figure 15.9 – Deployed React application

Great! We have deployed a React application on AWS using the S3 service. You will surely encounter 
cross-origin resource sharing (CORS) errors when trying to make some requests to the API. To 
resolve this issue, add the domain name of the link provided by AWS S3 for your static website to 
the CORS_ALLOW_ORIGINS environment variables in the .env file of the Django application on 
the AWS EC2 instance. The following is an example of how you can define the environment variable:

.env

CORS_ALLOW_ORIGINS="S3_WEBSITE_URL"



Deploying Our React App on AWS354

Then, in the settings.py file of the Django project, replace the line where you define CORS_
ALLOW_ORIGINS with the following:

CoreRoot/settings.py

...

CORS_ALLOWED_ORIGINS = os.getenv("CORS_ALLOWED_ORIGINS", "").
split(",")

...

We have learned how to configure a bucket, change the policies for public access, and activate the 
website hosting feature of AWS S3. However, the deployment was done manually and, in the future, if 
you are pushing regularly, it might be a hassle to upload the change manually every time. In the next 
section, we will explore how to automate the deployment of a React application using GitHub Actions.

Automating deployment with GitHub Actions
In the previous chapter, we explored how GitHub Actions make the flow of deployment easier, more 
secure, and more reliable for developers. That is why in this chapter, we are also using GitHub Actions 
to automate the deployment of the React application.

There is a GitHub action for AWS called configure-aws-credentials. We will use this action to 
configure AWS credentials in the workflow to execute a command to upload the content of the build 
folder in the S3 bucket created earlier. But before that, we will follow the same workflow of CI/CD:

1.	 Install the dependencies of the project.

2.	 Run tests to make sure the application won’t break in production and to ensure there are 
no regressions.

3.	 Run the build command to have a production-ready application.

4.	 Deploy on AWS S3.

Let’s add a new workflow file in the repository for the deployment of the React application.

Important note
For this book, the Django application and the React application are in the same repository. 
The choice was made to make it easier for you to go through the code and the project. Thus, 
you will find two workflows in the .github/workflows directory. If you have split the 
code of the Django application and the React project into different repositories, make sure to 
not mix the GitHub Actions files.



Automating deployment with GitHub Actions 355

Writing the workflow file

Inside the .github/workflows directory, create a file called deploy-frontend.yml. The 
first step, as usual, when writing a GitHub Actions file is to define the name of the workflow and the 
condition that will trigger this workflow:

.github/workflows/deploy-frontend.yml

name: Build and deploy frontend

on:

 push:

   branches: [ main ]

Let’s then create a job called build-test-deploy. Inside this job, we will write the commands 
to install the React dependencies, run the tests, build the project, and deploy the application to S3. 
Let’s start by injecting the environment variables:

.github/workflows/deploy-frontend.yml

jobs:

 build-test-deploy:

   name: Tests

   runs-on: ubuntu-latest

   defaults:

     run:

       working-directory: ./social-media-react

   steps:

     - uses: actions/checkout@v2

     - name: Injecting environment variables

       run: echo "REACT_APP_API_URL=${{ secrets.API_URL }}"

            >> .env



Deploying Our React App on AWS356

We can now add the commands to install the dependencies, run the tests, and build the application:

 .github/workflows/deploy-frontend.yml

     - name: Installing dependencies

       run: yarn install

     - name: Running tests

       run: yarn test

     - name: Building project

       run: yarn build

And we can add the AWS credentials action to configure the AWS credentials in the workflow and 
run the command to deploy to S3:

.github/workflows/deploy-frontend.yml

     - name: Configure AWS Credentials

       uses: aws-actions/configure-aws-credentials@v1

       with:

         aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID

                             }}

         aws-secret-access-key:

           ${{ secrets.AWS_SECRET_ACCESS_KEY }}

         aws-region: us-west-1

     - name: Deploy to S3 bucket

       run: aws s3 sync ./build/ s3://postagram --delete

In the last command, we are uploading the content of the build directory to the Postagram bucket. 
While using this configuration, ensure to use the name of your S3 bucket. The GitHub actions file is 
written and can be deployed. Commit the changes and push them to the GitHub repository.

Congratulations! You have deployed a React application to AWS S3 using GitHub Actions.



Summary 357

We have successfully deployed the full-stack application we have been building in this book. We have 
deployed the Django API application on an AWS instance, deployed the React frontend on AWS S3, and 
automated CI/CD pipelines using GitHub Actions. However, before going fully live, we need to make 
some optimization on the backend and the frontend, secure the deployed version of the applications 
on AWS using HTTPS, and talk more about caching and SQL query optimization.

Summary
In this chapter, we have deployed the frontend React application on AWS. We have explored the AWS 
S3 service created and developed by AWS for storing objects on the internet. We have learned how 
to add environment variables to a React application but also how to have a production-ready bundle 
by building the application.

The production bundle has been used for deployment on AWS S3 using a bucket and configuring 
the bucket for static website hosting. And to make the deployment process smooth, we have created 
a GitHub action to automate the CI/CD pipeline for the React frontend project from building and 
testing to deploying the application on AWS S3.

In the next chapter, we will focus on the optimization of the Django API and the React frontend by 
optimizing queries, adding caching, adding a logout endpoint, and securing the communication 
between servers and the client using HTTPS.

Questions
1.	 What is AWS S3?

2.	 How to create an IAM user on AWS?

3.	 What is the command used to build a React application?

4.	 Where are the environment variables in a Node.js project retrieved from?





16
Performance, Optimization, 

and Security

In the previous chapters of the book, we have created a full stack application from scratch, starting with 
building and creating a REST API using Django and Django REST Framework and then creating a web 
interface with React to communicate with the API we created. We have also deployed applications on 
services such as AWS EC2 and AWS S3. However, we need to further investigate some important aspects 
of having an application deployed on the internet, such as performance checks, query optimization, 
frontend optimization, and finally, security aspects.

In this chapter, we will learn how to create a performant API with fewer SQL queries and faster API 
responses, how to serve the API and the React frontend over HTTPS using AWS CloudFront, and 
how to log out users using the API. In this chapter, we will cover the following points:

•	 Revoking JWT tokens

•	 Adding caching

•	 Optimizing the deployment of a React application

•	 Securing deployed applications with HTTPS with AWS CloudFront

Technical requirements
For this chapter, you need to have an active AWS account with access to services such as S3, 
EC2, and CloudFront. You can also find the code for this chapter at: https://github.com/
PacktPublishing/Full-stack-Django-and-React/tree/chap16.

Revoking JWT tokens
In this book, we have implemented an authentication system using JSON Web Tokens (JWTs), 
and because it is a stateless authentication system, most of the authentication flow is handled by the 

https://github.com/PacktPublishing/Full-stack-Django-and-React/tree/chap16
https://github.com/PacktPublishing/Full-stack-Django-and-React/tree/chap16


Performance, Optimization, and Security360

frontend. If we want to log the user out of the Postagram React application, we must clear the tokens 
from the local storage of the browser, and the user is automatically redirected to the login page. But 
even if the tokens are deleted from the browser, they are still active.

The refresh tokens have a longer life period, so if a hacker gets their hands on a refresh token, they 
can still request access tokens and make HTTP requests using someone else’s identity. To avoid that, 
we will add a logout feature to invalidate access and refresh tokens from the server side.

The package used to add JWT authentication on the Django REST API (djangorestframework-
simplejwt) supports blacklisting tokens, and that is the perfect feature we need here. Let’s set up 
the required configurations for the logout feature, and let’s add the feature to the Django REST API.

Adding a logout endpoint

In this section, we will write some code on the Django application to add an endpoint for logout:

1.	 In the settings.py file of the project, add the following entry to the INSTALLED_APPS list:

CoreRoot/settings.py

...

"corsheaders",

"rest_framework_simplejwt.token_blacklist",

...

2.	 After that, create a file called logout.py in the core/auth/viewsets directory. This 
file will contain the code for the viewsets and the logic to blacklist a token.

3.	 In this file, add the required imports and define the LogoutViewSet class:

core/auth/viewsets/logout.py

from rest_framework_simplejwt.tokens import RefreshToken, 
TokenError

from rest_framework import viewsets, status, permissions

from rest_framework.exceptions import ValidationError

from rest_framework.response import Response

class LogoutViewSet(viewsets.ViewSet):

   authentication_classes = ()

   permission_classes = (permissions.IsAuthenticated,)

   http_method_names = ["post"]



Revoking JWT tokens 361

The logout endpoint will only accept POST requests, as the client will be required to pass a 
refresh token within the body of the POST request. We also specify that only authenticated 
users have permission to access this endpoint.

4.	 Let’s write the create method of the LogoutViewSet class:

core/auth/viewsets/logout.py

...

class LogoutViewSet(viewsets.ViewSet):

...

   def create(self, request, *args, **kwargs):

       refresh = request.data.get("refresh")

       if refresh is None:

           raise ValidationError({"detail":

             "A refresh token is required."})

       try:

           token = RefreshToken(request.data.get(

             "refresh"))

           token.blacklist()

           return Response(

             status=status.HTTP_204_NO_CONTENT)

       except TokenError:

           raise ValidationError({"detail":

             "The refresh token is invalid."})

In the preceding code, we ensure that the refresh token is present in the body of the request. 
Otherwise, we raise an error. Once the verification is done, we encapsulate the blacklisting 
logic in a try/except block:

	� If the token is valid, then the token is blacklisted, and we return a response with a 204 
HTTP status code.

	� If there is an error related to the token, then the token is invalid, and we return a validation error.



Performance, Optimization, and Security362

5.	 Let’s not forget to add the newly created ViewSet in the routers.py f﻿ile and register a 
new route:

core/routers.py

...

from core.auth.viewsets import (

   RegisterViewSet,

   LoginViewSet,

   RefreshViewSet,

   LogoutViewSet,

)

...

router.register(r"auth/logout", LogoutViewSet, 
basename="auth-logout")

6.	 Great! To follow best practices for building software, we must add a test for the newly added 
route in the core/auth/tests.py file:

core/auth/tests.py

...

def test_logout(self, client, user):

   data = {"username": user.username,

           "password": "test_password"}

   response = client.post(self.endpoint + "login/",

                          data)

   assert response.status_code == status.HTTP_200_OK

   client.force_authenticate(user=user)

   data_refresh = {"refresh":

     response.data["refresh"]}

   response = client.post(self.endpoint + "logout/",

     data_refresh)

   assert response.status_code ==

     status.HTTP_204_NO_CONTENT



Revoking JWT tokens 363

In the preceding code, we log in to retrieve a refresh token and force the authentication for 
the user so we can access the logout endpoint. After that, we ensure that we have returned the 
right status code when the logout is successful.

7.	 Run the tests using the pytest command. If you are using Docker, then you can run the tests 
using this command:

 docker-compose exec -T api pytest

With the logout endpoint ready, we can now make some modifications to the authentication logic 
(mostly the logout logic) in the React application.

Handling the logout with React

We have already handled the logout on the React application to a certain extent by just deleting the 
tokens from the local storage. There is nothing big to modify here, we will just add a function to make 
a request to the API, and if this request is successful, we will delete the tokens and the user from 
the local storage of the browser. The current logout logic on the React application is handled in the 
NavigationBar component:

src/components/NavBar.jsx

...

             <NavDropdown.Item

               onClick={userActions.logout}>

               Logout

             </NavDropdown.Item>

...

Inside the useActions Hook function, let’s tweak the logout method to make an API call before 
deleting the user:

src/hooks/user.actions.js

...

 // Logout the user

 function logout() {

   return axiosService

     .post(`${baseURL}/auth/logout/`,

           { refresh: getRefreshToken() })

     .then(() => {



Performance, Optimization, and Security364

       localStorage.removeItem("auth");

       navigate("/login");

     });

 }

Once it is done, let’s create a function in the NavigationBar component to handle the cases when 
there is an error from the API. We will display a toast HTML bloc on the page with the error message:

src/components/NavBar.jsx

import React, { useContext } from "react";

import { Context } from "./Layout";

...

function NavigationBar() {

 const { setToaster } = useContext(Context);

 const userActions = useUserActions();

 const user = getUser();

 const handleLogout = () => {

   userActions.logout().catch((e) =>

     setToaster({

       type: "danger",

       message: "Logout failed",

       show: true,

       title: e.data?.detail | "An error occurred.",

     })

   );

 };

...

Great! Our full stack application now supports logout. In the next section, we will discuss a recurrent 
topic when deploying a project online, caching.



Adding caching 365

Adding caching
In software computing, caching is the process of storing copies of files in a cache so they can be 
accessed more quickly. A cache is a temporary storage location that stores data, files, and information 
concerning software that is regularly requested.

A great example and explanation of caching comes from Peter Chester, who asked the audience at one 
of his speeches: “What’s 3,485,250 divided by 23,235?” Everyone fell silent for a moment, but someone 
pulled a calculator and yelled out the answer “150!”. Then, Peter Chester asked the same question again, 
and this time, everyone was able to answer the question immediately.

This is a great demo of the concept of caching: The computation is only done once by the machine and 
then saved in quick memory for faster access.

It is a concept used widely by companies and primarly social media websites where millions of users 
access the same posts, videos, and files. It would be very primitive to hit the database whenever millions 
of people want to access the same information. For example, if a tweet is gaining traction on Twitter, 
it is automatically moved to cache storage for quick access. And, if you have an influencer such as 
Kim Kardashian posting a picture on Instagram, you should expect a lot of requests for this picture. 
Thus caching can be useful here to avoid thousands of queries on the database.

To recapitulate, caching brings the following benefits:

•	 Reduced load time

•	 Reduced bandwidth usage

•	 Reduced SQL queries on databases

•	 Reduced downtime

Now that we have an idea about caching and its benefits, we can implement the concept using Django 
and even Docker. But before that, let’s quickly discuss the complexity caching brings to your application.

The cons of caching

You already know the advantages of using caching, mostly if your application is scaling or you want 
to improve load time and reduce costs. However, caching introduces some complexity to your system 
(it can also depend on the type of application you are developing). If your application is based on 
news or feeds, you might be in trouble, as you will need to define a good architecture for caching.

On the one hand, you have the chance to reduce load times by showing your users the same content 
for a period, but at the same time, your users might miss updates and maybe some important updates. 
Here, cache invalidation comes to the rescue.



Performance, Optimization, and Security366

Cache invalidation is the process of declaring cached content as invalid or stale. The content is 
invalidated, as it is no longer marked as being the most up-to-date version of a file. There are some 
methods available to invalidate a cache, as follows:

•	 Purge (flush): Cache purging instantly removes the content from the cache. When the content 
is requested again, it is stored in the memory cache before returning it to the client.

•	 Refresh: A cache refresh consists of refreshing the same content from the server and replacing 
the content stored in the cache with the new version fetched from the server. This is done in 
the React application using state-while-revalidate (SWR). Each time a post is created, we call 
a refresh function to fetch data again from the server.

•	 Ban: A cache ban does not remove content from the cache immediately. Rather, the content is 
marked as blacklisted. Then, when the client makes a request, it is matched with the blacklist 
content, and if a match is found, new content is fetched again and updated in the memory 
cache before returning to the client.

With the cons of caching and how to invalidate the cache understood, you are well equipped to add 
caching to the Django application. In the next section, let’s add caching to the Django API of Postagram.

Adding caching to the Django API

In the previous paragraphs, we have explored caching, its advantages, and the cons of the concept. 
Now, it’s time to implement caching within our Django application. Django provides useful support 
for caching, which makes the configuration of caching within Django straightforward. Let’s start by 
making the required configurations depending on your environment.

Configuring Django for caching

Using caching within Django requires configuring a memory cache. For the quickest read and write 
access, it is better to use a different data storage solution from SQL databases as SQL databases are 
known to be slower than memory databases (again, it depends on your needs). In this book, we will 
use Redis. Redis is an open source, in-memory data store used as a database, cache, streaming engine, 
and message broker.

We’ll review the configurations you need to make to start using Redis in your Django project, whether 
you are using Docker or not. However, for the deployment, we’ll use Docker for configuring Redis.

So, if you are not going to use Docker, you can install Redis using the following link: https://
redis.io/download/.

https://redis.io/download/
https://redis.io/download/


Adding caching 367

Important note
If you are working in a Linux environment, you can check whether the service is running using 
the sudo service redis-server status command. If the service is not active, use 
the sudo service redis-server start command to start the Redis server. If you 
are using Windows, you will need to install or enable WSL2. You can read more at: https://
redis.io/docs/getting-started/installation/install-redis-on-
windows/.

After the installation on your machine, you can configure caching in Django using the CACHES setting 
in the settings.py file of the Django project:

CoreRoot/settings.py

...

CACHES = {

    'default': {

        'BACKEND': 'django_redis.cache.RedisCache',

        'LOCATION': 'redis://127.0.0.1:6379/1',

        'OPTIONS': {

            'CLIENT_CLASS':

              'django_redis.client.DefaultClient',

        }

    }

}

This configuration will require the installation of a Python package called django-redis. Install 
it by running the following command:

pip install django-redis

If you are working with Docker, you just need to add the following configurations:

1.	  Add the django-redis package to the requirements.txt file:

requirements.txt

django-redis==5.2.0

https://redis.io/docs/getting-started/installation/install-redis-on-windows/
https://redis.io/docs/getting-started/installation/install-redis-on-windows/
https://redis.io/docs/getting-started/installation/install-redis-on-windows/


Performance, Optimization, and Security368

2.	 Add the docker-compose.yaml configuration. We will add a new image in the Docker 
configuration to make sure that the Django application requires redis-server to be ready 
before the API service starts running:

docker-compose.yaml

services:

 redis:

   image: redis:alpine

…

api:

...

 depends_on:

  - db

  - redis

...

3.	 Great! Add the following custom backend in the settings.py file of the Django project:

CoreRoot/settings.py

CACHES = {

   "default": {

       "BACKEND": "django_redis.cache.RedisCache",

       "LOCATION": "redis://redis:6379",

       "OPTIONS": {

           "CLIENT_CLASS":

             "django_redis.client.DefaultClient",

       },

   }

}

You will notice here that we are using redis as the host instead of 127.0.0.1. This is 
because, with Docker, you can use the name of the service as a host. This is a better solution; 
otherwise, you will have to configure a static IP address for the services.

Important note
If you want to learn more about assigning a static IP address to your containers with Docker, 
you can read the following resource: https://www.howtogeek.com/devops/how-
to-assign-a-static-ip-to-a-docker-container/.

https://www.howtogeek.com/devops/how-to-assign-a-static-ip-to-a-docker-container/
https://www.howtogeek.com/devops/how-to-assign-a-static-ip-to-a-docker-container/


Adding caching 369

Great! Now that we have configured Django for caching, let’s build the caching system for the 
Postagram application.

Using caching on the endpoints

Caching depends a lot on the business requirements for how much time you want to cache the data. 
Well, Django provides many levels for caching:

•	 Per-site cache: This enables you to cache your entire website.

•	 Template fragment cache: This enables you to cache some components of the website. For 
example, you can decide to only cache the footer.

•	 Per-view cache: This enables you to cache the output of individual views.

•	 Low-level cache: Django provides an API you can use for interacting directly with the cache. 
It is useful if you want to produce a certain behavior based on a set of actions. For example, in 
this book, if a post is updated or deleted, we will update the cache.

Now that we have a better idea about the levels of caching Django provides, let’s define the caching 
requirements for the Postagram API.

Our requirement is if there is a delete or an update on a comment or a post, the cache is updated. 
Otherwise, we return the same information in the cache to the user.

This can be achieved in many ways. We can use Django signals or directly add custom methods to 
the manager of the model’s Post and Comment classes. Let’s go with the latter. We will surcharge 
the save and delete methods of the AbstractModel class, so if there is an update on a Post 
or Comment object, we update the cache.

Inside the core/abstract/models.py file, add the following method on top of the file after 
the imports:

core/abstract/models.py

from django.core.cache import cache

...

def _delete_cached_objects(app_label):

   if app_label == "core_post":

       cache.delete("post_objects")

   elif app_label == "core_comment":

       cache.delete("comment_objects")

   else:

       raise NotImplementedError



Performance, Optimization, and Security370

The function in the preceding code takes an application label, and according to the value of this app_
label, we invalidate the corresponding cache. For the moment, we only support caching for posts 
and comments. Notice how the name of the function is prefixed with a _. It is a coding convention 
to specify that this method is private and should not be used outside the file where it is declared.

Inside the AbstractModel class, we can surcharge the save method. Before the save method 
is executed, we invalidate the cache. It means that on operations such as create and update, the 
cache will be reset:

core/abstract/models.py

class AbstractModel(models.Model):

...

   def save(

       self, force_insert=False, force_update=False,

       using=None, update_fields=None

   ):

       app_label = self._meta.app_label

       if app_label in ["core_post", "core_comment"]:

           _delete_cached_objects(app_label)

       return super(AbstractModel, self).save(

           force_insert=force_insert,

           force_update=force_update,

           using=using,

           update_fields=update_fields,

       )

In the preceding code, we retrieve app_label from the _meta attribute on the model. If it 
corresponds to either core_post or core_comment, we invalidate the cache, and the rest of the 
instructions can proceed. Let’s do the same for the delete method:

Core/abstract/models.py

class AbstractModel(models.Model):

…

   def delete(self, using=None, keep_parents=False):



Adding caching 371

       app_label = self._meta.app_label

       if app_label i" ["core_p"st", "core_comm"nt"]:

           _delete_cached_objects(app_label)

       return super(AbstractModel, self).delete(

         using=using, keep_parents=keep_parents)

Great. The cache invalidation logic has been implemented on the models. Let’s add the logic for cache 
data retrieving on the viewsets of the core_post application and the core_comment application.

Retrieving data from the cache

The cache invalidation is ready, so we can freely retrieve data from the cache on the endpoints for the 
posts and the comments. Let’s start with PostViewSet as the portion of code that will be written 
on PostViewSet and CommentViewSet will be the same. As a small exercise, you can write the 
logic for retrieving the cache for the comments.

Inside the PostViewSet class, we will rewrite the list() method. On the Django REST framework 
(DRF) open source repository, the code looks like this:

"""List a queryset"""

def list(self, request, *args, **kwargs):

   queryset = self.filter_queryset(self.get_queryset())

   page = self.paginate_queryset(queryset)

   if page is not None:

       serializer = self.get_serializer(page, many=True)

       return self.get_paginated_response(serializer.data)

   serializer = self.get_serializer(queryset, many=True)

   return Response(serializer.data)

In the preceding code, a queryset call is made to retrieve the data, and then this queryset call 
is paginated, serialized, and returned inside a Response object. Let’s tweak the method a little bit:

core/post/viewsets.py

class PostViewSet(AbstractViewSet):

...

   def list(self, request, *args, **kwargs):



Performance, Optimization, and Security372

       post_objects = cache.get("post_objects")

       if post_objects is None:

           post_objects =

             self.filter_queryset(self.get_queryset())

           cache.set("post_objects", post_objects)

       page = self.paginate_queryset(post_objects)

       if page is not None:

           serializer = self.get_serializer(page,

                                            many=True)

           return self.get_paginated_response(

             serializer.data)

       serializer = self.get_serializer(post_objects,

                                        many=True)

       return Response(serializer.data)

In the preceding code, instead of doing a lookup on the database directly, we check the cache. If 
post_objects is None when making a query to the database, save queryset in the cache and 
finally proceed to return the cache objects to the user.

As you can see, the process is very simple. You just need to have a robust caching strategy. You can 
do the same for CommentViewSet as an exercise. You can check the code at this link to compare 
your results: https://github.com/PacktPublishing/Full-stack-Django-and-
React/blob/chap16/core/comment/viewsets.py.

In this section, we have explored the benefits of caching, and we have implemented caching in the 
Django application. In the next section, we will see how to optimize the React build using tools such 
as webpack.

Optimizing the React application build
In the previous chapter, we successfully built the React application and made the deployment on AWS 
S3. However, we could have done better in terms of optimization and performance. In this section, we 
will use the famous webpack module builder to optimize the React build of Postagram.

https://github.com/PacktPublishing/Full-stack-Django-and-React/blob/chap16/core/comment/viewsets.py
https://github.com/PacktPublishing/Full-stack-Django-and-React/blob/chap16/core/comment/viewsets.py


Optimizing the React application build 373

There are a lot of advantages of using webpack in React:

•	 It speeds up development and build times: Using webpack in development enhances the 
speed of fast reload of React.

•	 It provides minification: Webpack automatically minimizes the code without changing the 
functionalities. This results in a faster load on the browser side.

•	 Code splitting: Webpack converts JavaScript files into modules.

•	 It eliminates dead assets: Webpack only builds the images and CSS that your code uses and needs.

Let’s start by integrating webpack into the project.

Integrating webpack

Follow these steps to integrate webpack into your project:

1.	 Inside the React project, run the following command to add the webpack and webpack-
cli packages:

yarn add -D webpack webpack-cli

2.	 Once the installation is done, modify the package.json scripts:

package.json

...

"scripts": {

    "start": "react-scripts start",

    "build": "webpack --mode production",

    "test": "react-scripts test",

    "eject": "react-scripts eject"

  },

...

Also, we need to install Babel, which is a JavaScript compiler that converts next-generation 
JavaScript code into browser-compatible JavaScript.

3.	 In the React project, Babel will convert the React components, the ES6 variables, and JSX code 
to regular JavaScript so old browsers can render the components correctly:

yarn add -D @babel/core babel-loader @babel/preset-env @
babel/preset-react

babel-loader is the webpack loader for Babel, babel/preset-env compiles with 
JavaScript to ES5, and babel/preset-react is for compiling JSX to JS.



Performance, Optimization, and Security374

4.	 Then create a new file called .babelrc:

{

  "presets": ["@babel/preset-env",

              "@babel/preset-react"]

}

5.	 Then create a new file called webpack.config.js. This file will contain the configurations 
for webpack. Before writing the configuration, add some plugins for optimizing HTML, CSS, 
and copy files:

yarn add -D html-webpack-plugin html-loader copy-webpack-
plugin

6.	 And then add the following configuration on webpack.config.js:

webpack.config.js

const path = require("path");

const HtmlWebPackPlugin = require("html-webpack-plugin");

const CopyPlugin = require("copy-webpack-plugin");

const webpack = require("webpack");

module.exports = {

 module: {

   rules: [

     {

       test: /\.(js|jsx)$/,

       exclude: /node_modules/,

       use: {

         loader: "babel-loader",

       },

     },

     {

       test: /\.css$/i,

       use: ["style-loader", "css-loader"],

     },

   ],

 },

};



Optimizing the React application build 375

The preceding code above tells webpack to send all files in .js and .jsx through babel-
loader.

7.	 Let’s add another configuration called resolve to generate all the possible paths to the module. 
For example, webpack would then proceed to look up each of those paths until it finds a file:

webpack.config.js

...

 resolve: {

   modules: [path.resolve(__dirname, "src"),

             "node_modules"],

   extensions: ["", ".js", ".jsx"],

 },

};

8.	 Let’s add the configuration for the plugins we will use in this project:

webpack.config.js

...

 plugins: [

   new HtmlWebPackPlugin({

     template: "./public/index.html",

     filename: "./index.html",

   }),

   new CopyPlugin({

     patterns: [

       {

         from: "public",

         globOptions: {

           ignore: ["**/*.html"],

         },

       },

     ],

   }),

   new webpack.DefinePlugin({ process: {env: {}} }),

 ],

 output: {



Performance, Optimization, and Security376

   publicPath: '.',

 },

};

In the preceding code, we have added plugin configurations for the following:

	� html-loader: This will send the HTML files through html-loader

	� copy: This will copy the content of the public file to the dist file

	� define: This plugin declares the process object so we can access environment variables 
in the production environment

9.	 Once it is done, run the build command:

yarn build

Webpack will take control and build the React application in the dist directory:

Figure 16.1 – The content of the dist directory

Great! You can push the changes made to GitHub, and the code will be deployed on AWS S3. To make 
the testing and build faster, we will change the package manager from yarn to pnpm. The next section 
is optional, but it will help you with a faster build for your React application.

Using pnpm

pnpm is a replacement for the npm JavaScript package manager, which is built on top of npm, and is 
much faster and more efficient. It provides advantages such as disk space efficiency, improved speed, 
and better security. The pnpm package manager is the one to use if you want to spend less time building 
and making cuts to the minutes spent on the GitHub Actions.



Optimizing the React application build 377

Let’s install pnpm on our machine:

npm install -g pnpm

After that, we can generate a pnpm-lock.yaml file. We can generate this file from another manager’s 
lock file, in our case, from the yarn.lock file:

pnpm import

Figure 16.2 – Result of pnpm import

A new file will be generated in the directory of the React project. Then, modify the deploy-
frontend.yml file to configure for pnpm usage:

.github/workflows/deploy-frontend.yml

jobs:

 test:

   name: Tests

   runs-on: ubuntu-latest

   defaults:

     run:

       working-directory: ./social-media-react

   steps:

     - uses: actions/checkout@v3

     - uses: pnpm/action-setup@v2.2.4

       with:

         version: 7

     - name: Use Node.js 16

       uses: actions/setup-node@v3

       with:

         node-version: 16



Performance, Optimization, and Security378

         cache: 'pnpm'

         cache-dependency-path:

           ./social-media-react/pnpm-lock.yaml

After that, just replace yarn with pnpm in the deploy-frontend.yml file. You will notice a 
faster build for the React application.

In this section, we have covered pnpm and webpack and how they can boost the performance of the 
React application. In the next section, we will learn how to secure HTTP requests using AWS CloudFront.

Securing deployed applications with HTTPS with AWS 
CloudFront
When we have deployed the backend and the frontend on AWS S3, the applications are served through 
HTTP. Basically, our full stack application is not secured on the internet, and we are vulnerable. 
According to the Open Web Application Security Project (OSWAP) description of Insecure Transport 
(https://owasp.org/www-community/vulnerabilities/Insecure_Transport), 
our application is vulnerable to the following attacks:

•	 Attacks targeting login credentials, session IDs, and other sensitive information

•	 Bypassing Secure Sockets Layer (SSL) protocol by entering HTTP instead of HTTPS at the 
beginning of the URL in the browser

•	 Sending non-protected URLs of authentication pages to users to trick them into authenticating 
via HTTP

AWS EC2 and AWS S3 don’t serve content through HTTPS by default. But AWS also has a service 
called CloudFront that can help you serve your applications via HTTPS, plus it also makes the content 
available globally.

AWS CloudFront is a content delivery network service, and in the next section, we will configure the 
AWS S3 bucket hosting the React application with AWS Cloudfront.

Configuring the React project with CloudFront

Follow these steps to configure our React project with CloudFront:

1.	 On the AWS dashboard, select the CloudFront service in the AWS console and click on 
Create Distribution.

https://owasp.org/www-community/vulnerabilities/Insecure_Transport


Securing deployed applications with HTTPS with AWS CloudFront 379

2.	 Copy the origin of your website hosted on AWS and paste it into the Origin domain name field:

Figure 16.3 – Origin configuration of the CloudFront distribution



Performance, Optimization, and Security380

3.	 Next, configure the default cache behaviors:

Figure 16.4 – Viewer configuration of the CloudFront distribution

4.	 Once the cache configuration is done, create the distribution. AWS will take some time to 
create the distribution and once it is done, click on the distribution ID field to copy the URL:

Figure 16.5 – List of the CloudFront distribution

5.	 Once Status changes to Enabled, click on the distribution ID field to access more details about 
the distribution and copy the distribution domain name:



Summary 381

Figure 16.6 – Details about the created CloudFront distribution

The CloudFront distribution URL will return the React application over HTTPS. Great, the React 
application is secured on the internet and well distributed worldwide. Great! We have successfully 
secured our application over HTTPS using AWS CloudFront. From now, you can build a full stack 
application with Django and React, assure code quality with tests and linting, automate continuous 
integration and continuous delivery (CI/CD) pipelines using GitHub Actions and use AWS services 
such as S3, EC2, and CloudFront to deploy and serve your web application around the world.

Summary
In this chapter, we have covered some important points about optimizations and security. We have 
implemented a logout endpoint to blacklist tokens, added caching to the Django application using 
Redis, optimized the backend build using webpack, and secured the full stack application over HTTPS 
using AWS CloudFront. And that’s the final touch of this book.

We have covered how to build a powerful and robust full stack application using Django and React. 
We have covered how to create a project from scratch, build an API secured with JWT tokens, build a 
frontend application with React and Bootstrap, and deploy the applications on AWS. We have explored 
Docker and tools such as GitHub Actions to make the development and deployment process secure, 
faster, and automated. You can now build and deploy a full stack application using Django and React!

We are now at the end of this book, and if you are looking for best practices and what to learn next, 
feel free to go through the Appendix directly after this chapter.

Questions
1.	 What is AWS CloudFront?

2.	 What are the cache invalidation strategies?

3.	 Why is logging important?





Appendix

Every successful application will eventually need to scale, and this process can cause resource issues 
and more optimization problems. In this appendix, I will list what you can read to deepen your studies 
after this book so you can become a better full stack developer.

Logging

Logging is the action of collecting information about an application as it performs different tasks 
or events. In the development process of an application, if you have a bug, you can use print() 
or console.log() to identify the issues. Even better, with DEBUG as true in Django, you have 
access to the whole traceback of a 500 error. Once your project deployed in production, this is no 
longer the case. You can implement logging in files using the default logging package provided by 
Python; Django has full support that you can explore in the official documentation at https://
docs.djangoproject.com/en/4.1/topics/logging/. If you are looking to get real-time 
notifications when you have a 500 error, you can connect your backend to services such as Sentry, 
Datadog, or Bugsnag.

Database queries optimization

The Django ORM is a very flexible and powerful tool, and it can be used well or badly. Databases are 
important in your full stack applications and the fewer queries you make, the better it is for the high 
availability of the SQL database. Django provides many methods you can study and explore if you 
need to optimize database queries. You can read more at https://docs.djangoproject.
com/en/4.1/topics/db/optimization/.

Security

If you are deploying a web application on the internet, it’s important to ensure that you have a secure 
application. In the beginning, you don’t really need a lot, but you do need to ensure that your system 
is secured against the top 10 threats listed by OWASP. You can learn more about this at the following 
link: https://owasp.org/www-project-top-ten/.

https://docs.djangoproject.com/en/4.1/topics/logging/
https://docs.djangoproject.com/en/4.1/topics/logging/
https://docs.djangoproject.com/en/4.1/topics/db/optimization/
https://docs.djangoproject.com/en/4.1/topics/db/optimization/
https://owasp.org/www-project-top-ten/




Answers

Chapter 1
1.	 A Representational State Transfer (REST) API is a web architecture and a set of constraints that 

provide simple interfaces to interact with resources, allowing clients to retrieve or manipulate 
them using standard HTTP requests.

2.	 Django is a Python web framework that enables the fast development of secure and maintainable 
websites. It follows the Model-View-Controller (MVC) architectural pattern and emphasizes 
reusability and pluggability.

3.	 To create a Django project, you need to have Django installed on your OS. Once you have it 
installed, you can use the following command to create a new Django project:

django-admin startproject DjangoProject

The preceding command will create a Django project with the name DjangoProject

4.	 Migrations are Django’s way of synchronizing changes you make to your models (adding a 
field, deleting a model, etc.) into your database.

5.	 A virtual environment in Python is a tool to keep the dependencies required by different projects 
in separate places by creating isolated python virtual environments for them. This is useful in 
case of different projects and when you want to avoid conflicting dependencies.

Chapter 2
1.	 JSON Web Token (JWT) is a JSON object meant of representing claims to be transferred 

between two parties. JWT is often used to authenticate users in REST APIs.

2.	 Django Rest Framework (DRF) is a third-party package for Django that makes it easy to build, 
test, debug, and maintain RESTful APIs written using the Django framework.

3.	 A Django model is a Python class that represents a database table, and it defines the fields and 
behaviors of the data you’re storing.

4.	 Serializers in DRF are used to convert complex data types, such as Django model instances or 
QuerySets, into JSON, XML, or other content types. Serializers also provide deserialization, 
which allows parsed data to be converted back into complex types.



Answers386

5.	 Viewsets in DRF are classes that provide actions on model-backed resources. Viewsets are 
built on top of Django’s class-based views and provide actions like list, create, update, 
and delete.

6.	 DRF routers provide a simple, quick, and consistent way of wiring viewsets to URLs. It allows 
you to automatically generate the URL conf for your API views.

7.	 A refresh token is a token that is issued by an authentication server and is used to obtain a new 
access token. Refresh tokens are used to keep the user authenticated indefinitely, by periodically 
obtaining a new access token.

Chapter 3
1.	 Some common database relationships in relational databases are:

	� One-to-one: This relationship is used when one record in a table is related to only one 
record in another table.

	� One-to-many: This relationship is used when one record in a table is related to multiple 
records in another table.

	� Many-to-many: This relationship is used when multiple records in one table are related to 
multiple records in another table.

2.	 Django REST permissions are used to control access to specific actions on specific viewsets. 
They can be used to restrict who can view, add, change, or delete data in your REST API.

3.	 In DRF, you can use the LimitOffsetPagination class to paginate the results of an API 
response. To use this class, you can include it in REST_FRAMEWORK in the settings.py 
file of your project.

4.	 To use the Django shell, you need to open the command line in the root directory of your 
Django project, and then run the following command:

python manage.py shell

Chapter 4
1.	 A nested route is a URL endpoint that represents a relationship between two or more resources. 

For example, in a social media application, you might have a route for all posts and another 
route for a specific post’s comments. The comments route would be nested within the post 
route, allowing you to access the comments for a specific post.

2.	 drf-nested-routers is a package for DRF that allows you to easily create nested routes 
for your API. It automatically creates the appropriate URLs for related resources and allows 
you to nest your views within other views.



Chapter 5 387

3.	 The partial attribute on the ModelSerializer can help you determine whether the 
user is submitting all the fields of the resource on an HTTP request for mutating like PUT, 
PATCH, or DELETE.

Chapter 5
1.	 Testing is a process of verifying that a system or software behaves in the way that it is expected 

to. Testing can be done manually or automatically.

2.	 A unit test is a test that verifies the functionality of a small and isolated piece of code, usually 
a single function or a method.

3.	 The testing pyramid is a concept that describes the balance between different types of tests 
in a software project. It suggests that most of the tests should be unit tests, which are fast and 
isolated, followed by a smaller number of integration tests, which test the interactions between 
different units of code, and a small number of end-to-end tests, which test the entire system.

4.	 Pytest is a popular testing framework for Python that makes it easy to write small, focused unit 
tests and provides many useful features such as test discovery, test parametrization, fixtures, 
and powerful and expressive assertion syntax.

5.	 A Pytest fixture is a way to provide data or set up resources that are needed for your tests. 
Fixtures are defined using the @pytest.fixture decorator and can be passed as arguments 
to test functions, allowing you to write more expressive and maintainable tests.

Chapter 6
1.	 Node.js is a JavaScript runtime built on Chrome’s V8 JavaScript engine. It allows developers 

to run JavaScript on the server side to build fast and scalable network applications. Yarn is a 
package manager for Node.js, like npm but it is faster and more secure and provides a more 
consistent experience across different environments.

2.	 Frontend development is the process of building the user interface of a software application. 
In web development, it involves using languages such as HTML, CSS, and JavaScript to create 
the visual elements, layout, and functionality of a website.

3.	 To install Node.js, you can download the installer package from the official Node.js website 
(https://nodejs.org/) and then run it.

4.	 Visual Studio Code (VS Code) is a free, open-source code editor developed and maintained 
by Microsoft. It is a popular choice among developers for its support for multiple languages, 
debugging, and integrated Git control.

5.	 In VS Code, you can install extensions by clicking on the Extensions icon in the Activity Bar 
on the side of the editor, or by typing Ctrl + Shift + X (Cmd + Shift + X on macOS) to open the 
Extensions pane. You can then search for and install any installation you need.

https://nodejs.org/


Answers388

6.	 Hot reloading is a feature that allows you to see the changes you make to your code immediately 
in the browser, without having to manually refresh the page. This makes development faster 
and more efficient, as you can see the effects of your changes in real-time.

7.	 To create a React application with create-react-app, you first need to have Node.js 
and yarn installed on your OS. Then, you can use yarn to create a new React application by 
running the following command in your terminal:

yarn create react-app my-app

Chapter 7
1.	 localStorage is an API provided by web browsers that allow developers to store key-value 

pairs of data locally on the client side. The data stored in localStorage persists even when 
the browser is closed, or the computer is restarted.

2.	 React-Router is a popular library for client-side routing in React. It allows you to declaratively 
map your application’s component structure to specific URLs, making it easy to navigate between 
pages and manage the browser history

3.	 To configure a protected route in React, you can use React-Router’s <Route> component 
along with a higher-order component (HOC) or a custom Hook that checks if the user is 
authenticated before rendering the protected component. For example:

function ProtectedRoute({ children }) {

  const user = getUser();

  return user ? <>{children}</> : <Navigate to=»/login/» 
/>;

}

4.	 A React Hook is a special function that allows you to use state and other React features in a 
functional component. Hooks were introduced in React 16.8 to make it easier to write and 
manage stateful logic in functional components.

5.	 Some examples of React Hooks are:

	� useState: allows you to add a state to a functional component.

	� useEffect: allows you to run side effects such as fetching data or subscribing to an event 
in a functional component.

	� useContext: allows you to access the context values from a functional component.



Chapter 8 389

6.	 The two rules of React Hooks are:

	� Only call Hooks at the top level. Don’t call Hooks inside loops, conditions, or nested functions.

	� Only call Hooks from React function components. Don’t call Hooks from regular 
JavaScript functions.

Chapter 8
1.	 A modal is a dialog box/pop-up window that is displayed on top of the current page. Modals 

are used to display content that requires the user’s attention or input, such as forms, images, 
videos, or alerts.

2.	 In React, a prop (short for property) is a way to pass data from a parent component to a child 
component. Props are passed as attributes on a JSX element, and they can be accessed inside 
the child component using the props object.

3.	 The children element in React is a special prop that is used to pass content between elements. 
It is used to nest UI elements inside of other elements, and it can be accessed using the props.
children property inside of the parent component.

4.	 A wireframe is a simplified visual representation of a web page or application, used to communicate 
the layout, structure, and functionality of a user interface.

5.	 The map method is an array method in JavaScript that is used to iterate over an array and create 
a new array with the results of a function applied to each element of the original array. It can 
also be used in JSX to map over an array and create a new set of elements.

6.	 The mutate method on SWR objects allows you to programmatically update the data in the 
cache, without waiting for the revalidation to happen. The mutate method triggers a re-render 
on the components that are using the data in the cache, updating the UI to reflect the new data.

Chapter 9
1.	 The useParams Hook is a built-in Hook in React Router that allows you to access the dynamic 

parameters passed in the URL of a route. It returns an object containing the key-value pairs 
of the parameters in the parameters.

2.	 In React, you can write a route that can support parameter passing by using the : syntax 
in the path of the route. For example, you can have post/:postId where postId is an 
URL parameter.

3.	 The useContext Hook is a built-in hook in React that allows you to access a context value 
within a functional component. This can be useful for sharing data across multiple components 
without having to pass props down through multiple levels of the component tree.



Answers390

Chapter 10
1.	 The FormData object is a built-in JavaScript object that allows you to construct and send 

multipart/form-data requests. It can be used to upload files or other forms of binary 
data, as well as to send key-value pairs of data. The FormData object can be passed as the 
body of an XMLHttpRequest or fetch request, and it will automatically set the appropriate 
Content-Type header.

2.	 In Django, the MEDIA_URL setting is used to specify the URL at which user-uploaded media 
files will be served.

3.	 The MEDIA_ROOT setting in Django is used to specify the filesystem path where user-uploaded 
media files will be stored.

Chapter 11
1.	 The render method of the React Testing Library (RTL) is a utility function that allows you 

to render a component and its children as a tree of DOM nodes. The render method can be 
used to test the behavior and output of a component in a real-world-like environment.

2.	 Jest is a JavaScript testing framework that allows you to write and run unit tests for JavaScript 
code, including React components.

3.	 The data-testid attribute is a special attribute that allows you to add an identifier to an 
element for the purpose of testing. This attribute can be used to query the element in a test and 
make assertions about its state or behavior.

4.	 Some drawbacks of snapshot testing are:

	� Snapshots can become stale over time as the component changes, and they need to be 
updated manually.

	� Snapshot tests can be difficult to understand, as they often show the entire component tree, 
which can be large and complex.

5.	 To trigger user events in a React test suite, you can use React Testing Library fireEvent 
and userEvent methods.

Chapter 12
1.	 In Git, a branch is a separate line of development that allows one or multiple developers to 

work on different features or bug fixes simultaneously without interfering with each other’s 
work. Branches are also used to isolate changes and make it easy to merge them back into the 
main codebase or branch.

2.	 Git is a version control system (VCS) that allows developers to track changes in their code over 
time, collaborate with others, and revert to previous versions if needed. GitHub is a web-based 
hosting service for Git repositories.



Chapter 13 391

3.	 An HTTP Host header attack is a type of web application attack that exploits a vulnerability 
in the way some web servers handle the HTTP Host header. The HTTP Host header is used to 
specify the domain name of the website that the user is trying to access. By manipulating the 
Host header, an attacker can trick a vulnerable web server into serving content from a different 
domain, potentially exposing sensitive information, or allowing the attacker to perform actions 
on the user’s behalf.

4.	 In Django, the SECRET_KEY setting is used to provide a secret key that is used to secure 
certain aspects of the Django framework, such as session management, password hashing, and 
the generation of cryptographic signatures. As it is a sensible piece of information, the value 
should be stored using environment variables.

Chapter 13
1.	 Docker is a platform for developing, shipping, and running applications that uses containerization 

technology to package an application and its dependencies into a single, portable container 
that can run on any platform that supports Docker. Containers provide a lightweight, isolated 
environment for running applications, which makes it easy to move them between development, 
staging, and production environments.

2.	 Docker Compose is a tool for defining and running multi-container Docker applications. It 
allows you to use a single docker-compose.yml file to configure and start multiple services 
(containers) that make up your application. This makes it easy to manage the dependencies 
and configuration of a complex application.

3.	 The main difference between Docker and Docker Compose is that Docker is a platform for 
creating, shipping, and running containers, while Docker Compose is a tool for defining and 
running multi-container applications. Additionally, Docker Compose relies on Docker to 
create and run the containers.

4.	 Virtualization is a technology that allows you to run multiple operating systems on a single 
physical machine, by creating virtual machines that emulate the hardware of a physical computer. 
Each virtual machine runs its operating system, and applications running inside the virtual 
machines are isolated from each other. Containerization is a technology that allows you to 
package an application and its dependencies into a single, portable container that can run on 
any platform. Containers are lightweight, isolated environments that share the host operating 
system kernel, which makes them faster and more efficient than virtual machines.

5.	 An environment variable is a value that can be passed to an operating system or application 
at runtime. It allows you to configure system-wide settings or to pass information to an 
application without hard-coding it in the source code. Environment variables can be used to 
set configuration options, such as the location of a file or the value of a secret key, and they can 
be easily changed without modifying the application’s code.



Answers392

Chapter 14
1.	 The differences between Continuous Integration (CI) and Continuous Deployment (CD) are:

	� CI is a software development practice in which developers integrate code into a shared 
repository multiple times a day. Each integration is verified by an automated build and test 
process to catch errors early.

	� CD is an extension of CI that goes a step further and automatically deploys the code changes 
to production after they pass the automated build and test process. The goal of CD is to make 
sure that the code is always in a releasable state and to shorten the time between code being 
written and it being available to end-users.

2.	 GitHub Actions is a feature provided by GitHub that allows developers to automate their 
software development workflows, such as building, testing, and deploying code. These workflows 
are defined in YAML files and can be triggered by various events such as a push to a branch, 
a pull request, or a scheduled time. Developers can use GitHub Actions to automate their 
CI/CD workflows.

3.	 CD is the practice of automatically building, testing, and deploying code changes to different 
environments after they pass the automated build and test process. It is an extension of CI, and 
the goal is to ensure that the code changes are always in a releasable state, so that they can be 
deployed to production at any time.

Chapter 15
1.	 Amazon Simple Storage Service (S3) is an object storage service provided by Amazon Web 

Services (AWS) that allows you to store and retrieve large amounts of data.

2.	 To create an Identity and Access Management (IAM) user on AWS, you can use the AWS 
Management Console. Here’s an example of how to create an IAM user using the AWS 
Management Console:

I.	 Log in to the AWS Management Console

II.	 Open the IAM console.

III.	 In the Navigation pane, choose Users and then choose Add user.

IV.	 Type the username and select the AWS access type.

V.	 Choose Permissions.

VI.	 Choose Add user to a group, create group, or Add existing groups as appropriate.

VII.	 Choose Tags.

VIII.	 Choose Review.

IX.	 Choose Create user.



Chapter 16 393

3.	 The command used to build a React application is react-scripts build. This command 
will take all the code and assets in your application and create a production-ready build that 
can be deployed on a web server.

4.	 In a Node.js or more specifically a React project, environment variables are typically retrieved 
using the process.env object. For example, you can access the value of an environment 
variable named VARIABLE using process.env.VARIABLE.

Chapter 16
1.	 Amazon CloudFront is a content delivery network (CDN) provided by AWS. It allows you 

to distribute content, such as web pages, images, videos, and more, to users across the world 
by caching the content on servers located in various geographic locations. CloudFront can 
be used to deliver content from a variety of origins, such as an S3 bucket or a custom origin.

2.	 There are several strategies for cache invalidation in Django:

	� Per-site cache: This enables you to cache your entire website.

	� Template fragment cache: This enables you to cache some components of the website. For 
example, you can decide to only cache the footer.

	� Per-view cache: This enables you to cache the output of individual views.

	� Low-level cache: Django provides an API you can use for interacting directly with the cache. 
It is useful if you want to produce a certain behavior based on a set of actions.

3.	 Logging is important because it allows you to track the activity of your system, troubleshoot 
issues, and gather data for analysis. Logs provide a detailed history of what has happened in 
your system, including events such as user actions, system failures, and performance metrics. 
This information can be used to identify trends, detect patterns, and troubleshoot problems.





Index

A
abstract class  53
AbstractSerializer

writing  55-57
access token  21
admin user  68
Alpine Linux project  317
Amazon Machine Image (AMI)  302
anonymous user  68
Application Programming Interface (API)  6

REST APIs  7, 8
software interface  6
technical specification  6

Atom  125
authentication

components testing  274-277
used, for writing Django 

viewsets test  107-109
authentication flow  149

access token  150
code, refactoring  171
refresh token  150

automated deployment
backend, configuring for  335

automated testing  93, 96
advantages and disadvantages  96

AWS CloudFront
deployed applications, securing 

with HTTPS  378
AWS Simple Storage Service (S3)  346

React application, deploying on  349-353

B
backend  4

configuring, for automated deployment  335
backend developer

responsibilities  5, 6
backend development  4, 5

application  5
database  5
server  5

Brackets  125
browser

debugging plugin, installing  131, 132
build

creating, of Postagram  346

C
cache  365

ban  366
data, retrieving from  371, 372



Index396

purging  366
refresh  366

caching
adding  365
adding, to Django API  366
cons  365, 366
Django, configuring for  366-368
using, on endpoints  369, 370

caching levels
low-level cache  369
per-site cache  369
per-view cache  369
template fragment cache  369

Cascade Style Sheets (CSS)  121
chrome web store, extensions

reference link  131
claims  20
client-server architecture  4
CloudFront

React project, configuring with  378-381
comment

creating  221-226
deleting 91, 92, 230
liking  237-239
listing  226-229
updating  231

Comment model
adding  79
comment, creating in Django shell  80
comment, deleting  91, 92
comment, updating  89-91
nested routes, creating  84, 85
rules  78
test, writing  105
writing  78

comment resource
routes, nesting for  82, 83

comment serializer
writing  80-82

comments feature
testing, with Insomnia  87-89

CommentViewSet
used, for writing Django 

viewsets test  112-117
CommentViewSet class

writing  85-87
components  122
component testing, React  267

frontend testing  268
const keyword  138, 139
containerization  316
Context API  143
continuous deployment (CD)

example  332
continuous integration and continuous 

delivery (CI/CD)  381
continuous integration and continuous 

deployment (CI/CD)  312
workflow, defining  333

continuous integration (CI)  332
workflow  332

controlled component  145, 147
CreatePost component

adding, to home page  193-195
testing  282-285

Create, Read, Update and Delete (CRUD)  24
cross-origin resource sharing (CORS)

configuring  136-138
errors  353

custom Hook
code, writing for  172-175



Index 397

D
database

configuring  14
connecting, to Django  16, 17
Postgres configuration  15, 16

database queries optimization  383
deployed applications, HTTPS

securing, with AWS CloudFront  378
Django  8-10

configuration, for caching  366-368
database, configuring  14
environment variables, configuring  324-327
installing  11
project, creating  11-13
project structure  14
testing  97
virtual environment, creating  10, 11
work environment, setting up  10

Django API
caching, adding to  366

Django application
Docker image, adding  316-320
dockerizing  316

Django Manager  24
Django models  23

Post model, test writing  103-105
tests, writing  101
tests, writing for Comment model  105
tests, writing for User model  102, 103

Django ORM
versus SQL queries  23, 24

Django project
server, configuring  307

Django Rest Framework (DRF)  32, 371
Django shell  59

django_shell_plus package  59
Django viewsets

test, writing  106
test, writing for authentication  107-109
test, writing for CommentViewSet  112-117
test, writing for PostViewSet  109-112
test, writing for UserViewSet class  117, 118

Docker  315
advantages  316

Docker Compose
using, for multiple containers  320

docker-compose.yaml file
writing  321-324

Docker containers
launching  328, 329

Dockerfiles  316
Docker image

adding  316- 320
Don’t Repeat Yourself (DRY)  171

E
ECMAScript 2015  138
Elastic Compute Cloud (EC2) instance  301

configuring  337
creating  301-306
deploying script, adding  340-343
SSH credentials, generating  338-340
web application deployment errors  310-312

environment variables
configuring, in Django  324-327

ES6 (ECMAScript 6)  138
ES7+ React/Redux/React-Native/

JS snippets extension  126
ESLint extension  126



Index398

F
File Transfer Protocol (FTP)  8
Firefox, extensions

reference link  131
first test

running  270-273
foreign key  52
forms

handling  145-147
frontend  4

development  121, 122
functional testing  95
function call  6
functions

using, in code  175-177

G
Git  297
GitHub  299

code, uploading on  299-301
GitHub Actions  333

deployment, automating with  354
file, adding  335-337
workflow file, writing  334-356

Git repository
creating  297, 298

Google Cloud Platform (GCP)  301

H
has_liked() method

adding, to PostSerializer  73
home page

CreatePost component, adding  193-195
Layout component, using  186

posts, listing on  196
Post component, adding to  201-206

Hook  171, 172
rules  172

HTML form  122
components  123

HTTP Host header attack  312
reference link  312

HTTP request client
installing  18

HyperText Markup Language (HTML)  121

I
IDE WebStorm  125
indent-rainbow  128
Insomnia  36

used, for testing comments feature  87
integration tests  97

J
JavaScript  122
Jest  268, 269
JSON Web Tokens (JWTs)

header  20
in authentication  21
logout endpoint, adding  360-363
payload  20
revoking  360
signature  21

JSX styling  140, 141

K
key/value pairs  260



Index 399

L
Layout component

adding  184, 185
back button, adding  216, 217
using, on home page  186

let keyword  139
like feature

adding  71, 72
likes_count field

adding, to PostSerializer  73
LoadRunner  96
logging  383
login feature

adding  45-48
login page  165

adding  165-169
registering  169, 170

Long-Term Support (LTS)
download link  123

M
maintenance testing  95
manual testing  95, 96

advantages and disadvantages  95
memoization  144
minor refactoring  209-211
models, writing with Django

advantages  24
Model-View-Controller (MVC)  8
Model-View-Template (MVT) 

architecture  9, 33

N
Navbar component

adding  181-184

NGINX configuration
writing  327, 328

Node.js  123
installing  123-125

non-functional testing  95

O
object-relational mapping (ORM)  13, 23
Open Web Application Security 

Project (OSWAP)  378

P
permissions

adding  67-69
post

creating  186-190
updating  206, 207

Postagram
build, creating of  346

Post component
adding, to homepage  201
localStorage object, mocking  278
testing  278
tests, writing  280, 281

post fixtures
writing  279, 280

Postgres  321
PostgreSQL  15

configuring  15, 16
download link  15
features  15

Postgres server
configuring  308
deploying  309, 310



Index400

Post model
abstraction  53-55
AbstractSerializer, writing  55, 56
AbstractViewSet, writing  56, 57
creating  52
designing  52, 53
test, writing  103-105
writing  57-60

posts
deleting  69-71
updating  69-70

Post serializer
has_liked field, adding  73-75
likes_count field, adding  73, 74
writing  60, 61

Post ViewSets
like and dislike actions, adding  75, 76
Post route, adding  63-66
Post serialized object, rewriting  66, 67
used, for writing Django 

viewsets test  109-112
user types  109
writing  61-63

Prettier code formatter  127
production build  346
profile page

default avatar, configuring  249-251
listing  242-246
ProfileDetails component, writing  251-256
user information, displaying  247-249

project
organizing  21, 22

props
versus states  141, 142

protected routes  154
protected route wrapper

creating  154-156

psycopg  15
Pytest

reference link  97
Python latest version, for Windows

download link  10

R
React  122, 123

component testing  267
logout, handling with  363, 364

React application  345
application code  123
building  347-349
build tools  123
creating  128-131
deploying  346
deploying, on AWS S3  349-353
environment variables, adding  347-349
running  128-131
testing in  268
testing tools  123

React application build
optimizing  372
pnpm, using  376-378
webpack, integrating  373-376

React Bootstrap
adding  133

React Context  210
React features  138
React project

configuring  132
configuring, with CloudFront  378-381
creating  123
debugging plugin, installing 

in browser  131, 132



Index 401

home page, creating  134-136
Node.js, installing  123-125
VS Code extensions, adding  126-128
VS Code, installing  125, 126

React Router
adding  132, 133

Redis
installing link  366

refresh logic feature  48-50
refresh token  21
registered and active user  68
registration page

adding  156-162
creating  156
route, registering  163, 165

Remote Procedure Call (RPC)  6
remove_like() method

adding  73
Representational State Transfer (REST)  6, 7
requests service

writing  150-154
RESTful APIs  6, 7

HTTP requests/methods using  7, 8
routers  35

adding  35-38
RTL render method

extending  273, 274

S
S3 bucket  346
SECRET_KEY  325
Secure Password Generator

reference link  16
Secure Shell (SSH)  303
Secure Sockets Layer (SSL)  305, 378
security  383

Selenium  96
signing algorithms  20
Simple Object Access Protocol (SOAP)  7
Simple Storage Service (S3)  343
SinglePost component

creating  217-221
snapshot testing  289

test case  289-291
software deployment

backend  4
benefits  296
frontend  4
overview  3, 4

software testing
benefits  94
need for  94
types  95

SQL  23
sqlite3  14
SQL queries

versus Django ORM  23, 24
states

versus props  141, 142
state-while-revalidate (SWR)  366
string interpolation  139
subroutine call  6
superuser  25

T
template literals  139, 140
test-driven development (TDD)  97

advantages  99
testing  93, 94
testing environment

configuring  99
test, writing  100, 101



Index402

testing fixtures
writing  269, 270

testing pyramid  93-99
levels  97

Toast component
adding  190

two-factor authentication (2FA)  25

U
UI, creating  179- 214

back button, adding to Layout 
component  216, 217

comment, creating  221
CreatePost component, adding 

to home page  193-195
Layout component, adding  184, 185
Layout component, using on home page  186
Navbar component, adding  181-184
Post component, tweaking  214, 215
post, creating  186-190
SinglePost component, creating  217-221
Toast component, adding  190, 191
toaster, adding to post creation  192, 193

uncontrolled component  146, 147
unit tests  97
UpdateComment modal

adding  231-237
UpdatePost component

testing  286-289
useMemo  144, 145
user experience (UX)  346
user information

editing  257
edit method, adding to 

useUserActions  257, 258

EditProfile page, creating  264, 265
UpdateProfileForm component, 

creating  258-264
User Interface (UI)  121
User model

creating  23
migrations, running  29-31
superuser, creating  27-29
testing  30, 31
test, writing  102, 103
user application, creating  25-27
user, creating  27-29
writing  25

user registration feature
writing  39-45

UserSerializer
writing  32, 33

UserViewset
writing  33-35

UserViewSet class
used, for writing Django 

viewsets test  117, 118

V
virtualization  316
virtual machines (VMs)  316
VS Code

download link  125
extensions, adding  126-128
installing  125, 126

W
web application deployment  296

code, uploading on GitHub  299-301
Git and GitHub, using  297-299



Index 403

web application deployment platforms  301
EC2 instance, creating  301-306
errors, on EC2  310- 312
Postgres configuration  308-310
Postgres deployment  308-310
server, configuring for Django project  307

webpack
using, advantages  373

Web Server Gateway Interface (WSGI)  323
WinRunner  96





www.packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as 
industry leading tools to help you plan your personal development and advance your career. For more 
information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from over 

4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files 
available? You can upgrade to the eBook version at packtpub.com and as a print book customer, you 
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range 
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://www.packtpub.com
http://packtpub.com
mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com


Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Becoming an Enterprise Django Developer

Michael Dinder

ISBN: 978-1-80107-363-9

•	 Use Django to develop enterprise-level apps to help scale your business

•	 Understand the steps and tools used to scale up a proof-of-concept project to production 
without going too deep into specific technologies

•	 Explore core Django components and how to use them in different ways to suit your app’s needs

•	 Find out how Django allows you to build RESTful APIs

•	 Extract, parse, and migrate data from an old database system to a new system with Django 
and Python

•	 Write and run a test using the built-in testing tools in Django

https://www.packtpub.com/product/becoming-an-enterprise-django-developer/9781801073639?_ga=2.198495151.1640498229.1673976945-1676364594.1662627481


407Other Books You May Enjoy

Full Stack FastAPI, React, and MongoDB

Marko Aleksendrić

ISBN: 978-1-80323-182-2

•	 Discover the flexibility of the FARM stack

•	 Implement complete JWT authentication with FastAPI

•	 Explore the various Python drivers for MongoDB

•	 Discover the problems that React libraries solve

•	 Build simple and medium web applications with the FARM stack

•	 Dive into server-side rendering with Next.js

•	 Deploy your app with Heroku, Vercel, Ubuntu Server and Netlify

•	 Understand how to deploy and cache a FastAPI backend

https://www.packtpub.com/product/full-stack-fastapi-react-and-mongodb/9781803231822?_ga=2.187207723.2291984.1674038967-1154920067.1625494875


408

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and 
apply today. We have worked with thousands of developers and tech professionals, just like you, to 
help them share their insight with the global tech community. You can make a general application, 
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

http://authors.packtpub.com


409

Hi!

I am Kolawole Mangabo, author of Full Stack Django and React. I really hope you enjoyed reading 
this book and found it useful for increasing your productivity and efficiency in Django and React. 

It would really help me (and other potential readers!) if you could leave a review on Amazon sharing 
your thoughts on Full Stack Django and React. 

Go to the link below or scan the QR code to leave your review:

https://packt.link/r/1803242973

Your review will help us to understand what’s worked well in this book, and what could be improved 
upon for future editions, so it really is appreciated.

Best Wishes,

Kolawole Mangabo

https://packt.link/r/1803242973


410

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere? 
Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical 
books directly into your application. 

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content 
in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/9781803242972

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781803242972



	Preface
	Cover
	Part 1: 
Technical Background
	Chapter 1: Creating a Django Project
	An overview of software development
	Understanding backend development
	Responsibilities of backend developers

	What is an API?
	Understanding REST APIs

	What is Django?
	Setting up the work environment
	Creating a virtual environment
	Installing Django
	Creating a sample project

	Configuring the database
	Postgres configuration
	Connecting the database

	Installing an HTTP request client
	Summary
	Questions

	Chapter 2: Authentication and Authorization using JWTs
	Technical requirements
	Understanding JWTs
	Understanding how JWTs are used in authentication

	Organizing a project
	Creating a user model
	What are Django models?
	Writing the User model
	Writing UserSerializer
	Writing UserViewset
	Adding a router

	Writing the user registration feature
	Adding the login feature
	Refresh logic
	Summary
	Questions

	Chapter 3: Social Media Post Management
	Technical requirements
	Creating the Post model
	Designing the Post model
	Abstraction
	Writing the AbstractSerializer
	Writing the AbstractViewSet

	Writing the Post model
	Writing the Post serializer
	Writing Post viewsets
	Adding the Post route
	Rewriting the Post serialized object

	Adding permissions
	Deleting and updating posts
	Adding the Like feature
	Adding the posts_liked field to the User model
	Adding the like, remove_like, and has_liked methods
	Adding the likes_count and has_liked fields to PostSerializer
	Adding like and dislike actions to PostViewSet

	Summary
	Questions

	Chapter 4: Adding Comments to Social Media Posts
	Technical requirements
	Writing the Comment model
	Adding the Comment model
	Creating a comment in the Django shell

	Writing the comment serializer
	Nesting routes for the comment resource
	Creating nested routes
	Writing the CommentViewSet class
	Testing the comments feature with Insomnia

	Updating a comment
	Deleting a comment
	Summary
	Questions

	Chapter 5: Testing the REST API
	Technical requirements
	What is testing?
	What is software testing?
	Why is software testing important?
	What are the various types of testing?
	Understanding manual testing
	Understanding automated testing

	Testing in Django
	The testing pyramid

	Configuring the testing environment
	Writing your first test

	Writing tests for Django models
	Writing tests for the User model
	Writing tests for the Post model
	Writing tests for the Comment model

	Writing tests for your Django viewsets
	Writing tests for authentication
	Writing tests for PostViewSet
	Writing tests for CommentViewSet
	Writing tests for the UserViewSet class

	Summary
	Questions

	Part 2: 
Building a Reactive UI 
with React
	Chapter 6: Creating a Project with React
	Technical requirements
	Understanding frontend development
	What is React?

	Creating the React project
	Installing Node.js
	Installing VS Code
	Adding VS Code extensions
	Creating and running a React app
	Installing a debugging plugin in the browser

	Configuring the project
	Adding React Router
	Adding React Bootstrap
	Creating the Home page
	Configuring CORS

	Useful ES6 and React features
	const and let
	Template literals
	JSX styling
	Props versus states
	The Context API
	useMemo
	Handling forms – controlled components and uncontrolled components

	Summary
	Questions

	Chapter 7: Building Login and 
Registration Forms
	Technical requirements
	Understanding the authentication flow
	Writing the requests service
	Protected routes
	Creating a protected route wrapper

	Creating the registration page
	Adding a registration page
	Registering the registration page route

	Creating the login page
	Adding the login page
	Registering the login page

	Refactoring the authentication flow code
	What is a hook?
	Writing code for a custom hook
	Using the functions in code

	Summary
	Questions

	Chapter 8: Social Media Posts
	Technical requirements
	Creating the UI
	Adding the NavBar component
	Adding the Layout component
	Using the Layout component on the home page
	Creating a post
	Adding the Toast component
	Adding toaster to post creation
	Adding the CreatePost component to the home page

	Listing posts on the home page
	Writing the Post component
	Adding the Post component to the home page

	Updating a post
	Minor refactoring
	Summary
	Questions

	Chapter 9: Post Comments
	Technical requirements
	Creating a UI
	Tweaking the Post component
	Adding a back button to the Layout component
	Creating the SinglePost component
	Creating a comment

	Listing the comments
	Deleting a comment
	Updating a comment
	Adding the UpdateComment modal

	Liking a comment
	Summary
	Questions

	Chapter 10: User Profiles
	Technical requirements
	Listing profiles on the home page
	Displaying user information on their profile page
	Configuring the default avatar
	Writing the ProfileDetails component

	Editing user information
	Adding the edit method to useUserActions
	The UpdateProfileForm component
	Creating the EditProfile page

	Summary
	Questions

	Chapter 11: Effective UI Testing for 
React Components
	Technical requirements
	Component testing in React
	The necessity of testing your frontend
	What to test in your React application

	Jest, the RTL, and fixtures
	Writing testing fixtures
	Running the first test
	Extending the RTL render method

	Testing authentication components
	Testing Post components
	Mocking the localStorage object
	Writing post fixtures
	Writing tests for the Post component
	Testing the CreatePost component
	Testing the UpdatePost component

	Snapshot testing
	Summary
	Questions

	Part 3: 
Deploying Django and 
React on AWS
	Chapter 12: Deployment Basics – Git, GitHub, and AWS
	Technical requirements
	Basics of software deployment
	Tools and methods of web application deployment
	Using Git and GitHub
	Platforms for web application deployment
	Creating an EC2 instance
	Configuring the server for the Django project
	Postgres configuration and deployment
	Errors made when deploying on EC2

	Summary
	Questions

	Chapter 13: Dockerizing the Django Project
	Technical requirements
	What is Docker?
	Dockerizing the Django application
	Adding a Docker image

	Using Docker Compose for multiple containers
	Writing the docker-compose.yaml file

	Configuring environment variables in Django
	Writing NGINX configuration
	Launching the Docker containers

	Summary
	Questions

	Chapter 14: Automating Deployment 
on AWS
	Technical requirements
	Explaining CI/CD
	CI
	CD

	Defining the CI/CD workflow
	What is GitHub Actions?
	How to write a GitHub Actions workflow file

	Configuring the backend for automated deployment
	Adding the GitHub actions file
	Configuring the EC2 instance

	Summary
	Questions

	Chapter 15: Deploying Our React App 
on AWS
	Technical requirements
	Deployment of React applications
	What is a production build?

	Deploying on AWS S3
	Creating a build of Postagram
	Adding environment variables and building the application
	Deploying the React application on S3

	Automating deployment with GitHub Actions
	Writing the workflow file

	Summary
	Questions

	Chapter 16: Performance, Optimization, and Security
	Technical requirements
	Revoking JWT tokens
	Adding a logout endpoint
	Handling the logout with React

	Adding caching
	The cons of caching
	Adding caching to the Django API
	Using caching on the endpoints

	Optimizing the React application build
	Integrating webpack
	Using pnpm

	Securing deployed applications with HTTPS with AWS CloudFront
	Configuring the React project with CloudFront

	Summary
	Questions

	Appendix
	Logging
	Database queries optimization
	Security


	Answers
	Index
	Other Books You May Enjoy



