
Building
Real-Time
Analytics
Applications
Operational Workflows
with Apache Druid

Darin Briskman

REPORT

Compliments of

https://imply.io

Darin Briskman

Building Real-Time
Analytics Applications

Operational Workflows
with Apache Druid

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-14656-6

[LSI]

Building Real-Time Analytics Applications
by Darin Briskman

Copyright © 2023 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com). For more infor‐
mation, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Aaron Black
Development Editor: Angela Rufino
Production Editor: Beth Kelly
Copyeditor: nSight, Inc.

Proofreader: O’Reilly Media, Inc.
Interior Designer: David Futato
Cover Designer: Randy Comer
Illustrator: Kate Dullea

February 2023: First Edition

Revision History for the First Edition
2023-02-03: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Building Real-
Time Analytics Applications, the cover image, and related trade dress are trademarks
of O’Reilly Media, Inc.

The views expressed in this work are those of the author and do not represent the
publisher’s views. While the publisher and the author have used good faith efforts to
ensure that the information and instructions contained in this work are accurate, the
publisher and the author disclaim all responsibility for errors or omissions, includ‐
ing without limitation responsibility for damages resulting from the use of or reli‐
ance on this work. Use of the information and instructions contained in this work is
at your own risk. If any code samples or other technology this work contains or
describes is subject to open source licenses or the intellectual property rights of oth‐
ers, it is your responsibility to ensure that your use thereof complies with such licen‐
ses and/or rights.

This work is part of a collaboration between O’Reilly and Imply. See our statement of
editorial independence.

http://oreilly.com
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

Building Real-Time Analytics Applications. 1
What Is a Real-Time Analytics Application? 1
Examples of Real-Time Analytics Applications 4
Key Components for Real-Time Analytics Applications 9
Druid: A Database for Real-Time Analytics Applications 14
Creating Real-Time Analytics Applications 22
Conclusion 28
Further Resources 28

iii

Building Real-Time
Analytics Applications

This report will introduce you to the real-time analytics applications
that organizations are building to power new operational workflows.
You’ll learn about the purposes of these applications, the value they
provide, and the technologies needed to create them.

Once you’ve completed this report, you’ll know how real-time ana‐
lytics applications can help your organization, and you’ll know what
you’ll need to create a solution that works for you.

What Is a Real-Time Analytics Application?
Every organization needs insight to succeed and excel. While
insights can come from many wellsprings, the foundation for
insights is data: both internal data from operational systems and
external data from partners, vendors, and public sources.

For decades, the traditional approach to analytics has focused on
data warehousing and business intelligence, where experts query
historical data “once in a while” for executive dashboards and
reports.

Meanwhile, transactional applications have been the lifeblood of
business operations, storing data that enables sales, marketing, man‐
ufacturing, shipping, payroll, supply chain, customer service, finan‐
cial reporting, and many other functions to operate.

1

1 Druid, “Powered by Apache Druid”, accessed January 11, 2023.

Leading organizations like Netflix, Target, Salesforce, and Wikime‐
dia Foundation1 have recognized the opportunity and value of
bringing together analytics and applications in a new way. Instead of
infrequent analytics queries on historical data, their developers are
building a new type of application that queries everything from tera‐
bytes to petabytes of real-time and historical data at subsecond
response under load.

This new approach is the real-time analytics application, and it’s
formed at the intersection of the analytics and application para‐
digms, with technical requirements that bring the scale of data
warehouses to the speed of transactional databases (Figure 1).

Figure 1. Real-time analytics applications combine characteristics from
both traditional reporting analytics and transactional applications

Real-time analytics applications generally share three common tech‐
nical characteristics:

Subsecond performance at scale
This allows humans and, sometimes, machines to quickly and
easily see and comprehend complex information and to hold
interactive conversations with data, drilling down to deep detail
and panning outward to global views. Many real-time analytics
solutions support interactive conversations with large data sets,
maintaining subsecond performance even with dozens of peta‐
bytes of data.

2 | Building Real-Time Analytics Applications

https://oreil.ly/d2oXO

High concurrency
This enables large numbers of users to generate multiple queries
as they interact with the data. Architectures that support a few
dozen concurrent queries aren’t sufficient when thousands of
concurrent queries must be executed simultaneously. Of course,
this must be done affordably, without requiring large installa‐
tions of expensive infrastructure.

Real-time and historical data
Real-time data is usually delivered in streams, using tools like
Apache Kafka, Confluent Cloud, or Amazon Kinesis. Data from
past streams and from other sources, such as transactional sys‐
tems, is delivered as a batch, through extract, load, and trans‐
form (ELT) processes. The combination of data types allows
both real-time understanding and meaningful comparisons to
the past.

A core element of real-time analytics is use of data streams. Stream‐
ing data are events that are continuously generated and can come
from a wide range of sources, including web users’ clickstreams,
sensors in vehicles, actions in video games, and changes in data‐
bases. The events are collected and transported by stream process‐
ors, such as Apache Kafka or Amazon Kinesis.

Traditional batch analytics collects incoming events into groups,
eventually making them available for analysis. While this is good
enough for daily or monthly reports, it doesn’t provide the current
(or “real-time”) data needed for many modern requirements. Data
streams enable immediate delivery of events as they happen, but
more is required to create real-time analytics applications (Figure 2).

An additional requirement is common for real-time analytics: con‐
tinuous availability. Unlike reporting analytics, where outages have
limited impact, real-time analytics have no tolerance for downtime
or data loss.

These capabilities enable a wide range of projects, from operational
visibility at scale to customer-facing analytics to unrestricted data
exploration to real-time decisioning.

What Is a Real-Time Analytics Application? | 3

2 Ben Sykes, “How Netflix Uses Druid for Real-Time Insights to Ensure a High-Quality
Experience”, Netflix Technology Blog, March 3, 2020.

Figure 2. Real-time analytics applications combine characteristics from
both traditional reporting analytics and transactional applications

Examples of Real-Time Analytics Applications
Let’s look at a few of the places where organizations are using real-
time analytics.

Netflix
How can we be confident that updates are not harming our users? And
that we’re actually making measurable improvements when we intend
to?

—Ben Sykes, software engineer, Netflix2

To ensure a consistently great experience to more than 100 million
members in more than 190 countries enjoying 125 million hours
of TV shows and movies each day, Netflix built a real-time analytics
application for user experience monitoring. By turning log streams
into real-time metrics, Netflix can see how over 300 million devices
are performing at all times in the field. Ingesting over 2 million
events per second and querying over 1.5 trillion rows, Netflix engi‐
neers can pinpoint anomalies within their infrastructure, endpoint
activity, and content flow.

4 | Building Real-Time Analytics Applications

https://oreil.ly/6quqE
https://oreil.ly/6quqE

3 Sykes, “How Netflix Uses Druid for Real-Time Insights.”
4 Sykes, “How Netflix Uses Druid for Real-Time Insights.”

An ongoing challenge for Netflix is consistently delivering a great
streaming entertainment experience while continuously pushing
innovative technology updates. As Netflix’s adoption has skyrock‐
eted, this challenge has grown more complex. With over 300 million
devices spanning four major UIs including iOS, Android, smart
TVs, and their own website, Netflix has a constant need to identify
and isolate issues that may affect only a certain group, such as a ver‐
sion of the app, certain types of devices, or particular countries. Ben
Sykes, software engineer at Netflix, says that “with this data arriving
at over 2 million events per second, getting it into a database that
can be queried quickly is formidable. We need sufficient dimension‐
ality for the data to be useful in isolating issues and as such we gen‐
erate over 115 billion rows per day.”3

To quantify how seamlessly users’ devices are handling browsing
and playback, Netflix derives measurements using real-time logs
from playback devices as a source of events (Figure 3).

Figure 3. The log-to-metric data pipeline at Netflix4

Netflix collects these measures and feeds them into the real-time
analytics database. Every measure is tagged with anonymized details
about the kind of device being used—for example, whether the
device is a smart TV, an iPad, or an Android phone. This enables
Netflix to classify devices and view the data according to various
aspects. This aggregated data is available immediately for querying,
either via dashboards or ad hoc queries. “We’re currently ingesting
at over 2 million events per second,” Sykes says, “and querying over
1.5 trillion rows to get detailed insights into how our users are

Examples of Real-Time Analytics Applications | 5

5 Sykes, “How Netflix Uses Druid for Real-Time Insights.”
6 Kartik Khare, “What Makes Apache Druid Great for Realtime Analytics?”, Medium,

March 30, 2019.
7 Amaresh Nayak, “Event Stream Analytics at Walmart with Druid”, Medium, November

24, 2017.

experiencing the service. All this helps us maintain a high-quality
Netflix experience, while enabling constant innovation.”5

The ultimate benefit is speed, which is essential for a service that
needs to react to a massive number of users in near real time.

Walmart
Druid has been designed to...enable exploration of real-time data and
historical data while providing low latencies and high availability.

—Kartik Khare, software engineer, Walmart Labs6

To compete with Amazon and other retailers, Walmart needs to
track the pricing of their competitors in real time and allow analysts
to explore the gathered data interactively.

Many data sets at Walmart are generated by the digital business,
modeled as streams of events ranging from server logs to application
metrics to product purchases. The goal of the team at Walmart Labs
is to make it easy for the right people across Walmart to access this
data, analyze it, and make decisions in the least amount of time
possible.

Walmart’s first attempt to provide low-latency analytics was to lever‐
age the Hadoop ecosystem. It tried using Apache Hive first and then
Presto. According to Amaresh Nayak, distinguished SW engineer at
Walmart Labs, “The problem we faced with both of these SQL-on-
Hadoop solutions was that queries would sometimes take hours to
complete, which significantly impacted our ability to make rapid
decisions. Although our data was arriving in real time, our queries
quickly became a bottleneck in our decision-making cycle as our
data volumes grew. We quickly realized that the workflow we were
aiming to optimize was one where we could look at our event
streams (both real-time and historical events) and slice and dice the
data to look at specific subsections, determine trends, find root
causes, and take actions accordingly.”7

6 | Building Real-Time Analytics Applications

https://oreil.ly/gb5l0
https://oreil.ly/ySG0P

8 Nayak, “Event Stream Analytics at Walmart with Druid.”
9 Xavier Léauté and Zohreh Karimi, “Confluent Cloud: Operational Insights at Scale”,

Imply, Druid Summit (virtual conference), December 10, 2021.

The team at Walmart knew it needed to make a change. The types of
queries the team runs require column aggregation, which involves
scanning a lot of rows across multiple shards. Walmart found that
relational databases were poorly suited for this because they cannot
efficiently enable data exploration in real time. The team also ruled
out a NoSQL key-value database because of the need to query multi‐
ple partitions across a number of nodes. Using this database would
have caused inefficient aggregation calculations and exponentially
increased storage requirements by storing aggregates for all possible
column combinations.

Using a real-time analytics application, Walmart can now pre-
aggregate records as they are being ingested. Instead of getting a sin‐
gle price for an item for a specific moment in time, Walmart can
now understand the changing price of an item over any span of
time. This combined level of depth and speed to insights is essential
to enabling Walmart to make critical pricing decisions in the least
amount of time possible. “After we switched [to real-time analytics],”
Nayak says, “our query latencies also dropped to near sub-second
and in general, the project fulfilled most of our requirements. Today,
our cluster ingests nearly 1B+ events per day (2TB of raw data).”8

Confluent
We don’t shy away from high-cardinality data, which means we can find
the needle in the haystack. As a result, our teams can detect problems
before they emerge and quickly troubleshoot issues to improve the over‐
all customer experience. The flexibility we have with Druid also means
we can expose the same data we use internally also to our customers,
giving them detailed insights into how their own applications are
behaving.

—Xavier Léauté and Zohreh Karimi, lead engineers, Confluent9

Founded by the creators of Apache Kafka, Confluent provides a
range of services for streaming, including Confluent Cloud, a fully
managed cloud native data-streaming service. To enable effective
customer support, Confluent built an internal-facing real-time ana‐
lytics observability application. Ingesting over 3.5 million events per

Examples of Real-Time Analytics Applications | 7

https://oreil.ly/y4s7T

10 “Kafka to Druid Stack”, Imply, accessed January 9, 2023.

second and handling hundreds of queries per second on the data set,
Confluent provides real-time insights into the operations of thou‐
sands of clusters within Confluent Cloud.

Confluent also leveraged real-time analytics to build an external-
facing application, Confluent Health+, which extends performance
and health insights to their customers.

Confluent’s first attempt at building an observability pipeline was
with a NoSQL database, which was used to store and query teleme‐
try data. As the volume of data grew, Confluent’s legacy pipeline
struggled to keep up with its data ingestion and query loads. Next,
Confluent looked into common observability solutions but quickly
determined that these, too, could not handle its requirements. As
noted by Xavier Léauté and Zohreh Karimi, lead engineers at Con‐
fluent, “Operating multi-tenant services requires fine-grained visi‐
bility down to the individual user, tenant, or application behavior,
where most traditional monitoring stacks fail to scale or become
cost-prohibitive.”10

To keep up with their data growth, Confluent determined their next-
generation observability pipeline needed to support the following:

• Substantially increased data and query load (100x)
• Subsecond query latencies on high-cardinality metrics
• Inherent time-series data support

After evaluation and testing, Confluent found that real-time analyt‐
ics application could meet all requirements (Figure 4). All Confluent
Cloud clusters, as well as customer-managed, Health+-enabled clus‐
ters, publish metrics data to Confluent’s telemetry pipeline. The
real-time analytics application is a key differentiator for Confluent,
enabling Confluent’s customers to get technical support and on-
demand monitoring that isn’t available from using open source
Kafka alone.

8 | Building Real-Time Analytics Applications

https://oreil.ly/G08Pm

11 Zohreh Karimi and Harini Rajendran, “Scaling Apache Druid for Real-Time Cloud
Analytics at Confluent”, Confluent, November 8, 2021.

Figure 4. The telemetry pipeline at Confluent11

Key Components for Real-Time
Analytics Applications
Any real-time application requires several key components.

Data Sources
Data needs to come from somewhere. At least some of the data will
be continuously generated, but some data may come from static
sources.

For example, a real-time analytics application that places internet
advertising may combine real-time sources (real-time bidding auc‐
tions, user clickstreams) with historical data (effectiveness of past
advertising) and external data that is periodically updated (census
data, demographic data).

Key Components for Real-Time Analytics Applications | 9

https://oreil.ly/UQ6u5
https://oreil.ly/UQ6u5

Data Transportation
Data must be transported from the data sources to the database.

To keep the data as close to real time as possible, events should be
transported using a stream platform. The most common of these is
Kafka, available as open source from the Apache Software Founda‐
tion or as a managed service from many providers, including Con‐
fluent, Amazon Web Services (AWS), and Aiven. Most other stream
platforms use a Kafka-compatible interface, such as Red Panda and
Azure Event Hub. Another option, only available on Amazon Web
Services, is Kinesis Data Streams. Any of these stream platforms can
deliver data quickly, reliably, and consistently (Figure 5).

Figure 5. Events from many sources are delivered to applications by a
stream platform, such as Apache Kafka or Amazon Kinesis

Sometimes, historical, external, or other slower-changing data must
be extracted from sources (such as transactional databases), loaded
to the real-time analytics database, and transformed to the needed
data schema for the application. In many cases, this can be done by
connecting the transactional database to a stream platform, with
data changes appearing as events. For example, Debezium is an open
source package that monitors MySQL, PostgreSQL, MongoDB, Cas‐
sandra, and other databases and copies database changes into Kafka.
Another option is to load data into the database from a file, which
can be created from any database using that database’s data dump
feature or a data query. For continuous monitoring and file creation,
there are many ELT tools available.

10 | Building Real-Time Analytics Applications

Database
Like nearly any application, real-time analytics applications require
a persistent service where data can be reliably stored and retrieved.
There are hundreds of databases available, with both open source
and commercial options, and nearly any database can, in theory,
be used to support a real-time analytics application. However, an
application that can provide the needed performance, scale, and reli‐
ability for real-time analytics will require a database with some spe‐
cific capabilities.

Speed is critical for real-time analytics applications: delivering data
in milliseconds isn’t useful unless data queries also execute in milli‐
seconds. A real-time analytics database must be able to both ingest
incoming events and process queries with subsecond performance,
even for large data sets of hundreds of terabytes or petabytes.

How quickly can data be added to the database? All databases sup‐
port moving sets of records from files into the database, usually
known as batch ingestion. For many analytics databases, such as
Snowflake and Amazon Redshift, this is the only method of data
ingestion. Only a few databases designed for real-time data analyt‐
ics, such as Apache Druid, can perform both batch ingestion and
stream ingestion, with each event becoming immediately available
for queries as soon as it arrives.

Many real-time analytics applications also require high concurrency.
A customer-facing analytics application, enabling customers of an
SaaS or other provider to monitor and manage their own activities,
might have anywhere from a few to many customers seeking to use
the analytics at the same time. Similarly, interactive data conversa‐
tions drive dozens or hundreds of queries as analysts seek to gain
insights from large data sets. To support such applications, a real-
time analytics database must be able to execute hundreds of queries
per second.

Ironically, a real-time analytics application needs to analyze more
than real-time data: it needs to enable a comparison of real-time and
historical data to provide needed context (Figure 6). For example, an
application that monitors financial events needs to be able to com‐
pare current events to past events. Is this a lot of activity? A little?
How does the current pattern compare with historical patterns? A
real-time analytics database must be able to query both incoming

Key Components for Real-Time Analytics Applications | 11

real-time events and historical data and to ingest both fast-moving
data streams and static batch data.

Figure 6. Real-time analytics applications need both stream and batch
processing

The final key requirement for a real-time analytics database is resil‐
iency (Figure 7). Reporting analytics are tolerant of downtime
(when you’re producing a monthly report, a few hours offline isn’t a
problem), but real-time analytics are usually always on. This
requires a database that can scale up (and scale down) without out‐
ages and support upgrades without a need for planned downtime.
Data must also be durable, with no data loss when hardware fails.
Resiliency is the combination of high reliability and high durability.

Figure 7. When hardware fails, resilient systems continue to work

12 | Building Real-Time Analytics Applications

For real-time analytics applications that are small (less than 1 tera‐
byte of total data) and don’t require high concurrency and availabil‐
ity, nearly any high-speed database is sufficient. Common choices
include PostgreSQL, MongoDB, and ClickHouse, each available as
open source software or as managed services from many providers.
There are many commercial databases that are also suitable.

If the real-time analytics application requires some combination of
scale, fast query performance, fast ingestion performance, high con‐
currency, real-time plus historical data in context, and high resil‐
iency, there are only a few options available. Some databases provide
many of these characteristics. One that provides all of them is
Apache Druid, which is described in more detail later in this report.

Visualization
If the real-time analytics application is to be used by humans, it will
probably need some sort of visualization engine to render data into
human-consumable graphics.

While there are many commercial and open source visualization
tools (Grafana is probably the most widely used), most of them are
designed for the speed of reporting analytics and cannot render vis‐
ualizations fast enough to keep up with the needs of real-time ana‐
lytics applications.

There are a few exceptions. Apache Superset is a large-scale data
exploration and visualization toolset created to work with the
Apache Druid database. D3 (Data-Driven Documents) is an open
source JavaScript library for visualizing and analyzing data, com‐
monly used to create high-performance visualization tools for real-
time analytics applications (Figure 8).

Key Components for Real-Time Analytics Applications | 13

Figure 8. An example of a high-performance visualization tool created
using D3

Druid: A Database for Real-Time
Analytics Applications
As mentioned, one database that meets all the criteria for real-time
analytics application is Apache Druid. It enables subsecond perfor‐
mance at scale, provides high concurrency at the best value, and
easily ingests and combines real-time streaming data and historical
batch data. It is a high-performance, real-time analytics database
that is flexible, efficient, and resilient.

Origins of Druid
In 2011, the data team at a technology company had a problem. It
needed to quickly aggregate and query real-time data coming from
website users across the internet to analyze digital advertising auc‐
tions. This created large data sets, with millions or billions of rows.

The data team first implemented its product using relational data‐
bases. It worked but needed many machines to scale, and that was
too expensive.

The team then tried the NoSQL database HBase, which was popula‐
ted from Hadoop MapReduce jobs. These jobs took hours to build
the aggregations necessary for the product. At one point, adding
only three dimensions on a data set that numbered in the low mil‐
lions of rows took the processing time from 9 hours to 24 hours.

14 | Building Real-Time Analytics Applications

12 Eric Tschetter, “Introducing Druid: Real-Time Analytics at a Billion Rows Per Second”,
Druid, April 30, 2011.

So, in the words of Eric Tschetter, one of Druid’s creators, “we did
something crazy: we rolled our own database.”12 And it worked! The
first incarnation of Druid scanned, filtered, and aggregated one bil‐
lion rows in 950 milliseconds.

Druid became open source a few years later and became a top-level
project of the Apache Software Foundation in 2016.

As of 2023, over 1,400 organizations use Druid to generate insights
that make data useful, in a wide variety of industries and a wide
range of uses. There are over 10,000 developers active in the Druid
global community.

Scalable and Flexible
Druid has an elastic and distributed architecture to build any appli‐
cation at any scale, enabled by a unique storage-compute design
with independent services (Figure 9).

Figure 9. Druid scales up and down to meet changing requirements

During ingestion, data is split into segments, fully indexed, and
optionally pre-aggregated. This enables unique value over other
analytics databases, which force a choice between the performance
of tightly coupled compute and storage or the scalability of loosely
coupled compute and storage. Druid gets both performance and
cost advantages by storing the segments on cloud storage and also
prefetching them so they are ready when requested by the query
engine.

Each service in Druid can scale independently of other services.
Data nodes, which contain prefetched, indexed, segmented data, can

Druid: A Database for Real-Time Analytics Applications | 15

https://oreil.ly/fpUTA

be dynamically added or removed as data quantities change. Mean‐
while, query nodes, which manage queries against streams and his‐
torical data, can be dynamically added or removed as the number
and shape of queries change.

A small Druid cluster can run on a single computer, while large
clusters span thousands of servers and are able to ingest multiple
millions of stream events per second while querying billions of
rows, usually in under one second.

Efficient and Integrated
Performance is the key to interactivity. In Druid, the key to perfor‐
mance is “if it’s not needed, don’t do it.” This means minimizing the
work the cluster has to do.

Druid doesn’t load data from disk to memory, or from memory to
CPU, when it isn’t needed for a query. It doesn’t decode data when it
can operate directly on encoded data. It doesn’t read the full data set
when it can read a smaller index. It doesn’t start up new processes
for each query when it can use a long-running process. It doesn’t
send data unnecessarily across process boundaries or from server to
server.

Druid achieves this level of efficiency through its tightly integrated
query engine and storage format, designed in tandem to minimize
the amount of work done by each data server. Druid also has a dis‐
tributed design that partitions tables into segments, balances those
segments automatically between servers, quickly identifies which
segments (or replicas of segments) are relevant to a query, and then
pushes as much computation as possible down to individual data
servers.

The result of this unique relationship between compute and storage
is very high performance at any scale, even for data sets of multiple
petabytes.

Resilient and Durable
Druid is self healing, self balancing, and fault tolerant. It is designed
to run continuously without planned downtime for any reason, even
for configuration changes and software updates. It is also durable
and will not lose data, even in the event of major systems failures.

16 | Building Real-Time Analytics Applications

13 José Correia, Carlos Costa, and Maribel Yasmina Santos, “Challenging SQL-on-Hadoop
Performance with Apache Druid”, RepositoriUM, June 2019.

Whenever needed, you can add servers to scale out or remove
servers to scale down. The Druid cluster rebalances itself automati‐
cally in the background without any downtime. When a Druid
server fails, the system automatically understands the failure and
continues to operate.

As part of ingestion, Druid safely stores a copy of the data segment
in deep storage, creating an automated, continuous additional copy
of the data in cloud storage or HDFS. It both makes the segment
immediately available for queries and creates a replica of each data
segment. You can always recover data from deep storage, even in the
unlikely case that all Druid servers fail. For a limited failure that
affects only a few Druid servers, automatic rebalancing ensures that
queries are still possible and data is still available during system
recoveries. When using cloud storage, such as Amazon S3, durabil‐
ity is 99.999999999% or greater per year (or a loss of no more than 1
record per 100 billion).

High Performance
The features of Druid combine to enable high performance at high
concurrency by avoiding unneeded work. Pre-aggregated, sorted
data avoids moving data across process boundaries or across servers
and avoids processing data that isn’t needed for a query. Long-
running processes avoid the need to start new processes for each
query. Using indexes avoids costly reading of the full data set for
each query. Acting directly on encoded, compressed data avoids the
need to uncompress and decode. Using only the minimum data
needed to answer each query avoids moving data from disk to mem‐
ory and from memory to CPU.

In a paper published at the 22nd International Conference on Busi‐
ness Information Systems (May 2019), José Correia, Carlos Costa,
and Maribel Yasmina Santos benchmarked performance of Hive,
Presto, and Druid using a TPC-H-derived test of 13 queries run
against a denormalized star schema on a cluster of 5 servers, each
with an Intel i5 quad-core processor and 32 GB memory.13 Druid
performance was measured as greater than 98% faster than Hive and
greater than 90% faster than Presto in each of six test runs, using

Druid: A Database for Real-Time Analytics Applications | 17

https://oreil.ly/8wRNy
https://oreil.ly/8wRNy

14 Correia, Costa, and Santos, “Challenging SQL-on-Hadoop Performance.”
15 Eric Tschetter, “Druid Nails Cost Efficiency Challenge Against ClickHouse and Rock‐

set”, Imply, November 22, 2021.

different configurations and data sizes. For Scale Factor 100 (a 100
GB database), for example, Druid required 3.72s, compared with 90s
for Presto and 424s for Hive (Figure 10).

Figure 10. Hive, Presto, and Druid results from Correia, Costa, and
Santos (2019)14

In November 2021, Imply published the results of a benchmark
using the same star schema benchmark,15 with Druid on a single
AWS c5.9xlarge instance (36 CPU and 72 GB memory) at Scale Fac‐
tor 100 (a 100 GB database). The 13 queries executed in a total of
0.747s.

18 | Building Real-Time Analytics Applications

https://oreil.ly/7J8EY
https://oreil.ly/7J8EY

16 Danny Ruchman and Itai Yaffe, “Our Journey with Druid: From Initial Research to Full
Production Scale”, SlideShare, February 25, 2018.

High Concurrency
High concurrency was one of the original design goals for Druid,
and many Druid clusters are supporting hundreds of thousands of
queries per second.

The key to Druid concurrency is the unique relationship between
storage and compute resources. Data is stored in segments, which
are scanned in parallel by scatter/gather queries. Usually, scanning
each segment requires about 250ms and rarely more than 500ms.

In Druid, there is no need to lock segments, so when multiple quer‐
ies are trying to scan the same segment, the resources are released to
a new query immediately upon scan completion. This keeps the
computation time on each segment very small and enables a very
high number of concurrent queries.

In addition, Druid automatically caches query results per segment
from historical data while not caching, by default, data from fast-
changing stream data. This further reduces query times and compu‐
tation loads.

One of many examples of Druid concurrency was published by
Nielsen Marketing,16 which compared response time as a function of
concurrency in Druid with their previous Elasticsearch architecture
(Figure 11).

Note that with 10 concurrent queries, average response time was
280ms. Increasing this twelvefold to 120 concurrent queries in
Druid only increased the average response time by 18%. The con‐
trast with Elasticsearch is clear.

Druid: A Database for Real-Time Analytics Applications | 19

https://oreil.ly/3wZ5a
https://oreil.ly/3wZ5a

Figure 11. Comparing Druid and Elasticsearch concurrency at Nielsen
Marketing

High-Speed Data Ingestion
In Druid, ingestion, sometimes called indexing, is loading data into
the database. Druid reads data from source systems, whether files or
streams, and stores the data in segments (Figure 12).

Figure 12. Druid works with both stream ingestion and batch ingestion

The ingestion process both creates tables and loads data into them.
All tables are always fully indexed, so there is no need to explicitly
create or manage indexes.

When data is ingested into Druid, it is automatically indexed, parti‐
tioned, and, optionally, partially pre-aggregated. Compressed

20 | Building Real-Time Analytics Applications

bitmap indexes enable fast filtering and searching across multiple
columns. Data is partitioned by time and other fields.

Stream Ingestion
Druid was specifically created to enable real-time analytics of stream
data, which begins with stream ingestion. Druid includes built-in
indexing services for both Apache Kafka and Amazon Kinesis, so
additional stream connectors are not needed.

Stream data is immediately queryable by Druid as each event
arrives.

Supervisor processes run on Druid management nodes to manage
the ingestion processes, coordinating indexing processes on data
nodes that read stream events and guarantee exactly-once ingestion.
The indexing processes use the partition and offset mechanisms
found in Kafka and the shard and sequence mechanisms found in
Kinesis.

If there is a failure during stream ingestion, for example, a server or
network outage on a data or management node, Druid automatically
recovers and continues to ingest every event exactly once, even
events that arrive during the outage. No data is lost.

Batch Ingestion
It’s often useful to combine real-time stream data with historical
data. Batch ingestion is used for loading the latter type of data. This
approach to loading data is known as batch ingestion. Some Druid
implementations use entirely historical files. Data from any source
can take advantage of the interactive data conversations, easy scal‐
ing, high performance, high concurrency, and high reliability of
Druid.

Druid usually ingests data from object stores—which include HDFS,
Amazon S3, Azure Blob, and Google Cloud Storage—or from local
storage. The datafiles can be in a number of common formats,
including JSON, CSV, TSV, Parquet, ORC, Avro, or Protobuf. Druid
can ingest directly from both standard and compressed files, using
formats including .gz, .bz2, .xz, .zip, .sz, and .zst.

The easiest way to ingest batch data is with a SQL statement, using
INSERT INTO. Since this uses SQL, the ingestion can also include

Druid: A Database for Real-Time Analytics Applications | 21

whatever SQL statements are desired to filter, combine, or aggregate
the data (WHERE, JOIN, GROUP BY, and others) as part of ingestion.

Creating Real-Time Analytics Applications
Now that you’ve considered the components needed, it’s time to
consider other requirements.

Data Design
The less data you store, the faster your queries will run. How can
you minimize the database size while maintaining the precision you
need?

In Druid, data is ingested from files, tables, and streams and stored
in tables. If the original source data is stored, the column is a
dimension. Many data sets will have high dimensionality, with hun‐
dreds or thousands of dimensions.

A useful option to reduce data storage size and improve perfor‐
mance is to use data rollup, a pre-aggregation to combine rows that
have identical dimensions within an interval that you choose, such
as “minute” or “day,” and adding metrics, such as “count” and “total.”
This aggregated dimension is a metric.

For example, a data stream of website activity that gets an average of
400 hits per second could choose to store every event in its own
table row, or it could use a rollup to aggregate the sum of the total
number of page hits each minute, reducing the needed data storage
by 24,000x. If desired, the disaggregated data can be kept in inex‐
pensive deep storage for infrequent queries where individual events
need to be queried.

It’s possible to create multiple metrics from the same data set, with
aggregations at different levels of granularity to support multiple
query requirements.

Metrics can also be created that use stochastic approximation tech‐
niques, usually called sketches (Figure 13). These enable very fast
results, provably within 2% of the precise value, even across very
large data sets. Accuracy actually improves as the data set grows!
This is often useful for providing subsecond information on the
total number of a fast-changing dimension (How many total players

22 | Building Real-Time Analytics Applications

in my game? How many total clicks per second across all of my web‐
sites?), where absolute precision isn’t needed.

Figure 13. Some of the most common uses of sketches

Unlike most databases, real-time analytics databases don’t require
the often significant work of modeling the data and creating nor‐
malizations, star- and snowflake-schemas, and other designs for
organizing data storage. This isn’t needed in Druid. Each table is
wide and denormalized. Each field value is determined as a dimen‐
sion or a metric at ingestion.

Interfaces
Most real-time analytics databases use SQL as the primary interface.
Either humans or machines can submit queries through APIs to
retrieve the data needed.

Druid supports a wide range of programming libraries for develop‐
ment, including Python, R, JavaScript, Clojure, Elixir, Ruby, PHP,
Scala, Java, .NET, and Rust. In any of these languages, queries can be
executed using either SQL commands (returning text results) or
JSON-over-HTTP (returning JSON results).

Since Druid is both high performance and high concurrency, it’s a
common pattern to use microservices architecture, with many serv‐
ices and many instances of each service able to send queries and
receive results without worries about causing bottlenecks for other
services.

Humans, though, also like pictures. It’s common to use visualization
tools with real-time analytics: open source tools like Grafana or
Apache Superset, or commercial tools like Tableau, Looker, Power
BI, or Domo (Figure 14). Sometimes, though, these tools can have
lengthy render times, so queries that return from the database in
under a second can still take 30 seconds or more to appear to the
user.

Creating Real-Time Analytics Applications | 23

Figure 14. Druid visualization as used by the Wikimedia Foundation

Some visualization tools designed for real-time analytics are becom‐
ing available. One example is Pivot, a commercial tool from Imply
designed to work with Druid and render visualizations nearly as fast
as the database queries can be returned .

Security and Resilience
Any application needs to be secure: data must be protected so only
authorized users can view or modify it. Similarly, a real-time analyt‐
ics application needs to be resilient, without downtime and without
data loss.

Security
Druid includes a number of features to ensure that data is always
kept secure. Druid administrators can define users with names and
passwords managed by Druid, or they can use external authoriza‐
tion systems through LDAP or Active Directory. Fine-grained role-
based access control allows each user to query only the data sources
(such as tables) to which they have been granted access, whether
using APIs or SQL queries (Figure 15).

Users belong to roles that are only able to use resources where the
role has been granted permission (Figure 16).

24 | Building Real-Time Analytics Applications

Figure 15. Druid workflow to authenticate and authorize process
execution

Figure 16. Druid role-based access control hierarchy

Creating Real-Time Analytics Applications | 25

All communications between Druid processes are encrypted using
HTTPS and TLS. Best practices for production deployment of
Druid require clients to use HTTPS to communicate with Druid
servers, including the requirement for valid SSL certificates.

Resilience
Druid provides for both very high uptime (reliability) and zero data
loss (durability). It’s designed for continuous operations, with no
need for planned downtime.

A Druid cluster is a collection of processes. The smallest cluster can
run all processes on a single server (even a laptop). Larger clusters
group processes by function, with each server (“node”) focused on
running management, query, or data processes.

When a node becomes unavailable—from a server failure, a network
outage, a human error, or any other cause—the workload continues
to run on other nodes. During a data node outage, any segments
that are uniquely stored on that node are automatically loaded onto
other nodes from deep storage. The cluster continues to operate as
long as any nodes are available.

Replicas
Whenever data is ingested into Druid, a segment is created and a
replica of that segment is created on a different data node. These
replicas are used to both improve query performance and provide
an extra copy of data for recovery. If desired, for a higher level of
performance and resiliency, additional replicas of each segment can
be created.

Continuous backup
As each data segment is committed, a copy of the data is written to
deep storage, a durable object store. Common options for deep stor‐
age are cloud object storage or HDFS. This prevents data loss even if
all replicas of a data segment are lost, such as the loss of an entire
data center.

It is not necessary to perform traditional backups of a Druid cluster.
Deep storage provides an automatic continuous backup of all com‐
mitted data.

26 | Building Real-Time Analytics Applications

Automated recovery
If all nodes become unavailable (perhaps from a fire, flood, or seis‐
mic event damaging a data center or, once again, human error), all
data continues to be preserved in both data replicas and durable
deep storage. When using cloud object storage such as Amazon S3,
Azure Blob, or Google Cloud Storage, multiple copies of data are
stored in multiple physically separated data centers in a region, so
even destruction of a data center will not cause data loss. Once a
Druid cluster is restored, operations can resume with no lost data
(Figure 17).

Figure 17. Druid automated recovery provides high availability

Rolling upgrades
Upgrading Druid does not require downtime. Moving to a new ver‐
sion uses a “rolling” upgrade—one node at a time is taken offline,
upgraded, and returned to the cluster. Druid can function normally
during the rolling upgrade, even though some nodes will be using a
different Druid version from other nodes during the upgrade.

Using managed services
A common solution to ensuring the best security and resilience
is to hire someone else to do it for you—using a managed service.
Many real-time analytics databases are available as managed

Creating Real-Time Analytics Applications | 27

services, hosted by cloud service providers. Imply Polaris, for exam‐
ple, is a fully managed Druid-as-a-service offering, with all infra‐
structure managed for security and resilience. Like most managed
services, Polaris uses consumption-based pricing, so you only pay
for the resources you actually use and can very rapidly scale a cluster
up or down to meet changing usage requirements.

Managed services are also a great way to begin building and testing
new real-time analytics applications, as they require no setup time
and usually offer a free trial period to allow you to validate whether
the service will work for your project.

Conclusion
If you’ve read this far, you’ve seen how real-time analytics applica‐
tions are driving both insights and action from fast-moving data and
how Apache Druid is designed to support real-time analytics appli‐
cations. Perhaps you’ve had some ideas about how you can use it
yourself.

How will you build a real-time analytics application to drive success
for your team? Whether you need interactive conversations with
data, subsecond response for queries from large data sets, high-
concurrency solutions for difficult-to-predict user communities, a
combination of real-time streaming data and historical context data,
or high-performance machine learning, the tools you need to make
it happen are now available and already being deployed worldwide.

The only limit is your imagination!

Further Resources
As a global open source project, Druid has a strong community,
with mailing lists, forums, discussion channels, and other resources.
You can also find information on Druid at imply.io, with a number
of blog articles and other useful resources.

If you want to try building your own real-time analytics application,
a good place to start is a free trial of Imply Polaris, which provides
Apache Druid as a service, plus quickstarts for push ingestion, visu‐
alization, and more.

28 | Building Real-Time Analytics Applications

https://oreil.ly/MNSE9
http://imply.io
http://imply.io/blog
https://oreil.ly/dHAy8
https://oreil.ly/igHJd

Here are some additional resources:

• Fangjin Yang, Eric Tschetter, Xavier Léauté, Nelson Ray, Gian
Merlino, and Deep Ganguli, “Druid: A Real-Time Analytical
Data Store”, in SIGMOD ’14: Proceedings of the 2014 ACM SIG‐
MOD International Conference on Management of Data (ACM,
June 2014), 157–168.

• Eric Tschetter, “Introducing Druid: Real-Time Analytics at a
Billion Rows Per Second”, Druid, April 30, 2011.

• José Correia, Carlos Costa, and Maribel Yasmina Santos, “Chal‐
lenging SQL-on-Hadoop Performance with Apache Druid”,
RepositoriUM, June 2019.

• Eric Tschetter, “Druid Nails Cost Efficiency Challenge Against
ClickHouse and Rockset”, Imply, November 22, 2021.

• The Powered by Apache Druid web page.
• Apache Druid home page.
• Apache Druid community.

Further Resources | 29

https://oreil.ly/c5C2Q
https://oreil.ly/c5C2Q
https://oreil.ly/odg9_
https://oreil.ly/odg9_
https://oreil.ly/w2TEO
https://oreil.ly/w2TEO
https://oreil.ly/PBb71
https://oreil.ly/PBb71
https://oreil.ly/JPzhs
https://oreil.ly/3_e8S
https://oreil.ly/Tnzrw

About the Author
Darin Briskman is director of technology at Imply, where he helps
developers create real-time analytics applications. He began his
career at NASA in the 1980s, and has been working with large and
interesting data sets ever since. Most recently, he’s had various tech‐
nical and leadership roles at Couchbase, Amazon Web Services, and
Snowflake. When he’s not writing code, Darin likes to juggle, blow
glass, and help children on the autism spectrum learn to use their
special abilities to work better with the neuronormative.

	Cover
	Imply
	Copyright
	Table of Contents
	Building Real-Time Analytics Applications
	What Is a Real-Time Analytics Application?
	Examples of Real-Time Analytics Applications
	Netflix
	Walmart
	Confluent

	Key Components for Real-Time Analytics Applications
	Data Sources
	Data Transportation
	Database
	Visualization

	Druid: A Database for Real-Time Analytics Applications
	Origins of Druid
	Scalable and Flexible
	Efficient and Integrated
	Resilient and Durable
	High Performance
	High Concurrency
	High-Speed Data Ingestion
	Stream Ingestion
	Batch Ingestion

	Creating Real-Time Analytics Applications
	Data Design
	Interfaces
	Security and Resilience

	Conclusion
	Further Resources

	About the Author

