
Advanced Product Filters

Data modeling

Filters

Revenue Filter

Average Rating Filter

Most Popular Filter

Sorters

Revenue Contribution Sorter

Average Rating and Revenue Sorter

Strategy

Enums

Pipelines

Action & Controller

Boundaries in DDD and Modular Systems

Life Without Boundaries

Life With Boundaries

Violation #1

Violation #2

Violation #3

Conclusion

Value Objects Everywhere

Data Modeling

API

Identifying Value Objects

Implementing Value Objects

Price

MarketCap

Millions

Margin

PeRatio

Income Statement Summary

Metrics Summary

Conclusion

Static Analysis

phpinsights

larastan

Martin Joo - Laravel Concepts - Part II

1 / 123

Laracheck

deptrac

Working with OS Processes

Custom Query Builders

Scopes

Queries

Separation

Final Words

Martin Joo - Laravel Concepts - Part II

2 / 123

Advanced Product Filters
In this chapter I'd like to talk about applying more complicated filters and sorting products.
Since it's such a common scenario, I think you'll benefit from it.

Let's say we are working on the backend of an e-commerce app, so we're building
dashboards and lists for business people. Often they want more sophisticated filters than
regular users. Now imagine you have 20 of those. It's easy to mess things up because
these things often start as a few where expressions in your controller. But as the number
of filters and their complexity grows your code becomes messier and you'll end up with a
"don't touch it" class. You know, when you say to new developers: "This controller takes
care of filtering products. It works, don't touch it!"

In this essay, I'd like to give some ideas about how to deal with these situations. Take a look
at the design:

This list has two filters:

Martin Joo - Laravel Concepts - Part II

3 / 123

Lifetime revenue
Average rating

And one bonus is called the "most popular." It returns products that have:

Higher than average revenue
More ratings than the average
Better than average ratings

And four kinds of sorting:

Lifetime revenue
Average rating
Quantity (units sold)
Revenue contribution

The plan is simple: implement these features in an easy to extend and maintainable
way. The best way to achieve this is to use:

The strategy design pattern

Dedicated classes for filters and sorters
Enums

One for filters another for sorters. They will act as factories.
And sometimes pipelines

To put everything together in a functional way.

Martin Joo - Laravel Concepts - Part II

4 / 123

Data modeling

The database layer is relatively straightforward:

orders
order_items
products
product_ratings
users

That's all we need to implement these features:

Some example queries using these tables:

Martin Joo - Laravel Concepts - Part II

5 / 123

!" All-time revenue !#

select sum(total_price)

from orders

!" Products ordered by total revenue !#

select sum(total_price) as total_revenue

from products

inner join order_items

 on order_items.product_id = products.id

group by products.id

order by total_revenue desc

Martin Joo - Laravel Concepts - Part II

6 / 123

Filters

First, without any additional context or "architecture" let's just start with the Eloquent and
SQL queries. After that, we're going to talk about where to put and how to structure these
classes.

Revenue Filter

Users want to filter products that have a lifetime revenue above a certain threshold.

This is one way of implementing this filter using a sub-query:

Another way would be to join the order_items table instead of using a sub-query:

select

 `products`.*,

 (

 select sum(`order_items`.`total_price`)

 from `order_items`

 where `products`.`id` = `order_items`.`product_id`

) as `total_revenue`

from `products`

group by `products`.`id`

having `total_revenue` !$ 990

Martin Joo - Laravel Concepts - Part II

7 / 123

There's not a big difference between these queries, however, there are some important
things:

Usually join wins when it comes to performance. However, it depends on a lot of
factors such as MySQL or Postgres, exact versions, your table structure, indexes, etc.
For me, a sub-query seems more logical. I guess it's different for everyone.
By default, a lot of Laravel helpers use sub-queries. So if you want to use join you
have to write custom code in some situations. I'll show you an example, in a minute.

Here's the implementation using join:

It groups the rows by product ID and then adds a having clause using the sum of total
prices. Since it has a group by we need to use having instead of where .

select

 `products`.*,

 sum(order_items.total_price) as total_revenue

from `products`

inner join order_items on order_items.product_id = products.id

group by `products`.`id`

having `total_revenue` !$ 990

return Product!%query()

 !'select('products.*',

DB!%raw('SUM(order_items.total_price)'))

 !'join('order_items', 'products.id', '=',

'order_items.product_id')

 !'groupBy('products.id')

 !'having(DB!%raw('SUM(order_items.total_price)'), '!$', 990);

Martin Joo - Laravel Concepts - Part II

8 / 123

If you set up relationships correctly (a Product has many OrderItem in this case) you can
use the withSum helper:

Laravel comes with a handful of relationship aggregate helpers such as withSum ,
withAvg , withCount , and so on. This query uses a sub-query as discussed earlier. The

alias as total_revenue will be included in the result as a property. If you don't specify it,
you can access the values as order_items_sum_total_price , which is created by
Laravel using the following logic:

order_items is the table of the relationship
sum is the aggregate function you're using
total_price is the column you want to sum (the second argument of the withSum

method)

return Product!%query()

 !'withSum('order_items as total_revenue', 'total_price')

 !'having('total_revenue', '!$', 990);

Martin Joo - Laravel Concepts - Part II

9 / 123

Average Rating Filter

This filter is very similar to the previous one. This is the SQL query:

And this is the Eloquent query:

select

 `products`.*,

 (

 select avg(`product_ratings`.`rating`)

 from `product_ratings`

 where `products`.`id` = `product_ratings`.`product_id`

) as `avg_rating`

from `products`

group by `products`.`id`

having `avg_rating` !$ 4

order by `avg_rating` desc

return Product!%query()

 !'withAvg('ratings as avg_rating', 'rating')

 !'having('avg_rating', '!$', 4);

Martin Joo - Laravel Concepts - Part II

10 / 123

Most Popular Filter

This filter returns products that have:

Higher than average revenue
More ratings than the average
Better than average ratings

So first, we need to calculate the average values:

It's very straightforward. After we have these values we can apply them in the actual query:

We'll get back to filters soon, but first, let's discuss the sorters.

$numberOfProducts = Product!%count();

$averageRevenue = Order!%sum('total_price') /

$numberOfProducts;

$averageRating = ProductRating!%avg('rating');

$averageNumberOfRatings = ProductRating!%count() /

$numberOfProducts;

Product!%query()

 !'withSum('order_items as total_revenue', 'total_price')

 !'withAvg('ratings as avg_rating', 'rating')

 !'withCount('ratings as count_ratings')

 !'having('count_ratings', '!$', $averageNumberOfRatings)

 !'having('avg_rating', '!$', $averageRating)

 !'having('total_revenue', '!$', $averageRevenue);

Martin Joo - Laravel Concepts - Part II

11 / 123

Sorters

Revenue Contribution Sorter

This sorter will sort products by their revenue contribution. If the total revenue is $1000 and
'Product A' made $300 in sales while Product B made $700, then the contributions are:

Product A: 30%
Product B: 70%

This is what the query looks like:

As you can see, the revenue contribution is calculated by this line:

It sums up the order items associated with a product and then divides this number by the
total revenue. Since the $totalRevenue is a variable outside of the query, I choose to use
a join , since it's the most simple way to write this query.

$totalRevenue = Order!%sum('total_price');

Product!%query()

 !'selectRaw("SUM(order_items.total_price) / $totalRevenue as

revenue_contribution")

 !'join('order_items', 'products.id', '=',

'order_items.product_id')

 !'groupBy('products.id')

 !'orderBy('revenue_contribution');

"SUM(order_items.total_price) / $totalRevenue as

revenue_contribution"

Martin Joo - Laravel Concepts - Part II

12 / 123

Average Rating and Revenue Sorter

This will sort the products based on their average ratings. This and the revenue sorter are
the most simple ones:

!(Average rating

Product!%query()

 !'withAvg('ratings as avg_rating', 'rating')

 !'orderBy('avg_rating');

!(Total revenue

Product!%query()

 !'withSum('order_items as sum_revenue', 'total_price')

 !'orderBy('sum_revenue');

Martin Joo - Laravel Concepts - Part II

13 / 123

Strategy

If you think about it all filters are the same, and so as all sorters. They do the same thing,
but with a different "strategy." For example, the revenue filter and average rating filter. They
both filter out products based on some values. This means they can have the same
interface but different implementations. The same is true for sorters.

Before we jump into the details, let's imagine how we want to use these classes. Let's say
we follow the JSON API standard, so the request URL looks something like that:

This request means the user wants to see every product that has:

At least $90 in revenue
And 3.7 or better rating

Now let's imagine a code behind this API:

/api/products?filter[revenue]=90&filter[avg_rating]=3.7

class ProductController

{

 public function index(Request $request)

 {

 /**

 * [

 * 'revenue' !) 90,

 * 'avg_rating' !) 3.7,

 *]

 !#

 $filters = $request!'collect('filters');

 !(select * from products

Martin Joo - Laravel Concepts - Part II

14 / 123

So I'd like to see a simple for loop where we can go through the filters, create a class based
on the filter's name, and then call a function. Something like $filter->handle($query)
and each of these handle calls will append the appropriate withSum , withAvg , and
having clauses to the base query.

From this little example, we know how to filter interface will look like:

It has probably only one function, handle
The constructor (called by the factory) will take a $value . This is the threshold value
used in the having or where clause.
handle takes a query and modifies it

We can come up with something like this:

 $query = Product!%query();

 foreach ($filters as $name !) $value) {

 !(Each filter has a class such as RevenueFilter

 $filter = FilterFactory!%create($name, $value);

 /**

 * Each filter class will append

 * clauses to the base query

 !#

 $filter!'handle($query);

 }

 return $query!'get();

 }

}

Martin Joo - Laravel Concepts - Part II

15 / 123

And the RevenueFilter class looks like this:

This is what it looks like on a diagram:

namespace App\Filters;

use Illuminate\Contracts\Database\Eloquent\Builder;

abstract class Filter

{

 public function !*construct(protected readonly int $value)

 {

 }

 abstract function handle(Builder $query): void;

}

namespace App\Filters;

class RevenueFilter extends Filter

{

 function handle(Builder $query): void

 {

 $query

 !'withSum('order_items as total_revenue', 'total_price')

 !'having('total_revenue', '!$', $this!'value);

 }

}

Martin Joo - Laravel Concepts - Part II

16 / 123

The benefits of the strategy pattern:

Whenever you need a new implementation (a new filter in this case) you just have to
add a new class. So you don't have to modify existing classes and functions. The only
place you need to change is the factory (we'll talk about it in a minute). This is the letter
"O" in SOLID.
Separation of concerns. Each filter has its own class. This is a huge benefit in a large
application! Just think about the MostPopularFilter . If it's going to change in the
future (and gets much more complicated) there's a guarantee that you won't cause
bugs in other filters. They are completely separated.
Single responsibility. Each filter class does only one thing: filter by X criteria. They don't
know anything about the outside world, they just do their well-defined job. This is the
letter "S" in SOLID.
Easy interaction. The controller in the above example only interacts with the interface of
the Filter abstract class. It doesn't matter if the user wants to order by revenue or
ratings. It doesn't matter. The interaction is always the same. This is the letter "D" in
SOLID.
Small interface. Since filter classes are so well-defined they only require one method
and a constructor to work. It's easy to use, and easy to maintain. This is the letter "I"
from SOLID.

From a practical point of view the biggest benefit is that if you need to handle a new kind of
filter, you just create a new class from scratch, and add a new line to a factory.

Martin Joo - Laravel Concepts - Part II

17 / 123

Enums

I talked about factories on the previous pages but in fact, in PHP 8.1 we can use enums to
achieve the same. For example, this is the Filters enum:

Fortunately, enums can contain methods, and the createFilter will behave just like a
factory. It can be used such as:

namespace App\Enums;

enum Filters: string

{

 case Revenue = 'revenue';

 case AverageRating = 'avg_rating';

 case MostPopular = 'most_popular';

 public function createFilter(int $value): Filter

 {

 return match ($this) {

 self!%Revenue !) new RevenueFilter($value),

 self!%AverageRating !) new AverageRatingFilter($value),

 self!%MostPopular !) new MostPopularFilter($value),

 };

 }

}

$filter = Filters!%from('revenue')!'createFilter(99);

$filter!'handle();

Martin Joo - Laravel Concepts - Part II

18 / 123

As you can imagine, the values 'revenue' and 99 will come from the request and will be
handled by the controller.

We can do the same thing with Sorters as well:

It follows the same logic. The only difference is that a sorter doesn't need a value. It only
needs a direction (asc or desc). This is what the SortDirection is:

namespace App\Enums;

enum Sorters: string

{

 case Rating = 'rating';

 case Revenue = 'revenue';

 case Quantity = 'quantity';

 case RevenueContribution = 'revenue_contribution';

 public function createSorter(SortDirections $sortDirection):

Sorter

 {

 return match ($this) {

 self!%Rating !) new RatingSorter($sortDirection),

 self!%Revenue !) new RevenueSorter($sortDirection),

 self!%Quantity !) new QuantitySorter($sortDirection),

 self!%RevenueContribution !) new

RevenueContributionSorter($sortDirection),

 };

 }

}

Martin Joo - Laravel Concepts - Part II

19 / 123

By the way, I didn't list it here but the Sorter class and the subclasses follow exactly the
same structure as the Filter classes. They have only one method that takes a query and
modifies it (adds the order by clause to it).

namespace App\Enums;

enum SortDirections: string

{

 case Desc = 'desc';

 case Asc = 'asc';

}

Martin Joo - Laravel Concepts - Part II

20 / 123

Pipelines

Right now, with the Filter Sorter class and enums we can write something like this:

It's very clean. However, we can use Laravel pipelines to make it even more "generic:"

class ProductController

{

 public function index(Request $request)

 {

 $filters = $request!'collect('filters');

 $query = Product!%query();

 foreach ($filters as $name !) $value) {

 $filter = Filters!%from($name)!'createFilter($value);

 $filter!'handle($query);

 }

 return $query!'get();

 }

}

Martin Joo - Laravel Concepts - Part II

21 / 123

A pipeline has multiple "stops" or pipes. These pipes are classes that do something with
the initial value. In this example, these pipes are the filter classes, and the initial value is a
product query builder object. You can of the whole flow like this:

We have an initial query builder instance.
We send this object through the pipes. Or in other words, through a collection of
Filter instances.

Every Filter modifies the initial query and returns a new one (we need to make a
slight change in our classes).
After each Filter has finished its job the thenReturn will return the final query
builder instance.

use Illuminate\Pipeline\Pipeline;

class ProductController

{

 public function index(Request $request)

 {

 $filters = $request!'collect('filters')

 !'map(fn (int $value, string $name) !)

 Filters!%from($name)!'createFilter($value)

)

 !'values();

 return app(Pipeline!%class)

 !'send(Product!%select('products.*'))

 !'through($filters)

 !'thenReturn()

 !'get();

 }

}

Martin Joo - Laravel Concepts - Part II

22 / 123

After we have the builder, the get will run the actual query and returns a collection.

Why is it better than a foreach ?

First of all, it's not better. It's just a different approach. However, I think it has one
advantage. A foreach is very "hackable." What I mean by this is that it encourages
developers to write if-else statements, nested loops, break statements, and other "stuff" to
handle edge cases, or apply a "quick fix" here and there. By using a pipeline you cannot do
any of those! The whole flow is "closed." So if you need a "quick fix" because your new
Filter class is not compatible with the current architecture you have to think about why is it
the case, and how you can solve it. You need to make it compatible with the current
solution, or you need to restructure the existing filters and drop the pipeline approach. So I
think using a Pipeline helps us follow the Open-Closed Principle from SOLID. It's open for
new filters but closed for "quick fixes."

To use the Filter classes in a pipeline, we need to make a small change:

namespace App\Filters;

use Closure;

abstract class Filter

{

 public function !*construct(protected readonly int $value)

 {

 }

 abstract function handle(Builder $query, Closure $next):

Builder;

}

Martin Joo - Laravel Concepts - Part II

23 / 123

The handle method now takes a second argument called $next and returns a Builder
instance. The $next is very similar to a middleware. Each middleware calls the next one
via a closure. The same applies here as well. Each pipe triggers the next one by invoking
the $next closure:

And it also needs to return the result of $next . The same logic applies to Sorter classes.
Now that we have everything ready it's time to implement the controller and an action.

namespace App\Filters;

use Closure;

class RevenueFilter extends Filter

{

 function handle(Builder $query, Closure $next): Builder

 {

 $query

 !'withSum('order_items as total_revenue', 'total_price')

 !'having('total_revenue', '!$', $this!'value);

 return $next($query);

 }

}

Martin Joo - Laravel Concepts - Part II

24 / 123

Action & Controller

As always I want to keep my controllers as small as possible. They have only three
responsibilities, in my opinion:

Accepting the request
Invoking other classes
Returning a response

This is an example of a request URL:

Which means:

Products with more than $90 revenue
Products with more than a 3.7 average rating
Sorted by revenue in ascending order

This is what the ProductController looks like:

api/products

 ?filter[revenue]=90

 &filter[avg_rating]=3.7

 &sort=revenue

 &sort_direction=asc

namespace App\Http\Controllers;

use App\Actions\FilterProductsAction;

use App\Http\Requests\GetProductsRequest;

class ProductController extends Controller

{

Martin Joo - Laravel Concepts - Part II

25 / 123

Those getters in the request convert strings to enums and apply some default values:

 public function index(GetProductsRequest $request)

 {

 return FilterProductsAction!%execute(

 $request!'collect('filter'),

 $request!'sorter(),

 $request!'sortDirection(),

);

 }

}

class GetProductsRequest extends FormRequest

{

 public function sortDirection(): SortDirections

 {

 if (!$this!'sort_direction) {

 return SortDirections!%Desc;

 }

 return SortDirections!%from($this!'sort_direction);

 }

 public function sorter(): Sorters

 {

 if (!$this!'sort) {

 return Sorters!%Rating;

 }

 return Sorters!%from($this!'sort);

Martin Joo - Laravel Concepts - Part II

26 / 123

The last piece of the puzzle is the FilterProductsAction . You have already seen this
class without knowing it. This is the one where construct the pipeline:

 }

}

namespace App\Actions;

class FilterProductsAction

{

 /**

 * @param Collection<string, int> $filterValues

 * @return Collection<Product>

 !#

 public static function execute(

 Collection $filterValues,

 Sorters $sort,

 SortDirections $sortDirection

): Collection {

 $filters = $filterValues

 !'map(fn (int $value, string $name) !)

 Filters!%from($name)!'createFilter($value)

)

 !'values();

 return app(Pipeline!%class)

 !'send(Product!%select('products.*'))

 !'through([

 !!+$filters,

Martin Joo - Laravel Concepts - Part II

27 / 123

$filterValues is a Collection like this:

So it contains the filter names and the values associated with them. In the pipeline setting
there's only one new thing, this line:

Here we want to send the query through not only the filter but also the sorter. This is why I
create a new array that contains both.

 $sort!'createSorter($sortDirection)

])

 !'thenReturn()

 !'get();

 }

}

[

 'revenue' !) 90,

 'avg_rating' !) 3.7,

];

!'through([!!+$filters, $sort!'createSorter($sortDirection)])

Martin Joo - Laravel Concepts - Part II

28 / 123

Boundaries in DDD and Modular
Systems

This chapter has a back story. In April 2022 I released a book called Domain-Driven Design
with Laravel. DDD has some technical and strategic aspects. Technical means that we have
some classes and concepts we can use in our code to write better software. Strategic
means that DDD tries to close the gap between the business language and the code. But
DDD also cares about boundaries. It's a crucial attribute of domain-driven design and I left
it out of the book. It was intentional. I took a risk, to be honest because a lot of people think
if you're not obeying these boundaries it's not real DDD. I got a few complaints about it, and
three or four refund requests. I refunded everyone and I completely respect their
perspectives.

So what are these boundaries and why did I leave them out of the book? In domain-driven
design we have domains. A domain is something like a module. It groups classes together.
But only classes that are related to each other.

Let's see an example. We are working on a project management application where we can
track our time and bill a customer. So the app has models like these:

Martin Joo - Laravel Concepts - Part II

29 / 123

Class Group

Project Project

Milestone Project

Task Project

Timelog Project

Invoice Invoice

InvoiceLineItem Invoice

Client Client

Other (not so important) client-related models Client

These classes can be grouped by their "type":

Martin Joo - Laravel Concepts - Part II

30 / 123

These groups are the domains in the application. The models and other classes inside the
'Project' domain can be grouped together and isolated from the other domains. These
classes are responsible for handling project management-related user stories. Nothing else
matters to them (Metallica shout-out).

And each domain contains only business logic related classes. This means no
controllers, commands, migrations, or anything specific to the application or infrastructure.
For example, a controller is specific to a web or API application, meanwhile, a command is
specific to a console application. They can only exist in the context of those applications.
On the other hand, the Project model does not care about if it's being used by a
command, API controller, web controller, Inertia controller, migration, SPA, or MVC app. It's
context-independent by nature. So it lives inside the domain folder:

Martin Joo - Laravel Concepts - Part II

31 / 123

These are domains in a nutshell. However, in this article, I'd like to focus on boundaries
specifically. If this is the first time you hear about domains and applications you can read
this article which describes them in great detail.

Martin Joo - Laravel Concepts - Part II

32 / 123

https://martinjoo.dev/domain-driven-design-with-laravel-domains-and-applications

Life Without Boundaries

Let's stick to the project management example and implement a simple action that creates
an invoice for an entire milestone. The relationship between the models are:

Project -> has many -> Milestone -> has many -> Task -> has many -> Timelog
Project -> has many Invoice
Invoice -> belongs to one -> Project
Invoice -> has many -> InvoiceLineItem
Project -> belongs to one -> Client

So the flow looks like this:

Create an invoice for the client
Get the tasks associated with the milestone
Create an invoice line item for each task (based on the time logs for that task)
Calculate the total amount for the invoice

namespace Domain\Invoice\Actions;

class CreateMilestoneInvoiceAction

{

 public function execute(Milestone $milestone): Invoice

 {

 $invoice = Invoice!%create([

 'client_id' !) $milestone!'project!'client_id,

 'client_name' !) $milestone!'project!'client!'full_name,

 'project_id' !) $milestone!'project_id,

]);

 $invoiceAmount = 0;

 foreach ($milestone!'tasks as $task) {

Martin Joo - Laravel Concepts - Part II

33 / 123

This is a very straightforward class. This is the usual Laravel code you're probably used to.
It violates boundaries at least four times:

 $lineItem = $invoice!'addLineItem($task);

 $invoiceAmount += $lineItem!'total_amount;

 }

 $invoice!'total_amount = $invoiceAmount;

 $invoice!'save();

 return $invoice;

 }

}

class Invoice extends Model

{

 public function addLineItem(Task $task): InvoiceLineItem

 {

 $hoursLogged = $task!'timelogs!'sum('hours');

 return InvoiceLineItem!%create([

 'invoice_id' !) $this!'id,

 'task_id' !) $task!'id,

 'item_name' !) $task!'name,

 'item_quantity' !) $hoursLogged,

 'total_amount' !) $hoursLogged * 30,

]);

 }

}

Martin Joo - Laravel Concepts - Part II

34 / 123

Violation #1: This class is inside the Invoice domain, so it should not access the
Milestone model directly.

Violation #2: It should not use the project relationship from the Milestone model,
and the client relationship from the Project model. We are exposing too much
information to the Invoice domain. It should not know anything about the inner
structures of models from another domain.
Violation #3: The Invoice model should not access the Task model and its
timelogs relationship. Same problem as Violation #2.

Violation #4: Under the hood, the client_id and project_id columns in the
invoices table are foreign keys to the clients and projects table. A table in the

invoice domain should not reference another table from the client or project domain.

So if you're writing code like this, you will never enter the gates of DDD Walhalla. Now let's
make this code DDD-compatible.

Martin Joo - Laravel Concepts - Part II

35 / 123

Life With Boundaries

Violation #1

First, let's get rid of the Milestone argument. We cannot pass models across domains.
Fortunately, we can express every model as a DTO or data transfer object.

The first step is to create a MilestoneData class:

namespace Domain\Project\DataTransferObjects;

use Spatie\LaravelData\Data;

class MilestoneData extends Data

{

 public function !*construct(

 public readonly ?int $id,

 public readonly string $name,

 public readonly Lazy|ProjectData $project,

 /** @var DataCollection<TaskData> !#

 public readonly Lazy|DataCollection $tasks,

) {}

 public static function fromModel(Milestone $milestone): self

 {

 return self!%from([

 !!+$milestone!'toArray(),

 'project' !) Lazy!%whenLoaded(

 'project',

 $milestone,

 fn () !) ProjectData!%from($milestone!'project)

Martin Joo - Laravel Concepts - Part II

36 / 123

In this example, I use the laravel-data package by Spatie. If you're confused about
these Lazy things, please check out the documentation, but it's not important for this
article. In a nutshell, Lazy::whenLoaded is very similar to Laravel's Resource whenLoaded
function. So in the example above, the project will only be included if the relationship is
already eager-loaded in the $milestone instance. It helps us to avoid N+1 query
problems.

Now that we have the MilestoneData we can use it in the action:

),

 'tasks' !) Lazy!%whenLoaded(

 'tasks',

 $milestone,

 fn () !) TaskData!%collection($milestone!'tasks)

),

]);

 }

}

namespace Domain\Invoice\Actions;

use Domain\Project\DataTransferObjects\MilestoneData;

class CreateMilestoneInvoiceAction

{

 public function execute(MilestoneData $milestone)

 {

 !(!!+

 }

}

Martin Joo - Laravel Concepts - Part II

37 / 123

So after this small refactor we're no longer exposing too much information from the project
domain. DTOs are meant to be transferring data between components. They don't have
functions like:

delete
update
relationships

They don't contain every column and behavior such as a Model. So it's a lot safer to use
them, and it's harder to write fragile applications.

Martin Joo - Laravel Concepts - Part II

38 / 123

Violation #2

Earlier we used the milestone's project relationship to access client information. Instead of
accessing the client directly through relationships, we have to introduce a ClientService
that takes an integer ID and returns a ClientData DTO:

namespace Domain\Client\Services;

class ClientService

{

 /**

 * @throws ClientNotFoundException

 !#

 public function getClientById(int $clientId): ClientData

 {

 $client = Client!%find($clientId);

 if (!$client) {

 throw new ClientNotFoundException(

 "Client not find with id: $clientId"

);

 }

 return ClientData!%from($client);

 }

}

Martin Joo - Laravel Concepts - Part II

39 / 123

With this class we can eliminate the relationships from the action:

Now instead of accessing relationships and exposing a Client instance we only use DTOs
and an integer ID. The resolve function is laravel-data specific. It resolves the value
from a Lazy instance, so it just returns a ProjectData DTO.

namespace Domain\Invoice\Actions;

class CreateMilestoneInvoiceAction

{

 public function !*construct(

 private readonly ClientService $clientService

) {}

 public function execute(

 MilestoneData $milestone

): InvoiceData {

 $client = $this!'clientService!'getClientById(

 $milestone!'project!'resolve()!'client_id

);

 $invoice = Invoice!%create([

 'client_id' !) $client!'id,

 'client_name' !) $client!'full_name,

 'project_id' !) $milestone!'project!'resolve()!'id,

]);

 !(!!+

 }

}

Martin Joo - Laravel Concepts - Part II

40 / 123

Violation #3

The next violation was in the Invoice model. The addLineItem method accessed the
Task model and the Timelog model through a relationship. I think you can already guess

the solution: use DTOs.

So I changed the Task model to a TaskData DTO. The resolve and toCollection
methods come from the laravel-data package. It returns the timelogs as a Laravel
collection.

namespace Domain\Invoice\Models;

class Invoice extends Model

{

 public function addLineItem(TaskData $task): InvoiceLineItem

 {

 $hoursLogged = $task

 !'timelogs

 !'resolve()

 !'toCollection()

 !'sum('hours');

 return InvoiceLineItem!%create([

 'invoice_id' !) $this!'id,

 'task_id' !) $task!'id,

 'item_name' !) $task!'name,

 'item_quantity' !) $hoursLogged,

 'total_amount' !) $hoursLogged * 30,

]);

 }

}

Martin Joo - Laravel Concepts - Part II

41 / 123

I won't list the solution to violation #3 but you can in the repository that I removed the
foreign keys that cross the boundaries. The resulting action looks like this:

namespace Domain\Invoice\Actions;

class CreateMilestoneInvoiceAction

{

 public function !*construct(

 private readonly ClientService $clientService

) {}

 public function execute(

 MilestoneData $milestone

): InvoiceData {

 $client = $this!'clientService!'getClientById(

 $milestone!'project!'resolve()!'client_id

);

 $invoice = Invoice!%create([

 'client_id' !) $client!'id,

 'client_name' !) $client!'full_name,

 'project_id' !) $milestone!'project!'resolve()!'id,

]);

 $invoiceAmount = 0;

 foreach ($milestone!'tasks!'resolve() as $task) {

 $lineItem = $invoice!'addLineItem($task);

 $invoiceAmount += $lineItem!'total_amount;

Martin Joo - Laravel Concepts - Part II

42 / 123

Please notice that the action returns an InvoiceData instead of an Invoice model. This
is a general rule you should follow if you want to respect boundaries: most actions,
services, and repositories should return DTOs instead of models.

 }

 $invoice!'total_amount = $invoiceAmount;

 $invoice!'save();

 return InvoiceData!%from($invoice!'load('line_items'));

 }

}

Martin Joo - Laravel Concepts - Part II

43 / 123

Conclusion

Why did I leave this technique out of the book? Because I truly believe it's overkill for 90%
of Laravel projects. Just think about it:

You cannot use relationships in some situations. In this example, laravel-data did a
good job, but in the long run, you'll miss out on a lot of Eloquent features. For example,
you cannot replace withAvg with a DTO. You have two options:

Using the collection to calculate an average
Performing an extra query by calling a service function

It requires more database queries. For example, we had to query a Client from the
database that was already available! By using these getById methods and avoiding
Eloquent relationships you'll end up with N+1 query problems very, very soon. I mean,
it's already a big problem in a lot of applications.

It requires more code. Mainly because of classes like the ClientService .

No foreign keys. I mean, you still can use them, but not if they violate your boundaries.
The lack of foreign keys and the fact that you'll have more N+1 problems will result in
very poor performance.

But here's the most important thing and the real reason why I left this out from the book.
It's easy to ruin a project with this approach. Using this approach is not natural in Laravel
or PHP. Try to implement this with six other developers where three of them are juniors. It's
almost like a guarantee for failure.

And it even gets worse. This was a simplified example of boundaries. In real DDD there are
three different concepts:

Domain
Subdomain
Bounded context

We only used domains, so it gets even harder to identify boundaries and abstractions. Even
DDD gods are arguing about these concepts. Just search for "bounded context" or
"bounded context vs domain" and you'll see that every Java/C# DDD developer has a
slightly different definition in their head.

Martin Joo - Laravel Concepts - Part II

44 / 123

In my opinion, if you're using the technical aspects of DDD and you pay attention to the
strategic design you'll do fine in a larger project. So instead of boundaries, I try to focus on
smaller concepts like:

DTOs
Value Objects
Services
Actions
Domains
Applications

And generally speaking, I'm trying to write code that reflects the business language and
domain. However, if you're working on Shopify-scale applications you almost definitely
need boundaries and those more advanced concepts. Just to be clear, when I say Shopify-
scale I'm not referring to the millions of users they have. I'm talking about the 2.8 million
lines of code and 500,000 commits in one monolith! These numbers come from their
engineering blog.

If you want to learn more about boundaries and monoliths, please check out this video from
Laracon 2022, presented by Ryuta Hamasaki. It's a great talk!

Martin Joo - Laravel Concepts - Part II

45 / 123

https://shopify.engineering/shopify-monolith#:~:text=Ruby%20on%20Rails%20is%20a,and%20increased%20overall%20system%20complexity
https://youtu.be/0Rq-yHAwYjQ?t=4061

Value Objects Everywhere
In this chapter, I'd like to talk about value objects. If you don't know what are they, here's a
quick introduction.

Value Object is an elementary class that contains mainly (but not only) scalar data. So it's a
wrapper class that holds together related information. Here's an example:

class Percent

{

 public readonly ?float $value;

 public readonly string $formatted;

 public function !*construct(float $value)

 {

 $this!'value = $value;

 if ($value !!, null) {

 $this!'formatted = '';

 } else {

 $this!'formatted = number_format(

 $value * 100, 2

) . '%';

 }

 }

 public static function from(?float $value): self

 {

 return new self($value);

 }

Martin Joo - Laravel Concepts - Part II

46 / 123

This class represents a percentage value. This simple class gives you three advantages:

It encapsulates the logic that handles null values and represents them as percentages.
You always have two decimal places (by default) in your percentages.
Better types.

An important note: business logic or calculation is not part of a value object. The only
exception I make is basic formatting.

That's it. This is a value object. It's an object that contains some values. The original
definition of a value object states two more things:

It's immutable. You have no setters and only read-only properties.
It does not contain an ID or any other property related to the identification. Two value
objects are equal only when the values are the same. This is the main difference
between a VO and a DTO.

}

Martin Joo - Laravel Concepts - Part II

47 / 123

id ticker name price_per_share market_cap

1 AAPL Apple Inc. 14964 2420000

2 MSFT Microsoft Inc. 27324 2040000

Data Modeling

To really understand value objects, we'll implement a very basic financial app. Something
like Seekingalpha, Morningstar, Atom Finance, or Hypercharts. If you don't know these
apps, here's a simplified introduction:

In the app we store companies. Publicly-traded companies, such as Apple or Microsoft.
We also store financial data, such as income statements.
The app will calculate some important metrics from these data. For example, profit
margin, gross margin, and a few others.

In the sample application, I'll only implement a handful of metrics, and I'll only store the
income statements (no balance sheets or cash flows). This is more than enough to illustrate
to use of value objects.

This is what the database looks like:

As you can see, it's quite easy. This is a sample row from the companies table:

Martin Joo - Laravel Concepts - Part II

48 / 123

company_id year revenue gross_profit

1 2022 386017 167231

1 2021 246807 167231

 price_per_share is the current share price of the company's stock. It's stored in cent
value, so 14964 is $149.64 . This is a common practice in order to avoid rounding
mistakes.

market_cap is the current market capitalization of the company (price_per_share * number
of shares). It is stored in millions, so 2420000 is $2,420,000,000,000 or $2,420B or
$2.42T . Storing huge financial numbers in millions (or thousands in some cases) is also a

common practice in financial applications.

Now let's see the income_statements table:

Each item on the income statement has its own column such as revenue or gross_profit.
One row in this table describes a year for a given company. And as you can probably guess,
these numbers are also in millions. So 386017 means $386,017,000,000 or $386B for
short.

If you're wondering why to store these numbers in millions, the answer is pretty simple: it's
easier to read. Just check out Apple's page on Seekingalpha, for example:

The metrics table is very similar to income_statements :

Martin Joo - Laravel Concepts - Part II

49 / 123

company_id year gross_margin profit_margin pe_ratio

1 2022 0.43 0.26 2432

2 2022 0.68 0.34 2851

Each metric has its own column, and each row represents a year for a given company. Most
metrics are percentage values stored as decimals. The pe_ratio stands for
"price/earnings ratio." If a company's share trades at $260 and its earnings are $20 per
share, then the P/E ratio is 13.00. It's a decimal number stored as an integer.

Maybe you're asking "why not call it price_per_earnings_ratio?" It's a good question! In my
opinion, our goal as software developers should be to write code that is as close to the
business language as possible. But in the financial sector, nobody calls it "price per
earnings ratio." It's just the "PE ratio." So, in fact, this is the correct language, in my
opinion.

Martin Joo - Laravel Concepts - Part II

50 / 123

API

We want to implement three APIs.

GET /companies/{company}

It'll return the basic company profile:

It'll also return the price and market cap data in human-readable formats.

GET /companies/{company}/income-statements

It returns the income statements grouped by items and years:

{

 "data": {

 "id": 1,

 "ticker": "AAPL",

 "name": "Apple Inc.",

 "price_per_share": {

 "cent": 14964,

 "dollar": 149.64,

 "formatted": "$149.64"

 },

 "market_cap": {

 "millions": 2420000,

 "formatted": "2.42T"

 }

 }

}

Martin Joo - Laravel Concepts - Part II

51 / 123

{

 "data": {

 "years": [

 2022,

 2021

],

 "revenue": {

 "2022": {

 "value": 386017000000,

 "millions": 386017,

 "formatted": "386,017"

 },

 "2021": {

 "value": 246807000000,

 "millions": 246807,

 "formatted": "246,807"

 }

 },

 "eps": {

 "2022": {

 "cent": 620,

 "dollar": 6.2,

 "formatted": "$6.20"

 },

 "2021": {

 "cent": 620,

 "dollar": 6.2,

 "formatted": "$6.20"

 }

 }

Martin Joo - Laravel Concepts - Part II

52 / 123

The right data structure will heavily depend on the exact use case and UI. This structure is
pretty good for a layout similar to Seekingalpha's (the screenshot from earlier). This API also
formats the values.

GET /companies/{company}/metrics

This is the API that returns the metrics:

 }

}

{

 "data": {

 "years": [

 2022

],

 "gross_margin": {

 "2022": {

 "value": 0.43,

 "formatted": "43.00%",

 "top_line": {

 "value": 386017000000,

 "millions": 386017,

 "formatted": "386,017"

 },

 "bottom_line": {

 "value": 167231000000,

 "millions": 167231,

 "formatted": "167,231"

 }

 }

Martin Joo - Laravel Concepts - Part II

53 / 123

Each margin contains the top and bottom line information as well. In the case of gross
margin, the top line is the revenue and the bottom line is the gross profit.

 },

 "pe_ratio": {

 "2022": {

 "value": "24.32"

 }

 }

 }

}

Martin Joo - Laravel Concepts - Part II

54 / 123

Identifying Value Objects

Now that we've seen the database and the API, it's time to define the value objects. If you
take a closer look at the JSON you can identify five different kinds of values:

Ratio. It's a simple number expressed as a float. Right now, the PE ratio is the only
ratio-type data in the app.
Margin. It has a raw value, a percentage, a top line, and a bottom-line value. Gross
margin, operating margin, and profit_margin will use this data type.
Price. It has a cent, dollar, and formatted value. Both price_per_share and eps
(which is earnings per share) use this data type.
Market Cap. It's a unique one because it has three different formats: 2.42T , 242B ,
and 577M . All of these are valid numbers to express a company's market
capitalization. When a company hits the trillion mark we don't want to use 1000B but
rather 1T . SO we need to handle these cases.
Millions. Every item in the income statement is expressed as millions so it makes sense
to use a value object called Millions .

Now, take a look at these value object names! We're working on a financial app, and we'll
have classes like Millions , Margin , or MarketCap .

This is the kind of codebase that makes sense. Even after five years.

Martin Joo - Laravel Concepts - Part II

55 / 123

Implementing Value Objects

Price

Price seems the most obvious so let's start with that one. The class itself is pretty
straightforward:

class Price

{

 public readonly int $cent;

 public readonly float $dollar;

 public readonly string $formatted;

 public function !*construct(int $cent)

 {

 $this!'cent = $cent;

 $this!'dollar = $cent / 100;

 $this!'formatted = '$' . number_format($this!'dollar, 2);

 }

 public static function from(int $cent): self

 {

 return new self($cent);

 }

}

Martin Joo - Laravel Concepts - Part II

56 / 123

Several important things:

Every value object has public readonly properties. readonly makes sure they are
immutable, while public makes them easy to access, so we don't need to write
getters or setters.
A lot of value object has a from factory function. It fits the overall style of Laravel very
well.

 This object can be used like this:

The next question is: how do we use this object? There are two paths we can take:

Casting the values on the Model's level.
Or casting them on the API's level.

Casting in models

We have at least two possible solutions to cast attributes to value objects in the models.

Using attribute accessors:

$company = Company!%first();

$price = Price!%from($company!'price_per_share);

Martin Joo - Laravel Concepts - Part II

57 / 123

It's an excellent solution and can work 95% of the time. However, right we are in the
remaining 5% because we have 10+ attributes we want to cast. In the IncomeStatement
model we need to cast almost every attribute to a Millions instance. Just imagine how
the class would look like with attribute accessors:

namespace App\Models;

use Illuminate\Database\Eloquent\Casts\Attribute;

class Company extends Model

{

 public function pricePerShare(): Attribute

 {

 return Attribute!%make(

 get: fn (int $value) !) Price!%from($value)

);

 }

}

namespace App\Models;

class IncomeStatement extends Model

{

 public function pricePerShare(): Attribute

 {

 return Attribute!%make(

 get: fn (int $value) !) Millions!%from($value)

);

 }

Martin Joo - Laravel Concepts - Part II

58 / 123

So in our case, using attribute accessors is not optimal. Fortunately, Laravel has a solution
for us! We can extract the casting logic into a separate Cast class:

 !" same code here !#

 public function costOfRevenue(): Attribute {}

 !" same code here !#

 public function grossProfit(): Attribute {}

 !" same code here !#

 public function operatingExpenses(): Attribute {}

 !(8 more methods here

}

namespace App\Models\Casts;

use App\ValueObjects\Price;

use Illuminate\Contracts\Database\Eloquent\CastsAttributes;

class PriceCast implements CastsAttributes

{

 public function get($model, $key, $value, $attributes)

 {

 return Price!%from($value);

 }

 public function set($model, $key, $value, $attributes)

 {

 return $value;

Martin Joo - Laravel Concepts - Part II

59 / 123

This class does the same thing as the attribute accessor:

get is called when you access a property from the model and it transforms the integer
into a Price object.
set is called when you set a property in the model before you save it. It should

transform a Price object into an integer. But as you can see, I just left it as is because
we don't need this for the example. If you return $value from the set method, Laravel
won't do any extra work. So there's no attribute mutation.

The last step is to actually use this Cast inside the Company model:

Now we can use it like this:

 }

}

class Company extends Model

{

 use HasFactory;

 protected $guarded = [];

 protected $casts = [

 'price_per_share' !) PriceCast!%class,

];

}

Martin Joo - Laravel Concepts - Part II

60 / 123

Where are we going to use them? In resources, for example:

$company = Company!%first();

!(This is when the PriceCast!%get() will be executed

$pricePerShare = $company!'price_per_share;

!($127.89

echo $pricePerShare!'formatted;

!(127.89

echo $pricePerShare!'dollar;

!(12789

echo $pricePerShare!'cent;

namespace App\Http\Resources;

class CompanyResource extends JsonResource

{

 public function toArray($request)

 {

 return [

 'id' !) $this!'id,

 'ticker' !) $this!'ticker,

 'name' !) $this!'name,

 'price_per_share' !) $this!'price_per_share,

 'market_cap' !) $this!'market_cap,

];

Martin Joo - Laravel Concepts - Part II

61 / 123

Since these value objects contain only public properties Laravel will automatically transform
them into arrays when converting the response into JSON. So this resource will result in the
following JSON response:

This is how we can cast values in Eloquent models. But we can skip this setup and cast the
values directly inside resources.

 }

}

{

 "data": {

 "id": 1,

 "ticker": "AAPL",

 "name": "Apple Inc.",

 "price_per_share": {

 "cent": 14964,

 "dollar": 149.64,

 "formatted": "$149.64"

 },

 "market_cap": {

 "millions": 2420000,

 "formatted": "2.42T"

 }

 }

}

Martin Joo - Laravel Concepts - Part II

62 / 123

Casting in resources

This is much more simple than the previous one. All we need to do is create a Price
object inside the resource:

Now the Company model does not have any casts, so we just instantiate a Price and a
MarketCap object from the integer values.

How to choose between the two?

To be honest, it's hard to tell without a concrete use case.

However, if you only need these values in the API, then maybe you can skip the whole
Cast thing and just create a value object in resources.

But if you need these values to handle other use-cases as well it's more convenient to
use Eloquent casts. Some examples:

namespace App\Http\Resources;

class CompanyResource extends JsonResource

{

 public function toArray($request)

 {

 return [

 'id' !) $this!'id,

 'ticker' !) $this!'ticker,

 'name' !) $this!'name,

 'price_per_share' !) Price!%from($this!'price_per_share),

 'market_cap' !) MarketCap!%from($this!'market_cap),

];

 }

}

Martin Joo - Laravel Concepts - Part II

63 / 123

Notifications. For example, a new income statement just came out, and you want
to notify your users and include some key values in the e-mail. Another example
can be a price notification.
Queue jobs. For example, you need to recalculate price-dependent metrics and
values on a scheduled basis.
Broadcasting via websocket. For example, the price is updated in real-time on the
FE.
Each of these scenarios can benefit from using Eloquent Cast because otherwise
you end instantiating these value objects in every place.

In general, I think it's a good idea to use these objects in models. It makes your
codebase more high-level, and easier to maintain.

So I'm going to use Eloquent Cast to handle the casting.

Martin Joo - Laravel Concepts - Part II

64 / 123

MarketCap

As discussed earlier, the market cap is a bit more unique, so it has its own value object. We
need this data structure:

The formatted property will change based on the market cap of the company, for
example:

And the last case:

This is what the class looks like:

"market_cap": {

 "millions": 2420000,

 "formatted": "2.42T"

}

"market_cap": {

 "millions": 204100,

 "formatted": "204.1B"

}

"market_cap": {

 "millions": 172,

 "formatted": "172M"

}

namespace App\ValueObjects;

Martin Joo - Laravel Concepts - Part II

65 / 123

class MarketCap

{

 public readonly int $millions;

 public readonly string $formatted;

 public function !*construct(int $millions)

 {

 $this!'millions = $millions;

 !(Trillions

 if ($millions !$ 1_000_000) {

 $this!'formatted = number_format(

 $this!'millions / 1_000_000, 2

) . 'T';

 }

 !(Billions

 if ($millions < 1_000_000 !- $millions !$ 1_000) {

 $this!'formatted = number_format(

 $this!'millions / 1_000, 1

) . 'B';

 }

 !(Millions

 if ($millions < 1_000) {

 $this!'formatted = number_format($this!'millions) . 'M';

 }

 }

Martin Joo - Laravel Concepts - Part II

66 / 123

We need to check the value of $millions and do the appropriate division and use the
right suffix.

The cast is almost identical to PriceCast :

Once again, we don't need to do anything in set . The last thing is to use this cast:

 public static function from(int $millions): self

 {

 return new self($millions);

 }

}

namespace App\Models\Casts;

class MarketCapCast implements CastsAttributes

{

 public function get($model, $key, $value, $attributes)

 {

 return MarketCap!%from($value);

 }

 public function set($model, $key, $value, $attributes)

 {

 return $value;

 }

}

Martin Joo - Laravel Concepts - Part II

67 / 123

I won't list the other Cast classes because all of them are the same. You can check them
out in the repository.

namespace App\Models;

class Company extends Model

{

 use HasFactory;

 protected $guarded = [];

 protected $casts = [

 'price_per_share' !) PriceCast!%class,

 'market_cap' !) MarketCapCast!%class,

];

}

Martin Joo - Laravel Concepts - Part II

68 / 123

Millions

This value object is pretty simple:

namespace App\ValueObjects;

class Millions

{

 public readonly int $value;

 public readonly int $millions;

 public readonly string $formatted;

 public function !*construct(int $millions)

 {

 $this!'value = $millions * 1_000_000;

 $this!'millions = $millions;

 $this!'formatted = number_format($this!'millions, 0, ',');

 }

 public static function from(int $millions): self

 {

 return new self($millions);

 }

}

Martin Joo - Laravel Concepts - Part II

69 / 123

There are three properties:

value contains the raw number as an integer.
millions contains the number expressed in millions.
formatted contains the formatted number, something like 192,557

As JSON:

Millions is used in the IncomeStatement model, and this is where we benefit from using
Eloquent Casts :

"revenue": {

 "2022": {

 "value": 192557000000,

 "millions": 192557,

 "formatted": "192,557"

 }

}

Martin Joo - Laravel Concepts - Part II

70 / 123

namespace App\Models;

class IncomeStatement extends Model

{

 use HasFactory;

 protected $guarded = [];

 protected $casts = [

 'revenue' !) MillionsCast!%class,

 'cost_of_revenue' !) MillionsCast!%class,

 'gross_profit' !) MillionsCast!%class,

 'operating_expenses' !) MillionsCast!%class,

 'operating_profit' !) MillionsCast!%class,

 'interest_expense' !) MillionsCast!%class,

 'income_tax_expense' !) MillionsCast!%class,

 'net_income' !) MillionsCast!%class,

 'eps' !) PriceCast!%class,

];

}

Martin Joo - Laravel Concepts - Part II

71 / 123

Margin

It's also a fairly simple class:

namespace App\ValueObjects;

class Margin

{

 public readonly float $value;

 public readonly string $formatted;

 public readonly Millions $top_line;

 public readonly Millions $bottom_line;

 public function !*construct(

 float $value,

 Millions $topLine,

 Millions $bottomLine

) {

 $this!'value = $value;

 $this!'top_line = $topLine;

 $this!'bottom_line = $bottomLine;

 $this!'formatted = number_format($value * 100, 2) . '%';

 }

Martin Joo - Laravel Concepts - Part II

72 / 123

This shows another great feature of value objects: they can be nested. In this example, the
top_line and bottom_line attributes are Millions instances. These numbers describe

how the margin is calculated. For example, the gross margin is calculated by dividing the
revenue (top line) by the gross profit (bottom line). This will look like this in JSON:

 public static function make(

 float $value,

 Millions $topLine,

 Millions $bottomLine

): self {

 return new self($value, $topLine, $bottomLine);

 }

}

"gross_margin": {

 "2022": {

 "value": 0.68,

 "formatted": "68.00%",

 "top_line": {

 "value": 192557000000,

 "millions": 192557,

 "formatted": "192,557"

 },

 "bottom_line": {

 "value": 132345000000,

 "millions": 132345,

 "formatted": "132,345"

 }

 }

}

Martin Joo - Laravel Concepts - Part II

73 / 123

However, if you take a look at the make method, you can see we expect two additional
parameters: $topLine and $bottomLine . This means we can use this object like this:

Since we are using Eloquent Casts we need the revenue and gross profit (in this specific
example) in the MarginCast class. We can do something like this:

$company = Company!%first();

$incomeStatement = $company!'income_statements()

 !'where('year', 2022)

 !'first();

$metrics = $company!'metrics()!'where('year', 2022)!'first();

$grossMargin = Margin!%make(

 $metrics!'gross_margin,

 $incomeStatement!'revenue,

 $incomeStatement!'gross_profit,

);

Martin Joo - Laravel Concepts - Part II

74 / 123

namespace App\Models\Casts;

class MarginCast implements CastsAttributes

{

 /**

 * @param Metric $model

 !#

 public function get($model, $key, $value, $attributes)

 {

 $incomeStatement = $model

 !'company

 !'income_statements()

 !'where('year', $model!'year)

 !'first();

 [$topLine, $bottomLine] = $model!'getTopAndBottomLine(

 $incomeStatement,

 $key,

);

 return Margin!%make($value, $topLine, $bottomLine);

 }

 public function set($model, $key, $value, $attributes)

 {

 return $value;

 }

}

Martin Joo - Laravel Concepts - Part II

75 / 123

As you can see, the model, in this case, is a Metric model (this is where the cast will be
used) so we can query the appropriate income statement for the same year. After that, we
need a method that can return the top and bottom line for a particular metric:

namespace App\Models;

class Metric extends Model

{

 public function getTopAndBottomLine(

 IncomeStatement $incomeStatement,

 string $metricName

): array {

 return match ($metricName) {

 'gross_margin' !) [

 $incomeStatement!'revenue,

 $incomeStatement!'gross_profit

],

 'operating_margin' !) [

 $incomeStatement!'revenue,

 $incomeStatement!'operating_profit

],

 'profit_margin' !) [

 $incomeStatement!'revenue,

 $incomeStatement!'net_income

],

 };

 }

}

Martin Joo - Laravel Concepts - Part II

76 / 123

This method simply returns the right items from the income statement based on the metric.
The logic is quite simple, but it's much more complicated than the other ones, so I
recommend you to check out the source code and open these classes.

You may be asking: "Wait a minute... We are querying companies and income statements in
the MarginCast for every attribute??? That's like 10 extra queries every time we query a
simple Metric, right?"

Good question! The answer is: nope. These casts are lazily executed. This means the get
function will only be executed when you actually access the given property. But as you
might already guess we'll access every property in a resource, so a bunch of extra queries
will be executed. What can we do about it?

Eager load relationships when querying a metric. This will prevent us from running into
N+1 query problems.
Cache the income statements. After all, they are historical data, updated once a year.
This will also prevent extra queries.
If performance is still an issue, you can drop the whole MarginCast class, and use the
object in the resource directly. In this case, you have more flexibility. For example, you
can query every important data in one query, and only interact with collections when
determining the top and bottom line values.

Martin Joo - Laravel Concepts - Part II

77 / 123

PeRatio

After all of these complications, let's see the last and probably most simple VO:

This class can also be used to cover other ratio-type numbers, but right now PE is the only
one, so I decided to call the class PeRatio .

namespace App\ValueObjects;

class PeRatio

{

 public readonly string $value;

 public function !*construct(int $peRatio)

 {

 $this!'value = number_format($peRatio / 100, 2);

 }

 public static function from(int $peRatio): self

 {

 return new self($peRatio);

 }

}

Martin Joo - Laravel Concepts - Part II

78 / 123

Income Statement Summary

Now that we have all the value objects, we can move on to the resource. Our goal is to get
a summary view of the income statements of the company. This is the JSON structure:

There are at least two ways we can approach this problem:

A more "static" approach
And a more "dynamic" one

"data": {

 "years": [

 2022,

 2021

],

 "items": {

 "revenue": {

 "2022": {

 "value": 386017000000,

 "millions": 386017,

 "formatted": "386,017"

 },

 "2021": {

 "value": 246807000000,

 "millions": 246807,

 "formatted": "246,807"

 }

 }

 }

}

Martin Joo - Laravel Concepts - Part II

79 / 123

By "dynamic," I mean something like this:

class IncomeStatementResource

{

 public $preserveKeys = true;

 public function toArray(Request $request)

 {

 $data = [];

 !($this is a Company

 $data['years'] = $this!'income_statements!'pluck('year');

 foreach ($this!'income_statements as $incomeStatement) {

 foreach ($incomeStatement!'getAttributes() as $attribute

!) $value) {

 $notRelated = [

 'id', 'year', 'company_id',

 'created_at', 'updated_at',

];

 if (in_array($attribute, $notRelated)) {

 continue;

 }

 Arr!%set(

 $data,

 "items.{$attribute}.{$incomeStatement!'year}",

 $incomeStatement!'{$attribute}

);

Martin Joo - Laravel Concepts - Part II

80 / 123

Are you having a hard time understanding what's going on? It's not your fault! It's mine.
This code sucks. I mean, it's very "dynamic" so it'll work no matter if you have four columns
in the income_statements or 15. But other than that it seems a bit funky to me. Moreover,
it has no "real" form, so it's very weird to put it in a resource.

Don't get me wrong, sometimes you just need solutions like this. But an income statement
has a finite amount of items (columns), and it's not something that is subject to change.

Let's see a more declarative approach:

 }

 }

 return $data;

 }

}

namespace App\Http\Resources;

class IncomeStatementsSummaryResource extends JsonResource

{

 public $preserveKeys = true;

 public function toArray($request)

 {

 !($this is a Collection<IncomeStatement>

 $years = $this!'pluck('year');

 return [

 'years' !) $years,

 'items' !) [

Martin Joo - Laravel Concepts - Part II

81 / 123

 'revenue' !) $this!'getItem(

 'revenue',

 $years

),

 'cost_of_revenue' !) $this!'getItem(

 'cost_of_revenue',

 $years

),

 'gross_profit' !) $this!'getItem(

 'gross_profit',

 $years

),

 'operating_expenses' !) $this!'getItem(

 'operating_expenses',

 $years

),

 'operating_profit' !) $this!'getItem(

 'operating_profit',

 $years

),

 'interest_expense' !) $this!'getItem(

 'interest_expense',

 $years

),

 'income_tax_expense' !) $this!'getItem(

 'income_tax_expense',

 $years

),

 'net_income' !) $this!'getItem(

 'net_income',

Martin Joo - Laravel Concepts - Part II

82 / 123

 $years

),

 'eps' !) $this!'getItem(

 'eps',

 $years

),

]

];

 }

 /**

 * @return array<int, int>

 !#

 private function getItem(

 string $name,

 Collection $years

): array {

 $data = [];

 foreach ($years as $year) {

 $data[$year] = $this

 !'where('year', $year)

 !'first()

 !'{$name};

 }

 return $data;

 }

}

Martin Joo - Laravel Concepts - Part II

83 / 123

Can you see the difference? It's easy to understand, readable has a real form, and does not
require more code at all (all right, in this PDF it seems much longer, but in the repository,
each item is one line). However, it's called IncomeStatementsSummaryResource , and
there's a reason why. This resource requires a Collection<IncomeStatement> so it can be
used like this:

We pass all the income statements of a company as a Collection. So this line in the
resource won't run additional queries:

The last important thing is this line here:

Without this Laravel will override the array keys and it'll convert the years to standard zero-
based array indices:

namespace App\Http\Controllers;

class IncomeStatementController extends Controller

{

 public function index(Company $company)

 {

 return IncomeStatementsSummaryResource!%make(

 $company!'income_statements

);

 }

}

!($this!'where() is a Collection method

$data[$year] = $this!'where('year', $year)!'first()!'{$name};

public $preserveKeys = true;

Martin Joo - Laravel Concepts - Part II

84 / 123

As you can see the year-based object becomes a JSON array. This is why I used the
$preserveKeys property from the parent JsonResource class.

"data": {

 "years": [

 2022,

 2021

],

 "items": {

 "revenue": [

 {

 "value": 386017000000,

 "millions": 386017,

 "formatted": "386,017"

 },

 {

 "value": 246807000000,

 "millions": 246807,

 "formatted": "246,807"

 }

]

 }

}

Martin Joo - Laravel Concepts - Part II

85 / 123

Metrics Summary

The metrics summary API is basically the same as the income statement. So not
surprisingly the Resource looks almost the same:

namespace App\Http\Resources;

class MetricsSummaryResource extends JsonResource

{

 public $preserveKeys = true;

 public function toArray($request)

 {

 $years = $this!'pluck('year');

 return [

 'years' !) $years,

 'items' !) [

 'gross_margin' !) $this!'getItem(

 'gross_margin',

 $years

),

 'operating_margin' !) $this!'getItem(

 'operating_margin',

 $years

),

 'profit_margin' !) $this!'getItem(

 'profit_margin',

 $years

),

Martin Joo - Laravel Concepts - Part II

86 / 123

Can be used like this:

 'pe_ratio' !) $this!'getItem(

 'pe_ratio',

 $years

),

]

];

 }

 private function getItem(

 string $name,

 Collection $years

): array {

 $data = [];

 foreach ($years as $year) {

 $data[$year] = $this

 !'where('year', $year)

 !'first()

 !'{$name};

 }

 return $data;

 }

}

Martin Joo - Laravel Concepts - Part II

87 / 123

namespace App\Http\Controllers;

class MetricController extends Controller

{

 public function index(Company $company)

 {

 return MetricsSummaryResource!%make($company!'metrics);

 }

}

Martin Joo - Laravel Concepts - Part II

88 / 123

Conclusion

It was a longer exclusive, I know. Give it some time, maybe read it again later.

Value objects are awesome, in my opinion! I almost use them in every project, no matter if
it's old, new, DDD, or not DDD, legacy, or not. It's pretty easy to start using them, and you'll
have a very high-level, declarative codebase.

I often got the question: "what else can be expressed as a value object?" Almost anything,
to name a few examples:

Addresses. In an e-commerce application where you have to deal with shipping, it can
be beneficial to use objects instead of strings. You can express each part of an address
as a property:

City
ZIP code
Line 1
Line 2

Numbers and percents. As we've seen.

Email addresses.

Name. With parts like first, last middle, title

Any measurement unit, such as weight, temperature, distance

GPS coordinates.

EndDate and StartDate. They can be created from a Carbon but ensure that a StartDate
is always at 00:00:00 meanwhile an EndDate is always at 23:59:59.

Any other application-specific concepts.

Martin Joo - Laravel Concepts - Part II

89 / 123

Static Analysis
In general, a static analysis tool helps you avoid:

Bugs
Too complex methods and classes
Lack of type-hints
Poorly formatted code

There are an infinite amount of tools out there, but in the following pages, I'd like to show
my three favorite tools.

Martin Joo - Laravel Concepts - Part II

90 / 123

phpinsights

This is my number #1 favorite tool. It gives you an output like this:

It scores your codebase on a scale from 1..100 in four different categories:

Code. It checks the general quality of your code. It doesn't involve any style of format,
but only quality checks such as:

Unused private properties
Unnecessary final modifiers
Unused variables
Correct switch statement

Martin Joo - Laravel Concepts - Part II

91 / 123

And much more
Complexity. In my opinion, this is the most critical metric. It simply checks how
complicated a class is, using cyclomatic complexity. It's a fancy way of saying: how
many different execution paths exist in a function. Or put it simply: how many if-else or
switch statements do you have in one function or class. By default, it raises an issue if
the average is over 5.

Architecture. It checks some general architectural stuff, such as:

Method per class limit
Property per class limit
Superfluous interface or abstract class naming
Function length
And so on

Style. It checks some style-related rules, for example:

No closing PHP tag at the end of files
There's a new line at the end of files
Space after cast

By default, it doesn't require any configuration at all. Of course, if you don't want to use
some rules, you can disable them. Check out the documentation for more information.
phpinsights can be run by issuing this command:

It gives you an excellent summary and an interactive terminal where you can see every
issue. But it also ships with a 'non-interactive' mode, and you can also define the minimum
scores you want to have:

./vendor/bin/phpinsights analyse

./vendor/bin/phpinsights !.no-interaction !.min-quality=80 !.

min-complexity=90 !.min-architecture=70 !.min-style=75

Martin Joo - Laravel Concepts - Part II

92 / 123

https://phpinsights.com/

The --no-interaction flag means that the terminal window does not expect any input; it
just gives you the summary and every error message. The other --min-xy flags make it
possible to define the minimum scores for each category. For example, if the complexity
score drops below 90%, the command will yield a non-zero output and an error message.
The minimum complexity score is always 90% for me.

Martin Joo - Laravel Concepts - Part II

93 / 123

larastan

Larastan is a Laravel specific tool built on top of phpstan. These two use the same
configuration format and rule system. It ships with a default ruleset (very strict) and has a
config parameter called level . This parameter determines how strict it is and how many
rules are applied. If you want to learn more about these rules, check the documentation.

The config file looks like this:

Important values are:

We need to use src to scan all of the domains in the paths .

includes:

 - ./vendor/nunomaduro/larastan/extension.neon

parameters:

 paths:

 - app

 - src

 level: 5

 ignoreErrors:

 - '#PHPDoc tag @var#'

 excludePaths:

 - 'app/Http/Kernel.php'

 - 'app/Console/Kernel.php'

 - 'app/Exceptions/Handler.php'

 checkMissingIterableValueType: false

 noUnnecessaryCollectionCallExcept: ['pluck']

Martin Joo - Laravel Concepts - Part II

94 / 123

https://github.com/nunomaduro/larastan

level goes from 1..9. Basically, you need to experiment with what level is best for
you, but here's my general rule:

Legacy project: start with 1. In my opinion, you have no other options if the static
analysis is new to the project.
Fresh application: somewhere between 4 and 6, but it heavily depends on the team
and the project.
Never reach for level 9. Seriously, it gets pretty hard above level 5. My all-time best
was level 7, and I was dying during the process. It's like a tough game where you
cannot beat the final boss.

Under the excludePaths you can list files or directories that you want to exclude.
Sometimes I exclude default Laravel files such as the ones above.

You can browse the full config in the phpstan.neon file (root directory of the sample app).

You can run the rules with this command:

./vendor/bin/phpstan analyse

Martin Joo - Laravel Concepts - Part II

95 / 123

Laracheck

I'm a bit biased toward Laracheck because it's my product so this chapter is going to be an
evil sales pitch

It's a code review tool available on your GitHub repos and it performs the following check
when you open a PR:

N+1 query detection

Anytime you write a foreach loop or call a Collection method it will look for potential N+1
problems.

Here are some examples that qualify as a problem:

You access a relationship that is not eager-loaded either in the body of the current
function (using with() or load()) or in the model itself (using the $with property).
You call DB functions in the loop such as DB::table()
You call static Model functions in the loop such as Product::find()
You call Model functions in the loop such as $product->save()

Incorrect dependencies

There are different layers in every Laravel application. Layers such as HTTP, Business Logic,
Database, etc. Each layer has its own dependencies. For example, the database layer
should not depend on the HTTP layer. If it does, Laracheck will show you a warning.

Here are what counts as an incorrect dependency:

Martin Joo - Laravel Concepts - Part II

96 / 123

This class Depends on these

Model HTTP, Job, Command, Auth

Job HTTP

Command HTTP

Mail/Notification HTTP, Job, Command

Service HTTP

Repository HTTP, Job, Command

As you can see, one of the most common issues I used to face is when a class depends on
an HTTP-related class. Such as a model using a request. It's a bad practice in my opinion
because we couple the transportation layer (HTTP) to the database layer. One of the
problems it causes is the lack of reusability. For example, you cannot use this model
function from a command or job because they don't have requests.

The inner layers of your application (such as models) should not depend on outer layers
(such as HTTP).

Complex data objects

There are some typical classes that should not contain too much business logic since their
main purpose is to hold data. These classes are:

Resources
Requests
DataTransferObjects (DTO)
Value Objects
Mail
Notification

If you have a class that contains too much business logic, Laracheck will warn you. "Too
much" means that the cyclomatic complexity of the class is larger than 3.

Martin Joo - Laravel Concepts - Part II

97 / 123

env()env()env()env() calls outside of config files

In Laravel, it's a best practice to use env('MY_ENV_VALUE') calls only in config files. There
are two reasons.

Often config values are cached in production environment using the php artisan
config:cache command. If you don't know about this command, you should consider
using it. It'll cache every config file into memory. So whenever you use them with
config('app.my_value') it'll retrieve the value from memory instead of touching the
.env file on the disk.

If you have env() calls in your code (outside of config files), this config caching can break
your production environment! Or at least it can cause bugs.

The other reason is that config values can be "mocked" in tests pretty easily. All you have
to do is this:

class ListProductsTest extends TestCase

{

 use RefreshDatabase;

 /** @test !#

 public function it_should_use_the_default_page_size()

 {

 config(['app.default_page_size' !) 10]);

 $products = $this!'getJson(route('products.index'))

 !'json('data');

 $this!'assertCount(10, $products);

 }

Martin Joo - Laravel Concepts - Part II

98 / 123

This way you can test multiple config values, you can easily turn on and off feature flags,
and so on.

I'm not gonna go into more detail about the other checks but here's a list of the most
important ones:

N+1 query detection
Missing whenLoaded() calls
Missing DB index in migration
Missing down method in migration
Missing foreign key in migration
Missing authorization in request
Validation in controller
Missing tests
Missing ENV variable
Missing/changed composer lock file
env() call outside of config files
Forgotten cache keys
Incorrect dependencies
Complex data object

 /** @test !#

 public function it_should_return_n_products()

 {

 $products = $this!'getJson(route('products.index', [

 'per_page' !) 20

]))

 !'json('data');

 $this!'assertCount(20, $products);

 }

}

Martin Joo - Laravel Concepts - Part II

99 / 123

Custom Checks

Try out Laracheck for free.

Martin Joo - Laravel Concepts - Part II

100 / 123

https://laracheck.io/

deptrac

This tool helps you to clean up your architecture. In the book, I used several classes. The
important ones are:

Controllers
Action
ViewModels
Builders
Models
DTOs

Each class has its purpose. For example, I don't want a controller to start implementing
business logic. It has three responsibilities, in my opinion:

Accepting a request.
Calling the necessary methods from another class.
Returning a response.

Another important rule is to keep the models lightweight. If the models are sending
notifications, dispatching jobs, or calling APIs, it's a bad design, in my opinion.

If you think about it, these architectural rules can be enforced by simply defining which
class a Model can reference, right? Something like that:

deptrac does precisely that. If these rules are not followed, and a Model uses a Job deptrac
will throw a huge red screen in your face.

Martin Joo - Laravel Concepts - Part II

101 / 123

We can configure these rules in the deptrac.yaml file:

This tells deptrac that the project has a layer called Action, and the files can be collected
using this regex .*Actions\\.* It means that every file inside the Actions folder is an
action class. After the layers are created, we can define the rulesets:

parameters:

 paths:

 - ./app

 - ./src

 exclude_files:

 - '#.*test.*#'

 - '#.*Factory\.php$#'

 layers:

 - name: Action

 collectors:

 - type: className

 regex: .*Actions\\.*

ruleset:

 Controller:

 - Action

 - ViewModel

 - Model

 - DTO

 - ValueObject

 Action:

 - Event

 - Model

 - DTO

Martin Joo - Laravel Concepts - Part II

102 / 123

This means that a model in the project can only use:

Other models.
Query builders.
DTOs.
Value objects.

If anything else is referenced inside a model, it will throw an error. You can find the config in
the deptrac.yaml inside the sample application. If you want to run it, just run this
command:

So these are my favorite static analysis tools. But the true power comes when you integrate
these tools into your CI/CD pipeline.
I highly recommend using this tool in new projects. It requires only 15-30 minutes to set up,
but it provides value for the next 3-5 years. Also, if you have a legacy project that you want
to clean up, this package can be really helpful!

 - Builder

 - ValueObject

 Model:

 - Builder

 - Model

 - DTO

 - ValueObject

 DTO:

 - Model

 - DTO

 - ValueObject

 ValueObject:

 - ValueObject

./vendor/bin/deptrac analyse

Martin Joo - Laravel Concepts - Part II

103 / 123

Working with OS Processes
From time to time it can happen that we need to run some external processes. I'm talking
about things that don't have an SDK or a PHP-related function. In the last year, I had to
interact with two of those:

git
terragrunt/terraform

These are programs that are installed on the host machine (or in the Dockerfile) but don't
have an SDK or a function such as file_get_contents() .

In these cases, we can use the amazing Symfony component called Process:

The constructor of the Process class takes an array. Each element is a part of the
command as you can see.

To get the output of the process we can use the getOutput method:

use Symfony\Component\Process\Process;

$process = new Process(

 ['git', 'commit', '-m', 'Commit message']

);

$process!'run();

Martin Joo - Laravel Concepts - Part II

104 / 123

It returns a string and it contains the exact output from the git process. This is the same
that you see in your terminal.

To handle errors we can use the isSuccessful method:

use Symfony\Component\Process\Process;

$process = new Process(

 ['git', 'commit', '-m', 'Commit message']

);

$process!'run();

$output = $process!'getOutput();

use Symfony\Component\Process\Process;

$process = new Process(

 ['git', 'commit', '-m', 'Commit message']

);

$process!'run();

if (!$process!'isSuccessful()) {

 throw new ProcessFailedException($process);

}

return $process!'getOutput();

Martin Joo - Laravel Concepts - Part II

105 / 123

These are the basics of the Process component. Now we have everything to create a
general GitService that can run anything:

And we can use it like this:

namespace App\Services;

use Symfony\Component\Process\Exception\ProcessFailedException;

use Symfony\Component\Process\Process;

class GitService

{

 /**

 * @param array $command

 * @return string

 * @throws ProcessFailedException

 !#

 public function runCommand(array $command): string

 {

 $process = new Process($command);

 $process!'run();

 if (!$process!'isSuccessful()) {

 throw new ProcessFailedException($process);

 }

 return $process!'getOutput();

 }

}

Martin Joo - Laravel Concepts - Part II

106 / 123

If you look at this class it's a little bit weird. We call it GitService but is has no git-specific
logic. Even worse, we need to pass the word git as an argument. The problem is that
GitService is not a real GitService at this point. It's just a generic process wrapper or

something like that.

So let's make it more like a GitService :

public function index(GitService $git)

{

 $git!'runCommand(

 ['git', 'commit', '-m', 'Commit message']

);

}

class GitService

{

 public function pull(): string

 {

 return $this!'runCommand(['git', 'pull']);

 }

 public function commit(string $message): string

 {

 $this!'runCommand(['git', 'add', '!.all']);

 return $this!'runCommand(

 ['git', 'commit', '-m', $message]

);

 }

Martin Joo - Laravel Concepts - Part II

107 / 123

Now the usage looks like this:

Now it's much better. Each git command has its own method which is a good practice in
my opinion. After these changes, we don't really want to access the runCommand method
outside of this class so it can be private.

Another minor problem you might notice is that we are using arrays just because Symfony
Process expects us to pass arrays:

Yeah, it looks a bit weird, so we can refactor it to accept a string instead:

However, parsing the command becomes tricky. For example, consider this:

 public function push(): string

 {

 return $this!'runCommand(['git', 'push']);

 }

}

public function index(GitService $git)

{

 $git!'commit('Add git service');

}

$this!'runCommand(['git', 'commit', '-m', $message]);

$this!'runCommand("git commit -m '$message'");

Martin Joo - Laravel Concepts - Part II

108 / 123

We want to make an array from this string that looks like this:

We can use the explode function, but if the message contains spaces the result looks like
this:

And the command will fail. So using strings might look 7% better, it just doesn't worth the
potential bugs and complexity in my opinion.

Another great feature of the Process class is that it can give us real-time output. It's pretty
useful when you're working with long-running processes (such as terragrunt init or
apply). To get logs as they come, we can use a loop:

$this!'runCommand("git commit -m 'Add git service'");

[

 "git",

 "commit",

 "-m",

 "Add git service",

]

[

 "git",

 "commit",

 "-m",

 "'Add",

 "git",

 "service'",

]

Martin Joo - Laravel Concepts - Part II

109 / 123

So if you ever need to work with OS processes, just forget about exec and go with
Symfony Process. It's a great component!

$process = new Process(['terragrunt', 'apply']);

$process!'start();

foreach ($process as $type !) $data) {

 if ($process!%OUT !!, $type) {

 echo "Info: " . $data;

 } else {

 echo "Error: " . $data;

 }

}

Martin Joo - Laravel Concepts - Part II

110 / 123

Custom Query Builders
In bigger projects, we often struggle with models that have too much business logic in
them. Fortunately, you can build your own query builder classes to make your models a bit
leaner.

Let's say we have an Article model:

Any time you write something like that:

class Article extends Model

{

 use HasFactory;

 protected $protected = [];

 protected $casts = [

 'published_at' !) 'datetime',

];

 public function author(): BelongsTo

 {

 return $this!'belongsTo(User!%class);

 }

 public function ratings(): HasMany

 {

 return $this!'hasMany(Rating!%class);

 }

}

Martin Joo - Laravel Concepts - Part II

111 / 123

You interact with the Illuminate\Database\Eloquent\Builder class under the hood:

The base Model class in Laravel has a newEloquentBuilder method:

If you check the base Model class it doesn't have methods like where , whereBetween , or
anything like that. All of these functions come from the Builder class. When you write
your query, for example, Article::where(...) Laravel first calls the
newEloquentBuilder method. It returns a Builder instance which has functions such as

Article!%where('title', 'My Awesome Article')!'get();

/**

 * Create a new Eloquent query builder for the model.

 *

 * @param \Illuminate\Database\Query\Builder $query

 * @return \Illuminate\Database\Eloquent\Builder|static

 !#

public function newEloquentBuilder($query)

{

 return new Builder($query);

}

Martin Joo - Laravel Concepts - Part II

112 / 123

where .

Since the newEloquentBuilder method is defined in the Model class, we can override it:

And we can create a class called ArticleBuilder that extends the base Builder class:

use App\Builders\ArticleBuilder;

class Article extends Model

{

 use HasFactory;

 protected $protected = [];

 protected $casts = [

 'published_at' !) 'datetime',

];

 public function newEloquentBuilder($query): ArticleBuilder

 {

 return new ArticleBuilder($query);

 }

}

Martin Joo - Laravel Concepts - Part II

113 / 123

Now if we start writing a query we get an ArticleBuilder instance:

So what we can do with this new class?

<?php

namespace App\Builders;

use App\Models\User;

use Illuminate\Database\Eloquent\Builder;

class ArticleBuilder extends Builder

{

}

Martin Joo - Laravel Concepts - Part II

114 / 123

Scopes

Did you know that model scope is just syntactic sugar around query builders? Here's how
you can use them without magic:

I like to start every scope with where because it seems more expressive in a query. The
important thing is that you have to return an ArticleBuilder instance from every method
since we want to chain these methods. Notice that there is no get() or all() or anything like
that after the where() calls.

These scopes can be used as if they were in the model:

class ArticleBuilder extends Builder

{

 public function wherePublished(): self

 {

 return $this!'where('published_at', '!/', now());

 }

 public function whereAuthor(User $user): self

 {

 return $this!'where('author_id', $user!'id);

 }

}

Martin Joo - Laravel Concepts - Part II

115 / 123

In the ArticleBuilder class you have no limitations, you can build any query you want.
Here's one with some where groups:

class ArticleController

{

 public function myArticles(Request $request)

 {

 return Article!%query()

 !'whereAuthor($request!'user)

 !'wherePublished()

 !'orderBy('created_at', 'desc')

 !'get();

 }

}

public function whereContains(string $searchTerm): self

{

 return $this!'where(function ($query) use ($searchTerm) {

 $query!'where('title', 'LIKE', "%$searchTerm%")

 !'orWhere('summary', 'LIKE', "%$searchTerm%");

 });

}

Martin Joo - Laravel Concepts - Part II

116 / 123

Queries

Of course, you don't have to write only scope-like functions that are chainable. Here's a
standard query:

This method simply returns a list of Articles just as a regular model query would be:

We can also work with relationships the same we used to:

class ArticleBuilder extends Builder

{

 /**

 * @return Collection<Article>

 !#

 public function getOldArticles(): Collection

 {

 return $this

 !'where('created_at', '!/', now()!'subYears(5))

 !'get();

 }

}

$oldArticles = Article!%getOldArticles();

Martin Joo - Laravel Concepts - Part II

117 / 123

The usage is simple:

All the relationship aggregate functions are available such as withCount or withAvg .

One important thing though. If you want to write a method that manipulates a concrete
Article record, you need to do this:

class ArticleBuilder extends Builder

{

 public function orderByRatings(): self

 {

 return $this

 !'withAvg('ratings', 'rating')

 !'orderByDesc('ratings_avg_rating');

 }

}

$articles = Article!%query()

 !'wherePublished()

 !'orderByRatings()

 !'get();

Martin Joo - Laravel Concepts - Part II

118 / 123

So in a Builder you can access the model instance as $this->model . The publish
function can be used in a straightforward way:

class ArticleBuilder extends Builder

{

 public function publish(): void

 {

 if ($this!'model!'published_at) {

 return;

 }

 $this!'model!'published_at = now();

 $this!'model!'save();

 }

}

$article = Article!%first();

$article!'publish();

Martin Joo - Laravel Concepts - Part II

119 / 123

Separation

Custom query builders are a great way to make your models smaller and simpler. However,
all we did in this example, is we moved code from the Article class to the
ArticleBuilder class. As you can imagine, in the long term the result will be the same,

but in this case, the ArticleBuilder will become a huge class.

Another approach to solving this problem is this:

Write your "static" queries and scopes in Builder classes
Write your non-static methods in Models

By "static" I mean functions that don't interact with one particular record such as these
functions:

class ArticleBuilder extends Builder

{

 public function whereAuthor(User $user): self

 {

 return $this!'where('author_id', $user!'id);

 }

 public function orderByRatings(): self

 {

 return $this

 !'withAvg('ratings', 'rating')

 !'orderByDesc('ratings_avg_rating');

 }

}

Martin Joo - Laravel Concepts - Part II

120 / 123

And by non-static I mean the publish and unpublish methods:

In usage there's no difference:

class Article extends Model

{

 public function publish(): void

 {

 if ($this!'published_at) {

 return;

 }

 $this!'published_at = now();

 $this!'save();

 }

 public function unpublish(): void

 {

 $this!'published_at = null;

 $this!'save();

 }

}

Martin Joo - Laravel Concepts - Part II

121 / 123

Or another approach would be to write your queries inside Builder classes and use
Actions or Services to handle user stories. This way, your models only represent a

record in the database without any business logic.

$articles = Article!%query()

 !'whereAuthor($request!'user())

 !'wherePublished();

foreach ($articles as $article) {

 $article!'unpublish();

}

Martin Joo - Laravel Concepts - Part II

122 / 123

Final Words
Thank you very much for reading this book! I hope you liked it. If you have any question just
send me an e-mail and I try to reply as soon as possible.

If you want to learn more about Laravel and software engineering in general, check out my
blog. I also published other books:

Domain-Driven Design with Laravel
Microservices with Laravel
Test-Driven APIs with Laravel and Pest

Martin Joo - Laravel Concepts - Part II

123 / 123

https://martinjoo.dev/
https://domain-driven-design-laravel.com/
https://microservices-laravel.io/
https://test-driven-api-laravel.io/

	Advanced Product Filters
	Data modeling
	Filters
	Revenue Filter
	Average Rating Filter
	Most Popular Filter

	Sorters
	Revenue Contribution Sorter
	Average Rating and Revenue Sorter

	Strategy
	Enums
	Pipelines
	Action & Controller

	Boundaries in DDD and Modular Systems
	Life Without Boundaries
	Life With Boundaries
	Violation #1
	Violation #2
	Violation #3

	Conclusion

	Value Objects Everywhere
	Data Modeling
	API
	Identifying Value Objects
	Implementing Value Objects
	Price
	MarketCap
	Millions
	Margin
	PeRatio

	Income Statement Summary
	Metrics Summary
	Conclusion

	Static Analysis
	phpinsights
	larastan
	Laracheck
	deptrac

	Working with OS Processes
	Custom Query Builders
	Scopes
	Queries
	Separation

	Final Words

