

Full-Stack Web Development
with Go

Build your web applications quickly using the Go programming
language and Vue.js

Nanik Tolaram

Nick Glynn

BIRMINGHAM—MUMBAI

Full-Stack Web Development with Go
Copyright © 2023 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Pavan Ramchandani
Publishing Product Manager: Bhavya Rao
Senior Content Development Editor: Feza Shaikh
Technical Editor: Saurabh Kadave
Copy Editor: Safis Editing
Project Coordinator: Manthan Patel
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Production Designer: Shyam Sundar Korumilli
Marketing Coordinator: Anamika Singh

First published: February 2023

Production reference: 1270123

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80323-419-9

www.packtpub.com

http://www.packtpub.com

To my dearest Mum, who always supported me in pursuing my dreams and encouraged me to keep on
going no matter what life brought.

To my late Dad, who stood by me and encouraged me to write my very first book when I was
17 years old.

To my beautiful wife and best friend, for allowing me the time to write the book and supporting me in
every step of our life.

To both my sons, Rahul and Manav, for allowing me to spend time in front of the computer on
weekends to chase my dream and passion. Last but not least, to God, for giving me this life and the

opportunity to be where I am in this world.

– Nanik Tolaram

I would like to thank my family for their love; my beautiful daughter Inara, for always being there
to brighten my day; and my beautiful partner Kate, for all her support in my business efforts and in

writing this book.

– Nick Glynn

Contributors

About the authors
Nanik Tolaram is a big proponent of open source software. He has dabbled in different programming
languages, such as Java, JavaScript, C, and C++. He has developed different products from the ground
up while working in start-up companies. He is a software engineer at heart, but he loves to write
technical articles and share his knowledge with others. He learned to program with Go during the
COVID-19 pandemic and hasn’t looked back.

I want to thank the Packt team – Feza Shaikh, Bhavya Rao, Manthan Patel, and Mark D’Souza – for
their guidance and patience in helping us complete the book.

Nick Glynn is the founder and current chief product officer of FeeWise, a US payments and finance
platform.

He has previously worked in CTO, senior, and principal engineering roles developing products, training,
and consulting for companies such as Intel, Qualcomm, Hewlett Packard, L3, and many more.

With a broad range of experience from board bring-up, Linux driver development, and systems
development up through to building and deploying platforms that power investment and financial
institutions, Nick is always looking to build pragmatic solutions to real-world problems.

Nick also continues his independent efforts as a trainer and consultant, delivering courses and expertise
globally through his company Curiola (www.curiola.com).

http://www.curiola.com

About the reviewers
Pablo David Garaguso was born in Mar del Plata, Argentina. He graduated with two degrees in
computer sciences and enterprise systems from CAECE University and later on received an MBA
from CEMA University in Buenos Aires, Argentina. He has worked as an attached professor, project
leader, and international manager, and currently occupies a position as a solutions architect in R&D
for FamilySearch Int. Europe. Based in Finland, he has published a variety of books according to his
many interests, from novels and fiction to software engineering. His latest book, Vue 3 Applications
and Design Patterns, will be published by Packt in 2023.

Suraj Bobade is an experienced software professional, currently located in Pune, India. He completed
a B.Tech in computer science from Walchand College of Engineering, Sangli.

He is passionate about software development with a keen interest in product management. He builds
user-first feature-rich products while driving critical software and product design decisions.

Go has been his go-to choice for building the microservice backend and prototypes. Considering the
simplicity and increasing adoption by the open source community, Suraj is optimistic that readers of
this book will learn in-demand skills.

Tan Quach is an experienced software engineer with a career spanning over 25 years and exotic locations
such as London, Canada, Bermuda, and Spain. He has worked with a wide variety of languages and
technologies for companies such as Deutsche Bank, Merrill Lynch, and Progress Software, and loves
diving deep into experimenting with new ones.

Tan’s first foray into Go began in 2017 with a proof-of-concept application built over a weekend and
productionized and released 3 weeks later. Since then, Go has been his language of choice when
starting any project.

When he can be torn away from the keyboard, Tan enjoys cooking meat over hot coals and open
flames and making his own charcuterie.

Nima Yahyazadeh is a Software Architect focused on developing solutions for startups. He has years
of experience developing distributed and cloud-native solutions. He has worked at medium to large
corporations such as Amazon Web Services, Intel, and Appian. He is currently the founder and CEO
of a consulting company, Lenzo LLC, that has helped more than five startups to architect, develop, and
deliver exciting features to their customers. He is passionate about AWS, Kubernetes, Elasticsearch,
Kafka, and Golang.

Preface xi

Part 1: Building a Golang Backend

1
Building the Database and Model 3

Technical requirements 4
Installing Docker 4
Setting up Postgres 5
Designing the database 6
Installing sqlc 9

Using sqlc 11
Setting up the database 13
Generating CRUD with sqlc 14
Building the makefile 21
Summary 22

2
Application Logging 23

 Technical requirements 23
Exploring Go standard logging 23
Using golog 26
Local logging 29

Writing log messages to the
logging server 30
Configuring multiple outputs 33
Summary 36

3
Application Metrics and Tracing 37

Technical requirements 37
Understanding OpenTelemetry 38

The OpenTelemetry APIs and SDK 39

Tracing applications 40

Table of Contents

Table of Contentsviii

Installing Jaeger 41

Integrating the Jaeger SDK 43
Integration with Jaeger 44

Adding metrics using Prometheus 50
Adding metrics using Prometheus 52

Running docker-compose 58
Summary 60

Part 2: Serving Web Content

4
Serving and Embedding HTML Content 63

Technical requirements 63
Handling HTTP functions and
Gorilla Mux 63
Hello, World with defaults 64
Building on the basics with Gorilla Mux 67

Rendering static content 72
Rendering dynamic content 74
Using Go embed to bundle
your content 78
Summary 83

5
Securing the Backend and Middleware 85

Technical requirements 85
Adding authentication 86
Creating our dummy user 88
Authenticating a user 89

Adding middleware 90
Basic middleware 90

Adding cookies and sessions 92
Cookies and session handling 92
Storing session information 95
Using Redis for a session 95

Summary 97

6
Moving to API-First 99

Technical requirements 99
Structuring an application 100
Defining packages 100

Exposing our REST API 102
Cross-Origin Resource Sharing (CORS) 104
JSON middleware 105
Session middleware 107

Table of Contents ix

Converting to and from JSON 108
Defining request model 109
Defining a response model 111

Reporting errors with JSON 112

Using JSONError 112
Using JSONMessage 114

Summary 115

Part 3: Single-Page Apps with Vue and Go

7
Frontend Frameworks 119

Technical requirements 119
Server-side rendering versus single-
page apps 119
Introducing React, Vue, and more 120
React 120
Svelte 121
Vue 121

Creating a Vue app 124

 Application and components 124
Login page using Vue 124
Using Vite 127

Using Vue Router to move around 130
Routing the login page 132

Summary 133

8
Frontend Libraries 135

Technical requirements 135
Understanding Vuetify 136
Setting up Vuetify 136
Using UI components 137
Understanding Buefy 139
Bulma sample 140

Setting up Buefy 141
UI components 142
Validating data entry with Vuelidate 143
Better input handling with Cleave.JS 148
Summary 150

9
Tailwind, Middleware, and CORS 151

Technical requirements 151 Introducing Tailwind 151

Table of Contentsx

Creating a new Tailwind and Vite project 153

Consuming your Golang APIs 156

CORS for secure applications 163
Creating Vue middleware 166
Summary 168

10
Session Management 169

Technical requirements 169
Session management and JWTs 169
What’s a JWT? 170

(Re)introducing Vue Router 178

Navigation guards 179
Defaults and error pages 182
Summary 182

Part 4: Release and Deployment

11
Feature Flags 185

Technical requirements 185
An introduction to feature flags 186
Feature flag configuration 186
Use cases for using feature flags 188
Installing the feature flag server 188

The high-level architecture of
feature flags 190
Integration of the feature flag 190
Web application 191
Microservice integration 193

Summary 198

12
Building Continuous Integration 199

Technical requirements 199
Importance of CI 200
Setting up GitHub 200

GitHub Actions 204
Publishing Docker images 209

Dockerfile 210

GitHub Packages 210
Publishing to GitHub Packages 212
Pulling from GitHub Packages 216

Summary 217

Table of Contents xi

13
Dockerizing an Application 219

Technical requirements 219
Installing Docker 219
Using Docker 221
Docker images 222

Running images as containers 227
Building and packaging images 229
Docker Compose 233
Summary 235

14
Cloud Deployment 237

Technical requirements 237
AWS refresher 238
Amazon Elastic Compute Cloud 239
Virtual Private Cloud 240
Database storage 241
Elastic Container Service 242
AWS tools 242

Understanding and using Terraform 243
What is Terraform? 244
Installing Terraform 244

Terraform basic commands 245

The init command 245
The plan command 247
The destroy command 250

Coding in Terraform 252
Providers 252

Terraform examples 254
Pulling from GitHub Packages 255
AWS EC2 setup 257
Deploying to ECS with a load balancer 261

Summary 269

Index 271

Other Books You May Enjoy 274

Preface

Full-Stack Web Development with Go walks you through creating and developing a complete modern
web service, from authn/authz, interop, server-side rendering, and databases, to modern frontend
frameworks with Tailwind and Go-powered APIs, complete with step-by-step explanations of essential
concepts, practical examples, and self-assessment questions. The book will begin by looking at how
to structure the app and look at the relevant pieces, such as database and security, before integrating
all the different parts together to build a complete web product.

Who this book is for
Developers with experience of a mixture of frontend and backend development will be able to put
their knowledge to work with the practical guide in this book. The book will give them the know-how
to glue together their skills and allow them to build a complete stack web application.

What this book covers
Chapter 1, Building the Database and Model, looks at building our database for our sample application.
We will also explore different ways to communicate with databases using Golang.

Chapter 2, Application Logging, considers how designing an application requires examining it internally
without going through reams of code, and the only way to do this is by logging. We will learn how
to do this by running a centralized logger that will host all of our logging information. We will also
learn how to log from inside our application.

Chapter 3, Application Metrics and Tracing, considers how having logging applied inside our application
will assist in troubleshooting issues when the application is running. The other thing that helps is
information about the interaction of the different components inside our application, which we will
also look at in this chapter.

Chapter 4, Serving and Embedding HTML Content, sees us begin work on implementing the REST
endpoints needed for our financial application. The first version of the app will show simple content
rendered by the backend.

Chapter 5, Securing the Backend and Middleware, notes that we need to secure our application so
that we can ensure users see only the data that they should. We will discuss some of the ways we can
protect our endpoints using cookies, session management, and other types of middleware available.

Chapter 6, Moving to API - First, starts by laying the groundwork for frontend applications to consume
our data. We’ll introduce marshaling/unmarshaling data into custom structures and see how to set
up JSON-consuming endpoints and use cURL to verify.

Prefacexiv

Chapter 7, Frontend Frameworks, discusses the state of web development, introduces the React and
Vue frameworks, and sees us employ them to create a simple app that's similar to our previous one.

Chapter 8, Frontend Libraries, examines how to leverage tools and libraries to help us, as full stack
developers, work fast!

Chapter 9, Tailwind, Middleware, and CORS, has us securing our app and getting it talking to our
Go-powered backend.

Chapter 10, Session Management, focuses on session management while introducing state management
with Vuex and how to structure apps based on user permissions.

Chapter 11, Feature Flags, introduces feature flags (sometimes called feature toggles) as a technique
deployed to enable/disable certain features of the application as required, depending on a given
condition. For example, if a newly deployed application containing a new feature has a bug and we
know it will take time for the bug to be fixed, the decision can be made to turn off the feature without
deploying any new code to do so.

Chapter 12, Building Continuous Integration, notes that while building applications is a big part of the
puzzle, we need to be sure that what the team builds can be validated and tested properly. This is where
continuous integration comes in. Having a proper continuous integration process is super important
to ensure that everything deployed to production has been tested, verified, and checked securely.

Chapter 13, Dockerizing an Application, notes that while developing an application is one side of the coin,
the other side is to make sure that it can be deployed and used by our end user. To make deployment
simpler, we can package applications such that they can be run inside a container. Operationally, this
allows applications to be deployed in the cloud from anywhere.

Chapter 14, Cloud Deployment, shows how deploying applications to a cloud environment is the last
step in delivering features for the end user to use. Cloud deployment is complex and sometimes quite
specific to particular cloud vendors. In this chapter, we will focus on deploying applications into the
AWS cloud infrastructure.

To get the most out of this book
You will need the following installed on your computer: Node.js (version 16 or above), Docker (or
Docker Desktop), the Golang compiler, and an IDE such as GoLand or VSCode.

Software/hardware covered in the book Operating system requirements
Golang 1.16 and above macOS, Linux, Windows (via WSL2)
Docker macOS, Linux, Windows (via WSL2)
An IDE (VSCode or GoLand) macOS, Linux, Windows

Preface xv

If you are using the digital version of this book, we advise you to type the code yourself or access
the code from the book’s GitHub repository (a link is available in the next section). Doing so will
help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Full-Stack-Web-Development-with-Go. If there’s an update to
the code, it will be updated in the GitHub repository.

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used in this book.
You can download it here: https://packt.link/EO4sG.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “We call
next.ServerHTTP(http.ResponseWriter, *http.Request) to continue and indicate
successful handling of a request.”

A block of code is set as follows:

go func() {

 ...

 s.SetAttributes(attribute.String(“sleep”, “done”))

 s.SetAttributes(attribute.String(“go func”, “1”))

 ...

}()

Any command-line input or output is written as follows:

[INFO] 2021/11/26 21:11 This is an info message, with colors
(if the output is terminal)

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words in
menus or dialog boxes appear in bold. Here is an example: “You will get a Login unsuccessful message.”

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go
https://packt.link/EO4sG

Prefacexvi

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Share Your Thoughts
Once you’ve read Full-Stack Web Development with Go, we’d love to hear your thoughts! Please click
here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
https://packt.link/r/1803234199
https://packt.link/r/1803234199

Preface xvii

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere? Is your eBook
purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781803234199

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781803234199
https://packt.link/free-ebook/9781803234199

Part 1:
Building a Golang Backend

In Part 1, we will build the backend components for our sample application. We will build the database
with the models for the Go backend of our application. We will also build secure REST API endpoints
that will have logging and tracing functionalities.

This part includes the following chapters:

• Chapter 1, Building the Database and Model

• Chapter 2, Application Logging

• Chapter 3, Application Metrics and Tracing

1
Building the Database

and Model

In this chapter, we will design the database that our sample application will use. We will walk
through the design of the database and look at some of the tools that we are going to use to help us
on our database design journey. We will be using the Postgres database and will look at how to run
it locally using Docker. What is Docker? In simple terms, Docker is a tool that allows developers to
run a variety of applications such as the database, the HTTP server, system tools, and so on – locally
or in the cloud. Docker removes the need to install all the different dependencies required to use a
particular application such as a database, and it makes it easier to manage and maintain applications
than installing on bare metal in both local and cloud environments. This is possible using Docker
because it packages everything into a single file similar to how a compressed file contains different
files internally.

We will learn how to design a database that supports the features that we want to build, such as
the following:

• Creating an exercise

• Creating a workout plan

• Logging in to the system

We will also explore tools that will help in automatic code generation based on SQL queries, which reduces
the amount of database-related code that needs to be written to a large extent. Readers will learn to use
the tool to also auto-generate all the relevant CRUD operations without writing a single line of Go code.

In this chapter, we’ll be covering the following:

• Installing Docker

• Setting up Postgres

• Designing the database

Building the Database and Model4

• Installing sqlc

• Using sqlc

• Setting up the database

• Generating CRUD with sqlc

• Building the makefile

Technical requirements
In this book, we will be using version 1.16 of the Go programming language, but you are free to use
later versions of Go, as the code will work without any changes. To make it easy, all the relevant files
explained in this chapter can be checked out at https://github.com/PacktPublishing/
Full-Stack-Web-Development-with-Go/tree/main/Chapter01. To work on the
sample code in this chapter, make sure you change the directory to Chapter 1 – Full-Stack-
Web-Development-with-Go/chapter1. If you are using Windows as a development machine,
use WSL2 to perform all the different operations explained in this chapter.

Installing Docker
In this book, we will be using Docker to do things such as running databases and executing database
tools, among others. You can install either Docker Desktop or Docker Engine. To understand more
about the difference between Docker Desktop and Engine, visit the following link: https://
docs.docker.com/desktop/linux/install/#differences-between-docker-
desktop-for-linux-and-docker-engine. The authors use Docker Engine in Linux and
Docker Desktop for Mac.

If you are installing Docker Desktop on your local machine, the following are the links for the different
operating systems:

• Windows – https://docs.docker.com/desktop/windows/install/

• Linux – https://docs.docker.com/desktop/linux/install/

• macOS – https://docs.docker.com/desktop/mac/install/

If you want to install Docker binaries, you can follow the following guide: https://docs.docker.
com/engine/install/binaries/.

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/Chapter01
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/Chapter01
https://docs.docker.com/desktop/linux/install/#differences-between-docker-desktop-for-linux-and-docker-engine
https://docs.docker.com/desktop/linux/install/#differences-between-docker-desktop-for-linux-and-docker-engine
https://docs.docker.com/desktop/linux/install/#differences-between-docker-desktop-for-linux-and-docker-engine
https://docs.docker.com/desktop/windows/install/
https://docs.docker.com/desktop/linux/install/
https://docs.docker.com/desktop/mac/install/
https://docs.docker.com/engine/install/binaries/
https://docs.docker.com/engine/install/binaries/

Setting up Postgres 5

Setting up Postgres
The database we chose for the sample application is Postgres; we chose Postgres over other databases
because of the wide variety of open source tools available for building, configuring, and maintaining
Postgres. Postgres has been open source from version 1 since 1989 and it is used by big tech startups
worldwide. The project has a lot of community support in terms of tools and utilities, which makes it
easier to manage and maintain. The database is suitable for small all the way to big replicated data stores.

The easiest way to run it locally is to run it as a Docker container. First, use the following command
to run Postgres:

docker run --name test-postgres \

-e POSTGRES_PASSWORD=mysecretpassword -p 5432:5432 -d postgres

The command will run postgres on port 5432; if by any chance you have other applications or
other Postgres instances listening to this port, the command will fail. If you need to run Postgres on a
different port, change the -p parameter (for example, -p 5555:5432) to a different port number.

If successful, you will see the container ID printed out. The ID will differ from what is shown here:

f7bdfb7d2c10c5f0c9227c9b0a720f21d3c7fa65907eb-
0c546b8f20f12621102

Check whether Postgres is up and running by using docker ps. The next thing to do is use the
psql-client tool to connect to Postgres to test it out. A list of the different Postgres client tools
available on different platforms can be found here: https://wiki.postgresql.org/wiki/
PostgreSQL_Clients.

We will use the standard postgres psql tool using Docker. Open another terminal and use the
following Docker command to run psql:

docker exec -it test-postgres psql -h localhost -p 5432 -U
postgres -d postgres

What we are doing is executing the psql command inside the running Postgres container. You will
see output such as the following, indicating that it has successfully connected to the Postgres database:

psql (12.3, server 14.5 (Debian 14.5-1.pgdg110+1))

WARNING: psql major version 12, server major version 14.

 Some psql features might not work.

Type "help" for help.

postgres=#

https://wiki.postgresql.org/wiki/PostgreSQL_Clients
https://wiki.postgresql.org/wiki/PostgreSQL_Clients

Building the Database and Model6

On a successful connection, you will see the following output. Note that the warning message mentions
server major version 14 – this is to indicate that the server version is newer than the current psql
version as per the documentation (https://www.postgresql.org/docs/12/app-psql.
html). The psql client will work without any problem with the Postgres server:

psql (12.3, server 14.0 (Debian 14.0-1.pgdg110+1))

WARNING: psql major version 12, server major version 14.

 Some psql features might not work.

Type "help" for help.

postgres=#

Exit psql to go back to the command prompt by typing exit.

The following is some guidance on common errors when trying to connect to the database:

Error Message Description
psql: error: could not connect
to server: FATAL: password
authentication failed for user
“postgres”

The password specified when running Postgres
does not match with the password passed in
using psql. Check the password.

psql: error: could not connect to server: could
not connect to server: Host is unreachable

The IP address that you use to connect to Postgres
is wrong.

With this, you have completed the local setup of Postgres and are now ready to start looking into
designing the database.

Designing the database
In this section, we will look at how to design the database to allow us to store information for the
fitness tracking application. The following screenshot shows a mockup of the application:

https://www.postgresql.org/docs/12/app-psql.html
https://www.postgresql.org/docs/12/app-psql.html

Designing the database 7

Figure 1.1 – Screenshot of the sample application

Looking at these functionalities, we will look at designing a database structure that will look like the
following entity relationship diagram:

Entity relationship diagram
An entity relationship diagram shows the relationships of entity sets stored in a database.

Building the Database and Model8

Figure 1.2 – Entity relationship diagram of our fitness application

Let’s drill further into each table to understand the data that they contain:

Table Name Description
Users This table contains user information for login purposes. Passwords will be stored

as a hash, not plaintext.
Images This table contains images of exercises that users want to do. This table will store all

the exercise images that the user uploads.
Exercises This table contains the name of the exercise that the user wants to do. Users will

define what kind of exercise they want to do.
Sets This table contains the number of sets of each exercise that the user wants to do.
Workouts This table contains the workouts that the user wants to do. Users define a workout

as a combination of exercises with the number of sets that they want to do.

Installing sqlc 9

The trade-off we are making to store images in the database is to simplify the design; in reality, this
might not be suitable for bigger images and production. Now that we have defined the database
structure and understand what kind of data it will store, we need to look at how to implement it. One
of the major criteria that we want to focus on is to completely separate writing SQL from the code;
this way, we have a clear separation between the two, which will allow higher maintainability.

Installing sqlc
We have defined the database structure so now it’s time to talk a bit more about the tool that we are
going to be using called sqlc. sqlc is an open source tool that generates type-safe code from SQL; this
allows developers to focus on writing SQL and leave the Go code to sqlc. This reduces the development
time, as sqlc takes care of the mundane coding of queries and types.

The tool is available at https://github.com/kyleconroy/sqlc. The tool helps developers
focus on writing the SQL code that is needed for the application and it will generate all the relevant code
needed for the application. This way, developers will be using pure Go code for database operations.
The separation is clean and easily trackable.

The following diagram shows the flow that developers normally adopt when using the tool at a high level.

Figure 1.3 – Flow to use sqlc to generate Go code

All SQL code will be written in .sql files, which will be read and converted by the sqlc tool into the
different Go code.

https://github.com/kyleconroy/sqlc

Building the Database and Model10

Download and install SQL binary by using the following command:

go install github.com/kyleconroy/sqlc/cmd/sqlc@latest

Make sure your path includes the GOPATH/bin directory – for example, in our case, our path looks
like the following:

…:/snap/bin:/home/nanik/goroot/go1.16.15/go/bin:/home/nanik/go/
bin

If you don’t have GOPATH as part of the PATH environment variable, then you can use the following
command to run sqlc:

$GOPATH/bin/sqlc

Usage:

 sqlc [command]

Available Commands:

 compile Statically check SQL for syntax and type

 errors

 completion Generate the autocompletion script for the

 specified shell

 generate Generate Go code from SQL

 help Help about any command

 init Create an empty sqlc.yaml settings file

 upload Upload the schema, queries, and configuration

 for this project

 version Print the sqlc version number

Flags:

 -x, --experimental enable experimental features (default:
false)

 -f, --file string specify an alternate config file
(default: sqlc.yaml)

 -h, --help help for sqlc

Use "sqlc [command] --help" for more information about a command.

At the time of writing, the latest version of sqlc is v1.13.0.

Using sqlc 11

Now that we have installed the tool and understand the development workflow that we will be following
when using the tool, we will look at how to use the tool for our application.

Using sqlc
First, let’s take a look at the different commands provided by sqlc and how they work.

Commands Explanation
compile This command helps check SQL syntax and reports any typing errors.
completion This command is to generate an auto-completion script for your environment.

The following are the supported environments: Bash, Fish, PowerShell, and zsh.
generate A command to generate the .go files based on the provided SQL statements.

This will be the command that we will be using a lot for the application.
init This command is the first command that is used to initialize your application

to start using this tool.

The following will show how to get started with using sqlc to set up a project. Create a directory inside
chapter1 – for example, dbtest – and change the directory to the new directory (dbtest). Next,
we will run sqlc with the init command:

sqlc init

This will automatically generate a file called sqlc.yaml, which contains a blank configuration as
shown here:

version: "1"

project:

 id: ""

packages: []

The sqlc.yaml contains configuration information that sqlc will use to generate all the relevant
.go code for our SQL statements.

Let’s take a look at the structure of the .yaml file to understand the different properties. The following
shows an example of a completed structure:

version: "1"

packages:

 - name: "db"

 path: "db"

 queries: "./sqlquery"

 schema: "./sqlquery/schema/"

Building the Database and Model12

 engine: "postgresql"

 sql_engine: "database/sql"

 emit_db_tags: "true"

 emit_prepared_queries: true

 emit_interface: false

 emit_exact_table_names: false

 emit_empty_slices: false

 emit_exported_queries: false

 emit_json_tags: true

 json_tags_case_style: "snake"

 output_db_file_name: "db.go"

 output_models_file_name: "dbmodels.go"

 output_querier_file_name: "dbquerier.go"

 output_files_suffix: "_gen"

The following table explains the different fields:

Tag Name Description
Name Any string to be used as the package name.
Path Specifies the name of the directory that will host the generated

.go code.
Queries Specifies the directory name containing the SQL queries that sqlc

will use to generate the .go code.
Schema A directory containing SQL files that will be used to generate all

the relevant .go files.
Engine Specifies the database engine that will be used: sqlc supports either

MySQL or Postgres.
emit_db_tags Setting this to true will generate the struct with db tags –

for example:

type ExerciseTable struct {

 ExerciseID int64 `db:"exercise_id"

 ExerciseName string `db:"exercise_name"

}

emit_prepared_queries Setting this to true instructs sqlc to support prepared queries
in the generated code.

Setting up the database 13

emit_interface Setting this to true will instruct sqlc to generate the
querier interface.

emit_exact_table_
names

Setting this to true will instruct sqlc to mirror the struct name
to the table name.

emit_empty_slices Setting this to true will instruct sqlc to return an empty slice
for returning data on many sides of the table.

emit_exported_queries Setting this to true will instruct sqlc to allow the SQL statement
used in the auto-generated code to be accessed by an outside package.

emit_json_tags Setting this to true will generate the struct with JSON tags.
json_tags_case_style This setting can accept the following – camel, pascal, snake,

and none. The case style is used for the JSON tags used in the
struct. Normally, this is used with emit_json_tags.

output_db_file_name Name used as the filename for the auto-generated database file.
output_models_file_
name

Name used as the filename for the auto-generated model file.

output_querier_file_
name

Name used as the filename for the auto-generated querier file.

output_files_suffix Suffix to be used as part of the auto-generated query file.

We have looked at the different parameters available in the tool, along with how to use the .yaml
file to specify the different properties used to generate the relevant Go files. In the next section, we
will set up our sample app database.

Setting up the database
We need to prepare and create the database using the psql client tool. The SQL database script can
be found inside schema.sql under the db folder in the GitHub repository, and we are going to
use this to create all the relevant tables inside Postgres.

Change the directory to chapter1 and run the Postgres database using the following Docker command:

docker run --name test-postgres -e POSTGRES_
PASSWORD=mysecretpassword -v $(pwd):/usr/share/chapter1 -p
5432:5432 postgres

Once postgres is running, use the following command to enter into psql:

docker exec -it test-postgres psql -h localhost -p 5432 -U
postgres -d postgres

Building the Database and Model14

Once inside the psql command, run the following:

\i /usr/share/chapter1/db/schema.sql

This will instruct psql to execute the commands inside schema.sql, and on completion, you will
see the following output:

postgres=# \i /usr/share/chapter1/db/schema.sql

CREATE SCHEMA

CREATE TABLE

CREATE TABLE

CREATE TABLE

CREATE TABLE

CREATE TABLE

To reconfirm that everything is set up correctly, use the following command (do not forget to include
the dot after gowebapp):

\dt gowebapp.*

You should see the following output:

postgres=# \dt gowebapp.*

 List of relations

 Schema | Name | Type | Owner

----------+-----------+-------+----------

 gowebapp | exercises | table | postgres

 gowebapp | images | table | postgres

 gowebapp | sets | table | postgres

 gowebapp | users | table | postgres

 gowebapp | workouts | table | postgres

(5 rows)

Now that we have completed setting up our database, we are ready to move to the next section, where
we will be setting up sqlc to generate the Go files.

Generating CRUD with sqlc
CRUD stands for Create, Read, Update, and Delete, which refers to all the major functions that are
inherent to relational databases. In this section, we will do the following for the application:

Generating CRUD with sqlc 15

• Complete the sqlc configuration file

• Create SQL query files

Once done, we will be able to autogenerate the different files required to allow us to perform
CRUD operations to the database from the application. First, open sqlc.yaml and enter the
following configuration:

version: '1'

packages:

 - name: chapter1

 path: gen

 schema: db/

 queries: queries/

 engine: postgresql

 emit_db_tags: true

 emit_interface: false

 emit_exact_table_names: false

 emit_empty_slices: false

 emit_exported_queries: false

 emit_json_tags: true

 json_tags_case_style: camel

 output_files_suffix: _gen

 emit_prepared_queries: false

Our application is now complete with all that we need for the database, and sqlc will autogenerate the
.go files. The following is how the application directory and files will look:

.

├── db

│ └── schema.sql

├── go.mod

├── queries

│ └── query.sql

└── sqlc.yaml

We can run sqlc to generate the .go files using the following command:

sqlc generate

Building the Database and Model16

By default, sqlc will look for the sqlc.yaml file. If the filename is different, you can specify it using
the -f flag as follows:

sqlc generate -f sqlc.yaml

Once the operation completes, there will be no output; however, a new directory called gen will be
generated as shown here:

./gen/

├── db.go

├── models.go

└── query.sql_gen.go

We have completed the auto-generation process using sqlc; now, let’s take a look at the schema and
queries that sqlc uses to generate the code.

The following is a snippet of the schema.sql file that is used by sqlc to understand the structure
of the database:

CREATE SCHEMA IF NOT EXISTS gowebapp;

CREATE TABLE gowebapp.users (

User_ID BIGSERIAL PRIMARY KEY,

User_Name text NOT NULL,

....

);

....

CREATE TABLE gowebapp.sets (

Set_ID BIGSERIAL PRIMARY KEY,

Exercise_ID BIGINT NOT NULL,

Weight INT NOT NULL DEFAULT 0

);

The other file sqlc uses is the query file. The query file contains all the relevant queries that will
perform CRUD operations based on the database structure given here. The following is a snippet of
the query.sql file:

-- name: ListUsers :many

-- get all users ordered by the username

SELECT *

Generating CRUD with sqlc 17

FROM gowebapp.users

ORDER BY user_name;

...

-- name: DeleteUserImage :exec

-- delete a particular user's image

DELETE

FROM gowebapp.images i

WHERE i.user_id = $1;

...

-- name: UpsertExercise :one

-- insert or update exercise of a particular id

INSERT INTO gowebapp.exercises (Exercise_Name)

VALUES ($1) ON CONFLICT (Exercise_ID) DO

UPDATE

 SET Exercise_Name = EXCLUDED.Exercise_Name

 RETURNING Exercise_ID;

-- name: CreateUserImage :one

-- insert a new image

INSERT INTO gowebapp.images (User_ID, Content_Type,

 Image_Data)

values ($1,

 $2,

 $3) RETURNING *;

...

Using query.sql and schema.sql, sqlc will automatically generate all the relevant .go files,
combining information for these two files together and allowing the application to perform CRUD
operations to the database by accessing it like a normal struct object in Go.

The last piece that we want to take a look at is the generated Go files. As shown previously, there are
three auto-generated files inside the gen folders: db.go, models.go, and query.sql_gen.go.

Let’s take a look at each one of them to understand what they contain and how they will be used in
our application:

• db.go:

This file contains an interface that will be used by the other auto-generated files to make
SQL calls to the database. It also contains functions to create a Go struct that is used to do
CRUD operations.

Building the Database and Model18

A new function is used to create a query struct, passing in a DBTX struct. The DBTX struct
implementation is either sql.DB or sql.Conn.

The WithTx function is used to wrap the Queries object in a database transaction; this is
useful in situations where there could be an update operation on multiple tables that need to
be committed in a single database transaction:

func New(db DBTX) *Queries {

 return &Queries{db: db}

}

func (q *Queries) WithTx(tx *sql.Tx) *Queries {

 return &Queries{

 db: tx,

 }

}

• models.go:

This file contains the struct of the tables in the database:

type GowebappExercise struct {

 ExerciseID int64 `db:"exercise_id"

 json:"exerciseID"`

 ExerciseName string `db:"exercise_name"

 json:"exerciseName"`

}

...

type GowebappWorkout struct {

 WorkoutID int64 `db:"workout_id"

 json:"workoutID"`

 UserID int64 `db:"user_id" json:"userID"`

 SetID int64 `db:"set_id" json:"setID"`

 StartDate time.Time `db:"start_date"

 json:"startDate"`

}

Generating CRUD with sqlc 19

• query.sql_gen.go:

This file contains CRUD functions for the database, along with the different parameters struct
that can be used to perform the operation:

const deleteUsers = `-- name: DeleteUsers :exec

DELETE FROM gowebapp.users

WHERE user_id = $1

`

func (q *Queries) DeleteUsers(ctx context.Context,

userID int64) error {

 _, err := q.db.ExecContext(ctx, deleteUsers, userID)

 return err

}

...

const getUsers = `-- name: GetUsers :one

SELECT user_id, user_name, pass_word_hash, name, config,
created_at, is_enabled FROM gowebapp.users

WHERE user_id = $1 LIMIT 1

`

func (q *Queries) GetUsers(ctx context.Context, userID
int64) (GowebappUser, error) {

 row := q.db.QueryRowContext(ctx, getUsers, userID)

 var i GowebappUser

 err := row.Scan(

 &i.UserID,

 &i.UserName,

 &i.PassWordHash,

 &i.Name,

 &i.Config,

 &i.CreatedAt,

 &i.IsEnabled,

)

 return i, err

Building the Database and Model20

}

...

Now that the database and auto-generated data to perform CRUD operations are complete, let’s try
all this by doing a simple insert operation into the user table.

The following is a snippet of main.go:

package main

import (

 ...

)

func main() {

 ...

 // Open the database

 db, err := sql.Open("postgres", dbURI)

 if err != nil {

 panic(err)

 }

 // Connectivity check

 if err := db.Ping(); err != nil {

 log.Fatalln("Error from database ping:", err)

 }

 // Create the store

 st := chapter1.New(db)

 st.CreateUsers(context.Background(),

 chapter1.CreateUsersParams{

 UserName: "testuser",

 PassWordHash: "hash",

 Name: "test",

 })

}

Building the makefile 21

The app is doing the following:

1. Initializing the URL and opening the database

2. Pinging the database

3. Creating a new user using the CreateUsers(..) function

Make sure you are in the chapter1 directory and build the application by running the
following command:

go build -o chapter1

The compiler will generate a new executable called chapter1. Execute the file, and on a successful
run, you will see the data inserted successfully into the users table:

2022/05/15 16:10:49 Done!

Name : test, ID : 1

We have completed setting up everything from the database and using sqlc to generate the relevant
Go code. In the next section, we are going to put everything together for ease of development.

Building the makefile
A makefile is a file that is used by the make utility; it contains a set of tasks consisting of different
combined shell scripts. Makefiles are most used to perform operations such as compiling source
code, installing executables, performing checks, and many more. The make utility is available for
both macOS and Linux, while in Windows, you need to use Cygwin (https://www.cygwin.
com/) or NMake (https://docs.microsoft.com/en-us/cpp/build/reference/
nmake-reference).

We will create the makefile to automate the steps that we have performed in this chapter. This will
make it easy to do the process repetitively when required without typing it manually. We are going to
create a makefile that will do tasks such as the following:

• Bringing up/down Postgres

• Generating code using sqlc

The makefile can be seen in the chapter1 directory; the following shows a snippet of the script:

..

.PHONY : postgresup postgresdown psql createdb teardown_
recreate generate

https://www.cygwin.com/
https://www.cygwin.com/
https://docs.microsoft.com/en-us/cpp/build/reference/nmake-reference
https://docs.microsoft.com/en-us/cpp/build/reference/nmake-reference

Building the Database and Model22

postgresup:

 docker run --name test-postgres -v $(PWD):/usr/share/
chapter1 -e POSTGRES_PASSWORD=$(DB_PWD) -p 5432:5432 -d $(DB_
NAME)

...

task to create database without typing it manually

createdb:

 docker exec -it test-postgres psql $(PSQLURL) -c "\i /usr/
share/chapter1/db/schema.sql"

...

With the makefile, you can now bring up the database easily using this command:

make postgresup

The following is used to bring down the database:

make postgresdown

sqlc will need to be invoked to regenerate the auto-generated code whenever changes are made to the
schema and SQL queries. You can use the following command to regenerate the files:

make generate

Summary
In this chapter, we have covered the different stages that we need to go through to set up the database
for our fitness application. We have also written a makefile to save us time by automating different
database-related tasks that will be needed for the development process.

In the next chapter, we will look at logging for our sample application. Logging is a simple, yet crucial
component. Applications use logging to provide visibility into the running state of an application.

2
Application Logging

Building any kind of application to fulfill a user’s need is one piece of the puzzle; another piece is
figuring out how we are going to design it so that we can support it in case there are issues in production.
Logging is one of the most important things that need to be thought about thoroughly to allow some
visibility when a problem arises. Application logging is the process of saving application events and
errors; put simply, it produces a file that contains information about events that occur in your software
application. Supporting applications in production requires a quick turnaround, and to achieve this,
sufficient information should be logged by the application.

In this chapter, we will look at building a logging server that will be used to log events (e.g., errors)
from our application. We will also learn how to multiplex logging to allow us to log different events
based on how we configure it. We will cover the following in this chapter:

• Exploring Go standard logging

• Local logging

• Writing log messages to the logging server

• Configuring multiple outputs

 Technical requirements
All the source code explained in this chapter can be checked out at https://github.com/
PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/Chapter02,
while the logging server can be checked out at https://github.com/PacktPublishing/
Full-Stack-Web-Development-with-Go/tree/main/logserver

Exploring Go standard logging
In this section, we will look at the default logging library provided by the Go language. Go provides
a rich set of libraries; however, like every other library, there are limitations – it does not provide
leveled logging (INFO, DEBUG, etc.), file log file features, and many more. These limitations can be
overcome by using open source logging libraries.

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/Chapter02
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/Chapter02
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/logserver
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/logserver

Application Logging24

Go provides very diverse and rich standard libraries for applications. Logging is one of them, and it is
available inside the log package. The following documentation link provides complete information
on the different functions available inside the https://pkg.go.dev/log@latest package.

Another package that is available in Go standard library is the fmt package, which provides functions
for I/O operations such as printing, input, and so on. More information can be found at https://
pkg.go.dev/fmt@latest. The available functions inside the log package are similar to the
fmt package, and when going through the sample code, we will see that it is super easy to use.

The following are some of the functions provided by the log package (https://pkg.go.dev/
log):

func (l *Logger) Fatal(v ...interface{})

func (l *Logger) Fatalf(format string, v ...interface{})

func (l *Logger) Fatalln(v ...interface{})

func (l *Logger) Panic(v ...interface{})

func (l *Logger) Prefix() string

func (l *Logger) Print(v ...interface{})

func (l *Logger) Printf(format string, v ...interface{})

func (l *Logger) Println(v ...interface{})

func (l *Logger) SetFlags(flag int)

func (l *Logger) SetOutput(w io.Writer)

func (l *Logger) SetPrefix(prefix string)

Let’s take a look at the example code from the sample repository, https://github.com/
PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/Chapter02.
The main.go file resides inside example/stdlog. To understand how to use the log package,
build and run the code:

go run .

On a successful run, you will get the following output:

2021/10/15 10:12:38 Just a log text

main.go:38: This is number 1

10:12:38 {

 «name»: «Cake»,

 «batters»: {

mailto:https://pkg.go.dev/log@latest
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/Chapter02
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/Chapter02

Exploring Go standard logging 25

 «batter»: [

 {

 «id»: «001»,

 «type»: «Good Food»

 }

]

 },

 «topping»: [

 {

 «id»: «002»,

 «type»: «Syrup»

 }

]

}

The output shows that the standard logging library is configurable to allow different log output formats –
for example, you can see in the following that the message is prefixed with the formatted date and time:

2021/10/15 10:12:38 Just a log text

The function that takes care of formatting the prefix for logging is the SetFlags(..) function:

func main() {

 ...

 // set log format to - dd/mm/yy hh:mm:ss

 ol.SetFlags(log.LstdFlags)

 ol.Println(«Just a log text»)

 ...

}

The code sets the flag to use LstdFlags, which is a combination of date and time. The following
table shows the different flags that can be used:

Flag Explanation

Ldate A flag to specify the date in the local time zone in the format YYYY/MM/DD

Ltime A flag to specify time using the local time zone in the format HH:MM:SS

Lmicroseconds A flag to specify in microseconds

Llongfile A flag to specify the filename and line number

Application Logging26

Lshortfile The final filename element and line number

LUTC When using the Ldate or Ltime flag, we can use this flag to specify using
UTC instead of the local time zone

Lmsgprefix A flag to specify the prefix text to be shown before the message

LstdFlags This flag uses the standard flag that has been defined, which is basically
Ldate or Ltime

The standard library can cover some use cases for application log requirements, but there are times
when applications require more features that are not available from the standard library – for example,
sending log information to multiple outputs will require extra functionality to be built, or in another
scenario, you might need to convert nested error logs into JSON format. In the next section, we will
explore another alternative for our sample application.

Using golog
Now that we understand what is available in the standard library, we want to explore the option of
using a library that can provide us with more flexibility. We will look at the golog open source project
(https://github.com/kataras/golog). The golog library is a dependency-free logging
library that provides functionality such as leveled logging (INFO, ERROR, etc.), JSON-based output,
and configurable color output.

One of the most used features of logging is log levels, also known as leveled logging. Log levels are
used to categorize output information from an application into different severity levels. The following
table shows the different severity levels:

INFO Just for information purposes

WARN Something is not running correctly, so keep an eye out for it in case there are
more severe errors

ERROR There is an error that will need some attention

DEBUG Information that is important to assist in troubleshooting in production, or added
into the application for tracing purposes

FATAL Something bad happened in the application that requires immediate
response/investigation

Example code can be found inside the example/golog directory. Build and run the code, and you
will get the following output:

https://github.com/kataras/golog

Using golog 27

Figure 2.1 – Example of golog output

Each prefix of the log messages is of a different color, which corresponds to the different severity levels;
this is useful when you are going through a long list of log messages. Different log levels are assigned
different colors to make it easy to go through them.

The code to generate this log is similar to the standard library code, as shown here:

func main() {

 golog.SetLevel(«error»)

 golog.Println(«This is a raw message, no levels, no

 colors.»)

 golog.Info(«This is an info message, with colors (if the

 output is terminal)»)

 golog.Warn(«This is a warning message»)

 golog.Error(«This is an error message»)

 golog.Debug(«This is a debug message»)

 golog.Fatal(`Fatal will exit no matter what,

 but it will also print the log message if

 logger›s Level is >=FatalLevel`)

}

The library provides level-based logging. This means that the library can show log messages based
on what is configured to be shown; for example, for development, we want to configure the logger to
show all log messages, while in production, we want to show only error messages. The following table
shows what the output will look like when different levels are configured for golog:

Application Logging28

Level Output
golog.SetLevel("info") 2021/10/15 12:07 This is a raw message,

no levels, no colors.

[INFO] 2021/10/15 12:07 This is an info
message, with colors (if the output is
terminal)

[WARN] 2021/10/15 12:07 This is a warning
message

[ERRO] 2021/10/15 12:07 This is an error
message

[FTAL] 2021/10/15 12:07 Fatal will exit
no matter what

golog.SetLevel("debug") 2021/10/15 12:08 This is a raw message,
no levels, no colors.

[INFO] 2021/10/15 12:08 This is an info
message, with colors (if the output is
terminal)

[WARN] 2021/10/15 12:08 This is a warning
message

[ERRO] 2021/10/15 12:08 This is an error
message

[DBUG] 2021/10/15 12:08 This is a debug
message

[FTAL] 2021/10/15 12:08 Fatal will exit
no matter what

golog.SetLevel("warn") 2021/10/15 12:08 This is a raw message,
no levels, no colors.

[WARN] 2021/10/15 12:08 This is a warning
message

[ERRO] 2021/10/15 12:08 This is an error
message

[FTAL] 2021/10/15 12:08 Fatal will exit
no matter what

Local logging 29

golog.SetLevel("error") 2021/10/15 12:11 This is a raw message,
no levels, no colors.

[ERRO] 2021/10/15 12:11 This is an error
message

[FTAL] 2021/10/15 12:11 Fatal will exit
no matter what

golog.SetLevel("fatal") 2021/10/15 12:11 This is a raw message,
no levels, no colors.

[FTAL] 2021/10/15 12:11 Fatal will exit
no matter what

We covered golog and its features in this section, and now we have a good understanding of the
different options available for us to use for logging. In the next section, we will look at golog a bit more.

Local logging
Now that we have an idea of how to use golog, we are going to use more of its features to extend it. The
library provides a function allowing applications to handle writing the log messages for each log level –
for example, an application wants to write all errors into a file while the rest print out into the console.

We are going to take a look at the example code inside the example/gologmoutput directory.
Build and run it and you will see two new files created called infoerr.txt and infolog.txt.
The output from both files will look as follows:

[ERRO] 2021/11/26 21:11 This is an error message [INFO]
2021/11/26 21:11 This is an info message, with colors (if the
output is terminal)

The app uses the os.OpenFile standard library to create or append files called infolog.txt
and infoerr.txt, which will contain different log information that is configured using the golog
SetLevelOutput function. The following is the snippet of the function that configured the different
logging output using golog:

func configureLogger() {

 // open infolog.txt append if exist (os.O_APPEND) or

 // create if not (os.O_CREATE) and read write

 // (os.O_WRONLY)

 infof, err := os.OpenFile(logFile,

 os.O_APPEND|os.O_CREATE|os.O_WRONLY,

 0666)

Application Logging30

 ...

 golog.SetLevelOutput(«info», infof)

 // open infoerr.txt append if exist (os.O_APPEND) or

 create if not (os.O_CREATE) and read write

 // (os.O_WRONLY)

 // errf, err := os.OpenFile(«infoerr.txt»,

 os.O_APPEND|os.O_CREATE|os.O_WRONLY,

 0666)

 ...

 golog.SetLevelOutput(«error», errf)

}

The rest of the log-level messages are written to stdout, which is configured by default by the library.

In this section, we learned how to configure golog to allow us to log errors and information separately.
This is super useful as, in production, we will have a hard time if we log everything into a single file.
In the next section, we will look at building our own simple logging server to accept log requests from
our application.

Writing log messages to the logging server
In the modern cloud environment, there are multiple instances of the same application running
on different servers. Due to the distributed nature of the cloud environment, it will be hard to keep
track of the different logs produced by the different application instances. This will require using a
centralized logging system that will be able to capture all the different log messages from the different
applications and systems.

For our needs, we will build our own logging server to capture all log messages in one single place;
the code can be found at https://github.com/PacktPublishing/Full-Stack-Web-
Development-with-Go/tree/main/logserver. The logging server will be a central place
that will collate log information from our application, which will help in troubleshooting when our
applications are deployed in a cloud environment. The downside of having a central logging server is
that when the logging server goes down, we have no visibility of the logging information except by
going to the server that hosts the applications.

REST stands for representational state transfer; in layman’s terms, it describes a server that uses the
HTTP protocol and methods to communicate to resources in the server. Information is delivered in
different formats, with JSON being the most popular format. It is language agnostic, which means that
the logging server can be used by any application that can send and receive over HTTP.

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/logserver
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/logserver

Writing log messages to the logging server 31

On a successful build, the logging server will display the following message:

2021/10/15 23:37:31 Initializing logging server at port 8010

Once the logging server is up, go back to the chapter2 root directory where the sample app resides
and test the app by running the following command:

make build

On completion, run the new binary called sampledb. The sampledb app will send log messages
to the logging server:

"{\n \"timestamp\": 1634301479,\n \"level\":
\"info\",\n \"message\": \"Starting the application...\"\n}\n"

"{\n \"timestamp\": 1634301479,\n \"level\":
\"info\",\n \"message\": \"Database connection fine\"\n}\n"

"{\n \"timestamp\": 1634301479,\n \"level\":
\"info\",\n \"message\": \"Success - user creation\"\n}\n"

"{\n \"timestamp\": 1634301479,\n \"level\":
\"info\",\n \"message\": \"Success - exercise creation\"\n}\n"

"{\n \"timestamp\": 1634301479,\n \"level\":
\"info\",\n \"message\": \"Application complete\"\n}\n"

"{\n \"timestamp\": 1634301479,\n \"level\":
\"info\",\n \"message\": \"Application complete\"\n}\nut\"\
n}\n"

The logging server runs as a normal HTTP server that listens on port 8010, registering a single
endpoint, /log, to accept incoming log messages. Let’s go through it and try to understand how the
logging server works. But before that, let’s take a look at how the server code works:

import (

 ...

 «github.com/gorilla/mux»

 ...

)

func runServer(addr string) {

 router = mux.NewRouter()

 initializeRoutes()

 ...

Application Logging32

 log.Fatal(http.ListenAndServe(addr, router))

}

The server is using a framework called Gorilla Mux (github.com/gorilla/mux), which is
responsible for accepting and dispatching incoming requests to their respective handler. The gorilla/
mux package that we are using for this sample is used actively by the open source community; however,
it is, at the moment, looking for a maintainer to continue the project.

The handler that takes care of handling the request is inside initializeRoutes(), as shown here:

func initializeRoutes() {

 router.HandleFunc(«/log», loghandler).Methods(http.
 MethodPost)

}

The router.HandleFunc(..) function configured the /log endpoint, which will be handled
by the loghandler function. Methods("POST") is instructing the framework that it should
accept only the POST HTTP method for incoming requests that hit the /log endpoint.

Now we are going to take a look at the loghandler function, which is responsible for processing
the incoming log messages:

func loghandler(w http.ResponseWriter, r *http.Request) {

 body, err := ioutil.ReadAll(r.Body)

 ...

 w.WriteHeader(http.StatusCreated)

}

The http.ResponseWriter parameter is a type that is defined as an interface to be used to
construct an HTTP response – for example, it contains the WriteHeader method, which allows
writing header into the response. The http.Request parameter provides an interface for the
function to interact with the request received by the server – for example, it provides a Referer
function to obtain a referring URL.

The loghandler function does the following:

1. Reads the request body as it contains the log message.

http://github.com/gorilla/mux

Configuring multiple outputs 33

2. On successful reading of the body, the handler will return HTTP status code 201
(StatusCreated). Code 201 means the request has been processed successfully and the
resource (in this case, the log JSON message) has been created successfully, or in our case,
printed successfully.

3. Prints out the log message to stdout.

For more detailed information about the different standard HTTP status codes, refer to the following
website: https://developer.mozilla.org/en-US/docs/Web/HTTP/Status.

We have learned how to add logs to an application and how to build a simple logging server that can
be hosted separately from our application. In the next section, we will create a logging wrapper that
will allow our application to choose whether it wants to log locally or log to a server.

Configuring multiple outputs
Why do we want to configure multiple outputs? Well, it is useful as, during development, it is easier
to look at logs locally for troubleshooting purposes, but in production, it’s not possible to look at a
log file, as everything will be inside the logging server.

We are going to write a thin layer of wrapper code that will wrap the golog library; the code that we
are going to look at is inside the chapter2/ directory, inside the logger/log.go file. The benefit
of having a wrapper code for the golog library is to isolate the application for interfacing directly with
the library; this will make it easy to swap to different logging libraries when and if required. The app
configured the wrapper code by passing the parsed flag to the SetLoggingOutput(..) function.

Build the application by running the following:

make build

Then, run it, passing the flag to true as follows to write the log message to stdout:

./sampledb -local=true

The debug log will be printed out in stdout:

Figure 2.2 – Log output from sampledb

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

Application Logging34

All info log messages will be printed out into the logs.txt file:

Figure 2.3 – Log messages inside logs.txt

The logger is configured by the application using the local f lag by calling the
SetLoggingOutput(..) function:

func main() {

 l := flag.Bool(«local», false, «true - send to stdout, false
 - send to logging server»)

 flag.Parse()

 logger.SetLoggingOutput(*l)

 logger.Logger.Debugf(«Application logging to stdout =

 %v», *l)

 ...

Two main functions in the wrapper code do most of the wrapping of the golog framework:

• configureLocal()

• configureRemote()

...

func configureLocal() {

 file, err := os.OpenFile(«logs.txt»,

 os.O_APPEND|os.O_CREATE|os.O_WRONLY, 0666)

 ...

 Logger.SetOutput(os.Stdout)

 Logger.SetLevel(«debug»)

 Logger.SetLevelOutput(«info», file)

}

...

Configuring multiple outputs 35

The configureLocal() function is responsible for configuring logging to write to both stdout
and the configured file named logs.txt. The function configured golog to set the output to stdout
and the level to debug, which means that everything will be going to stdout.

The other function is configureRemote(), which configures golog to send all messages to
the remote server in JSON format. The SetLevelOutput() function accepts the io.Writer
interface, which the sample app has implemented to send all info log messages:

//configureRemote for remote logger configuration

func configureRemote() {

 r := remote{}

 Logger.SetLevelFormat(«info», «json»)

 Logger.SetLevelOutput(«info», r)

The Write(data []byte) function performs a POST operation, passing the log message to the
logging server:

func (r remote) Write(data []byte) (n int, err error) {

 go func() {

 req, err := http.NewRequest("POST",

 «http://localhost:8010/log»,

 bytes.NewBuffer(data),

)

 ...

 resp, _ := client.Do(req)

 defer resp.Body.Close()

 }

 }()

 return len(data), nil

}

In this final section, we have learned how to create configurable logging that will allow applications
to log either locally or remotely. This helps our application to be prepared and deployable in
different environments.

Application Logging36

Summary
In this chapter, we have looked at different ways of adding log functionality to applications. We also
learned about the golog library, which provides more flexibility and features than the standard
library can offer. We looked at creating our own simple logging server that enables our application to
send log information that can be used in a multi-service environment.

In the next chapter, we will look at how to add observability functionality to applications. We will
look at tracing and metrics and go through the OpenTelemetry specification.

3
Application Metrics and Tracing

In Chapter 2, Application Logging, we looked at logging, and how we use logging inside our backend
Go code. In this chapter, we will proceed to look at monitoring and tracing. To monitor and trace the
application, we will look into different open source tools and libraries.

We have started building our application, and now we need to start looking into how we are going
to support it. Once an application is running in production, we need to see what’s happening in the
application. Having this kind of visibility will allow us to understand problems that come up. In
software systems, we will often come across the concept of observability. The concept refers to the
ability of software systems to capture and store data used for analysis and troubleshooting purposes.
This includes the processes and tools used in order to achieve the goal of allowing users to observe
what’s happening in the system.

In this chapter, we’ll be covering the following topics:

• Understanding the OpenTelemetry specification

• Tracing applications

• Adding metrics to our application using Prometheus

• Running docker-compose

Technical requirements
All the source code explained in this chapter is available from GitHub here: https://github.
com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/
Chapter03.

We will be using another tool called OpenTelemetry, which will be explained in the next section,
and the version that we use in this book is v1.2.0, available here: https://github.com/open-
telemetry/opentelemetry-go/tree/v1.2.0.

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/Chapter03
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/Chapter03
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/Chapter03
https://github.com/open-telemetry/opentelemetry-go/tree/v1.2.0
https://github.com/open-telemetry/opentelemetry-go/tree/v1.2.0

Application Metrics and Tracing38

Understanding OpenTelemetry
OpenTelemetry is an open source project that enables developers to provide observability capability to
their applications. The project provides a Software Development Kit (SDK) for different programming
languages, with Go as one of the supported languages, which is integrated with the application. The
SDK is for metric collection and reporting, as it provides integration with different open source
frameworks, making the integration process seamless. OpenTelemetry also provides a common
standard, providing the application flexibility to report the collected data to different observability
backend systems. OpenTelemetry’s website is at https://opentelemetry.io/.

Figure 3.1 – OpenTelemetry logo

OpenTelemetry is actually the merging of the OpenTracing and OpenCensus projects. The project is
used to instrument, collect, and export metrics, logs, and traces. OpenTelemetry can be used across
several languages, and Go is one of the supported languages.

The main benefit of following the OpenTelemetry specification is that it is vendor-agnostic, which
means that applications written using their APIs are portable across different observability vendors.
For example, applications that are written to write metrics into a filesystem will require a few lines of
code changes to allow it to store metrics in Prometheus, which we will discuss in the Adding metrics
using Prometheus section.

The two main components of OpenTelemetry are the following:

• Tracing: This provides applications with the capability to track service requests as they flow
through systems by collecting data. For example, with the tracing capability, we can see how
an HTTP request flows through the different systems in the network.

https://opentelemetry.io/

Understanding OpenTelemetry 39

• Metrics: This provides applications with the ability to collect and store measurements for
detecting performance anomalies and forecasting. For example, collecting metrics in our
application will give us visibility into how long a database query takes or how long it takes to
process a certain batch job.

You can find the OpenTelemetry specification at the following link: https://opentelemetry.
io/docs/reference/specification/.

The specification allows users to plug-and-play different OpenTelemetry implementations easily
without any dependency on single-vendor libraries. This means that all the relevant contracts that
are outlined in the specification document can be implemented. Some concepts are important to
understand in order to use OpenTelemetry effectively. The following are the concepts that are relevant
to the specification:

• Components: These are basically the core vendor-agnostic specifications, outlining the different
parts of the system that need to be implemented. The components are collectors, the APIs, the
SDK, and instrumenting libraries.

• Data sources: This is the data that the specification supports: traces, logs, metrics, and baggage.

• Instrumenting and libraries: There are two ways to integrate the provided library – either
automatically by using the library provided by the vendor or open source contribution, or
manually as per the application requirements.

In the next section, we are going to look at the implementation side of the specification, which involves
both the APIs and the SDK.

The OpenTelemetry APIs and SDK

OpenTelemetry is made of several components, and two of the main components that we are going
to talk about are the APIs and SDK. The specification defines cross-language requirements that any
implementation must adhere to as part of the requirements:

• The APIs: This defines the data types and operations that will be used to generate telemetry data

• The SDK: This defines the implementation of the APIs for processing and exporting capabilities

There is a clear distinction between the APIs and SDK – it’s clear that the APIs are contracts that are
provided by the specification, while the SDK provides the different functionalities required to allow
metrics data to be processed and exported. Metrics data contains information such as memory used,
CPU usage, etc.

The specification provides an API for the following:

• Context: This contains the values that are carried around across API calls. This is data that can
be passed between system calls and carry application information.

https://opentelemetry.io/docs/reference/specification/
https://opentelemetry.io/docs/reference/specification/

Application Metrics and Tracing40

• Baggage: A set of name-value pairs describing user-defined properties.

• Tracing: An API definition that provides the tracing functionality

• Metrics: An API definition that provides the metric recording functionality

We will look at how the OpenTelemetry tracing API looks and how to add the tracing capability
to applications.

Tracing applications
In the previous chapter, we learned about logging and how logging can give us visibility into what’s going
on inside our application. The line between logging and tracing is blurry; what we need to understand
is that logging just provides information on what a process is currently doing, while tracing gives us
cross-cutting visibility across different components, allowing us to get a better understanding of the
data flow and time taken for a process to complete.

For example, with tracing, we can answer questions such as the following:

• How long does the add-to-cart process take?

• How long does it take to download a payment file?

We will go through the different APIs that are outlined in the specification and implement those APIs
using the implementation provided by the OpenTelemetry library.

The following figure shows the links between different entities.

Figure 3.2 – Tracing an API relationship

TracerProvider is the entry point to use the tracing API and it provides access to Tracer, which is
responsible for creating Span. Span is used to trace an operation in our application. Before we move
further to the next layer, which is the SDK, we will take a look briefly at Jaeger, which is one of the
support tools provided by the OpenTelemetry library for tracing.

Tracing applications 41

Installing Jaeger

Jaeger (https://www.jaegertracing.io/) is a popular open source distributed tracing
platform; it provides its own client libraries for a wide variety of programming languages, which can
be seen at https://github.com/orgs/jaegertracing/repositories. We will be
running Jaeger as a Docker container to reduce the amount of setup that is required when installing
the application manually. Let’s start up Jaeger using the following docker command:

docker run --name jaeger \

 -p 5775:5775/udp \

 -p 6831:6831/udp \

 -p 6832:6832/udp \

 -p 5778:5778 \

 -p 16686:16686 \

 -p 14268:14268 \

 -p 14250:14250 \

 -p 9411:9411 \

 jaegertracing/all-in-one:latest

On successful launch, there will be a lot of logs printed that look like the following:

{"level":"info","ts":1637930923.8576558,"caller":"flags/
service.go:117","msg":"Mounting metrics handler on admin
server","route":"/metrics"}

{"level":"info","ts":1637930923.857689,"caller":"flags/
service.go:123","msg":"Mounting expvar handler on admin
server","route":"/debug/vars"}

{"level":"info","ts":1637930923.8579082,"caller":"flags/
admin.go:104","msg":"Mounting health check on admin
server","route":"/"}

{"level":"info","ts":1637930923.8579528,"caller":"flags/
admin.go:115","msg":"Starting admin HTTP server","http-
addr":":14269"}

…

…

{"level":"info","ts":1637930923.8850179,"caller":"app/
server.go:258","msg":"Starting HTTP server","port":16686,"a
ddr":":16686"}

{"level":"info","ts":1637930923.8850145,"caller":"healthcheck/
handler.go:129","msg":"Health Check state
change","status":"ready"}

https://www.jaegertracing.io/
https://github.com/orgs/jaegertracing/repositories

Application Metrics and Tracing42

{"level":"info","ts":1637930923.8850334,"caller":"app/
server.go:277","msg":"Starting GRPC server","port":16685,"a
ddr":":16685"}

{"level":"info","ts":1637930924.8854718,"caller":"channelz/
logging.go:50","msg":"[core]Subchannel Connectivity change to
IDLE","system":"grpc","grpc_log":true}

{"level":"info","ts":1637930924.8855824,"caller":"grpclog/
component.go:71","msg":"[core]pickfirstBalancer:
UpdateSubConnState: 0xc00003af30, {IDLE connection error: desc
= \"transport: Error while dialing dial tcp :16685: connect:
connection refused\"}","system":"grpc","grpc_log":true}

{"level":"info","ts":1637930924.885613,"caller":"channelz/
logging.go:50","msg":"[core]Channel Connectivity change to
IDLE","system":"grpc","grpc_log":true}

Jaeger is now ready, the tool is not a desktop application but it provides a user interface that is accessible
using the browser. Open your browser and type in the following URL: http://localhost:16686.
It will open the Jaeger main page (Figure 3.3):

Figure 3.3 – Jaeger main page

Integrating the Jaeger SDK 43

At the moment, Jaeger does not contain anything, as there are no applications that are using it.

Integrating the Jaeger SDK
Now that Jaeger is ready, let’s look at how we are going to write tracing information using OpenTelemetry.
The library provides support for the Jaeger SDK out of the box; this allows applications to use the API
to write tracing to Jaeger.

The example that we will be using in this section is inside the jaeger/opentelem/trace directory
in the chapter’s GitHub repository. The file that we want to look at is tracing.go as shown here:

 package trace

 import (

 «context»

 «go.opentelemetry.io/otel"

 «go.opentelemetry.io/otel/exporters/jaeger"

 «go.opentelemetry.io/otel/sdk/resource"

 «go.opentelemetry.io/otel/sdk/trace"

 sc "go.opentelemetry.io/otel/semconv/v1.4.0"

)

 type ShutdownTracing func(ctx context.Context) error

 func InitTracing(service string) (ShutdownTracing, error)

 {

 // Create the Jaeger exporter.

 exp, err := jaeger.New(jaeger.WithCollectorEndpoint())

 if err != nil {

 return func(ctx context.Context) error { return nil },

 err

 }

 // Create the TracerProvider.

 tp := trace.NewTracerProvider(

 trace.WithBatcher(exp),

Application Metrics and Tracing44

 trace.WithResource(resource.NewWithAttributes(

 sc.SchemaURL,

 sc.ServiceNameKey.String(service),

)),

)

 otel.SetTracerProvider(tp)

 return tp.Shutdown, nil

 }

Let’s take a look at what each part of the code is doing. Line 18 is initializing the Jaeger SDK inside the
OpenTelemetry library. On successfully initializing the Jaeger SDK, the code continues to provide the
newly created Jaeger and uses it with the OpenTelemetry library to create a new TracerProvider
API. As discussed in the previous section, TracerProvider is the API that is used as the main
entry for OpenTelemetry. This is performed on lines 24-30.

On obtaining TracerProvider, we will need to call the global SetTracerProvider to let
OpenTelemetry know about it, which is done on line 32. Once the Jaeger SDK has been successfully
initialized, now it’s a matter of using it in the application.

Let’s take a look at the code sample for using the tracing functionality. The sample application that
we are going to look at can be found inside the jaeger/opentelem directory inside main.go.

Integration with Jaeger

We are going to go through section by section to explain what the code is doing. The following code
section shows the InitTracing function that takes care the initialization process being called:

 package main

 import (

 t "chapter.3/trace/trace"

 "context"

 "fmt"

 "go.opentelemetry.io/otel"

 "go.opentelemetry.io/otel/attribute"

 "go.opentelemetry.io/otel/trace"

 "log"

Integrating the Jaeger SDK 45

 "sync"

 "time"

)

 const serviceName = "tracing"

 func main() {

 sTracing, err := t.InitTracing(serviceName)

 if err != nil {

 log.Fatalf("Failed to setup tracing: %v\n", err)

 }

 defer func() {

 if err := sTracing(context.Background()); err != nil

 {

 log.Printf("Failed to shutdown tracing: %v\n", err)

 }

 }()

 ctx, span := otel.Tracer(serviceName)

 .Start(context.Background(), "outside")

 defer span.End()

 var wg sync.WaitGroup

 wg.Add(1)

 go func() {

 _, s := otel.Tracer(serviceName).Start(ctx, "inside")

 ...

 wg.Done()

 }()

 wg.Add(1)

 go func() {

 _, ss := otel.Tracer(serviceName).Start(ctx,

 "inside")

 ...

 wg.Done()

Application Metrics and Tracing46

 }()

 wg.Wait()

 fmt.Println("\nDone!")

 }

Once the SDK completes the initialization process, the code can start using the API to write tracing
information and this is done by getting a Span using the Tracer API as shown on lines 27-29. The
code uses sync.WaitGroup (lines 35 and 45) to ensure that the main thread does not finish before
the goroutine completes – the goroutine is added to simulate some kind of processing to be done to
generate a trace that will be reported to Jaeger.

The Tracer API only has one Start function, which is called to initiate the tracing operation, and
the tracing operation is considered complete when the End function is called on Span – so, what is
Span? Span is an API for tracing an operation; it has the following interface declaration:

type Span interface {

 End(options ...SpanEndOption)

 AddEvent(name string, options ...EventOption)

 IsRecording() bool

 RecordError(err error, options ...EventOption)

 SpanContext() SpanContext

 SetStatus(code codes.Code, description string)

 SetName(name string)

 SetAttributes(kv ...attribute.KeyValue)

 TracerProvider() TracerProvider

}

Multiple spans are pieced together to create a trace; it can be thought of as a Directed Acyclic Graph
(DAG) of spans.

DAGs
A DAG is a term used in mathematics and computer science. It is a graph that shows dependencies,
which, in our case, are the dependencies of application traces.

Figure 3.4 shows what the composition of the trace looks like:

Integrating the Jaeger SDK 47

Figure 3.4 – A DAG of a simple trace

The sample code creates two goroutines to perform a sleep operation and write trace information
as shown below:

go func() {

 _, s := otel.Tracer(serviceName).Start(ctx, "inside")

 defer s.End()

 time.Sleep(1 * time.Second)

 s.SetAttributes(attribute.String("sleep", "done"))

 s.SetAttributes(attribute.String("go func", "1"))

 wg.Done()

}()

...

...

go func() {

 _, ss := otel.Tracer(serviceName).Start(ctx, "inside")

 defer ss.End()

 time.Sleep(2 * time.Second)

 ss.SetAttributes(attribute.String("sleep", "done"))

 ss.SetAttributes(attribute.String("go func", "2"))

 wg.Done()

}()

Run the complete sample application in main.go inside the jaeger/opentelem directory using
the following command:

go run main.go

Upon completion, the application will write tracing information into Jaeger. Open Jaeger by accessing
http://localhost:16686 in your browser. Once it’s opened, you will see a new entry under
the Service dropdown as shown in Figure 3.5:

Application Metrics and Tracing48

Figure 3.5 – Application trace search

The sample application tracing information is registered with the same string defined in the code,
which is called tracing:

const serviceName = "tracing"

Integrating the Jaeger SDK 49

Clicking on the Find Traces button will read the trace information that is stored (Figure 3.6):

Figure 3.6 – Application traces

As can be seen in Figure 3.6, there is only one entry and if you click on it, it will expand more information
that the app has submitted via the Span API.

Figure 3.7 – Tracing information

Figure 3.7 shows the complete tracing information, which is a composition of spans from the application.
Clicking on each of the graphs will bring up more information included in the span, which is included
as shown in the code here:

go func() {

 ...

 s.SetAttributes(attribute.String("sleep", "done"))

 s.SetAttributes(attribute.String("go func", "1"))

 ...

}()

...

go func() {

 ...

 ss.SetAttributes(attribute.String("sleep", "done"))

 ss.SetAttributes(attribute.String("go func", "2"))

Application Metrics and Tracing50

 ...

}()

Now that we know how to add tracing to our application, in the next section, we will look at adding
metric instrumentation that will give us visibility into some of the performance metrics relevant to
our application.

Adding metrics using Prometheus
As OpenTelemetry is vendor-agnostic, it provides a wide variety of support for monitoring, exporting,
and collecting metrics and one option is Prometheus. A complete list of different projects supported
by OpenTelemetry can be found at https://opentelemetry.io/registry/. Prometheus
is an open source monitoring and alerting system server that is widely used in cloud environments;
it also provides libraries for a variety of programming languages.

In the previous section, we saw how to add tracing capabilities to our application and how to retrieve
the traces by using Jaeger. In this section, we are going to take a look at how to create metrics using the
OpenTelemetry library. Metrics allow us to get instrumentation information for our applications;
it can provide answers to questions such as the following:

• What is the total number of requests processed in service A?

• How many total transactions are processed via payment gateway B?

Normally, collected metrics are stored for a certain amount of time to give us better insights into how
the applications are performing by looking at a specific metric.

We will use the Prometheus open source project (https://prometheus.io/), which provides
a complete monitoring solution stack and is very easy to use. The project provides a lot of features
that are useful for collecting and storing metrics and monitoring our applications.

https://opentelemetry.io/registry/
https://prometheus.io/

Adding metrics using Prometheus 51

Figure 3.8 – The Prometheus monitoring stack

Similar to tracing, the OpenTelemetry specification specifies the API and SDK for metrics, as shown
in Figure 3.9.

Figure 3.9 – Metrics API

Application Metrics and Tracing52

The following are explanations of the metrics APIs:

• MeterProvider: This is an API for providing access to meters.

• Meter: This is responsible for creating instruments, and is unique to the instrumentation
in question.

• Instrument: This contains the metric that we want to report; it can be synchronous or asynchronous.

Adding metrics using Prometheus

Let’s start up Prometheus; make sure from your terminal that you are inside the chapter3/prom/
opentelem directory and execute the following docker command:

docker run --name prom \

-v $PWD/config.yml:/etc/prometheus/prometheus.yml \

-p 9090:9090 prom/prometheus:latest

NOTE:
If you are using a Linux machine, use the following command:

 docker run --name prom \

 -v $PWD/config.yml:/etc/prometheus/prometheus.yml\

 -p 9090:9090 --add-host=host.docker.internal:host-gateway
prom/prometheus:latest

The extra parameter, --add-host=host.docker.internal:host-gateway, will allow
Prometheus to access the host machine using the host.docker.internal machine name.

The config.yml file used for configuring Prometheus is inside the prom/opentelem directory
and looks like the following:

scrape_configs:

 - job_name: 'prometheus'

 scrape_interval: 5s

 static_configs:

 - targets:

 - host.docker.internal:2112

We will not go through the different available Prometheus configuration options in this section. The
configuration we are using informs Prometheus that we want to get metrics from the container host,
which is known internally in the container as host.docker.internal, at port 2112, at an
interval of 5 seconds.

Adding metrics using Prometheus 53

Once Prometheus successfully runs, you will see the following log:

….

ts=2021-11-30T11:13:56.688Z caller=main.go:451 level=info fd_
limits="(soft=1048576, hard=1048576)"

...

ts=2021-11-30T11:13:56.694Z caller=main.go:996 level=info
msg="Loading configuration file" filename=/etc/prometheus/
prometheus.yml

ts=2021-11-30T11:13:56.694Z caller=main.go:1033 level=info
msg="Completed loading of configuration file" filename=/
etc/prometheus/prometheus.yml totalDuration=282.112µs db_
storage=537ns remote_storage=909ns web_handler=167ns query_
engine=888ns scrape=126.942µs scrape_sd=14.003µs notify=608ns
notify_sd=1.207µs rules=862ns

ts=2021-11-30T11:13:56.694Z caller=main.go:811 level=info
msg="Server is ready to receive web requests."

Next, open your browser and type in the following: http://localhost:9090. You will be shown
the main Prometheus UI:

Figure 3.10 – The Prometheus UI

Figure 3.11 shows the way Prometheus collects metrics via a pulling mechanism where it pulls metric
information from your application by connecting to port 2112, which is exposed by the HTTP
server running in the application. We will see later that most of the heavy lifting is done by the
OpenTelemetry library; our application will just have to provide the metric that we want to report on.

Application Metrics and Tracing54

Figure 3.11 – Prometheus metric collection

Now that Prometheus is ready, we can start recording metrics to for our application. Run the application
inside the prom/opentelem directory as follows:

go run main.go

Let the application run for a bit and you will see the following log:

2021/11/30 22:42:08 Starting up server on port 8000

2021/11/30 22:42:12 Reporting metric metric.random

2021/11/30 22:42:22 Reporting metric metric.random

2021/11/30 22:42:32 Reporting metric metric.random

2021/11/30 22:42:47 Reporting metric metric.random

2021/11/30 22:42:57 Reporting metric metric.random

• metric.totalrequest: This metric reports the total number of requests processed by the
application; the sample application has an HTTP server running on port 8000

• metric.random: This metric reports a random number

With the successful run of the sample application, we can now see the metric in the Prometheus UI.
Open your browser and head to http://localhost:9090 and type in metric_random and
you will see something such as that shown in Figure 3.12; click on the Execute button.

Figure 3.12 – metric_random metric

Adding metrics using Prometheus 55

Select the Graph tab and you will see the following figure:

Figure 3.13 – metric_random graph

The other metric that we want to show is the total number of requests processed by the sample
application’s HTTP server. In order to generate some metrics, open the browser and enter http://
localhost:8000; do so a few times so that some metrics will be generated.

Open the Prometheus UI again (http://localhost:9090), add the metric_totalrequest
metric as shown in Figure 3.14, and click on Execute:

Figure 3.14 – metric_totalrequest metric

Application Metrics and Tracing56

The graph will look as follows:

Figure 3.15 – metric_totalrequest graph

If you are having problems and cannot see the metrics, change the Prometheus configuration file,
config.yml, inside the chapter3/prom/opentelem directory and change the target from
host.docker.internal to localhost as shown here:

scrape_configs:

 - job_name: 'prometheus'

 scrape_interval: 5s

 static_configs:

 - targets:

 - localhost:2112

The metrics.go source contains the code that initializes the otel SDK to configure it for
Prometheus, which is shown in the code snippet here:

package metric

...

type ShutdownMetrics func(ctx context.Context) error

// InitMetrics use Prometheus exporter

func InitMetrics(service string) (ShutdownMetrics, error) {

 config := prometheus.Config{}

Adding metrics using Prometheus 57

 c := controller.New(

 processor.NewFactory(

 selector.NewWithExactDistribution(),

 aggregation.CumulativeTemporalitySelector(),

 processor.WithMemory(true),

),

 controller.WithResource(resource.NewWithAttributes(

 semconv.SchemaURL,

 semconv.ServiceNameKey.String(service),

)),

)

 exporter, err := prometheus.New(config, c)

 if err != nil {

 return func(ctx context.Context) error { return nil},

 err

 }

 global.SetMeterProvider(exporter.MeterProvider())

 srv := &http.Server{Addr: ":2112", Handler: exporter}

 go func() {

 _ = srv.ListenAndServe()

 }()

 return srv.Shutdown, nil

The following code snippet shows how it sends the metrics to Prometheus – the code can be found
in main.go inside the chapter3/prom/opentelem directory:

package main

...

const serviceName = "samplemetrics"

func main() {

 ...

 //setup handler for rqeuest

Application Metrics and Tracing58

 r.HandleFunc("/", func(rw http.ResponseWriter, r

 *http.Request) {

 log.Println("Reporting metric metric.totalrequest")

 ctx := r.Context()

 //add request metric counter

 ctr.Add(ctx, 1)

 ...

 }).Methods("GET")

 ...

}

Now that we have successfully added metrics and tracing to our applications and can view them using
both Jaeger and Prometheus; in the next section, we will look at putting all the tools together to make
it easy to run them as a single unit.

Running docker-compose
We normally run containers using the docker command, but what if we want to run more than one
container in one go? This is where docker-compose comes to the rescue. The tool allows you to
configure the different containers that you want to run as a single unit. It also allows different kinds of
configurations for different containers – for example, container A can communicate via the network
with container B but not with container C.

The docker-compose tool that we are using in this book is v2, which is the recommended version.
You can find instructions for installing the tool for different operating systems here – https://
docs.docker.com/compose/install/other/.

To make it easy to run both Prometheus and Jaeger, you can use docker-compose. The docker-
compose.yml file looks as follows:

version: '3.3'

services:

 jaeger:

 image: jaegertracing/all-in-one:latest

 ports:

 - "6831:6831/udp"

https://docs.docker.com/compose/install/other/
https://docs.docker.com/compose/install/other/

Running docker-compose 59

 - "16686:16686"

 - "14268:14268"

 prometheus:

 image: prom/prometheus:latest

 volumes:

 -./prom/opentelem/config.yml:/etc/prometheus/

 prometheus.yml

 command:

 - '--config.file=/etc/prometheus/prometheus.yml'

 - '--web.console.libraries=/usr/share/prometheus/

 console_libraries'

 - '--web.console.templates=/usr/share/prometheus/

 consoles›

 ports:

 - 9090:9090

 network_mode: "host"

Run docker-compose using the following command:

docker-compose -f docker-compose.yml up

On a successful run, you will see the following log:

prometheus_1 | ts=2021-12-04T07:45:02.443Z caller=main.go:406
level=info msg="No time or size retention was set so using the
default time retention" duration=15d

prometheus_1 | ts=2021-12-04T07:45:02.443Z
caller=main.go:444 level=info msg="Starting
Prometheus" version="(version=2.31.1, branch=HEAD,
revision=411021ada9ab41095923b8d2df9365b632fd40c3)"

prometheus_1 | ts=2021-12-04T07:45:02.443Z caller=main.go:449
level=info build_context="(go=go1.17.3, user=root@9419c9c2d4e0,
date=20211105-20:35:02)"

prometheus_1 | ts=2021-12-04T07:45:02.443Z caller=main.go:450
level=info host_details="(Linux 5.3.0-22-generic #24+system7
6~1573659475~19.10~26b2022-Ubuntu SMP Wed Nov 13 20:0 x86_64
pop-os (none))"

prometheus_1 | ts=2021-12-04T07:45:02.444Z caller=main.go:451
level=info fd_limits="(soft=1048576, hard=1048576)"

prometheus_1 | ts=2021-12-04T07:45:02.444Z caller=main.go:452

Application Metrics and Tracing60

level=info vm_limits="(soft=unlimited, hard=unlimited)"

jaeger_1 | 2021/12/04 07:45:02 maxprocs: Leaving
GOMAXPROCS=12: CPU quota undefined

prometheus_1 | ts=2021-12-04T07:45:02.445Z caller=web.go:542
level=info component=web msg="Start listening for connections"
address=0.0.0.0:9090

....

....

....

jaeger_1 |
{"level":"info","ts":1638603902.657881,"caller":"healthcheck/
handler.go:129","msg":"Health Check state
change","status":"ready"}

jaeger_1 |
{"level":"info","ts":1638603902.657897,"caller":"app/
server.go:277","msg":"Starting GRPC server","port":16685,"a
ddr":":16685"}

jaeger_1 |
{"level":"info","ts":1638603902.6579142,"caller":"app/
server.go:258","msg":"Starting HTTP server","port":16686,"a
ddr":":16686"}

The up parameter we are using will start the container in the terminal and run in attached mode,
which allows you to show all the logs on the screen. You also can run in detached mode to run the
container in the background as follows:

docker-compose -f docker-compose.yml up -d

Summary
In this section, we looked at how to add metrics and tracing into an application using the OpenTelemetry
library. Having this observability in an application will enable us to troubleshoot issues faster and also
keep track of the performance of our application from the provided metrics. We also took a look at
using two different open source projects that allow us to look at the data collected from our application.

In this chapter, we looked at the plumbing and infrastructure required to monitor and trace our
application. In the next chapter, we will look at different aspects of building both dynamic and static
content for our web application and how to package the application to make it easier to deploy anywhere.

Part 2:
Serving Web Content

Upon completing this part of the book, you will be able to create server-rendered pages using an
HTML/template and Gorilla Mux. You will also learn how to create and expose an API that will be
used by the frontend. Securing the API will be discussed, including middleware.

This part includes the following chapters:

• Chapter 4, Serving and Embedding HTML Content

• Chapter 5, Securing the Backend and Middleware

• Chapter 6, Moving to API-First

4
Serving and Embedding HTML

Content

As we build on our foundations, it is important that we look at another aspect of processing HTTP
user requests, routing. Routing is useful as it allows us to structure our application to handle different
functionality for certain HTTP methods, such as a GET that can retrieve and a POST on the same
route that can replace the data. This concept is the fundamental principle of designing a REST-based
application. We’ll end the chapter by looking at how we can use the new embed directive introduced
in Go version 1.16 to bundle our web app as a single self-contained executable. This chapter will
provide us with the tools to handle user data and create the interface for the user.

By the end of this chapter, you will have learned how static and dynamic content is served by the
application. You will also have learned how to embed all the different assets (icons, .html, .css,
etc.) that will be served by the web application in the application using a single binary. In this chapter,
we’ll cover the following topics:

• Handling HTTP functions and Gorilla Mux

• Rendering static and dynamic content

• Using Go embed to bundle your content

Technical requirements
All the source code for this chapter can be accessed at https://github.com/PacktPublishing/
Full-Stack-Web-Development-with-Go/tree/main/Chapter04.

Handling HTTP functions and Gorilla Mux
When we look at the Go standard library, we can see that a lot of thought has gone into the HTTP
library. You can check out the documentation for the Go standard library here: https://pkg.
go.dev/net/http. However, we’ll cover the foundations and look at how we can build upon them.

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/Chapter04
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/Chapter04
https://pkg.go.dev/net/http
https://pkg.go.dev/net/http

Serving and Embedding HTML Content64

It’s interesting to Note that the Go standard library covers both client- and server-side implementations.
We will only be focusing on the parts we require to serve content.

We will create a simple app that replies with Hello, World, as well as look at returning POST data
once we have expanded our routes.

Hello, World with defaults

The basic concepts of creating a server in Golang are as follows:

 1 package main

 2

 3 import (

 4 "fmt"

 5 "log"

 6 "net/http"

 7 "os"

 8 "time"

 9)

 10

 11 func handlerGetHelloWorld(wr http.ResponseWriter,

 req *http.Request) {

 12 fmt.Fprintf(wr, "Hello, World\n")

 13 log.Println(req.Method) // request method

 14 log.Println(req.URL) // request URL

 15 log.Println(req.Header) // request headers

 16 log.Println(req.Body) // request body)

 17 }

 18

...

 29

 30 func main() {

...

 43 router := http.NewServeMux()

 44

 45 srv := http.Server{

 46 Addr: ":" + port,

 47 Handler: router,

Handling HTTP functions and Gorilla Mux 65

 48 ReadTimeout: 10 * time.Second,

 49 WriteTimeout: 120 * time.Second,

 50 MaxHeaderBytes: 1 << 20,

 51 }

 52

...

 57 router.HandleFunc("/", handlerGetHelloWorld)

 58 router.Handle("/1", dummyHandler)

 59 err := srv.ListenAndServe()

 60 if err != nil {

 61 log.Fatalln("Couldnt ListenAndServe()",

 err)

 62 }

 63 }

You can see this code in the Git repository under the library-mux sub-folder.

How this works is we define a handlerGetHelloWorld handler function (row 11) that is passed
as a parameter to the router.HandleFunc function. The HandleFunc parameter requires a
function parameter that has the following signature: func(ResponseWriter, *Request).

The handler’s job is to take in a request type and a ResponseWriter and make a decision based on
the request; that is, what to write to ResponseWriter. In our case, the handlerGetHelloWorld
handler will send the Hello, World string as a response, using the fmt.Fprintf(...) function.
The reason why it is possible for the response to be sent back is that the http.ResponseWriter
implements the Write() function, which is used inside the fmt.Fprintf(...) function.

We now define the following steps for the main function:

1. First, we create a router: this is what our handlers will connect to. We create our own
router with NewServeMux (line 43). We could use the DefaultServeMux found
in the default library, but as you will see at https://github.com/golang/go/
blob/5ec87ba554c2a83cdc188724f815e53fede91b66/src/expvar/expvar.
go#L334, it contains a few additional debugging endpoints that we may not want to expose
publicly. By registering our own, we gain more control and can add the same endpoints ourselves
if we want them.

2. Second, we create an instance of our server and bind it to an available port. The Addr field
on the server specifies the address and port to bind to. In our example, we are using 9002.
Different operating systems have different restrictions on what port can be used. For example,
Linux systems only allow the admin or root user to run applications that use ports between
1 and 1023.

https://github.com/golang/go/blob/5ec87ba554c2a83cdc188724f815e53fede91b66/src/expvar/expvar.go#L334
https://github.com/golang/go/blob/5ec87ba554c2a83cdc188724f815e53fede91b66/src/expvar/expvar.go#L334
https://github.com/golang/go/blob/5ec87ba554c2a83cdc188724f815e53fede91b66/src/expvar/expvar.go#L334

Serving and Embedding HTML Content66

3. The final step is to attach our router, start the server, and get it to begin listening. This is
accomplished in line 57. What we’re doing here is telling the router that when it gets any HTTP
request for "/", known as the document root, it should handle the request by passing it to
our handler.

4. The final function, srv.ListenAndServe() (line 59), is a blocking function that starts
our server up and starts listening for incoming requests on the server’s defined port. When a
valid HTTP request is found, it is passed to the mux, which then pattern matches the route –
that is, the given sequence is checked against the patterns known by the mux, and if a pattern
is found for "/", then our handler is invoked. We can run our app and visit http://
localhost:9002/; we should be met with the following response from the server:

Figure 4.1 – Hello, World from Go!

It’s good to note here that each request is given its own goroutine to execute concurrently, and each
request’s life cycle is managed by the server so we don’t need to do anything explicitly to leverage this.

In the next section, we will explore building different functionalities using Gorilla Mux. In particular,
we will look at implementing handlers and the different ways to handle HTTP methods, such as GET
and POST.

Handling HTTP functions and Gorilla Mux 67

Building on the basics with Gorilla Mux

Gorilla Mux, accessible at https://github.com/gorilla/mux, is a subproject of the Gorilla
project. Gorilla Mux is an HTTP request multiplexer that makes it easy to match different handlers
with matching incoming requests. Developers gain a lot of benefits from using the library, as it makes
writing lots of boilerplate code unnecessary. The library provides advanced capabilities to match
requests based on different criteria, such as schemes and dynamic URLs.

The server and router provided as part of Go’s standard library are incredibly powerful for “freebies”,
but we’re going to look at adding Gorilla Mux to our project and some of the benefits it provides.

Uses of the web consist of more than just returning Hello World, and generally, most web apps accept
data provided by users, update the data, and even delete the data, and this is possible because the
browser accepts a variety of content such as images, video, data fields, and plain text. The previous
exercise focused on what is known as a GET method, which is the default sent when you load a page
in your web browser, but there are many more.

The standard library implementation makes it easy to explicitly handle other types of methods, such
as GET, POST, PUT, DELETE, and more, which are defined in the HTTP standard. This is typically
done in the handler function as we can see below:

func methodFunc(wr http.ResponseWriter, req http.Request) {

 ...

 switch req.Method {

 case http.MethodGet:

 // Serve page - GET is the default when you visit a

 // site.

 case http.MethodPost:

 // Take user provided data and create a record.

 case http.MethodPut:

 // Update an existing record.

 case http.MethodDelete:

 // Remove the record.

 default:

 http.Error(wr, "Unsupported Method!",

 http.StatusMethodNotAllowed)

 }

}

https://github.com/gorilla/mux

Serving and Embedding HTML Content68

Let’s look at an example of how we can separate two handlers, GET and POST, and some of the helpers
provided by Gorilla Mux:

 1 package main

 2

 3 import (

 4 "bytes"

 5 "fmt"

 6 "io"

 7 "io/ioutil"

 8 "log"

 9 "net/http"

 10 "os"

 11

 12 "github.com/gorilla/mux"

 13)

 14

 15 func handlerSlug(wr http.ResponseWriter, req

 *http.Request) {

 16 slug := mux.Vars(req)["slug"]

 17 if slug == "" {

 18 log.Println("Slug not provided")

 19 return

 20 }

 21 log.Println("Got slug", slug)

 22 }

 23

 24 func handlerGetHelloWorld(wr http.ResponseWriter,

 req *http.Request) {

 25 fmt.Fprintf(wr, "Hello, World\n")

 // request method

 26 log.Println("Request via", req.Method)

 // request URL

 27 log.Println(req.URL)

 // request headers

 28 log.Println(req.Header)

 // request body)

Handling HTTP functions and Gorilla Mux 69

 29 log.Println(req.Body)

 30 }

 31

 32 func handlerPostEcho(wr http.ResponseWriter,

 req *http.Request) {

 // request method

 33 log.Println("Request via", req.Method)

 // request URL

 34 log.Println(req.URL)

 // request headers

 35 log.Println(req.Header)

 36

 37 // We are going to read it into a buffer

 38 // as the request body is an io.ReadCloser

 39 // and so we should only read it once.

 40 body, err := ioutil.ReadAll(req.Body)

 41

 42 log.Println("read >", string(body), "<")

 43

 44 n, err := io.Copy(wr, bytes.NewReader(body))

 45 if err != nil {

 46 log.Println("Error echoing response",

 err)

 47 }

 48 log.Println("Wrote back", n, "bytes")

 49 }

 50

 51 func main() {

 52 // Set some flags for easy debugging

 53 log.SetFlags(log.Lshortfile | log.Ldate |

 log.Lmicroseconds)

 54

 55 // Get a port from ENV var or default to 9002

 56 port := "9002"

 57 if value, exists :=

 os.LookupEnv("SERVER_PORT"); exists {

 58 port = value

Serving and Embedding HTML Content70

 59 }

 60

 61 // Off the bat, we can enforce StrictSlash

 62 // This is a nice helper function that means

 63 // When true, if the route path is "/foo/",

 // accessing "/foo" will perform a 301

 // redirect to the former and vice versa.

 64 // In other words, your application will

 // always see the path as specified in the

 // route.

 65 // When false, if the route path is "/foo",

 // accessing "/foo/" will not match this

 // route and vice versa.

 66

 67 router := mux.NewRouter().StrictSlash(true)

 68

 69 srv := http.Server{

 70 Addr: ":" + port, // Addr optionally

 // specifies the listen address for the

 // server in the form of "host:port".

 71 Handler: router,

 72 }

 73

 74 router.HandleFunc("/", handlerGetHelloWorld)

 .Methods(http.MethodGet)

 75 router.HandleFunc("/", handlerPostEcho)

 .Methods(http.MethodPost)

 76 router.HandleFunc("/{slug}", handlerSlug)

 .Methods(http.MethodGet)

 77

 78 log.Println("Starting on", port)

 79 err := srv.ListenAndServe()

 80 if err != nil {

 81 log.Fatalln("Couldnt ListenAndServe()", err)

 82 }

 83 }

Handling HTTP functions and Gorilla Mux 71

We’ve imported the Gorilla Mux library as mux and set up two different handlers:
handlerGetHelloWorld (line 24) and handlerPostEcho (line 32). handlerGetHelloWorld
is the same handler we defined in the previous example that responds with Hello, World. Here, thanks
to the extended functionality of the router, we’ve specified explicitly that the handler can only resolve
if the user performs a GET method on the "/" endpoint (line 74).

Let’s start the sample by first changing to the chapter4/gorilla-mux directory and running
the following command:

go run main.go

We can use cURL, which is a standard utility available on Windows (use cmd instead of PowerShell) and
installed by default on Linux (depending on your Linux distribution) and macOS. The tool allows users
to make HTTP requests from a terminal without using a browser. Use the curl localhost:9002
command in a separate terminal to test whether the server is up and running:

$ curl localhost:9002

Hello, World

$ # Specify DELETE as the option...

$ curl localhost:9002 -v -X DELETE

We can see that GET works as expected but using -X DELETE to tell cURL to use the HTTP DELETE
method results in no content being returned. Under the hood, the endpoint is responding with a 405
Method Not Allowed error message. The 405 error message reported to the user comes from
the library by default.

We’ve added a second handler (line 75) to take data from a POST request. The handler for the POST
method, handlerPostEcho (line 32), performs in a similar manner to the GET request, but we’ve
added some additional code to read the user-provided data, store it, print it, and then return it unaltered.

We can see how this works using cURL as before:

$ curl -X POST localhost:9002 -d "Echo this back"

Echo this back

We’re skipping a lot of validation and explicitly checking/handling data formats, such as JSON, at this
point, but we’ll build towards this in later sections.

Another benefit of using Gorilla Mux is how easy it makes pattern matching in paths. These path
variables, or slugs, are defined using the {name} format or {name:pattern}. The following
table shows different slugs with examples:

Serving and Embedding HTML Content72

/books/{pagetitle}/page/{pageno} /books/mytitle/page/1, /books/
anothertitle/page/100

/posts/{slug} /posts/titlepage

/posts/anothertitle

Pattern can be a type of regular expression. For example, in our sample code we added a handlerSlug
handler (line 15) to perform a simple capture. We can use cURL to test this, as shown in the following code:

$ curl localhost:9002/full-stack-go

…

$ # Our server will show the captured variable in its output

...

2022/01/15 14:58:36.171821 main.go:21: Got slug > full-stack-go
<

In this section, we have learned how to write handlers and use them with Gorilla Mux. We have also
looked at configuring Gorilla Mux to handle dynamic paths that will be processed by handlers. In the
next section, we will look at serving content to users from our application. The served content will
contain static and dynamic content.

Rendering static content
In this section, we will learn how to serve the web pages we have created as static content. We will
use the standard Go net/http package to serve up the web pages. All the code and HTML files can
be found inside the static/web directory (https://github.com/PacktPublishing/
Full-Stack-Web-Development-with-Go/tree/main/Chapter04/static/web).

Execute the server using the following command:

go run main.go

You will see the following message on the screen:

2022/01/11 22:22:03 Starting up server on port 3333 ...

Open your browser and enter http://localhost:3333 as the URL. You will see the login page,
as shown in Figure 4.2:

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/Chapter04/static/web
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/Chapter04/static/web

Rendering static content 73

Figure 4.2 – The login page

To access the dashboard page, you can use the URL http://localhost:3333/dashboard.
html. You will see like the following screenshot:

 Figure 4.3 – The dashboard page

Serving and Embedding HTML Content74

Let’s take a quick look at the code that serves up the static pages:

 1 package main

 2

 3 import (

 4 "log"

 5 "net/http"

 6)

 7

 8 func main() {

 9 fs := http.FileServer(http.Dir("./static"))

 10 http.Handle("/", fs)

 11

 12 log.Println("Starting up server on port 3333

 ...")

 13 err := http.ListenAndServe(":3333", nil)

 14 if err != nil {

 15 log.Fatal("error occurred starting up

 server : ", err)

 16 }

 17 }

As can be seen, this is a simple HTTP server that uses the http.FileServer(..) Go standard
library function (shown in line 9). The function is called by passing in the (./static) parameter
to the directory that we want to serve (line 9). The example code can be found inside the chapter4/
static/web/static folder.

Rendering dynamic content
Now that we understand how to serve static content using the net/http package, let’s take
a look at adding some dynamic content using Gorilla Mux found here: https://github.
com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/
Chapter04/dynamic. Execute the server using the following command:

go run main.go

Launch your browser and enter http://localhost:3333 as the address; you will see a login
screen similar to the static content. Perform the following steps on the login screen:

1. Enter any combination of username and password on the login screen.

.

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/Chapter04/dynamic
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/Chapter04/dynamic
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/Chapter04/dynamic

Rendering dynamic content 75

2. Click the Login button.

You will get a Login unsuccessful message, as shown in Figure 4.4.

 Figure 4.4 – Message screen after login

We have introduced dynamic content for our login operation, which means the application will serve
pages based on certain conditions, in this case, the successful validation of the username/password
combination. To achieve a successful validation, enter admin/admin as the username/password
combination, as this exists in the database.

Let’s explore the code a bit further to understand how it works:

 1 package main

 2

 3 import (

 4 "fmt"

 5 "github.com/gorilla/mux"

 6 "html/template"

 7 "log"

 8 "net/http"

 9 "os"

 10 "path/filepath"

 11 "time"

 12)

 13

 14 type staticHandler struct {

 15 staticPath string

 16 indexPage string

 17 }

Serving and Embedding HTML Content76

 18

 19 func (h staticHandler) ServeHTTP(w

 http.ResponseWriter, r *http.Request) {

 20 path, err := filepath.Abs(r.URL.Path)

 21 log.Println(r.URL.Path)

 22 if err != nil {

 23 http.Error(w, err.Error(),

 http.StatusBadRequest)

 24 return

 25 }

 26

 27 path = filepath.Join(h.staticPath, path)

 28

 29 _, err = os.Stat(path)

 30

 31 http.FileServer(

 http.Dir(h.staticPath)).ServeHTTP(w, r)

 32 }

 33

 34 func postHandler(w http.ResponseWriter,

 r *http.Request) {

 35 result := "Login "

 36 r.ParseForm()

 37

 38 if validateUser(r.FormValue("username"),

 r.FormValue("password")) {

 39 result = result + "successfull"

 40 } else {

 41 result = result + "unsuccessful"

 42 }

 43

 44 t, err :=

 template.ParseFiles("static/tmpl/msg.html")

 45

 46 if err != nil {

 47 fmt.Fprintf(w, "error processing")

Rendering dynamic content 77

 48 return

 49 }

 50

 51 tpl := template.Must(t, err)

 52

 53 tpl.Execute(w, result)

 54 }

 55

 56 func validateUser(username string,

 password string) bool {

 57 return (username == "admin") &&

 (password == "admin")

 58 }

 59

 60 func main() {

 61 router := mux.NewRouter()

 62

 63 router.HandleFunc("/login",

 postHandler).Methods("POST")

 64

 65 spa := staticHandler{staticPath: "static",

 indexPage: "index.html"}

 66 router.PathPrefix("/").Handler(spa)

 67

 68 srv := &http.Server{

 69 Handler: router,

 70 Addr: "127.0.0.1:3333",

 71 WriteTimeout: 15 * time.Second,

 72 ReadTimeout: 15 * time.Second,

 73 }

 74

 75 log.Fatal(srv.ListenAndServe())

 76 }

Serving and Embedding HTML Content78

The ServeHTTP function (line 19) serves the content specified by the directory defined in the
staticHandler struct (line 65), which points to the static directory with the index page
showing as index.html. The handler configuration is registered using the Gorilla Mux attached
to the / path prefix (line 66).

The next part is the code that takes care of the registration of the /login endpoint (line 63). The
postHandler function (line 34) extracts and validates the username and password information
passed from the request.

The web page contains two input elements, the username and password, which are sent by the browser
when the user clicks on the Login button. When the handler (line 34) receives the data, it parses it
using the ParseForm() function (line 36) and then extracts the value passed by referencing the field
names username and password (line 38), which corresponds to the name of the HTML element
specified inside the file in chapter04/dynamic/static/index.html.

On completing the validation process, the app then uses the Go html/template package (line 44)
to parse another HTML file (static/tmpl/msg.html). The app will parse the HTML file and will
insert all the relevant information to be included as part of the HTML page using the template.
Must function (line 51).

This msg.html file contains a {{.}} placeholder string that is understood by the html/template
package (line 18):

 1 <!DOCTYPE html>

 2 <html>

 3 <head>

 ...

 18 <p class="text-xs text-gray-50">{{.}}

 </p>

 ...

 24 </html>

In this section, we have learned how to render dynamic content. In the next section, we will look at
bundling both our static and dynamic content to allow us to run the application as a single file.

Using Go embed to bundle your content
In this section, we will look at how to package applications into a single binary. Packaging everything
the application needs into a single binary makes it easier to deploy the application anywhere in the
cloud. We are going to use the embed package that is provided by the Go standard library. The following
link provides further detail on the different functions available inside the embed package: https://
pkg.go.dev/embed.

https://pkg.go.dev/embed
https://pkg.go.dev/embed

Using Go embed to bundle your content 79

Note
The embed package is only available in Go version 1.16 and upwards.

The following code provides a simple example of using the embed package in three different ways – to
embed a specific file, embed the full contents of a folder, and embed a specific file type:

 1 package main

 2

 3 import (

 4 "embed"

 5 "fmt"

 6 "github.com/gorilla/mux"

 7 "html/template"

 8 "io/fs"

 9 "log"

 10 "net/http"

 11 "os"

 12 "path/filepath"

 13 "strings"

 14 "time"

 15)

 16

 17 var (

 18 Version string = strings.TrimSpace(version)

 19 //go:embed version/version.txt

 20 version string

 21

 22 //go:embed static/*

 23 staticEmbed embed.FS

 24

 25 //go:embed tmpl/*.html

 26 tmplEmbed embed.FS

 27)

 28

 29 type staticHandler struct {

 30 staticPath string

 31 indexPage string

Serving and Embedding HTML Content80

 32 }

 33

 34 func (h staticHandler) ServeHTTP(w

 http.ResponseWriter, r *http.Request) {

 35 path, err := filepath.Abs(r.URL.Path)

 36 log.Println(r.URL.Path)

 37 if err != nil {

 38 http.Error(w, err.Error(),

 http.StatusBadRequest)

 39 return

 40 }

 41

 42 path = filepath.Join(h.staticPath, path)

 43

 44 _, err = os.Stat(path)

 45

 46 log.Print("using embed mode")

 47 fsys, err := fs.Sub(staticEmbed, "static")

 48 if err != nil {

 49 panic(err)

 50 }

 51

 52 http.FileServer(http.FS(fsys)).ServeHTTP(w,

 r)

 53 }

 54

 55 //renderFiles renders file and push data (d) into

 // the templates to be rendered

 56 func renderFiles(tmpl string, w

 http.ResponseWriter, d interface{}) {

 57 t, err := template.ParseFS(tmplEmbed,

 fmt.Sprintf("tmpl/%s.html", tmpl))

 58 if err != nil {

 59 log.Fatal(err)

 60 }

 61

Using Go embed to bundle your content 81

 62 if err := t.Execute(w, d); err != nil {

 63 log.Fatal(err)

 64 }

 65 }

 66

 67 func postHandler(w http.ResponseWriter,

 r *http.Request) {

 68 result := "Login "

 69 r.ParseForm()

 70

 71 if validateUser(r.FormValue("username"),

 r.FormValue("password")) {

 72 result = result + "successfull"

 73 } else {

 74 result = result + "unsuccessful"

 75 }

 76

 77 renderFiles("msg", w, result)

 78 }

 79

 80 func validateUser(username string,

 password string) bool {

 81 return (username == "admin") &&

 (password == "admin")

 82 }

 83

 84 func main() {

 85 log.Println("Server Version :", Version)

 86

 87 router := mux.NewRouter()

 88

 89 router.HandleFunc("/login", postHandler)

 .Methods("POST")

 90

 91 spa := staticHandler{staticPath: "static",

 indexPage: "index.html"}

Serving and Embedding HTML Content82

 92 router.PathPrefix("/").Handler(spa)

 93

 94 srv := &http.Server{

 95 Handler: router,

 96 Addr: "127.0.0.1:3333",

 97 WriteTimeout: 15 * time.Second,

 98 ReadTimeout: 15 * time.Second,

 99 }

 100

 101 log.Fatal(srv.ListenAndServe())

 102 }

The source code resides inside the chapter4/embed folder. The code uses the //go:embed
directive (lines 19, 22, and 25). This tells the compiler that the version string (line 20) will get
the content from version/version.txt, which contains the version information that we want
to display to the user.

We also declare the //go:embed directive telling the compiler that we want to include everything
inside the static/ (line 22) and tmpl/ (line 25) folders. During the compilation process, the
compiler detects the preceding directives and automatically includes all the different files into the binary.

The tmpl directory contains the template that will render dynamic content, and since we have embedded
it into the binary, we need to use a different way to render it (line 56). The new renderFiles
function uses the template.ParseFS function (line 57), which renders the template declared in
the tmplEmbed variable.

The renderFiles function is called from the postHandler function (line 77), passing in the
template name and other parameters.

Now, this time when building our application, the final executable file contains the different files
(HTML, CSS, etc.) in a single file. We can now compile the application, as follows:

go build -o embed

This will generate an executable file – for example, in Linux, it will be called embed and in Windows,
it will be called embed.exe. Next, run the application as follows:

./emded

Open your browser and go to http://localhost:3333/. It should look the same as before,
except that everything is being retrieved via embed.FS. You now have a fully embedded application
that can be deployed as a single binary in the cloud.

Summary 83

Summary
This pretty big chapter served as our first look at interacting with user-provided data and handling
web requests. We’ve seen how we can add RESTful endpoints using the Go standard library and have
learned how we can use the utility functions of Gorilla Mux to quickly add more power and functionality
to our application. We’ve also explored the different ways we can handle requests. In one method,
we can now utilize Go’s html/template library to dynamically create content and package it as
a directory read from disk. Alternatively, we can use the new Go embed directive to give us a single
binary that packages up all our assets and makes for simple deployments.

In the next chapter, we will look at adding middleware to help process the request pipeline and
introduce security to ensure that content can be accessed securely.

5
Securing the Backend and

Middleware

In previous chapters, we learned how to build our database, run our web application as a server, and
serve dynamic content. In this chapter, we will discuss security – in particular, we will look at securing
the web app. Security is a vast topic so for this chapter, we will just look at the security aspects that
are relevant to our application. Another topic that we will look at is middleware and using it as part
of our application.

Middleware is software that is introduced into an application to provide generic functionality that
is used for incoming and outgoing traffic in our application. Middleware makes it easy to centralize
features that are used across different parts of our applications, and this will be discussed more in
upcoming sections of this chapter.

In this chapter, we’ll be covering the following topics:

• Adding authentication

• Adding middleware

• Adding cookies and sessions with Redis

Upon completing this chapter, you will have learned how to set up a user database and add authentication
to the app. We will also learn about middleware and how to add it to an existing app. Lastly, you
will learn about cookies, storing information in sessions, and using Redis as persistence storage for
these sessions.

Technical requirements
All the source code explained in this chapter can be checked out at https://github.com/
PacktPublishing/Becoming-a-Full-Stack-Go-Developer/tree/main/Chapter05.

https://github.com/PacktPublishing/Becoming-a-Full-Stack-Go-Developer/tree/main/Chapter05
https://github.com/PacktPublishing/Becoming-a-Full-Stack-Go-Developer/tree/main/Chapter05

Securing the Backend and Middleware86

Adding authentication
Building the application requires some consideration in terms of designing the application, and one of
the key pieces that needs to be thought of ahead of time is security. There are many facets of security
but in this section of our application, we will look at authentication.

Note
Authentication is the process of validating that a user is who they claim to be.

To add authentication to our app, we will need to store the user information in the database first. The
user information will be used to authenticate the user before using the application. The database user
table can be found inside the db/schema.sql file:

CREATE TABLE gowebapp.users (

User_ID BIGSERIAL PRIMARY KEY,

User_Name text NOT NULL,

Password_Hash text NOT NULL,

Name text NOT NULL,

Config JSONB DEFAULT '{}'::JSONB NOT NULL,

Created_At TIMESTAMP WITH TIME ZONE DEFAULT NOW() NOT NULL,

Is_Enabled BOOLEAN DEFAULT TRUE NOT NULL

The following table outlines the data types that are used for the user table:

BIGSERIAL An auto-incrementing data type that is normally used as a primary key.
TEXT A variable-length character string.
JSONB The JSON binary data type is suitable for JSON data. The database provides this

data type to make it easier to index, parse, and query JSON data directly.
TIMESTAMP A date and time data type.
BOOLEAN A logical data type that contains true or false.

The authentication will be performed by checking the User_Name and Pass_Word_Hash fields.
One thing to note – the Pass_Word_Hash field contains an encrypted password, and we will look
further into encrypting the password a bit later.

As discussed in Chapter 1, Building the Database and Model, we are using sqlc to generate the Go code
that will talk to the database. To generate the Go code, execute the following command:

make generate

Adding authentication 87

The code that will read the user information will be stored under the gen/query.sql_gen.go
file as shown here:

...

func (q *Queries) GetUserByName(ctx context.Context, userName
string) (GowebappUser, error) {

 row := q.db.QueryRowContext(ctx, getUserByName, userName)

 var i GowebappUser

 err := row.Scan(

 &i.UserID,

 &i.UserName,

 &i.PasswordHash,

 &i.Name,

 &i.Config,

 &i.CreatedAt,

 &i.IsEnabled,

)

 return i, err

}

...

The GetUserByName function queries the database by calling the QueryRowContext() function,
passing in the query that we want to use, which is defined as shown here:

const getUserByName = `-- name: GetUserByName :one

SELECT user_id, user_name, pass_word_hash, name, config,
created_at, is_enabled

FROM gowebapp.users

WHERE user_name = $1

`

The query uses the WHERE clause and expects one parameter, which is the user_name field. This is
populated by passing the userName parameter into the QueryRowContext() function.

We will look at how to create a dummy user when we start the application in the next section. A
dummy user is a user that is normally used for testing purposes – in our case, we want to create a
dummy user to test the authentication process.

Securing the Backend and Middleware88

Creating our dummy user

Our database is empty so we will need to populate it with a dummy user and in this section, we will
look at how to create one. We will add code to create a dummy user when the application starts up.
The following function inside main.go creates the dummy user, and this user will be used to log
in to the application:

func createUserDb(ctx context.Context) {

 //has the user been created

 u, _ := dbQuery.GetUserByName(ctx, "user@user")

 if u.UserName == "user@user" {

 log.Println("user@user exist...")

 return

 }

 log.Println("Creating user@user...")

 hashPwd, _ := pkg.HashPassword("password")

 _, err := dbQuery.CreateUsers(ctx,

 chapter5.CreateUsersParams{

 UserName: "user@user",

 PassWordHash: hashPwd,

 Name: "Dummy user",

 })

...

}

When the application starts up it will first check whether an existing test user exists and if none exists,
it will automatically create one. This is put inside the application to make it easier for us to test the
application. The createUserDb() function uses the CreateUsers() generated sqlc function
to create the user.

One of the things you will notice is the password is created by the following code snippet:

hashPwd, _ := pkg.HashPassword("password")

The password is passed to a HashPassword function that will return a hashed version of the clear
text password.

The HashPassword function uses the Go crypto or bcrypt standard libraries that provide a
function to return a hash of a plain string as shown here:

func HashPassword(password string) (string, error) {

Adding authentication 89

 bytes, err :=

 bcrypt.GenerateFromPassword([]byte(password), 14)

 return string(bytes), err

}

The hash generated from the string password will be different whenever the bcrypt.
GenerateFromPassword function is called. The GenerateFromPassword() function
uses the standard cryptography library to generate the hash value of the password.

Cryptography is the practice of ensuring text messages are converted into a form that is not easy to
read or deconstruct. This provides data security to make it hard to deconstruct what the data is all
about. Go provides a standard library that provides cryptography functions, which is available in
the golang.org/x/crypto package. The crypto library provides a number of cryptography
functions that you can choose from – it all depends on what you need for your application. In our
example, we use bcrypt, which is a password-hashing function.

Now that we have added a function to create a dummy user in the database, in the next section, we
will look at how to authenticate with the database.

Authenticating a user

User authentication is simple, as the application will use the function generated by sqlc, as shown here:

func validateUser(username string, password string) bool {

 ...

 u, _ := dbQuery.GetUserByName(ctx, username)

 ...

 return pkg.CheckPasswordHash(password, u.PassWordHash)

}

The GetUserByName function is used, with the username passed as a parameter to obtain the user
information. Once that has been retrieved successfully, it will check whether the password is correct
by calling CheckPasswordHash.

The CheckPasswordHash function uses the same crypto or bcrypt package and it calls the
CompareHashAndPassword function, which will compare the hashed password with the password
sent by the client. The function returns true if the password matches.

func CheckPasswordHash(password, hash string) bool {

 err := bcrypt.CompareHashAndPassword([]byte(hash),

 []byte(password))

return err == nil

}

Securing the Backend and Middleware90

The validateUser function will return true if the username and password combination exists
in the database and is correct.

Start your application and navigate your web browser to http://127.0.0.1:3333/ and you
should see a login prompt. Try logging in with incorrect credentials before entering user@user
/ password – you should now be sent to the successful login screen! Congratulations – you
successfully authenticated!

In the next section, we will look at middleware, what it is, and how to add it to our application.

Adding middleware
Middleware is a piece of code that is configured as an HTTP handler. The middleware will pre-process
and post-process the request, and it sits between the main Go server and the actual HTTP handlers
that have been declared.

Adding middleware as part of our application helps take care of tasks that are outside of the main
application features. Middleware can take care of authentication, logging, and rate limiting, among
other things. In the next section, we will look at adding a simple logging middleware.

Basic middleware

In this section, we are going to add a simple basic middleware to our application. The basic middleware
is shown in the following code snippet:

func basicMiddleware(h http.Handler) http.Handler {

 return http.HandlerFunc(func(wr http.ResponseWriter,

 req *http.Request) {

 log.Println("Middleware called on", req.URL.Path)

 // do stuff

 h.ServeHTTP(wr, req)

 })

}

Gorilla Mux makes it incredibly easy to use our middleware. This is done by exposing a function on
the router called Use(), which is implemented with a variadic number of parameters that can be
used to stack multiple pieces of middleware to be executed in order:

func (*mux.Router).Use(mwf ...mux.MiddlewareFunc)

Adding middleware 91

The following code snippet shows how we implement the Use() function to register the middleware:

func main() {

 ...

 // Use our basicMiddleware

 router.Use(basicMiddleware)

 ...

}

mux.MiddwareFunc is simply a type alias for func(http.Handler) http.Handler so
that anything that meets that interface can work.

To see our function in action, we simply call router.Use(), pass in our middleware, navigate to
our web app, and there we can see that it is called:

go build && ./chapter5

2022/01/24 19:51:56 Server Version : 0.0.2

2022/01/24 19:51:56 user@user exists...

2022/01/24 19:52:02 Middleware called on /app

2022/01/24 19:52:02 Middleware called on /css/minified.css

…

You may be wondering why you can see it being called multiple times with different paths – the reason
is that when requesting our app, it’s performing a number of GET requests for the numerous hosted
resources. Each of these is passing through our middleware as shown in Figure 5.1:

Figure 5.1 – Request passing through middleware

The handlers library – available at https://github.com/gorilla/handlers – contains
many other useful middleware methods and we’ll be using some of them later, including the handlers.
CORS() middleware to allow us to handle Cross-Origin Resource Sharing (CORS). We will look
at CORS and using this middleware in more detail in Chapter 9, Tailwind, Middleware, and CORS.

In this section, we learned about middleware, the different functionality that it can provide, and how
to add it to an app. In the next section, we will look at session handling and using cookies to track
user information as they use the application.

https://github.com/gorilla/handlers

Securing the Backend and Middleware92

Adding cookies and sessions
In this section, we are going to take a look at how we are going to keep track of the users when using
our application. We are going to take a look at session management and how it can help our application
understand whether a user is allowed to access our application. We are also going to take a look at
cookies, which are a session management tool that we are going to use.

The session management discussed in this chapter is part of the Gorilla project, which can be found
at https://github.com/gorilla/sessions.

Cookies and session handling

In this section, we are going to look at session handling and how to use it to store information relevant
to a particular user. The web as we know is stateless in nature, which means that requests are not actually
tied to any other previous requests. This makes it hard to know which requests belong to which user.
Hence, the need arises to keep track of this and store information about the user.

Note
A web session is used to facilitate interaction between users and the different services that
are used in the sequence of requests and responses. The session is unique to a particular user.

Sessions are stored in memory, with each session belonging to a particular user. Session information
will be lost if the application stops running or when the application decides to remove the session
information. There are different ways to store session information permanently in storage to be used
at a future time.

Figure 5.2 shows the high-level flow of how a session is created and used for each incoming request.
New sessions are created when one does not exist and once one is made available, the application can
use it to store relevant user information.

https://github.com/gorilla/sessions

Adding cookies and sessions 93

Figure 5.2 – Session check flow

We know that a session is used to store user-specific information – the question is how the application
knows which session to use for which user. The answer is a key that is sent back and forth between
the application and the browser. This key is called a session key, which is added to the cookie header
as shown in Figure 5.3.

Figure 5.3 – Cookie containing a session token

As seen in Figure 5.3, the cookie with the session_token label contains the key that will be sent
back to the server to identify the user stored in the session. Figure 5.3 shows the developer console of
the browser. For Firefox, you can open it using the Tools > Web Developer > Web Developer Tool
menu, and if you are using Chrome, you can access it using Ctrl + Shift + J.

Securing the Backend and Middleware94

The following snippet shows the sessionValid function, which checks whether the incoming
request contains a valid session_token key. The store.Get function will automatically create
a new one if an existing session is not available for the current user:

//sessionValid check whether the session is a valid session

func sessionValid(w http.ResponseWriter, r *http.Request) bool
{

 session, _ := store.Get(r, "session_token")

 return !session.IsNew

}

Once the application finds a session for the user, it will check the authentication status of the user as
shown here. The session information is stored as a map, and the map type stores information as key
and value, so in our case, we are checking whether the session contains the authenticated key:

func hasBeenAuthenticated(w http.ResponseWriter, r *http.
Request) bool {

 session, _ := store.Get(r, "session_token")

 a, _ := session.Values["authenticated"]

 ...

}

If there is a failure to obtain the authenticated key, the application will automatically redirect
the request to display the login page as shown here:

//if it does have a valid session make sure it has been
//authenticated

if hasBeenAuthenticated(w, r) {

 ...

}

//otherwise it will need to be redirected to /login

...

http.Redirect(w, r, "/login", 307)

We have learned about sessions and how we can use them to check whether a user has been authenticated.
We will explore this further.

Adding cookies and sessions 95

Storing session information

In the previous section, we learned about sessions and cookie handling. In this section, we will look
at how to store session information pertaining to the user. The information stored inside the session
is stored in the server memory, which means that this data will be temporarily available as long as the
server is still running. Once the server stops running, all the data stored in memory will not available
anymore. This is why we will look at persisting the data in a separate storage system in the next section.

In our sample application, we are storing information on whether the user has been authenticated
successfully. Users are allowed to access other parts of the application only when they have been
successfully authenticated.

Run the sample application and open your browser in private mode (Firefox) or incognito mode
(Chrome) and type http://localhost:3333/dashboard.html as the address. The application
will redirect you to the login page because the session does not exist. The operation to check for the
existence of the authenticated key is performed inside the storeAuthenticated function
shown here:

func storeAuthenticated(w http.ResponseWriter, r *http.Request,
v bool) {

 session, _ := store.Get(r, "session_token")

 session.Values["authenticated"] = v

 err := session.Save(r, w)

 ...

}

The session.Save function saves the session into memory after creating the authenticated
key with a new value pass as part of the function call.

Using Redis for a session

As discussed in the previous section, the sessions are stored in memory. In this section, we will look
at storing the session information permanently using Redis. The code samples for this section can be
found at https://github.com/PacktPublishing/Full-Stack-Web-Development-
with-Go/tree/main/Chapter05-redis.

The reason why we want to use Redis is because of its simplicity in terms of data storage, only containing
key values. It also can be configured for both in-memory and permanent external storage. For our
application, we will need to configure redis to store information on the disk to make it permanent.
Execute the following make command to run redis:

make redis

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/Chapter05-redis
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/Chapter05-redis

Securing the Backend and Middleware96

The following is the full Docker command used to run redis:

docker run -v $(PWD)/redisdata:/data --name local-redis -p
6379:6379 -d redis --loglevel verbose

The command runs redis using Docker and specifies the redisdata local directory as the
location of the permanent file storage for the data. To run the sample application, make sure you also
run postgres using this command:

make teardown_recreate

Once both redis and postgres are up and running, you can now run the sample app and use
the web application. The following code snippet shows the initRedis() function, which takes
care of initializing Redis. The function uses two different packages, which you can find at https://
github.com/redis/go-redis and https://github.com/rbcervilla/redisstore.
The go-redis/redis package contains the driver and API to communicate with Redis while
rbcervilla/redisstore contains a simple API to read, write, and delete data from Redis:

func initRedis() {

 var err error

 client = redis.NewClient(&redis.Options{

 Addr: "localhost:6379",

 })

 store, err = rstore.NewRedisStore(context.Background(),

 client)

 if err != nil {

 log.Fatal("failed to create redis store: ", err)

 }

 store.KeyPrefix("session_token")

}

Once the initialization has been completed, the store variable will be used to write data to and read
it from Redis. Inside the gorilla library, the sessions package automatically uses the configured
client object to handle all writing and reading of information to and from redis.

https://github.com/redis/go-redis
https://github.com/redis/go-redis
https://github.com/rbcervilla/redisstore

Summary 97

A new additional handler is added to allow the user to log out from the application as shown in the
handler snippet here:

func logoutHandler(w http.ResponseWriter, r *http.Request) {

 if hasBeenAuthenticated(w, r) {

 session, _ := store.Get(r, "session_token")

 session.Options.MaxAge = -1

 err := session.Save(r, w)

 if err != nil {

 log.Println("failed to delete session", err)

}

 }

 http.Redirect(w, r, "/login", 307)

}

The logout operation is done by setting the Options.MaxAge field for a session. This indicates to
the library that the next time the same session_token is passed to the server, it is considered an
invalid/expired session and it will redirect to the login page.

Summary
In this chapter, we learned about a few new things that can help our application better. We learned
how to add an authentication layer to our application to secure it, which helps protect our application
from being accessed anonymously. We also looked at adding middleware to our application and
showed how easy it was to add different middleware to our application without changing much code.

Lastly, we looked at session handling and learned how to use it to track user information and a user’s
journey with our application. Since session handling is not stored permanently, we looked at using
the redis data store to store the user session information, which allows the application to remember
user information anytime the application is restarted.

In the next chapter, we will look at writing code that will process information back and forth between
the browser and our application. We will look at building a REST API that will be used to perform
different operations on our data.

6
Moving to API-First

In the previous chapters, we learned about building databases, adding monitoring to applications,
using middleware, and session handling. In this chapter, we will learn about building an API in our
application, and why an API is an important part of writing applications as it forms the interface
between the frontend and the backend. Building the API first is important, as it forms the bridge for
data exchanges and can be thought of as a contract between the frontend and the backend. Having
the proper and correct form of contract is important before building an application.

We will also explore the concepts of REST and JSON to get a better understanding of what they are
and how they are used throughout our application.

Upon completion of this chapter, you will know how to design a REST API using Gorilla Mux and
also how to process requests to perform operations by converting data to and from JSON. You will
also learn how to take care of error handling.

In this chapter, we’ll be covering the following topics:

• Structuring API-first applications

• Exposing REST APIs

• Converting data to and from JSON using Go

• Error handling using JSON

Technical requirements
All the source code explained in this chapter can be checked out from https://github.com/
PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/Chapter06.

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/Chapter06
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/Chapter06

Moving to API-First100

Structuring an application
Go applications are structured inside directories, with each directory containing Go source code
that means something for those applications. There are many ways to structure your Go application
in different kinds of directories; however, one thing that you have to remember is to always give a
directory a name that will be easy for others to understand. As an application grows with time, the
chosen directory structure and where code is placed has a big impact on how easily other developers
in your team will be able to work with the code base.

Defining packages

Up to this point, we’ve kept things fairly simple, but we’re going to up our game a little and move to
a fairly common layout. We won’t use the term “standard layout,” as there’s no such thing in Go, but
we’ll look at how we’re structuring our new project and talk about how we reason them through to
best structure our Go application for clarity and understanding, as shown in Figure 6.1.

Figure 6.1: Chapter 6 package structure

Structuring an application 101

Let’s examine some of these files in a bit more detail to understand these decisions.

generate.go

If you take a look at this file, it can appear confusing at first, but we’ve used a neat Go feature called
go generate that can help:

package main

//go:generate echo Generating SQL Schemas

//go:generate sqlc generate

At a glance, it looks like a comment because comments in Go start with the // character. However,
this one starts with the word go:generate. This is called the go:generate directive; what this
means is that when go generate is executed (as shown in the following code block), it will execute
the command specified – in our example, it will print the text Generating SQL Schemas and
execute the sqlc command-line tool (sqlc generate):

$ go generate

Generating SQL Schemas

$

This is a useful technique to easily generate your build prerequisites; this can be done as part of your
workflow, performed by Makefile, or done by your CI/CD. Makefile is a file containing sets
of rules to determine which parts of a program need to be compiled and what command to use to
compile the source code. It can be used to compile all kinds of programming language source code.

All we’re doing in our generate.go file is simply ensuring that we generate the latest schema files
for sqlc. We could add mock generation, more informational messages, or generate archives or any
manner of other useful things that might make up our build.

handlers.go

This name comes purely from our experience in using the same pattern of naming files after the
functionality defined therein. Our handlers file provides a single place (for now) where our HTTP
handlers can be found. Ours contains login, logout, and all kinds of handlers and their request and
response types needed to interact with our app. We don’t do anything outside of our handlers in this
file; all connectivity and addition of middleware are performed as part of main.go to ensure the
separation of concerns.

internal/

In the “old days” of Go – back before 1.0 was released – the Go source code featured a directory called
pkg, which was for internal-only code and became an idiom for the community, as well as a way to
mark subfolders/packages as internal to a particular project.

Moving to API-First102

The pkg folder was eventually removed from the Go project but it left a bit of an unfulfilled need, and
to that end, the internal directory was created. internal is a special directory in so much as
it is recognized by the Go tool itself, which allows an author to restrict importing the package unless
they share a common ancestor. To demonstrate this, we’re storing our API package here as well as
env.go (used to simplify a way to read environmental variables in the app) and auth.go (our
specific way to handle authorization) – the auth.go or handlers.go files in particular are good
options to prevent others from importing, while others like the env package are more general and
can be moved up and out.

migrations, queries, and store

Using sqlc and golang-migrate, we’ve given ourselves a leg up in making things easy to organize
and increasing our ability to rapidly create our apps. We’re just separating things to make life a bit
easier, as shown in the sqlc.yaml configuration file here:

path: store/

schema: migrations/

queries: queries/

To see how this works in practice, take a look at the readme file provided in the repo.

We have looked at structuring applications by separating different parts of an application into different
folders. Grouping source code into different folders allows easier navigation of the application when
doing maintenance and development. In the next section, we will explore building an API that will
be used to consume data.

Exposing our REST API
Let’s understand a few concepts that we are going to use in this section:

• REST – REST stands for Representational State Transfer. It is a widely accepted set of guidelines
for creating web services. REST is independent of the protocol used, but most of the time, it is
tied to the HTTP protocol that normal web browsers use. Some of the design principles behind
REST include the following:

 � A resource has an identifier – for example, the URI for a particular order might be https://
what-ever-shop.com/orders/1.

 � Uses JSON as the exchange format – for example, a GET request to https://what-
ever-shop.com/orders/1 might return the following response body:

{"orderId":1,"orderValue":0.99,"productId":100,
"quantity":10}

Exposing our REST API 103

 � REST APIs built on HTTP are called using standard HTTP verbs to perform operations
on resources. The most common operations are GET, POST, PUT, PATCH, and DELETE.

• API – API is an acronym for Application Programming Interface, a software intermediary
that allows two applications to talk to each other. For example, if you are using the Google
search engine, you are using an API that it provides.

Combining both the preceding concepts, we come up with a REST API, and the software that we are
building is called a RESTful API, which means that the API that we provide can be accessed using REST.

In this section, we will look at exposing our RESTful handlers, a pattern for an API server, and discuss
our new middleware.Main session and the API package.

We’ve done some rework to prepare our new API-first project. We’ve abstracted the API server into its
own package in internal/api. Its responsibility is to provide a server that accepts a port to bind
on and the ability to start the server, stop it, and add routes with optional middleware.

The following is a snippet (from chapter06/main.go) of our new main function showing
this approach:

 1 func main() {

 2 ...

 3 server := api.NewServer(internal.GetAsInt(

 "SERVER_PORT", 9002))

 4

 5 server.MustStart()

 6 defer server.Stop()

 7

 8 defaultMiddleware := []mux.MiddlewareFunc{

 9 api.JSONMiddleware,

 10 api.CORSMiddleware(internal.GetAsSlice(

 "CORS_WHITELIST",

 11 []string{

 12 "http://localhost:9000",

 13 "http://0.0.0.0:9000",

 14 }, ","),

 15),

 16 }

 17

 18 // Handlers

 19 server.AddRoute("/login", handleLogin(db),

Moving to API-First104

 http.MethodPost, defaultMiddleware...)

 20 server.AddRoute("/logout", handleLogout(),

 http.MethodGet, defaultMiddleware...)

 21

 22 // Our session protected middleware

 23 protectedMiddleware :=

 append(defaultMiddleware,

 validCookieMiddleware(db))

 24 server.AddRoute("/checkSecret",

 checkSecret(db), http.MethodGet,

 protectedMiddleware...)

 25

 26 ...

 27 }

Pay special attention to how we’ve created our default middleware, which is declared in the
defaultMiddleware variable (line 8). For our protected routes, we are appending the
protectedMiddleware variable (line 23) into the existing defaultMiddleware variable.
Our custom session verification middleware is added to the middleware chain (line 23) to ensure a
valid login before allowing access to our other handlers.

We’ve also pushed two types of middleware into this api package, JSONMiddleware (line 9) and
CORSMiddleware (line 10), which takes a slice of strings for a CORS allow-list, which we’ll look
at in more depth in the next section.

Cross-Origin Resource Sharing (CORS)

Anyone working with API-first applications will encounter the concept of CORS. It’s a security
feature of modern browsers to ensure that web apps on one domain have permission to request APIs
on a different origin. The way it does this is by performing what is called a preflight request, which is
basically just a normal OPTIONS request. This returns information, telling our app that it is allowed
to talk to the API endpoint, along with the methods it supports and the origins. Origins contain the
same domain sent by the client in the origin header, or it could be a wildcard (*), which means
that all origins are allowed, as explained in Figure 6.2.

Exposing our REST API 105

Figure 6.2: CORS flow (sourced from Mozilla MDN and licensed under Creative Commons)

Our middleware wraps the Gorilla Mux CORS middleware to make it a little easier for us to provide
our CORS whitelisted domains (the domains we’re happy to respond to requests on) and all the HTTP
methods for those same domains.

JSON middleware

Another piece of middleware that is functionally needed to enforce our requirements for an API-powered
application is JSON middleware. JSON, short for Javascript Object Notation, is an open standard
file format that is used to represent data in a key-value pair and arrays.

JSON middleware uses HTTP headers to check what kind of data is being sent in a request. It checks
the Content-Type header key, which should contain the application/json value.

Moving to API-First106

If it cannot find the value that it requires, then the middleware will check the value of the Accept
header to see whether it can find the application/json value. Once the check is done and it
cannot find the value that it is looking for, it replies that it’s not a suitable content type for us to work
with. We also add that header to our ResponseWriter so that we can ensure we’re telling the
consumer we only support JSON and send that back to them.

The following code snippet shows the JSON middleware:

 1 func JSONMiddleware(next http.Handler)

 http.Handler {

 2 return http.HandlerFunc(func(wr

 http.ResponseWriter, req *http.Request) {

 3 contentType :=

 req.Header.Get("Content-Type")

 4

 5 if strings.TrimSpace(contentType) == "" {

 6 var parseError error

 7 contentType, _, parseError =

 mime.ParseMediaType(contentType)

 8 if parseError != nil {

 9 JSONError(wr,

 http.StatusBadRequest,

 "Bad or no content-type header

 found")

 10 return

 11 }

 12 }

 13

 14 if contentType != "application/json" {

 15 JSONError(wr,

 http.StatusUnsupportedMediaType,

 "Content-Type not

 application/json")

 16 return

 17 }

 18 // Tell the client we're talking JSON as

 // well.

 19 wr.Header().Add("Content-Type",

Exposing our REST API 107

 "application/json")

 20 next.ServeHTTP(wr, req)

 21 })

 22 }

Line 14 checks whether the Content-Type header contains an application/json value; otherwise,
it will return an error as part of the response (line 15).

Now that we understand the concept of middleware, we’ll develop some middleware to make handling
our sessions easier.

Session middleware

This session middleware does not fit into our api package as it’s closely tied to our session-handling
functionality, as shown in the following code snippet:

 1 session, err := cookieStore.Get(req,

 "session-name")

 2 if err != nil {

 3 api.JSONError(wr,

 http.StatusInternalServerError,

 "Session Error")

 4 return

 5 }

 6

 7 userID, userIDOK :=

 session.Values["userID"].(int64)

 8 isAuthd, isAuthdOK :=

 session.Values["userAuthenticated"].(bool)

 9 if !userIDOK || !isAuthdOK {

 10 api.JSONError(wr,

 http.StatusInternalServerError,

 "Session Error")

 11 return

 12 }

 13

 14 if !isAuthd || userID < 1 {

 15 api.JSONError(wr, http.StatusForbidden,

 "Bad Credentials")

Moving to API-First108

 16 return

 17 }

 18 ...

 19 ctx := context.WithValue(req.Context(),

 SessionKey, UserSession{

 20 UserID: user.UserID,

 21 })

 22 h.ServeHTTP(wr, req.WithContext(ctx))

 23

What the preceding middleware does is attempt to retrieve our session from cookiestore (line 1),
which we covered in the previous chapter. From the returned session map, we perform an assertion
on two values (line 7) that assigns userID the int64 value and the Boolean userIDOK.

Finally, if everything checks out, including a check of the database for the user, we use context.
WithValue() (line 19) to provide a new context with our sessionKey, which is a unique type
to our package.

We then provide a simple function called userFromSession that our handlers can call to check
the validity of the key type and the incoming session data.

In this section, we learned about middleware and looked at adding different types of middleware
to an application. Also, we looked at CORS and how it works when developing web applications. In
the next section, we will look in more detail at JSON and use models to represent JSON for requests
and responses.

Converting to and from JSON
In this section, we will look at getting and sending data from and to JSON. We will also look at creating
a structure to handle data and how the JSON conversion is done.

When dealing with JSON in Golang via the standard library, we’ve got two primary options –json.
Marshal/Unmarshal and json.NewEncoder(io.Writer)/NewDecoder(io.Reader).
In this chapter, we will look at using the Encoder/Decoder methods. The reason for using these
methods is that we can chain a function to the encoder/decoder that’s returned and call the .Encode
and .Decode functions with ease. Another benefit of this approach is that it uses the streaming
interface (namely io.Reader and io.Writer, used to represent an entity from/to which you can
read or write a stream of bytes – the Reader and Writer interfaces are accepted as input and output
by many utilities and functions in the standard library), so we have other choices than Marshal,
which works with preallocated bytes, meaning we’re more efficient with our allocations and also faster.

Converting to and from JSON 109

Defining request model

Data that flows through our application will be wrapped inside a struct. A struct is a structure that is
defined to hold data. This makes it easier to transport data across different parts of the application;
it does not make sense, if you have to transport 10 different pieces of data to different parts of the
application, to do this by calling a function with 10 parameters, but if it is inside a struct, the function
will only have to accept one parameter of that type. For simplicity, structs that hold data are also called
models, as the field defined inside the struct is modeled on the data that it represents.

Let’s take a look at the model that we defined to wrap the login data (username and password) in the
following code:

func handleLogin(db *sql.DB) http.HandlerFunc {

 return http.HandlerFunc(func(wr http.ResponseWriter, req
 *http.Request) {

 type loginRequest struct {

 Username string `json:"username"`

 Password string `json:"password"`

 }

 ...

}

As seen in the preceding code, the loginRequest model is declared with a json:"username"
definition. This tells the standard library JSON converter the following:

• username – the key name used when converted to a JSON string

• omitempty – if the value is empty, the key will not be included in the JSON string

More information can be found at https://pkg.go.dev/encoding/json#Marshal, where
you can see the different configurations that a model can have to convert from/to JSON.

Now that we have defined the model inside the function, we want to use it. The handleLogin
function uses the Decode function that exists inside the json standard library to decode the data,
as shown in the following snippet:

payload := loginRequest{}

if err := json.NewDecoder(req.Body).Decode(&payload); err !=
nil {

 ...

}

https://pkg.go.dev/encoding/json#Marshal

Moving to API-First110

Once successfully converted, the code can use the payload variable to access the values that were
passed as part of the HTTP request.

Let’s take a look at another model that the code defines to store exercise set information that is passed
by the user. The way to convert the data into newSetRequest is the same as loginRequest
using the Decode function:

 1 func handleAddSet(db *sql.DB) http.HandlerFunc {

 2 return http.HandlerFunc(func(wr

 http.ResponseWriter,

 req *http.Request) {

 3

 4 ...

 5

 6 type newSetRequest struct {

 7 ExerciseName string

 `json:"exercise_name,omitempty"`

 8 Weight int `json:"weight,omitempty"`

 9 }

 10

 11 payload := newSetRequest{}

 12 if err := json.NewDecoder(req.Body)

 .Decode(&payload); err != nil {

 13 ...

 14 return

 15 }

 16

 17 ...

 18 })

 19 }

 20

The function declares a new struct (line 6) called newSetRequest, and this will be populated by
calling the json.NewDecoder() function (line 12), which will be populated into the payload
(line 11) variable.

In this section, we looked at using a model to host the information that is passed by the user. In the
next section, we will look at sending responses back using the model.

Converting to and from JSON 111

Defining a response model

In this section, we will look at how to use a model to host information that will be sent back as a
response to the user. In Chapter 1, Building the Database and Model, we learned about sqlc tools that
generate the different database models that will be used by our application. We will use the same
database model defined by sqlc, converted to a JSON string as a response back to the user. The json
package library is smart enough to convert models into JSON strings.

Let’s look at the response sent back when a user creates a new workout – in this case, the handleAddSet
function, as shown here:

func handleAddSet(db *sql.DB) http.HandlerFunc {

 return http.HandlerFunc(func(wr http.ResponseWriter,

 req *http.Request) {

 ...

 set, err :=

 querier.CreateDefaultSetForExercise(req.Context(),

 store.CreateDefaultSetForExerciseParams{

 WorkoutID: int64(workoutID),

 ExerciseName: payload.ExerciseName,

 Weight: int32(payload.Weight),

 })

 ...

 json.NewEncoder(wr).Encode(&set)

 })

}

As you can see, the function calls the CreateDefaultSetForExercise function and uses the
set variable as a response back to the user by using the Encode function. The returned set variable
is of type GowebappSet, which is defined as follows:

type GowebappSet struct {

 SetID int64 `json:"set_id"`

 WorkoutID int64 `json:"workout_id"`

 ExerciseName string `json:"exercise_name"`

 Weight int32 `json:"weight"`

 Set1 int64 `json:"set1"`

 Set2 int64 `json:"set2"`

Moving to API-First112

 Set3 int64 `json:"set3"`

}

When the model is converted using Encode and sent back as a response, this is how it will look:

{

 "set_id": 1,

 "workout_id": 1,

 "exercise_name": "Barbell",

 "weight": 700,

 "set1": 0,

 "set2": 0,

 "set3": 0

}

In this section, we looked at a model generated by sqlc that is not only used to host read/write data
to and from a database but also used to send responses back to the user as a JSON string. In the
next section, we will look at another important feature that we need to add to the application, error
handling, which will be reported using JSON.

Reporting errors with JSON
There are many ways to handle errors when writing web applications. In our sample application, we
handle errors to inform users of what’s happening with their request. When reporting errors to users
about their request, remember not to expose too much information about what’s happening to the system.
The following are some examples of error messages reported to users that contain such information:

• There is a connection error to the database

• The username and password are not valid for connecting to the database

• Username validation failed

• The password cannot be converted to plain text

The preceding JSON error use cases are normally used in scenarios where more information needs
to be provided to the frontend to inform users. Simpler error messages containing error codes can
also be used.

Using JSONError

Standardizing error messages is as important as writing proper code to ensure application maintainability.
At the same time, it makes it easier for others to read and understand your code when troubleshooting.

Reporting errors with JSON 113

In our sample application, we will use JSON to wrap error messages that are reported to the user. This
ensures consistency in the format and content of the error. The following code snippet can be found
inside the internal/api/wrappers.go file:

 1 func JSONError(wr http.ResponseWriter,

 errorCode int, errorMessages ...string) {

 2 wr.WriteHeader(errorCode)

 3 if len(errorMessages) > 1 {

 4 json.NewEncoder(wr).Encode(struct {

 5 Status string `json:"status,omitempty"`

 6 Errors []string `json:"errors,omitempty"`

 7 }{

 8 Status: fmt.Sprintf("%d / %s", errorCode,

 http.StatusText(errorCode)),

 9 Errors: errorMessages,

 10 })

 11 return

 12 }

 13

 14 json.NewEncoder(wr).Encode(struct {

 15 Status string `json:"status,omitempty"`

 16 Error string `json:"error,omitempty"`

 17 }{

 18 Status: fmt.Sprintf("%d / %s", errorCode,

 http.StatusText(errorCode)),

 19 Error: errorMessages[0],

 20 })

 21 }

The JSONError function will use the passed errorCode parameter and errorMessages(line
1) as part of the JSON reported to the user – for example, let’s say we call the /login endpoint with
the wrong credentials using the following cURL command:

curl http://localhost:9002/login -H 'Content-Type: application/
json' -X POST -d '{"username" : "user@user", "password" :
"wrongpassword"}

You will get the following JSON error message:

{"status":"403 / Forbidden","error":"Bad Credentials"}

Moving to API-First114

The error is constructed by using the struct that is defined when encoding the JSON string (line 14).

Using JSONMessage

The sample application uses JSON not only for reporting error messages but also for reporting
successful messages. Let’s take a look at the output of a successful message. Log in using the following
cURL command:

curl http://localhost:9002/login -v -H 'Content-Type:
application/json' -X POST -d '{"username" : "user@user",
"password" : "password"}'

You will get output that looks like this:

* Trying ::1:9002...

* TCP_NODELAY set

* Connected to localhost (::1) port 9002 (#0)

> POST /login HTTP/1.1

> Host: localhost:9002

…

< Set-Cookie: session-name=MTY0NTM0OTI1OXxEdi1CQkFFQ1
80SUFBUkFCRUFBQVJQLUNBQUlHYzNSeWFXNW5EQk1BRVhWelpYSkJ
kWFJvWlc1MGFXTmhkR1ZrQkdKdmIyd0NBZ0FCQm5OMGNtbHVad3dJ-
QUFaMWMyVnlTVVFGYVc1ME5qUUVBZ0FDfHMy75qzLVPoMZ3BbNY17qBWd_
puOhl6jpgY-d29ULUV; Path=/; Expires=Sun, 20 Feb 2022 09:42:39
GMT; Max-Age=900; HttpOnly

…

* Connection #0 to host localhost left intact

Using the session-name token, use the following cURL command to create a workout:

curl http://localhost:9002/workout -H 'Content-Type:
application/json' -X POST --cookie 'session-name=
MTY0NTM0OTI1OXxEdi1CQkFFQ180SUFBUkFCRUFBQVJQLUNBQUlHYzNSeWFXNW
5EQk1BRVhWelpYSkJkWFJvWlc1MGFXTmhkR1ZrQkdKdmIyd0NBZ0FCQm5OM

GNtbHVad3dJQUFaMWMyVnlTVVFGYVc1ME5qUUVBZ0FDfHMy75qzLVPoMZ3BbNY
17qBWd_puOhl6jpgY-d29ULUV'

Summary 115

On successfully creating the workout, you will see a JSON message that looks like the following:

{"workout_id":3,"user_id":1,"start_date":"2022-02-
20T09:29:25.406523Z"}

Summary
In this chapter, we’ve looked at creating and leveraging our own middleware for session handling as
well as enforcing JSON usage on our API. We’ve also reworked our project to use a common package
layout to help separate our concerns and set ourselves up for future work and iteration.

Also in this chapter, we’ve introduced a number of helper functions, including two for creating and
reporting errors and messages to the user via JSON and an API package to abstract our server handling,
making it easy to understand and preparing us to accommodate CORS.

In the next chapter, we will discuss writing frontends in more detail and learn how to write frontend
applications using a frontend framework.

Part 3:
Single-Page Apps with

Vue and Go

In Part 3, we introduce frontend frameworks before diving into how we can combine Vue with Go and
explore different frontend technologies to power our sample applications. We will look at implementing
Cross-Origin Resource Sharing (CORS) and using JWT for sessions in our application to simplify
and secure our app from bad actors!

This part includes the following chapters:

• Chapter 7, Frontend Frameworks

• Chapter 8, Frontend Libraries

• Chapter 9, Tailwind, Middleware, and CORS

• Chapter 10, Session Management

7
Frontend Frameworks

In this chapter, we will take a high-level look at the current JavaScript frameworks available to modern
web developers. We will compare some of the popular ones, Svelte, React, and Vue, before creating a
simple app in Vue and ending by adding navigation using the popular Vue Router. This will lay the
foundations needed to later talk to our API server from Chapter 6, Moving to API-First.

 Upon completion of this chapter, we will have covered the following:

• Understanding the difference between server-side rendering and single-page applications

• Looking at different frontend frameworks

• Creating applications using the Vue framework

• Understanding routing inside the Vue framework

This chapter paves the way to the land of the frontend. We will learn about the different parts of
frontend development in this and the next chapters.

Technical requirements
All the source code used in this chapter can be checked out from https://github.com/
PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/Chapter07.

Make sure you have all the necessary tools installed on your local machine by following the instructions
from the Node.js documentation:https://docs.npmjs.com/downloading-and-
installing-node-js-and-npm.

Server-side rendering versus single-page apps
In Chapter 4, Serving and Embedding HTML Content, we created our app as a server-side rendered
app. What this means is that all of the content and assets, including the HTML, are generated on
the backend and sent on each page request. There’s nothing wrong with this; our publisher, Packt,

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/Chapter07
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/Chapter07
https://docs.npmjs.com/downloading-and-installing-node-js-and-npm
https://docs.npmjs.com/downloading-and-installing-node-js-and-npm

Frontend Frameworks120

uses server-side rendering (SSR) for its own site at https://www.packtpub.com/. SSR as
a technique is used by technologies such as WordPress and many other sites that host content that
changes less frequently and may have less interactivity.

The alternative to SSR we’re going to use for our app is client-side rendering (CSR). CSR works by
having the client fetch the app as a bundle of JavaScript and other assets, executing the JavaScript and
the app dynamically, and binding to an element that takes over the page rendering. The app creates
and renders each route dynamically in the browser. This is all done without requiring any reloading
of the bundle or content.

By moving to client-side rendering, it improves the app's interactivity and responsiveness by allowing
it to manipulate the document model, fetch additional content and data via the API, and generally
perform closer to what a user might expect from a desktop app without constant page reloads.

When we talk about reactivity, we’re describing the situation in which changes in the application state
are automatically reflected in the document object model (DOM). This is a key attribute of all of the
frameworks we’ll be exploring in this chapter, including React, Vue, and Svelte.

Introducing React, Vue, and more
If there’s one thing that the JavaScript community enjoys doing, it’s creating new frameworks!

We’re going to explore and contrast a few of the most popular ones and look at the common parts
they all share and the main points of difference.

React

React is one of the most popular JavaScript libraries available. It was created, and is still maintained, by
Meta (formerly Facebook) and was inspired heavily by a predecessor used internally within Facebook
for creating PHP components.

React uses the JavaScript Syntax eXtension (JSX) as a syntax, which looks like a combination of
HTML and Java Script. Although you can use React without compilation, most React developers are
used to the process common to most modern frameworks, which is to combine and build the source
files, the .jsx and .vue files, and build them into a final bundle that can be deployed as a static file.
We’ll look at this in a later chapter.

https://www.packtpub.com/

Introducing React, Vue, and more 121

Figure 7.1: Modern JavaScript SPA build process

React is a very popular option for creating apps and one of its strengths is the fact that there are a number
of different options to choose from when building your app, such as Redux, Flux, BrowserRouter, or
React Router. This flexibility is great but can cause conflict and strong opinions on the “one true way.”
The React team avoids this issue by continually calling out that React is a library, not a framework, so
choosing the components of your app is down to the individual.

React is similar to other frameworks in that it has a full life cycle model that can be “hooked” at runtime
to override defaults (for example, render and shouldComponentUpdate).

Svelte

Svelte straddles an interesting middle ground and is included as an alternative to the two heavy hitters
of React and Vue. Svelte takes the approach of pushing more into the compilation step, removing the
need for techniques such as diffing the virtual DOM to transpile the code into vanilla JavaScript. This
approach means less work is done by the browser but it still has a similar build process to both React
and Vue for building bundles. Svelte provides its own preferred router, called SvelteKit, but alternatives
exist and Svelte can represent a nice, lightweight alternative to the others. Svelte is quite a new project
when looking at the more established players and doesn’t have as many resources behind it, but it is
still viable for smaller projects.

Vue

The final framework we’re going to introduce is Vue, which is what we use as our preferred framework
for building our frontend application.

Frontend Frameworks122

The big appeal initially for me was the fact that the previous version of Vue (version 2) could be loaded
and run directly via a content domain network (CDN), which made experimentation and prototyping
incredibly easy back in 2016 when it was first released.

Vue offers a very familiar syntax that makes it easy to learn – it separates out the presentation from the
logic and the styling, it’s very lightweight, and it uses the concept of single-file components (SFCs).

The concept of SFC makes it incredibly easy to build simple, scoped components that can be reused
from project to project without the addition of learning the “not-quite-JavaScript” JSX used by React.

The following code is a simple component that displays a greeting using the Options API. When Vue
was first released, it used the Options API by default, but in later iterations, it has moved to include
a newer Composition API, which we’ll explore later:

<template>

 <div>

 <Thing @click="greetLog" />

 <p class="greeting">{{ greeting }}</p>

 </div>

</template>

<script>

import Thing from '@/components/thing.vue';

export default {

 name: 'Greeter',

 components: ['Thing'],

 props:{},

 mounted(){},

 methods: {

 greetLog() { console.log('Greeter') };

 },

 data() {

 return {

 greeting: 'Hello World!'

 }

 }

}

</script>

Introducing React, Vue, and more 123

<style scoped>

.greeting {

 color: red;

 font-weight: bold;

}

</style>

Example of a SFC Greeter.vue

As you can see in the preceding code block, the approach of Vue’s SFC design has three parts: the HTML,
the JavaScript, and the style (usually CSS, often “scoped”). This means you can combine the HTML-esque
style of the <template> with small Vue-specific additions, such as @click="functionName",
to easily create our components. The @click annotation featured here, which looks close to HTML,
is the syntax used by Vue to extend and bind HTML events to our objects – in this case, replacing
the native onClick attribute.

The <script> contained instance includes a name; props, used to provide properties to the
component from parents; mounted(), a function called when the component is first added to the
DOM; components, that is, the components being imported for use by the component; assorted other
methods; and finally, the data() object, which can hold our components' state.

The final part of the SFC is the <style> part – we can specify non-CSS languages here. For example,
we could use lang="scss" if we wanted to use SCSS rather than CSS. We can also add the scoped
keyword, which means that Vue will use name mangling to ensure that our CSS styles are scoped only
to this component instance.

A final benefit of using Vue is the opinionated approach taken to build tools (preferring to create Vite,
which leverages the incredibly fast esbuild to reduce bundle build times to milliseconds compared to
the slower React), component layout, and routers (Vue Router), which we’ll explore in later chapters.
The opinionated nature of Vue works nicely with the opinionated nature of Golang itself, which helps
remove a lot of debate on which approach and components to choose to build your app, ensuring that
when you bring in more team members and hand over your successful full stack app, you can be safe
in the knowledge that another Vue developer wouldn’t argue with you on how you did it, nor on the
technology chosen – mainly as they would’ve chosen the same!

So far in this section, we have looked at what the Vue framework is all about. In the next section, we
will learn by creating some simple apps using the Vue framework.

Frontend Frameworks124

Creating a Vue app
In the previous section, we discussed different frontend frameworks, so for this section, we are going
to try to use Vue to build our frontend. In this section, we will look at writing our UI in Vue and
discuss how we migrate the login page to Vue. This section will not teach you how to use Vue but
rather will look at the way we use Vue to write the frontend components for our sample application.

 Application and components
When writing software using Vue, the application will start up by creating an application instance. This
instance is the main object in our Vue-based application. Once we have an instance, then we can start
using components. Components are reusable UI pieces that contain three parts – a template (which
is like HTML), styles, and JavaScript. Normally, when designing a frontend, we think about HTML
elements – div, href, and so on – but now we need to think about components that contain all the
different parts. Figure 7.2 shows an example of the login page that we rewrite using Vue.

Figure 7.2: Vue-based login

The concept of an application inside Vue can be thought of as a self-isolated container containing
different components that can share data. Any web page can contain a number of applications displaying
different kinds of data, and even if they are isolated, they can also share data if and when required.

Login page using Vue

In this section, we will look at how we use the login page as is without converting it into a component
and use it as a Vue application rendered by the browser. We need to install the dependencies first by
running the following command:

npm install

 Application and components 125

This will install all the different dependencies, including the http-server module, which we will
be using to serve the login page. Start the server by running the following command, making sure
you are inside the chapter7/login directory:

npm run start

 You will see the output shown in Figure 7.3:

Figure 7.3: Serving using http-server

Open your browser and type http://127.0.0.1:3000/login.html into the address bar,
and you will see the login page.

Let’s dig through the code and see how it works together. The following snippet inside login.html
shows the application initialization code:

<script type="module">

 import {createApp} from 'vue'

 const app = createApp({

 data() {

 return {

 loginText: 'Login to your account',

 ...

 }

 },

 methods: {

 handleSubmit: function () {

Frontend Frameworks126

 ...

 }

 }

 }).mount('#app')

</script>

The code imports createApp from the Vue library and uses it to create an application that contains
data() and methods used inside the page. The data() block declares the variables that will be
used inside the page while methods contains functions used. The application is mounted into the
element with the ID “app” app, in this case, the <div> with id=app.

The following code snippet shows the part of the page that uses the data:

<body class="bg-gray-900">

 ...

 <p class="text-xs text-gray-50">{{ loginText

 }}</p>

 ...

 <p class="text-xs text-gray-50">

 {{ emailText }}</p>

 ...

 <p class="text-xs font-bold text-white">

 {{ passwordText }}</p>

 ...

</body>

The variable inside the curly brackets ({{}}) will be populated with the data defined previously when
we initialize the application.

The following code snippet shows the part of the page that uses the handleSubmit function:

<body class="bg-gray-900">

 ...

 <button @click="handleSubmit"

 class="px-4 pt-2 pb-2.5 w-full

 rounded-lg bg-red-500

 hover:bg-red-600">

 Application and components 127

 ...

</body>

@click on the button element will trigger the function that was defined when creating the Vue
application object, which will write to the console log the data in the username field.

Using Vite

Referring back to Figure 7.1, one of the parts of the build process is that of the bundler. In this section,
we will look at Vite, which is a bundler for Vue. What is a bundler? It is a build tool that combines all
your different assets (HTML, CSS, and so on) into one file, making it easy for distribution.

In the previous section, we linked to a CDN-hosted version of the Vue runtime. In this section, we’ll
be using Vite to build our application and generate our bundled code.

Vite – French for “quick” – was built by the same team behind Vue itself and was designed to provide
a faster development experience with extremely fast hot reload and combine it with a powerful build
stage that transpiles, minifies, and bundles your code into optimized static assets ready for deployment.
Refer back to Figure 7.1 to see all the stages used to build SPAs.

In this section, we will look at writing our login page as a component and using it as a Vue application
rendered by the browser. The code can be seen inside the chapter7/npmvue folder.

Open your terminal and run the following commands:

npm install

npm run dev

Once the server is up and running, you will get the output shown in Figure 7.4.

Figure 7.4: Vite server output

Open the browser and access the login page by entering http://localhost:3000 into the
address bar. Let’s investigate further and look at how the code is structured. We will start by looking
at the index.html page, as shown in the following snippet:

<!DOCTYPE html>

<html lang="en">

Frontend Frameworks128

 <head>

 ...

 </head>

 <body>

 <div id="app"></div>

 <script type="module" src="/src/main.js"></script>

 </body>

</html>

The preceding index.html references the main.js script, which is how we inject the Vue
initialization code.

The <div..> declaration is where the application will be mounted when rendered in the browser,
and the page also includes a script found in src/main.js.

main.js contains the Vue application initialization code, as shown:

import { createApp } from 'vue'

import App from './App.vue'

createApp(App).mount('#app')

createApp will create an application using the App object imported from App.vue, which will
be the starting component for our application. Vue-related code is normally stored inside a file with
the .vue extension. The App.vue file acts as an app container that hosts the components that it will
use. In this case, it will use the Login component, as shown in the following snippet:

<script setup>

import Login from './components/Login.vue'

</script>

<template>

 <Login />

</template>

The <script setup> tag is known as the Composition API, which is a set of APIs that allows Vue
components to be imported. In our case, we are importing the components from the Login.vue file.

The code imports the Login.Vue file as a component and uses it inside the <template> block.
Looking at the Login.vue file, you will see that it contains the HTML elements to create the login page.

 Application and components 129

The Login.vue snippet can be seen in the following code block:

<script>

export default {

 data() {

 return {

 loginText: 'Login to your account',

 ...

 }

 },

 methods: {

 handleSubmit: function () {

 ...

 }

 }

}

</script>

<style>

@import "../assets/minified.css";

</style>

<template>

 ...

 <button @click="handleSubmit"

 class="px-4 pt-2 pb-2.5 w-full rounded-lg

 bg-red-500 hover:bg-red-600">

 ...

</template>

The class used for the button in the preceding example is declared inside a minified.css file
inside the assets folder.

We have learned how to create apps using the Vue framework and wired all the different components
together. We also looked at how to use the Vite tool to write a Vue-based application. In the next
section, we will look at routing requests to different Vue components.

Frontend Frameworks130

Using Vue Router to move around
In this section, we will look at Vue Router and learn how to use it. Vue Router helps in structuring the
frontend code when designing a single-page application (SPA). An SPA is a web application that is
presented to the user as a single HTML page, which makes it more responsive as the content inside
the HTML page is updated without refreshing the page. The SPA requires the use of a router that will
route to the different endpoints when updating data from the backend.

Using a router allows easier mapping between the URL path and components simulating page navigation.
There are two types of routes that can be configured using Vue Router – dynamic and static routes.
Dynamic routes are used when the URL path is dynamic based on some kind of data. For example,
in /users/:id, id in the path will be populated with a value, which will be something such as /
users/johnny or users/acme. Static routes are routes that do not contain any dynamic data,
for example, /users or /orders.

 In this section, we will look at static routes. The examples for this section can be found in the chapter7/
router folder. Run the following command from the router folder to run the sample application:

npm install

npm run server

The command will run a server listening on port 8080. Open your browser and enter http://
localhost:8080 in the address bar. You will see the output shown in Figure 7.5:

Figure 7.5: Router sample application

The App.vue file contains the Vue Router information, which can be seen as follows:

<template>

 <div id="routerdiv">

 <table>

 ...

 <router-link :to="{ name: 'Home'}">Home

Using Vue Router to move around 131

 </router-link>

 ...

 <router-link :to="{ name: 'Login'}">Login

 </router-link>

 ...

 </table>

 <router-view></router-view>

 </div>

</template>

The preceding router-link route is defined inside router/index.js, as shown:

const routes = [

 {

 path: '/',

 name: 'Home',

 component: Home

 },

 {

 path: '/login',

 name: 'Login',

 component: Login

 },

];

The <router-link/> tag defines the router configuration that the application has, and in our case,
this is pointing to the Home and Login components declared inside the index.js file under the
router folder, as shown:

import Vue from 'vue';

import { createRouter, createWebHashHistory } from 'vue-router'

import Home from '../views/Home.vue';

import Login from "../views/Login.vue";

Vue.use(VueRouter);

const routes = [

Frontend Frameworks132

 {

 path: '/',

 name: 'Home',

 component: Home

 },

 {

 path: '/login',

 name: 'Login',

 component: Login

 },

];

const router = createRouter({

 history: createWebHashHistory(),

 base: process.env.BASE_URL,

 routes

})

export default router

Each of the defined routes is mapped to its respective components, which are the Home and Login
components, which can be found inside the views folder.

Routing the login page

We know that the /login path is mapped to the Login component, which is the same component
that we looked at in the previous section, Login page using Vue. The difference in the router example
is in the way the script is defined, as shown:

<template>

 ...

</template>

<script type="module">

export default {

 data() {

 return {

Summary 133

 loginText: 'Login to your account',

 emailText: 'Email Address',

 passwordText: 'Password',

 username: 'enter username',

 password: 'enter password',

 };

 },

 methods: {

 handleSubmit: function () {

 console.log(this.$data.username)

 }

 }

};

</script>

Unlike in the previous section, the Vue initialization code has been moved into main.js, as shown:

...

const myApp = createApp(App)

myApp.use(router)

myApp.mount('#app')

In this section, we looked at how to restructure the application to work as a SPA by using Vue Router.

Summary
In this chapter, we learned about Vue and how to structure our frontend to make it easy to transition
into components and applications. We looked at the different frontend frameworks and discussed
what each of them provides.

We looked at how components and applications work together when writing a Vue-based web page.
We tested what we learned by migrating the login page that we created as a simple HTML page to
a Vue-based application. Lastly, we learned about Vue Router and how to use it to make it easier to
route to different parts of a SPA.

Taking on board all this learning, in the next chapter, we will look at writing our application as a Vue-
based application that will communicate with the REST API that we have built.

8
Frontend Libraries

In the previous chapter, we looked at different frameworks for building frontend applications. In this
chapter, we will look at the different frontend libraries that are useful for building web applications.
Frontend libraries are predefined functions and classes that can help speed up the development time
when building frontend applications by providing functionality we’d otherwise have to build and
develop ourselves. In this chapter, we will be looking at the following libraries:

• Vuetify

• Buefy

• Vuelidate

• Cleave.js

Having completed this chapter, you will have explored the following:

• Validating data with Vuelidate

• Better input handling with Cleave.js

• Working with different UI components using Vuetify

Technical requirements
All the source code explained in this chapter can be checked out at https://github.com/
PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/Chapter08.

Make sure you have all the necessary tools installed on your local machine by following the instructions
from the node.js documentation available here: https://docs.npmjs.com/downloading-
and-installing-node-js-and-npm.

In this chapter, there will be sample code that is shared using codesandbox.io and jsfiddle.
net, which will make it easier for you to experiment with.

Let’s begin our journey by looking into Vuetify in the next section.

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/Chapter08
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/Chapter08
https://docs.npmjs.com/downloading-and-installing-node-js-and-npm
https://docs.npmjs.com/downloading-and-installing-node-js-and-npm
http://codesandbox.io
http://jsfiddle.net
http://jsfiddle.net

Frontend Libraries136

Understanding Vuetify
In Chapter 7, Frontend Frameworks, we learned about the Vue framework, which is a rich frontend
framework that allows frontend code to be extended and maintained easily. Vuetify (https://
vuetifyjs.com) provides a lot of user interface components out of the box, ready to be used by
applications. The framework also allows developers to style the user interfaces to their needs.

In this section, we will learn about Vuetify, which is a Material-based design framework that is built
on top of Vue. Material is the Design Language made popular by Google across their web apps and
Android applications – you can find out more at https://m3.material.io/ –and is a very
popular choice.

Setting up Vuetify
We are going to take a look at the example code inside the chapter08/vuetify/components
directory. The example code demonstrates how to use the Vuetify framework. Before running the
sample code, make sure you run the following command from inside the chapter08/vuetify/
components directory to install all the necessary components:

npm install

Once the installation is complete, run the sample code using the following command:

npx vue-cli-service serve

Once the server is up and running, you will get an output as shown in Figure 8.1:

Figure 8.1: Output from running npx

https://vuetifyjs.com
https://vuetifyjs.com
https://m3.material.io/

Using UI components 137

You can access the application using the URL specified in the output – for example, http://
localhost:8080. Figure 8.2 shows the output of the application:

Figure 8.2: Output from the sample app

The sample app displays the different components that are available inside Vuetify. As you can see,
there are components available for radio button groups and color pickers, among many others.

In the next section, we will look at how we use Vuetify in the sample app and how things are wired
up together.

Using UI components
There are many components provided with Vuetify but in this section, we will just talk about a few
of them to get an idea of how to use them. The example code uses components such as a color picker,
button, badge, and so on.

Frontend Libraries138

Figure 8.3 shows the directory structure of the example. All of the source files are inside the src/ folder:

Figure 8.3: The directory structure of a Vuetify sample app

The main.js host code for initializing Vue and Vuetify is shown in the following snippet:

import Vue from 'vue'

import App from './App.vue'

import vuetify from './plugins/vuetify';

Vue.config.productionTip = false

new Vue({

 vuetify,

 render: h => h(App)

}).$mount('#app')

The code looks like any other Vue-based application except it adds the Vuetify framework, which is
imported from the plugins/vuetify directory, as shown in this snippet:

import Vue from 'vue';

import Vuetify from 'vuetify/lib/framework';

Vue.use(Vuetify);

export default new Vuetify({});

Understanding Buefy 139

Vuetify is initialized in the code as a plugin using the Vue.use() function call and exported to be
made available to other parts of the code.

Now that the initialization is out of the way, let’s take a look at how the sample is using the Vuetify
components. The code snippet here from App.vue shows how the sample code uses the Color Picker
component of Vuetify:

<template>

 <v-app>

 <v-container>

 ...

 <v-row>

 <v-col>

 Color Picker

 </v-col>

 <v-col>

 <v-color-picker/>

 </v-col>

 </v-row>

 </v-container>

 </v-app>

</template>

The tags that can be seen in the snippet – <v-row>, <v-col>, <v-container>, and so on –
are all Vuetify components. The components can be configured through the available properties; for
example, if we look at the component documentation (https://vuetifyjs.com/en/api/v-
row/#props) for <v-row>, we can see that we can set different parameters, such as alignment.

In this section, we learned about Vuetify and how to use the components provided, and also how to
wire things together to use it in a Vue-based application. In the next section, we will look at different
user interface libraries that are more lightweight compared to Vuetify. We will start by looking at
Buefy in the next section.

Understanding Buefy
Buefy is another user interface framework that is built on top of Bulma. Bulma (https://bulma.
io/) is an open source CSS project that provides different kinds of styles for HTML elements; the
CSS file can be viewed at the following link: https://github.com/jgthms/bulma/blob/
master/css/bulma.css.

Let’s take a quick look at an example web page that uses Bulma CSS. This will give us a better idea of
what Bulma is all about and also give us a better understanding of how Buefy is using it.

https://vuetifyjs.com/en/api/v-row/#props
https://vuetifyjs.com/en/api/v-row/#props
https://bulma.io/
https://bulma.io/
https://github.com/jgthms/bulma/blob/master/css/bulma.css
https://github.com/jgthms/bulma/blob/master/css/bulma.css

Frontend Libraries140

Bulma sample
Open the sample chapter08/bulma/bulma_sample.html file in your browser, and the
HTML page will look like Figure 8.4:

Figure 8.4: Bulma example page

The following code snippet shows the Bulma CSS file used in the web page:

<head>

 ...

 <link rel="stylesheet" href=

 "https://cdn.jsdelivr.net/npm/bulma@0.9.3/css/

 bulma.min.css">

</head>

Setting up Buefy 141

The web page uses different HTML elements tags styled using the Bulma CSS, as seen in the following
code snippet:

<section class="hero is-medium is-primary">

 <div class="hero-body">

 <div class="container">

 <div class="columns">

 ...

 </div>

 </div>

 </div>

</section>

<section class="section">

 <div class="container">

 <div class="columns">

 <div class="column is-8-desktop

 is-offset-2-desktop">

 <div class="content">

 ...

 </div>

 </div>

 </div>

 </div>

</section>

Now that we have an idea about what Bulma is and how to use it for a web page, we will take a look
at setting up Buefy in the next section.

Setting up Buefy
We are going to look at the Buefy example that is found inside the chapter8/buefy directory.
Make sure you are inside the directory and run the following command:

npm install

npx vue-cli-service serve

Frontend Libraries142

Open the server in your browser and you will see output like Figure 8.5:

Figure 8.5: Buefy sample output

UI components
The web page displays different components available in Buefy, such as a slider, a clickable button
with a dropdown, and a breadcrumb.

Initializing Buefy is the same as initializing any other Vue plugin. It looks the same as what we went
through in the previous section when we looked at Vuetify. The code will initialize Vue by using Buefy
as stated in the Vue.use(Buefy) code:

import Vue from 'vue'

import App from './App.vue'

import Buefy from "buefy";

Vue.use(Buefy);

new Vue({

 render: h => h(App)

}).$mount('#app')

Validating data entry with Vuelidate 143

One of the components that we are using in our sample app is carousel, which displays a user
interface like a slideshow. To create carousel, it is just a few lines of code, as shown in the following
code snippet, using the <b-carousel> tag:

<!--example from https://buefy.org/documentation-->

<template>

 <section>

 <div class="container">

 <b-carousel>

 <b-carousel-item v-for="(carousel, i) in carousels"

 :key="i">

 <section :class="`hero is-medium

 is-${carousel.color}`">

 <div class="hero-body has-text-centered">

 <h1 class="title">{{ carousel.text }}</h1>

 </div>

 </section>

 </b-carousel-item>

 </b-carousel>

 </div>

...

 </section>

</template>

Like carousel, there are many different pre-built components available in Buefy that can help
design complex user interfaces.

In the next section, we will look at how we can use the Vuelidate library as a way to perform validation
on the data we capture and present in our user interface to ensure we interpret our customers’
data correctly.

Validating data entry with Vuelidate
If your app does anything interactive, it’s likely that it will handle user-entered data, which means you
must check whether what the users are providing is valid input.

Input validation libraries can be used to ensure only valid data is entered by the user and provide
feedback as soon as data is received. This means we’re validating as soon our user hits that input field!

Frontend Libraries144

We’re going to explore HTML form validation in the frontend and the difference between input and
value validation. It’s also important to note that no matter the validation in the frontend, it’s no substitute
for validation in the backend and of the API endpoints. Our goal in the frontend is to prevent the
user from making errors; however, you’ll never stop bad guys from submitting bad data to your app.

We can look at frontend validation through two lenses, as there’s a myriad of solutions out there, but
we’ll contrast two options and show a working solution – the first is that of validating input, and the
other is the validation of values.

If we only want to validate the input, we could use the vee-validate library, which works by
having you write the rules inside the <template> of your code. For example, see the following:

<script>

Vue.use(VeeValidate);

var app = new Vue({

 el: '#app',

 data: {

 email: '',

 },

 methods: {

 onSubmit: function(scope) {

 this.errors.clear(scope);

 this.$validator.validateAll(scope);

 }

 }

});

</script>

<template>

<div>

 <form v-on:submit.prevent="onSubmit('scope')">

 <div>

 <div v-for="error in errors.all('scope')">

 {{error}}

 </div>

 </div>

 <div>

 <label>Email Address</label>

Validating data entry with Vuelidate 145

 <input type="text" v-model="email"

 name="Email Address" v-validate data-scope="scope"

 data-rules="required|min:6|email">

 </div>

 <div>

 <button type="submit">

 Send

 </button>

 </div>

 </form>

 <div class="debug">

 email: {{email}}

 </div>

</div>

</template>

This inline validation – wherein we perform ValidateAll() on submitting data – will allow us to
validate the contents of the data using predefined rules, such as a field being required, its minimum
length, or that it must be a valid email ID, for example. If invalid data is entered, we can iterate through
the errors and present them to the user:

Figure 8.6: Validation error message

You can see this on the JS Playground website JSFiddle at the following link: https://jsfiddle.
net/vteudms5/.

This is useful for simple validation, but when we want to add additional logic against values and
collections of values, rather than just individual inputs, this is where libraries such as Vuelidate
become powerful.

With Vuelidate, you’ll notice that the validation is decoupled from the template code we write, unlike
the inline validation done in the vee-validate example. This allows us to write the rules against
the data model rather than the inputs in our template.

https://jsfiddle.net/vteudms5/
https://jsfiddle.net/vteudms5/

Frontend Libraries146

In Vuelidate, the validation results in a validation object referenced as this.$v, which we can use
to validate our model state. Let’s rebuild our previous example to demonstrate how we going to use
Vuelidate to validate the data – this sample is at https://jsfiddle.net/34gr7vq0/3/:

<script>

Vue.use(window.vuelidate.default)

const { required, minLength,email } = window.validators

new Vue({

 el: "#app",

 data: {

 text: ''

 },

 validations: {

 text: {

 required,

 email,

 minLength: minLength(2)

 }

 },

 methods: {

 status(validation) {

 return {

 error: validation.$error,

 dirty: validation.$dirty

 }

 }

 }

})

</script>

<template>

<div>

 <form>

 <div>

 <label>Email Address</label>

 <input v-model="$v.text.$model"

https://jsfiddle.net/34gr7vq0/3/

Validating data entry with Vuelidate 147

 :class="status($v.text)">

 <pre>{{ $v }}</pre>

 <div>

 </form>

</div>

</template>

The resulting output shows us the $v object. The required, email, and minLength fields are firing
when you type in the box. In our example, when we type in nick@bar.com, the fields change value:

Figure 8.7: Illustration of the browser output from our JSFiddle sample

mailto:nick@bar.com

Frontend Libraries148

Although similar to the vee-validate implementation in style, by utilizing the $v object concept
and allowing that to be the source of validation, we can connect it to additional inputs across multiple
forms and validate the entire collection. For example, if we had multiple fields, such as a name, email,
users, and tags across formA and formB, we would be able to create the validation as follows:

...

validations: {

 name: { alpha },

 email: { required, email }

 users: {

 minLength: minLength(2)

 },

 tags: {

 maxLength: maxLength(5)

 },

 formA: ['name', 'email'],

 formB: ['users', 'tags']

}

There’s a large collection of available validators for Vuelidate that we can import. This gives us access to
validators such as conditionally required fields; length validators; email, alpha/alphanum, regex, decimal,
integer, and URL options; and many more that are accessible by importing the validators library:

import { required, maxLength, email } from '@vuelidate/
validators'

The full list is available on the Vuelidate website at https://vuelidate-next.netlify.app/
validators.html.

Better input handling with Cleave.JS
As we’ve just seen, getting data from your users in the right shape and form can be a challenge – be it
a date in a YYYY/MM format, a phone number with a prefix, or other more structured input types.

We looked at validation previously, but you can further help your users by providing visual clues and
feedback as they type to prevent them from reaching the end with validation errors – libraries such
as those provided by the popular credit card and online payments processor. Stripe does a great job at
helping users enter their credit card info correctly, but for those of us on a budget, we can use Cleave.
js for a similar experience.

https://vuelidate-next.netlify.app/validators.html
https://vuelidate-next.netlify.app/validators.html

Better input handling with Cleave.JS 149

Figure 8.7: Credit card validation (image from https://nosir.github.io/cleave.js/)

Frustratingly, Vue isn’t supported as a first-class citizen but there’s no reason we can’t set up the directive,
which is available at codesandbox.io here – https://bit.ly/3Ntvv27. Figure 8.8 shows
how the validation will work for codesandbox.io:

Figure 8.8: Example of our Cleave.js example on codesandbox.io

It’s not as pretty in my hardcoded sample (the CSS is left as an exercise for you!) but the key part
from the sandbox sample is how we overload custom-input with our cleave directive by doing
the following:

<template>

<div id="app">

 <div>

 <custom-input

 v-cleave="{ creditCard: true,

 onCreditCardTypeChanged: cardChanged, }"

 v-model="ccNumber" />

</div>

<pre>

{{ ccNumber }}

{{ cardType }}

</pre>

</template>

http://codesandbox.io
https://bit.ly/3Ntvv27
http://codesandbox.io

Frontend Libraries150

In the future, it would be great to see Cleave.js incorporate a first-party implementation for Vue but
until then, a number of npm packages exist to skip over the setup for our sample and provide a similar
effect that will allow us to create beautiful experiences for our users.

To follow the status of Cleave.js official support, you can check out https://github.com/
nosir/cleave.js/blob/master/doc/vue.md.

With Cleave.js, we have reached the end of this chapter.

Summary
In this chapter, we learned about several frontend libraries and tools to help us to iterate through code
and design faster when building the frontend user interface for our product.

We’ve looked at using Vuetify to create customizable user interfaces, and looked at Buefy, which
provides a huge collection of UI components to allow us to build our apps rapidly.

We then finished up by providing an introduction to and contrast between input and value validation
using Vuelidate and VeeValidate, respectively, and finally, explained how we can use Cleave.js to create
smarter interfaces to help our users understand what our app expects.

In the next chapter, we will look at middleware pieces that will form the bridge between the frontend
and the backend.

https://github.com/nosir/cleave.js/blob/master/doc/vue.md
https://github.com/nosir/cleave.js/blob/master/doc/vue.md

9
Tailwind, Middleware,

and CORS

In this chapter, we will build on the frontend principles we introduced previously by introducing
Tailwind CSS, explore how we can consume our backend services via an API from our frontend app,
see how we can leverage middleware to transform our JSON requests, and look at how we can provide
a secure Single-Page App (SPA) with a user login.

In this chapter, we’ll cover the following topics:

• Creating and designing frontend applications using the Tailwind CSS framework

• Getting an understanding of how to use the Vite CLI to create new Vue applications

• Configuring our Go service for CORS

• Setting up a JavaScript Axios library

• Creating middleware to manage JSON formatting between the frontend and the backend

Technical requirements
All the source code explained in this chapter can be checked out at https://github.com/
PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/Chapter09.

Introducing Tailwind
In the previous chapter, we looked at a number of different frontend frameworks to help us go faster,
but we’ve been ignoring an elephant in the room of a modern web ecosystem – Tailwind CSS.

Frameworks such as Buefy and Vuetify have a major disadvantage. Due to increasing demand for
more and more features, growth, and usage, they became a victim of their own success and ended up
too big, giving us less control over our component styles.

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/Chapter09
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/Chapter09

Tailwind, Middleware, and CORS152

Learning about frameworks such as Buefy has become increasingly challenging. Developers have to
learn about hundreds of classes and components and then potentially rebuild them just for small style
tweaks that were simply not envisioned by the upstream community.

Tailwind is a CSS framework that, unlike other frameworks, does not come prebuilt with classes to
add to HTML tags. Instead, it uses a different approach. It brings a much lower level of control by
removing ALL default styling from the stylesheet and using utility-based classes to compose and
build your app. These utility-based classes provide ways to directly manipulate certain CSS attributes
individually, such as text size, margins, spacing, padding, and colors, as well as behavior for mobile,
desktop, and other viewports. By applying different tailwind modifiers, we have granular control over
the final appearance of an element while ensuring consistent styling and an easy escape route if we
need to build slight variations. This really helps in building our Vue components.

Figure 9.1: A button sample

A quick example of creating a blue button can be seen with the following:

<button type="button" class="

 inline-block px-6 py-2.5 bg-blue-600

 text-white font-medium text-lg leading-tight

 rounded shadow-md

 hover:bg-blue-700 hover:shadow-lg

 focus:bg-blue-700 focus:shadow-lg

 focus:outline-none focus:ring-0

 active:bg-blue-800 active:shadow-lg

 transition duration-150 ease-in-out

">Button</button>

You may be saying to yourself, “Wow, that’s a lot of CSS for a button,” but when you consider how Vue
helps us build reusable Single-File Components (SFCs), we would only need to style this once, and
all of our components would share that same utility-based CSS approach – whether it’s a button,
link, image, div, or paragraph. You can check the official docs at https://tailwindcss.
com/docs/utility-first to dive further into the concepts behind “utility-first” CSS and what
the individual classes do.

https://tailwindcss.com/docs/utility-first
https://tailwindcss.com/docs/utility-first

Introducing Tailwind 153

Creating a new Tailwind and Vite project

To create our project, we’re going to first generate it with the Vite CLI. This will give us the familiar
“Hello World” output you see here:

Figure 9.2: Hello World web output

Let’s create a new Vue project with Vite using the following command:

npm create vite@latest

For each of the questions asked, enter the information shown here:

✔ Project name: … vue-frontend
✔ Select a framework: › vue
✔ Select a variant: › vue

Scaffolding project in /Users/.../vue-frontend...

Done. Now run:

Tailwind, Middleware, and CORS154

 cd vue-frontend

 npm install

 npm run dev

$ npm install

$ npm run dev

> vue-frontend@0.0.0 dev

> vite

 vite v2.9.12 dev server running at:

 > Local: http://localhost:3000/

 > Network: use `--host` to expose

 ready in 332ms.

Going to http://localhost:3000 will now show the screenshot from Figure 9.2. Our project
is enabled with “hot reload” or “live reload” so as you change the project code, you will be able to see
the design in the browser update when you save the file.

Previous versions of Tailwind CSS had a bit of a reputation for generating large stylesheets (between
3 and 15 MB!) and slowing down build times.

At the end of the Tailwind CSS version 2 era, the team introduced a new Just-In-Time (JIT) compiler
that automatically generates only the necessary CSS required to style your design. This was originally
available as an optional plugin but brought massive improvements by reducing bloat, and with JIT,
the CSS in development is the same as your final code, which meant no post-processing of the CSS
is required for your final builds. Since Tailwind CSS version 3 and above, the JIT compiler has been
enabled by default when we install Tailwind CSS, so we don’t have to worry about altering anything
in our config file other than what is needed to lay out our project.

We’re going to now add Tailwind CSS to our project and make some changes to the default Vue Hello
World output provided by the scaffolding from both the Vue and Tailwind packages:

$ npm install -D tailwindcss postcss autoprefixer

$ npx tailwindcss init -p

Created Tailwind CSS config file: tailwind.config.js

Introducing Tailwind 155

Created PostCSS config file: postcss.config.js

$ cat << EOF > tailwind.config.js

/** @type {import('tailwindcss').Config} */

module.exports = {

 content: [

 "./index.html",

 "./src/**/*.{vue,js}",

],

 theme: {

 extend: {},

 },

 plugins: [],

}

EOF

$ cat << EOF > ./src/tailwind.css

@tailwind base;

@tailwind components;

@tailwind utilities;

EOF

$ cat << EOF > ./src/main.js

import { createApp } from 'vue'

import App from './App.vue'

import './tailwind.css'

createApp(App).mount('#app')

EOF

The directives beginning with @tailwind in the tailwind.css file are part of how we tell
the JIT compiler what to apply to generate the CSS – we will only leverage the base, component
and utility directives and refer you to the Tailwind CSS official docs for more on this – https://
tailwindcss.com/docs/functions-and-directives.

We can now open up our HelloWorld.vue file and replace the contents with the following to
create our button. The cool part with our dev server still running is that you should be able to see the
changes in real time if you save your file as you manipulate the button classes:

https://tailwindcss.com/docs/functions-and-directives
https://tailwindcss.com/docs/functions-and-directives

Tailwind, Middleware, and CORS156

<template>

 <div class="flex space-x-2 justify-center">

 <button

 @click="count++"

 type="button"

 class="inline-block px-6 py-2.5 bg-blue-600

 text-white font-medium text-lg leading-tight

 normal-case rounded shadow-md hover:bg-blue-

 700 hover:shadow-lg focus:bg-blue-700

 focus:shadow-lg focus:outline-none

 focus:ring-0 active:bg-blue-800

 active:shadow-lg transition duration-150

 ease-in-out"

 >

 Click me - my count is {{ count }}

 </button>

 </div>

</template>

You should end up with something like this:

Figure 9.3: The Click me button

Congratulations! You’ve created your first Tailwind and Vite project. You can see the complete example
inside the chapter9/tailwind-vite-demo folder.

In the next section, we will look at how to use the API that we developed in Golang from our frontend.

Consuming your Golang APIs
We’re going to build on our previous frontend example to add some functions to GET and POST from
a simple backend service. The source code can be found inside the chapter9/backend folder;
it focuses on two simplified functions that do little more than return a fixed string for GET and a
reversed string based on the POST request that we sent.

Consuming your Golang APIs 157

The appGET() function provides the functionality to perform a GET operation, while the appPOST()
function provides it for a POST operation:

func appGET() http.HandlerFunc {

 type ResponseBody struct {

 Message string

 }

 return func(rw http.ResponseWriter, req *http.Request) {

 log.Println("GET", req)

 json.NewEncoder(rw).Encode(ResponseBody{

 Message: "Hello World",

 })

 }

}

func appPOST() http.HandlerFunc {

 type RequestBody struct {

 Inbound string

 }

 type ResponseBody struct {

 OutBound string

 }

 return func(rw http.ResponseWriter, req *http.Request) {

 log.Println("POST", req)

 var rb RequestBody

 if err := json.NewDecoder(req.Body).Decode(&rb);

 err != nil {

 log.Println("apiAdminPatchUser: Decode

 failed:", err)

 rw.WriteHeader(http.StatusBadRequest)

 return

 }

 log.Println("We received an inbound value of",

 rb.Inbound)

 json.NewEncoder(rw).Encode(ResponseBody{

 OutBound: stringutil.Reverse(rb.Inbound),

Tailwind, Middleware, and CORS158

 })

 }

}

We’ll start our service by using go run server.go, with a view to consuming this data from
our frontend application.

We’re going to create two utility functions in our frontend app to allow us to interact with our frontend
app, and we’re going to be building these on top of Axios. Axios is a Promise-based HTTP client for
the browser that abstracts all the browser-specific code needed to interact with backend services and
does an incredible job in providing a single interface for web requests across all browsers , which you
can read more about at the official docs here: https://axios-http.com/.

We’re going to first install axios, then set up our Axios instance, and then we can layer on functionality:

$ npm install axios

With axios installed, you’ll now want to create a lib/api.js file containing the following:

import axios from 'axios';

// Create our "axios" object and export

// to the general namespace. This lets us call it as

// api.post(), api.get() etc

export default axios.create({

 baseURL: import.meta.env.VITE_BASE_API_URL,

 withCredentials: true,

});

There’s a couple of interesting things to note here; the first is the baseURL value, and the second
is withCredentials.

The baseURL value is what Axios uses to build all subsequent requests on top of. If we called axios.
Patch('/foo') with a baseURL value of https://www.packtpub.com/, it would perform
a PATCH call to https://www.packtpub.com/foo. This is a great way to switch between
development and production and ensure you reduce typos.

But what are we doing with import.meta.env? This is partly how Vite imports and exposes
environment variables. We’re going to add our VITE_BASE_API_URL to a .env file situated at
the base of our project containing the following:

VITE_BASE_API_URL="http://0.0.0.0:8000"

https://axios-http.com/
https://www.packtpub.com/
https://www.packtpub.com/foo

Consuming your Golang APIs 159

Combined with this and our new lib/api.js file, we can now call axios.Put('/test')
from our code, and by default, it will reference http://0.0.0.0:8000/test. You can see more
about how Vite handles environment variables and more at https://vitejs.dev/guide/
env-and-mode.html.

The other part to note is the withCredentials property. This value indicates whether or not cross-
site access control requests should be made using credentials such as cookies and authorization headers.

The reason we want this property is that we want all our cookie settings to be consistent, but we’ll need
to ensure our backend app understands it, which we’ll cover shortly. Setting withCredentials
has no effect on same-site requests.

Now that we’ve used this to instantiate our axios instance, we can leverage this by creating our own
api/demo.js file inside our frontend application’s src folder. It’s not a very original name but it
works for us:

import api from '@/lib/api';

export function getFromServer() {

 return api.get(`/`);

}

export function postToServer(data) {

 return api.post(`/`, data);

}

This code exports two functions called getFromServer and postToServer, with an additional
data parameter being sent as the POST body on the latter function.

A neat trick here is the usage of the @ import – this is common in a lot of setups to allow us to quickly
specify the base path for our code to keep things clean and remove relative/absolute pathing with lots
of ../.. referenced everywhere. If you forget this, you’ll see errors such as this:

12:23:46 [vite] Internal server error: Failed to resolve import
"@/api/demo" from "src/components/HelloWorld.vue". Does the
file exist?

 Plugin: vite:import-analysis

 File: /Users/nickglynn/Projects/Becoming-a-Full-Stack-Go-

 Developer/chapter 9/frontend/src/components/

 HelloWorld.vue

 1 | import { ref } from 'vue';

https://vitejs.dev/guide/env-and-mode.html
https://vitejs.dev/guide/env-and-mode.html

Tailwind, Middleware, and CORS160

 2 | import * as demoAPI from '@/api/demo';

 | ^

 3 |

 4 | // Sample to show how we can inspect mode

Not great! To fix this, open up your vite.config.js file and replace the contents with the following:

import { defineConfig } from 'vite'

import vue from '@vitejs/plugin-vue'

import path from 'path';

// https://vitejs.dev/config/

export default defineConfig({

 plugins: [vue()],

 // Add the '@' resolver

 resolve: {

 alias: {

 '@': path.resolve(__dirname, 'src'),

 },

 },

})

I’ve bolded the key parts that we’re adding. We’re telling Vite to use the @ symbol as an alias so that
when we use @ in a path, it calls path.resolve() to resolve the path segments into an absolute path.

With all of this now set up, we’re going to open up our HelloWorld.vue and update it, the goal
being to create something that looks like Figure 9.4

Figure 9.4: The UI for GET and POST

Consuming your Golang APIs 161

Here is the full code for HelloWorld.vue:

<script setup>

import { ref } from 'vue';

import * as demoAPI from '@/api/demo';

// Sample to show how we can inspect mode

// and import env variables

const deploymentMode = import.meta.env.MODE;

const myBaseURL = import.meta.env.VITE_BASE_API_URL;

async function getData() {

 const { data } = await demoAPI.getFromServer()

 result.value.push(data.Message)

}

async function postData() {

 const { data } = await demoAPI.postToServer({ Inbound: msg.
 value })

 result.value.push(data.OutBound)

}

const result = ref([])

const msg = ref("")

defineProps({

 sampleProp: String,

});

</script>

<template>

 <div class="flex space-2 justify-center">

 <button

 @click="getData()"

 type="button"

 class="inline-block px-6 py-2.5 bg-blue-600

Tailwind, Middleware, and CORS162

 text-white font-medium text-lg leading-tight

 normal-case rounded shadow-md hover:bg-blue-

 700 hover:shadow-lg focus:bg-blue-700

 focus:shadow-lg focus:outline-none

 focus:ring-0 active:bg-blue-800

 active:shadow-lg transition
 duration-150 ease-in-out"

 >

 Click to Get

 </button>

 </div>

 <div class="flex mt-4 space-2 justify-center">

 <input type="text"

 class="inline-block px-6 py-2.5 text-blue-600

 font-medium text-lg leading-tight

 rounded shadow-md border-2 border-solid

 border-black focus:shadow-lg focus:ring-1 "

 v-model="msg" />

 <button

 @click="postData()"

 type="button"

 class="inline-block px-6 py-2.5 bg-blue-600

 text-white font-medium text-lg leading-tight

 normal-case rounded shadow-md hover:bg-blue-

 700 hover:shadow-lg focus:bg-blue-700

 focus:shadow-lg focus:outline-none

 focus:ring-0 active:bg-blue-800

 active:shadow-lg transition

 duration-150 ease-in-out"

 >

 Click to Post

 </button>

 </div>

 <p>You are in {{ deploymentMode }} mode</p>

 <p>Your API is at {{ myBaseURL }}</p>

 <li v-for="(r, index) in result">

CORS for secure applications 163

 {{ r }}

</template>

<style scoped></style>

The parts in bold are the most interesting parts. These show how we can use GET and POST with our
data, using our libraries and API calls from the backend server that we set up, as well as how we can
bind the data and reference it in our Vue modules.

Hopefully, after making all these changes, your Vite instance is still running; if not, start it with npm
run dev, and you should get the screenshot from Figure 9.4. Click the Click to Get button and enter
some data to send via the Click to post button.

Figure 9.5: Peeking into the HTTP traffic

It doesn’t work! We’re so close, but first, we have to revisit CORS from one of our previous chapters.

CORS for secure applications
In Chapter 6, Moving to API-First, we introduced the CORS middleware for our backend. We’ve
now got to update our new backend service. It will need to respond to OPTION preflight requests,
as we discussed in Chapter 6, Moving to API-First, and will also need to identify the URLs that we’re
going to allow to talk to our service. This is necessary to ensure our browsers aren’t being tricked into
submitting/modifying applications from other sources.

Open up the backend/server.go sample you’ve been running and review the main function:

...

Tailwind, Middleware, and CORS164

 port := ":8000"

 rtr := mux.NewRouter()

 rtr.Handle("/", appGET()).Methods(http.MethodGet)

 rtr.Handle("/", appPOST()).Methods(http.MethodPost,

 http.MethodOptions)

 // Apply the CORS middleware to our top-level router, with
 // the defaults.

 rtr.Use(

 handlers.CORS(

 handlers.AllowedHeaders(

 []string{"X-Requested-With",
 "Origin", "Content-Type",}),

 handlers.AllowedOrigins([]string{

 "http://0.0.0.0:3000",
 "http://localhost:3000"}),

 handlers.AllowCredentials(),

 handlers.AllowedMethods([]string{

 http.MethodGet,

 http.MethodPost,

 })),

)

 log.Printf("Listening on http://0.0.0.0%s/", port)

 http.ListenAndServe(port, rtr)

As before, I’ve put the key parts in bold. You can see we’ve appended http.MethodOptions to
our POST handler, and we’ve also layered in some additional middleware.

AllowedHeaders has been included, and we’re specifically accepting Content-Type as, by
default, we won’t accept JSON – only application/x-www-form-urlencoded, multipart/
form-data, or text/plain are accepted.

We also use AllowCredentials to specify that the user agent may pass authentication details
along with the request, and finally, we’re specifying our dev server’s location, both for localhost
and the 0.0.0.0 address. This might be slight overkill but can help if your backend and frontend
start differently.

For a production-ready version of our project, you will want to inject these as environment
variables to avoid mixing development and production config files. If you leverage env.go from

CORS for secure applications 165

Chapter 6, Moving to API - First – available at https://github.com/PacktPublishing/
Full-Stack-Web-Development-with-Go/blob/main/Chapter06/internal/env.
go – you will do something like the following:

rtr.Use(

 handlers.CORS(

 handlers.AllowedHeaders(

 env.GetAsSlice("ALLOWED_HEADERS")),

 handlers.AllowedOrigins(

 env.GetAsSlice("ORIGIN_WHITELIST")),

 handlers.AllowCredentials(),

 handlers.AllowedMethods([]string{

 http.MethodGet,

 http.MethodPost,

 })),

)

Once your server is configured correctly, (re)start both the backend and the frontend, and you should
now be able to call your backend service to use GET and POST. You’ve now completed a full-stack project!

Figure 9.6: UI displaying output from the server

In this section, we looked at adding CORS functionality to our application, allowing the frontend to
access our API. In the next section, we will look at exploring Vue middleware that will help to provide
common data transformation functionality.

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/blob/main/Chapter06/internal/env.go
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/blob/main/Chapter06/internal/env.go
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/blob/main/Chapter06/internal/env.go

Tailwind, Middleware, and CORS166

Creating Vue middleware
Working with Vue (and Axios) and Golang, we’ve shown we can bring all of learning so far all together,
but we’ve missed one small aspect. We’ve deliberately omitted the JSON struct tags from our Golang
code. If we add them back into our backend/server.go and rerun both the server and app, our
requests no longer work!

func appPOST() http.HandlerFunc {

 type RequestBody struct {

 InboundMsg string `json:"inbound_msg,omitempty"`

 }

 type ResponseBody struct {

 OutboundMsg string `json:"outbound_msg,omitempty"`

 }

...

Our frontend and backend can no longer communicate as the contract has changed; the frontend is
communicating in CamelCase, while the backend is communicating in snake_case.

This isn’t a show-stopper, as we’ve proven we can work around it, but sometimes we don’t have the
luxury of telling the backend service what format to use. Thankfully, Axios can be modified to add
transformers to our requests that will modify inbound and outbound requests to match whichever
backend formatting we’re given.

To build our transformers, we’ll install and use two new packages to help us to create our transformers.
These will be used to convert between the different formats/case types:

$ npm install snakecase-keys camelcase-keys

Finally, we’ll modify our lib/api.js file to use these libraries to format our payloads:

import axios from 'axios';

import camelCaseKeys from 'camelcase-keys';

import snakeCaseKeys from 'snakecase-keys';

function isObject(value) {

 return typeof value === 'object' && value instanceof

 Object;

}

Creating Vue middleware 167

export function transformSnakeCase(data) {

 if (isObject(data) || Array.isArray(data)) {

 return snakeCaseKeys(data, { deep: true });

 }

 if (typeof data === 'string') {

 try {

 const parsedString = JSON.parse(data);

 const snakeCase = snakeCaseKeys(parsedString, { deep:

 true });

 return JSON.stringify(snakeCase);

 } catch (error) {

 // Bailout with no modification

 return data;

 }

 }

 return data;

}

export function transformCamelCase(data) {

 if (isObject(data) || Array.isArray(data)) {

 return camelCaseKeys(data, { deep: true });

 }

 return data;

}

export default axios.create({

 baseURL: import.meta.env.VITE_BASE_API_URL,

 withCredentials: true,

 transformRequest: [...axios.defaults.transformRequest,

 transformSnakeCase],

 transformResponse: [...axios.defaults.transformResponse,

 transformCamelCase],

});

Tailwind, Middleware, and CORS168

This code might look like a lot, but it’s what we need to create our transformers. We create a to
function and a from function to add as transformers to the Axios instantiation. We transform the
requests into snake_case on the outbound/request and transform them to CamelCase on the inbound/
response. If you want to dive into the specifics of creating transformers for Axios, you can find more
on the website at https://axios-http.com/docs/req_config, which includes a look at
all the other numerous configs and parameters that can be provided for the Axios library.

There are a few different methods/libraries we could use to accomplish the same goal – for example,
the humps package from https://www.npmjs.com/package/humps is another library we
could use to expose similar functionality, but what we are using works well for our use case.

Summary
This chapter introduced Tailwind CSS and discussed its utility-first approach. We’ve previously seen
samples of it in Chapter 4, Serving and Embedding HTML Content, where we were provided with the
HTML/CSS, but this is our first look at using it and how we can rapidly create components outside
of heavier frameworks, as well as how we can rapidly integrate it with our frontend Vue application
with configuration and how we can test its successful installation.

In this chapter, we created a full-stack application, bringing our expertise together thus far. We’ve
successfully built a frontend application in Vue that communicates with our backend in Golang; as part
of this, we also looked at how to configure and use Axios and how to mitigate common CORS issues,
before concluding with a brief look at using middleware in our Vue app to allow us to communicate
across different JSON schemas in the backend.

In the next chapter, we’ll look into securing our sessions, using JWTs for sessions, middleware, and
creating and using navigation guards in Vue.

https://axios-http.com/docs/req_config
https://www.npmjs.com/package/humps

10
Session Management

In Chapter 9, Tailwind, Middleware, and CORS, we created a full-stack app with an independent
frontend and backend talking to each other via an API.

In this chapter, we’ll bring all of our existing knowledge together, introduce how to create and validate
JSON Web Tokens (JWTs) for session management and middleware, set up the basic tenets of using
Vue Router with navigation guards, and learn about errors and “catch-all” navigation guards.

We’ll cover the following topics in this chapter:

• Session management and JWTs

• (Re)introducing Vue Router

• Navigation guards

• Defaults and error pages

By the end of this chapter, we’ll have an understanding of how to complete and secure a project ready
for our waiting users.

Technical requirements
All the source code explained in this chapter can be checked out at https://github.com/
PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/chapter10.

Session management and JWTs
We looked at session management using cookies previously in Chapter 6, Moving to API-First, using
the Gorilla Mux middleware. In our app, we created an in-memory cookie store via the functionality
provided by Gorilla sessions: https://github.com/gorilla/sessions.

We previously implemented our middleware to validate that our user was approved by encoding two
values – a user ID we looked up from the database and a userAuthenticated Boolean value.

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/chapter10
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/chapter10
https://github.com/gorilla/sessions

Session Management170

This worked well for our use case, but our implementation meant that every call to our API backend
required a round trip to the database to check that the user ID was still present, before letting the
call continue.

Figure 10.1: An illustration of login and save API workflows using a session cookie

This approach is fine and the Gorilla sessions library provides a number of alternative backends to
speed things up, such as using Redis and SQLite, but we’re going to look at an alternative approach
using JWTs.

What’s a JWT?

JWT stands for JSON Web Token. A JWT is a standard for creating data with optional signatures (public
or public/private) and/or encryption, with a payload consisting of JSON that asserts a number of what
the JWT specification calls claims. You can generate and examine JWTs on the web at jwt.io, and
these are broken down into three parts, consisting of the header, the payload (with the claims), and
the signature. These are then base64-encoded and concatenated together using a . separator, which
you can see here.

Session management and JWTs 171

Figure 10.2: Color-coded illustration showing the parts of a JWT

The part that is of interest to us is the payload and the claims. A number of reserved claims exist that
we should respect as part of the specification, which are as follows:

• iss (issuer): The issuer of the JWT.

• sub (subject): The subject of the JWT (the user).

• aud (audience): The recipient for which the JWT is intended.

• exp (expiration time): The time after which the JWT expires.

• nbf (not before time): The time before which the JWT must not be accepted for processing.

• iat (issued at time): The time at which the JWT was issued. This can be used to determine the
age of the JWT.

• jti (JWT ID): A unique identifier. This can be used to prevent the JWT from being replayed
(allows a token to be used only once).

In the library, we’re going to use go-jwt, available at https://github.com/golang-jwt/
jwt. These standard claims are provided via a Go struct, as shown here:

// Structured version of Claims Section, as referenced at

// https://tools.ietf.org/html/rfc7519#section-4.1

type StandardClaims struct {

 Audience string `json:"aud,omitempty"`

 ExpiresAt int64 `json:"exp,omitempty"`

 Id string `json:"jti,omitempty"`

 IssuedAt int64 `json:"iat,omitempty"`

 Issuer string `json:"iss,omitempty"`

 NotBefore int64 `json:"nbf,omitempty"`

 Subject string `json:"sub,omitempty"`

}

https://github.com/golang-jwt/jwt
https://github.com/golang-jwt/jwt

Session Management172

We can add to these claims to provide our own additional claims, and in typical Go style, we do so
by embedding StandardClaims into our own struct, which I’ve called MyCustomClaims, as
shown here:

 mySigningKey := []byte("PacktPub")

 // Your claims above and beyond the default

 type MyCustomClaims struct {

 Foo string `json:"foo"`

 jwt.StandardClaims

 }

 // Create the Claims

 claims := MyCustomClaims{

 "bar",

 // Note we embed the standard claims here

 jwt.StandardClaims{

 ExpiresAt: time.Now().Add(time.Minute *

 1).Unix(),

 Issuer: "FullStackGo",

 },

 }

 // Encode to token

 token := jwt.NewWithClaims(jwt.SigningMethodHS256,

 claims)

 tokenString, err := token.SignedString(mySigningKey)

 fmt.Printf("Your JWT as a string is %v\n", tokenString)

If you execute this code, you will get the following output:

$ go run chapter10/jwt-example.go

Your JWT as a string is eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.ey
Jmb28iOiJiYXIiLCJleHAiOjE2NTY3MzY2NDIsImlzcyI6IkZ1bGxTdGFja0dv
In0.o4YUzyw1BUukYg5H6CP_nz9gAmI2AylvNXG0YC5OE0M

Session management and JWTs 173

When you run the sample code or write your own, it will look slightly different because of the relative
expiration in StandardClaims, and if you tried decoding the preceding string, chances are that
it will show as expired by quite a few seconds!

You may be asking why you should care about JWTs when you've already seen your database-based
middleware working. The reason is that we can save a round trip to our database, saving us time
and bandwidth.

Because JWTs are signed, we can confidently assume that the provided claims can be asserted to be
true so long as the JWT is decoded as we expect. With our JWT-based model, we can instead encode
the user details and permissions into the claims on the JWT itself.

Figure 10.3: An illustration of login and save API workflows using a JWT secured session

This all seems great, but there are a number of “gotchas” when working with JWTs, and it’s worth
covering them before we start using them in every situation.

Session Management174

The “none algorithm” gotcha

An unsecured JWT can be created where the “alg” header parameter value is set to “none” with an
empty string for its signature value.

Given that our JWTs are simply base64-encoded payloads, a malicious hacker could decode our JWT,
strip off the signature, change the alg parameter to “none” and try to present it back to our API as a
valid JWT.

$ Pipe our encoded JWT through the base64 command to decode it

$ echo eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9 | base64 -D

{"alg":"HS256","typ":"JWT"}

$ echo '{"alg":"none","typ":"JWT"}' | base64

eyJhbGciOiJub25lIiwidHlwIjoiSldUIn0K

It’s important that the library you’re using verifies that you’re receiving your JWTs back with the same
alg you provided, and you should verify this yourself before using it.

The “logout” gotcha

When you click to log out of your web app, the common thing to do is to set the cookie expiration
to a date in the past, and then the browser will delete the cookie. You should also remove any active
session information from your database and/or app. The issue is that with JWTs, it may not work
how you expect it to. Because a JWT is self-contained, it will continue to work and be considered
valid until it expires – the JWT expiration, not that of the cookie – so if someone were to intercept
your JWT, they could continue to access the platform until the JWT expired.

The “banlist” or “stale data” gotcha

Similar to the logout gotcha, because our JWTs are self-contained, the data stored in them can be
stale until refreshed. This can manifest as access rights/permissions becoming out of sync or, worse
still, someone being able to continue to log in to your application after you’ve banned them. This is
worse in scenarios where you need to be able to block a user in real time – for example, in situations
of abuse or poor behavior. Instead, with the JWT model, the user will continue to have access until
the token expires.

Using JWTs with cookies and our middleware

With all of our previous gotchas understood, we’re going to write some simple middleware and cookie
handling to build on our simple API service from Chapter 9, Tailwind, Middleware, and CORS,
combining it with our knowledge from Chapter 5, Securing the Backend and Middleware.

This code is all provided on GitHub under chapter10/simple-backend.

Session management and JWTs 175

Setting cookies and validation middleware

In order to start using our new JWTs, we’re going to write some middleware for the mux to consume
that we will inject into all our protected routes. As before, we’re using a signature that the default
library uses, where we take in http.Handler and return handlerFunc. When successful, we
call next.ServerHTTP(http.ResponseWriter, *http.Request) to continue and
indicate the successful handling of a request:

// JWTProtectedMiddleware verifies a valid JWT exists in

// our cookie and if not, encourages the consumer to login

// again.

func JWTProtectedMiddleware(next http.Handler) http.Handler {

 return http.HandlerFunc(func(w http.ResponseWriter,

 r *http.Request) {

 // Grab jwt-token cookie

 jwtCookie, err := r.Cookie("jwt-token")

 if err != nil {

 log.Println("Error occurred reading cookie", err)

 w.WriteHeader(http.StatusUnauthorized)

 json.NewEncoder(w).Encode(struct {

 Message string `json:"message,omitempty"`

 }{

 Message: "Your session is not valid –

 please login",

 })

 return

 }

 // Decode and validate JWT if there is one

 userEmail, err := decodeJWTToUser(jwtCookie.Value)

 if userEmail == "" || err != nil {

 log.Println("Error decoding token", err)

 w.WriteHeader(http.StatusUnauthorized)

 json.NewEncoder(w).Encode(struct {

 Message string `json:"message,omitempty"`

 }{

Session Management176

 Message: "Your session is not valid –

 please login",

 })

 return

 }

 // If it's good, update the expiry time

 freshToken := createJWTTokenForUser(userEmail)

 // Set the new cookie and continue into the handler

 w.Header().Add("Content-Type", "application/json")

 http.SetCookie(w, authCookie(freshToken))

 next.ServeHTTP(w, r)

 })

}

This code is checking for our cookie, named jwt-token, and decodes it with our new
decodeJWTToUser, checking the value for a valid entry. In our case, we expect userEmail,
and if it is not present, we simply return an invalid session message. In this example, we then update
the expiry time for the JWT and exit the function after setting the latest cookie.

In practice, we would check more strictly to ensure that a small window is kept for valid claims, and
we’d then go back to the database to check whether the user still had permission to access our platform.

The functionality we use for setup and manipulation of our cookies is very similar to our previous
work in Chapter 5, Securing the Backend and Middleware including with the domain, same-site mode,
and, most importantly, HttpOnly and Secure.

We use Secure as good practice to ensure that it’s only ever sent via secure HTTPS (except on localhost
for development) as, although we can be confident our JWT is secure, it can still be decoded with
tools such as jwt.io:

var jwtSigningKey []byte

var defaultCookie http.Cookie

var jwtSessionLength time.Duration

var jwtSigningMethod = jwt.SigningMethodHS256

func init() {

 jwtSigningKey = []byte(env.GetAsString(

Session management and JWTs 177

 "JWT_SIGNING_KEY", "PacktPub"))

 defaultSecureCookie = http.Cookie{

 HttpOnly: true,

 SameSite: http.SameSiteLaxMode,

 Domain: env.GetAsString("COOKIE_DOMAIN",

 "localhost"),

 Secure: env.GetAsBool("COOKIE_SECURE", true),

 }

 jwtSessionLength = time.Duration(env.GetAsInt(

 "JWT_SESSION_LENGTH", 5))

}

...

func authCookie(token string) *http.Cookie {

 d := defaultSecureCookie

 d.Name = "jwt-token"

 d.Value = token

 d.Path = "/"

 return &d

}

func expiredAuthCookie() *http.Cookie {

 d := defaultSecureCookie

 d.Name = "jwt-token"

 d.Value = ""

 d.Path = "/"

 d.MaxAge = -1

 // set our expiration to some date in the distant

 // past

 d.Expires = time.Date(1983, 7, 26, 20, 34, 58,

 651387237, time.UTC)

 return &d

}

Session Management178

The HttpOnly flag is used for us in our cookie package and hasn’t been mentioned before – so,
what is it?

Well, by default, when we don’t use HttpOnly, our frontend Javascript can read and inspect cookie
values. This is useful for setting a temporary state via the frontend and for storing a state that the
frontend needs to manipulate. This is fine for a number of scenarios, and your application may have
a combination of cookie-handling techniques.

When you use HttpOnly, the browser prevents access to the cookie, typically returning an empty string
as the result of any values read. This is useful for preventing Cross-Site Scripting (XSS), where malicious
sites try to access your values, and prevents you from sending data to a third-party/attacker’s website.

This doesn’t prevent us from logging in (which wouldn’t be very helpful!). All our API/backend requests
can still be performed with all cookies, but we do need to tell our frontend application to do so.

After providing the ability to log in with these additions to our backend, we’re now going to revisit
routing so that we can move around within our app.

(Re)introducing Vue Router
Before we dive in, we need to quickly refresh our understanding of how our frontend and backend
communicate and ensure that we know how things work.

You may recall from Chapter 9, Tailwind, Middleware, and CORS that we set up our axios instance
(under src/lib/api.js). With a few defaults, this is where the withCredentials value
comes into play:

export default axios.create({

 baseURL: import.meta.env.VITE_BASE_API_URL,

 withCredentials: true,

 transformRequest: [...axios.defaults.transformRequest,

 transformSnakeCase],

 transformResponse: [...axios.defaults.transformResponse,

 transformCamelCase],

});

We want to ensure that all our hard work with the Secure and HttpOnly cookies is preserved when
the frontend and backend communicate, and withCredentials ensures that all requests to the
backend should be made, complete with cookies, auth headers, and so on.

We’re going to be building on this axios instance as we introduce the concept of navigation guards.
What we’re going to do before we navigate around our application is fetch/refresh our data from the
backend before rendering. This gives us the ability to check whether users should be looking at certain
pages, whether they need to be logged in, or whether they shouldn’t be snooping!

Navigation guards 179

With our app now passing our cookies into every request, we can now move into utilizing permissions
as we navigate our app using navigation guards.

Navigation guards
Navigation guards in Vue are fundamental for logged-in users. As with any core functionality of
Vue, it’s worth diving into the amazing documentation provided by the Vue team here: https://
router.vuejs.org/guide/advanced/navigation-guards.html.

A navigation guard is, as the name suggests, a way to cancel or reroute users depending on the results
of certain guard rails checks. They can be installed globally – for example, everything is behind a login/
paywall – or they can be placed on individual routes.

They are called on a navigation request, in order, and before a component is loaded. They can also be
used to retrieve props to be provided to the next pages components and use the syntax of router.
beforeEach (to, from).

Previous versions also provided a next parameter, but this has been deprecated and shouldn’t be
used in modern code.

The functionality of a navigation guard is as follows:

• to: Provides the target location, where the user is trying to navigate to

• from: The current location where the user is coming from

The job of the guard handler is to assess whether to allow navigation or not.

The handler can do this by returning false, a new route location, which is used to manipulate the
browser history via a router.push() to allow additional props, or simply true to indicate the
navigation is allowed.

Using a simple example from the docs, we can install a global navigation guard on our routes to check
the value of the isAuthenticated variable before navigating:

router.beforeEach(async (to, from) => {

 if (

 // make sure the user is authenticated

 !isAuthenticated &&

 // Avoid an infinite redirect

 to.name !== 'Login'

) {

 // redirect the user to the login page

 return { name: 'Login' }

https://router.vuejs.org/guide/advanced/navigation-guards.html
https://router.vuejs.org/guide/advanced/navigation-guards.html

Session Management180

 }

 // Otherwise navigation succeeds to 'from'

})

Putting the logic into each route can be a bit ugly. What we will do is expose an endpoint in the
backend that returns either a value or even just a 20x HTTP successful response, check for this in our
middleware, and if that works, we will allow navigation.

In the following code, we’ve got an endpoint, /profile, exposed on our backend. This can return data or,
in this simple case, just a 200/OK response, and we can check that with our getCheckLogin() function.

Our checkAuth() function now checks a meta value for an optional Boolean value called
requiresAuth. If there’s no authorization required, we navigate successfully; otherwise, we try
to access our endpoint. If there’s an error (non-successful) request, we redirect to our login page;
otherwise, we allow the navigation to continue:

export function getCheckLogin() {

 return api.get('/profile');

}

export default function checkAuth() {

 return async function checkAuthOrRedirect(to, from) {

 if (!to?.meta?.requiresAuth) {

 // non protected route, allow it

 return;

 }

 try {

 const { data } = await getCheckLogin();

 return;

 } catch (error) {

 return { name: 'Login'};

 }

 };

}

Navigation guards 181

These checks can be as complicated as we want in our navigation guards, but remember that you’re
calling these on every navigation. You might want to look at state management if you find yourself
doing this a lot, such as Pinia (Vue 3) or Vuex (if you’re using Vue 2).

To install these checks and values, we simply install the global handler, and for protected routes, we
provide the meta Boolean. This is shown in the following code snippet:

...

const router = createRouter({

 history: createWebHistory(import.meta.env.BASE_URL),

 routes: [

{

 path: '/login',

 Name: 'Login',

 meta: {

 requiresAuth: false,

 },

 props: true,

 component: () => import('@/views/login.vue'),

 },{

 path: '/dashboard,

 Name: 'Dashboard',

 meta: {

 requiresAuth: true,

 },

 props: true,

 component: () => import('@/views/dashboard.vue'),

 }]

});

...

router.beforeEach(checkAuth());

Meta fields are a useful feature. They allow us to attach arbitrary information to our routes, in our
situation we’re using the meta information as an indicator to check the authorization. You can find out
more about meta here: https://v3.router.vuejs.org/guide/advanced/meta.html.

https://v3.router.vuejs.org/guide/advanced/meta.html

Session Management182

With the ability to provide for logged-in and logged-out statuses, we now have a functioning app.
One final thing to really polish our app is to provide default and error pages for our users if our app
goes wrong or if they land on the wrong page in it.

Defaults and error pages
With our application now securely communicating to the backend and routing correctly based on
authorization, we are almost finished with our core functional requirements.

There’s one final scenario that may arise for our users – the dreaded 404 – the page not found error!
Thankfully, Vue Router makes it easy to create a wildcarded “catch-all” route that will be set to redirect
users to a specific page if they navigate to somewhere that doesn’t exist.

As you know, in Vue, all routes are defined by creating rules on the specific URL path. So, for example,
creating a route for a path of /user would be caught if the user entered packt.com/user, but
it wouldn’t if the user entered packt.com/my-user or any other word that is not precisely the
one set in the path rule.

To define our catch-all rule in version 4 of the Vue routervue-router 4, we will use the following
route entry:

{ path: '/:pathMatch(.*)*', name: 'not-found', component:
NotFound }

We will inject this as the final route in our router.routes. The wildcard at the end of the path
match means we can navigate to this page and catch the expected route. Alternatively, if that’s too
much magic, you can use path: ‘/*’ and don’t need to worry about catching the intended route.

The best practice for a 404 page not found error would be to provide hints of what went wrong and
give the user a way to get home or navigate to a similar page, but that’s a choice you can make for
your NotFound component.

Summary
Excitedly, we’ve now got enough knowledge to complete the development of our full-stack app. In this
chapter, we introduced JWT-based tokens, talked about when and why to use them, and covered a
few “gotchas.” We then revisited cookie handling between our front and backend parts before, finally,
moving on to Vue Router.

Closing off the chapter with Vue Router, we looked at adding navigation guards, looked at how we
can use meta values to enhance our development experience and mark pages for authorization, before
finishing off by setting up our catch-all error-handling route so that our users have a great experience.

In the next chapters, we’ll look at getting our app into production and getting ready for our first users.

Part 4:
Release and Deployment

The objective of this part of the book is to learn about the application release process and cloud
deployments as part of the development process.

This part includes the following chapters:

• Chapter 11, Feature Flags

• Chapter 12, Building Continuous Integration

• Chapter 13, Dockerizing an Application

• Chapter 14, Cloud Deployment

11
Feature Flags

In this chapter, we will learn about feature flags, what they are, how to use them, and the benefits of
using them. Using feature flags is not mandatory for applications. However, as application complexity
increases, the need for feature flags will arise.

There are many different features provided by feature flags, but in this chapter, we will focus on how
to use feature flags to enable/disable certain features in an application. We will be using an open
source, simple version of the feature flag server to demonstrate the integration for both frontend and
backend services.

In this chapter, we’ll cover the following topics:

• Understanding what feature flags are all about

• Installing an open source feature flag server

• Enabling/disabling features using feature flags

• Integrating feature flags for frontend and backend services

Technical requirements
All the source code explained in this chapter can be found at https://github.com/
PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/chapter11.

This chapter uses the cURL tool to perform HTTP operations. The tool is available for different
operating systems and can be downloaded from https://curl.se/download.html.

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/chapter11
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/chapter11
https://curl.se/download.html

Feature Flags186

An introduction to feature flags
In the current rapidly changing world, developers need to make changes and roll out new features
almost every single day, if not quicker. Sometimes, this requires features to be built even before there
are any user needs. Having the ability to deploy features into production without disruption is the
holy grail of software development.

Features that are deployed to production may or may not be made available to users; this all depends
on tactical decisions on the business side. Developers will keep on releasing features to production
and, when the time is right, the feature will be made available with a click of a button from the business
side. This kind of facility is provided by the feature flag.

In simple terms, feature flags are like on/off switches that we can use to enable/disable features in our
applications without creating disruption. Enabling features will also allow companies to strategically
enable or disable features depending on the market and users’ needs, which can impact the bottom
line of a company.

As a tool, feature flags not only provide the ability to run on/off features but there are also many other
benefits you can also get out of it:

• Testing features for certain demographics based on certain conditions such as geographical
location, user’s age, and so on

• Splitting of the traffic request based on network condition

• Conducting UX experiments to understand which design works well

In this chapter, we will look at an open source project feature flag tool to demonstrate how to use
and integrate it.

Feature flag configuration
You can use feature flags by deploying them in your infrastructure or by using software-as-a-service
solutions such as LaunchDarkly, Flagsmith, and many other available solutions. Each of the solutions
provides its own API, which needs to be integrated into your application. This means that your
application is tied to the solution that you choose. There is no one-size-fits-all solution; it all depends
on what kind of features you need for your application.

Let’s take a look at different kinds of configuration for using feature flags. Figure 11.1 shows the
simplest way to use feature flags.

Figure 11.1: A web client using feature flags

Feature flag configuration 187

The web client will enable or disable the user interface depending on the feature flag. For example, in
an application, a particular menu selection can be enabled when the feature flag related to the menu
is turned on.

Figure 11.2 shows a different configuration where the web client will call different microservices,
depending on which feature flag is turned on/off:

Figure 11.2: Feature flag microservices

In the preceding example, the web client calls microservice A when feature flag A is turned on.

Another interesting configuration is shown in Figure 11.3, where the main microservice will determine
which user interface will be returned back to the web client, depending on which feature flag has
been configured:

Figure 11.3: The feature flags for microservices

In the above example, the web client will get a different response to render if the main microservice
detects that feature flag C has been enabled, which will get the response from MicroService C.

Feature Flags188

So, as we can see, there are different ways to use feature flags and different places to use them. It all
comes down to what will be needed for your application.

In the next section, we will look at using an open source feature flag server to enable/disable buttons
in a sample web app.

Use cases for using feature flags
Feature flags are not limited to flags that can be configured to turn on/off features inside applications;
there are many more features and capabilities. In this section, we will look at the features provided in
a full-blown feature flag server:

• Segment targeting – Imagine you are building a feature that you want to test on a group of
users in your application. For example, you may want a certain group of users that are based
in the USA to use the checkout feature based on PayPal.

• Risk mitigation – Building product features does not guarantee that a feature will bring in more
users. New features can be released and, with time and more analysis, if it is found that the feature
is providing a bad user experience, it will be turned off as part of the risk mitigation process.

• Gathering feedback before launch – Using a targeted rollout for a certain group of users, it is
possible to get feedback as early as possible from the user. The feedback will provide insight for
the team to decide whether the feature indeed provides any additional benefit to the user or not.

Now we have a good understanding of the use cases for feature flag, we will look at installing the
feature flag server in the next section.

Installing the feature flag server

We are going to use an open source feature flag server. Clone the project from the github.com/
nanikjava/feature-flags repository as follows:

git clone https://github.com/nanikjava/feature-flags

From your terminal, change the directory into the project directory and build the server using the
following command:

go build -o fflag .

We are using the -o flag to compile the application and output it to a filename called fflag. Now
that the server has been compiled and is ready to use, open a separate terminal window and run the
server as follows:

./fflag

http://github.com/nanikjava/feature-flags
http://github.com/nanikjava/feature-flags

Use cases for using feature flags 189

You will see the following output:

2022/07/30 15:10:38 Feature flag is up listening on :8080

The server is now listening on port 8080. Now, we need to add a new feature flag for our web app,
and the key is called disable_get. The way to do this is to use the curl command line to send
data using POST as follows:

curl -v -X POST http://localhost:8080/features -H "Content-
Type:
application/json" -d '{"key":"disable_get","enabled":false,
"users":[],"groups":["dev","admin"],"percentage":0}'

The curl command is calling the /features endpoint and passing the JSON data. Once this has
completed successfully, you will see the following output:

{

 "key": "disable_get",

 "enabled": false,

 "users": [],

 "groups": [

 "dev",

 "admin"

],

 "percentage": 0

}

The JSON output shows that the feature flag server now has a new key called disable_get, and it
is disabled, as indicated by the flag enabled: false. The output should look as follows, showing
that the data has been successfully added:

* Trying 127.0.0.1:8080...

* Connected to localhost (127.0.0.1) port 8080 (#0)

…

* Mark bundle as not supporting multiuse

< HTTP/1.1 201 Created

…

< Content-Length: 89

<

Feature Flags190

{"key":"disable_get","enabled":false,"users":[],"groups":
["dev","admin"],"percentage":0}

* Connection #0 to host localhost left intact

The feature flag server is ready with the data we need. In the next section, we will look at using the
flag inside our web app.

The high-level architecture of feature flags
Figure 11.4 shows the architecture of the open source feature flag server at a high level.

Figure 11.4: The high-level architecture

Looking at the diagram, the server uses mux.Router to route for different HTTP requests such as
GET, POST, DELETE, and PATCH. The server uses an internal database as persistent storage for the
feature flags that the application requires.

The server is accessible via HTTP request calls that can be made from both web clients and microservices
using the normal HTTP protocol.

Integration of the feature flag
After we have installed the feature flag server, we want to start using it in our application. In this
section, we will look at integrating the feature flag to enable/disable certain user interface elements
in the frontend and to call only the backend services from our server that are enabled.

Integration of the feature flag 191

Web application

The sample app we are going to use can be found inside the chapter11/frontend-enable-
disable folder; the sample app demonstrates how to use the feature flag to enable/disable the user
interface button. Open the terminal and change into the chapter11/frontend-enable-
disable directory to run the web app as follows:

npm install

npm run dev

The commands will install all the necessary packages and then run the web app. Once the command
completes, open your browser and type http://localhost:3000 in the address bar. You will
see the web app shown in Figure 11.5.

Figure 11.5: The initial view of the web app using the feature flag

What you are seeing in Figure 11.5 is that one of the buttons has been disabled. This is based on the
flag value that we set in the previous section. The flag data looks as follows:

{

 "key": "disable_get",

 "enabled": false,

 "users": [],

 "groups": [

 "dev",

 "admin"

],

 "percentage": 0

}

The disable_get key is the flag key we added to the server and the enabled field is set to false,
which means that the button is disabled. Let’s change the enabled field to true and let’s see how
the web page changes.

Feature Flags192

Use the following command in a terminal to update the data:

curl -v -X PATCH http://localhost:8080/features/disable_get
-H "Content-Type: application/json" -d '{"key":"disable_
get","enabled":true}'

The curl command updates the enabled field to true. Refresh the browser page and you will
see the button is enabled, as shown in Figure 11.6.

Figure 11.6: The Click to Get button is enabled

The following code snippet from the HelloWorld.vue file takes care of reading the key from the
server, using it to enable/disable the button:

...

<script>

import axios from 'axios';

export default {

 data() {

 return {

 enabled: true

 }

 },

 mounted() {

 axios({method: "GET", "url":

 "http://localhost:8080/features/disable_get"}).then(result
 => {

 this.enabled = result.data.enabled

 console.log(result);

 }, error => {

Integration of the feature flag 193

 console.error(error);

 });

 }

}

</script>

<template>

 <div v-if="enabled" class="flex space-2 justify-center">

 ...

 </button>

 </div>

 ...

In the next section, we will look at using the feature flag to enable/disable certain features on the
backend service.

Microservice integration

In this section, we will use the feature flag to enable/disable certain services. This will give the
application the flexibility to access only the services that are currently enabled. Figure 11.7 shows
how the microservice will be structured. The application is inside the chapter11/multiple-
service folder.

Figure 11.7: The microservice structure for the feature flag

Following the steps from the previous section to run the feature flag server, use the following command
to create the flags:

curl -v -X POST http://localhost:8080/features -H "Content-
Type: application/json" -d '{"key":"serviceb", "enabled":true,

Feature Flags194

"users":[],"groups":["dev","admin"],"percentage":0}'

curl -v -X POST http://localhost:8080/features -H "Content-
Type: application/json" -d '{"key":"servicea", "enabled":false,
"users":[],"groups":["dev","admin"],"percentage":0}'

The command creates two keys: servicea and serviceb. For now, servicea is disabled, while
serviceb is enabled. Once the feature flags have been set up, we are going to run different services:

• Main server – open the terminal and make sure you are inside the chapter11/multiple-
service/mainserver directory. Run the main server with the following command:

go run main.go

The main server will run on port 8080.

• servicea – open the terminal and change the directory to chapter11/multiple-
service/servicea. Run the service with the following command:

go run main.go

servicea will run on port 8081.

• serviceb – open the terminal and change the directory to chapter11/multiple-
service/serviceb. Run the service with the following command:

go run main.go

serviceb will run on port 8082.

We now have three different services running on ports 8080, 8081, and 8082. Open your browser
and access the service using http://localhost:8000. You will get a response like the following:

{"Message":"-ServiceB active"}

The response sent back came from serviceb as servicea is disabled, as per the configuration
from the feature flag server. Now, let’s turn on the flag for servicea using the following command:

curl -v -X PATCH http://localhost:8080/features/servicea -H
"Content-Type: application/json" -d '{"enabled":true}'

Restart the main server by force-stopping it using Ctrl + C. Re-run it using the same command
discussed previously. Open your browser and access the service using http://localhost:8000.
You should get a result like the following:

{"Message":"ServiceA active-ServiceB active"}

Integration of the feature flag 195

We get responses from both services now that both have been enabled.

Let’s take a look at the code to understand how the feature flag is used. The following snippet shows
part of the code to start the server:

...

func main() {

 port := ":8000"

 ...

 wg := &sync.WaitGroup{}

 wg.Add(1)

 go func(w *sync.WaitGroup) {

 defer w.Done()

 serviceA = checkFlags("servicea")

 serviceB = checkFlags("serviceb")

 }(wg)

 wg.Wait()

 http.ListenAndServe(port, rtr)

}

The code calls the feature flag server to get flag information for servicea and serviceb in a
goroutine. Once completed, it starts the server to listen on port 8000. The state of the services is
stored inside the servicea and serviceb variables, which will be used in other parts of the code,
as shown in the following code snippet:

func handler() http.HandlerFunc {

 type ResponseBody struct {

 Message string

 }

 return func(rw http.ResponseWriter, req *http.Request) {

 var a, b string

 if serviceA {

 a = callService("8081")

 }

 if serviceB {

 b = callService("8082")

 }

Feature Flags196

 json.NewEncoder(rw).Encode(ResponseBody{

 Message: a + "-" + b,

 })

 }

}

The handler() method is called when you access the server on port 8000. Inside the code, as can
be seen, it calls the service only when it is enabled. Once the service is called, the results from the
service are combined and sent back to the client as a single JSON response.

The following code snippet shows how to access the feature flag server to extract the different flags.
It uses a normal HTTP GET call:

func checkFlags(key string) bool {

 ...

 requestURL := fmt.Sprintf("http://localhost:%d/features/%s",
 8080, key)

 res, err := http.Get(requestURL)

 ...

 resBody, err := ioutil.ReadAll(res.Body)

 if err != nil {

 log.Printf("client: could not read response body: %s\n",
 err)

 os.Exit(1)

 }

 ...

 return f.Enabled

}

The code is calling the feature flag server by getting each key that we are interested in. So, in the case
of the sample, we are calling using the following URLs:

http://localhost:8080/features/servicea

http://localhost:8080/features/serviceb

Integration of the feature flag 197

For example, when calling http://localhost:8080/features/servicea, the code will
get the following JSON response from the feature flag server:

{

 "key": "servicea",

 "enabled": true,

 "users": [],

 "groups": [

 "dev",

 "admin"

],

 "percentage": 0

}

The checkFlags() function is interested only in the enabled field, which will be unmarshalled
into the FeatureFlagServerResponse struct as shown below:

func checkFlags(key string) bool {

 type FeatureFlagServerResponse struct {

 Enabled bool `json:"enabled"`

 }

 ...

 var f FeatureFlagServerResponse

 err = json.Unmarshal(resBody, &f)

 ...

}

After successfully converting the JSON to a struct, it will return the Enabled value as shown here:

func checkFlags(key string) bool {

 ...

 return f.Enabled

}

We have come to the end of the chapter. In this section, we looked at integrating the feature flag in
different scenarios such as inside web applications as well as using it as a feature toggle for accessing
different microservices. There are other use cases where feature flags can be used, such as enabling/
disabling performance metrics in production and enabling tracing in production for troubleshooting bugs.

Feature Flags198

Summary
In this chapter, we learned about feature flags, including what they are used for and how to use
them. We learned how to install a simple feature flag server and saw how to integrate it with our
sample application.

We went through the steps of using feature flags in two different use cases – integrating it by checking
on the flag to enable/disable a button in our frontend and in the backend to call different microservices.
Using feature flags to enable or disable certain services gives the application flexibility on what response
will be sent back to the frontend, which gives developers the ability to allow access to certain services
as and when needed.

In the next chapter, we will look at building continuous integration by exploring the different features
provided by GitHub.

12
Building Continuous

Integration

Building web applications to solve a problem is great, but we also need to make the applications
available to users so they can start using them. As developers, we write code. But, at the same time,
this code will need to be built or compiled so that it can be deployed, allowing users to use it. We need
to understand how we can build our web application automatically, without requiring any manual
process to work through. This is what we are going to talk about in this chapter. We will look at what
is known as continuous integration (CI).

CI is a practice or process for automating the integration of code from different contributors into a
project. CI allows developers to frequently merge code into a code repository where it will be tested
and built automatically.

In this chapter, we will learn about the following for CI:

• GitHub workflows

• Using GitHub Actions

• Publishing to GitHub Packages

Technical requirements
The source code for this chapter can be found at https://github.com/PacktPublishing/
Full-Stack-Web-Development-with-Go/tree/main/chapter12. In this chapter, we
will also be using another repository when setting up CI for explanatory purposes. The repository
is https://GitHub.com/nanikjava/golangci.

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/chapter12
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/chapter12
https://GitHub.com/nanikjava/golangci

Building Continuous Integration200

Importance of CI
You can think of CI as one aspect of your development process. The main reason why this is important
is to allow you, as developers, to ensure that all code that is committed into a central code repository
is tested and validated.

This becomes crucial when you are working in a team environment where multiple developers are
working on the same project. Having proper CI will give developers peace of mind and assurance
that all code they are using can be compiled properly and that automated test cases have been run
successfully. Imagine that you have to check out some projects from GitHub, but when you try to
compile and run some test cases, it fails; it would be a disaster as you would have to spend time fixing
things, but if the project had a proper CI process set up, it would ensure all the committed code would
compile correctly and test cases would pass.

Even when working as a solo developer on a project, it is highly recommended to have CI in place.
The minimum benefit you will get from this is the assurance that your code can be built correctly. This
also makes sure that any local dependencies related to your local machine that have been accidentally
added to the code are detected when a build failure occurs.

In the next section, we will look at building our CI using GitHub by going through the different steps
required to have CI for our web application.

Setting up GitHub

In this section, we will explain the different things that need to be prepared to get automated CI in
GitHub. To gain a better understanding of the CI process, it is recommended that you create your
own separate GitHub repository and copy everything inside the chapter12 directory to the new
repository. Initially, when the nanikjava/golangci repository is created, it will look similar to
Figure 12.1.

 Figure 12.1: A fresh GitHub repo

Importance of CI 201

For this chapter, we have set up a separate repository (https://GitHub.com/nanikjava/
golangci) that we will use as a reference guide for the discussions in this chapter. We will go
through the steps of creating a simple GitHub workflow in the repository. A GitHub workflow is a
set of instructions that run one or more jobs. The instructions are defined in a YAML file with the
extension of .yaml in the .GitHub/workflows directory of the repository.

You can define multiple workflows for your repository that perform different automated processes. For
example, you can have one workflow file to build and test your application and another for deploying
the application to a central location.

Let’s create a simple workflow file inside the new repository by following the steps below:

1. From your repository, click on the Actions menu. This will bring you to the Get Started with
GitHub Actions page, as shown in Figure 12.2.

Figure 12.2: The Get started with GitHub Actions page

2. Click on the set up a workflow yourself link. This will take to you a new page where you can
start writing your workflow, as shown in Figure 12.3.

Figure 12.3: The create a new workflow screen

https://GitHub.com/nanikjava/golangci
https://GitHub.com/nanikjava/golangci

Building Continuous Integration202

For now, we are going to create a simple workflow that we can use from GitHub. The workflow can
be found at https://docs.GitHub.com/en/actions/quickstart. Copy and paste the
workflow, as shown in Figure 12.4.

Figure 12.4: A sample GitHub workflow .yaml file

3. Commit the file by clicking on the Start commit button, as shown in Figure 12.5. After filling
in all the commit information, click on the Commit new file button.

Figure 12.5: The commit message for a .yaml file

https://docs.GitHub.com/en/actions/quickstart

Importance of CI 203

Your repo now has a new GitHub workflow file. If you select the Actions menu again, this time
you will see that your screen looks like Figure 12.6. The screen shows that GitHub has run the
workflow successfully.

Figure 12.6: GitHub has successfully run the workflow

We can look at the workflow results by clicking on the Create main.yaml link. You will see that the
output indicates that the Explore-GitHub-Actions job was successfully run, as shown in Figure 12.7.

Figure 12.7: The Explore-GitHub-Actions step has been successfully run

Building Continuous Integration204

After clicking on the Explore-GitHub-Actions jobs link, the output will be as shown in Figure 12.8.

Figure 12.8: The Explore-GitHub-Actions job output

The workflow that we created in this section is actually the GitHub Actions workflow. We will look
at this in more depth in the next section.

GitHub Actions
What is GitHub Actions? It is a platform that allows you to automate the complete integration and
delivery of your project by automating the build, test, and deployment processes. GitHub Actions also
gives you the ability to automate workflow processes such as pull requests, issue creation, and others.

We have now successfully created our first GitHub workflow. Let’s take a look at the workflow file to get
an understanding of which GitHub Actions we are using. The workflow file we will use is as follows:

name: GitHub Actions Demo

on: [push]

jobs:

 Explore-GitHub-Actions:

 runs-on: ubuntu-latest

 steps:

GitHub Actions 205

 - run: echo "🎉 The job was automatically triggered by a

 ${{ GitHub.event_name }} event."

 - run: echo "🐧 This job is now running on a ${{ runner.
 os }}

 server hosted by GitHub!"

 - run: echo "🔎 The name of your branch is ${{ GitHub.
 ref }} and your repository is ${{ GitHub.
 repository }}."

 - name: Check out repository code

 uses: actions/checkout@v3

 - run: echo "💡 The ${{ GitHub.repository }} repository
 has been cloned to the runner."

 - run: echo "🖥 The workflow is now ready to test your
 code on the runner."

 - name: List files in the repository

 run: |

 ls ${{ GitHub.workspace }}

 - run: echo "🍏 This job's status is ${{ job.status }}."

The following table explains the different configurations in the file:

Configuration key Explanation

Name The generic name we give to the workflow that will be used as a label for
viewing the results on the Actions page.

On Indicates to GitHub what kind of Git operation will trigger the workflow.
In the example, it’s push. This means that the workflow will be triggered
every time the Git push operation is detected in the repository. Different
Git event operations can be seen in the GitHub docs: https://docs.
GitHub.com/en/actions/using-workflows/triggering-
a-workflow#using-events-to-trigger-workflows.

Jobs The workflow is made up of one or more jobs. These jobs are run in parallel
by default. Jobs can be thought of as a single task that you want to do on your
code. In our example, we named the job Explore-GitHub-Actions
and it performs tasks defined by the run configuration.

https://docs.GitHub.com/en/actions/using-workflows/triggering-a-workflow#using-events-to-trigger-workflows
https://docs.GitHub.com/en/actions/using-workflows/triggering-a-workflow#using-events-to-trigger-workflows
https://docs.GitHub.com/en/actions/using-workflows/triggering-a-workflow#using-events-to-trigger-workflows

Building Continuous Integration206

Configuration key Explanation

runs-on Defines the runner that we want to use. The runner is the machine that you
choose to run your workflow on. In our example, we are using the ubuntu-
latest machine, or, in other words, we want to use a machine that runs the latest
version of Ubuntu. A complete list of runners can be seen in the following
link: https://docs.GitHub.com/en/actions/using-jobs/
choosing-the-runner-for-a-job.

Steps Each job contains a sequence of tasks called steps. A step is where you define
the operation you want to perform for the workflow. In our example, we defined
several steps such as run where we just print out information.

Now, we are going to take a look at the GitHub Action workflow we have for the sample application.
The workflow can be found inside the chapter12/.GitHub/workflows/build.yml file,
as shown here:

name: Build and Package

on:

 push:

 branches:

 - main

 pull_request:

jobs:

 lint:

 name: Lint

 runs-on: ubuntu-latest

 steps:

 - name: Set up Go

 uses: actions/setup-go@v1

 with:

 go-version: 1.18

 - name: Check out code

 uses: actions/checkout@v1

 - name: Lint Go Code

 run: |

https://docs.GitHub.com/en/actions/using-jobs/choosing-the-runner-for-a-job
https://docs.GitHub.com/en/actions/using-jobs/choosing-the-runner-for-a-job

GitHub Actions 207

 curl -sSfL

 https://raw.GitHubusercontent.com/golangci/golangci-
 lint/

 master/install.sh | sh -s -- -b $(go env GOPATH)/bin

 $(go env GOPATH)/bin/golangci-lint run

 build:

 name: Build

 runs-on: ubuntu-latest

 needs: [lint]

 steps:

 - name: Set up Go

 uses: actions/setup-go@v1

 with:

 go-version: 1.18

 - name: Check out code

 uses: actions/checkout@v1

 - name: Build

 run: make build

We will go now through this line by line to understand what the workflow is doing. The following
snippet tells GitHub that the workflow will be triggered when source code is pushed to the main branch:

name: Build and Package

on:

 push:

 branches:

 - main

The next snippet shows the different jobs that GitHub will run when the event is detected; in this
case, the lint and build jobs. The job will be run on an Ubuntu machine, as specified by the
runs-on configuration:

jobs:

 lint:

 name: Lint

Building Continuous Integration208

 runs-on: ubuntu-latest

 steps:

 ...

 build:

 name: Build

 runs-on: ubuntu-latest

 needs: [lint]

 steps:

 ...

The defined jobs are made up of the steps shown in the following snippet:

...

jobs:

 lint:

 ...

 steps:

 - name: Set up Go

 uses: actions/setup-go@v1

 with:

 go-version: 1.18

 - name: Check out code

 uses: actions/checkout@v1

 - name: Lint Go Code

 run: |

 curl -sSfL

 https://raw.GitHubusercontent.com/golangci/golangci-
 lint/

 master/install.sh | sh -s -- -b $(go env GOPATH)/bin

 $(go env GOPATH)/bin/golangci-lint run

 build:

 ...

Publishing Docker images 209

 steps:

 - name: Set up Go

 uses: actions/setup-go@v1

 with:

 go-version: 1.18

 - name: Check out code

 uses: actions/checkout@v1

 - name: Build

 run: make build

The explanation of the steps performed for the lint job is as follows:

1. Set up a Go 1.18 environment using the actions/setup-go GitHub Action.

2. Check out the source code using the actions/checkout GitHub Action.

3. Perform a linting operation on the source code. The shell script will install the golangci-
lint tool and run it using the golangci-lint run command.

The other build job will perform the following steps:

1. Set up a Go 1.18 environment using the actions/setup-go GitHub Action.

2. Check out the source code using the actions/checkout GitHub Action.

3. Build the application by executing the make build command.

Each step defined inside a job uses GitHub Actions that perform different operations such as checking
out code, running shell script, and setting up the environment for compiling the Go application.

In the next section, we will look at GitHub Packages and how to use them to deploy the Docker image
that we will build for our application.

Publishing Docker images
After developing your application, the next step is to deploy the application so that your user can
start using it. To do this, you need to package your application. This is where Docker comes into the
picture. Docker is a tool that is used to package your application into a single file, making it easy to
deploy into a cloud environment such as Amazon, Google, and so on. We will look at Docker images
and containers in depth in Chapter 13, Dockerizing an Application. We will look at the file with which
we configure Docker, called the Dockerfile. We will briefly look at what this file does.

Building Continuous Integration210

Dockerfile

Dockerfile is the default filename used to name a file that contains instructions for building an
image for your application. The Dockerfile contains instructions on steps for Docker to perform
to package your application into a Docker image.

Let’s take a look at the Dockerfile that we have inside the Chapter12 directory:

1. Compile the app.

FROM golang:1.18 as builder

WORKDIR /app

COPY . .

RUN CGO_ENABLED=0 GOOS=linux go build -a -o bin/embed

2. Create final environment for the compiled binary.

FROM alpine:latest

RUN apk --update upgrade && apk --no-cache add curl
ca-certificates && rm -rf /var/cache/apk/*

RUN mkdir -p /app

3. Copy the binary from step 1 and set it as the default
command.

COPY --from=builder /app/bin/embed /app

WORKDIR /app

CMD /app/embed

There are three major steps to package the application:

1. Compile our Go application into a binary file called embed.

2. Create an environment that will be used to run our application. In our example, we are using
an environment or operating system called alpine.

3. Copy the binary that was built in the first step into the new environment that we set up in the
second step.

We will use the Dockerfile in the next section to store the image in GitHub Packages.

GitHub Packages
GitHub Packages is a service provided by GitHub that allows developers to host their packages. These
packages can be accessed either by your team or made available to the general public. We will use this
service to publish our Docker image and make it available to be consumed by the public.

GitHub Packages 211

There are a few things we need to set up before we can deploy our Docker image into GitHub Packages.
This section will walk you through the steps required to set up your repository. We will use GitHub.
com/nanikjava/golangci as a reference in this section.

You can access GitHub Packages from your repository by clicking on the Packages link, as shown in
Figure 12.9.

Figure 12.9: Access to GitHub Packages

Once you click on the Packages link, you will be shown a screen similar to that in Figure 12.10. There
will be no Packages displayed as we have not yet published any.

Figure 12.10: The GitHub Packages page

Building Continuous Integration212

In the next section, we will look at how to publish the Docker images that we turn into packages on
GitHub Packages.

Publishing to GitHub Packages

Security is an important part of GitHub. In order to be able to write Docker images into GitHub
Packages, let’s try to understand what is required. Every time GitHub runs a workflow, a temporary
token is assigned to the workflow that can be used as an authentication key, allowing GitHub Actions
to perform certain operations. This key is known as GITHUB_TOKEN internally.

The GITHUB_TOKEN key has default permissions that can be made restrictive, depending on your
organization’s needs. To see the default permissions, click on the Settings tab from your repository,
as shown in Figure 12.11.

Figure 12.11: The Actions menu from Settings

Click on the Actions menu and select General. You will be shown the default permissions, as shown
in Figure 12.12. As you can see, the default permissions are Read and write for the workflow.

GitHub Packages 213

Figure 12.12: The GITHUB_TOKEN default permissions

The workflow that we going to look at can be found inside chapter12/.GitHub/workflows/
builddocker.yml and looks like the following:

name: Build Docker Image

on:

 push:

 branches:

 - main

 pull_request:

env:

 REGISTRY: ghcr.io

 IMAGE_NAME: ${{ GitHub.repository }}

jobs:

 push_to_GitHub_registry:

 name: Push Docker image to Docker Hub

 runs-on: ubuntu-latest

 steps:

 ...

 - name: Log in to the Container registry

 uses: docker/login-action@v2

 with:

 registry: ${{ env.REGISTRY }}

Building Continuous Integration214

 username: ${{ GitHub.actor }}

 password: ${{ secrets.GITHUB_TOKEN }}

 - name: Build and push Docker image

 uses: docker/build-push-action@v3

 with:

 context: .

 file: ./Dockerfile

 push: true

 tags: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME

 }}/chapter12:latest

The workflow performs the following steps in order to publish the Docker image:

1. The workflow logs in to the registry (GitHub Packages) using the docker/login-action@
v2 GitHub Action. The parameters supplied to the GitHub Action are username, password,
and registry.

2. The username is the GitHub username, which triggers the workflow process. The registry
parameter will be value from the REGISTRY environment variable, which will be - ghcr.
io. The password field will be automatically populated using secrets.GITHUB_TOKEN.

3. The last step is to build and publish the Docker image using the docker/build-push-
action@v3 GitHub Action. The parameter passed to the GitHub Action is the file that will
be used to build the Docker image. In our case, it’s called Dockerfile. The tag name used to
tag or label the Docker image will look like ghcr.io/golangci/chapter12:latest.

Now that we have everything set up, the next time you push any code changes into the main branch,
the workflow will run. An example of a successful run can be seen in Figure 12.13.

GitHub Packages 215

Figure 12.13: A successful workflow run publishing a Docker image

The Docker image can be seen on the GitHub Packages page, as shown in Figure 12.14.

Figure 12.14: The chapter12 Docker image inside GitHub Packages

Building Continuous Integration216

In the next section, we will look at downloading our newly created Docker image and using it locally.

Pulling from GitHub Packages

We have successfully set up CI for our application. Now, we have to test whether the Docker image
that was run as part of the CI process has successfully built our application's Docker image.

Our Docker image is hosted inside GitHub Packages, which is made public by default as our repository
is a public repository. Figure 12.14 shows the Docker images that are available to be used, including
the command to pull the image locally. Open your terminal, then run the following command:

docker pull ghcr.io/nanikjava/golangci/chapter12:latest

You will get the following output:

latest: Pulling from nanikjava/golangci/chapter12

213ec9aee27d: Already exists

3a904afc80b3: Pull complete

561cc7c7d83b: Pull complete

aee36b390937: Pull complete

4f4fb700ef54: Pull complete

Digest: sha256:a355f55c33a400290776faf20b33d45096eb19a6431fb0b3
f723c17236e8b03e

Status: Downloaded newer image for ghcr.io/nanikjava/golangci/
chapter12:latest

The image has been downloaded to your local machine. Run the Docker image using the
following command:

docker run -p 3333:3333 ghcr.io/nanikjava/golangci/chapter12

You know that the container is running when you see the following output:

2022/08/18 08:03:10 Server Version : 0.0.1

Open your browser and enter http://localhost:3333 into the browser address bar. You will
see the login page. We have successfully completed our CI process and are able to run the Docker
image that we have built.

Summary 217

Summary
In this chapter, we explored CI, developed an understanding of why it is important, and the benefits
we get by setting up an automated CI process for a project. We learned to set up a GitHub repository
to prepare our CI process and also learned to write a GitHub Actions workflow that enables us to
automate a number of steps for our application.

Using GitHub Actions, we were able to build our application into an executable binary. This is
performed every time we push code into the repository. We learned about building Docker images
for our application and the benefits we get by packaging our application as a Docker image.

We learned about GitHub Packages and how to configure it to allow us to push our Docker images
to a central location. Having our application packaged as a Docker image makes it easy for us to test
our application anywhere. We don’t have to worry about building the source code as everything is
packaged together into a single Docker image file.

In the next chapter we will learn on how to package our application as container, which will make
it easy to deploy as a single image and allow us to deploy application in the cloud using different
cloud providers.

13
Dockerizing an Application

In this chapter, we will learn about Docker and how to package applications as Docker images.
Understanding how to package your application as a Docker image will allow you to deploy the
application in any kind of environment and infrastructure without having to worry about setting
up the infrastructure to build your application. Building a Docker image will allow you to run your
application anywhere you like: build once and deploy anywhere.

In this chapter, we will learn about the following key topics:

• Building a Docker image

• Running a Docker image

• Creating a Docker image from scratch

• Understanding the Docker image filesystem

• Looking at Docker Compose

Technical requirements
All the source code explained in this chapter can be checked out at https://github.com/
PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/chapter13.

Installing Docker
Docker is an open source platform that is used for software development, making it easy to package
and ship programs. Docker enables you to package your application and run it in different kinds of
infrastructure such as cloud environments.

In this section, we will look at installing Docker on a local machine. Different operating systems
have different steps for installing it. Refer to the Docker documentation for an in-depth installation
guide relevant to your operating system, which can be found at https://docs.docker.com/
engine/install/.

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/chapter13
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/chapter13
https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/

Dockerizing an Application220

Note
This chapter was written on a Linux machine, so most of the command-line applications that
are outlined are only available for Linux.

After taking the steps to install Docker on our development machine, the following are some of the
things we do to ensure that everything is working fine.

Use the following commands to check that the Docker engine is running:

systemctl list-units --type=service --state=running | grep -i
docker && systemctl list-units --type=service --state=active |
grep -i containerd

You will see the following output if the engine has been installed correctly:

 docker.service loaded active running
Docker Application Container Engine

 containerd.service loaded active running
containerd container runtime

The output shows two different services running – docker.service and containerd.service.
The containerd.service service takes care of launching the Docker image into a container
and ensuring that all the local machine services are set up to allow the container to run while the
docker.service service takes care of the management of the image and communication with
the Docker command-line tools.

Now that we know both services are running, let’s use the command-line tools to check the communication
with the engine. Use the following command to communicate with the engine to list all the locally
available images – note you may need to have root privileges to do this so prefixing with sudo might
be required:

docker images

In our case, we get the output as shown in Figure 13.1, showing we have downloaded two images. In
your case, if this is your first time installing Docker, it will be empty.

Figure 13.1: Docker images on a local machine

We have successfully completed the Docker installation on the local machine. In the next section, we
will go into more detail about using Docker and understanding Docker images.

Using Docker 221

Using Docker
In this section, we will look at how to use Docker for day-to-day operations. Let’s understand the
concepts that are talked about when using Docker – images and the container:

• Docker image: This image is a file that contains our application, including all the relevant
operating system files.

• Container: The image file is read and executed by the Docker engine. Once it runs on the
local machine it is called a container. You can interact with the container using the Docker
command-line tools.

We will look at using Docker to download and run a simple Hello World application using the
following command:

docker run hello-world

Open your terminal and run the following command:

$ docker run hello-world

This command will download the image file (if none exists locally) and execute it. You will then see
the following message:

Unable to find image 'hello-world:latest' locally

latest: Pulling from library/hello-world

2db29710123e: Pull complete

Digest: sha256:10d7d58d5ebd2a652f4d93fdd86da8f265f5318c6a73cc5b
6a9798ff6d2b2e67

Status: Downloaded newer image for hello-world:latest

Once the image has been downloaded and run as a container, it will print out the following output:

Hello from Docker!

This message shows that your installation appears to be working
correctly.

To generate this message, Docker took the following steps:

 1. The Docker client contacted the Docker daemon.

 …

 …

 https://docs.docker.com/get-started/

Dockerizing an Application222

Now that we have had a taste of how to run an image file as a container, we will explore Docker images
more in the next section.

Docker images
Docker image files look like any other file on your local machine, except they are stored in a special
format that can only be understood by Docker. Locally the image files are stored inside the /var/
lib/docker/image/overlay2 directory. To see what images are available, you can take a look
at the repositories.json file, which looks as follows:

{

 "Repositories": {

 "hello-world": {

 "hello-world:latest":

 "sha256:feb5d9fea6a5e9606aa995e879d862b82

 5965ba48de054caab5ef356dc6b3412",

 "hello-world@sha256:

 10d7d58d5ebd2a652f4d93fdd86da8f265f5318c6a7

 3cc5b6a9798ff6d2b2e67":

 "sha256:feb5d9fea6a5e9606aa995e879d862

 b825965ba48de054caab5ef356dc6b3412"

 },

 "...

 "redis": {

 "redis:latest":

 "sha256:bba24acba395b778d9522a1adf5f0d6bba3e609

 4b2d298e71ab08828b880a01b",

 "redis@sha256:69a3ab2516b560690e37197b71bc61ba24

 5aafe4525ebdec

 e1d8a0bc5669e3e2":

 "sha256:bba24acba395b778d9522a1adf5f0d6bba3

 e6094b2d298e71ab08828b880a01b"

 }

 }

}

Docker images 223

Let’s explore the Docker directories that host the image files further. We can get the image information
using the following command:

docker images

The following output shows some information about the hello-world container:

REPOSITORY TAG IMAGE
ID CREATED SIZE

..

hello-world latest feb5d9fea6a5 7 months ago 13.3kB

..

The image ID for hello-world is feb5d9fea6a5. Let's try to find the image file inside /var/
lib/docker using the following command:

sudo find /var/lib/docker -name 'feb5d9fea6a5*'

We will get the following output:

/var/lib/docker/image/overlay2/imagedb/content/sha256/feb5d9fea
6a5e9606aa995e879d862b825965ba48de054caab5ef356dc6b3412

Let's now look inside that file using the following command:

sudo cat /var/lib/docker/image/overlay2/imagedb/content/sha256/
feb5d9fea6a5e9606aa995e879d862b825965ba48de054caab5ef356dc6b3412

You will see the following output:

{

 "architecture": "amd64",

 "config": {

 …

],

 …

 },

 …

 "Cmd": [

 "/bin/sh",

 "-c",

Dockerizing an Application224

 "#(nop) ",

 "CMD [\"/hello\"]"

],

 "Image": "sha256:b9935d4e8431fb1a7f0989304ec8

 6b3329a99a25f5efdc7f09f3f8c41434ca6d",

 "Volumes": null,

 "WorkingDir": "",

 "Entrypoint": null,

 "OnBuild": null,

 "Labels": {}

 },

 "created": "2021-09-23T23:47:57.442225064Z",

 "docker_version": "20.10.7",

 "history": [

 {

 …

],

 "os": "linux",

 "rootfs": {

 "type": "layers",

 "diff_ids": [

 "sha256:e07ee1baac5fae6a26f30cabfe54a36d3402f96afda3

 18fe0a96cec4ca393359"

]

 }

}

The following table outlines the meanings of some relevant fields from the preceding JSON output:

Field Name Description
Cmd This is the command that will be executed when the image file is run as a container.

For the hello-world example, it will execute the hello executable when the
container is launched.

rootfs rootfs stands for root filesystem, which means it contains all the necessary operating
system files that are required to start itself as a normal machine.

Docker images 225

The JSON information we saw previously can also be viewed using the following command:

docker image inspect hello-world:latest

You will get output that looks as follows:

[

 {

 "Id": "sha256:feb5d9fea6a5e9606aa995e879d862b825

 965ba48de054caab5ef356dc6b3412",

 "RepoTags": [

 "hello-world:latest"

],

 "RepoDigests": [

 "hello-world@sha256:10d7d58d5ebd2a652

 f4d93fdd86da8f265f5318c6a73cc5b6a9798ff6d2b2e67"

],

 "Parent": "",

 "Comment": "",

 "Created": "2021-09-23T23:47:57.442225064Z",

 "Container": "8746661ca3c2f215da94e6d3f7dfdcafaff5

 ec0b21c9aff6af3dc379a82fbc72",

 "ContainerConfig": {

 …

 "Cmd": [

 "/bin/sh",

 "-c",

 "#(nop) ",

 "CMD [\"/hello\"]"

],

 "Image": "sha256:b9935d4e8431fb1a7f0989304ec86b

 3329a99a25f5efdc7f09f3f8c41434ca6d",

 …

 },

 …

 "Architecture": "amd64",

 "Os": "linux",

Dockerizing an Application226

 "Size": 13256,

 "VirtualSize": 13256,

 "GraphDriver": {

 "Data": {

 "MergedDir":

 "/var/lib/docker/overlay2/c0d9b295437ab

 cdeb9caeec51dcbde1b11b0aeb3dd9e469f35

 7889defed757d9/merged",

 "UpperDir":

 "/var/lib/docker/overlay2/c0d9b295437ab

 cdeb9caeec51dcbde1b11b0aeb3dd9e469f357

 889defed757d9/diff",

 "WorkDir":

 "/var/lib/docker/overlay2/c0d9b295437ab

 cdeb9caeec51dcbde1b11b0aeb3dd9e469f357

 889defed757d9/work"

 },

 "Name": "overlay2"

 },

 …]

One of the interesting pieces of information in the output is the GraphDriver field that points to
the /var/lib/docker/overlay2/c0d9b295437abcdeb9caeec51dcbde1b11b
0aeb3dd9e469f357889defed757d9 directory containing the extracted Docker image. For
hello-world, it will be the hello executable file, as shown next:

total 16

drwx--x--- 3 root root 4096 Apr 30 18:36 ./

drwx--x--- 30 root root 4096 Apr 30 19:21 ../

-rw------- 1 root root 0 Apr 30 19:21 committed

drwxr-xr-x 2 root root 4096 Apr 30 18:36 diff/

-rw-r--r-- 1 root root 26 Apr 30 18:36 link

Taking a look inside the diff/ directory, we see the following executable file:

drwxr-xr-x 2 root root 4096 Apr 30 18:36 .

drwx--x--- 3 root root 4096 Apr 30 18:36 ..

-rwxrwxr-x 1 root root 13256 Sep 24 2021 hello

Running images as containers 227

Now that we have a good understanding of how Docker images are stored locally, in the next section,
we will look at using Docker to run the image locally as a container.

Running images as containers
In this section, we will look at running Docker images as containers and examine the different
information that we can see when a container is running.

Start by running a database Docker image and look at what information we can get about the state of
the container. Open the terminal window and run the following command to run Redis locally. Redis
is an open source memory-based data store used to store data. Since data is stored in memory, it is
fast compared to storing on disk. The command will run Redis, listening on port 7777:

docker run -p 7777:7777 -v /home/user/Downloads/redis-7.0-rc3/
data:/data redis --port 7777

Make sure you change the /home/user/Downloads/redis-7.0-rc3/data directory to
your own local directory, as Docker will use this to store the Redis data file.

You will see the following message when the container is up and running:

1:C 05 May 2022 11:20:08.723 # oO0OoO0OoO0Oo Redis is starting
oO0OoO0OoO0Oo

1:C 05 May 2022 11:20:08.723 # Redis version=6.2.6, bits=64,
commit=00000000, modified=0, pid=1, just started

1:C 05 May 2022 11:20:08.723 # Configuration loaded

1:M 05 May 2022 11:20:08.724 * monotonic clock: POSIX clock_
gettime

1:M 05 May 2022 11:20:08.724 * Running mode=standalone,
port=7777.

…

1:M 05 May 2022 11:20:08.724 * Ready to accept connections

Let’s use the Docker command-line tool to look at the running state of this container. In order to do
that, we need to get the ID of the container by running the docker ps command; in our case, the
output looks as follows:

CONTAINER ID IMAGE COMMAND CREATED
 STATUS PORTS
 NAMES

e1f58f395d06 redis "docker-entrypoint.s…" 5 minutes
ago Up 5 minutes 6379/tcp, 0.0.0.0:7777->7777/tcp, :::7777-
>7777/tcp reverent_dhawan

Dockerizing an Application228

The Redis container ID is e1f58f395d06. Using this information, we will use docker inspect
to look at the different properties of the running container. Use docker inspect as follows:

docker inspect e1f58f395d06

You will get output that looks like the following:

[[

 {

 ...

 "Mounts": [

 {

 "Type": "bind",

 "Source": "/home/user/Downloads/redis-7.0-

 rc3/data",

 "Destination": "/data",

 "Mode": "",

 "RW": true,

 "Propagation": "rprivate"

 }

],

 "Config": {

 ...

 "Env": [

 "PATH=/usr/local/sbin:/usr/local/bin:

 /usr/sbin:/usr/bin:/sbin:/bin",

 "GOSU_VERSION=1.14",

 ...

],

 ...

 },

 "NetworkSettings": {

 ...

 "Ports": {

 "6379/tcp": null,

 "7777/tcp": [

 {

 "HostIp": "0.0.0.0",

Building and packaging images 229

 "HostPort": "7777"

 },

 {

 "HostIp": "::",

 "HostPort": "7777"

 }

]

 },

 ...

 "Networks": {

 "bridge": {

 ...

 }

 }

 }

 }

]

The output shows a lot of information about the running state of the Redis container. The main things
that we are interested in are the network and the mount. The NetworkSettings section shows
the network configuration of the container, indicating the network mapping parameter of the host to
the container – the container is using port 7777, and the same port is exposed on the local machine.

The other interesting thing is the Mounts parameter, which points to the mapping of /home/user/
Downloads/redis-7.0-rc3/data to the /data local host directory inside the container. The
mount is like a redirection from the container directory to the local machine directory. Using the
mount ensures that all data is saved to the local machine when the container shuts down.

We have seen what a container is all about and how to look at the running state of the container. Now
that we have a good understanding of images and containers, we will look at creating our own image
in the next section.

Building and packaging images
In the previous section, we learned about Docker images and how to look at the state of a running
container; we also looked at how Docker images are stored locally. In this section, we will look at how
to create our own Docker image by writing a Dockerfile.

Dockerizing an Application230

We will look at building the sample application inside the chapter13/embed folder. The sample
application is the same one we discussed in Chapter 4, Serving and Embedding HTML Content. The
application will run an HTTP server listening on port 3333 to serve an embedded HTML page.

The Dockerfile that we will use to build the Docker image looks as follows:

1. Compile the app.

FROM golang:1.18 as builder

WORKDIR /app

COPY . .

RUN CGO_ENABLED=0 GOOS=linux go build -a -o bin/embed

2. Create final environment for the compiled binary.

FROM alpine:latest

RUN apk --update upgrade && apk --no-cache add curl
ca-certificates && rm -rf /var/cache/apk/*

RUN mkdir -p /app

3. Copy the binary from step 1 and set it as the default
command.

COPY --from=builder /app/bin/embed /app

WORKDIR /app

CMD /app/embed

Let’s step through the different parts of the command to understand what it is doing. The first step
is to compile the application by using a pre-built Golang 1.18 Docker image. This image contains all
the necessary tools to build a Go application. We specify /app as the working directory using the
WORKDIR command, and in the last line we copy all the source files using the COPY command and
compile the source code using the standard go build command line.

FROM golang:1.18 as builder

WORKDIR /app

COPY . .

RUN CGO_ENABLED=0 GOOS=linux go build -a -o bin/embed

After successfully compiling the application, the next step is to prepare the runtime environment
that will host the application. In this case, we are using a pre-built Docker image of the Alpine Linux
operating system. Alpine is a Linux distribution that is small in terms of size, which makes it ideal
when creating Docker images for applications to run on.

Building and packaging images 231

The next thing we want to do is to make sure the operating system is up to date by using the - update
upgrade command. This ensures that the operating system contains all the latest updates, including
security updates. The last step is to create a new /app directory that will store the application binary:

FROM alpine:latest

RUN apk --update upgrade && apk --no-cache add curl
ca-certificates && rm -rf /var/cache/apk/*

RUN mkdir -p /app

The final step is to copy over the binary from the previous step, which we have labeled as builder,
into the new /app directory. The CMD command specifies the command that will be run when the
Docker image is executed as a container – in this case, we want to run our sample application embed
specified by the parameter /app/embed:

COPY --from=builder /app/bin/embed /app

WORKDIR /app

CMD /app/embed

Now we have gone through what the Dockerfile is doing, let’s create the Docker image. Use the
following command to build the image:

docker build --tag chapter13 .

You will see an output that looks like the following, showing the different steps and processes Docker
is doing to build the image:

Sending build context to Docker daemon 29.7kB

Step 1/10 : FROM golang:1.18 as builder

 ---> 65b2f1fa535f

Step 2/10 : WORKDIR /app

 ---> Using cache

 ---> 7ab996f8148c

…

Step 5/10 : FROM alpine:latest

 ---> 0ac33e5f5afa

…

Step 8/10 : COPY --from=builder /app/bin/embed /app

…

Step 10/10 : CMD /app/embed

 ---> Using cache

Dockerizing an Application232

 ---> ade99a01b92e

Successfully built ade99a01b92e

Successfully tagged chapter13:latest

Once you get the Successfully tagged message, the building process is complete, and the
image is ready on your local machine.

The new image will be labeled chapter13 and will look as follows when we use the docker
images command:

REPOSITORY TAG IMAGE
ID CREATED SIZE

…

chapter13 latest ade99a01b92e 33 minutes
ago 16.9MB

…

golang 1.18 65b2f1fa535f 14 hours
ago 964MB

…

hello-world latest feb5d9fea6a5 7 months
ago 13.3kB

Run the newly created image using the following command:

docker run -p 3333:3333 chapter13

The command will run the image as a container, and using the -p port parameter, it exposes port 3333
inside the container to the same port 3333 on the host. Open your browser and type in http://
localhost:3333 and you will see the HTML login page, as shown in Figure 13.2:

Figure 13.2: Web application served from a Docker container

Docker Compose 233

In the next section, we’ll understand about Docker Compose.

Docker Compose
Docker provides another tool called Docker Compose, allowing developers to run multiple containers
simultaneously. Think about use cases where you are building a server that requires temporary memory
storage to store cart information; this requires using an external application such as Redis, which
provides an in-memory database.

In this kind of scenario, our application depends on Redis to function properly, which means that we
need to run Redis at the same time we run our application. There are many other different kinds of
use cases where there will be a need to use Docker Compose. The Docker Compose documentation
provides a complete step-by-step guide on how to install it on your local machine: https://docs.
docker.com/compose/install/.

Docker Compose is actually a file that outlines the different containers we want to use. Let’s try to run
the sample Docker Compose file that is inside the chapter13/embed folder. Open the terminal
and make sure you are inside the chapter13/embed folder, then execute the following command:

docker compose -f compose.yaml up

You will get the following output:

[+] Running 7/7

 ⠿ cache Pulled 11.6s
 ⠿ 213ec9aee27d Already exists 0.0s
 ⠿ c99be1b28c7f Pull complete 1.4s
 ⠿ 8ff0bb7e55e3 Pull complete 1.8s
 ⠿ 477c33011f3e Pull complete 4.8s
 ⠿ 2bbc51a93257 Pull complete 4.8s
 ⠿ 2d27eae19281 Pull complete 4.9s
[+] Building 7.3s (15/15) FINISHED

 => [internal] load build definition from Dockerfile 0.0s

 => => transferring dockerfile: 491B 0.0s

 => [internal] load .dockerignore 0.0s

 => => transferring context: 2B 0.0s

 => [internal] load metadata for docker.io/library/
alpine:latest 0.0s

 => [internal] load metadata for docker.io/library/
golang:1.18 0.0s

 => [builder 1/4] FROM docker.io/library/

https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/

Dockerizing an Application234

golang:1.18 0.3s

 => [stage-1 1/5] FROM docker.io/library/
alpine:latest 0.1s

 => [internal] load build
context 0.2s

 => => transferring context:
18.81kB 0.0s

 => [stage-1 2/5] RUN apk --update upgrade && apk --no-cache
add curl ca-certificates && rm -rf /var/cache/apk/* 5.5s

 => [builder 2/4] WORKDIR /app 0.2s

 => [builder 3/4] COPY . . 0.1s

 => [builder 4/4] RUN CGO_ENABLED=0 GOOS=linux go build -a -o
bin/embed 6.4s

 => [stage-1 3/5] RUN mkdir -p /app 1.4s

 => [stage-1 4/5] COPY --from=builder /app/bin/embed /app 0.1s

 => [stage-1 5/5] WORKDIR /app 0.0s

 => exporting to image 0.1s

 => => exporting layers 0.1s

 => => writing image sha256:84621b13c179c03eed57a23c66974659eae
4b50c97e3f8af13de99db1adf4c06 0.0s

 => => naming to docker.io/library/embed-server 0.0s

[+] Running 3/3

 ⠿ Network embed_default Created 0.1s
 ⠿ Container embed-cache-1 Created 0.1s
 ⠿ Container embed-server-1 Created 0.1s
Attaching to embed-cache-1, embed-server-1

embed-server-1 | 2022/09/10 06:24:30 Server Version : 0.0.1

embed-cache-1 | 1:C 10 Sep 2022 06:24:30.898 # oO0OoO0OoO0Oo
Redis is starting oO0OoO0OoO0Oo

embed-cache-1 | 1:C 10 Sep 2022 06:24:30.898 # Redis
version=7.0.4, bits=64, commit=00000000, modified=0, pid=1,
just started

...

embed-cache-1 | 1:M 10 Sep 2022 06:24:30.899 * Running
mode=standalone, port=6379.

embed-cache-1 | 1:M 10 Sep 2022 06:24:30.899 # Server
initialized

...

embed-cache-1 | 1:M 10 Sep 2022 06:24:30.899 * Loading RDB

Summary 235

produced by version 6.2.7

embed-cache-1 | 1:M 10 Sep 2022 06:24:30.899 * RDB age 10
seconds

...

embed-cache-1 | 1:M 10 Sep 2022 06:24:30.899 * Ready to
accept connections

Once everything is running, you should be able to access the server by opening your browser and
typing http://localhost:3333 in the address bar.

The Docker Compose file looks as follows:

version: '3'

services:

 server:

 build: .

 ports:

 - "3333:3333"

 cache:z

 image: redis:7.0.4-alpine

 restart: always

 ports:

 - '6379:6379'

The file outlines two containers that need to be run – the server is pointing to our application server, and
the build parameter uses the . dot notation. This tells Docker Compose that the source (Dockerfile)
to build the image for this container is found in the local directory, while the cache service is a Redis
server, and it will be pulled from the Docker remote registry, specifically version 7.0.4.

Summary
In this chapter, we learned about what Docker is and how to use it. Building applications is one part
of the puzzle, but packaging them to be deployed in a cloud environment requires developers to
understand Docker and how to build Docker images for their applications. We looked at how Docker
stores images on your local machine and also inspected the state of the running container.

We learned that when containers are running, there is a lot of information generated that can help us to
understand what’s going on with the container and also the parameters used to run our application. We
also learned about the Dockerfile and used it to package our sample application into a container
to run it as a single Docker image.

In the next chapter, we will use the knowledge we gained in this chapter by deploying our images to
a cloud environment.

14
Cloud Deployment

In this chapter, we will learn about cloud deployment, specifically using AWS as the cloud provider.
We will look at some of the infrastructure services provided by AWS and how to use them. We will
learn about using and writing code for creating the different AWS infrastructure services using an
open source tool called Terraform. Understanding the cloud and how cloud deployment works has
become a necessity for developers nowadays rather than an exception. Gaining a good understanding
of the different aspects of cloud deployment will allow you to think outside the box about how your
application should run in the cloud.

Upon completion of this chapter, we will have learned about the following key topics:

• Learning basic AWS infrastructure

• Understanding and using Terraform

• Writing Terraform for local and cloud deployment

• Deploying to AWS Elastic Container Service

The end goal of this chapter is to provide you with some knowledge about the cloud and how to
perform certain basic operations for deploying applications to the cloud.

Technical requirements
All the source code explained in this chapter can be checked out at https://github.com/
PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/chapter14.

This chapter uses AWS services, so you are expected to have an AWS account. AWS provides a Free Tier
for new user registration; more information can be found at https://aws.amazon.com/free.

https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/chapter14
https://github.com/PacktPublishing/Full-Stack-Web-Development-with-Go/tree/main/chapter14
https://aws.amazon.com/free

Cloud Deployment238

Note
Using any kind of AWS services will incur a cost. Please read and inform yourself before using
the service. We highly recommend reading what is available on the Free Tier on the AWS website.

AWS refresher
AWS stands for Amazon Web Services and belongs to Amazon, which provides the e-commerce
platform amazon.com.au. AWS provides services that allow organizations to run their applications
in a complete infrastructure without owning any of the hardware required.

The AWS brand is a household name for developers and almost all developers have some basic direct/
indirect exposure to using AWS tools or its services. In this section, we will look at some services
provided by AWS as a refresher.

The question that comes to our mind is, why bother using services such as AWS? Figure 14.1
summarizes the answer nicely. AWS provides services that are available across different continents of
the world and ready to be used by organizations to fulfill their needs. Imagine that your organization
has customers across different continents. How much easier would it be to run your application on
different continents without having the burden of investing in hardware on each of those continents?

Figure 14.1: Global AWS Regions

http://amazon.com.au

AWS refresher 239

In the next section, we will look at the basic service provided by AWS called AWS EC2, which provides
computing resources.

Amazon Elastic Compute Cloud

Amazon Elastic Compute Cloud (EC2) is the basic computing resource for developers to run their
applications on. You can think of EC2 as a virtual computer on Amazon infrastructure somewhere on
the internet that runs your application. You can select from a number of computer configurations that
you want to run your application on, from a small 512-MB memory to a gigantic 384-GB memory
computer with different configurations of storage. Figure 14.2 shows the Instance Type Explorer that
can be accessed using the following URL: https://aws.amazon.com/ec2/instance-
explorer/.

Figure 14.2: Instance Type Explorer

In the next section, we will look at another AWS resource related to computing that is super important
for applications, and that is storage.

https://aws.amazon.com/ec2/instance-explorer/
https://aws.amazon.com/ec2/instance-explorer/

Cloud Deployment240

Storage

Computing power is great for running applications, but applications require long-term storage to
store data such as log files and databases. There are a number of different kinds of storage provided by
AWS. For example, Figure 14.3 shows the Elastic Block Store (EBS), which is a block storage service.
This block storage is like the normal storage that you have on your local computer and is offered as a
hard drive or a solid-state drive (SSD).

Figure 14.3: EBS

The amazing thing about having this kind of storage is its elastic nature – what this means is you can
increase or decrease the size of storage anytime you need without the worry of adding new hardware.
Imagine what would happen if you were running out of hard drive space on your local computer.
You would need to buy a new hard drive and install and configure it, none of which is required when
you use the AWS storage service. Attaching storage to the EC2 instance of your choice enables your
application to run and store data in the cloud.

We will look at another AWS service that is as important as the one that we have just discussed: networking.

Virtual Private Cloud

Now that your application is running in its own virtual computer, complete with storage, the next
question is how we configure a network in AWS so that users can access the application. This is called
a Virtual Private Cloud (VPC). Think about a VPC as your own network setup, but without cables –
everything is configured and run using software. Figure 14.4 shows the powerful capability of a VPC,
enabling you to connect different networks configured in different Regions.

Think of a Region as the physical location where AWS stores its hardware, and if you run your
applications in different physical locations, you are able to connect them using a VPC.

AWS refresher 241

Figure 14.4: Virtual Private Networking

You have full control to configure the network of each Region your application is running on, how
these Regions communicate with your own network, and how your application will be accessible via
the public internet.

In the next section, we will look at another important service that a lot of applications require which
is storing data in a database.

Database storage

No matter what kind of applications you are building, you will require a database to store data, and
this requires a database server to be running. AWS provides different database services ranging from
those that store small amounts of data to massively distributed databases across different continents.
One of these services is called Amazon Relational Database Service (RDS), a managed service to
set up, scale, and operate databases.

The databases that RDS can support are MySQL, PostgreSQL, MariaDB, Oracle, and SQL Server.
Figure 14.5 outlines the features provided by RDS.

Cloud Deployment242

Figure 14.5: RDS

Elastic Container Service

In Chapter 13, Dockerizing an Application, we learned how to create Docker images to package our
application so it can run as a container. Packaging applications as Docker images allows us to run our
application in any kind of environment, from a local machine to the cloud. AWS provides a related
service called Elastic Container Service (ECS).

ECS helps us to deploy, manage, and scale out applications that have been built as containers. A key
scaling feature of ECS is the ability to scale your application using the Application Auto Scaling capability.
This feature allows developers to scale applications based on certain conditions, such as the following:

• Step scaling: This means scaling an application based on the breach of an alarm

• Scheduled scaling: This is scaling based on a predetermined time

AWS tools

AWS provides different ways to use its services, including a web user interface and the command-line
interface (CLI). The main page of the web UI can be seen in Figure 14.6. You will need to register for
an AWS account first before using any of the AWS tools.

The UI is a very good place to start exploring the different services and go through some sample
tutorials to get a better understanding of each service.

Understanding and using Terraform 243

Figure 14.6: AWS web UI

The other AWS tool that is used to interact with the services is the CLI, which needs to be installed locally
(https://docs.aws.amazon.com/cli/latest/userguide/getting-started-
install.html). The CLI makes it easier to interact with the AWS services than the web UI. If you
have installed it locally, when you run aws from your terminal, you will see the following output:

usage: aws [options] <command> <subcommand> [<subcommand> ...]
[parameters]

To see help text, you can run:

 aws help

 aws <command> help

 aws <command> <subcommand> help

aws: error: the following arguments are required: command

In the next section, we will look at how to use some of the features described here to deploy our
application in AWS.

Understanding and using Terraform
In this section, we will look at another tool that makes it easier for us to work with AWS services:
Terraform. In the previous section, we learned that AWS provides tools of its own, which is great for
small tasks, but once you start combining the different services it becomes harder to use them.

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html

Cloud Deployment244

What is Terraform?

Terraform (https://www.terraform.io/) is an open source tool that provides infrastructure
as code (IaC). What this means is you write code to define what kind of service you want to use and
how you want to use it, and this way, you can combine and link the different services together as a
single piece. This makes it easy for you as a developer to run and destroy infrastructure as a unit
instead of separate fragments.

The other benefit that Terraform provides is the ability to version control the infrastructure code
like normal application code, where it goes through the normal review process, including the peer
review process and also unit testing, before deploying the infrastructure to production. With this, your
application and infrastructure will now go through the same development process, which is trackable.

Installing Terraform

The Terraform installation process is straightforward: you can find a complete set of instructions for
your operating system in the HashiCorp documentation at https://www.terraform.io/
downloads.

For example, when writing this book we are using an Ubuntu-based distro, so we download the
AMD64 binary from https://releases.hashicorp.com/terraform/1.3.0/
terraform_1.3.0_linux_amd64.zip and include the Terraform directory into our PATH,
as in the following snippet. The directory added to the PATH variable environment is a temporary
solution for the terminal that you are using. In order to store it, you need to put it as part of your shell
script (for Linux, if you are using Bash, you can add this to your .bashrc file):

export PATH=$PATH:/home/user/Downloads/

To test whether the installation was successful, open the terminal and execute Terraform:

Terraform

You should get the following output:

Usage: terraform [global options] <subcommand> [args]

The available commands for execution are listed below.

The primary workflow commands are given first, followed by

less common or more advanced commands.

Main commands:

 init Prepare your working directory for other

 commands

https://www.terraform.io/
https://www.terraform.io/downloads
https://www.terraform.io/downloads
https://releases.hashicorp.com/terraform/1.3.0/terraform_1.3.0_linux_amd64
https://releases.hashicorp.com/terraform/1.3.0/terraform_1.3.0_linux_amd64

Terraform basic commands 245

 ...

All other commands:

 console Try Terraform expressions at an interactive

 command prompt

 fmt Reformat your configuration in the standard

 style

 ...

For detailed information on how to install Terraform for your environment, see https://developer.
hashicorp.com/terraform/tutorials/aws-get-started/install-cli.

Now that we have completed the Terraform installation, we will learn how to use some of the basic
commands available in Terraform. The commands will enable you to jumpstart your journey into
the world of cloud deployment.

Terraform basic commands
In this section, we will learn some basic Terraform commands that are often used when writing code.
We will also examine concepts that are relevant to Terraform.

The init command

Every time we start writing Terraform code, the first command that we run is terraform init.
This command prepares all the necessary dependencies required to run the code locally. The command
performs the following steps:

1. Downloads all the necessary modules that are used in the code.

2. Initializes plugins that are used in the code. For example, if the code is deployed on AWS it
will download the AWS plugins.

3. Creates a file called a lock file that registers the different dependencies and versions that are
used by the code.

To gain a better understanding of the previous steps, let’s run the command. Open the terminal and
change to the chapter14/simple directory, and execute the following command:

terraform init

You will see an output as follows:

Initializing the backend...

Initializing provider plugins...

https://developer.hashicorp.com/terraform/tutorials/aws-get-started/install-cli
https://developer.hashicorp.com/terraform/tutorials/aws-get-started/install-cli

Cloud Deployment246

- Finding kreuzwerker/docker versions matching "~> 2.16.0"...

- Installing kreuzwerker/docker v2.16.0...

- Installed kreuzwerker/docker v2.16.0 (self-signed, key ID
BD080C4571C6104C)

...

Once the init process is complete, your directory will look like the following:

.

├── main.tf

├── .terraform

│ └── providers

│ └── registry.terraform.io

│ └── kreuzwerker

│ └── docker

│ └── 2.16.0

│ └── linux_amd64

│ ├── CHANGELOG.md

│ ├── LICENSE

│ ├── README.md

│ └── terraform-provider-docker_
v2.16.0

├── .terraform.lock.hcl

└── versions.tf

The .terraform directory contains the dependencies that are specified in the code. In this example,
it uses the kreuzwerker/docker plugin, which is used to run Docker containers.

The .terraform.lock.hcl file contains the version information of the dependencies, and it
looks like the following:

This file is maintained automatically by "terraform

init".

Manual edits may be lost in future updates.

provider "registry.terraform.io/kreuzwerker/docker" {

 version = "2.16.0"

 constraints = "~> 2.16.0"

 hashes = [

Terraform basic commands 247

 "h1:OcTn2QyCQNjDiJYy1vqQFmz2dxJdOF/2/HBXBvGxU2E=",

 ...

]

}

The plan command

The plan command is used to help us understand the execution plan that Terraform will be doing.
This is a very important feature as it gives us visibility of what changes will be performed to our
infrastructure. This will give us a better understanding of which parts of the infrastructure will be
impacted by the code. Unlike tools such as Chef or Ansible, Terraform is interesting in that it will
tend towards a target state and only make the changes necessary to reach it. For example, if you had
a target of five EC2 instances but Terraform only knew of three, it would take the steps needed to
reach that target of five.

Open the terminal, change to the chapter14/simple directory, and execute the following command:

terraform plan

You will get the following output:

...

Terraform will perform the following actions:

 # docker_container.nginx will be created

 + resource "docker_container" "nginx" {

 + attach = false

 + bridge = (known after apply)

 + command = (known after apply)

 + container_logs = (known after apply)

 + entrypoint = (known after apply)

 + env = (known after apply)

 + exit_code = (known after apply)

 ...

 + remove_volumes = true

 + restart = "no"

 + rm = false

 + security_opts = (known after apply)

 + shm_size = (known after apply)

 + start = true

Cloud Deployment248

 + stdin_open = false

 + tty = false

 + healthcheck {

 + interval = (known after apply)

 + retries = (known after apply)

 + start_period = (known after apply)

 + test = (known after apply)

 + timeout = (known after apply)

 }

 + labels {

 + label = (known after apply)

 + value = (known after apply)

 }

 + ports {

 + external = 8000

 + internal = 80

 + ip = "0.0.0.0"

 + protocol = "tcp"

 }

 }

 # docker_image.nginx will be created

 + resource "docker_image" "nginx" {

 + id = (known after apply)

 ...

 + repo_digest = (known after apply)

 }

Plan: 2 to add, 0 to change, 0 to destroy.

...

The output shows that there will be 2 things added and 0 operations for changing or destroying, which
tells us that this is the first time we are running the code or it’s still fresh.

Terraform basic commands 249

The apply command

The normal process of running Terraform is that after init, we run apply (however, if we are not
sure about the impact, we use the plan command as shown previously). Open the terminal, change
to the chapter14/simple directory, and execute the following command:

terraform apply –auto-aprove

You will get the following output:

...

Terraform will perform the following actions:

 # docker_container.nginx will be created

 + resource "docker_container" "nginx" {

 + attach = false

 + bridge = (known after apply)

 ...

 }

 # docker_image.nginx will be created

 + resource "docker_image" "nginx" {

 + id = (known after apply)

 ...

 }

Plan: 2 to add, 0 to change, 0 to destroy.

docker_image.nginx: Creating...

docker_image.nginx: Still creating... [10s elapsed]

docker_image.nginx: Creation complete after 17s
[id=sha256:2d389e545974d4a93ebdef09b650753a55f72d1ab4518d17a
30c0e1b3e297444nginx:latest]

docker_container.nginx: Creating...

docker_container.nginx: Creation complete after 2s [id=d0c94bd4
b548e6a19c3afb907a777bcb602e965bc05db8ef6d0d380601bb0694]

Apply complete! Resources: 2 added, 0 changed, 0 destroyed.

Cloud Deployment250

As seen in the output, the nginx container will be downloaded (if it does not exist as yet) and then
run. Once the command is successfully run you can test it by opening your browser and accessing
http://localhost:8080. You will see something like Figure 14.7.

Figure 14.7: nginx running in a container

The destroy command

The last command that we will look at is destroy. As the name implies, it is used to destroy the
infrastructure that was created using the apply command. Use this command with caution if you are
unsure about the impact of the code on your infrastructure. Use the plan command before running
this to get better visibility of what will be removed from the infrastructure.

Open the terminal and run the following command from the chapter14/simple directory:

Terraform destroy –auto-approve

You will get the following output:

docker_image.nginx: Refreshing state... [id=sha256:
2d389e545974d4a93ebdef09b650753a55f72d1ab4518d17a30c
0e1b3e297444nginx:latest]

docker_container.nginx: Refreshing state... [id=9c46cff8
1a27edb6aba08a448d715599c644aaa79b192728016db0d903da9fb0]

...

Terraform will perform the following actions:

 # docker_container.nginx will be destroyed

 - resource "docker_container" "nginx" {

 - attach = false -> null

 - command = [

 - "nginx",

Terraform basic commands 251

 - "-g",

 - "daemon off;",

] -> null

 - cpu_shares = 0 -> null

 …

 }

 # docker_image.nginx will be destroyed

 - resource "docker_image" "nginx" {

 - id =

 "sha256:2d389e545974d4a93ebdef09b650753a55f7

 2d1ab4518d17a30c0e1b3e297444nginx:latest" ->

 null

 - keep_locally = false -> null

 - latest =

 "sha256:2d389e545974d4a93ebdef09b650753a55f72

 d1ab4518d17a30c0e1b3e297444" -> null

 - name = "nginx:latest" -> null

 - repo_digest =

 "nginx@sha256:0b970013351304af46f322da126351

 6b188318682b2ab1091862497591189ff1" -> null

 }

Plan: 0 to add, 0 to change, 2 to destroy.

docker_container.nginx: Destroying... [id=9c46cff81a27edb6aba
08a448d715599c644aaa79b192728016db0d903da9fb0]

docker_container.nginx: Destruction complete after 1s

docker_image.nginx: Destroying... [id=sha256:2d389e545974d4a93
ebdef09b650753a55f72d1ab4518d17a30c0e1b3e297444nginx:latest]

docker_image.nginx: Destruction complete after 0s

Destroy complete! Resources: 2 destroyed.

In the output, we can see that there are 2 infrastructures that are destroyed – one is the container
removed from memory, and the other is the removal of the image from the local Docker registry.

Cloud Deployment252

The –auto-approve command is used to automatically approve the steps; normally, without using
this, Terraform will stop execution and ask the user to enter Yes or No to continue at each step. This
is a precautionary measure to ensure that the user does indeed want to destroy the infrastructure.

In the next section, we will look at writing Terraform code and how it uses providers. We will look
at a few Terraform examples to get an understanding of how it works to spin up different AWS
infrastructure services for deploying applications.

Coding in Terraform
HashiCorp, the creator of Terraform, created HashiCorp configuration language (HCL), which is used
in writing Terraform code. HCL is a functional programming language with features such as loops, if
statements, variables, and logic flow that are normally found in programming languages. Complete
in-depth HCL documentation can be found at https://www.terraform.io/language/.

Providers

The reason why Terraform is so widely used is the number of extensions that are available from the
company and open source communities; these extensions are called providers. A provider is a piece
of software that interacts with the different cloud providers and other resources in the cloud. We will
look at Terraform code to understand more about providers. The following code snippets can be found
inside the chapter14/simple directory:

terraform {

 required_providers {

 docker = {

 source = "kreuzwerker/docker"

 version = "~> 2.16.0"

 }

 }

}

resource "docker_image" "nginx" {

 name = "nginx:latest"

 keep_locally = false

}

resource "docker_container" "nginx" {

 image = docker_image.nginx.name

 name = "hello-terraform"

https://www.terraform.io/language/

Coding in Terraform 253

 ports {

 internal = 80

 external = 8000

 }

}

The resource block in the code can be used to declare infrastructure or an API. In this example, we
are using Docker, specifically, docker_image and docker_container. When Terraform runs the
code it detects the required_providers block, which is used to define a provider. A provider is an
external module that the code will be using, and this will be automatically downloaded by Terraform
from a central repository. In our example, the provider that we are using is the kreuzwerker/docker
Docker provider. More information on this provider can be found at the following link: https://
registry.terraform.io/providers/kreuzwerker/docker/.

Open the terminal, make sure you are inside the chapter14/simple directory, and run the
following command:

terraform init

You will see the following output in your terminal:

Initializing the backend...

Initializing provider plugins...

- Finding kreuzwerker/docker versions matching "~> 2.16.0"...

- Installing kreuzwerker/docker v2.16.0...

- Installed kreuzwerker/docker v2.16.0 (self-signed, key ID
BD080C4571C6104C)

...

Terraform downloads the provider and stores it inside the chapter14/simple/.terraform
folder. Now, let’s run the sample code and see what we get, by running the following command in
the same terminal:

terraform apply -auto-approve

You will see the following output:

…

 # docker_container.nginx will be created

 + resource "docker_container" "nginx" {

 + attach = false

https://registry.terraform.io/providers/kreuzwerker/docker/
https://registry.terraform.io/providers/kreuzwerker/docker/

Cloud Deployment254

 ...

 }

 # docker_image.nginx will be created

 + resource "docker_image" "nginx" {

 + id = (known after apply)

 …

 }

Plan: 2 to add, 0 to change, 0 to destroy.

 …

docker_image.nginx: Creation complete after 22s
[id=sha256:2d389e545974d4a93ebdef09b650753a55f72d1ab4518d17a
30c0e1b3e297444nginx:latest]

docker_container.nginx: Creating...

docker_container.nginx: Creation complete after 2s [id=b860780
af83a4c719a916b87171d96801cc2243a61242354815f6d82dc6a5e40]

Open your browser and go to http://localhost:8000. You will see something like Figure 14.7.

Terraform downloads the nginx Docker image automatically to your local machine and runs the
nginx container using the port defined in the ports code block (port 8000). To destroy the
running container and delete the image locally from the Docker registry, all you have to do is run
the following command:

terraform destroy -auto-approve

If you compare the steps involved to do the same thing manually using the Docker command, it is
more involved and error-prone; writing it in Terraform makes it much easier to run and remove
containers with a single command.

In the next section, we will explore more examples to better understand how to use Terraform for
deploying applications.

Terraform examples
In the following sections, we will look at different ways we can use Terraform, such as pulling images
from GitHub and running them locally, or building and publishing Docker images.

Terraform examples 255

Note
Make sure every time you run Terraform examples that create AWS resources to remember to
destroy the resources using the terraform destroy command.

All resources created in AWS incur charges, and by destroying them, you will ensure there will
be no surprise charges.

Pulling from GitHub Packages

The example code for this section can be found inside the chapter14/github folder. The following
snippet is from pullfromgithub.tf:

#script to pull chapter12 image and run it locally

#it also store the image locally

terraform {

 required_providers {

 docker = {

 source = "kreuzwerker/docker"

 version = "~> 2.13.0"

 }

 }

}

data "docker_registry_image" "github" {

 name = "ghcr.io/nanikjava/golangci/chapter12:latest"

}

resource "docker_image" "embed" {

 ...

}

resource "docker_container" "embed" {

 ...

}

The main objective of the code is to download the Docker image that we built in Chapter 12, Building
Continuous Integration. Once the Docker image is downloaded, it will be run locally. Open your terminal,
make sure you are inside the chapter14/github directory, and run the following command:

Cloud Deployment256

terraform init

Then run the following command:

terraform apply -auto-approve

You will see output in your terminal that looks like the following:

…

data.docker_registry_image.github: Reading...

data.docker_registry_image.github: Read complete after 1s
[id=sha256:a355f55c33a400290776faf20b33d45096eb19a6431fb
0b3f723c17236e8b03e]

…

 # docker_container.embed will be created

 + resource "docker_container" "embed" {

 + attach = false

 …

 + ports {

 + external = 3333

 + internal = 3333

 …

 }

 }

 # docker_image.embed will be created

 + resource "docker_image" "embed" {

 …

 + name =

 "ghcr.io/nanikjava/golangci/chapter12:latest"

 …

 }

Plan: 2 to add, 0 to change, 0 to destroy.

… [id=sha256:684e34e77f40ee1e75bfd7d86982a4f4fae1dbea3286682af
3222a270faa49b7ghcr.io/nanikjava/golangci/chapter12:latest]

docker_container.embed: Creation complete after 7s

Terraform examples 257

[id=f47d1ab90331dd8d6dd677322f00d9a06676b71dda3edf2cb2e66
edc97748329]

Apply complete! Resources: 2 added, 0 changed, 0 destroyed.

Open your browser and go to http://localhost:3333. You will see the login page of the
sample app.

The code uses the same docker provider that we discussed in the previous section, and we use a new
docker_registry_image command to specify the address to download the Docker image from,
in this case from the ghcr.io/nanikjava/golangci/chapter12:latest GitHub package.

The other HCL feature we are using is the data block, as shown here:

...

data "docker_registry_image" "github" {

 name = "ghcr.io/nanikjava/golangci/chapter12:latest"

}

...

The data block works similarly to resource, except it is only used for reading values and not
creating or destroying resources or to get data that will be used internally as configuration to another
resource. In our sample, it is used by the docker_image resource, as shown here:

resource "docker_image" "embed" {

 keep_locally = true

 name = "${data.docker_registry_image.github.name}"

}

AWS EC2 setup

In the previous examples, we looked at using the Docker provider to run Docker containers locally.
In this example, we will look at creating AWS resources, specifically EC2 instances. An EC2 instance
is basically a virtual machine that can be initialized with a certain configuration to run in the cloud
to host your application.

In order to create resources in AWS, you will first need to already have an AWS account. If you don’t
have an AWS account, you can create one at https://aws.amazon.com/. Once you have your
AWS account ready, log in to the AWS website, and in the main console (Figure 14.6) web page, click
on your name on the right side and it will display a drop-down menu, as shown in Figure 14.8. Then
click on Security credentials.

https://aws.amazon.com/

Cloud Deployment258

Figure 14.8: Security credentials option

Your browser will now show the identity and access management (IAM) page, as shown in Figure 14.9.
Select the Access keys (access key ID and secret access key) option. Since you haven’t created any
key, it will be empty. Click on the Create New Access Key button and follow the instructions to create
a new key.

Figure 14.9: Access keys section

Once you complete the steps you will get two keys – an Access Key ID and Secret Access Key. Keep
these keys safe as they are used like a username and password combination you use to create resources
in AWS infrastructure.

Terraform examples 259

Now that you have the keys required, you can now open a terminal and change into the chapter14/
simpleec2 directory, and run the example as follows:

terraform init

Next, run the following command to create the EC2 instance:

terraform apply -var="aws_access_key=xxxx" -var="aws_secret_
key=xxx" -auto-approve

Once completed you will see the output as follows:

...

Terraform will perform the following actions:

 # aws_instance.app_server will be created

 + resource "aws_instance" "app_server" {

 + ami = "ami-0ff8a91507f77f867"

 ...

 }

 # aws_subnet.default-subnet will be created

 + resource "aws_subnet" "default-subnet" {

 ...

 }

 # aws_vpc.default-vpc will be created

 + resource "aws_vpc" "default-vpc" {

 + arn = (known after apply)

 ...

 }

Plan: 3 to add, 0 to change, 0 to destroy.

...

aws_instance.app_server: Creation complete after 24s [id=i-
0358d1df58e055d70]

Cloud Deployment260

The output shows three resources were created – the AWS instance (EC2), an IP subnet, and a network
VPC. Now, let’s take a look at the code (the complete code can be seen inside the chapter14/
simpleec2 directory). The code requires your AWS keys, storing them inside the variable block
as aws_access_key and aws_secret_key:

terraform {

 ...

}

variable "aws_access_key" {

 type = string

}

variable "aws_secret_key" {

 type = string

}

provider "aws" {

 region = "us-east-1"

 access_key = var.aws_access_key

 secret_key = var.aws_secret_key

}

The keys will be passed to the aws provider to enable the provider to communicate with the AWS
service using our keys.

The following part of the code creates the VPC and IP subnet, which will be used as a private network
by EC2 instances:

resource "aws_vpc" "default-vpc" {

 cidr_block = "10.0.0.0/16"

 enable_dns_hostnames = true

 tags = {

 env = "dev"

 }

}

resource "aws_subnet" "default-subnet" {

 cidr_block = "10.0.0.0/24"

 vpc_id = aws_vpc.default-vpc.id

}

Terraform examples 261

The last resource the code defines is the EC2 instance, as follows:

resource "aws_instance" "app_server" {

 ami = "ami-0ff8a91507f77f867"

 instance_type = "t2.nano"

 subnet_id = aws_subnet.default-subnet.id

 tags = {

 Name = "Chapter14"

 }

}

The EC2 instance type is t2.nano, which is the smallest virtual machine that can be configured. It
is linked to the IP subnet defined earlier by assigning the subnet ID to the subnet_id parameter.

Deploying to ECS with a load balancer

The last example that we are going to look at is using AWS ECS. The source code can be found inside
the chapter14/lbecs directory. The code will use ECS to deploy our Chapter 12 container hosted
in GitHub Packages and made scalable by using a load balancer. Figure 14.9 shows the infrastructure
configuration after running the code.

Figure 14.10: ECS with a load balancer

Cloud Deployment262

The code uses the following services:

• An internet gateway: As the name implies, this is a gateway that enables communication to
be established between the AWS VPC private network and the internet. With the help of the
gateway, we open our application to the world.

• A load balancer: This service helps balance the incoming traffic across the different networks
configured, ensuring that the application can take care of all incoming requests.

ECS provides the capability to scale the deployment process for containers. This means that, as
developers, we don’t have to worry about how to scale the containers that are running our application,
as this is all taken care of by ECS. More in-depth information can be found at https://aws.
amazon.com/ecs/. The application is run the same way as in the previous examples, using the
terraform init and terraform apply commands.

Note
The ECS example takes a bit longer to execute compared to the other examples.

You will get output that looks like the following:

...

Terraform will perform the following actions:

 # aws_default_route_table.lbecs-subnet-default-route-

 # table will be created

 + resource "aws_default_route_table"

 "lbecs-subnet-default-route-table" {

 ...

 }

 # aws_ecs_cluster.lbecs-ecs-cluster will be created

 + resource "aws_ecs_cluster" "lbecs-ecs-cluster" {

 ...

 }

 # aws_ecs_service.lbecs-ecs-service will be created

 + resource "aws_ecs_service" "lbecs-ecs-service" {

 ...

 }

https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/

Terraform examples 263

 # aws_ecs_task_definition.lbecs-ecs-task-definition will

 # be created

 + resource "aws_ecs_task_definition"

 "lbecs-ecs-task-definition" {

 ...

 }

 # aws_internet_gateway.lbecs-igw will be created

 + resource "aws_internet_gateway" "lbecs-igw" {

 ...

 }

 # aws_lb.lbecs-load-balancer will be created

 + resource "aws_lb" "lbecs-load-balancer" {

 ...

 }

 # aws_lb_listener.lbecs-load-balancer-listener will be

 # created

 + resource "aws_lb_listener"

 "lbecs-load-balancer-listener" {

 ...

 }

 # aws_lb_target_group.lbecs-load-balancer-target-group

 # will be created

 + resource "aws_lb_target_group"

 "lbecs-load-balancer-target-group" {

 ...

 }

 # aws_security_group.lbecs-security-group will be created

 + resource "aws_security_group" "lbecs-security-group" {

 ...

 }

Cloud Deployment264

 # aws_subnet.lbecs-subnet will be created

 + resource "aws_subnet" "lbecs-subnet" {

 ...

 }

 # aws_subnet.lbecs-subnet-1 will be created

 + resource "aws_subnet" "lbecs-subnet-1" {

 ...

 }

 # aws_vpc.lbecs-vpc will be created

 + resource "aws_vpc" "lbecs-vpc" {

 ...

 }

Plan: 12 to add, 0 to change, 0 to destroy.

...

aws_ecs_service.lbecs-ecs-service: Creation complete after
2m49s [id=arn:aws:ecs:us-east-1:860976549008:service/lbecs-ecs-
cluster/lbecs-ecs-service]

...

Outputs:

url = "load-balancer-1956367690.us-east-1.elb.amazonaws.com"

Let’s break down the code to see how it uses ECS and configures the internet gateway, load balancer,
and network. The following code shows the internet gateway declaration, which is simple enough as
it requires to be attached to a VPC:

resource "aws_internet_gateway" "lbecs-igw" {

 vpc_id = aws_vpc.lbecs-vpc.id

 tags = {

Terraform examples 265

 Name = "Internet Gateway"

 }

}

resource "aws_default_route_table" "lbecs-subnet-default-route-
table" {

 default_route_table_id =

 aws_vpc.lbecs-vpc.default_route_table_id

 route {

 cidr_block = "0.0.0.0/0"

 gateway_id = "${aws_internet_gateway.lbecs-igw.id}"

 }

}

Besides that, the gateway will also be attached to a routing table declared inside the aws_default_
route_table block. This is necessary as this tells the gateway how to route the incoming and
outgoing traffic through the internal private VPC network.

Now that our internal private network can communicate to the internet via a gateway, we need to
have network rules in place to ensure our network is secure, and this is done in the following code:

resource "aws_security_group" "lbecs-security-group" {

 name = "allow_http"

 description = "Allow HTTP inbound traffic"

 vpc_id = aws_vpc.lbecs-vpc.id

 egress {

 from_port = 0

 to_port = 0

 protocol = "-1"

 cidr_blocks = ["0.0.0.0/0"]

 }

 ingress {

 description = "Allow HTTP for all"

 from_port = 80

 to_port = 3333

 protocol = "tcp"

Cloud Deployment266

 cidr_blocks = ["0.0.0.0/0"]

 }

}

The egress block declares the rule for outgoing network traffic, allowing all protocols to pass
through. The incoming network traffic rule is declared in the ingress block, and allows ports
between 80-3333 and only over TCP.

Using a load balancer requires two different subnets to be declared. In our code example, this is as follows:

resource "aws_lb" "lbecs-load-balancer" {

 name = "load-balancer"

 internal = false

 load_balancer_type = "application"

 security_groups = [aws_security_group.lbecs-security-group.
 id]

 subnets = [aws_subnet.lbecs-subnet.id,

 aws_subnet.lbecs-subnet-1.id]

 tags = {

 env = "dev"

 }

}

The last piece of code that we will look at is the ECS block, as follows:

resource "aws_ecs_cluster" "lbecs-ecs-cluster" {

 name = "lbecs-ecs-cluster"

}

resource "aws_ecs_task_definition" "lbecs-ecs-task-definition"
{

 family = "service"

 requires_compatibilities = ["FARGATE"]

 network_mode = "awsvpc"

 cpu = 1024

 memory = 2048

 container_definitions = jsonencode([

 {

 name = "lbecs-ecs-cluster-chapter14"

 image =

Terraform examples 267

 "ghcr.io/nanikjava/golangci/chapter12:latest"

 ...

 portMappings = [

 {

 containerPort = 3333

 }

]

 }

])

}

resource "aws_ecs_service" "lbecs-ecs-service" {

 name = "lbecs-ecs-service"

 cluster = aws_ecs_cluster.lbecs-ecs-cluster.id

 task_definition =

 aws_ecs_task_definition.lbecs-ecs-task-definition.arn

 desired_count = 1

 launch_type = "FARGATE"

 network_configuration {

 ...

 }

 load_balancer {

 target_group_arn = aws_lb_target_group.lbecs-load-

 balancer-target-group.arn

 container_name = "lbecs-ecs-cluster-chapter14"

 container_port = 3333

 }

 tags = {

 env = "dev"

 }

}

Cloud Deployment268

The preceding code contains three different code blocks that are explained as follows:

• aws_ecs_cluster: This block configures the name of the ECS cluster

• aws_ecs_task_definition: This block configures the ECS task, which specifies what
kind of container it has to run, the virtual machine configuration that the container will be
running on, the network mode, security group, and other options

• aws_ecs_service: This block ties together the different services to describe the complete
infrastructure that will be run, such as security, ECS task, network configuration, load balancers,
public IP address, and more

Once ECS has been spun up, it will print out in your console the load-balanced public address you can
use to access the application. For example, when it was run, we got the following output in the terminal:

…

aws_lb_listener.lbecs-load-balancer-listener: Creating...

aws_lb_listener.lbecs-load-balancer-listener: Creation
complete after 1s [id=arn:aws:elasticloadbalancing:us-east-
1:860976549008:listener/app/load-balancer/4ad0f8b815a06f02/
d945bba078d0c365]

aws_ecs_service.lbecs-ecs-service: Creation complete after
2m27s [id=arn:aws:ecs:us-east-1:860976549008:service/lbecs-ecs-
cluster/lbecs-ecs-service]

Apply complete! Resources: 12 added, 0 changed, 0 destroyed.

Outputs:

url = "load-balancer-375816308.us-east-1.elb.amazonaws.com"

Using the load-balancer-375816308.us-east-1.elb.amazonaws.com address in
the browser will show the application login page. This address is dynamically generated by AWS, and
you will get something different than what is shown in the previous output.

Summary 269

Summary
In this chapter, we explored cloud solutions provided by AWS, and we briefly looked at the different
services offered, such as EC2, VPC, storage, and others. We learned about the open source Terraform
tools that make it easy to create, manage, and destroy cloud infrastructure in AWS.

We learned how to install and use Terraform locally, and how to write Terraform code to use Docker
as a provider, allowing us to run containers locally. Terraform also allows us to download, run, and
destroy containers locally with a single command.

We also explored different Terraform examples for creating AWS infrastructure resources and looked
at one of the advanced features of AWS ECS.

In this last chapter of the book, you have learned the different things that need to be done to deploy
an application to the AWS cloud.

Index

A
Amazon Elastic Compute Cloud (EC2) 239
Amazon Web Services (AWS) 238

tools 242
application

authentication, adding to 86, 87
basic middleware, adding to 90, 91
dummy user, creating 88, 89
session information, storing 95
structuring 100
tracing 40
user authentication 89, 90

Application Programming
Interface (API) 103

apply command 249, 250
authentication 86
Axios

URL 168

B
banlist gotcha 174
basic middleware

adding, to application 90, 91

Buefy 139, 152
setting up 141
UI components 142, 143

Bulma
sample 140, 141
URL 139

C
Cleave.JS

input handling with 148, 149
reference link 150

client-side rendering (CSR) 120
command line tool (CLI) 242
container 221

Docker images, running as 227-229
content

bundling, with Go Embed 78-82
content domain network (CDN) 122
continuous integration (CI)

GitHub, setting up 200-204
importance 200

cookies 92, 93
Cross-Origin Resource Sharing

(CORS) 91, 104, 105
for secure applications 163-165

Index272

CRUD
generating, with sqlc 14-21

cryptography 89
cURL 71
Cygwin

URL 21

D
database

designing 6-9
setting up 13, 14

data entry
validating, with Vuelidate 143-148

db.go file 17, 18
defaults and error pages 182
destroy command 250, 251
Directed Acyclic Graph (DAG) 46
Docker 219

installing 4, 219, 220
reference link 4
using 221

docker-compose
running 58-60

Docker Compose 233-235
Docker Desktop

for Linux 4
for macOS 4
for Windows 4

Dockerfile 210
Docker images 221-224

building 230
packaging 230-232
publishing 209
publishing, to GitHub Packages 212-216
pulling, from GitHub Packages 216
running, as containers 227-229

document object model (DOM) 120

dummy user 87
dynamic content

rendering 74-78

E
Elastic Block Store (EBS) 240
Elastic Container Service (ECS) 242
entity relationship diagram 7
errors

reporting, with JSON 112

F
feature flags 186

benefits 186
configuration 186-188
high-level architecture 190

feature flag server
feedback, gathering before launch 188
installing 188-190
risk mitigation 188
segment targeting 188

feature flags, integration 190
MicroService integration 193-197
web application 191, 192

frontend libraries 135

G
generate.go 101
GitHub

setting up 201-204
GitHub Actions 204, 205

workflow 206-209
GitHub Packages 210-212

Docker images, publishing to 212-216
Docker images, pulling from 216

Index 273

Go Embed
used, for bundling content 78-82

Golang 64
Golang APIs

consuming 156-163
golog

using 26-29
Gorilla Mux 32

URL 67
using 67-72

Gorilla project 67
Go standard library 63

reference link 63
Go standard logging

exploring 23-26

H
handlers.go 101
HashiCorp configuration

language (HCL) 252
reference link, for documentation 252

Hello World
with defaults 64-66

HTTP library 63
HTTP response status codes

reference link 33

I
infrastructure as code (IaC) 244
init command 245, 246
input handling

with Cleave.JS 148, 149
Instance Type Explorer

URL 239
internal/ 101
internet gateway 262

J
Jaeger 41-43

integration with 44-49
URL 41

Jaeger SDK
integrating 43, 44

JavaScript Object Notation (JSON) 105
data, converting from 108
data, converting to 108
errors, reporting 112
request model, defining 109, 110
response model, defining 111, 112

JavaScript Syntax eXtension (JSX) 120
JSONError

using 112-114
JSONMessage

using 114
JSON middleware 105-107
JSON Web Token (JWT) 170

banlist gotcha 174
cookies and validation middleware,

setting 175-178
for session management 169, 170
logout gotcha 174
none algorithm gotcha 174
stale data gotcha 174
using, with cookies 174
using, with middleware 174

L
leveled logging 26
load balancer 262
local logging 29, 30
logging server

log messages, writing to 30-33
log levels 26
logout gotcha 174

Index274

M
makefile 21

building 21, 22
meta fields 181
metrics 50

adding, with Prometheus 50-57
metrics APIs

Instrument 52
Meter 52
MeterProvider 52

middleware 85, 90
basic middleware 90

migrations 102
models.go file 18
multiple outputs

configuring 33-35
mux 66

N
navigation guards 179

functionality 179
using 180-182

NMake
reference link 21

none algorithm gotcha 174

O
observability 37
OpenTelemetry 38

APIs 39
metrics 39
SDK 39
tracing 38
URL 38

OpenTelemetry specification 38, 39
components 39
data sources 39
instrumenting and libraries 39
reference link 39

OpenTelemetry specification, API
baggage 40
context 39
metrics 40
tracing 40

OpenTelemetry tracing API 40

P
packages

defining 100
plan command 247, 248
Postgres

setting up 5, 6
Postgres client tools

reference link 5
projects, supported by OpenTelemetry

reference link 50
Prometheus 50

used, for adding metrics 50-57
providers 252-254
psql client

reference link 6

Q
queries 102
query.sql_gen.go file 19

R
React 120, 121
Redis

using, for session 95-97

Index 275

Representational State Transfer
(REST) 30, 102

REST API 103
RESTful API 103
routing 63

S
scheduled scaling 242
server-side rendering (SSR) 120
session handling 92-94
session key 93
session management 169

JWTs, for 170
session middleware 107, 108
sessions 92

check flow 92
Redis, using for 95-97

SFC Greeter.vue
example 123

Single File Components (SFCs) 122, 152
single-page application (SPA) 130
Software Development Kit (SDK) 38
solid-state drive (SSD) 240
sqlc 9

CRUD, generating with 1-21
download link 9
installing 10
using 11-13

stale data gotcha 174
static content

rendering 72-74
step scaling 242
store 102
struct 109
Svelte 121

T
Tailwind 152
Tailwind project

creating 153-156
Terraform 244

apply command 249, 250
destroy command 250, 251
init command 245, 246
installing 244, 245
plan command 247, 248
URL 244

Terraform, examples 254
AWS EC2 setup 257-261
Docker images, pulling from

GitHub packages 255-257
load balancer, used to deploy

container to ECS 261-268

U
user authentication 89, 90

V
virtual private network (VPC) 240
Vite

using 127-129
Vite project

creating 153-156
Vue 121
Vue app

components 124
creating 124
login page 124-126

Vuelidate
data entry, validating 143-148

Index276

Vue middleware
creating 166-168

Vue Router 178
login page, routing 132, 133
navigations guards 179-181
using 130-132

Vuetify 136, 151
setting up 136, 137
UI components, using 137-139
URL 136

W
web session 92

www.packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packtpub.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

packtpub.com
customercare@packtpub.com
customercare@packtpub.com
www.packtpub.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Network Automation with Go

Nicolas Leiva, Michael Kashin

ISBN: 978-1-80056-092-5

• Understand Go programming language basics via network-related examples

• Find out what features make Go a powerful alternative for network automation

• Explore network automation goals, benefits, and common use cases

• Discover how to interact with network devices using a variety of technologies

• Integrate Go programs into an automation framework

• Take advantage of the OpenConfig ecosystem with Go

• Build distributed and scalable systems for network observability

https://packt.link/9781800560925

279Other Books You May Enjoy

Microservices with Go

Alexander Shuiskov

ISBN: 978-1-80461-700-7

• G et familiar with the industry’s best practices and solutions in microservice development

• Understand service discovery in the microservices environment

• Explore reliability and observability principles

• Discover best practices for asynchronous communication

• Focus on how to write high-quality unit and integration tests in Go applications

• Understand how to profile Go microservices

https://packt.link/9781804617007

280

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

authors.packtpub.com

281

Hi!

Nick and Nanik here, authors of Full-Stack Web Development with Go, really hope you enjoyed reading
this book and found it useful for increasing your productivity and efficiency in building and shipping
production ready apps with Golang and Vue.

It would really help us (and other potential readers!) if you could leave a review on Amazon sharing
your thoughts on the book.

Go to the link below to leave your review:

https://packt.link/r/1803234199

Your review will help us to understand what’s worked well in this book, and what could be improved
upon for future editions, so it really is appreciated.

Best wishes,

https://packt.link/r/1803234199

282

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere? Is your eBook
purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781803234199

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781803234199
https://packt.link/free-ebook/9781803234199

	Cover
	Title Page
	Copyright and Credits
	Contributors
	About the reviewers
	Table of Contents
	Preface
	Part 1:
Building a Golang Backend
	Chapter 1: Building the Database and Model
	Technical requirements
	Installing Docker
	Setting up Postgres
	Designing the database
	Installing sqlc
	Using sqlc
	Setting up the database
	Generating CRUD with sqlc
	Building the makefile
	Summary

	Chapter 2: Application Logging
	 Technical requirements
	Exploring Go standard logging
	Using golog
	Local logging
	Writing log messages to the logging server
	Configuring multiple outputs
	Summary

	Chapter 3: Application Metrics and Tracing
	Technical requirements
	Understanding OpenTelemetry
	The OpenTelemetry APIs and SDK

	Tracing applications
	Installing Jaeger

	Integrating the Jaeger SDK
	Integration with Jaeger

	Adding metrics using Prometheus
	Adding metrics using Prometheus

	Running docker-compose
	Summary

	Part 2:
Serving Web Content
	Chapter 4: Serving and Embedding HTML Content
	Technical requirements
	Handling HTTP functions and Gorilla Mux
	Hello, World with defaults
	Building on the basics with Gorilla Mux

	Rendering static content
	Rendering dynamic content
	Using Go embed to bundle your content
	Summary

	Chapter 5: Securing the Backend and Middleware
	Technical requirements
	Adding authentication
	Creating our dummy user
	Authenticating a user

	Adding middleware
	Basic middleware

	Adding cookies and sessions
	Cookies and session handling
	Storing session information
	Using Redis for a session

	Summary

	Chapter 6: Moving to API-First
	Technical requirements
	Structuring an application
	Defining packages

	Exposing our REST API
	Cross-Origin Resource Sharing (CORS)
	JSON middleware
	Session middleware

	Converting to and from JSON
	Defining request model
	Defining a response model

	Reporting errors with JSON
	Using JSONError
	Using JSONMessage

	Summary

	Part 3:
Single-Page Apps with
Vue and Go
	Chapter 7: Frontend Frameworks
	Technical requirements
	Server-side rendering versus single-page apps
	Introducing React, Vue, and more
	React
	Svelte
	Vue

	Creating a Vue app
	 Application and components
	Login page using Vue
	Using Vite

	Using Vue Router to move around
	Routing the login page

	Summary

	Chapter 8: Frontend Libraries
	Technical requirements
	Understanding Vuetify
	Setting up Vuetify
	Using UI components
	Understanding Buefy
	Bulma sample
	Setting up Buefy
	UI components
	Validating data entry with Vuelidate
	Better input handling with Cleave.JS
	Summary

	Chapter 9: Tailwind, Middleware,
and CORS
	Technical requirements
	Introducing Tailwind
	Creating a new Tailwind and Vite project

	Consuming your Golang APIs
	CORS for secure applications
	Creating Vue middleware
	Summary

	Chapter 10: Session Management
	Technical requirements
	Session management and JWTs
	What’s a JWT?

	(Re)introducing Vue Router
	Navigation guards
	Defaults and error pages
	Summary

	Part 4:
Release and Deployment
	Chapter 11: Feature Flags
	Technical requirements
	An introduction to feature flags
	Feature flag configuration
	Use cases for using feature flags
	Installing the feature flag server

	The high-level architecture of feature flags
	Integration of the feature flag
	Web application
	Microservice integration

	Summary

	Chapter 12: Building Continuous Integration
	Technical requirements
	Importance of CI
	Setting up GitHub

	GitHub Actions
	Publishing Docker images
	Dockerfile

	GitHub Packages
	Publishing to GitHub Packages
	Pulling from GitHub Packages

	Summary

	Chapter 13: Dockerizing an Application
	Technical requirements
	Installing Docker
	Using Docker
	Docker images
	Running images as containers
	Building and packaging images
	Docker Compose
	Summary

	Chapter 14: Cloud Deployment
	Technical requirements
	AWS refresher
	Amazon Elastic Compute Cloud
	Virtual Private Cloud
	Database storage
	Elastic Container Service
	AWS tools

	Understanding and using Terraform
	What is Terraform?
	Installing Terraform

	Terraform basic commands
	The init command
	The plan command
	The destroy command

	Coding in Terraform
	Providers

	Terraform examples
	Pulling from GitHub Packages
	AWS EC2 setup
	Deploying to ECS with a load balancer

	Summary

	Index
	Other Books You May Enjoy

