

Distributed Serverless
Architectures on AWS

Design and Implement Serverless
Architectures

Jithin Jude Paul

Distributed Serverless Architectures on AWS: Design and Implement Serverless
Architectures

ISBN-13 (pbk): 978-1-4842-9158-0		 ISBN-13 (electronic): 978-1-4842-9159-7
https://doi.org/10.1007/978-1-4842-9159-7

Copyright © 2023 by Jithin Jude Paul

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: James Markham
Coordinating Editor: Shrikant Vishwakarma
Copy Editor: Kim Wimpsett

Cover designed by eStudioCalamar

Cover image by Scott Webb on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub (https://github.com/Apress). For more detailed information, please visit http://www.
apress.com/source-code.

Printed on acid-free paper

Jithin Jude Paul
Ernakulam, Kerala, India

https://doi.org/10.1007/978-1-4842-9159-7

First and foremost, I dedicate this book to my wife Chanthini, because
without her constant support I would not have been able

to complete it. She managed our kids and our home, without
complaining, as I spent numerous hours writing this book.

I also dedicate this book to my daughters,
Norah and Amelia, who missed out on their playtime with me,

while I engrossed myself in shaping this book.

My parents, Paul Jose and Annice Paul, have been
my constant support throughout my life, in each and every

endeavor of mine, and I also dedicate this book to them.

v

Chapter 1: �Introduction to Serverless Technology��� 1

What Is Serverless?��� 2

Self-Managed vs. Fully Managed vs. Serverless Services�� 2

Self-Managed Services�� 2

Fully Managed Services��� 3

Serverless Services on AWS��� 4

Why Serverless?�� 9

Serverless-First Mindset�� 9

A Bit About FaaS�� 10

Conclusion��� 11

Chapter 2: �Distributed Serverless Architectures��� 13

Key Characteristics of Distributed Systems��� 13

Near-Zero Latency�� 14

Fault Tolerant�� 15

Highly Available�� 16

Scalability��� 16

Immutable Architecture�� 16

The Cloud and Distributed Systems��� 16

About the Author�� xi

About the Technical Reviewer�� xiii

Acknowledgments��xv

Introduction��xvii

Table of Contents

https://doi.org/10.1007/978-1-4842-9159-7_1
https://doi.org/10.1007/978-1-4842-9159-7_1#Sec1
https://doi.org/10.1007/978-1-4842-9159-7_1#Sec2
https://doi.org/10.1007/978-1-4842-9159-7_1#Sec3
https://doi.org/10.1007/978-1-4842-9159-7_1#Sec4
https://doi.org/10.1007/978-1-4842-9159-7_1#Sec5
https://doi.org/10.1007/978-1-4842-9159-7_1#Sec10
https://doi.org/10.1007/978-1-4842-9159-7_1#Sec11
https://doi.org/10.1007/978-1-4842-9159-7_1#Sec12
https://doi.org/10.1007/978-1-4842-9159-7_1#Sec13
https://doi.org/10.1007/978-1-4842-9159-7_2
https://doi.org/10.1007/978-1-4842-9159-7_2#Sec1
https://doi.org/10.1007/978-1-4842-9159-7_2#Sec2
https://doi.org/10.1007/978-1-4842-9159-7_2#Sec3
https://doi.org/10.1007/978-1-4842-9159-7_2#Sec4
https://doi.org/10.1007/978-1-4842-9159-7_2#Sec5
https://doi.org/10.1007/978-1-4842-9159-7_2#Sec6
https://doi.org/10.1007/978-1-4842-9159-7_2#Sec7

vi

Making a Solution Distributed�� 17

Orchestrating Actions��� 17

Collecting Data from Different Regions�� 18

Pros and Cons of Global Distributed Apps�� 19

Common Architectural Patterns��� 19

Event-Driven Architectures��� 19

Disaster Recovery Architectures�� 20

Conclusion��� 22

Chapter 3: �Event-Driven Architectures�� 23

What Are Event-Driven Architectures?��� 23

Event Producer��� 24

Event Trigger��� 24

Event Processor�� 25

Event Consumer��� 26

Common Serverless Web Application Architecture�� 27

Adding Resiliency to the Serverless Web Application Architecture�� 31

Design a Serverless Streaming Event Processor��� 34

Designing a Serverless Email Service with Bounced Email Handling��� 38

Event-Driven Alerting Using Serverless��� 45

Conclusion��� 48

Chapter 4: �Disaster Recovery Architectures�� 49

Introduction to Disaster Recovery Strategies�� 49

Disaster Recovery Strategies Based on Region��� 49

Geographic Topology of the AWS Cloud�� 50

Multi-AZ Disaster Recovery Strategy�� 52

Cross-Region Disaster Recovery Strategy�� 58

Serverless Database Disaster Recovery Implementation��� 67

Table of Contents

https://doi.org/10.1007/978-1-4842-9159-7_2#Sec8
https://doi.org/10.1007/978-1-4842-9159-7_2#Sec9
https://doi.org/10.1007/978-1-4842-9159-7_2#Sec10
https://doi.org/10.1007/978-1-4842-9159-7_2#Sec11
https://doi.org/10.1007/978-1-4842-9159-7_2#Sec12
https://doi.org/10.1007/978-1-4842-9159-7_2#Sec13
https://doi.org/10.1007/978-1-4842-9159-7_2#Sec14
https://doi.org/10.1007/978-1-4842-9159-7_2#Sec15
https://doi.org/10.1007/978-1-4842-9159-7_3
https://doi.org/10.1007/978-1-4842-9159-7_3#Sec1
https://doi.org/10.1007/978-1-4842-9159-7_3#Sec2
https://doi.org/10.1007/978-1-4842-9159-7_3#Sec3
https://doi.org/10.1007/978-1-4842-9159-7_3#Sec4
https://doi.org/10.1007/978-1-4842-9159-7_3#Sec5
https://doi.org/10.1007/978-1-4842-9159-7_3#Sec6
https://doi.org/10.1007/978-1-4842-9159-7_3#Sec7
https://doi.org/10.1007/978-1-4842-9159-7_3#Sec10
https://doi.org/10.1007/978-1-4842-9159-7_3#Sec11
https://doi.org/10.1007/978-1-4842-9159-7_3#Sec13
https://doi.org/10.1007/978-1-4842-9159-7_3#Sec14
https://doi.org/10.1007/978-1-4842-9159-7_4
https://doi.org/10.1007/978-1-4842-9159-7_4#Sec1
https://doi.org/10.1007/978-1-4842-9159-7_4#Sec2
https://doi.org/10.1007/978-1-4842-9159-7_4#Sec3
https://doi.org/10.1007/978-1-4842-9159-7_4#Sec6
https://doi.org/10.1007/978-1-4842-9159-7_4#Sec10
https://doi.org/10.1007/978-1-4842-9159-7_4#Sec13

vii

Disaster Recovery Strategy Based on RTO and RPO�� 71

Active Backups Only��� 72

Active-Active Configuration�� 73

Active-Passive Configuration�� 73

Conclusion��� 73

Chapter 5: �Serverless Data Platforms��� 75

Overview of Data Platforms��� 75

Serverless Data Platform on AWS�� 77

Data Ingestion Services�� 78

Data Storage Services�� 80

Data Consumption and Visualization Services��� 84

Building a Serverless Data Analytics Application��� 87

Implementing AWS Data Pipeline Service�� 88

Conclusion��� 93

Chapter 6: �Containers on Serverless��� 95

Overview of Containers�� 95

Serverless Container Services on AWS�� 96

Container Orchestration Services��� 97

Container Hosting Services�� 98

Container Registry Service��� 98

Container Modernization�� 99

Serverless Web Application Architecture Using Fargate��� 99

Running Containers using Serverless Services on AWS�� 103

Running Containers on Fargate�� 103

Running Containers on Lambda��� 111

Conclusion��� 114

Table of Contents

https://doi.org/10.1007/978-1-4842-9159-7_4#Sec14
https://doi.org/10.1007/978-1-4842-9159-7_4#Sec15
https://doi.org/10.1007/978-1-4842-9159-7_4#Sec16
https://doi.org/10.1007/978-1-4842-9159-7_4#Sec17
https://doi.org/10.1007/978-1-4842-9159-7_4#Sec18
https://doi.org/10.1007/978-1-4842-9159-7_5
https://doi.org/10.1007/978-1-4842-9159-7_5#Sec1
https://doi.org/10.1007/978-1-4842-9159-7_5#Sec7
https://doi.org/10.1007/978-1-4842-9159-7_5#Sec8
https://doi.org/10.1007/978-1-4842-9159-7_5#Sec15
https://doi.org/10.1007/978-1-4842-9159-7_5#Sec22
https://doi.org/10.1007/978-1-4842-9159-7_5#Sec26
https://doi.org/10.1007/978-1-4842-9159-7_5#Sec27
https://doi.org/10.1007/978-1-4842-9159-7_5#Sec28
https://doi.org/10.1007/978-1-4842-9159-7_6
https://doi.org/10.1007/978-1-4842-9159-7_6#Sec1
https://doi.org/10.1007/978-1-4842-9159-7_6#Sec2
https://doi.org/10.1007/978-1-4842-9159-7_6#Sec3
https://doi.org/10.1007/978-1-4842-9159-7_6#Sec4
https://doi.org/10.1007/978-1-4842-9159-7_6#Sec5
https://doi.org/10.1007/978-1-4842-9159-7_6#Sec6
https://doi.org/10.1007/978-1-4842-9159-7_6#Sec7
https://doi.org/10.1007/978-1-4842-9159-7_6#Sec8
https://doi.org/10.1007/978-1-4842-9159-7_6#Sec9
https://doi.org/10.1007/978-1-4842-9159-7_6#Sec10
https://doi.org/10.1007/978-1-4842-9159-7_6#Sec11

viii

Chapter 7: �Multicloud Architectures�� 115

Types of Cloud Architectures�� 115

Single-Cloud Architecture��� 115

Hybrid Cloud Architecture��� 116

Cloud-Agnostic Architecture��� 119

Multicloud Architecture�� 122

Distributed Cloud Architecture�� 123

Polycloud Architecture�� 127

Comparison of Cloud Architectures�� 129

Conclusion��� 130

Chapter 8: �Serverless Through the AWS Well-Architected Framework����������������� 131

Operational Excellence Pillar��� 131

Perform Operations As Code�� 132

Make Frequent, Small, Reversible Changes��� 132

Refine Operations Procedures Frequently�� 133

Anticipate Failure��� 133

Learn from All Operational Failures�� 133

Security Pillar��� 134

Implement a Strong Identity Foundation�� 134

Enable Traceability�� 135

Automate Security Best Practices�� 135

Protect Data in Transit and at Rest��� 135

Keep People Away from Data��� 136

Prepare for Security Events�� 136

Reliability Pillar�� 136

Automatically Recover from Failure��� 136

Test Recovery Procedures�� 137

Scale Horizontally to Increase Aggregate Workload Availability��� 137

Stop Guessing Capacity�� 137

Manage Change in Automation��� 137

Table of Contents

https://doi.org/10.1007/978-1-4842-9159-7_7
https://doi.org/10.1007/978-1-4842-9159-7_7#Sec1
https://doi.org/10.1007/978-1-4842-9159-7_7#Sec2
https://doi.org/10.1007/978-1-4842-9159-7_7#Sec3
https://doi.org/10.1007/978-1-4842-9159-7_7#Sec5
https://doi.org/10.1007/978-1-4842-9159-7_7#Sec6
https://doi.org/10.1007/978-1-4842-9159-7_7#Sec7
https://doi.org/10.1007/978-1-4842-9159-7_7#Sec8
https://doi.org/10.1007/978-1-4842-9159-7_7#Sec10
https://doi.org/10.1007/978-1-4842-9159-7_7#Sec11
https://doi.org/10.1007/978-1-4842-9159-7_8
https://doi.org/10.1007/978-1-4842-9159-7_8#Sec1
https://doi.org/10.1007/978-1-4842-9159-7_8#Sec2
https://doi.org/10.1007/978-1-4842-9159-7_8#Sec3
https://doi.org/10.1007/978-1-4842-9159-7_8#Sec4
https://doi.org/10.1007/978-1-4842-9159-7_8#Sec5
https://doi.org/10.1007/978-1-4842-9159-7_8#Sec6
https://doi.org/10.1007/978-1-4842-9159-7_8#Sec7
https://doi.org/10.1007/978-1-4842-9159-7_8#Sec8
https://doi.org/10.1007/978-1-4842-9159-7_8#Sec9
https://doi.org/10.1007/978-1-4842-9159-7_8#Sec10
https://doi.org/10.1007/978-1-4842-9159-7_8#Sec11
https://doi.org/10.1007/978-1-4842-9159-7_8#Sec12
https://doi.org/10.1007/978-1-4842-9159-7_8#Sec13
https://doi.org/10.1007/978-1-4842-9159-7_8#Sec14
https://doi.org/10.1007/978-1-4842-9159-7_8#Sec15
https://doi.org/10.1007/978-1-4842-9159-7_8#Sec16
https://doi.org/10.1007/978-1-4842-9159-7_8#Sec17
https://doi.org/10.1007/978-1-4842-9159-7_8#Sec18
https://doi.org/10.1007/978-1-4842-9159-7_8#Sec19

ix

Performance Efficiency Pillar��� 137

Democratize Advanced Technologies��� 137

Go Global in Minutes��� 138

Use Serverless Architectures��� 138

Experiment More Often��� 139

Consider Mechanical Sympathy��� 139

Cost Optimization Pillar�� 139

Implement Cloud Financial Management��� 139

Adopt a Consumption Model�� 139

Measure Overall Efficiency��� 140

Stop Spending Money on Undifferentiated Heavy Lifting��� 140

Analyze and Attribute Expenditure��� 140

Sustainability Pillar�� 140

Conclusion��� 141

Chapter 9: �Looking Ahead��� 143

A Constantly Evolving Landscape�� 143

The Co-existence of Serverless Architectures��� 143

Serverless Without Lambda��� 144

Driving the Growth Mindset��� 144

Conclusion��� 145

�Index�� 147

Table of Contents

https://doi.org/10.1007/978-1-4842-9159-7_8#Sec20
https://doi.org/10.1007/978-1-4842-9159-7_8#Sec21
https://doi.org/10.1007/978-1-4842-9159-7_8#Sec22
https://doi.org/10.1007/978-1-4842-9159-7_8#Sec23
https://doi.org/10.1007/978-1-4842-9159-7_8#Sec24
https://doi.org/10.1007/978-1-4842-9159-7_8#Sec25
https://doi.org/10.1007/978-1-4842-9159-7_8#Sec26
https://doi.org/10.1007/978-1-4842-9159-7_8#Sec27
https://doi.org/10.1007/978-1-4842-9159-7_8#Sec28
https://doi.org/10.1007/978-1-4842-9159-7_8#Sec29
https://doi.org/10.1007/978-1-4842-9159-7_8#Sec30
https://doi.org/10.1007/978-1-4842-9159-7_8#Sec31
https://doi.org/10.1007/978-1-4842-9159-7_8#Sec32
https://doi.org/10.1007/978-1-4842-9159-7_8#Sec33
https://doi.org/10.1007/978-1-4842-9159-7_9
https://doi.org/10.1007/978-1-4842-9159-7_9#Sec1
https://doi.org/10.1007/978-1-4842-9159-7_9#Sec2
https://doi.org/10.1007/978-1-4842-9159-7_9#Sec3
https://doi.org/10.1007/978-1-4842-9159-7_9#Sec4
https://doi.org/10.1007/978-1-4842-9159-7_9#Sec5

xi

About the Author

Jithin Jude Paul is a cloud architect and serverless advocate

who is passionate about AWS technologies. In his decade-

long career, he has been a software developer, full-stack

engineer, cloud developer, DevOps engineer, cloud architect,

and solution architect. He is currently working as an AWS

solution architect and helps onboard customers to AWS.

Jithin was born in Kochi, Kerala. He graduated from

Mahatma Gandhi University with a major in electronics and

communication engineering. He enjoys engaging at meetups

and workshops. He was a speaker at the AWS re: Invent

conference, where he showcased the power of utilizing

serverless components while architecting distributed

systems. In his spare time, he enjoys playing the guitar,

cooking, and spending time with his family.

xiii

About the Technical Reviewer

Akash Tyagi has spent 13 years architecting, building,

and testing software. He is an active member of the AWS

Community Builder program and loves to write on various

technical topics including DevOps, architecture, pipelines,

and testing.

Akash holds an MTech degree from National University

of Singapore (NUS) and is currently working in a fintech

company in Singapore. He can be reached at www.linkedin.

com/in/akashdktyagi/.

http://www.linkedin.com/in/akashdktyagi/
http://www.linkedin.com/in/akashdktyagi/

xv

Acknowledgments

I would like to thank Almighty God for giving me the wisdom, knowledge, and strength

to complete this book. There were many personal hurdles while managing my family and

writing this book, and our good Lord helped me to navigate through them to complete

this book.

I would also like to thank the acquisitions editor of my book, Celestin Suresh John,

as whenever I asked for an extension or had a query, he would patiently listen and offer

a resolution. Also, I would like to thank the editor of my book, Jim Markham and Mark

Powers, who reviewed my book and suggested changes wherever required. Thank you

for your patience and input, Jim, Mark and Celestin; it has really helped me grow as

an author.

Last but in no means least, I would like to thank my high school computer teacher,

Professor C.V. Nagaraj, who not only taught me computer science but also ignited in me a

profound interest in the world of programming and computers.

xvii

Introduction

Cloud adoption is increasing on a daily basis, and serverless services on the cloud

are increasing in number as well. Hence, it is important for all IT professionals to

understand what serverless means and how serverless services are beneficial while

designing applications. If you have no experience with serverless technologies, this

book will serve as a good starting point, as I offer a detailed overview of the what, why,

and how of serverless so that you understand its underlying concepts and related terms

before moving on to serverless architectures.

As it is essential to design systems in a distributed manner nowadays, throughout

this book I use distributed architectures and serverless components on AWS. Although

I have used AWS services to implement the architectures, you can replace them with

analogous services in Google Cloud, Azure, or any public cloud provider with minimal

configuration changes, and the results will be more or less the same. That’s the beauty

of the cloud and of serverless. I hope this book helps you in your journey as a cloud

enthusiast to build robust systems using serverless services.

You can find the source code used in this book at https://github.com/apress/

distributed-serverless-architecture-aws.

If you have any suggestions or queries regarding this book, please reach out to me.

•	 Email: jithinjudepaule@gmail.com

•	 LinkedIn: https://www.linkedin.com/in/jithinjudepaul/

I hope you enjoy reading this book. May God bless you.

https://github.com/apress/distributed-serverless-architecture-aws
https://github.com/apress/distributed-serverless-architecture-aws
https://www.linkedin.com/in/jithinjudepaul/

1

CHAPTER 1

Introduction to Serverless
Technology
If you have been working in the software industry for any amount of time, you will have

come across the term serverless in relation to many architectural decisions. So, what is

serverless, and why write a book on serverless architectures exclusively?

Well, the answer to this question lies in the fact that serverless has grown from being

a function as a service (FaaS) to a large landscape of exclusive serverless components.

Serverless patterns are ubiquitous, and there are lots of typical architectures that

follow the serverless track. Having spent years working in the serverless world, I

will summarize a few patterns in this book that are commonly used while designing

systems using AWS. But before that, let’s understand what serverless is and what its key

components are.

This chapter covers the following aspects:

•	 What serverless is

•	 Managed versus serverless services

•	 Serverless services on AWS

•	 Why you might want to go serverless

•	 Reference architecture for a serverless web application

© Jithin Jude Paul 2023
J. J. Paul, Distributed Serverless Architectures on AWS, https://doi.org/10.1007/978-1-4842-9159-7_1

https://doi.org/10.1007/978-1-4842-9159-7_1#DOI

2

�What Is Serverless?
If you are like me, you might find the term serverless confounding the first time you hear

it. After all, don’t all web applications need to be hosted somewhere? Well, serverless

doesn’t mean that no servers are involved but that there are fewer servers to manage;

rather, the way to go about this pattern is to leave server management to the cloud

provider you are working with. In essence, you manage only the code that you work on,

and the management of hosting, scaling, etc., is done by the cloud provider.

Before we dive deeper into serverless, let’s understand the different types of services

available in the cloud based on the level of management.

�Self-Managed vs. Fully Managed vs.
Serverless Services
When it comes to different kinds of services in the cloud based on management

overhead and level of control, we can divide them broadly into three categories: self-

managed services, fully managed services, serverless services.

�Self-Managed Services
With self-managed services, the cloud provider shares a small amount of responsibility

over the launched services. The developer has to take care of the configuration, scaling,

security, patching, etc., for the application. Here the developer or the admin has

maximum control over the application and can implement any desired configuration.

We can also call this category of services user-managed services.

Self-managed services are mostly used either during a migration from on-premise

to the cloud or when the application that is being developed needs to be highly

configurable and controllable. Usually virtual machines are used to launch self-managed

services.

For example, say we have configured a highly scalable Apache Kafka cluster and

we are using it on our premises and decide to use the same configuration on the AWS

cloud over the other queuing solutions. At this juncture, we can launch an EC2 instance

and deploy the Kafka cluster inside the EC2 virtual machine. Figure 1-1 shows this

implementation.

Chapter 1 Introduction to Serverless Technology

3

Figure 1-1.  An example of a self-managed service

�Fully Managed Services
In a fully managed service, the application developer just needs to choose the required

configurations from the options available, and the service can be easily set up. The

developer does not need to worry about the underlying hardware or its patching,

availability, etc., as that is the responsibility of the cloud provider.

Some of the main reasons for choosing managed services are the ease of setup,

less management overhead, and high availability. Let’s consider the previous example

of migrating an on-premise Kafka cluster to the cloud. If the team does not have

the expertise to set up a Kafka cluster by themselves or they want less management

overhead, the same Kafka cluster can be launched using the AWS Managed Streaming

for Apache Kafka service, which is a fully managed, highly available Apache Kafka

service. Figure 1-2 illustrates this.

Chapter 1 Introduction to Serverless Technology

4

Figure 1-2.  An example of the AWS Managed Streaming for Apache Kafka service

�Serverless Services on AWS
A serverless service is an abstracted, fully managed service where you only need to

care about the function you are executing using the desired service. Unlike with fully

managed services, you need to pay only for the time/requests for which you have used

the service. That is, serverless follows a pay-per-use model.

Serverless services come in handy when you want to increase agility, optimize costs,

and reduce infrastructure provisioning tasks. Let’s consider the same example of a

queuing system. If we need to replace the on-premise queuing system with a serverless

one, we need to use Amazon’s Simple Queue Service (SQS), which is a fully managed

queuing service that eliminates the complexity associated with operating message-

oriented architecture and reduces management overhead.

SQS can dynamically scale on demand with no limit to the number of messages per

queue. It is also priced based on the number of requests per month, which includes

a free tier of 1 million requests, making it significantly cheaper than the always-on

messaging architectures. See Figure 1-3.

Chapter 1 Introduction to Serverless Technology

5

Figure 1-3.  Amazon SQS, a serverless service from AWS

Now let’s look at some of the AWS serverless offerings in the areas of compute,

application integration, and data storage; see Figure 1-4. Kindly note that the list of

services from AWS gets updated frequently, and the following is accurate while I am

writing this book. The latest list with all the AWS services is available at https://aws.

amazon.com.

Chapter 1 Introduction to Serverless Technology

https://aws.amazon.com
https://aws.amazon.com

6

Figure 1-4.  List of AWS services from the AWS documentation

�Compute

Let’s discuss the serverless services that AWS provides for compute.

•	 AWS Lambda is the FaaS offering from AWS with a pay-per-use

pricing model. The user needs to focus only on the code that is being

written, and AWS manages the underlying architecture. You will be

seeing AWS Lambda being used in lots of architectures throughout

this book as Lambda integrates with most AWS services.

•	 The Fargate service is a serverless compute service for containers;

it works in conjunction with AWS EKS and ECS and provides the

necessary compute required for the containers.

Chapter 1 Introduction to Serverless Technology

7

�Application Integration

AWS provides lots of serverless services for application integration ranging from

messaging services to queuing services to event bus services, etc. Let’s discuss

them here:

•	 Amazon Event Bridge is the AWS serverless event bus offering used to

build event-driven systems at scale.

•	 AWS Step Functions enables you to orchestrate your entire workflow

by providing you with a visual workflow orchestrator.

•	 Amazon SQS is the serverless queuing system from AWS that helps

you decouple systems and process them asynchronously.

•	 Amazon SNS is the fully managed messaging service from AWS that

enables you to send messages between applications as well as to

external communication devices.

•	 The Amazon API Gateway enables you to create, publish, and

manage websocket and REST APIs on a variable or fixed scale.

•	 AWS AppSync is a fully managed service to develop GraphQL APIs

as AppSync helps in managing the scaling and connections of

GraphQL APIs.

�Data Store

AWS provides serverless services for relational databases, for nonrelational databases,

and for object storage. Let’s discuss them here:

•	 Amazon S3 is a simple object storage service from AWS with very

high availability and resiliency.

•	 Amazon DynamoDb is a key-value serverless data store with very

high throughput and single-digit millisecond performance.

•	 Amazon RDS Proxy is the proxy service offered for Amazon’s

relational database services to make them more secure and scalable.

•	 Amazon Aurora Serverless is a MySQL- and Postgres-compatible

relational database service from AWS. The serverless configuration of

Aurora can autoscale on demand.

Chapter 1 Introduction to Serverless Technology

8

Figure 1-5 compares levels of abstraction in various tech stacks versus the amount of

focus that can be attributed to application development.

Figure 1-5.  Abstraction levels versus application code focus in tech stacks

So, in essence, serverless does the following:

•	 Shifts operational overhead to the cloud provider

•	 Provides servers that are managed by the cloud provider

•	 Provides fully managed scaling

•	 Provides near-zero downtime

•	 Provides very high availability

Chapter 1 Introduction to Serverless Technology

9

�Why Serverless?
More and more companies are adopting serverless architectures as part of their

application development. The following are a few of the advantages of serverless

services:

•	 Saves money: Because serverless services follow a pay-per-use model,

you pay only for the time for which you use serverless components.

This makes the entire architecture cost-effective.

•	 Supports a green cloud: As there is no dedicated hardware for the

applications we develop, the resources that are being used for

components are reusable. Also, the compute resources are allocated

only when they are invoked and hence reduce the carbon footprint.

•	 Offers high availability: The serverless components are designed

for high availability and near-zero fault tolerance as they are fully

managed by cloud providers.

•	 Has less infrastructure to manage: As serverless services are managed

by the respective cloud providers, we do not need to manage the

infrastructure provisioning and management required for these

services.

�Serverless-First Mindset
A serverless-first mindset is all about considering the serverless approach before any

other approach and considering other approaches only if the serverless approach fails

to meet the requirements (which rarely occurs). Hence, many projects that are migrated

to the cloud initially start with a few serverless components and then integrate other

systems as well in a phased manner.

Figure 1-6 shows a typical serverless pattern for a web application.

Figure 1-6.  A typical serverless pattern

Chapter 1 Introduction to Serverless Technology

10

All the components can be built using managed services from various cloud

providers such as AWS, Azure, GCP, etc. All these features are managed by the cloud

providers, including their availability, performance, and scaling.

�A Bit About FaaS
As shown in Figure 1-6, the FaaS component sits at the core of this architecture. We use

a FaaS to write and host our code. Examples of functions as a service are Lambda from

AWS, Azure Functions from Azure, and Cloud Functions from Google. One of the main

reasons for the popularity of serverless design is the ease with which one can spin up a

FAAS component and tear it down if not in use.

Lambda is the most common serverless compute service from AWS, and it can

be triggered from most of the AWS services and is widely used in many serverless

architectures.

Let’s consider the scenario of a typical web application whose components have

been replaced with their corresponding AWS components; see Figure 1-7.

Figure 1-7.  A serverless app modeled using AWS components

This architecture contains the components required to set up a simple web

application using serverless components alone. We can always extend this

architecture and include components for content delivery, logging, monitoring, etc.,

but this architecture is the bare minimum requirements for a scalable, secure, and

highly available web app. I have used this architecture in many projects, and all the

components meet the SLAs mentioned in the AWS documentation. Let’s look at these

components at a high level:

Chapter 1 Introduction to Serverless Technology

11

•	 Front end: Though AWS S3 is categorized as a serverless data store,

we can use it to host static websites as well.

•	 Authentication: We can use AWS Cognito as a highly scalable

and secure solution for authentication, authorization, and user

management. It supports sign-in with social identity providers,

such as Apple, Facebook, Google, and Amazon, and with enterprise

identity providers via SAML 2.0 and OpenID Connect.

•	 API management: API Gateway is a fully managed service. It’s easy

for developers to create, publish, maintain, monitor, and secure the

RESTful and WebSocket APIs at any scale.

•	 Lambda: We can use Lambda to host RESTful APIs, and since it uses

a cost-per-use model, it can save you money and offer scalability,

resiliency, and high availability. I would say that serverless

architectures started evolving when Lambda was released.

•	 DynamoDB: In this architecture, I have used DynamoDB as a NoSQL

database. But if your web app requires a relational database service,

you can use Aurora Serverless, which is built on top of MySQL or

PostgreSQL.

�Conclusion
In this chapter, you learned what serverless is, what its advantages are, and you

compared managed services to serverless services on AWS.

Over the next few chapters, you will see more complex architectures using all or

some of the previously mentioned components of a serverless web application, as they

are the building blocks of most serverless architectures.

Chapter 1 Introduction to Serverless Technology

13

CHAPTER 2

Distributed Serverless
Architectures
Any system that distributes its tasks across multiple components on the same network

can be classified as a distributed system.

While there are multiple ways in which we can implement distributed systems, this

chapter focuses on using serverless technology to build distributed architectures.

In this chapter, we’ll look at some of the key characteristics of distributed

architectures, their advantages and disadvantages, how to create a distributed solution

using serverless, example architectures, and finally event-driven and disaster recovery

architectures.

�Key Characteristics of Distributed Systems
The Internet that we use on a day-to-day basis can be categorized as a distributed

system or, rather, a globally distributed system. Figure 2-1 shows a simple diagram of a

distributed system.

© Jithin Jude Paul 2023
J. J. Paul, Distributed Serverless Architectures on AWS, https://doi.org/10.1007/978-1-4842-9159-7_2

https://doi.org/10.1007/978-1-4842-9159-7_2#DOI

14

Figure 2-1.  Distributed system

Here the task to be executed is spread across multiple worker nodes, and it is

managed centrally by a managing node; in short, the tasks are distributed. Most of the

architectures we deal with in this book are distributed, so it is essential to understand

a bit about this type of system. The following sections highlight some of the important

characteristics of distributed systems.

�Near-Zero Latency
If we are building a distributed system, the dependent components in the system must

have zero or minimum latency. This will ensure that the application that is running

does not time out while waiting for various components to respond. This may not be

achievable at all times, so we use a queuing mechanism to ensure that all the application

cycles reach completion and there are no unprocessed stages in the application lifetime.

Figure 2-2 provides a simple example of a distributed system using serverless where we

are using Amazon SQS as a buffer for unprocessed images.

Chapter 2 Distributed Serverless Architectures

15

Figure 2-2.  Using SQS as a buffer in a distributed system

When an image is loaded to the S3 bucket, a Lambda trigger processes the image and

stores it in the RDS instance. If some images go unprocessed because of latency or some

technical issue, those images are stored in Amazon SQS directly instead of in a database.

A Lambda function will then poll this queue periodically to ensure that the unprocessed

images are processed and fed into the database.

In this manner, any latency in processing images is addressed by buffering it and

processing it concurrently. This ensures that no images are lost, and at the same time,

they are processed at a faster rate overall.

�Fault Tolerant
All the components in a distributed system must be fault tolerant; that is, if a component

encounters a failure, it must be able to start a new instance of itself, or the traffic should

be routed to a replica set accordingly. This ensures that the system works flawlessly

without any errors or latency. For example, if the database we are using goes down,

provisions must be made using monitoring systems to raise alerts and route traffic to a

replica of the database that is in sync with the primary database.

Chapter 2 Distributed Serverless Architectures

16

�Highly Available
It is essential that the key components of a distributed system are highly available. That

is, more than a single instance of a component should be maintained to reduce the load

on the main system and for data resiliency.

�Scalability
Depending on the scenario, we can make a distributed system scalable or fixed. But 90

percent of the applications tend to have scalability as a desired feature. So, we need to

ensure that the components we are choosing have provisions to scale automatically; or,

if a component is a managed service, the components need to have enough capacity/

memory provisioned to perform on a larger scale.

�Immutable Architecture
An immutable architecture is a paradigm in which the servers cannot be modified once

they are deployed. If there needs to be a change on the server, it needs to be replaced.

Most distributed systems are designed to be immutable. For instance, if a container

in a distributed system goes down, a new container with the same configuration

is immediately spun up. Immutable architecture is closely entwined with IAC

(Infrastructure As Code) tools such as Terraform and AWS CloudFormation that help

us in building immutable architectures. AWS Lambda, which is the AWS function as a

service, is an example of immutable architecture. In distributed systems, it is difficult

to make changes in isolation. Hence, it is advisable to keep most components of a

distributed system immutable.

�The Cloud and Distributed Systems
With the advent of cloud computing, distributed architectures have become more and

more common. In fact, it’s difficult to find a system that is not distributed nowadays

because of the growing demand for autoscaled high-performing systems. But that

doesn’t mean that all systems need to be distributed in nature. For instance, real-

time processing systems work well when the components are not distributed and are

Chapter 2 Distributed Serverless Architectures

17

confined to a single system, as this will reduce latency. Let’s look at the use cases for

making a system distributed.

�Making a Solution Distributed
To make a system distributed, it needs to orchestrate actions, and its data needs to be

collected from different regions. Let’s review that now.

�Orchestrating Actions
A batch job that gets executed periodically on a server may not be the best use case to

make a distributed solution. However, if the same batch job’s output is used as input to

other systems (as shown in Figure 2-3), then the system becomes distributed in nature.

We have used serverless services to perform the batch processing asynchronously.

Figure 2-3.  Distributed batch processing using serverless

Here, the user initiates a step function, which in turn invokes the AWS batch job.

The output of the batch job is stored in an S3 bucket, and at the same time, a notification

is sent via SNS to a topic. All these services are independent of each other, making the

solution distributed. Hence, any solution we are designing requires actions that need to

be orchestrated, so it’s better to make the solution distributed.

Chapter 2 Distributed Serverless Architectures

18

�Collecting Data from Different Regions
If we have a multi-region application and the data needs to be replicated in all regions,

then it is imperative that we set up databases in all regions and keep updating the data

to all databases in all regions so that the data is available to all the applications running

in multiple regions. An alternative solution would be to design a globally distributed

database like the Amazon Aurora global database, which can sync with all regions with

minimum latency; the same database can be used by the central system in US East 1 to

show metrics. Figure 2-4 shows four applications in four different regions. We are using

the Aurora global database, and its master node is located in US East 1.

Figure 2-4.  Aurora global database

In the global database, we have one read and write instance located in the primary

region (US East 1 here), and all other regions have read replicas. In Figure 2-4, APP B

in the US East 2 region writes to the read replica of the Aurora global database, which

then gets replicated to the primary region in US East 1 by using the write forwarding

feature of Aurora. This replicated data is then further replicated to other read replicas

Chapter 2 Distributed Serverless Architectures

19

in the US West 1 and US West 2 regions. Thus, having a globally distributed database

helps us to sync all the databases with updated data seamlessly, as shown in the

previous example.

�Pros and Cons of Global Distributed Apps
The following are some pros of globally distributed apps:

•	 Highly available

•	 Fault tolerant

•	 High performing

•	 Globally available and hence minimum latency to region-

specific users

The following are some cons of global distributed apps:

•	 Monitoring in real-time is complex when compared with

nondistributed systems because the observability metrics are

collected from multiple resources and then aggregated.

•	 Complex design.

•	 High cost of implementation.

Common Architectural Patterns
Now that we have an understanding of distributed systems, let me introduce you to a few

architectural patterns we will be covering in this book from a high level.

�Event-Driven Architectures
The event-driven architecture is so far the most widely adopted serverless architecture

pattern; in fact, events sit at the heart of any serverless application. Figure 2-5 provides

an example of this type of architecture from a high level.

Chapter 2 Distributed Serverless Architectures

20

Figure 2-5.  High-level event-driven system

For event-driven architectures, the source is an event trigger, which triggers a system

(System A in Figure 2-5), which further triggers other downstream systems. Few systems

are entirely event-driven, whereas few systems use events as functionality in their

application platform. We will be discussing this architecture in detail in Chapter 3.

�Disaster Recovery Architectures
There are different ways to configure your disaster recovery architectures. The disaster

recovery (DR) strategy for a cloud provider mainly depends on three factors:

•	 The DR architecture needs to be within the same region or

cross-region.

•	 The recovery time objective (RTO) is the minimum time required to

restore a service.

•	 The recovery point objective (RPO) is the acceptable amount of loss

incurred during recovery.

Figure 2-6 shows a typical DR architecture in an active-passive configuration. We will

be discussing various types of DR architectures in Chapter 4 of this book.

Chapter 2 Distributed Serverless Architectures

https://doi.org/10.1007/978-1-4842-9159-7_3
https://doi.org/10.1007/978-1-4842-9159-7_4

21

Figure 2-6.  A typical DR architecture

In this architecture, the DNS requests are resolved by running health checks using

health check policies, and traffic is routed to a region only if it is healthy.

In addition to these architectures, there are numerous other architectural patterns

for serverless systems. We will be discussing them in detail in the upcoming chapters.

Chapter 2 Distributed Serverless Architectures

22

�Conclusion
We covered the following in this chapter:

•	 An introduction to distributed systems

•	 Key characteristics of distributed systems with sample architectures

•	 Advantages and disadvantages of distributed systems

•	 How to arrive at making a solution distributed with example

architectures

•	 Overview of the event-driven and disaster recovery architectures

In the next chapter, we’ll explore the event-driven architecture using different

categories of serverless components.

Chapter 2 Distributed Serverless Architectures

23

CHAPTER 3

Event-Driven
Architectures
In the previous chapters, you learned about serverless and distributed systems

using AWS. Most of these systems included events in one form or another. Event-driven

architectures, on the other hand, work based on the state changes or, rather, events. In

this chapter, we’ll cover the following:

•	 What event-driven architectures are

•	 Common event-driven architectures

•	 Different use cases for event-driven architectures

�What Are Event-Driven Architectures?
An event can be described as a change in state. For example, when a database goes

down, it is a change from a stable state and hence can be categorized as an event.

Events make any system more responsive and robust. Let’s discuss the anatomy of an

event-driven architecture, which is visualized in Figure 3-1.

Figure 3-1.  Anatomy of an event-driven architecture

The general overview in Figure 3-1 can be used once or multiple times within a

same application depending on the number of event producers and consumers. We’ll go

through each one in turn, beginning with event producers.

© Jithin Jude Paul 2023
J. J. Paul, Distributed Serverless Architectures on AWS, https://doi.org/10.1007/978-1-4842-9159-7_3

https://doi.org/10.1007/978-1-4842-9159-7_3#DOI

24

Event Producer
An event producer produces the necessary event to create a trigger. Generally,

there would be an event source that produces events either at regular intervals or

intermittently. Figure 3-2 shows a few examples of event producers.

Figure 3-2.  Examples of event producers

Event Trigger
An event trigger is a predefined action that needs to be executed when the expected

event occurs. For example, if we keep an S3 trigger to execute a Lambda function when a

Put event happens in a bucket, then the S3 trigger is the event trigger here, as illustrated

in Figure 3-3.

Chapter 3 Event-Driven Architectures

25

Figure 3-3.  S3 event trigger for Lambda function

Figure 3-3 shows the example of an S3 trigger, which invokes a Lambda function

when an object is put in the S3 bucket event-driven-s3-bucket.

Event Processor
An event processor processes the events that it receives from the event source. In the

example in Figure 3-3, the Lambda function, s3-event-processor, processes the events

from the S3 bucket.

Chapter 3 Event-Driven Architectures

26

Event Consumer
An event consumer consumes the processed events from the event processor. In the

example shown in Figure 3-3, we can persist the new image metadata in DynamoDB,

which acts as an event consumer.

We have also added an SNS topic to the Lambda function, and whenever the trigger

fires and the Lambda function is invoked successfully, it gets published to the SNS topic,

and the subscribers get notified accordingly.

The following is an example of an email notification for a successful invocation of the

Lambda function s3-event-processor:

From: AWS Notifications <no-reply@sns.amazonaws.com>

Date: Thu, Aug 25, 2022 at 10:50 AM

Subject: AWS Notification Message

{"version":"1.0","timestamp":"2022-08-25T05:20:46.750Z","requestContext

":{"requestId":"6f679aad-fad9-4335-8d20-7d0d6cafa26e","functionArn":"a

rn:aws:lambda:us-east-1:857312989998:function:s3-event-processor:$LATES

T","condition":"Success","approximateInvokeCount":1},"requestPayload":

{"Records":[{"eventVersion":"2.1","eventSource":"aws:s3","awsRegion":"

us-east-1","eventTime":"2022-08-25T05:20:45.388Z","eventName":"ObjectCr

eated:Put","userIdentity":{"principalId":"A1L7ADO675FNBJ"},"requestPara

meters":{"sourceIPAddress":"49.37.162.140"},"responseElements":{"x-amz-

request-id":"YCJA250DTBJHWD5P","x-amz-id-2":"GWS5XrDa3XeNhkcqZfZW3bL5o/

watXxBDH2Dk/QWTMkl7GUmqoXbJCeutM43a+3EKxUCU56QDEBSE6qqoLw9g21WPLvxR7pi"},

"s3":{"s3SchemaVersion":"1.0","configurationId":"8d37cdd8-4877-4d78-a51f-

debb46181075","bucket":{"name":"event-driven-s3-bucket","ownerIdentity":

{"principalId":"A1L7ADO675FNBJ"},"arn":"arn:aws:s3:::event-driven-s3-bucket

"},"object":{"key":"Screenshot+2022-01-28+at+6.04.38+PM.png","size":713421,

"eTag":"88f1384ec940264cef069bd1581d60af","sequencer":"00630706AD44AF8D52"}

}}]},"responseContext":{"statusCode":200,"executedVersion":"$LATEST"},"resp

onsePayload":"image/png"}

Now, let’s take a look at a few commonly used event-driven architectures.

Chapter 3 Event-Driven Architectures

27

�Common Serverless Web Application Architecture
In the example shown in Figure 3-4, we have a serverless web application that is

hosted on AWS.

Figure 3-4.  Common serverless web application architecture

The following are its main components:

	 a)	 CloudFront

The CloudFront service is the content delivery service from

AWS. It can be integrated with the S3 bucket used for static hosting

and integrates with the AWS security tools such as AWS WAF, AWS

Shield, etc. It ensures that the static content is served via multiple

edge locations, decreasing latency and increasing performance.

	 b)	 S3 Bucket

Simple Storage Service is a fully managed object storage service

from S3. The Static Website Hosting property of this service

enables an S3 bucket to be used as a host to static content;

or, rather, the front-end code as the S3 standard class has an

availability and durability greater than 99 percent. It’s a perfect fit

for a front-end web application as it automatically scales under

the hood when the request rate is high.

	 c)	 API Gateway

The API Gateway is a fully managed service from AWS that enables

users to create, publish, maintain, monitor, and secure APIs at

any scale. It can be used to create REST APIs as well as WebSocket

APIs. Here we use API Gateway to trigger a Lambda function. The

API calls are received from the front-end code hosted in S3, and

upon reaching the API Gateway, the REST API endpoint request

gets handed over to the Lambda function, which hosts the back-

end APIs.

Chapter 3 Event-Driven Architectures

28

	 d)	 Lambda

AWS Lambda is a function-as-a-service offering from AWS, which

enables you to host your application code, and the computing

environment for it is fully managed by AWS without the need to

provision or manage servers. Note that the application size and

micro VMs are provisioned under the hood from the AWS side.

Lambda can be triggered from more than 200 AWS services. Here

we are hosting our REST APIs in the Lambda function.

	 e)	 DynamoDB

Amazon DynamoDB is the NoSQL offering from Amazon that

stores data as a key-value pair. DynamoDB supports high-traffic,

extremely scaled events and can handle millions of queries per

second. In our example, we are using DynamoDB to retrieve

master data and persist transactional data.

The previous application can be provisioned through Terraform or any other

infrastructure-as-a-code tool such as a serverless framework, AWS CDK, AWS

CloudFormation, etc. I have used Terraform to provision the architecture in Figure 3-4.

Note that I have excluded the CloudFront module from the Terraform provisioning

as CloudFront constitutes a content delivery service that serves the front end of the

serverless web application and is not part of the web application as such. I have included

it in the architecture as it’s a commonly used pattern. You can provision the environment

by cloning this GitHub repo (https://github.com/jithinjudepaule/Distributed_

Serverless_Architectures_Book).

Also, I have included a sample Hello World Lambda function for the Lambda

function module. Feel free to replace it with your custom Lambda code.

Chapter 3 Event-Driven Architectures

https://github.com/jithinjudepaule/Distributed_Serverless_Architectures_Book
https://github.com/jithinjudepaule/Distributed_Serverless_Architectures_Book

29

It’s beyond the scope of this book to explain the Terraform code line by line. I have
included the relevant information in the GitHub repo mentioned earlier.

Once you apply any module, you will get the output shown in Figure 3-5. (I have

applied the Lambda module here; the output will be similar for API Gateway, S3, and

other modules.)

Figure 3-5.  Output of Terraform apply for the Lambda module

Chapter 3 Event-Driven Architectures

30

Figure 3-5.  (continued)

Chapter 3 Event-Driven Architectures

31

Once the apply is complete, you will get the outputs that you have defined in the

Outputs section of your code (I have included the Lambda ARN here).

Adding Resiliency to the Serverless Web
Application Architecture
The web application introduced in Figure 3-4 would serve the purpose if the web traffic

is relatively small. But if the traffic is very high and the customer does not want any API

calls to be lost, then we should retry the Failed API calls. In Figure 3-6, we have made a

provision for this resiliency feature.

Figure 3-5.  (continued)

Chapter 3 Event-Driven Architectures

32

Figure 3-6.  A highly resilient event-driven application

Before we move on, let’s first understand the components that will help us achieve

this resiliency.

Simple Notification Service
Amazon Simple Notification Service (Amazon SNS) is a fully managed messaging

service in a Pub-Sub model. SNS enables its users to send notifications such as

emails, messages, or posts directly to HTTP endpoints. It can send messages directly

to an application (A2A) or to a person (A2P). In the previous example, the API calls

to DynamoDB that did not succeed are passed to the SNS topic, which has different

topics for different API calls. For example, if the previous system is an e-commerce web

application, then the different topics can be Place Order API Topic, Payment Gateway

API Topic, etc.

Simple Queue Service
Amazon Simple Queue Service (SQS) is a fully managed message queuing service that

enables you to scale elastically based on demand. The messages you can send through

the standard queues are nearly unlimited, which makes it the ideal candidate for async

processing.

Chapter 3 Event-Driven Architectures

33

In the example shown in Figure 3-6, we are using SNS to fan out the messages to the

corresponding SQS queues, and these queues act as event sources for the corresponding

Lambda functions. This subscriber Lambda further processes the failed API calls to be

sent to DynamoDB for persistence.

We can add an SQS trigger to a Lambda function, as shown in Figure 3-7.

Figure 3-7.  SQS trigger to Lambda function

We need to configure the following Mandatory parameter for the SQS queue:

•	 Batch size: Here the Batch size is a parameter we need to configure.

It indicates the number of records to send to the Lambda function in

each batch.

•	 Batch window: This is an optional parameter, and it indicates the

time window before invoking the function.

Chapter 3 Event-Driven Architectures

34

�Design a Serverless Streaming Event Processor
Nowadays, streaming data is in use everywhere. Whether streaming sports events, live

conferences, etc., it is ubiquitous. So, architectures that handle streaming data are also

becoming popular. Figure 3-8 shows a streaming event processor using event-driven

architecture.

Figure 3-8.  Streaming event processor

In the example established in Figure 3-8, let’s consider the scenario where users of

web and mobile applications raise requests from their respective clients. Amazon Kinesis

is a fully managed service from AWS used for collecting, processing, and analyzing real-

time streaming data.

We can use Kinesis Streams to collect these requests, and this data can be processed

in the event processor Lambda function that has kept Kinesis Streams as an event

source. Whenever a record is ingested into the Kinesis stream, it invokes the Lambda

function to process the record and notify the user using SNS on the status of the request.

The request details can further be persisted in the DynamoDB table.

We can scale this solution from a few users to thousands of users as Amazon

Kinesis can handle any amount of streaming data and process data from thousands of

sources with very low latencies. And as the solution is serverless, we need to pay only

for the processed records, and we do not need to allocate any preprovisioned capacity

beforehand.

Chapter 3 Event-Driven Architectures

35

We can add Kinesis Streams as a trigger for the Lambda function as shown in

Figure 3-9.

Figure 3-9.  Adding Kinesis Streams

The Kinesis records can be processed in the Lambda function using the following

code written in Python using Boto3:

import base64

import json

import boto3

def lambda_handler(event, context):

 count=0

 client = boto3.client('sns')

 #Record processing starts

 for record in event['Records']:

 count=count+1

 # Kinesis data is base64 encoded so decode here

 payload = base64.b64decode(record['kinesis']['data']).decode('utf-8')

 #code to pass the payload and call other AWS services here

Chapter 3 Event-Driven Architectures

36

 �#As per the above example, we can publish this payload to the SNS

topics here

 response = client.publish(

 �TopicArn='arn:aws:sns:us-east-1:AccountID:KinesisSubscriber

Topic',

 Message=payload

)

 print('Record '+ str(count))

 print("The Decoded payload is: " + payload)

 return 'Processed {} records.'.format(len(event['Records']))

You can use the following test event to test your Lambda function from the AWS

Console, or you can post this to the stream directly:

{

 "Records": [

 {

 "kinesis": {

 "partitionKey": "partitionKey-03",

 "kinesisSchemaVersion": "1.0",

 �"data": "SGVsbG8sIFRoaXMgaXMgYSB0ZXN0IG1lc3NhZ2UgZnJvbSB0aGUg

S2luZXNpcyBzdHJlYW0u",

 �"sequenceNumber": "49545115243490985018280067714973144582180062

593244200961",

 "approximateArrivalTimestamp": 1428537600

 },

 "eventSource": "aws:kinesis",

 �"eventID": "shardId-000000000000:495451152434909850182800677149

73144582180062593244200961",

 "invokeIdentityArn": "arn:aws:iam::SAMPLE2",

 "eventVersion": "1.0",

 "eventName": "aws:kinesis:record",

 "eventSourceARN": "arn:aws:kinesis:SAMPLE2",

 "awsRegion": "us-east-1"

 },

Chapter 3 Event-Driven Architectures

37

 {

 "kinesis": {

 "partitionKey": "partitionKey-04",

 "kinesisSchemaVersion": "1.0",

 �"data": "SGVsbG8sIFRoaXMgaXMgdGhlIHNlY29uZCB0ZXN0IG1lc3NhZ2UgZn

JvbSB0aGUgS2luZXNpcyBzdHJlYW0u",

 �"sequenceNumber": "4954511524349098501828006771497314458218006259

3244200961",

 "approximateArrivalTimestamp": 1428537600

 },

 "eventSource": "aws:kinesis",

 �"eventID": "shardId-000000000000:49545115243490985018280067714

973144582180062593244200961",

 "invokeIdentityArn": "arn:aws:iam::SAMPLE2",

 "eventVersion": "1.0",

 "eventName": "aws:kinesis:record",

 "eventSourceARN": "arn:aws:kinesis:SAMPLE2",

 "awsRegion": "us-east-1"

 }

]

 }

You will get the output shown in Figure 3-10 from the Lambda console, which

contains the details of the message as well as its status.

Chapter 3 Event-Driven Architectures

38

Figure 3-10.  Output of the Lambda test event

As you would have observed, processing streaming events with serverless

components is simple and cost effective. The solution mentioned in Figure 3-8 can be

plugged into any architecture at any scale. That is the raw power of serverless services.

�Designing a Serverless Email Service with Bounced
Email Handling
Figure 3-11 shows the emailing service that monitors and processes bounced emails.

The architecture for the emailing service is simple; we have a Lambda function that

processes the email request payload it receives and, using the AWS SDK, invokes the

Amazon Simple Email Service, which is Amazon's emailing service, and sends the mail

to the required mailbox.

Chapter 3 Event-Driven Architectures

39

Figure 3-11.  An email service that handles bounced emails as well

So then, the obvious question is why do we need all the extra components and

workflows there if an email can be sent using a simple API call? What is the need for

handling bounced emails?

The answer to this question lies in the AWS service limits for emails. As per the AWS

documentation, “The bounce rate for your account should remain below 5%. If the

bounce rate for your account exceeds 10%, we might temporarily pause your account’s

ability to send email” (https://docs.aws.amazon.com/pinpoint/latest/userguide/

channels-email-deliverability-dashboard-bounce-complaint.html).

So, we need to check whether the email address to which we are about to send

mail was a bounced email or not. To do that, we need a list of bounced emails persisted

in a persistent store that we can query before sending an email. The bounced email

processor helps us to achieve that. Let’s understand this in detail.

We need to perform the following steps to extract bounced emails and persist them

in DynamoDB, which can later be queried against before sending an email.

Step1: Create an SNS Topic for Receiving Bounced Emails.
When the bounced email event occurs, we need to have a notification system in

place that will send notifications. We can use the Amazon Simple Notification Service

(SNS) for this. Create an SNS topic and if required add an email subscription to it. This

Chapter 3 Event-Driven Architectures

https://docs.aws.amazon.com/pinpoint/latest/userguide/channels-email-deliverability-dashboard-bounce-complaint.html
https://docs.aws.amazon.com/pinpoint/latest/userguide/channels-email-deliverability-dashboard-bounce-complaint.html

40

will enable SNS to send an email notification in the case of any bounced email. (Kindly

note that this is an optional step to activate live notifications, and you can skip it if

required as we are adding a Lambda subscriber in the next step to process the event.)

Step 2: Add a Lambda Subscriber to It.
The job of this Lambda is to process the bounced email notification payload, extract

the email address from the JSON, and add it to the DynamoDB table. If the email already

exists in the DynamoDB table, increase its count by 1; otherwise, add a new item. By this,

we get to know if there are any particular emails that get bounced regularly.

Step 3: Enable the Bounced Email Notification in SES.
To enable a bounce email notification, you should first choose the identity for which

the bounced emails need to be enabled. For this, navigate to the Verified Identities

option in the left menu and choose the identity for which you need to receive bounced

email notifications for and click, as shown in Figure 3-12.

Figure 3-12.  Enabling bounced email notification

Now, in the event of a bounced email event, there should be a notification sent out.

We created the SNS topic in step 1 for this purpose, and we can add it to the Bounce

Feedback configuration. Go to the Notifications tab and edit the Feedback Notifications

section by adding the SNS topic for bounced emails that you created in step 1, as

illustrated in Figure 3-13.

Chapter 3 Event-Driven Architectures

41

Figure 3-13.  Adding the subscriber for bounced emails

The previous steps ensure that all bounced emails are processed by the Lambda

function, and from the Lambda function it can be persisted to DynamoDB or any other

persistence store.

Step 4: Test and verify the flow.
AWS gives us the option to send test emails to check the bounced email processing

flow, as shown in Figure 3-14.

Chapter 3 Event-Driven Architectures

42

Figure 3-14.  Setting up a test email

If we check the CloudWatch logs for the bounced email subscriber Lambda function,

we can see that it has logged a notification for a bounced email, as shown in Figure 3-15.

Chapter 3 Event-Driven Architectures

43

Figure 3-15.  Bounced email logs from CloudWatch

Kindly note that the log shown is a trimmed-down version of the full log. We can

confirm that the test bounced mail has invoked the Lambda function.

Now, let’s check how we can use the previously mentioned workflow in our emailing

service.

Chapter 3 Event-Driven Architectures

44

Workflow Visualization for Bounced Email Handling
Using the workflow mentioned in the flowchart in Figure 3-16, we can ensure that the

bounced emails are handled gracefully and only valid emails are sent across.

Figure 3-16.  Workflow for bounced email detection

Chapter 3 Event-Driven Architectures

45

Event-Driven Alerting Using Serverless
Events can be used extensively to monitor systems and raise alarms accordingly. Let’s

consider the architecture in Figure 3-17 where we have monitoring and alerting set up

for a database in RDS.

Figure 3-17.  Alerting using an event-driven architecture

We have provisioned a Aurora database. Now the use case is to get alerts whenever

this database is down. We can make use of RDS event subscriptions, as shown in

Figure 3-18. We can create an SNS topic and choose the RDS instance for which you

need to raise notifications.

Chapter 3 Event-Driven Architectures

46

Figure 3-18.  Creating an event subscription in RDS

As shown in Figure 3-19, I have chosen the RDS availability/failure/maintenance

events for RDS notifications.

Chapter 3 Event-Driven Architectures

47

Figure 3-19.  Choosing the events for notifications for the RDS instance

After you click Create, the SNS topic, its email subscription get created. You can

additionally add a Lambda subscriber and log this event to CloudWatch for auditing.

To test the aforementioned scenario, I restarted my database instance, and hence it

became unavailable, and I received the following email with the event details:

From : AWS Notifications <no-reply@sns.amazonaws.com>

Date: Wed, Aug 31, 2022 at 5:12 PM

Subject: RDS Notification Message

To: <youremail@mailbox.com>

Event Source : db-instance

Identifier Link: https://console.aws.amazon.com/rds/home?region=us-east-1#d

binstance:id=databasecluster-instance-1

Chapter 3 Event-Driven Architectures

https://console.aws.amazon.com/rds/home?region=us-east-1#dbinstance:id=databasecluster-instance-1
https://console.aws.amazon.com/rds/home?region=us-east-1#dbinstance:id=databasecluster-instance-1

48

SourceId: databasecluster-instance-1

Notification time : 2022-08-31 11:42:47.558

Message : DB instance shutdown

Event ID : http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_

Events.html#RDS-EVENT-0004

Thus we saw how we can use serverless services to create an event-driven

alerting system.

�Conclusion
In this chapter, we learned what events are and how we can use event triggers to design

various event-driven systems. We can design many different systems using event-driven

principles. However, in this chapter, I discussed a few of them that can be widely used.

We can take the previous architectures and plug them into existing architectures as well,

as they are serverless in nature.

Making a system event-driven makes it robust, but it’s not resilient enough if there

is an outage in the region in which it is deployed. In such scenarios, we can implement

disaster recovery techniques, which we will be discussing in the next chapter.

Chapter 3 Event-Driven Architectures

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Events.html#RDS-EVENT-0004
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Events.html#RDS-EVENT-0004

49

CHAPTER 4

Disaster Recovery
Architectures
“Everything fails all the time” is a famous quote by Amazon’s chief technical officer,

Werner Vogels. Most AWS services have been designed for high availability, and they do

rise up like a phoenix whenever a failure occurs. But what happens if an entire region

or availability zone encounters an outage? In such a scenario, it would be wise to have

a backup, and most distributed systems do have continuous backups. But that is just

one part of making your system resilient. The bulk of the task lies in orchestrating the

recovery workflow in such a way that new systems can be built immediately, with traffic

being routed to the healthy systems in the event of a failure.

Over the course of this chapter, you’ll learn different disaster recovery strategies, how

to implement them, and how to test them.

�Introduction to Disaster Recovery Strategies
Disaster recover strategies can be classified in a number of ways. They can be based on

region (multi-AZ disaster recovery), cross-region, or global disaster recovery; they can

be based on RTO and RPO (active backups only, active-passive, or active-active); or they

can be customized in other ways.

Let’s examine a few of these a little more closely.

�Disaster Recovery Strategies Based on Region
Before we understand how to design disaster recovery plans within a region and across

regions, let’s understand what an availability zone is and what a region is.

© Jithin Jude Paul 2023
J. J. Paul, Distributed Serverless Architectures on AWS, https://doi.org/10.1007/978-1-4842-9159-7_4

https://doi.org/10.1007/978-1-4842-9159-7_4#DOI

50

�Geographic Topology of the AWS Cloud
As you can see from Figure 4-1, the AWS cloud is divided into regions and

availability zones.

Figure 4-1.  Geographic topology of the AWS cloud

�Availability Zones

An availability zone is a set of one or more isolated data centers. These data centers

have reliable networking components and constant power. In Figure 4-1, we can see

two availability zones: US-East-1a and US-East-1b. In the US-East-1 zone is the North

Virginia region. We can also see an EC2 instance in each availability zone. In a few AWS

services such as EC2, AWS MSK brokers, AWS S3, etc., we can provision at the availability

zone level. So when we provision an EC2 instance, we get the option shown in Figure 4-2

to choose the availability zone in the Networking section. Depending on our choice, the

resource will get allocated in the corresponding availability zone.

Chapter 4 Disaster Recovery Architectures

51

Figure 4-2.  Choosing VPC and subnet CIDR ranges in a region

If we need to build a highly fault-tolerant application, we should distribute the

application across availability zones and distribute the traffic accordingly. According to

the AWS documentation, AZs are physically separated by a meaningful distance, many

kilometers, from any other AZ, although all are within 100 km (60 miles) of each other.

All AZs in an AWS region are interconnected with reliable and low-latency network

components, and the data is encrypted as well, thus providing an additional layer of

security.

�Regions

A region is a logical grouping of availability zones. The region is generally a physical

location such as Virginia, Ohio, Frankfurt, and so on, and they are geographically

separate from each other. A few services are provisioned at a regional level. For example,

when we provision a secret using the Secrets Manager in the US-East-1 region, it is

available across all availability zones, meaning US-East-1a, 1b, and 1c. But for other

regions such as US-West-2, to access this secret, we are required to set up explicit

permissions. In Figure 4-1, the separation between two regions is illustrated as well as

between AZs. The service limits for most AWS services are defined at the regional level as

well. For example, the default quota for the number of VPCs in a region is five. So if you

Chapter 4 Disaster Recovery Architectures

52

want to provision more than five VPCs in a region, you need to either ask AWS for a limit

increase or provision in another region.

A few services operate at the global level as well. They are generally tied to your

AWS account and not to any specific region. A few examples are AWS CloudFront, IAM,

Route 53, etc. We can see in Figure 4-3 that when selecting CloudFront, it automatically

changes the region setting to Global.

Figure 4-3.  CloudFront, an example of a global service in AWS

�Multi-AZ Disaster Recovery Strategy
The main reason for applications to be made available across AZs is to reduce the point

of failure. If the same application is distributed across multiple availability zones, then

even if one zone goes down, the other zones would be able to serve the content. As this

book focuses on serverless architectures, let’s design a multi-AZ disaster recovery for

a serverless web application. Figure 4-4 shows a multi-AZ design for a serverless web

application.

Chapter 4 Disaster Recovery Architectures

53

Figure 4-4.  A serverless multi-AZ disaster recovery strategy

�Front End

S3 (Standard Storage Tier): We can use the static website hosting property of S3 to host

the static website content. Using the S3 standard storage tier will ensure that the objects

are resilient to AZ failures as S3 replicates the objects across AZs. Hence, there is no

single point of failure for your front-end application.

Chapter 4 Disaster Recovery Architectures

54

�Back End

EKS with Fargate Profile: We can use the Elastic Kubernetes Service (EKS) to host our

back-end APIs, and to add the serverless flavor to it, we can use AWS Fargate instead

of EC2-based worker nodes. We can spread the EKS cluster across subnets and across

availability zones so that even if one AZ goes down, other AZs can cater to the back-end

API requests.

API Gateway: We can use API Gateway to handle API traffic. As API Gateway

spans the region and is not restricted to an availability zone, it is inherently resilient to

availability zone failures.

Lambda: We can use Lambda to attach authorization to back-end APIs that are

implemented using API Gateway. Lambda is a regional service as well.

Application Load Balancer (AKB): ALB is used to route traffic from the API gateway

endpoint to nodes in the EKS cluster. ALB is a regional-level service and hence is

resilient to AZ failures.

�Database

Amazon Aurora Serverless: We can use the Aurora serverless database to serve as the

database for our web application with multi-AZ configuration enabled. The advantage of

multi-AZ configuration is that if one AZ goes down, Aurora will automate failover to the

replica in another availability zone depending on the failover tier you have chosen.

Let’s emulate a disaster scenario and see the scenario of Aurora failing over to the

replica cluster in action.

Step 1:
Create an Aurora multi-AZ configuration by choosing the multi-AZ option, as

demonstrated in Figure 4-5.

Chapter 4 Disaster Recovery Architectures

55

Figure 4-5.  Aurora multi-AZ configuration

Step 2:
If you want more resilience and performance, you can add replicas and choose the

appropriate tier for failover, as shown in Figure 4-6.

Chapter 4 Disaster Recovery Architectures

56

Figure 4-6.  Adding resiliency to an Aurora cluster by assigning tiers

In the event of a failover, the read replica with the highest priority, i.e., the lowest tier,

is promoted first.

Step 3:
Ensure that both instances are active, as shown in Figure 4-7.

Chapter 4 Disaster Recovery Architectures

57

Figure 4-7.  Aurora database cluster view

Step 4:
Delete the primary instance to create a failover event, as shown in Figure 4-8.

Figure 4-8.  Triggering failover

Step 5:
Notice that the Aurora read replica in US-East-1c is now the primary instance and

the failover is successful to the replica, as shown in Figure 4-9.

Chapter 4 Disaster Recovery Architectures

58

Figure 4-9.  The secondary read-replica becomes the primary write instance

Hence, we can see from the previous example that Aurora is highly resilient to

failures and is a good candidate for a disaster recovery strategy.

The content delivery service AWS CloudFront and the AWS DNS service Route 53 are

global services, and we need to include them in our DR strategy. However, we will have

to include them when we do a multicloud disaster recovery strategy, which we will be

seeing later in this chapter.

�Cross-Region Disaster Recovery Strategy
Most AWS services have a regional scope; that is, they are not available when we

switch to another region. Hence, just like we provision resources across AZs, we need

to provision across regions if we have to achieve high availability in the case of a

regional outage.

We need to consider the following while designing a cross-region DR strategy:

•	 Configuration: If you require your resources in both regions to always

be available, you can use an active-active configuration, where data

is constantly in sync with both regions. Otherwise, you can use an

active-passive configuration where there would be some downtime

before the failover region starts serving traffic. With active-active, the

cost would be higher as data transfer rates and keeping services in an

active state would incur costs.

•	 Failover policies: We need to decide upon the scenarios in which a

failover should be triggered. Either we can keep this via CloudWatch

alarms and link the state of the alarms to Health Checks or we can

configure Health Checks to check endpoints.

Chapter 4 Disaster Recovery Architectures

59

Let’s consider an active-active configuration serverless architecture for a cross-

region replica, as shown in Figure 4-10.

Figure 4-10.  Cross-region DR strategy using serverless

Let’s implement the DR strategy for the following areas.

�Front-End DR Implementation

We are hosting the front-end code using the S3 bucket’s static website hosting feature.

Although S3 has an availability and durability of more than 99 percent, in the case of

regional outages, S3 can be unavailable as well. We can build resiliency into S3 across

regions by implementing the following steps:

Step1: Enable Cross-Region Replication for the S3 Bucket
Cross-region replication enables the bucket contents to be replicated across regions

and across accounts. We need to set up replication rules on the bucket, and it will start

replicating asynchronously. See Figure 4-11.

Chapter 4 Disaster Recovery Architectures

60

Figure 4-11.  Replication rule configuration for S3

You need to add an IAM role as well to enable cross-region replication.

Add the following trust policy to the IAM role you are creating:

{

 "Version": "2012-10-17",

Chapter 4 Disaster Recovery Architectures

61

 "Statement": [

 {

 "Effect": "Allow",

 "Principal": {

 "Service": "s3.amazonaws.com"

 },

 "Action": "sts:AssumeRole"

 }

]

}

Create a new policy to allow replication and add the following lines to the policy.

In addition, replace the source and destination bucket’s arn value with the respective

bucket ARNs:

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Action": [

 "s3:GetReplicationConfiguration",

 "s3:ListBucket"

],

 "Resource": [

 "arn:aws:s3:::sourcebucket/*"

]

 },

 {

 "Effect": "Allow",

 "Action": [

 "s3:GetObjectVersionForReplication",

 "s3:GetObjectVersionAcl",

 "s3:GetObjectVersionTagging"

],

 "Resource": [

 "arn:aws:s3:::sourcebucket/*"

Chapter 4 Disaster Recovery Architectures

62

]

 },

 {

 "Effect": "Allow",

 "Action": [

 "s3:ReplicateObject",

 "s3:ReplicateDelete",

 "s3:ReplicateTags"

],

 "Resource": "arn:aws:s3:::destinationbucket/*"

 }

]

}

Once the role is selected and the replication rule is active, we can see that the new

objects will be automatically replicated, as shown in Figure 4-12.

Figure 4-12.  Replication rule configuration for the S3 bucket

Note I t is ideal to create the replication rules before any objects are uploaded.
However, we can run a batch job as well to replicate existing objects. For ease of
implementation, I have made the S3 bucket publicly accessible.

To test this, I uploaded a file called index2.html to my source bucket in US-East-1 at

17:59, as you can see in Figure 4-13.

Chapter 4 Disaster Recovery Architectures

63

Figure 4-13.  Testing data replication from the primary bucket in US-East-1

It was replicated to the destination bucket in AP-South-1 at 17:59 itself, as in

Figure 4-14.

Figure 4-14.  Data succesfully replicated in the secondary bucket in AP-South-1

Step 2: Create an S3 Health Check for the Primary Region
Now that we have enabled cross-region replication, we need to check for the

availability of the S3 bucket in the primary region. So, let’s create a health check and

keep the health.html file in our S3 website as the health check endpoint, as shown in

Figure 4-15.

Chapter 4 Disaster Recovery Architectures

64

Figure 4-15.  The health check for the S3 bucket

I did test this health check by removing the health.html file, and the health check

failed. Once I uploaded the object again, it became successful. So, we are good with the

health check now.

Step 3: Create a Route 53 CNAME Record with a Failover Routing Policy
Now that we have the health checks in place, we need to create two CNAME records

with the front-end domain name and point them to the respective S3 buckets in US-

East-1 and AP-South-1, as shown in Figure 4-16.

Chapter 4 Disaster Recovery Architectures

65

Figure 4-16.  Route 53 domains for S3 bucket

Now whenever we hit the domain myapp.testdomain.com, Route 53 will check the

failover routing policy and route the traffic accordingly. If the US-East-1 Bucket is not

available, the traffic will be served from AP-South-1.

Note I n production, it is better to choose your DR regions in close proximity to
the primary region to minimize latency.

�Back-End DR Implementation

The back end of the architecture in Figure 4-10 consists of an API gateway integrated

with the Lambda function. If we need these services to be available in an active-active

configuration, we need to perform the following steps:

	 1.	 Create the API gateway in the secondary region, which is AP-

South-1 here.

Chapter 4 Disaster Recovery Architectures

66

	 2.	 Create the Lambda function and upload the code in the secondary

region with the service endpoint references updated to the

secondary region’s service endpoints.

	 3.	 Create a health check in Route 53 to check the liveliness of the

back-end APIs. We can create a health check API and configure its

endpoint in the Route 53 health check.

	 4.	 Create a custom domain mapping to the API URLs in both the

primary and secondary regions, as shown in Figure 4-17.

Figure 4-17.  Custom domain mapping for API URLs

	 5.	 Create CNAME records for the URLs using a failover routing

policy, as we did for S3; this is shown in Figure 4-18.

Chapter 4 Disaster Recovery Architectures

67

Figure 4-18.  Route 53 domain mapping

Once the previous steps are completed, our back-end services are resilient to

disaster, and they can actively serve traffic from the AP-South-1 region if the API Gateway

service is unavailable in the primary region, i.e., US-East-1.

Serverless Database Disaster Recovery Implementation
In our architecture, we are using DynamoDB as the database. To make it resilient for

regional failures, we can use the global tables feature.

Global tables provide us with a fully managed, multiregion, and multi-active

database. We can replicate the DynamoDB global tables across multiple AWS regions.

In the event of a regional outage, the reads and writes to the table can be done

from a different region to the read replica. Your application can redirect to a different

region and perform reads and writes against a different replica table. As per the AWS

documentation, DynamoDB keeps track of any writes that have been performed but

have not yet been propagated to all of the replica tables. When the region comes back

online, DynamoDB resumes propagating any pending writes from that region to the

replica tables in other regions and vice versa. Also, to enable cross-region replication,

AWS enables DynamoDB streams, which capture item-level modifications in Dynamo

DB tables, when we add a cross-region replica for the table.

Chapter 4 Disaster Recovery Architectures

68

Let’s go ahead and make our DynamoDB table resilient to regional failures. Follow

these steps from the AWS console:

Step 1: Create a Dynamo Table
Create a DynamoDB table and navigate to its Global Tables tab, as demonstrated in

Figure 4-19.

Figure 4-19.  DynamoDB table creation

Step 2: Create a Replica
Click Create Replica and choose your region. I have chosen the US-East-1 region.

The replica table gets created, as shown in Figure 4-20.

Figure 4-20.  Creation of replica table

Step 3: Verify the Replication
Verify the items in the primary table and the replica and ensure that all items are

replicated. Figure 4-21 shows the list of items in the primary table in the Mumbai region.

Chapter 4 Disaster Recovery Architectures

69

Figure 4-21.  Verifying the existing data replication

Step 4: Verify the New Data Replication
Add a new item to the primary and ensure that it is replicated.

To verify this step, I am adding an item with an ID of 4, as shown in Figure 4-22.

Figure 4-22.  Adding an item with an ID of 4

Notice that all items in the test table in the Mumbai region have been replicated to

the replica table in US-East-1, as shown in Figure 4-23.

Chapter 4 Disaster Recovery Architectures

70

Figure 4-23.  Data replicated to the replica table

Step 5: Verify Again with More Data
Add a new item to the replica and ensure that it is replicated. I added an item with an

ID of 5, as shown in Figure 4-24.

Figure 4-24.  Reverifying data replication by inserting more items

Chapter 4 Disaster Recovery Architectures

71

Notice that the new item has been replicated into the primary table in the AP-

South-1 region as well, as shown in Figure 4-25.

Figure 4-25.  Data successfully replicated to the table in AP-South-1

Thus, we can see that the DynamoDB global tables feature helps us to achieve

resiliency at the cross-region level from the database tier. We can use Aurora global

tables as well for database layer replication, but since we are dealing with serverless

architectures in this book, we have used DynamoDB.

�Disaster Recovery Strategy Based on RTO and RPO
Let’s understand what RTO and RPO are.

•	 The recovery time objective (RTO) indicates the downtime that the

system requires to return to its normal state in the case of an outage.

•	 The recovery point objective (RPO) indicates the amount of data loss

the system can accommodate in the event of a disaster. Figure 4-26

illustrates this.

Chapter 4 Disaster Recovery Architectures

72

Figure 4-26.  RTO and RPO

While designing disaster recovery for customers, many customers have different RTO

and RPO requirements. Based on them, we can classify them into the following sections.

�Active Backups Only
In this scenario, the system is not mission critical, and the only DR plan that needs to

be devised is to take active backups of all resources and restore them gradually. The

RTO and RPO are very low for these systems. We can utilize the AWS Backup service to

achieve this. Figure 4-27 shows the AWS Backup service’s landing page. We won’t be

explaining this service in detail here, but on a high level it enables us to create a backup

of AWS resources within a region, and we can store the backup in a backup vault. Also,

we can customize the backups, define daily retention periods, and so on.

Figure 4-27.  The dashboard of the AWS Backup service

Chapter 4 Disaster Recovery Architectures

73

�Active-Active Configuration
This configuration has the highest RTO and RPO and the highest cost for running the

disaster recovery environment. Systems in these configurations can hardly be down,

so all the components across regions must be in their active state, and data and objects

must be replicated always. In the case of disaster, the secondary system must be able to

serve traffic within two to three minutes. We already saw an example of this architecture

in Figure 4-10, in the “Cross-Region Disaster Recovery Strategy” section. The same

configuration can be placed within a region as well.

�Active-Passive Configuration
This configuration is similar to the active-active configuration but has a slightly lower

RTO and RPO. In the case of a disaster, it has a few minutes of downtime before it starts

serving live traffic. In this strategy, services like EC2, RDS, and others will be provisioned,

but they won’t be ready to serve traffic. If a disaster occurs, then we could manually

make these services active. Hence, the cost of running this architecture is lower than an

active-active configuration.

�Conclusion
In this chapter, you learned how to design serverless systems in the event of a disaster,

including strategies on the AZ level and the cross-region level. Additionally, you learned

how to design disaster recovery strategies for the front end, back end, and databases in

serverless architectures. Lastly, we covered disaster recovery scenarios based on RTO

and RPO requirements.

In the next chapter, you will learn about data-platform-based architectures and how

to build them using serverless components.

Chapter 4 Disaster Recovery Architectures

75

CHAPTER 5

Serverless Data Platforms
Over the past several years, the amount of data generated by systems around the world

has increased, and continues to increase at an exponential rate. Collecting, processing,

and analyzing this data at scale has become an absolute necessity for organizations

around the world.

In this chapter, we’ll cover the following topics:

•	 What a data platform is

•	 Advantages of running a data platform on the cloud

•	 Understanding the serverless data platform on AWS

•	 Building a serverless data analytics application

•	 Leveraging AWS Data Pipeline to build a data pipeline

�Overview of Data Platforms
A data platform is an end-to-end solution for ingesting, storing, processing, and

visualizing data at scale. It is a place where data can be modeled to suit various business

requirements such as making insights, defining data access patterns, etc. In essence, it

consists of steps starting at the stage when data is collected and ingested to the stage

where we can view this data in a structured and insightful manner.

Figure 5-1 shows what a data platform looks like at a high level.

Figure 5-1.  Data platform at a high level

© Jithin Jude Paul 2023
J. J. Paul, Distributed Serverless Architectures on AWS, https://doi.org/10.1007/978-1-4842-9159-7_5

https://doi.org/10.1007/978-1-4842-9159-7_5#DOI

76

Let’s take a look at each of these elements and examine them in depth.

�Data Ingestion
Data ingestion involves ingesting data collected from various sources such as IoT

devices, mobile devices, logs, etc., in real time or near real time. This is the first step of

data processing, and we should ensure the services we are using for ingestion must be

able to handle data ingestion at scale; otherwise, we end up losing data in the process. A

few examples of data ingestion services in AWS are Kinesis, AWS Glue, AWS MSK, AWS

DMS, etc. The responsibility of the ingestion layer is to collect data and ingest it into the

AWS ecosystem so that a wide variety of AWS services can consume it.

�Data Storage
We need a persistent storage service for the data before processing (data lakes) and after

processing (data warehousing). We use services such as AWS S3, AWS Lake Formation,

Amazon Redshift, and DynamoDB for data storage in AWS.

�Data Processing
In this stage, the data is processed and made ready for consumption and visualization.

This involves cleaning, sorting, normalizing, and transforming data as per the

requirements. We can use multiple AWS services such as AWS Glue, AWS EMR, AWS

Data Pipeline, etc., for processing.

�Data Visualization
The processed data needs to be consumed and stored in a data warehouse where it can

be readily visualized. We can use AWS Redshift for this purpose. To derive insights from

this data and visualize them using dashboards, we can use AWS QuickSight.

Data platforms can be hosted on-premises with stand-alone servers or on the cloud.

However, it is always advantageous to run these applications on the cloud. Let’s look at a

few of these advantages.

Chapter 5 Serverless Data Platforms

77

�Advantages of Running Data Platforms on the Cloud
We will be discussing the advantages of running data platforms on the cloud in terms of

cost, scalability, and availability when compared with on-premise data platforms.

•	 Cost: As most services are available in a pay-per-use cost model,

running a data platform on the cloud is way cheaper as we don’t have

to pay for running the services 24/7, monitoring, and maintenance.

•	 Scalability: Services such as AWS Glue, Redshift, etc., can be scaled

dynamically to large values, and they can be scaled down easily as

well. This is in stark contrast to scaling resources on-premises, as it

takes at times days to scale up the infrastructure.

•	 Availability: Running your data platforms on the cloud ensures that

your data is readily available for consumption even in the case of a

disaster or outage as the data can be replicated into other regions

easily in a distributed manner. This level of availability architecture is

quite difficult to implement in data platforms hosted on-premises.

Now that we have familiarized ourselves with what a data platform looks like, let’s

explore how can set up a serverless data platform on AWS.

�Serverless Data Platform on AWS
The serverless data platform on AWS is quite large, and it has serverless services for

each layer of the data platform. Figure 5-2 shows the serverless services we can use for

each layer.

Chapter 5 Serverless Data Platforms

78

Figure 5-2.  Serverless data platform on AWS

�Data Ingestion Services
We already discussed data ingestion while giving an overview of data platforms at the

beginning of the chapter. Now let’s look at the serverless services that will enable us to

carry out data ingestion.

Chapter 5 Serverless Data Platforms

79

AWS Data Exchange
AWS Data Exchange enables you to ingest data from third-party applications directly into

the data lake landing zone in Amazon S3.

Kinesis Data Firehose
Kinesis Data Firehose can be used to collect streaming data from internal and external

sources. Kinesis Firehose can batch the streams, process them, compress them, and

encrypt them, and it can store them as S3 objects in the landing zone of an S3 data lake.

Kinesis Data Firehose can also deliver streaming data to Amazon Redshift, Amazon

OpenSearch Service, Splunk, and any custom HTTP endpoint or HTTP endpoints owned

by supported third-party service providers, such as Datadog, MongoDB, etc.

Figure 5-3 shows a simple implementation of Kinesis Data Firehose, where data that

is streamed from multiple sources gets transformed through Kinesis Data Firehose and is

persisted in an S3 bucket.

Figure 5-3.  A Kinesis Data Firehose implementation

Database Migration Service
The Database Migration Service is used to migrate data across databases. But the same

service can be used to ingest data into an S3 data lake as well by keeping the destination

as the S3 lake, importing data, and replicating ongoing changes.

AWS DataSync
We can use AWS DataSync to ingest millions of files from the Network File System (NFS)

and Server Message Block (SMB)–enabled NAS devices into the data lake landing zone

in S3. DataSync can perform file transfers and can synchronize changed files into the

data lake.

Chapter 5 Serverless Data Platforms

80

AWS SFTP
The AWS Transfer Family is a serverless, highly available, and scalable service that

supports secure FTP endpoints and natively integrates with Amazon S3. We can transmit

files using the SFTP protocol, and the AWS Transfer Family stores them as S3 objects in

the landing zone in the data lake.

Amazon AppFlow
The AppFlow service enables SAAS applications to ingest data into the data lake.

�Data Storage Services
Storing data seamlessly is one of the most crucial aspects of a well-built data platform.

You need to build a data lake, which is nothing but data stored in a raw/unprocessed

manner, which will act as a data repository. Now let’s take a look at how Amazon S3 will

help us to achieve this.

Data Lake Implementation Through Amazon S3
When it comes to a data lake service in a serverless data platform, we can unanimously

choose Amazon S3 as it provides unlimited scaling, intelligent tiering of data, availability

of 99.99 percent, and durability of 99.999999999 percent, which makes it an ideal

candidate for data lake implementation in a data platform.

Data of any format can be stored in S3 buckets without any predefined schema. After

ingesting data into the S3 data lake, the processing layer can define the schema on top of

Amazon S3 datasets and then use it to apply the required structure to the data obtained

from the S3 objects.

The AWS Lake Formation service from AWS can be used in conjunction with S3 to

build data lakes. The AWS Lake Formation service helps to build, secure, and manage

data lakes easily in a few simple steps.

Chapter 5 Serverless Data Platforms

81

�Data Processing Services
The processing layer mainly consists of services that can be used to perform the

extraction, transformation, and loading of data (aka ETL processes). Most of the ETL

services in AWS are now available as serverless services as well. Let’s take a look at them.

AWS Glue
AWS Glue is a serverless ETL service that is built on top of Apache Spark and provides

commonly used data source connectors, structures, and ETL transformations to validate,

clean, transform, and flatten data stored in many open-source formats such as CSV,

JSON, Parquet, etc.

We can also use Glue crawlers to populate the AWS Glue data catalog with tables. We

can define and run crawlers that can crawl multiple data stores and upon completion

create a table in the data catalog that can be used as a source for the ETL jobs. Figure 5-4

shows a sample Glue job to catalog data from an S3 data lake.

Figure 5-4.  A Glue job in AWS

Chapter 5 Serverless Data Platforms

82

Amazon EMR (Serverless)
Amazon EMR is a platform service from AWS that helps run Big Data frameworks such

as Apache Hadoop and Apache Spark. Amazon EMR Serverless is a new option in

Amazon EMR that enables its users to run EMR without having to manage EMR clusters

as the compute is fully managed from AWS. If we need to harness Spark or Hadoop for

data processing and we need the serverless option as well, then we can use the EMR

Serverless feature.

Amazon Athena
Amazon Athena is a serverless interactive query service that can be used to query data

in S3. Since we are using S3 as the data lake, we can use Athena to prepare data for

analysis. As Athena integrates with the AWS Glue data catalog, it helps to populate the

Lake Formation catalog with new and modified table and partition definitions, and it

maintains schema versioning.

AWS Step Functions
AWS Step Functions enables you to create serverless workflows that can be scheduled or

event-driven using AWS services such as Lambda, ECS, etc. By using Step Functions and

AWS Glue together, we can build complex data processing workflows, and they can be

automated as well so that they can run without any manual intervention.

Let’s look at an example to create an EMR cluster using Step Functions, using the

project “Manage an EMR job” from the AWS console. This project will provision an EMR

cluster, perform data processing in a couple of steps, and then terminate the cluster.

Figure 5-5 illustrates these steps at a high level.

Chapter 5 Serverless Data Platforms

83

Figure 5-5.  EMR cluster creation steps through the Step Functions service

Once we execute this project, we can visualize the entire flow, as shown in Figure 5-6.

Figure 5-6.  Step Functions flow visualization

Chapter 5 Serverless Data Platforms

84

We can click each step and view the corresponding details related to each step. In

Figure 5-5, I have clicked the “Create an EMR cluster” step, and its corresponding task

input, parameters, etc., are displayed.

The events corresponding to the execution can be viewed as well on the same page,

as shown in Figure 5-7.

Figure 5-7.  Events corresponding to EMR cluster creation

Now, let’s explore how data is consumed and visualized using AWS services.

�Data Consumption and Visualization Services
Data consumption and visualization services mainly include querying services, BI tools,

and visualization dashboards.

Amazon Athena
As mentioned in the “Data Processing Services” section, Athena is used for interactive

querying. Using Athena, we can run complex ANSI queries against datasets

without having to load them to a staging database, and we are charged only for the

queries we run.

Chapter 5 Serverless Data Platforms

85

Amazon Redshift
Redshift is Amazon’s data warehousing solution that can process petabytes of data

and run thousands of highly performant queries in parallel. Redshift Serverless is the

serverless offering of Amazon Redshift that provisions data warehouse capacity and

scales dynamically. Figure 5-8 shows the serverless dashboard for Amazon Redshift, and

Figure 5-9 shows the Query Editor where we can load data and start querying directly.

Figure 5-8.  Redshift Serverless dashboard

Chapter 5 Serverless Data Platforms

86

Figure 5-9.  Redshift Query Editor

Amazon QuickSight
QuickSight is an ML-enabled BI tool that is used for visualization and for the creation

of interactive dashboards. QuickSight implements ML insights such as forecasting,

anomaly detection, and narrative dashboards.

As per the AWS documentation, QuickSight allows you to connect and import data

from the following:

•	 SaaS applications, such as Salesforce, Square, ServiceNow, Twitter,

GitHub, and JIRA

•	 Third-party databases, such as Teradata, MySQL, Postgres, and

SQL Server

•	 Native AWS services, such as Amazon Redshift, Athena, Amazon S3,

and Amazon Relational Database Service (Amazon RDS)

•	 Private VPC subnets

It also supports the upload of the XLS, CSV, JSON, and Presto file types.

Chapter 5 Serverless Data Platforms

87

�Building a Serverless Data Analytics Application
Using the serverless services discussed previously, we can design a variety of data-

centric applications. In this section, let’s look at building a data analytics application

using serverless services. Figure 5-10 shows the high-level architecture of this

application.

Figure 5-10.  A serverless data analytics application

Some of the main advantages of using serverless platform services to build an

analytics application are the flexibility it brings in terms of cost, the simplicity in

implementation, and managed scaling, which are essential for building a seamless data

analytics application. Now, let’s take a look at the architectural components and their

role in this architecture:

•	 Data ingestion: We use Kinesis Data Firehose to ingest data from

multiple sources into AWS S3.

•	 Data storage: We use S3 as a data lake for storing raw data.

•	 Data processing: We use EMR Serverless to sort, aggregate, and join

datasets.

Chapter 5 Serverless Data Platforms

88

•	 Data warehousing: We use Amazon Redshift Serverless as the data

warehousing solution. The transformed data is loaded into the

Redshift database.

•	 Data Visualization: We use Amazon QuickSight to create interactive

dashboards with the data from Redshift.

�Implementing AWS Data Pipeline Service
Now let’s take a look at the AWS Data Pipeline service that enables us to move data

between data platform services. AWS Data Pipeline is a managed ETL service that

helps to move data between various compute and storage services in AWS as well as

on-premise.

We can create workflows based on templates provided by AWS or using our own

custom templates. Figure 5-11 shows ready-to-use templates in AWS Data Pipeline.

Figure 5-11.  Templates to build a data platform

Chapter 5 Serverless Data Platforms

89

Now let’s build a pipeline that will import data from a DynamoDB table into an

S3 bucket.

	 1.	 Fill in the name of the pipeline and set the source to “Build using a

Template.”

	 2.	 Step 2: Choose the DynamoDB template called Export

DynamoDB Table to S3.

	 3.	 Step 3: Choose the DynamoDB source table, and set Output to the

S3 folder.

We are importing data from a DynamoDB table called TestTable, as shown in

Figure 5-12.

Figure 5-12.  DynamoDB table for data export

We are exporting this table to an S3 bucket, and the logs are persisted in the same

bucket as well for ease of implementation.

	 4.	 Choose the roles for AWS Data Pipeline and for the EC2 instance

role. This will give the data pipeline the necessary permissions to

perform the actions on AWS resources.

Figure 5-13 shows this data populated in the respective fields.

Chapter 5 Serverless Data Platforms

90

Figure 5-13.  Export task configurations

Once this data is filled, then we can view the pipeline architecture and make the

necessary changes if required.

As we can see from Figure 5-14, to run this AWS Data Pipeline task, EMR clusters

are launched. Make sure that you set the “Terminate after” property to True so that the

clusters get terminated after the pipeline execution is completed.

Chapter 5 Serverless Data Platforms

91

Figure 5-14.  Data pipeline overview for DynamoDB export to S3

Once you click Activate, the pipeline gets created, and on the Data Pipeline

dashboard we can see the status of the pipeline along with the execution details, as

shown in Figure 5-15.

Figure 5-15.  Data pipeline dashboard

Chapter 5 Serverless Data Platforms

92

We can verify this by browsing to the S3 output location. Notice that three files have

been created in the location in a timestamped folder, as shown in Figure 5-16.

Figure 5-16.  Verification of data import from DynamoDB

The success and manifest files do not contain any data. The imported data is found

in the file with the hexadecimal name. If we open it in a text editor, we can verify the data

imported from DynamoDB. See Figure 5-17.

Figure 5-17.  Data imported from DynamoDB placed in an S3 file

Chapter 5 Serverless Data Platforms

93

Thus, we learned how to use AWS Data Pipeline to transfer data between DynamoDB

and S3. AWS Data Pipeline can be used for various other data transfer use cases as well.

It really comes in handy when we need to orchestrate a workflow quickly, as a data

pipeline can be set up in a few minutes.

�Conclusion
In this chapter, you got an overview of data platforms, saw the advantages of running a

data platform on the cloud, explored the serverless services that can be used to construct

the data platform layers, saw how to build a data analytics application on serverless, and

utilized a completely managed data pipeline service.

The services are always evolving, so stay updated on the latest features. In the

next chapter, we will see how we can leverage the power of containers on a serverless

platform.

Chapter 5 Serverless Data Platforms

95

CHAPTER 6

Containers on Serverless
You likely have some familiarity with containers and the immense capabilities they

add to the infrastructure world. Nowadays, containers are ubiquitous, and hence it is

vital to understand how they operate in the cloud and, more specifically, AWS. This

chapter gives you insight into how you can use serverless container services to design

applications.

Over the course of this chapter, we will cover the following topics:

•	 Overview of containers

•	 AWS ecosystem for containers

•	 Running container-based workloads on serverless

•	 Serverless architectures using containers

�Overview of Containers
A container is a software package that contains all the dependencies to run an

application in a computing environment. Containers, unlike virtual machines, do not

provide virtualization at a hardware level but at an operating system level.

To run a container, you need to have a container runtime that is installed on a host

machine. To run an application on this container, you can use a base image of your

application, which contains the necessary dependencies.

Figure 6-1 shows the differences in architecture with respect to virtual machines and

containers.

© Jithin Jude Paul 2023
J. J. Paul, Distributed Serverless Architectures on AWS, https://doi.org/10.1007/978-1-4842-9159-7_6

https://doi.org/10.1007/978-1-4842-9159-7_6#DOI

96

Figure 6-1.  Virtual machines versus containers

As you can see from Figure 6-1, the container runtime harnesses the underlying

operating system to run all containers, whereas for virtual machines, each virtual

machine has a different operating system.

Now let’s take a look at the different serverless services available on AWS for

containers.

�Serverless Container Services on AWS
There are a number of services on AWS that will help when running containers on

AWS. In this section, we will focus on the serverless container services on AWS, as

illustrated in Figure 6-2.

Chapter 6 Containers on Serverless

97

Figure 6-2.  AWS serverless ecosystem for containers

�Container Orchestration Services
While running containers on any platform, be it cloud or on-premises, it is essential that

there is a container orchestration service to orchestrate the fleet of containers, which in

essence involves managing the containers from end to end. In this section, we look at the

container orchestration services available on AWS.

AWS Elastic Container Service (ECS)

ECS is the AWS container orchestration platform. It is a fully managed service that can

be used to deploy, scale, and manage containers. ECS also supports a wide variety of

compute options such as Fargate, Outposts, AWS Local Zone, etc.

AWS Elastic Kubernetes Service (EKS)

EKS is the managed Kubernetes service from AWS. You can run Kubernetes workloads

on the AWS cloud or on-premises using EKS. EKS manages the control plane nodes, and

we need to take care of the worker nodes, which can be deployed into EC2 worker nodes

or Fargate-based serverless nodes.

Chapter 6 Containers on Serverless

98

AWS Red Hat OpenShift Service

Red Hat OpenShift Service on AWS (ROSA) is a managed Red Hat OpenShift

integration on AWS. ROSA provides an AWS-integrated experience for cluster creation,

a consumption-based billing model, and a single invoice for AWS deployments. It

also enables software engineers who are familiar with OpenShift tools to extend their

platform to AWS.

�Container Hosting Services
To run containers on the cloud, they need to be hosted in the cloud. The following are

the AWS services we can utilize to host containers:

AWS Fargate
When it comes to using a serverless compute engine for hosting containers, AWS

Fargate is the most suitable choice. Fargate is a fully managed compute infrastructure

platform that takes care of the scaling, managing, and securing of servers.

AWS Lambda
AWS Lambda supports container images as a deployment package. We can use

an AWS-provided base image or an Alpine or Debian image. However, there are a few

prerequisites to be met to use container images as Lambda deployment packages. We

will learn more about that later in this chapter.

AWS AppRunner
AWS AppRunner is a fully managed service that enables developers to deploy

containerized applications easily without any infrastructure management overhead. The

only configurations required are the CPU and memory required for the container and

the autoscaling configuration.

�Container Registry Service
The container registry service is used as a repository to store images from which a

container can be spun up. In AWS, the container registry service is ECR, which is

explained next.

Elastic Container Registry (ECR)

Chapter 6 Containers on Serverless

99

ECR is a fully managed container image repository where we can push images

directly without having to provision any infrastructure. You can store both public and

private images as well in ECR. It can be accessed via the console, an SDK, or the CLI.

�Container Modernization
Container modernization involves the steps needed to modernize a stand-alone

application workload into a container-based workload. In AWS, we have the

App2Container service to achieve this.

AWS App2Container
AWS App2Container is a command-line utility from AWS that helps to containerize

.NET and Java applications running on virtual machines, EC2 instances, or bare metal. If

we select the required applications to modernize, the App2Container tool will package

the application artifacts and dependencies into container images, add the required

configurations, and generate the necessary Amazon ECS and Amazon EKS deployment

artifacts.

�Serverless Web Application Architecture Using Fargate
Now that we have familiarized ourselves with serverless services for containers, let’s take

a look at a use case. Figure 6-3 shows the architecture for a serverless web application

using the Fargate compute platform.

Chapter 6 Containers on Serverless

100

Figure 6-3.  A serverless web application using Fargate

The front end is hosted using S3, and it is delivered using CloudFront. The APIs are

hosted in Fargate containers, which sit behind an application load balancer. The API

Gateway integrates to the application load balancer, which distributes the traffic between

the containers.

Now, let’s look at how we can deploy containers into Fargate and use ECS for its

orchestration. But before that, let’s get familiar with Fargate components.

•	 Cluster: A cluster is a logical grouping of tasks and services. You

define the subnets across which your cluster will run; also, it gives

Chapter 6 Containers on Serverless

101

you the option to add additional compute capacity on top of Fargate

like EC2 and ECS anywhere. Figure 6-4 shows the cluster dashboard.

Figure 6-4.  Fargate cluster dashboard

•	 Task definition: A task definition is used to describe the containers

that constitute your application. You can define a maximum of

10 containers using the task definition. You can also define the

container port mapping, CPU, memory, etc., using the task definition.

Figure 6-5 shows the task definition step using the console.

Chapter 6 Containers on Serverless

102

Figure 6-5.  Configuring the task definition

•	 Tasks: A task is an instantiation of the task definition. We can define

the total number of tasks that need to run as part of the service or

within a cluster.

•	 Service: A service represents a collection of tasks. A service can

be used to manage tasks; i.e., if a task stops running, a service

can replace the particular task with a new one based on the task

definition.

Chapter 6 Containers on Serverless

103

�Running Containers using Serverless
Services on AWS
Now that we have familiarized ourselves with the serverless container services on AWS,

let’s take a look at the implementation side of things and see how we can run containers

on serverless services.

�Running Containers on Fargate
We can run containers on Fargate in a serverless flavor using both EKS and ECS services.

Here we are considering ECS as the container orchestration service.

Step 1: Create the ECS Cluster
Specify the VPC and subnets where the cluster will be launched. Additionally, you

can enable container insights, which will send all the metrics such as CPU utilization,

memory, etc., into CloudWatch. Figure 6-6 illustrates these steps.

Chapter 6 Containers on Serverless

104

Figure 6-6.  Creating a cluster

Step 2: Create the Task Definition
We can use the task definition JSON given next to create a task definition. The

following JSON creates a simple HTTPD server by pulling a public Docker image

from ECR:

{

 "family": "webapp-fargate",

 "networkMode": "awsvpc",

 "containerDefinitions": [

Chapter 6 Containers on Serverless

105

 {

 "name": "fargate-web-app",

 "image": "public.ecr.aws/docker/library/httpd:latest",

 "portMappings": [

 {

 "containerPort": 80,

 "hostPort": 80,

 "protocol": "tcp"

 }

],

 "essential": true,

 "entryPoint": [

 "sh",

 "-c"

],

 "command": [

 �"/bin/sh -c \"echo '<html> <head> <title>Welcome to

Serverless Architectures </title> <style>body {margin-top:

40px; background-color: #333;} </style> </head>

</html>' > /usr/local/apache2/htdocs/index.html &&

httpd-foreground\""

]

 }

],

 "requiresCompatibilities": [

 "FARGATE"

],

 "cpu": "256",

 "memory": "512"

}

Step 3: Deploy a Service with Tasks
Now we can deploy a service that will run the tasks we create out of the task

definition. The configurations are quite straightforward, as shown in Figure 6-7. I have

chosen a rolling update here; feel free to choose other deployment options as well.

Chapter 6 Containers on Serverless

106

Figure 6-7.  Service deployment

For load balancing, we can use either application or network load balancers. For

scaling, we can use service autoscaling, which manages the desired state of the tasks

from ECS itself, as shown in Figure 6-8.

Chapter 6 Containers on Serverless

107

Figure 6-8.  Load balancing configuration

Step 4: Verify That the Tasks Are Running
Once your Fargate tasks are running, you can view their status by clicking the service

name under the cluster, which is ECSFargateCluster, as shown in Figure 6-9. Clicking

individual tasks will yield the public IP address of the container.

Figure 6-9.  Task status

Chapter 6 Containers on Serverless

108

If you click the public IP, you will be navigated to the HTTPD server that we have

hosted in Fargate through the task definition in step 2, as shown in Figure 6-10.

Figure 6-10.  Browser output of the hosted app

Additionally, we can create a revision of the task definition and deploy it (see

Figure 6-11). The old tasks will be discontinued, and the new tasks will start running, as

shown in Figure 6-12.

Chapter 6 Containers on Serverless

109

Figure 6-11.  Task revision option

Chapter 6 Containers on Serverless

110

Figure 6-12.  Task status update after revision

We can view the performance of the containers we created in the Container Insights

section under CloudWatch. This is shown in Figure 6-13.

Figure 6-13.  Container insights of the container we created

Chapter 6 Containers on Serverless

111

�Running Containers on Lambda
To host container images on Lambda, there are a few prerequisites as per the AWS

documentation.

•	 The AWS CLI and Docker CLIs are prerequisites to deploy any

container image to Lambda.

•	 The Lambda Runtime API (https://docs.aws.amazon.com/lambda/

latest/dg/runtimes-api.html) must be implemented by the

container image.

•	 There must be a provision in the container image to be able to run on

a read-only file system.

•	 The default user provided by Lambda is a Linux user with least-

privileged permissions. This user must be able to read all the files

that would be required to run the code.

•	 Only Linux-based images are currently supported by Lambda.

•	 Lambda supports only the functions that target a single architecture

and do not support functions where multi-architecture container

images are used.

We can follow the next steps to host a container on Lambda.

Step1: Create or Add the Lambda Function
Create a directory and add your Lambda function code there. I have used the code

mentioned in the GitHub repo (https://github.com/jithinjudepaule/Distributed_

Serverless_Architectures_Book/tree/main/SampleApplications/SimpleWebApp).

Kindly note that if you are using your own code, you must include a Lambda handler

function and reference it in the Docker file.

// Lambda handler

exports.handler = function(event, context) {

 �context.succeed("This is a sample web app hosted in lambda as container

image");

};

Chapter 6 Containers on Serverless

https://docs.aws.amazon.com/lambda/latest/dg/runtimes-api.html
https://docs.aws.amazon.com/lambda/latest/dg/runtimes-api.html
https://github.com/jithinjudepaule/Distributed_Serverless_Architectures_Book/tree/main/SampleApplications/SimpleWebApp
https://github.com/jithinjudepaule/Distributed_Serverless_Architectures_Book/tree/main/SampleApplications/SimpleWebApp

112

Step 2: Package the Lambda Function as an Image
Include a Docker file to build an image out of the Lambda function. The contents of

the Docker file are shown here:

FROM public.ecr.aws/lambda/nodejs:14

COPY SampleWebApp.js package*.json ./

RUN npm install

CMD ["SampleWebApp.handler"]

I have used a public Node.js image here. Kindly note I am pointing to my Lambda

handler function so that Lambda recognizes the entry point for the function in the

container image.

Step 3: Build the Image
Build the image using the following command from the Terminal:

docker build -t sample-webapp-container .

Note that you can always use a multistage Docker file to get the same output. I am

following a step-by-step approach for simplicity.

You will get a similar output (for brevity, I have trimmed the output).

Step 4: Log In to ECR Using the Terminal and Create a Repo
Use the following command to log in to the ECR via Terminal:

aws ecr get-login-password --region <region> | docker login

 --username AWS --password-stdin

 <accountID>.dkr.ecr.us-east-1.amazonaws.com

Note that the get-login-password command is used to retrieve an authentication

token to authenticate to an Amazon ECR registry. Here we are retrieving the token and

authenticating Docker to the ECR registry by passing the token to the Docker login

command. We should also pass the ECR registry URI, which you want to authenticate to

in the command

After you get the message “Login Succeeded,” use the following command to create a

repository:

aws ecr create-repository

 --repository-name <repositoryname>

 --image-tag-mutability IMMUTABLE

 --image-scanning-configuration scanOnPush=true

Chapter 6 Containers on Serverless

113

Step 5: Tag and Push the Image
Here’s the command to tag the image:

docker tag <container name><account id>.dkr.ecr.<region>.amazonaws.

com/<repo name>:v1

Here’s the command to push the image:

docker push <account id>.dkr.ecr.<region>.amazonaws.com/<repo name>:v1

After executing the previous commands, the image gets pushed to ECR, and we can

verify this from the ECR console.

Step 6: Create a Lambda Function with This Image
Use the container image option from the Lambda function creation page and choose

the image URI from the ECR repo, as shown in Figure 6-14.

Figure 6-14.  Choosing a container image to deploy the Lambda function

Step 7: Test the Lambda Function
Test the created function by using a test event. We can see the results shown in

Figure 6-15.

Chapter 6 Containers on Serverless

114

Figure 6-15.  Testing the Lambda function created using the container image

Thus, we have successfully launched a Lambda function using a container image.

�Conclusion
In this chapter, we learned about the different types of serverless container services on

AWS. We also learned how to design a serverless web application using containers and

how to run containers on AWS Fargate and use Lambda as a host for container images.

So far, our scope of cloud services was limited to a single cloud provider. In the next

chapter, we will learn about multicloud strategies and how we can use them to design

applications.

Chapter 6 Containers on Serverless

115

CHAPTER 7

Multicloud Architectures
The term multicloud signifies using multiple clouds for a single purpose. Nowadays

enterprises want to harness the power of multiple clouds to run a single application

so that they get maximum benefits from the application. This chapter discusses the

following aspects of multicloud architectures:

•	 Types of cloud architectures

•	 Pros and cons of cloud architectures

•	 Multicloud architectures

•	 Comparison of multicloud architectures

•	 Real-world multicloud architectures

�Types of Cloud Architectures
There is no silver bullet for a perfect cloud architecture, and each comes with its pros

and cons. Let’s familiarize ourselves with the different types of cloud architecture.

�Single-Cloud Architecture
A single-cloud architecture is one of the most common implementations of cloud-based

architectures where the entire application is hosted by a single cloud provider such as

AWS, Azure, GCP, etc. Most enterprises that are embarking on their cloud journey get

started with a single cloud as it is easy to get started and evaluate their workloads before

triggering a full-blown migration to the cloud or greenfield cloud-native development.

Figure 7-1 illustrates what a single-cloud application could look like. I have used the

general cloud image to indicate that the single cloud could be any generic cloud, even a

private cloud.

© Jithin Jude Paul 2023
J. J. Paul, Distributed Serverless Architectures on AWS, https://doi.org/10.1007/978-1-4842-9159-7_7

https://doi.org/10.1007/978-1-4842-9159-7_7#DOI

116

Figure 7-1.  Single cloud architecture

The following are the advantages of a single-cloud architecture:

•	 Ease of management: As all logs and trails can be grouped centrally,

and it becomes easier to track issues.

•	 Cost effective: As all resources reside in a single cloud, a cost savings

plan can be implemented across common resources such as virtual

machines.

•	 Ease of governance: Account-level and group-level access control

policies can be applied with ease.

•	 Ease of testing: It is easier to write integration tests as all components

exist within the same environment.

These are the disadvantages of a single-cloud architecture:

•	 Vendor lock-in: Using services native to a single cloud will make it a

difficult candidate for migration as the user will have to rewrite the

application for a different cloud.

•	 Risk of outage: In the event of an outage at the cloud service provider

level, our application will be unavailable as it relies on a single cloud

provider.

�Hybrid Cloud Architecture
When organizations choose to keep part of their infrastructure in their local data centers

and the remaining infrastructure in the cloud, the architecture is commonly known as

a hybrid cloud architecture. Generally, enterprises choose this pattern as they can keep

their critical data on-premises so that it is more secure and less vulnerable, and the

less critical data can be hosted on the cloud. Organizations can use a VPN or a private

network service such as AWS Direct Connect to connect to the cloud from on-premise

Chapter 7 Multicloud Architectures

117

systems. Figure 7-2 shows a hybrid cloud architecture on AWS. We are using the Direct

Connect service to interconnect the on-premise data center with the AWS cloud.

Figure 7-2.  Hybrid cloud on AWS

The following are the advantages of a hybrid cloud architecture:

•	 Highly secure: In a hybrid cloud, you can keep your critical data on-

premises, which reduces the vulnerability attack vector.

•	 More control: In hybrid systems, if we feel that the cloud service

provider is not allowing us to manage certain resources beyond a

point, we can always host them on-premises and customize them in

the way we want them to be.

•	 Highly beneficial: Depending on the use cases, enterprises can decide

which features to implement in the public cloud and which features

to implement on-premise. They can reap the benefits of scaling,

availability, etc., from the public cloud and at the same time enjoy the

benefits of using the internal application of the enterprise.

Chapter 7 Multicloud Architectures

118

These are the disadvantages of a hybrid cloud architecture:

•	 Expensive: As enterprises need to spend on the on-premise data

center as well as for cloud infrastructure, it will be costlier than a

single-cloud implementation. Additionally, enterprises will have to

also bear the management burden of the on-premise data centers,

which brings forth additional costs.

•	 Low availability: On-premise data centers are generally

nondistributed, and hence if the data center goes down, the

applications that require on-premise access can go down as well.

•	 Higher Latency: As the application needs to communicate with the

on-premise data center often, this can lead to latency as both are

located on isolated networks. Hence, this becomes an anti-pattern for

services or applications that require very low latency.

�Using AWS Outposts for Hybrid Cloud Solutions

AWS Outposts is a widely used service that helps organizations to implement hybrid

cloud solutions. AWS Outposts helps organizations to run AWS services on-premises by

providing them with infrastructure as a service in the form of AWS Outposts racks and

servers. Organizations can run AWS services for computing, storage, etc., locally on their

AWS Outposts hardware located on their premises and at the same time can access the

AWS services in the region.

AWS Outposts is tied to the availability region where it is located, and AWS manages

AWS Outposts instances as regional services. Hence, if we want to include outposts as

part of a VPC, we can extend the VPC to AWS Outposts by creating an Outposts subnet.

Figure 7-3 shows the high-level architecture of AWS Outposts.

Chapter 7 Multicloud Architectures

119

Figure 7-3.  AWS Outposts high-level architecture

The main disadvantage of AWS Outposts is that very few services are available on

Outposts. As this book focuses mainly on serverless solutions, we won’t discuss Outposts

solutions in depth. However, keep in mind that we can also use AWS services on-

premises even when we are proposing a hybrid cloud solution.

�Cloud-Agnostic Architecture
Nowadays, no enterprise wants to depend on a single cloud service provider while

implementing solutions. They want to design their architectures in such a way that if

they need to migrate their architecture to a new cloud service provider, they can do so

with ease.

Cloud-agnostic architecture involves designing your application architecture in such

a way that the services used in one cloud provider are available in other cloud providers

as well, and they are easily portable. For example, if we are using Kubernetes to deploy

the back-end application, then the back end can be easily migrated to other cloud

providers as well, because Kubernetes is open source and is available on all major cloud

platforms.

Let’s look at a simple web application that is designed using the AWS cloud and yet

uses a cloud-agnostic architecture. Figure 7-4 illustrates this architecture.

Chapter 7 Multicloud Architectures

120

Figure 7-4.  Cloud-specific yet cloud-agnostic architecture

Now let’s consider a scenario where the customer plans to migrate this application

architecture from AWS to Azure.

The front end of this web application is hosted in S3, which contains static files such

as HTML, CSS, JavaScript, and other static files. The front end can be downloaded via

an S3 endpoint, and it can be uploaded to Azure within a few minutes. Just like S3, the

object storage service in AWS, is used to host static website content, the same support is

provided in Azure Storage.

The back end is hosted using containers that are orchestrated by the Elastic

Kubernetes service, which is AWS. Since Kubernetes is open source and the container

images are platform-independent and can be used to spin up containers in any

environment, we can migrate them to Azure Kubernetes Services (AKS) or to Kubernetes

clusters hosted in Azure virtual machines using the manifest files or helm charts that are

used to set up Kubernetes clusters in AWS.

As the database is hosted in a PostgreSQL database using Amazon RDS, which is an

open-source database and is available in Azure and most cloud platforms as well, it can

easily be migrated to Azure DB for PostgreSQL using the Database Migration Service

of Azure.

The source database can be kept online as well during the migration so that the

application barely faces any downtime.

Now, let’s see what the application architecture looks like post-migration to the

Azure Cloud platform. Figure 7-5 shows the post-migration architecture.

Chapter 7 Multicloud Architectures

121

Figure 7-5.  Cloud-agnostic architecture on Azure post-migration from AWS

As we can see from Figure 7-5, it’s comparatively easy to migrate an application from

one cloud provider to another if it’s designed in a cloud-agnostic manner. All you need to

change is a few configurations and endpoints and the application can be up and running

in minutes.

Here are the advantages of a cloud-agnostic architecture:

•	 Ease of migration: As we saw in the previous example of migrating

from AWS to Azure, it just takes a few steps to migrate the application

that is designed using cloud-agnostic architecture from one cloud

provider to another. It is more like rehosting to a new platform.

•	 No vendor lock-in: As most services will be designed using open-

source technologies, the application does not have a dependence

on any single cloud provider, and the tech stack can be moved into

another cloud provider with ease.

•	 Less dependence on cloud-specific skills: As the services being used

in cloud-agnostic architectures are managed versions of the open-

source technologies (like EKS is the managed version of Kubernetes),

there aren’t any provider-specific skills that are required to design

such systems.

Chapter 7 Multicloud Architectures

122

These are the disadvantages of a cloud-agnostic architecture:

•	 Expensive: When we are designing applications in a cloud-agnostic

architecture, we need to either make use of virtual machines to host

open-source technologies on the cloud or make use of managed

services by the cloud service provider. Both solutions are not

cost-effective as running services on VMs is a costly affair, and the

managed services are not cheap.

•	 Not always a good fit: At times customers want to harness the

platform services or serverless services for their application, and this

is not possible using cloud-agnostic architecture as both platform

and serverless services are specific to each cloud provider, and

their implementation differs across cloud providers as well. Hence,

customers will be unable to reap the benefits of using these services if

they opt for cloud-agnostic architectures.

�Multicloud Architecture
In the past few years, multicloud is a term that has gotten a lot of traction at the

enterprise level. Enterprises don’t want to stick to a single cloud provider for their

portfolio of applications; instead, they want to leverage the best from multiple cloud

providers.

Multicloud architecture is the application architecture where multiple cloud

providers are used to build a single application.

They can be purpose-driven as well, using the best services in each cloud to

build their application platform. Based on the nature of implementation, multicloud

architectures can be divided into two categories:

•	 Distributed cloud architecture: This means using the best-of-breed

services across cloud providers to design your solution.

•	 Polycloud architecture: This means deploying the same solution

across multiple clouds.

Now let’s discuss these architectures in detail.

Chapter 7 Multicloud Architectures

123

�Distributed Cloud Architecture
Each cloud provider has a service that is their hallmark service, and when designing

solutions, architects across enterprises want to leverage these hallmark services and

implement them in their solutions. Examples include Active Directory Service in Azure,

the Kubernetes platform on Google, the Lambda FaaS on AWS, etc. This has led to a new

solution paradigm of distributed multicloud architecture, or in short multicloud.

Let’s consider an example. Suppose our customer wants to use all the services

on AWS, but for the database, they want to use Azure, as they have a database cluster

already running on Azure and they want to make use of it. This would be an ideal

scenario for a distributed cloud architecture, as shown in Figure 7-6.

Chapter 7 Multicloud Architectures

124

Figure 7-6.  Distributed multicloud architecture

As we can see from Figure 7-6, both Azure and AWS can co-exist with each other

to deliver the distributed cloud architecture. One of the challenges in this type of

architecture would be to reduce the latency due to the intercloud endpoint invocations.

One of the ways to mitigate this would be to add a caching layer in AWS, or if the

customer requires frequent writes to the database in Azure, then we need to use

optimizing techniques in the database.

Distributed multicloud can extend to more than two clouds as well. Consider an

example where we are using AWS, Azure, GCP, and Snowflake Cloud. The following is

the overview of the architecture:

Chapter 7 Multicloud Architectures

125

•	 The front end and CDN are hosted on the AWS cloud. We discussed

these components in previous chapters, so I won’t go in detail here.

•	 The authentication module is handled by the Azure cloud using the

Active Directory service that is available on Azure.

•	 The back end follows a microservices architecture hosted on Google

Cloud as containers utilizing the Google Kubernetes Engine for

orchestration.

•	 For the database layer, Snowflake Data Cloud is used to host the

databases.

See Figure 7-7.

Chapter 7 Multicloud Architectures

126

Figure 7-7.  Distributed multicloud architecture

Chapter 7 Multicloud Architectures

127

�Polycloud Architecture

Enterprises often choose polycloud architectures to build resiliency into their existing

systems. A polycloud architecture implies implementing the same system architecture

across multiple cloud providers (generally two) to build resiliency or availability.

The architecture for polycloud is comparatively simpler in comparison to distributed

cloud architecture. It has a traffic router, which would be a third-party implementation

such as Megaport Cloud Router, and the Traffic Director would direct traffic based

on any of the following commonly used conditions or a combination of one or more

conditions:

•	 If Cloud Provider 1, the primary cloud, is not available, route to Cloud

Provider 2.

•	 Depending on the latency of the region, route traffic to the cloud

provider with the least latency.

•	 Divide the traffic equally among the cloud providers.

Note that these conditions are a few commonly used conditions, and there can

be many more complex routing scenarios based on each customer’s requirement.

Figure 7-8 shows an example of a polycloud architecture.

Chapter 7 Multicloud Architectures

128

Figure 7-8.  A polycloud implementation

Now that we have familiarized ourselves with distributed clouds and polyclouds, let’s

compare the features of both in the following section.

Distributed Cloud vs. Polycloud

Now that we have familiarized ourselves with two types of multicloud architectures,

namely, distributed clouds and polyclouds, let’s compare their features; see Table 7-1.

Chapter 7 Multicloud Architectures

129

Table 7-1.  Distributed Cloud vs. Polycloud

Distributed Cloud Polycloud

Implementation is complex as we need

to integrate multiple services across cloud

providers.

Implementation is simpler as we need to replicate

the architecture in a completely new environment,

and there are no complex cross-cloud provider

integrations.

Cheaper, as we use only selected services

from cloud providers.

Costlier, as the entire architecture including all

services needs to be replicated.

Latency is higher as traffic needs to be

routed across multiple services across cloud

providers.

Latency is lower, as the only latency to be

considered is that of the traffic router routing and

once routed, all services exist in the same cloud

provider and hence latency will be less.

Less resilient to cloud provider outages as

the system can get impaired if one cloud

provider faces an outage.

Highly resilient to cloud provider outages as even

if one cloud provider faces an outage, another one

is available to serve traffic.

Difficult to monitor as cloud services are

spread across cloud providers and we need

a third-party system to monitor the overall

architecture.

Easier to monitor, as even though we leverage

multiple cloud providers, the entire solution can be

monitored separately under the respective cloud

provider.

�Comparison of Cloud Architectures
Now let’s compare the cloud architectures based on the cost and implementation

complexity. This is illustrated in Figure 7-9.

Chapter 7 Multicloud Architectures

130

Figure 7-9.  Comparison of cloud architectures

As we can observe from Figure 7-9, designing a multicloud solution is a complex and

costly affair. You should choose a multicloud solution if the business actually demands it,

and if you are embarking on your cloud journey, it’s always better to start simple with a

single cloud provider as it would give you enough leeway to evaluate your workload and

estimate the costs as well.

�Conclusion
In this chapter, we familiarized ourselves with the different types of cloud architectures

and their pros and cons. We also learned in detail about different multicloud

architectures with use cases. This brings us to the point where we need to evaluate the

architectures based on the Well-Architected Framework tool provided by AWS. This is

covered in detail in the next chapter.

Chapter 7 Multicloud Architectures

131

CHAPTER 8

Serverless Through
the AWS Well-Architected
Framework
Throughout this book, we have explored different serverless architectures on AWS. AWS

also provides developers with a framework called the AWS Well-Architected Framework

that contains labs, tools, and lenses to evaluate workloads based on six pillars:

operational excellence, security, reliability, performance efficiency, cost optimization,

and sustainability.

In this chapter, we will do the following:

•	 Define the design principles for each pillar

•	 Evaluate the serverless architecture based on these six pillars

•	 Describe the steps to apply the Well-Architected Framework to

architectures

�Operational Excellence Pillar
The operational excellence pillar deals with performing operations and processes to

deliver business outcomes and constantly refine them.

The following are its design principles on the cloud.

© Jithin Jude Paul 2023
J. J. Paul, Distributed Serverless Architectures on AWS, https://doi.org/10.1007/978-1-4842-9159-7_8

https://doi.org/10.1007/978-1-4842-9159-7_8#DOI

132

�Perform Operations As Code
This principle indicates the entire architecture should be designed as code, and there

should be provisions to update it whenever required. The intent of this principle is to

reduce human error and make the system responsive to events.

We utilized this design principle in Chapter 3, using Terraform to script the

serverless web application, and the web application was event-driven as well. We can

use any infrastructure-as-code tool to achieve this. Since most serverless services are

event-driven, this design principle is inherently present in most serverless architectures.

Figure 8-1 illustrates this principle.

Figure 8-1.  Performing operations as code using Terraform

�Make Frequent, Small, Reversible Changes
This principle means that the changes that are applied can be done in isolation and if

required rolled back as well.

As a follow-up to the first principle, this can be done using Terraform as well. We

can write modules for individual components, thus making modular changes. We can

do a terraform destroy and target the particular change that was implemented. The

following is the syntax for the terraform command:

Terraform: Destroy Target Syntax

terraform destroy --target <<desired target>>

Chapter 8 Serverless Through the AWS Well-Architected Framework

https://doi.org/10.1007/978-1-4842-9159-7_3

133

We discussed the Terraform code to implement a serverless web application

in Chapter 3 (https://github.com/jithinjudepaule/Distributed_Serverless_

Architectures_Book/tree/main/TerraformSamples%20/Chapter3). We can use the

terraform destroy command to destroy or, rather, tear down this entire environment.

�Refine Operations Procedures Frequently
It is essential that the operations procedures set up for workloads are evaluated

constantly. For example, if you have set up an operations procedure to evaluate the

disaster recovery architecture for replication, recovery point objective (RPO), and

recovery time objective (RTO) every month and you notice over a period of time that

the RTO, RPO, and replication are as expected and there is hardly any change, then you

can change the cadence from monthly to once every two months. But if the disaster

recovery architecture is not performing as expected, then you can increase the cadence

to biweekly.

It may not be possible to refine all operations regularly, but on a priority basis, we

can target the necessary ones.

�Anticipate Failure
“Everything fails all the time” is the famous quote by Werner Vogels, Amazon’s chief

technology officer. So, it is essential that the systems we design should be resilient to

failures. This also implies that we should make the systems highly available at both the

availability zone level and the regional level. It is recommended that we perform these

tasks way ahead of production by performing mock disaster or outage events. And they

need to be resilient as well.

In serverless systems, these events can be carried out in a cost-effective way as the

services are charged in a pay-per-use model. Hence, you incur charges only at the time

of mocking the failure events.

�Learn from All Operational Failures
If any failures occur, derive patterns from them and create insights around them. Ensure

that they are recorded in run books to ensure that they are not repeated during releases.

Chapter 8 Serverless Through the AWS Well-Architected Framework

https://doi.org/10.1007/978-1-4842-9159-7_3
https://github.com/jithinjudepaule/Distributed_Serverless_Architectures_Book/tree/main/TerraformSamples /Chapter3
https://github.com/jithinjudepaule/Distributed_Serverless_Architectures_Book/tree/main/TerraformSamples /Chapter3

134

�Security Pillar
The security pillar describes best practices to make your cloud environment secure,

respond to security events, and improve the overall security of your infrastructure on the

cloud. The security pillar design principle applies across all services in AWS, and there

are no specific principles for serverless workloads alone. Hence, what we cover in this

section is applicable to all workloads on AWS.

The following are the design principles.

�Implement a Strong Identity Foundation
One of the foundations of identity management is the principle of least privilege, which

implies that access to cloud services should be provided only to systems or users that

need access.

In other words, systems or users should have access only to those systems that they

use; granting access to anything beyond that is a potential threat.

In AWS, we use IAM to grant permissions to users and services. IAM is an account-

wide service, and the permissions we set in IAM are accessible to all regions in the

account. We make use of role-based access and add the services or users as trusted

entities so that the principle of least privilege is followed. This is illustrated in Figure 8-2.

Figure 8-2.  Role-based access

Chapter 8 Serverless Through the AWS Well-Architected Framework

135

If there is a need to centralize the permissions and enforce them across multiple

accounts, we can make use of AWS Organizations, which enables us to create member

accounts to a centralized root account and apply service control policies to the member

accounts to define permission boundaries.

�Enable Traceability
It is quintessential while working with distributed systems to enable traceability at all

layers of your application. Systems should be monitored, and automatic alerts should

be kept at threshold levels that are agreed upon within the team. In the case of an alarm,

the concerned team needs to be alerted using email or SMS. We can use the SNS service

for this.

Also, the logs from all AWS services should be aggregated in the appropriate log

groups so that in the case of an incident, the logs can be used to debug. To monitor all

account-related activities on AWS, we can make use of the CloudTrail service.

�Automate Security Best Practices
This principle provides a defensive security practice where it is recommended to

keep security at the center while designing architectures as well and to use automated

software-based security mechanisms like Talisman (https://thoughtworks.github.

io/talisman/docs), which is a repository hook and checks for potential SSH keys,

authorization tokens, private keys, etc., in the outgoing changeset to the repository.

�Protect Data in Transit and at Rest
It is essential that we identify the PII data and encrypt it while persisting it in a persistent

store. This will ensure that the data at rest is highly secure. We can use the AWS service

KMS to achieve this and can use AWS Cloud HSM to harden it further.

For data protection in transit, AWS encrypts network traffic between AWS data

centers. At the application layer, customers can use the Transport Layer Security (TLS)

encryption protocol, and customers can upload their own digital certificates. Services

such as AWS Load Balancer, API Gateway, etc., allow termination of TLS as well, and all

service endpoints in AWS support TLS.

Chapter 8 Serverless Through the AWS Well-Architected Framework

https://thoughtworks.github.io/talisman/docs
https://thoughtworks.github.io/talisman/docs
https://thoughtworks.github.io/talisman/docs

136

So, using AWS services such as KMS, CloudHSM and ACM customers can build a

holistic data encryption strategy across their environments.

�Keep People Away from Data
To avoid mishandling data, it is always recommended to avoid direct access to data. This

can be done by providing read-only access to developers, building a pipeline to deploy

database changes, etc. Also, this principle ensures that manual processes are reduced

and thus eliminates the errors due to the manual handling of data.

�Prepare for Security Events
Always anticipate security events such as DDOS attacks or ransomware attacks and

ensure that there are incident management and other processes set up as per the

customers’ needs. Additionally, enabling the team to respond to security events by

conducting mock attack scenarios will help the team be prepared in a better way for

security events.

�Reliability Pillar
The reliability pillar deals with processes to make your workloads more reliable. The

following are its design principles.

�Automatically Recover from Failure
This principle states that all workloads should be capable enough to automatically

recover from failures. By setting key performance indicators (KPIs), monitoring them

using monitoring services, and triggering automated recovery, this can be accomplished.

When working with serverless workloads on AWS, most of them recover

automatically as the underlying hardware is managed by AWS. For example, if Lambda

is not available to execute a function, then AWS spins up a new instance of Lambda and

executes the function.

Chapter 8 Serverless Through the AWS Well-Architected Framework

137

�Test Recovery Procedures
If we are setting up any recovery procedures, it is essential that we test them thoroughly

before applying them to production workloads.

�Scale Horizontally to Increase Aggregate
Workload Availability
To reduce single points of failure, it is better to keep the compute resources small and

scale them horizontally on demand. We have followed this principle throughout the

book, as we have designed the computing using Lambda for simple APIs and Fargate

clusters for more connected and complex workloads.

�Stop Guessing Capacity
Scalability is one of the main advantages of cloud-based workloads over traditional on-

premise workloads. The traffic coming into the workloads can be monitored, and the

capacity can be decreased or increased dynamically.

�Manage Change in Automation
The changes made to the infrastructure should be in an automated manner. We can

use pipelines to manage this change, and they can be audited through the state file of

infrastructure-as-code tools like Terraform.

�Performance Efficiency Pillar
The performance efficiency pillar deals with the best practices for managing production

workloads efficiently. The following are its design principles.

�Democratize Advanced Technologies
For teams to adopt the latest technologies, cloud providers ensure that these services

are available as managed services. For example, for enterprises to adopt Kafka, AWS

provides this as a managed service in the form of Amazon Managed Streaming for

Chapter 8 Serverless Through the AWS Well-Architected Framework

138

Kafka (Amazon MSK). Another example is Elastic Kubernetes Service (EKS), which

is the managed service from AWS for setting up Kubernetes on AWS. This principle

recommends that the teams use such services from the cloud directly rather than

learning the new technology and implementing it by themselves. This will enable

organizations to focus more on the application rather than the infrastructure setup.

�Go Global in Minutes
This principle states that deploying the same application across multiple regions reduces

latency and increases customer experience. This is easy to implement and cost-efficient

as well using serverless technologies. We can keep a latency-based routing algorithm

and serve traffic from the region with the lowest latency to users. This is illustrated in

Figure 8-3.

Figure 8-3.  Latency-based routing across regions

�Use Serverless Architectures
Serverless architectures eliminate the need for maintaining and provisioning physical

servers. Hence, the compute gets managed by the cloud provider, and the experience is

seamless. We have discussed serverless architectures at length throughout this book.

Chapter 8 Serverless Through the AWS Well-Architected Framework

139

�Experiment More Often
As the pricing of cloud services is based on usage, it gives leeway for developers to

experiment often and at the same time is inexpensive.

�Consider Mechanical Sympathy
Considering the apt technology for your business needs constitutes this design principle.

There is no one-size-fits-all option when it comes to choosing your services. Evaluating

your workload and its nature is essential before finalizing the technology stack for your

business needs.

�Cost Optimization Pillar
The cost optimization pillar intends to bring down unnecessary costs and increase

efficiency in the utilization of resources that are being paid for. The following are its

design principles.

�Implement Cloud Financial Management
Even though there are multiple tools available in the market to evaluate the costs of

running your environment on the cloud, there must be a dedicated team of individuals

who manage cloud finances. This team can monitor the resources and report any kind of

aberrations.

Setting up monthly and daily budgets is a way to monitor the costs incurred at

regular intervals and can detect any anomalies arising due to a targeted attack or an

unmonitored resource.

�Adopt a Consumption Model
When running applications against multiple environments like Dev, QA, etc., not

all environments need to be up all the time. Organizations can come up with a

consumption plan where they can decide when lesser used environments can be shut

down and when they should be fully functional. This will lower the overall costs of

multiple environments.

Chapter 8 Serverless Through the AWS Well-Architected Framework

140

In the case of serverless workloads, this is taken care of, as they follow a pay-per-

use model.

�Measure Overall Efficiency
The efficiency of your workloads can be measured by comparing them against the return

on investment (ROI) as well as against the business objectives. Organizations can build

data points around these objectives and decide on the areas they need to focus on to

bring in more efficiency.

�Stop Spending Money on Undifferentiated Heavy Lifting
To focus more on building quality applications, it is always a good practice to offload

the underlying hardware responsibilities to the cloud provider, which will in turn take

care of the overall maintenance and monitoring of the servers on which the applications

are hosted on the cloud. This enables organizations to deliver applications to market

at a much faster rate. Serverless services are examples of services where the underlying

hardware management is completely offloaded to the cloud provider.

�Analyze and Attribute Expenditure
The expenditures of different workloads across regions and accounts must be correctly

classified into the respective teams or workloads. This will help organizations identify

the investment areas and add or remove capacity to the required teams or workloads,

respectively.

�Sustainability Pillar
The sustainability pillar in a nutshell involves design principles that will reduce the

impact on the environment of running workloads on the cloud. It indicates the practices

to be followed to reduce the carbon footprint while running workloads on the cloud.

Serverless is one of the best ways to implement a greener cloud in comparison to

running systems on servers on the cloud, as serverless systems are utilized only for the

duration they are accessed and the remaining time they are not running continuously,

thus reducing the emissions from servers.

Chapter 8 Serverless Through the AWS Well-Architected Framework

141

Also, serverless architectures run on shared hardware as most of the services are

presented to the end users as a full service and they need to access them alone from their

application. Such implementations will reduce the total number of servers required to

run applications, thus reducing the carbon footprint and promoting a green cloud.

�Conclusion
In this chapter, we evaluated the design principles of the AWS Well-Architected

Framework and compared them against the serverless design. You probably noticed

that most of the design principles have been inherently applied to the serverless

architectures that were discussed throughout this book. That brings us to a point where

we can start thinking about what lies ahead of the serverless world. I will discuss that in

the next chapter.

Chapter 8 Serverless Through the AWS Well-Architected Framework

143

CHAPTER 9

Looking Ahead
In this book, we introduced serverless and discussed serverless architectures for event-

driven systems, disaster recovery systems, and more. This chapter focuses on what the

future holds for serverless technologies.

�A Constantly Evolving Landscape
The serverless landscape of AWS is constantly evolving, and more and more services are

being added to it every year. We saw that in the last few years even data platform services

such as Elastic MapReduce have added a serverless flavor. In fact, even traditional

database servers such as Postgres and MySQL and data warehousing services such as

Redshift have serverless flavors available.

Because of this evolutionary nature of the serverless landscape, it is imperative to

design systems with a serverless-first mindset as it will help to reduce costs drastically

and offload the server management overhead. In the future, we can expect more

enterprises to embrace this mindset.

�The Co-existence of Serverless Architectures
As the popularity of serverless is increasing, many enterprises will want to embrace

serverless. While it is advantageous to design systems in a fully serverless manner,

sometimes organizations are skeptical to fully embrace it because of the lack of control

it brings as serverless services are fully managed services. This gives rise to a new

paradigm that harnesses the best-of-breed serverless services and integrates them

into their traditional architectures. This is a trend that is catching on quite fast among

enterprises as it combines the benefits of serverless and brings forth the required

controls as well.

© Jithin Jude Paul 2023
J. J. Paul, Distributed Serverless Architectures on AWS, https://doi.org/10.1007/978-1-4842-9159-7_9

https://doi.org/10.1007/978-1-4842-9159-7_9#DOI

144

�Serverless Without Lambda
Ever since Lambda was launched by AWS in 2014, it has gained popularity worldwide,

and it is difficult to imagine a serverless architecture without Lambda function. People

have gotten so used to achieving integrations through Lambda that they overlook many

of the native integrations that AWS services provide. For example, it is a common pattern

to integrate API Gateway with the Lambda function, and the Lambda function will in

turn connect with downstream services. But if we are utilizing Lambda from a purely

integration perspective, we have other native integration options from API Gateway as

well. Figure 9-1 shows the list of integrations that API Gateway provides to other services;

this list is constantly being updated.

Figure 9-1.  API Gateway integrations list

By utilizing the AWS service integrations available through API Gateway, we can

reduce the need for using Lambda functions as a mere service integrator and use it for

more complex use cases.

�Driving the Growth Mindset
As serverless architectures are comparatively easy to set up when compared with

their server-based counterparts and because they use a pay-per-use model, many

organizations are using them as a base for their innovative workloads; this allows them

Chapter 9 Looking Ahead

145

to experiment with applications without worrying about the underlying hardware

management. This enables enterprises to bring the ideas they invest to market within

a short period of time. So, serverless is a forerunner for innovation and growth in any

enterprise wanting to grow in the cloud ecosystem.

�Conclusion
The serverless landscape has a promising future, and if you are designing evolutionary

architectures that are adaptable to future changes in the tech landscape, serverless is the

way to go.

Chapter 9 Looking Ahead

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to Serverless Technology
	What Is Serverless?
	Self-Managed vs. Fully Managed vs. Serverless Services
	Self-Managed Services
	Fully Managed Services
	Serverless Services on AWS
	Compute
	Application Integration
	Data Store

	Why Serverless?
	Serverless-First Mindset
	A Bit About FaaS
	Conclusion

	Chapter 2: Distributed Serverless Architectures
	Key Characteristics of Distributed Systems
	Near-Zero Latency
	Fault Tolerant
	Highly Available
	Scalability
	Immutable Architecture

	The Cloud and Distributed Systems
	Making a Solution Distributed
	Orchestrating Actions
	Collecting Data from Different Regions

	Pros and Cons of Global Distributed Apps
	Common Architectural Patterns
	Event-Driven Architectures
	Disaster Recovery Architectures

	Conclusion

	Chapter 3: Event-Driven Architectures
	What Are Event-Driven Architectures?
	Event Producer
	Event Trigger
	Event Processor
	Event Consumer

	Common Serverless Web Application Architecture
	Adding Resiliency to the Serverless Web Application Architecture
	Simple Notification Service
	Simple Queue Service

	Design a Serverless Streaming Event Processor
	Designing a Serverless Email Service with Bounced Email Handling
	Workflow Visualization for Bounced Email Handling

	Event-Driven Alerting Using Serverless
	Conclusion

	Chapter 4: Disaster Recovery Architectures
	Introduction to Disaster Recovery Strategies
	Disaster Recovery Strategies Based on Region
	Geographic Topology of the AWS Cloud
	Availability Zones
	Regions

	Multi-AZ Disaster Recovery Strategy
	Front End
	Back End
	Database

	Cross-Region Disaster Recovery Strategy
	Front-End DR Implementation
	Back-End DR Implementation

	Serverless Database Disaster Recovery Implementation

	Disaster Recovery Strategy Based on RTO and RPO
	Active Backups Only
	Active-Active Configuration
	Active-Passive Configuration

	Conclusion

	Chapter 5: Serverless Data Platforms
	Overview of Data Platforms
	Data Ingestion
	Data Storage
	Data Processing
	Data Visualization
	Advantages of Running Data Platforms on the Cloud

	Serverless Data Platform on AWS
	Data Ingestion Services
	AWS Data Exchange
	Kinesis Data Firehose
	Database Migration Service
	AWS DataSync
	AWS SFTP
	Amazon AppFlow
	Data Storage Services
	Data Lake Implementation Through Amazon S3
	Data Processing Services
	AWS Glue
	Amazon EMR (Serverless)
	Amazon Athena
	AWS Step Functions
	Data Consumption and Visualization Services
	Amazon Athena
	Amazon Redshift
	Amazon QuickSight

	Building a Serverless Data Analytics Application
	Implementing AWS Data Pipeline Service
	Conclusion

	Chapter 6: Containers on Serverless
	Overview of Containers
	Serverless Container Services on AWS
	Container Orchestration Services
	AWS Elastic Container Service (ECS)
	AWS Elastic Kubernetes Service (EKS)
	AWS Red Hat OpenShift Service

	Container Hosting Services
	Container Registry Service
	Container Modernization
	Serverless Web Application Architecture Using Fargate

	Running Containers using Serverless Services on AWS
	Running Containers on Fargate
	Running Containers on Lambda

	Conclusion

	Chapter 7: Multicloud Architectures
	Types of Cloud Architectures
	Single-Cloud Architecture
	Hybrid Cloud Architecture
	Using AWS Outposts for Hybrid Cloud Solutions

	Cloud-Agnostic Architecture
	Multicloud Architecture
	Distributed Cloud Architecture
	Polycloud Architecture
	Distributed Cloud vs. Polycloud

	Comparison of Cloud Architectures

	Conclusion

	Chapter 8: Serverless Through the AWS Well-Architected Framework
	Operational Excellence Pillar
	Perform Operations As Code
	Make Frequent, Small, Reversible Changes
	Refine Operations Procedures Frequently
	Anticipate Failure
	Learn from All Operational Failures

	Security Pillar
	Implement a Strong Identity Foundation
	Enable Traceability
	Automate Security Best Practices
	Protect Data in Transit and at Rest
	Keep People Away from Data
	Prepare for Security Events

	Reliability Pillar
	Automatically Recover from Failure
	Test Recovery Procedures
	Scale Horizontally to Increase Aggregate Workload Availability
	Stop Guessing Capacity
	Manage Change in Automation

	Performance Efficiency Pillar
	Democratize Advanced Technologies
	Go Global in Minutes
	Use Serverless Architectures
	Experiment More Often
	Consider Mechanical Sympathy

	Cost Optimization Pillar
	Implement Cloud Financial Management
	Adopt a Consumption Model
	Measure Overall Efficiency
	Stop Spending Money on Undifferentiated Heavy Lifting
	Analyze and Attribute Expenditure

	Sustainability Pillar
	Conclusion

	Chapter 9: Looking Ahead
	A Constantly Evolving Landscape
	The Co-existence of Serverless Architectures
	Serverless Without Lambda
	Driving the Growth Mindset
	Conclusion

	0.PNG

