
Apple Device
Management

A Unified Theory of Managing Macs,
iPads, iPhones, and Apple TVs
—
Second Edition
—
Charles Edge
Rich Trouton

Apple Device
Management

A Unified Theory of Managing
Macs, iPads, iPhones,

and Apple TVs

Second Edition

Charles Edge
Rich Trouton

Apple Device Management: A Unified Theory of Managing Macs, iPads,

iPhones, and Apple TVs

ISBN-13 (pbk): 978-1-4842-9155-9 ISBN-13 (electronic): 978-1-4842-9156-6
https://doi.org/10.1007/978-1-4842-9156-6

Copyright © 2023 by Charles Edge and Rich Trouton

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Susan McDermott
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 NY
Plaza, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@
springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and
the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on the Github repository: https://github.com/Apress/Apple-Device-
Management. For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Charles Edge
Minneapolis, MN, USA

Rich Trouton
Middletown, MD, USA

https://doi.org/10.1007/978-1-4842-9156-6

iii

Table of Contents

About the Authors ���xv

About the Technical Reviewer ��xvii

Preface ��xix

Chapter 1: The Evolution of Apple Device Management �����������������������1

The Classic Mac Operating Systems ���3

Network Protocols ���4

Early Device Management ��7

NeXT ��10

Mac + Unix = Mac OS X ��13

Server ���17

Apple Remote Desktop ��24

Ecosystem Coexistence ��26

iOS Device Management ���28

Mobile Device Management��30

Apple Device Management Programs ���33

Enterprise Mobility ��35

iOS + Mac OS X = macOS ���39

One More Thing: tvOS ��40

Imaging Is Dead? ���40

macOS – Unix = appleOS ��44

Moving Away from Active Directory ��47

iv

The Apple Admin Community ��48

Conferences ��49

Online Communities ��54

User Groups ��56

Summary���58

Chapter 2: Agent-Based Management ��61

Daemons and Agents ��62

Use Lingon to See and Change Daemons and Agents Easily �������������������������66

Controlling LaunchDaemons with launchctl ��70

Deeper Inspection: What Does the App Have Access To? ������������������������������������72

Third-Party Management Agents ��73

Addigy ��73

FileWave ��78

The Once Mighty Fleetsmith ��80

Jamf ��84

Munki ���89

osquery ��107

Chef ���116

Edit a Recipe ��119

Puppet ���121

Use Git to Manage All the Things ��122

The Impact of UAMDM and Other Rootless Changes to macOS ������������������������127

Rootless ��129

Frameworks ��129

Miscellaneous Automation Tools ���131

Summary���132

Table of ConTenTs

v

Chapter 3: Profiles ��135

Manually Configure Settings on Devices ��136

Use Apple Configurator to Create a Profile ��150

View the Raw Contents of a Profile ���162

Install a Profile on macOS ���166

Install a Profile on iOS ���170

Install a Profile on tvOS ���176

View a Profile from macOS ��182

View a Profile from iOS ��185

View a Profile from tvOS ��189

Remove a Profile on macOS ��191

Remove a Profile on iOS ��193

Remove a Profile on tvOS ��198

Effects of Profile Removal ���200

Use the Profiles Command on macOS ��201

Using the Profiles Command ���202

MCX Profile Extensions ��204

Summary���206

Chapter 4: MDM Internals ���207

What MDM Can Access ���208

Apple Business Manager and Apple School Manager ���������������������������������������209

Buy Apps to Distribute with MDM ���215

Apple Push Notifications ���219

Check-Ins: Device Enrollment ���221

MDM: Device Management ���227

MDM Commands ���229

Table of ConTenTs

vi

Automated Enrollment, or DEP ��238

The Reseller DEP API ���238

The Cloud Service DEP API ��239

mdmclient ���242

Device Supervision ���244

UAMDM ���245

Enrollment Commands ��250

The Impact of UAMDM ���251

Enable APNs Debug Logging ���260

App Deployment ��265

Gift and VPP Codes ��266

Volume Purchase Program ��267

Managed Open-In ���270

Host an �ipa on a Web Server ��271

Sign and Resign macOS Applications ���274

App Notarization ��275

Summary���278

Chapter 5: iOS Provisioning ��281

iOS Provisioning ��283

Prepare an iOS Device Using Apple Configurator ��284

Install Apple Configurator ��284

Create Blueprints ���287

Manage Content ��289

Add Certificates for 802�1x with Profiles to Blueprints ��������������������������������289

Install Apps with Apple Configurator ���295

Automate Enrollment with Apple Configurator ��297

Change Device Names Using Apple Configurator ��302

Table of ConTenTs

vii

Change Device Wallpaper with Apple Configurator �������������������������������������304

Prepare a Device ���307

Debugging Apple Configurator Logs ��313

Using an ipsw Operating System Bundle to Restore Devices ����������������������314

Device Supervision Using Manual Configurations ���������������������������������������316

Automating iOS Actions ���321

Using AEiOS to Create Workflows ��332

Caching Services ��335

What’s Cached? ���335

Caching Service Configuration ��336

Summary���341

Chapter 6: Mac Provisioning ��343

macOS Startup Modifier Keys ���344

macOS Provisioning with ADE ���346

DEPNotify ���349

Octory ��349

macOS Provisioning Without ADE ��349

Installation ���350

Create a Workflow ���350

Imagr ���359

Upgrades and Installations ���359

Reprovisioning a Mac ��362

Virtual Machines ��367

Parallels ���368

UTM ���368

Summary���368

Table of ConTenTs

viii

Chapter 7: Endpoint Encryption ��369

iOS Encryption Overview ���369

Enabling Encryption on iOS ���373

macOS Encryption Overview ���376

Secure Token ���380

Bootstrap Token ��381

Enabling Encryption on macOS ���382

FileVault Recovery Keys ��386

FileVault 1 and the FileVaultMaster�keychain File ���������������������������������������388

Creating an Institutional Recovery Key ��390

Enabling FileVault 2 Encryption for One or Multiple Users ��������������������������399

Enabling FileVault 2 Encryption Using One or Multiple Recovery Keys �������409

Disabling FileVault 2 Encryption ��413

Listing Current FileVault 2 Users ���417

Managing Individual and Institutional Recovery Keys ���������������������������������418

Removing Individual and Institutional Recovery Keys ���������������������������������422

Recovery Key Reporting ��426

Reporting on FileVault 2 Encryption or Decryption Status ���������������������������430

Summary���434

Chapter 8: Securing Your Fleet ���435

Securing the Platform ���435

Mac Security ���437

Signed System Volume ��437

System Integrity Protection ���438

SIP-Protected Directories ��441

View SIP Protections Interactively ���443

Runtime Protections ��444

Kernel Extension Protections ���445

Table of ConTenTs

ix

Managing System Integrity Protection ��446

Signed System Volume and csrutil ��450

Running csrutil Outside of the Recovery Environment ��������������������������������451

Custom System Integrity Protection Configuration Options ������������������������453

System Integrity Protection and Resetting NVRAM �������������������������������������455

User-Level Protections ��457

Detect Common Vulnerabilities ���460

Manage the macOS Firewall ���462

Combat Malware on macOS ��464

XProtect and Gatekeeper ���465

lsquarantine ��468

Using lsregister to Manipulate the Launch Services Database �������������������470

Changing File Handlers��473

MRT ���474

Signing Applications ��478

ClamAV ��479

Threat Management on iOS ��481

macOS Binary Whitelisting ��484

Compliance ��487

Centralized Log Capture and Analysis ���488

Writing Logs ��488

Reading Logs ���489

Organization and Classification ���491

Comparisons and Searches ���492

OpenBSM ���494

Reverse Engineering ���498

Administrator Rights on macOS ��503

Summary���510

Table of ConTenTs

x

Chapter 9: A Culture of Automation and Continuous Testing ������������513

From Manual to Automated Testing ��514

Scripting and the Command Line ��515

Command-Line Basics ��517

Basic Shell Commands ��519

Shell Scripting ���524

Declaring Variables ��526

Expanding on Z Shell ���530

Altering Variables (Mangling) ���533

Standard Streams and Pipelines ���537

If and Case Statements ���540

For, While, and Until Statements ��546

Arrays ��549

Exit Codes ��550

More Advanced Shell Script Logic ���552

Manual Testing ��560

Automated Testing ���564

Posting Issues to Ticketing Systems ���570

Simulating iOS Environments with the Xcode Simulator �����������������������������572

API Orchestration ���576

Release Management ��582

Summary���584

Table of ConTenTs

xi

Chapter 10: Directory Services ���587

Manually Bind to Active Directory ���589

Bind the Easy Way ���589

Bind with the Directory Utility ��592

Test Your Connection with the id Command��597

Use dscl to Browse the Directory ��599

Programmatically Binding to Active Directory ��604

Bind to Active Directory Using a Profile ��606

Beyond Active Directory ��612

All the Benefits of Binding Without the Bind ��613

Apple Enterprise Connect��614

Apple Kerberos SSO Extension ���614

Summary���618

Chapter 11: Customize the User Experience �������������������������������������619

Getting iOS and iPadOS Devices in the Hands of Users ������������������������������������620

macOS ���621

Planning the macOS User Experience ���621

Transparency Consent and Control Protections on User Home Folders ������������622

Using Profiles to Manage User Settings ��624

Using Scripts to Manage User Settings ���628

Modifying the macOS Default User Template ��629

Customize the Desktop ��630

Customize the User Preferences ���631

Configure the iOS Home Screen ��631

Custom App Stores ��634

Test, Test, Test ���635

Summary���636

Table of ConTenTs

xii

Chapter 12: Identity and Device Trust ��637

Use IdPs for User Identities ���638

REST and Web Authentication ���639

JSON ��640

Use JWTs As Service Accounts ��641

Bearer Tokens ��643

OAuth ��644

WebAuthn ��648

OpenID Connect ��649

SAML ���650

Cookies ���653

ASWebAuthSession ���654

Work with Azure Active Directory ��656

View SAML Responses ��662

Use Jamf Connect to Authenticate to an IdP at the Login Window �������������������664

Configure Jamf Connect Login ��666

Alternatives to Jamf Connect ��671

Use Azure AD for Conditional Access ��673

Configure the Jamf Integration with Intune ���674

Beyond Authentication ��679

Multifactor Authentication ���679

Microsoft Authenticator ���680

MobileIron Access ���681

Conditional Access for Google Workspace ��682

Enable the Necessary APIs ��685

Create a Service Account ��687

Create Your Google Cloud Function ���689

Table of ConTenTs

xiii

Duo Trusted Endpoints ��694

Managed Apple IDs Continued ��695

Managed Apple IDs in Schools ��695

Managed Apple IDs for Business ���696

Webhooks ���696

Working with the Keychain ���700

Summary���704

Chapter 13: The Future of Apple Device Management ����������������������707

Balanced Apple Scorecard ��708

The Tools ��712

The Near Future ���713

The Apple Product Lines ��715

Apps���717

Getting Apps to Devices ���729

Manage Only What Is Necessary ���732

The Future of Agents ���733

Other Impacts to Sandboxing ��735

iOS, macOS, tvOS, and watchOS Will Remain Separate
Operating Systems ��736

Will iOS Become Truly Multiuser? ��737

Changes in Chipsets ��738

You’re Just Not an “Enterprise” Company ���740

Apple Is a Privacy Company ��741

Summary���742

Table of ConTenTs

xiv

 Appendix A: The Apple Ecosystem ���743

 Appendix B: Common Apple Ports ��767

 Appendix C: Configure macOS Lab Virtual Machines with UTM �������783

 Appendix D: Conferences, Helpful Mac Admins, and User Groups ����797

 Appendix E: Set Up a Test Okta Account ���807

 Index ���815

Table of ConTenTs

xv

About the Authors

Charles Edge is the Chief Technology Officer of venture capital firm

Bootstrappers.mn. He holds 30 years of experience as a developer,

administrator, network architect, product manager, and CTO. He built

the team that developed an Apple-focused MDM and has code-level

experience with security and cryptography on the Apple platforms. He is

the author of 20+ books and more than 6000 blog posts on technology and

has served as an editor and author for many publications. Charles also

serves on the board of multiple companies and conferences and frequently

speaks at industry conferences around the world, including DefCon,

BlackHat, LinuxWorld, the Apple Worldwide Developers Conference,

and a number of Apple-focused conferences. Charles is also the author of

krypted.com and a cohost of the Mac Admins Podcast and the History of

Computing Podcast.

Rich Trouton has been doing Macintosh system and server administration

for 20 years and has supported Macs in a number of different

environments, including university, government, medical research,

advertising, and enterprise software development. His current position

is at SAP, where he works with the rest of the Apple CoE team to support

SAP's Apple community.

xvii

About the Technical Reviewer

Ahmed Bakir is a career iOS developer, entrepreneur, and educator. He

is the author of three books on iOS development, including Program the

Internet of Things with Swift for iOS, which ranked #3 on Amazon. In 2009, he

started his consulting business, devAtelier, where he worked on mobile apps

for a wide range of clients ranging from startups to Fortune 500 companies.

He has been a senior or lead developer on over 20 apps, including ones for

major brands like UNIQLO and KFC. In 2015, he developed and taught a

mobile programming certificate program for the University of California San

Diego’s extension program. Ahmed is currently building cool stuff in Tokyo!

You can find him online at www.devatelier.com.

https://urldefense.com/v3/__https:/www.devatelier.com__;!!NLFGqXoFfo8MMQ!uKieiCSUUS_VQzrGZp9ifkxE7rxFh7B0qNV5ewgidlWUAp69D8vgNYplqa9oBiFvYOJ-3NiPskGlFWASUfKX$

xix

Preface

Apple distributed 25 releases of the Mac operating system across 35 years.

Then came iPhone, iPad, Apple TV, a watch, and a HomePod. The success

of the iPhone and the unique challenges to manage mobile devices mean

that new paradigms in device management had to be established. This

meant the world of managing Apple devices had to change. That evolution

was inevitable, from the second the iPhone sales doubled those of the Mac,

and has only gotten more and more clear.

That evolution in device management is now undeniable and

irreversible. The end result of that evolution is a fate not yet determined.

But change is afoot. This book is meant to codify those changes and

identify best practices.

 Who This Book Is For
Simply put, this book is for administrators of organizations that want to

integrate with the new Apple. Many organizations have started building

what’s next. And many complain about aspects of how they have to build

out infrastructure and services. But the world’s most valuable company

has shown no desire to allow exceptions.

This book outlines what organizations need to achieve work effectively

with the Apple platform and includes not only infrastructure but a mode

of thinking that you have to adopt to find success, a mode of thinking that

forces you to leave 30 years of IT dogma at the door. And you can feel free

to complain, but the faster you embrace, the faster you find success with

the platform.

xx

This book is here to help you embrace the new style of management.

Because it’s not going anywhere.

 Chapters at a Glance
This book provides guidance. This guidance is split up into a number

of chapters that provide insights for each larger theme of Apple device

management. Most will go through the philosophy and design of the Apple

device management story. Unless specified in the title, we work to unify

that management story across the operating systems, covering iOS, macOS,

and tvOS, noting the differences within each chapter.

 Chapter 1: The Evolution of Apple
Device Management
How did we get here? It helps to understand the history of how Apple

management has evolved in the past 20+ years. Understanding where we

have come from should make you more accepting of Apple’s choices and

help you better understand where Apple, third-party software vendors,

and the IT community are taking us. Chapter 1 provides the background to

get us started.

 Chapter 2: Agent-Based Management
There is no such thing as an agentless management solution. In this

chapter, we’ll look at management agents that do not include MDM, as

well as when you will need to use an agent as opposed to when to use

other options.

PrefaCe

xxi

 Chapter 3: Profiles
A profile is a file that can be used to configure settings on a Mac or iOS

device. Once you install a management solution, you can deploy those

profiles on a device, or you can deploy profiles on Macs using scripts. We’ll

cover how to craft profiles and install them so you can get most necessary

settings on devices.

 Chapter 4: MDM Internals
What is Mobile Device Management and how does it work under the

hood? By understanding how MDM works, you will understand what

needs to happen on your networks in order to allow for MDM, as well as

the best way to give the least amount of access to the servers or services

that are necessary.

 Chapter 5: iOS Provisioning
This chapter covers how to prepare iOS, tvOS, and iPadOS devices for

deployment, including working with profiles, MDM, Apple Configurator,

the App Store, and other tools to set up these devices.

 Chapter 6: Mac Provisioning
Setting up Macs has been a bit of a moving target, starting with the end

of traditional imaging and the rise of zero-touch deployments using

DEP. This chapter covers how to provision Macs for deployment using a

variety of methods, including tools from both Apple and third parties.

PrefaCe

xxii

 Chapter 7: Endpoint Encryption
Now that the Mac or iOS device has been set up, folks will start adding data

to them which needs to be protected. Encryption provides that protection,

and this chapter covers how it works, how to enable it, and how to manage

it for all of your Apple devices.

 Chapter 8: Securing Your Fleet
An administrator can lock down devices so they’re completely secure

by turning them off and smashing them with a hammer. Security is

table stakes in order to grow your device population. Every organization

has their own security posture, and so once you get settings and apps

on devices, we will take you through applying your security posture to

customize the settings on Apple devices.

 Chapter 9: A Culture of Automation
and Continuous Testing
Deploying settings on devices without first testing those settings can cause

your coworkers to have no idea where things are on their devices, get

kicked off of networks, or many other things that will cause you to get coal

during your office Secret Santa. As you deploy more and more iterations

of systems, settings configurations, and software loads, you won’t be able

to manually test everything. In this chapter, we’ll work on getting standard

QA environments built out, so you can test without having to manually test

everything.

PrefaCe

xxiii

 Chapter 10: Directory Services
Active Directory was once the bane of many Mac Admins’ existence. But

in recent years, the problem of binding and existing in an Active Directory

environment has been mostly a nonissue. In fact, these days, the biggest

concern isn’t how but why, given that there is now a bevy of options for

dealing with directory services. In this chapter, we go through how to get

Macs to work with Active Directory and function as a first-class citizen on

predominantly Windows networks.

 Chapter 11: Customize the User Experience
You can’t cover device management without discussing one of the main

reasons why people actually want to manage devices: to make the lives of

their coworkers better. The book has thus far been about deployment and

the finer technical details. We’ll look at techniques and tools to leverage

some of the things you’ve learned how to do in order to deliver world class

support and enablement workflows.

 Chapter 12: Identity and Device Trust
Federated identities are important as they keep us from putting our

passwords over networks. This allows us to more easily access resources

on networks and be more secure at the same time. What can be better? In

this chapter, we cover common federated identity solutions and how to

leverage them in new ways.

PrefaCe

xxiv

 Chapter 13: The Future of Apple
Device Management
By this point, you’ve likely stopped caring and just want the authors to

wrap it up already. We get that. But in case you’re still reading, you’ll

find a little prognostication for things to consider future-proofing your

deployments.

 Think Different
How cliché can we be? Obviously very much so. But there’s an important

concept that needs to be addressed, and that’s attitude. Apple is forging

their own path in IT. They trade spots with Amazon, Google, and Microsoft

as the wealthiest company to ever exist. And they will not be constrained

by 30 or more years of dogma in the IT industry. Or at least that’s the way

they often portray their perspective on the industry (which is real, but also

a little spin).

As you’ll see in Chapter 1, Apple is actually going about mass device

management in much the same way it has since the 1980s. The screens

look similar, the options look similar, sometimes with the same words. But

due to the private data on systems and the ease of identity theft, there’s

much more of a focus on end-user privacy. Still, Apple devices aren’t

Windows devices. But they are increasingly sharing a code base made

simpler by shared Swift and SwiftUI frameworks, and this has led to more

similar management techniques than ever before.

The most important thing to consider is whether you want to try to

shoehorn Apple devices into outdated modes of device management or

whether you are ready to embrace Apple’s stance on management. If you

aren’t ready to embrace the Apple way, then you might not be ready to

manage Apple devices.

PrefaCe

1

CHAPTER 1

The Evolution
of Apple Device
Management
Once upon a time, in a land far, far away, the Mac existed in a vacuum.

Unmanaged and left behind in the grand scheme of the corporate

enterprise, it was at best overlooked by Windows-centric IT departments

and, at worst, marked for retirement and removal. In those times, it was

common to see a network of Macs run as a silo, often with a dedicated

cable modem for Internet access and sometimes even with a dedicated

mail server to support the creatives. And yes, the Mac was almost

exclusively used by teams of creatives like graphic designers and video

editors.

The Mac platform seemed close to death in the late 1990s, as Apple’s

sales slumped and Microsoft’s offerings dominated the consumer and

enterprise markets. Microsoft embraced corporate and large-scale use

and they released a number of tools like Active Directory and policies

that a generation of administrators began to consider synonymous with

enterprise management. Meanwhile, Apple released a few tools to help

manage devices, but nothing with as granular options to control devices

en masse as Microsoft had. Gradually, deployments of Apple equipment

shrank to small workgroups with one exception: education.

© Charles Edge and Rich Trouton 2023
C. Edge and R. Trouton, Apple Device Management,
https://doi.org/10.1007/978-1-4842-9156-6_1

https://doi.org/10.1007/978-1-4842-9156-6_1

2

Schools around the world continued to embrace the Apple platform

throughout the tough times at Apple. During those times, anyone with

large-scale Apple management experience almost certainly worked at

a school or for a school district. But everything started to change with

the advent of the iPhone. Suddenly, enterprises looked to education for

guidance on how to deploy large numbers of Apple devices, CIOs asked

their IT departments why IT wouldn’t support the CEO’s new MacBook

Air, staff at some schools started to get jobs at large companies, and some

of the requirements we faced started to change as corporate compliance

became a new challenge.

The more things change, the more they stay the same, but not
exactly. When Apple asked me to take over updating the
Directory Services course and book, we used Mac OS X Server
to keep management, identity, and authorization settings in
the same place: Open Directory. But most wanted to leverage
identity and authorization stored in another directory (LDAP
or Active Directory). Then it seemed like no one cared about
Directory Services any more and the focus was on moving
from directory-based management (Workgroup Manager) to
MDM. Now we’re learning more about integrating MDM solu-
tions with various 3rd party Identity Providers (IdPs). The fun
part of this job is trying to figure out… What’s next?

—Arek Dreyer, Dreyer Network Consultants and the author
of several books on macOS and macOS Server

There are about as many reasons for this change as there are Apple

fans. But the change is undeniable. The rise of Apple in the enterprise and

the growth led to a number of innovations from Apple. The management

story completely changed when Mac OS X was released and slowly evolved

into what we now call macOS. But it started long before that.

Chapter 1 the evolution of apple DeviCe ManageMent

3

In this chapter, we’ll look at this management story – beginning in the

dark ages, through the Renaissance that was the emergence of Mac OS X

rising like a phoenix from the ashes of NeXT and into the modern era of

macOS and iOS management. That story begins with the Apple II.

 The Classic Mac Operating Systems
The Apple II was released in June of 1977 and changed the world, long

before the Mac. It was one of the first mass-produced and therefore

actually accessible computers. Back then, if environments had more than

one computer, device management meant someone walked around with

floppy disks that were used to boot the computer. Large-scale device

management didn’t become a thing until much, much later.

The Macintosh was released in 1984 and marked the first rung of the

upward climb to where we are today. Between Apple’s System 6 and Mac

OS 9 operating systems, Mac management over the network often used

the AppleTalk network protocol (which was released in 1985 but only

went away in 2009 with Mac OS X Snow Leopard) instead of TCP/IP. In

addition to being unsupported by any other platform (although Windows

NT Server shipped with a connector and there were third-party tools

that could bootstrap a service to host AppleTalk), AppleTalk’s methods

of network communication were viewed by many as being unnecessarily

“chatty,” which caused networks to slow down. This reputation, other

Apple-specific characteristics, and the difficulty of managing Apple devices

using Microsoft management tools led to the opinion that many old-timer

IT execs still have today: “Apple devices don’t play nice on corporate

networks.” They always did, just in a different way than Windows.

Chapter 1 the evolution of apple DeviCe ManageMent

4

 Network Protocols
Many of those older IT execs still have questions about whether or not

Apple devices will cause problems on modern networks. If an Apple

device can hurt a network, then the network has problems. It is true that

once upon a time, Apple devices could spew AppleTalk traffic on the

network that caused packet storms or other problems. But then, so could

IPX or NetBIOS, which were initially released in 1983. The developers of

these protocols learned a lot about how to network computers in the past

40 years.

Networking capabilities were initially built into the Apple Lisa in 1983

and initially called AppleNet. AppleNet was replaced by AppleTalk in

1985, and Apple finally dropped support for AppleTalk in 2009, although

its use had slowed since the introduction of Mac OS X. Apple was able

to join TCP/IP networks in 1988 with the release of MacTCP, which

provided access to most types of devices that a Mac would connect with

provided there was an agent that could decipher typically socket-based

communications for each protocol.

Before Mac OS X, the Chooser was a tool used to connect to network

file servers and printers. Shown in Figure 1-1, the Chooser would scan the

network for AppleTalk devices and display them, which allowed users to

“choose” a device to mount. Those mounts were synonymous with drive

letter maps to network shares in Windows and mounted NFS shares for

Unix and Linux. Because networks grew and discovery protocols didn’t

always find devices on the network, users could also enter a custom IP

address to connect to if the host didn’t show up in the list. The custom IP

could also be used to connect to other LANs or over a WAN, provided port

548 was open on a host.

Chapter 1 the evolution of apple DeviCe ManageMent

5

Figure 1-1. The 1990s era Chooser

With the advent of Mac OS X in 2001, the Chooser was replaced with

the Connect to Server option (Figure 1-2), which had everything required

to connect to file servers, WebDAV, and FTP servers available in most

standard TCP/IP environments. Apple added Rendezvous to Mac OS X

beginning in 2002, which allowed Macs to find devices and services over

TCP/IP. Renamed to Bonjour in 2005, this zero-configuration technology

uses mDNS (multicast Domain Name System) to allow users to locate (or

browse) and connect to devices or services on networks with the same

level of convenience that AppleTalk offered but with built-in support for

the traditional Windows SMB (Server Message Block)services.

Chapter 1 the evolution of apple DeviCe ManageMent

6

Figure 1-2. The Connect to Server dialog

The concerns about Apple on corporate networks were valid at times.

During the massive rollouts of Windows 95 and then Windows 98, many

environments used Novell networks or left IPX/SPX enabled on computers.

NetBIOS, and later NetBEUI, were often enabled as well, causing a lot of

traffic going over older hubs. When you added AppleTalk into that mix,

there could legitimately be just too much traffic for the network equipment

of that era. Luckily, AppleTalk is long behind us. Additionally, many

switching environments started to ship with Spanning Tree Protocol (STP)

enabled during the 2000s. Macs could have issues with Spanning Tree

Protocol, especially if AppleTalk had not been disabled. However, Mac

OS X slowly phased AppleTalk out in favor of newer protocols like Apple

Filing Protocol (AFP) and later SMB. Even AFP became a “legacy” protocol

as Apple transitioned the default protocols to SMB over time, and by the

mid-2000s, AppleTalk was only there for backward compatibility with old

hardware and software.

Once file services (and print services as AppleTalk gave way to

standard LPR and other types of printers) were more compatible with

other vendors, Apple could turn their attention to more important services.

Larger environments naturally looked toward how they could manage

devices over that same network connection used for files and printers.

Chapter 1 the evolution of apple DeviCe ManageMent

7

 Early Device Management
Devices weren’t managed as intricately initially as they are today. Not

only were the network protocols different, but the technology stack was

wildly different; there weren’t nearly as many devices being managed from

a central location, and we didn’t have 30–40 years of IT wisdom on how

to make the lives better for our coworkers, students, or even ourselves.

There also wasn’t the expectation of privacy that there is today, which is

a key element for managing Apple devices, as we’ll cover over the next

few hundred pages. Maybe administrators managed extensions (as Desk

Accessories) with Font/DA Mover or launchers. This allowed a school

or other environments to install fonts and things like screensavers – but

Apple-provided tools for centralized management of Macintosh settings by

and large weren’t available reliably until the 1990s.

Apple’s At Ease was an alternative desktop environment released for

System 7 in 1991, which provided a simplified desktop environment for

multiple users to use and share files, functionality not otherwise supported

in the Mac at that time. As At Ease evolved, Apple also released At Ease for

Workgroups, which provided client configuration options and a restricted

Finder mode. It also allowed for home folders that could be stored on an

AppleShare IP Server and with eMate the ability to hand in homework

for classes (Figure 1-3). That restricted Finder mode later evolved into a

(mostly) multiuser operating system environment in Mac OS 9 and the

Simple Finder, which is still around today in modern macOS.

Chapter 1 the evolution of apple DeviCe ManageMent

8

Figure 1-3. Handing in homework in a managed environment

The following are few important things to keep in mind as this story

evolves through the years:

• At one point, At Ease was a unified tool to manage

file shares, printers, settings on devices, and mobile

devices (the Newton).

• At Ease provided some semblance of multiple users,

but the actual operating system of the Mac didn’t

interpret those the way it does today.

• Many of the philosophies available in At Ease are still

the same, even though the way those are implemented

on devices is now quite different, due to a shift from

AppleTalk, Ethernet, Wi-Fi, and then devices that could

exist outside a Local Area Network.

Chapter 1 the evolution of apple DeviCe ManageMent

9

• eMate (Figure 1-4) was used to exchange data with

devices, including the Newton (when using Apple

Newton Works), which made it the ancestor of Apple

Classroom (albeit a less feature-rich ancestor).

Figure 1-4. Settings for eMate management are similar to Classroom
settings

At Ease didn’t solve every problem for every use case. Another

important shift from this era was the first wave of third-party device

management solutions. In August of 1991 (the same year the Internet was

born), netOctopus was launched at Macworld in Boston. This kicked off an

era of third-party tools that allowed organizations to manage Apple devices.

By 1993, when FileWave was released, Apple allowed and even gave active

thought to how to put things (like files) in places on Macs. That was the

infancy of a centralized command and control environment. The same

happened in Windows, where in Windows 3, an administrator could edit .ini

files from a central location. That evolved into .zap files and similar formats

(now .mst files) that could be distributed from a central location in the

upcoming Windows 95 era and beyond. Companies that built similar tools

for Windows management exploded over the next decades, while many who

focused on the Mac wouldn’t see such meteoric growth until the iPhone.

Chapter 1 the evolution of apple DeviCe ManageMent

10

The next major third party to enter the picture was Thursby Software.

They released DAVE, a file and printer sharing tool for the Mac, which

bridged the gap to SMB/CIFS shares from Windows servers. Microsoft

had an AFP server called File Sharing Services for Mac, but it was never

on par with what was needed by most organizations. DAVE’s introduction

in 1996 allowed Macs in Microsoft-centric environments to connect to

SMB file servers and access files, which in turn meant that Macs didn’t

need their own platform-specific file servers in order to get useful work

accomplished. Thursby also helped address the gap to connect users to

Active Directory with ADmitMac, which allowed Macs to connect to and

work like Windows workstations with an Active Directory domain.

The computers of this era left a lot to be desired. The Macintosh II,

Macintosh LC, Macintosh Portable, PowerBook, Quadra, Performa, and

Centris are mostly overshadowed in organizations that actually need

centralized management by the onslaught that was one of the most

substantial technological revolutions in history, the PC era. But all that was

ready to change.

 NeXT
Steve Jobs left Apple in 1985 and started his next company, aptly named

NeXT. The first NeXT computers shipped in 1988, with the NeXTSTEP

operating system at the core of what would later become Mac OS X

when Apple acquired NeXT and brought Steve Jobs back. Therefore, the

management ecosystem in NeXT set the tone for how Macs were managed

into the modern era.

The most important thing that happened on a NeXT computer was

that the first web page was served on a NeXT computer by Tim Berners-

Lee in August 6, 1991, at the European Organization for Nuclear Research,

CERN. Doom was developed on NeXT – which ushered in a whole new era

of gaming. When Steve Jobs returned to Apple in 1997, NeXT’s workstation

Chapter 1 the evolution of apple DeviCe ManageMent

11

technologies had matured enough that Apple could begin to replace Mac

OS 9 with Mac OS X (which would later evolve into macOS). The NeXT had

many obvious user interface similarities to the Mac, as seen in Figure 1-5.

Figure 1-5. NeXT (a.k.a. The Inbetween)

As it pertains to the concept of device management, several important

things came from NeXT that would later influence the Mac and then

iOS. The most important is the object-oriented nature of NeXTSTEP, and

the second is the development environment. Ironically, the Unix-derived

nature of OPENSTEP is what brought the modern Mac so far, so fast.

And the “open” components of the operating system have actively been

removed piece by piece as large portions of open source code within the

Chapter 1 the evolution of apple DeviCe ManageMent

12

Mac are being removed as well. Still, Darwin, Xcode, and parts of iOS are

still hosted and regularly updated on opensource.apple.com, and WebKit

and Swift are successful open source projects from Apple. However, Apple

owns the licenses for these. Most aspects of a POSIX-compliant OS X that

are removed in the transition to macOS are instead components that might

result in future legal complications due to different licensing schemes (e.g.,

MIT vs. GPLv2 vs. GPLv3).

Specific pieces of technology also emerged from NeXT, such as

the property list file type (XML-based files that can store key-pair sets

of information), which lays the foundation for all modern settings

management on the Mac. Objective-C, the Mach kernel, and the Dock

likewise surfaced as part of the NeXT acquisition. NeXT also had the

Electronic AppWrapper (the predecessor to the App Store), Mail, Chess.

app, TextEdit, and, most importantly, Workspace Manager, which seemed

a bit like the Mac OS 9 Finder and would later become the Finder for

Mac OS X.

Another important and critical part of the evolution of the Mac also

began in the NeXT era. In 1991, NeXT introduced support for the 80486

processor. At this point, there was no partnership between Apple and Intel.

But the NeXT move to the x86 architecture (Marklar) ushered in an era

of an Intel partnership, once Apple acquired NeXT and began to plan the

introduction of the new operating system that lasts to this day (although

there was a PowerPC chipset port in there through the Rhapsody era).

The x86-based architecture did more than make it easier for Apple to buy

ready-built chips from Intel; it introduced better virtualization of Windows

for the Mac and made those Directors of IT stop and think that suddenly

Apple played nice and maybe could be trusted to show up on their

networks.

Chapter 1 the evolution of apple DeviCe ManageMent

13

 Mac + Unix = Mac OS X
Apple started to integrate NeXT technologies with a new operating system

with the code name Rhapsody. Rhapsody included many of the tools

administrators still use today. The transition to Mac OS X introduced a

more Unix-oriented management framework, which replaced the single-

user model in Mac OS 9 and earlier. Mac OS X was a true multiuser

experience and marked the start of what would evolve into management

policies.

New policy-based management was introduced in the form of

Managed Preferences, or MCX (Managed Computing for X). These

are still available in /System/Library/CoreServices/ManagedClient.

app and allow administrators to prepopulate global system preference

domains or control the settings applied in those keys. Those preferences

were similar to how the registry in Windows worked and similar to how

traditional Mac administrators blocked access to resources like Control

Panels in At Ease. For many years, Managed Preferences was the main

way that administrators controlled settings on a Mac, and MCX provided a

framework that later tools leveraged to provide centralized management of

a Mac’s settings.

With policy controls available on a multiuser computer, the Mac

continued to iterate toward a first-class corporate citizen. Developers at

Apple added flags to the dsconfigad command that is used to bind Macs

to Active Directory. Developers added DFS integration along the way.

Additionally, standard LDAP implementations, and the ability to natively

connect to file shares was bolstered with the ability to manage these from a

centralized location.

Chapter 1 the evolution of apple DeviCe ManageMent

14

The course of my professional life changed when we realized
that while Apple had provided a great tool in At Ease, but that
we could go further. Apple has always given customers a prod-
uct that can get the job done in isolated circumstances, but
often wants third party developers to step in and handle use
cases that aren't exactly what they have in mind. We saved
customers time and provided a better experience with netOc-
topus. Much the same way that modern deployments tend to
leverage one of the many third party products instead of
Apple's Profile Manager today.

—Martin Bestman, founder of netOctopus

The Bondi Blue iMac was released in 1998, shortly after Steve Jobs

returned to Apple. This led to a quick increase in the number of devices

managed in larger environments. Mac Admins soon began to employ the

second major wave of third-party Apple device management solutions.

These built on the frameworks that came to the Mac from NeXT, which still

managed the way things appeared on a Mac but went further and allowed

for software packages (.pkgs) and centrally managed preference files.

The first major open source project used to manage Macs was released

in 2002. Radmind was initially developed at the University of Michigan.

The Casper Suite 1.0 was also released in 2002, which evolved into what’s

now known as Jamf Pro. At this point, device management was mostly

about how administrators could initially deploy a Mac in a known state,

known as imaging, and how to use packages or similar data constructs to

deploy additional information and settings onto devices, as you can see in

Figure 1-6, which shows Casper 1.0’s package selection screen.

Chapter 1 the evolution of apple DeviCe ManageMent

15

Figure 1-6. The Casper Admin Console from the Casper 1.0
User’s Guide

These tools used an agent (or daemon usually) on devices to

communicate back to a server and pull down objects to be deployed. That

agent pulled commands or configurations down to devices. FileWave

and Radmind took a more file-based approach, where they dropped a

“set” of files in a location on a filesystem in order to deploy a change on a

system. NetOctopus and Jamf used native Apple technologies, like software

packages (pkgs), to make changes on devices instead.

Later, Apple started to implement an agentless technology called

Mobile Device Management (MDM), which is covered later in this chapter

(and there’s an entire chapter on MDM later in the book). Packages are

still used to configure settings, install software, and perform other tasks.

Chapter 1 the evolution of apple DeviCe ManageMent

16

PackageMaker, the tool originally provided by Apple to create packages,

was removed from the operating system in 2015, although it could still be

installed through Xcode if needed.

When we launched the first version of FileWave in 1992, end-
point management was in its infancy, and was still very frag-
mented. Most of the tools on the market were specialized,
point solutions (like the old Timbuktu Remote Control.)
FileWave may be the only tool left standing from those days,
and I think the reason is that we’ve continued to evolve. We’ve
grown along with Apple to support modern apps, MDM, and
every new OS version, but we’ve also added management of
Windows and Google operating systems, recognizing that very
few organizations have the luxury of limiting endpoints to a
single OS.

—Nurdan Eris, CEO of FileWave

By 2008, the community had matured to the point that agent-based

management had matured to be on par with what was available for

Windows systems through tools like Altiris. In fact, Altiris and other

Windows management solutions had agents available for the Mac. Tools

with a stronger focus on Apple, such as FileWave, Jamf, and LANrev, could

manage Macs as first-class citizens on corporate networks.

In 2008, Greg Neagle began to work on an open source agent for

Mac management called Munki. The first public code commits came

in early 2009, which opened the way for an open source alternative to

Mac management. The use of Munki has grown over the years, and

so centralized management has been accessible to environments that

previously couldn’t afford it or who needed more customizable workflows

than those available with the third-party solutions. With the advent of

MDM, Munki also plays a pivotal role in adding agent-based options for

Chapter 1 the evolution of apple DeviCe ManageMent

17

environments that also use MDM. Most importantly, Munki brought an

almost DevOps-style focus to Apple administration that allowed many

administrators to manage Macs in much the same way they manage code.

Management is now a set of policy-driven actions used to achieve a

certain amount of idempotency on Apple devices, or the known state a

device is in. The first management tasks were to control the way a system

looked and the experience a user had to access the applications and

data they needed. Some lost their way for a while, if only to make the job

easier. Yet since the advent of iOS, they have started to rediscover that goal

to improve the user experience, not control it. The less that changed on

the operating system, the more control is passed to the user. Therefore,

while there’s still a gap in understanding the exact state of a device,

administrators now have a good ecosystem that allows for policies that

don’t destroy the experience Apple crafts for devices.

 Server
Apple has had a server product from 1987 to 2022. At Ease had some file

and print sharing options. The old AppleShare (later called AppleShare

IP, shown in Figure 1-7) server was primarily used to provide network

resources for the Mac from 1986 to 2000; file sharing was the main service

offered. Apple also took a stab at early server hardware in the form of the

Apple Network Server, which was a PowerPC server sold from 1996 to

1997 that ran the AIX operating system. AppleShare IP worked up until

Mac OS 9.2.2. In an era before, as an example, mail servers required SMTP

authentication, AppleShare IP was easily used for everything from printer

sharing services to mail services. An older Quadra made for a great mail

server so a company could move from some weird email address supplied

by an ISP to their own domain in 1999.

Chapter 1 the evolution of apple DeviCe ManageMent

18

Figure 1-7. Early Apple servers were pretty easy to manage

Meanwhile, services that provided sockets so other systems could

access that data were a central need for NeXTSTEP and OPENSTEP

systems. The UNIX underpinnings made it possible to compile a number

of open source software packages, and as mentioned earlier in this chapter,

the first web server was hosted on a NeXTcube. After NeXT was acquired

by Apple, AppleShare IP and services from NeXT were made to look and

feel similar and morphed into Mac OS X Server.

The first few releases of Mac OS X Server represented a learning

curve for many classic Apple admins and in fact caused a generational

shift in who administered the systems. John Welch wrote books in 2000

and 2002 that helped administrators get up to speed. The Xserve was

Chapter 1 the evolution of apple DeviCe ManageMent

19

released in 2002, and the Xserve RAID was released in 2003. It took time,

but a community began to form around these products. The late Michael

Bartosh compiled a seminal work in Essential Mac OS X Panther Server

Administration for O’Reilly Media in 2005. Charles Edge (coauthor of this

book) released The Mac Tiger Server Little Black Book in 2006.

Up until this point, Apple never publicly acknowledged that businesses

or enterprises used their devices, especially for servers. They purchased

advertising for the first time to promote the Xserve. Apple continued

to improve the product with new services up until 2009 with Mac OS X

Server 10.6. At this point, Apple included most services necessary to run

a standard IT department in the product. These included the Web (in

the form of Apache), mail, groupware, DHCP, DNS, directory services,

file sharing, and even web and wiki services. There were also edge case

services such as Podcast Producer used to automate video and content

workflows. Xsan provided administrators with a storage area network

(SAN) in the form of the StorNext clustered filesystem. Apple also acquired

a company called Artbox in 2009, whose product was rebranded as Final

Cut Server.

That was a turning point. As seen in Table 1-1, around that same

time, Apple was ready to release the iPad in 2010 (although arguably the

Knowledge Navigator was the first iteration, conceptualized in 1987). The

skyrocketing sales of the iPhone led to some tough decisions. Apple no

longer needed to control the whole ecosystem with their server product

and instead began to transition as many teams as possible to work on

higher profit margin areas. They reduced the focus on areas that took

attention away from valuable software developers. Rather than solve

problems many other vendors had already solved better, those engineers

could develop great Application Programming Interfaces (APIs) that third

parties could build products around.

Chapter 1 the evolution of apple DeviCe ManageMent

20

Ta
bl

e
1-

1.

m
ac

O
S

Se
rv

er
 Is

 N
ow

 U
se

d
to

 H
os

t F
ar

 F
ew

er
 S

er
vi

ce
s

T
ha

n
 It

 O
n

ce
 D

id

10
.3

10
.4

10
.5

10
.6

10
.7

10
.8

10
.9

10
.1

10
.1

1
10

.1
2

10
.1

3

20
03

20
05

20
07

20
09

20
11

20
12

20
13

20
14

20
15

20
16

20
17

15
19

24
24

22
18

21
21

21
21

14

af
p

af
p

af
p

af
p

af
p

af
p

af
p

af
p

af
p

af
p

nf
S

nf
S

nf
S

nf
S

nf
S

nf
S

nf
S

nf
S

nf
S

nf
S

W
eb

W
eb

W
eb

W
eb

W
eb

W
eb

si
te

s
W

eb
si

te
s

W
eb

si
te

s
W

eb
si

te
s

W
eb

si
te

s
W

eb
si

te
s

op
en

Di
re

ct
or

y

op
en

Di
re

ct
or

y

op
en

Di
re

ct
or

y

op
en

Di
re

ct
or

y

op
en

Di
re

ct
or

y

op
en

Di
re

ct
or

y

op
en

Di
re

ct
or

y

op
en

Di
re

ct
or

y

op
en

Di
re

ct
or

y

op
en

Di
re

ct
or

y

op
en

Di
re

ct
or

y

ne
tB

oo
t

ne
tB

oo
t

ne
tB

oo
t

ne
tB

oo
t

ne
tB

oo
t

ne
tin

st
al

l
ne

tin
st

al
l

ne
tin

st
al

l
ne

tin
st

al
l

ne
tin

st
al

l
ne

tin
st

al
l

ft
p

ft
p

ft
p

ft
p

ft
p

ft
p

ft
p

ft
p

ft
p

ft
p

W
in

do
w

s
W

in
do

w
s

SM
B

SM
B

SM
B

SM
B

SM
B

SM
B

SM
B

SM
B

M
ai

l
M

ai
l

M
ai

l
M

ai
l

M
ai

l
M

ai
l

M
ai

l
M

ai
l

M
ai

l
M

ai
l

M
ai

l

Dn
S

Dn
S

Dn
S

Dn
S

Dn
S

Dn
S

Dn
S

Dn
S

Dn
S

Dn
S

Dn
S

Dh
Cp

Dh
Cp

Dh
Cp

Dh
Cp

Dh
Cp

Dh
Cp

Dh
Cp

Dh
Cp

Dh
Cp

Dh
Cp

vp
n

vp
n

vp
n

vp
n

vp
n

vp
n

vp
n

vp
n

vp
n

vp
n

vp
n

Chapter 1 the evolution of apple DeviCe ManageMent

21

So
ftw

ar
e

up
da

te
s

So
ftw

ar
e

up
da

te
s

So
ftw

ar
e

up
da

te
s

So
ftw

ar
e

up
da

te
s

So
ftw

ar
e

up
da

te
s

So
ftw

ar
e

up
da

te
s

So
ftw

ar
e

up
da

te
s

So
ftw

ar
e

up
da

te
s

So
ftw

ar
e

up
da

te
s

So
ftw

ar
e

up
da

te

iC
ha

t
iC

ha
t

iC
ha

t
iC

ha
t

M
es

sa
ge

s
M

es
sa

ge
s

M
es

sa
ge

s
M

es
sa

ge
s

M
es

sa
ge

s
M

es
sa

ge
s

iC
al

iC
al

iC
al

Ca
le

nd
ar

Ca
le

nd
ar

Ca
le

nd
ar

Ca
le

nd
ar

Ca
le

nd
ar

Ca
le

nd
ar

W
ik

i
W

ik
i

W
ik

i
W

ik
i

W
ik

i
W

ik
i

W
ik

i
W

ik
i

W
ik

i

ad
dr

es
s

Bo
ok

ad
dr

es
s

Bo
ok

Co
nt

ac
ts

Co
nt

ac
ts

Co
nt

ac
ts

Co
nt

ac
ts

Co
nt

ac
ts

Co
nt

ac
ts

ti
m

e

M
ac

hi
ne

ti
m

e

M
ac

hi
ne

ti
m

e

M
ac

hi
ne

ti
m

e

M
ac

hi
ne

ti
m

e

M
ac

hi
ne

ti
m

e

M
ac

hi
ne

pr
of

ile

M
an

ag
er

pr
of

ile

M
an

ag
er

pr
of

ile

M
an

ag
er

pr
of

ile

M
an

ag
er

pr
of

ile

M
an

ag
er

pr
of

ile

M
an

ag
er

pr
of

ile

M
an

ag
er

Xs
an

Xs
an

Xs
an

Xs
an

Xs
an

Xs
an

Ca
ch

in
g

Ca
ch

in
g

Ca
ch

in
g

Ca
ch

in
g

Xc
od

e
Xc

od
e

Xc
od

e
Xc

od
e

W
eb

ob
je

ct
s

W
eb

ob
je

ct
s

(c
on

ti
n

u
ed

)

Chapter 1 the evolution of apple DeviCe ManageMent

22

Ta
bl

e
1-

1.
 (

co
n

ti
n

u
ed

)

ap
pl

ic
at

io
n

Se
rv

er

ap
pl

ic
at

io
n

Se
rv

er

to
m

ca
t

to
m

ca
t

pr
in

t
pr

in
t

pr
in

t
pr

in
t

Qt
SS

Qt
SS

Qt
SS

Qt
SS

na
t

na
t

na
t

na
t

na
t

Xg
rid

Xg
rid

Xg
rid

Xg
rid

ra
Di

uS
ra

Di
uS

ra
Di

uS

po
dc

as
t

po
dc

as
t

po
dc

as
t

M
ob

ile

ac
ce

ss

M
yS

Ql

10
.3

10
.4

10
.5

10
.6

10
.7

10
.8

10
.9

10
.1

10
.1

1
10

.1
2

10
.1

3
Chapter 1 the evolution of apple DeviCe ManageMent

23

In 2009, the Xserve RAID was discontinued, and the Xserve was

canceled the following year. The next few years saw services slowly

removed from the server product, which coincides with an increased

frequency in legal disputes over usability of open source code licensed

with specific types of licenses. The Mac OS X Server product was migrated

to just an app on the App Store, as seen in Figure 1-8. At that point,

macOS Server was meant primarily to run Profile Manager and be run

as a metadata controller for Xsan. Products that used to compete with

the platform were then embraced by most in the community. Apple let

Microsoft or Linux-based systems own the market to provide features that

are often unique to each enterprise and not about delighting end users.

Figure 1-8. The simplified macOS Server app

macOS Server was canceled in April of 2022. Today, server products

that try to do everything for everyone seem like a distant memory for

many at Apple. There is instead a keen eye toward how to make the lives of

Apple devices better and provide a clean experience for users. This can be

Chapter 1 the evolution of apple DeviCe ManageMent

24

seen by the Caching service built into macOS (moved there from macOS

Server) and how some products, such as Apple Remote Desktop, are still

maintained.

 Apple Remote Desktop
By 1997, the Apple Network Administrator Toolkit, which was used to

install At Ease, also came with the Apple Network Assistant. Shown in

Figure 1-9, the Apple Network Assistant will look very similar to modern

users. Mac Admins could remotely control the screen of a Mac, lock

screens, share your screen, copy files, remotely open apps, send messages

to the desktop, and perform other basic network administrative tasks over

an AppleTalk network.

Figure 1-9. Network Assistant, the ancestor of Apple Remote Desktop

Chapter 1 the evolution of apple DeviCe ManageMent

25

After the introduction of Mac OS X, Apple released a new tool called

Remote Desktop in 2002. Remote Desktop, which is still available on the

Mac App Store today, allows administrators to take over the desktop of

client systems, send shell scripts to Mac clients, and perform a number of

other tasks that are useful for point-in-time management. Remote Desktop

also works well when used in conjunction with these other tools as those

are mostly used for imaging, software configuration management, and

deployment. Most of the functionality from Apple Network Assistant was

brought into Apple Remote Desktop (ARD), as well as the Virtual Network

Computing (VNC) protocol, and a new ARD protocol was built to find and

control clients over the User Datagram Protocol (UDP).

Apple’s Remote Desktop allows administrators to control
Macs and send scripts to devices. This was great for a lot of
environments and well priced! As organizations grew and
their needs matured, ARD made it easy to transition into more
traditional management solutions because the packages and
scripts were great foundational technologies we could build on.

—Chip Pearson, cofounder, Jamf Software

By 2004, it was clear that there were some better options than a UDP-

based protocol to perform screen control. Apple Remote Desktop 2 was

built on top of Virtual Network Computing (VNC) but does much more. It

also comes with a task server, so it can queue up commands to be sent out.

While Remote Desktop can make a specific immediate change or action on

a computer, it also provides a great entry point into management tools and

makes it easy to test unattended installations.

Now on version 3.9.5 (Figure 1-10), Apple Remote Desktop has gone

through a number of different places in the Apple ecosystem. Management

commands have transitioned to APNs-based workflows for other products,

and Apple Remote Desktop only allows connectivity over a LAN unless

you open ports to control devices from incoming WAN connections. Other

tools such as Bomgar, TeamViewer, GoToMyPC, Splashtop, ISL, and a host

Chapter 1 the evolution of apple DeviCe ManageMent

26

of other solutions can do this; it’s no surprise that Apple hasn’t made such

a large investment into a refactor for a product that now costs $79.99 on

the Mac App Store and has only 1.7 star out of 5 star ratings. Furthermore,

Apple Remote Desktop gets away from a slightly more modern way of

thinking at Apple: users should explicitly approve any invasion into their

privacy.

Figure 1-10. Apple Remote Desktop still has much of the
functionality from Network Assistant

 Ecosystem Coexistence
With the release of a more modern and flexible operating system, Apple

introduced multiple users. This feature led to the ability to have one of

those users be sourced from a directory services account. These accounts

Chapter 1 the evolution of apple DeviCe ManageMent

27

then gave users the ability to log in to their local computer with the same

password used on servers to access their mail and other services provided

by an organization.

MCX was developed to use with Apple’s Open Directory directory

service built into Mac OS X Server. Administrators could also get policy

data via directory services in the form of an extended Active Directory

schema that contained MCX data, which is much easier to manage en

masse than the local MCX referenced earlier. The reason is that both used

similar Lightweight Directory Access Protocol (LDAP) implementations.

Not all organizations could extend their schemas (no Active Directory

administrator wants to extend their schema), and so techniques were also

developed to bind client computers to both Active Directory and Open

Directory and allow users and groups hosted in Active Directory to be

nested inside Open Directory in order to deploy Managed Preferences to

clients without extending the Active Directory schema. This was known as

the Magic Triangle.

ADmitMac wasn’t the only option to get policy information via a

third party. Centrify was released in 2005. They allowed administrators

to use a more centrally managed solution to deliver policies to the Mac.

Centrify has since focused much of their efforts to be an Identity Provider

(IdP). Quest Authentication Services was also introduced to help deploy

policies. The easier Apple made it to work with directory services, the less

each of those solutions was needed, and by 2011 some fizzled out. The

policies were always a tough sell to IT departments (even though many

had extended their schema dozens of times for other products like Cisco

integration with Active Directory). Environments that wouldn’t extend

schemas typically also wouldn’t add Apple servers for a supplemental

directory service. In the past few releases of macOS, MCX has slowly been

deprecated in favor of profile-based management, which evolved from a

time when Apple started to rethink policy-based management for iOS.

Chapter 1 the evolution of apple DeviCe ManageMent

28

Apple's MCX was a powerful and flexible way for admins to
manage the settings of Apple and third party software. Apple's
preferred replacement, configuration profiles, lacks some of
the flexibility present in MCX. Many of us hoped that over
time, Apple would add the missing features back into configu-
ration profiles, but that seems unlikely now. Back to badly
written shell scripts!

—Greg Neagle, creator of Munki and coauthor of Enterprise
Mac Managed Preferences, from Apress

Many Apple admins’ jobs were once to manage servers. Those jobs

now shifted, and now administrators moved to manage cloud services

and the states of devices, first with directory services and MCX and then

toward more modern management techniques, such as the ones initially

introduced to manage iPhones and iPads. This is where profiles enter into

the picture, which cover a lot of needs of an administrator, but not all.

 iOS Device Management
The presence of the Mac in the enterprise continued to grow, but another

big change was on the way. A corporate dogma that evolved out of the

Windows ecosystem became a model of how the business of IT was

done. Apple developers worked to support the traditional methodologies

but rethought the paradigm and started to go their own way. This was

made possible by the newfound dominance of the iPhone that accessed

Exchange servers and the fact that suddenly employees showed up with

these devices and used them at work. Suddenly, companies needed to

manage the OS that ships on iPhone, iOS.

The original iPhone was released in 2007, and iOS management

initially occurred manually through iTunes. Most needed to deploy apps

for schools, so the deployment options started with the ability to drag an

app onto a device to install it onto phones over USB cables. Some settings

Chapter 1 the evolution of apple DeviCe ManageMent

29

were exposed to iTunes. Back then, iOS devices were registered with Apple

when they were plugged into iTunes to use it. Administrators could also

back up and restore a device with iTunes, which came with some specific

challenges, such as the account used to buy an app would follow the

“image” to the new device. Additionally, if the backup was encrypted or

not determined, what was stored in the backup and some information

might have to be reentered. This led to profiles.

Profiles were created with a new tool called the iPhone Configuration

Utility, released in 2008. A profile is a small .xml file that applies a given

configuration onto an iOS device. This was necessary because a new

generation of Apple developers wanted to control what could be done

on iOS devices. One of those configurations was the ability to install an

app over the air that was hosted on an organization’s own web server,

provided the .ipa mime type on the web server was defined. This basically

mirrored what the App Store did and paved the way for internal app stores

and profiles that were hosted on servers, both of which could be installed

through in-house app stores, which hosted .ipa files.

Profiles were a huge paradigm shift. Instead of growing a
library of scripts that customers needed to learn, modify, and
deploy, profiles allowed us to start moving in a unified direc-
tion for configuring settings across the OS and applications,
on both iOS and macOS. I think it's representative of why
adoption of Apple has been so strong: they are able to re-
architect major aspects of the platform relatively quickly,
which allows them to remove barriers to adoption rapidly.

—Zach Halmstad, cofounder, Jamf

iPhone OS 3.1, released in 2009, came with the mail client in iOS that

read and respected any Exchange ActiveSync (EAS) policies. These were

policies configured on an Exchange server that gave the institution the

ability to limit various features of the device, such as the ability to restrict

Chapter 1 the evolution of apple DeviCe ManageMent

30

the use of the camera or to force a password to wake a device up. EAS

policies had been introduced by Microsoft in 2005, as part of the Exchange

2003 SP2 release, but had mostly been used to manage Windows Mobile

devices.

At this point, Apple got larger and larger deployments, and it quickly

became clear that it was no longer tenable to plug devices into iTunes

and wait for long restores through legacy monolithic imaging solutions.

The first iteration of iOS device management techniques that survives to

this day was through profiles which gave control over most of what was

available through EAS policies and added additional features. The success

of the iPhone 4 in 2010 and the iPhone 4s in 2011 meant administrators

needed better tools than iTunes restores and iPhone Configuration Utility

to apply profiles. In 2012, the ability to create profiles and apply them to

devices was moved into a new tool called Apple Configurator, which is still

used to build custom profiles.

Apple Configurator could do a lot more than install profiles. Apple

Configurator also allowed administrators to back up, restore, and install apps

with Volume Purchase codes from the App Store. These were like coupon

codes. Administrators could also build complex workflows that Configurator

called Blueprints to do all of these automatically when a device was plugged

in. Those options were expanded over time to include automatic enrollment

into a Mobile Device Management Solution and the ability to supervise

unsupervised devices (which we’ll cover throughout the book).

 Mobile Device Management
Apple Push Notifications were introduced in 2009. Those allowed devices

to be alerted when there was data available for a given app. The MDM

agent was built on top of that technology the following year. MDM, short

for Mobile Device Management, was introduced in 2010, along with iOS

4. Initially, MDM was used to manage profiles on iOS, thus why Apple

Chapter 1 the evolution of apple DeviCe ManageMent

31

called their MDM service in macOS Server Profile Manager. In addition to

managing profiles, three actions were supported in that original release:

locate, lock, and wipe.

Since the initial release, MDM capabilities have grown over the years,

as shown in Table 1-2. Each update brings more into MDM and means

device administrators have to script and perform custom workflows to

manage various features.

Table 1-2. MDM Capabilities by OS, per Year

iOS
Version

macOS
Version

Year New Capabilities

4 n/a 2010 volume purchase program (vpp), Mobile Device

Management (MDM), MDM for the Mac

5 10.7 2011 over-the-air oS updates, Siri management, disable iCloud

backup

6 10.8 2012 apis for third-party developers, Managed open in, device

supervision

7 10.9 2013 touch iD management, activation lock bypass, Managed

app Config

8 10.10 2014 Device enrollment program, apple Configuration enrollments

9 10.11 2015 Device-based vpp, B2B app store, supervision reminders,

enable and disable apps, home screen control, kiosk

mode/app lock

10 10.12 2016 restart device, shut down device, lost Mode, apfS

11 10.13 2017 Classroom 2.0 management, Managed face iD

management, airprint. add devices to Dep, Qr code-

based enrollment with some MDMs, user-approved

Kernel extension loading for Mac, user approval of MDM

enrollment for Mac

(continued)

Chapter 1 the evolution of apple DeviCe ManageMent

32

Table 1-2. (continued)

iOS
Version

macOS
Version

Year New Capabilities

12 10.14 2018 apple Business Manager, oauth for managed exchange

accounts, managed tvoS app installation, password

autofill restrictions

13 2019 Content Caching configuration, Bluetooth management,

autonomous single app mode, oS update deferral,

automatic renewal of active Directory certificates

14 2020 Mark each managed app as removable, profile integration

with the fonts api, the ability to manage home screen

layouts in apple Configurator, managed domains in Safari

(for uploads), the ability for users to remove exchange

accounts (if they remove the profile), restriction for unlock

iphone with an apple Watch

15 2021 Managed pasteboard restriction, the ability for personal

iCloud and Managed apple iD accounts to use the files

app. the single sign-on payload can use specific Kerberos

KDCs, face iD and touch iD for the single sign-on

extension, restriction for iCloud private relay, Managed

apple iD enrollment flow, MDM-managed apps from user

enrollment

16 2022 Sign in with apple for education and offices, managed

per-app networking, default domains, improved managed

software updates, platform single sign-on (SSo) with user

enrollment SSo, improved oauth 2 support, Managed

Device attestation via the certificates generated on the

Secure enclave that secure communications with MDM,

vpn, and 802.1X

Chapter 1 the evolution of apple DeviCe ManageMent

33

Apple continues to evolve the device management toolset made

available through MDM. The transition also makes the Mac more and

more similar to iOS, sometimes disrupting traditional agent-based

management when features that tap into then-unsupported areas of the

filesystem are introduced. At the same time, the original programs had

too many acronyms and were too disconnected – therefore much more

difficult to access for new administrators of the ecosystem, who continue

to flood in more rapidly than ever to support the platform.

 Apple Device Management Programs
The App Store is arguably the reason that iOS is so popular. “There’s an

app for that” became the popular catchphrase for television commercials.

The App Store debuted in 2008, the day before the iPhone 3G was released.

It launched with 500 apps and grew to well over 2 million.

The App Store created a cultural shift in how people use computers.

Need an app to manage HR operations? There’s an app for that. Need an

app to look up CIDR tables? There’s an app for that. Need an app to make

fart sounds? Obviously, that was one of the first apps. Businesses and

schools started to use these devices at scale. But there was a gap: in order

to get apps to users, administrators had to install them as an App Store

user. That meant users used their own accounts to install VPP codes or got

gift cards which came with tons of legal and accounting problems, as these

apps were basically gifted to personal accounts and could be counted

as income.

As with all things, large customers wanted a way to buy apps en masse.

The Volume Purchase Program (VPP) was introduced to the App Store

in 2010, which allowed customers to purchase apps in bulk. The VPP

was akin to large tables of gift codes that were doled out to users, which

could be done through Apple Configurator with a fancy spreadsheet.

That evolved into revocable codes and then the ability to assign apps over

Chapter 1 the evolution of apple DeviCe ManageMent

34

the air, which still required a user to associate their personal Apple ID to

an organization (although apps were revocable so it could be reclaimed

when employees left an organization). The VPP allotments could then

be managed over the air with a Mobile Device Management solution.

Recent enhancements included a B2B app store, which has apps that

aren’t publicly available, and device-based VPP, which ties apps to devices

enrolled into an MDM automatically at setup. That’s done through what

was once called DEP.

The Device Enrollment Program (DEP) was launched in 2014 and is

now referred to as “automated enrollment.” Organizations need to either

be a school or have a DUNS number from Dun & Bradstreet (in order

to prove they are a legitimate company) to participate. Enrollment via

automated enrollment proves that an organization owns a device, and so

Apple provides special management features that allow greater control by

a centralized device management solution, such as the ability to force a

device background or the ability to skip the confirmation screen before an

app is being deployed on a device. Automated enrollment links a purchase

order to an organization’s Apple management accounts, so initially only

supported the ability to work with a few official Apple resellers. Apple

recognized that some devices weren’t a part of DEP for various reasons,

so added the ability to enroll iOS devices into DEP through Apple

Configurator in 2018.

All of these acronyms can provide unnecessary friction to learn how to

work with Apple. Therefore, Apple School Manager (ASM) was released in

2016, which also added the Classroom app into the mix – teachers could

manage various features on Apple devices via the app. ASM provides a

single portal to manage these Apple services as well as a means to manage

classroom rosters. This makes it easier to find everything necessary to set

up MDM services. Apple Business Manager was released in 2018, which

Chapter 1 the evolution of apple DeviCe ManageMent

35

centralized all of the ASM options applicable to businesses into a new

program. As with ASM, organizations now have a single location to obtain

VPP tokens and assign servers for automated enrollment-based devices

associated with a given account.

 Enterprise Mobility
All of the solutions referenced need a third-party device management

tool. The first real mobile management solution to gain traction was SOTI,

which launched in 2001 to leverage automation on mobile devices. They

got into device management when those options became available for

each platform. More and more IT departments wanted “over-the-air”

management, or OTA management. AirWatch, founded by John Marshall

in 2003 as Wandering Wi-Fi, was the first truly multiplatform device

management solution that included iOS device management. Jamf, Afaria

(by SAP), and MobileIron, founded by Ajay Mishra and Suresh Batchu,

in 2007, also built similar OTA profile delivery techniques based on the

original MDM spec that Apple introduced for OTA management.

At this point, most OTA management tasks (such as issuing a remote

wipe or disabling basic features of devices) were done with Exchange

ActiveSync (EAS). As seen in Figure 1-11, administrators could control

basic password policies as well as some rudimentary device settings such

as the ability to disable the camera. With this in mind, Apple began to

write the initial MDM specifications, which paved the way for an entire IT

industry segment to be born.

Chapter 1 the evolution of apple DeviCe ManageMent

36

Figure 1-11. Exchange ActiveSync policies

This was the landscape when the first edition of the Enterprise iPhone

and iPad Administrator’s Guide was released by Apress in 2010. Additional

MDM solutions soon followed. TARMAC was released in 2011, which

could manage iOS devices from a Mac. AppBlade and Excitor were also

released in 2011. Over the course of the next 10+ years, MDM became one

part of a number of other lovely acronyms:

• Mobile Content Management, or MCM, is a system of

distributing content to mobile devices.

• Mobile Identity Management, or MIM, refers to a

centralized identity provider hosting SAML or OAuth

services.

Chapter 1 the evolution of apple DeviCe ManageMent

37

• Enterprise Mobility Management, or EMM, gets more

into managing apps and content that gets put on

devices.

• Unified Endpoint Management, or UEM, brings

traditional laptops and then desktops into the

management feature, merging EMM with traditional

device management.

A pivotal moment for Apple device management came in 2011,

when BlackBerry announced support to manage Apple devices with

their BlackBerry Enterprise Server (BES), which had been created in

1999 to manage BlackBerry devices. This represented a legitimization of

sorts for Apple mobile devices in enterprise environments and also an

opportunistic play for licensing due to the fact that the devices became

such a mainstay in the enterprise. A shift toward UEM began at BlackBerry,

which continued until 2018, when BlackBerry Enterprise Server was

renamed to BlackBerry Unified Endpoint Manager. By then, BlackBerry

was no longer a leading phone manufacturer.

An explosion of MDM providers has occurred since BlackBerry

added Apple to their platform, to keep up with the demands of the

market. FileWave and LANrev added MDM to their products in 2011

with new iOS vendors NotifyMDM and SOTI entering into the Apple

device management family. Then Amtel MDM, AppTrack, Codeproof,

Kony, ManageEngine (a part of Zoho Corporation), OurPact, Parallels,

PUSHMANAGER, ProMDM, SimpleMDM, Sophos Mobile Control, and

Tangoe MDM were released in 2012. MaaS360 was acquired by IBM in

2013, the same year auralis, CREA MDM, FancyFon Mobility Center

(FAMOC), Hexnode, Lightspeed, and Relution were released and when

Endpoint Protector added MDM to their security products. Citrix also

acquired Zenprise in 2013 to introduce XenMobile. Jamf Now (originally

called Bushel), Miradore, Mosyle, and ZuluDesk (acquired by Jamf in 2018

and being rebranded to Jamf School) were released in 2014, which also saw

Chapter 1 the evolution of apple DeviCe ManageMent

38

VMware acquire AirWatch for $1.54 billion dollars and Good Technology

acquire BoxTone, beefing up their Apple device management capabilities.

The year 2014 also saw Microsoft extend Intune to manage iOS devices.

Working every day to boost our users' experiences with the
most powerful, intuitive and elegant devices is amazing. As an
Apple-only MDM provider, we have the joy of working every
day with the most innovative company in the world and with
the most advanced customers in the market. It's all about
working 24x7 with the best people in the computer world and
we love it!

—Alcyr Araujo, founder and CEO of Mosyle

Things quieted down a bit, as vendors struggled to keep up with near-

constant updates from Apple. In 2016 after Apple started to publish the

MDM specifications guide freely, an open source MDM called MicroMDM

was initially committed to GitHub, which made it easier for organizations

to build their own fork or implement services atop MicroMDM should they

choose. Others crept on the scene as well in those years, such as Absolute

Manage MDM, AppTech360, Avalanche Mobility Center, Baramundi,

Circle by Disney, Cisco Meraki (by way of the Cisco acquisition of Meraki),

Kaseya EMM, SureMDM, Trend Micro Mobile Security, and many others.

Some focus on specific horizontal or vertical markets, while others focus

on the ability to integrate with other products (like those in a company’s

portfolio). With such a wide field of MDM solutions, Apple focused on a

great API and did not spend a ton of time on specific features needed for

every possible market in their own product called Profile Manager (a part

of macOS Server).

A number of family or residential MDM providers have also sprung

up, which include Circle by Disney. The one market Apple has not made

MDM available to has been the home. Apple has a number of tools they

believe help families manage devices, such as Screen Time (built into

Chapter 1 the evolution of apple DeviCe ManageMent

39

every Apple device). It’s been touted as a violation of user privacy to deploy

MDM for home environments and in fact is a violation of the Apple Push

Notification (APNs) terms of service. Apple has also limited what vendors

can do in the home space. For example, OurPact, initially launched in

2012, was shut down in 2019 along with a number of other Screen Time

apps as they used MDM to control various functions of iOS devices. Some

of those have been restored to the app stores, but Apple has gotten more

specific about requirements for future acceptance.

MDM isn’t the only feature that began on iOS and ended up on the

Mac. In fact, so many options shifted over that the name of the operating

system used on Macs was even changed.

 iOS + Mac OS X = macOS
Apple once dedicated an entire keynote to “Back to the Mac.” macOS

shows a slow unification of features from iOS. This isn’t to say that the

operating systems will eventually merge (in fact, Apple has stated they

will not and instead split iPadOS from iOS), but concepts inarguably do

continue to come to the Mac from iOS.

This began with the App Store, released for iOS and then for Mac in

2011 with Mac OS X 10.6.6. Software updates were later moved to the App

Store, which unified how updates are centralized. Software updates for

iOS have always been free. Up until 2013, major operating system releases

were not free for the Mac. Mavericks was free as was every operating

system thereafter. Updates for iOS have always been free (except a couple

of releases for the iPod Touch, which were legal and accounting issues

more than technical or marketing issues). This is one of the larger shifts

in architecture from iOS that has changed not only the Mac but the entire

IT industry (although while Microsoft hasn’t made Windows free as of the

time of this writing, it is very easy to legitimately get it for free now).

Chapter 1 the evolution of apple DeviCe ManageMent

40

 One More Thing: tvOS
The Apple TV initially ran a modified version of Mac OS X 10.4 in 2007.

It was a great idea but a little too early to market. For example, it had a

spinning disk and almost invited people to “hack” the device. So in 2010,

the TV project started over with tvOS, initially introduced as a modified

iOS 4 for the second-generation Apple TV. The operating system has

evolved since then to be very similar in terms of management to iOS, albeit

a bit more restrictive in terms of low-level functionality exposed to users

(there naturally aren’t as many features on the OS).

Initial management for tvOS came in Apple Configurator, which you

would need to plug a device into in order to load an 802.1x certificate. You

can plug devices into Apple Configurator and deploy profiles (including

802.1x configuration and MDM enrollment profiles). Later, we were

able to load devices into DEP so we could manage them over standard

MDM. Management commands can be a bit different, so not all MDM

providers support tvOS, but as management of the platform matures, more

and more do.

 Imaging Is Dead?
NetBoot shipped in 1999 at Macworld. NetBoot allowed an administrator

to boot a computer to an image stored on a centralized server. NetBoot

was cool but was only adopted in niche environments; given the rapid

acceleration of the desktop and the less rapid acceleration of the servers,

networks and disk drives used to host and facilitate access to NetBoot

servers.

Apple Software Restore then shipped in 2002. It had existed since the

Mac Classic days as an internal restore tool, but after the public release, the

combination of these formed the foundation of the imaging story for the

Chapter 1 the evolution of apple DeviCe ManageMent

41

Mac for the next 15 years. Administrators with a fleet of devices to image

could boot a Mac to a NetBoot volume and then, since the hard drive

wasn’t being used, could reformat the drive and restore an image to it.

An “image” refers to a digital replica. “Imaging” is when an admin

takes a snapshot of the boot volume (and other volumes as well) of a

device and then replicates that snapshot onto other devices. The Mac

community has often referred to this practice as “monolithic imaging” and

usually involved a Mac configured just how someone wants it. That image

is captured with a tool like the asr command, which is built into the Mac.

Monolithic imaging first became a common practice around 2004

and evolved so you could stream that image over a network and lay those

bits down on a hard drive. Other evolutions involved scripts that ran to

normalize the volume or customize the image that could be applied to

computers at imaging time like a computer name and other per-device

settings. Additional post-flight scripts performed additional tasks on

the image which hadn’t been booted, as well as install standard Apple

packages during the imaging process.

Imaging then became modular, and tools such as AutoDMG (https://

github.com/MagerValp/AutoDMG) were released to build images, and

DeployStudio (shown in Figure 1-12) was released to deploy images –

both to address issues administrators found with the built-in NetBoot,

NetInstall, and NetRestore tools from Apple. These allowed admins to

build a master out of packages and dmg files that were then synthesized

into an image. As seen in Figure 1-13, these workflows started out a little

tough to use but quickly became GUI-driven and much more accessible to

new administrators.

Chapter 1 the evolution of apple DeviCe ManageMent

https://github.com/MagerValp/AutoDMG
https://github.com/MagerValp/AutoDMG

42

Figure 1-12. DeployStudio

Figure 1-13. AutoDMG

The methodologies continue to evolve. The device security landscape

has changed in such a way that Apple doesn’t seem so friendly to tools

that put bits on devices in an arbitrary fashion. Filesystems don’t change

often. Apple introduced HFS in 1985 to replace the Mac File System. It

went through a few revisions over the decades and most notably became

Chapter 1 the evolution of apple DeviCe ManageMent

43

HFS+ in 1998. It then makes sense that Apple would move toward a

common filesystem across all operating systems. This led to APFS (Apple

File System) filesystem being introduced on March 27, 2017, for iOS and

then rolled out to tvOS and watchOS. By September of that year, it came to

the Mac in macOS 10.13.

With the move away from imaging I thought for sure that apfs
would be the death knell for AutoDMG. Apple has a long tra-
dition of not discussing upcoming changes in public, so listen-
ing closely to what they announce at WWDC is critical – and
always, _always_, test the betas. In the end apfs turned out to
be quite uneventful for AutoDMG itself and the surrounding
ecosystem had to bear the brunt of the changes.

—Per Olofsson, creator of AutoDMG

The introduction of APFS to iOS and then macOS gives Apple software

engineers a lot of options around how to slice disks, how to leverage

volumes to provide device management options, and potentially how to

freeze portions of the Mac filesystem from being edited. Most importantly,

it means Apple administrators need to embrace a whole new way of device

management.

Once volumes are prepared, admins can use tools like Apple

Configurator to explode an ipsw file onto an iOS device. An ipsw is signed

by Apple, cannot be altered, and is similar to the old monolithic restore

process with the exception that administrators can’t install anything

into the image before applying the image to devices. The Mac process

of imaging evolved to how it’s done in iOS (shocking). Boot a Mac to a

network volume (now hosted on the App Store); the operating system is

downloaded and installed onto the Mac (now hosted on the App Store). An

alternative method is to use the createinstallmedia command to build an

operating system installer that can then be used to install Macs without the

recovery partition/App Store.

Chapter 1 the evolution of apple DeviCe ManageMent

44

 macOS – Unix = appleOS
As it is said with the viking legend of Ragnarok, someday we will return

to our roots. Mac management lost part of what makes it work so well in

a corporate environment. From 10.2 and on, the Mac community gained

momentum, with multiuser operating systems; fast user switching;

Active Directory integration; good information security policies; mass

deployment techniques on par with Windows, if not better; and a number

of other features that made the Mac a first-class citizen.

Apple always played catch-up though. At some point, companies have

to realize that the goalpost continues to move to be a first-class citizen on

corporate networks. The success of iOS taught Apple that they can redefine

corporate dogma rather than just play catch-up – suddenly rather than

have their developers told what they did was wrong, they could define

where the goalposts went. That mentality started to leak into the Mac. Part

of that redefinition is SIP.

System Integrity Protection, or SIP, is a mode for macOS where

full sandbox controls are implemented in such a way that parts of the

operating system can’t be written to, even if privileges are elevated to a

superuser account. There are other aspects of SIP such as how memory

is handled more securely and how dynamic libraries can’t be loaded into

apps – but the most noticeable aspects for many administrators involved

the inability to write into /System folders and/or remotely set NetBoot

targets. This philosophy comes from the fact that iOS is arguably one of

the most secure operating systems ever conceived (built on generations

of learning from previous secure operating systems via its origins as the

Darwin UNIX core of macOS).

There are a number of features in iOS that provide such a high level

of security on the platform, although arguably the most important is how

apps are sandboxed. Every iOS app comes with its own sandbox, which

means that apps can communicate with one another, but only if they have

Chapter 1 the evolution of apple DeviCe ManageMent

45

what are called entitlements, to do so, which typically involve a prompt so

a user can allow a temporary connection between apps through a share

sheet or an entitlement to use the app. Consider how many apps ask to

use the Camera or access the Desktop. Over the past few years, this design

philosophy was added to the Mac with special use cases allowing for

various technologies that require their own type of kernel access (like a

virtualization framework).

To distribute apps through the Mac App Store for 10.14.4 and below,

developers need to turn on an App Sandbox and have entitlements defined

for apps in more and more cases. Higher versions of the operating system

actually require certain entitlements be explicit in order for the app to

get notarized by Apple. Apps that aren’t notarized then can’t be opened.

For macOS Catalina, an app does not yet have to be sandboxed to be

notarized. The only requirement is to be set as a “hardened runtime.”

Apple has sandboxed part of the operating system. Sandboxing and

other security measures are discussed in more depth throughout the book,

but there are other ramifications to how the technology is implemented.

In a POSIX-compliant Unix environment, administrators with an

appropriate level of privileges (e.g., root access) have historically done

whatever they want on a device. They’re often called superusers for just

this reason. With sandbox, Apple can restrict any type of user from writing

to certain directories on the filesystem. While macOS has been certified

as compatible with the Single UNIX Specification version 3, or SUSv3 for

short, this is more tied to the core of macOS, Darwin, than the layer that an

end user interacts with.

Each variant of an operating system seems to have their own way

to deal with device drivers, probably more true for UNIX-compatible

operating systems than any others. The concept of an extension dates back

to the Mac OS Classic era. An extension was a file that basically provided

kernel access, which allowed devices to be plugged into computers. Mac

OS 9 had a tool called the Extension Manager, which allowed a user to

Chapter 1 the evolution of apple DeviCe ManageMent

46

turn these drivers on and off easily. If an extension caused a computer to

become unbootable, you could easily boot the computer into safe mode,

drag all the extensions out of their folder and into a folder called Disabled

Extensions on the desktop, and reboot and viola – the system was good.

In Mac OS X and later macOS, a kernel extension (often referred to as

a kext) is code loaded directly into the kernel of the Mac. This allows much

lower-level access that’s typically necessary for software that needs to

interrupt processes (such as security software) or software that interfaces

with physical devices where Apple doesn’t provide an API for doing so.

Most operating systems have something of this sort, for example, on

Windows there are Kernel-Mode Extensions.

Given how low-level kexts can run, there’s always been a concern

about the security of a kext. Kexts required a signature as of 2013

(Maverick). Apple went further to restrict kexts in High Sierra, when

Secure Kernel Extension Loading forced a user to accept a kext. Apple

disabled synthetic clicking on this screen, so administrators couldn’t

programmatically accept their own kext. The exceptions are that an MDM

can preemptively enable a kernel extension, and the `spctl kext-consent

add` command can do so if you have administrative access on a client

computer.

Kernel extensions and MDM enrollments cannot complete without

the acknowledgment from a user of what is happening. In general, to force

acceptance of kernel extensions and MDM enrollments is another step

toward a more iOS-centric Mac. This isn’t to say that admins will lose the

ability to access a command line or write code, but as the distribution

of Macs increases, those are made more difficult. Management options

need to be simpler so they’re more accessible, while also more secure, to

keep users safe. While the kernel extension is a uniquely Apple solution,

sandbox is actually derived from the sandbox facility in BSD, a core part of

trusted BSD. Based on how future options are implemented, admins could

still have fully manageable and nerdy tools without the need to sacrifice

attributes of the Apple experience they hold so dear, like privacy.

Chapter 1 the evolution of apple DeviCe ManageMent

47

 Moving Away from Active Directory
One of the main reasons the Mac was accepted as a standard in many

companies was the ability to work within standard Active Directory

environments. From Mac OS X 10.2.x until today’s macOS versions, many

Mac Admins spent countless hours to refine and perfect their Active

Directory bind scripts. Out of that wealth of knowledge about how every

part of Active Directory worked, some also realized that it might be wrong

to use Active Directory with the Mac. There were some advantages to

Macs directly connected to an Active Directory domain, like users could

get Kerberos tickets and have password management; it also introduced

issues like how to keep login keychain passwords and FileVault account

passwords in sync with the password used for the user’s Active Directory

account. These password problems were solved by local accounts on

the Mac, but local accounts were unable to communicate at all with the

AD domain.

The open source NoMAD project was introduced in 2017 by Joel

Rennich and represented a seismic shift in how people charged with

managing Apple devices thought about Active Directory and how their

Macs should connect to it. NoMAD, short for No More AD, was a project

that allowed admins to obtain Kerberos tickets from Active Directory

and do many of the common tasks required in an Active Directory

environment, without the need to “bind” the machine to the domain.

This new approach of middleware that handled the connections to Active

Directory allowed the use of local accounts on the Mac, addressing the

password problems, while still enabling NoMAD-equipped Macs to obtain

Kerberos tickets and password management from the AD domain.

Chapter 1 the evolution of apple DeviCe ManageMent

48

As the father of the Magic Triangle(tm) I get that it’s a bit weird
to be telling you not to bind anymore… but those days are
done. The modern Mac is primarily a single user system that
barely, if ever, touches the corporate network anymore, so we
should stop acting like a persistent LDAP bind is doing any-
body any favors.

—Joel Rennich, founder of NoMAD and director of Jamf
Connect, Jamf

NoMAD was sold to Jamf in 2018, and portions are now part of a

proprietary product called Jamf Connect. Since the early days of NoMAD,

the paid version of NoMAD Login Window (now called Jamf Connect)

has since expanded to allow for Smart Card authentication and now

works with federated identity providers such as Azure AD, Okta, Ping,

and Google.

Rennich introduced NoMAD. In terms of his place in the Apple device

management history books, though, almost as importantly, he founded a

website called afp548.com. In doing so, he and his cohort Josh Wisenbaker

established the foundation blocks for what has evolved into the latter-day

Apple admin community. Both went to work for Apple, and others took

up the mantle to help forge that community for years to come (both have

since left Apple).

 The Apple Admin Community
There is a strong community of Apple administrators, which often self-

identify as Mac Admins. The community idea is fairly Apple-centric – back

to when Guy Kawasaki started the concept of evangelizing the platform

as Apple’s Chief Evangelist from 1983 to 1987. There are a variety of ways

to interact with the community, which include going to conferences,

attending user groups, and interacting with the community online (e.g.,

via Slack).

Chapter 1 the evolution of apple DeviCe ManageMent

49

 Conferences
The MacAdmin community initially grew out of Macworld and the Apple

Worldwide Developers Conference (WWDC), which both started in 1987.

The community slowly matured; people often met in sessions, expo

booths, and then bars (e.g., one called Dave’s). Those were around the

conferences up until 2009 when Apple announced their final year as a

sponsor of the conference. Many Apple products had been announced at

Macworld, but that would shift to WWDC in the future. Many of the people

who met in person moved those relationships online, like IRC channels

dedicated to Mac management. Some who joined those lists created

online relationships that led to people getting a chance to meet in person

at the next event they went to.

The explosion of iPhones shifted WWDC to be less focused on

administration topics and much more focused on software development

(after all, it is a “developers” conference). WWDC also became so popular

that Apple began to sell tickets in a lottery, and less and less admins could

actually go. After the administrative sessions ended at WWDC (for a bit), a

new era of conferences began to be created in the vacuum. MacSysAdmin

in Gothenburg, Sweden, was introduced in 2009. Once again, the

MacAdmin team at Penn State University (PSU) stepped up and created

the PennState MacAdmins Conference in 2010.

From the earliest days of Macintosh, there’s always been some-
thing special about those that were creating or supporting
Apple technologies. That community, the Apple technical
community, has always been at the core of MacTech. It’s the
reason that we created the live, in-person MacTech events
more than a decade ago. Some 150+ days of events later, the
community continues to come together for an amazing expe-
rience, seeing incredible speakers and content, and engaging

Chapter 1 the evolution of apple DeviCe ManageMent

50

in the ever popular “hallway track”. Those awesome face-to-
face interactions both bond and power an exceptional com-
munity. As we move into the second decade of MacTech’s live
events, we’ll continue to enable the community to come
together in this unique way.

—Neil Ticktin, CEO, MacTech

A number of other vendors have also built up conferences, and parts

of the community have fragmented off into the conferences that most fit

their needs. This is to be expected when there are multiple generations of

engineers who use a variety of different ecosystems to manage products.

People need to find more focused content for their specific jobs, especially

since many tasks have become vendor or open source product-centric. A

quick overview of the conferences available is as follows:

• ACES Conference: ACES is a conference for Apple

consultants so people who are members of the Apple

Consultants Network (or ACN). ACES is a solid

introduction for many with a mix of the business side of

a consulting or managed service firm and the technical

aspects of what consultants might need to know. This

combination of soft and technical skills is common

at conferences, but the focus on how to run a small

business is unique.

• Addigy Innovate: A conference for those who use

Addigy products to manage their fleets of Apple

devices. This includes topics like identity, security,

initial setup, and long-term management of devices.

• Command-IT: 2018 was the first year of the Command-

IT conference in France! Sessions are fairly broad and

highly informative. More at www.command-it.fr.

Chapter 1 the evolution of apple DeviCe ManageMent

http://www.command-it.fr

51

• FileWave Conference: The FileWave Alliance

Conference focuses on the latest and greatest with

FileWave and provides systems administrators of

FileWave environments with access to developers,

deployment information, etc.

• Jamf Software’s JNUC (Jamf Nation User
Conference): A conference primarily geared at the

Apple Administrator who uses Jamf products for their

administrative efforts. There are some sessions on

general administrative topics, such as what a plist

is and general shell scripting. It’s a must for admins

who spend a lot of their days in Jamf Pro (or other

Jamf products). Traditionally held in Minneapolis, the

conference moved to San Diego for 2022.

• MacAdminsUA: A conference held in the Ukrainian

city of Kyiv. On hold for obvious reasons. Past sessions

included topics on consulting, security, and of course

the latest requirements with tech like Apple Business

Manager (keep in mind that not all features are

available in all countries). Find more on it at https://

macadmins.org.ua.

• Mac Admin and Developer Conference UK:

MacADUK is a conference for Apple administrators and

developers, with a lot of sessions and good content,

held in London.

• MacDevOps YVR: MacDevOps is a conference based in

Vancouver, with sessions that range across the DevOps

build train. YVR is definitely for those who are deeper

into automation (e.g., want to script every aspect of the

management experience).

Chapter 1 the evolution of apple DeviCe ManageMent

https://macadmins.org.ua
https://macadmins.org.ua

52

• MacSysAdmin: All things Apple, in Sweden. This

conference is held in the fall in Göteborg, Sweden, with

great content that spans the tasks a Mac Admin has to

cover. There are lots of really good content, with a very

global perspective. Network with other career-oriented

Mac Admins in a relaxed atmosphere.

• MacTech: This conference is a good look at how

environments grow and how administrators can grow

into new roles. There are some consultants, but in

general the focus has been on tips and tricks ranging

from small to large deployment sizes. MacTech

Conference is held in LA, so don’t forget the wetsuits.

• Mobile World Congress: Most presenters at a show like

this will be less technical, more business analysts, and

more interested in the why and results than the how.

It’s a good group but different from those who spend

all of their time integrating systems. Held in early May,

with smaller shows globally, later in the year. For a

sampling of sessions, check out their YouTube channel

at www.youtube.com/user/GSMAOnline/playlists.

• MobileIron Live: MobileIron has a new(ish)

conference. Since they were acquired by Ivanti, the

conference has added three smaller conferences.

environments who use MobileIron (and other Ivanti

products integrated with MobileIron) to manage Apple

devices, definitely worth a look.

• Objective by the Sea: Security is a topic that has come

up from time to time at MacAdmin conferences. Patrick

Wardle put together a lineup of speakers for the first

Chapter 1 the evolution of apple DeviCe ManageMent

http://www.youtube.com/user/GSMAOnline/playlists

53

few and the sessions for past conference sessions

are online. Probably one of the deepest technical

conferences for those in information security.

• Penn State MacAdmins Conference: Held at the Penn

Stater Hotel and Conference Center in State College,

PA. Penn State MacAdmins emerged during a time of

uncertainty with WWDC and systems administration

topics. The same team had created the infamous

MacEnterprise list that Penn State runs. The use of

the list has trickled off while the conference itself has

grown. It’s priced well, vendor agnostic, and run by one

of the most talented MacAdmin teams around.

• VMworld (formerly AirWatch Connect): A conference

for people who manage heterogeneous mobile

deployments that rely on Workspace ONE and

AirWatch.

• WWDC: Everyone knows about Apple’s Worldwide

Developer Conference. It continues to get more and

more difficult to get tickets to the conference, although

with a pivot to more of an online conference, attendees

can watch the videos they want to see wherever they

want, rather than have to make choices about which

sessions would be better than others. This is a must for

engineers who build third-party tools, and what a Mac

Admin sees in a WWDC session is likely not to ship for

a few months in management tools. Still, watch the

sessions online at a minimum and save any continuing

development/training funds to check out one of the

other conferences.

Chapter 1 the evolution of apple DeviCe ManageMent

54

• X World: Originally part of the AUC in Australia,

X World has topics ranging from Munki to Casper.

Initially a very education-centric conference, there

were Apple administrators from around Australia

gathered to share their knowledge and green

information from others on managing large numbers

of Apple systems. And the organizers and delegates

are pretty awesome people to hang out with. Great

networking.

 Online Communities
The Apple administrative community began to emerge in 2001 and

congealed around a few specific places. One was the Mac Enterprise list-

serve, from Penn State University. Another was the Mac OS X Server list

from Apple. These were active communities that were really sometimes

very long email threads, but we all got to know each other. Another was

afp548. The port for the Apple File Protocol hosted by Mac OS X Server is

548. The afp548.com website was launched in 2002 by Joel Rennich. It had

a little more focus around the server product and later around directory

services and imaging or large-scale deployment practices. Both Mac

Enterprise and afp548.com are important as they represented the creation

of a community built around Apple Administration that wasn’t controlled

by Apple (like the forums on Apple’s own support sites).

Over time, email lists can grow unwieldy. Many conversations moved

to specialized lists, chat rooms, Twitter, or bulletin boards. For example,

in 2011, Jamf created a message list but eventually moved that over to

a web portal that now boasts over 40,000 active users and over 30,000

discussions. Other vendors created message boards and communities as

well, and the community appeared to fragment for a time. Then came the

MacAdmins Slack channel.

Chapter 1 the evolution of apple DeviCe ManageMent

55

The Mac Admins Slack is a unique online community for a
few reasons. There is a general sense of thoughtfulness among
members. Time and time again I see someone go to lengths to
help another member that they have no prior connection with,
just for the good of the community. Likewise, there's a strong
sense of authenticity. Vendors, like us, can become involved,
but we're really there to support the community and not to
treat it like a promotional channel. It's also not just a slack. It's
a podcast, it's local meetups, and more. Connections may ini-
tially be made online, but they can grow outside of it. The
community extends far beyond a particular slack channel.
The Slack is just a touch point.

—Taylor Boyko, founder and CEO at SimpleMDM

The MacAdmins Slack instance was introduced in 2015. Since then,

“Slack” as it seems to lovingly be called has grown to over 50,000 users

who have sent over 18 million messages. As can be seen in Figure 1-14,

these Apple admins discuss everything from upcoming betas to DEP

deployments, imaging, and even local groups for each major city and/

or country in the world. More focused than checking for #macadmins on

Twitter, more history than IRC, and a great place to ask a polite question

and potentially save weeks of hunting for the answer to a problem.

Chapter 1 the evolution of apple DeviCe ManageMent

56

Figure 1-14. The MacAdmins Slack

The MacAdmins Slack channel is one of the most important things to

happen to the MacAdmins community. With over 1100 channels to follow,

Slack could further fragment admins, but the fact that so many people are

in a lot of different channels actually brings more people together in better

contexts. Slack is real time; digest emails always felt a bit less inclusive,

and it can be easier not to take something out of context when catching up

through a week's worth of digests.

 User Groups
Apple has a long and rich tradition of sponsoring, facilitating, helping

out with, and sometimes just tolerating user groups. There have been

Macintosh user groups since there has been a Mac. Over time, those

charged with larger-scale care and feeding of devices have split off into

Chapter 1 the evolution of apple DeviCe ManageMent

57

their own, professional user groups. Simply search for a city name followed

by MacAdmins, and user groups or meetups with an established local

chapter to get involved in can often be found.

Some available at the time of this writing include the following:

• Apple Admins of LA and OC: www.meetup.com/Los-

Angeles- Mac-Meetup/

• Austin Apple Admins: www.austinappleadmins.org

• Boston Mac Admins: www.meetup.com/

bostonmacadmins/

• Calgary MacDeployment Meetup: http://

macdeployment.ca

• Chicago Mac Admins: www.chicagoappleadmins.org

• Colorado iOS Admins: http://coiosadmin.

tumblr.com

• Denver Mac Admins: www.meetup.com/Denver-

Mac- Admins/

• London Apple Admins: www.londonappleadmins.org.uk

• MacAdmin Monthly: www.macadminmonthly.org

• [MacSysAdmin] Bier: http://macsysadmin.ch

• MacBrained: http://macbrained.org

• MacDMV (The DC Metro area Mac Admins group):

www.macdmv.com

• NW Apple Administrators (Portland): www.meetup.

com/NW-Apple-Administrators-Eng-Architects-

Support-JAMF-Casper/

Chapter 1 the evolution of apple DeviCe ManageMent

http://www.meetup.com/Los-Angeles-Mac-Meetup/
http://www.meetup.com/Los-Angeles-Mac-Meetup/
http://www.austinappleadmins.org
http://www.meetup.com/bostonmacadmins/
http://www.meetup.com/bostonmacadmins/
http://macdeployment.ca
http://macdeployment.ca
http://www.chicagoappleadmins.org
http://coiosadmin.tumblr.com
http://coiosadmin.tumblr.com
http://www.meetup.com/Denver-Mac-Admins/
http://www.meetup.com/Denver-Mac-Admins/
http://www.londonappleadmins.org.uk
http://www.macadminmonthly.org
http://macsysadmin.ch
http://macbrained.org
http://www.macdmv.com
http://www.meetup.com/NW-Apple-Administrators-Eng-Architects-Support-JAMF-Casper/
http://www.meetup.com/NW-Apple-Administrators-Eng-Architects-Support-JAMF-Casper/
http://www.meetup.com/NW-Apple-Administrators-Eng-Architects-Support-JAMF-Casper/

58

• Perth Apple Admins: www.meetup.com/Perth-

Apple- Admins/

• Philly Mac Admins: www.meetup.com/Greater-

Philadelphia- Area-Mac-Admins/

• Providence Apple Admins: www.meetup.com/

providenceappleadmins/

• Apple Admins of Seattle and the Great Northwest:

www.meetup.com/Seattle-Apple-Admins/

• Sydney Mac Admins Meetup: www.meetup.com/

Sydney-Mac-Admins/

• Twin Cities Mac Admins Group: https://twitter.

com/mspmacadmns

More come online all the time (some exist solely online). Many now

start out of MacAdmins Slack channels or organize around those. The

topics always change, but many of those discussed build up to form a set

of best practices that can be summarized in a line in a balanced scorecard,

one way to easily visualize how an organization tracks performance of any

initiative over time. To see one of those, skip ahead to Chapter 12.

 Summary
Apple’s pace of innovation in the early days was astounding. Those first few

years can be read about in plenty of business books. That seemed to trail

off for a while. After Mac OS X came along, the first ten years seemed to be

trying to find an identity for administration. “Words matter” quite a bit at

Apple. In 2008, Steve Jobs said, “Why would I do anything for that orifice

called the CIO?” This sums up that period of time. Yet that is classic sales –

Apple didn’t have a great story to tell for larger-scale management yet.

Chapter 1 the evolution of apple DeviCe ManageMent

http://www.meetup.com/Perth-Apple-Admins/
http://www.meetup.com/Perth-Apple-Admins/
http://www.meetup.com/Greater-Philadelphia-Area-Mac-Admins/
http://www.meetup.com/Greater-Philadelphia-Area-Mac-Admins/
http://www.meetup.com/providenceappleadmins/
http://www.meetup.com/providenceappleadmins/
http://www.meetup.com/Seattle-Apple-Admins/
http://www.meetup.com/Sydney-Mac-Admins/
http://www.meetup.com/Sydney-Mac-Admins/
https://twitter.com/mspmacadmns
https://twitter.com/mspmacadmns

59

The Apple administrative community pushed, and Apple learned what

larger organizations actually needed the devices to do and figured out how

to do those tasks (such as integrate with Active Directory) in a way that

preserved Apple values while still providing the tools needed to manage

devices en masse.

The pace for administrators over the past ten years has been

substantial. Always-on Internet, the explosion in the number of devices

each user has, and the way devices are used (like to stream music over

a HomePod) were barely even conceivable when the Mac was released.

Always-on Internet for every device has caused that type of change in

almost every industry – not just at Apple. The evolution to allow for more

device management has been a learning experience, both for Apple and

for the community of users and administrators they serve.

Perhaps what I respect about Apple most is that they know
who they are. Their focus on the individual has been relent-
less. In the face of many telling them to do something different,
Apple stays true to their DNA.

—Dean Hager, CEO Jamf

The tipping point in that evolution was when Apple forged a

partnership with IBM in 2014, with Ginni Rometty and Apple CEO Tim

Cook (who spent 12 years at IBM) who did interviews (e.g., for CNBC)

and were filmed on a walk around campus, looking all kinds of pensive.

Since then, a newfound focus on business has tightened and so enterprise

adoption has exploded. After all, the largest fleet of devices in the world is

the culmination of all the iPads, iPhones, and MacBooks in homes around

the world.

As seen throughout this chapter, the more things change, the more

they stay the same. The names of the tools have changed: At Ease led to

Macintosh Manager, which led to Workgroup Manager, and eventually

became what was Profile Manager. In a more SaaS-oriented world, Profile

Chapter 1 the evolution of apple DeviCe ManageMent

60

Manager then became Apple Business Essentials (not the code but the

very idea of an Apple-branded MDM). The back-end technology for

management has changed with each of those names, where we now have

MDM as the predominant way to manage devices – and some tools still

have agents. While the look and feel of the tools has changed, the mission

of each hasn’t changed all that much, much as the buttons still say many of

the same words from Apple Network Assistant all the way through to Apple

Remote Desktop 3.9.

In this chapter, we laid out the timeline of when various features and

components were released. We can’t cover all of the items in this book

at the level they deserve, especially given the number of vendors and

talented engineers that now work in the Apple space. When that first book

on managing Macs in the Enterprise was released, there were about half

a dozen management MDM vendors; today, there are well over ten times

that, some by companies with valuations in the billions. That doesn’t

include the rest of the ecosystem like security tools, backup software,

groupware, and other entire software categories this chapter skipped right

over. It is possible to look at general themes and provide guidance around

each. This guidance begins in Chapter 2, when we look at what the agent-

based management solutions do to help manage Macs.

Chapter 1 the evolution of apple DeviCe ManageMent

61

CHAPTER 2

Agent-Based
Management
This chapter is about agents that can run on a Mac. Agents are services,

or programs, that run on devices. These agents are specifically designed

to give a systems administrator command and control over a Mac and are

usually agents that start a listener on the Mac or tell the Mac to log in to

a server and pull down management tasks from that server on a routine

basis. These give administrators the ability to control various aspects of

computers from a centralized server. Commands are sent to the device

from the server or pulled from the server and run on devices.

Over the past few years, Apple developers have started to reduce

the importance of agents on the Mac. They do this when they remove

capabilities from agents and/or make it easier to disable them. Agents are

still an important aspect of macOS management, and so it’s important to

understand what an agent is, what it does, and when to use one. Device

management tools use agents, security software uses agents, and a number

of tools use agents to track the licensing of their software on devices.

Agents can do less and less with every passing year, but they are still

necessary.

One place where “less and less” has been problematic is device

management. Just keep in mind that any time a task can be done with

an agent or MDM, make sure to use the MDM unless there’s a really

good reason to use an agent. The Mac isn’t quite back in the era of Desk

© Charles Edge and Rich Trouton 2023
C. Edge and R. Trouton, Apple Device Management,
https://doi.org/10.1007/978-1-4842-9156-6_2

https://doi.org/10.1007/978-1-4842-9156-6_2

62

Accessories from System 7, but the platform is in an era where user

consent is more and more important for tasks that could violate user

privacy – even for various tasks that would be performed on devices we

can prove the organization owns.

Neither iOS nor tvOS allows for custom agents, but agent-based

management is (at least for now) a critical aspect of how to manage macOS

devices. In this chapter, we’ll review common agents designed for the Mac

and what they do. We’ll cover MDM, which is an agent-based management

environment provided by Apple in the next chapter, and provide much

more information around how MDM works. MDM has been referred to

as “agentless” at times, but that really means it’s just an agent provided

by Apple.

 Daemons and Agents
As mentioned, an agent is a process that runs on a device. These run

persistently and so they’re always running. When a daemon or agent is

configured, they can be flagged to restart in case they stop. To see a few

built-in agents, open System Settings and go to the Sharing System Setting

pane. As seen in Figure 2-1, those are often for sharing resources over a

network. Let’s turn File Sharing on for just a moment

Chapter 2 agent-Based ManageMent

63

Figure 2-1. The Sharing System Setting pane

Each of these agents is a LaunchDaemon or LaunchAgent that loads on

the computer – for this example, we’ll start File Sharing with Windows File

Sharing enabled. The first process that starts on a Mac is launchd, which

is then responsible for starting, stopping, and controlling all subsequent

processes based on the .plist file that defines them. This includes all

services required to make the operating system function. The easiest way

to see this is to open Activity Monitor from /Applications/Utilities and

select “All Processes, Hierarchically” from the View menu. Here, search for

the file (Figure 2-2) and note that it’s been started, has a PID of 194, and

runs as root. The PID is the process ID.

Chapter 2 agent-Based ManageMent

64

Figure 2-2. Use Activity Monitor to see what processes are running
(and what processes started them)

The kernel_task controls launchd, and all other processes fall under

launchd. Some are still nested under others as well. To see how smbd gets

started, let’s then look at /System/Library/LaunchDaemons/com.apple.

smbd.plist. Each process has a property list similar to this that defines how

a LaunchDaemon and LaunchAgent will start. This looks like

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://

www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

 <key>EnableTransactions</key>

 <true/>

 <key>Disabled</key>

 <true/>

 <key>Label</key>

 <string>com.apple.smbd</string>

 <key>MachServices</key>

 <dict>

Chapter 2 agent-Based ManageMent

65

 <key>com.apple.smbd</key>

 <dict>

 <key>HideUntilCheckIn</key>

 <true/>

 </dict>

 </dict>

 <key>ProgramArguments</key>

 <array>

 <string>/usr/sbin/smbd</string>

 </array>

 <key>Sockets</key>

 <dict>

 <key>direct</key>

 <dict>

 <key>SockServiceName</key>

 <string>microsoft-ds</string>

 <key>Bonjour</key>

 <array>

 <string>smb</string>

 </array>

 </dict>

 </dict>

</dict>

</plist>

In the preceding example, note that the /usr/sbin/smbd binary is

loaded and the LaunchDaemon controls the binary. LaunchDaemons

can run even without a user logged in. LaunchDaemons cannot display

information with the graphical interface of a Mac; but they can provide

data to apps that have graphical interfaces. The plist files are stored in the

/System/Library/LaunchDaemons folder (for those provided by Apple)

and /Library/LaunchDaemons (for the rest). There are also LaunchAgents,

Chapter 2 agent-Based ManageMent

66

which run on behalf of a user and therefore need the user to be logged in

to run. LaunchAgents can display information through the window server

if they are entitled to do so. As with LaunchDaemons, LaunchAgents are

controlled by property lists. The configuration plist files are stored in the

/System/Library/LaunchAgents and /Library/LaunchAgents, and user

launch agents are installed in the ~/Library/LaunchAgents folder.

Next, let’s look at a common graphical interface for managing

LaunchDaemons and LaunchAgents, Lingon.

 Use Lingon to See and Change Daemons
and Agents Easily
Lingon is a tool available on the Mac App Store at https://itunes.

apple.com/us/app/lingon-3/id450201424. Install Lingon to be able to

quickly and easily manage LaunchDaemons and LaunchAgents. It can

also be downloaded through Peter Borg’s site at www.peterborgapps.com/

lingon. The version there has more features and control over system-level

daemons and agents.

On first open, Lingon shows a list of non-Apple services installed

on the system. In Figure 2-3, notice that you see two for Druva, one for

Tunnelblick, and one for an older version of macOS Server.

Chapter 2 agent-Based ManageMent

https://itunes.apple.com/us/app/lingon-3/id450201424
https://itunes.apple.com/us/app/lingon-3/id450201424
http://www.peterborgapps.com/lingon
http://www.peterborgapps.com/lingon

67

Figure 2-3. The Lingon agent browser screen

Create a new one by clicking New Job. At the New Job screen shown in

Figure 2-4, there are the following fields:

• Name: The name of the script. This can be something

simple like Pretendco Agent but is usually saved as

com.Pretendco.agent.

• What: App or even just an arbitrary command like “say

hello” if the command is short and simple.

Chapter 2 agent-Based ManageMent

68

• When: When the script or binary that was selected in

the What field will be invoked or should run.

• At login and at load.

• Keep running (runs all the time and restarts after

a crash): Runs all the time. launchctl will watch

for the process to terminate and restart it. This is

usually something that persistently manages a

socket or is always waiting for something to happen

on a system.

• Whenever a volume is mounted: This is similar to

watching for a file to change given that it’s watching

/Volumes, but when a volume mounts, the process

will run.

• Every: Runs the script or process at a regularly

scheduled interval, like every 90 seconds or once

an hour.

• At a specific time: Runs the specified process at a

given time on a schedule (this is similar in nature to

how cron jobs worked).

• This file is changed: Defines a path to a file so that

if the LaunchDaemon notices a file has changed,

the desired script will run. This is pretty common

for scripting automations, such as “if a file gets

placed in this directory, run it through an image

converter.

• Save & Load: Saves the LaunchAgent or

LaunchDaemon, provides the correct permissions, and

attempts to load.

Chapter 2 agent-Based ManageMent

69

Figure 2-4. Provide a name and location for a script or app to
daemonize it

Next, click Save & Load and you’ll be prompted that the service will

run even after you close Lingon (Figure 2-5). The reason for this is that

when you save your entry, the Lingon app creates a LaunchDaemon and

starts it.

Chapter 2 agent-Based ManageMent

70

Figure 2-5. Save your new agent or daemon

If you select a job and then select “Copy Job to Clipboard” from the Job

menu, then you can open a new document and paste the contents of what

would be in a property list in. By default, the new LaunchAgent is saved

in ~/Library/LaunchAgents/ so you can also easily just view it with cat

once saved.

Now that we can create and delete LaunchAgents and

LaunchDaemons, you know how to create an agent if you need to or stop

one from processing if it’s running on a host. Now that we’ve described

what goes into building a daemon or agent, let’s look at controlling them so

we can then show how you interface with those used to send management

commands to macOS devices.

 Controlling LaunchDaemons with launchctl
Earlier, when we showed Activity Monitor, we could have stopped the

process we were looking at. Doing so means that if the process is set to do

so, it can start up again. It’s possible to add, edit, delete, and load these

with the launchctl command. Using launchctl is pretty straightforward. In

the following example, we'll look at disabling the disk arbitration daemon

Chapter 2 agent-Based ManageMent

71

to show how to control a LaunchDaemon with launchctl. To disable disk

arbitration, first run the following command to obtain a list of currently

running launchd-initiated processes:

launchctl list

That’s going to output a few too many so let’s constrain our search to

those that include the string “shazam”:

launchctl list | grep shazam

You’ll now see a PID and the name of the process, similar to when

looking at these in Activity Monitor. Next, go ahead and stop it, again using

launchctl, but this time with the stop option and the exact name:

launchctl stop com.apple.shazamd

Once stopped, let’s verify that shazamd is no longer running:

ps aux

Once you have completed your tasks and want to reenable shazam, it’s

possible to reboot or restart it with the start option in launchctl:

launchctl start com.apple.shazamd

Finally, this process is not persistent across reboots. If you will be

rebooting the system, unload shazam and then move the plist from /

System/Library/LaunchDaemons/com.apple.shazamd.plist. For example,

to move it to the desktop, use the following command:

mv /System/Library/LaunchDaemons/com.apple.shazamd.plist ~/

Desktop/com.apple.shazamd.plist

If the launchd job you’re trying to manage doesn’t start, check out the

system.log for a more specific error why:

tail -F /var/log/system.log

Chapter 2 agent-Based ManageMent

72

For more on LaunchDaemons, see the Apple developer

documentation at https://developer.apple.com/library/archive/

documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/

CreatingLaunchdJobs.html or check launchd.info, a site where you can

see additional information.

Now that we’ve looked at LaunchDaemons and LaunchAgents, let’s

review what each has access to before we move on to looking at some of

the commercial and open source distributions of management agents.

 Deeper Inspection: What Does the App Have
Access To?
Apps must be signed. Not all persistent binaries need to be signed but

all should be, and all should also have a corresponding sandbox profile

(although even Apple hasn’t gotten around to signing everything that

comes bundled with the operating system). To see a detailed description of

how an app was signed:

codesign -dvvvv /Applications/Firefox.app

This also gives you the bundleID for further inspection of an app.

There are then a number of tools to use to check out signing and go further

into entitlements and sandboxing. For one, check the /usr/share/sandbox

directory and the more modern /System/Library/Sandbox/Profiles/ and

Versions/A/Resources inside each framework for a .sb file – those are the

Apple sandbox profiles. Additionally, to see what each app has access to

with the codesign command:

sudo codesign --display --entitlements=- /Applications/

Safari.app

When building and testing sandbox profiles for apps to compile, you

may want to test them thoroughly.

Chapter 2 agent-Based ManageMent

https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/CreatingLaunchdJobs.html
https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/CreatingLaunchdJobs.html
https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/CreatingLaunchdJobs.html

73

As of 10.14, any app looking to access Location Services, Contacts,

Calendars, Reminders, Photos, Camera, Microphone, Accessibility, the

hard drive, Automation services, Analytics, or Advertising kit will prompt

the user to accept that connection. This is TCC, or Privacy Preferences.

You can programmatically remove items but not otherwise augment or

view the data, via the tccutil command along with the only verb currently

supported, reset:

tccutil reset SERVICE com.smileonmymac.textexpander

 Third-Party Management Agents
There are a number of tools that other people or organizations have

built that enable you to tap into the power of the macOS command line.

Organizations like Addigy, FileWave, Jamf, MobileIron, and VMware all

have agents. And Munki has become a popular open source management

agent for a number of reasons. We’ll start our look at agents with one of the

more recently added, given how it’s built: Addigy.

 Addigy
Addigy is a management solution for iOS and macOS. As Addigy was

developed somewhat recently, the developers make use of a number of

open source components to form a management solution that can track

what’s on a device (or monitor inventory), deploy new software to a device,

remove software from a device, run scripts remotely, and other tasks.

The ability to do this en masse is derived by having an agent running on

client systems and having that agent be able to talk back to a centralized

management server. The Addigy agent is available by navigating to the Add

Devices button in the sidebar (Figure 2-6).

Chapter 2 agent-Based ManageMent

74

Figure 2-6. Download the Addigy Agent

As seen in Figure 2-7, there are different options to install the agent

(other than with MDM, which we cover in more depth throughout the rest

of the book). Install with Terminal downloads a shell script that runs an

installer, whereas the package option downloads a package.

Chapter 2 agent-Based ManageMent

75

Figure 2-7. Scripted or package deployment

As with many software packages today, the Addigy agent consists

of a few different components. The package will install a number of

LaunchDaemons and LaunchAgents according to the services you use in

your environment. These services are as follows:

• /Library/LaunchDaemons/com.addigy.agent.plist:

The Addigy agent, responsible for controlling other

services running on the system. This calls /Library/

Addigy/go- agent with the agent option.

• /Library/LaunchDaemons/com.addigy.collector.

plist: The Collector, which maintains inventory and

reports information back to the server. This calls /

Library/Addigy/collector.

Chapter 2 agent-Based ManageMent

76

• /Library/LaunchDaemons/com.addigy.lan-cache.

plist: The process responsible for copying files to

the local computer to be processed (e.g., to install a

package). This loads /Library/Addigy/lan-cache, based

on https://github.com/bntjah/lancache.

• /Library/LaunchDaemons/com.addigy.policier.

plist: The policy engine, calling Ansible to do

orchestration and provisioning. After a network

check, this runs /Library/Addigy/go-agent with the

policier option.

• /Library/LaunchDaemons/com.addigy.updater.

plist: This is responsible for keeping the agent

updated and calls /Library/Addigy/go-agent with the

updater option specified.

• /Library/LaunchDaemons/com.addigy.auditor.

plist: Addigy’s audit tool, which can be used to get

custom facts about the state of a host.

• /Library/LaunchDaemons/com.addigy.watchdog.

plist: Throttles processes if their CPU usage gets

too high.

• /Library/LaunchDaemons/

screenconnect-92fde59311b74250.plist: Addigy’s

screen connection agents.

• /Library/LaunchAgents/

screenconnect-92fde59311b74250-launch-prelogin.

plist: Addigy’s screen connection agents.

• /Library/LaunchAgents/

screenconnect-92fde59311b74250-launch-onlogin.

plist: Addigy’s screen connection agents.

Chapter 2 agent-Based ManageMent

https://github.com/bntjah/lancache

77

To load or unload any of these, we’ll use the launchctl command as we

did earlier in the chapter. For example, to unload the Go agent:

sudo launchctl unload /Library/LaunchDaemons/com.addigy.lan-

cache.plist

sudo launchctl load /Library/LaunchDaemons/com.addigy.lan-

cache.plist

In addition, there are a number of supporting files located in /Library/

Addigy, including auditor-facts, which has information obtained by the

auditor, /Library/Addigy/ansible/status.json which is the main ansible

inventory file, and /Library/Addigy/user-job which runs shell scripts on

behalf of the user.

Larger files, such as packages, are then cached to the client systems

with LANCache. To see what resources the LANCache daemon is using,

use ps to view processes and then grep the output for lan-cache as follows:

sudo ps aux | grep -v grep | grep lan-cache

A similar incantation of the command can be used to view the

resources being used by any of the agents we’ll cover in this chapter. In

general, if you notice a trend here, we use launchctl to check what binaries

are called by the agents and then use the command structures for each

agent to get more details, troubleshoot, and learn how to most efficiently

deploy management to devices. For example, know where that LANCache

binary is; we can see what peers are visible to a device using lan-cache

along with the peers verb, as you can see here:

/Library/Addigy/lan-cache peers

One great aspect of LANCache is that it’s used to speed up downloads

for many clients. By caching updates on peers, the download is faster, and

organizations reduce the bandwidth required to download assets, making

Chapter 2 agent-Based ManageMent

78

the Internet seem faster during a large deployment push. To set a device as

a proxy for peers, use the -peer-proxy options with that binary along with

the -set-proxy-setting as follows:

/Library/Addigy/lan-cache -peer-proxy -set-peer-proxy-setting

One of the reasons we placed the Addigy agent first is that it’s a

simple, efficient, and transparent architecture. The other is of course that

it alphabetically comes first, and when we list vendors, we try to do so

alphabetically. But the main components of the agent and with others will be

that there’s a process for connecting to the server and orchestrating events,

another process for downloading updates, and a final process for executing

and reporting. More daemons just means more logic behind the scenes and

more options. But more daemons or agents also means more CPU usually.

The use of LANCache is a really great feature, provided there’s

a checksum validation at installation of packages as it improves the

experience but also keeps the bandwidth required to host assets for

customers low. Caching updates on client devices is not a new concept.

FileWave has supported “Boosters” for well over a decade. Notice that the

“agent” for every tool we cover isn’t just a single binary or script that runs

in the background, but is a collection of a few that do various tasks. In the

next section, we’ll look at the FileWave agent in more depth.

 FileWave
FileWave is a management solution for iOS, macOS, and Windows.

FileWave deploys software to client Macs using what’s known as a fileset,

or a set of files. These filesets are referenced using a manifest on a FileWave

server, and the FileWave client, or agent, looks to the server manifest for

a list of any actions it needs to perform. If a fileset needs to be installed,

the FileWave client is provided with a path to access the fileset using

the manifest file and retrieves the files necessary for installation using a

FileWave booster or distributed repository that hosts those files.

Chapter 2 agent-Based ManageMent

79

The FileWave client agent is primarily made up of an app, located at /

usr/local/sbin/FileWave.app; a preference file, located at /usr/local/etc/

fwcld.plist; and a control script, found at /sbin/fwcontrol. These tools log

to /var/log/ using log files that begin with the name fwcld. The scripts are

started up using /Library/LaunchAgents/com.filewave.fwGUI.plist and /

Library/LaunchDaemons/com.filewave.fwcld.plist.

Let’s start with a pretty basic task; let’s get the status of the agent:

sudo /usr/local/sbin/FileWave.app/Contents/MacOS/fwcld -s

The output will be similar to the following:

FileWave Client Status

User ID: 2243

Current Model Number: 134

Filesets in Inventory:

1. Enroll Macs into MDM, ID 25396 (version 2) - Active

2. OSX App - Lingon, ID 846 (version 3) - Installing via Mac

App Store (can take some time)

3. Firefox.app, ID 1133 (version 7) - Active

4. FileWave_macOS_Client_14.7.0_317xyz, ID 24000 (version

1) - Active

5. FileWave_macOS_Client_14.8.0_076xyz, ID 21000 (version

1) - Active

The preceding data shows the user and the filesets the device has,

the versions of those filesets, and the status of each. Another task you can

do with the fwcld would be to set some custom information into a field

and then save that up to a server. Supported fields to do so are custom_

string_01, custom_integer_01, custom_bool_01, and custom_datetime_01,

where there are 20 slots for each and they contain a string (or a standard

Chapter 2 agent-Based ManageMent

80

varchar), number, a Boolean (so 0 or 1), and a date. In the following

example, we’ll take some information telling us if a login hook is installed

and send that into the ninth available string value:

/usr/local/sbin/FileWave.app/Contents/MacOS/fwcld -custom_

write -key custom_string_09 -value `defaults read com.apple.

LoginWindow`

As seen in the earlier example, we’ve sent information about a device

back to a server. We can then build automations at the server that send

further instructions to the client. For example, if there’s no login hook,

install one. The FileWave manual will be a better guide to getting started

using the command line and scripts to help manage FileWave. That can be

found at www.filewave.com.

 The Once Mighty Fleetsmith
Fleetsmith was acquired by Apple, and the team helped build out better

APIs for built-in management options. However, it’s still worth mentioning

in a book like this as it had features still not replicated by other solutions

(but that an enterprising admin could build themselves) and an agent

built on open source software in ways enterprising engineers could build

another agent (and some third-party tools have been built similarly).

As with many of the agent-based management solutions, Fleetsmith

was a solution that could run as an MDM for the Mac alongside an agent,

which Fleetsmith referred to as Fully Managed. Fully Managed devices

could be remotely locked, have kernel extensions whitelisted, and be

remotely erased via MDM. Fleetsmith could also run with just an agent

and no MDM initially. The agent was downloaded in a similar way as the

Addigy agent is downloaded, as seen in Figure 2-8.

Chapter 2 agent-Based ManageMent

http://www.filewave.com

81

Figure 2-8. Download the Fleetsmith installer

Once the package was downloaded, it could be run, and a number

of assets were loaded on client computers. As with many of the “agents,”

Fleetsmith had three LaunchDaemons:

• com.fleetsmith.agent.plist: Invoked the /opt/

fleetsmith/bin/run-fsagent shell script, which logged to

/var/log/fleetsmith and invokes the agent daemon

• com.fleetsmith.query.plist: Started /opt/

fleetsmith/bin/fsquery, a customized osquery daemon

• com.fleetsmith.updater.plist: Started /opt/

fleetsmith/bin/fsupdater, a Go daemon that kept

software up to date

Chapter 2 agent-Based ManageMent

82

The fsagent process was responsible for orchestrating events on behalf

of the Fleetsmith tenant. The directory /opt/fleetsmith/bin contained a

number of tools invoked by the daemon and used to manage devices:

• force-notifier.app: Took over the screen to run

updates when needed.

• fsagent: The LaunchDaemon that ran in the

background.

• fsquery: The Fleetsmith fork of osquery.

• fsupdater: Was responsible for keeping Fleetsmith up

to date.

• osqueryi: osquery, which we’ll cover later in this

chapter, is distributed in order to provide inventory

information for Fleetsmith.

• run-fsagent: Started the agent.

The /opt/fleetsmith/data directory stored the agent.log, downloads

directory, and a store.db sqlite3 database. All of this was used as small

components to accomplish the tasks servers instructed clients to perform.

As an example, to manage Google Chrome in Apps (Figure 2-9), users

could enable the app to be managed and then configure the settings to be

pushed to the app.

Chapter 2 agent-Based ManageMent

83

Figure 2-9. Manage Google Chrome with Fleetsmith

The Fleetsmith agent then installed the Chrome app. The Fleetsmith

app from /Applications showed apps as “All your apps are up to date”

(Figure 2-10) provided they were running the latest version.

Chapter 2 agent-Based ManageMent

84

Figure 2-10. The Fleetsmith app in the menu bar

Addigy is (and Fleetsmith was) built on Go-based agents that included

components from the open source community. Fleetsmith bolted on a

lot of keys and certificates to further secure the communication channel

and added a lot of logic on top of osquery. All of this could be done by any

company and is likely to be replicated, especially given the open source

solutions that can handle the MDM management stack. Perhaps one of

the top names in device management is Jamf. Next, we’ll look at the jamf

“binary” – which is one of the older agents but also one of the most widely

distributed.

 Jamf
Since the early days when it was called The Casper Suite, Jamf Pro has

always had a binary that ran on a computer. That binary currently lives at /

usr/local/jamf/bin/jamf, and it executes most of the non-MDM-based

Chapter 2 agent-Based ManageMent

85

tasks that Jamf Pro sends to the agent. The “agent” is an oversimplification.

There are others, which include

• /usr/local/jamf/bin/jamfagent: The agent for

processing user work and report on user data.

• /Library/Application Support/JAMF/JAMF.app/

Contents/MacOS/JamfDaemon.app: A bundle that

contains the Jamf Pro daemon, for more global

instructions (the Jamf.app is an app bundle that keeps

all this together).

• /Library/Application Support/JAMF/JAMF.app/

Contents/MacOS/JamfAAD.app: For the Azure Active

Directory integration.

• /Library/LaunchDaemons/com.jamfsoftware.

task.1.plist: Manages checking into Jamf Pro.

Additionally, there are some symbolic links for either

backward compatibility or to provide paths to files in

various locations, according to the file.

Additionally, there are a number of daemons and agents that are

not compiled binaries. The daemons are the global processes. /Library/

LaunchDaemons/com.jamfsoftware.startupItem.plist launches a check-

in script, and the daemon /Library/LaunchDaemons/com.jamfsoftware.

jamf.daemon.plist collects application usage, FileVault data, network state

changes, and restricted software as well as performs actions from Self

Service. To manage check-ins to the servers, /Library/LaunchDaemons/

com.jamfsoftware.task.1.plist is run routinely. /Library/LaunchAgents/

com.jamf.management.jamfAAD.clean.agent.plist cleans up artifacts from

Azure AD IDs, and /Library/Preferences/com.jamf.management.jamfAAD.

plist is used to retain preferences of Azure AD information.

Chapter 2 agent-Based ManageMent

86

All of this is logged to /var/log/jamf.log. So the binary is handling non-

MDM communications back to the server but also enables you to script

various tasks quickly.

 Manage User Accounts with Jamf

You can then add a new user, using the createAccount verb. To do so,

run the jamf binary using the createAccount verb. This verb provides for

a number of options, including a short name (-username), a full name

(-realname), a password (-password), a home directory (-home), and a

default shell (-shell). If you want the user to be an admin of the system, you

can also add an -admin option. In the following, we’ll string it all together:

/usr/sbin/jamf createAccount -username charlesedge -realname

"Charles Edge" -password mysupersecretpassword -home /Users/

charlesedge -shell bash -admin

Or if you need to, you can easily delete an account using the

deleteAccount verb. Here, use the -username operator to define a given

user that you’d like to remove. That username is defined as the short name

(or what dscl shows) of a given user. For example, to remove the user we

just created (charlesedge), run the following command:

/usr/sbin/jamf deleteAccount -username charlesedge

You can then provide a pop-up on the screen that you completed that

action using the displayMessage verb along with the -message option to

indicate what was done:

/usr/sbin/jamf displayMessage -message "charlesedge has been

deleted"

Once an action is complete, it’s always a good idea to perform a quick

recon again to make sure everything is registered back to the server:

/usr/sbin/jamf recon

Chapter 2 agent-Based ManageMent

87

 More Automation Through the Jamf Framework

The Jamf Framework is also capable of performing a number of tasks

that the developers have provided, to make it easier to configure devices

on your network. To get started, let’s see all of the options. As with many

binaries, if you have any questions, you can use the help verb to see what

all it can do:

/usr/sbin/jamf help

If you need more information on a given verb, run the help verb

followed by the one you need more information on:

/usr/sbin/jamf help policy

You can also automate standard tasks. The following command will

unmount a mounted server called mainserver:

jamf unmountServer -mountPoint /Volumes/mainserver

Or change a user’s home page in all of their web browsers:

sudo jamf setHomePage -homepage www.krypted.com

The following command can be used to fire up the SSH daemon:

sudo jamf startSSH

The following command can be used to fix the By Host files on the

local machine:

sudo jamf fixByHostFiles -target 127.0.0.1

The following command can be used to run a Fix Permissions on the

local machine:

sudo jamf fixPermissions /

Chapter 2 agent-Based ManageMent

88

The following can be used to flush all of the caches on your

local system:

sudo jamf flushCaches -flushSystem

The following can be used to run a software update on the

local system:

sudo jamf runSoftwareUpdate

The following can be used to bind to an AD environment (rather than

dsconfigad) but would need all the parameters for your environment put

in as flags in order to complete the binding:

sudo jamf bindAD

The jamf binary can also poll for a list of printers using the

listprinters verb:

sudo jamf listprinters

The output looks like this:

MSP Lobby HP MSP_LobbyLobby lpd://192.168.12.201/ HP 6490

C5250 PS

As noted by the number of agents and daemons, there can be a bit of

cruft spread throughout the system, especially for devices that have been

enrolled in Jamf for some time. Therefore, the removeFramework option

can be used to fully clean out the Jamf artifacts from a device (of course the

device cannot check in once run):

/usr/local/bin/jamf removeFramework

In general, most of the agents will provide a few options. The Jamf

binary goes a bit deeper than most, which makes Jamf the more advanced

third-party Mac management tool available. It does still wrap a lot of shell

Chapter 2 agent-Based ManageMent

89

commands that administrators can send through any management tool,

which some admins have chosen to build on their own – either with the

assistance of open source tools or as open source tools altogether. The

top open source tool for Mac management is another common tool called

Munki, which we’ll cover in the next section.

 Munki
Munki is an open source device management framework originally

developed by Greg Neagle and available via GitHub at https://github.

com/munki/munki. Munki was initially designed to be similar to the

Apple Software Update Server but for third-party products. The design is

elegant in that simplicity. The client downloads one or more manifests

and one or more catalogs, and a client computer takes its updates from

the manifest(s) and catalog(s). As the project has gained traction and a

greater level of maturity, a number of enhancements have been made;

but you have to love that core concept that a client picks up a dictionary of

information about the state the client should be in and then takes action

based on that, including installing profiles, updating default domains, and

of course installing software updates.

Munki runs an agent on client computers. As with many “agents”

these days, it’s split up between a number of LaunchDaemons

and LaunchAgents, each built for a specific task. There are four

LaunchDaemons and three LaunchAgents, as well as a number of scripts

that do specific tasks. As with a few of the tools we cover, Munki comes

with an app that can be used to allow users to perform a number of tasks

themselves.

Chapter 2 agent-Based ManageMent

https://github.com/munki/munki
https://github.com/munki/munki

90

 Munki LaunchDaemons

As is a good practice, each task that the Munki client requires is a separate

program, with the four tasks that require root privileges being run as

LaunchDaemons and three LaunchAgents for the things visible in the

Managed Software Center GUI. In this section, we’ll look at what each of

the LaunchDaemons does:

• /Library/LaunchDaemons/com.googlecode.munki.

managedsoftwareupdate-check.plist causes

managedsoftwareupdate to run approximately once an

hour in the background to check for and possibly install

new updates. This controls background task scheduling

with the supervisor (/usr/local/munki/supervisor)

to make sure it wasn’t removed and adds a delay to

triggered managed softwareupdate events (/usr/local/

munki/managedsoftwareupdate). This allows the local

agent to process catalog changes and run unattended

installations of software.

• /Library/LaunchDaemons/com.googlecode.munki.

managedsoftwareupdate-install.plist: Runs

cached updates when user notification is required.

The managedsoftwareupdate-install launchdaemon

runs cached updates for Managed Software Center.

This involves a sanity check that /private/tmp/.

com.googlecode.munki.managedinstall.launchd is

present. If so, managedsoftwareupdate runs using

the –installwithnologout option when invoked.

Chapter 2 agent-Based ManageMent

91

• /Library/LaunchDaemons/com.googlecode.munki.

managedsoftwareupdate-manualcheck.plist: Gives

Managed Software Center the ability to scan servers

for updates to the Munki manifest file. Requires the /

private/tmp/.com.googlecode.munki.updatecheck.

launchd trigger file is present.

• /Library/LaunchDaemons/com.googlecode.munki.

logouthelper.plist: Notify users when the force_

install_after_date approaches. This is done by invoking

Managed Software Center which can terminate a

user session, which uses the /usr/local/munki/

logouthelperutility script.

Munki also comes with a number of LaunchAgents, which include the

following:

• /Library/LaunchAgents/com.googlecode.munki.

ManagedSoftwareCenter.plist: Used to open

Managed Software Center in the user context when

user notification is required.

• /Library/LaunchAgents/com.googlecode.munki.

MunkiStatus.plist: Calls MunkiStatus in the

Contents/Resources directory of the Managed Software

Center app bundle and is used for notifications on top

of the login window.

• /Library/LaunchAgents/com.googlecode.munki.

managedsoftwareupdate-loginwindow.plist:

Processes user tasks at the login window. Can be

triggered by /Users/Shared/.com.googlecode.

munki.checkandinstallatstartup, /private/tmp/com.

googlecode.munki.installatlogout, or /Users/Shared/.

com.googlecode.munki.installatstartup.

Chapter 2 agent-Based ManageMent

92

The architecture of what processes are used to run what services

are pretty telling, not only about how the product works but also how to

troubleshoot that product. The fact that each task that will be performed

has been pulled off into a separate daemon or agent speaks to preserving

the security of managing endpoints using the least amount of privileges

available and avoids requiring a kext always be loaded in order to

orchestrate all of these tasks. Most, though, are in support of processing

the manifest, catalog, and pkginfo plist files, which we’ll cover in the next

section.

 Customizing a Munki Manifest

The manifest is where the Munki agents take their instruction sets from.

Now that we’ve looked at the components of Munki, let’s look at that

format, the manifest, catalog, and pkginfo plist files, and the keys in those

files that go to each client. Keep in mind that Munki was initially built to

replicate what Apple did for Software Update Services where there is a

manifest file distributing packages to install on clients. Therefore, Munki

has catalogs of all software to be installed.

Over time, the scope of the project grew to include groupings of

different client computers that received different manifest files and an app

that allowed end users to install their own software, which we’ll cover in

more detail in Chapter 11.

Manifests are standard property lists. We’ll cover manipulating

property lists further in Chapter 3, but for now, think of them as simple

XML files that have a collection of keypairs. Those are a simple list of

the items to install or verify their installation or to remove or verify their

removal. The manifest contains a list of one or more catalogs, defined

using a catalogs array, along with an array of packages to install or just

update if they are found on disk, which are a number of arrays for how

you want the Munki agent to handle items listed. These include the

following arrays:

Chapter 2 agent-Based ManageMent

93

• managed_installs: Munki will install these items and

keep them up to date.

• managed_uninstalls: Munki will remove these items.

• managed_updates: Munki will update these items, if

present, whether or not they were installed by Munki.

• optional_installs: Munki will allow users to install

these items optionally and keep them up to date once

installed (e.g., using Managed Software Center).

• featured_items: Items listed at the top of Managed

Software Center.

Munki Managed Installs

The managed_installs key is the first and so arguably one of the most

important things Munki does. As mentioned, managed installs are

software that is required to be deployed to a device. Once deployed, the

software must be kept up to date in alignment with the catalog. You can

see this in practice using the following manifest, which instructs the client

computer to install Quickbooks, Slack, and Office from the Accounting

catalog:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

 <key>catalogs</key>

 <array>

 <string>production</string>

 </array>

Chapter 2 agent-Based ManageMent

94

 <key>managed_installs</key>

 <array>

 <string>Quickbooks-2019</string>

 <string>Slack-3.3.8</string>

 <string>Office-16.23</string>

 </array>

</dict>

</plist>

Many environments use a production catalog and a testing catalog,

where the testing catalog is populated by an automated packaging tool

such as AutoPKG. Once software has been tested and validated as safe for

distribution, it’s then added to the production catalog. Testing machines

can then use the testing catalog to install software, instead of the safer

production catalog. You can have multiple catalogs listed by adding items

to the catalogs array. The following example shows adding a testing catalog

above the production catalog. Doing so causes the Munki agent to search

the testing catalog for the packages defined in the managed_installs array

before trying to install those software titles or scripts from the production

catalog, making for a seamless transition when the software you are testing

is promoted to production.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

 <dict>

 <key>catalogs</key>

 <array>

 <string>testing</string>

 <string>production</string>

 </array>

Chapter 2 agent-Based ManageMent

95

 <key>managed_installs</key>

 <array>

 <string>Firefox-104.0.2</string>

 <string>Chrome-105.0.5195.102</string>

 </array>

 </dict>

</plist>

It’s usually a good practice to deploy software without version numbers

or, if there are version numbers, to only use major release numbers. In the

preceding example, we’ve actually piped the point release version number

for testing. This allows you to keep track of software during testing that’s

destined for your production catalog. This catalog isn’t always exclusive for

software you installed.

 Updating Software That Munki Didn’t Install

There are a number of reasons to patch software that Munki didn’t install.

Chief among them are security patches. But also, the general performance

of a system can be greatly improved by treating a piece of software

Munki didn’t install as you would treat other managed software. This is

referred to as a managed update in Munki and defined using a managed_

updates option.

The managed_updates array is handled similarly to managed_installs

but looks for a software title on the host and runs an updater only if that

title is found. For example, if you don’t deploy Firefox, Chrome, or the

Microsoft Edge browser, you might still want to keep those patched if

you find your users install them. Running an inventory through a tool

like osquery (described later in this chapter) will supply you with a list of

software on the computers in your deployment and can then be used to

find any software you would like to either move into your managed catalog

or at least keep updated.

Chapter 2 agent-Based ManageMent

96

The following example is similar to the previous example but using

managed_updates for these pieces of software installed by users outside of

the Munki deployment:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

 <dict>

 <key>catalogs</key>

 <array>

 <string>production</string>

 </array>

 <key>included_manifests</key>

 <array>

 <string>accounting </string>

 <string>allusers</string>

 </array>

 <key>managed_updates</key>

 <array>

 <string>Chrome</string>

 <string>Firefox</string>

 </array>

 </dict>

</plist>

The exception to updating a package would be if it’s been slated to be

removed on a computer. If a piece of software is scheduled for removal, it

will not be updated. As deployments grow, you need more complicated

logic on client systems in order to handle the added burden that additional

groups and iterations put on an environment. This has led to nesting

manifests.

Chapter 2 agent-Based ManageMent

97

 Nested Manifests

You can nest manifests. Much as you can do an include in an Apache

configuration, you can logically group manifests of files. If you have a

user in the accounting group, then you can create a manifest just for

accounting, along with a manifest that all of the users receive. In the

following example, we’ll remove the testing catalog and add an array of

manifests to include, adding the accounting and allusers manifests and

install Chrome as well, which wouldn’t be included for other devices:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

 <dict>

 <key>catalogs</key>

 <array>

 <string>production</string>

 </array>

 <key>included_manifests</key>

 <array>

 <string>accounting </string>

 <string>allusers</string>

 </array>

 <key>managed_installs</key>

 <array>

 <string>Chrome</string>

 </array>

 </dict>

</plist>

Chapter 2 agent-Based ManageMent

98

The preceding manifest includes two other manifests. Consider this

akin to having nested groups. Those manifests specifically meant to be

included in other manifests should not typically include a catalog, given

that the catalog is defined in the parent manifest. In the following example,

see an example of a manifest built to be included:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

 <key>managed_installs</key>

 <array>

 <string>Quickbooks-2022</string>

 <string>Slack</string>

 <string>Office-16.64</string>

 </array>

</dict>

</plist>

The preceding manifest is similar to the earlier example, defining

Quickbooks, Slack, and Office but without listing the catalogs. This simple

approach allows administrators to push out small changes, managing

universal software and then either aligning a computer with a job function

or, as the deployment grows, allowing for more complicated hierarchies.

This is similar to Apple allowing for nested Software Update Servers, where

you can limit software to be deployed on child servers. While the Apple

technique is no longer supported, Munki has filled much of the gap for

third parties and continues this tradition.

Chapter 2 agent-Based ManageMent

99

 Removing Software with Munki

Managed installs get software and packages on devices and keep software

updated. Managed uninstalls remove software. This is defined in the same

property lists but with a managed_uninstalls array followed by a list of

titles in the form of strings. Obviously, software must be installed in order

to be uninstalled. Provided that a software title is installed that should

be removed, the following example builds on the previous, keeping any

software defined in the accounting and allusers manifest installed, keeping

Chrome installed but also defining that the Symantec software will be

removed any time it’s encountered:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

 <dict>

 <key>catalogs</key>

 <array>

 <string>production</string>

 </array>

 <key>included_manifests</key>

 <array>

 <string>accounting </string>

 <string>allusers</string>

 </array>

 <key>managed_installs</key>

 <array>

 <string>Chrome</string>

 </array>

<key>managed_uninstalls</key>

 <array>

 <string>Symantec</string>

Chapter 2 agent-Based ManageMent

100

 </array>

 </dict>

</plist>

The preceding example is mostly used to retire software, plan for major

updates, and pull back any software accidentally released.

 Optional Software Installation

Optional software are software titles that users can optionally install

through Managed Software Center. If a user installs an optional software

title, a package is installed as an administrator. Optional software is

defined in manifests using an optional_installs array and then a number of

packages, by name.

The following example builds off of our accounting include from

earlier, listing VPN, Okta, Druva, and Zoom as optional installations:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

 <key>managed_installs</key>

 <array>

 <string>Quickbooks-2019</string>

 <string>Slack</string>

 <string>Office-16</string>

 </array>

 <key>optional_installs</key>

 <array>

 <string>VPN</string>

 <string>Okta</string>

 <string>Druva</string>

Chapter 2 agent-Based ManageMent

101

 <string>Zoom</string>

 </array>

</dict>

</plist>

Any software installed using an optional install is stored in a locally

stored manifest file that is also reviewed by Munki, located at /Library/

Managed Installs/manifests/SelfServeManifest. As you might guess, if a

title is listed in optional installs and managed installs, the package will be a

required install. Managed Software Center then has the logic not to list that

package as an optional install. The beauty of these types of installs is that

users don’t need administrative privileges. We’ll get into packaging further

in Chapter 6, but because anything can be put in a package, you can also

deploy automations using Managed Software Center this way. Therefore,

basic support tasks that might otherwise require administrative privileges

such as clearing print queues, installing certain printers, and clearing

caches can then be deployed without a user being made an administrator

or without a remote control session to the computer.

If an item is installed through an optional install, then it is treated as

a managed install. Because the software is optional, it can be removed

through Managed Software Center. If the optional install is then

removed, it is treated as a managed uninstall. A type of optional item is a

featured item.

 Featured Items

The featured_items array indicates software that is listed at the top of

Managed Software Center in the Featured section. Featured items are a

subset of optional installs so should be listed in both places. Manifests may

also have a featured_items key:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

Chapter 2 agent-Based ManageMent

102

<plist version="1.0">

<dict>

 <key>managed_installs</key>

 <array>

 <string>Quickbooks-2022</string>

 <string>Slack</string>

 <string>Office</string>

 </array>

 <key>optional_installs</key>

 <array>

 <string>VPN</string>

 <string>Okta</string>

 <string>Druva</string>

 <string>Zoom</string>

 </array>

<key>featured_items</key>

 <array>

 <string>Okta</string>

 <string>Druva</string>

 <string>Zoom</string>

 </array>

</dict>

</plist>

One of our favorite aspects of Munki admins is that most know more

than anyone else has ever known about anything; therefore, there will be

a lot of disagreement on this explanation of manifest files. That is fine.

Now that we’ve created manifests, let’s move on to getting the first catalog

created and getting some software imported into it for distribution.

Chapter 2 agent-Based ManageMent

103

 Building a Repository and a Catalog of Software

Munki is a tool designed for installing software. The catalog is a list of

software titles available for installation. The catalog is stored locally at /

Library/Managed Installs/catalogs but can be downloaded from the

server when it’s changed and used to provide catalogs using a web service

and items are imported into the catalog using munkiimport, by default

installed at /usr/local/munki/munkiimport. The munkiimport script is

a python script that acts as an assistant for importing disk images (.dmg

files), packages (.pkg files), manual configuration profiles (which have

been partially deprecated since macOS 10.15), and application bundles

(.app files) into your repo.

A repository’s location is configured, along with other global

configuration options for munkiimport, using a –configure option for

munkiimport. Simply run that option and follow the interactive shell:

/usr/local/munki/munkiimport --configure

When prompted, provide a URL for your repo, which we’re using as /

usr/local/var/www/munki_repo in this demonstration. The repo is set

such that when the user runs munkiimport, imports will go to that location

by default. The preferences set by the --configure option are stored in ~/

Library/Preferences/com.googlecode.munki.munkiimport.plist. The

repo should be provided as file://usr/local/var/www/munki_repo for

our example location, although you could use an afp:// or smb:// mount

instead or use one of the file-handler options to store your repo in an AWS

or GCS file store.

Next, we’re going to create a PkgInfo property list based on a standard

installer package that lists the catalogs an installer is a member of and

other metadata about the installer. In this example, we’ll create the Zoom

installer we used in the manifest earlier in this chapter: the PkgInfo plist.

PkgInfo files are stored in the pkgsinfo directory inside the munki_repo.

Chapter 2 agent-Based ManageMent

104

The PkgInfo file is generated when using munkiimport to import an

installer. To import software, we’ll use munkiimport along with options

that allow the script to run without providing the information in these

options interactively. This involves answering some basic questions

about the software, including the name, name that should be displayed

when installing, the category of software, the version of the package being

imported, the organization that made the software, whether the software

can be installed/uninstalled in an unattended fashion, and a -c option

which defines what catalogs the software should be placed into:

munkiimport ~/Desktop/zoom.pkg --name=Zoom --displayname=Zoom

 --description="Our conferencing software" --category=Productivity

 --developer=Zoom --pkgvers=4.6.4 -c allusers --unattended_install

 --unattended_uninstall

Because we didn’t specify an -n option, we will still have some

interactive steps to provide information about our installer. We’ll show

these steps so you can better understand what’s happening behind

the scenes:

Import this item? [y/n] y

Upload item to subdirectory path []: apps/zoom

Path pkgsinfo/apps/Zoom doesnt exist. Create it? [y/n] y

No existing product icon found.

Attempt to create a product icon? [y/n] y

Attempting to extract and upload icon...

Imported icons/Zoom.png.

Copying zoom.pkg to repo...

Copied zoom.pkg to pkgs/apps/zoom/zoom.

Edit pkginfo before upload? [y/n]: n

Saved pkginfo to pkgsinfo/apps/Zoom/Zoom-4.4.53590..plist.

Rebuild catalogs? [y/n] y

Rebuilding catalogs at file://usr/local/var/www/munki_repo

Created icons/_icon_hashes.plist...

Chapter 2 agent-Based ManageMent

105

All of the preceding options can be added as additional parameters to

your installer. This shows the amount of work being done each time you

run a munkiimport, even creating an icon. The one important option is to

rebuild catalogs. Answering yes to that option will result in a new catalog

files being built based on pkginfo files.

The software itself is also then imported into the repo, and if

successful, the pkginfo file will open in the editor you defined in the

 --configure step for your user. Now that we have a repo, a catalog, and

manifests, let’s distribute the manifest to client devices that need to install

software.

 Distributing the Manifest File

We’ve described manifests and catalogs, but how is a device provided

with a manifest? Upon installation, the Munki agent will look to a

SoftwareRepoURL key for the main repository of manifests. If Munki’s

SoftwareRepoURL preference is not defined, the Munki client will attempt

to detect a Munki repo based on some common defaults. That web host

should have a valid TLS certificate and host the URL via https in order

to protect against any man-in-the-middle attacks. Munki is architected

such that the administrator points the Munki client to the server and

that the host running Munki implicitly trusts that server. Therefore, it’s

not recommended to deploy Munki without https in order to ensure the

authenticity of catalogs being deployed. Failure to do so could cause

résumé-generating events.

If no SoftwareRepoURL is defined, Munki will go through a search

order looking for a repository of manifests. This follows the following

search order, where $domain is a search domain for a client:

• https://munki.$domain/repo

• https://munki.$domain/munki_repo

• http://munki.$domain/repo

Chapter 2 agent-Based ManageMent

106

• http://munki.$domain/munki_repo

• http://munki/repo

Once Munki finds a repo, there is usually a manifest for all devices at

that URL. This is the site_default manifest, and if a manifest is not found,

that uses a better option. The URL for that site_default for a domain

name of pretendco.com might then be https://munki.pretendco.com/

repo/manifests/site_default. Those better options in order of priority

would be a unique identifier for Munki known as the ClientIdentifier,

a fully qualified hostname (e.g., the output of scutil --get HostName), a

local hostname (e.g., the output of scutil --get LocalHostName), or the

serial number. The file for a computer’s hostname using that pretendco.

com domain name from earlier but with a hostname of client1234 might

then be https://munki.pretendco.com/repo/manifests/client1234.

pretendco.com.

The manifest can be created manually or using a device management

tool. For example, some organizations use puppet, chef, VMware

AirWatch, or Jamf Pro to distribute the Munki manifest files and settings

that point to manifest files. While it might seem like these other tools can

manage the software on devices natively, it’s worth noting that these other

tools are more about state and policy management, where Munki is about

managed software. The power of Munki is the fact that it has such a narrow

set of duties. For smaller environments, managing software and leveraging

some payload-free packages is often all they need. For larger environments

with a state management tool, Munki perfectly complements their

other tools, and engineers tasked with the management of large fleets of

devices are accustomed to scripting middleware for their organization’s

specific needs.

Many software packages are updated every couple of weeks. According

to how many software titles a given organization is managing, it can be a

challenge to maintain an extensive software catalog. Therefore, AutoPkg

Chapter 2 agent-Based ManageMent

https://munki.pretendco.com/repo/manifests/site_default
https://munki.pretendco.com/repo/manifests/site_default
https://munki.pretendco.com/repo/manifests/client1234.pretendco.com
https://munki.pretendco.com/repo/manifests/client1234.pretendco.com

107

is often used alongside Munki to automatically build packages and put

them in your testing catalog. We cover AutoPkg more in Chapter 7, when

we review preparing apps for distribution. Now that we’ve covered Munki,

and how Munki keeps devices up to date, let’s move to a tool often used to

complement Munki but built more for tracking the state of a device than

systems orchestration: osquery.

 osquery
Facebook open sourced osquery, a tool they initially used to monitor

servers, at https://osquery.readthedocs.io/en/stable/. Since then,

a number of developers (including those responsible for each platform

internally at Facebook) have built additional capabilities for managing

a specific platform. This makes osquery capable of being used as part of

the management stack of a variety of platforms, without having to learn

the internals for each of those platforms. The point of osquery is to obtain

information about a system.

The osquery framework is multiplatform and tracks all the information

about a system in a simple SQL database, so that devices can run lookups

efficiently on behalf of a process that calls a lookup. This makes otherwise

costly (in terms of processing power) processes run quickly, meaning an

organization can obtain more data about devices in a central location

at a higher frequency, without impacting the performance of the device

being monitored. This would include common settings used on a Mac, the

daemons running, how a device is configured, and the version of software.

But you can get lower level and analyze processes running, view network

sockets, compare file hashes, and find any other fact required about a

device at a given time.

Chapter 2 agent-Based ManageMent

https://osquery.readthedocs.io/en/stable/

108

When osquery is installed, the following files are deployed to

the device:

• /private/var/osquery/io.osquery.agent.plist: The

configuration preferences for the osquery daemon.

• /private/var/osquery/osquery.example.conf: The

customized settings for each organization running

osquery.

• /private/var/log/osquery/: Log files are stored in

this directory and written as to the specified parameters

in the configuration file.

• /private/var/osquery/lenses: A record of a rest call

stored in Augeas' tree (thus the .aug files).

• /private/var/osquery/packs: A set of queries

configured with standard .conf files.

• /opt/osquery/lib/osquery.app (moved from /usr/

local/lib/osquery/ in version 3): The directory for the

command tools for osquery.

• /usr/local/bin/osqueryctl: Symlink to a

control utility to wrap basic tasks, like starting the

LaunchDaemon.

• /usr/local/bin/osqueryd: The main osquery

daemon, which starts the process.

• /usr/local/bin/osqueryi: Provides a SQL interface to

test queries. By default, comes with a number of built-

in tables populated with more information than most

can consume (more data is always a good thing).

Now that we’ve looked at the osquery components, let’s get it installed

and check SQL to see what data we now have at our fingertips.

Chapter 2 agent-Based ManageMent

109

 Install osquery

The osquery software package for Mac is available at osquery.io/

downloads. The default package creates the files mentioned in the

previous section. Then you’ll want to create a configuration file from the

example:

sudo cp /var/osquery/osquery.example.conf /var/osquery/

osquery.conf

When you edit this file, it’s a standard json file. Look for lines that

begin with a // as those that are commented out. For this example, we’re

going to uncomment the following lines by simply deleting the // that the

lines begin with and then change the /usr/share/ to /var given that packs

have moved (note the exact path to each file may be different based on the

version of osquery run and how it was compiled):

//

"osquery-monitoring": "/usr/share/osquery/packs/osquery-

monitoring.conf",

//

"incident-response": "/usr/share/osquery/packs/incident-

response.conf",

// "it-compliance": "/usr/share/osquery/packs/it-

compliance.conf",

// "osx-attacks": "/usr/share/osquery/packs/osx-attacks.conf",

So those four lines should then read

"osquery-monitoring": "/var/osquery/packs/osquery-

monitoring.conf",

"incident-response": "/var/osquery/packs/incident-

response.conf",

"it-compliance": "/var/osquery/packs/it-compliance.conf",

"osx-attacks": "/var/osquery/packs/osx-attacks.conf",

Chapter 2 agent-Based ManageMent

110

We’ll also uncomment this line in the same way, by removing the //:

//"database_path": "/var/osquery/osquery.db",

The osqueryd daemon provides you with queries run on a schedule.

The daemon then aggregates the results of those queries and outputs

logs. The following is an example query from the configuration file. Here,

we’re looking for hostname, cpu, and memory from the system_info table.

We also include the schedule for how frequently osqueryd updates the

database per query using an interval option in seconds.

"system_info": {

// The exact query to run.

"query": "SELECT hostname, cpu_brand, physical_memory FROM

system_info;",

//

The interval in seconds to run this query, not an exact

interval.

 "interval": 3600

 }

We’re not going to make any changes to any of the example queries

just yet. Now that we’ve customized the configuration file, we’ll copy the

LaunchDaemon to /Library/LaunchDaemons and start it:

sudo cp /var/osquery/com.facebook.osqueryd.plist /Library/

LaunchDaemons/

Once you’ve copied the file, we’ll start the LaunchDaemon:

sudo launchctl load /Library/LaunchDaemons/com.facebook.

osqueryd.plist

The footprint for osquery is slight. As an example of this, to remove

osquery simply stop the processes and remove /Library/LaunchDaemons/

com.facebook.osqueryd.plist. Then remove all files from /private/var/log/

Chapter 2 agent-Based ManageMent

111

osquery, /private/var/osquery, and /usr/local/bin/osquery and then use

pkgutil to forget the osquery package was used using pkgutil:

pkgutil --forget com.facebook.osquery

To deploy osquery en masse, edit your own templates, script any

additional installation steps as a postflight script, and repackage them for

distribution. This can be more work for some environments than a third-

party package that is purchased or could be less for some environments

based on the scale and complexity requirements. Now that we have

osquery running on a system, let’s look at running queries with osquery.

 Running osquery

The best way to understand the real value of osquery is to use osqueryi as

a stand-alone tool to query facts about a device. Architecturally, anything

you report on locally is then available on the server as well or easily

piped to a Security Information and Event Management (SIEM). In fact, if

you’re threat hunting, doing research to write this book, or just obsessive

compulsive about tracking your own personal device performance, you

can run osquery locally.

First, we’ll start the osquery daemon, which now that everything is

installed should be started, but just in case, we’ll use the following:

/usr/local/bin/osqueryctl start

Events and facts about devices are stored in a SQL database at /var/

osquery/osquery.db (by default), and the schema for the tables in that

database is documented at https://osquery.io/schema/3.3.2. The

osqueryi binary can then be used to perform SQL queries. This is an

interactive SQL shell and can be invoked by simply calling the file:

/usr/local/bin/osqueryi

Chapter 2 agent-Based ManageMent

https://osquery.io/schema/3.3.2

112

Once in the interactive shell, just run a .SCHEMA command to see the

lay of the land:

osquery>.SCHEMA

There are way too many attributes that are tracked than we have

pages to go through them in this book. See https://link.springer.com/

book/10.1007/978-1-4842-1955-3 for a great book on SQL queries.

For osquery specifically, use the link to the official schema to easily

find information about what’s being tracked. It’s a much prettier map.

Next, we’ll provide a few samples just to show the power of osquery. The

first is from sample documentation, but it’s one of the most common. This

query shows the USB devices that are plugged into a computer:

osquery>SELECT vendor, model FROM usb_devices;

The output would be as follows:

+------------+----------------------------------+

| vendor | model |

+------------+----------------------------------+

| Apple Inc. | AppleUSBXHCI Root Hub Simulation |

| Apple Inc. | AppleUSBXHCI Root Hub Simulation |

| Apple Inc. | AppleUSBXHCI Root Hub Simulation |

| Apple Inc. | iBridge |

+------------+----------------------------------+

The preceding example is a standard SQL result set. It shows all USB

devices on the bus. You can also use the WHERE clause to extract only

those records that fulfill a specified criterion. The WHERE syntax uses a

SELECT followed by the column and then a FROM for the table but now

adds a WHERE at the end so you can specify table_name WHERE a column

name is – and this is where it becomes powerful because it’s where it is

either something in the data set or a comparative between columns. To

show what this expands to fully:

Chapter 2 agent-Based ManageMent

https://link.springer.com/book/10.1007/978-1-4842-1955-3
https://link.springer.com/book/10.1007/978-1-4842-1955-3

113

osquery> SELECT vendor, model FROM usb_devices WHERE vendor

!='Apple Inc.';

As you can see, we used single quotes around text. We could have

also used double quotes. You do not need to quote numbers, but do

need to quote strings. The following operators are available when using a

WHERE clause:

• = Equal

• <> or != Not equal to

• > Greater than

• IN Indicates multiple potential values for a column

• < Less than

• >= Greater than or equal

• <= Less than or equal

• BETWEEN Between an inclusive range

• LIKE Looks for a provided pattern

What would this look like in your configuration file?

{

 "usb_devices": {

 "query": "SELECT vendor, model FROM usb_devices;",

 "interval": 60

 }

}

In the preceding query, notice that we are running a standard SELECT

statement. Most tasks executed against a SQL database are done with SQL

statements. Think of statements as a query, an insert, a change, or a delete

operation. For example, to see all data in the tables, select all of the records

from a database using the SELECT statement.

Chapter 2 agent-Based ManageMent

114

Notice that this is just the name of a query (any old name will work)

followed by a query, which is a standard SQL query, followed by an

 interval. This would run once a minute. Another option would be to list the

amount of free space on Time Machine destinations once an hour:

{

 "time_machine": {

 "query":

 "SELECT bytes_available from time_machine_destinations;;",

 "interval": 60

 }

}

The ORDER BY keyword in a SQL SELECT statement is used to sort a

given result set based on the contents of one or more columns of data. By

default, results are in ascending order, but you can use either ASC or DESC

to indicate that you’d like results sorted in ascending or descending order,

respectively.

SELECT * FROM shared_folders ORDER BY name DESC

Now that we’ve looked at queries, let’s move to how the logging and

reporting functions work so we understand how drift is tracked.

 Logging and Reporting

The SQL result set we looked at earlier ends up getting tracked in the

osquery database as a field in json. Each time the query runs, a new row

is created in the table. The rows are empty until a change occurs the next

time the query is told to run. The contents of the first run would appear as

follows:

[

{"model":

"XHCI Root Hub SS Simulation","vendor":"Apple Inc."},

Chapter 2 agent-Based ManageMent

115

{"model":

"XHCI Root Hub USB 2.0 Simulation","vendor":"Apple Inc."},

{"model":

"XHCI Root Hub SS Simulation","vendor":"Apple Inc."},

{"model":

"Bluetooth USB Host Controller","vendor":"Apple Inc."}

]

Until a new device is added, no results are logged. But once I insert a

USB drive, I would then see an entry that looks like the following:

[

 {"model":"WD Easystore USB 3.0","vendor":"Western Digital"}

]

There’s plenty of extensibility. Each deployment then has the option

to add decorations, lenses, or additional packs. Now that we understand

some basics about running these queries and automating them, let’s just

do a quick check on shared folders:

osqueryi --json "SELECT * FROM shared_folders"

The output is then as follows:

[

 {"name":"CE’s Public Folder","path":"/Users/ce/Public"},

 {"name":"molly’s Public Folder","path":"/Users/molly/Public"}

]

This information can quickly and easily be picked up as inventory from

other tools with agents, such as munki, Jamf Pro, Addigy, or Fleetsmith.

As noted previously, Fleetsmith came with the ability to direct osquery

information from managed clients into a server. Now that we’ve covered

osquery, let’s look at another open source agent called Chef.

Chapter 2 agent-Based ManageMent

116

 Chef
The purpose of osquery is to obtain information about devices.

But an orchestration tool is required as well for large-scale systems

administration. Chef is a tool originally built by Jesse Robbins to do server

builds and is now maintained at https://chef.io. Chef uses a recipe to

perform a configuration task. These recipes are organized into cookbooks.

Managing clients is harder than managing servers. Your server
isn't likely to get up and walk away, doesn’t have a rouge root
user, and will never connect to Starbucks wi-fi.

—Mike Dodge, Client Platform Engineer, Facebook

The most complete list of cookbooks available for the Mac can be

obtained through the Facebook Client Platform Engineering team’s GitHub

account at https://github.com/facebook/IT-CPE. Reading through these

should provide a good understanding of the types of things that Facebook

and other IT teams do to automate systems and get up to speed on how to

orchestrate various events on the Mac.

 Install Chef

We don’t go into detail in this book on how to set up a Chef instance and

get client systems to connect to it. That’s an entire book of its own. But we

do review the Chef client in this section. To install the client, download

the installer from https://downloads.chef.io/chef-client/. When you

install the package, chef-apply, chef-client, chef-shell, and chef-solo will

be installed in /usr/local/bin.

To clone the repo mentioned earlier from Meta/Facebook (as of the

time of this writing, that repo was last updated less than three weeks ago,

so it’s an active community-run asset), use the following command (which

would copy it to /Users/Shared/ChefAssets):

Chapter 2 agent-Based ManageMent

https://chef.io
https://github.com/facebook/IT-CPE
https://downloads.chef.io/chef-client/

117

git clone https://github.com/facebook/IT-CPE /Users/Shared/

ChefAssets

Once installed, there will be a company_init.rb script at /Users/

Shared/ChefAssets/chef/cookbooks/cpe_init/recipes. There’s also a /

Users/Shared/ChefAssets/chef/tools/chef_bootstrap.py bootstrap

script. Next, customize the chef server URL and the organization name

(which should match that of the chef server), and provide any certificates

necessary. The main settings are in the header of the script:

CLIENT_RB = """

log_level :info

log_location STDOUT

validation_client_name 'YOUR_ORG_NAME-validator'

validation_key

File.expand_path('/etc/chef/validation.pem')

chef_server_url "YOUR_CHEF_SERVER_URL_GOES_HERE"

json_attribs '/etc/chef/run-list.json'

ssl_ca_file '/etc/chef/YOUR_CERT.crt'

ssl_verify_mode :verify_peer

local_key_generation true

rest_timeout 30

http_retry_count 3

no_lazy_load false

Additionally, look for any place that indicates MYCOMPANY and

replace that with the name of the organization to personalize the

installation. Also, make sure that if using chef to bootstrap a Munki

installation, the correct URL is defined in SoftwareRepoURL:

Be sure to replace all instances of MYCOMPANY with your

actual company name

node.default['organization'] = 'MYCOMPANY'

Chapter 2 agent-Based ManageMent

118

prefix = "com.#{node['organization']}.chef"

node.default['cpe_launchd']['prefix'] = prefix

node.default['cpe_profiles']['prefix'] = prefix

Install munki

node.default['cpe_munki']['install'] = false

Configure munki

node.default['cpe_munki']['configure'] = false

Override default munki settings

node.default['cpe_munki']['preferences']['SoftwareRepoURL'] =

 'https://munki.MYCOMPANY.com/repo'

The logs are written to /Library/Chef/Logs/first_chef_run.log when the

script runs. The supporting files for chef will also be at /etc/chef, including

certificates that secure communications, a client.rb file that contains the

information you supplied the bootstrap.py. Provided it completes, you’ll

then have a working quickstart.json file at /Users/Shared/ChefAssets/chef

and a working run-list.json file that includes any recipes you want to run.

You’ll also have a /var/chef/cache for caches.

The quickstart script can then be as simple as the following:

{

 "minimal_ohai" : true,

 "run_list": [

 "recipe[cpe_init]"

]

}

Cookbooks should be ordered in the run-list from least specific to

most specific. That company_init.rb recipe defined the defaults for an

organization with all of the CPE cookbooks provided. The cpe_init entry in

the quickstart.json loads those recipes called in that init, which by default

includes a platform run-list, a user run-list, and a node customization run-

list. To know what anything is doing when it’s being called, simply look at

Chapter 2 agent-Based ManageMent

119

the depends lines and then read the resource ruby script for each, such as

/Users/Shared/ChefAssets/chef/cookbooks/cpe_hosts/resources/cpe_

hosts.rb. Once everything is in place, it’s time to grill out with chef. Let’s

simply run the chef-client along with the -j to specify your json file:

sudo chef-client -z -j /Users/Shared/ChefAssets/chef/

quickstart.json

 Edit a Recipe
Chef then verifies each resource in each included cookbook has been

configured as defined and resolves any drift found in the current system.

One of the most important things about a tool like chef is how configurable

it is. Simply cat the /Users/Shared/ChefAssets/chef/cookbooks/cpe_

munki/resources/cpe_munki_local.rb file to see how munki is installed

and note that. Now that chef is running, let’s edit a recipe. To do so, edit

that /Users/Shared/IT-CPE/chef/cookbooks/cpe_init/recipes/company_

init.rb recipe in your favorite text editor to add the following lines to the

bottom of the file:

node.default['cpe_autopkg']['repos'] = [

 'recipes',

 'https://github.com/facebook/Recipes-for-AutoPkg.git'

]

This adds the recipes from the Meta team to an autopkg instance

running on the host. Other parts of the recipe will allow you to install

autopkg and customize it, so you don’t have to do all the steps we’ll follow

in a manual installation later in this book. Programmatic deployment of

tools and configuration provides for a consistent experience. Once you’ve

configured the change to the client init, rerun the chef-client:

sudo chef-client -z -j /Users/Shared/ChefAssets/chef/

quickstart.json

Chapter 2 agent-Based ManageMent

120

These also write profiles, which you can then see in System

Preferences. Meta was one of the first to publish cookbooks for Chef and

an early proponent of Chef for large-scale Mac orchestration. A few others

have also open sourced their cookbooks, which gives a number of options

to choose from. And cookbooks can be obtained from multiple vendors. A

few include the following:

• http://chef-osx.github.io/

• https://github.com/microsoft/macos-cookbook

• https://github.com/pinterest/it-cpe-cookbooks

• https://supermarket.chef.io/cookbooks/macos

• https://github.com/uber/cpe-chef-cookbooks

The social community of Chef administrators and how they share

cookbooks makes for a good reason to look into these types of workflows.

Chef is open source and there are a lot of different methodologies around

its use and deployment. The examples in this chapter have mostly been

developed around a model that Apple began back in Software Update

Server when they provided us with a manifest URL. Mac admins have

been using a similar manifest, init script, etc., to deploy settings, apps,

and operating systems ever since. Some organizations have developed

integrations with Chef that go beyond this and leverage a chef server.

In the preceding example, we’re providing those certificates and

the chef-client to endpoints from a central location, configuring what

is required for a client to be able to communicate back to a server. The

steps we followed in the previous examples can be strung together into

an installer package. But being able to automatically deploy one and keep

clients up to date automatically makes for a much simpler experience. This

is where an orchestration tool like Puppet can come in handy.

Chapter 2 agent-Based ManageMent

http://chef-osx.github.io/
https://github.com/microsoft/macos-cookbook
https://github.com/pinterest/it-cpe-cookbooks
https://supermarket.chef.io/cookbooks/macos
https://github.com/uber/cpe-chef-cookbooks

121

 Puppet
The tools covered in the previous sections are just a few in a red ocean

that includes a large number of client management tools available for

the Mac. We’ve seen Puppet, Vagrant, and other open source projects

used to orchestrate events on the Mac in much the same way they would

orchestrate events on a large farm of Linux servers.

The Puppet installer for Mac is available at https://downloads.

puppetlabs.com/mac/, and when installed using a standard software

package, the puppet-agent is used to orchestrate events on Macs. A

number of other binaries for puppet can be found in /opt/puppetlabs/

bin/. The service can be managed using launchctl or the puppet binary.

For example, if puppet is stopped, it can be started using

sudo /opt/puppetlabs/bin/puppet resource service puppet

ensure=running enable=true

Configure changes to some of the ways the agent runs with settings

found at https://puppet.com/docs/puppet/5.5/config_important_

settings.html. The most important is to sign a certificate that’s then used

to establish communications with the server. This is done using the puppet

command- line utility followed by the cert option and then the sign verb

for that option, followed by the name of a certificate that’s generated, as

follows:

sudo /opt/puppetlabs/bin/puppet cert sign com.puppet.

pretendco8734

These need to match with the server entry in the puppet.conf

directory. We don’t want to oversimplify a full-blown puppet deployment.

Getting a client to connect to a server is pretty straightforward. The real

value in any of these tools comes in the form of how much time they save

you once deployed. Puppet has nine configuration files, such as auth.conf

Chapter 2 agent-Based ManageMent

https://downloads.puppetlabs.com/mac/
https://downloads.puppetlabs.com/mac/
https://puppet.com/docs/puppet/5.5/config_important_settings.html
https://puppet.com/docs/puppet/5.5/config_important_settings.html

122

and puppetdb.conf, for a reason. We won’t go into each of them (especially

since our publisher has an entire book on the subject available at www.

apress.com/gp/book/9781430230571).

Logs are then saved to /var/log/puppetlabs/puppetserver/

puppetserver.log. This walk-through follows the same general standard

as Chef and Munki. But each is really built for something specific. Puppet

is for immediate orchestration. Munki is for software distribution. Chef is

for keeping a device in a known state. Osquery is for keeping inventory of

settings and events. There’s overlap between some of the options, but if

you squint enough, the basic methodology and management principles

across them are, in a very oversimplified way, similar. One such similarity

is that most administrators of these tools prefer to check changes in and

out using a tool called git.

 Use Git to Manage All the Things
Git is a version control system (or tool) that can be used to manage files

including code that is then version controlled so you can see changes over

time. The main page indicates it’s actually the stupid content tracker. Git

is good at tracking changes between files and allowing administrators

to check code or files out and then check them back in when finished

working. This is well suited to a workflow where you want someone else

to review your changes before they get applied to a large fleet of devices.

This makes git a common complement to chef, osquery, and munki

deployments.

Ultimately though, git is a command with some verbs. Let’s start

with the init verb, which creates an empty git repository in the working

directory (or supply a path after the verb):

git init

Chapter 2 agent-Based ManageMent

http://www.apress.com/gp/book/9781430230571
http://www.apress.com/gp/book/9781430230571

123

Now let’s touch a file in that directory:

touch newfilename

Once a new file is there, with that new repo as the working directory,

run git with the status verb:

git status

You now see that you’re “On branch master” – we’ll talk branching

later. You see “No commits yet” and hey, what’s that, an untracked file! Run

git with the add verb, and this time you need to specify a file or path (I’ll

use . assuming your working directory is still the directory of your path):

git add .

Now let’s run the status command; again, the output should indicate

that you now have a staged file (or files). Now let’s run our first commit.

This takes the tracked and staged file that we just created and commits

it. Until we do this, we can always revert back to the previous state of that

file (which in this simple little walk-through would be for the file to no

longer exist).

git commit -m "test"

Now let’s edit our file:

echo "This is an example." > newFile'

This time, let’s run git with the diff verb:

git diff

You can now see what changed between your file(s). Easy, right? Check

out the logs to see what you’ve been doing to poor git:

git log

Chapter 2 agent-Based ManageMent

124

There’s a commit listed there, along with an author, a date and

timestamp, as well as a name of the file(s) in the commit. Now, let’s run a

reset to revert to our last commit. This will overwrite the changes we just

made prior to doing the diff (you can use a specific commit by using it as

the next position after —hard, or you can just leave it for the latest actual

commit):

git reset —hard

This resets all files back to the way it was before you started mucking

around with those poor files. OK, so we’ve been working off in our own

little world. Next, we’ll look at branches. You know how we reset all of our

files in the previous command? What if we had 30 files and we just wanted

to reset one? You shouldn’t work in your master branch for a number

of reasons. So let’s look at existing branches by running git with the

branch verb:

git branch

You see that you have one branch, the “∗ master” branch. To create a

new branch, simply type git followed by the name of the branch you wish

to create (in this case, it will be called myspiffychanges1):

git branch myspiffychanges1

Run git with the branch verb again, and you’ll see that below master,

your new branch appears. The asterisk is always used so you know which

branch you’re working in. To switch between branches, use the checkout

verb along with the name of the branch:

git checkout myspiffychanges1

I could have done both of the previous steps in one command, by

using the -b flag with the checkout verb:

git checkout -b myspiffychanges1

Chapter 2 agent-Based ManageMent

125

OK now, the asterisk should be on your new branch, and you should

be able to make changes. Let’s edit that file from earlier. Then let’s run

another git status and note that your modifications can be seen. Let’s

add them to the list of tracked changes using the git add for the working

directory again:

git add .

Now let’s commit those changes:

git commit -m "some changes"

And now we have two branches, a little different from one another.

Let’s merge the changes into the master branch next. First, let’s switch back

to the master branch:

git checkout master

And then let’s merge those changes:

git merge myspiffychanges1

OK – so now you know how to init a project, branch, and merge. Before

we go on the interwebs, let’s first set up your name. Notice in the logs that

the Author field displays a name and an email address. Let’s see where that

comes from:

git config –list

This is initially populated by ~/.gitconfig so you can edit that. Or let’s

remove what is in that list:

git config --unset-all user.name

And then we can add a new set of information to the key we’d like

to edit:

git config user.name "Charles Edge" --global

Chapter 2 agent-Based ManageMent

126

You might as well set an email address too, so people can yell at you for

your crappy code some day:

git config user.email "chuckufarley@me.com" --global

Next, let’s clone an existing repository onto our computer. The clone

verb allows you to clone a repository into your home directory:

git clone https://github.com/autopkg/autopkg

The remote verb allows you to make a local copy of a branch. But it

takes a couple of steps. First, init a project with the appropriate name

and then cd into it. Then grab the URL from GitHub and add it using the

remote verb:

git remote add AutoPkg https://github.com/autopkg/autopkg.git

Now let’s fetch a branch of that project, in this case, called test:

git fetch test myspiffychanges1

Now we’ll want to download the contents of that branch:

git pull myspiffychanges1

And once we’ve made some changes, let’s push our changes:

git push test myspiffychanges1

Now that you’ve deployed agents, MDM is a great complement to what

agents can do, so we’ll cover the concept of User-Approved MDM in order

to have less button mashing happening by our end users.

Chapter 2 agent-Based ManageMent

127

 The Impact of UAMDM and Other Rootless
Changes to macOS
Many of the third-party and open source tools use binaries that have been

forced to evolve over the years due to the Mac becoming less like a Unix or

Linux and more like an iOS (which is arguably one of the safest operating

systems available). Until macOS High Sierra, some MDM functions would

not run as well on personally owned Macs as on iOS devices owned by a

company. This is because the iOS counterparts had supervision and Macs

did not. As of High Sierra and beyond, Macs owned by a company, school,

or institution can now be managed in a similar fashion as supervised

iOS devices are managed because of the introduction of UAMDM. User-

Approved MDM (UAMDM) in macOS 10.13.4 changed that by putting

certain management privileges in a special category. The use of these

special management privileges required both the use of an MDM solution

and for that MDM solution to support User-Approved MDM. As of macOS

Mojave 10.14.x, these special management privileges are the following:

• Approval of third-party kernel extension loading (less

of an issue now that kernel extensions aren’t used, but

the same logic now applies to system extensions and

other apps that require entitlements)

• Approval of application requests to access privacy-

protected data and functionality

• Autonomous Single App Mode

For Mac environments which had traditionally not used MDM

management solutions, this meant for the first time that an MDM solution

was absolutely necessary for certain management functions to happen

(unless SIP is disabled). Moreover, there are two ways to mark a Mac as

being user approved:

Chapter 2 agent-Based ManageMent

128

• Enrolling the Mac in Apple’s Automated Device

Enrollment, or ADE, formerly called the Device

Enrollment Program (DEP). Enrollment of a Mac into

ADE means that Apple or an authorized reseller has

designated that Mac one that is owned by a company,

school, or other institutions. Since this Mac is now

explicitly not a personally owned device, it gets

UAMDM and other benefits that allow certain binaries

to run in privileged ways automatically.

• Having a human being click an approval button on the

MDM profile issued by an MDM server which supports

UAMDM. Notice that this cannot be scripted with

graphical scripting tools as Apple blocks “synthetic

clicking” on these screens to protect the privacy of

end users.

The automatic granting of UAMDM to ADE-enrolled Macs means that

ADE (and so MDM) is now almost a requirement for most organizations.

The combination of UAMDM’s reserving of management privileges and

the necessity of using MDM to employ those privileges means that using

an MDM solution to manage Macs has moved from the “useful, but not

essential” category to the “essential” category.

The rise of MDM management may signal the diminishment of

using agents to manage Macs, but that has been a slow progression, and

as seen in this chapter, agents are still quite beneficial. As more MDM

management options become available every year, the more an MDM

solution can use Apple’s built-in MDM management functionality to

manage Macs in place of using a third-party agent to manage the Mac, the

more future- proofed a deployment is likely to be. While agents likely won’t

disappear overnight, the areas where they provide management value will

shrink over time.

Chapter 2 agent-Based ManageMent

129

 Rootless
The challenge with what some of these agents are doing is that they are

operating in a way that is becoming challenging to keep up with the rapid

pace of change at Apple engineering. Given the prevalence of some of these

tools, Apple provides a group of apps that are whitelisted from many of the

sandboxing requirements, which they call rootless. Some files need to be

modifiable, even if they’re in a protected space. To see a listing of Apple tools

that receive this exception, see /System/Library/Sandbox/rootless.conf:

cat /System/Library/Sandbox/rootless.conf

The degree with which each entry in the rootless.conf file is exempt

varies. In addition to the list of SIP exceptions listed others can be found in

the rootless.conf file.

 Frameworks
Another aspect to be aware of when considering agents is the frameworks

used in the agent. Frameworks are also sometimes important to consider

as they’re added into apps and have to be approved for use by a user via

an extension that loads the framework. A framework is a type of bundle

that packages dynamic shared libraries with the resources that the library

requires, including files (nibs and images), localized strings, header files,

and maybe documentation. The .framework is an Apple structure that

contains all of the files that make up a framework.

Frameworks are stored in the following location (where the ∗ is the

name of an app or framework):

• /Applications/∗contents/Frameworks

• /Library/∗/

• /Library/Application Support/∗/∗.app/Contents/

Chapter 2 agent-Based ManageMent

130

• /Library/Developer/CommandLineTools/

• /Library/Developer/

• /Library/Frameworks

• /Library/Printers/

• /System/iOSSupport/System/Library/

PrivateFrameworks

• /System/iOSSupport/System/Library/Frameworks

• /System/Library/CoreServices

• /System/Library/Frameworks

• /System/Library/PrivateFrameworks

• /usr/local/Frameworks

If you just browse through these directories, you’ll see so many

things you can use in apps. You can easily add an import followed by the

name in your view controllers in Swift. For example, in /System/Library/

Frameworks, you’ll find the Foundation.framework. Foundation is pretty

common as it contains a number of APIs such as NSObject (NSDate,

NSString, and NSDateFormatter).

You can import this into a script using the following line:

import Foundation

As with importing frameworks/modules/whatever (according to the

language), you can then consume the methods/variables/etc. in your code

(e.g., let url = NSURL(fileURLWithPath: “names.plist”).

The importance of frameworks here is that you should be able to run a

command called otool to see what frameworks a given binary is dependent

on in order to better understand what’s happening:

otool -L /usr/bin/lldb

Chapter 2 agent-Based ManageMent

131

Additionally, you can use an open source project called looto to see

what is dependent on binaries in order to better understand how tools

interact with other tools or with their own various frameworks. This is one

of a number of open source tools that many administrators will need to

 understand at some point in order to have a well-rounded perspective on

device management.

For noncompiled apps, dynamic libraries (.dylib) can be dangerous

and therefore should no longer be used where possible. Most Swift apps

now disable the ability to add a dylib by default due to the number of

security flaws they have been used to implement.

 Miscellaneous Automation Tools
There are also a number of automation tools that are easily called by

agents that make planning and implementing a deployment easier by

providing more flexible options to administrators for specific tasks. There

are plenty of other tools described throughout the book, but these are

specifically designed to help extend what agents can do.

The first tool we’ll cover is outset from Joseph Chilcote and available at

https://github.com/chilcote/outset/. Outset processes packages and

scripts at first boot and user logins. Outset is comprised of two launchd

items that call loose packages or scripts in individual folders either at

startup or user login. To add more tasks to the startup and login processes,

add new items to the appropriate folders. Outset handles the execution.

If your Macs need to routinely run a series of startup scripts to

reset user environments or computer variables, then making launchd

plists may be burdensome and difficult to manage. And plists execute

asynchronously, which means startup and login processes may not run in

the same order every time.

Chapter 2 agent-Based ManageMent

https://github.com/chilcote/outset/

132

The next tool is dockutil, available at https://github.com/kcrawford/

dockutil. Dockutil makes it easier to manage the Dock on a Mac. Users

need the right tools to do their jobs, and a thoughtfully crafted dock

helps them find those tools. They need access to applications, their home

folders, servers, and working directories. Dockutil adds, removes, and

reorders dock items for users. The script allows an administrator to adjust

dock settings to adjust the view of folders (grid, fan, list, or automatic),

adjust the display of folders to show their contents or folder icons, and set

folder sort order (name, date, or kind).

The last tool we’ll cover is duti, available at http://duti.org/index.

html. Duti makes it easier to set default applications for document types

and URL handlers/schemes. Enterprises often incorporate Macs into

complex workflows that require consistent behaviors. If a workflow

requires using the Firefox browser instead of Safari or using Microsoft

Outlook instead of Apple’s Mail application, Andrew Mortensen’s duti can

ensure the correct applications respond when opening a URL or new email

message.

Note a much more comprehensive list of these tools can be found
in appendix a.

Duti’s name means “default for UTI” or what Apple calls Uniform

Type Identifiers. Every file type such as an HTML page or Microsoft Word

document has a UTI, and developers constantly create their own new

UTIs. Duti reads and applies UTI settings to pair applications with UTIs.

 Summary
There are a number of agent-based solutions on the market that make

managing Macs en masse possible. Some of these are proprietary, and

others are open source. Most management agents should be paired with

Chapter 2 agent-Based ManageMent

https://github.com/kcrawford/dockutil
https://github.com/kcrawford/dockutil
http://duti.org/index.html
http://duti.org/index.html

133

a Mobile Device Management (MDM) solution, which we cover further in

Chapter 4. The focus here is on the Mac, simply because we cannot install

“agents” on iOS, iPadOS, and tvOS devices (without some serious breaking

of the devices).

These agents are typically used for device inventory, deploying

software, keeping software up to date, managing settings, user

notification, and a number of other tasks. The term “agent” is often an

oversimplification. Each “agent” usually comes with anywhere between

one and five LaunchAgents and LaunchDaemons. This is because each

task should be run independently. These tasks usually invoke other tasks,

preferably with native Swift frameworks but often by simply “shelling out”

a command- line tool built into macOS. As an example, you can install

profiles manually using the profiles command, which any agent-only

management tool will use for profile management, given that some tasks

require a profile. We’ll cover profiles in detail in Chapter 3.

More and more of these settings are now prompting users. Thus, we

need to use an MDM solution to limit the number of prompts on behalf of

the user and to get our management agents on devices without too much

work from line tech support.

Now that we’ve covered agents, we’ll dig into MDM further in Chapter 4.

But first, we’ll explore profiles even further in Chapter 3, so you can get more

done with both agents and MDM.

Chapter 2 agent-Based ManageMent

135

CHAPTER 3

Profiles
A profile is an xml file. This file, when installed on a device, configures

the device to act in a certain way. Profiles began back in the iPhone

Configuration Utility (the precursor to Apple Configurator) and have since

moved to being the way you manage various settings on Apple operating

systems like iOS, iPadOS, macOS, and tvOS.

When configuring iOS devices to use the settings you want, there’s

generally three ways to go, restoring devices and manually configuring

settings and profiles. For the Mac, you have another option, scripting

changes with defaults.

Manual configuration can be done by anyone and doesn’t require any

management infrastructure at all, but it’s generally time-consuming and

requires having the device in front of the person doing the configuration,

and, frankly, people make errors.

In contrast, profile configuration usually requires some sort of Mobile

Device Management solution infrastructure but can also be done with

nothing more than Apple’s Configurator app. Settings configuration

via a profile is quick, the settings can be applied to multiple devices

simultaneously, and (assuming the profile was configured correctly) a

profile will apply the desired settings consistently and without errors.

Scripted configuration changes can be done in a number of ways.

You can install a profile from the command line. But you can also edit

a defaults domain, which is based on a property list file that can also be

edited manually. We’ll cover manipulating settings using the defaults

© Charles Edge and Rich Trouton 2023
C. Edge and R. Trouton, Apple Device Management,
https://doi.org/10.1007/978-1-4842-9156-6_3

https://doi.org/10.1007/978-1-4842-9156-6_3

136

command further in Chapter 10. In this chapter, we will perform some

manual configurations and then look at how to perform some of those

same tasks using profiles, to better understand how profiles work and look

at doing scripted management of profiles. Along the way, we’ll look at the

contents of a profile.

 Manually Configure Settings on Devices
The manual configuration of settings on devices is done using System

Settings on the Mac or using the Settings app on iOS. We’ll start by looking

at using the Settings app to configure a newer feature called Downtime.

Downtime restricts anything but phone calls from working on an iOS

device, and settings to Downtime are synchronized to iCloud applying

them to all devices that have been configured using a given iCloud

account.

To get started, first open the Settings app on an iOS or iPadOS device.

This is where all settings are configured, such as Wi-Fi and privacy settings.

From there, tap on the Screen Time setting. In Screen Time, you’ll find

Downtime (Figure 3-1); tap on that.

Chapter 3 profiles

137

Figure 3-1. Tap Downtime to configure Downtime settings

Now that you’re in the Downtime settings, tap the Scheduled button to

turn on the ability to set time away from your device. Once done, click the

Start field and set a time. Then tap the End time to configure when you’ll

get alerts again (Figure 3-2).

Chapter 3 profiles

138

Figure 3-2. Configuring Downtime settings to schedule time away

Tap back on Screen Time in the upper left-hand corner of the screen.

Now, let’s set up an app limit for social apps (because really, most of us are

on those way too much) (Figure 3-3):

• Open Settings.

• Tap Screen Time.

Chapter 3 profiles

139

• Tap Add Limits.

• Tap an app category (e.g., Social).

• Set the number of hours you can use that type of app

(note, if you set 23 hours and 59 minutes, you are totally

cheating).

• Tap Add.

Chapter 3 profiles

140

Figure 3-3. Configuring App Limit settings to restrict time spent on
social media

Should you want to remove those limits you created, just tap Delete

Limit. Or better, just configure apps that are allowed to bypass the limits

you’ve made by tapping Always Allowed and adding apps that are always

allowed to work. This allows you to limit all your apps except, as an

example, Maps and Camera.

Chapter 3 profiles

141

Another option in Screen Time is Content and Privacy Restrictions

(Figure 3-4). To configure these

• Open Settings.

• Tap Screen Time.

• Tap Content & Privacy Restrictions.

• Turn Content & Privacy Restrictions on by tapping

the slider.

• Tap iTunes & App Store Purchases.

Chapter 3 profiles

142

Figure 3-4. Restricting iTunes and App Store purchases to desired
categories

Here, you can limit installing apps, deleting apps, or making in-app

purchases on the device (Figure 3-5). You can also just force a password

in order to make any purchase from iTunes, Book Store purchases, or App

Store purchases:

• Tap the back button.

Chapter 3 profiles

143

• Tap Allowed Apps.

• Use the indicator light to disable any app you don’t

want to be able to access on this profile.

• Once all apps are configured, tap the back button.

• Tap Content Restrictions.

Figure 3-5. Restricting apps which can be used on this iOS device

Chapter 3 profiles

144

There are a lot of content restrictions available (Figures 3-6 and 3-7).

Most are mirrored with a profile and so can be controlled by an MDM

as well:

• Music, Podcasts, News, Fitness: Select whether or not

explicit content is allowed (and by content we really

mean music, podcasts, and news).

• Music Videos: Choose whether the device is allowed to

play music videos.

• Music Profiles: Set whether the device is allowed to

publish music options and posts about music.

• Movies: Set a maximum AFTRA rating (e.g., PG-13 or

R) for content.

• TV Shows: Select the TV ratings allowed (e.g., TV-G or

TV-MA for mature audiences).

• Books: Set Clean or Explicit.

• Apps: Choose an age that ratings for apps are most

appropriate.

• App Clips: Choose whether the device is allowed to use

age-appropriate app clips.

• Web Content: Limit access only to specific websites,

limit access to adult websites, or provide unrestricted

access to web content.

• Web Search Content: Allow Siri to access the Web

to search.

• Explicit Language: Allow or restrict Siri from using

dirty words.

Chapter 3 profiles

145

• Multiplayer Games: Allow or deny access to

multiplayer games.

• Connect with Friends: Allow or deny access to add

friends within the Game Center app.

• Screen Recording: Allow or deny access to screen

recordings.

• Nearby Multiplayer: Choose whether the “nearby”

setting can be enabled.

• Private Messaging: Allow or deny voice chat or the

ability to receive custom messages with game and

friend invitations.

• Avatar & Nickname Changes: Choose whether Game

Center avatars or nicknames can be changed.

Chapter 3 profiles

146

Figure 3-6. Restricting iTunes, App Store, and web content settings to
desired categories

Chapter 3 profiles

147

Figure 3-7. Restricting Siri and Game Center content settings to
desired categories

Next, go back and in the privacy section, configure what apps are able

to access Location Services, Contacts, Calendars, Reminders, Photos,

Share My Location, Bluetooth Sharing, Microphone, Speech Recognition,

Apple Advertising, Allow Apps to Request to Track, and Media & Apple

Music (Figure 3-8).

Chapter 3 profiles

148

Figure 3-8. Restricting app access to desired settings

Under allow changes, configure whether you’ll be able to make

changes to Passcode Changes, Account Changes, Cellular Data Changes,

Reduce Loud Sounds, Driving Focus, TV Provider, and Background App

Activities (Figure 3-9).

Chapter 3 profiles

149

Figure 3-9. Restricting changes which can be made to specified
settings

That’s a ton of work, and if you have more than one device to apply

these changes to, it gets tedious and tiresome around device number 2.

There’s a better way though, which is to use a management profile to

configure a device. Let’s look at that next.

Chapter 3 profiles

150

 Use Apple Configurator to Create a Profile
Apple Configurator is a free tool, available on the Mac App Store from

Apple. You can use Apple Configurator to create profiles and manage the

deployment of profiles onto iOS devices over USB. For the purposes of this

chapter, we will be creating some profiles using Apple Configurator and

then install one of the profiles onto Apple devices.

First off, let’s try creating a profile using Apple Configurator which sets

the same kind of app and content management settings that we had earlier

set with Screen Time.

In Apple Configurator, select File: New Profile to get started

(Figure 3-10).

Figure 3-10. Creating a new management profile in Apple
Configurator

A new profile creation window should open, with Configurator

defaulting to showing the General section (Figure 3-11).

Chapter 3 profiles

151

Figure 3-11. Viewing the new management profile template in Apple
Configurator

The General section is where the identifying information for the new

profile should be entered (Figure 3-12). In this example, the following

information is being used:

• Name: Screentime Controls

• Organization: Company Name

• Description: This profile sets app and content
restrictions on managed iOS and iPadOS devices

Chapter 3 profiles

152

Figure 3-12. Adding identification information to the new profile

If needed, additional information and settings can be entered. For

example, by default the Security settings allow the profile to be removed at

any time. These settings can be altered to the following:

• With Authorization: This setting requires that a

password be entered before the profile can be removed.

• Never: This setting means that the profile can never be

removed. Only wiping and resetting up the device will

erase it from the device.

The settings which match those found in Screen Time are found under

the Restrictions payload section of the profile. To access these settings,

click Restrictions and then select the Configure button (Figure 3-13).

Chapter 3 profiles

153

Figure 3-13. Enabling the Restrictions payload of the new profile

Once the Restrictions payload is enabled, you can set the desired app

and content restrictions for your devices (Figures 3-14 to 3-16).

Chapter 3 profiles

154

Figure 3-14. Setting functionality restrictions

Chapter 3 profiles

155

Figure 3-15. Setting app restrictions

Chapter 3 profiles

156

Figure 3-16. Setting media content restrictions

Once all the desired settings have been configured in the Restrictions

payload, save the profile by selecting Save under the File menu

(Figure 3-17).

Chapter 3 profiles

157

Figure 3-17. Saving a management profile in Apple Configurator

You’ll then be prompted to save the profile with a desired name to

a desired location, such as the Desktop, so it’s easy to find (Figures 3-18

and 3-19).

Figure 3-18. Saving a management profile to chosen location with
desired name

Chapter 3 profiles

158

Figure 3-19. Saved management profile in chosen location

Once the name and location have been chosen, the profile will be

saved as an XML-formatted document with a .mobileconfig file extension

(Figure 3-20).

Chapter 3 profiles

159

Figure 3-20. Saved management profile opened in text editor

Now that the desired settings have been applied to the saved

management profile, this profile can now be applied to multiple iOS devices

via Apple Configurator or via a Mobile Device Management (MDM) server.

Chapter 3 profiles

160

On each device, the profile will set the configured settings in a consistent

and repeatable fashion, eliminating the tedium and errors involved in

setting these settings manually via Screen Time.

Let’s take another look at the process of creating a profile which will be

usable on both macOS and iOS. Apple Configurator can again be used to

build the profile (Figures 3-21 and 3-22).

Figure 3-21. Adding identification information to the new profile

Chapter 3 profiles

161

Figure 3-22. Setting the VPN payload settings

Once you’ve filled in the appropriate information for the VPN profile,

click File and then Save from within Apple Configurator. Next, provide a

name and location for the profile and then click Save (Figure 3-23).

Chapter 3 profiles

162

Figure 3-23. Saving the VPN profile in Apple Configurator

Now that you have the VPN profile saved, we can move on to see what

all is in the profile in the next section.

 View the Raw Contents of a Profile
A raw profile will contain a header, which contains a signature, and a

bunch of XML. The easiest way to view the contents is to use the cat

command. Here, we’ll do a simple cat command of the file:

cat ~/Desktop/iVPN.mobileconfig

The contents will look as follows:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://

www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

 <key>ConsentText</key>

Chapter 3 profiles

163

 <dict>

 <key>default</key>

 <string>Hi! Welcome to the company's iVPN

service. This profile will allow you to access

the company's VPN.</string>

 </dict>

 <key>PayloadContent</key>

 <array>

 <dict>

 <key>IPSec</key>

 <dict>

 <key>AuthenticationMethod</key>

 <string>SharedSecret</string>

 <key>LocalIdentifierType</key>

 <string>KeyID</string>

 <key>SharedSecret</key>

 <data>

 UGFzc3dvcmQxMjM0

 </data>

 </dict>

 <key>IPv4</key>

 <dict>

 <key>OverridePrimary</key>

 <integer>0</integer>

 </dict>

 <key>PPP</key>

 <dict>

 <key>AuthPassword</key>

 <string>SooperSekritPasswordGoe

sHere</string>

 <key>CommRemoteAddress</key>

Chapter 3 profiles

164

 <string>vpn.company.

com</string>

 </dict>

 <key>PayloadDescription</key>

 <string>Configures VPN

settings</string>

 <key>PayloadDisplayName</key>

 <string>VPN</string>

 <key>PayloadIdentifier</key>

 <string>com.apple.vpn.managed.0382A626-

CCC7-4D39-84E9-3FAE2EC7D6DA</string>

 <key>PayloadType</key>

 <string>com.apple.vpn.managed</string>

 <key>PayloadUUID</key>

 <string>0382A626-CCC7-4D39-84E9-

3FAE2EC7D6DA</string>

 <key>PayloadVersion</key>

 <integer>1</integer>

 <key>Proxies</key>

 <dict>

 <key>HTTPEnable</key>

 <integer>0</integer>

 <key>HTTPSEnable</key>

 <integer>0</integer>

 </dict>

 <key>UserDefinedName</key>

 <string>iVPN</string>

 <key>VPNType</key>

 <string>L2TP</string>

 </dict>

 </array>

Chapter 3 profiles

165

 <key>PayloadDescription</key>

 <string>Installs the iVPN profile</string>

 <key>PayloadDisplayName</key>

 <string>iVPN</string>

 <key>PayloadIdentifier</key>

 <string>FX017W0CDP.49F2F64A-55A2-4647-BD3F-D6B9EC84B07B

</string>

 <key>PayloadOrganization</key>

 <string>Company Name</string>

 <key>PayloadRemovalDisallowed</key>

 <false/>

 <key>PayloadType</key>

 <string>Configuration</string>

 <key>PayloadUUID</key>

 <string>29AD26BC-7B99-4116-94E6-618507C2FBF7</string>

 <key>PayloadVersion</key>

 <integer>1</integer>

</dict>

</plist>

Profile keys must follow a standard, where Apple defines the keys and

administrators and software developers place the keys with payloads in the

keys in profiles. The official profile reference guide is available at https://

developer.apple.com/documentation/devicemanagement/profile-

specific_payload_keys. No guide to these keys can be complete without

mentioning the companion reference, built by @Mosen and available at

https://mosen.github.io/profiledocs/. This reference describes some

of the available settings that Apple doesn’t include in the official reference.

Always assume that anything Apple doesn’t document is intended that way

(as with private APIs) and can be changed at the drop of a hat.

Once you have created a profile, it’s time to install the profile, which

we’ll cover in the next section.

Chapter 3 profiles

https://developer.apple.com/documentation/devicemanagement/profile-specific_payload_keys
https://developer.apple.com/documentation/devicemanagement/profile-specific_payload_keys
https://developer.apple.com/documentation/devicemanagement/profile-specific_payload_keys
https://mosen.github.io/profiledocs/

166

 Install a Profile on macOS
There are a number of ways to install a profile on macOS. The first and

easiest is to just open the profile. When opened, you will be prompted to

install a profile. To install a profile, just walk through the steps to install. To

do so on macOS, start by clicking Install…, as seen in Figure 3-24.

Figure 3-24. Installing a profile on macOS

Because we didn’t sign the profile with a trusted certificate, we’re

prompted to install an unsigned profile, as seen in Figure 3-25. It’s best not

to install unsigned profiles unless you have to. Click Show Details to see a

description of what the signing status means.

Chapter 3 profiles

167

Figure 3-25. Warning about installing an unsigned profile on macOS

The additional details (Figure 3-26) are really just there to allow a

user to understand why a yellow icon is in front of them. We haven’t

noticed that many users actually avoid clicking things with yellow icons

though. It’s still best to distribute signatures or use legitimately obtained

public certificates though, if only to future-proof your deployment. Click

Continue to proceed.

Chapter 3 profiles

168

Figure 3-26. Additional details about installing an unsigned profile
on macOS

Then you’ll see the installation message that we provided while

creating the profile as seen in Figure 3-27. Here, click Install to complete

the process.

Chapter 3 profiles

169

Figure 3-27. Consent message to install VPN profile

Voilà, as you can see in Figure 3-28, you’ve now installed the profile.

Later in this chapter, we’ll cover how to install the profile automatically via

the profiles command. Now that we’ve installed the profiles on the Mac,

we’ll get the profile setup on an iOS device.

Chapter 3 profiles

170

Figure 3-28. The installed VPN profile

Tip the power of profiles makes them a potentially dangerous
way to receive compromised settings. When you install an MDM
profile, you can disable the ability to deploy settings using a manual
profile (and probably should do so). or if you are using an agent-only
management environment, make sure to know what profiles are on
your apple devices by checking them routinely.

 Install a Profile on iOS
As with macOS, you can install a profile on iOS simply by opening the

profile. In fact, the first management tools (before MDM) for iOS were apps

that just had links to profiles, and getting mail settings on a device meant

Chapter 3 profiles

171

tapping on a profile to install a .mobileconfig file that then gave you your

mail settings. Today, profiles can be stored on a web server and opened,

emailed to users, or deployed automatically using an MDM solution, with

installation via MDM being the only “silent” way to deploy a profile. In this

case, the profile being installed is the unsigned VPN profile used in the

previous macOS example, deployed via email or through a web page (or

silently via MDM).

Once the profile is downloaded onto the iOS device and selected for

installation, click the Install button in the upper-right corner of the screen,

as seen in Figure 3-29.

Chapter 3 profiles

172

Figure 3-29. Installing a profile on iOS

Installing a profile requires a passcode be entered, when using one on

a device (at this point everyone should be). Next, enter the passcode as

shown in Figure 3-30.

Chapter 3 profiles

173

Figure 3-30. Entering the passcode for the iOS device to authenticate
installing a profile

Since we added the additional consent step as part of the profile we

created earlier, consent must be granted as part of installing the profile,

which can be seen in Figure 3-31. This is in addition to the other usual

steps and optional when creating profiles.

Chapter 3 profiles

174

Figure 3-31. Granting consent to installing the profile

As with macOS, there will be a warning about installing an unsigned

profile (Figure 3-32). If you use a valid signature that the device recognizes,

then this won’t appear. But it’s important to drive home the fact that you

need to sign profiles and show why. It’s possible that some day in the

future Apple developers will remove the ability to install unsigned profiles.

Tap Install in order to proceed to the next step.

Chapter 3 profiles

175

Figure 3-32. Warnings about installing the profile on iOS

Additional warning will be given about the capabilities that the profile

is enabling on the iOS device. After the warning, iOS will prompt you to

install the profile. The profile is now installed, and its new settings take

effect, as you can see in Figure 3-33.

Chapter 3 profiles

176

Figure 3-33. iOS profile installation completed

 Install a Profile on tvOS
To install a profile on tvOS, profiles can be installed from a web server or

Apple Configurator or by using an MDM. If using Apple Configurator, it

may need to first pair Apple Configurator with the Apple TV. Apple has

Chapter 3 profiles

177

a knowledge base article explaining the process, available at https://

support.apple.com/HT208124. Once paired, the Apple TV should show up

as an available device in Apple Configurator, as shown in Figure 3-34.

Figure 3-34. Apple Configurator showing a paired Apple TV

Double-click the Apple TV in Apple Configurator, and it will display

information about the Apple TV. As you can see in Figure 3-35, Apple

Configurator can be used to install Profiles, and you can see the logs of

what is being deployed using the Console, useful for troubleshooting

problems if they arise.

Chapter 3 profiles

https://support.apple.com/HT208124
https://support.apple.com/HT208124

178

Figure 3-35. Apple Configurator showing Apple TV information

Select the Profiles option to install profiles onto the Apple TV, and

then click Add Profiles (Figure 3-36).

Chapter 3 profiles

179

Figure 3-36. Apple Configurator showing Apple TV profile
installation window

For some profiles, it may be necessary to install them using the Apple

TV user interface. In Figure 3-37, we show an unsigned profile to control

AirPlay settings is being installed onto the Apple TV – another good reason

to make sure profiles are signed with valid third-party certificate providers.

Chapter 3 profiles

180

Figure 3-37. Requesting to install an unsigned profile on an
Apple TV

Since the profile is unsigned, there will be warnings and additional

install confirmations in order to install it (Figure 3-38).

Figure 3-38. Notification that the Apple TV profile is not signed

Chapter 3 profiles

181

To install a profile manually, one dialog that can’t be skipped is the

standard Install Profile screen (Figure 3-39). Click Install to proceed.

Figure 3-39. Confirming installation of unsigned profile

As with installing profiles on the other operating systems, you then see

a screen showing the profile and a brief summary of what is contained in

the profile (Figure 3-40). Using the Apple TV remote, select More Details

for a more granular look at what’s in the profile, or tap Done to be finished

with the profile installation.

Chapter 3 profiles

182

Figure 3-40. Completion of the installation process

Once the profile installation process is installed, the profile’s settings

should now take effect on the Apple TV; if you’ve configured certificates,

those will be available to join a network, or if you’ve configured security

settings, you’ll then be prompted to enter passcodes or notice that certain

restrictions have been enforced.

 View a Profile from macOS
Transparency is important to the profile development team. Any setting

implemented on systems should be available to view on devices where

profiles are installed. This shows up again and again, whether around

user acceptance of certain screens or just seeing why a user doesn’t

have the ability to see a given system preference. It’s also an important

troubleshooting step for those in the field trying to figure out why a given

feature doesn’t work on a device.

Chapter 3 profiles

183

To view the profiles installed on a Mac, open System Settings and then

select Privacy & Security. From there, you will see an entry for Profiles, as

seen in Figure 3-41.

Figure 3-41. Profiles preference pane appearing in System Settings

If no profiles have been installed, the Profiles preference pane will

display that no profiles are installed, as seen in Figure 3-42.

Chapter 3 profiles

184

Figure 3-42. Profiles preference pane showing no profiles are
installed

Once the Profiles preference pane is open, if one or more profiles are

installed, you can click a profile to see the contents. In the example shown

in Figure 3-43, we can see that the description made for the profile can be

seen, as well as when the profile was installed, and the settings that were

put into the profile.

Chapter 3 profiles

185

Figure 3-43. Viewing profile details via System Settings

 View a Profile from iOS
As with the Mac, the restrictions or settings pushed to a device should be

able to be viewed at any time. Therefore, once a profile on an iOS device is

installed, you can view the contents of the profile using the Settings app.

To do so, open Settings and then tap General and scroll to the bottom of

the screen to see the “VPN & Device Management” option, as shown in

Figure 3-44. On older versions of iOS, this option may be named “Profiles

& Device Management.”

Chapter 3 profiles

186

Figure 3-44. Viewing profile location via Settings.app’s General
settings

When you tap VPN & Device Management, the profiles that are

installed on the iOS device are displayed, as seen in Figure 3-45.

Chapter 3 profiles

187

Figure 3-45. Viewing installed profiles on an iOS device

Tap a profile to see the signing authority for the profile, the

organization that deployed the profile, the description we created when

creating the profile, and the type of payload (in the Contains) field, as seen

in Figure 3-46. You can also tap the More Details to see information about

the specific settings deployed or the Remove Profile if the profile has been

set to removable.

Chapter 3 profiles

188

Figure 3-46. Viewing profile details on an iOS device

Again, being transparent about what policies are enforced on a device

is key. And this philosophy transcends all platforms that are manageable

through profiles, including the newcomer to the profile world: tvOS.

Chapter 3 profiles

189

 View a Profile from tvOS
As with macOS and iOS, once you’ve loaded a profile on a tvOS device, you

can view the contents of the profile. Doing so is done using the Settings

app. This process is similar to the process for iOS devices. To get started,

open the Settings app. Once Settings is open, use the Apple TV remote to

select General and then scroll to the bottom of the screen, where you’ll see

the Profiles listed (shown in Figure 3-47).

Figure 3-47. Viewing profile location via Settings.app’s General

To view the profiles, select the profile as shown in Figure 3-48.

Chapter 3 profiles

190

Figure 3-48. Viewing installed profiles on a tvOS device

Use the remote for the Apple TV to select that profile, and you’ll be

able to see the signer, description, and contents, and select More Details

to see each setting broken down separately or Remove Profile to remove

the profile (Figure 3-49). These are the same options you see in macOS

and iOS, indicating the developers want a similar experience and full

transparency across platforms.

Chapter 3 profiles

191

Figure 3-49. Viewing profile details on a tvOS device

Now that we’ve gone through looking at what settings and policies

have been enforced on devices, let’s move to removing those, provided the

option to do so is available.

 Remove a Profile on macOS
While we’ve focused on managing profiles manually in this chapter,

in the next chapter, we will turn our attention toward leveraging those

profiles over the air using a Mobile Device Management (MDM) solution.

One reason to look at an MDM is that profiles can more dynamically be

managed. Once we’ve enrolled devices into an MDM, it’s a good idea

to only push settings out using the MDM. Therefore, in the following

example, we’re going to remove the VPN profile installed previously.

To do so, open the Profiles preference pane and click the profile again.

Then click the minus sign underneath the list of profiles. You’ll then

be prompted to confirm that you wish to remove the profile, as seen in

Figure 3-50.

Chapter 3 profiles

192

Figure 3-50. Removing a macOS configuration profile

To remove the profile, click Remove and you’ll be prompted to confirm

using Touch ID (see Figure 3-51) or via standard authentication.

Figure 3-51. Using Touch ID to authenticate profile removal

Chapter 3 profiles

193

For most restrictions and settings, you’ll then immediately see the

device change. Another benefit of profiles is that most change immediately

when enforced or removed, rather than needing to wait for a restart or a

new login event.

 Remove a Profile on iOS
The process is similar in iOS. To remove a profile on iOS, use the Settings

app. Once Settings is open, tap General and scroll to the bottom of the

screen and tap “VPN & Device Management” as shown in Figure 3-52.

Chapter 3 profiles

194

Figure 3-52. Viewing profile location via Settings.app’s General
settings

Once you find the profile to remove, tap the red Remove Profile

button shown in Figure 3-53 to start the remove process.

Chapter 3 profiles

195

Figure 3-53. Removing profile from the iOS device

To authenticate removal of the profile, the device passcode and/or

the profile passcode (if that option enabled on the profile) will need to be

entered (Figure 3-54).

Chapter 3 profiles

196

Figure 3-54. Entering the passcode for the iOS device to authenticate
installing a profile

As the last step, the profile removal needs to be confirmed. Here, tap

the red Remove button (Figure 3-55).

Chapter 3 profiles

197

Figure 3-55. Confirmation of profile removal

As with Mac, the profile is removed, and any restrictions should

immediately change. The profile is no longer listed in the list. All of this

is, of course, dependent on the profile having been marked as removable

when created. If the profile wasn’t, then you would have to erase the iOS

device in order to remove it.

Chapter 3 profiles

198

Note You can programmatically remove profiles on the Mac, but
that’s not possible on an ios device given that there’s no root account
and no command-line utilities.

 Remove a Profile on tvOS
The process of removing a profile on tvOS is similar to that of iOS. To

remove a profile on tvOS, open the Settings app with your Apple TV remote

and select General. From the General menu, scroll to the bottom of the

screen and select the profile, as shown in Figure 3-56.

Figure 3-56. Viewing profile location via Settings.app’s General
settings

Once the profile is located, click the Remove Profile button (shown in

Figure 3-57) to start the removal process.

Chapter 3 profiles

199

Figure 3-57. Removing profile from the iOS device

Figure 3-58 shows the confirmation dialog. Here, simply highlight

Remove with the Apple TV remote and hit the button.

Figure 3-58. Confirmation of profile removal

Chapter 3 profiles

200

As with iOS, the effects of the profile are immediately removed, so

any apps that might have been disabled will appear, and any settings or

assets provided by the profile, such as a certificate to join the network,

will immediately be removed from the device. We’ll cover other effects of

profile removal in the next section.

 Effects of Profile Removal
Once the profile is deleted, it will no longer be displayed on the device. If

you cannot authorize the computer to authenticate the action being taken,

then the removal of the profile will fail. This can happen for a few reasons.

The first is that the user doesn’t have permissions to disable a given profile.

The second is that the profile has been identified as a profile that can’t

be removed because it was marked as such (e.g., except by the system

that deployed the profile). This would have been done back in Apple

Configurator, in the General screen of the profile, as seen in Figure 3-59.

Figure 3-59. Using Apple Configurator to mark a profile as
nonremovable

You can restrict profile removal, but you can also restrict profile

installation. This is a common means of trying to get in front of malware

that deploys a profile to direct traffic through a proxy or locks down a

device as a means of trying to extort money from a user (otherwise referred

to as ransomware). Profiles are the best tool we have to automate the

setup of iOS devices. But as with most valuable tools, profiles can be quite

Chapter 3 profiles

201

dangerous. We’ve seen bad actors post profiles to their sites, masquerading

as apps, that when applied routed all traffic from the device through the

attacker’s proxy. This restriction is done via an MDM solution.

Now that we’ve looked at dealing with profiles using the common

graphical tools available, let’s get a better understanding of what those

buttons are doing when you click, tap, and select them by diving into the

command that is used to manage them in macOS environments in the next

section of this chapter.

 Use the Profiles Command on macOS
Once created, manage profiles on macOS using the aptly named

command-line tool, profiles. This tool is unique to macOS in that it

provides a mechanism to automate many tasks, such as managing features

through profiles without an MDM, where possible, in order to automate

the process of joining MDMs. iOS and tvOS do not have equivalent native

tools and must use an MDM or external tools like Apple Configurator to

manage profiles without manually tapping or selecting so many dialog

boxes in the user interface.

The profiles command comes with a number of verbs or actions that

can be performed and then options. The options define how those verbs

are interpreted. The verbs include the following:

• status: Indicate if profiles are installed

• list: List profile information

• show: Show expanded profile information

• remove: Remove profile

• sync: Synchronize installed configuration profiles with

known users

• renew: Renew configuration profile installed certificate

Chapter 3 profiles

202

• version: Display tool version number

Some of the options are available for all verbs, others not so much. The

options include the following:

• -type=: Type of profile; either “configuration,”

“provisioning,” “enrollment,” or “startup”

• -user=: Short username

• -identifier=: Profile identifier

• -path=: File path

• -uuid=: Profile UUID

• -enrolledUser=: Enrolled username

• -verbose: Enable verbose mode

• -forced: When removing profiles, automatically

confirms requests

• -all: Select all profiles

• -quiet: Enable quiet mode

Now that we’ve covered the verbs and options, let’s put some together.

In the next section, we’ll step you through some basic tasks using the

profiles command.

 Using the Profiles Command
Mac administrators want the ability to manage everything through the

command line. The ability to script tasks gives us the ability to make the

lives of our users better. One shell script that saves 5 clicks amplified across

10,000 computers can save 50,000 clicks and valuable time our coworkers

could be using to perform their jobs. But while this ease of use in

automation is valuable, it’s not at the risk of violating the privacy of those

Chapter 3 profiles

203

10,000 humans who use those computers. So not everything is available

using the profiles command – but a lot is!

Before managing profiles, you’ll want to know what profiles are on a

device. Configuration profiles are assigned to users or Macs. To the user

profiles on a system, use the list option:

/usr/bin/profiles list

A common step when troubleshooting is to remove all profiles from

a computer, thus zeroing out policies to see if a symptom is related to

a profile. This can be done using the remove -all option (and once the

symptom is cured, you can put the profiles back programmatically as we’ll

cover in a bit):

/usr/bin/profiles remove -all

The better way to troubleshoot an issue is to remove profiles in order

to get to the source of which is causing a problem. The remove option

removes individual profiles. Use -path to indicate its source is a file. To

remove a profile called apress.mobileconfig that was at /tmp/apress.

mobileconfig:

/usr/bin/profiles remove -path /tmp/apress.mobileconfig

On macOS Catalina and earlier versions of macOS, installing a profile

through an agent is a quick way to get settings on a device. For the relevant

versions of macOS, the install option installs profiles. For example, the

following command installs apress.mobileconfig that has been placed in

the /tmp directory:

/usr/bin/profiles install -path /tmp/apress.mobileconfig

Profiles can also be installed at the next reboot on macOS Catalina and

earlier. This is because you might want to give a user a dialog, indicating

you’re changing some settings at the next boot rather than freaking

them out by having things on their device change. Use the -type option

Chapter 3 profiles

204

to define a startup profile. The profile attempts to install at each reboot

until installed. Use the profiles command with the -type option and the

-path option for the profile. For example, the following will set up a profile

named /startupprofile.mobileconfig to be installed at the next boot:

profiles install -type startup -path /startupprofile.

mobileconfig -forced

The option to install profiles using the profiles tool, either at reboot or

on demand using the profiles install option, was removed in macOS Big

Sur and later versions of macOS.

Other options include -verbose which displays additional information

about a profile, -password to define a removal password, and -output to

export a file path so that we can then remove that profile.

Note You cannot remove individual configuration profiles that are
deployed by an MDM solution.

It’s possible to see what some of these profiles are doing through MCX,

which we’ll cover in the next section of this chapter.

 MCX Profile Extensions
As we’ve mentioned, many of the underlying interpretations of profile

options are handled through what’s otherwise referred to as the “legacy”

MCX framework. The dscl command has extensions for dealing with

profiles to see what’s been interpreted as well. These include the available

MCX Profile Extensions:

-profileimport -profiledelete -profilelist [optArgs]

-profileexport -profilehelp

Chapter 3 profiles

205

To list all profiles from an Open Directory object, use -profilelist. To

run, follow the dscl command with -u to specify a user, -P to specify the

password for the user, then the IP address of the OD server (or name of the

AD object), then the profilelist verb, and finally the relative path. Assuming

a username of diradmin for the directory, a password of scarlett, and then

charlesedge as a user:

dscl -u diradmin -P scarlett 192.168.100.2 profilelist

/LDAPv3/127.0.0.1/Users/charlesedge

To delete that information for the given user, swap the profilelist

extension with profiledelete:

dscl -u diradmin -P scarlett 192.168.100.2 profiledelete

/LDAPv3/127.0.0.1/Users/charlesedge

To export all information to a directory called ProfileExports on the

root of the drive:

dscl -u diradmin -P scarlett 192.168.100.2 profileexport . all -o

/ProfileExports

Note provisioning profiles can also be managed, frequently using
the lowercase variant of installation and removal (e.g., -i to install, -r
to remove, -c to list, and -d to delete all provisioning profiles).
provisioning profiles can also come with a -u option to show the uuid.
finally, the -V option verifies a provisioning.

Profiles can also perform actions. As an example, running the following

command with root privileges will rerun the Apple Device Enrollment (ADE)

enrollment process on a Mac, allowing you to quickly and efficiently move

Mac devices between MDM servers in a manner not available for iOS or tvOS:

profiles renew -type enrollment

Chapter 3 profiles

206

There are also a number of other tools including libimobiledevice,

the command-line utilities bundled with Apple Configurator, AEiOS, and

Ground Control. These provide additional automations, occasionally using

private APIs to get deeper into a device. For more on those, see Chapter 6.

 Summary
Apple has made it clear that profiles are the future of managing Apple

devices, with iOS and tvOS leading the way and macOS catching up

rapidly. Profiles provide a unified, easy, streamlined methodology to

implement settings and restrictions on devices – and they do so in a

manner that preserves the privacy of a user in a transparent manner. While

it is not currently possible to manage all settings on macOS using profiles,

it is increasingly possible to be able to write one profile and use it on

multiple Apple platforms to manage settings, which is more efficient and

less work for Apple admins.

Profiles can’t be used to manage everything. But Apple has been

quickly closing the gap of what can and what can’t be managed using a

profile (or an MDM action).

Now that we have some profiles, let’s spend some time doing a deep

dive into how those profiles can be implemented in a more dynamic and

automated way in Chapter 4.

Chapter 3 profiles

207

CHAPTER 4

MDM Internals
Mobile Device Management, or MDM, is a device management software

that comes built into tvOS, macOS, iPadOS, and iOS. MDM allows an

administrator to control and secure devices by establishing policies and

monitoring the adherence of a device to those policies. MDM is often

referred to as “agentless” technology. There is no such thing as “agentless”

management, and so in this chapter, we go through what the built-in

agents on these devices are, how they work, and why some of those weird

requirements for MDM to communicate are… requirements.

MDM is the culmination of a number of different technologies

developed by Apple and other vendors over the past 15 years. The great

part about MDM is that it provides a common management technique

for macOS, iOS, and tvOS. At its most basic responsibility, an MDM server

implements the MDM and check-in protocols, defined by Apple to send

MDM commands to devices, which are interpreted by the devices using

that built-in agent to perform commands, such as lock a device, wipe a

device, push an app to a device, or install a profile (for more on profiles,

see Chapter 3).

Setting up MDM once required accounts in three to five separate Apple

portals, but over the past couple of years, Apple has unified all of those

accounts under one hood, according to the type of organization. Before

setting up an MDM service, users will therefore need an Apple Business

Manager account or Apple School Manager account.

© Charles Edge and Rich Trouton 2023
C. Edge and R. Trouton, Apple Device Management,
https://doi.org/10.1007/978-1-4842-9156-6_4

https://doi.org/10.1007/978-1-4842-9156-6_4

208

 What MDM Can Access
Apple can’t see the information sent to devices through MDM (unless

Apple’s MDM called Apple Business Essentials is used and then in a

compliant fashion). But always concerned about privacy, Apple engineers

want administrators to have access to be able to manage devices and not

access to potentially private data that might be stored on devices (e.g., no

one wants the IT professional in a company accused of reading someone’s

email). So by default, an MDM server has access to the name and serial

number of a device, as well as the phone number, model, how much space

is available on the device, the version number of the operating system

installed, and the apps installed on the device.

For Bring Your Own Device, or BYOD, Apple also began to provide new

enrollment types in iOS 13 and macOS 10.16, which further limits what

data is accessible by the MDM (and so the administrators who run the

MDM). The thought here is again that private devices should be even more

private. So a user will have a separate volume to store data, and things

like the serial number of a device won’t be transmitted through the MDM

protocol for those types of enrollments.

Additionally, and we’ll cover this later in the chapter, User Approved

MDM (UAMDM) is a feature introduced in iOS 12 and macOS Sierra that

prompts users to accept enrollment. This is similar to the transparency

provided for agents described in Chapter 2. If users do accept the MDM

enrollment, the MDM server can have increased controls on a device,

such as the ability to accept certain settings for apps based on a Bundle

Identifier.

The MDM doesn’t have access to the location of a device, although

a third-party app that had been granted access to Location Services

would have access to the GPS coordinates of a device. The MDM protocol

doesn’t allow for app usage information, although on a Mac you can

load an agent that can access that information. Things like Safari history,

FaceTime history, call history, SMS/iMessages messages, mail, calendars,

Chapter 4 MDM Internals

209

contacts, data inside apps, the score of your games in Game Center,

and what content is on the device are all private and not accessible via

MDM, although some vendors have used private frameworks to get that

information through an app that’s loaded on a device.

 Apple Business Manager and Apple
School Manager
The foundational technologies that we’ll cover in this chapter are those

that enable MDM to function properly and to be the most beneficial for

most organizations. These include APNs, Automated Device Enrollment

(or ADE – previously called the Device Enrollment Program), iCloud, and

Volume Purchasing (or VPP). We’ll cover these later in the chapter, but for

now, know that aspects of each are configured in a central portal called

Apple Business Manager, for companies with a DUNS number, or Apple

School Manager, for educational institutions.

The two look similar, although there are a few specific features in Apple

School Manager to enable the use of the Schoolwork and Apple Classroom

apps, which we don’t cover at length in this chapter. The primary focus for

this chapter is to get the components to make MDM function configured

in order to cover how MDM works. For that, an APNs Token for an MDM

server is required (to support the ability to push messages to devices). A

DEP token (to support automated enrollment) and a VPP token (to support

app distribution) are also required for those options to work. These

make up the Apple Enrollment Programs, now made simpler with Apple

Business Manager and Apple School Manager.

To get started, log in to Apple Business Manager or Apple School

Manager, located at business.apple.com or school.apple.com. This is

where a .csr is exchanged for an APNs token and Automated Enrollment

(also known as DEP) is configured. It’s also where apps and other content

can be purchased in volume for centralized distribution.

Chapter 4 MDM Internals

210

To define the MDM server to be used for automated enrollment (as

seen in Figure 4-1), simply log in and click the username in the lower-left

corner of the screen, click Preferences, and click MDM Server Assignment.

This shows a list of MDM servers available for the organization. If the

organization is enrolled in the Apple MDM service, Apple Business

Essentials will be shown. Click the Add button to see the setup screen for a

third-party MDM.

Figure 4-1. Apple device management portals

At the entry for the new MDM server, provide a name for the server

(this is just for you tracking it) and click save (Figure 4-2). You can then do

the APNs key exchange that we will describe later in this chapter – where

the .pem to make automated enrollment is downloaded from the MDM

server (see Figure 4-2).

Chapter 4 MDM Internals

211

Figure 4-2. Download the .pem from the MDM server or service

Automated Device Enrollment (the artist formerly known as DEP) uses

serial numbers to do the automatic setup. Without them, users will enroll

manually, and you will have less management available for those devices

once enrolled. To configure them, click Device Assignments from the main

Apple Business Manager or Apple School Manager screen.

Any devices that were purchased linked to an Apple Customer Number

can appear in Apple Business Manager or Apple School Manager. That

number can be obtained either through the Apple reseller or Apple

team that sold the devices. The number is configured in the Enrollment

Information section (note that it’s hidden in Figure 4-3, but if not present,

there is only an option to enter it).

Chapter 4 MDM Internals

212

Figure 4-3. Configure the Apple Customer Number to link
organization info in Enrollment Information

Next, download a DEP token, once the server is added. According to

the type of MDM in use, there will be a different screen to configure all

of these. As an example using an MDM called XenMobile, once the DEP

server token has been exported, click Add in this screen in XenMobile to

complete the setup (Figure 4-4).

Chapter 4 MDM Internals

213

Figure 4-4. XenMobile DEP interface

Once devices are linked with the Apple Customer Number, Automated

Enrollment can be configured to Apple Business Essentials or a third-party

device management solution. Multiple of these can also be used (e.g., one

for iOS and one for macOS or one for various suborganizations or teams in

an organization). Once the customer numbers are linked, users see a list of

each device that can be managed by clicking Devices in the left sidebar, as

seen in Figure 4-5.

Chapter 4 MDM Internals

214

Figure 4-5. List of devices purchased through Apple programs

Any devices that don’t appear might not be properly linked. These can

be linked with Apple Configurator, which is covered later in the book, or

with a support case with Apple. Once devices are populated, it’s possible

to configure which MDM server new devices are assigned to. Further,

existing devices have an “Edit MDM Server” option when clicked, to assign

them that way. To configure how new devices will be handled, click the

username in the lower-left corner of the screen and click Preferences. Click

MDM Server Assignment in the list of options. Device types can then be

configured to be the default (or automatic) MDM server for each device

type as seen in Figure 4-6.

Chapter 4 MDM Internals

215

Figure 4-6. Configure default MDM servers for each device type

Once devices boot for the first time, they look for the MDM server

they were assigned to. Configuration profiles from the server and apps

are then installed as defined on that server. Some apps are still packaged

as standard software packages, but most for the Mac, iPhone, and iPad

now get installed via the App Store. The volume purchasing of apps was

once done in a dedicated portal, but that has since been moved to Apple

Business Manager and Apple School Manager as well.

 Buy Apps to Distribute with MDM
Organizations can purchase up to 25,000 licenses a day (some are

“purchases” of free seats of apps). To purchase apps, click Apps in the left

sidebar and then click View Store, as seen in Figure 4-7.

Chapter 4 MDM Internals

216

Figure 4-7. Buy apps in Apple’s Business and School programs

Click the Add button to search for an app. Figure 4-8 shows searching

for the Microsoft Teams app and then acquiring licenses for distribution.

Figure 4-8. Buy an app for distribution

Chapter 4 MDM Internals

217

More apps can be purchased (developers have a choice whether to

make an app available in volume) and distributed as needed. However,

to distribute apps with a third-party MDM, a token needs to be uploaded

from the Apple Business or Apple School portal to a third-party MDM. To

do so, click the username in the lower-left corner of the screen and then

click Preferences. Click Payments and Billing and then click the Apps and

Books tab.

Toward the bottom of the screen is a section for Server Tokens. Click

the server token, and it will download to the local computer, as seen in

Figure 4-9.

Figure 4-9. Export the tokens

Once the token is downloaded, log in to an MDM. We’ve gone through

a few different MDMs at this point to show how things are different, and

yet the wording is typically the same as a token is a token is a token. To

be specific, the token is base64 encoded json with a token and some

metadata, as seen in Figure 4-10.

Chapter 4 MDM Internals

218

Figure 4-10. The base64 decoded string of a VPP token

Figure 4-11 shows what it looks like to upload the token into Jamf Now.

Chapter 4 MDM Internals

219

Figure 4-11. Add the token to an MDM

Now that we’ve got all of these keys to link Automated Enrollment

and volume app purchases to an MDM solution, let’s move to looking at

how APNs fits into the MDM picture. This is handled for administrators

by default with Apple Business Essentials, but we see more of how the

certificates allow servers to trust one another with third-party solutions.

That begins with Apple Push Notifications.

 Apple Push Notifications
Apple Push Notifications (or APNs for short) is a platform developed in

2009 to enable third-party vendors or Apple to send notifications to mobile

devices. Web services or apps trigger a device to check into the server via

APNs. That notification data is what causes a different badge to appear

for an app, including a number (the number of notifications the app has),

Chapter 4 MDM Internals

220

a red dot (to indicate there are notifications), sounds, and even custom

text alerts. Apple has no visibility into what is in the email or the text you

receive.

The technology that instantly informs users they have a message

waiting is the same technology that drives MDM. With APNs, the device

is told to go get some information from a server but not what that

information is. For anyone that spent time working with information

security teams to get BlackBerry devices approved, the fact that BlackBerry

actually stored user data was always a bit of a stumbling block. This has

never been an issue with MDM, although there are other issues that

information security teams have here and there.

Any app developer can obtain an Apple Push Notification certificate

and then push alerts to devices. The MDM options, though, require a

special MDM CSR service via the Apple Developer Enterprise portal. Most

MDM vendors will have this certificate and then provide customers with

the ability to generate a CSR via Apple and issue a new certificate based

on that, in order to push the fact that there are management commands

waiting for devices. While most vendors will have an account with the

Developer Enterprise portal and provide the necessary links, anyone can

sign up for an account for $299 per year.

In Chapter 2, when we looked at agents, each client registered with an

agent, often performing a certificate exchange and/or caching a hashed

value of some kind in order to verify its identity to the server and in order

to check in with the server automatically. MDM is no different; a client

device will “enroll” in the server, which establishes such a key exchange

and passes shared secrets between devices and servers so the device can

securely authenticate back into the server to retrieve instructions. Much of

that key exchange is handled by Simple Certificate Enrollment Protocol, or

SCEP for short.

Chapter 4 MDM Internals

221

 Check-Ins: Device Enrollment
Notice that the term enroll is derived from SCEP. This is because the client

device performs a Certificate Signing Request (CSR) and submits it to

the server. The server then issues a certificate to the device that only that

device can install due to a PKCS#7 certificate with a challenge password

from the original CSR. This certificate is anchored by a certificate issued

by Apple. That transaction is handled in Apple Business Manager, Apple

School Manager, or using the developer portal. Each MDM vendor allows

you to generate a CSR that you then upload to Apple as can be seen in

Figure 4-12 for Jamf Now.

Figure 4-12. Download a CSR in Jamf Now

Notice that this process will look similar with most vendors, with this

option shown in Figure 4-13 for Addigy.

Chapter 4 MDM Internals

222

Figure 4-13. Create a push certificate in Addigy

Once there’s a CSR, it will be uploaded to the Apple portal you prefer.

We show the certificate portal at identity.apple.com in Figure 4-14, but

this specific task is likely to be done through either Apple School Manager

or Apple Business Manager eventually as it puts all required tasks on

Apple portals to configure MDM in one location. Click Create a Certificate

once authenticated to identity.apple.com and then upload the file from

the portal.

Chapter 4 MDM Internals

223

Figure 4-14. Provide the Signing Request in the push portal

When you upload the CSR in a plist format, you then receive back a

certificate and can use the portal you created the certificate to renew or

perform subsequent downloads, as seen in Figure 4-15. That certificate

is pinned to the hostname, and so once you start enrolling devices, you

cannot change the certificate or the name of the server without breaking

the ability for a device to communicate back to the server.

Chapter 4 MDM Internals

224

Figure 4-15. Download your Apple push certificate

That certificate is then uploaded to the MDM and anchors new

certificates the MDM creates to establish trust with devices and establish

trust for push notifications, through an APNs token and a key that

is unique to each device, called a push magic certificate. That key is

generated by a device and later used to prove authenticity of the device

during TokenUpdate commands. Installation of the profile that starts

this process can happen by opening an enrollment certificate, using

Automated Enrollment (which will be covered further later in this chapter)

or through Apple Configurator (covered more in Chapters 5 and 6).

Make sure not to let that certificate expire. As Jamf Now is alerting

the administrator in Figure 4-16, when the push certificate expires, the

devices must all be reenrolled. This is because a device can no longer

communicate to the server to obtain a new certificate. Enrolling a fleet

of 1000 or 100,000 is no fun task, given that with iOS devices, this process

would be manual and so require a lot of tapping on device screens.

Chapter 4 MDM Internals

225

Figure 4-16. Jamf Now push certificate renewal

When the MDM enrollment certificate is installed, the mdmclient

agent will be called. The device’s mdmclient then accesses a REST API

with an MDM vendor using a /checkin endpoint. Commands are pulled

from devices over HTTPS in plist-encoded dictionaries along with a

UUID of each command with the MDM server pinned, thus establishing a

secure connection from the client to the MDM vendor and a normalized

communication language between the two. Upon receiving an APN to

contact the server, which contains the topic of the server to check into, the

device communicates with the MDM check-in protocol to verify the device

can enroll, initialize a connection, and then update device tokens when

needed. The check-in has a few supported commands, or MessageTypes,

each submitted in a plist from the device:

• Authenticate is a property list with a MessageType of

Authenticate, a topic (e.g., com.orgname.mdm), and

the UDID of the device.

Chapter 4 MDM Internals

226

• TokenUpdate is used to update the token of the device.

These are for establishing authentication from the

device back to the MDM server and for the server

to match the device up to queued commands and

authorize that the device should in fact run those

commands.

• CheckOut is used to indicate back to the MDM that a

device has been unenrolled.

• Activation Lock is a later addition and runs

differently. A POST is sent to https://mdmenrollment.

apple.com/device/activationlock along with a

device serial number, an escrow key, and a message

to provide a user if the device is lost. This needs to

be done prior to the device going through the setup

assistant and so is done as a part of the check-in

protocol rather than the MDM protocol, although some

of the Activation Lock tasks are handled by the MDM

protocol.

The MDM protocol runs all the device commands post-enrollment.

The MDM endpoint is hard-coded into the enrollment profile at the

time of enrollment and so, as with the check-in URL, cannot be changed

post-enrollment without breaking the ability to communicate back to the

server. All POSTs look to that endpoint to see what commands are waiting

for the device. The URL for the check-in is immutable because the device

is authorized to talk to that endpoint using the certificates exchanged

at enrollment time, the .csr for which was submitted through SCEP at

enrollment. When the device checks in, it picks up any commands, in

dictionary form, waiting for the device. The check-in URL is not displayed

in the MDM profile in the System Preferences pane, but the MDM URL is,

as seen in Figure 4-17.

Chapter 4 MDM Internals

https://mdmenrollment.apple.com/device/activationlock
https://mdmenrollment.apple.com/device/activationlock

227

Figure 4-17. Profiles in System Preferences

 MDM: Device Management
The MDM Server, shown in the Mobile Device Management profile, shows

the URL to the endpoint that the device sends a POST to (typically just

called /mdm). That POST contains a standard dictionary with the device

UDID in a plist, and the response to that POST includes a status message

that there’s no action to be performed, or there will be an MDM command,

in the form of a dictionary.

The command dictionary includes a request type called RequestType

and a RequestRequiresNetworkTether – which when set to true only

allows the command to run when connected to a network (this is rarely

used). The RequestType is going to include most of the MDM commands,

Chapter 4 MDM Internals

228

such as ActivationLockBypassCode which surprisingly gets an Activation

Lock Bypass Code. These RequestTypes each have their own values that

must be in the dictionary as well as optional ones, and some have custom

error codes.

Each MDM server sends a notification through APNs with the

PushMagic string as the mdm key. The MDM server then queues any

commands waiting for the device. When a mobile device gets a connection

to the Apple Push Notification servers, the device is directed via the push

topic to query the server listed in the Server field for the Mobile Device

Management section of the profile. The request is sent, and the server

responds with the XML of the command and then receives a response

code. The MDM server interprets the response code and typically commits

that response into a database in order to display settings for the device in

a GUI. The rules for how those requests are sent and received are defined

in the MDM Protocol Reference Guide at https://developer.apple.com/

documentation/devicemanagement/commands_and_queries.

Each MDM vendor handles the logic of the command queue

differently. Most vendors store each action and then interpret that into a

log-on screen for administrators to view. Most vendors also deduplicate

commands, so devices aren’t told to install the same app five or six times

because an administrator duplicated some groups. Most vendors also

prioritize commands, so a wipe is sent as the highest priority command

for a device. But these are all different for each vendor. Most vendors have

built more and more logic as humans end up doing weird things to their

software (humans are the worst).

Now that we’ve looked at how devices get enrolled into an MDM

and how commands are queued up so the /mdm endpoint can respond

appropriately to devices, let’s look at what commands are available (we’ll

save the idea of declarative management for a future edition that has more

widespread adoption of the features – but make sure to watch the video at

https://developer.apple.com/videos/play/wwdc2022/10046/ to see

what the future of Apple Mobile Device Management is likely to entail).

Chapter 4 MDM Internals

https://developer.apple.com/documentation/devicemanagement/commands_and_queries
https://developer.apple.com/documentation/devicemanagement/commands_and_queries
https://developer.apple.com/videos/play/wwdc2022/10046/

229

Further, check out the KMFDDM project from Jesse Peterson to see a

reference implementation of declarative management at https://github.

com/jessepeterson/kmfddm.

 MDM Commands
Each MDM command maps to a RequestType, and there are optional

keys at the same level in a dictionary for some commands. Additionally,

given that it’s a dictionary, there are other attributes that can be sent along

with a command. In some cases, there is only one, and in other cases,

there are over a dozen keys that alter the behavior of a command. As you

look at the list of commands, just imagine how these are displayed in the

graphical interface of your favorite MDM. The MDM commands (a.k.a.

RequestTypes) that are placed into those dictionaries include the following

commands (as well as a few that get added each year as more functionality

is added to the MDM specification):

 1. ActivationLockBypassCode: Responds with a code

used to unlock a device that has Activation Lock

enabled (used if an Apple ID is not available).

 2. ProfileList: Lists profiles on a device.

 3. InstallProfile: Installs a profile on a device (see

Chapter 3 for more information on profiles).

 4. RemoveProfile: Deletes a profile from a device.

 5. ProvisioningProfileList: Provisioning profiles

link deploy signing certificates, App IDs, and a URIs

to an App ID to install an app on a device, so this

command lists those profiles deployed (and so the

apps if they successfully installed).

Chapter 4 MDM Internals

https://github.com/jessepeterson/kmfddm
https://github.com/jessepeterson/kmfddm

230

 6. InstallProvisioningProfile: Installs a

provisioning profile to cause an app to be installed

on a device.

 7. RemoveProvisioningProfile: Removes a

provisioning profile which causes an app installed

based on the URL of the provisioning profile to be

removed.

 8. CertificateList: Lists identity certificates installed

on a device.

 9. InstalledApplicationList: Lists applications

installed on a device.

 10. DeviceInformation: Responds with metadata

about a device, including UDID, the device ID, and

the last iCloud backup date, if the device is in an

AwaitingConfiguration state (to see if it has run the

Setup Assistant).

 11. SecurityInfo: Responds with security-centric

metadata about a device, including if the device

has a T2 chip (or M1 with similar functionality), has

FileVault enabled, etc.

 12. DeviceLock: Locks a device and optionally sets a

PIN to unlock the device and a message for the user,

presumably about why the device was locked or how

to return it.

 13. RestartDevice: Reboots a device.

 14. ShutDownDevice: Shuts down a device.

 15. ClearPasscode: Clears a passcode on a device.

Chapter 4 MDM Internals

231

 16. EraseDevice: Remotely erases a device so it can be

set up from scratch.

 17. RequestMirroring: Begins an AirPlay mirroring

session on the device, along with a destination to

mirror the device to.

 a. StopMirroring: Stops any active mirroring session on

a device.

 18. Restrictions: Obtains a list of restrictions that have

been configured on a device.

 a. ClearRestrictionsPassword: Clears a restrictions password

in case that password has been forgotten.

 19. UserList for Shared iPad: Responds with a list of

users that have accounts on a device, along with

some metadata about those users, such as name,

full name, and UID.

 a. UnlockUserAccount: Unlocks an account that has been

locked because a user provided an incorrect password too

many times.

 b. LogOutUser: Logs out the active user.

 c. DeleteUser: Deletes a user indicated in the UserName key.

 20. EnableLostMode: Sets a managed device into

Lost Mode.

 a. PlayLostModeSound: Causes a device in Lost Mode to make

an audible alert so you can find the device if it’s lost in the

office or classroom.

 b. DisableLostMode: Disables Lost Mode on devices that have

that setting enabled.

Chapter 4 MDM Internals

232

 c. DeviceLocation: Returns with the GPS coordinates of a

device that has been set in Lost Mode.

 21. InstallApplication: Installs applications on

devices from the app store or a URL and optionally

sets the applications to “managed.”

 a. InstallEnterpriseApplication: Installs software packages

which can be pinned for additional security.

 b. ApplyRedemptionCode: Redeems an app from the App Store

based on a redemption code (this software installation

method isn’t used that much anymore as redemption codes

are not reusable).

 c. ManagedApplicationList: Returns with a list of all managed

applications or applications installed by the MDM.

 d. RemoveApplication: Removes an application based on the

identifier (easily obtained via ManagedApplicationList).

 e. InviteToProgram: Invites an Apple ID to join the VPP for per-

user app assignments to the hash of an ID provided using a

query to iTunesStoreAccountIsActive.

 f. ValidateApplications: Validates that apps installed with a

provisioning profile are on a device.

 22. InstallMedia: Installs a PDF, epub (in gzip), or

iBooks Author media file (in gzip) into the Books

app on a device.

 a. ManagedMediaList: Lists all documents installed using the

InstallMedia command, along with the state of each (e.g.,

downloading).

 b. RemoveMedia: Removes any items returned by the

ManagedMediaList command response.

Chapter 4 MDM Internals

233

 23. Settings: Allows for enabling or disabling various

supervised managed settings on a device, such as

the device wallpaper, data roaming, and Bluetooth.

 a. ManagedApplicationConfiguration: Reports back a

dictionary for each app that has been built for Managed

App Config.

 b. ApplicationConfiguration: Sets Managed App Config

dictionaries, sending NSUserDefaults into the app.

 c. ManagedApplicationAttributes: Queries attributes set via

Managed App Config (from NSUserDefaults).

 d. ManagedApplicationFeedback: Provides a response to

key-pairs.

 24. AccountConfiguration: Creates a local

administrative account on a Mac.

 25. SetFirmwarePassword: Enables the firmware

password on a device, provided one was not set

before the device was enrolled into an MDM.

 a. VerifyFirmwarePassword: Sends a password to a device and

verifies that the firmware password on the device matches the

one sent as a part of the MDM command.

 26. SetAutoAdminPassword: Sends a salted PBKDF2

SHA512 password hash to a GUID for a given local

admin account.

 27. DeviceConfigured: Bypasses DEP for devices

currently set into an await configuration state.

Chapter 4 MDM Internals

234

 28. ScheduleOSUpdate: Causes an iOS, iPadOS, and

tvOS device to install product keys provided to

the device.

 a. ScheduleOSUpdateScan: Boolean that causes a device to

check for updates using Software Update.

 b. AvailableOSUpdates: Installs updates supplied in the

dictionary or if none are present installs all pending operating

system updates.

 c. OSUpdateStatus: Causes a device to check for the status of

any updates pending for that device.

 29. ActiveNSExtensions: Lists active NSExtensions

for a user.

 30. NSExtensionMappings: Manage NSExtension

mappings.

 31. RotateFileVaultKey: Rotates FileVault keys (e.g., if

they’re used by IT, they should be rotated).

Note For a more detailed description of commands, including the
arguments available for each command, the minimum Os to run each
command, and a description of each, see https://developer.
apple.com/documentation/devicemanagement#topics.

New commands show up in every version of operating systems, so

don’t be surprised if new ones come around before this book goes to

print. Keep in mind that the MDM server isn’t sending these commands

directly to the devices. They can’t as they don’t know the address of those

devices. The MDM server is putting the property list into a queue, and

when the device gets the notification, it will automatically check with the

MDM server and perform the action the command is telling the device to

Chapter 4 MDM Internals

https://developer.apple.com/documentation/devicemanagement#topics
https://developer.apple.com/documentation/devicemanagement#topics

235

perform. The commands then have response codes that are returned to

the MDM server. Those are too numerous to put in this chapter, but they

provide the MDM solution with the ability to interpret what information

Apple MDM developers determined would be important for the MDM

solution to have.

The simplest way to show how to send a custom command would

be to do so. We’ll use VMware Workspace ONE for this example. If you

have a Workspace ONE account, to get to the custom command screen,

to create and deploy a custom command, browse to a device in List View.

Then check the box for the device, and under the More Actions drop-

down, choose Custom Commands to see the dialog box to provide your

dictionary.

As seen in Figure 4-18, administrators can provide the necessary XML

code to run a command. This can be a bit dangerous, so make sure you

know what you’re doing.

Figure 4-18. Running arbitrary MDM commands using VMware
Workspace ONE

Chapter 4 MDM Internals

236

In this example, we’ll simply restart a device using the RestartDevice as

the string for the RequestType key. Notice we don’t need to send any other

keys for this type of action:

<dict>

 <key>RequestType</key>

 <string>RestartDevice</string>

</dict>

Or to receive a list of certificates installed on a device, we might use

this command:

<dict>

 <key>RequestType</key>

 <string>CertificateList</string>

</dict>

In both of the preceding examples, when we click the save button, we

will put an item in the queue and send a push notification to the device to

send a POST to the /mdm endpoint. The MDM will then respond with the

command we provided. This is especially useful when testing beta versions

of software or to obtain functionality for a new update before your MDM

vendor updates to account for new features.

Most MDM solutions don’t allow you to send an arbitrary command

to a device. This could be because developers don’t want certain actions

being performed without committing a record to the database they use

to track the state of a device, or it could be because developers haven’t

prioritized such a feature. Another MDM that allows such an action

would be MicroMDM. MicroMDM is, as the name implies, a slimmed

down MDM solution. MicroMDM allows an administrator to submit an

MDM command using a standard POST to a command’s endpoint. That

endpoint will parse the command from a standardized json format where

each key is an --arg that is followed by the value in the key.

Chapter 4 MDM Internals

237

In the following example, we’ll send a more complicated command,

InstallApplication. Here, we provide a UDID and a manifest_url as the first

and second positional parameters sent into the script:

#!/bin/bash

 source $MICROMDM_ENV_PATH

 endpoint="v1/commands"

 jq -n \

 --arg request_type "InstallApplication" \

 --arg udid "$1" \

 --arg manifest_url "$2" \

 '.udid = $udid

 |.request_type = $request_type

 |.manifest_url = $manifest_url

 '|\

 curl $CURL_OPTS \

 -H "Content-Type: application/json" \

-u "micromdm:$API_TOKEN" "$SERVER_URL/$endpoint" -d@-

Upon receiving the action to the endpoint, MicroMDM routes a push

notification message to the device; and when the device receives the push,

it looks to the server for the dictionary that’s waiting in the MicroMDM

queue and then interprets the dictionary to perform the app installation.

Luckily, the developers do much of the work, so you don’t have to

build your own server for the device to talk back to. But it is helpful to

understand what is happening so you can deal with issues when they come

up and in general be better informed about how you’re managing devices.

Now that we’ve gone through what happens with standard MDM

commands, we’ll move into automating device enrollment.

Chapter 4 MDM Internals

238

 Automated Enrollment, or DEP
One component of MDM is Automated Enrollment, which was formerly

referred to as the Device Enrollment Program, or DEP for short. Automated

Enrollment automatically enrolls a device into an MDM or at least

configures a device to log in to an MDM server and enrolls the device

if the server doesn’t require a user to authenticate. This is useful for

provisioning. An organization can ship a box to a user, and the user can

open the box and configure their own device by simply joining a network

and optionally providing credentials to complete the setup.

The DEP API provided by Apple is more modern, and messages

are exchanged in standard JSON format rather than in plist-driven

dictionaries. There are three primary APIs. The first is for resellers. When

DEP was initially released, only devices sold directly by Apple could use

DEP. Because a device is tied to uniquely identifying information such

as a UDID and a serial number, Apple was able to direct devices to an

MDM. But in order to support allowing DEP to work with devices sold

by resellers, an API was created for resellers to submit data about which

customer purchases each device.

 The Reseller DEP API
The most important thing to keep in mind about how resellers interact

with the Apple DEP program is that the reseller submits an order that

contains an orderNumber, orderDate, orderType, customerId, poNumber,

and then an array of deviceIds and assetTags. The deviceIds are the

serial numbers of the devices, and the link between the deviceId and

the customerId is created at this time and causes the devices for each

organization to properly appear in their Apple Business Manager or Apple

School Manager accounts. That json (stripped down for readability) would

look something like the following:

Chapter 4 MDM Internals

239

"orders": [

 {

 "orderNumber": "ORDER1234",

 "orderDate": "2022-09-22T08:07:13X",

 "orderType": "OR",

 "customerId": "Charles",

 "poNumber": "12345", {

 "deviceId": "SERIALNUMBER1",

 "assetTag": "MYASSETTAG1"

 },}

For more on the DEP APIs, see https://applecareconnect.apple.

com/api-docs/depuat/html/WSReference.html. The second is an identity

API used to authorize devices, which we won’t be covering as there is no

real public information available.

 The Cloud Service DEP API
The important API for the context of this chapter is the cloud service

API. This is available at https://mdmenrollment.apple.com/account.

Here, MDM vendors pull records of what devices are meant to access

servers they host. In exchange, those MDM vendors send back DEP

profiles to Apple. Those profiles are then placed on the device, so it is

trusted by the server and so it trusts the server back. These profiles contain

the screens that a device should skip during the Setup Assistant, a server

URL, and any certificates necessary for establishing a chain of trust to the

URL being accessed. The MDM authenticates back to the cloud service API

over OAuth 1.0 tokens.

The MDM will provide parameters for devices assigned to it in json to

the Apple DEP servers. An example POST would look as follows (e.g., in

Postman):

Chapter 4 MDM Internals

https://applecareconnect.apple.com/api-docs/depuat/html/WSReference.html
https://applecareconnect.apple.com/api-docs/depuat/html/WSReference.html
https://mdmenrollment.apple.com/account

240

User-Agent:ProfileManager-1.0

X-Server-Protocol-Version:2

Content-Type: application/json;charset=UTF8

Content-Length: 350

X-ADM-Auth-Session: $SESSIONID

 {

 "profile_name": "krypted.com",

 "url":"https://mdm.krypted.com/getconfig",

 "is_supervised":false,

 "allow_pairing":true,

 "is_mandatory":false,

 "await_device_configured":false,

 "is_mdm_removable":false,

 "department": "Marketing",

 "org_magic": "$PUSHMAGIC",

 "support_phone_number": $PHONENUMBER,

 "support_email_address": $EMAILADDRESS,

 "anchor_certs,

 "supervising_host_certs:,

 "skip_setup_items":[

 "Location",

 "Restore",

 "Android",

 "AppleID",

 "TOS",

 "Siri",

 "Diagnostics",

 "Biometric",

 "Payment",

 "Zoom",

 "FileVault"

Chapter 4 MDM Internals

241

],

 "devices":["$SERIALNUMBER1", "$SERIALNUMBER2"]

}

Upon request, the MDM server then receives a list of devices from

https://mdmenrollment.apple.com/server/devices – some of that data

would likely appear in the interface of your MDM solution (the exact way

these appear is a bit different in each vendor):

"serial_number" : "ABCD123AB1AB",

"model" : "IPAD",

"description" : "IPAD WI-FI 32GB",

"color" : "grey",

"profile_status" : "assigned",

"profile_uuid" : "12ab1a123abc1234a12a1a1234abc123",

"profile_assign_time" : "2022-08-01T00:00:00Z",

"device_assigned_date" : "2022-08-01T00:00:00Z",

"device_assigned_by" : "krypted@me.com"

Enrollment profiles from an MDM are not removable. When the

device powers up, mobileactivationd sends a dictionary with a DeviceID,

SerialNumber, UniqueDeviceID, as well as information about the Bridge

OS (an embedded variant of watchOS that provides the interface to the

T2 chip or an M1). If any of that information is altered, then Apple will

reject the activation. More importantly for the purposes of this chapter, if

the serial number is matched with one that’s been linked in the preceding

manner between the Apple Business Manager and Apple School Manager

accounts, the device receives the settings from the first set of information

provided to Apple from the MDM server to mdmenrollment.apple.com.

The device then uses the /getconfig URL (in Jamf, this is /cloudenroll,

and in microMDM, it is just /enroll) to obtain an enrollment profile and

responds based on the interpretation of that profile. If devices get wiped,

they will continue to reach out to the MDM /getconfig endpoint to pull

Chapter 4 MDM Internals

https://mdmenrollment.apple.com/server/devices

242

down a new enrollment profile. That /getconfig endpoint is different per

provider – and some have handlers for objects in the URLs, but that setting

is required in order for devices to know how they’ll enroll.

Finally, there’s an endpoint to unenroll devices and there’s an endpoint

to disown devices at https://mdmenrollment.apple.com/devices/

disown. This endpoint is used to remove devices from the portal, so you

can, for example, allow employees to purchase them when you remove

them from production. Now that we’ve looked at how devices enroll and

receive profiles and actions from the MDM server in response to their

APNs instructions to look for those payloads in their queue, let’s look at

how the mdmclient that sits on devices interprets those.

 mdmclient
The agent for MDM actions is mdmclient, which is the “app” that push

notifications are sent to. Once enrollment profiles are installed on a Mac,

mdmclient, a binary located in /usr/libexec, processes changes such as

wiping a system that has been FileVaulted (note you need to FileVault if

you want to wipe an OS X Lion client computer). This is started by the

mdmclient daemons and agents at /System/Library/LaunchDaemons

(com.apple.mdmclient.daemon.plist and com.apple.mdmclient.daemon.

runatboot.plist) and /System/Library/LaunchAgents, which are used for

computer and user commands, respectively. This, along with all of the

operators, remains static from 10.10 and on, with small new functionality

added with each new version.

The Volume Purchase Program, now a part of Apple School Manager

and Apple Business Manager, also responds to requests through

mdmclient. CommerceKit is a framework that mdmclient uses by calling

CKMDMProcessManifestAtURL with a dictionary that contains any

pinning certificates and optionally checks that the certificates haven’t

Chapter 4 MDM Internals

https://mdmenrollment.apple.com/devices/disown
https://mdmenrollment.apple.com/devices/disown

243

been revoked. This causes storeassetd to download the manifest and

then place any specified assets to be downloaded in the queue using

NSURLConnection. Then storedownloadd takes over and completes the

download, installing packages when complete.

The mdmclient hands any profile transactions (the most common task

most administrators use MDM to perform). To script profile deployment,

administrators can add and remove configuration profiles using the new /

usr/bin/profiles command. For more on scripting the profiles command,

which is helpful in testing and automating tasks when there’s no MDM

present, see Chapter 3.

The UUID for a given enrolled user profile can be found at the

following path, where * can be replaced by a given username:

defaults read /Library/Managed\ Preferences/*/com.apple.

systempolicy.managed.plist

The UUID would then be output as a PayloadUUID, as follows:

PayloadUUID = "CF4BCAA5-BCC6-4113-86D4-31A08C683770";

As usual, the Mac is a little different. You can see the directories to

better understand what’s happening under the hood using a jailbroken iOS

device or using the simulator.

If you look at an iOS device in the simulator, you’ll find com.apple.

managedconfiguration.mdmd.plist and com.apple.managedconfiguration.

profiled.plist in the LaunchDaemons for the simulator (and so /Library

would be relative to / on a jailbroken device). These are the two agents that

are the underlying MDM services. If you swap iPhoneOS.platform with

AppleTVOS.platform or WatchOS.platform, then you will see the same for

tvOS and watchOS, respectively.

Chapter 4 MDM Internals

244

When running commands, you can see that these are the agents that

control settings for iOS, based on processes that get started and run:

• /Library/Managed Preferences/ce/com.apple.

systempolicy.managed.plist

• /Library/Managed Preferences/com.apple.AssetCache.

managed.plist

• /Library/Managed Preferences/com.apple.

systempolicy.managed.plist

• /private/var/db/ConfigurationProfiles/Settings/com.

apple.managed.PlugInKit.plist

Much of the management in the future is likely to be handled

using the newer ManagedConfiguration.framework, with teslad

invoked as a LaunchDaemon by /System/Library/LaunchDaemons/

com.apple.managedconfiguration.teslad.plist (via /System/Library/

PrivateFrameworks/ManagedConfiguration.framework/Versions/

Current). Teslad has entries for a number of enrollment options, and

while, at the time this book is printed, it isn’t used much on the Mac, this

framework has started managing a number of other management tasks.

The fact that there’s a new framework for the Mac indicates that more

options otherwise reserved for supervised devices are likely to be made

available to the Mac in subsequent releases.

 Device Supervision
Employees at Apple and engineers in the broader community that

supports Apple devices have always been proud of the beautiful, curated

user experience on devices. No one ever wants to limit functionality

when possible. But in some cases, doing so is necessary. No one wants

their credit card numbers, social security numbers, or any private

information leaked.

Chapter 4 MDM Internals

245

There was a split in how engineers at Apple felt about managing

iOS devices. Everyone wanted to give administrators more and more

control. But many wanted to only do so if a device was owned by an

organization. The concept of Bring Your Own Device (or BYOD for short)

has always been the tip of the spear for Apple to get into the enterprise.

But enterprises began buying lots and lots and lots of iPads and iPhones

for staff.

The compromise was the ability to supervise a device. Devices enrolled

through Automated Enrollment (DEP) are usually set as supervised. The

MDM can choose to not set a device to supervised based on settings

(whether exposed to administrators or not). You can also retroactively

supervise iOS devices using Apple Configurator, as shown in Chapter 5.

Since the maturity of device supervision, most new iOS management

commands have required device supervision in order to work. The T2

chipset (and M1 being rolled out throughout Apple’s product line) is

now making true device supervision for the Mac a possibility and likely

indicates that commands reserved for supervised devices will start finding

their way to the Mac, including Managed Open-In functionality. One

aspect of Automated Enrollment and the ability to more granularly control

settings is the amount of clicking and tapping we want to allow our users to

avoid during the initial provisioning of devices. One aspect of where users

can get click fatigue with all the new privacy options is UAMDM.

 UAMDM
For iOS, Apple has had device supervision to act as the bright dividing

line between “this is a personal iOS device” and “this is a work-owned

iOS device.” On Macs running macOS Sierra and earlier, the line was

less clear as there weren't MDM functions that would not run equally

well on personally owned Macs and Macs owned by a company,

school, or institution. To address this, Apple introduced User-Approved

Chapter 4 MDM Internals

246

Mobile Device Management (UAMDM) as part of macOS High Sierra

10.13.2. UAMDM grants Mobile Device Management (MDM) additional

management privileges, beyond what is allowed for macOS MDM

enrollments which have not been “user approved.”

There are two ways to mark a Mac as being user approved. The first is

to have the Mac enrolled in Apple’s Device Enrollment Program. This is a

process where Apple explicitly sets the Mac as belonging to a company,

school, or institution and enrolls it with a specific MDM service. Since the

Mac is not a personally owned device, it gets UAMDM automatically. The

second is to have a human being click a button on the MDM profile issued

by an MDM server which supports UAMDM. To click the button, you

would use the following process:

 1. Open System Settings and go to the Privacy &
Security preference pane.

 2. Click Profiles toward the bottom of the list of

options.

 3. Click the MDM profile (Figure 4-19).

Chapter 4 MDM Internals

247

Figure 4-19. The MDM profile

 4. Click the Install button.

 5. Click the Install button in the confirmation window

which appears (Figure 4-20).

Chapter 4 MDM Internals

248

Figure 4-20. Approving the UAMDM profile

Once that is done, the Mac is now enabled for UAMDM, and the

managing MDM can now use the additional management options which

are only available for UAMDM-enabled Macs. The rights the MDM server

has are outlined in the profile, as seen in Figure 4-21.

Chapter 4 MDM Internals

249

Figure 4-21. The MDM profile, once approved

Something to be aware of is that Apple has taken some pains to block

automated ways to enable UAMDM, so clicking this button cannot be

performed via remote screen sharing or through the use of tools which

would normally help automate the clicking of a button. These protections

against machine-based enabling are to help make sure that a human being

has approved enabling UAMDM.

Chapter 4 MDM Internals

250

 Enrollment Commands
Enrolling a device is simply registering the device with the server that the

agent (mdmclient) will talk to. You can see the status of the enrollment

using the profiles command with the show verb and setting the -type

option to enrollment, as follows, which can verify that a particular Mac is

UAMDM enabled:

sudo /usr/bin/profiles show -type enrollment

Depending on your MDM enrollment status and operating system

version, you may see one of a few different status messages. The first is if

there is no MDM enrollment:

Enrolled via DEP: No

MDM enrollment: No

The second would be that the device was enrolled in MDM but doesn’t

have UAMDM enabled:

Enrolled via DEP: No

MDM enrollment: Yes

The third output is that the device was enrolled manually and the

user chose to accept the MDM enrollment options, which indicates (User

Approved)

Enrolled via DEP: No

MDM enrollment: Yes (User Approved)

The fourth output is that the device was enrolled via Automated

Enrollment (DEP) and the user chose to accept the MDM enrollment

options, which indicates (User Approved)

Enrolled via DEP: Yes

MDM enrollment: Yes (User Approved)

Chapter 4 MDM Internals

251

Some machines may also show an error that reads

Error fetching Device Enrollment configuration: Client is not

DEP enabled.

User Accepted MDM enrollment is likely to become more and

more important as the focus from Apple engineering teams seems to

be around protecting privacy at the cost of management options. This

focus on privacy is one of the reasons many choose an Apple device and

increasingly core to the Apple ethos. Now that we’ve reviewed how to see

the enrollment type, let’s move to what happens when UAMDM has been

accepted.

 The Impact of UAMDM
There are certain management privileges associated with UAMDM,

which otherwise can’t be centrally managed. As of macOS 10.14, those

management privileges include

• Centralized approval of third-party kernel

extension loading

• Centralized approval of application requests to access

privacy-protected data

Having UAMDM enabled allows a UAMDM-compatible MDM service

to deploy management profiles which can approve the following:

• Automatic loading of specified third-party kernel

extensions

• Automatic approval for specific actions by applications,

where those actions are accessing data protected by

macOS’s privacy controls

Chapter 4 MDM Internals

252

 Third-Party Kernel Extension Management

Starting with macOS 10.13.4, Apple introduced its first management

privilege exclusively associated with UAMDM. This was the ability

to deploy a profile which provides a whitelist for third-party kernel

extensions. This profile allows a company, school, or institution to avoid

the need to have individual users approve the running of approved

software.

Without the profile, the third party will need to be approved through

the User-Approved Kernel Extension Loading (UAKEL) process. Apple

later moved to block kernel extensions in general in favor of more specific

extensions based on new frameworks and APIs Apple released to do what

the previous kernel extensions had done. For example, rather than use

a kernel extension to perform virus scans, Apple provided the Endpoint

Security framework. These extensions often require entitlements similar to

how UAKEL functioned.

When a request is made to the OS to load a third-party extension

which the user has not yet approved, the load request must be manually

approved to protect the user’s privacy. Otherwise, it is denied and macOS

presents an alert to the user. The alert tells the user how to approve the

loading of the kernel extension signed by a particular developer or vendor,

by following this procedure. The user can then see extensions in a similar

way to how profiles are viewed:

 A. Open System Preferences.

 B. Go to the Privacy & Security preference pane.

 C. Click the Extensions button (Figure 4-22).

Chapter 4 MDM Internals

253

Figure 4-22. Click into an extension to see where it’s active

While waiting for kernel extensions to be approved, a copy of the

kernel extension was made by the operating system and stored in /
Library/StagedExtensions. This persists with system extensions in apps,

and once approved, the extension is made and allowed to load.

This process is relatively easy for an individual to manage on their own

computer, but it can be very difficult to manage when dealing with more

than a handful of Macs. To help manage a company, school, or institution,

Apple provided the option of using a management profile to centrally

approve specified third-party system extensions. To help whitelist all

extensions from a particular vendor or whitelist only specific ones, Apple

Chapter 4 MDM Internals

254

has made two sets of identifying criteria available: Team Identifier and

Bundle Identifier. These can then be set via MDM.

 Team Identifier

A Team Identifier is an alphanumeric string which appears similar to the

following:

7AGZNQ2S2T

This identifier is associated with a particular Developer ID for signing

extensions certificate identifiers. This certificate would be used by a

developer or vendor to sign all or most of their extensions.

Whitelisting using the Team Identifier has the advantage of being able

to whitelist multiple third-party extensions from a specific developer or

vendor. This capability allows a company, school, or institution to identify

a particular developer or vendor as being trusted in their environment and

have all of the relevant extensions be allowed to load by the whitelist.

 Bundle Identifier

The Bundle Identifier is specific to a particular kernel extension. It is

contained in the Info.plist file and is stored inside each extension.

Whitelisting using the Bundle Identifier allows a company, school, or

institution to get very granular about which kernel extensions from a

specific developer or vendor are approved and which are not. If using the

Bundle Identifier as part of the whitelist, both the Team Identifier and the

Bundle Identifier need to be specified in the profile.

 Using Team Identifier by Itself in a Third-Party
Extension Profile

If you want to use only the Team Identifier when whitelisting kernel

extensions, the profile can be viewed from Terminal. Here, you’ll see the

Chapter 4 MDM Internals

255

keys that show the UUID, the name, and much more that isn’t displayed in

System Preferences, as shown in Figure 4-23.

Figure 4-23. The contents of the Approved Extension profile

On the Macs which receive the profile, it will show as Approved

Extensions with the green Verified option. Under the hood, these are

sent to /var/db/SystemPolicyConfiguration/KextPolicy or ExecPolicy

(at the same path), which are sqlite databases. You can log in and

see both manually created kext policies and those pushed into

SystemPolicyConfiguration via mdm. To see manual entries (from within

sqlite) and then to see MDM-derived entries:

SELECT * FROM kext_policy;

SELECT * FROM kext_policy_mdm;

Based on the output, note that kext_policy shows a bundleID whereas

kext_policy_mdm only shows generated IDs. While kexts aren’t used as

much any longer, the same still rings true for system extensions.

Chapter 4 MDM Internals

256

 Privacy Control Management

Starting with macOS 10.14.0, Apple introduced its second management

privilege exclusively associated with UAMDM. This was the ability

to deploy a profile which provides a whitelist for signed applications

to execute certain actions or access areas which would be otherwise

protected by the user data protections introduced in macOS Mojave

10.14.0. These protections are managed by Apple’s expanded security

framework, Transparency Consent and Control (TCC).

To manage access using a profile, Apple has defined a set of keys

which correspond to the settings found in the Privacy tab of the Security

preference pane in System Preferences (Tables 4-1 and 4-2). Apple refers to

the profiles used for managing protected user data as Privacy Preferences

Policy Control Payload profiles.

Table 4-1. Privacy Service Dictionary Keys

Key Type Value

addressBook array of Identity

Dictionaries

Contact information managed by

apple’s Contacts.app.

Calendar array of Identity

Dictionaries

Calendar information managed by

apple’s Calendar.app.

reminders array of Identity

Dictionaries

reminders information managed by

apple’s reminders.app.

photos array of Identity

Dictionaries

pictures managed by apple’s photos.

app, where the picture data is stored

in the following location:

~/Pictures/.photoslibrary

(continued)

Chapter 4 MDM Internals

257

Key Type Value

Camera array of Identity

Dictionaries

a system camera.

access to the camera can only

be denied. there is no way to

automatically grant access.

Microphone array of Identity

Dictionaries

a system microphone.

access to the microphone can

only be denied. there is no way to

automatically grant access.

accessibility array of Identity

Dictionaries

Control the application via the

Accessibility subsystem.

postevent array of Identity

Dictionaries

allows the application to use

CoreGraphics apIs to send CGevents

to the system event stream.

systempolicyallFiles array of Identity

Dictionaries

allows the application access to all

protected files.

systempolicysysadminFiles array of Identity

Dictionaries

allows the application access

to some files used in system

administration.

appleevents array of Identity

Dictionaries

allows the application to send a

restricted appleevent to another

process.

Table 4-1. (continued)

Chapter 4 MDM Internals

258

Table 4-2. Identity Dictionary Keys

Key Type Value

Identifier string the bundle ID or installation path of the

binary.

Identifiertype string the type of Identifier value. Must be either

bundle ID or path.

application bundles should be identified by

bundle ID.

nonbundled binaries must be identified by

installation path.

helper tools embedded within an application

bundle will automatically inherit the

permissions of their enclosing app bundle.

Coderequirement string Digital signature of the binary.

the digital signature is acquired via running

the following command:

codesign --display -r- /path/to/binary/

here.

staticCode Boolean If set to true, statically validate the code

requirement.

Used only if the process invalidates its

dynamic code signature. Defaults to false.

Optional.

allowed Boolean If set to true, access is granted. any other

value denies access.

(continued)

Chapter 4 MDM Internals

259

Key Type Value

aereceiverIdentifier string the identifier of the process receiving an

appleevent sent by the Identifier process.

required for appleevents service; not valid

for other services. Optional.

aereceiverIdentifiertype string the type of AEReceiverIdentifier value.

Must be either bundle ID or path.

required for appleevents service; not valid

for other services. Optional.

aereceiverCoderequirement string Code requirement for the receiving binary.

required for appleevents service; not valid

for other services. Optional.

Comment string Used to provide information in the profile

about what is being managed. Optional.

Table 4-2. (continued)

These are more thoroughly documented at https://

developer.apple.com/documentation/devicemanagement/

privacypreferencespolicycontrol. In the case of an application which

needs access to all data in a user’s home folder, a profile would need to be

created which does the following:

• Identifies the application by its bundle ID and code

signature

• Allows it access to all protected areas using the

SystemPolicyAllFiles payload key

On the Macs which receive the profile, it should appear similar to the

one shown in Figure 4-24.

Chapter 4 MDM Internals

https://developer.apple.com/documentation/devicemanagement/privacypreferencespolicycontrol
https://developer.apple.com/documentation/devicemanagement/privacypreferencespolicycontrol
https://developer.apple.com/documentation/devicemanagement/privacypreferencespolicycontrol

260

Figure 4-24. Privacy Preferences Policy Control profile

With all of these moving pieces, a lot can go wrong, especially for

newer administrators. Learning to troubleshoot and debug can make it

easier to get your devices into the hands of users without going crazy.

 Enable APNs Debug Logging
Nearly every issue can be solved by looking at logs. Troubleshooting

MDM communications can be a bit of a tricky. Push notification

communications between macOS Server or another MDM and Apple Push

Notification are basically the same as troubleshooting the apsd client on

macOS. To facilitate troubleshooting, put the APNs daemon, apsd, into

debug mode.

Chapter 4 MDM Internals

261

To enable APNs debug logging, first set the log level:

sudo defaults write /Library/Preferences/com.apple.apsd

APSLogLevel -int 7

Then set an APSWriteLogs key to true to actually start writing these

entries out:

sudo defaults write /Library/Preferences/com.apple.apsd

APSWriteLogs -bool TRUE

Then simply restart the daemon:

sudo killall apsd

Now that you’re capturing logs, use tail with the -f option to watch

the apsd.log file at /Library/Logs/apsd.log. Be wary, as this can fill up

your system:

tail -f /Library/Logs/apsd.log

So to disable, use these commands, which undo everything we just did:

sudo defaults write /Library/Preferences/com.apple.apsd

APSWriteLogs -bool FALSE

sudo defaults delete /Library/Preferences/com.apple.apsd

APSLogLevel

sudo killall apsd

Another aspect of troubleshooting APNs and mdm commands would

be to check that all of the necessary ports are open. A useful tool for this

would be Push Diagnostics available on the Mac app store at https://

apps.apple.com/us/app/push-diagnostics/id689859502. Once

installed, simply open the app and click Start. As seen in Figure 4-25, if

all communications flow properly there is a green light for each category.

Hover over any that do not work properly to see the status of that one

specifically.

Chapter 4 MDM Internals

https://apps.apple.com/us/app/push-diagnostics/id689859502
https://apps.apple.com/us/app/push-diagnostics/id689859502

262

Figure 4-25. Running Push Diagnostics

You can also see a more detailed log of what worked and what

didn’t. As you can see in Figure 4-26, all communications are working as

intended.

Chapter 4 MDM Internals

263

Figure 4-26. Push Diagnostic logs

If those communications were not working as they should, you

would see a failure in the logs. In that event, there are some techniques

for verifying a failure and then possibly isolating where in the

communications that the failure occurs. Luckily, macOS comes with a

built-in port scanner. So you can use this command, nested inside the

Network Utility app, to interrogate a given port manually:

/System/Library/CoreServices/Applications/Network\ Utility.

app/Contents/Resources/stroke gateway.sandbox.push.apple.com

2195 2196

Chapter 4 MDM Internals

264

The scan then indicates that port 2195 is open and 2196 is not

accessible (although in some environments, these are deprecated in favor

of 443 and 5223) as shown in the following output:

Port Scanning host: 17.188.166.23

 Open TCP Port: 2195

If the name can’t be translated to an IP address, an error would

indicate that’s the case. If a port is inaccessible, then a traceroute

command can be used to show the servers that were gone through to get to

a given IP address or URL, including by port:

traceroute -p 2196 gateway.sandbox.push.apple.com

Provided the service is online, then looking at each route internally

(e.g., before going across the gateway) can show you where those

communications break down and which device might need some kind of

port opened. A number of environments block outgoing traffic to weird

ports, and so providing a network team with a list of ports that should be

opened to Apple is sometimes necessary.

Sometimes, in testing you find that the Apple services that are

foundational for device management are offline. This is why Apple, and

any responsible vendor, provides a few locations to find information about

the status of hosted services. The two primary locations to look would be

• System Status: www.apple.com/support/

systemstatus/ for information on Apple Business

Manager, Apple School Manager, App Store, Device

Enrollment Program, iCloud, Screen Time, Software

Update, and Volume Purchase Program endpoints

• Developer System Status: Apple Push Notification

services, TestFlight, App Verification, App Store

Connect (used by many vendors to look up metadata

about apps), https://developer.apple.com/

system-status/

Chapter 4 MDM Internals

http://www.apple.com/support/systemstatus/
http://www.apple.com/support/systemstatus/
https://developer.apple.com/system-status/
https://developer.apple.com/system-status/

265

According to how the developer of any third-party products that

you might use for MDM and other related services has integrated those

services into their software, if any of these services is down, it might

cause other services not to work. Many vendors try not to create service

dependencies where possible, but they do happen and can cause services

to be unavailable to devices or cause weird artifacts to appear in the

software you use to manage devices.

To get more detailed information, many of these services can be

contacted directly, for example:

curl -v -X POST https://tbsc.apple.com/ucrt/vend2

Other troubleshooting options include using the sysdiagnose

command and reviewing the log output of that. Now that we’ve looked at

troubleshooting some of the push communications required for devices to

receive commands, let’s move into one of the more valuable commands:

app deployment.

 App Deployment
The App Store changed the world of software distribution. First, the App

Store came to the iPhone and then the iPad and the Mac. While many

developers avoid those stores, it’s much simpler to deploy apps through

the stores than using the various other mechanisms Apple provides,

making management simpler and more secure. Additionally, the cost of

each app plummeted since the introduction of the App Store. A number of

services have also now moved to a subscription model.

This began before the App Store, with a number of vendors moving to

subscriptions for hardware firmware, etc. Apple just did a better job than

anyone else at it, turning the services division of the company into a cash

cow. But organizations needed to deploy apps to a lot of devices – and so

the Volume Purchase Program (VPP) was born. To best understand VPP, it

Chapter 4 MDM Internals

266

helps to look at how it evolved. In the beginning, teachers were given gift

cards. This violated so many basic concepts around financial responsibility

in schools and companies, and so Apple engineers started looking at ways

to deploy applications to devices that didn’t include a gift card.

 Gift and VPP Codes
The first stab at large-scale app deployment was using a gift code, which

leveraged existing functionality that already existed for the App Store.

Basically, you can buy an app or other media on the app store for someone

else. You do this by using the Gift This button in the Apple Music Store (not

the streaming service) as seen in Figure 4-27.

Figure 4-27. Gifting an Apple Music asset creates a code

When you do, the Apple Music Store services sends a gift code to the

person you purchased it for. When the link is clicked, iTunes is opened,

and you are directed to associate that code to your iTunes account. Rather

than associating a code, you can instead harvest those gift codes and

deploy a link to buy an app with the gift codes embedded into a buy.itunes.

apple.com URL, where 12345678 is replaced with a code:

https://buy.itunes.apple.com/WebObjects/MZFinance.woa/wa/com.

apple.jingle.app.finance.DirectAction/freeProductCodeWizard?app

=itunes&code=12345678

Chapter 4 MDM Internals

267

When the link is used, the gift code is marked as consumed and is no

longer able to be used to buy another app. Early versions of VPP were a

web service that would track these gift codes and assign them to a device

dynamically by deploying the link to the device. The user needed a unique

Apple ID on the device, and new codes were added to VPP using a csv that

was basically the same thing as the codes as shown in the preceding link.

Later, they could be pulled back rather than just deployed. They could also

be taken out and added to a csv file.

 Volume Purchase Program
The csv with gift codes could also be loaded into Apple Configurator or an

MDM that supported that deployment type to deploy the apps (some still

do in a hybrid model for backward compatibility). This method consumed

codes upon device setup and so was short-lived. But the concept was

similar. The fact that most users used personal Apple IDs and once an

app was assigned, the ownership was assigned permanently, even when

the user left the organization, caused Apple to move to a user assignment

service. This is a collection of API services, available at https://vpp.

itunes.apple.com/WebObjects/MZFinance.woa/wa/<serviceName>

(where <servicename> is one of the following):

• registerVPPUserSrv: Creates a user in VPP and sends

the user an invitation, or if it’s a Managed Apple ID,

links the Apple ID to the instance. Accounts then use a

GUID (clientUserIdStr) for tracking information about

the accounts.

• getVPPUserSrv: Checks the clientUserIdStr to get the

associated itsIdHash or the hash of the Apple ID. This

is important philosophically because the MDM server

should not know the Apple ID for non-Managed

Apple IDs.

Chapter 4 MDM Internals

https://vpp.itunes.apple.com/WebObjects/MZFinance.woa/wa/<serviceName>
https://vpp.itunes.apple.com/WebObjects/MZFinance.woa/wa/<serviceName>

268

• getVPPUsersSrv: Responds with a list of users,

including those retired, so the MDM can track its own

information about those users internally.

• GetVPPLicensesSrv: Responds with a list of

licenses (adamIds) and the users (in the form of

clientUserIdStr) to link which user is consuming which

licenses and the remaining license counts.

• GetVPPAssetsSrv: Returns adamIds, whether an app is

revocable, how it is licensed, and consumption of the

available assignments of the licenses owned.

• retireVPPUserSrv: Unlinks a user (clientUserIdStr)

from the VPP account.

• manageVPPLicensesByAdamIdSrv: Associates

licenses for apps and other content to the users who

will need them and then removes the assignments of

that content when needed.

• editVPPUserSrv: Used to edit Managed Apple ID

information.

• VPPClientConfigSrv: Allows organizational

information to be pulled from the server.

• VPPServiceConfigSrv: contentMetadataLookupUrl a

response for obtaining metadata about an app, which

includes most things you see on the iTunes or App

Store pages for content and apps

The preceding commands can change and are documented at

https://developer.apple.com/documentation/devicemanagement/

client_configuration. Most administrators won’t have to interact with

Chapter 4 MDM Internals

https://developer.apple.com/documentation/devicemanagement/client_configuration
https://developer.apple.com/documentation/devicemanagement/client_configuration

269

these commands directly, although it helps to know what is happening

as you’re using tools to analyze network traffic when troubleshooting

or looking at a device while working on app distribution issues. Most of

the preceding commands need to have an sToken. An MDM solution

is integrated with that service using a VPP token. The token creates a

connection between an MDM solution (e.g., Bushel, Apple’s Profile

Manager, Casper, etc.) and apps you purchase through the VPP portal. But

what’s in a token? The VPP token is a base64 encoded file. You can cat the

file, and it will show you a bunch of garbly-gook (technical term):

base64 --decode /Users/charlesedge/Desktop/kryptedcom.vpptoken

This was shown in a screenshot earlier in the chapter, but there’s

more to it than all that. Once the vpptoken is decoded, this file can display

improperly; if it fails, use the following command:

echo `cat /Users/charlesedge/Desktop/kryptedcom.vpptoken` |

base64 --decode

The contents of the file are then displayed, as follows:

{"token":"AbCDe1f2gh3DImSB1DhbLTWviabcgz3y7wkDLbnVA2AIrj9gc1h11

vViMDJ11qoF6Jhqzncw5hW3cV8z1/Yk7A==","expDate":"2022-09-03T08:

30:47-0700","orgName":"Krypted.com"}

This is a comma-separated set of keys, including token, expDate, and

orgName. Once the sToken is downloaded and installed into your MDM,

the token establishes the trust until the expiration date (which should

give you plenty of time to renew by). The orgName is what you entered in

the VPP portal when you set up the account and is also escaped and then

used as the filename, as we covered earlier. Once the sToken is installed,

administrators then purchase apps using the VPP store or, if they’ve moved

their sTokens to Apple Business Manager, through the Apple Business

Manager front end to the VPP store.

Chapter 4 MDM Internals

270

The content purchase experience is pretty straightforward as shown

earlier in the chapter. Once you hit purchase, the MDM uses the preview

services to keep the purchase history in sync with the vpp endpoints at

https://vpp.itunes.apple.com/WebObjects/MZFinance.woa/wa. VPP is

one of the more challenging services to develop around on the MDM side.

Keeping all of that metadata in sync with Apple and dealing with failed API

calls when servers aren’t responsive can be a challenge. Additionally, for

non-Managed Apple IDs, the MDM server is constantly polling the VPP

service to see if they have registered with VPP or unregistered.

There are also a lot of flows to how you build VPP into a product, which

means there are different interpretations that make it challenging to plan

around as an administrator who is a customer of an MDM vendor. One of

the more important of these is whether you have supervised or unsupervised

devices. You can deploy apps to a supervised device through device-based

VPP without the consent of a user. You can deploy apps to a user via an

invitation, and they may or may not ever accept your invitation. You can

deploy apps to Managed Apple IDs that then appear in the purchase history.

The interactions between VPP and end users are at times challenging

to manage. When a user is prompted with various account types, they

can change between iOS and macOS versions, as Apple improves the

experience with managing how apps get managed on devices. And different

vendors implement some of the workflows differently. Therefore, work with

each MDM vendor to plan the best workflow for each specific environment.

 Managed Open-In
Managed Open-In is a feature that allows organizations to protect the

information on devices they provide to employees. When an app is

deployed, you can select whether the content that is obtained via the app is

managed. If you manage this content, then any data that is provided via the

MDM is then no longer accessible outside of other tools provided by that

Chapter 4 MDM Internals

https://vpp.itunes.apple.com/WebObjects/MZFinance.woa/wa

271

MDM. For example, if an MDM solution is used to deliver email settings

and apps, the users on those devices will only be able to open attachments

in the apps that the MDM delivered and cannot use a share sheet to

transfer data to an app they loaded themselves. This keeps organizational

data out of your user's personal Dropbox account and hopefully makes it

easier to remove the organizational data from a device without impacting

the rest of the data on the device, such as photos people took of their kids.

The Managed Open-In feature requires Apple's Volume Purchase

Program (VPP) for app distribution. For more on this technology, see

www.apple.com/business/resources/docs/Managing_Devices_and_

Corporate_Data_on_iOS.pdf.

 Host an .ipa on a Web Server
You can also manually install an app on iOS devices without the use of the

app store. This provides a little insight into what’s happening behind the

scenes of the VPP services. To do so, you’ll need to sign the app in Xcode,

which is outside the scope of this book. The resulting asset you’ll get is an

.ipa file (the application bundle) signed by your organization’s distribution

certificate. The .ipa file can then be loaded into Apple Configurator for

distribution or distributed through a web server.

By default, most web servers do have a handler that tells them what to

do in the event that a call attempts to access one of these files. Therefore,

in order to support downloading those files properly, you need to teach the

server how to handle them.

We’ll start by obtaining the MIME type from the Mac file command in

Terminal. To do so, run the file with the, big surprise, –mime-type option

and then the path to the file:

file --mime-type /Users/ce/Downloads/enrollmentProfile.

mobileconfig

Chapter 4 MDM Internals

http://www.apple.com/business/resources/docs/Managing_Devices_and_Corporate_Data_on_iOS.pdf
http://www.apple.com/business/resources/docs/Managing_Devices_and_Corporate_Data_on_iOS.pdf

272

The output would be as follows, indicating that a file with the

.mobileconfig extension has the application/octet-stream extension:

/Users/ce/Downloads/enrollmentProfile.mobileconfig:

application/octet-stream

Since more and more apps are deep linking a plist into the app, we’ll

also add a plist. The output on a Mac for the various file types is

• .mobileconfig: text/xml or application/octet-stream

if signed

• .mobileprovisioning: text/xml or application/octet-

stream if signed

• .ipa: application/x-ios-app

• .plist: text/xml or application/octet-stream if a

binary plist

In the preceding outputs, note that a signed mobileconfig, a signed

mobile provisioning, and a binary plist are basically interpreted as

binary files. This means that when possible, use signed mobileconfig and

mobileprovisioning files so you have a consistent handler.

We’ll start defining those with Apache. Handlers are managed in

Apache’s global configuration file, often located at /etc/httpd.d/httpd.conf,

and you would paste the following toward the bottom of the file where you

see the media types (note that each AddType is teaching the web server

what type of file each file extension indicates):

AddType application/octet-stream .ipa

AddType text/plain .plist

AddType application/octet-stream .mobileconfig

Chapter 4 MDM Internals

273

In the preceding example, we set a plist to plain in order to show that

sometimes it is, given that many an app developer does things differently.

Alternatively (or additively if you need to host both binary and flat plist

files), you could create an .htaccess file in the directory with the files

(e.g., if you don’t have root access to change the httpd.conf), by adding

something similar (the # is indicating a commented line):

Apps

AddType application/octet-stream .ipa

AddType application/octet-stream .plist

AddType application/octet-stream .mobileconfig

For IIS, you would instead go into IIS Manager and right-click the

name of the server, select Properties, and click New… in order to create

new MIME types. Then add each using the preceding types.

To add a MIME type on nginx, edit the mime.types file in the conf

directory for nginx. This is often found in /etc/nginx or /opt/nginx but

ymmv. Once found, in mime.types look for a types section wrapped in

curly braces {}:

types { application/octet-stream mobileprovision; application/

octet-stream mobileconfig; application/octet-stream plist;

application/octet-stream ipa; }

Note In some cases, you might find that “application/x-
apple- aspen-config” and in others text/plain or text/xml work
better for .mobileconfig MIMe types. For more on this, see the
official apple documentation at https://developer.apple.
com/documentation/devicemanagement/account_
configuration.

Chapter 4 MDM Internals

https://developer.apple.com/documentation/devicemanagement/account_configuration
https://developer.apple.com/documentation/devicemanagement/account_configuration
https://developer.apple.com/documentation/devicemanagement/account_configuration

274

If you have failures, you can use a proxy to check it. Here, you’d

probably want to use a unique port number to make calls easier to use. If

you use Charles Proxy, you’d configure the proxy in the Wi-Fi settings of an

iOS device and then open the link in a browser and watch for any failures.

You can create app provisioning profiles in Xcode at the time the app

is built.

 Sign and Resign macOS Applications
The codesign command-line tool is used to sign applications and packages.

If you have an .app, then you’ll need to first load a certificate that can be used

to sign an app onto the Mac being used and then point it at the app to be

signed. Any time you alter an .app, you’ll want to do this, and before doing

so, you’ll want to make sure that the certificate you’re using to sign the app is

either from a public CA or has been distributed to client computers.

As an example, let’s use the codesign command to sign the Microsoft

Word application using a certificate called pretendcocert that’s been

loaded in your keychain. Here, we’d use the codesign command followed

by the -s option to sign and then the name of the cert followed by an

escaped (or quoted) path to the app bundle, as follows:

codesign –s mycert /Applications/Microsoft\ Office\ 2021/

Microsoft\ Word.app

This has become more of a challenge since Apple implemented

various controls to validate the authenticity of software as a part of App

Notarization, covered in the next section – especially for software that’s

submitted to the App Store. However, the codesign command is capable

of much more, but isn’t the only tool that administrators need to learn to

distribute applications. You could then perform similar operations on iOS

using techniques similar to those described: https://docs.microsoft.

com/en-us/intune/app-wrapper-prepare-ios.

Chapter 4 MDM Internals

https://docs.microsoft.com/en-us/intune/app-wrapper-prepare-ios
https://docs.microsoft.com/en-us/intune/app-wrapper-prepare-ios

275

 App Notarization
As of 10.14.5, Apple requires that all software be notarized (and signed)

by Apple. This is referred to as App Notarization. In order for Apple to

sign software, they check the software to make sure it’s safe, and for new

apps, developers will require that all software be notarized, including apps

and extensions (most will have dylibs disabled for further protection).

Submitting an app for notarization is easy. We’ll cover using the xcrun

command-line tool with the altool verb to do so. But first, there are some

requirements you should know about:

• The notarization service uses an automated scan that

usually takes about 20 minutes and requires at least the

10.9 macOS SDK.

• Before submitting, make sure code signing has been

enabled for all executables and that you enabled the

Hardened Runtime option.

• Find a workaround if you’re setting com.apple.security.

get-task-allow to true for any reason.

• Make sure to use an Apple Developer ID instead of a

local cert from Xcode for apps and kexts. And make

sure all code signing certs have a timestamp when

running your distribution workflows in Xcode, or if

using codesign, make sure to add –timestamp.

Now we’ll need to use xcrun with the altool. Here, we’ll use the –

notarize-app option and then define the bundle. This is done using the

reverse naming convention you’ve always used for the –primary-bundle-id

option and then the username and password from your Apple ID linked

to your Developer ID and finally the –file which is the zipped output

from Xcode:

Chapter 4 MDM Internals

276

#!/bin/bash

/usr/bin/xcrun altool --notarize-app --primary-bundle-

id "com.myorg.myproduct" --username "krypted@myorg.com"

--password "icky_passwords" --file "/Users/krypted/Documents/

myproduct.zip"

You can use any tools to build this into your development pipeline.

In this example, we’ll use the open source Bamboo solution as the

postflight from our xcrun workflow. We’ll start by naming our script /usr/

bambooscripts/notarize.sh and then follow these tasks to get the build

automation step in place (Figure 4-28):

• Open the Tasks configuration tab for a job (or default

job in a new plan).

• Click Add Task.

• Add a Task Description, which is just how the task is

described in the Bamboo interface.

• Uncheck the box to “Disable this task.”

• Provide a path to the command executable, which in

this case will be a simple bash script that we’ll call /

usr/bambooscripts/notarize.sh. If you’re stringing

workflows together, you might add other scripts as well

(e.g., a per-product script as opposed to a generic script

that takes positional parameters for arguments).

• Provide any necessary arguments. In this case, it’ll just

be a simple job, but you can reduce the work by adding

arguments for processing paths of different products.

• Provide any necessary environment variables. We

won’t use any in this project.

Chapter 4 MDM Internals

277

• Provide any necessary “Working Sub Directory”

settings, which is an alternative directory, rather than

using a relative path. If you don’t provide a working

subdirectory, note that Bamboo looks for build files in

the root directory.

• Click the Save button (as you can see in Figure 4-28).

Figure 4-28. Automate Bamboo tasks

As you can see, the actual notarization process with Apple isn’t that big

of a deal. What can be more challenging is to resolve any issues Apple may

find with software before it can pass the notarization checks and to deal

Chapter 4 MDM Internals

278

with latency issues. This type of code change is based on the app you might

be developing (or resigning) and therefore beyond the scope of this book.

We do pick up more on app distribution and automation in Chapter 9.

 Summary
MDM is the built-in management agent for Apple devices. MDM is

the future of Apple management. Functionality built into MDM for

management increases every year. This is true for iOS, iPadOS, tvOS, and

macOS. For macOS, the ability to manage devices using scripts seems to

conversely decrease every year (and the options of scripting languages),

making MDM-based management more and more important with each

passing release.

The addition of supervision allows Apple to limit the management

options available on devices a given organization doesn’t own. Supervised

devices can be managed more granularly. UAMDM also increases or

decreases the amount of management. This is part of a deliberate plan

from Apple to allow more and more centralized control, the more an

organization can prove they own a device and the device isn’t owned by

an employee, and the more the employee chooses to opt into various

management options.

iOS device management is simple. Apple has been able to scale

offerings (especially using third-party management tools) while preserving

that privacy of the humans that use their devices. iOS has led the way, but

the Mac is quickly catching up. As an example, it’s easy to imagine a time

when apps on a Mac will only be self-contained .app bundles and when

the only deployment method for those apps in large organizations will be

via the App Store or MDM. The installation package has been around for a

long time and gives software developers the ability to distribute a number

of different kinds of files, fonts, and automation scripts to run when an app

is installed. But Apple has been locking down all of those technologies for

Chapter 4 MDM Internals

279

a long time. There’s no reason to think MDM won’t be the only real way to

manage an Apple device in a few years (although we said that in the first

edition of this book as well).

Volume distribution of applications is another place where Apple takes

great care to put a line in the sand between institutional data and personal

data. The device management tools don’t know the Apple ID of a user

unless it’s a Managed Apple ID. The device management tools can’t install

an app on a device without a user’s approval unless it is a supervised

device. In macOS 10.15, Apple also added a whole new enrollment type,

putting all data from a Managed Apple ID onto a separate partition on a

computer. This attention to detail is one of the reasons that people want

Apple devices, but the lack of programmatic management here and there

certainly seems to chafe some administrators.

Now that we’ve pulled back the covers a bit to expose what’s going

on behind the scenes with Apple device management, let’s look to get

devices into the hands of our coworkers, starting with iOS Provisioning, in

Chapter 5.

Chapter 4 MDM Internals

281

CHAPTER 5

iOS Provisioning
Imaging. We used to say that we “imaged” computers. An image was a

perfect representation of a device that was ready to go into the hands of a

user. The images were often monolithic or later packages that created an

end result that still appeared like one completed monolith. But then came

iOS and then iPadOS. Administrators didn’t “image” iOS or iPadOS devices

as much as they “prepared” them, or at least that’s what the buttons in

the software said at the time. These days, preparing a device to go into the

hands of an end user is more about provisioning the device to a user than

it is about imaging the device.

Eventually, the content of Chapters 4 and 5 will be merged as the

technology itself converges to tell a similar management story for all Apple

platforms. Until then, we will use the same process to prepare an iPhone,

iPad, or Mac. For some environments, this might have already happened

ever since the M1 Macs began to ship. But imaging never entered into

the vernacular for iOS. You could restore a signed operating system to a

device in the form of exploding the files from a compressed file of the iOS

operating system, which is distributed as an ipsw file provided by Apple

that can’t be altered. That’s now possible on an M1 Mac. This would be

expanded onto the disk of an iPhone or iPad. And you could deploy a

profile to enroll the device into a Mobile Device Management, or MDM,

solution, using a tool like Apple’s Profile Manager (or Apple Business

Essentials for newer entrants into the Mac Admin community), until

the Device Enrollment Program, or DEP, made that unnecessary. This is

another example of how the technology from iOS benefits the Mac.

© Charles Edge and Rich Trouton 2023
C. Edge and R. Trouton, Apple Device Management,
https://doi.org/10.1007/978-1-4842-9156-6_5

https://doi.org/10.1007/978-1-4842-9156-6_5

282

When we say “imaging” a Mac, we typically think of erasing a device

and putting new bits on the device in the form of a fully functional

operating system on the filesystem of the device. This gives the device

everything a user needs to get their work done – and doing so by restoring

a monolithic “image” to the device is the simplest step when deploying

a device for the first time. First, we moved from monolithic imaging to

package-based imaging. Then we moved from package-based imaging

to restoring a “thin” image or one with just the operating system and an

agent. Then Apple gave us the Device Enrollment Program (or DEP for

short), and we went to skipping that step and taking devices out of the box

with the default operating system. This allowed users to do the imaging

on the fly that many large organizations used to pay $20–$40 per device

to have done off-site. Automated Device Enrollment automatically enrolls

the device into MDM, puts apps on the device, and puts the agent on the

device through MDM. There are less options, but the process has never

been so streamlined with such a small amount of work.

Shipping devices directly to a user makes people feel like they’re

getting the new device they were always getting. That “new device feel”

is special. Once administrators had everything necessary to provision

a device out of the box, Apple released the APFS filesystem (or Apple

Filesystem), and the native restrictions for restoring became common on

the Mac. It was a learning curve but ultimately one that makes our lives

better. Opening the plastic on a device also makes the users feel more

empowered to care for the device, like they would if they went to the Apple

store and paid for it.

Operating system updates for iOS were always free (except that one

time early on, but we don’t need to go into that). Mac updates became free

and simplified the distribution process while allowing users to always run

the latest operating system. By making the operating system free, Apple

was then able to simplify the options for reinstalling macOS.

Chapter 5 iOS prOviSiOning

283

There are certainly differences still, though. Therefore, this chapter

covers the items specific to iOS. It’s also useful for those who work with the

Mac exclusively, as the Mac has been trending toward iOS when it comes

to deployment for years (especially with regard to how Apple Configurator

is used).

 iOS Provisioning
As mentioned, in a perfect world, administrators can send a device to a

user directly from Apple or a reseller, the user opens the device, and all of

the magic happens to put that device into a state where it just works with

the organization’s environment. Behind the scenes, a lot goes into how

admins can make that happen. We’ve discussed many of those building

blocks. In Chapter 3, we covered Profiles. In Chapter 4, we covered

MDM. There are still some gaps; and many are more logistical than they

are technical. There are times when automated enrollment doesn’t do

everything an organization might need.

For starters, you have to get on a Wi-Fi network in order to be able to

enroll an iOS device into MDM, even with Automated Device Enrollment.

This means a user has to join the network, and so if you use 802.1x or need

an agent to be able to enroll, there’s a chicken and egg situation. Some

organizations use Ethernet adapters for iPads to get those certificates

going and to kickstart those communications. Others need a completely

over-the-air workflow assuming users are never in the office. Most

environments are somewhere in the middle, so we’ll cover the options

available for provisioning iOS devices in this section, starting with doing so

using Apple Configurator.

Chapter 5 iOS prOviSiOning

284

 Prepare an iOS Device Using Apple Configurator
In Chapter 3, we used Apple Configurator to create profiles, but it can be

used for much, much more. In this chapter, we’ll build out a workflow to

get certificates on devices (also using profiles), but just as importantly

we’ll take some actions on those devices to provide a consistent user

experience.

One theme of this book is that in the Apple world, we don’t like to

be heavy-handed with management (unless necessary in high-security

environments). But we do like to ensure devices meet our requirements

in order to join networks, and we like to make the experience of getting a

new device as frictionless as possible, so the people who use them don’t

avoid making eye contact in the hallways! Apple Configurator gives us a lot

of the tools to do just that. Because not all devices are handled the same,

we typically begin by grouping our workflows into what are known as

Blueprints. In the next section, we’ll install Apple Configurator and create

our first Blueprints.

 Install Apple Configurator
Apple Configurator is available on the App Store. It can be run from iOS or

Mac. For the purposes of this chapter, we’ll use it on a Mac. To download

it, simply go to the App Store and search for Configurator and then click or

tap Install. Once installed, open Configurator, agree to the licensing terms,

and at the Get Started screen (Figure 5-1), click Get Started.

Chapter 5 iOS prOviSiOning

285

Figure 5-1. Create a blueprint

The Configurator screen will then look a little lonely because the

initial screen has no settings yet (Figure 5-2). The main tasks the tool is

used for are to back up, to “restore” a device backup, add content (apps,

documents, or profiles), remove content, modify the look of a device

(e.g., wallpapers), and associate devices with Automated Enrollment that

weren’t properly associated at the time of purchase.

Chapter 5 iOS prOviSiOning

286

Figure 5-2. Configurator is full of promise, but has no devices yet

Most of the things that we’ll use Configurator for will require an

Apple ID for the organization (like the one associated with the MDM) to

be used with it. To sign in, click Account and then Sign In (Figure 5-3).

When prompted, provide the credentials for the organization and select a

location if applicable (both of these are from Apple Business Manager or

Apple School Manager and covered in Chapter 3).

Figure 5-3. Sign in to an admin Apple ID for the organization

Provide a second factor for authentication if prompted, and then it’s

time to create the first blueprints.

Chapter 5 iOS prOviSiOning

287

 Create Blueprints
Blueprints allow administrators to configure a template of settings,

options, apps, and operating systems. Blueprints are applied to an iOS

device, which represents a predefined workflow. For example, if you

have 1000 iOS devices, you can create a blueprint with a restore item,

an enrollment profile, or a default wallpaper. You can also skip all of the

activation steps, install four apps, and then enable encrypted backups. The

blueprint provides all of these features to any device that the blueprint is

applied to.

Note in the following sections, we’ll look at a lot of different
options. they’re all optional, according to what it is your organization
needs to accomplish.

Keep in mind that they’re called Blueprints because you’re not

dynamically making changes to devices over the air or grouping devices.

Instead, you’re making changes to devices when you apply that blueprint

or workflow to the device. To get started, open Apple Configurator and

click the Blueprints button and then click Edit Blueprints. Notice that when

working on Blueprints, you’ll always have a blue bar toward the bottom

of the screen. Figure 5-4 shows a blank slate so you can start building

workflows. Once created, Blueprints are tiled on the screen, although as

you get more and more of them, you can view them in a list.

Chapter 5 iOS prOviSiOning

288

Figure 5-4. Create a blueprint

Click the New button to create the first blueprint. Here, give it a name

and then double-click it once created. You’ll have a number of options

which we’ll describe later in this chapter including

• Install or remove apps and documents.

• Change the name of devices en masse, using variables.

• For supervised devices, you can change the wallpaper

of devices and modify the layout of apps.

• Update software.

• Install or remove profiles.

• Back up and restore saved backups onto devices.

• Perform some actions, such as caching an unlock token

so you can reset passcodes, putting devices into kiosk

mode, and wiping devices.

Chapter 5 iOS prOviSiOning

289

You can also configure automated enrollment. But for an increasing

number of environments, before we can enroll, we need to get a certificate

to join a wireless network.

 Manage Content
We can manage files on disks. Configuration files are stored in what are

known as profiles or xml files (as covered in Chapter 3). These can be used

to distribute apps, to install certificates, and to deploy content to devices.

 Add Certificates for 802.1x with Profiles
to Blueprints
One of the tasks you’ll need to perform in Apple Configurator is to assign

Profiles to iOS devices in order to set them up with features or restrict the

device from using certain features. Adding a certificate to a device and

configuring the device to join a wireless network is pretty common and

a fairly simple workflow. To get started, open a Blueprint or create a new

Blueprint. Then follow along with these steps:

 1. From the screen for that Blueprint, click Profiles in

the sidebar (Figure 5-5).

 2. If you’re working with a new Blueprint and creating

a new profile, click the File menu and click New

Profile.

 3. Next, provide a name for the profile in the

Name field. In this example, we just called the

profile 802.1x.

 4. Leave the identifier in the Identifier field.

Chapter 5 iOS prOviSiOning

290

 5. Click in the Organization field and provide the name

of your organization.

 6. Click Description and provide a brief explanation

of what the profile is meant to do (this is nice for

the next person who needs to manage what you’re

working on).

 7. Consent is rarely required with Apple Configurator–

based workflows, but you can provide a message

that an end user has to tap at the time of the

deployment. Apple Configurator is often used to

reduce taps, not increase them, so this is not likely to

be necessary.

 8. Optionally, if you want users to be able to remove

the profile, leave the Security option set to Always.

You can also set it to Never so the profile can only

be removed through Apple Configurator or with

Authorization, which requires a passcode to remove

the profile.

 9. Use Automatically Remove Profile if you want the

profile removed at a certain date or amount of time.

Chapter 5 iOS prOviSiOning

291

Figure 5-5. Naming your profile

 10. Next, click the Certificates profile in the sidebar and

click Configure.

 11. When prompted, select a .p12 file and click OK.

 12. At the Certificates screen, provide the password

required to open the p12 (Figure 5-6).

Chapter 5 iOS prOviSiOning

292

Figure 5-6. Select your certificate to use with the profile

 13. Click Wi-Fi and click Configure.

 14. Provide the name of the wireless network in the

“Service Set Identifier (SSD)” field.

 15. If the network name is suppressed, check the box for

Hidden Network.

 16. If you want the device to automatically join the

network, check the box for Auto Join. You likely

want that box checked any time you’re using Apple

Configurator as, again, you’re trying to minimize the

number of taps on devices.

Chapter 5 iOS prOviSiOning

293

 17. If a proxy server is required, configure those settings

using the Proxy Setup options.

 18. Set the Security Type (in Figure 5-7, we’re using TLS,

so we’ll select “WPA/WPA2 Enterprise” and then

check the box for TLS), but a lot of environments

use a lot of different settings, so work with a network

administrator if needed.

Figure 5-7. Change the Security Type to see more options

Chapter 5 iOS prOviSiOning

294

Once you’ve configured the profile, click the close button (the red jelly

marked with an x in the upper-left corner of the screen). When prompted,

provide a name and location for the profile, as you can see in Figure 5-8.

Figure 5-8. Name the profile

To add the profile to another blueprint, click the Add button from

within a blueprint when viewing profiles in Apple Configurator and select

the file location. You can also add a profile that you export from your MDM

solution by simply copying it to a secure location on the computer and

doing that last step. This will help keep you from doing duplicate work in

two different tools. Now that we can add profiles to prepare a device for

Chapter 5 iOS prOviSiOning

295

distribution, let’s look at getting apps on the device – but keep in mind

that when you have the option to push an app from Apple Configurator

or an MDM, use the MDM so that it can be managed dynamically once

deployed.

 Install Apps with Apple Configurator
One reason to use Apple Configurator to push an app to a device is if there

are 10 or 20 gigs of apps (which could be 10 or 100 apps) to install, as that

data transfer might go faster over a USB cable than it will over the air from

the App Store, especially if you’re preparing a lot of devices at once. In this

section, we’ll look at a basic app deployment using Apple Configurator,

which can be added to the Wi-Fi and certificates payloads we prepared

previously.

To get started, first make sure an Apple ID that is an administrator of

the Apple Business Manager or Apple School Manager portal is logged in

to Apple Configurator. Then, open a Blueprint, click Apps, and click Add

Apps… (Figure 5-9).

Chapter 5 iOS prOviSiOning

296

Figure 5-9. Add Apps to a Blueprint

Next, view the apps that were acquired with the volume purchase App

Store account setup for the organization in Chapter 4. Optionally, enter

the name of the app in the search dialog. Click the app and then click Add

(Figure 5-10).

Chapter 5 iOS prOviSiOning

297

Figure 5-10. Select the App

Once the app has been added, any device the blueprint is applied to

then receives the app. You can also assign an app to a device manually. To

do so, control-click (or right-click) a device and then use Add to choose the

Apps… option. Next, we’ll configure automatic enrollment, so the device

gets added to the MDM server used in your environment when being

prepared.

 Automate Enrollment with Apple Configurator
When doing larger deployments, the initial enrollment process can be

automated so that devices are automatically enrolled into an MDM

when set up using an enrollment profile. We won’t focus on getting the

enrollment profile in this section as much as how to add it to Apple

Configurator, given that each MDM vendor provides a different way of

Chapter 5 iOS prOviSiOning

298

downloading the necessary enrollment profile, and some do not support

automated enrollment via Apple Configurator (such as Jamf Now) as the

enrollment profiles used are set to expire in a period of time too short to

complete an enrollment en masse.

 Download MDM Profiles

To get started, first download an enrollment profile. As an example, in the

JumpCloud MDM this is done by navigating to MDM in the sidebar and

then clicking View QR Code in the Admin iOS Configuration section of the

screen. At the Enroll Your iOS Device, rather than enroll with the QR code,

the link will download a .mobileconfig that can be used to enroll devices

through Configurator (Figure 5-11).

Figure 5-11. Download the JumpCloud MDM profile

Chapter 5 iOS prOviSiOning

299

If using Jamf Pro, there’s an option to download the Enrollment Profile

in the sidebar of the Devices screen as well (Figure 5-12).

Figure 5-12. Download the Jamf MDM profile

Additionally, a certificate from the CA of an MDM server can be

needed if the certificate is not included in the profile and the device

doesn’t trust the server, an option available as a checkbox in the setup. This

is a good reason to use certificates from a valid CA rather than using self-

signed certificates. Once you have the enrollment profile (a .mobileconfig

file), then it’s time to configure automated enrollment as a part of your

blueprint (just make sure the profile doesn’t expire too quickly). To do so,

simply add the enrollment profile to the profiles options as we did in the

previous section of this chapter.

Chapter 5 iOS prOviSiOning

300

 Configure Automated Enrollment in Apple Configurator

Automated enrollment requires less work on the administrative side, but

according to how your MDM solution has integrated the option, you can

associate a number of metadata attributes in the MDM server that can be

useful for further automation.

Automated enrollment is another option, which dynamically pulls the

enrollment profile down from the MDM server. This begins the enrollment

process, much as manually opening an enrollment profile would do.

As an example, the server we’ll use in this walk-through is https://

kryptedjamf.jamfcloud.com:8443/configuratorenroll which can

dynamically generate the .mobileconfig file. To set up Automated Apple

Configurator Enrollment:

 1. Open Apple Configurator and choose Preferences

from the Apple Configurator 2 menu.

 2. Click Servers.

 3. Click the + sign (Figure 5-13).

Figure 5-13. Add a server for automated enrollment

Chapter 5 iOS prOviSiOning

https://kryptedjamf.jamfcloud.com:8443/configuratorenroll
https://kryptedjamf.jamfcloud.com:8443/configuratorenroll

301

 4. At the Define an MDM Server screen, click Next.

 5. At the next screen, in the Name field provide a

name, such as “My MDM Server.”

 6. Complete the “Host Name or URL” field as seen in

Figure 5-14.

Figure 5-14. Provide the URL to your MDM Server to use for
automated enrollment

 7. Apple Configurator will then download any required

trust certificates, and the “Define an MDM Server”

wizard will complete. Once you see your MDM

server listed, the process is complete.

We won’t cover preparing devices just yet, but Automated Enrollment

will then be an option when you go to prepare (Figure 5-15).

Chapter 5 iOS prOviSiOning

302

Figure 5-15. Device preparation options

To unenroll a device once it’s been enrolled by Apple Configurator,

simply remove the profiles by tapping profiles and then tapping the

Remove button. Per the MDM API, a user can elect to remove their device

from management at any point unless the device is supervised, so expect

this will happen occasionally, even if only by accident.

Now that we’ve looked at automating MDM enrollment, let’s move

to customizing each device, starting with naming them so it’s easier to

manage devices once they’re in the hands of a user (or 1000 users).

 Change Device Names Using Apple Configurator
Apple Configurator can also rename iOS devices. This is done in an

automated fashion when devices are prepared (or when the workflow

provided in a blueprint is implemented on the device). This is important

Chapter 5 iOS prOviSiOning

303

because a device name can be used to implement further automations

once enrolled in an MDM solution, or it can be used to quickly identify

devices when troubleshooting.

To use Apple Configurator to rename a device, plug it into a Mac

running Apple Configurator and then right-click the device and choose

Device Name… from the Modify menu. More importantly, to associate a

rename action in the preparation of a device, follow these steps:

 1. Open a blueprint.

 2. Select Device Name under the Modify submenu of

Actions.

 3. At the Rename device menu, shown in Figure 5-16,

provide the name you want a device to have,

followed by a variable, available using the + menu.

Figure 5-16. Select Serial Number for a naming convention

Chapter 5 iOS prOviSiOning

304

 4. In Figure 5-17, we used Accounting since we’re mass

configuring Accounting devices, followed by Serial,

so if a device has a serial number of 123abc, then the

name of the device would be “Accounting-abc123.”

Figure 5-17. Add text for the naming convention

Once you enter new information, click the Rename button, and

the action will then be taken any time you prepare devices using this

Blueprint. Another action that is common is to change the background or

wallpaper of a device. We’ll cover that in the next section.

 Change Device Wallpaper with Apple Configurator
An iOS device has two wallpapers that can be configured during setup of

devices: home screen and lock screen. The home screen is the image that

you see with apps on top of it. This should be simple so as not to distract

Chapter 5 iOS prOviSiOning

305

from finding the app a user is looking for. In this example, we’ll apply a

Sales background to the lock screen so we can easily identify the sales

devices when handing them out to sellers.

Before you begin, save the image or images to a local directory on the

computer running Apple Configurator. Then follow this process to set

wallpapers:

 1. Right-click the device and choose the Modify menu

and then Wallpapers… from the Modify submenu.

 2. When prompted, use the Choose image… button

(Figure 5-18) to set the lock screen (the screen that is

displayed when the device is locked).

Figure 5-18. Select your wallpaper image

Chapter 5 iOS prOviSiOning

306

 3. Repeat that process to set the home screen (the

background behind all your icons on each screen of

the iPhone or iPad).

 4. Once you have chosen the appropriate images, click

the Apply button (Figure 5-19).

Figure 5-19. Select the Lock Screen image

The device will then install the new wallpaper(s) when you run a

prepare using the new blueprint we’ve created. Now that we have all the

pieces in place to get a device onto the network and customize it in a

manner that follows some completely random guidelines we just made up,

let’s finally look at actually running the prepare step.

Chapter 5 iOS prOviSiOning

307

 Prepare a Device
Device preparation is the act of running a workflow on a device. This isn’t

a preset as you’re meant to configure the steps to run each time you run

a new session of Apple Configurator. This is to say you run a wizard to

configure the setups in preparing devices each time. This is why we put

as much logic into the blueprint as possible. Preparing also requires the

computer running Apple Configurator to be run while online (e.g., in order

to access the App Store and any certificate stores or MDMs to enroll as

possible).

Note Keep in mind that if you are erasing devices as part of your
preparing them for deployment, any device plugged into the apple
Configurator can be wiped, and so don’t accidentally plug your own
phone or ipad into it.

To prepare devices using our Blueprint:

• Open Apple Configurator.

• Click Blueprints.

• Control-click your Blueprint and select Prepare

(Figure 5-20).

Chapter 5 iOS prOviSiOning

308

Figure 5-20. Run Prepare to start your Blueprint

• At the Prepare Devices wizard, select whether you will

be running a Manual Configuration (Figure 5-21) or

Automated Enrollment.

Chapter 5 iOS prOviSiOning

309

Figure 5-21. Configure the steps in your Prepare workflow

The devices we’ll be working with in this workflow are DEP enabled, so

we’ll select Automated Enrollment (Figure 5-22) and then click Next.

Chapter 5 iOS prOviSiOning

310

Figure 5-22. Configure the device to use Automated Enrollment

• At the Choose Network Profile screen of the wizard,

we select the profile created previously, so the device

can join the network and enroll into the DEP instance

(Figure 5-23).

Chapter 5 iOS prOviSiOning

311

Figure 5-23. Select the 802.1x Profile we created earlier

• Given that the MDM instance requires authentication,

at the Automated Enrollment Credentials screen, we’ll

provide credentials that can be used to authenticate

to the MDM provider (Figure 5-24). DEP is somewhat

insecure without authentication, and so you should

always do authentication when possible. See the Black

Hat talk from Jesse Endahl for more information on

why: www.blackhat.com/us-18/speakers/Jesse-

Endahl.html.

Chapter 5 iOS prOviSiOning

http://www.blackhat.com/us-18/speakers/Jesse-Endahl.html
http://www.blackhat.com/us-18/speakers/Jesse-Endahl.html

312

Figure 5-24. Provide authentication credentials to your MDM
solution

Click the Prepare button, and any devices that are plugged in will be

set up to run the workflows laid out in the Blueprint! If you were not doing

DEP/automated enrollment, then you’d also see the Configure iOS Setup

Assistant screen (Figure 5-25). This screen is used to suppress the startup

screens in iOS, allowing you to get all the closer to the magical zero-touch

setup. If you’re using DEP, then the Apple Configurator workflows assume

that you are using MDM to suppress those screens.

Chapter 5 iOS prOviSiOning

313

Figure 5-25. Configure the screens to skip during setup

Now that we’ve used Apple Configurator to set up devices, it’s time to

move to using Configurator as a debugging tool.

 Debugging Apple Configurator Logs
Apple Configurator is a great tool. But you need to debug things from time

to time. This might mean that a profile is misconfigured and not installing

or that a device can’t perform a task you are sending it to be performed.

This is about the time that you need to enable some debug logs.

To do so, quit Apple Configurator and then use Terminal to write a

string of ALL into the ACULogLevel key in ~/Library/Containers/com.

apple.configurator.ui/Data/Library/Preferences/com.apple.configurator.

ui.plist by using the following command:

Chapter 5 iOS prOviSiOning

314

defaults write ~/Library/Containers/com.apple.configurator.

ui/Data/Library/Preferences/com.apple.configurator.ui.plist

ACULogLevel -string ALL

To disable, quit Apple Configurator and then delete that ACULogLevel

key using the following command in Terminal:

defaults delete ~/Library/Containers/com.apple.configurator.

ui/Data/Library/Preferences/com.apple.configurator.ui.plist

ACULogLevel

In addition to debugging, you can also manage the version of the

operating system being run on devices, which we’ll cover in the next

section.

 Using an ipsw Operating System Bundle
to Restore Devices
Apple Configurator allows you to run a specific version of iOS on a device.

This might mean an older version for testing or to deploy an operating

system that hasn’t been released into the wild yet as part of testing for

future versions using the betas you have access to from the Developer or

Seed programs.

An iOS operating system is a bundle of files, as with many other things

in the Apple-verse. This particular bundle is an ipsw file. The .ipsw must

be signed and unadulterated in order to be restored to an iOS device.

They can be downloaded from the Downloads section of developer.

apple.com, where each operating system will have a separate installer file

(Figure 5-26).

Chapter 5 iOS prOviSiOning

315

Figure 5-26. The Downloads page on developer.apple.com

If you have a bunch of Apple Configurator workstations, and you are

running a training session or attempting to run beta software for standard

software testing, this can get infinitely more annoying. In these types of lab

environments, you’re in luck. If you have an ipsw (the iOS OS update file),

you can copy the file from ~/Library/Group\ Containers/K36BKF7T3D.

group.com.apple.configurator/Library/Caches/Firmware/ onto another

machine. To copy them onto a USB drive called bananarama, for example,

use the following Terminal command:

cp -R ~/Library/Library/Group\ Containers/K26BKF7T3D.group.

com.apple.configurator/Library/Caches/Firmware/ /Volumes/

bananarama/ipsws/

Chapter 5 iOS prOviSiOning

316

Once you’ve moved that drive, then copy them back using the

following command in the Terminal application:

cp -R /Volumes/bananarama/ipsws/ ~/Library/Group\ Containers/

K36BKF7T3D.group.com.apple.configurator/Library/Caches/

Firmware/

Now that we’ve looked at copying an ipsw as a means of restoring an

iOS, iPadOS, and tvOS device, let’s look into how to provide supervision for

devices so the settings and apps we apply once configured persist to the

Mobile Device Management solution, and so we can supervise otherwise

unsupervised devices.

 Device Supervision Using Manual Configurations
When using Apple Configurator, you can supervise devices that purchased

outside of an organizational PO or Apple Management program. This

allows you to assign an existing supervision identity to be used with

devices you place into supervision or to supervise random devices. These

need to be wiped in order to apply the appropriate level of permissions to

prove they are owned by an organization.

This was done earlier in the chapter to some degree, but now it’s for

a specific purpose. The organization must be linked so a sign-on to the

Apple Business Manager or Apple School Manager instance is required.

This doesn’t piggyback off the sign-in established when we initially

installed Apple Configurator earlier in the chapter, so to get started, first

open Apple Configurator and click Organizations (Figure 5-27).

Chapter 5 iOS prOviSiOning

317

Figure 5-27. Create an organization

From Organizations, click the plus sign (“+”) to set up a supervision

profile and then click Next at the first Create an Organization screen.

When prompted, provide a username and password to the Apple

Business Manager or Apple School Manager portal for the organization

as seen in Figure 5-28.

Chapter 5 iOS prOviSiOning

318

Figure 5-28. Authenticate to the appropriate Apple ID

If importing an identity, select “Choose an existing supervision

identity” and click Next (Figure 5-29).

Chapter 5 iOS prOviSiOning

319

Figure 5-29. Create a supervision identity

When prompted, click Choose to select the identity to use or allow

the certificate to be imported automatically, as seen in Figure 5-30. These

are pulled from the list of certificates found in Keychain. As an example,

if you promote a server to a Profile Manage server, when Open Directory

is installed, a certificate will also be installed. This certificate can then be

used here. Or you can download one from a CA on a third-party MDM

solution.

Chapter 5 iOS prOviSiOning

320

Figure 5-30. Select a certificate

If manually importing, click Choose when you’ve highlighted the

appropriate certificate and then click Done. You now have the appropriate

identities (certificates) to supervise previously unsupervisable devices,

thus obtaining more options for tasks you can deploy on those devices.

When configured, the Supervision Private Key is a signing identity using an

exportable DER that can be migrated to another Apple Configurator host

and authenticates a Mac to be able to supervise a device. This is required

when running various actions that Apple developers deem should be able

to be run on a device even without a passcode because the organization

has proven that they own a device and not the person using the device.

This includes commands like resetting a passcode without wiping a device.

Chapter 5 iOS prOviSiOning

321

Now that we’ve done a number of tasks manually using Apple

Configurator, let’s turn toward automating tasks using various

scripting tools.

 Automating iOS Actions
There are a few tools for automating tasks on iOS, iPadOS, and tvOS devices

that we’ll cover in the next few sections. These allow you to string together

complex workflows. For example, when a device is plugged in, you could

automatically back up the device, erase it, supervise it, restore the backup,

and then run a shell script that provides details about the series of tasks into

a standard support tool like ServiceNow. Or a user could trigger an action

in a device management solution using the APIs of one of those.

Luckily, you have a few options around automating such a workflow.

These include the following tools:

• AEiOS: https://github.com/univ-of-utah-

marriott-library-apple/aeios

• GroundControl from Imprivata: www.groundctl.com

• Libimobiledevice: https://libimobiledevice.org/

GroundControl is a solution available at www.groundctl.com. It

allows you to do some of what Apple Configurator does, but much more.

GroundControl can set up devices, manage MDM and Wi-Fi settings, take

configuration information from a SaaS login environment, and assign

roles to devices using GroundControl, which automatically sets various

configuration options including some that aren’t available through any

of the other tools that we reference in this chapter, because it uses private

frameworks to edit devices.

Chapter 5 iOS prOviSiOning

https://github.com/univ-of-utah-marriott-library-apple/aeios
https://github.com/univ-of-utah-marriott-library-apple/aeios
http://www.groundctl.com
https://libimobiledevice.org/
http://www.groundctl.com

322

GroundControl has a number of features that appeal to various

use cases:

• Integration with USB hubs to enable and disable LED

lights when a device is in a given state.

• Self-Heal reimages devices on the fly so they can be

put back in the hands of users when the devices aren’t

working properly.

• APIs and webhooks (for more on these, see Chapter 11)

provide additional automation, and rather than running

these from a Mac running Apple Configurator, the

automations are run from a cloud solution so they are

always available.

• Run on Microsoft Windows either running on a full

computer or using an Intel Compute Stick with a USB

hub attached to the device.

• Tap & Go (sold as an add-on) comes with a Locker app

that integrates with your MDM and tracks who uses

each iOS or iPadOS device. GroundControl integrates

with VMware Workspace ONE as a federated identity

provider (via SAML 2.0) and automatically logs devices

out of apps when events trigger GroundControl to do so.

If you have the ability to license a tool, it’s worth doing so just for the

support. But since not everyone can, the remainder of the tools we’ll look

at in this section are free and/or open source automation tools.

 The Apple Configurator Command-Line Tools

Apple Configurator has an optional command that can be installed to

automate a number of the tasks we’ve done throughout this chapter. Don’t let

the fact that it’s a command-line tool fool you – in some cases, a well- structured

Chapter 5 iOS prOviSiOning

323

command-line tool is easier to use than a tool with hidden or nested options in

a graphical interface. The Apple Configurator command line is such a tool, and

you should be a master within about half an hour tinkering with it.

Before using the command-line options to automate tasks, you need

to install it. To do so, open Apple Configurator 2 and then click the Apple

Configurator 2 menu. Select Install Automation Tools from the menu,

and you’ll be prompted with the Install Automation Tools dialog (as you

can see in Figure 5-31). Click Install and provide local administrative

credentials if you are prompted to do so.

Figure 5-31. Install the Apple Configurator command-line tools

Once installed, you’ll find a binary called cfgutil at /Applications/

Apple Configurator 2.app/Contents/MacOS/cfgutil. The cfgutil command

has a number of verbs you can see by running the command followed by

the help verb, as follows:

/Applications/Apple\ Configurator\ 2.app/Contents/MacOS/

cfgutil help

The following is a list of officially supported verbs:

• activate: Activates iOS and iPadOS devices.

• add-tags: Adds a tag for iOS and iPadOS devices.

Chapter 5 iOS prOviSiOning

324

• backup: Creates a backup of an iOS or iPadOS device

the Configurator computer has prepared.

• clear-passcode: Clears the passcode of a supervised

iOS or iPadOS device.

• erase: Erases any content and settings configured on

any supervised iOS and iPadOS devices.

• exec: Runs scripts when iOS and iPadOS devices

connect or detach from the computer running Apple

Configurator.

• get: Shows various properties, settings, and apps that

are on a device.

• get-app-icon: Copies an app icon (based on the

Bundle Identifier of the app) to the computer running

Apple Configurator.

• get-icon-layout: Responds with the layout of the home

screen on attached devices.

• get-unlock-token: Responds with the unlock token

of a device provided Apple Configurator has the

appropriate supervision identity.

• help: Displays how to use commands or a list of

commands.

• install-app: Pushes an app (e.g., via an ipa file) to

attached iOS and iPadOS devices.

• install-doc: Pushes a document to an attached iOS or

iPadOS device.

• install-profile: Installs profiles saved to a file path

on the Apple Configurator workstation onto attached

devices.

Chapter 5 iOS prOviSiOning

325

• list: Shows a list of all devices attached to the computer.

• list-backups: Provides a list of the backups stored

locally on the Apple Configurator computer where the

command is being run.

• pair: Sends the device pairing command to a device,

which requires someone unlock a device and click

Trust on the device so further automations can run.

• prepare: Runs a prepare workflow, similar to what

we did previously in this chapter in the preparation

section.

• remove-app: Deletes an app from a device, based on

the Bundle Identifier.

• remove-profile: Deletes a profile from a device, based

on the profile identifier.

• remove-tags: Deletes any tags that were applied to

a device.

• rename: Configures the name on attached devices.

• restart: Restarts any attached and supervised devices.

• restore: Wipes the device and installs the latest

available operating system (will cache the ipsw file if it’s

not already cached).

• restore-backup: Restores a backup to an iOS device.

• revive: If a device is in recovery mode, attempts to

remove that setting from the device so it works again as

normal (if this fails, the device may need to be wiped

to do so).

Chapter 5 iOS prOviSiOning

326

• set-backup-password: Configures backup password

settings on attached devices.

• set-icon-layout: Configures the home screen – for

more on how to send data to the command, look at the

output of get-icon-layout.

• set-wallpaper: Configures background images on

supervised iOS and iPadOS devices that are attached.

• shut-down: Turns off any supervised devices that are

attached.

• syslog: Displays the syslog of the device in Terminal.

• unpair: Disables the pairing for attached devices,

making it impossible to run the rest of the commands

in this list.

• version: Outputs with the version of the cfgutil

command (e.g., 2.15.1).

These are mostly features available in the graphical interface of Apple

Configurator, many we’ve shown throughout this chapter. Let’s start by

listing devices currently attached to the Configurator workstation. First,

we’ll open the Terminal app, and then we’ll run the cfgutil command from

within the Apple Configurator app bundle. Showing verbs is done using

the list verb, as follows:

cfgutil list

One of the most important aspects of automating Apple Configurator

is to be able to run a script when a device is plugged into the Apple

Configurator workstation. This is done using the exec verb along with

either a -a or a -b option, which will run the script you provide either when

a device is connected (-a) or when the device is disconnected (-b). In the

following example, we will run a simple cfgutil command followed by the

Chapter 5 iOS prOviSiOning

327

exec verb and then a -a so that the connected.sh script will be run when

devices are connected to the computer running as the Apple Configurator

workstation:

cfgutil exec -a connected.sh

The results from the preceding command would simply be the output

of the connected.sh script, which is a custom script that shows all devices

connected to the instance. We won’t spend the rest of the book going

through all of the verbs available here as there are other tools to be covered,

but suffice it to say that you can script most anything you can do in Apple

Configurator 2. Next, let’s move on to alternatives that provide even more

techniques, using open source tools for scripting iOS management.

 Use libimobiledevice to Automate Device Management

Xcode, Apple Configurator, and other tools can be used to view logs on

iOS devices and automate actions as we’ve shown throughout this chapter.

One of those other tools is libimobiledevice. It’s usually a good idea to

install libimobiledevice using homebrew, a popular package management

tool. Homebrew makes installers of potentially otherwise difficult open

source tools simpler by scripting the installation of the tool and any

required dependencies that can be a little annoying when compiling

and working with the tool manually. To install homebrew if you haven’t

already, run the following command from the Terminal application:

ruby -e "$(curl -fsSL https://raw.githubusercontent.com/

Homebrew/install/master/install)"

Once run, follow the prompts to complete the installation. Once

homebrew is installed, run the following brew command to download the

required components and then libimobiledevice:

brew install -v --devel automake autoconf libtool wget

libimobiledevice

Chapter 5 iOS prOviSiOning

328

Then run ideviceinstaller:

brew install -v --HEAD --build-from-source ideviceinstaller

Use Basic libimobiledevice Options

Once these are installed, you can plug in a paired device, unlock it, and

use the following command to view the logs on the screen: idevicesyslog.

This is akin to running a tail against the device. Again, the device must

be paired. You can use the command line (e.g., if running this on Linux)

to view the logs, but if you’re not paired, you’ll need to use idevicepair to

pair your device, followed by the pair verb (which is very different from the

pear verb):

idevicepair pair

The screen will then show that the device is paired. You can also unpair

using the unpair verb:

idevicepair unpair

When pairing and unpairing, you should see the appropriate entries

in /var/db/lockdown. The final option to cover in this section is the date

(very useful when scripting unit tests using this suite). To obtain this, use

the idevicedate command, no operators or verbs required:

idevicedate

You can also use a number of other commands that come bundled

with the tool.

Dig in with Additional Management Commands

The first command we’ll use is idevicedate, which simply returns with the

date and timestamp currently on the device: /usr/local/bin/idevicedate.

The response would simply include the date. Next, let’s check the apps

Chapter 5 iOS prOviSiOning

329

installed on a device. We can do this with the ideviceinstaller command

(also part of the libimobiledevice suite of tools). Here, we’ll use the -l

option to just list what’s installed:

/usr/local/bin/ideviceinstaller -l

The output would show the app, along with the version of the app at

rest on the device:

com.apple.Pages - Pages 1716

To uninstall one of the listed apps, use the –uninstall

option:ideviceinstaller --uninstall com.protogeo.Moves. You can also

install apps provided you’ve cached the ipa file (e.g., via iTunes).

ideviceinstaller --install /Users/charlesedge/Music/iTunes/

iTunes\ Media/Mobile\ Applications/Box.ipa

When run against a device, you can then open apps provided the Apple

ID owns the app. There’s also a command for ideviceprovision, which can

be used to view provisioning profiles, when run with the list verb, which

would appear as follows:

/usr/local/bin/ideviceprovision list

The ideviceprovision command can also form the basis of a tool like

wirelurker by allowing you to install a provisioning profile:

/usr/local/bin/ideviceprovision install angrybirds.

mobileprovision

You can also remove this, by feeding in the UUID of the provisioning

profile (obtained using the list verb but replacing MYUUID from the

following code block):

/usr/local/bin/ideviceprovision remove MYUUID

Chapter 5 iOS prOviSiOning

330

Or you could do something more substantial, like put a device into

recovery mode, so it would need to be plugged into a computer running

iTunes and get a new ipsw installed, which is as simple as feeding the udid

into ideviceenterrecovery:

/usr/local/bin/ideviceenterrecovery

af36e5d7065d4ad666bf047b6e4de26dd144578c

This brings up an interesting question: How would you get the udid?

You can use ideviceinfo to view the output, which shows more information

that I knew you could actually get about a device previously. You can also

grep for the UniqueDeviceID and then parse the output to return just the

value you’re looking for, making it easy to build much more complicated

workflows or output the command into other tools using APIs:

ideviceinfo | grep UniqueDeviceID | awk '{ print $2}'

This would just return with the UDID. Since that’s blank when there’s

no device connected, you can run a loop that waits a few seconds when

empty and then uses that UDID as a $1 in some script. Of course, it’s much

easier to use a command they built for this called idevice_id:

idevice_id -l

A number of commands make troubleshooting devices on networks or

code simpler, which we’ll look at in the next section.

Troubleshooting Commands

Next, you can use idevicediagnostics, which has debugging information

in the output, to obtain some information about the current state of

the device:

idevicediagnostics diagnostics All -u

af36e5d7065d4ad666bf047b6e4de26dd1445789

Chapter 5 iOS prOviSiOning

331

Or query the IOreg of the device to see what’s connected:

idevicediagnostics ioreg IODeviceTree -u

af36e5d7065d4ad666bf047b6e4de26dd1445789

The output is way too long to paste in here, but interesting (kinda). The

idevicediagnostics command can also do some basic tasks such as restart,

sleep, and shutdown (each sent as a verb without a required UDID):

idevicediagnostics restart

The crash reports on a device (which include reports for uninstalled

apps, forensically providing a glimpse into what apps were removed from

a device and when) can all be extracted from a paired device as well, using

idevicecrashreport:

idevicecrashreport -e /test

You can then view the logs or grep through them for specific pieces of

information: cat /Test/Baseband/log-bb-2019-06-06-stats.plist. The last

command we’re going to cover in this article is idevicebackup2, used to

back up devices. Here, we’re going to feed it the udid which we’re lazily

using the idevice_id command from earlier in backticks to grab the udid

and backing up into that /test directory.idevicebackup2 -u `idevice_id -l`

backup /test. Here, we’ve backed up whatever device is plugged in, to the /

test directory. Subsequent backups will be incrementals.

As you can see in the preceding examples, libimobiledevice is capable

of managing a number of features on iOS devices. Many of these are

unavailable in other tools. It’s an important component of many large iOS

and iPadOS deployments with implications to how provisioning, device

replacement, device maintenance tasks, and of course troubleshooting

are handled throughout the entire life cycle of a deployment. Next, we’ll

look at one of the more recent entrants into the iOS and iPadOS device

management world, another open source tool called AEiOS.

Chapter 5 iOS prOviSiOning

332

 Using AEiOS to Create Workflows
AEiOS is a python library that uses the cfgutil command-line tool installed

as a part of the Apple Configurator 2 command-line tools. This makes

installing Apple Configurator 2 and the command-line tools that we

covered earlier in this chapter a requirement before getting started with

AEiOS. What AEiOS adds to that mix is the ability to string together a

workflow that can be saved in a configuration and then called on a Mac

to check devices out or provision them, without having to teach a support

representative (or librarian, nurse, etc.) how to maintain and start an

instance of Apple Configurator.

This also cuts down on human error that can easily cause support

tickets to a service desk. The beauty of managing devices programmatically

is that you have a certain level of… well, certainty into the outcome of the

processes you put into place. The beauty of the AEiOS script is that it’s

python, so it’s easy to follow along with what the developer is doing when

various incantations of the scripts are run.

To get started with AEiOS, first let’s install the Apple Configurator

command-line tools, covered earlier in this chapter. Then, download

AEiOS from https://github.com/univ-of-utah-marriott-library-

apple/aeios/releases (it downloads as a .dmg file). Once downloaded,

extract the .dmg file and run the installer. The aeiosutil python script is the

primary way you interface with the tool. This is installed in /usr/local/bin/,

and the python scripts that aeiosutil calls are installed in the /Library/

Python/2.7/site- packages/aeios directory.

The aeiosutil command is fairly straightforward to use, providing

a simple wrapper to the standard Apple Configurator command-

line options. We covered setting up a supervision identity in Apple

Configurator earlier. Many of the workflows for aeios will also require you

to use a supervision identity. To import unencrypted supervision identity

certificates, use the add verb, followed by the identity option and then the

identity. Also provide the required certificates using --certs followed by

Chapter 5 iOS prOviSiOning

https://github.com/univ-of-utah-marriott-library-apple/aeios/releases
https://github.com/univ-of-utah-marriott-library-apple/aeios/releases

333

the path to your certificates directory. In the following command, we’ll do

that, using the /Users/cedge/Documents/aeioscerts directory as where to

import those certificates from:

/usr/local/bin/aeiosutil add identity --certs /Users/cedge/

Documents/aeioscerts

A common task for multiuser devices is to add a background image.

To do so with aeiosutil, run the add verb again, followed by image and then

--background, as the type of background to add. We’ll store that in our

home directory as well, as follows:

/usr/local/bin/aeiosutil add image --background /Users/cedge/

Documents/aeiosimages/background.png

Other image options include the alert image and the lock image, which

are --alert and –lock, respectively. The devices we’re setting up will also

need to access a standard Wi-Fi network. To add a Wi-Fi profile, first create

the .mobileconfig file (e.g., using Apple Configurator). Then use the add

verb, followed by the Wi-Fi option and then the path to the mobileconfig

file, as you can see as follows:

/usr/local/bin/aeiosutil add wifi /Users/cedge/Documents/

aeiosprofiles/mathdept.mobileconfig

Apps that Apple Configurator can access can be installed as a part of

the running workflow, based on name. Simply use the add verb, followed

by app and then the name of the app (as it appears in Apple Configurator).

For example, let’s tell the device to install the most important app ever

published to the app store, Sudoku:

/usr/local/bin/aeiosutil add app "Sodoku"

There are also settings for how aeiosutil behaves. Let’s say you want the

workflow to post to Slack when something happens; there’s an integration

for that. Admins can then take all of these configurations that were created

Chapter 5 iOS prOviSiOning

334

and start aeiosutil waiting for devices; simply call the command followed

by the start verb:

/usr/local/bin/aeiosutil start

You can also remove the settings that we added in the preceding

examples using the remove verb. You can also remove that profile, using

/usr/local/bin/aeiosutil remove identity

/usr/local/bin/aeiosutil remove wifi

/usr/local/bin/aeiosutil remove app "Soduku"

/usr/local/bin/aeiosutil remove image

Slack is a popular messaging tool used in IT departments. One really

cool feature of aeios that you might want to take use of is the ability to post

to Slack, with certain changes. This is done by sending a webhook to a

Slack listener. To set up a webhook for your slack instance, see https://

api.slack.com/incoming-webhooks. As you can see, you can post to that

webhook manually by sending a post to the endpoint you set up using the

steps in the Slack API. Let’s say that endpoint was https://hooks.slack.

com/services/ABC123/123456789. Then the POST would look like this:

POST

https://hooks.slack.com/services/ABC123/123456789

Content-type: application/json

{

 "text": "There’s a new app in aeios"

}

The preceding post is sent by aeios. The aeios tools wrap alerts into

this type of framework and can configure the sender automatically using

the configure verb followed by slack as the service to configure and then

the URL to the endpoint, followed by a channel name (which in this case is

simply #helpdesk). It can be configured via

Chapter 5 iOS prOviSiOning

https://api.slack.com/incoming-webhooks
https://api.slack.com/incoming-webhooks
https://hooks.slack.com/services/ABC123/123456789
https://hooks.slack.com/services/ABC123/123456789

335

aeiosutil configure slack "https:// https://hooks.slack.com/

services/ABC123/123456789" "#helpdesk"

Once run, you’ll see an update in the indicated Slack channel when

the workflow is run. As we’ve shown throughout the previous few sections,

there are a number of automation frameworks that can help you to

manage iOS and iPadOS devices en masse. A companion service that most

organizations with more than a dozen or so devices will likely take a lot of

value in is caching, which allows devices on a network to download assets

from other devices rather than relying on a connection to Apple, which

we’ll cover in the next section.

 Caching Services
The Caching service can be run on a Mac and caches content from Apple.

The Caching service provides (through a local cache) updates to iOS,

iPadOS, Mac, tvOS, and the “content” destined for those devices and

therefore cuts down your Internet data usage and accelerates downloads

on the operating system and other Apple-provided tools dramatically. In

this section, we’ll look at how to configure this critical system. First, let’s

look at what type of data is cached so we can make sure a caching server

(or a few of them) makes sense for your organization.

 What’s Cached?
The Caching service was moved out of macOS Server and into the

client macOS in High Sierra where it remains as of 10.15. This means

administrators no longer need to run the Server app on caching servers.

Given the fact that the Caching service only stores volatile data easily

recreated by caching updates again, there’s no need to back the service up,

and it doesn’t interact with users or groups.

Chapter 5 iOS prOviSiOning

336

The type of content cached includes, but is not limited to, the

following:

• App Store apps for iOS, iPadOS, macOS, and tvOS,

including on-demand resources for those apps and

app updates

• Apple Books content for iOS, iPadOS, and macOS

• Apple Configurator content (e.g., ipsw updates)

• Downloads in the GarageBand app

• iCloud photos and documents on iOS and macOS

• Content for all supported platforms

• Language dictionaries

• Legacy macOS printer drivers

• Over-the-air iOS, iPadOS, macOS, and tvOS

software updates

• Siri voices

 Caching Service Configuration
And the setup of the Caching service has never been easier. The Caching

service requires you to install no third-party or additional components. To

enable caching, first open System Settings and search for the Sharing pane

and then click the checkbox for Content Caching to start the service. Click

the icon next to the service to see available options for what’s cached (All

Content, Shared Content, or iCloud Content), as seen in Figure 5-32.

Chapter 5 iOS prOviSiOning

337

Figure 5-32. The Sharing System preference pane

At the Content Caching panel, the service will say “Content Caching:

On” once it’s running. Here, you can disable the “Cache iCloud content”

option, which will disable the caching of user data supplied for iCloud

(everything in here is encrypted, by the way). You can also choose to share

the Internet connection, which will create a wireless network that iOS

devices can join to pull content.

Chapter 5 iOS prOviSiOning

338

Figure 5-33. Configure cache size

Click Options. Here, you can see how much storage is being used and

limit the amount used (Figure 5-33). This can be changed here or through

/Library/Preferences/com.apple.AssetCache.plist. Digging into other

options, it’s worth noting that nothing was removed from the time that the

Caching service was migrated from macOS Server to macOS. This means

that all those settings that you used to see in the GUI are still there, you

just access them via the command line, by sending defaults commands.

For example, we can write a limit on the amount of data that a server can

cache using a standard defaults command, but writing an integer into

CacheLimit of com.apple.AssetCache.plist, as follows:

defaults write /Library/Preferences/com.apple.AssetCache.plist

CacheLimit -int 20000000000

Chapter 5 iOS prOviSiOning

339

The caching server has a status verb, so you can see a number of details

about how it’s functioning:

AssetCacheManagerUtil status

This returns something similar to the following:

2022-09-11 11:49:37.427 AssetCacheManagerUtil[23957:564981]

Built-in caching server status: {

Activated = 1;

Active = 1;

CacheDetails = {

iCloud = 4958643;

"iOS Software" = 936182434;};

CacheFree = 472585174016;

CacheLimit = 0;

CacheStatus = OK;

CacheUsed = 941141077;

Parents = ();

Peers = ();

PersonalCacheFree = 472585174016;

PersonalCacheLimit = 0;

PersonalCacheUsed = 4958643;

Port = 56452;

PrivateAddresses = ("192.168.104.196");

PublicAddress = "18.126.164.226";

RegistrationStatus = 1;

RestrictedMedia = 0;

StartupStatus = OK;

TotalBytesDropped = 0;

TotalBytesImported = 4958643;

TotalBytesReturnedToChildren = 0;

TotalBytesReturnedToClients = 166627405;

Chapter 5 iOS prOviSiOning

340

TotalBytesReturnedToPeers = 0;

TotalBytesStoredFromOrigin = 166627405;

TotalBytesStoredFromParents = 0;

TotalBytesStoredFromPeers = 0;

You can also use AssetCacheManagerUtil to manage tasks previously

built into the Server app. To see the available options, simply run the

command:

/usr/bin/AssetCacheManagerUtil

One of the first tasks most administrators would need to do would be

to enable the server:

/usr/bin/AssetCacheManagerUtil activate

To disable the server, use the deactivate verb, which disassociates the

service from the main Apple update services:

/usr/bin/AssetCacheManagerUtil deactivate

To check if the server can be activated, use the canActivate verb, which

performs an activation dry run:

/usr/bin/AssetCacheManagerUtil canActivate

To flush the cache of assets on the server, thus manually cleaning out

any old updates and freeing up some valuable disk space on the server:

/usr/bin/AssetCacheManagerUtil flushCache

To reload settings, which would be necessary if making any changes to

the property lists manually:

/usr/bin/AssetCacheManagerUtil reloadSettings

To move the database manually, which then relinks all assets (e.g., if

you’re moving the database off of an internal drive and onto some kind

Chapter 5 iOS prOviSiOning

341

of direct attached storage, or DAS for short), use the moveCacheTo verb

followed by the target path (which is quoted in the following example

command):

/usr/bin/AssetCacheManagerUtil moveCacheTo "/Volumes/SONY/

Library/Application Support/Apple/AssetCache/Data"

Finally, if you’d like to see the caching server your client system is

using, run the AssetCacheLocatorUtil – the information following that is

simply to parse out all the extraneous information you likely don’t need:

/usr/bin/AssetCacheLocatorUtil 2>&1 | grep guid | awk

'{print$4}' | sed 's/^\(.∗\):.∗$/\1/' | uniq

Nearly every organization can benefit from a caching server. As is

hopefully obvious in the previously mentioned commands, it’s fairly

straightforward to script a caching server to provide assets to your Apple

devices, and it’s much more efficient on a number of levels from running

a standard caching proxy. Now that we’ve covered a lot of different

automation and provisioning options for iOS and iPadOS devices, let’s step

through a less mature but in many ways more complicated setup process:

that of the Mac.

 Summary
Imaging is dead. Then it isn’t. Other words like restoring devices,

provisioning, and reinstalling operating systems are all very much alive.

They’re just different than they were for the past 20 years, especially

for iOS.

As we’ve shown in this chapter, you can plug an iOS device into Apple

Configurator (or one of the other tools designed for more specific use

cases) and provision operating system updates, wireless networking,

enrollment, and for the most part get a device configured and ready to put

Chapter 5 iOS prOviSiOning

342

into the hands of a coworker without ever touching it. Or even better, ship

the device directly to them, so they can get that new Apple device smell

(and sticker) and feel empowered, not conquered by their IT department.

The way it should be.

From a high level, Mac and iOS devices appear to provision similarly.

But under the hood, they are quite a bit different. For all the additional

automation features available for the Mac, the devices are only easier to

configure once the startup screens have been cleared. Given all these

differences, we’ll cover the Mac further next, in Chapter 6.

Chapter 5 iOS prOviSiOning

343

CHAPTER 6

Mac Provisioning
Imaging. We used to say that we imaged computers. But then came Apple

File System (APFS) and the need for Macs to have specific firmware

installed to support APFS’s capabilities. These days, preparing a device

to go into the hands of an end user is more about provisioning the Mac

for use by installing an OS and then configuring it for a person’s use than

it is about creating a disk image and applying it to a Mac to prepare it for

someone to use.

When we say “imaging” a Mac, we typically think of erasing a

device and putting new bits on the device so the device has everything

a user needs to get their work done. At first, this was done by creating a

“monolithic” image, where the disk image was taken from a Mac which

had been set up with everything needed. That monolithic image was then

applied to other Macs to make them exact clones of that first Mac. But that

lacked flexibility, so we moved from monolithic imaging to package-based

imaging, where we installed an image just containing the OS and then

applied a series of installer packages to set up the Mac. Then we moved

from package-based imaging to restoring a “thin” image, or one with just

the operating system and an agent, where the agent would set up the

Mac using settings and software pulled down from a management server.

Then Apple gave us the Automated Device Enrollment program (or ADE

for short), formerly known as the Device Enrollment Program (DEP), and

we skipped doing any predelivery setup work altogether and started just

providing a fresh-out-of-the-box Mac to our non-IT colleagues. Once they

started the Mac for the first time, Apple’s Setup Assistant and the follow-up

© Charles Edge and Rich Trouton 2023
C. Edge and R. Trouton, Apple Device Management,
https://doi.org/10.1007/978-1-4842-9156-6_6

https://doi.org/10.1007/978-1-4842-9156-6_6

344

configuration workflows enabled our colleagues to set up their own Macs

without anyone else’s assistance. This saves many large organizations the

$20–$40 per device cost that they used to pay to have Macs set up prior

to delivering them. ADE automatically enrolls the device into a Mobile

Device Management (MDM) solution, puts apps on the device, and puts

the agent on the device through MDM. There are less options, but the

process has never been so streamlined with such a small amount of work.

Shipping devices directly to a user makes them feel like they’re

getting the new device they were always getting. Once administrators had

everything necessary to provision a device out of the box. However, with

the release and general adoption of Apple’s Apple File System (APFS)

filesystem, traditional imaging became much more difficult. In its place,

Apple has recommended installing the operating system and using MDM

profile, scripts, and installer packages to configure the operating system for

use. These changes introduced a learning curve for many Mac admins, but

ultimately this change is one for the better.

 macOS Startup Modifier Keys
To aid with provisioning and other functions, Apple has always allowed

you to boot a computer while holding down a given keystroke in order to

invoke a specific startup sequence.

With the introduction of Apple Silicon Macs in addition to Macs with

Intel processors, those keystrokes (otherwise known as Startup Modifiers)

are going to be different between Apple Silicon and Intel Macs.

Macs with Apple Silicon Processors

Power key (hold

down for ten or

more seconds)

Boots into the Startup Options screen, which allows you to

select which volume you want to boot to, choose to boot into

Safe Mode or choose to boot into the Recovery environment.

ChaPteR 6 MaC PROviSiOning

345

Macs with Intel Processors

alt or Option key Boots into the Startup Manager, which allows you to select a

wireless network and then choose which volume you want to

boot to.

C key Boots into volumes on a CD, DvD, or USB drive.

Command-Option-

P-R keys

Resets the parameter RaM (or PRaM for short).

Command-R keys Boots into the macOS recovery mode, useful when doing an

internet restore or using Disk Utility to repair a volume.

Command-

Option- R keys

Boots into apple’s cloud-hosted recovery mode.

Command-S keys Boots into single-user mode.

Command-v keys Boots into verbose mode, so you see a log of everything during

the startup process.

D key Boots into diagnostics, used for checking the hardware of your

system. Depending on Mac model, this will load either apple

hardware test (for Mac models introduced before June 2013)

or apple Diagnostics (for Mac models introduced in June 2013

or later).

Option-D keys Boots into apple’s cloud-hosted Diagnostics.

eject key, F12 key,

or mouse/trackpad

button

ejects any removable media inserted into the Mac.

n key On netBoot-capable Macs, boots to a netBoot volume. (Macs

equipped with t2 chips are not capable of netBooting.)

Option-n keys On netBoot-capable Macs, boots to the default netBoot volume

on a particular network.

(continued)

ChaPteR 6 MaC PROviSiOning

346

Shift key Boots into Safe Boot mode. Safe Boot verifies the startup disk

and repairs directory issues, disables user fonts, and clears

the cache for them, only loads required kernel extensions and

clears the cache for them, clears system caches, and disables

startup and login items.

t key Boots into target Disk Mode (tDM). tDM sets the system as a

disk which can be mounted on another system as an external

drive.

X key Boots to a macOS startup disk when otherwise booting to a

Windows partition or startup manager.

 macOS Provisioning with ADE
Apple’s ADE program does include some prerequisites before you

can use it:

 1. You must have an Apple School Manager (ASM) or

Apple Business Manager (ABM) instance set up for

your company, school, or institution.

• If you're a school or other educational institution,

you will be using Apple School Manager.

• If you're not a school or other educational

institution, you will be using Apple Business

Manager.

From the ADE point of view, both ASM and ABM

offer equivalent functionality.

 2. You must have a Mobile Device Management

(MDM) solution, and that MDM solution must be

capable of working with ASM/ABM.

ChaPteR 6 MaC PROviSiOning

347

 3. The Mac being set up must be registered with

your company, school, or institution's ASM/ABM

instance.

Once these prerequisites are fulfilled, you can use ADE to set up your

Macs. In your ASM/ABM instance, you can set your registered Macs to be

automatically enrolled with your MDM. This automated enrollment means

that the Macs will automatically check in with your MDM when the Mac is

going through the initial setup process for macOS. The MDM can in turn

provide an automated setup workflow for that Mac to run through.

For Macs registered with ABM/ASM instances, Mac admins can take

advantage of ADE’s automatic enrollment into an MDM to automate the

setup of Macs. The basic workflow looks like this:

 1. Assign a Mac’s serial number to a particular

MDM server.

 2. Install a fresh copy of macOS onto the Mac.

 3. On boot, the Mac will be automatically enrolled

in the MDM server, and Apple’s Setup Assistant

can be managed to set up the Mac with a desired

configuration.

 4. If desired, the MDM can also install software and

profiles to further configure the Mac.

For the additional software and profile installation options, there

are several tools available to help automate the post-Setup Assistant

installation actions. One well-known free and open source solution is

DEPNotify (Figure 6-1). This tool provides a user-facing interface that

allows the new Mac’s user to see the following:

• The Mac is being set up.

• Provide status information about where the Mac is in

the setup process.

ChaPteR 6 MaC PROviSiOning

348

• Provide any additional information that the system

administrator may choose to provide as part of the

setup process.

• The other important function provided by this tool is

that they prevent the user from making any changes

to the Mac before the setup workflow has completed

its task of setting up the Mac with its required set of

software and settings.

Figure 6-1. DEPNotify running an automated setup workflow

A commercial tool with similar functionality is Octory from Amaris

Consulting. This tool provides a user-facing interface that allows the new

Mac’s user to see the following.

ChaPteR 6 MaC PROviSiOning

349

 DEPNotify
Site: https://gitlab.com/Mactroll/DEPNotify

 Octory
Site: www.octory.io

 macOS Provisioning Without ADE
ADE is a great deployment solution, but being able to use it requires Apple

School Manager (ASM) or Apple Business Manager (ABM), an MDM

solution, and also having the Mac registered with the appropriate ASM or

ABM instance. For some environments, one or more of those components

aren’t available, but Macs still need to be set up and configured.

One solution to this problem is a tool called Mac Deploy Stick (MDS)

from Twocanoes Software. MDS makes it easy to wipe and reinstall a

Mac quickly the same way you can with Apple Configurator for iOS and

iPadOS. The reason you need a tool like Mac Deploy Stick is that Apple

gives users the ability to reinstall the operating system from the recovery

partition, but that installer has to get downloaded during a very manual

process. MDS creates those resources locally (e.g., on a USB stick or other

external media) instead and organizes them into workflows, which can

be deployed more quickly – and come with a simple setup so Macs can

be set up faster. An optional Arduino can become a Mac Deploy Stick

Automation, which inserts keystrokes during boot time so administrators

don’t have to hold down Command-R during the boot process (see more

on Startup Modifier Keys in the next section of this chapter).

ChaPteR 6 MaC PROviSiOning

https://gitlab.com/Mactroll/DEPNotify
http://www.octory.io

350

 Installation
To get started, download MDS from http://twocanoes.com/products/

mac/mac-deploy-stick/. Then run the installer package. Once installed,

open the MDS app from your Applications directory, and provided it

opens, it’s time to create your first workflow.

 Create a Workflow
MDS calls a workflow a list of automations the computer will perform

during a setup. This includes an operating system installation, packages

to deploy to create a workflow, packages or profiles that simply provide a

description, optionally provide a description of the workflow as well, and

click OK (Figure 6-2).

Figure 6-2. Entering a name for the MDS workflow

ChaPteR 6 MaC PROviSiOning

http://twocanoes.com/products/mac/mac-deploy-stick/
http://twocanoes.com/products/mac/mac-deploy-stick/

351

At the macOS screen, click “Install macOS” and then choose the

installation media to generate the installer from (this will use installESD

inside that bundle). Optionally, choose whether to erase the volume

and then if you want the volume renamed. Click OK to proceed,

as seen in Figure 6-3.

At the Resources screen, add the directory that contains scripts,

packages, and other resources to be deployed to the client. This is an

interesting approach and doesn’t provide for manually selecting what

order packages, apps, scripts, and policies get laid down on devices. I’ve

had hit-or-miss luck with doing so by numbering assets in those folders. I

recommend creating a directory for each type of asset in an MDS directory

for that workflow prior to doing this step. Once you’ve bundled all of them

up and selected the appropriate directory, click OK (Figure 6-4).

Figure 6-3. Choosing a macOS installer for the MDS workflow

ChaPteR 6 MaC PROviSiOning

352

Figure 6-4. Choosing resources for the MDS workflow

At the User Account screen, choose if you want to create a new admin

account when the system is deployed (Figure 6-5) and any metadata

around that experience.

ChaPteR 6 MaC PROviSiOning

353

Figure 6-5. Creating a local admin user for the MDS workflow

At the Options screen, choose whether to automatically join a Wi-Fi

network, if the computer should be renamed based on serial number, if

SSH should be enabled, and if the setup assistant should be skipped. Once

all options have been configured as desired, click OK as seen in Figure 6-6.

ChaPteR 6 MaC PROviSiOning

354

Figure 6-6. Defining additional options for the MDS workflow

MDS has multiple hooks that make Munki easier to deploy on devices.

Click OK as shown in Figure 6-7.

ChaPteR 6 MaC PROviSiOning

355

Figure 6-7. Configuring Munki options for the MDS workflow

At the Variables screen (Figure 6-8), provide variables you can then call

in shell scripts. These are similar to how we used to fill ARD fields (which is

still an option). Sending a $1 from a shell script into these provides a little

more flexibility around renaming scripts, binding operators, etc. Click OK

(Figure 6-9).

ChaPteR 6 MaC PROviSiOning

356

Figure 6-8. Defining shell script variable options for the MDS workflow

Figure 6-9. MDS main configuration window

ChaPteR 6 MaC PROviSiOning

357

Once done, it’s time to run the workflow. To do so, boot a Mac into

recovery mode, and then from Terminal, run the following command

(shown in Figure 6-10)

/Volumes/mdsresources/run

The configuration you created in the previous step will then be run

and the output similar to that in Figure 6-11.

Figure 6-10. Launching the MDS workflow from the Recovery
environment

ChaPteR 6 MaC PROviSiOning

358

Figure 6-11. The MDS workflow automatically installing macOS
and configuring the Mac

This will set up the Mac with the applications, tools, and settings

needed to operate properly at the company, school, or institution in

question.

There are a lot more workflows than just this one, so to learn

more about MDS, go to https://twocanoes.com/knowledge-base/

mds-4-guide/.

One of the important components of MDS when used on Intel Macs

is an open source project known as Imagr, developed by Graham Gilbert.

Imagr is a community project that runs not only on macOS but on Linux

as well. While Imagr was originally developed for use with NetInstall and

a web server, Twocanoes built on the existing Imagr project to provide

MDS’s ability to provision Macs.

ChaPteR 6 MaC PROviSiOning

https://twocanoes.com/knowledge-base/mds-4-guide/
https://twocanoes.com/knowledge-base/mds-4-guide/

359

 Imagr
Site: https://github.com/grahamgilbert/imagr/

Purpose: Imaging and deployment for Mac systems

For Apple Silicon Macs, Twocanoes has developed a counterpart

solution called MDS Deploy. MDS will detect which kind of processor the

Mac is using and automatically use Imagr or MDS Deploy as needed.

 Upgrades and Installations
You install or upgrade the macOS operating system using an installer

provided by Apple. This used to be an installer which required an Apple ID

to access, but beginning with macOS Sierra, Apple made operating system

installer free for all Mac users and even began pushing the installer for

new OS versions shortly after the new OS’s release date. The installer itself

appears as an application normally stored in the Applications directory

(shown in Figure 6-12).

Figure 6-12. The macOS Ventura installer application in the
Applications directory

ChaPteR 6 MaC PROviSiOning

https://github.com/grahamgilbert/imagr/

360

Running the OS installer on an individual Mac requires administrator

rights, but otherwise is an easy experience where you double-click to

launch the installer application and follow the prompts.

Automating OS installations is going to eventually be about as easy on

macOS as it is in iOS, but we’re not there yet. At present, the automation

tool provided by Apple these days is the startosinstall command.

This tool first shipped with OS X El Capitan and so should work with that

operating system or any that have been distributed since then. To use

the startosinstall command, you will need to open Terminal and run

commands similar to the one shown as follows:

sudo "/Applications/Install macOS Ventura.app/Contents/

Resources/startosinstall" --applicationpath "/Applications/

Install macOS Ventura.app" --agreetolicense --nointeraction

 --volume "/Volumes/Macintosh HD"

In the preceding command, we’ve already loaded the “Install macOS

Ventura.app” on a machine. While you’d guess that it would find the

application path based on its own surname, we went ahead and supplied

it as that seems to basically be a thing. Basically, --agreetolicense keeps

us from having to run some expect scripts to accept a license agreement,

 --nointeraction suppresses as many of the screens as possible, and

 --volume allows us to install to any volume we’d like. This isn’t fully

automated, but I have been able to layer in some more logic to quit apps

before the script fires and then expect out other items from the script to

automate a restart, watching for osinstallersetupd as a key.

The options available for startosinstall have varied depending on

the OS version, but here’s the list of options available in recent OS versions:

--license: Prints the user license agreement only.

--agreetolicense: Agrees to the license you printed

with --license.

ChaPteR 6 MaC PROviSiOning

361

--rebootdelay: How long to delay the reboot at the

end of preparing. This delay is in seconds and has a

maximum of 300 (5 minutes).

--pidtosignal: Specifies a PID to which to send

SIGUSR1 upon completion of the prepare phase.

To bypass “rebootdelay,” send SIGUSR1 back to

startosinstall.

--installpackage: The path of a package (built

with productbuild(1)) to install after the OS

installation is complete; this option can be specified

multiple times.

--eraseinstall: (Requires APFS) Erases all volumes

and installs to a new one. Optionally specify the

name of the new volume with --newvolumename.

--newvolumename: The name of the volume to be

created with --eraseinstall.

--preservecontainer: Preserves other volumes in

your APFS container when using --eraseinstall.

--usage: Provides the list of startosinstall options.

--nointeraction: Suppresses a number of screens

where a human would be asked to make choices.

--volume: Allows startosinstall to run the

installation process on a drive other than the

boot drive.

One particularly useful function is the --installpackage function,

which allows one or more packages stored on the Mac in question to be

installed following the upgrade. Something to be aware of is that if you

want to add any additional packages, they must all be signed or unsigned

ChaPteR 6 MaC PROviSiOning

362

distribution- style flat packages. This is a requirement that Apple first

introduced for the OS X Yosemite installer, and it still applies to the latest

versions of macOS.

You can convert a nondistribution package to be a distribution-style

flat package by running the following command:

productbuild –package /path/to/original.pkg /path/to/

distribution.pkg

To run an automated upgrade to macOS Ventura, where two distribution-

style flat packages stored in /Users/Shared are installed following the upgrade,

please run the command shown as follows with root privileges:

"/Applications/Install macOS Ventura.app/Contents/Resources/

startosinstall" --applicationpath "/Applications/Install macOS

Ventura.app" --agreetolicense --installpackage /Users/Shared/

installer_one.pkg --installpackage /Users/Shared/installer_two.

pkg --nointeraction

This is all a bit bulkier than just using something like

createOSXinstallPkg, a tool available for building OS installers which was

compatible with Mac OS X Lion through macOS Sierra, but it’s important

to mention that there are a number of system components that are allowed

for in SIP that use osinstallersetupd, and so this blessed mechanism

is likely the future until you can trigger an OS upgrade (and update I

suppose) using an MDM command.

 Reprovisioning a Mac
Most organizations will take an iOS device out of service, erase the device,

and hand it to the next user. Administrators of Macs have long wanted

a similar feature, and it arrived as of macOS Monterey with the Erase
All Content and Settings feature for Apple Silicon Macs and Intel Macs

equipped with the T2 security chip.

ChaPteR 6 MaC PROviSiOning

363

To use the Erase All Content and Settings feature on macOS, open

System Settings and then select General. From there, you will see an entry

for Transfer or Reset preference pane (Figure 6-13).

Selecting the Transfer or Reset preference will provide access to the

Erase All Content and Settings button.

Figure 6-13. The Transfer or Reset preference pane in System
Settings

ChaPteR 6 MaC PROviSiOning

364

Clicking the Erase All Content and Settings button (Figure 6-14) will

prompt for administrator credentials before opening the Erase Assistant

app (Figure 6-15).

Figure 6-14. The Erase All Content and Settings button in System
Settings’ Transfer or Reset preference pane

ChaPteR 6 MaC PROviSiOning

365

Figure 6-15. Requesting administrator credentials before opening the
Erase Assistant application

The Erase Assistant will display a summary of what’s being removed,

along with a Continue button (Figure 6-16).

ChaPteR 6 MaC PROviSiOning

366

Figure 6-16. The Erase Assistant app displaying a summary of the
data which will be removed from the Mac

Clicking Continue will wipe the encryption keys used to protect

the data on the Mac, along with all other data which is not part of the

operating system. The end result will be that the Mac will be returned to a

factory-default configuration with an unconfigured macOS installation.

Once the Mac is back to having only an unconfigured copy of macOS

installed, it can now be set up for use with whatever provisioning tool

works best for the Mac admin in question.

ChaPteR 6 MaC PROviSiOning

367

 Virtual Machines
Virtual machines running macOS as their OS can be provisioned for

deployment using the same tools used for physical Mac hardware. The

main limitations stem from virtual machines being software constructs

and not actual hardware. Here are some of the major ones:

• Anything involving having an Apple-registered
hardware serial number/sending hardware
serial number back to Apple: This includes iCloud

services like Find My Mac and Messages. It also

applies to getting hardware-specific OS installers via

Recovery HD.

• Depending on the virtual machine software being

used, it may be possible to get around some of the

limitations by assigning an actual Mac’s model and

serial number to the virtual machine.

• Most things involving EFI: Functions like Apple

Internet Recovery or holding down the Option key to

get a list of bootable volumes will not work. However,

some things involving EFI work specifically because

VMware made them work. For example, both NetBoot

and FileVault 2 work fine in a VMware VM.

• Wireless connections: Virtual machines don’t have

a Wi-Fi card, though it may talk to a network via your

Mac’s Wi-Fi connection. You can test in a VM to make

sure that your Wi-Fi settings apply; you can’t test to

verify that they work.

There are a number of virtualization solutions available which support

running macOS virtual machines. Several well-known ones are listed as

follows.

ChaPteR 6 MaC PROviSiOning

368

 Parallels
Site: www.parallels.com/products/desktop/

 UTM
Site: https://mac.getutm.app

 Summary
Imaging’s death has been widely reported, but workflows for restoring

devices, provisioning, and reinstalling operating systems are all very

much alive. With ADE, it’s now possible to provide a user-centric setup

experience for both macOS and iOS where it’s possible that IT’s only

involvement is making sure that the device was delivered to the right

person. On macOS in particular, tools like DEPNotify or Octory allow IT

to enable a great user experience by providing a guided setup process

for a Mac.

Meanwhile, for those companies, schools, or institutions that as

of yet can’t take advantage of ADE, tools like Mac Deploy Stick enable

automated provisioning workflows which demand the bare minimum of IT

intervention required.

In the end, Mac admins need to choose the setup and provisioning

workflows which work best for them, but wise use of these tools will help

conserve the most precious resource a Mac admin has: time.

ChaPteR 6 MaC PROviSiOning

http://www.parallels.com/products/desktop/
https://mac.getutm.app

369

CHAPTER 7

Endpoint Encryption
The data stored on your computer or mobile device is important to at least

one person, and that is the person using the device. Along with it being

important, there is always at least some data that you would prefer other

people not see. This data could include passwords, financial data, browser

history, or that text conversation between you and your significant other

which is really just for your eyes only. Encryption helps protect that data

from being accessed by others, and Apple has invested considerable effort

to make sure that the encryption available to both iOS and macOS is not

only strong enough to fend off both casual interlopers and investigators

with the resources of nation states behind them.

 iOS Encryption Overview
Modern iOS devices which can use Touch ID or Face ID use a combination

of hardware encryption and filesystem encryption to protect data stored

on the device. The hardware encryption includes the Secure Enclave

coprocessor and a dedicated AES-256 cryptography engine which sits

between system memory and the flash storage used to store data.

The Secure Enclave is its own self-contained processor within an iOS

device. It runs its own OS, which is not directly accessible by either iOS or

any of the apps running on your iOS device. The Secure Enclave’s purpose

is to store 256-bit elliptic curve cryptographic private keys, which are used

by iOS and apps to encrypt and decrypt data stored on the iOS device. It’s

© Charles Edge and Rich Trouton 2023
C. Edge and R. Trouton, Apple Device Management,
https://doi.org/10.1007/978-1-4842-9156-6_7

https://doi.org/10.1007/978-1-4842-9156-6_7

370

noteworthy that neither iOS nor the apps ever get to see these private keys.

Instead, the Secure Enclave is asked to encrypt and decrypt data for the

operating system and apps. The private keys stored in the Secure Enclave

are also unique to the device and never leave the Secure Enclave. This

makes data stored on a particular iOS device incredibly difficult to decrypt

on any other device because the private keys used to encrypt and decrypt

data essentially work unseen and are forever locked to that one iOS device.

The Secure Enclave is also responsible for processing the fingerprint and

face data which comes in from the Touch ID and Face ID sensors and

determining if there’s a match.

This alone would help secure an iOS device, but Apple also leverages

filesystem encryption technology known as Data Protection to further

secure data. Data Protection constructs and manages a hierarchy of

cryptographic keys and controls data by assigning each file on the iOS

device’s flash storage to a particular class. Access to that data is then

determined by whether that class’s keys have been unlocked. With

Apple’s introduction of Apple File System (APFS), cryptographic keys

can be assigned on a per-extent basis. Since files can have multiple

extents, this means that portions of a file can now be assigned different

cryptographic keys.

How it all works is that every time a new file is created, Data Protection

creates a new cryptographic key for the file. This key is given to the

AES-256 cryptography engine, which uses that key to encrypt the file as

it’s being written to the flash storage used to store data. The per-file key

is then wrapped with a class key, depending on the circumstances under

which the file should be accessible, and the wrapped per-file encryption

key is stored in the file’s metadata. This metadata is itself encrypted using a

different filesystem key, which is used to protect the metadata of each file.

This filesystem key is also used in part to help generate the class keys and

per-file keys.

Chapter 7 endpoint enCryption

371

The combination of keys means there are a minimum of three different

filesystem-level cryptographic keys which are protecting a particular file:

• Filesystem key: Protects the file metadata

• Class key: Governs file accessibility

• Per-file key: Protects the file

Combine that with the fact that all the keys are being generated by

the Secure Enclave, which manages all of these keys but which isn’t even

directly accessible by either the hardware doing the encrypting or the files

being encrypted, and it becomes clear that Apple has done its legwork on

protecting user data.

So how do you enable this protection? Enable a passcode. Data

Protection is automatically enabled when a passcode is set up for an iOS

device. As of iOS 16, iOS supports the following kinds of passcodes:

• Four digits

• Six digits

• Alphanumeric passcodes of arbitrary length

In addition to unlocking the device, the passcode provides entropy for

certain cryptographic keys, including the filesystem key. Entropy is another

way of saying “randomness,” which means that the filesystem key is always

different every time it is generated. The reason why this is important is that

the hardware encryption fundamentals can’t change, they’re hardwired

into the iOS device. By ensuring that the filesystem key can and will

change every time the device is wiped and restored, Apple helps ensure

that the encryption keys used on the device are also completely unique to

the device.

The filesystem key is created when an iOS device is wiped and set up as

new. Once the filesystem key is generated, it is stored in what’s known as

Effaceable Storage. Effaceable Storage is a dedicated area of flash memory

Chapter 7 endpoint enCryption

372

used to store cryptographic keys, and it is different from the regular flash

storage in two respects:

• It does not use wear leveling.

• It can be erased completely and leave no trace of

original data.

Flash storage has a finite number of times it can be written to. Wear

leveling is used to prolong the life of flash storage by spreading out writes

evenly across the flash storage. While this helps prolong the life of the flash

storage in question, it also makes it harder to securely erase data because

traces of old data may be found on random blocks long after the original

data was erased.

In contrast, Effaceable Storage’s flash storage can be completely

erased, and no data can be recovered from it. Apple leverages this

capability with the Erase All Content and Settings option in iOS’s Settings

to destroy all of the cryptographic keys stored in Effaceable Storage. This

key destruction instantly makes all of the user data files stored on the

iOS device inaccessible by making it impossible to unlock the encryption

on the files. The files themselves are still there, but there’s now no way

to access their contents. As an added benefit, wiping out the keys in

Effaceable Storage instead of erasing the files themselves saves wear on the

user data’s flash storage and helps it to last longer.

What if a passcode isn’t enabled? All of the encryption is still there.

However, when the iOS device starts up, the needed encryption keys to

unlock the encryption are automatically provided by the Secure Enclave.

This is why turning on Data Protection is instant when the passcode option

is enabled. The only change is for the Secure Enclave to stop automatically

providing the unlock keys.

Chapter 7 endpoint enCryption

373

 Enabling Encryption on iOS
To enforce encryption on multiple iOS devices, the simplest method is to

use configuration profiles deployed through your MDM server solution.

You can use Apple Configurator to create the configuration profile:

 1. Open Apple Configurator.

 2. Select File: New Profile.

 3. A new profile creation window should open, with

Configurator defaulting to showing the General
section.

 4. Complete the information in the General payload of

the new configuration profile. Set the Security drop-

down menu to Never to prevent removal of the profile.

Figure 7-1. Creating a management profile in Apple Configurator

Chapter 7 endpoint enCryption

374

Figure 7-2. Creating the Enable Passcode profile’s General payload

 5. Scroll through the list of payloads to the left and

choose Passcode in the macOS and IOS section of

payloads.

 6. Configure passcode settings as desired.

Chapter 7 endpoint enCryption

375

Figure 7-3. Creating the Enable Passcode profile’s Passcode payload

 7. Click the OK button when done configuring the

profile.

 8. Select Save under the File menu to save the new

Enable Passcode configuration profile.

 9. Email or download this .mobileconfig file to a test

iOS device and double-tap it to install.

 10. Verify that you are now being asked to set a

passcode with the desired settings.

After successful testing, upload the profile to your MDM server. Once

completed, scope the profile to the desired mobile devices enrolled in your

MDM and use its push capabilities to deploy the profile.

Chapter 7 endpoint enCryption

376

 macOS Encryption Overview
For macOS, Apple went in a different direction with encryption. In part,

this is because only within the last few years have Macs begun shipping

with Secure Enclave processors which enable them to leverage the same

hardware support for encryption that iOS has had for a while. Instead,

Apple needed to handle all encryption using software. Another difference

between macOS and iOS encryption is that macOS’s encryption needs to

be able to handle multiple cryptographic users to log in, while iOS only

needs to accommodate for one cryptographic user using one passcode

to unlock.

On Macs with Apple File System (APFS), the system relies on a series of

cryptographic keys granting access to two other layers of keys. These keys

are the following:

• Derived encryption key

• Key encryption key

• Volume encryption key

To examine them from the filesystem level upward, let’s first look at

the volume encryption key (VEK). This is the key that is interacting with

the APFS volume that the FileVault 2 encryption process has created. All

cryptographic operations on an encrypted APFS volume are unique to that

volume because a different volume encryption key is randomly generated

for each volume. This is the key that is actually unlocking the encrypted

volume, and it’s also the key that’s deleted when a wipe command is sent

to a FileVault 2–encrypted Mac.

On the next level up, there’s the key encryption key (KEK) which is

otherwise known as a Secure Token. This key is generated when FileVault

2 encryption is initialized on a particular volume. It is used to unlock

the volume encryption key one layer down and acts as the middleman

between the volume encryption key and the derived keys. This middle

Chapter 7 endpoint enCryption

377

layer allows the derived keys to change without affecting the derived keys’

ability to unlock the encrypted volume. One thing that’s important to know

on APFS volumes is that Apple has set up the KEK/Secure Token so that

user accounts need to be enabled for Secure Token access and that it’s

possible to have user accounts which are not Secure Token enabled. If an

account is not Secure Token enabled, it’s not possible for that account to

unlock FileVault’s encryption. Secure Token has caused a lot of confusion

for Mac admins, so there will be further discussion of it later in this

chapter.

On the top layer, there’s the derived encryption keys. These keys begin

the chain reaction of unlocking the other keys below it, resulting in the

unlocking or decryption of the encrypted volume. Any derived key can be

independently changed without affecting its ability to unlock the other two

layers of keys.

Any given APFS volume must be able to support multiple

cryptographic users, each with their own derived key which is able to

unlock the encryption. This is important because it means that there can

be multiple ways to access the encrypted volume. In the case of FileVault

2’s encryption, it means that multiple-user accounts can be enabled to

unlock an encrypted Mac at the preboot login screen. Derived keys are

also used for the FileVault 2 recovery keys, which we’ll be covering in more

detail later.

For those Macs which have the Secure Enclave processor, how does

the Secure Enclave fit into this model? Just like it does on iOS. The overall

macOS encryption model remains the same, but Secure Enclave–equipped

Macs are always encrypted. Period. Even if FileVault is not enabled.

How this works is that the solid-state drives which ship with these

Macs have built-in hardware encryption support, and the Secure Enclave

processor stores the keys needed to unlock the encrypted storage. If

FileVault isn’t turned on, the Secure Enclave automatically provides

the unlock keys when the Mac boots. Once FileVault is turned on, the

Secure Enclave stops providing the unlock keys on boot and now requires

Chapter 7 endpoint enCryption

378

authentication by a Secure Token–enabled account in order to unlock the

encryption. This allows FileVault to be instantly turned on and off, just as

you can instantly turn on and off encryption on iOS using the passcode

settings.

On Macs that don’t have a Secure Enclave processor, the lack of

hardware support means that the APFS volume must be encrypted using

the filesystem’s native encryption capabilities. This is usually a slower

process than “instant,” with time to encrypt varying depending on the

speed of the storage in use, size of the storage volume, and speed of the

processor.

For Apple Silicon Macs, Apple has also implemented Data Protection

(discussed earlier in the iOS encryption section) to bring file-level

encryption to macOS. This extra level of protection is not available for

Macs with Intel processors.

However, Data Protection on macOS is a hybrid implementation which

is different from the iOS implementation of Data Protection. To understand

how, let’s first look at how Data Protection is implemented on iOS.

iOS’s Data Protection implementation includes the following classes:

 a. Class A – Complete Protection: The class key

is protected with a key derived from the user

passcode and the device UID. Shortly after the

user locks a device (10 seconds, if the Require

Password setting is Immediately), the decrypted

class key is discarded, rendering all data in this class

inaccessible until the user enters the passcode again

or unlocks (logs in to) the device using Face ID or

Touch ID.

 b. Class B – Protected Unless Open: Some files may

need to be written while the device is locked or

the user is logged out. To protect them, the file

is protected by a wrapped per-file key which is

Chapter 7 endpoint enCryption

379

generated by the Protected Unless Open class’s

private key and an ephemeral public key. The per-

file key is then wiped from memory when the file

is closed. When the file is reopened, the process

repeats.

 c. Class C – Protected Until First User
Authentication: This behaves the same as Class

A (Complete Protection) with the exception that

the decrypted class key stays in memory when the

device is locked or the user is logged out. This is the

default class for all third-party app data which is not

otherwise assigned to a Data Protection class.

 d. Class D – No Protection: This class key is protected

only with the UID, and the key itself is stored in

Effaceable Storage. All the keys needed to decrypt

files in this class are stored on the device, so this

class doesn't afford any real protection to files

aside from having its keys deleted as part of a fast

remote wipe.

On Apple Silicon Macs, macOS uses the same Data Protection classes,

with the following differences:

 1. Class D (No Protection) is not supported.

 2. The default Class C (Protected Until First User

Authentication) uses a volume key and acts like

FileVault does on an Intel Mac.

Chapter 7 endpoint enCryption

380

Other important differences for Data Protection on macOS include the

following:

 1. Class A – Complete Protection: On macOS, the

decrypted class key is discarded shortly after the last

user is logged out. This makes all data in this class

inaccessible until a user enters their password again

or logs in to the device using Touch ID.

 2. Class B – Protected Unless Open: On macOS, the

private part of the Protected Unless Open class is

accessible as long as any users on the system are

logged in or are authenticated.

 Secure Token
As mentioned previously, Secure Token is the key encryption key (KEK)

which acts as the middleman between the derived encryption keys and

the encrypted volume’s volume encryption key (VEK). The KEK has been

around as long as FileVault 2 has, but access to it on an APFS volume

requires that an account be enabled for it. Moreover, an account can only

be enabled for Secure Token by another account with Secure Token.

There is one exception to this rule: to help make sure that at least one

account has been enabled for Secure Token, the first account to log in

to the OS login window on a particular Mac is automatically enabled for

Secure Token.

Once an account has been enabled for Secure Token, it can then create

other accounts which will in turn automatically be enabled for Secure

Token. For those who use Apple’s Setup Assistant to set up their Macs, this

usually takes the following form:

Chapter 7 endpoint enCryption

381

 1. Secure Token is automatically enabled for the user

account created by Apple’s Setup Assistant.

 2. The Setup Assistant–created user account with

Secure Token enabled then creates other users

via the Users & Groups preference pane in System

Preferences. Those accounts get enabled for Secure

Token automatically.

The reason this works is that the original user account is able to use

their account’s derived key, which is authorized to add additional keys to

the list of keys able to access the KEK, to enable the additional accounts’

own derived keys to the KEK’s access list.

However, user accounts created using command-line tools may not

be automatically enabled for Secure Token because they were created by

the root account, which is not a Secure Token–enabled account. If these

accounts are not later enabled for Secure Token by an account which

does have Secure Token enabled for it, it won’t be possible to enable these

accounts to work with FileVault 2 because they won’t have access to the

KEK and thus have no access to the encrypted volume’s VEK.

 Bootstrap Token
To help ensure that user accounts are granted secure tokens on Macs

managed by an MDM server, bootstrap tokens are used to help with

granting a secure token to accounts which need them. These tokens are

only available if the Mac meets the following requirements:

• Managed by an MDM server

• Using Apple device supervision

Chapter 7 endpoint enCryption

382

On macOS Catalina, bootstrap tokens can be used to grant a secure

token to both mobile accounts and to the managed administrator accounts

created by Apple’s Automated Device Enrollment (ADE).

On macOS Big Sur and later, this capability to grant secure tokens is

extended to grant a secure token to any user account logging in, including

local user accounts.

Bootstrap tokens have additional functionality on Apple Silicon Macs.

On macOS Big Sur and later, bootstrap tokens can be used by an MDM

server to authorize the following on Apple Silicon Macs:

• Installation of kernel extensions

• Software updates

On macOS Monterey and later, the bootstrap token is also used to

silently authorize Erase All Contents and Settings commands when those

commands are sent by the MDM used to manage the Mac.

 Enabling Encryption on macOS
There are several ways to enable FileVault 2, but let’s first look at the

simplest method using System Preferences.

To enable FileVault 2 on a Mac using System Settings:

 1. Open the Privacy & Security pane in System Settings

and scroll down to the FileVault section.

 2. Click the Turn On… button.

Chapter 7 endpoint enCryption

383

Figure 7-4. Accessing the FileVault controls in the Privacy & Security
preference pane in System Settings

 3. Authenticate when prompted.

 4. Choose “Create a recovery key and do not use my

iCloud account” and click the Continue button.

Chapter 7 endpoint enCryption

384

Figure 7-5. Creating a recovery key

Carefully document the recovery key. Preferably, use

macOS’s screen capture tools to take a screenshot of

the window and copy the file to a secure location. If

any user forgets their password or that user leaves

the organization, an administrator will only have this

recovery key as an option for unlocking the protected

boot volume and recovering data. Click the Continue

button to begin the encryption process.

Chapter 7 endpoint enCryption

385

Figure 7-6. Displaying a recovery key

 5. The encryption process can be monitored by

opening the Privacy & Security pane in System

Preferences and clicking the FileVault tab.

Chapter 7 endpoint enCryption

386

Figure 7-7. Monitoring encryption progress

 FileVault Recovery Keys
We briefly discussed FileVault 2’s recovery keys earlier, but not why they’re

important. These recovery keys are derived keys and act as a backup

method to unlock FileVault 2’s encryption in the event that the usual

method of logging using a user’s account password is not available.

There are two main types of recovery keys available:

 1. Personal recovery keys: These are recovery

keys that are automatically generated at the time

of encryption. These keys are generated as an

alphanumeric string and are unique to the machine

being encrypted. In the event that an encrypted

Mac is decrypted and then reencrypted, the existing

Chapter 7 endpoint enCryption

387

personal recovery key would be invalidated, and a

new personal recovery key would be created as part

of the encryption process.

 2. Institutional recovery keys: These are premade

recovery keys that can be installed on a system prior

to encryption and most often used by a company,

school, or institution to have one common recovery

key that can unlock their managed encrypted

systems.

Figure 7-8. Personal recovery key displayed in the FileVault
preference pane

Chapter 7 endpoint enCryption

388

Institutional keys are not automatically created and will need to be

properly generated before they can be used. To help understand why,

here’s some historical background on institutional recovery keys and how

they came to be used in FileVault 2.

 FileVault 1 and the FileVaultMaster.keychain File
The sole part of Apple’s FileVault 1 (also known as legacy FileVault) that

was carried over into FileVault 2 was the ability to use the FileVaultMaster.
keychain file (stored in /Library/Keychains) as an institutional

recovery key.

In FileVault 1 deployments, you were asked to set a Master Password

when turning on FileVault 1’s encryption. When you set the Master

Password, the FileVault 1 encryption process set the password that was

entered as the password on the /Library/Keychains/FileVaultMaster.
keychain file. In turn, the FileVaultMaster.keychain file contained two

keys used for PKI certificate–based authentication (one public key and

one private key). When the public and private keys are both stored in one

keychain, the keychain can be used to unlock your FileVault 1–encrypted

home folder in the event that the password to open it was lost or forgotten.

The Master Password only unlocked the keychain and allowed the system

to access those two PKI keys. This is the reason why you needed to set the

Master Password before encrypting and why it was also important to use

the same FileVaultMaster.keychain file across the machines where you

wanted to make sure that the same recovery key was being used.

If you were deploying the same recovery key for your FileVault-

encrypted Macs, Apple consistently recommended that you go into the

FileVaultMaster.keychain file, remove the PKI private key, put the private

key somewhere secure, and deploy the FileVaultMaster.keychain file

with only the public key inside. The reason was that, in the event that

Chapter 7 endpoint enCryption

389

the password to the FileVaultMaster.keychain file was compromised,

all the compromiser got was one half of the keypair (the public key half.)

The private key would not be on the machine and thus not available to

compromise the FileVault 1–encrypted homes on the machine. However,

FileVault 1 would work with both the public and private keys in /Library/
Keychains/FileVaultMaster.keychain.

In FileVault 2, Apple changed removing the private key from being

a suggested best practice to being a technical requirement. If you want

to use an institutional recovery key, your FileVaultMaster.keychain

file needs to have just the public key in it. If both public and private

keys are stored in the /Library/Keychains/FileVaultMaster.keychain

file on a Mac, FileVault 2 will ignore the keychain and not use it as an

institutional recovery key. In this case, enabling FileVault 2 encryption will

automatically generate a personal recovery key.

Note as of macoS Monterey and later, apple is no longer
recommending the use of institutional recovery keys on macoS. the
reasons are the following:

A. The only environment in which institutional recovery keys

can be used to unlock or decrypt a FileVault 2–encrypted Mac is the

Recovery environment. If user accounts are set up in macOS, Apple

has implemented the need to authenticate using an administrator

account’s password in order to access the Recovery environment, and an

institutional recovery key cannot be used to provide authentication for that

process.

B. Target Disk Mode is not available on Apple Silicon Macs, so it

is not possible to boot an Apple Silicon Mac into Target Disk Mode

and then connect it to another Mac to unlock the Apple Silicon Mac’s

encrypted drive.

Chapter 7 endpoint enCryption

390

While institutional recovery keys can still be created and will work

to unlock FileVault-encrypted drives, these limitations mean that you

may not be able to successfully use an institutional recovery key in all

circumstances when you need to unlock or decrypt an encrypted drive.

 Creating an Institutional Recovery Key
If you want to use an institutional recovery key on FileVault 2–encrypted

Macs, you will need to create and configure a FileVaultMaster keychain.

Apple has provided a way to create this keychain by using the security

command’s create-filevaultmaster-keychain function. To create a

FileVaultMaster.keychain file, run the following command:

security create-filevaultmaster-keychain /path/to/

FileVaultMaster.keychain

You’ll be prompted for a password for the keychain. When provided,

the keychain will be created and will contain both the private and public

keys needed for recovering a FileVault 2–encrypted drive that uses this

institutional recovery key. Make copies of the keychain and store them in

a safe place. Also make sure to securely store copies of the password you

used to create the keychain.

Figure 7-9. Using security create-filevaultmaster-keychain to
create an institutional recovery key

If you want to create the FileVaultMaster keychain in its proper

place, run the security command with root privileges and use /Library/
Keychains for the destination path.

Chapter 7 endpoint enCryption

391

Figure 7-10. Running security create-filevaultmaster-keychain
with root privileges to create an institutional recovery key in
/Library/Keychains

Figure 7-11. Using security help to display information about the
security tool’s create-filevaultmaster-keychain function

Once you’ve made your copies, make another copy and remove

the private key from that copy of the keychain. Once the private key

is removed, the FileVaultMaster.keychain file is ready to be used for

encrypting Macs with FileVault 2 with the institutional recovery key.

It doesn’t appear that the security main page includes information

about the create-filevaultmaster-keychain function, but you can see what

it does by running the security help command in Terminal and checking

at the bottom of the list that appears.

A way to modify /Library/Keychains/FileVaultMaster.keychain so

that it only has the public key inside would be to do the following:

Chapter 7 endpoint enCryption

392

 1. Create the FileVaultMaster.keychain file using the

security command.

 2. Next, make several copies of the FileVaultMaster.
keychain file that you just created and store the

copies separately in secure locations. A locked safe

would be a good place, or in an encrypted disk

image that is on an access-restricted file share.

 3. Next, unlock the newly created FileVaultMaster.
keychain file by running the following command

and entering the keychain’s password when

prompted for the password:

security unlock-keychain /Library/Keychains/

FileVaultMaster.keychain

Note the FileVaultMaster keychain will need to be unlocked from
the command line as the keychain will not unlock in Keychain access
by clicking the lock.

 4. If it succeeds, you’ll get the next system prompt.

If not, get another copy of the FileVaultMaster.
keychain file and try again. A FileVaultMaster.
keychain file with an unknown password should

Figure 7-12. Using the security tool’s unlock-keychain function to
unlock the FileVaultMaster keychain for editing

Chapter 7 endpoint enCryption

393

not be used because there is no way to use it

for recovery purposes without first knowing the

keychain’s current password.

 5. Once you’ve unlocked the FileVaultMaster.
keychain file, open the Keychain Access

application from /Applications/Utilities/.

 6. In Keychain Access, go to File: Add Keychain…

and add /Library/Keychains/FileVaultMaster.
keychain.

Figure 7-13. Looking at Keychain Access prior to adding
FileVaultMaster.keychain

Chapter 7 endpoint enCryption

394

Figure 7-14. Selecting the FileVaultMaster.keychain file in
Keychain Access

Figure 7-15. What the FileVaultMaster keychain’s private key looks
like in Keychain Access

 7. Assuming you previously unlocked the

FileVaultMaster.keychain file using the security

command, it should show up as unlocked in

Keychain Access.

Chapter 7 endpoint enCryption

395

 8. Go into the FileVaultMaster keychain and remove

the private key. (It should be called FileVault
Master Password Key, and its kind should be listed

as private key.)

 9. Relock the FileVaultMaster keychain.

Figure 7-16. Removing the private key from the FileVaultMaster
keychain in Keychain Access

Figure 7-17. How the FileVaultMaster keychain should look with
only the public key inside

Chapter 7 endpoint enCryption

396

 10. Copy the modified FileVaultMaster.keychain

file (now with only the public key inside) to the /
Library/Keychains directory of the Macs you want

to encrypt with FileVault 2. For ease of deployment,

you can package the FileVaultMaster.keychain file

into an installer package. That installer package can

then be deployed ahead of encryption to multiple

machines using the system management tools used

in your environment.

When deployed to /Library/Keychains on the Macs you want to

encrypt with FileVault 2, the FileVaultMaster.keychain file should have

the following permissions set:

Owner: root

Permissions: read and write

Group: wheel

Permissions: read only

Everyone

Permissions: read-only

Once the institutional recovery key is deployed to an unencrypted

machine, enabling FileVault 2 via System Preferences should produce a

message stating that “A recovery key has been set by your company,
school, or institution” instead of displaying the personal recovery key.

Chapter 7 endpoint enCryption

397

Figure 7-18. Message indicating that a properly configured
FileVaultMaster.keychain is being used as an institutional
recovery key

Chapter 7 endpoint enCryption

398

Figure 7-19. FileVault 2 encrypting the boot drive using an
institutional recovery key

For mass FileVault 2 management, use Apple’s command-line

tool fdesetup for enabling and managing encryption and escrowing

recovery keys.

fdesetup gives Mac administrators the following command-line

abilities:

• Enable or disable FileVault 2 encryption on a

particular Mac.

• Use a personal recovery key, an institutional recovery

key, or both kinds of recovery key.

• Enable one or multiple user accounts at the time of

encryption.

Chapter 7 endpoint enCryption

399

• Get a list of FileVault 2–enabled users on a particular

machine.

• Add additional users after FileVault has been enabled.

• Remove users from the list of FileVault-enabled

accounts.

• Add, change, or remove individual and institutional

recovery keys.

• Report which recovery keys are in use.

• Perform a one-time reboot that bypasses the FileVault

preboot login.

• Report on the status of FileVault 2 encryption or

decryption.

 Enabling FileVault 2 Encryption for One or
Multiple Users
fdesetup is amazingly flexible when it comes to enabling FileVault 2

encryption from the command line. To start with the simplest method,

run the following command with root privileges to enable FileVault 2

encryption:

fdesetup enable

You’ll be prompted for the username and password of the primary

user, which is the account you will work with at the FileVault 2 preboot

login screen once the encryption is turned on.

If everything’s working properly, FileVault will enable, and you’ll be

given an alphanumeric personal recovery.

Chapter 7 endpoint enCryption

400

Figure 7-20. Running fdesetup enable to enable FileVault 2
encryption

Very Important the fdesetup-generated personal recovery key
is not saved anywhere outside the machine. Make a record of it or
you will not have a recovery key available to help unlock your Mac’s
encryption in case of a problem.

You can also enable additional user accounts at the time of encryption,

as long as the accounts are either local or mobile accounts on the Mac

being encrypted. Run the following command with root privileges to

enable FileVault 2 and specify the accounts you want:

fdesetup enable -user username -usertoadd other_username

-usertoadd yet_another_username

You’ll be prompted for the passwords of the accounts specified. After

that, you’ll be given an alphanumeric personal recovery key, and FileVault

will turn on. All of the accounts specified should appear at the FileVault 2

preboot login screen.

Chapter 7 endpoint enCryption

401

Figure 7-21. Running fdesetup enable to enable FileVault 2 for
multiple accounts

For those who want to automate the process, fdesetup also supports

importing a properly formatted plist via a standard input stream (stdin).

The plist needs to follow the format shown in Figure 7-22.

Figure 7-22. Plist format for fdesetup enable

Additional users can be included as needed by adding additional user

information under the AdditionalUsers plist key.

Note all account passwords need to be supplied in clear text.

Chapter 7 endpoint enCryption

402

Once the plist has been set up and properly formatted, run the

following command with root privileges to enable FileVault 2 encryption

and reference the account information in the plist file:

fdesetup enable -inputplist < /path/to/filename.plist

Since the accounts and passwords are in the plist file, fdesetup

does not need to prompt for passwords. Instead, the alphanumeric

personal recovery key is displayed, and FileVault turns on. All of the

accounts specified in the plist file should appear at the FileVault 2 preboot

login screen.

To avoid the need to enter a password, fdesetup also has a -defer flag

that can be used with the “enable” command option to delay enabling

FileVault 2 until after the current (or next) user logs out. With the -defer

flag, the user will be prompted for their password at their next logout

or restart. The recovery key information is not generated until the user

password is obtained, so the -defer option requires a file location where

this information will be written to as a plist file.

The property list file will be created as a root-only readable file and

contain information similar to what’s shown in Figure 7-24.

Figure 7-23. Using fdesetup enable with plist to enable FileVault 2 for
multiple accounts

Chapter 7 endpoint enCryption

403

Figure 7-24. fdesetup enable -defer recovery information plist format

Note For security reasons, the plist file with the recovery key
information should not stay on the encrypted system. please copy
it to a safe location and then securely delete this plist file from the
encrypted system.

Run the following command with root privileges to defer enabling

FileVault 2 and specify the account you want, as seen in Figure 7-25:

fdesetup enable -user username -defer /path/to/filename.plist

If there is no user account specified with the -user option, then the

current logged-in user will be enabled for FileVault 2. If there is no user

specified and no users are logged in when the command is run, then the

next user that logs in will be chosen and enabled.

Figure 7-25. Using fdesetup enable –defer with specified user to
enable FileVault 2

Chapter 7 endpoint enCryption

404

If you don’t want to specify the account, run the following command

with root privileges (Figure 7-26):

fdesetup enable -defer /path/to/filename.plist

On logout, the user will be prompted to enter their account

password in a screen similar to that of Figure 7-27.

Figure 7-26. Using fdesetup enable –defer without specified user to
enable FileVault 2

Figure 7-27. User being prompted to enter password at logout for
deferred enabling of FileVault 2

Chapter 7 endpoint enCryption

405

Once entered, FileVault 2 will be enabled, and the recovery

information plist file will be created. Once the enabling process is

complete (the indicator shown in Figure 7-28), the Mac will restart.

In addition to enabling FileVault 2 as part of the logout process,

Apple provided the ability to set a deferred enablement at login. This

means that Mac admins can set a deferred enablement with the following

options, which prompts the user with the screen shown in Figure 7-29:

 1. Enforce FileVault 2 enablement at logout.

 2. Enforce FileVault 2 enablement at login.

 3. Enforce FileVault 2 enablement at both login

and logout.

Figure 7-28. FileVault 2 deferred enabling process

Chapter 7 endpoint enCryption

406

Figure 7-29. User being prompted to enter password at login for
deferred enabling of FileVault 2

To set a deferred enablement at login, the following options may be

added to fdesetup ‘s -defer flag:

• -forceatlogin max_cancel_attempts

• -dontaskatlogout

These additional options allow a deferred FileVault 2 enablement to be

enforced at the login window, rather than waiting for a logout or restart of

the Mac in question.

The -forceatlogin option must be set with an accompanying

numerical value, shown in Figure 7-30. This numerical value governs how

many times the account being enabled can choose to defer having the

FileVault 2 encryption process begin. For example, running the following

command with root privileges will set a maximum number of ten deferral

opportunities:

fdesetup enable -defer /path/to/filename.plist -forceatlogin 10

Chapter 7 endpoint enCryption

407

Figure 7-30. Using fdesetup enable –defer –forceatlogin to permit
deferred enablement of FileVault 2

Figure 7-31. User being given the option to defer FileVault 2
encryption

If the user chooses to defer, they will need to select the Don’t Enable

button in the dialog window when it appears, seen in Figure 7-31. They

will also be informed of how many more times they can log in before

FileVault 2 encryption must be enabled.

If immediate enforcement is desired, setting a value of zero will enforce

FileVault 2 encryption at the next login. To do this, run the following

command with root privileges, shown in Figure 7-32:

fdesetup enable -defer /path/to/filename.plist -forceatlogin 0

Chapter 7 endpoint enCryption

408

Figure 7-32. Using fdesetup enable –defer –forceatlogin to enforce
enablement of FileVault 2

Figure 7-33. Using fdesetup enable –defer –forceatlogin to enforce
enablement of FileVault 2 at login

The fdesetup commands shown earlier will enforce FileVault 2

enablement at both login and logout. If only enforcement at login is

desired, the -dontaskatlogout option can be used. This will prevent a

deferred FileVault 2 enablement to be enforced at logout. For example,

running the following command with root privileges will enforce

FileVault 2 encryption at the next login but not prompt the user on

logout, shown in Figure 7-33:

fdesetup enable -defer /path/to/filename.plist -forceatlogin

0 –dontaskatlogout

An important thing to keep in mind about the –defer option is that

it enables one single user account at the time of turning on FileVault 2

encryption. The –defer option does not enable multiple user accounts and

cannot be used to enable accounts once FileVault 2 encryption has been

turned on.

Chapter 7 endpoint enCryption

409

 Enabling FileVault 2 Encryption Using One or
Multiple Recovery Keys
Another capability of FileVault 2 is the ability to use the alphanumeric

personal recovery key, an institutional recovery key using /Library/
Keychains/FileVaultMaster.keychain, or both kinds of recovery key at the

same time.

As seen in the earlier examples, fdesetup will provide the

alphanumeric personal recovery key by default. To use the institutional

recovery key, the -keychain flag needs to be used when enabling

encryption, shown in Figure 7-34:

fdesetup enable –keychain

The alphanumeric personal recovery key is displayed, but the

encryption will also use the /Library/Keychains/FileVaultMaster.
keychain institutional recovery key. In case recovery is needed, either

recovery key will work to unlock or decrypt the encrypted drive.

If you want to specify that only the FileVaultMaster.keychain

institutional recovery key be used, both the -keychain and

-norecoverykey flags need to be used when enabling encryption, shown

in Figure 7-35:

fdesetup enable -keychain –norecoverykey

Figure 7-34. Using fdesetup enable -keychain to enable encryption
with both recovery key types

Chapter 7 endpoint enCryption

410

Figure 7-35. Using fdesetup enable –keychain –norecoverykey to
enable encryption with only the institutional recovery key

Figure 7-36. Using fdesetup enable -certificate to enable encryption
with an imported certificate

fdesetup is also capable of creating an institutional recovery key, using

the -certificate flag to import an existing FileVault 2 public key. Once

imported, fdesetup will automatically create a FileVaultMaster.keychain

file to store the public key and save the keychain to /Library/Keychains.

The public key will need to be available as a DER-encoded .cer

certificate file. Once the certificate is available, the following command can

be run with root privileges to enable FileVault 2, automatically create the

institutional recovery key with the supplied public key (Figure 7-36), and

store it as /Library/Keychains/FileVaultMaster.keychain:

fdesetup enable -certificate /path/to/filename.cer

To specify that only the FileVaultMaster.keychain institutional

recovery key be used, add the -norecoverykey flag to the command,

shown in Figure 7-37:

fdesetup enable -certificate /path/to/filename.cer –

norecoverykey

Chapter 7 endpoint enCryption

411

Figure 7-37. Using fdesetup enable -certificate -norecoverykey to
enable encryption with only the imported certificate

It is also possible to include the public key data in a plist file, which

allows the use of a plist to set up the institutional recovery key. The plist

needs to follow this format:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://

www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

<key>Username</key>

<string>username</string>

<key>Password</key>

<string>password</string>

<key>AdditionalUsers</key>

<array>

 <dict>

 <key>Username</key>

 <string>username</string>

 <key>Password</key>

 <string>password</string>

 </dict>

 <dict>

 <key>Username</key>

 <string>username</string>

 <key>Password</key>

 <string>password</string>

Chapter 7 endpoint enCryption

412

 </dict>

</array>

<key>Certificate</key>

<data>

(Certificate data goes here...)

</data>

</dict>

</plist>

Using the public key’s DER-encoded certificate file, the public key data

for the plist can be obtained using the base64 tool by using the following

command:

base64 /path/to/filename.cer > /path/to/filename.txt

At this point, you would copy the data string contained in the text file

and place it into the Certificate <data></data> value area of the plist file.

You would store either the password of an existing FileVault 2–enabled

user or (if available) an existing personal recovery key in the Password key

in the plist, as seen in Figure 7-38.

Chapter 7 endpoint enCryption

413

Figure 7-38. Plist format with institutional public key data

 Disabling FileVault 2 Encryption
In contrast to all of the various options available for enabling FileVault

2 using fdesetup, the command to turn off FileVault 2 encryption is the

following (Figure 7-39):

fdesetup disable

Chapter 7 endpoint enCryption

414

Figure 7-39. Using fdesetup disable to turn off FileVault 2’s
encryption

ADDING ADDITIONAL USERS AFTER FILEVAULT 2 HAS BEEN ENABLED

once FileVault 2 has been enabled, you can add additional users using

fdesetup. to do so, you will need to (a) wait until the FileVault 2 encryption

has completed and (b) provide both the username and password of a

previously enabled account as well as the password of the account you want

to add. the following command (Figure 7-40) run with root privileges will

enable a user account named otheruser:

fdesetup add -usertoadd otheruser

Figure 7-40. Using fdesetup add -usertoadd to enable additional
accounts

For those who want to automate the process, fdesetup also supports

importing a properly formatted plist via a standard input stream (stdin). the

plist needs to follow this format:

Chapter 7 endpoint enCryption

415

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://

www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

<key>Username</key>

<string>username</string>

<key>Password</key>

<string>password</string>

<key>AdditionalUsers</key>

<array>

 <dict>

 <key>Username</key>

 <string>username</string>

 <key>Password</key>

 <string>password</string>

 </dict>

 <dict>

 <key>Username</key>

 <string>username</string>

 <key>Password</key>

 <string>password</string>

 </dict>

</array>

</dict>

</plist>

When adding additional users using a plist file, the top-level Username key

is ignored, and the Password key value should either be an existing FileVault

user's password or the recovery key. additional users can be added as needed

by adding additional user information under the AdditionalUsers plist key

(Figure 7-41).

Chapter 7 endpoint enCryption

416

Figure 7-41. Plist format for fdesetup add

Note all account passwords need to be supplied in clear text.

Once the plist has been set up and properly formatted, run the

following command with root privileges to add additional users by

referencing the account information in the plist file (Figure 7-42):

fdesetup add -inputplist < /path/to/filename.plist

Figure 7-42. Using fdesetup add –inputplist to enable accounts

Chapter 7 endpoint enCryption

417

 Listing Current FileVault 2 Users
To list all accounts enabled for FileVault 2, run the following command

with root privileges:

fdesetup list

All accounts will be listed with both the accounts’ username and

UUID, as seen in Figure 7-43.

REMOVING USERS FROM THE LIST OF FILEVAULT 2–ENABLED ACCOUNTS

you can remove users from the list of FileVault-enabled accounts by using

either their username or the account's UUid. to remove the account using the

username, run the following command with root privileges (Figure 7-44):

fdesetup remove -user username_goes_here

Figure 7-44. Using fdesetup remove with username

Figure 7-43. Using fdesetup list to show enabled accounts

Chapter 7 endpoint enCryption

418

to remove the account using the account's UUid, run the following command

(Figure 7-45) with root privileges:

fdesetup remove -uuid UUID_here

Figure 7-45. Using fdesetup remove with UUID

in both cases, successful removal of the account will not produce any

additional output. if the account being removed is not currently enabled for use

with FileVault 2, an error message will be displayed, as shown in Figure 7-46.

Figure 7-46. –fdesetup remove error when specified account is not
FileVault 2 enabled

 Managing Individual and Institutional
Recovery Keys
fdesetup includes the ability to change, add, and remove both personal

and institutional recovery keys. This gives Mac admins much greater

ability to manage recovery keys, including the capability to quickly update

or remove compromised personal and/or institutional recovery keys in the

event of a data breach or other problems.

You can add or change recovery keys using fdesetup changerecovery.

To change to a new personal key, run the following command with root

privileges:

fdesetup changerecovery -personal

Chapter 7 endpoint enCryption

419

You’ll be prompted for the password of an existing FileVault 2–enabled

user or the existing personal recovery key. Once entered, a new personal

recovery key will be generated and displayed, as can be seen in Figure 7-47.

The former personal recovery key will no longer work.

For those who want to automate the process, fdesetup also supports

importing a properly formatted plist via a standard input stream (stdin).

The plist needs to follow the format displayed in Figure 7-48, this format:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://

www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

<key>Password</key>

<string>password</string>

</dict>

</plist>

Figure 7-47. Using fdesetup changerecovery to change to a new
personal recovery key

Figure 7-48. Plist format for fdesetup changerecovery -personal

Chapter 7 endpoint enCryption

420

You would store either the password of an existing FileVault 2–enabled

user or the existing personal recovery key in the Password key in the plist.

Once the plist has been set up and properly formatted, run the

following command with root privileges to change to a new personal

recovery key (Figure 7-49) and reference the password or recovery key in

the plist file:

fdesetup changerecovery -personal -inputplist < /path/to/

filename.plist

In the event that the Mac in question does not have a personal recovery

key, running the preceding commands will add a personal recovery key

instead of changing an existing one.

To change to a new institutional recovery key, you will need to have

the new public key available. If you have a new institutional public key

available as a DER-encoded certificate file, you can run the following

command with root privileges, as done in Figure 7-50, to replace the

current institutional key:

fdesetup changerecovery -institutional -keychain -certificate /

path/to/filename.cer

Figure 7-49. Using fdesetup changerecovery –personal with
-inputplist

Figure 7-50. Using fdesetup changerecovery to change to a new
institutional key

Chapter 7 endpoint enCryption

421

If an institutional keychain is being used on this Mac, you will see a

message that an existing FileVault Master keychain was found and moved

(Figure 7-51). The reason for this is that, as part of this process, the current

institutional key’s /Library/Keychains/FileVaultMaster.keychain file is

replaced with a new /Library/Keychains/FileVaultMaster.keychain file

that includes the new institutional recovery key’s public key.

While the former institutional key’s /Library/Keychains/
FileVaultMaster.keychain was moved and not deleted, the former

institutional recovery key will no longer work.

For those who want to automate the process, fdesetup also supports

importing a properly formatted plist via a standard input stream (stdin).

The plist needs to follow this format (shown in Figure 7-52 as well):

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://

www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

<key>Password</key>

<string>password</string>

<key>Certificate</key>

<data>

(Certificate data goes here...)

</data>

</dict>

</plist>

Figure 7-51. fdesetup changerecovery warning that an existing
keychain has been found and moved

Chapter 7 endpoint enCryption

422

Figure 7-52. Plist format for fdesetup changerecovery -institutional

fdesetup changerecovery -institutional -keychain -inputplist <

/path/to/filename.plist

In the event that the Mac in question does not have an institutional

recovery key, running the preceding commands will add an institutional

recovery key instead of changing an existing one.

 Removing Individual and Institutional
Recovery Keys
You can remove recovery keys using fdesetup. To remove the current

personal recovery key, run the following command with root privileges:

fdesetup removerecovery -personal

Chapter 7 endpoint enCryption

423

You’ll be prompted (Figure 7-53) for the password of an existing

FileVault 2–enabled user or the existing personal recovery key. Once

entered, the personal recovery key will be removed from the system. The

former personal recovery key will no longer work.

For those who want to automate the process, fdesetup also supports

importing a properly formatted plist via a standard input stream (stdin).

The plist needs to follow this format:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://

www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

<key>Password</key>

<string>password</string>

</dict>

</plist>

You would store either the password of an existing FileVault 2–enabled

user or the existing personal recovery key in the Password key in the plist

(Figure 7-54).

Figure 7-53. Using fdesetup removerecovery to remove a personal
recovery key

Chapter 7 endpoint enCryption

424

Figure 7-54. Plist format for fdesetup removerecovery

Figure 7-55. Using fdesetup removerecovery –personal with
-inputplist

Once the plist has been set up and properly formatted, run the

following command (Figure 7-55) with root privileges to remove the

current personal recovery key and reference the password or recovery key

in the plist file:

fdesetup removerecovery -personal -inputplist < /path/to/

filename.plist

To remove institutional recovery keys, run the following command

with root privileges:

fdesetup removerecovery -institutional

You’ll be prompted for the password of an existing FileVault 2–enabled

user or a personal recovery key if one is available (Figure 7-56). Once

entered, the institutional recovery key will be removed from the system

and will no longer work.

Chapter 7 endpoint enCryption

425

Figure 7-56. Using fdesetup removerecovery to remove an
institutional recovery key

Figure 7-57. Using fdesetup removerecovery –institutional with
-inputplist

The removal of the institutional key can also be automated using a

properly formatted plist via a standard input stream (stdin). The plist is the

same as the one used for removing the personal key.

Once the plist has been set up and properly formatted, run the

following command (Figure 7-57) with root privileges to remove the

institutional recovery key and reference the password or recovery key in

the plist file:

fdesetup removerecovery -institutional -inputplist < /path/to/

filename.plist

It is possible to use fdesetup to remove one or both recovery keys on

a particular Mac. Once the recovery keys are removed, the only way to

unlock the FileVault 2 encryption is by using the password of an enabled

account. That said, you could use fdesetup's changerecovery function to

add one or both types of recovery keys back to the encrypted Mac.

Chapter 7 endpoint enCryption

426

 Recovery Key Reporting
To go along with the ability to manage recovery keys, fdesetup enables

Mac admins to detect which types of recovery keys are in use on a

particular Mac. To check if a personal recovery key is in use, run the

following command with root privileges:

fdesetup haspersonalrecoverykey

If FileVault 2 is using a personal recovery key, this command will return

true. This can be seen in Figure 7-58. Otherwise, it will return false.

To check if an institutional recovery key is in use, run the following

command (Figure 7-59) with root privileges:

fdesetup hasinstitutionalrecoverykey

If FileVault 2 is using an institutional recovery key, this command will

return true. Otherwise, it will return false.

Figure 7-58. Using fdesetup haspersonalrecoverykey

Figure 7-59. Using fdesetup hasinstitutionalrecoverykey

Chapter 7 endpoint enCryption

427

ONE-TIME FILEVAULT 2 ENCRYPTION BYPASS

fdesetup has the authrestart verb, which allows a FileVault 2–encrypted

Mac to restart, bypass the FileVault 2 preboot login screen, and go straight to

the oS login window.

to restart and bypass the FileVault 2 preboot login screen, run the following

command with root privileges:

fdesetup authrestart

When you run the fdesetup authrestart command, it asks for the password of

an existing FileVault 2–enabled user or a personal recovery key (Figure 7-60).

Figure 7-60. Using fdesetup authrestart

once authenticated, the authrestart process puts an unlock key in system

memory and reboots. on reboot, the reboot process automatically clears the

unlock key from memory.

it’s also possible to automate this process by importing the authentication via

a properly formatted plist. the plist needs to follow the format shown in

Figure 7-61 (and seen below):

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://

www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

<key>Password</key>

Chapter 7 endpoint enCryption

428

<string>password</string>

</dict>

</plist>

Figure 7-61. Plist format for fdesetup authrestart

you would store either the password of an existing FileVault 2–enabled user or

a personal recovery key in the Password key in the plist.

once the plist has been set up and properly formatted, use the following

command with root privileges to run the authrestart process and reference

the password or recovery key in the plist file for authentication (Figure 7-62):

fdesetup authrestart -inputplist < /path/to/filename.plist

Figure 7-62. Using fdesetup authrestart with -inputplist

fdesetup's authrestart functionality is not supported by all Macs. to verify

if a specific Mac supports authrestart, run the following command with root

privileges:

fdesetup supportsauthrestart

if the Mac supports using authrestart, this command will return true as seen

in Figure 7-63. otherwise, it will return false.

Chapter 7 endpoint enCryption

429

Figure 7-63. Using fdesetup supportsauthrestart

Note the authrestart functionality works on both intel and apple
Silicon Macs, but apple Silicon Macs do not have a preboot login
screen like intel Macs have.

on intel Macs, apple is dependent on using the eFi login environment
for the FileVault 2 login screen. this is a very limited environment
in terms of functionality and is used in the FileVault 2 context to
provide a way to boot the Mac while the main boot volume is locked
by FileVault’s encryption. once eFi has booted the Mac, the Mac
then uses authentication from the user and the tools stored on the
unencrypted preboot volume to unlock the much larger encrypted
boot volume.

Apple Silicon Macs have a unified login screen experience where the

Mac boots to the OS login window without unlocking the encrypted disk

storage. FileVault-enabled accounts can log in at the OS login window and

unlock the encrypted storage. On an Apple Silicon Mac, using fdesetup’s

authrestart functionality effectively only reboots the Mac without

providing additional benefits.

Chapter 7 endpoint enCryption

430

 Reporting on FileVault 2 Encryption or
Decryption Status
fdesetup can report on FileVault 2 encryption or decryption status. Running

the following command (Figure 7-64 for decryption and Figure 7-65 for

encryption) with root privileges will display the current state (Figure 7-66

shows the output for the completed process and Figure 7-67 shows a fully

decrypted state):

fdesetup status

Figure 7-64. fdesetup status reporting decryption status

Figure 7-65. fdesetup status reporting encryption status

Chapter 7 endpoint enCryption

431

Figure 7-66. fdesetup status reporting encryption is enabled

Figure 7-67. fdesetup status reporting encryption is disabled

You can also enable FileVault 2 using configuration profiles deployed

through your MDM server solution. You can use various tools to create a

FileVault 2 management profile, but for the illustrations in this example,

DigiDNA's iMazing Profile Editor is being used:

 1. Open the profile creation tool.

 2. Complete the information in the General payload of

the new configuration profile (Figure 7-68).

Chapter 7 endpoint enCryption

432

Figure 7-68. Creating the Enable FileVault 2 profile’s
General payload

 3. Scroll through the list of payloads to the left and

choose the relevant FileVault 2 payload option.

 4. Set Enable FileVault to On (Figure 7-69).

Chapter 7 endpoint enCryption

433

Figure 7-69. Creating the Enable FileVault 2 profile’s payload
settings

 5. Choose to create a personal recovery key.

 6. Enable other settings as desired.

 7. When finished configuring the desired payload

options, save the new Enable FileVault 2

configuration profile.

 8. To test the new configuration profile, click the

Download button to download a .mobileconfig file.

Chapter 7 endpoint enCryption

434

 9. Copy this file to a test client system and double-

click it to install. macOS will prompt for local

administrator credentials and then add the profile to

the Profiles pane of System Settings.

 10. Log out and verify the FileVault 2 encryption

process begins.

After successful testing, upload the profile to your MDM server. Once

completed, scope the profile to the desired computers enrolled in your

MDM and use its push capabilities to deploy the profile.

 Summary
Apple has put a lot of effort into making sure that both iOS and macOS are

secure platforms, and encryption plays a key role here. Multiple levels of

encryption and multiple keys used to unlock them help ensure that your

data is as safe as Apple can currently make it. One of the truly remarkable

things about this protection is how little the average person needs to think

about it. Apple has built an easy-to-use security model where enabling a

passcode on iOS or enabling FileVault 2 on macOS is simple enough for

anyone to do, but where those acts enable unrivaled protection for that

person’s data.

That said, the weak link in Apple’s protection is that ultimately human

beings are the ones choosing whether to enable the encryption and

picking the unlock codes. Your Mac or iOS device is only going to be as

secure as you make it. Enabling encryption and choosing strong passwords

or passcodes will go a long way toward making sure that your data remains

for your eyes only.

Chapter 7 endpoint enCryption

435

CHAPTER 8

Securing Your Fleet
What’s really a threat on an Apple device? That’s often according to

who you ask. But in order for Apple devices to be allowed on corporate

networks, there’s a few criteria that must be met, and rarely have I seen an

auditor who is willing to budge on these requirements. If you disagree that

something is necessary, then you should absolutely speak up; however,

a second or third effort is really just likely to make them dig into their

position and trust you less. And sometimes, they’re right.

2018 was one of the roughest years for Mac security. You can find

a rundown of the vulnerabilities and malware introduced at https://

digitasecurity.com/blog/2019/01/01/malware2018/ which indicates OSX.

MAMI, OSX.CrossRAT, and OSX.CreativeUpdate, among others. It hasn’t

been smooth sailing since then either. Suffice it to say that given that security

researchers are only beginning to scratch the surface of attacking the platform,

there’s going to be more ahead of us than behind us. Given the closed nature

of iOS, there’s just less to attack, and so expect fewer vulnerabilities there

and maybe expect the Mac to trend in that direction as well. So more of this

chapter is dedicated to the Mac than iOS, starting with securing the Mac.

 Securing the Platform
Compliance is a thing. In this book, we have covered (and continue to

cover) how to get devices into a compliant state. But compliance means

different things for different teams and different platforms. While the

© Charles Edge and Rich Trouton 2023
C. Edge and R. Trouton, Apple Device Management,
https://doi.org/10.1007/978-1-4842-9156-6_8

https://digitasecurity.com/blog/2019/01/01/malware2018/
https://digitasecurity.com/blog/2019/01/01/malware2018/
https://doi.org/10.1007/978-1-4842-9156-6_8

436

Apple platforms are similar, what you can do on iOS is much more limited

and so the security threats are as well. As an example, this means you

don’t use antivirus on iOS but can on macOS. In general, mobile devices

are treated differently in organizations: you don’t assume they’re always

on your network, you don’t expect access to the filesystem on the device

so you plan workflows that are app driven, and on Apple platforms, you

leverage MDM to do much of the heavy lifting to secure devices.

The Mac is very different. You can do practically anything you want on

the device. In many ways, the Mac is becoming more iOS-like, but you can

still disable SIP (System Integration Protection), which has been covered

throughout this book, and do anything you want on a device. Apple

produces a great guide to macOS security at www.apple.com/business/

resources/docs/macOS_Security_Overview.pdf, and this chapter is

meant as a technical journey through the basic security measures required

by most organizations. This starts with the operating system but quickly

becomes as much about apps and content as hardened systems that follow

guidelines, like those issued by the National Institute of Standards and

Technology in the United States, or NIST. NIST has made their compliance

work open source at https://github.com/usnistgov/macos_security

with assistance from agencies like NASA and the Pentagon.

With both Mac and iOS, many assume any software that goes through

the App Store is safe. This is because Apple scans software to indicate

that it is indeed safe. Now with App Notarization, Apple is scanning apps

for security flaws. This service is currently optional (except for kernel

extensions, or kexts), and if an app has been certified by Apple and signing

matches Apple’s database, then Gatekeeper (described further later in this

chapter) provides a special icon that the software is clean. As we cover later

in the chapter, this is good for many, but not all, organizations.

Security is a trade-off. In general, the more secure a fleet of devices

becomes, the less features are available on devices and/or the slower

the device will run. For example, removing the ability to use iCloud is

interpreted as some environments as improving security; however, without

Chapter 8 SeCuring Your Fleet

http://www.apple.com/business/resources/docs/macOS_Security_Overview.pdf
http://www.apple.com/business/resources/docs/macOS_Security_Overview.pdf
https://github.com/usnistgov/macos_security

437

iCloud, many services work suboptimally. Most classic Apple users and

administrators think “Apple has me covered” when it comes to security.

Most classic IT departments think “we must lock down everything that

makes anything cool.” And according to the type of data being stored on

a computer, they may be correct. The answer for how much security is

required to protect a device is somewhere in the middle and is entirely

based on the security posture of any given organization.

Many organizations have anywhere between three and eight

LaunchAgents and/or LaunchDaemons that run on a Mac. Given the types

and number of vulnerabilities on the Mac as well as what frameworks are

allowed to touch on the Mac, it is unimaginable that a customer would

actually need to deploy all of those agents given that each can have an

expensive load on system resources, with some taking up 10–30% of

the CPU or memory on a computer. One is usually too few, four is too

many. None should touch the kernel (and therefore should not be kernel

extensions) because doing so can lead to unbootable devices, and most

existing products do not provide for zero-day support.

 Mac Security
The Mac includes a number of built-in security features, on both

the system level and the user level. Two major components of these

security features are the signed system volume and System Integrity

Protection (SIP).

 Signed System Volume
As of macOS Big Sur and later, Apple has moved the parts of the OS it

can make immutable by moving them to the system volume of the boot

drive. This volume is mounted as read-only at boot by macOS, and all files

stored in the volume on it now have a SHA-256 cryptographic hash which

Chapter 8 SeCuring Your Fleet

438

is stored in the filesystem. This allows macOS to check each file’s current

hash against the stored hash at boot time, to verify that the file hasn’t been

tampered with or damaged.

In addition, further hashing is used in the filesystem metadata itself.

This additional hashing covers all directories from the deepest nested

directories to the root level. This additional hashing is referred to as a

cryptographic seal and covers the entire system volume, its directory

structure, and all the data contained inside. This seal is verified every time

the Mac starts up, though the behavior is slightly different between Apple

Silicon Macs and Intel Macs equipped with T2 security chips:

• Apple Silicon Macs: Bootloader verifies the seal before

transferring control to macOS’s kernel.

• Intel Macs with T2 security chips: Bootloader

forwards seal measurement and signature to macOS’s

kernel. The kernel verifies the seal before mounting the

root filesystem.

If this seal verification fails, the macOS boot process halts at that point,

and the user is prompted to reinstall macOS.

 System Integrity Protection
Once the Mac is booted and running, System Integrity Protection (SIP)

provides a security layer designed to limit the power of the root account

on macOS.

The root account is the superuser for a Unix system, and the Unix

permissions model is designed around the assumption that the root

account has access to everything. To limit what the superuser can do and

add another layer to the macOS security model, Apple developed System

Integrity Protection (SIP) and first deployed it as part of OS X El Capitan.

SIP is designed to limit the power of root and to protect the system, even

from its own root user.

Chapter 8 SeCuring Your Fleet

439

SIP is an overall security policy with the goal of preventing system files

and processes from being modified by third parties. To achieve this, it has

the following concepts:

• Filesystem protection

• Runtime protection

• Kernel extension protection

SIP prevents parties other than Apple from adding, deleting, or

modifying directories and files stored in certain directories, including the

following:

/bin

/sbin

/usr

/System

The preceding directories are required for the computer to boot

properly, and not allowing users to alter them keeps the operating system

safe. Because the software you install needs to go somewhere on the

system, Apple has indicated that the following directories are available for

developers to access:

/usr/local

/Applications

/Library

~/Library

All directories in /usr except for /usr/local are protected by SIP,

and third-party developers should not write to protected locations. It is

possible to add, remove, or change SIP-protected files and directories via

an installer package which is signed by Apple’s own certificate authority.

Chapter 8 SeCuring Your Fleet

440

This allows Apple to make changes to SIP-protected parts of the OS

without needing to change the existing SIP protections (Figure 8-1).

Figure 8-1. Suspicious package showing signing information for an
Apple installer which uses Apple’s signing certificate

The certificate authority in question is reserved by Apple for their own

use; Developer ID–signed installer packages are not able to alter SIP-

protected files or directories. To define which directories are protected,

Apple has currently defined a configuration file, which is /System/
Library/Sandbox/rootless.conf. This file is controlled exclusively by

Apple and lists all the applications and top-level directories which SIP is

protecting (Figure 8-2).

Chapter 8 SeCuring Your Fleet

441

Figure 8-2. Partial listing of SIP-protected paths in the /System/
Library/Sandbox/rootless.conf file

 SIP-Protected Directories
SIP is also protecting a number of directories and symlinks outside of

/Applications. Many of those directories contain frameworks, binaries

brought in from other projects, and binaries that have always been a part

of the Mac, since the inception of Mac OS X.

Chapter 8 SeCuring Your Fleet

442

Some of those directories contain files that administrators need to

access. So Apple has also defined some exceptions to SIP’s protection in

the rootless.conf file (Figure 8-3), with those exceptions marked with

asterisks. These exemptions from SIP’s protection mean that it is possible

to add, remove, or change files and directories within those locations.

Figure 8-3. Exceptions to SIP’s protection listed in rootless.conf

Among those exceptions are the following, which many administrators

or third-party software developers need access to:

• /System/Library/User Template: Where macOS

stores the files and directories it uses when creating

home folders for new accounts.

• /usr/libexec/cups: Where macOS stores printer

configuration information.

• /usr/share/man: A number of third-party software

developers and open source projects will write a man

file so you can have a manual of what the software does.

Chapter 8 SeCuring Your Fleet

443

 View SIP Protections Interactively
To see which files and directories have been protected by SIP, use the ls

command with the capital O flag in Terminal:

ls -O

As you can see in Figure 8-4, the output will list SIP-protected files and

directories as restricted. This is a common troubleshooting step you’ll get

used to if you have a lot of scripts that touch these folders, and you need

to resolve issues that come up with them due to not being able to write to

objects in those directories or remove them.

Figure 8-4. Using the ls command to display SIP-protected root-level
directories

An important thing to note is that even if a symlink (a symbolic link

acts as a shortcut of sorts) is protected by SIP, that does not necessarily

mean that the directory it’s linking to is being protected by SIP. For

example, the root level of a macOS boot drive contains several SIP-

protected symlinks pointing to directories inside the root-level directory

named private. Usually, this means that if one of those symlinks were

removed, it would cause problems with the device.

Chapter 8 SeCuring Your Fleet

444

However, when the contents of the private directory are examined

(Figure 8-5), the directories to which those SIP-protected symlinks point

are not themselves protected by SIP, meaning those directories and their

included files can indeed be moved, edited, or changed by processes using

root privileges.

Figure 8-5. Using the ls command to display directories inside the
private directory

 Runtime Protections
As mentioned, SIP’s protections are not limited to protecting the system

from filesystem changes. There are also system calls which are now

restricted in their functionality, including the following, which are more for

developers and debugging:

• task_for_pid()/processor_set_tasks() fail

with EPERM.

• Mach special ports are reset on exec(2).

• dyld environment variables are ignored.

• DTrace probes are unavailable.

Of the preceding list, DTrace is probably the most problematic for a

Mac administrator. If you need DTrace to troubleshoot, then you will need

Chapter 8 SeCuring Your Fleet

445

to disable SIP while troubleshooting. If you are a developer rather than an

administrator, SIP does not block inspection by the developer of their own

applications while they’re being developed, so instrumentation tools are

still available. Xcode’s tools will continue to allow apps to be inspected and

debugged during the development process.

 Kernel Extension Protections
The third type of protection that SIP proxies is for kernel extensions.

While the use of kernel extensions has been reduced by the introduction

of system extensions, SIP blocks the installation of unsigned kernel

extensions as well as those that haven’t been notarized using Apple’s

Notarization service. In order to install a kernel extension on macOS with

SIP enabled, a kernel extension must

• Install into /Library/Extensions.

• Be signed with a Developer ID for Signing Kexts

certificate.

• Be notarized using the Apple Notarization service,

which is described in more depth in Chapter 5.

For the purposes of this chapter, be aware of what kexts are running. A

good tool for this is KextViewr available at https://objective-see.com/

products/kextviewr.html.

If installing an unsigned kernel extension, SIP will need to be disabled

first. However, SIP should only be disabled temporarily. Any time you start

managing the settings for SIP by rebooting a machine into recovery mode,

think long and hard about whether you should touch anything before you

do so. You have plenty of time to do so, because the process is a bit slower

than we might want.

Chapter 8 SeCuring Your Fleet

https://objective-see.com/products/kextviewr.html
https://objective-see.com/products/kextviewr.html

446

 Managing System Integrity Protection
To ensure that third parties will not be able to disable these protections,

SIP’s configuration is stored in NVRAM (Non-volatile random-access

memory) rather than in the filesystem itself and is only configurable if the

Mac is booted into one of two environments:

• The macOS Installer environment

• The macOS Recovery environment

Note the macoS installer and macoS recovery environments are
in fact the same environment from macoS’s perspective. the main
difference between the two is that the macoS installer environment
contains a copy of the installation files for macoS and the recovery
environment does not.

Because SIP’s configuration is stored in NVRAM, these settings will

apply to the entire machine and will persist even if the OS is reinstalled.

SIP can be managed to the extent of turning it on, turning it off, adding and

removing IP addresses into a NetBoot whitelist, and reporting on whether

SIP is enabled or disabled. All changes to SIP’s configuration settings

also require a reboot before they take effect, and performing the changes

without physically touching the computers will not be possible (and so you

won’t be doing this en masse).

The tool used to manage SIP is /usr/bin/csrutil. csrutil is able to work

with SIP because it has a unique application entitlement assigned to it by

Apple. This entitlement is viewable using the codesign command shown in

the following:

codesign -d --entitlements - /usr/bin/csrutil

Chapter 8 SeCuring Your Fleet

447

The response to the command includes the com.apple.private.iokit.

nvram-csr key as shown in Figure 8-6.

Figure 8-6. Displaying csrutil’s application entitlement

Chapter 8 SeCuring Your Fleet

448

When you run csrutil without any associated commands, Terminal

will respond with the help page. Here, you’ll see any options get guidance

on how to use the available commands, as you can see in Figure 8-7.

Figure 8-7. Displaying csrutil’s help page

When booted from the Recovery environment, the command used to

enable SIP is simply csrutil with the enable verb:

csrutil enable

When run, you’ll receive a message that SIP was enabled, as seen in

Figure 8-8.

Figure 8-8. Running csrutil enable from the Recovery environment

Chapter 8 SeCuring Your Fleet

449

When booted from the Recovery environment, simply replace the

enable with a disable in order to turn SIP off so you can perform some of

the actions that would otherwise be unavailable to an administrator:

csrutil disable

The message is almost identical, but states disabled instead of enabled

(Figure 8-9).

Figure 8-9. Running csrutil disable from the Recovery environment

You can also reset the configuration for SIP by running the clear

command. This simply returns the state to the factory-installed state:

csrutil clear

The resultant message doesn’t indicate that SIP is disabled or enabled,

only that the state was cleared, as you can see in Figure 8-10.

Figure 8-10. Running csrutil clear from the Recovery environment

When csrutil clear is run, SIP goes back to its factory-default settings.

That means SIP is enabled if it was disabled previously and any custom

configuration is cleared out.

Chapter 8 SeCuring Your Fleet

450

 Signed System Volume and csrutil
As of macOS Big Sur and later, Apple has moved the parts of the OS it can

make immutable by moving them to the system volume of the boot drive.

As discussed earlier, this volume is cryptographically sealed, and the seal

is verified against tampering every time the Mac starts up. The csrutil
command can report whether this seal verification process is enabled

or not and also turn this verification process on or off from the Recovery

environment.

To enable the seal verification, run the following command as seen in

Figure 8-11:

csrutil authenticated-root enable

Figure 8-11. Running csrutil authenticated-root enable from the
Recovery environment

To disable the seal verification, run the following command as seen in

Figure 8-12:

csrutil authenticated-root disable

Figure 8-12. Running csrutil authenticated-root disable from the
Recovery environment

Chapter 8 SeCuring Your Fleet

451

 Running csrutil Outside
of the Recovery Environment
If you run the csrutil enable and csrutil disable commands when you

aren’t booted into the Recovery OS environment, you will receive a

message that these commands need to be run from the Recovery OS. The

current SIP configuration will remain unchanged, as you can see in

Figure 8-13.

Figure 8-13. Running csrutil enable outside the Recovery
environment

Likewise, if you try to run the csrutil authenticated-root enable

and csrutil authenticated-root disable commands while booted from a

regular boot drive, you will receive a message that these commands need

to be run from the Recovery OS (Figure 8-14).

Figure 8-14. Running csrutil authenticated-root to enable outside the
Recovery environment

Chapter 8 SeCuring Your Fleet

452

What can be run while outside the Recovery environment are csrutil’s

reporting functions. For example, to learn if SIP is enabled or disabled, run

the following command:

csrutil status

This command can be run without root privileges and will display if

SIP is enabled or disabled, as you’ll note in Figure 8-15.

Figure 8-15. csrutil status displaying SIP is enabled

Similarly, csrutil authenticated-root status can be run to report on

the status of the system volume seal’s verification check, as you can see in

Figure 8-16.

Figure 8-16. Running csrutil authenticated-root status outside the
Recovery environment

So you can programmatically derive information about SIP, but you

can’t augment SIP when booted to the standard operating system. Now

that we’ve covered getting SIP turned on and off, it’s worth noting that the

enable options have more granular settings, usually invoked with a -- in

the command.

Chapter 8 SeCuring Your Fleet

453

 Custom System Integrity Protection
Configuration Options
It is possible to enable SIP protections and selectively disable aspects

of it, by adding one or more flags to the csrutil enable command. All

the following examples require being booted from Recovery in order to

successfully configure.

To enable SIP and allow installation of unsigned kernel extensions, run

the csrutil command with the enable verb, but then use the --without

option and use the kext selection for what to disable:

csrutil enable --without kext

When this option is enabled, running csrutil status outside the

Recovery environment should produce output similar to this, indicating

that Kext Signing is disabled, as you can see in Figure 8-17. This isn’t to say

that signed kexts can’t be run but instead that forcing signed kexts in order

to run a kext has been disabled.

Figure 8-17. csrutil status displaying SIP is enabled with kext
protections disabled

Chapter 8 SeCuring Your Fleet

454

If you need to write to those protected directories we reviewed earlier

in the chapter (whether you need to is very arguable), then you’ll need

to disable Filesystem Protection. To enable SIP and disable Filesystem

Protections, run the enable option for csrutil, with the --without option

again, and then indicate fs instead of kext:

csrutil enable --without fs

When this option is enabled, running csrutil status should produce

output similar to Figure 8-17 but with the Filesystem Protections set to

disabled. You can also disable the debugging restrictions. To keep SIP

enabled but disable debugging restrictions, run the same command as

before but use debug as your option:

csrutil enable --without debug

When this option is enabled, running csrutil status will show

Debugging Restrictions set to disabled. A common task is to disable

DTrace restrictions so you can run dtrace commands and scripts. To leave

SIP enabled but disable the DTrace enforcement, run the same command

but use dtrace as the option to start SIP without, as follows:

csrutil enable --without dtrace

When this option is enabled, running csrutil status should produce a

similar output but with the DTrace Restrictions listed as disabled. Many

administrators will want to customize NVRAM options (e.g., to bless

NetBoot servers). To enable SIP and disable restrictions on writing to

NVRAM, run the same command but use the nvram option:

csrutil enable --without nvram

When this option is enabled, running csrutil status should produce

output similar to the previous few iterations of the command, but with

NVRAM Protections showing as Disabled. To enable SIP and disable

Chapter 8 SeCuring Your Fleet

455

basesystem verification, which will allow the use of a modified disk image

to install macOS, run the command again but use basesystem as the

exclusion:

csrutil enable --without basesystem

When this option is enabled, running csrutil status should produce

a similar output but showing BaseSystem Verification set to disabled.

These commands allow you to access specific options while still leaving

SIP enabled. If you have to access those, try to do so granularly so the

deployment still makes use of the added security features from running

with SIP enabled on the fleet, and do so only for machines you have to. For

example, try to only disable the nvram protections if you have a lab that

you’d like to run with the option to boot into a NetBoot environment.

 System Integrity Protection
and Resetting NVRAM
As mentioned previously, SIP stores its active security configuration in

NVRAM. This allows SIP’s configuration to persist across OS installs,

but this design choice also means that resetting NVRAM will cause SIP’s

configuration to reset as well. In my testing, a NVRAM reset will result in

the following SIP configuration:

• SIP will be enabled with all protections in place.

• No entries will be set in the NetBoot whitelist.

Resetting the NVRAM, otherwise known as a PRAM reset or PRAM zap,

has been a standard part of the Mac troubleshooting toolkit for a long time,

but the process is different depending on if you’re using an Intel Mac or an

Apple Silicon Mac.

Chapter 8 SeCuring Your Fleet

456

For Intel Macs, a PRAM reset is performed by pressing and holding

down the Option, Command (⌘), P, and R keyboard keys at startup

(Figure 8-18). You can verify this worked because the startup tone

will change.

Figure 8-18. Apple keyboard with PRAM reset keys indicated

For Apple Silicon Macs, you will need to boot to the Recovery

environment. When booted from the Recovery environment, run the

following command as shown in Figure 8-19.

nvram -c

Figure 8-19. Running the nvram -c command from the Recovery
environment

Chapter 8 SeCuring Your Fleet

457

For environments that do not plan to change SIP’s default

configuration, NVRAM resets should not affect normal operations.

However, for those environments where custom SIP configurations need

to be maintained, be advised how this change affects SIP configuration in

your environment.

 User-Level Protections
The final type of protection we’ll cover is user-level protections. Introduced

as a part of the entitlement framework in macOS Mojave, these protections

are managed by Apple’s expanded security framework, Transparency

Consent and Control (TCC). These new protections are primarily focused

on protecting data within a user’s home folder, but also affect access to the

Mac’s built-in camera and microphone.

To summarize the protection, applications will now be required to

request user approval before they’ll be able to access specific application

data. If access is not granted, the application will not be able to access that

data, and whatever function the application was trying to run may fail.

Apple has not documented which files and directories inside an account’s

home folder are affected by the user data protections, but in our research

and testing, these are the affected areas we know of today:

~/Library/Application Support/
CallHistoryTransactions

~/Library/Application Support/com.apple.TCC

~/Library/Application Support/AddressBook

~/Library/Application Support/CallHistoryDB

~/Library/IdentityServices

Chapter 8 SeCuring Your Fleet

458

~/Library/Calendars

~/Library/Preferences/com.apple.
AddressBook.plist

~/Library/Messages

~/Library/Mail

~/Library/Safari

~/Library/Suggestions

~/Library/Containers/com.apple.Safari

~/Library/PersonalizationPortrait

~/Library/Metadata/CoreSpotlight

~/Library/Cookies

~/Library/Caches/CloudKit/com.apple.Safari

/private/var/db/dslocal/nodes/

In order for applications to be able to access those protected areas,

they must be approved either manually or by using a management profile.

For more information on using a profile to manage privacy protections,

please see Chapter 4. To show an example of an application which would

legitimately need access to protected areas would be a backup solution.

To manually approve a backup application to access all data stored in an

account’s home folder, including protected data, the following procedure

is used on macOS Mojave:

 1. Open System Settings.

 2. Select the Privacy & Security preferences.

 3. Click the Full Disk Access settings.

 4. Add the application to the Full Disk Access section

as you can see in Figure 8- 20.

Chapter 8 SeCuring Your Fleet

459

Fi
gu

re
 8

-2
0.

 A
llo

w
in

g
Te

rm
in

al
.a

pp
 to

 h
av

e
Fu

ll
D

is
k

A
cc

es
s

Chapter 8 SeCuring Your Fleet

460

The Location Services, Contacts, Calendars, Photos, Camera,

Microsoft, and other items that are covered by the privacy controls are

configured in the same manner and represent the most likely places where

a third-party developer will want to access information that an end user

should be prompted to allow.

Privacy is an increasingly visible aspect of security, but there are a

number of things that the industry has been doing for a long time. Many

administrators are accustomed to scanning software on a computer

for vulnerabilities. We’ll move on to doing so in the next section of this

chapter.

 Detect Common Vulnerabilities
The Mac comes with a number of tools for querying version numbers

of things like apps and operating systems. First, let’s look at operating

systems. The quickest way to derive the version of an operating system

would be using the sw_vers command with the -productVersion option:

sw_vers -productVersion

The output is a simple point release version number. Older versions

would have shown a 10 in front of the number, like 10.15.0. An example

of a newer system like Ventura would report just the later part of the

numbers:

13.0

It then becomes trivial to pipe that output into other languages,

provided you can reach them from within a script. For example, if you

import os into a python script, you can use the sw_vers command:

import os

os.system('sw_vers -productVersion')

Chapter 8 SeCuring Your Fleet

461

Or to grab the version of the OS, you could import a function just

for that:

version = platform.mac_ver()

So in the following example, this is in a python script that lists any

available Common Vulnerabilities and Exposures, or CVEs, for a given

macOS operating system, using cve.circl.lu, a public repository of CVEs

copied from https://cve.mitre.org and with a REST API put in front of

the database:

maccvecheck.py

#!/usr/bin/python import sys, urllib, json, platform

if len(sys.argv) > 1: url = 'https://cve.circl.lu/api/search/

apple/mac_os_x:{}'.format(sys.argv[1])

print([j['id'] for j in json.loads(urllib.urlopen(url).read().

decode('utf-8'))])

else:

version = platform.mac_ver() url = 'https://cve.circl.lu/api/

search/apple/mac_os_x:{}'.format(version[0])

print([j['id'] for j in json.loads(urllib.urlopen(url).read().

decode('utf-8'))])

Rather than typing all of that should you need this, copy it from

https://github.com/krypted/maccvecheck.

The operating system isn’t all we might want to keep updated, the

script can be used to check for other software on the computer as well.

You can also read the index of an app using mdls, a command to query the

Spotlight index on a Mac. To use the command, we’ll use the -name option

and the kMDItemVersion attribute, as follows for Zoom:

mdls -name kMDItemVersion /Applications/zoom.us.app

Chapter 8 SeCuring Your Fleet

https://cve.mitre.org
https://github.com/krypted/maccvecheck

462

And then you can look that up in the CVE database as well using a

simple call to the same database:

curl https://cve.circl.lu/api/search/apple/itunes:12.5

Adding a bit more logic, you could then build a similar script that

checks all items in /Applications. Ultimately, Apple has a number of

products that are tracked in the cve database, and a library of each could

easily be built and parsed to produce all cve hits encountered on a Mac.

The number of products you would need to scan seems to go down every

year. Obviously, you might not want to trust some random site from

Luxembourg, and you can do this directly against the zip from Mitre or

create your own microservice that responds similarly to this site. For

the purposes of this book, we used the public-facing API, so we didn’t

need to parse the json files distributed by Mitre. Now that we’ve looked

into vulnerability scanning, another common practice (and therefore a

checkbox in your security assessment forms) is managing the firewall.

 Manage the macOS Firewall
macOS comes with an Application Layer Firewall (we’ll call it ALF for

short), which is what is configured from the Security System Preference

pane. You can enable the firewall simply enough by using the defaults

command to augment the /Library/Preferences/com.apple.alf.plist file,

setting the globalstate key to an integer of 1:

sudo defaults write /Library/Preferences/com.apple.alf

globalstate -int 1

You can also configure the firewall from the command line. Stopping

and starting ALF is easy enough, whether the global state has been set to

zero or one, done using launchd. To stop:

Chapter 8 SeCuring Your Fleet

463

launchctl unload /System/Library/LaunchAgents/com.apple.alf.

useragent.plist launchctl unload /System/Library/LaunchDaemons/

com.apple.alf.agent.plist

To start:

launchctl load /System/Library/LaunchDaemons/com.apple.alf.

agent.plist launchctl load /System/Library/LaunchAgents/com.

apple.alf.useragent.plist

These will start and stop the firewall daemon (aptly named firewall)

located in the /usr/libexec/ApplicationFirewall directory. As you can

imagine, the settings for ALF can be configured from the command line as

well. The socketfilterfw command, in this same directory, is the command

that actually allows you to manage ALF. ALF works not by the simple

Boolean means of allowing or not allowing access to a port but instead by

limiting access by specific applications, more along the lines of Mandatory

Access Controls. When an application is allowed to open or accept a

network socket, it’s known as a trusted application – and ALF keeps a list

of all of the trusted applications. You can view trusted applications using

socketfilterfw with the -l option, although the output can be difficult to

read, and so you can constrain it using grep for TRUSTEDAPPS as follows:

sudo /usr/libexec/ApplicationFirewall/socketfilterfw -l | grep

TRUSTEDAPPS

You can also use the command line to add a trusted application using

the -t option for older versions of macOS or –blockapp or –unblockapp

followed by a path to the binary of an app. For example, to unblock

FileMaker Pro, we’d point to the FileMaker binary:

sudo /usr/libexec/ApplicationFirewall/socketfilterfw –blockapp

"/Applications/FileMaker Pro 19/FileMaker Pro.app/Contents/

MacOS/FileMaker Pro"

Chapter 8 SeCuring Your Fleet

464

To see a list of apps the firewall has been configured to work with, use

the –listapps option. You can also use the socketfilterfw command to sign

applications, verify signatures, and enable debugging. Finally, there are a

number of global preferences for the firewall that can be configured using

the /usr/libexec/ApplicationFirewall/com.apple.alf.plist preferences file.

You might be looking at the path to this file and think that it looks odd and

it should really be in /Library/Preferences. And you might be right. Some

keys in this file that might be of interest include globalstate (0 disables the

firewall, 1 configs for specific services, and 2 is for essential services – as in

the GUI), stealthenabled, and loggingenabled. All are integers and fairly

self-explanatory vs. GUI settings from the System Preference pane.

Firewalls are one layer of security; the next we’ll cover is malware.

 Combat Malware on macOS
One of the security requirements handed down by many an information

security team that has seemed controversial since before macOS even

is antivirus. In previous books, we tried to explore what the difference is

between a virus, trojan, logic bomb, worm, backdoor, zombie, retrovirus,

macrovirus, rootkits, etc. But here, we’ll just call it all malware. It’s

something bad on the computer, and we need to scan for it routinely and

correct it when found. Most malware that gets on an Apple device can’t

actually hurt the device; instead, the device ends up sending infected files

to other computers that the malware can actually affect. Or at least that

was the perception in previous decades and is mostly still true for iOS.

Mac malware can be dangerous though. When it is, you’ll need a way

to limit the impact and remediate. There are tons of great options to buy

mature antivirus tools on the market. Apple has also provided a number of

built-in tools, and for some, those will suffice to satisfy a CISO. We’ll start

by covering XProtect.

Chapter 8 SeCuring Your Fleet

465

 XProtect and Gatekeeper
Gatekeeper is often used as a term to cover a number of different

technologies. The first we’ll cover is XProtect, a tool built into macOS

that is meant to protect the operating system by detecting various viral

signatures and reacting to them by blacklisting that signature. Apple

doesn’t add items to this list often, as there aren’t a lot of things that need

to be added. If your organization requires the use of an antivirus tool,

the first question you should answer is “will XProtect be sufficient?” The

answer will often be no, but it’s worth understanding what XProtect is and

how it works.

The signatures that are installed by default can be found in the /

System/Library/CoreServices/CoreTypes.bundle/Contents/Resources/

Xprotect.plist property list, which includes a wonderful list of malware

items that Apple has automatically decided you should not run on your

computer. This allows other developers to extend signatures by adding

more items into the XProtect.plist in Security Updates, or Apple may

choose to deploy more items in subsequent software updates.

The great thing about XProtect is that it’s already running on the

Mac and covers a number of different threats to the system by scanning

files as they’re opened and then identifying those deemed dangerous.

This means you’re not creating additional load on a computer during

traditional antivirus scans, and you’re not going to hold up the deployment

of new operating systems while testing if something works. XProtect is

configured using Gatekeeper, a System Preference used to configure a few

basic security options. To view and configure Gatekeeper settings, use

the Privacy & Security System Settings pane, scroll down to the Security

section, and choose whether your device will only allow App Store apps or

whether to allow those from the “App Store and identified developers” as

seen in Figure 8-21.

Chapter 8 SeCuring Your Fleet

466

Figure 8-21. Gatekeeper settings in System Settings

Gatekeeper is enabled by default, and configuring Gatekeeper is as

easy as selecting one of these options. There’s much more that can be done

under the hood. The state of Gatekeeper is kept in /var/db/SystemPolicy- -

prefs.plist. There’s only one option there, though: enabled. You can run

defaults to manage the status of Gatekeeper with the command line via the

spctl binary. To enable:

sudo spctl –master-enable

Or to use --master-disable to disable Gatekeeper:

spctl --master-disable

Chapter 8 SeCuring Your Fleet

467

Whether Gatekeeper (assessments) is enabled or disabled can be

returned using the --status option:

spctl --status

The -a option is used to assess an application to see if it will

open or not:

spctl -a /Applications/GitHub.app

If an application passes and has a rule available, then you’ll get no

response. If there’s no rule for the application, you’ll get a response that

/Applications/GarageBuy.app: unknown error 99999=1869f

You don’t want users to just start clicking to accept screens, so, when

possible, add the rules on behalf of users. To add rules about apps, use

the --add option. Each app gets a label, defined with the –label option. For

example, to add GitHub:

spctl --add --label "GitHub" /Applications/GitHub.app

To then enable access to GitHub:

spctl --enable --label "GitHub"

Or to disable an app:

spctl --disable --label "GitHub"

As with most things, there’s actually a rub: spctl doesn’t always work.

There have been more than a few issues with getting the labels to apply

properly. Sometimes, the -a will report back that an app is rejected and yet

the app will still open, so build some sanity checking into any scripts when

managing app labels. When you encounter problems with spctl, file a radar

with Apple. Gatekeeper is more fully documented at https://support.

apple.com/en-us/HT201940. To understand some of the underpinnings

though, we’ll look at lsquarantine in the next section of this chapter.

Chapter 8 SeCuring Your Fleet

https://support.apple.com/en-us/HT201940
https://support.apple.com/en-us/HT201940

468

 lsquarantine
Gatekeeper works by scanning files that have been downloaded from the

Internet, as we mentioned in the previous section. Deciding what files

are allowed to be opened and what aren’t, as well as prompting users

is handled using lsquarantine, Spotlight works very quickly because it

maintains an index of metadata attributes. The lsquarantine tool works

similarly. There is a set of attributes attached to any files downloaded from

the Internet, and on opening a special screen appears, which can be seen

in Figure 8-22.

Figure 8-22. Prompt for quarantined apps

Any file downloaded from external sources (such as email

attachments) attaches quarantine attributes, including Safari, Messages,

HipChat, etc. These attributes include date, time, and a record of where

the file was downloaded from. When you open a file received through a

quarantine-aware application, macOS warns you where the file came from.

You receive an alert asking, “Are you sure you want to open it?”

For more on how lsquarantine works under the hood, see

https://developer.apple.com/documentation/foundation/

urlresourcevalues/1792021-quarantineproperties. But let’s look at

those attributes, given how important they are.

Chapter 8 SeCuring Your Fleet

https://developer.apple.com/documentation/foundation/urlresourcevalues/1792021-quarantineproperties
https://developer.apple.com/documentation/foundation/urlresourcevalues/1792021-quarantineproperties

469

Xattr has a lot of different uses; you can programmatically manage

Finder tags with it (Finder tags aren’t just used for security, so for more on

Finder tags, see http://krypted.com/mac-os-x/command-line-finder-

tags/). To see the full xattr dump on a given file, use the -l option as

follows:

xattr -l com.apple.quarantine MyAppImage.dmg

The output is as follows:

xattr: No such file: com.apple.quarantine MyAppImage.dmg:

com.apple.metadata:kMDItemDownloadedDate: 00000000 62 70 6C

69 73 74 30 30 A1 01 33 41 BE 31 0B A5 |bplist00..3A.1..|

00000010 70 D4 56 08 0A 00 00 00 00 00 00 01 01 00 00 00

|p.V.............| 00000020 00 00 00 00 02 00 00 00 00 00 00 00

00 00 00 00 |................| 00000030 00 00 00 00 13 |.....|

00000035 MyAppImage.dmg: com.apple.metadata:kMDItemWhereFroms:

00000000 62 70 6C 69 73 74 30 30 A1 01 5F 10 22 63 69 64

|bplist00.._."cid| 00000010 3A 69 6D 61 67 65 30 30 31 2E 70 6E

67 40 30 31 |:myappimage.dmg@01| 00000020 44 32 36 46 46 44 2E

35 37 31 30 37 30 46 30 08 |D26FFD.571070F0.| 00000030 0A 00

00 00 00 00 00 01 01 00 00 00 00 00 00 00 |................|

00000040 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

|................| 00000050 2F |/| 00000051

This could be helpful when troubleshooting and/or scripting. If you’re

an application developer, check out the new API for App Translocation in

the 10.12 SDK for <Security/SecTranslocate.h>. I guess one way to think of

this is… Apple doesn’t want you running software this way anymore. And

traditionally they lock things down further, not less, so probably best to

find alternatives to running apps out of images, from a strategy standpoint.

To remove the com.apple.quarantine bit, use xattr along with the -r option

(given that Mac apps are bundles of files we need to do so recursively) and

Chapter 8 SeCuring Your Fleet

http://krypted.com/mac-os-x/command-line-finder-tags/
http://krypted.com/mac-os-x/command-line-finder-tags/

470

then the -d option for delete, followed by the bit being deleted and then

the path to the app, as follows:

xattr -r -d com.apple.quarantine /Volumes/MyApp/MyAppImage.app

If you have multiple user accounts on your Mac, the user account

that downloaded the file is the only user account that can remove

the quarantine attribute on a file. All other user accounts can open a

quarantined file, but they are still presented with an alert asking, “Are you

sure you want to open it?” every time they open the file.

While a lot of focus is put on malware and privacy, the most substantial

risk to most computers is a binary running persistently. Most malware will

want to run in such a way. A lot of services run on a Mac and most are built

by Apple, so can be identified as com.apple.something. We cover kexts,

LaunchAgents, and LaunchDaemons in this book. But in the next section,

we’ll look at manipulating the Launch Services database to find and isolate

a foreign persistent service based on it being registered to open a given

file type.

 Using lsregister to Manipulate the Launch
Services Database
The lsregister command is used to query and manage the Launch

Services database, or the database that is used to determine the default

application used to open files of various types. lsregister is part of Core

Services and stored in /System/Library/Frameworks/CoreServices.

framework/Versions/A/Frameworks/LaunchServices.framework/

Versions/A/Support. To see the options available to lsregister, run the

command with no operators:

/System/Library/Frameworks/CoreServices.framework/Versions/A/

Frameworks/LaunchServices.framework/Versions/A/Support/

lsregister

Chapter 8 SeCuring Your Fleet

471

You can dump the database to the screen using the -dump option:

/System/Library/Frameworks/CoreServices.framework/Versions/A/

Frameworks/LaunchServices.framework/Versions/A/Support/

lsregister -dump

You can then grep the database or redirect the output into a text file for

parsing:

/System/Library/Frameworks/CoreServices.framework/Versions/A/

Frameworks/LaunchServices.framework/Versions/A/Support/

lsregister -dump > dump.txt

The dump of the database is really just meant to parse in other tools

if you have security requirements to do so. Sometimes, applications don’t

open with a given file type. When this happens, you can quickly and easily

check if the problem has to do with the launchservices database. To do so,

run the open command and define the application (using the -a option)

followed by the app and then the file. For example, to open an XML file

called krypted.xml in TextWrangler (assuming your working directory

contains krypted.xml):

open -a TextWrangler.app krypted.xml

A full scan of apps can be run to repopulate the database with

the --seed option:

/System/Library/Frameworks/CoreServices.framework/Versions/A/

Frameworks/LaunchServices.framework/Versions/A/Support/

lsregister -seed

You can force an application to reregister file types for that application

using the -f option followed by the application path. For example, to

reregister Xcode:

Chapter 8 SeCuring Your Fleet

472

/System/Library/Frameworks/CoreServices.framework/Versions/A/

Frameworks/LaunchServices.framework/Versions/A/Support/

lsregister -R -f /Applications/TextPlus.app

You can also unregister a specific application using the -u option. To

unregister Xcode, you would use the -u option:

/System/Library/Frameworks/CoreServices.framework/Versions/A/

Frameworks/LaunchServices.framework/Versions/A/Support/

lsregister -u /Applications/Xcode.app

One of the most important aspects of lsregister is to look for changes

that indicate an app has registered to handle a given file type. An example

of a security threat would be an app that registers to open a file type and

then each time that file type is run opens and then opens the legitimate

app for the file type. This would allow malware to run without being

detected.

The launchservices database can get unwieldy. There are applications

registered in the local domain, system domain, and each user’s domain.

These can be cleared with the following command, which also recursively

rebuilds based on the output of a -lint option:

/System/Library/Frameworks/CoreServices.framework/Versions/A/

Frameworks/LaunchServices.framework/Versions/A/Support/

lsregister -kill -r -domain local -domain system -domain user

To check the progress:

/System/Library/Frameworks/CoreServices.framework/Versions/A/

Frameworks/LaunchServices.framework/Versions/A/Support/

lsregister -v

Chapter 8 SeCuring Your Fleet

473

 Changing File Handlers
To set a specific application to open a file type, use the Get Info dialog

(Command-I when clicked on the file type). This dialog has a section for

“Open with:” as seen in Figure 8-23.

Figure 8-23. Use Get Info to change how files are handled

Chapter 8 SeCuring Your Fleet

474

Click the option list for opening the file and then use the Change

All button to set the behavior from just that instance of the file type to

all instances of the file type. You can also set the default application for

a network protocol (e.g., smb://, rdp://, vnc://, http://, and https://).

Because the options for lsregister leave one wanting in some ways (the

commands to set file types to a specific application are a bit overly

complicated one could argue), there is an awesome front-end app for older

operating systems from Andrew Mortensen, aptly called duti, available

at http://duti.sourceforge.net/index.php. With duti installed, the

command to set the default browser for http would be

/usr/local/bin/duti -s com.apple.safari http

Finally, there’s a lot that Launch Services does and is involved

in. For more information on Launch Services, check out the Apple

developer library entry for Launch Services at https://developer.

apple.com/library/archive/documentation/Carbon/Conceptual/

LaunchServicesConcepts/LSCIntro/LSCIntro.html.

 MRT
macOS also comes with a vulnerability scanner called mrt. The mrt binary

is installed inside the MRT.app bundle in /System/Library/CoreServices/

MRT.app/Contents/MacOS/, and while it doesn’t currently have a lot

that it can do, it does protect against the various bad stuff that is actually

available for the Mac. The mrt binary is based on Yara, an open source

tool that searches for complex patterns, perfect for finding files that meet a

known signature or other condition, such as malware.

To use mrt, simply run the binary with a -a flag for agent and then a -r

flag along with the path to run it against. For example, let’s say you run a

launchctl command to list LaunchDaemons and LaunchAgents running:

launchctl list

Chapter 8 SeCuring Your Fleet

http://duti.sourceforge.net/index.php
https://developer.apple.com/library/archive/documentation/Carbon/Conceptual/LaunchServicesConcepts/LSCIntro/LSCIntro.html
https://developer.apple.com/library/archive/documentation/Carbon/Conceptual/LaunchServicesConcepts/LSCIntro/LSCIntro.html
https://developer.apple.com/library/archive/documentation/Carbon/Conceptual/LaunchServicesConcepts/LSCIntro/LSCIntro.html

475

The list is a long listing of every LaunchAgent and LaunchDaemon

running. Let’s say there’s something that starts with com.abc. Be assured

that nothing should ever start with that. So it can easily be scanned with

the following command:

/Library/Apple/System/Library/CoreServices/MRT.app/Contents/

MacOS/MRT -a -r ~/Library/LaunchAgents/com.abc.123.

c1e71c3d22039f57527c52d467e06612af4fdc9A.plist

The preceding command works for Big Sur and above, but previous

versions might use

sudo /System/Library/CoreServices/MRT.app/Contents/

MacOS/mrt -a -r ~/Library/LaunchAgents/com.abc.123.

c1e71c3d22039f57527c52d467e06612af4fdc9A.plist

What happens next is that the potentially bad thing to scan will be

checked to see if it matches a known hash from MRT or from /private/var/

db/SystemPolicyConfiguration/XProtect.bundle/Contents/Resources/

XProtect.yara, and the file will be removed if so. A clean output will look

like the following:

2018.09-24 21:19:32.036 mrt[48924:4256323] Running as agent

2018.09-24 21:19:32.136 mrt[48924:4256323] Agent finished.

2018.09-24 21:19:32.136 mrt[48924:4256323] Finished MRT run

Yara rules are documented at https://yara.readthedocs.io/en/

v3.8.0/. For a brief explanation of the json you see in those yara rules, see

https://yara.readthedocs.io/en/v3.5.0/writingrules.html. Apple

can update the yara rules silently.

A user would have had a username and password for most malware to

run properly. XProtect with mrt protects against hundreds of file hashes

that include over 100 variants of threats. Those are threats that Apple has

effectively publicly acknowledged for the Mac based on their inclusion in

Apple-supplied files. Most malware is a numbers game. The attacker needs

Chapter 8 SeCuring Your Fleet

https://yara.readthedocs.io/en/v3.8.0/
https://yara.readthedocs.io/en/v3.8.0/
https://yara.readthedocs.io/en/v3.5.0/writingrules.html

476

to get enough people to click on a phishing email (e.g., one that looks very

legitimate about their iTunes account), and the attacker can start sending

things from their computers to further the cause provided they can make

the message seem credible enough to accept.

The mrt binary runs somewhat resource intensive at the moment,

and a common troubleshooting step is simply moving the binary out of

the MRT.app directory, a heavy-handed way to disable mrt. All of this

leads to Gatekeeper, XProtect, and mrt not covering the possible threats a

third-party tool might cover. However, there are some tools that wrap mrt

into graphical interfaces. One is DetectX from Phil Stokes of SentinelOne

(Figure 8-24).

Chapter 8 SeCuring Your Fleet

477

Figure 8-24. DetectX

The XProtect and bundle information is stored in the

CFBundleShortVersionString field in /Library/Apple/System/Library/

CoreServices/XProtect.bundle/Contents/Info.plist and can be checked

with the defaults command as follows:

defaults read /Library/Apple/System/Library/CoreServices/

XProtect.bundle/Contents/Info.plist CFBundleShortVersionString

Chapter 8 SeCuring Your Fleet

478

This can be used with an agent to make sure the XProtect information

is up to date. MRT can also be checked with the same key but in the /

Library/Apple/System/Library/CoreServices/MRT.app/Contents/Info.

plist file as follows:

defaults read /Library/Apple/System/Library/CoreServices/MRT.

app/Contents/Info.plist CFBundleShortVersionString

These tools are not sufficient for most compliance needs, and so

third-party tools like Symantec, Sophos, SentinelOne, Jamf Protect, and

others are often employed instead. Another default protection on the Mac

that we’ve covered is the fact that all apps need to be signed (and many

notarized).

 Signing Applications
It’s not terribly difficult to sign an app, given that all you need is a signing

certificate. All apps should be signed by Apple in the future, per Apple’s

changing guidelines to keep end users secure. Simply use the codesign

command-line tool.

To view the signature used on an app, use codesign:

codesign -dv MyAwesome.app

The same would be true for a package, which is equally as dangerous

when provided with an administrative account:

productbuild --distribution mycoolpackage.dist --sign

MYSUPERSECRETIDENTITY mycoolpackage.pkg

And some files are distributed in disk images (.dmg files). To

sign a dmg:

codesign -s MYSUPERSECRETIDENTITY mycooldmg.dmg

Chapter 8 SeCuring Your Fleet

479

So codesign is used to manage signatures and sign, but spctl

only checks things with valid Developer IDs, and spctl checks items

downloaded from the App Store. None of these allow for validating a

file that has been brought into the computer otherwise (e.g., through a

file share). These help to keep binaries from running on machines as

persistent threats that might, for example, subvert a traditional malware

defense infrastructure.

 ClamAV
ClamAV is an antivirus application that is among the easiest to use. It is

available at www.clamxav.com in a variety of languages. Although ClamAV

lacks many of the features available in some of the commercial packages

that are centrally manageable, it is a great and accessible tool that can

be used as a first-line-of-defense warning system against malware. The

underlying code is actually developed and distributed by the open source

community as part of the ClamAV project. The GUI tools that ClamXAV

brings to the table can then be distributed to large numbers of users to

help administrators discover virus outbreaks and perform quarantine

measures on infected files.

ClamXAV is a front end for ClamAV, which provides a nice graphical

interface to ClamAV for a nominal cost. Other third-party antivirus

solutions include Carbon Black, Cisco AMP, Malwarebytes, Panda Security,

Sophos, Symantec, Trend Micro, Webroot, and now even Microsoft. For

more, see Appendix A.

There are a number of ways to install ClamAV. For this example, just

to get it done quickly, we’ll use homebrew which is simply brew with the

install verb and clamav as the recipe to be brewed:

brew install clamav

Chapter 8 SeCuring Your Fleet

http://www.clamxav.com

480

This places the configuration files in /usr/local/etc/clamav, and

these cannot be used as those supplied by default are simply sample

configurations. Because the .sample files have a line that indicates they are

an “Example,” they cannot be used. So we’ll copy the sample configuration

files for freshclam.conf and clamd.conf (the demonized version) and then

remove the Example line using the following two lines:

cp /usr/local/etc/clamav/freshclam.conf.sample /usr/local/etc/

clamav/freshclam.conf; sed -ie 's/^Example/#Example/g'/usr/

local/etc/clamav/freshclam.conf

cp /usr/local/etc/clamav/clamd.conf.sample /usr/local/etc/

clamav/clamd.conf; sed -ie 's/^Example/#Example/g'/usr/local/

etc/clamav/clamd.conf

Next, we’ll need to update the virus definitions for clamav. This can be

run without the fully qualified file path, but we are going to go ahead and

include it as some computers might have another version installed (e.g.,

via macOS Server):

freshclam -v

The initial scan should cover the full hard drive and can be run as

clamscan:

sudo /usr/local/bin/clamscan -r — bell -i /

Your routinely run jobs should be set up to a quarantine location. Because

all users should be able to see their data that was quarantined, we would write

this to /Users/Shared/Quarantine. We can then use a standard clamscan to

scan the system and then “move” quarantined items to that location and log

those transactions to /Users/Shared/Quarantine/Quarantine.txt.

sudo mkdir /Users/Shared/Quarantine

sudo clamscan -r — scan-pdf=yes -l /Users/Shared/Quarantine/

Quarantine.txt — move=/Users/Shared/Quarantine//

Chapter 8 SeCuring Your Fleet

481

You can then use an Extension Attribute to read the Quarantine.txt file

(the following is an example of using a Jamf Extension Attribute to do so):

#!/bin/bash

#Read Quarantine

result = `cat /Users/Shared/Quarantine/Quarantine.txt`

#Echo Quarantine into EA

echo"<result>$result</result>"

The clamdscan binary is multithreaded and hence runs a lot faster

than a clamscan call. You can easily daemonize ClamAV by using this

repo, which has a plist that automatically runs on-demand clamdscan on a

schedule: https://github.com/essandess/macOS-clamAV.

Every environment is different. When combined with standard mrt

scans using the built-in malware removal tool for macOS, ClamAV can

provide a routine added protection to isolate and help you remediate

infections. You can easily run this nightly and parse the quarantine.txt

file prior to picking it up with the Extension Attribute routinely in order to

provide an additional layer of defense against potential threats to the Mac.

Putting all of this into a software package would be rudimentary and could

benefit many organizations without putting our coworkers through the

performance hit that many a commercial antivirus (or more importantly

full malware prevention or threat hunting) solution brings with it.

 Threat Management on iOS
There are plenty of threats of any kind of device; however, iOS is more

secure than most. As with securing a Mac, start with the Apple security

guide at www.apple.com/business/resources/docs/iOS_Security_

Overview.pdf and determine what gaps your organization might have.

For the most part, keeping devices running the latest operating system,

make sure to have a passcode on devices (or Touch ID or Face ID) and

Chapter 8 SeCuring Your Fleet

https://github.com/essandess/macOS-clamAV
http://www.apple.com/business/resources/docs/iOS_Security_Overview.pdf
http://www.apple.com/business/resources/docs/iOS_Security_Overview.pdf

482

make sure your servers encrypt communication to and from devices.

Some organizations will also look to containerization technologies and

restricting features of devices. Make sure to go through each restriction

available with an information security team and check which correspond

to an organization’s security posture. This will keep you from starting to

think that iOS is immune from any external threats.

YiSpecter was the first iOS malware to infect jailbroken and

nonjailbroken phones by abusing private APIs in the iOS system. The

malware spread via hijacked traffic from nationwide ISPs within China

and Taiwan, an SNS worm on Windows, and an offline app installation

and community promotion. YiSpecter contains four components signed

with enterprise certificates. Abusing the APIs allows these components

to download from a server and install on a targeted iOS device. Three

of these components hide their icons, preventing the user from finding

and deleting them. After infection occurs, iOS apps can be downloaded,

installed, and launched; existing apps can be replaced with other apps;

apps can be hijacked to display advertisements; Safari’s default search

engine can be changed; and device information can be sent to the C2

server. YiSpecter is capable of maintaining persistence on the device and

can defeat attempts to delete it. Abusing private APIs allows even iOS users

who only download apps from the official App Store to be infected with

YiSpecter.

The landscape is very different on iOS than most any other platform –

yet another reason macOS continues to move in the direction of iOS. Most

security solutions available to mobile devices such as an iOS device try to

protect against the following types of attacks:

• Rogue AP: A wireless access point that is made to look

like a legitimate network in order to perform man-in-

the-middle attacks.

Chapter 8 SeCuring Your Fleet

483

• Man-in-the-middle: Intercepts insecure

communication between a server and a client by

pretending to be the intended server.

• SSL strip: Replaces encrypted HTTPS version of a web

page with an HTTP version so the unencrypted traffic

can be captured.

• Femtocell: A fake antenna is used to intercept traffic on

a cellular network.

All of these are basically about intercepting communication and not

attacking an actual device. There have been small attacks that involved

brute forcing the device when plugged into a computer, but nothing

very successful. Many organizations will not need a tool for their iOS

deployments. If you do, start the hunt for a vendor that does real things

at Zimperium and Cylance and do a thorough review of what protections

each provider offers as compared to those your organizational security

posture requires. Things to look for might be a demo of them blocking a

real-world example of an exploit.

Additionally, phishing is one of the top threats for the iOS and iPadOS

devices. This is where ZTNA and other zero-trust solutions become

important for most environments. These are often provided by companies

like Palo Alto, the Citrix Zscalar, and Cisco. There are some that are fairly

Apple-centric, like Jamf Private Access and Jamf Threat Defense, which

was built based on Jamf’s acquisition of Wandera. All of these tools require

routing data from a device to a server like how proxies and VPNs work.

These protect network access but don’t typically help with binaries that

can run on devices, which is more an issue with the Mac.

Chapter 8 SeCuring Your Fleet

484

 macOS Binary Whitelisting
By default, only binaries loaded through the App Store or installed via

an ipsw can be opened on an iOS device and Apple TV. The Mac is much

more open, even though it has been closing down more and more in the

past few years. Of the binaries that can be opened on a Mac, you can limit

them using what is known as binary whitelisting or binary blacklisting.

There are a few techniques for managing which binaries can be

opened on Apple devices. The original technique to manage binaries,

which still mostly works, but is actively being deprecated, was using

MCX, or Managed Client Extensions. The easiest way to describe how

this worked was with the now defunct Workgroup Manager, seen in

Figure 8-25. More modern techniques include

• Gatekeeper, which was covered earlier in this chapter,

which can be managed through the command line,

through a Privacy & Security configuration profile

manually, or via MDM

• Editing the permissions to remove access to an app

either manually through the Finder or using a script

• Using a Restrictions profile through MDM or installed

manually (only covers certain Apple apps)

• Using a third-party LaunchDaemon or agent that can

terminate apps which have been blacklisted

• Blocking the installation of a given application, as is

done with Munki (https://github.com/munki/munki/

wiki/Blocking-Applications)

Chapter 8 SeCuring Your Fleet

https://github.com/munki/munki/wiki/Blocking-Applications
https://github.com/munki/munki/wiki/Blocking-Applications

485

Figure 8-25. MCX in Workgroup Manager

As seen in the preceding screen, it’s possible to whitelist only the

Applications a given user should be able to launch. If this is something

you need to do and you want to do so sanely, then consider Google Santa.

Available at https://github.com/google/santa, Santa is a project that

uses a kernel extension to monitor for the execution of a blocked binary

and then terminates it.

Chapter 8 SeCuring Your Fleet

https://github.com/google/santa

486

Figure 8-26. Google Santa

This is one of those rare places where a kernel extension is necessary to

shut down a binary before it could potentially do harm to a system or the

network environment a system is in. As can be seen in Figure 8-26, Santa

reacts so quickly that a notice can be displayed indicating that access to an

application has been blocked.

The reason we said “sanely” is because a large user base is likely to run a

lot of software you don’t know about. So prior to deploying a tool like Santa,

you’ll likely define all of the software allowed to be run on your fleet only to

end up having to pull back your spiffy new whitelisting solution because users

are angry about it. Upvote is another Google tool available at https://github.

com/google/upvote that allows users to submit apps to be whitelisted, and

then when an app has had enough votes, the app is whitelisted. This allows

users to self-manage what software is allowed en masse.

Chapter 8 SeCuring Your Fleet

https://github.com/google/upvote
https://github.com/google/upvote

487

 Compliance
Sometimes, it seems like every organization has a different interpretation

of what compliance is. Not only are there dozens of compliances (from

SOC2 to CIS to FedRAMP), but there is an interpretation to each of their

components that is left to the attorneys at a given organization. And then

as engineers, we often tighten various areas where we feel confident and

smile and nod in areas we don’t.

There is remedial compliance checking in a number of device

management solutions. Workspace ONE and Jamf both have the ability

to check devices for compliance. These are configuration management

solutions. Additionally, there are a number of third-party solutions

dedicated to scanning a device for compliance against known frameworks,

such as Qualis or Lynis, which can be found at https://cisofy.

com/lynis/.

One of the most common guidelines for compliance today is the CIS

Benchmarks, put out by the Center for Internet Security and available

freely at www.cisecurity.org/cis-benchmarks/. An example of scanning

to check if a computer meets those guidelines would be using the

extension attributes and remediation scripts available at https://github.

com/jamf/CIS-for-macOS-High-Sierra-CP, which is written to work

with Jamf Pro but can be conformed to other tools if need be as was done

with the NIST macOS Security Compliance project (https://github.

com/usnistgov/macos_security). Beyond checking to see if a device is in

compliance, a number of organizations also need to review logs to check

for unapproved or anomalous security events. In the next section, we’ll

review the logging API in macOS.

Note logs are not available in the graphical interface of an ioS
device but can be viewed using the Console app on a Mac.

Chapter 8 SeCuring Your Fleet

https://cisofy.com/lynis/
https://cisofy.com/lynis/
http://www.cisecurity.org/cis-benchmarks/
https://github.com/jamf/CIS-for-macOS-High-Sierra-CP
https://github.com/jamf/CIS-for-macOS-High-Sierra-CP
https://github.com/usnistgov/macos_security
https://github.com/usnistgov/macos_security

488

 Centralized Log Capture and Analysis
Apple has a number of different logging APIs. For the past few releases,

Apple has tried to capture everything possible in logs, creating what many

administrators and developers might consider to be a lot of chatter. As

such, an entirely new interface needed to be developed to categorize and

filter messages sent into system logs.

 Writing Logs
The logger command is used to create entries in system logs. However, if

you are then using tail to view /var/log/system.log, then you will notice

that you no longer see your entry being written. This is because as the logs

being created in macOS have gotten more complex, the tools to read and

write those logs have gotten more complicated as well. Let’s take a simple

log entry. In the following example, we’ll write the string “Hello Logs” into

the system log.

To do so, use the –i option to put the process ID of the logger process

and –s to write to the system log, as well as to stderr. To make the entry

easier, we’ll tag it with –t followed by the string of the tag. And finally, we’ll

quote the entry we want written into the log. This is basically the simplest

form of an entry:

logger -is -t krypted "Hello Logs"

Once written, use the log command to read new entries. If you are

developing scripting tools, you will need to note that all of the legacy APIs

you might be using, which include asl_log_message, NSLog, and syslog,

have been redirected to the new Unified Logging system, provided you

build software for 10.12 (you can still build as before for 10.11, iOS 9, tvOS

10, and watchOS 3 and below). These are replaced with the os_log, os_

log_info, os_log_debug, os_log_error, os_log_fault, and os_log_create APIs

(which correspond to various levels of logs that are written).

Chapter 8 SeCuring Your Fleet

489

 Reading Logs
Logs are now stored in the tracev3 formatted files in /var/db/diagnostics,

which is a compressed binary format. As with all binary files, you’ll

need new tools to read the files. Console has been updated with a new

hierarchical capability and the ability to watch activities, subsystems, etc.

The log command provides another means of reading those spiffy

new logs. To get started, first check out the man page: (using the man log

command). The log command can be used to easily view logs using the

“log show” command. In the following example, we’ll just run a scan of the

last three minutes, using the –last option, and then provide a –predicate.

We’ll explain those a bit later, but think of it as query parameters – here,

we’ll specify to look for “Hello Logs” in eventMessage:

log show --predicate 'eventMessage contains "Hello Logs"'

--last 3m

Filtering the log data using "eventMessage CONTAINS "Hello Logs""

shows us that our entry appears as follows:

Timestamp Thread Type

Activity PID 2022.08-23 23:51:05.236542-0500

0x4b83bb Default 0x0 88294 logger:

Hello Logs ——————————————————————————————————————– Log –

Default: 1, Info: 0, Debug:

0, Error: 0, Fault: 0 Activity – Create:

0, Transition: 0, Actions: 0

How do you find out what to use where? Here’s an example where I’m

going to try to find all invalid login attempts. First, I’m just going to watch

the logs. Many will prefer the “log stream” command. I’m actually going

to just use show again, because I like the way it looks more. I’m also going

Chapter 8 SeCuring Your Fleet

490

to use log with the syslog –style so it’s easier to read (for me at least), and

then here I’m just looking at everything by specifying a space instead of an

actual search term:

log show --style syslog --predicate 'eventMessage contains " "'

--info --last 24h

Looking at the output, you can see an entry similar to the following:

2022.08-23 14:01:43.953929-0500 localhost

authorizationhost[82865]: Failed to authenticate user <admin>

(error: 9).

Just search for “Failed to authenticate user,” and I’ll be able to count

invalid login attempts. To then take this and place it into a command that,

for example, I could build an extension attribute using, I can then just find

each entry in eventMessage that contains the string, as follows:

log show --style syslog --predicate 'eventMessage contains

"Failed to authenticate user"' --info --last 1d

As with many tools, once you have a couple of basic incantations, they

become infinitely simpler to understand. These few commands basically

get you back to where you were with tailing logs. If you want to get that –f

functionality from tail, to watch the logs live, just swap show with stream.

The most basic incantation of this would just be "log stream" without

bothering to constrain the output:log stream. Running this is going to

spew so much data into your terminal session. So to narrow down what

you’re looking for, let’s look at events for Twitter: log stream --predicate

‘eventMessage contains “Twitter”’. You can also view other logs and

archives by calling a filename:

log show system_logs.logarchive

Now that you can browse logs, in the next section, we’ll cover how

they’re organized and classified starting with Subsystems.

Chapter 8 SeCuring Your Fleet

491

 Organization and Classification
The logging format also comes with Subsystems. If you’re a developer,

you’ll be able to file your messages into, for example, a com.yourname.

whatevers domain space, so you can easily find your log messages. You

can also build categories and of course, as we noted previously, tag. So

there are about as many ways to find log entries as you can possibly ask for.

Apple has a number of subsystems built into macOS. We put together a list

of Apple subsystems into a class that you should be able to throw into your

python projects at https://gist.github.com/krypted/495e48a995b2c0

8d25dc4f67358d1983.

You also have different logging levels. These include the basic levels

of Default, Info, and Debug. You also have two special levels available:

Fault and Error. All of this is to add hierarchical logs (which makes tracing

events a much more lovely experience) and protect privacy of end users

(think sandbox for logs). I’d recommend watching the WWDC session

where Unified Logging was introduced at https://developer.apple.com/

videos/play/wwdc2016/721 if interested in learning more about these

types of things, especially if you’ll be building software that makes use of

these new logging features.

The one thing that’s worth mentioning for the Mac Techs out there

is how you would go about switching between logging levels for each

subsystem. This is done with the “log config” command. Here, I’ll use

the –mode option to set the level to debug and then define the subsystem

to do so with the –subsystem option: log config --mode “level:debug”

--subsystem com.krypted. If you have a particularly dastardly app, this

might just help you troubleshoot a bit. As mentioned earlier, we also have

these predicates, which you can think of as metadata in the searching

context. These include the following:

• category: Category of a log entry.

• eventMessage: Searches the activity or message.

Chapter 8 SeCuring Your Fleet

https://gist.github.com/krypted/495e48a995b2c08d25dc4f67358d1983
https://gist.github.com/krypted/495e48a995b2c08d25dc4f67358d1983
https://developer.apple.com/videos/play/wwdc2016/721
https://developer.apple.com/videos/play/wwdc2016/721

492

• eventType: Type of events that created the entry (e.g.,

logEvent, traceEvent).

• messageType: Type or level of a log entry.

• processImagePath: Name of the process that logged

the event.

• senderImagePath: Not all entries are created

by processes, so this also includes libraries and

executables.

• subsystem: The name of the subsystem that logged

an event.

 Comparisons and Searches
Let’s make things just a tad bit more complicated. We’ll do this by stringing

together search parameters. Here, we have a number of operators available

to us, similar to what you see in SQL. These include the following:

• && or AND indicates two matches.

• || or OR indicates one of the patterns matches.

• ! or NOT searches for items that the patterns don’t

match for, which is useful for filtering out false positives

in scripts.

• = indicates that one search matches a pattern or is

equal to.

• != indicates that the search is not equal to.

• > is greater than.

• < is less than.

• => means greater than or equal to.

Chapter 8 SeCuring Your Fleet

493

• =< means less than or equal to.

• CONTAINS indicates a string matches a given pattern

with case sensitivity.

• CONTAINS[c] indicates a string matches a given

pattern without case sensitivity.

• BEGINSWITH indicates a string begins with a given

pattern.

• ENDSWITH indicates that a string ends with a given

pattern.

• LIKE indicates a pattern is similar to what you’re

searching for.

• MATCHES indicates that two text strings match.

• ANY, SOME, NONE, IN are used for pattern matching

in arrays.

• NULL indicates a NULL response (e.g., you see “with

error (NULL)” in logs a lot).

To put these into context, let’s use one in an example. Thus far, my

most common use case has been a compound search, so in this example

we’ll be matching both patterns. Here, we’ll look at the WirelessProximity

subsystem for Bluetooth, and we’ll look at how often it’s scanning for new

devices, keeping both patterns to match inside their own parentheses, with

all patterns stored inside single quotes, as follows: log show --style syslog

--predicate ‘(subsystem == “com.apple.bluetooth.WirelessProximity”) &&

(eventMessage CONTAINS[c] “scanning”)’ --info --last 1h. Developers

and systems administrators will find the Apple guide on predicate

programming, available at https://developer.apple.com/library/

prerelease/content/documentation/Cocoa/Conceptual/Predicates/

AdditionalChapters/Introduction.html, to be pretty useful if you’re

doing lots of this kind of work.

Chapter 8 SeCuring Your Fleet

https://developer.apple.com/library/prerelease/content/documentation/Cocoa/Conceptual/Predicates/AdditionalChapters/Introduction.html
https://developer.apple.com/library/prerelease/content/documentation/Cocoa/Conceptual/Predicates/AdditionalChapters/Introduction.html
https://developer.apple.com/library/prerelease/content/documentation/Cocoa/Conceptual/Predicates/AdditionalChapters/Introduction.html

494

Simply run the log command with the show verb. I’m including –last

to only look at the last couple of minutes and then using –predicate to

define that the processImagePath contains the word Slack, the app I’m

searching for:

log show --last 120s --predicate 'processImagePath CONTAINS[c]

"Slack"'

Note sysdiagnose, a tool long used for capture diagnostics
information to include in bug reports, is still functional and now
includes unified logging information, so apple developers can get a
complete picture of what’s going on in systems.

Ultimately, the new Unified Logging is a bit more complicated than the

previous options for both creating and reading logs. But once you get used

to it, you’ll log it – I mean, love it.

The built-in logging facilities in macOS provide logging for a number

of tasks, mostly those app developers choose to log events for. But you can

get deeper with Apple’s implementation of Sun’s Basic Security Module, or

OpenBSM.

 OpenBSM
OpenBSM is a subsystem that has been installed on the Mac for some time.

While deprecated as of macOS Big Sur and replaced with the Endpoint

Security API for system extensions, OpenBSM provides the ability to create

and read audit logs based on the Common Criteria standards. By default,

OpenBSM is not enabled, so we’ll go through checking what is being

audited, enabling, and reviewing those logs.

Chapter 8 SeCuring Your Fleet

495

 Audit Logs

OpenBSM stores information about security events in audit logs. The quick

and easy way to see what OpenBSM is auditing is to cat the /etc/security/

audit_control file, as follows:

cat /etc/security/audit_control

The output displays the directory of audit logs, as well as what is

currently being audited. By default, the configuration is as follows:

#

$P4: //depot/projects/trustedbsd/openbsm/etc/audit_

control#8 $

#

dir:/var/audit

flags:lo,aa

minfree:5

naflags:lo,aa

policy:cnt,argv

filesz:2M

expire-after:10M

superuser-set-sflags-mask:has_authenticated,has_console_access

superuser-clear-sflags-mask:has_authenticated,has_

console_access

member-set-sflags-mask:

member-clear-sflags-mask:has_authenticated

You can then see all of the files in your audit log, using a standard ls

of those:

ls /var/audit

As you can see, the files are then stored with a date/timestamp naming

convention:

Chapter 8 SeCuring Your Fleet

496

2220119012009.crash_recovery 20220407065646.20180407065716

20220407073931.20220407074018

20220119022233.crash_recovery 20220407065716.20180407065747

20220407074018.20220407074050

20220119043338.crash_recovery 20220407065748.20180407065822

20220407074050.20220511030725

20220119134354.crash_recovery

20220407065822.20180407065853

The files are binary and so cannot be read properly without the use of a

tool to interpret the output. In the next section, we will review how to read

the logs.

 Using praudit

Binary files aren’t easy to read. Using the praudit binary, you can dump

audit logs into XML using the -x flag followed by the path of the log. For

example, the following command would read a given log in the preceding /

var/audit example directory:

praudit -x 20180407065748.20180407065822

One record of the output would begin as follows:

record version="11" event="session start" modifier="0"

time="Sat Aug 7 01:58:22 2022" msec=" + 28 msec" >

<argument arg-num="1" value="0x0" desc="sflags" />

<argument arg-num="2" value="0x0" desc="am_success" />

<argument arg-num="3" value="0x0" desc="am_failure" />

<subject audit-uid="-1" uid="root" gid="wheel" ruid="root"

rgid="wheel" pid="0" sid="100645" tid="0 0.0.0.0" />

<return errval="success" retval="0" />

</record>

Chapter 8 SeCuring Your Fleet

497

In the preceding output, find the time that an event was logged, as well

as the type of event. This could be parsed for specific events and, as an

example, just dump the time and event in a simple json or xml for tracking

in another tool, for example, if you’re doing statistical analysis for how

many times privileges were escalated as a means of detecting a bad actor

on a system.

You can also use the auditreduce command to filter records. Once

filtered, results are still in binary and must be converted using praudit. You

can also stream OpenBSM output over a tool formerly called cmdReporter

and now a part of Jamf. A tool like this is helpful to get logging data to

what’s known commonly as a SIEM, or Security Information and Even

Management system, such as Splunk. Of course, the ability to have an

event that violates an organization’s policies assumes users actually

have permissions to perform some of those tasks (although logging

failures is common as well). We’re not going to go in depth on editing

the Authorization Database on a Mac, a journey that begins at /System/

Library/Security/authorization.plist. The database is a SQLite database

stored at /var/db/auth.db which can easily be viewed using the

security authorizationdb read admin

The default values change, but for older operating systems, these

can be seen at http://krypted.com/utilities/authorizationdb-

defaults-macos-10-14 or historically at www.dssw.co.uk/reference/

authorization-rights/. For more on scripting changes to the database to

provide more granular access, see https://scriptingosx.com/2018/05/

demystifying-root-on-macos-part-4-the-authorization-database/.

Given that many organizations will not have the time, skills, or

inclination for such granular permissions management, tools like Avecto

Defendpoint alter the database on behalf of administrators using a least

privilege model. This is important as in high-security environments, Mac

users can work without needing admin rights yet remain on task and not

calling the service desk every time they need to reset a printer queue.

Chapter 8 SeCuring Your Fleet

http://krypted.com/utilities/authorizationdb-defaults-macos-10-14
http://krypted.com/utilities/authorizationdb-defaults-macos-10-14
http://www.dssw.co.uk/reference/authorization-rights/
http://www.dssw.co.uk/reference/authorization-rights/
https://scriptingosx.com/2018/05/demystifying-root-on-macos-part-4-the-authorization-database/
https://scriptingosx.com/2018/05/demystifying-root-on-macos-part-4-the-authorization-database/

498

How do you know what privileges they need or what to look for in

logs, or what a system is actually doing? This is one of the hardest parts

of information security and, once you get started, the most fun: reverse

engineering.

 Reverse Engineering
The documentation provided by any vendor about their software only goes

so far. Apple has some pretty solid documentation, but when it comes to

security research, the ability to decompile, disassemble, and trace signals

sent by software is important. There are entire books on these topics –

and most of the techniques are similar enough between Windows, Linux,

and macOS. And therefore, some of the tools are easily used, or ported,

between the platforms, especially the open source tools.

As an example of these low-level similarities, most computers use a 64-

bit version of x86 architecture, and most mobile devices use a variation of

ARMv8. Different implementations of ARM and x86 have their own modes

and formats, but in general reverse engineering is done using similar tools

(if not the same tools). macOS seems more and more built for software

developers with every passing year.

There are a number of these tools that are well documented, including

the following:

• Class-dump is a tool used to view Objective-C runtime

information stored in Mach-O files. Seeing class

declarations and headers provides you with a lot of

information about what a file is doing. Class-dump

can be found at http://stevenygard.com/projects/

class-dump/ and represents one of the better tools to

locate private APIs in macOS.

Chapter 8 SeCuring Your Fleet

http://stevenygard.com/projects/class-dump/
http://stevenygard.com/projects/class-dump/

499

• codesign: Command-line tool built into macOS

that outputs extremely granular information about

signatures used to sign code and installation packages.

• dtrace: Short for dynamic tracing, dtrace (built into

macOS) can show anything you can build a program

to access using the D programming language. For

example, you can get as finely grained as a script that

outputs the arguments used calling a function. You

can only do this with SIP disabled, but then, you can

only do reverse engineering on an iOS device if you’ve

jailbroken the device.

• Hopper Disassembler (Figure 8-27) is a solid tool for

translating machine language into assembly. Hopper

isn’t going to show you the raw code for compiled files,

but can help you find files and information that points

you in the right direction during research.

• IDA is short for Interactive Disassembler and should

be reserved for highly complex research tasks. IDA is

available at www.hex-rays.com/products/ida/.

• lldb: Built-in macOS lldb debugger library interface

(if you call one of these tools a debugger or a reverse

engineering tool is really determined based on your

profession).

• Lulu (https://objective-see.com/products/lulu.

html) and Little Snitch (www.obdev.at/products/

littlesnitch) both prompt and provide information

about egress and ingress network connections.

Chapter 8 SeCuring Your Fleet

http://www.hex-rays.com/products/ida/
https://objective-see.com/products/lulu.html
https://objective-see.com/products/lulu.html
http://www.obdev.at/products/littlesnitch
http://www.obdev.at/products/littlesnitch

500

• MachOView provides a view into Mach-O files using a

GUI but hasn’t been updated for some time so suffers

from stability issues. To download the latest version,

see https://github.com/gdbinit/MachOView.

• nm: Built-in tool for viewing names and symbols in

Mach-O executables.

• otool: Command-line tool built into macOS that

shows dependencies (based on what frameworks were

included in a piece of software which can be seen using

the -L option) and allows you to view raw Mach-O

executables. To find all apps dependent on a given

binary, see https://github.com/krypted/looto.

• Task Explorer: Free tool to receive really detailed

information about processes running on a

Mac, https://objective-see.com/products/

taskexplorer.html.

Chapter 8 SeCuring Your Fleet

https://github.com/gdbinit/MachOView
https://github.com/krypted/looto
https://objective-see.com/products/taskexplorer.html
https://objective-see.com/products/taskexplorer.html

501

Figure 8-27. Hopper Disassembler

Perhaps we’ll write a book about reverse engineering someday

because we used so many more tools and products to write this book, but

the best way to get started would be to download some of these tools and

start playing around or try to answer a specific question, like installing

some malware (you can find plenty of samples to play with at https://

objective-see.com/malware.html) on a virtual machine and start trying

to figure out what it’s trying to do, by reading source code, taking it apart,

and watching signals.

Beyond reverse engineering, there’s an emerging discipline for

iOS known as threat hunting. This is the act of looking for malware or

other threats on the Mac. MonitorKit, from Digita Security (https://

digitasecurity.com) is an event-driven macOS monitoring framework,

written in Swift (compatible with Objective-C), that gives developers easy-

to-use access to a wide array of native macOS monitoring capabilities.

Chapter 8 SeCuring Your Fleet

https://objective-see.com/malware.html
https://objective-see.com/malware.html
https://digitasecurity.com
https://digitasecurity.com

502

MonitorKit minimizes the complexity of using the native macOS

APIs while maximizing event details with its comprehensive data model.

Underlying the MonitorKit framework are OpenBSM, FSEvents, Spotlight

Notifications, Event Taps, IOKit, and CoreMedia. It builds upon code

samples and proven techniques for accessing system event streams from

experts such as Jonathan Levin (http://technologeeks.com/course.

jl?course=OSXRE) and Patrick Wardle (https://Objective-See.com). As

you can see in Figure 8-28, MonitorKit has a number of options for events

it can track out of the box.

Figure 8-28. MonitorKit

Jamf Protect is Endpoint Detection and Response (EDR) tailor-made

for macOS, built on top of MonitorKit, among other tools. Through on-

device analysis of macOS system events, Jamf Protect (originally called

GamePlan) creates unprecedented telemetry and provides enterprise

security teams with the insights they require for behavioral detections

and threat hunting. With its streaming insights and KEXT-less design,

Protect extends Apple’s security and privacy model to an enterprise while

upholding the Apple user experience and never delaying an OS upgrade.

There are a number of other tools, many of which are provided by

large technology companies that are happy to sell software that works on

the Mac, but often don’t work as well as we’d like. This isn’t to say there

isn’t merit in them, and there are tools out there evolving at a rapid pace.

Chapter 8 SeCuring Your Fleet

http://technologeeks.com/course.jl?course=OSXRE
http://technologeeks.com/course.jl?course=OSXRE
https://objective-see.com

503

And, of course, there are environments that see no need for any security

solutions whatsoever, relying entirely on their own automations using

built-in frameworks in macOS.

 Administrator Rights on macOS
An important topic from both an operational and security standpoint is

how to manage administrator rights for the user accounts used on the fleet.

Before delving into that, first some backstory on how administrator rights

came to exist on macOS.

Apple currently has five platforms available:

• iOS

• iPadOS

• macOS

• tvOS

• watchOS

Most of these Apple platforms do not have the concept of multiple

users. There's just one user state in play by default. iOS and iPadOS do

include authentication, but there is still usually only one user context

which is in scope.

iPadOS does have the concept of multiple user accounts via supporting

user sessions for multiple Managed Apple IDs, but that's a special

configuration option for when sharing an iPad between multiple people is

necessary. All of the Managed Apple ID user accounts are equal in terms of

what they can do on the iPad, so the idea of standard user vs. admin user

doesn't come into play. Instead, the user paradigm is equal user rights with

separation of documents and data for each user.

Chapter 8 SeCuring Your Fleet

504

It's only on macOS that the paradigm of multiple user accounts and

those accounts having different permissions for access and actions exists.

The Macs haven’t always had it though. If you look at the various versions

of the original Mac OS between System One’s introduction and Mac

OS 9, you see a similar user paradigm to what you see on Apple’s other

platforms. By default, there was only one user context, and the operating

system would boot into it automatically.

So if the paradigm we use today didn’t come from the original Mac OS,

where did it come from?

It comes from NeXT Computers and more specifically the Unix-

based NeXTSTEP operating system developed by NeXT. When Apple

bought NeXT in 1996, it began using NeXTSTEP’s foundations to build

what would eventually become Mac OS X. This included building a Unix-

based operating system, which included multiple user accounts. More

importantly for this topic, NeXTSTEP included the paradigm of an account

named root which is a superuser account. On NeXTSTEP, root can do

anything. It has read/write access to the entire local filesystem and can run

any command.

Apple had previously built Unix-based operating systems with

superuser accounts for specialized purposes, but with this change, Apple

began mainstreaming the paradigm for its main operating system of both

multiple user accounts and a superuser account which has more access

and privileges than other user accounts.

However, there’s only one root user in Unix and only one password to

that account. Sharing passwords is a security issue. Apple’s solution was

to introduce a new set of superuser privileges for Mac OS X, which they

designated an admin account. These privileges could then be applied to

multiple accounts.

Management of which accounts have admin rights is handled by

membership in a local group on the Mac named admin, shown in

Figure 8-29. However, membership in this group only handles admin rights

for the Mac OS X graphical user interface.

Chapter 8 SeCuring Your Fleet

505

Figure 8-29. Accessing the admin group in Directory Utility.app

To provide administrative rights on the command line, Apple uses

the sudo command-line tool. This tool enables authorized user accounts

to run commands as root or another user. As part of the OS installation

process, Apple installs a configuration file for sudo that grants members

of the admin group all the privileges that the sudo tool can grant. In turn,

this means that members of the admin group have the same ability as the

root account to run all commands and functions with the root account’s

privileges (Figure 8-30).

Chapter 8 SeCuring Your Fleet

506

Figure 8-30. Default sudo configuration for macOS with admin
group’s permissions highlighted

With regard to the actual root user, Apple put some controls in place

to limit the root user account's abilities and permissions. These controls

include disabling the root account by default, discouraging its use, and

providing ways to access elevated or root privileges using other means.

This paradigm of multiple user accounts, a superuser account

whose use is discouraged, special accounts (referred to as administrator

accounts) which have more access and privileges than other user

accounts, and nonspecial accounts (referred to as standard accounts) has

been used in all versions of the Mac operating system from Mac OS X 10.0

Cheetah through to today's version of macOS.

Administrator and standard accounts have different access and

privileges, as described as follows:

Chapter 8 SeCuring Your Fleet

507

Administrator Account Standard Account

install software install software*

Change their own account’s settings

and system settings

Change their own account’s settings

add or manage user accounts

* Standard accounts can install software into areas of the filesystem where the
standard account has read and write permissions, like the standard account’s home
folder. It is also possible for standard accounts to install software in situations where
Apple makes it possible, like installing software from the App Store on macOS or
running software updates using Software Update in System Settings.

Note Why does it matter if an account has admin rights or not?
Because anything the root account on macoS can do, an account
with administrator rights can do.

Giving admin rights to a user account on the current version of macOS

means they now have all the powers that the root account has. That

said, as discussed earlier in this chapter, the power of the root account is

constrained by the following security measures built into macOS:

• Signed system volume

• System Integrity Protection

• User-level privacy protections

With these protections in place to contain the power of the root

account, where large sections of the filesystem can’t be written to or

altered and user data requires permission to access, let’s reexamine the

statement about root as it relates to administrator rights. It remains true

that anything root can do, an account with admin rights can do, but what

Chapter 8 SeCuring Your Fleet

508

root can do on macOS is significantly contained compared to other Unix-

based OSs. With the lowered capability also comes lowered risk.

Now that we’ve examined how admin rights work and their

capabilities, let’s look at managing them. As discussed earlier, Apple has

enabled an account to have admin rights in two locations:

• Admin rights in the graphical user interface: Adding

the user account to the admin group

• Admin rights for the command line: Apple installing

a configuration file for the sudo tool which grants all

available privileges to the admin group

With these rights being managed in two locations, this leaves open

the possibility that admin rights in the macOS graphical user interface

and the command line can be managed separately. If desired, you could

assign admin rights in the GUI but not to the command line or vice versa

by editing the sudo configuration file to change it from Apple’s default

settings.

Note sudo configuration options are available via the
sudo documentation: www.sudo.ws/docs/man/1.8.17/
sudoers.man/.

Assuming that you choose to manage admin rights, there’s three states

of management to consider for your accounts:

• Permanent admin rights

• No admin rights

• Admin rights allowed on a nonpermanent basis

Chapter 8 SeCuring Your Fleet

http://www.sudo.ws/docs/man/1.8.17/sudoers.man/
http://www.sudo.ws/docs/man/1.8.17/sudoers.man/

509

Permanent admin rights can be granted to an account by adding the

account in question to the admin group and not removing it. With Apple’s

default configuration for sudo, this should grant the account administrator

rights for both the graphical user interface and the command line.

Not granting administrator rights to an account means making sure

that the account is not a member of the admin group. Assuming Apple’s

default configuration for sudo, keeping the account out of the admin

group should ensure it only has the rights granted to a standard user

account.

Granting administrator rights on a nonpermanent basis to an account

usually means that there is a mechanism in place to enable the account to

be added and removed from the admin group as needed.

Is there a one best way for deciding how to manage admin rights?

Unfortunately, not. There are a number of factors which affect this

decision, which may include legal requirements, complying with the

requirements of an external standard that your business has committed to

complying with, internally created policy requirements of your company,

school, or institution, or operational requirements in your environment.

No matter what other factors exist, the key question which must be

answered is going to be if you can trust your users with admin rights while

also remaining in compliance with your other requirements. If you can,

then (in this author's opinion) they should have them. If you can’t, then

they shouldn’t.

If you make the choice to grant admin rights on a nonpermanent basis,

as mentioned earlier, you will likely need a mechanism in place which

can enable accounts to be added and removed from the admin group

as needed. A tool for enabling this is the Privileges app (Figure 8-31), an

application developed and open sourced by SAP, which allows a user

account which is logged in to macOS’s graphical user interface to grant and

remove administrator rights.

Chapter 8 SeCuring Your Fleet

510

Figure 8-31. Privileges app granting administrator rights to
an account

Note the privileges app and configuration documentation are
both available on github: https://github.com/SAP/macOS-
enterprise-privileges.

 Summary
The Mac is still very much treated as a computer by most corporate IT

departments. Therefore, they will expect the same full complement of

tools to be used on the Mac so it is an equal citizen to Windows. You may

disagree that you need a tool to perform various tasks, but that doesn’t

Chapter 8 SeCuring Your Fleet

https://github.com/SAP/macOS-enterprise-privileges
https://github.com/SAP/macOS-enterprise-privileges

511

mean that you always have the option to choose whether to run these

tools or not. iOS is very different. You can’t run an agent on iOS. But you

can check that the device meets certain criteria and look for threats on

the device.

You have to implement these tools, settings, or procedures so the

device is compliant with the policies required to be able to get on the

network of most organizations. Doing so may require two to three agents.

But the alternative is likely that you can’t let devices access the network.

Ultimately, the Mac team at most organizations will start off by

integrating solutions the larger Windows population of devices already

leverage. For example, if you’re using Symantec products for other

platforms, you probably already have licensing and so will just use those

same tools to secure the Mac. However, as your deployment matures and

grows, you will end up with the political capital to go to your CISO and

argue for the tools that work best for the platform (see Appendix A) or to

explain why those tools are irrelevant for the platform your team manages.

Some of the more talented administrators might read this chapter

and be surprised that something wasn’t covered. We included the links

to Apple’s security documents and didn’t want to duplicate any of the

content covered there. Some aspects of securing devices simply couldn’t

be covered as they’re moving targets, though. Security might be the fastest

changing landscape in technology.

Now that you’re starting to get a number of different tools running on

devices throughout your enterprise, let’s shift our attention toward testing,

so you can make sure everything works when Apple accelerates the rate of

change in their systems even faster in the years to come.

Chapter 8 SeCuring Your Fleet

513

CHAPTER 9

A Culture of
Automation and
Continuous Testing
Apple is on an annual release cycle for operating systems. Apple now has a

new point release in beta at all times. There’s also a new version of Firefox

released every 18 minutes (or what seems like 18 minutes). This means

that the next thing is always around the corner. To compound problems,

rather than push updates to computers and iOS devices, updates are now

automatic, which means new ways to validate when updates were run can

be required. With a major OS release and three or more point releases per

year, it’s time to get a solid plan for how to always be testing together, if you

haven’t already.

This chapter can be a career path as much as it can be a guide. Once

you get comfortable with the command-line parts of this chapter, there’s

the automation. Once you’ve gotten comfortable with the automation,

there’s the more specific DevOps types of automations. Once you’re

comfortable with that, you can work at most any startup on those same

solutions. This process can take thousands of hours with all the various

ways software and operating systems are used.

© Charles Edge and Rich Trouton 2023
C. Edge and R. Trouton, Apple Device Management,
https://doi.org/10.1007/978-1-4842-9156-6_9

https://doi.org/10.1007/978-1-4842-9156-6_9

514

Malcolm Gladwell claimed it takes 10,000 hours with a topic to master

it, in his book Outliers. Once there, administrators can make a deliberate

decision about the future of a given career, given that your skillset will be

equally if not more valuable to software development companies who

always need more help in that confluence between development and IT

operations (or if you mash it up, DevOps).

 From Manual to Automated Testing
The scripting options available on the Mac allow access to be able to do

almost anything you want on a device. Those have been reduced here and

there in recent years with the advent of the sandbox or technology that

blocks automations and other apps from doing things those processes

aren’t entitled to do. But scripting and automating events on the Mac

and on the management tools you use to orchestrate events on Mac and

iOS is still a critical skillset and one that has the potential to save your

organization massive amounts of labor as deployments grow.

There’s a maturity scale that usually works in testing. The first phase

is manual testing. You build a list of what you want to test and then add

things that failed as you go. This allows organizations to run through those

tests with each update and try to catch errors before they appear on client

computers. Administrators can hold updates back where possible in order

to prevent frustrations with the people that use systems (and so reduce

calls to a help desk).

The second phase is often to start automating those tests. Here, you

pull a tool or set of tools into the workflow and either look for a setting

(e.g., a defaults domain) or a state that a system should be in. We typically

refer to this as automated testing, and while there are a lot of tools out

there to help with automated testing, not all work on the Mac, or those that

do aren’t as mature as similar tools for other platforms.

Chapter 9 a Culture of automation and Continuous testing

515

The third phase usually coincides with bringing on teams to build apps

that help organizations close gaps in workflows. Here, we move from the

automated testing of the state of a device to the automated testing of how

an app performs. This is a very mature industry with lots of competing

products and processes.

This chapter takes us through those phases and then provides a little

information on how to streamline the build operations using common

tools so people across your organization can have visibility into what

stage each update is in. Not that people look at that information usually,

but it’s good to provide transparency where possible. As a side effect, you

get automation into task or service management systems for free when

doing so!

 Scripting and the Command Line
One of the greatest strengths of macOS is the abundance of scripting

languages supported out of the box. Many of these languages are

interpreted by a host program rather than run directly as lower-level

machine code, and thus they are text files with human-readable syntax.

Because such languages are translated into machine code at runtime,

interpreted programs are sometimes much slower than their compiled

equivalents. However, because you can edit these programs and then run

them immediately, they are common tools used by system administrators

to automate tasks.

Some interpreters are specifically made to run code such as Python,

Perl, or Ruby, while others are more interactive and meant for day-to-day

use, facilitating most of the command-line administration tasks covered in

this book. Typically, this interactive interpreter component is referred to as

a shell. The primary purpose of a shell is to translate commands typed at a

terminal into some kind of system action or to send a command. In other

words, the shell is a program through which other programs are invoked.

Chapter 9 a Culture of automation and Continuous testing

516

There are several different UNIX shells, including the C shell (csh), the

Bourne shell (sh), and their more modern equivalents, tcsh and Bash. In

the most recent versions of OS X, new users are assigned the Bash shell as

the default shell. In early versions of Mac OS X, the default user shell was

tcsh, perhaps due to the presence of Wilfredo Sanchez on Apple’s team.

He served as the former lead engineer for macOS but was also a developer

of the tcsh shell. However, Bash has proliferated through the various Linux

distributions and has become one of the most prominent shell programs

in use today. Perhaps recognizing this, Apple switched the default shell to

Bash in Mac OS X 10.3 Panther, and it remains as such today in OS X 10.14

Mojave. Given new security options, the default shell will move to zsh in

macOS 10.15.

While the choice of a shell and its resultant scripting language can be

difficult, we recommend you learn at least the basics of the Z shell (zsh)

before moving onto any other shell and language that may be better suited

to your higher-level tasks. This is because, unlike with languages such as

Python or Perl that are more strictly used for scripting, you will typically

use the Bash shell every time you open a terminal to run any command.

The more comfortable you become with Bash/zsh scripting, the more you

may find yourself writing one-line scripts that allow you to automate even

basic operations.

In this chapter, we present some basic building blocks required to

build complex automations. In the process, we attempt to show some real-

world syntax examples of scripting in action. Hopefully by the end of this

chapter, you’ll be armed with enough knowledge to tackle the problems

you face in your environment (or at a minimum read open source projects

found on GitHub).

We’d like to make a strong point at the outset: while you do not have

to use the command line to be a good system administrator, most good

system administrators do. This is because a simple operation, such as

Chapter 9 a Culture of automation and Continuous testing

517

creating a series of folders, can be done using basic scripts, and in using

these scripts, you will find your administration becomes not only more

efficient but also (and importantly in large environments) more consistent.

This chapter is not intended to provide in-depth coverage of all shells;

that could be a book unto itself. This chapter will introduce you to scripting

with zsh and bash and then supply some information on Perl for those

who begin to outgrow the standard command-line environment. We will

walk through the basic constructs and control statements, providing a

decent foundation for you to build on. Due to its default support in the

latter iterations of macOS, we will focus primarily on the zsh shell syntax.

 Command-Line Basics
Every shell has some built-in functions that it performs directly, but most

commands entered cause the shell to execute programs that are external to

the shell. This sets the shell apart from other command interpreters, as its

primary mechanism for invoking functionality is largely dependent upon

other programs. That’s not to say that shells don’t have built-in capabilities.

They do; they can read, create, and append files and manipulate data

through globbing and variable mangling, and they can utilize looping

constructs. However, the ability to parse and extend that data will often

require external calls. This chapter seeks to arm you with the ability to fully

utilize the Bash shell’s internal functions, as well as introduce pertinent

external functions that will help you to fully employ the power of the

command line.

The first step toward learning the shell is firing it up and getting your

feet wet, preferably on a nonproduction box. In macOS, this is done

simply by opening up the Terminal application on your system. When

the application opens, provided your user account has the default shell

assigned, you will be presented with a zsh prompt, something like

krypted@CE-MacBook-Pro ~$

Chapter 9 a Culture of automation and Continuous testing

518

The default prompt consists of the following template:

username@devicename directory $

In this example, the current directory is ~. The tilde represents a user’s

home directory. Thus, for any respective user, ~ expands to /Users/

username. The tilde can be used when specifying paths for commands. You

can always reference your own home directory via ~, and you can even

reference other users’ home directories as well:

krypted@CE-MacBook-Pro ~$ cd ~/emerald

krypted@CE-MacBook-Pro ~$ pwd

/Users/emerald

In this text, we are issuing the cd command to change directories and

passing ~emerald as an argument. We can see at the shell prompt that our

new directory is emerald. We then issue the pwd command, which outputs

our current path. In this case, it’s Emerald’s home directory at /Users/

emerald.

Note pathnames can be passed to commands in two different
forms. an absolute path contains every folder and element relative to
the root (/) of the drive. a relative path contains items relative to the
current directory. for instance, if we run the command cd /Users,
we have provided cd with an absolute path to the users directory.
next, we run the command ls emerald, providing a path emerald,
relative to our current directory, /Users. alternatively, we can run the
command using an absolute path ls /Users/emerald and net the
same results regardless of the current directory.

Chapter 9 a Culture of automation and Continuous testing

519

 Basic Shell Commands
You’ll want to become familiar with the basic commands that are normally

used for administration. Here’s a very small list of some of the most

common ones used for basic Mac administration:

• cd: Change directory. This command takes a single

argument – a path to a directory. You can use cd .. to

change to the parent directory.

• pwd: Lists the current directory. Pwd accepts no

arguments.

• ls: Lists the contents of the current directory. ls has

numerous options. A common set of arguments –hal

will show all items in list form (by default, any file

beginning with a period is invisible) with human-

readable file sizes. Optionally, a directory or file can be

provided, and ls will output either the file’s information

or a directory list. For instance, ls –hal /Users will

output a detailed list of files and folders present in the

directory /Users.

• cat: Displays the contents of a file or concatenates files.

• more: Displays the contents of a file page by page and

allows you to scroll down to see the rest. Useful with

large files when cat shows too much information to see

on the screen.

• less: Similar to the more command but displays the

contents of a file page by page and allows you to scroll

up to see the rest.

Chapter 9 a Culture of automation and Continuous testing

520

• tail: Views the end of a file. Very useful when used

with the –f option, as you can watch the end of a log file

and view on the screen new lines as they’re written to

the file.

• rm: Deletes a file or directory. rm offers several options.

It can be passed a file or directory for deletion. If

a directory is passed, the –r flag must be used to

recursively delete all contents. For instance, the

command rm –r /Users would delete the entire /

Users folder (probably best to avoid that one).

• pico: A very basic text editor for editing files from the

command line. pico (nano) uses emacs-style keyboard

shortcuts, supports arrow keys for navigation, and is

pretty basic. It accepts a path to a file as an argument.

When you’re finished editing, type Ctrl+o to save and

Ctrl+x to exit the document. (Another common text

editor is vi, but that utility, though rewarding, is much

more difficult to learn.)

• sudo: Executes a command with root privileges.

By default, this command can only be run by

administrators. It has numerous options, but in its most

basic form, it can simply be prefixed to any command

to execute that command with root privileges.

• defaults: Shows or changes the behavior of a

preference on a Mac.

• history: Shows the last commands completed from

a command line. The history command requires no

other parameters or options.

Chapter 9 a Culture of automation and Continuous testing

521

• whatis: Searches the whatis database, handy for

determining the appropriate command to run. For

instance, by using the command whatis "change

owner", you can determine that the chown command

may be what you’re looking for. You can then use

the man command, discussed next, to determine the

capabilities of the chown command.

• which: Shows the location of a command.

• man: Used to access manual pages for the hundreds

of command-line programs that come with your

computer, so it may well be the most important

command to know. For instance, you can type man

hier to see information on OS X’s directory structure,

while man chown brings up the manual page for

the chown command, giving you the syntax and

functionality of that command. man even has its own

manual. Explore how to use it: man man.

• find: Lets you search for a file or directory by name.

Find is a fairly complex command and has a lot of

utility. In its most basic form, it can be used for a simple

directory search. For example, if you were trying to

hunt down .DS_Store files on a network share mounted

at /Volumes/MyCoolNetworkFolder, you could run the

command find /Volumes/MyCoolNetworkFolder –

name ".DS_Store". Pretty nifty. Even better, find lets

you take the output and act on it. Say you want to delete

all .DS_Store files. To do this, run the command: find

/Volumes/MyCoolNetworkFolder –name ".DS_Store"

–delete.

Chapter 9 a Culture of automation and Continuous testing

522

• echo: Used to output text to the stdout data stream

(discussed later in the section “Standard Streams and

Pipelines”). When writing scripts, the echo command

is a great way to ensure that your script gives proper

feedback to the user.

• grep: Used in combination with piping to filter a

command’s output (piping is discussed later in the

section “Standard Streams and Pipelines”). For instance,

the command ls /Users | grep –i admin would filter

the output of ls /Users, outputting only user home

folders that match the admin criteria, using a substring

match so that user home “admin” would match, as

would “mycoadmin.” The -i flag means that grep will

ignore capitalization. In another form, grep can be used

to search files for strings. The command sudo grep –r

http://www2.krypted.com /etc/apache2 would search

the directory /etc/apache2 and output the filenames

containing the string http://www2.krypted.com. The –r

flag tells grep to recursively search through a directory.

You can omit the –r flag and search across a single file if

necessary. You can prefix the sudo command to ensure

that the grep search has access to all necessary files.

• ps: Lists running processes. This command has

numerous arguments. One common iteration is

ps auxww. The flags auxww result in the output of all

running processes across all users on the system. You

can use piping to filter this list: the command ps auxww

| grep httpd will determine if the Apache daemon

(httpd) is running. If httpd is found, the command will

display the running process ID (the PID column), as

well as CPU and memory utilization.

Chapter 9 a Culture of automation and Continuous testing

http://www2.krypted.com
http://www2.krypted.com

523

• chmod, chown: Can be used respectively to change

permissions and ownership on a file or group of files. Both

commands utilize the –R flag to recurse across all children

of a directory. In the following example, chown changes the

owner of the folder /Users/cedge to cedge and changes

the group to admin. We then utilize chmod to ensure that

the owner (o) has both read and write (rw) access:

chown –R cedge:admin /Users/cedge

chmod –R o+rw /Users/cedge

• kill: Terminate a running process. This command has

a few optional arguments, but in its most basic form, it

is simply given the process ID of a running process to

terminate. A process’s ID can be determined through

the ps output, as discussed earlier. The kill command

must be run with root privileges via sudo in order to

terminate a process running as root. Other common

flags include -HUP, which can be used to restart a

process. Alternatively, the infamous -9 argument,

equivalent to –KILL, can be used to forcibly terminate

a process without prejudice regardless of state or any

pending activity.

• curl: Communicates with a web server to download

assets. This command can be used to download

files from a web server but also has flags for placing

information into a header, usually necessary for

interacting with a REST interface to an API.

Chapter 9 a Culture of automation and Continuous testing

524

These are merely a small selection of the most useful commands for

many to navigate and manipulate objects in a shell. If you know a few

commands that, when executed, will complete a larger overall task, you

can then combine them to make a program, which we call a script. This is

how most people start to learn shell scripting.

Note the command-line interpreter (e.g., the bash shell or zsh
shell) has the ability to search back through your history file. press
Ctrl+r to do a “reverse” search through the history file by typing
some or all of the original command or its arguments. Continue to
press Ctrl+r to cycle through previous incarnations.

To switch between shells, you need only type the name of the shell you

desire to use. For example, to switch to the sh shell:

sh

As you alternate between shells, you’ll notice that the appearance of

the screen and the area where you input text appears slightly different.

 Shell Scripting
The makings of a typical script begin with a line describing the shell, often

called a shebang line. This appears as follows:

#!/bin/zsh

Next come variable declarations "declare FOO=BAR" and optionally

command variable declarations. This is all we need to create a static script.

We will cover these terms more in depth in the following section, as well as

explore the logical constructs that make a script such a powerful wrapper

for the command-line tools OS X provides. To put these into a single script,

Chapter 9 a Culture of automation and Continuous testing

525

we would simply create a file with those lines and then a third to echo the

results:

#!/bin/zsh

"declare FOO=BAR"

echo $FOO

The preceding example creates a variable called FOO and then

populates it with the string BAR and echos out (or writes to the screen) the

result (BAR).

The Bash shell is based on the Bourne shell (sh) and is syntactically

backward-compatible. In fact, the b and a in BASH stand for Bourne

Again, a tribute to sh and its author Stephen Bourne. The Bash shell is very

capable and has support for numerous control statements. This includes

support for standard control statements: if/elif/else constructs, case

statements, as well as for, while, and until loop statements.

A control statement in a programming or scripting environment

provides ways for a programmer to control the execution of code. These

statements provide the means to perform basic tests on data, which will

then define the flow of execution, all based upon the criteria we design.

Through the use of if/else and case control statements, we can control

whether or not code gets executed at all. These functions are referred to

as branching statements, as they control specific paths of code execution.

Looping statements, such as for, while, and until, are control statements

that allow for reuse of code through iteration. Shell scripts provide looping

statements in the form of “for,” “until,” and “while” loops. Each of these

looping statements provides capabilities to help you manage highly

repetitive tasks. Control statements serve as the fundamental tools for

logical execution of code, shown later in this chapter.

Shells also include some internal data manipulation routines, provided

via globbing and variable mangling, though for any advanced parsing,

such as regular expressions, you’ll be much better off with an external

Chapter 9 a Culture of automation and Continuous testing

526

program that is suited for the purpose. That being said, we’ll walk you

through some of the commonly used constructs, which will bestow upon

you the building blocks toward implementing your own automations.

Note on many systems, /bin/sh is linked to the Bash or zsh
installation. however, be aware that with Bash built upon the basic
sh constructs, language like “declare” will not work when called from
an sh script. We will show you how to set the shebang to specify
that your script runs in Bash; you can add the code at the top of your
script [-z "$BASH"] && exit 1 to check for this as well.

 Declaring Variables
Variables are the single most important concept of scripting in relation

to automating administrative tasks. While other languages have relative

benefits, most admins typically end up using Bash for basic day-to-day

administration, where many tasks can be accomplished by very simple

scripts or even a single line of chained commands (“one-liners”). A one-

line script could look something like this:

systemsetup –setnetworktimeserver my.pretendco.com

In the preceding script, we have called the systemsetup command

along with an option to set a network time server and then the name

of the time server. But perhaps you are in a Windows Active Directory

environment, and the server you use for time is also your authentication

server. Your script may have “my.server.com” listed 10–20 times by the

time you are finished if you didn’t use a variable. This is because you often

need sanity checks or loops as a script matures, and you find reasons it

may have failed when run. Now imagine you need to change that code

later on. You could cut and paste all 20 lines, but if you use variables, you

Chapter 9 a Culture of automation and Continuous testing

527

can declare the server once and then retrieve this value over and over

again in your script. You can even then use it to echo output as well.

Each variable has a name that uniquely identifies it within scope.

Variable names need to begin with an alphabetic character and cannot

contain a period. In other words, if you work for a company called 318,

you’d often need to declare variables called, for example, “THREE18”

to avoid starting with a number. Variables can’t be longer than 255

characters. Even for your one-liner scripts, using variables will allow them

to grow over time and cut down on the number of typos, as you have just

one line rather than 20 to check when you have a problem.

#!/bin/zsh

declare TIME_SERVER="my.pretendco.com"

systemsetup –setnetworktimeserver "$TIME_SERVER"

echo "Time Server: $TIME_SERVER has been set"

When a variable is used in a script, the script “expands” the variable to

its respective value (in this case, $TIME_SERVER becomes “my.pretendco.

com”). However, a variable may not always contain string data, which

is why you can have a dynamic error message using the simple echo

command. Because of this, it is important to always double quote

variables. Expansion works within double quotation marks, not single

quotes. Double quotes also help when working with filesystem paths that

have spaces, often the cause of issues with novice users. When in doubt,

quote. If you want to see variable expansion as it occurs (often helpful for

debugging a script), add -x to the shebang, like this: “#!/bin/zsh –x”.

In traditional programming languages, you must declare a variable

and the kind of information that will go into it before using the variable

(in other words, you tell the script what’s going into a variable before you

actually “put” something in it). In modern scripting languages, this is

usually considered good practice (and great for readability), but it’s not

required. In the Bash shell, the command to declare a variable is declare.

Chapter 9 a Culture of automation and Continuous testing

528

When you declare a variable, you can then call it multiple times, adding

and removing data from it, augmenting it, or just reading it for reference.

For example, in Bash, the two following statements are equal to one

another or produce the same output:

#!/bin/zsh

declare –i CUSTOM_PORT=8088

echo "My web server is running on port $CUSTOM_PORT."

Example script 2

CUSTOM_PORT="8088"

echo "My web server is running on port $CUSTOM_PORT."

In the first example, we are explicitly defining the variable CUSTOM_

PORT as an integer and setting it to 8088. In the second, typecasting in

Bash automatically determines the type of data that a variable contains.

Typecasting occurs when a variable is set to a certain type (such as

an integer) and then used to store a different data type (say the string

“Hello World”). In this case, there is a type conversion from integer to

string. While both of the preceding examples work, relying on automatic

typecasting can present problems in certain circumstances; if your script

logic is expecting a numeric (integer) value and is passed a string instead,

your script will die with a fatal error. The following script shows how

this works:

#!/bin/bash

A simple script that checks if a console user is active

We will cover the "who | grep 'console' -c" portion later

for now just know that this test will return "1" if a user

is logged in and nothing if no one is logged in

declare -i CONSOLE_USERS="`who | grep 'console' -c`"

The command above returns nothing if no users are logged in.

However, when declared as an integer, if this variable is

set to a null / nothing string, it will convert that to the

Chapter 9 a Culture of automation and Continuous testing

529

number zero; that way the result of the command

doesn't matter.

We can always rely of the result being a numerical value,

which we can then numerically test against, using the greater

than or equal to syntax -ge. This type of test expects

CONSOLE_USERS to expand to a numerical value

If we did not use –i, then any numeric tests on

$CONSOLE_USERS

would fail if there were no users logged in. The script would

expand CONSOLE_USERS to nothing instead of 0

You can test this by changing the declare line above to

declare CONSOLE_USERS=

which will simulate the command returning nothing

and without the use of the –i, it will stay just

that: nothing

which will cause the test below to fail with the error:

"line 17: [: -ge: unary operator expected"

if [$CONSOLE_USERS -ge 1] ; then

 echo "Console user logged in, exiting…"

 exit 1

else

 echo "No console users, we can go to town..."

 # Your code goes here

Fi

This script uses comments to explain the flow of the script; these are

covered later in this chapter. For now, be aware that any line that starts

with a # (except for line 1) is a comment, and the script will not “run” that

text. This is a best practice, and you should always comment all of your

code, adding notes to explain your script’s logic and activity. The more

complicated a script gets, the more important that commenting becomes.

If you do not comment the script effectively, you will not be able to trace

Chapter 9 a Culture of automation and Continuous testing

530

your own steps at some point, much less have anyone else be able to

take over your work when you, say, get a promotion to Senior Deity of

Computer Operations for integrating 10,000 Macs into your enterprise

in a week.

 Expanding on Z Shell
The default shell changed to zsh from bash in macOS 10.15. Most scripts

that existed prior to macOS 10.15 are likely to work fine, but there are some

differences between these shells, which we’ll cover in this section.

To quickly see which you’re using (e.g., when testing a new

release), use $0:

echo $0

Z Shell or zsh for short was written by Princeton University student Paul

Falstad in 1990. Most shells are just extensions of the Bourne shell (including

bash) and work similarly, but there are minor differences here and there.

Yes, Z Shell comes with a control-R reverse incremental search, but that’s

not a good reason to make this kind of change. Z Shell is more modern (e.g.,

more customizable autocompletion, use Alt + . to put parameters from the

previous command into your next command, slicker tabbed autocomplete),

considered by some to be more secure (not considered as such by others).

One of the most visible of these features for Apple administrators will be file

globbing. This is where you use an asterisk (∗) to list file contents. To step

through this example, we’ll declare the Contents variable in bash and echo

the contents:

Apps=*

Then let’s read the contents of that $Contents variable:

echo $Apps

Chapter 9 a Culture of automation and Continuous testing

531

The output would be as follows, a basic list of files (assuming the

directory you ran it in is /Applications):

About This Mac.app Archive Utility.app DVD Player.app
Directory Utility.app Feedback Assistant.app Folder Actions
Setup.app Network Utility.app RAID Utility.app Screen
Sharing.app Storage Management.app System Image Utility.
app Wireless Diagnostics.app

Now let’s do the same operation in zsh. The output shows that the ∗

was accepted literally:

*

To get the same result, wrap the globs in a () as follows (which includes

two to trap for hidden directories):

Apps=(*(N))

The security benefit here is that you don’t accidentally include

something you’re not supposed to while getting more options for dealing

with expansion. If this doesn’t work because you have a lot of scripts

deployed and are in the midst of an upgrade, you can do this the same old

way by enabling globsubst with the default shell or simply include bash in

the shebang of any scripts you’re running.

Another difference would be the way directory aliases are handled.
The alias command in zsh allows for expanded aliases anywhere in a line.

To put this in context, let’s grep output to something with an alias:

alias -g GS="| grep something"

Then cat that output:

cat somefile GS

Chapter 9 a Culture of automation and Continuous testing

532

Another change includes environment scripts. These are

• zlogin: Sets environment variables and commands

that won’t change often, as you have to reinvoke the

login for the changes to take effect.

• zlogout: Clears out terminals and resources set by

zlogin, in order to release any resources being taken up

unnecessarily.

• zprofile: Similar to .zlogin except that it’s sourced

before .zshrc instead of after .zlogin. The two shouldn’t

be used concurrently.

• zshenv: Sets the search path and environment variables

unless a -f is provided to start a session.

• zshrc: Sets up aliases, functions, key bindings, shell

options, and hosts for autocompletion. This is used for

interactive shells.

Other areas where zsh is different (some of these will be lesser used,

but should benefit more advanced administrators):

• Don’t set BASH_ENV (obviously), ENV, or SHELL to be

the same.

• exec changes (see http://zsh.sourceforge.net/Doc/

Release/Shell-Builtin-Commands.html for more on

how zsh does this).

• Native hashed data structure support in zsh using

typeset.

• The zsh interpreter doesn’t have an -x option like

in bash.

• Remove any PROMPT_COMMAND entries.

Chapter 9 a Culture of automation and Continuous testing

http://zsh.sourceforge.net/Doc/Release/Shell-Builtin-Commands.html
http://zsh.sourceforge.net/Doc/Release/Shell-Builtin-Commands.html

533

• Replace any calls to getopts with zparseopts.

• SHELLOPTS isn’t run at startup, although zshrc, zlogin,

and zprofile can be run at different times during the

startup of the shell.

• Use zcalc for all the maths including floating-point

support not present in bash natively: autoload

-Uz zcalc.

• -norc doesn’t skip anything.

• -rcfile calls.

• Spelling corrections.

• There is no restricted mode (--restricted) in zsh.

• There is no posix mode (-o posix) in zsh.

• You can autoload extensions like zmv in zsh.

Another reason Apple engineering picked zsh is that it’s modular.

This means you can load modules that help provide things like additional

file manipulation commands (zsh/files), use posix regex (zsh/regex), or

deal with sockets (zsh/net/socket). To check out a list of plug-ins that are

available, see https://github.com/unixorn/awesome-zsh-plugins. In

general, zsh is a more secure and modern shell environment, and despite

the transition period for administrators, it’s easy to understand why Apple

engineers felt it a better option leaving bash as the default shell.

 Altering Variables (Mangling)
The various shells have several facilities for internally altering data

in variables. This is referred to as “variable mangling,” and there are

numerous string operators to be applied to a variable that will filter its

value. Mangling uses curly brackets {} that enclose the variable name

prepended to a number of possible special operator characters.

Chapter 9 a Culture of automation and Continuous testing

https://github.com/unixorn/awesome-zsh-plugins

534

One common use of variable mangling is to perform pattern matching

on a variable, both left to right (specified by the hash (#) character) and

right to left (specified by the percent (%) character):

MY_VAR="the value of a variable"

echo ${MY_VAR#the}

The preceding example returns

"value of a variable"

Now let’s change the echo statement:

echo ${MY_VAR%a *}

Now the return echoes the following to the screen:

"the value of"

This can be handy for grabbing filenames or extensions explicitly:

MY_FILE=songname.m4a

echo "Filename: ${MY_FILE%.*} extension: ${MY_FILE##*.}"

The return is then as follows:

Filename: songname extension: m4a

Notice the use of the greedy string operator (##); this ensures that even

if the file has additional periods in its name, the only one we consider

the extension (and thereby exclude from our filter) is everything past the

last dot. The ability to remove file extensions this way is very handy. For

instance, the Apple defaults command used to require you pass in the

filename without the .plist extension (no longer the case today). In the

following script, we utilized this method to isolate the file extension when

needed, allowing us to perform our operations. The commands here are

Chapter 9 a Culture of automation and Continuous testing

535

not as important as the concept – that now we can use the same variable

for both operations and have the extension automatically removed for

commands that require it.

#!/bin/zsh

declare -i TIME_OUT=5

This sets the timeout of the AD plug-in in 10.5+

declare PLIST_FILE=\

"/Library/Preferences/DirectoryService/ActiveDirectory.plist"

The path of the plist \ is used to continue the command on

the next line

Note that the path has a .plist extension, which normally

would cause

The defaults command to fail. However, with variable

mangling we can

remove the .plist extension of the PLIST_FILE value when

we use it

with defaults and then call it normally when we use a

command that

requires a more standard path with file extensions

like plutil.

if [-w "$PLIST_FILE"] ; then

defaults write "${PLIST_FILE%.plist}" 'LDAP Connection Timeout'

$TIME_OUT

 plutil -convert xml1 "$PLIST_FILE"

else

 echo "File is not writable try sudo $0"

fi

Chapter 9 a Culture of automation and Continuous testing

536

Note We use a variable that is automatically set by the shell, $0
here. this is the full path to the script, and it’s good for making
dynamic usage error messages match your script path and name
automatically.

Another form of variable mangling provided by Bash is substitution,

which uses four operators, :-, :=, :+, and :?. Suppose I use the command

echo ${MY_VAR:-hello}. If the variable MY_VAR exists and isn’t null, the

command will output its value. If MY_VAR doesn’t exist or has a null value,

the string “hello” will not print out. The := operator is very similar. The

main distinction is that when := is used, it will set the variable $MY_VAR

to the value specified, in this case “hello.” The :+ operator is essentially

the inverse of the :- operator. In the command echo ${MY_VAR:+hello},

if $MY_VAR exists and is not null, then we return “hello.” If it doesn’t exist

or is null, it will return a blank value. Lastly, the :? operator can be used

to perform sanity checks. For instance, when used with the syntax echo

${MY_VAR:?my error}, if the variable $MY_VAR is not set, the script will

immediately terminate, printing the error message “my error.” If no error

is specified, a generic “parameter null or not set” error is output, along

with the variable name. Use of the :? operator is a great way to ensure that

critical variables are set.

Note scripts can be very damaging if certain operations are called
with malformed data, so be extra diligent in using these string
operators to verify that appropriate values are set.

All shells provide further capabilities for data substitution via the

/ and // operators. For instance, if MY_VAR has a value of Hello World,

the command echo ${MY_VAR//Hello/Hi} would output the text Hi

World. The use of // vs. / simply denotes how greedy the matching is:

Chapter 9 a Culture of automation and Continuous testing

537

echo #{MY_VAR/o/a} would output Hella World, while the command

echo #{MY_VAR//o/a} outputs Hella Warld. A real-world example of this

follows (excuse the rather hacky use of AppleScript via osascript to get this

MAC address value, but it’s a simple way to get only your MAC address

returned):

#!/bin/zsh

declare MAC_ADDRESS=`osascript -e 'primary Ethernet address of

(system info)'`

echo "Address with colons: $MAC_ADDRESS"

echo "Address without colons: ${MAC_ADDRESS//:/}"

The preceding examples are fairly simple scripts and wouldn’t require

much to make them much more interesting in terms of their capabilities.

We’ll keep providing a little more complexity to what we’re doing and

move into streams and pipes in the next section.

 Standard Streams and Pipelines
In any ∗nix terminal environment, numerous information channels exist

that control the flow of information between a process and its console

session. The three primary data channels from a scripting perspective

are standard input (stdin), standard output (stdout), and standard error

(stderr). These data streams can be captured, evaluated, and redirected

through scripting:

• Standard input, or stdin, represents data resulting

from a read operation. This can be text input via

keyboard or text that has been programmatically

redirected.

• Standard output, or stdout, represents any data output

by a program. The output will typically go to the current

console session but can also be redirected to other

programs or files.

Chapter 9 a Culture of automation and Continuous testing

538

• Standard error, or stderr, is a data channel that

represents textual error information. For instance, if a

program detects an error in one of its subroutines, it

will typically spit the details of this error out to stderr.

Understanding the use of these channels by any

program you intend to script will help you to write your

code more efficiently.

As mentioned, we can use pipelines or redirects to control the flow of

data between separate programs. The most common use of pipelines is the

practice of piping stdout from one script to stdin of another. For example,

we call the command

ps auxww | grep –v "grep" | grep –c "Finder"

If you were to look up the man page for grep (man grep), you would

find that the program takes optional flags and two arguments, a string

pattern and a path to a file. However, in this context, we are simply calling

grep with only one argument. How does that work? Well, the answer is

due to our implementation of command pipes |. As mentioned, the pipe

is used explicitly for passing data between programs. In this case, we

are passing data from the ps command out to grep. The grep command

recognizes that it is being passed data over stdin and utilizes this data as its

second argument. After filtering this data and removing any occurrences

of the term grep, it outputs the modified data to stdout, which is piped to

yet another instance of grep. This program is responsible for outputting a

numeric count for the number of times the term Finder appeared in data

passed to it through stdout. In a command pipeline, the resulting text

output will be that parsed by the final command in the chain.

In many cases, you may want to redirect the flow of data to a file.

To do this, you use data stream redirectors. In Bash, the most common

implementation of redirectors is through the >> and > operators:

ps auxww > ~/process_list.txt

Chapter 9 a Culture of automation and Continuous testing

539

In this example, we are redirecting stdout of the ps program to the file

located at ~/process_list.txt. The use of the > operator means it will

overwrite any data that previously existed with the file. Thus, every time

the preceding command is run, the file will contain only data from the

most recent operation. The >> operator in contrast is an append operation;

any data previously will simply have our latest data added to it. This is a

less destructive redirect and is desirable in many scenarios.

It is also possible to redirect the data streams themselves. For instance,

perhaps we want to set a variable to the output of the ls command:

lsTxt=$(ls /Applications)

This syntax will capture the output of the ls program’s stdout as a

single string. However, if ls is passed a nonexistent path, it will output its

text to stderr, which will never be passed to our lsTxt variable. To address

this issue, we can use data stream redirects once again. To pull this off, we

want to redirect the stderr channel (in ∗nix systems channel 2) to stdout

channel, channel 1:

lsTxt=$(ls /Applications 2>&1)

This way, lsTxt will contain either the file listing or any subsequent

errors. It is also possible to perform two redirects:

ls /Applications >> ~/lsLog.txt 2>&1

In this context, we are redirecting stdout to append our file found

at /lsLog.txt. However, we are also redirecting stderr to stdout. This

command will output the results of both data streams into the file. This

becomes a handy way to log all activity reported by a process, rather than

just merely relying on stdout.

Chapter 9 a Culture of automation and Continuous testing

540

 If and Case Statements
If/else and case statements serve primarily as traffic routers. Both facilities

are specifically referred to as branching statements; their purpose is to

directly affect the flow of code. For instance, perhaps there is a VIP user on

the network who needs VIP treatment. If this user logs in to a computer,

we need to ensure they have a “Deep Thoughts” folder on their desktop,

and then perhaps we need to prune this folder for old files, sweeping

them away into a “Stale Thoughts” folder. In the end, the specific task

doesn’t really matter, it is only important that we recognize that all of this

activity represents a “branch” of code – a full path of activity initiated by

the evaluation of an initial if statement. That if statement represents a

test – is this user my VIP? If they are, the next step is a flurry of activity.

Otherwise (else), skip the code and proceed as usual.

Note When coding or scripting in any language, the general rule of
thumb when implementing branching statements is to organize your
code so that the most commonly executed branch is in the first block.

For basic string comparison, both if/else and case statements are

similar, though lengthy case statements tend to be easier to read than

lengthy if/else statements. Here is the syntax to implement each (note: the

USER variable is set automatically by the shell and expands to the username

of the user running the script):

Check to see if our user is "jdoe"

if ["$USER" = "jdoe"]; then

 echo "My name is John"

 exit 0

elif ["$USER" = "janedoe"]; then

 echo "My name is Jane"

 exit 1

Chapter 9 a Culture of automation and Continuous testing

541

elif ["$USER" = "jsmith"] ; then

 echo "My name is jsmith"

 exit 1

else

 echo "Failed over to catch all…"

 exit 192

fi

While the above works, it's rather ugly, so a case statement

normally is much more readable

case statement

case $USER in

r"jdoe")

 echo "My name is John";

 exit 0;;

 "jsmith")

 echo "My name is jsmith" ;

 exit 1;;

 "janedoe")

 echo "My name is Jane";

 exit 1;;

 *)

 echo "Failed over to catch all...";

 exit 192 ;;

esac

Note When using case, specify each entry with a ;; following the
line, and then when all possible matches have been specified, you
will use esac (end of case) to close out the case statement.

Chapter 9 a Culture of automation and Continuous testing

542

We have introduced a few new concepts here. First are the test

brackets []. The use of brackets represents a conditional expression,

which will ultimately evaluate to true or false. In Bash, test brackets are

used with conditional operators to form tests. One example of this is in the

previous example’s if statement:

if [$CONSOLE_USERS -eq 1] ; then

\

This logic in English would translate as follows: if the string variable

$USER is equal to the string “jdoe,” execute the following code. In this case,

“is equal to” is syntactically denoted by a string comparison operator, =,

which compares two arguments (referred to as a binary operator) and

returns true if they have equal string values. Its antithesis != will return

true if the two given arguments are not the same. In our case statement,

the variable $USER is tested in a similar fashion (=) against each of our

possible matches, each denoted by the values specified prior to the closing

parenthesis. When a match occurs, the respective code block is executed

until it reaches the break specifier ;;. In the case statement, the last line

*) represents a wildcard and is the equivalent to an else block in an if

statement; its execution is dependent on all prior matches failing.

Caution not all languages, such as php and python, regard the
symbol = as a comparison operator and will actually interpret it as a
value assignment. in many cases, it is best to use the == operator to
do string comparison to prevent alteration of your variable’s value.
the == comparison operator is fully supported by Bash.

Chapter 9 a Culture of automation and Continuous testing

543

In addition to these two binary operators (= and !=), there are several

arithmetic-based binary operators:

-eq: arg1 equals arg2.

-ne: arg1 does not equal arg2.

-lt: arg1 is less than arg2.

-le: arg1 is less than or equal to arg2.

-gt: arg1 is greater than arg2.

-ge: arg1 is greater than or equal to arg2.

Besides binary operators, the test facility provides many valuable unary

operators (to test against a single argument). Unary operators are usually

used to perform tests against filesystem objects. Two of the most common

unary operators are –f and –d, which respectively test for the presence of a

file or directory.

if [-d /System/Library/CoreServices/Finder.app]; then

 echo 'Finder was Found!'

fi

This code will print the text “Finder was found!” if a directory exists at

the path /System/Library/CoreServices/Finder.app (which is true in any

OS X system because the Application bundle “Finder” is in fact a directory

like almost all modern apps). There are numerous unary operators, most

easily found by consulting the man page for test, using man test. Here are

some that are notable:

-f string: True if string is the path to a regular file

-d string: True if string is the path to a directory

-r/-w/-x string: True if string is a file that is

readable, writable, or executable (respectively)

Chapter 9 a Culture of automation and Continuous testing

544

-L string: True if string is a path to a symbolic link

-z/-n string: True if string is zero or nonzero

length (respectively)

Note You can also run these checks directly using the test
command (although you might have to wrap the test condition into
quotes or double parentheses depending on exactly what you’re
attempting to test), like so:

test –d /Users/ && echo "directory exists"

#!/bin/bash

if (["$USER" == "janedoe"] || ["$USER" ="jsmith"]); then

echo "User is jane or john"

else

 echo "User is not jane or john"

fi

In the if/elif example, we also demonstrate the use of the logical OR

operator ||:

if (["$USER" ="janedoe"] || ["$USER" ="jsmith"]); then

The logical OR operator and its partner the logical AND operator (&&),

often referred to as Boolean operators, are used to test against multiple

expressions. In the implementation earlier, we are using the logical OR

operator to test against two possible usernames, janedoe and jsmith. We

want to know if a user is either of these usernames, so we need to be able

to run both tests. In this example, if we used && instead of ||, the end

result would always evaluate to false, as the $USER variable will never be

equal to both values. When using logical operators && and || to combine

expressions, execution of the control statement will terminate immediately

Chapter 9 a Culture of automation and Continuous testing

545

after it evaluates to false or true, respectively. Thus, in the preceding

example, if the username is janedoe, the test will never be executed

against “jsmith.” In similar spirit, if we used && in that statement, the test

against “jsmith” will only ever get tested if the first expression is true (the

username is “janedoe”). Understanding this becomes very important to

writing clean, effective code. Recognizing this, we can take the previous

example:

if [-d /System/Library/CoreServices/Finder.app]; then

 echo 'Finder Found!'

fi

Next, let’s slim it down to a single “one-liner”:

[-d /System/Library/CoreServices/Finder.app] && echo

'Finder found!'

As covered earlier, if our expression returns false (in this case because

the Finder.app directory could not be found), then the test will abort

and the printf statement will never fire. In this iteration, we are also

omitting our if control statement, as our branching code (printf "Finder

found!\n") can easily fit onto a single line.

In our previous example, the case statement, as you may have

deduced, also uses a logical OR operator, implemented by supplying

multiple matches in a single test block:

case "$USER" in

"janedoe")

 echo "My name is Jane Doe";;

"jsmith")

 echo "My name is John Smith";;

*)

 echo "Remember Sammy Jenkins…";;

esac

Chapter 9 a Culture of automation and Continuous testing

546

In this example, by placing both “janedoe” and “jsmith” together, we

are implying a logical OR between the two values. A case statement will

then perform a string comparison of $USER to the string “janedoe” and,

if no match is found, will test against “jsmith” and so on. Once a match

is found, it will execute any preceding lines of code until it runs against

our break specifier (;;). In the case of janedoe or jsmith, a match would

result solely in the execution of the code: echo “My name is Jane Doe”.

Case statements, unlike if/else statements, do not have access to the more

advanced unary or binary operators provided by Bash. They are pretty

much limited to string comparisons and thus provide only limited (but

important) functionality.

 For, While, and Until Statements
So, at this point, we have learned how to define the flow of our program

through the use of branching statements, expressions, and conditional

operators. Automation, however, is rarely about performing an operation

once; the benefits of automation lie in the ability to scale production as

needed with minimal investment. Automation is particularly well suited

for boring, repetitive tasks that will result in hundreds, thousands, or even

millions of iterations. To harness the ability of repetition and iteration,

Bash provides three looping statements: for, while, and until. The for

loop is usually for iterating over basic items.

declare plistbuddy="/usr/libexec/PlistBuddy"

declare python="/usr/bin/python"

REQUIRED_COMMANDS="$plistbuddy $python"

for COMMAND in $REQUIRED_COMMANDS; do

 if [-x $COMMAND] ; then

Chapter 9 a Culture of automation and Continuous testing

547

 echo "Command: $COMMAND is installed"

 else

 echo "Command: $COMMAND is missing"

 fi

done

Every element of this script is native to the shell and would output

the text:

Command: /usr/libexec/PlistBuddy is installed

Command: /usr/bin/python is installed

Note to determine if a command will result in the execution of an
external program, use type followed by the name of the function. if
the process is external to the shell, it will specify the absolute path
to the binary (as found in $path). for example, type echo returns
echo is a shell builtin, meaning that Bash will use its
internal echo ability rather than the external command /bin/echo
when the echo command is called in a script.

The while and until statements are used for building more

customized looping structures. The -ge operator allows us to loop while

certain criteria are met:

while [$(ps aux | grep –v "grep" | grep –c "Finder")

–ge 1];

do

 echo "Finder is still running"

 sleep 15

done

Chapter 9 a Culture of automation and Continuous testing

548

In this example, there are a few new concepts. First and foremost,

whenever we use expressions, they are primarily expecting string

arguments. If we want to call an external program inside of an expression,

we must designate that the text not be treated as a string, but rather as an

external process. To do this, we wrap the entire command pipeline inside

of $(). This wrapper tells the shell to evaluate the contents of the entire

pipeline in a subshell. This same behavior applies if we want to assign the

output of a command to a variable. The following syntax is used to set the

value of variable $psTxt to the output of our ps command chain (this time,

we will use grep with pipes to accomplish the same count):

psTxt=$(ps aux | grep –v "grep" | grep –c "Finder")

Examining this command chain, we see that we are utilizing the

external programs ps and grep. The ps command lists running processes,

and grep is a basic filtering tool. Because grep is a program, it will

sometimes be found in the ps process list, so we must first filter out

our own grep line, using the –v flag. Then we do a search for the string

“Finder.” The –c flag specifies that we will output the number of matches. If

we find one or more processes, we will proceed through our loop. Next, we

output a simple text line stating that the program is running, then we sleep

for 15 seconds. At this point, the end of our loop has been reached, and we

will once again test for our criteria. If the criteria match, we will proceed

through our loop again, indefinitely, until our criteria fail to match.

The until loop represents a different utility. In Bash, it does not

represent true trailing logic (as it does in C), but rather serves as an inverse

of the while loop. Because of this, it is of rather limited use. For example,

we can easily replicate the logic of the preceding while loop, simply

inversing our conditional logic:

Chapter 9 a Culture of automation and Continuous testing

549

until [$(ps aux | grep –v "grep" | grep –c "Finder") –lt 1];

do

 printf "Finder is Running\n"

 sleep 15

done

Note Bash, like most languages, provides control statements
for managing individual loop iterations. for instance, the control
statement continue will instruct a loop to terminate the execution
for that particular instance, at which point it will return to its
evaluation statement (or the next iterated item in the case of a for
loop), and continue through the loop. the break statement will
instruct a loop to terminate completely.

 Arrays
An array, sometimes known as a vector, is one of the simplest data

structures. Arrays hold a collection of values, generally of the same data

type. Each element uses a consecutive range of numbers (integers) to

retrieve and store the values. Bash has basic support for one-dimensional

arrays. Creating a basic array in Bash is pretty simple:

set the variable MY_APPS to an array populated with a

directory listing of /Applications

declare -a MY_APPS=(/Applications/*.app)

You can then iterate through these items with a for loop:

for APP in "${MY_APPS[@]}"; do

 echo "Application: $APP"

done

Chapter 9 a Culture of automation and Continuous testing

550

There are a few things to note in this code. In our for statement, we

quote the array string ${MY_APPS[@]} to ensure that individual items with

spaces or tabs in the data are escaped. When accessing a specific index

in an array, the curly braces are always needed, and the index number

specified inside them. For instance, here’s how to access the first item list

in our applications:

${MY_APPS[1]}.

You can also assign arrays using numeric methodology:

declare –a USER_NAME[501]=krypted

declare –i USER_UID=501

echo ${USER_NAME[501]}

 returns: "krypted"

echo ${USER_NAME[$USER_UID]}

 returns "krypted"

Arrays are very handy for collating and organizing data. However,

their support in shell programming is a bit limited compared to more

robust programming environments. Also be aware that one of the major

limitations of an array is that their scope is downward only, meaning you

can’t export an array between scripts or functions of a script. Basically,

arrays are going to only work in your main body of code and not in

subprocesses you launch. In practice, this is a major limitation to consider

before trying to use Bash arrays in a complicated fashion.

 Exit Codes
Command-line applications, when implemented properly, will provide

what is called an exit code or return code after execution. This exit code is

internally defined in the program and is used to signal proper execution or

perhaps a specific error code. When a UNIX command-line utility executes

Chapter 9 a Culture of automation and Continuous testing

551

successfully, it should return an integer value of zero, which indicates

successful operation. Any nonzero value will represent an error condition

in the code, and this is a handy way to determine whether a program

properly executed. Exit codes vary from application to application and are

often referenced in the commands’ documentation (192 is also a common

error status). To check the exit code of a process, you can test against the

special variable $? immediately after the command has executed:

rsync –avu /Folder1/ /Folder2/

if [$? = 0]; then

 echo "The Rsync finished without an error!"

else

 echo "The rsync had problems!!"

fi

Alternatively, do the same thing on one line:

rsync –avu /Folder1/ /Folder2/ && (echo "Rsync Finished" ||

echo "Rsync had problems")

When writing scripts, it is important to follow good practice and

properly report the script’s status. Do so with the exit statement in the

code, followed by an integer value defining the proper state, remembering

to exit 0 on proper execution, and use an arbitrary value of one or greater

on error. If your script is primarily a wrapper for a different program, it

may not be a bad idea to mirror its exit code by referencing the $? variable

immediately following the execution of your command. Because $? will

change with each process that is run, you will want to save the $? value

into a separate variable for later reference in the script, allowing your script

to exit with the same value of the original command that you are wrapping

your logic around (such as an if or for statement):

rsync –avu /Folder1/ /Folder2/

Chapter 9 a Culture of automation and Continuous testing

552

declare –i RSYNC_CODE=$?

if [$RSYNC_CODE =0]; then

 echo "The Rsync finished without an error!"

else

 echo "The rsync had problems!!"

fi

exit $RSYNC_CODE

 More Advanced Shell Script Logic
To be properly processed by a shell, a UNIX executable script must specify

which interpreter the shell should use to parse and execute its contained

shell code. This information is provided via a shebang or hash-bang (#!)

specifier, which should always be at line 1 of the script and should precede

the absolute path to the file’s interpreter. To specify the zsh interpreter, we

use the following shebang specifier at the start of the script:

#!/bin/zsh

Note You can add an -x to the interpreter line of Bash scripts to
assist with debugging. this will echo the expanded variables and
actual runtime code in addition to the more common output vectors
like the echo command, for example, #!/bin/zsh –x.

Using this syntax, you can also specify atypical shell interpreters, such

as Perl (#!/usr/bin/perl), Python (#!/usr/bin/python), or Ruby (#!/

usr/bin/ruby); the list goes on. For the most part, OS X and most ∗nix

variants all utilize the same directory to store interactive user shells in

the /bin/ folder. This folder is defined by BSD as housing: “user utilities

fundamental to both single-user and multi-user environments.” This

folder is very common among the ∗nix variants and can usually be trusted

Chapter 9 a Culture of automation and Continuous testing

553

to contain at least the Bourne shell (sh) and, on most modern systems,

the Bash shell. However, nonshell interpreters, such as Python, Perl, or

Ruby, are going to vary greatly from OS to OS and can change if Xcode

or a manual implementation isn’t installed. Because of this, if we want

our shell to be portable (which these languages provide), then providing

a static path is not going to provide much utility on nonconforming

systems. If portability is your goal (and certainly it’s never a bad one), you

may want to forgo specifying an absolute path and instead let the parent

shell dynamically determine its location. To do this, utilize the following

shebang specifier:

#!/usr/bin/env python

The key thing to know here is that /usr/bin/env is a very commonly

supported binary and will cause the shell to search through its $PATH to

locate the Python executable. If that’s found in our path, this executable

will be used as the interpreter for the script. The $PATH variable is an

environmental variable used by nearly all shells and specifies a number

of directories that should be consulted when searching for a binary. This

variable contains a colon-delimited string of directories and will search

through them in order of preference from left to right. For instance, if I run

the command echo $PATH, I will see all of the directories in my path:

echo $PATH

/usr/bin:/bin:/usr/sbin:/sbin

Thus, if I were to run the command ifconfig, my shell would first look

for the binary ifconfig in the /usr/bin folder, then in /bin, /usr/sbin,

and so on until it ultimately finds the command (in this case, in the /sbin

directory). If the command is not found after searching the entire path, the

shell will terminate execution of the script with an error. On top of this, the

PATH variable becomes a good way for a user to inject their own versions

of a binary in place of a system binary. For instance, Mr. Joebob Poweruser

Chapter 9 a Culture of automation and Continuous testing

554

always likes to have the latest, greatest version of Perl on his system,

dutifully installed at /usr/local/bin/perl. However, with a default PATH

variable, when Joebob runs the command perl, he will be treated to our

localization’s binary stored at /usr/bin/perl. To change this, Joebob will

want to modify his ~/.profile file, adding the line

export PATH="/usr/local/bin:$PATH"

After doing this, when the user starts a shell, the path /usr/local/bin

will be the first folder searched in his path. Knowing all of this, it is easy

to see how utilizing the /usr/bin/env in your shebang line can provide

benefits if your script will have a wide audience.

Note With all the variants of linux and uniX systems out there,
it certainly can be a mental exercise to remember each one’s
folder hierarchy. for this purpose, many such systems provide
documentation as to their particular folder eccentricities. on such
systems, you can access this documentation via the hier man page
by running the command man hier at your terminal prompt.

With the shebang out of the way, we can now start writing our

script. Typically, at this point in the script, we will do what is referred

to as initialization. That is, we will define the variables to be utilized by

the script. Initializing all of your variables at the beginning of the script

provides many benefits. Primarily, it serves as a blueprint for your script.

Assuming you adopt good naming conventions for your variables, the

general utility and configurability of a script can often be deduced by

scanning the variables, at least to an extent. To assign a variable in the

shell, simply specify the variable name, followed by an equal sign, and

then the value, for instance, in the following line:

USER_NAME="charles"

Chapter 9 a Culture of automation and Continuous testing

555

With this line, we are assigning the global variable USER_NAME

the value of charles. Variables in Bash can be uppercase and can

contain underscores such as PLIST_FILE and can even be camel case –

plistFileNumberThree. The choice is up to you – just be consistent. Notice

that during assignment, we do not prepend the variable name with a

$ specifier, unlike Perl. However, utilizing the global scope in Bash will

ultimately make your code less extensible. For instance, if you were to

refactor the code into a function, you could have issues with scope conflict.

To address this, you can utilize the declare statement, which will initialize

the variable only in the local context:

declare USER_NAME="charles"

Charles is available only to the local context

declare –x USER_NAME="bill"

Bill is only available to the local and sub shells

export USER_NAME="emerald"

Emerald is available to the local sub shells and

parent shells

(but no type assignment such as array "-a" or "-i" integer)

Any local declares will not export to subprocesses or script functions,

but stay within the current scope of code running. If you use declare in

a function, once the function is complete, the variable will no longer be

active. This may be advantageous if, for instance, you have a function that

contains a password as a variable. If you want to keep a function’s variable

around after the function is complete, you can use export, as shown in this

example:

#!/bin/zsh

This is a basic function

littleFunction(){

 declare LITTLE_VAR="local"

 export BIG_VAR="global"

Chapter 9 a Culture of automation and Continuous testing

556

 echo "$FUNCNAME: LITTLE_VAR: $LITTLE_VAR"

 echo "$FUNCNAME: BIG_VAR: $BIG_VAR"

}

littleFunction # This is how we run a function

echo "$0: BIG_VAR: $BIG_VAR"

echo "$0: LITTLE_VAR: ${LITTLE_VAR:?}" # This should error out

$./bigscript

littleFunction: LITTLE_VAR: local

littleFunction: BIG_VAR: global

./bigscript: BIG_VAR: global

./ bigscript: line 16: LITTLE_VAR: parameter null or not set

While not always necessary, it is a good idea to get in the habit of

using declare statements with shell programming. It will save time and

headaches down the road as code gets repurposed.

One mistake rookie coders make is that they rely heavily on utilizing

PATH resolution in shell scripts. That is, instead of typing the command

/usr/sbin/networksetup –getdnsservers "Airport"

the command can be typed as follows:

networksetup –getdnsservers "Airport"

This won’t necessarily prove to be an issue, as networksetup resides in

the default path at /usr/sbin. The main problem with this methodology

is that PATH variables can be manipulated rather easily. If this script were

ever to get called with the sudo command, which escalates privileges

to uid 0, then we could potentially compromise a machine simply by

injecting our own path variable into the user environment. This way,

instead of the system calling networksetup, someone could call our own

program identically named networksetup, which might install goodies all

over the machine. Modifying a user’s PATH is rather trivial to do once a user

Chapter 9 a Culture of automation and Continuous testing

557

account has been compromised and can then be used for local privilege

escalation and to ultimately control the box. Several OS X escalation

vulnerabilities have been found due to failure to sanitize PATH exploits.

To combat this issue, we have a few options. The first option is to

manually specify the PATH variable in our script. This way, we can utilize

the dynamic lookup capabilities of scripts and still provide our own

known-good paths. To do this, we simply declare PATH in the global scope

of the script:

#!/bin/zsh

PATH="/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin

By specifying the PATH variable, we are in essence designating

trusted paths. Because we are doing this, it is important that we ensure

proper restrictions are applied to these paths. We want to make sure

that all specified paths are locked down from modification, restricted

only to admin users. For instance, the Bash /usr/local/bin does

not exist by default, so it could theoretically be possible for a user to

create this directory, inject their own executables, and then interject

those executables into our script. To prevent this, we utilize filesystem

permissions. In the case of /usr/local/bin, a user would first have to

create both the local/bin branch. Thus, that user would need to be able

to modify the directory at /usr. Luckily, filesystem privileges are locked

down such that a user would need root access to alter any of the specified

directories. If they can alter these system paths, we have bigger issues to

worry about.

Specifying a PATH for our shell script doesn’t solve all issues. For

instance, what if the user installs a copy of a command, which is

syntactically incompatible with the options specified in our script?

Perhaps only part of what we utilize the utility for in our script actually

works with the user’s app. In such case, our script would certainly

execute abnormally, at best merely failing to execute, but in a worst-case

scenario, the side effects could certainly prove to be damaging. For this

Chapter 9 a Culture of automation and Continuous testing

558

reason, you may want to allow only a specific binary to be utilized for the

context of your script. The standard methodology to implement this is

to declare full commands as variables and then call that variable instead

of the command. Also, you can use the -x test to see if the command is

executable:

#!/bin/zsh

declare networksetup =" /usr/sbin/networksetup "

if [-x $networksetup] ; then

 $networksetup -setv6off "Airport"

else

 echo "$networksetup is missing, is this Tiger(10.4)?"

fi

This practice certainly has its benefits. First, we ensure that all binary

paths are hard-coded to the system defaults. Of course, ensuring that the

system’s default software has not been altered is outside of our control. We

could certainly calculate md5 sums or check binary version output, but the

risk/effort rewards really aren’t there; it is perfectly sensible for our script

to assume a stock software package, particularly in the context of this

chapter.

The second benefit to declaring our commands is that we now have

a nice list of all external commands utilized by the script, which is a great

way to show our users what we are using to make our script work.

 Passing Arguments to Shell Scripts

When a script is called, it can have options, much like the options present

in commands you run in OS X. These commands are programmatically

stored in a predefined variable called a positional parameter. The

positional parameters are easily identified because they are $1, $2, $3, and

so on, with each position the area between a space and the next input.

For example, to send a command called foo a variable called bar, you

Chapter 9 a Culture of automation and Continuous testing

559

would use the command foo bar, which would result in being able to use

the variable $1 in the script. In the following script, we declare a number

of variables and even put the target of the script and the information

to change within the script; this is an example postflight script in a

package installer. Apple’s installer will pass these parameters to a script

automatically, but you can simulate them with the following command:

sudo /path/to/this_script 1 2 /Volumes/Macintosh\ HD /Volumes/

Macintosh\ HD

sudo /path/to/this_script 1 2 /Volumes/ /

Note We put the placeholders 1 and 2 here to stand in for what
would really be passed during an install. in this case, because we
don’t use $1 or $2, any value here would do, just to make sure the
count was right. this is a common way of testing scripts that are
destined for apple package installers.

#!/bin/bash

This script removes the time machine prompt from newly

created users

$1 and $2 are not used in this script

declare -x DSTROOT="$3"

Installation Volume of mount point.

declare -x SYSROOT="$4"

declare defaults="/usr/bin/defaults"

"$defaults" write "$PLIST" 'DoNotOfferNewDisksForBackup' -bool

'YES' &&

echo "$PLIST updated successfully"

exit 0

Chapter 9 a Culture of automation and Continuous testing

560

Many do some of these tasks in profiles now, but it’s good to

understand how they might be done both at a shell and with a profile. The

shell environment and some of the other included scripting languages

such as perl, python, and ruby provide a great environment for automating

tasks in macOS. These tasks are useful for setting up systems as well as

testing that various configurations that were set up work once the setup

has been complete. Earlier in the book, we looked at automating tasks

through agents, Mobile Device Management (MDM), automated software

deployment, configuration management, and automated provisioning. A

little bit of testing that these configurations are as intended will go a long

way in making sure that the devices work as intended. This keeps the total

cost of ownership of systems low by thwarting troublesome service desk

tickets and keeps users happy knowing that their administrators have

their backs.

Now that we’ve looked at some basic shell scripting, we’ll turn our

attention to testing. While we will get into more automated testing, we’ll

start with manual testing and documenting what you will test.

 Manual Testing
Organizations typically start testing programs when they grow to a few

dozen devices. At this point, there’s usually one person with access to a

spare machine who tests new stuff when it’s released. As the organization

(or Apple team within the organization) grows and as people in that

organization get bit by bad upgrades, you will invariably need more

maturity prior to releasing major releases and then point releases and app

updates than randomly clicking around and seeing if you broke something.

Chapter 9 a Culture of automation and Continuous testing

561

 Build a Test Matrix

The first and easiest step is to start with a spreadsheet. The spreadsheet

starts simple but usually gets much more complex. To save time, the

spreadsheet is a cost-effective means of documenting what tests you will

run and providing some metadata around those tests. These are some

columns to consider putting in your spreadsheet:

• Test: A name for you to easily identify the test being

run, often something like “Verify device can print to the

nearest printer.”

• Category: A group for test. Examples might include

Wi-Fi, Accessibility, application titles, preferences,

Dock, etc.

• Date: Identify when the test was run for that version

being tested.

• Impact: The impact is how many people are impacted

should a release go out with a defect. A 1 to 5 value

is usually sufficient. If you have 10,000 users and all

would be impacted in the case that the given test has a

defect, then the impact score should be a 5. If 2 people

might be impacted, then the impact score might be a 1

(unless it’s your boss).

• Risk: Risk is usually a numeric value. It’s a good idea

to keep the number with smaller increments like one

through five, and the risk is based on the likelihood

something will go wrong.

• Priority: This would usually be another 1 to 5 score, but

the priority should set the order you resolve issues.

Chapter 9 a Culture of automation and Continuous testing

562

• Steps: This is important as it will feed your automated

testing some day when you can do that. The steps are a

detailed list of steps to recreate the desired result. This

could be a numbered list, and it’s a good idea to make

them so simple an intern can do them, mostly because

you’ll probably want to hire an intern to do them when

you can move on to automated testing.

• Model columns: Here, you list each model supported.

Not every environment can have dedicated testing

equipment for each model, but it’s important to

note that.

• Status: Based on all the rows, does the test pass or fail?

This can be a Boolean or the words “pass” and “fail”.

• Tester: Some organizations with larger testing teams

also have each person doing the test add their name or

initials to each test they run.

• Notes: If a test failed, notes would help go back and

investigate later (especially in teams where one person

is testing and another is doing the work to resolve

issues that are encountered).

Not all columns are required for everyone. You might start with just a

name, steps, status, and notes. Keep it simple at first and don’t spend too

much time doing unnecessary data entry where you don’t have to. The

primary objective is to be methodical.

The most important part is to outline the tests as simple walk-throughs.

An example of how to structure one would be

• Open Microsoft Word.

• Click the Font selection in the toolbar.

Chapter 9 a Culture of automation and Continuous testing

563

• Select the “Copperplate” font.

• Make sure text appears in the Copperplate

when typing.

Another example would be to check that the device can get on the

Internet without configuring any network settings, that the correct default

browser is configured, and that the correct default home page loads:

• Open Safari.

• Verify that the wireless SSID is set to ACME.

• Verify that www.krypted.com loads.

• Verify you aren’t prompted to set the default browser.

• Check that the browser history is empty.

Yes, we added to check the browser history. The preceding test is

testing a number of things. By validating the SSID and connectivity on that

SSID, we also make sure that 802.1x is correctly configured, that certificates

are obtained properly, that the automation to set the default home page is

functioning, that installing a second and third browser hasn’t changed the

default browser, and that there’s no cruft in the browser history. The fewer

paths to check, the more efficient the testing.

The manual testing spreadsheet then grows over time. Every time

there’s a failure, a row is likely to be added to the spreadsheet. No

environment will have a 100% coverage for manual testing but expect

support incidents to drop as you build out more and more tests. And the

very act of building a matrix is likely to force you to plan time in each

update to do testing and keep the well-being of the people who have to use

the systems you build front and center.

If you’re doing it right, at some point, the tests will take too long. That’s

when you know it was time to start building out an automated testing

environment a while ago.

Chapter 9 a Culture of automation and Continuous testing

http://www.krypted.com

564

 Automated Testing
When creating a large number of images, MDM configurations, app

integration options, and other custom configurations, testing each one

can be critical to verifying a successful deployment. Each of these is a

regression of a build that you will deploy to users. If you prompt your users

with one dialog box in one of those builds, you might get 200 phone calls

(true story). If you notice the dialog box and don’t prompt users, that’s a lot

of calls you won’t need to take, and a lot of unhappy users you won’t have

to deal with.

 Graphical-Based Testing

Automated testing comes in a few forms. The most straightforward (or

least technical) form of testing is going through the process manually and

seeing what happens when you try to do a number of predefined tasks.

Doing so requires having a testing system that you can reimage as needed.

But manually testing images may give only a fraction of what can be done

in the same amount of time if the process is automated. If you have a well-

regimented image and software deployment environment, the results of

testing against specific known configurations typically provide an early

warning sign of problems in the image or a specific build of a package.

There are a few different solutions for macOS that can be used for

regression testing. Two that we recommend are Eggplant Functional and

Sikuli. Eggplant is primarily used to test software applications during

development but can also be used for this purpose. Regression testing is

mostly useful in larger environments, with a large number of builds. Not

only can it be used to qualify combinations of different settings applied to

a system, but regression testing can also be leveraged to qualify updates for

release. By automating various testing tasks, you can often quickly reduce

the change and release management times for new software and operating

systems. Eggplant is a tool available at www.Eggplant.com.

Chapter 9 a Culture of automation and Continuous testing

http://www.eggplant.com

565

Eggplant uses VNC to run checks on the remote systems and then

recognizes events based on known, predefined patterns. If the pattern is a

match, then the test is a pass; if not, it is a fail. Because Eggplant uses VNC,

it comes with the VINE server, although you can use ARD as well if you’ve

enabled VNC in your ARD configuration. Eggplant is pretty straightforward

once you get started, allowing you to define visual patterns in the form of

screenshots and letting Eggplant click those for an expected result.

You can also use a tool like Sikuli, which is a free alternative to

Eggplant and doesn’t have as many features. Sikuli is available at http://

sikuli.org. Sikuli can do the same but doesn’t require VNC. Sikuli uses

jython (a mix of Java and Python) to provide a rich framework for scripting

regression testing. For example, you can have Sikuli or Eggplant open Word

and check to see whether those specific fonts from our earlier examples

are in the list of available fonts. In addition to verifying that fonts load, you

can test pretty much anything else you might want. And you can run these

tests without touching a system, allowing you to define test cases and then

perform quality assurance (QA) on your image prior to deploying that

image to client computers en masse.

There are several tools that can be used for automated testing, some

of which can even be used with a fairly high amount of regression testing.

Before you get overly committed to any single tool, test each and think

through the cost vs. the amount of time you feel each could save you:

• Squish: www.froglogic.com/squish/

• Eggplant: https://Eggplant.io

• Sikuli: http://sikulix.com

• Selenium browser automation: www.seleniumhq.org

It’s worth mentioning that the Observer Effect is real in automated QA

testing. In order to run tests through Eggplant, you need to install a VNC

server. In order to run Sikuli tests, you need to install a runtime. These are

changes on systems and we’ve seen them alter the outcome of tests. It’s

Chapter 9 a Culture of automation and Continuous testing

http://sikuli.org
http://sikuli.org
http://www.froglogic.com/squish/
https://eggplant.io
http://sikulix.com
http://www.seleniumhq.org

566

better than nothing, but it’s a real thing to consider when planning your

automated testing environment. And it sure beats not noticing a screen

when manual testing and feeling like crap when a bunch of people can’t

log in to their computer.

Now that we’ve covered some basics around automated testing, let’s

build an actual test using one of these tools, starting with Sikuli.

 Sikuli

Sikuli uses actions taken via screenshots to run automated tests. To use

Sikuli, first download it from https://raiman.github.io/SikuliX1/

downloads.html and then open the .jar file. Also download the Jython.

jar and the Jruby.jar. These all need to be put into the same directory

before you open the sikulix.jar. Opening Sikuli can then be done by simply

double-clicking the file or using the command line as follows:

java -jar path-to/sikulix.jar

There may be a version number in the name of the .jar file.

Additionally, add Sikuli to the Accessibility and Screen Recording list of

apps in the Privacy & Security System Settings pane.

Sikuli then prompts to open. Once Sikuli opens, it looks like a typical

(although simple) IDE, but without a ton of features as with a tool like

IntelliJ. What you do have that you don’t see in a lot of other IDEs is the

ability to “Take screenshots” as seen in Figure 9-1.

Chapter 9 a Culture of automation and Continuous testing

https://raiman.github.io/SikuliX1/downloads.html
https://raiman.github.io/SikuliX1/downloads.html

567

Figure 9-1. Start your Sikuli script

To create our first test, click Take screenshot and make a screenshot of

the area to click (Figure 9-2).

Figure 9-2. Import an image

Chapter 9 a Culture of automation and Continuous testing

568

Next, type click and then wrap the screen in parentheses (Figure 9-3).

Once you have that, add each step in the workflow to get to where you

know if the test worked or not and then do an if to set a conditional and a

find to indicate what to look for. In the following example, we did a print

“Success” if it finds it; otherwise (using an elif) print “Fail.”

Figure 9-3. Building the script

The script can then be called directly, and each test can be set up as

a basic script. One nice way of tracking these is to have a column in your

manual testing matrix with the file location or name of each script that

then runs that test.

 Expect Scripting

While we’ve focused on using graphical tools to test, we can also use a tool

called expect. Expect is a scripting program that waits for something to

happen (the expect part) and then takes an action (send). This can be used

for a variety of tasks.

In this example, we’re connecting to a remote server using SSH and

running a command which doesn’t need root privileges. As part of the

SSH login, we must provide the password to the account via an interactive

prompt. The following script will gather the server address, username,

password, and the remote command and run the desired actions using

Chapter 9 a Culture of automation and Continuous testing

569

an expect block. Expect will watch for the password prompt to appear and

then automatically provide the account’s password when that prompt

appears:

#!/bin/bash

Set the SSH address.

read -p "Please enter the address of the remote server you want

to connect to : " ssh_address

Set the SSH username

read -p "Please enter your user account : " ssh_user

Set the SSH password

read -p "Please enter the password for the $ssh_user account: "

-s ssh_password

At the prompt, enter the command that

you want to run on the remote machine.

echo ""

read -p "Enter the command you want to run on the remote

server: " ssh_command

sshpassword=${ssh_password} expect -c "

 spawn -noecho ssh ${ssh_user}@${ssh_address} ${ssh_command}

 expect \"*assword*\"

 send \$env(sshpassword)\r

 expect eof

"

This script assumes that all information was entered correctly, or you

may see failures. When scripting automation for any platform, one should

test all scripts – especially if you aren’t specifically invoking them through

/bin/bash. Many of these changes won’t be very impactful. Maybe you’ll

have to get used to something working just a tiny bit differently when

Chapter 9 a Culture of automation and Continuous testing

570

you’re interactively navigating through the shell; no big deal. But for

scripting, definitely consider the globbing whatnot as something to look

out for and know that if it breaks a script, rather than just calling bash to

run, think about moving it over to the new default shell, because it’s this

way for a reason. And that reason probably isn’t just that some developer

didn’t like the story or acting in The Bourne Legacy (although it might have

been that bad).

 Posting Issues to Ticketing Systems
If any tests fail, you can automatically create tickets to resolve any issues

found. To do so, we’ll use the command line to create Jira tickets (although

many organizations use different ticketing systems). In the following

one-liner, we’re going to bring in some standard json and create a ticket.

We’ll use curl and use -u to define a username and password, then -X to

define a POST, and –data to define the contents of the post, wrapped in

the following single quotes. Then -H defines the content type as json and a

URL to your Jira rest endpoint, “Issues” in the following code:

curl -D- -u krypted:MySuperSecretPassword -X POST --data

'{"fields":{"project":{"key": "TESTING"},"summary":

"Make my feature better.","description": "Going to make

everything better ever ever ever by doing things and

by things I mean allll the things","customfield_001":"

Testing testing","issuetype": {"name": "Story"}{"time

tracking":{originalEstimate": "2d 4h"}}}' -H "Content-

Type: application/json" https://krypted.atlassian.net/rest/

api/2/issue/

Chapter 9 a Culture of automation and Continuous testing

571

We’ll cover other curl examples later in this chapter. You can swap out

the json here with input to a script or a file. That json can look prettier than

it looks in the preceding single line:

{

 "fields":{

 "project":

 {

 "key": "TESTING"

 },

 "summary": "Make my feature better.",

"description": "Going to make everything better ever ever ever

by doing things and by things I mean allll the things",

 "customfield_001":"Testing testing",

 "issuetype": {

 "name": "Story"

 }

 {

 "time tracking":{

 originalEstimate": "2d 4h"

 }

 }

}

As you can see, we’re creating an issue in the TESTING project (which

could also say ISSUE_RESOLUTION or whatever was generated when

you created the project you’re putting this issue into). We’re then adding

a “summary” and “description” as I don’t think you can really create one

without that information. Then we’re adding information for a custom

field our organization created and finally an estimate for how long the task

should take, with those being optional.

Chapter 9 a Culture of automation and Continuous testing

572

Any other fields available can also be created (including custom Jira

fields). Just add them to the correct part of the json with the correct label

and inputs to accept. By automating as much of the build train as possible,

you can then repeat your tests numerous times and deploy builds with

maximum test coverage and a minimum of human interaction.

You can also link your device management platform up to Jira.

AirWatch comes with a built-in connector (per https://docs.vmware.

com/en/VMware-AirWatch/9.3/vmware-airwatch-guides-93/GUID-

AW93- MF_CG_Add_Connectors.html), and one can be manually configured

to work with Jamf Pro (see http://krypted.com/jamf/node-plugin-

embed-device-details- jamf-pro-jira-service-desk/). In fact, now

that computers are so easy to fix and even many large-scale deployment

concerns are known quantities, the ability to string workflows together

across vendors is likely one of the most exciting parts of the IT industry.

Because we want to test against as many regressions as possible, we’ll look

at simulating environments with tools built into Xcode in the next section.

 Simulating iOS Environments
with the Xcode Simulator
The iOS simulator is a great way to test watchOS, tvOS, and iOS apps while

writing them. The easiest way to work with the simulator is through Xcode.

But you can also use simctl for interacting with it, helpful in automating QA

operations when possible. The simctl binary is located at /Applications/

Xcode.app/Contents/Developer/usr/bin/simctl and typically accessed as

a verb from the /usr/bin/xcrun command.

First, let’s list all the simulators, done using the list command, called by

simply running xcrun followed by simctl for the type of operation to be run

and then the list command:

/usr/bin/xcrun simctl list

Chapter 9 a Culture of automation and Continuous testing

https://docs.vmware.com/en/VMware-AirWatch/9.3/vmware-airwatch-guides-93/GUID-AW93-MF_CG_Add_Connectors.html
https://docs.vmware.com/en/VMware-AirWatch/9.3/vmware-airwatch-guides-93/GUID-AW93-MF_CG_Add_Connectors.html
https://docs.vmware.com/en/VMware-AirWatch/9.3/vmware-airwatch-guides-93/GUID-AW93-MF_CG_Add_Connectors.html
http://krypted.com/jamf/node-plugin-embed-device-details-jamf-pro-jira-service-desk/
http://krypted.com/jamf/node-plugin-embed-device-details-jamf-pro-jira-service-desk/

573

The output shows a lot of device types, runtimes, and devices. The help

subcommand shows all of the verbs available:

/usr/bin/xcrun simctl help

Notice there are a lot of verbs for simctl. These include the following:

• addmedia: Add photos and videos to a device’s library.

• boot: Start a device.

• create: Create a new device.

• clone: Clone an existing device.

• upgrade: Upgrade a device to a newer runtime.

• delete: Delete a device or all unavailable devices.

• pair: Create a new watch and phone pair.

• unpair: Unpair a watch and phone pair.

• pair_activate: Set a given pair as active.

• erase: Erase a device's contents and settings.

• shutdown: Shut down a device.

• rename: Rename a device.

• getenv: Print an environment variable from a

running device.

• openurl: Open a URL in a device.

• install: Install an app on a device.

• uninstall: Uninstall an app from a device.

• get_app_container: Print the path of the installed

app's container.

• launch: Launch an application by identifier on a device.

Chapter 9 a Culture of automation and Continuous testing

574

• terminate: Terminate an application by identifier on

a device.

• spawn: Spawn a process by executing a given executable

on a device.

• list: List available devices, device types, runtimes, or

device pairs.

• icloud_sync: Trigger iCloud sync on a device.

• pbsync: Sync the pasteboard content from one

pasteboard to another.

• pbcopy: Copy standard input onto the device

pasteboard.

• pbpaste: Print the contents of the device's pasteboard

to standard output.

• help: Print the usage for a given subcommand.

• io: Set up a device IO operation.

• diagnose: Collect diagnostic information and logs.

• logverbose: Enable or disable verbose logging for

a device.

 Managing Simulated Devices

Before you can start simulating operations, a simulated device is required.

Let’s boot a fresh new spiffy simulator of iPhone 13. To do so, we’ll use the

UUID string for the listing that includes iPhone 13 after the boot option:

/usr/bin/xcrun simctl boot A2F29921-785A-4AD8-8353-D3C64C6C2F91

Chapter 9 a Culture of automation and Continuous testing

575

The output includes a UUID such as the following. That can then be

used to track further interactions with the simulation:

A2F29921-785A-4AD8-8353-D3C64C6C2F91

The most common tasks would be booting, shutting down, erasing,

and opening simulations. To shut that same simulator down, use the

shutdown verb:

/usr/bin/xcrun simctl shutdown A2F29921-785A-4AD8-8353-

D3C64C6C2F91

Neither of these commands provide any output on success, but do

error on failure. Once you’ve run tests, I like to erase my simulator and

start fresh. To do so, simply use the erase command:

/usr/bin/xcrun simctl erase A2F29921-785A-4AD8-8353-

D3C64C6C2F91

To open the simulator you loaded, you can use the open Simulator.app:

open /Applications/Xcode.app/Contents/Developer/Applications/

Simulator.app/

 Copy Content into the Simulator

macOS comes with a handy tool to interact with the clipboard (a.k.a.

pasteboard) on a Mac called pbcopy. You can redirect information from a

file into your clipboard using the pbcopy command.

Here, we’ll simply call pbcopy and then a file path:

pbcopy ~/Desktop/transfer.txt

You can then redirect your text into simctl by doing a pbpaste into

xcrun simctl pbpaste booted

Chapter 9 a Culture of automation and Continuous testing

576

Once the data is copied, clean up the transfer file:

rm ~/Desktop/transfer.txt

It’s also possible to pull text out. Write data into the clipboard (e.g.,

during instrumentation) so it can be extracted from that pasteboard with

the simctl subcommand pbcopy as follows:

xcrun simctl pbcopy booted

We could also install apps, run instrumentation tests, view information

coming from the device, view detailed logs, sync a device with iCloud,

and more. iOS can be difficult to run various tests. But given the number

of automations we’ve gone through in this section, if you need to test

deployments, you should have plenty of tools at your disposal. Many an

automation build train needs to test functionality at scale or across more

regressions than what you might be able to test with what a simulator

can do when run in Xcode. There are some other, fairly accessible tools

that can be used to simulate and even delve deeper into iOS including

Corellium.

 API Orchestration
Orchestrating events with APIs starts with API documentation. In this

example, we’ll be working with the ZuluDesk API, and we’ll start by

reading http://api.zuludesk.com/docs/ to better understand how

to work with the API. Each tool you use will have API documentation,

hopefully automatically generated as each build of their software is

generated – making it straightforward to watch their URLs to know when

changes might break automations you build.

Chapter 9 a Culture of automation and Continuous testing

http://api.zuludesk.com/docs/

577

 Use cURL to Work with APIs

Using information from the API documentation, we’ll go ahead and use a

basic tool like curl to learn some basic uses of that API. The curl command

can be used to authenticate to an API using a variety of authentication

types such as Bearer, OAuth, Token, and of course Basic. To authenticate

to the ZuluDesk API, first create an API token. This is done by logging in to

ZuluDesk, clicking Organization, then Settings, then API, and then clicking

the Add API Key button. Once you have your API key, your header will look

as follows:

GET /users HTTP/1.1 User-Agent: curl/7.24.0 X-Server-Protocol-

Version: 2 Authorization: Basic YOURTOKENHERExxx000111222==

Content-Length: 0

The curl command can do this, would simply convert these into

separate values in the -H or header. The URL provided will do a GET

against devices, displaying a list of devices in json:

curl -S -i -k -H "Content-Length: 0" "User-Agent: curl/7.24.0"

X-Server- Protocol-Version: 2" "Authorization: Basic

YOURAPITOKENxx000111222==" https://apiv6.zuludesk.com/devices/

Once you have the “serialNumber,” you can programmatically

perform a number of other tasks using a POST. Another example would be

obtaining a list of apps, done using the /apps/ endpoint:

curl -S -i -k -H "Content-Length: 0" "User-Agent: curl/7.24.0"

X-Server- Protocol-Version: 2" "Authorization: Basic

YOURAPITOKENxx000111222" https://apiv6.zuludesk.com/apps/

Chapter 9 a Culture of automation and Continuous testing

578

You can also run a POST in the same fashion. In the following, we’ll do

that, sending a simple delete command to the group 505:

curl -X DELETE -S -i -k -H "Content-Length: 0" "User-Agent:

curl/7.24.0" X-Server-Protocol-Version: 2" "Authorization:

Basic YOURAPITOKENxx000111222" https://apiv6.zuludesk.com/

users/groups/:505

 Use Postman to Work with APIs

Postman is a tool that is a must-have for people who work with APIs

these days. Given that more and more development work is basically

working with REST APIs, Postman has gotten popular enough to warrant a

$50,000,000 investment shortly before the release of this book. Despite the

investment money, the tasks we’ll use Postman for in this section are free,

and organizations likely don’t need to cut a check to the company unless

they’re doing much more than an individual would do.

To get started with Postman, download the app at www.getpostman.

com/downloads/. Once downloaded, extract the zip file, drag the app to /

Applications, and open it. You’ll then see a screen that shows a number

of options. As you can see in Figure 9-4, the left sidebar provides a

history of API commands you’ve run, collections of APIs you’ve created

(or downloaded from a vendor who published their collection), and

APIs (a beta feature that allows you to sync your collections into the

Postman cloud).

Chapter 9 a Culture of automation and Continuous testing

http://www.getpostman.com/downloads/
http://www.getpostman.com/downloads/

579

Figure 9-4. Postman

Think of the right side as a single API command, where you are

defining which CRUD operation you are performing (GET, POST, PUT,

DELETE, or other HTTP verbs supported by your API). Select a type of

operation to perform and then provide a URL. If you are just retrieving

information from an API you don’t need to authenticate to, then you can

just hit Send and see the response, usually in JSON.

Below that, you have tabs for Parameters, Authentication, Headers,

Body, etc. Each of these is defining the various parts of that operation

you are performing. First, let’s click Authentication. As you can see in

Figure 9-5, if the API you are connecting to supports basic authentication,

this can be as simple as providing a username and password. However,

many support more modern authentication types such as JWT, bearer

tokens, and OAuth. For this specific API, we’ll just use that username and

password.

Chapter 9 a Culture of automation and Continuous testing

580

Figure 9-5. Authenticating to a REST endpoint

Click the Params tab to configure parameters you’ll send to the device.

Next, we’re going to clear the passcode of a device. Because we’re taking

an action rather than just getting information (e.g., using a GET), the type

of CRUD operation we’re running against the URL of this command has

changed to a POST. The URL includes the URL to that specific device and

then a restart endpoint. Anything after the ? in that URL is a parameter,

and we’ll define a udid and clearPasscode. The reason for the udid is that

per API documentation we know that any time you issue a wipe command

on an iOS device, you also have to specify if you also want to clear the

passcode of that device (Figure 9-6).

Chapter 9 a Culture of automation and Continuous testing

581

Figure 9-6. Parameters in a POST

One of the best parts of Postman is being able to trade collections with

people at work or find them on the Internet. Postman has a network of API

collections that are produced by the vendors you might want to automate

tasks with. These are available at www.getpostman.com/api-network/.

Additionally, you can find postman collections for a number of other

vendors fairly easily. Some common integrations you might want to build

off of are as follows:

• Ping Identity: https://apidocs.pingidentity.com/

pingone/customer/v1/api/guide/p1_sampleApps

• Jamf Pro: https://github.com/jamf/Classic-API-

Postman-Collection

• Okta: https://developer.okta.com/docs/reference/

postman-collections/

• MobileIron: http://downloads.skypeshield.com/

downloads/Utils/Postman/MobileIron.zip

• BlackBerry: http://downloads.skypeshield.com/

downloads/Utils/Postman/Blackberry.zip

Chapter 9 a Culture of automation and Continuous testing

http://www.getpostman.com/api-network/
https://apidocs.pingidentity.com/pingone/customer/v1/api/guide/p1_sampleApps
https://apidocs.pingidentity.com/pingone/customer/v1/api/guide/p1_sampleApps
https://github.com/jamf/Classic-API-Postman-Collection
https://github.com/jamf/Classic-API-Postman-Collection
https://developer.okta.com/docs/reference/postman-collections/
https://developer.okta.com/docs/reference/postman-collections/
http://downloads.skypeshield.com/downloads/Utils/Postman/MobileIron.zip
http://downloads.skypeshield.com/downloads/Utils/Postman/MobileIron.zip
http://downloads.skypeshield.com/downloads/Utils/Postman/Blackberry.zip
http://downloads.skypeshield.com/downloads/Utils/Postman/Blackberry.zip

582

• VMware: https://blogs.vmware.com/

management/2017/05/vrealize-automation-api-

samples-for-postman.html

• Box: https://developer.box.com/docs/box-

postman- collection

• IBM MobileFirst: https://mobilefirstplatform.

ibmcloud.com/tutorials/en/foundation/8.0/

adapters/testing-and-debugging-adapters/

• Jira Service Cloud: https://developer.atlassian.

com/cloud/jira/service-desk/rest/

• Confluence: https://developer.atlassian.com/

cloud/confluence/rest/

If you use a tool that has a standard RESTful API, and they don’t have

a Postman collection for it, then I’m sure they’d be happy to work with you

to build one. This book isn’t meant to go through hooking automations

up between all of the APIs for every vendor you might use. Now that you

see how developers communicate between one another when building

integrations, hopefully you realize that every single task you need to

perform routinely can be automated and consistent.

 Release Management
The reason we’re doing all this testing and automated testing is so that

when we’re done with our scripts and automations, we want to be able

to make changes on hundreds or thousands or hundreds of thousands

of devices at the same time. Release management is referred to as the

processes to schedule, plan, manage, and control the release of software

through different stages and environments. The first of those environments

is when that software is being developed. Most of the rest of this book is

about what to do with that software in an organization that consumes the

Chapter 9 a Culture of automation and Continuous testing

https://blogs.vmware.com/management/2017/05/vrealize-automation-api-samples-for-postman.html
https://blogs.vmware.com/management/2017/05/vrealize-automation-api-samples-for-postman.html
https://blogs.vmware.com/management/2017/05/vrealize-automation-api-samples-for-postman.html
https://developer.box.com/docs/box-postman-collection
https://developer.box.com/docs/box-postman-collection
https://mobilefirstplatform.ibmcloud.com/tutorials/en/foundation/8.0/adapters/testing-and-debugging-adapters/
https://mobilefirstplatform.ibmcloud.com/tutorials/en/foundation/8.0/adapters/testing-and-debugging-adapters/
https://mobilefirstplatform.ibmcloud.com/tutorials/en/foundation/8.0/adapters/testing-and-debugging-adapters/
https://developer.atlassian.com/cloud/jira/service-desk/rest/
https://developer.atlassian.com/cloud/jira/service-desk/rest/
https://developer.atlassian.com/cloud/confluence/rest/
https://developer.atlassian.com/cloud/confluence/rest/

583

technology once it goes to market. Understanding earlier parts of that

build train is useful, especially if you want to future-proof parts of your

deployment as various scripty bits get removed from macOS.

These days, we think of the word “release” a little less. Instead, we’re

moving into a world of continuous integration and continuous delivery

(yet another industry acronym as CICD). Tools like Jira allow you to

integrate with other tools that complete the automation of your testing

matrix. Yes, it’s a whole domino of workflows that’s just one REST call after

another. There are tons of great books on CICD and release management.

Most are specific to a given technology stack, with some including

• Travis: https://travis-ci.org/

• Jenkins: www.jenkins.io

• Atlassian’s Bamboo: www.atlassian.com/

software/bamboo

• Harness: http://harness.io/

• Shippable: www.shippable.com/ (now a part of JFrog)

• Spinnaker: www.spinnaker.io/

• AWS CodePipeline: https://aws.amazon.com/

codepipeline

• Fastlane: https://fastlane.tools

• GitLab CI/CD: https://about.gitlab.com/

direction/cicd/

A number of vendors also offer interfaces to their tools with git. This

makes it simple to hook workflows together that result in journaled,

approval-driven business processes that make managing devices look a

little more like managing code. Tools like Munki are built from the ground

up using these kinds of techniques, as you can see at https://github.

com/munki/munki/wiki/Munki-With-Git. Other tools require a bit more

Chapter 9 a Culture of automation and Continuous testing

https://travis-ci.org/
http://www.jenkins.io
http://www.atlassian.com/software/bamboo
http://www.atlassian.com/software/bamboo
http://harness.io/
http://www.shippable.com/
http://www.spinnaker.io/
https://aws.amazon.com/codepipeline
https://aws.amazon.com/codepipeline
https://fastlane.tools
https://about.gitlab.com/direction/cicd/
https://about.gitlab.com/direction/cicd/
https://github.com/munki/munki/wiki/Munki-With-Git
https://github.com/munki/munki/wiki/Munki-With-Git

584

finessing, and you won’t likely have full coverage of everything the product

can do. The git2jss (https://github.com/badstreff/git2jss) would be

an example of that kind of situation, given not everything the creators want

to do is supported by the APIs they work with.

Another aspect of automation is making sure that everything a build

requires is where it needs to be. There are a number of tools that aid in this

endeavor, which include one of the more popular repository managers,

Artifactory from JFrog (https://jfrog.com/artifactory/). Gathering all

of those dependencies, especially given how frequently many tools update,

can be a bear, although the transition from tools like Carthage to Swift

packages can make it far simpler for Apple developers.

 Summary
Ultimately, the most important takeaway from this chapter would be to

get comfortable using the command line to troubleshoot issues on your

devices and then to introduce a testing program at your organization.

Testing programs should start simple to garner quick wins. Until a team

grows to the point that not having an appropriate level of processes and

procedures starts to become a problem, do not get bogged down with

unnecessary dogma and technology. If a spreadsheet works for you and an

intern is cheaper than the combination of the cost of buying software and

the cost of spending the time to build a QA infrastructure, use an intern.

More important than the techniques and tools we looked at in this

chapter is the concept and the understanding that you will be continuously

testing. Apple has gotten very, very efficient at developing and pushing

out changes using the existing build train. A list of tests provides a pretty

good idea of how much automation work might be required to move to

automated testing while taking immediate value from the ability to be

organized about your test cases.

Chapter 9 a Culture of automation and Continuous testing

https://github.com/badstreff/git2jss
https://jfrog.com/artifactory/

585

The matrix of required tests will grow over time and occasionally

require a little pruning. Pruning can be done when features are retired.

Once you have that matrix, building tests to prove that a device is in a state

you want the device in is according to what you’re testing. If you’re an

app developer, then you even have customized tools just for your specific

needs (and here Apple admins can learn a lot from app developers).

Given the maturity of large application development organizations, you

can even anchor your build train, whether that uses GitHub or a device

management solution, to a vast ecosystem of REST endpoints that tickle

one another across the globe.

Focusing on the full process, you want to get to a place where an app

or package is built automatically using a tool like AutoPkg, then automated

tests are completed, and then manual tests are completed. Once those are

done, you can automate your release cycle, making it possible for more

and more users to have their own regressions without sending you to

retirement early – or at least, until Apple blocks all synthetic clicking and

scripts. But that’s pretty far out in the future, right?

Now that we’ve covered testing, let’s look at how we get a user

authenticated into computers in Chapter 10, when we start that journey

with directory services.

Chapter 9 a Culture of automation and Continuous testing

587

CHAPTER 10

Directory Services
A directory service is a centralized service used to locate and access

resources on a network. For the purposes of this chapter, a directory

service is used to authenticate to various resources on the network and

authorize a user or device to access those resources. The most widely used

directory service is Microsoft’s Active Directory, so most of this chapter is

dedicated to Active Directory.

The Mac can tie into standard Active Directory and LDAP

environments easily. In previous books about integrating the Mac into

directory services, environments easily occupied three to four chapters.

But a few things have happened in the past few years:

• The platform has evolved. Apple has sorted out

most of the issues connecting to Active Directory

environments. Now the technology used to talk to

Active Directory mostly just works out of the box,

including via a profile, as mentioned later in this

chapter.

• The Apple community has devoted considerable time

and resources documenting how to identify and resolve

known challenges to integrating Macs with various

directory services.

© Charles Edge and Rich Trouton 2023
C. Edge and R. Trouton, Apple Device Management,
https://doi.org/10.1007/978-1-4842-9156-6_10

https://doi.org/10.1007/978-1-4842-9156-6_10

588

• Open source and commercial middleware have

been developed to resolve and automate common

integration scenarios.

• Open Directory, Apple’s LDAP directory service

included with macOS Server, has been discontinued as

of macOS Monterey along with macOS Server.

• Active Directory remains important in many enterprise

environments, but the methods used to allow a Mac to

communicate with it have changed.

• Cloud-based directory services have become easy to

implement for companies with or without legacy on-

premises directory service infrastructure.

• iOS devices don’t bind to Active Directory, which

strengthens the argument that you should focus on

integrating services and apps instead of integrating the

entire device.

• People gave up the dream of having a network home

folder that’s accessible from any device.

Even with the changes of the past few years though, it may still be

necessary to bind Macs to an Active Directory domain for a variety of

reasons. These reasons may include

• Compliance with corporate policies

• Ensuring access to needed data

• Allowing multiple users to use one Mac

Let’s take a look at several ways to accomplish this goal.

Chapter 10 DireCtory ServiCeS

589

 Manually Bind to Active Directory
The Active Directory plug-in is the easiest way to initiate a bind. When

you bind, you establish a trusted relationship between your Mac and the

Active Directory domain. An Active Directory account with the appropriate

privileges is used to create a computer record in Active Directory and

establish trust between the servers and the client. The local administrative

account on the Mac creates an account on the local system and pulls down

any attributes from the server as needed.

Each Mac contains a unique preshared key used to authenticate that

machine to the directory. This individualistic nature is an important

aspect to consider when looking at automating the process. If you are not

automating this step, you will need to supply the person doing the bind

with both local and directory administrator credentials.

You can provide local desktop admins with accounts that only have

access to bind computers into the domain. You can also provide non-

administrators with access to edit local configurations by modifying

the authorization right “system.services.directory.configure” in /etc/

authorization. Through the modification of this right, you can grant access

to change directory settings to your non-admin users. The content of this

file is considerable and goes through the specific rights of each subsystem.

 Bind the Easy Way
Provided you have the appropriate credentials to bind, open the Users &

Groups System Settings pane from within System Settings. Click the Users

& Groups System Settings pane, as shown in Figure 10-1.

Chapter 10 DireCtory ServiCeS

590

Figure 10-1. Click the Edit… button to initiate a bind

Click the Edit… button beside Network Account Server, as seen in

Figure 10-1.

This will bring up a pop-up screen that will have no servers listed.

Clicking the plus button (+) will provide a field which you can use to enter

an Active Directory domain name into, as seen in Figure 10-2.

Chapter 10 DireCtory ServiCeS

591

Figure 10-2. Enter the Active Directory domain name into the Server:
field as part of the bind process

Provided the domain name can be reached, the screen will expand.

Enter the ID that the computer you are binding will have once it joins

Active Directory (a.k.a. the name that will appear in the list of Computers).

Also provide a username from Active Directory that can create a record

in Active Directory in the AD Admin User field and the password for that

account in the AD Admin Password field and hit OK (Figure 10-3).

Chapter 10 DireCtory ServiCeS

592

Figure 10-3. Providing domain admin credentials as part of the
bind process

 Bind with the Directory Utility
You can only bind with this simple experience if the client computer can

enumerate the domain and if you don’t need to leverage any of the more

granular settings provided during the initial bind process. If you need

either of those two, click the Open Directory Utility… button, unlock the

tool, and click Services in the toolbar, as seen in Figure 10-4.

Chapter 10 DireCtory ServiCeS

593

Figure 10-4. Services listing in Directory Utility

Use the lock in the lower-left corner of the screen to authenticate so

you can make changes and double-click the entry for Active Directory. You

will then be prompted with three fields by default, which are also shown in

Figure 10-5:

• Active Directory Forest is a setting configured

automatically based on the domain name. If multiforest

support is required, we will cover that in the command-

line options available through dsconfigad.

• Active Directory Domain is the domain the active

directory plug-in will use to look up the appropriate

service records (SRV) to find the closest servers and

complete the bind process. This relies on the client’s

DNS servers (usually provided by DHCP) to be

Chapter 10 DireCtory ServiCeS

594

correctly pointing at servers that host these records

(e.g., AD-integrated DNS servers). Windows clients can

be a bit more forgiving in these specific operations, so

properly configured DNS is paramount for the bind

process to succeed.

• Computer ID is the name of the computer record

created in the Active Directory domain. This name also

typically becomes a DNS name on the network if that

is configured in Active Directory. If you are configuring

a client named computername for the pretendco.
com Active Directory domain, the Active Directory

plug-in will request a DNS record be created for

computername.pretendco.com. Because this is DNS,

the ID should conform to A record standards, defined

in RFC 1035 (see www.ietf.org/rfc/rfc1035.txt

for more).

Note For best results, keep computer names under 15 total
characters in length. the reason for the 15-character limitation is
that, on the Windows platform, NetBioS names cannot be longer than
15 characters, and apple’s aD plug-in uses that same limitation to
maximize compatibility.

Chapter 10 DireCtory ServiCeS

http://www.ietf.org/rfc/rfc1035.txt

595

Figure 10-5. Bind using Directory Utility

Note Since the computer name populates the Client iD, try to follow
the LDh rule: use only aSCii alphabetic and numeric characters and
a hyphen (-), but no other punctuation or characters. and don’t use
names with all numbers or that start with numbers when possible.

Next, click the Bind button, and you will be asked to authenticate into

the Active Directory domain using the following fields, as you can see in

Figure 10-6:

Chapter 10 DireCtory ServiCeS

596

• Username contains any valid user account capable

of joining computers to the domain. This user must

have rights to create new objects in the container or

Organizational Unit you are creating the record in. That

access can only be delegated by a valid Active Directory

administrator.

• Password is the password for the username provided in

the previous field.

• Computer OU is the search base for the Organizational

Unit that clients will be added to (should be

populated by default but you might choose to

direct clients at a unique OU). As an example, if

you create an Organizational Unit called Macs in a

domain called pretendco.com, then you would use

CN=Macs,DC=pretendco,DC=com in this field.

• Use for authentication is a setting that allows for

authenticating into the Mac at the login window using a

valid Active Directory username and password.

• Use for contacts allows for searching for contacts using

Address Book.

Figure 10-6. Binding to Active Directory using Directory Utility

Chapter 10 DireCtory ServiCeS

597

The most common binding problem with Active Directory

environments is with the Active Directory domain’s DNS having an

incomplete set of service records. If we had a nickel for every time a

Windows admin swore up and down that there were no problems on their

servers, only to have all problems resolved by a quick and dirty fix, we

probably wouldn’t be writing books. For example, an ipconfig /rebuilddns

command run from a domain controller hosting the Active Directory

integrated DNS to rebuild service records.

If you have not prepopulated the computer record, your computer

account will be placed in the default OU, Computers. To continue with

the previous pretendco.com example, Organizational Units are these

containers, which are accessed using a convention, whereas the container

is a CN followed by a DC for each part of a fully qualified domain name.

Therefore, if you were to enter the Computers container of mydomain.
com instead of pretendco.com from our previous example, you would use

cn=Computers,dc=mydomain,dc=com.

 Test Your Connection with the id Command
Once you have bound to Active Directory, it’s time to test the connection.

To get started, verify the light is green beside the Active Directory service

listed in Directory Utility. You can also simply log in to the Mac as a user

from Active Directory.

When automating, you will also need to verify binding from the

command line (and should test it either way). As previously referenced, an

integral part of logging in on macOS is a user account’s UniqueID attribute.

You can verify that user resolution is happening and view the UniqueID

using the id command. To do so from a command-line environment, enter

the id command followed by the username of a directory account:

id charles.edge

Chapter 10 DireCtory ServiCeS

598

The response should appear as follows:

uid=1767690311(charles.edge) gid=703907591(PRETENDCO\

domain users) groups=338867591 (PRETENDCO\domain

users),5499333624(PRETENDCO\administrators)

The id command may fail with the following:

id: bob: no such user

If the command fails, verify it exists in the directory service and

check the Search Path list in Directory Utility, which should show Active
Directory as part of the list when everything is configured properly

(Figure 10-7).

Figure 10-7. Check your search path listing in Directory Utility

Chapter 10 DireCtory ServiCeS

599

The Search Policy should automatically be configured during the

bind process. However, if you are manually configuring or attempting

to troubleshoot an automated binding, you can verify this configuration

in Directory Utility. It’s also possible to set the search path manually,

by setting the Search Path to custom. This allows the search order to be

changed and other alterations to be made as needed to the configuration.

While id is probably the easiest tool used to check connectivity, dscl is a

more robust tool for testing directory services.

 Use dscl to Browse the Directory
The dscl command can be run interactively or from a script; we’ll cover the

interactive mode first. Simply run dscl to get started:

dscl

The output is a simple interactive shell:

Entering interactive mode... (type "help" for commands)

 >

The syntax for moving through the configured directory services is

much like navigating around on the filesystem of a Mac from the command

line. Once you have initiated your session, it will show an interactive

prompt (>). Use the ls command to list the configured DirectoryService

Plug-ins and then use cd to change your working directory into one.

If you do not see Active Directory listed, you are not yet bound. When

you change directories with the cd command, you will need to quote in

order to avoid any spaces, as follows:

cd 'Active Directory'

Chapter 10 DireCtory ServiCeS

600

After you change directories into the Active Directory plug-in, you will

see any domains and forests previously configured. You can only join one

forest at a time.

The Apple Active Directory plug-in only allows you to configure

one Active Directory forest at a time; the default behavior is to allow

authentication from all domains within a forest on the local machine. This

is an important note, as it means that depending on your organization’s

directory topology, you may not be able to see the users if you are in

a separate forest. If you would like to restrict access to this computer

(or server) to only one domain, you will need to uncheck the Allow

authentication from any domain in the forest button in the Directory

Utility or run the command dsconfigad –all domains disable, depending

on your configuration. You will see either All Domains or your domain

name, wallcity.org, when listing this value in dscl.

/Active Directory > ls

All Domains

To test that your binding worked correctly, you can change directory

into the respective value and do an ls. You should see output similar to that

shown as follows:

/Active Directory > cd 'All Domains'

/Active Directory/All Domains > ls

CertificateAuthorities

Computers

FileMakerServers

Groups

Mounts

People

Printers

Users

Chapter 10 DireCtory ServiCeS

601

If you receive an error when changing directory, your Active Directory

binding has most likely either failed or the current DirectoryService

daemon has lost contact with your site’s Domain Controller.

A common procedure used to verify connectivity is to use the dscl

command along with the read verb to view the attributes associated with

a given account. This will allow you to verify that user lookup is working

within the Active Directory plug-in itself and look for any potential issues,

such as a missing attribute. While you could ls Users, depending on the

size of your organization, you may not receive all of the information

that you are looking for. By default, the LDAP server in Active Directory

will return a maximum of 1000 results. Although many more can be

enumerated, this is just a limitation for how many are shown at once.

Therefore, we will simply cd into the appropriate directory and then use

read to view the attributes for a known good user account:

/Active Directory/All Domains > cd Users

/Active Directory/All Domains/Users > read CEDGE

dsAttrTypeNative:accountExpires: 456878888655687

dsAttrTypeNative:ADDomain: pretendco.com

dsAttrTypeNative:badPasswordTime: 0

dsAttrTypeNative:badPwdCount: 0

dsAttrTypeNative:cn:

Charles Edge

dsAttrTypeNative:codePage: 0

dsAttrTypeNative:countryCode: 0

dsAttrTypeNative:displayName:

Charles Edge

dsAttrTypeNative:distinguishedName:

CN=Charles Edge,CN=Users,DC=pretendco,DC=com

continued...

Chapter 10 DireCtory ServiCeS

602

Caution the LDap server in active Directory by default will return
a maximum of 1000 results. this limitation affects user, group,
computer, and computer group listings in both dscl and Workgroup
Manager and therefore may negatively affect any scripting
automations derived from this information. this is a hard limit in
Windows 2000 but can be adjusted in later versions, as instructed in
the Microsoft Knowledge Base article found at http://support.
microsoft.com/kb/315071.

One thing to keep in mind is that while viewing data from the Active

Directory plug-in directly (by changing directories into it), you can verify

that you have a connection to your organization’s directory services.

However, simply being able to view the raw directory service data does not

in fact mean that you can authenticate against it. As with dsconfigldap in

Chapter 2, the final step is to use the information gathered about your test

user and verify that your user matches in the /Search path as well:

/Active Directory/All Domains/Users > read /Search/Users/cedge

dsAttrTypeNative:accountExpires: 456878097655687

dsAttrTypeNative:ADDomain: pretendco.com

dsAttrTypeNative:badPasswordTime: 0

dsAttrTypeNative:badPwdCount: 0

dsAttrTypeNative:cn:

Charles Edge

dsAttrTypeNative:codePage: 0

dsAttrTypeNative:countryCode: 0

dsAttrTypeNative:displayName:

Zack Smith

dsAttrTypeNative:distinguishedName:

CN=Charles Edge,CN=Users,DC=pretendco,DC=com

continued...

Chapter 10 DireCtory ServiCeS

http://support.microsoft.com/kb/315071
http://support.microsoft.com/kb/315071

603

If the two read commands return different results, you have namespace

collision, which could possibly be resolved by altering your search path.

In some cases, it may be necessary to simply delete the conflicting user

account. You can view the current search path with dscl along with a

read verb, the path, and the attribute to display (in this case, /Search

SearchPath).

/Active Directory > read /Search SearchPath

SearchPath:

/Local/Default

/BSD/local

/Active Directory/All Domains

/Active Directory >

Once you have verified that the user result is functional from the

DirectoryService daemon, you can verify that authentication is correctly

happening (so far, we have only verified that user resolution is possible).

Type exit to end your interactive dscl session for the localhost:

/Active Directory/All Domains/Users > exit

Goodbye

Once you are bound to Active Directory, simply log in as an Active

Directory user in order to test authentication. If the screen shakes

and prompts you to log in again, then one of the following conditions

may apply:

• The account credentials are incorrect.

• The account does not have permissions to log in to

the Mac.

• The Active Directory binding is not correct.

Chapter 10 DireCtory ServiCeS

604

 Programmatically Binding
to Active Directory
Most anything on a Mac can be managed using a command-line tool of

some sort. And binding to Active Directory is certainly no different. A

quick Google search is likely to net you about as many binding scripts as

there are Mac Admins out there. But there are a few components that are

important to understand. The first is simply checking the binding state

of a Mac.

To see the Active Directory configuration on a Mac, use the dsconfigad

command with the -show option:

dsconfigad -show

Here, you’ll see a list of the options configured for any directories

you’ve been bound to. To actually bind, use a command like the following

(e.g., in a setup script):

dsconfigad -add $computername -u $username -ou "CN=Computers,

DC=pretendco,DC=com" -domain PRETENDCO -mobile enable

 -mobileconfirm enable -localhome enable -useuncpath enable

 -groups "Domain Admins,Enterprise Admins" -alldomains enable

Let’s unpack the options used in the preceding command:

• -add adds the computer to the domain and uses the

variable supplied to the script for $computername as

the name for the computer that will appear in Active

Directory.

• -u is the username of an Active Directory user with

privileges to add a device into the Organizational Unit

described.

Chapter 10 DireCtory ServiCeS

605

• -ou defines the Organizational Unit the device will be

placed in. If this setting is not included, then the device

can still be enrolled but will be left in the default OU for

your Active Directory environment.

• -domain defines the domain to join. In this case, that

would be PRETENDCO.

• -mobile makes the account mobile or able to sign in

when Active Directory can’t be reached. This is important

for laptops that will be out of the office frequently.

• -mobileconfirm skips the confirmation screen for Active

Directory users when creating the mobile account.

• -localhome creates a local home directory for the user.

• -useuncpath sets a home directory to a path defined

in Active Directory. This isn’t used as much as it used

to be given that devices don’t sync mobile accounts to

Active Directory using portable home directories like

they once did.

• -groups defines the groups in Active Directory that are

able to log in to the local computer with administrative

privileges.

• -alldomains allows logins from any domain in the

forest, if the forest has multiple domains.

Finally, you may find that you need to unbind at times. This can often be

done with a simple dsconfigad command as well, with the following being the

simplest incantation to achieve that goal (where $username and $password

are variables that are variables to represent a valid local administrative

username and password):

sudo dsconfigad -force -remove -u $username -p $password

Chapter 10 DireCtory ServiCeS

606

You can also install a profile using a script, and the most common

way that you bind Macs to Active Directory these days is using a profile.

Provided your Active Directory deployment is healthy and not overly

complicated, the next section will step you through how to configure a

profile to bind to Active Directory.

 Bind to Active Directory Using a Profile
As we’ve referenced throughout this book, always perform as much of the

configuration on devices as possible using a profile.

Jamf Pro provides a setup similar to that used in most any management

solution. The settings that you used in earlier sections, to bind to Active

Directory, are now standardized and simplified in the following sections.

If you can bind using the settings available via MDM, then you should, but

also maybe you shouldn’t do it the new way unless you know how to do it

the hard way. Just in case.

To show how to bind using a profile, we’ll show how to do so using

Jamf Pro. This creates a standard profile that should be interpreted the

same no matter which management solution you use. To get started, first

open your Jamf environment and then browse to Computers and then

Configuration Profiles.

Here, click Directory. At the Directory screen, you’ll see a number of

different settings, as seen in Figure 10-8. These include

• Directory Type: This section is about Active Directory

so we’ll select that, but you can also bind using other

directory services, such as OpenLDAP.

• Server Hostname: The name of an Active Directory

server in your domain. If you have problems

connecting to a regular server, try one that has a global

catalog role in the domain.

Chapter 10 DireCtory ServiCeS

607

• Username: The name of an account in your Active

Directory that has privileges to bind devices into an

Active Directory domain.

• Password: The password to the account with privileges

to bind devices.

• Verify Password: The password provided previously.

• Client ID: How the device will appear when viewing it

in Active Directory.

• Organizational Unit: The Active Directory

Organizational Unit the device will be added to

when bound.

Figure 10-8. Configuring a directory service configuration profile for
macOS in Jamf Pro

Those are the basic settings and will work for a pretty substantial

percentage of environments where you’re binding Macs to Active

Directory. But there are some specific needs that many environments have.

Next, scroll down so you can configure the more advanced options. Under

the User Experience tab, you’ll see the following options (Figure 10-9):

Chapter 10 DireCtory ServiCeS

608

• Create mobile account at login: Creates an account

where the login credentials are cached locally on the

Mac, which enables the account to be able to log in to

the Mac when Active Directory can’t be reached. This

is important for laptops that will be out of the office

frequently.

• Force local home directory on startup disk: Skips the

confirmation screen for Active Directory users when

creating the mobile account.

• Use UNC path from Active Directory to derive
network home location: If your account profile on the

AD domain has a network share specified as a home

directory for your AD account, enabling this setting

will cause the network share to mount on login. This

isn’t used as much as it used to be given that devices

don’t sync mobile accounts to Active Directory using

portable home directories like they once did.

• Mount Style: This specifies the network protocol used

to mount the home directory referenced earlier. Apple

has been slowly deprecating support for AFP, and

NFS is not allowed on many networks, so it’s best to

plan on using SMB for your mount points, if you’ll be

using those.

• Default User Shell: It’s usually best to leave this as is.

The default setting in the profile for the user shell is /

bin/bash, but can be changed to be /bin/zsh to match

the default shell on macOS Catalina and later.

Chapter 10 DireCtory ServiCeS

609

Figure 10-9. Specifying the user experience settings for Active
Directory in Jamf Pro for a directory service configuration profile
for macOS

The mappings are for more advanced scenarios and not frequently

used anymore. Essentially, the unique identifiers for user accounts (or

UIDs) and the generated identifiers for user and group accounts (GIDs)

can be mapped to other attributes within a directory service, and these

settings allow you to configure those, as you can see in Figure 10-10. These

include the following:

• Map UID to attribute

• Map user GID to attribute

• Map group GID to attribute

Chapter 10 DireCtory ServiCeS

610

Figure 10-10. Specifying the mapping settings for Active Directory in
Jamf Pro for a directory service configuration profile for macOS

Mappings aren’t as common as they once were, but a number of

administrative settings can be useful in a well-thought-out deployment.

These include the following (Figure 10-11):

• Administrative

• Group: An Active Directory Security Group whose

members receive administrative access to devices.

• Allow authentication from any domain in the
forest: Allows intra-forest authentication.

• Namespace: When set to forest, you have to include

the domain name when authenticating.

• Packet signing: Enables the packet signing option,

blocking potential man-in-the-middle attacks.

• Packet Encryption: When set to require, forces

encryption, thus not allowing any weak settings in

an Active Directory configuration to weaken the

security of the Mac.

Chapter 10 DireCtory ServiCeS

611

• Restrict DDNS: Restricts dynamic DNS registration

into Active Directory–integrated DNS servers

for certain interfaces (you don’t typically want

certain types of interfaces to register themselves

into DNS, creating duplicate entries for a given

computer name).

• Password Trust Interval: Computers can force

a new computer password more frequently than

might be configured in Active Directory. This

setting allows you to specify a number of days to

renew those passwords.

Figure 10-11. Specifying the administrative settings for Active
Directory in Jamf Pro for a directory service configuration profile
for macOS

Chapter 10 DireCtory ServiCeS

612

Once configured, click Save and then attempt to deploy the profile to

client systems by scoping the profile using the Scope tab. You can scope

different bind profiles to static groups, smart groups, or based on a number

of other attributes, providing the ability to distribute different profiles to

different sets of devices.

These options are pretty straightforward once you learn to bind client

Macs from System Settings and definitely once you can use the command-

line options available using dsconfigad. But now that we’ve mastered

Active Directory, in the next sections, we’ll dig into how to get away from

using Active Directory in the first place, so you can move out of the 1990s

and into the 2010s, just in time for 2023!

Note For a full listing of the options available to administrators in
configuration profiles, see the apple article at https://support.
apple.com/HT202834.

 Beyond Active Directory
Active Directory has a number of requirements with regard to the

Mac. Clocks need to be in sync; an Active Directory server needs to be

accessible routinely in increasingly mobile platforms. It’s challenging to

keep passwords in sync. macOS supports Active Directory, but due to the

requirements, don’t bind to Active Directory if you don’t have to. There’s

a growing movement to go beyond directory services. Yes, we figured out

how to do it as a community. But just when the process was perfected,

we got smart. We learned that, yes, Apple devices can exist on enterprise

networks as first-class citizens. But no, we don’t have to. Just like Picasso

had to master traditional art in his time, before he could think outside

the box.

Chapter 10 DireCtory ServiCeS

https://support.apple.com/HT202834
https://support.apple.com/HT202834

613

The use cases have also changed. Gone are the days when we were

mostly managing stationary machines. We now manage primarily portable

devices, and we’ve learned from our iOS fleets how to make them coexist

in networks without binding. Still, some will need to. And for those who

choose to try to go beyond binding to Active Directory and instead just use

Active Directory accounts, there are tools available that can help you stop

binding and start managing. An Apple-provided tool is the Kerberos SSO

extension, available in macOS Catalina and later.

And there are organizations choosing to go even further. For those who

want to ditch the entire directory service concept, there’s a growing desire

to actually leverage a third-party identity provider such as Okta, Microsoft

Azure, and Ping Identity to access content online using a federated

identity, which we’ll cover further in Chapter 11.

 All the Benefits of Binding Without the Bind
The early days of Mac management in enterprise settings involved a lot

of scripting to get a Mac to bind to Active Directory reliably. This became

such a large part of most new Apple customers that Apple built entire

toolsets around binding, sanity checking, and automating joining an Active

Directory environment.

Binding to Active Directory gave you authentication, authorization to

log in to a device, single sign-on, and policies through what are known as

Managed Client Extensions, or MCX. When profiles came along that could

be deployed via MDM or command line (for more on this, see Chapter 2),

Apple stopped supporting MCX, and with the scope of Active Directory

reduced, the Apple platform management community was able to rethink

how we deal with Active Directory.

So what really matters? We need an account to authenticate to, and we

need to configure Kerberos for single sign-on. It was out of this rethinking

that Apple’s Kerberos SSO extension was born, based on the foundations of

an earlier tool called Apple Enterprise Connect.

Chapter 10 DireCtory ServiCeS

614

 Apple Enterprise Connect
For macOS Mojave and earlier, Apple provides a toolset for connecting to

an Active Directory domain without needing to bind, along with support

and professional services, in the form of Apple Enterprise Connect. Given

that Apple Enterprise Connect isn’t available without paying Apple for it,

this book is unable to go into detail around the offering. However, many of

its capabilities are similar to Apple’s Kerberos SSO extension.

 Apple Kerberos SSO Extension
For macOS Catalina and later, Apple provides an SSO extension for

connecting to an Active Directory domain without needing to bind. This

extension allows local accounts to sync their password with the password

of a selected account in an organization’s Active Directory domain, as well

as simplifying the process of acquiring a Kerberos ticket for the selected

AD account. The Kerberos SSO extension also allows the password of

the selected AD account to be changed, using the password rules set for

the selected account, and also provides notification of when the selected

account’s password is about to expire.

The Kerberos SSO extension is configured by a profile, with a number

of options being available for configuration. The profile can be deployed

using any MDM solution, but Jamf Pro is being used for the example

described as follows. To get started, first open your Jamf admin console

and then browse to Computers and then Configuration Profiles.

Next, click Single Sign-On Extensions. At the Single Sign-On Extensions

screen, you’ll see a number of different settings, as seen in Figure 10-12.

Chapter 10 DireCtory ServiCeS

615

Figure 10-12. Configuring a Kerberos SSO extension configuration
profile for macOS in Jamf Pro

Note For a full listing of the options available to administrators
in configuration profiles, see the apple articles available via the
following links:

https://support.apple.com/guide/deployment/
kerberos-single-sign-on-extension-
depe6a1cda64/1/web/1.0

 https://support.apple.com/guide/deployment/
extensible-single-sign-kerberos-payload-
dep13c5cfdf9/1/web/1.0

Once you have the configuration profile created and deployed to your

Macs, the Kerberos SSO extension profile should appear in your list of

profiles as shown in Figure 10-13.

Chapter 10 DireCtory ServiCeS

https://support.apple.com/guide/deployment/kerberos-single-sign-on-extension-depe6a1cda64/1/web/1.0
https://support.apple.com/guide/deployment/kerberos-single-sign-on-extension-depe6a1cda64/1/web/1.0
https://support.apple.com/guide/deployment/kerberos-single-sign-on-extension-depe6a1cda64/1/web/1.0
https://support.apple.com/guide/deployment/extensible-single-sign-kerberos-payload-dep13c5cfdf9/1/web/1.0
https://support.apple.com/guide/deployment/extensible-single-sign-kerberos-payload-dep13c5cfdf9/1/web/1.0
https://support.apple.com/guide/deployment/extensible-single-sign-kerberos-payload-dep13c5cfdf9/1/web/1.0

616

Figure 10-13. Kerberos SSO extension configuration profile deployed
to a Mac

Once the Kerberos SSO extension is able to verify a connection to a

domain controller on the relevant AD domain, a key icon should appear as

shown in Figure 10-14 in the Mac’s menu bar (icon is circled for clarity).

Figure 10-14. Kerberos SSO extension menu bar icon in macOS

In addition, a window should appear to prompt the user to sign in

using their AD domain’s username and password (Figure 10-15).

Chapter 10 DireCtory ServiCeS

617

Figure 10-16. Kerberos SSO extension menu bar item displaying
information about the signed-in Active Directory domain account

Figure 10-15. Signing in to the Kerberos SSO extension using the
username and password from the configured Active Directory domain

Once signed in, the Kerberos SSO extension the menu bar item

(Figure 10-16) should show the identity of the signed-in account, relevant

information about the account, and an option to change the password of

the Active Directory domain account.

With a correctly configured Kerberos SSO extension active with a

signed-in Active Directory user account, the Kerberos SSO extension

should provide the logged-in user on macOS with the advantages of being

able to get Kerberos and account credentials from an Active Directory

domain while avoiding any drawbacks which may appear when using a

traditional directory service bind to the domain.

Chapter 10 DireCtory ServiCeS

618

 Summary
In this chapter, we got devices configured to work with Active Directory,

both with the built-in options as well as new options provided by open

source alternatives. Active Directory should bring single sign-on to your

devices when they’re on the network that hosts the Kerberos Realm in

Active Directory. But modern devices support SAML and other ways

to do single sign-on that are far more flexible for use with SaaS (or web

service providers) and when devices aren’t on your network. Therefore, it’s

common for organizations to have a Federated Identity Provider, or IdP –

and most work with SAML and OAuth these days.

Apple has limited support for SAML, though the introduction of

Platform SSO in macOS Ventura shows that Apple’s support for SAML is

increasing. Given that SAML started as predominately web technology,

Safari has long supported the protocol. An IdP then gives the ability to

authenticate to a website and not subsequently get prompted for your

credentials as you browse to other pages that are federated with the same

provider. In the next chapter, we’ll start customizing an identity with a

SAML provider and move on to setting up the actual end-user experience,

so you know, our users love us. We’ll begin the next chapter by covering

the move from a login to an actual identity.

Chapter 10 DireCtory ServiCeS

619

CHAPTER 11

Customize the User
Experience
Once you have secured and configured devices to work with your

environment, it’s time to turn your attention toward delighting your

coworkers! This is where you go from just being another rude IT hack

who’s locking down devices to actually becoming a world-class awesome

human (or at least someone with a tad bit of empathy) that people are

genuinely excited to be in an elevator with. To begin this journey, try to

always think of step 1 as thinking of your users as your coworkers, as our

friend Emily from the Mac Admins Podcast says.

Therefore, when we like to think of customizing the user experience,

we like to think of that experience as putting access to the resources our

coworkers need to do their jobs front and center without putting any

unnecessary obstacles in the way. We want to do so in an efficient way,

where we automate as much as we can in order to delight our coworkers.

We want to give freedom, but without putting people at risk. As we covered

in the last chapter, each organization has a different posture when it comes

to securing devices, but rarely will you hear people complain that you

actually paid attention to what they thought.

If we do our job, the first thing most of our coworkers will do is take an

Apple device out of a box, join a wireless network, and then get a bunch of

stuff on their device. What happens next is still based on the platform and,

in some cases, whether you’re in a school or company.

© Charles Edge and Rich Trouton 2023
C. Edge and R. Trouton, Apple Device Management,
https://doi.org/10.1007/978-1-4842-9156-6_11

https://doi.org/10.1007/978-1-4842-9156-6_11

620

 Getting iOS and iPadOS Devices
in the Hands of Users
iOS and iPadOS devices have a great setup experience that we’re still trying

to replicate on the Mac. Mobile devices can be automatically enrolled into

an MDM using DEP, or the user can do a self-enrollment into the MDM

service. From there, profiles, apps, and media can be pushed to the iOS

and iPadOS device to configure the device in whatever manner is desired.

The main difference in what’s possible is going to be if the device is

configured to be supervised or not.

• Supervised: The MDM is in total control of the

management of the device, and the device cannot

be unenrolled from the MDM. Push deployment of

apps and media does not require the device’s user to

consent.

• Unsupervised: The MDM is managing the device,

but the user is ultimately in charge because they can

remove the MDM profile from the device and unenroll.

While enrolled, push deployment of apps and media

requires user consent.

For most companies, schools, and institutions, supervision of

devices is the preferred method because it allows the mobile device to be

completely managed without user consent. DEP makes this easy for those

organizations by enabling devices to be automatically supervised once

enrolled with the devices’ associated MDM server. This can allow for a

very streamlined process of getting the mobile device out of the shipping

box and into the users’ hands because the device can be set up with the

desired configuration almost as soon as it powers on and communicates to

a network for the first time.

Chapter 11 Customize the user experienCe

621

For those organizations which can’t use DEP for whatever reason,

supervision is still possible by using tools like Apple Configurator to put

iOS and iPadOS devices into supervised mode and enrolling them with

the organization’s MDM server. It’s more work for that organization,

but ultimately the same outcome: a mobile device which is completely

managed by that organization’s MDM.

 macOS
For macOS, the process is a little more complicated. Supervision as its

own management concept on macOS has only become possible starting

with macOS Catalina, where all DEP-enrolled Macs are set as supervised

by default, with refinement in macOS Big Sur and later, where all MDM-

enrolled Macs are set as supervised by default. Meanwhile, it’s possible to

use means other than MDM to configure Macs, which is by itself unheard

of in most mobile device environments. Instead, scripts, installer packages,

and other means to deploy settings and files are available options on

macOS. Let’s take a look at how Mac admins can use MDM, configuration

profiles, scripts, installer packages, and other means to build on Apple’s

work and provide an intuitive and customized user experience for their

own environments.

 Planning the macOS User Experience
Before you write a single script or build a solitary profile, think about what

you want your users to experience. Many times, this experience will be

set in part or wholly by the IT or legal policies of a company, school, or

institution. A few items which may be included are

• Acceptable use policies that the user needs to agree to

before using company equipment

Chapter 11 Customize the user experienCe

622

• Branded desktop background image

• Branded word processing, presentation media, or

spreadsheet templates

• Whether or not the user will have administrator

privileges

• Organization-specific mail server settings for

email clients

• Organization-specific bookmarks for web browsers

Other parts of the experience may be guided by feedback from the

users themselves, based on what they want to have as part of their Mac’s

default experience. In general though, a wise Mac admin will try to change

as little as possible from Apple’s defaults. This is for two reasons:

 1. Apple can make changes between OS versions

which can make applying certain settings more

difficult.

 2. The more the user experience is governed by Apple’s

defaults, the less time that the Mac admin will need

to spend on managing it.

In general, we recommend managing what’s required and leaving

everything else alone. Both your users and you will be better off for it.

 Transparency Consent and Control
Protections on User Home Folders
Something to keep in mind for macOS Mojave and later is that Apple

has implemented protections on certain directories within the user

folders. (Please see Chapter 8 for a deeper discussion of these user folder

Chapter 11 Customize the user experienCe

623

protections.) As of macOS Ventura, here’s the list of directories within the

user folder which appear to be covered by Apple’s user-focused privacy

protections:

~/Desktop

~/Documents

~/Downloads

~/Library/Application Support/CallHistoryTransactions

~/Library/Application Support/com.apple.TCC

~/Library/Application Support/AddressBook

~/Library/Application Support/CallHistoryDB

~/Library/IdentityServices

~/Library/Calendars

~/Library/Preferences/com.apple.AddressBook.plist

~/Library/Messages

~/Library/Mail

~/Library/Safari

~/Library/Suggestions

~/Library/Containers/com.apple.Safari

~/Library/PersonalizationPortrait

~/Library/Metadata/CoreSpotlight

~/Library/Cookies

~/Library/Caches/CloudKit/com.apple.Safari

~/.Trash

With these protections in place, it is not possible to write to these

locations except with the following conditions:

 A. You’re logged in as the user in question.

 B. The process or tool writing to the location has

been allowlisted using a Privacy Preferences Policy

Control profile. (More information on these profiles

can be found in Chapter 4.)

Chapter 11 Customize the user experienCe

624

This does not mean Mac admins won’t be able to make changes to the

user home directories, but it does mean that admins won’t be able to just

drop a file into place. Instead, alternate methods may need exploring.

 Using Profiles to Manage User Settings
Using macOS configuration profiles is one method for configuring user

settings which can be straightforward to set up and centrally manage from

an MDM server. As an example, part of the mandated user experience at a

particular organization may be that Safari’s home page setting must always

be set as the company’s website (Figure 11-1). A profile like the one shown

as follows can be applied to enable this:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://

www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

 <key>PayloadContent</key>

 <array>

 <dict>

 <key>HomePage</key>

 <string>http://www.pretendco.com</string>

 <key>PayloadDescription</key>

<string>Configures Safari configuration preferences</string>

 <key>PayloadDisplayName</key>

 <string>Safari</string>

 <key>PayloadIdentifier</key>

<string>com.pretendco.com.apple.Safari. 39648B3BD130</string>

 <key>PayloadOrganization</key>

 <string></string>

Chapter 11 Customize the user experienCe

625

 <key>PayloadType</key>

 <string>com.apple.Safari</string>

 <key>PayloadUUID</key>

<string>BA9D2B27-12F4-4AF9-B7B5-69E0FB3B6CB3</string>

 <key>PayloadVersion</key>

 <integer>1</integer>

 </dict>

 </array>

 <key>PayloadDescription</key>

<string>Set Safari's homepage to the company website

</string>

 <key>PayloadDisplayName</key>

 <string>Set Safari Homepage</string>

 <key>PayloadIdentifier</key>

<string>com.pretendco.D626B082-BDB1-476E-B34D-63DF10C08C39

</string>

 <key>PayloadOrganization</key>

 <string>Pretendco</string>

 <key>PayloadScope</key>

 <string>System</string>

 <key>PayloadType</key>

 <string>Configuration</string>

 <key>PayloadUUID</key>

 <string>D626B082-BDB1-476E-B34D-63DF10C08C39</string>

 <key>PayloadVersion</key>

 <integer>1</integer>

</dict>

</plist>

Chapter 11 Customize the user experienCe

626

Figure 11-1. Profile managing the Safari home page settings

The user experience of applying this profile is that the home page

setting in Safari is filled in with the requested website. It is also grayed out

to indicate that the setting cannot be changed (Figure 11-2).

Chapter 11 Customize the user experienCe

627

Figure 11-2. The managed home page setting in Safari’s preferences

The fact that the end user can’t change the Safari setting highlights

one of the characteristics of profiles, which is that by default their settings

are designed to be enforced and not allow the user to change them later.

Depending on the requirements of your organization, this characteristic of

profiles may be advantageous or be a drawback.

An advantageous characteristic of using profiles to manage settings is

that they can be used to apply settings which would otherwise be blocked

by the user-focused privacy protections. This is because profiles are using

Apple’s frameworks to apply these settings, rather than trying to write

directly to a file stored in the user’s home folder.

Chapter 11 Customize the user experienCe

628

 Using Scripts to Manage User Settings
It is sometimes desirable to be able to set a setting one time and not

manage it afterward. This is where it can be advantageous to use scripts

and other tools to manage user settings. For example, it may be desirable

to set the Energy Saver settings as part of the provisioning process but

allow the end user to change them to meet their own needs later. This can

be accomplished using a script like the following:

#!/bin/bash

Set separate power management settings for desktops

and laptops

#

If it's a laptop, the power management settings for "Battery"

are set to have the

computer sleep in 15 minutes, disk will spin down in 10

minutes, the display will

sleep in 5 minutes and the display itself will dim to half-

brightness before

sleeping.

While plugged into the AC adapter, the power management

settings for "Charger" are

set to have the computer never sleep, the disk doesn't

spin down,

the display sleeps after 30 minutes and the display dims

before sleeping.

#

If it's not a laptop (i.e. a desktop), the power management

settings are set to have

the computer never sleep, the disk doesn't spin down, the

display sleeps after 30

minutes and the display dims before sleeping.

Chapter 11 Customize the user experienCe

629

Detects if this Mac is a laptop or not by checking the

model ID

for the word "Book" in the name.

IS_LAPTOP=$(/usr/sbin/system_profiler SPHardwareDataType | grep

"Model Identifier" | grep "Book")

if ["$IS_LAPTOP" != ""]; then

 pmset -b sleep 15 disksleep 10 displaysleep 5 halfdim 1

 pmset -c sleep 0 disksleep 0 displaysleep 30 halfdim 1

else

 pmset sleep 0 disksleep 0 displaysleep 30 halfdim 1

fi

Running this script as part of your provisioning process will ensure that

the Mac will have the desired Energy Saver settings applied by the pmset

command-line tool. However, unless the script is rerun later, the user

won’t be restricted from modifying the Energy Saver settings themselves.

 Modifying the macOS Default User Template
Macs can have multiple accounts. Each new account gets a unique home

directory, and so each user can have a different experience with a system.

These home directories are created from a template directory provided

by Apple, and it is possible to customize the template for new user home

directories in order to provide a similar user experience to each new

user account. The user templates are available at /System/Library/User

Template on macOS Mojave and earlier and at /Library/User Template for

macOS Catalina and later.

Chapter 11 Customize the user experienCe

630

Note if you are considering altering the default user template, think
long and hard about alternative ways to accomplish your goal.

For those not experienced with how permissions and settings work
on macos, modifying the user template directory can be a quick and
effective way to give both you and your users weird and difficult to
diagnose problems.

One circumstance where you may want to customize the user template

is if you want to provide customized Word, Excel, or PowerPoint templates

for the relevant Microsoft Office applications. As of Microsoft Office

2019 and later, the Office applications look for templates in the following

location inside the home directory:

~/Library/Application Support/Microsoft/Office365/User Content.

localized/Templates.localized

Everything past ~/Library/Application Support does not exist by

default in the User Template directory, but creating the missing directories

inside the template and moving the Office template files into them would

allow your users instant access to those templates.

 Customize the Desktop
Another example of modifying the user experience would be to put

a “Welcome to the Company” PDF on the desktop. Chances are your

organization will have a bunch of forms and documents that new

employees need to sign, agreeing not to abuse the Internet in your office

or steal intellectual property. I like putting fun company facts up front and

then at the end of that PDF maybe links to set up any accounts or eSign any

forms at the bottom. This small way of crafting the onboarding experience

can go a long way, and it’s as simple as putting a PDF in the Desktop

directory of the appropriate user template prior to creating user accounts.

Chapter 11 Customize the user experienCe

631

 Customize the User Preferences
User preferences are usually stored in a property list, or .plist, file. While

you can customize the preferences stored in the user template directory,

first try to customize the setting using a custom profile in the MDM of

your choice. Once you’ve determined you can’t customize settings in

the way you want using MDM or via a script, an alternative approach is

to configure the setting on your Mac and then find what preference file

changed. Assuming it’s a user setting stored in ~/Library/Preferences, you

can then load the file into the Preferences directory of the appropriate user

template to push it out to new user accounts.

This is a place where customizing the experience on an iOS device is

substantially different from doing so on a Mac. We’ll look at managing the

home screen to provide an awesome user experience for iOS in the next

section of this chapter.

 Configure the iOS Home Screen
The home screen is how we interact with an iOS device. Pushing a specific

home screen configuration allows you to customize that experience and

make it easier for people to get at what they need.

Most MDM solutions will support customizing your home screen

to make it easier to access your device data. To show how to customize

the home screen, we’ll use Apple Configurator. To start, open Apple

Configurator and then click a device or a Blueprint. Then select the Home

Screen Layout… option from the Actions menu, shown in Figure 11-3.

Chapter 11 Customize the user experienCe

632

Figure 11-3. Modifying the iOS Home Screen Layout using Apple
Configurator

At the Modify screen, simply drag the icons to where you want them

to be in order to best customize the layout for your environment, as seen

in Figure 11-4. It’s usually best to place apps on the screen based on

frequency of use. The most common will go in the dock. This is often a

mail app, a web browser, the phone app (for iPhones), and a corporate

messaging app (like Slack or Teams).

Chapter 11 Customize the user experienCe

633

Figure 11-4. Adding apps to the iOS Home Screen Layout using
Apple Configurator

The right layout will be different for everyone. But usually you’ll see an

expense app, Maps, the camera, a line of business app like Salesforce, the

Calendar app, an app to access your contacts, and any apps to access your

organization’s documents (e.g., Dropbox, OneDrive). Keep in mind that

you want your coworkers to still like you and to have a great experience

with their devices, so leaving some nonbusiness apps up front and center

will help with that.

Once you’ve crafted the best experience for the humans who will

be using your devices, click Apply to make the change and see your app

badges move.

We reviewed how to do this with Apple Configurator, but most MDMs

support similar functionality. The look and feel will be a little different,

according to the device management tool you’re using, but the experience

usually looks similar to the one shown in this section.

Chapter 11 Customize the user experienCe

634

 Custom App Stores
Along with setting up a good user experience as part of the setup process

for new Macs, attention should also be paid to helping the user to help

themselves where possible. A number of Mac management tools come

with custom app stores, where users can install their own software on their

own schedule. Two examples of management tools with this functionality

are the following:

• Jamf Pro (Figure 11-5)

• Munki

Most of these applications look and work in similar ways, where

the user can launch the self-service application and make their own

choices from what’s available to either install an application or run a

particular task.

Figure 11-5. Jamf Pro’s Self Service

Chapter 11 Customize the user experienCe

635

Figure 11-6. Munki’s Managed Software Center

In many cases, these self-service tools can also be branded with your

company, school, or institution’s official logo. This helps build trust in your

user community for using the tool in question, since it is visually affiliated

with your organization.

 Test, Test, Test
In Chapter 3, we looked at building profiles, which can be used to

customize settings on devices. In Chapter 4, we looked at pushing those

profiles out through MDM. In Chapter 9, we talked about testing. But

it’s worth reiterating that you should be testing different regressions of

tests. The information from Chapter 9 will help guide you to making sure

that the desired state of devices after a test matches up with the state you

actually end up with.

Chapter 11 Customize the user experienCe

636

 Summary
One of the best parts of administering Apple devices is the elegant user

experience that they come with out of the box. As administrators, it can

be tempting to lock down systems and customize this experience until the

native experience is barely recognizable. Don’t do that.

Instead, take a page out of Apple’s notebook and try to delight your

coworkers. Yes, we said coworkers and not users. When you think of how

you can give them what they need without restricting them in ways that

destroy that elegantly crafted user experience, you will make friends,

grow the population of devices on this platform you (hopefully) love,

and likely get more budget to do even cooler stuff. Now that the devices

are in a secure and predictable state, we’ll spend Chapter 12 reviewing

how to customize the online experience and gate access to various SaaS

services based on whether the device meets the security posture of your

environment.

Chapter 11 Customize the user experienCe

637

CHAPTER 12

Identity and Device
Trust
Chapter 8 was about securing devices. Part of security is securing the

connections between devices. Chapter 10 was about directory services.

Most of the protocols for single sign-on for directory services were

developed in a time when most of an organization’s devices were on a

single network and most resources were located behind a firewall. Today,

devices are spread all around the world, and devices access multiple sites

built by multiple Software as a Service vendors, who organizations want

to use the same credentials to access their account as they use when those

users are in the office.

The evolution of single sign-on has been toward thinking about

those user accounts in a different way. We now use the term Identity

and the engines that provide those identities as Identity Providers, or

IdPs. Windows, Linux, and Apple are all developing technology in their

operating systems to keep up with the rapidly changing pace of IdPs

with new standards being developed on the fly to meet the needs of an

increasingly global workforce.

We also looked at personalizing the user environment in Chapter 10.

Part of that user environment now includes accounting for those identities

and crafting a workflow as seamless as possible between the apps we run

on devices and the sites we access as a routine part of doing our jobs. In

this chapter, we’ll look at what an IdP is, how Apple devices work with

© Charles Edge and Rich Trouton 2023
C. Edge and R. Trouton, Apple Device Management,
https://doi.org/10.1007/978-1-4842-9156-6_12

https://doi.org/10.1007/978-1-4842-9156-6_12

638

IdPs, and what technologies can be put in place to make the lives of our

coworkers better, starting with the fundamental technologies required to

understand an IdP properly.

 Use IdPs for User Identities
An IdP is a federated identity provider or a repository of records (identities)

along with the metadata for those records such as the name and any keys

necessary to unlock those records. The main vendors that an organization

will use as an IdP include the following:

• Okta

• Ping Identity

• Microsoft Azure

• Google

• OneLogin

• VMware

• Salesforce Communities

• Duo Security

The real promise of an IdP is that by providing single sign-on services,

an IdP removes the need for passwords. As usual, the IT industry can’t just

have one way of doing things, so most IdPs support two main protocols:

OpenID Connect (built on top of OAuth 2.0) and SAML. As an example of

working with both, https://developer.okta.com/docs/api/resources/

oidc is the OpenID Connect documentation for Okta, and www.okta.

com/integrate/documentation/saml/ is the SAML documentation.

Developers who decided to implement single sign-on into their web

apps using either can then allow Okta to connect to them and federate

Chapter 12 IdentIty and devICe trust

https://developer.okta.com/docs/api/resources/oidc
https://developer.okta.com/docs/api/resources/oidc
http://www.okta.com/integrate/documentation/saml/
http://www.okta.com/integrate/documentation/saml/

639

customers who decide to use both services. Since much of the technology

used in an IdP came out of the REST frameworks, we’ll go in deeper

with REST.

 REST and Web Authentication
When you open a web page, a web browser once accessed a flat HTML

file from a web server and then rendered what was on that web server

in your web browser. As “the Web” matured, different pieces of data in

those pages told browsers to do different things. At this point, most pages

you view access a page that appears to be a flat HTML file, when it is in

fact a dynamic representation of information created by dozens (if not

thousands) of scripts. Those scripts are often lightweight pieces of code

processed using Application Programming Interfaces, or APIs.

Some APIs are publicly accessible. Others require authentication

and authorization. The authentication is usually sent in the header of a

request for information from the API endpoint. The technology behind

modern web authentication has been adopted to work with standard

REST endpoints. REST, or representational state transfer, is a standard for

communicating between websites. One of the easiest ways to send data to

a REST endpoint is using the curl command through the macOS Terminal

application.

In the following example, we’ll simply use the cURL command to make

a request to list the content of a file through a standard site:

curl https://raw.githubusercontent.com/krypted/jwttools/master/

README.md

The response is a bunch of text displayed in a fairly unstructured

manner. This is great for showing flat information but can be more

challenging if more structured data is required, such as username and

password, or more appropriately for web authentication, a token – or

Chapter 12 IdentIty and devICe trust

640

even a key that is persistent only for a given session. You can run a curl

command for any website to see that information converted into clear

text. A RESTful endpoint will be a bit more structured – in the following

example, we’ll run a standard POST operation (we won’t get into the

differences between POST, GET, and DELETE):

curl -s -X POST -H 'Accept: application/json' -H 'Content-Type:

application/json' --data '{"userid":"{userid}","password":"{pas

sword}"}' https://www.krypted.com/flask/googlesyncscript

The output provides the data available at that endpoint the POST

command is sent to. There are multiple types of web authentication that

have become standard over the past few years. Once a session has been

authenticated, most standard web applications now communicate by

sending small pieces of data in a normalized JSON format, which we’ll

describe in the next section of this chapter.

 JSON
Because we need more structure, we have various formats, such as

SOAP (short for Simple Object Access Protocol) or the more modern

JSON. JavaScript Object Notation (or json for short) is a lightweight format

for exchanging data that has become a standard for the Web. Similar in

origin to the XML used in a property list or SOAP, json removes the need

for all the <> symbols and definitions, making it easier on the human eyes

while still easy to parse and generate programmatically.

Because the Web continues to mature, you can also see authentication

information as some of the fields, or metadata, transferred via JSON. In

fact, we now have a standard that is built just for authenticating using

information transmitted via json in a JWT. A JWT, or JSON Web Token, is

an open standard for representing a claim between two entities. Defined

in RFC 7519 at https://tools.ietf.org/html/rfc7519, JWT is one of

Chapter 12 IdentIty and devICe trust

https://tools.ietf.org/html/rfc7519

641

a number of competing standards for authenticating over the Web. For

example, the following JSON indicates that the token will be a JWT hashed

using the HS256 algorithm:

{

 "alg": "HS256",

 "typ": "JWT"

}

Those claims submitted in a JWT are encoded in a json object, signed

using a JWS or JSON Web Signature and encrypted using JWE (or JSON

Web Encryption).

 Use JWTs As Service Accounts
Everything that is old becomes new again. Much as RADIUS, an earlier

authentication type for wireless networks and VPNs, used a preshared

key to validate a party prior to decryption and much as Kerberos had

clients submit a ticket granting ticket rather than a password, JWT is a

modern evolution to that same type of transaction, complete with its own

acronyms but without the trappings of 20–30 years of technical debt. In

short, a JWT is a credential used to grant access to a resource.

Most of the time when you’re making a transaction between two

computers, that transaction is broken into three parts: a header, a payload,

and a signature. The header defines rules about what’s about to come,

the payload it what you’ll receive, and the signature. To see this put into

motion, let’s look at the header of a typical transaction:

{

 "alg": "HS256",

 "typ": "JWT"

}

Chapter 12 IdentIty and devICe trust

642

In the preceding example, we’re simply stating that the token will be

cryptographically signed using HMAC-SHA256 (or HS256 for short) and

that the grant type will be a JWT. If you wanted to, you could encode this

using the following command:

echo -n '{"alg": "HS256","typ":"JWT"}' | openssl base64

You could also add more metadata, most notably the payload – or what

command or API call you’re sending between servers, for example, some

personally identifiable information we maybe shouldn’t send over the

Web, but since everyone else does it, let’s just go ahead:

{

"Email": "krypted@me.com",

"FirstName": "Charles",

"LastName": "Edge"

"iat": 1516239022

"exp": 2414245921

}

In the preceding example, we snuck something else in there:

iat indicates the time the token was issued, and exp indicates the

expiration time of the token. The signature is where it gets a bit more

cryptographically challenging. To get the signature, you base64url encode

the header (which we did by piping it into openssl, but next time adding

the payload). You then concatenate the two using a period to indicate a

field separator and then encrypt the whole thing with a secret key. The

standard encryption algorithm in our experience seems to be HMAC-

SHA256, but you can go as high as PS384 if you have the horsepower to do

all that work on the fly for all the transactions that might come through.

Now it’s starting to seem like we’re getting really complicated (after

all this isn’t a book on cryptography), so let’s look at JWT.io, a website

where you can decode, verify, and generate a quick JWT. The important

Chapter 12 IdentIty and devICe trust

643

thing to note here is that you enter one of those pieces of information in an

 encoded form and get to see how it’s decoded against the signature, shown

in Figure 12-1.

Figure 12-1. JWT.io

Another great project is jwtbuilder, which does much of the same but

without hitting the website, at http://jwtbuilder.jamiekurtz.com. There

are different schemas for JWTs, so you might see “Authorization: Bearer” in

the header of a user agent (e.g., via Postman). We’ll take a look at obtaining

bearer tokens next.

 Bearer Tokens
Web servers that host an endpoint usually allow you to submit some

information. They then pass you a bearer token back, once it’s done all that

crypto-fun. In the following, we set a variable called BearerToken (which

should look similar to the JWT shown from JWT.io) using a simple curl to the

Chapter 12 IdentIty and devICe trust

http://jwtbuilder.jamiekurtz.com

644

contents of a bearer token. We run a curl with data in the header for “userid”

although sometimes we see this as just “user” or “username” and then a

password (each rest endpoint can be different – such is the joy of working with

“modern” technology). This hits an endpoint called authenticationendpoint

(sometimes called “auth” or “authenticate”), and then we parse the output for

a token field once we’ve parsed out the json symbols:

BearerToken=$(curl -s -X POST -H 'Accept: application/json'

-H 'Content-Type: application/json' --data '{"userid":"{user

id}","password":"{password}"}' https://www.krypted.com/api/

authenticationendpoint | sed -E 's/\},\s*\{/\},\n\{/g' File |

grep '"id" : "token"')

Once we have that token, we can then pass it into another API via the

Authorization header when connecting. In this example, we’ll just pass

the BearerToken we captured in the previous command to an endpoint

called EndpointName on that same site (thus www.krypted.com/api/

EndpointName):

curl -H 'Accept: application/json' -H "Authorization: Bearer

${BearerToken}" https://www.krypted.com/api/EndpointName

But if these tokens are used to connect between sites, who cares about

how we create a Bearer Token, how might a rest endpoint give us one,

and what that token is used for? Those tokens become the foundation

of OAuth, which is suddenly where words like Facebook, Okta, Azure,

Amazon, and Ping Identity start to come into play.

 OAuth
OAuth is short for Open Authorization and per RFC 6749 (https://

tools.ietf.org/html/rfc6749) is an open standard for using tokens to

authenticate and authorize services, including use over public networks

Chapter 12 IdentIty and devICe trust

http://www.krypted.com/api/EndpointName
http://www.krypted.com/api/EndpointName
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749

645

such as the Internet. It was invented by then lead developer at Twitter,

Blaine Cook, in 2006 so other organizations could connect to another

service using their Twitter account. OAuth continued to evolve over the

next few years until 2012 when Oauth 2.0 was released, which added

flows for web applications, mobile devices, IoT devices, and desktop apps,

making it one of the most widely used authentication platforms today.

OAuth 2 allows those applications to obtain access in a way that

is limited to only what an account needs to user accounts typically

using standard REST endpoints. OAuth 2 delegates the actual user

authentication to the service that hosts the user account, which can then

change what an application is granted to access or have an account quickly

disabled. OAuth 2.0 allows for account information to be traded between

services via OAuth providers, which include organizations like Amazon,

Box, Dropbox, Etsy, Facebook, GitHub, Google, Instagram, LinkedIn,

Microsoft, PayPal, Reddit, Salesforce.com, Stack Exchange, Trello, Twitter,

and Yahoo.

There are four roles in OAuth:

• Resource Owner: The Resource Owner is the user

who allows (or authorizes) an application to access

their account information. The Resource Owner can

then identify what scope that service or application

has, for example, when you authorize another site

like OpenTable to use your Facebook account so you

don’t have to create yet another account. When you

do that, you should see a list of the permissions that

other site has. You are the Resource Owner, and those

permissions are scopes.

• Client: The application that wants to access the

information owned by the Resource Owner. In the

preceding example, this would be OpenTable.

Chapter 12 IdentIty and devICe trust

646

• Resource Server and Authorization Server: While

defined separately, these are usually hosted in the same

place and are the protected user accounts that should

only have access delegated to by the Resource Owner.

In the preceding example, this would be Facebook. At

work, this might be Okta, Ping, OneLogin, or Azure AD.

What happens when you connect? You tap a button and the device

goes to talk to an authorize API endpoint on an OAuth provider (the

Resource Server):

https://www.randomoauthprovider.com/v1/oauth/

authorize?response_type=code&client_id=CLIENTID&redirect_

uri=CALLBACKURL&scope=read

In the preceding example, the & symbol separates fields to the request,

so we’re sending a response type, a client ID, a redirect URI, and a scope:

• Client ID: The unique identifier for that client.

• Redirect URI: The URL the authorization server calls

once it’s finished processing the login. This provides an

extra layer of security because the response is sent from

the server to a specific URL.

• Response type: Indicates that the authorization server

provides an authorization code to clients which will

then be used to get access tokens.

• Scope: What level of access or what accesses this

specifies at a granular level, the “scope” of the access to

the resource, that is, are we requesting authorization to

read the resources, modify the resources, etc.?

The application requests authorization to access a resource (e.g., your

name, email address, and authentication information) from the user. This

is where an embedded Facebook screen in an app like OpenTable asks if

Chapter 12 IdentIty and devICe trust

647

you want to give access to the app that embedded it. Then if you want to

grant access, you tap a button to allow that access, thus authorizing the

application to receive an authorization grant. This would be a call to an

API that looks something like this:

https://www.randomappredirect.com/callback?code=AUTHORIZATIONCODE

The application then authenticates and authorizes that the grant

is valid from the Resource Server (e.g., by performing a standard API

call against a REST endpoint hosted via the Facebook Graph API). The

application that requests the resource – that metadata about you, and

receives a token.

https://www.randomoauthprovider.com/v1/oauth/token?client_

id=CLIENT_ID&client_secret=CLIENT_SECRET&grant_

type=authorization_code&code=AUTHORIZATION_CODE&redirect_

uri=CALLBACK_URL

In the JWT example from earlier, that token would usually have a time

when it expires, a Client ID, a Client Secret, and an Authorization Grant as

well as any information that was provided such as the following:

{"access_token":" eyJhbGciOiAiSFMyNTYiLCJ0eXAiOiJKV1QifQ.

eyJOYW1lIjogIkNoYXJsZXMiLCJ0eXAiOiJKV1QifQ. iJKV1QifQ",token_

type":"bearer","expires_in":2414245921,"refresh_

token":"REFRESH_TOKEN","scope":"read","uid":667,"FirstName":

"Charles","LastName":"Edge","Email":"krypted@me.com"}

This is just standard json and that bearer token should look similar, just

with additional metadata. A real-world example is the following. Here, you

can see authenticating into Medium using Facebook for OAuth, including

the redirect, client_id, scope, etc.:

Chapter 12 IdentIty and devICe trust

648

https://www.facebook.com/v2.9/dialog/oauth?client_

id=542599123456789&redirect_uri=https%3A%2F%2Fmedium.com%2Fm%

2Fcallback%2Ffacebook&scope=public_profile%2Cemail&state=%7Ch

ttps%3A%2F%2Fmedium.com%3Fsource%3D--------------------------

post_free-%7Cregister%7C1ae249dc69bbb075abcdef123fcb369e&respon

se_type=token

At this point, you’ve used OAuth to communicate with the web service,

and you can then access additional resources without reauthenticating. If

we were still using the OpenTable analogy, we’d say it’s time to go to dinner

and talk about the services built on top of OAuth 2.0 and these standard

token formats, which brings us to using an IdP to provide a user identity.

 WebAuthn
The Web Authentication API (commonly referred to as WebAuthn) is an

API specification for servers to register and authenticate a user using a

public key instead of a password. WebAuthn allows servers to take use

of the authentication built into a mobile device, like Apple Touch ID or

Face ID, and then use a keypair from the device instead of a password

when accessing a given server, such as those that host a website like Jamf

Pro. The keypair is a common pair of keys with a public key as simply

an identifier (kinda like a username) and the private key as a random

or cryptographically generated representation of a password. Because

we trust the local security of the device, we can then trust the key and a

credential ID that is issued just for each server, with that pair representing

an “identity.” The web server only ever receives the public key, and so if

compromised, the public key isn’t useful.

WebAuthn was developed by the W3C and FIDO organizations, which

added WebAuthn to FIDO2. WebAuthn is added to the Safari browsers

from Apple, meaning support is now provided from Chrome, Firefox,

Chapter 12 IdentIty and devICe trust

649

and Microsoft Edge. Google, Mozilla, and Microsoft helped develop the

standard and so released support for Chrome, Firefox, and Microsoft Edge

early on. Apple first added WebAuthn support to Safari in a Technology

Preview in 2018. Apple announced all Safari browsers would also support

WebAuthn at WWDC in 2019. Apple further added WebAuthn functionality

to Keychain to develop a feature they called Passkeys. To learn more

about Passkeys, see the 2022 WWDC session introducing them: https://

developer.apple.com/videos/play/wwdc2022/10092/.

 OpenID Connect
OpenID Connect is a simple identity layer that sits on top of OAuth

2.0. OpenID Connect allows client devices and apps that run on those

devices to verify the identity of users. This is done by authenticating to an

authorization server and then receiving various pieces of metadata about

the user in JSON. Those JWTs from earlier in this chapter are great for

service accounts but not typically used by themselves for dynamic user

authentication.

OpenID Connect is similar to the OAuth 2.0 flow we described earlier

in this chapter. In addition, the authorization server (or endpoint) also

provides an ID token (as well as a token endpoint) as a JWT in addition to

the access token in a standard OAuth 2.0 flow. Additionally, because it’s

a hosted service specifically meant to provide identity information, there

is a userinfo endpoint, a logout endpoint, a keys endpoint to view public

keys, and a revoke endpoint so the user can disconnect their account. The

authorize endpoint is also used to refresh tokens.

The id-token is the added piece in OpenID Connect, and the userinfo

endpoint can provide additional information prior to authorization when

needed. Now that we’ve covered OpenID Connect, let’s look at SAML.

Chapter 12 IdentIty and devICe trust

https://developer.apple.com/videos/play/wwdc2022/10092/
https://developer.apple.com/videos/play/wwdc2022/10092/

650

 SAML
SAML, or Security Assertion Markup Language, uses similar signed and

encrypted secure tokens for authentication and authorization data. SAML

is a little older and so communicates over a standardized XML format.

While similar in nature to a JWT, SAML tokens are much longer

when decoded. See Figure 12-2 to see the attributes in the XML schema

for a SAML token at http://samltool.io. There will be x.509 certificate

signatures, canonical naming to access resources, and a number of other

items that are standardized and much more attuned to a more mature

enterprise- class protocol. This doesn’t make it better, just chattier.

Figure 12-2. samltool.io

All that extra information you see in addition to what’s in OpenID

Connect though includes a lot of standardization. Those standards

mean there are shared repositories of code that developers can use to

Chapter 12 IdentIty and devICe trust

http://samltool.io

651

quickly build features (such as a framework for iOS development or

Spring Security for Java). This also means that in some cases it’s easier for

different vendors to work well with one another.

SAML also provides support for what’s known as SCIM (System for

Cross-domain Identity Management) and Just-in-Time (JIT) provisioning.

These allow users to log in with enterprise credentials from a provider like

Azure Active Directory or Google to log in using their credentials without

the company getting billed for every user that could possibly use the service.

SCIM syncs users and groups to the service, but JIT users are generated

on the fly the first time they access a service using a SAML assertion. Each

requires integration with a provider. For example, Just-in-Time provisioning

then works by having the SAML identity provider pass user information to a

Mobile Device Management solution the first time a user logs in during a DEP

enrollment. Figure 12-3 shows how to link Kandji with a SCIM provider, and

once configured, there will be an endpoint that Kandji would communicate

with to import new users from the identity provider automatically.

Figure 12-3. Configuring SCIM in Kandji

Chapter 12 IdentIty and devICe trust

652

Once configured, many providers will also supply information for a

Logout URL, certificate, authentication endpoint, and a name. We’ll cover

these more in the next few sections, but for perspective, Figure 12-4 shows

how those endpoints are configured in JumpCloud. Other environments

might install their own SCIM server based on a plethora of open source

projects that do some of the heavy lifting to map attributes from various

providers so they get passed into different tools properly.

The most important thing to know about OpenID Connect and SAML

is that if you configure everything properly, most of the work will happen

behind the scenes, and administrators only need to know the preceding

terms to fill in the paths and select the correct fields when configuring an

IdP to work with web apps. Most third-party providers will have support

teams to help configure those settings as needed. Now that we’ve covered

enough of what’s happening behind the scenes, we should have enough

information to set up an IdP properly.

Figure 12-4.

Chapter 12 IdentIty and devICe trust

653

 Cookies
A cookie is a small amount of data that a website creates and stores on your

computer using a special handler built into your web browser. Cookies can

do a number of things, but the most common is to store login data, such

as a username, or some kind of session tracking information. Cookies can

also store preferences, a key to remember your identity, or a callback URL.

There are session and persistent cookies. Session cookies are deleted

whenever you close a browser and often store information like shopping

carts or callbacks. These are deleted when the browser closes. Persistent

cookies still have an expiration date but are typically used to remember

an identity, which is usually a key used to derive personal information on

the server.

Cookies can get a bad rap because not all developers play with the

information safely or because cookies can be shared between certain

developers. As you can see in the Privacy pane of the Safari Preferences,

Safari will show sites that are storing cookies in the browser (Figure 12-5).

Figure 12-5. Cookies in Safari

Chapter 12 IdentIty and devICe trust

654

In Safari, session cookies are stored in /Users/ce/Library/Caches/

com.apple.Safari, and persistent cookies are stored in /Users/ce/Library/

Cookies. These directories are protected, and so you cannot browse inside

them. Since cookies are stored in a different location for each web browser,

if you switch browsers, new cookies will need to be created. Apple has put

cookies under privacy and made it difficult to access them. While disabling

cookies does provide additional privacy, it can cause various websites to

stop working as intended, especially those of identity providers.

 ASWebAuthSession
ASWebAuthenticationSession is an API that launches a Safari View

Controller for a sign-in URL, making it easier to authenticate users in

a low-code scenario. That provides the user with an authentication

dialog that allows a user to authenticate through a service, such as an

OAuth provider. Upon a successful authentication, the OAuth service

responds with an auth token and fires up a completion handler. To use

ASWebAuthenticationSession, first read https://developer.apple.com/

documentation/authenticationservices/aswebauthenticationsession

and then import AuthenticationServices into a project.

A web authentication session is then created using something like the

following, which we’ll perform by populating the loginURL in the block:

init(url: URL, callbackURLScheme: String?, completionHandler:

ASWebAuthenticationSession.CompletionHandler)

Import AuthenticationServices

var webAuthSession: ASWebAuthenticationSession?

@available(iOS 12.0, *)

//Define the OAuth 2 endpoints required for authentication

func getOAuth2Token() {

let loginURL = URL(string: "https://account.krypted.com/idp/

login/oauth/authorize?client_id=<client_id>")

Chapter 12 IdentIty and devICe trust

https://developer.apple.com/documentation/authenticationservices/aswebauthenticationsession
https://developer.apple.com/documentation/authenticationservices/aswebauthenticationsession

655

let callbackURLscheme = "https://account.krypted.com/idp/auth"

self.webAuthSession = ASWebAuthenticationSession.init(url:

loginURL!, callbackURLscheme: callbackURL, completionHandler:

{ (callBack:URL?, error:Error?) in

// Handler to receive the callback

guard error == nil, let WoohooURL = callBack else {

return

}

//Grab the token from the callback

let OAuth2Token = NSURLComponents(string: (WoohooURL.

absoluteString))?.queryItems?.filter({$0.name == "code"}).first

// Display the token or an error

print("You logged in and here is your token:" OAuth2Token ??

"No OAuth Token was received")

})

self.webAuthSession?.start()

}

This goes in the code wherever you want the login window to appear.

All cookies that are accessed using ASWebAuthenticationSession other

than session cookies can then be shared with the web browser. As we

covered earlier in the chapter, according to the developer, those cookies

can then be used to store different types of metadata.

There are much better and more thorough handlers out there such as

https://github.com/OAuthSwift/OAuthSwift/blob/master/Sources/

OAuthSwiftURLHandlerType.swift. The preceding code was really mostly

meant to show the well-known endpoints for OAuth in use, how the token

is passed, and the callback. The code to get much of this working is fairly

straightforward for developers. It gets challenging though for developers

to read between the lines of a rapidly changing ecosystem. Tools like

Postman make it easier to spoof some of these methods of persistence

and substantiation of new objects, but one wrong line of code could leak

information or the ability to spoof a connection

Chapter 12 IdentIty and devICe trust

https://github.com/OAuthSwift/OAuthSwift/blob/master/Sources/OAuthSwiftURLHandlerType.swift
https://github.com/OAuthSwift/OAuthSwift/blob/master/Sources/OAuthSwiftURLHandlerType.swift

656

Now that we better understand what the IdP is and how it works, let’s

actually look at how it works to configure aspects of an Apple deployment

with a cloud provider. To show a standard identity provider in action, we’ll

log in to an existing Azure Active Directory account.

 Work with Azure Active Directory
The first part of this chapter was about the underlying technology used

for modern authentication. Previous chapters covered what we might call

“legacy authentication,” and solutions like Okta’s Fastpass help bridge the

gap (to set up Okta, see Appendix E).

Apple Business Manager and Apple School Manager allow

administrators to create Managed Apple IDs. Similar to how supervised

devices provide additional management options (see Chapter 4 for

more on that), Managed Apple IDs allow administrators to do more with

little or no interaction from users. Managed Apple IDs are owned by

the organization and linked to (as of the time of this writing) Apple or

Google as an identity provider. These are configured in Apple Business

Manager or Apple School Manager. Log in to the appropriate portal, click

the username in the bottom-left corner of the screen, and click Accounts.

From the Accounts screen in Federated Authentication, click the Edit

button as seen in Figure 12-6.

Chapter 12 IdentIty and devICe trust

657

Figure 12-6. Managed Apple ID setup in Apple Business Manager

The Edit button brings up a modal to select between a Google

Workspace and Azure Active Directory, as seen in Figure 12-7. Microsoft

Azure Active Directory is used for this example.

Figure 12-7. Select between Google Workspace and Azure

Chapter 12 IdentIty and devICe trust

658

A screen to sign in is then shown (Figure 12-8). Click Sign in

with Microsoft and then when prompted log in to an account with

administrative rights over Azure Active Directory.

Figure 12-8. Link accounts to the IdP

Accept the Permissions that are necessary in the Permissions

Requested screen (Figure 12-9), and then provided the link is created, click

Done at the screen that shows the process completed.

Chapter 12 IdentIty and devICe trust

659

Figure 12-9. Provide the necessary permissions

Open the Azure Active Directory console and click the Audit Logs to

verify the link was created successfully (as it was in Figure 12-10).

Chapter 12 IdentIty and devICe trust

660

Figure 12-10. Check the audit logs to make sure it works

Now the identity provider has been provided. The Managed Apple

IDs that are created can use existing credentials from within Azure Active

Directory. These can coexist with personal Apple IDs on devices owned

by an employee and provide access to some iCloud features. Accounts are

created the first time the user signs in to an Apple device. Those accounts

won’t have Email but will have FaceTime and iMessage access. The

accounts can collaborate with others who use iCloud apps and be disabled

when the underlying Azure account is disabled. Some features like Apple

Pay, Wallet, Find My, and iCloud Keychain will not work on these types of

accounts as each of those is handled either by a personal Apple ID or by a

feature within an MDM, like Lost Mode (compared to Find My).

The domain will need to be verified. This is done on the same screen,

by creating a text record in the DNS for the domain registered. Any existing

personal Apple IDs in the domain would then receive an email to change

the email address so it doesn’t use the TLD of the domain that was just

configured. This can be tricky as most users who have used Apple devices

Chapter 12 IdentIty and devICe trust

661

in an organization, especially those that used older versions of VPP, likely

have accounts. However, it’s a process to start sooner rather than later. If

there is an existing personal Apple ID in the domain, a Managed Apple

ID will not be provisioned until that situation is resolved. Once the Azure

tenant and Apple Business Manager are linked, it’s time to set up SCIM.

Apple calls SCIM Directory Sync in Apple Business Manager. From

Preferences, click Directory Sync to bring up the ability to configure

SCIM. At the Directory Sync screen, click the Edit button (Figure 12-11).

Figure 12-11. Set up SCIM

The domains now need to be federated, as the warning indicates

(Figure 12-12). To do so, go back to the Azure AD tenant and follow the

steps at https://support.apple.com/guide/apple-business-manager/

sync-users-from-azure-ad-axm3ec7b95ad/web to configure an Enterprise

Application (which federates the SAML connection to the token provided

from Apple Business Manager). These screens are likely to change over

time so we won’t go through each, but plan for about an hour, usually.

Chapter 12 IdentIty and devICe trust

https://support.apple.com/guide/apple-business-manager/sync-users-from-azure-ad-axm3ec7b95ad/web
https://support.apple.com/guide/apple-business-manager/sync-users-from-azure-ad-axm3ec7b95ad/web

662

Figure 12-12. Federate domains

It’s then possible to provision Managed Apple IDs. There are a number

of other SAML, OIDC, and identity providers. We cover Okta in Appendix

E, but there’s also JumpCloud, Auth0, Ping Identity, and a host of others.

Once Enterprise Applications are federated, users can see SAML responses

from Apple, Microsoft, Google, and others.

 View SAML Responses
SAML support was initially added to Safari a few years ago to help keep

SharePoint users from having to provide credentials repeatedly. Since

then, additional options for single sign-on solutions have been added as

Chapter 12 IdentIty and devICe trust

663

well. The Safari Web Inspector now has a feature to see the SAML response

in action, an important tool when troubleshooting issues between

federated sites. To do so

• Open Safari.

• From the Safari menu, click Preferences.

• Click the Advanced tab.

• Check the box for “Show Develop menu in the

menu bar.”

• Select Show Web Inspector from the newly displayed

Develop menu.

• Select the Resources tab.

• Log in to a site.

• View the Requests by filtering for SAMLResponse.

• Decode the response from base64.

Chances are you won’t be able to decipher much of the SAML

response. This is by design, and as you get more accustomed to

troubleshooting SAML responses, you’ll pick up a few tricks here and

there. One of our favorite would be SAML Tracer.

SAML Tracer is a plug-in for Firefox available at https://addons.

mozilla.org/en-US/firefox/addon/saml-tracer/. Once installed,

you’ll be able to see a list of SAML requests as well as how the request

was formatted and any SAML responses, decoded, as you can see in

Figure 12-13.

Chapter 12 IdentIty and devICe trust

https://addons.mozilla.org/en-US/firefox/addon/saml-tracer/
https://addons.mozilla.org/en-US/firefox/addon/saml-tracer/

664

Figure 12-13. SAML Tracer

The same plug-in is available for Chrome browsers as well. Now that

we’ve gotten used to SAML, let’s look at OAuth, starting with using Jamf

Connect for the Mac.

 Use Jamf Connect to Authenticate to an IdP
at the Login Window
Jamf Connect was the first app (as well as its original incarnation NoMAD

Pro) is a bundle of three apps that provide access to a number of OpenID

providers, including Google, Microsoft, and Yahoo!, at the login window

for macOS. This includes a few tools (as seen in the installation package

shown in Figure 12-14):

Chapter 12 IdentIty and devICe trust

665

• Jamf Connect Login: Login window that helps

administrators create accounts on machines and

authenticates an end user to an identity provider.

• Jamf Connect Verify: Used for keeping the local

account and web identity provider in sync. Then

it handles the authentication and any following

authorization for handling Kerberos tickets, linking

legacy identity to more modern forms of identities.

• Jamf Connect Sync: Does the same as the preceding

tool, but specifically for Okta.

Figure 12-14. Jamf Connect installation

The developers of Jamf Connect have indicated to the authors of this

book that they plan to merge these into one app in the next year; however,

understanding them as stand-alone apps helps keep the tasks being

performed separate. We’ll start with setting up Jamf Connect Login.

Chapter 12 IdentIty and devICe trust

666

 Configure Jamf Connect Login
The macOS login window is pluggable, meaning that developers can write

tools that extend the functionality of the login window. Jamf Connect

Login is an authorization plug-in for the login window, similar to a PAM

module, or pluggable authentication module. There aren’t a ton of PAM

modules out there, and the technology has never been standardized, but

Jamf Connect Login also comes with a PAM module in order to facilitate

managing the login at a sudo prompt when using Terminal. But they

have been around for a long time in variants of Unix and Linux and are

commonly used to integrate authentication schemes between languages

and through APIs. The API being used here is the login window.

To get started, first download the Jamf Connect DMG, which contains

the Jamf Connect Login app. Also download your license file from Jamf

Nation, which we’ll use in a bit. Before we get started, let’s look at how

Jamf Connect Login will work. The installation package will install the

PAM module into /usr/local/lib/pam/pam_saml.so.2 which configures

sudo for use with Jamf Connect Login. Jamf Login will also be installed

into /Library/Security/SecurityAgentPlugins, and the authchange script is

installed to /Library/Security/SecurityAgentPlugins/JamfConnectLogin.

bundle/Contents/MacOS/authchanger, which updates the authorization

database located at /private/var/db/auth.db. This process allows the

authorization plug-in to be used. The following command is run at the end

of the installation package in order to activate the authorization plug-in:

authchanger -reset -OIDC

You don’t need to do this manually, unless you’re customizing the

package that installs Jamf Connect Login for the client computer. Once

run, to see your authorization database, simply run that authchanger

command with the -print option:

authchanger -print

Chapter 12 IdentIty and devICe trust

667

The authchanger command also supports a number of other flags

such as -prelogin to provide a mechanism to use before the user interface

shows up or -preAuth to give a mechanism to be used between the login

interface and actual authentication (e.g., if you need to alter data prior to

authentication. We won’t get into more advanced preflight and postflight

scripting to customize how things work, but know that these are options as

your environment matures.

Now that we’ve covered how this works once installed, we’ll customize

the package for the specific identity provider and well-known URLs

in use by your identity provider. To get started, customize the package

for installation. We’ll use Okta to continue on with the previous walk-

throughs. Start by opening the Jamf Connect DMG available from

Jamf. Then open the example plist in a text editor and provide the

AuthServerpreference key.

Jamf Pro admins will also want to allow certificate-based and push

notification access, as well as a PPPC profile for Connect (Figure 12-15, but

for more on PPPC, see Chapter 4).

Figure 12-15. PPPC options for Jamf Connect

Chapter 12 IdentIty and devICe trust

668

Once satisfied with the changes to the Jamf Connect Login property list

and other settings, it can be uploaded to an MDM solution for deployment.

Jamf also makes some settings for Connect available (Figure 12-16) in the

Applications & Custom Settings Payload options, which can also show

a preview of the property list for use in other tools. Upload the provided

license key configuration profile to your MDM solution.

Figure 12-16. Configure a Jamf Connect profile

There are lots of other keys that give the ability to get more granular

with the setup experience as well, but we will leave you with some

surprises for when you read the product manual. Once the package is

installed and the preferences in place, it’s time to test the first login!

Chapter 12 IdentIty and devICe trust

669

To do so, first reboot the computer to make sure the experience

matches what a user will see the first time they use their machine. At this

point, you’ll see the new Jamf Connect login screen (with branding, yours

may appear different than that in Figure 12-17).

Figure 12-17. The Jamf Connect login window

The federated identity service will then prompt for a login the first time

you authenticate with that service, as seen in Figure 12-18, for Azure Active

Directory. Provide the username and password using the screens, which

also appear differently per vendor.

Chapter 12 IdentIty and devICe trust

670

Figure 12-18. Multifactor authentication with Jamf Connect

Once logged in, you can also manually authenticate using the menu

bar item at the top of the screen (Figure 12-19).

Figure 12-19. Signing in with the Jamf Connect menu

Chapter 12 IdentIty and devICe trust

671

To see logs, open /private/tmp/jamf_login.log to see what was logged.

You can also view debug logs by searching the log for com.jamf.connect.

login as the predicate:

log stream --predicate 'subsystem == "com.jamf.connect.

login"' --debug

This gives you enough information to troubleshoot should you need to.

If you so choose (and you should since you’re paying for it), you can also

get the passwords synchronized for Okta, using Jamf Connect Sync. Jamf

Connect Sync is similar: a package and a profile that sends the AuthServer

preference key to the com.jamf.connect.sync defaults domain. This is

a string to your Okta instance. Once installed, the login window can be

branded for your organization, have login policies, etc.

Jamf Connect for Mac can be useful in any Mac environment with an

investment in an identity provider where Macs are used. Jamf Connect is

an entirely different tool, and so we’ll cover that in the following section.

 Alternatives to Jamf Connect
Great ideas are meant to be copied, especially when some of the code

from Jamf Connect is derived from the open source NoMAD project that

existed before it became a Jamf product. Mosyle Auth, Kandji Passport

(Figure 12-20), Addigy Identity, XCreds by Twocanoes (Figure 12-21 shows

the configuration property list with lots of settings not found elsewhere

as of the time of this writing), and others come with some of the same

features as Jamf Connect but require less setup work with each of those

solutions. Some also still use NoMAD, as we covered earlier in the book.

Chapter 12 IdentIty and devICe trust

672

Figure 12-20. Build Kandji Passport in the web interface

Another option is what Apple calls Platform SSO, part of a more

comprehensive strategy to deal with federated identities from Apple –

documented at https://developer.apple.com/documentation/

authenticationservices. As of the time of this writing, all of the platform

single sign-on options are still in beta, and the only third-party vendor to

work with it fully is Microsoft. This is built into the Microsoft Authenticator

app for iOS and iPadOS devices and the Intune Company Portal for

macOS-based devices. The Platform SSO extension is likely to be used by

many other vendors as it’s an extension, and on the MDM side, it’s just a

profile that can be easily configured.

Chapter 12 IdentIty and devICe trust

https://developer.apple.com/documentation/authenticationservices
https://developer.apple.com/documentation/authenticationservices

673

Figure 12-21. Most of the tools have property lists to configure
options, like this one for Kandji

 Use Azure AD for Conditional Access
Conditional Access is a feature of Azure Active Directory that controls

access to cloud-based or SaaS apps based on where a device meets a

number of conditions, such as whether the device has a security posture

that meets the requirements of an organization. This is also available with

Google’s BeyondCorp (or BeyondTrust) service(s) and a number of other

tools that isolate the security posture of a device before granting access to

the user account to log in to any services.

Chapter 12 IdentIty and devICe trust

674

Conditional Access allows an administrator to then build policies that

are enforced at any point during the authentication and authorization

process to access a resource. Gating access to content based on the

security posture of a device is a growing requirement for any type of

environment and is therefore a growing requirement for administrators

of any device, including Apple devices. A number of MDM or identity

products have then introduced features to allow for this, many leveraging

the Microsoft APIs for Intune or Office 365 to gate access.

Each of those MDM developers has their own strategy and outcomes.

Some have built their own app ecosystem, others have chosen to use

proxies, or ZTNA (Zero Trust Network Access) solutions, where vendors

pretend to be doing more complicated tasks than proxies. Some do a

pure API-level integration with an identity provider or SaaS solution.

Deciphering what is happening and exactly what outcomes to expect

during the planning phase can then be a challenge as engineers navigate

through marketing speak.

We’ll start our review of Conditional Access integrations by looking at

the Jamf and Intune integration. This integration allows organizations to

make sure only trusted users on Macs that meet a given security posture are

given access to applications or other resources owned by an organization.

This is done by flowing information from Jamf Pro into the Microsoft

Intune database, which Jamf Pro pushes there using the Microsoft Graph

API. Based on smart group membership access, applications are set up in

Azure Active Directory, and then if a device meets requirements, they are

given access to those apps. Additionally, the Jamf Self Service app can put a

machine into compliance if it falls out of compliance.

 Configure the Jamf Integration with Intune
There are a few requirements to be aware of before configuring the Jamf

Intune Conditional Access integration. The Jamf Intune integration

requires an account to access a Jamf Pro instance. This account should

Chapter 12 IdentIty and devICe trust

675

also have Conditional Access privileges. Additionally, you’ll need an

account with Intune. Finally, you’ll need devices running a minimum of

macOS 10.11 in order for machines to be configured.

Once you’ve made sure that you meet the minimum requirements,

open Jamf Pro and then click the Settings icon. Then click Conditional

Access in the Global Management section of the page (Figure 12-22).

Figure 12-22. Jamf Pro settings

At the Conditional Access screen, click the Edit button. Here, you

will have the following settings available. To begin the process of linking

accounts, check the box for Enable Intune Integration for macOS. This

enables the integration. When this setting is selected, Jamf Pro will send

inventory updates to Microsoft Intune. Clear the selection if you want to

disable the connection, but save your configuration once we’re done.

Next, select the region of your Microsoft Azure Active Directory

instance in the SOVEREIGN CLOUD field (Figure 12-23), which should by

default be set to GLOBAL. Then click the “Open Administrator Consent

URL” button to open the window to integrate with the Azure Active

Directory instance. Once clicked, provide a username and password for

the Azure Active Directory tenant where you have access to Conditional

Access and click the Sign In button.

Chapter 12 IdentIty and devICe trust

676

Figure 12-23. Federation to Microsoft from Jamf Pro

Then click the Accept button to provide the grant for accessing the

connector (Figure 12-24).

Figure 12-24. Configuring the grant type

Chapter 12 IdentIty and devICe trust

677

Provided the connection is established, you’ll then be prompted that

the “App has been added.” When the setup is initially established. Back

at the Jamf Instance, the Jamf Native macOS Connector app is running,

and you can then configure the rest of the settings. In the AZURE AD

TENANT NAME section, provide the name of the Active Directory Azure

tenant, and in the APPLICATION ID, provide the ID of the Jamf Client app

from Microsoft Azure. Those settings are matched with the Name and

Application ID from the Properties of the Connector in Azure, shown in

Figure 12-25.

Figure 12-25. Configure the Jamf Pro Connector in Azure

Finally, in the LANDING PAGE FOR COMPUTERS NOT RECOGNIZED

BY MICROSOFT AZURE, the default here is the Jamf Pro Device

Registration page or the standard page to add devices. Additionally, you

can automatically deny access or provide a custom URL so you can script

your own workflow to remediate devices (Figure 12-26).

Chapter 12 IdentIty and devICe trust

678

Figure 12-26. Finalize the Intune integration settings in Jamf Pro

Once you’ve configured settings as needed, the integration will

automatically synchronize devices on a schedule and apply any necessary

compliance policies to computers. A valuable testing step is to manually

trigger Jamf Pro to send an inventory update to Microsoft Intune. This

allows Jamf Pro to send computer inventory information to Microsoft

 Intune outside of the regular synchronization process. To manually send

an update, just click the Send Update button once configured.

Azure Active Directory ID information for users and computers

appears in the Local User Account category for a computer’s inventory

information in Jamf Pro. For more on setting up this integration, see

https://docs.jamf.com/10.24.1/jamf-pro/administrator-guide/

Microsoft_Intune_Integration.html.

Chapter 12 IdentIty and devICe trust

https://docs.jamf.com/10.24.1/jamf-pro/administrator-guide/Microsoft_Intune_Integration.html
https://docs.jamf.com/10.24.1/jamf-pro/administrator-guide/Microsoft_Intune_Integration.html

679

 Beyond Authentication
Now that we’ve gone through how common tools provision identity

information through OAuth Connect and SAML, let’s take a much more

user-centric approach. Because an IdP is so integral to the future of device

management, a number of device management vendors have chosen to

release their own identity provider, hoping to reduce the friction required

and build a better user experience for customers. MobileIron Access and

VMware Identity Manager are two such products.

VMware Identity Manager works in conjunction with the VMware

approach that in order to simplify the user experience, you want to

provide users with one pane of glass to access web, mobile, SaaS, and

legacy apps. Having a user provide credentials at provisioning time and

then simply accessing those resources through Identity Manager allows

VMware to save end users time and build a great user experience by using

the Self Service App Store as a means to see all of that. Bolt multifactor

authentication and the in-depth knowledge of what’s on a device and how

the device is configured that the device management piece brings in and

you have a pretty complete solution. This is the goal of Workspace ONE,

using the Workspace ONE Intelligent Hub. For more on Workspace ONE,

see https://docs.vmware.com/en/VMware-Workspace-ONE/index.html.

 Multifactor Authentication
Multifactor authentication combines two or more independent credentials

to authenticate. Think of these as something the user knows, like a password;

something the user is, like a fingerprint or Face ID verification; and

something a user has, like a security token. This provides a layered defense.

A password can be written on a sticky note. But the chances of the sticky

note making it into the hands of someone who can unlock a phone through

Touch ID and accept a prompt increase the security of that transaction.

Chapter 12 IdentIty and devICe trust

https://docs.vmware.com/en/VMware-Workspace-ONE/index.html

680

There are a variety of factors that go into the need for multifactor

authentication. Maybe a local password database gets compromised.

Those passwords are often reused across a number of different sites.

Messaging a phone when the password is used then reduces the risk that

the password alone can give an attacker access to a given resource.

An early example might be swiping an ATM card (something you

have) and then entering a PIN (something you know). A modern

representation would be entering a username and password in a website

and then entering a code sent to your phone via text message – or to make

this process even simpler now, entering your Apple ID and then just

tapping Allow on your phone. While Apple began to adopt multifactor

authentication with iCloud, that’s for accessing Apple services.

Many vendors are looking to give organizations access to similar levels

of security. If you’re reading this book, chances are you were exposed

to an RSA SecurID in your career. This was the standard in token-based

multifactor authentication for a long time. But why use physical tokens

when we can replace the function that those provide with an app?

Salesforce Authenticator and Microsoft Authenticator are two such apps.

 Microsoft Authenticator
The Microsoft Authenticator app (available for iOS and Android) is used

to sign in, back up, and recover account credentials and adds a two-step

verification to the signing process for integrated products. Microsoft

Authenticator also has the option to require biometric (Touch ID or Face

ID) or a PIN code to get that second step for verification. The administrator

can choose to require that or allow a user to configure it.

The Microsoft Authenticator app also supports one-time passcodes.

Here, a time-based, one-time passcode secures an online account that’s

been configured to work with the TOTP standard, providing added

security. An example of using this option would be an integration with

GitHub. To configure GitHub for two-factor authentication, go to the

Chapter 12 IdentIty and devICe trust

681

Settings page, then Security, and select “Personal settings” in the sidebar.

Click Enable two-factor authentication and then select the option to “Set

up using an app.”

Make sure to keep the security codes when you’re prompted with

them. Your account is lost if you lose them. Like really, really lost. When

you see the QR code, open the Microsoft Authenticator app, select “Add

account,” and then enter the text at the top of the site.

This process is similar to how you set up a SmartThings bridge to

manage the lights in your home, various HomeKit-enabled devices, and

other IoT-based authentication flows. The fact that you have a short

amount of time to enter codes keeps the transactions secure, and the

simplicity of the QR code workflow in exchange for a token keeps our

coworkers from doing wonky things.

Finally, Microsoft Authenticator has the Apple Platform SSO extensions

built in. As of the time of this writing, it’s one of the only tools to support

this new approach to SSO, and there aren’t a lot of tools that work with it,

but that should change over the course of the next few years.

 MobileIron Access
MobileIron Authenticator is another such an app. MobileIron Access starts

with using MobileIron Authenticator as a soft token app that replaces hard

tokens with an automated setup experience that provides a one-touch

activation process. Once configured, users verify login attempts with the

app in much the same way that Apple prompts you on iCloud-enabled

devices when you access various services for the first time on a device.

Apple devices will push that notification through APNs and then aggregate

information from security products, apps, the state of the device, and the

user location.

This provides a framework for remediation workflows. So if a user

violates a given policy, MobileIron Access will then silo the user into a

group and gate access to various resources until the device no longer

Chapter 12 IdentIty and devICe trust

682

violates that policy. Users can run their own remediation flows and will

be prompted on the device to perform given tasks that get the device back

into a state where it can be trusted again.

All of this does require that each part of the ecosystem is aware of

the type of transaction being performed when replacing a password

with a push notification response. For example, if you’re using OAuth to

provide a single sign-on to a site, and that site will send a push notification

to MobileIron Authenticator, then the site needs to have code in the

authentication page that does that instead of prompting the user for the

password. This would then put the task of brokering the OAuth token on

MobileIron instead of on a handler that runs when the login button is

clicked.

Putting the job of authenticating users into a new flow is more secure

and provides the benefit that the single sign-on transaction can be based

on the context of the user, device, and ecosystem requesting access;

however, this can limit the vendors you work with.

For more on MobileIron Access, see https://community.mobileiron.

com/docs/DOC-4417 or https://help.ivanti.com/mi/help/en_us/

ACC/46/gd/Content/AccessGuide/About_multi_factor_authe.htm for

MobileIron Authenticator.

 Conditional Access for Google Workspace
Google Workspace has an option for Conditional Access through their

BeyondCorp Enterprise integration. As of the printing of this book, Google

Workspace (formerly known as G Suite) doesn’t allow for creating a device

in Google Directory easily. This means that you would need to routinely

manually upload a list of device serial numbers in order to get devices into

Google Workspace. Once devices are in Google Workspace, you can build a

Google Cloud Function that takes output from a webhook and changes the

state of that device.

Chapter 12 IdentIty and devICe trust

https://community.mobileiron.com/docs/DOC-4417
https://community.mobileiron.com/docs/DOC-4417
https://help.ivanti.com/mi/help/en_us/ACC/46/gd/Content/AccessGuide/About_multi_factor_authe.htm
https://help.ivanti.com/mi/help/en_us/ACC/46/gd/Content/AccessGuide/About_multi_factor_authe.htm

683

Tools like Kandji and others can integrate with a Google Workspace

domain to do things like import user accounts, but that’s using Google as

an identity provider, not a Conditional Access provider – although similar

functionality can be scripted among MDM providers.

These and other directory integrations with other vendors don’t

get an organization all the way to a BeyondCorp integration. Instead,

customers need to contact Google to buy BeyondCorp licensing or do

manual integrations themselves. Once the environment is integrated with

Google, so the status of a device can be seen in tools like Kandji, it can

then be reported back to Google Workspace as needed. The easiest way to

tackle that is to use Google’s cloud offering, GCP (Google Cloud Platform),

to script device trust manually. If the device doesn’t meet the required

attributes in the MDM or device management suite, then automate

disabling accounts or restricting access to various resources.

 Obtain Your CustomerID from Google Workspace

The first thing that’s required to work with GCP is a valid login to https://

admin.google.com/. Once logged in, a CustomerID will be necessary to

programmatically connect. There are a few ways to grab a CustomerID

Figure 12-27. Kandji integration with Google Workspace

Chapter 12 IdentIty and devICe trust

https://console.cloud.google.com/
https://console.cloud.google.com/

684

from Google Workspace. This is important when configuring SSO or when

interfacing between Google Workspace, G Suite, or GCP programmatically

(through their lovely API).

The first and easiest way to obtain the CustomerID is to look at the

web interface. This isn’t the most intuitive. To find the key, open Google

Admin and then browse to Security, then Authentication, then SSO with

SAML Authentication (the option has moved a few times over the past few

years). From there, copy the Google Identity Provider details. This includes

the EntityID. The EntityID is going to be everything after the = such as

C034minsz9330 as seen in Figure 12-28.

Figure 12-28. Obtain your Google URLs

Chapter 12 IdentIty and devICe trust

685

While here, also grab the SSO URL and the certificates to secure

communications. This key should not be rotated. Once you have the key,

you can communicate with the Google API Gateway, for example:

curl 'https://www.googleapis.com/admin/directory/v1/

customers/$CUSTOMERKEY' \

--header 'Authorization: Bearer [$ACCESSTOKEN]' \

--header 'Accept: application/json' \

--compressed

 Provision a Google Cloud Function Resource

Google Cloud Functions (GCFs) provide a streamlined method for running

a simple microservice leveraging custom functions as well as SDKs for

any Google service that can be imported into your script. Currently, node.

js is the only nonbeta language you can build scripts in. Before you set

up Google Cloud Functions to work with a Google Workspace domain,

first provide the account of a developer with the appropriate permissions.

Google Workspace has a number of features exposed to their API by

importing SDKs into projects. As an example, the Admin SDK provides us

with endpoints and classes that make developing microservices to perform

actions in the G Suite admin portal easier. In this section, we’ll import that

SDK, although the tasks for importing other SDKs are similar.

 Enable the Necessary APIs
To get started, open the Google Cloud Platform using the button in the

upper left-hand corner and click APIs and Services (the names of these

buttons change over time, but the screen should appear similar to that in

Figure 12-29).

Chapter 12 IdentIty and devICe trust

686

Figure 12-29. Configure OAuth

Next, click the Enable APIs and Services button in the dashboard.

Under Credentials, provide the appropriate credentials for the app you’re

importing the SDK into. Search for Admin SDK API. From the entry for

Admin SDK, made by Google, click Enable (Figure 12-33). Once enabled,

you’ll need to create a service account for your function to communicate

with. Click Credentials (Figure 12-30).

Chapter 12 IdentIty and devICe trust

687

Figure 12-30. Credentials for the Admin SDK

 Create a Service Account
Service accounts give you a JWT, useful to authenticate from a Google

Cloud Function back to an instance of the Google Workspace Admin

portal endpoints. To set up a service account, go to “IAM & Admin” using

the button in the upper left-hand corner and click Service Accounts

(Figure 12-31).

Chapter 12 IdentIty and devICe trust

688

Figure 12-31. View service accounts

Click Create Service Accounts (Figure 12-32).

Figure 12-32. Create a new Google service account for your Cloud
Function

Chapter 12 IdentIty and devICe trust

689

Provide a project name and a location (if your organization uses

locations); otherwise, leave that set to No Organization and click

CREATE. Now that you’ve set up a project, let’s create the actual function.

 Create Your Google Cloud Function
The Google Cloud Function is then a microservice that can be called

routinely, similar to the process that the Jamf Connect for iOS app

performs (or any of the competitors). This might be sending some json

from an app to perform a task from an app or sending a webhook to the

function to perform an action. To get started with functions, click Cloud

Function at the bottom of the Google Cloud Platform dashboard and then

click Enable Billing. Given the word Billing is present, this will require a

credit card, although less than a penny was spent writing this section of the

book. If necessary, click UPGRADE.

The function API will also need to be enabled for billing, if it hasn’t

already been for the account used. To do so, click Enable API. Once all of

this is done, there should be a button that says Create function. Click that

and then you’ll be able to provide settings for the function.

Settings include the following (Figure 12-33):

• Name: How the function is called in the admin panel.

• Memory allocated: How much memory the function

can consume.

• Trigger: Most will use HTTP for our purposes.

• URL: The URL you use to call the function.

• Source: The code (typically node.js) that is run.

Note the package.json allows us to leverage this function in a
multitenant fashion.

Chapter 12 IdentIty and devICe trust

690

Figure 12-33. Create a Google Cloud Function

Once enabled, you can hit the endpoint. To load a script, click Next and

paste the script in so it’s run when triggered (Figure 12-34).

Chapter 12 IdentIty and devICe trust

691

Figure 12-34. Add code to the function

This is similar to how Amazon Lambda’s run as well. To access the

function once created, use curl to send a command to the URL provided

earlier. If there’s no header parameters you need to send, that could be as

simple as

curl https://us-central1-alpine-canto-231018.cloudfunctions.

net/test-function

Now that we have a sample up, let’s actually build a script we can paste

into the function in the next section.

Chapter 12 IdentIty and devICe trust

692

 Write Your Script

In the following example, we’ll use the Google Directory integration with

G Suite, which allows you to manage which devices have access to G Suite.

This allows you to control access based on a variety of factors.

In the following, you’ll find a Google Cloud Function that is meant

to respond to a webhook. This function takes an action to set a device

into “approve” or “deny” as a state within Google Directory. Before using

the function, you’ll want to set CustomerID, ResourceID, and EMAIL_

ACCOUNT for your Google Workspace account:

Google Cloud Function meant to respond to a webhook

Takes an action to set a device into approve or deny state

Set CustomerID, ResourceID, and EMAIL_ACCOUNT for your GSuite

account before using

from google.oauth2 import service_account

import googleapiclient.discovery

SCOPES = ['https://www.googleapis.com/auth/admin.directory.

device.mobile']

SERVICE_ACCOUNT_FILE = 'auth.json'

EMAIL_ACCOUNT = '<INSERTTHEEMAILADDRESSHERE>'

def get_credential():

credentials = service_account.Credentials.from_service_account_

file(SERVICE_ACCOUNT_FILE, scopes=SCOPES)

delegated_credentials = credentials.with_subject(EMAIL_ACCOUNT)

admin = googleapiclient.discovery.build('admin', 'directory_

v1', credentials=credentials)

admin = googleapiclient.discovery.build('admin', 'directory_

v1', credentials=delegated_credentials)

 return admin

def get_mobiledevice_list(admin, customerId):

Chapter 12 IdentIty and devICe trust

693

results = admin.mobiledevices().list(customerId=customerId).

execute()

 mobiledevices = results.get('mobiledevices', [])

 print('mobile devices name and resourceId')

 for mobiledevice in mobiledevices:

print(u'{0} ({1})'.format(mobiledevice['name'],

mobiledevice['resourceId']))

 return results

def action_mobiledevice(admin, customerId, resourceId,

actionName): # actionName: "approve", "block",etc

 body = dict(action=actionName)

results = admin.mobiledevices().action(customerId=customerId,

resourceId=resourceId, body=body).execute()

 return results

def main():

 admin = get_credential()

 customerId = '<INSERTTHECUSTOMERIDHERE>'

 resourceId = '<INSERTTHEJWTHERE>'

 action = "approve"

 #action = "block"

 mobiledevice_list = get_mobiledevice_list(admin,

customerId)

 print(mobiledevice_list)

 action_mobiledevice(admin, customerId, resourceId, action)

 print ("Approved successfully")

if __name__ == '__main__':

 main()

The webhook will then output when a device is approved or blocked.

This could be triggered by a number of services that are integrated with an

MDM, a configuration management solution, a fully separate automation-

only tool, etc.

Chapter 12 IdentIty and devICe trust

694

 Duo Trusted Endpoints
Another approach is what Duo Security does with their Trusted Endpoints

product. Trusted Endpoints allows an administrator to configure a Trusted

Endpoints policy. The Trusted Endpoints policy gates access from devices

to applications. This is done based on whether a certificate is on the

device. As an example, the integration shown at https://duo.com/docs/

jamf-jss for Jamf checks that a Jamf enrollment certificate is on a device,

and some apps are only accessible if so.

If the certificate is present, Duo checks the device information against

the required policy settings, and if appropriate, the requestor receives

access to protected applications (Figure 12-35).

Figure 12-35. The Duo Applications list

The authentications are then tracked, and administrators can see

traffic in the Duo dashboard (Figure 12-36).

Figure 12-36. Authentications in Duo

Chapter 12 IdentIty and devICe trust

https://duo.com/docs/jamf-jss
https://duo.com/docs/jamf-jss

695

Duo also has integrations with Sophos, MobileIron, LANDESK, Google

G Suite, AirWatch/Workspace ONE, and a generic option for providing

integration with management solutions they don’t have an actual

integration with (so some customization may be necessary).

 Managed Apple IDs Continued
You use an Apple ID to access iCloud, install apps, and consume media

in the Apple ecosystem. A Managed Apple ID is a type of Apple ID used

to deploy apps and books as well as to configure devices. We’ll cover how

Managed Apple IDs are used in schools and business separately.

Managed Apple IDs also allow an administrator to accept Apple’s

terms and conditions on behalf of people who are usually not old enough

to do so, like in schools. Managed Apple IDs that are provisioned through

Apple School Manager (ASM) also come with 200GB of space in iCloud.

These IDs should be unique, and many organizations create a subdomain

just for them (e.g., appleid.company.com). But one of the most helpful is

that Managed Apple IDs can be generated in bulk.

 Managed Apple IDs in Schools
Managed Apple IDs require device supervisions and DEP enrollment.

Once set up, administrators can assign VPP licenses to Managed Apple

IDs for books and apps. However, students can’t buy apps or books on

their own. There are some teacher-centric options for Managed Apple IDs.

Teachers can reset Managed Apple ID passwords through the Classroom

app and collaborate with students in Keynote, Numbers, and Pages.

As mentioned, each Managed Apple ID should be unique (as with

MAIDs for Apple Business Manager). This involves a unique username

within a subdomain and not using an existing Apple ID. You can use

modifiers (e.g., instead of using john.doe@school.org, you can use

Chapter 12 IdentIty and devICe trust

696

john.doe+1@school.org). This allows some options around moving an

address for an existing Apple ID out of the way and then bringing it back.

Or you could walk away from the old domain and move to john.doe@

appleid.school.org.

 Managed Apple IDs for Business
Apple announced Managed Apple IDs for Apple Business Manager at

Managed Apple IDs are created for employees who sign in and manage

functions of Apple Business Manager. Managed Apple IDs for Apple

Business Manager are different. Managed Apple IDs in Apple Business

Manager are to be used for managing tasks in Apple Business Manager

only. There is no Apple Schoolwork or Apple Classroom app that users

would require a Managed Apple ID for. There is no PowerSchool to source

the accounts from.

There is also no extra 200GB of iCloud storage. This means the only

things administrators do with those IDs are acquire content, supervise

devices with device enrollment, and manage a handful of IT users that

handle those roles. That doesn’t mean that Apple will not change these

capabilities in a future release, but for now there is likely little reason

to add Azure federation if only IT teams are using a Managed Apple

ID. For more on Apple Business Manager and Managed Apple IDs,

see https://help.apple.com/businessmanager/en.lproj/static.

html#tes55db2af4a.

 Webhooks
A webhook is a small web trigger that, when fired, can easily send amount

of small json to a web listener. Most modern software solutions support

webhooks. They provide an easy way to trigger events from a piece of

software to happen in another piece of software.

Chapter 12 IdentIty and devICe trust

john.doe@appleid.school.org
john.doe@appleid.school.org
https://help.apple.com/businessmanager/en.lproj/static.html#tes55db2af4a
https://help.apple.com/businessmanager/en.lproj/static.html#tes55db2af4a

697

An example of this is when a smart group change happens in Jamf

Pro, do something elsewhere. To start, you register a webhook in Jamf

Pro by opening an instance of Jamf Pro, clicking Settings, clicking Global

Management, and then clicking Webhooks (Figure 12-37).

Figure 12-37. Registering Webhooks

From the Webhooks screen, click New (Figure 12-38).

Chapter 12 IdentIty and devICe trust

698

Figure 12-38. New Webhook screen

At the New Webhook screen, you will see a number of fields:

• Display Name: The name used to identify the webhook

in Jamf Pro.

• Enabled: Check to enable the webhook; uncheck the

box to disable the webhook.

• Webhook URL: The URL that the json or xml will be

sent to (note that you’ll need something at this URL to

accept your webhook).

• Authentication Type: None is used for an anonymous

webhook, and basic can be used to send a username

and password to the webhook listener.

Chapter 12 IdentIty and devICe trust

699

• Connection Timeout: How long the webhook will

attempt to open a connection before sending data.

• Read Timeout: How long the webhook will attempt to

send data for before it turns off.

• Content Type: Choose to send information via xml

or json.

• Webhook Event: The type of event that Jamf Pro can

send a hook based on.

The options for webhook events include

• ComputerAdded

• ComputerCheckin

• ComputerInventoryCompleted

• ComputerPatchPolicyCompleted

• ComputerPolicyFinished

• ComputerPushCapabilityChanged

• DeviceRateLimited

• JSSShutdown

• JSSStartup

• MobileDeviceCheckin

• MobileDeviceCommandCompleted

• MobileDeviceEnrolled

• PatchSoftwareTitleUpdated

• PushSent

• RestAPIOperation

Chapter 12 IdentIty and devICe trust

700

• SCEPChallenge

• SmartGroupComputerMembershipChange

• SmartGroupMobileDeviceMembershipChange

An example of a full workflow would be what we did to trigger a Zapier

action, documented at http://krypted.com/mac-os-x/add-jamf-pro-

smart-group-google-doc-using-zapier/. Here, we look at sending smart

group membership changes to a Google sheet so we can analyze it with

other tools, a pretty standard use case.

Most management tools will support webhooks at this point. For

example, SimpleMDM just improved support for webhooks as seen in

Figure 12-39.

Figure 12-39. SimpleMDM webhooks

While webhooks make for a great enhancement to how you manage

devices, they also represent a fundamental building block of technology:

the callback URL (or URI), which we reviewed earlier in the chapter while

describing the fundamental building blocks of tools like OpenID Connect

and SAML which are the basis for all modern Federated Identity Providers.

 Working with the Keychain
Keychain Access is an application that uses a small database in macOS

that allows users to store secure pieces of information. It first appeared as

a password manager in Mac OS 8.6 and has evolved ever since. A Keychain

Chapter 12 IdentIty and devICe trust

http://krypted.com/mac-os-x/add-jamf-pro-smart-group-google-doc-using-zapier/
http://krypted.com/mac-os-x/add-jamf-pro-smart-group-google-doc-using-zapier/

701

can contain a number of data types, including passwords, keys, certificates,

and notes. You can interact with the keychain programmatically in

macOS. This means that you have a number of options for pushing

accounts and settings to devices from a centralized portal, app, or service.

The default user keychain is stored at ~/Library/Keychains/login.

keychain, and the default system keychain is stored at /Library/Keychains/

System.keychain. Each of these can have different strings in the name

to indicate versions or use cases – and may appear multiple times if in

use. You can most easily access the keychains using the Keychain Access

application. Simply open the application from /Applications/Utilities and

search for a site that you have stored information for, and you’ll be able to

see the entry in the keychain database (Figure 12-40).

Figure 12-40. Keychains

Double-click the keychain entry to see what’s stored in that item,

shown in Figure 12-41. Any passwords are encrypted, and you’ll need to

click Show Password to see the actual password.

Chapter 12 IdentIty and devICe trust

702

Figure 12-41. View a Keychain entry

The reason keychains are an important part of the identity story is

twofold: keychains are password management databases. By nature, they

store passwords and certificates, and you can flow identity information

to them and retrieve information back from them. The second part of

keychains that are important to identities involves how that information

can be accessed programmatically and biometrically from both Mac and

iOS. Much of the technology works similarly on Mac and iOS, although we

have more visibility into what’s happening under the hood with tools when

using a Mac, as we can see logs and we can view keys and passwords using

Keychain Utility.

Accessing information programmatically is done using the security

command. The security command is used to read from and manipulate

the keychain database(s). Since there are multiple keychains, let’s first look

at a list of keychains using the security command in verbose mode (thus,

the -v flag) and using the list-keychains verb:

security -v list-keychains

Chapter 12 IdentIty and devICe trust

703

The output will be a list of the keychains on the Mac. You can also view

the preferences file that shows the current users keychains by reading the

~/Library/Preferences/com.apple.security.plist file:

cat ~/Library/Preferences/com.apple.security.plist

The /Library/Preferences/com.apple.security.plist file is used to store

information about the system default keychain and the order with which

searches are done if there are multiples. You will need to unlock a keychain

if you want to edit it, which is similar to decrypting the file that stores the

database. To do so, use the unlock-keychain option followed by the path of

the keychain:

security unlock-keychain ~/Library/Keychains/login.keychain

When prompted, provide the password (or do so via an expect script).

You can put certificates and passwords directly in the keychain as well,

using find-certificate to find a certificate, find-identity to find a certificate

and a private key, find- generic-password to find a password for an app,

and find- internet- password to locate a password to a website.

security add-internet-password -a krypted -s site.com -w

The command to do so is security, and the verb to add a password

is add-internet-password. In the following example, we’ll use a more

mature incantation, using the -a to send the username again, but using

the -D option to define the kind of password (the category label in

Keychain), the -s which is a variable for the server address, followed by

the path to the keychain:

sudo security add-internet-password \

 -a $username \

 -D "network password" \

 -r "smb " \

Chapter 12 IdentIty and devICe trust

704

 -s $server \

 "/Library/Keychains/System.keychain" \

 -w

Directly manipulating keychains should be considered a legacy

workflow; however, in the absence of better APIs and options, sometimes

it’s the only option to get a task done. This is how some of the login tools

work, to keep passwords in sync. The preferred modern way is to use

keys with such workflows, as in how WebAuthn works. However, it’s not

uncommon to see machines with a keychain password that hasn’t changed

in five or seven years, so if the password for the IdP is in a keychain, this is

a potential security risk.

 Summary
IdPs are quickly replacing or augmenting the directory services solutions

that became widely used in enterprises with the advent of Active Directory

in the early 2000s. Tools like Azure Active Directory, Google Identity Access

Management, Okta, OneLogin, JumpCloud, and PingFederate have now

replaced some of the single sign-on functionality given the increasingly

distributed nature of organizations and the increasing reliance on web

apps. It’s clear that thus far Apple programs to manage schools and

businesses focus on Azure and Google – but these are open standards, so

those may expand in the next few years.

As we showed throughout this chapter, federated identities are able to

provide an added layer of security for the Apple platform. Those federated

identities can have a layer of multifactor authentication (MFA), which is

increasingly moving away from physical tokens and into a world where

a “soft token” or app is used. This reduces the cost of MFA and lets our

coworkers do more with that phone they increasingly have on them at all

times. The beauty of those devices is also that they already have another

layer of security: a face or fingerprint.

Chapter 12 IdentIty and devICe trust

705

We see this industry in its infancy today. Some vendors may seem like

they’re getting big or getting acquired for large sums of money, but the

technology is changing quickly. This pace of innovation is being caused

by the rapid uptake in usage by key vendors but also by enterprises that

see the quick shift to mobile endpoints as one of the largest potential

security threats in their fleets. As you plan out how identity fits into your

organization (or how the identity plan fits into the Apple fleet of devices),

think about the end result. That result should be that data allowed on

devices is gated by the security posture of the organization. When done

right, admins can get granular control over this data while still providing a

great experience for your coworkers.

We don’t go into Zero Trust Network Access solutions (ZTNA) much

in the chapter but instead look at the links between the IdP, Apple, and

the devices – and expand some into Conditional Access solutions. ZTNA

is a solution where traffic is routed through a tunnel and analyzed, and

while it isn’t the most private solution, it does give administrators the

most telemetry into what happens on devices. Expect more large-scale

integrations between ZTNA and device management based on that

telemetry where there aren’t yet holistic ecosystems in the future (we’ll

be happy to document them further once those are there even if the

buzzwordy acronym changes).

Given that everything on the Apple platform is changing so fast, now

that we’ve gone through how to deploy and manage Apple devices through

the first 12 chapters of this book, we’ll continue with projects like we just

made with ZTNA and turn our attention to the future in Chapter 13.

Chapter 12 IdentIty and devICe trust

707

CHAPTER 13

The Future of Apple
Device Management
This book primarily focused on Apple device management techniques

that are used on the macOS, tvOS, and iOS devices, with the exception of

the areas where certain functionality is only available on a given platform

today. That’s because Apple has slowly brought the management story

together for their platforms. This makes sense, considering the fact that

each framework has to be maintained differently for each platform. That

becomes a lot of development sprawl to maintain.

This isn’t to say that the platforms will merge and that we’ll see a

unified operating system. But Apple does seem to trend toward a lot

of similarities. That began with the Mac App Store and thus far led to a

much more sandboxed Mac. It is impossible to know what the future

holds. These and other changes can lead to a number of pretty informed

assumptions about the future, based on what has happened in the past.

In Chapter 1, we covered how we got to where we are today.

Throughout the main body of this book, we then looked at how

to implement various options necessary for a successful Apple

deployment. How does this impact you and why are we talking about the

future, though?

This impacts each deployment as it saves hours or days previously

spent to build something that got outdated in a year. That’s why the

book goes into the future of the platforms, to keep from repeating the

© Charles Edge and Rich Trouton 2023
C. Edge and R. Trouton, Apple Device Management,
https://doi.org/10.1007/978-1-4842-9156-6_13

https://doi.org/10.1007/978-1-4842-9156-6_13

708

same mistakes and avoid future technical debt. In other words, think of

the future long-term state of a given environment and all the attributes.

Compare that to the current state and then prioritize each chunk of work

to get from the new way to a new steady state. A tool that can help get that

future state in mind is a balanced scorecard.

 Balanced Apple Scorecard
Apple devices can act as a first-class citizen on any network. What emerged

through the history laid out in this book is a collection of best practices,

a tool chain that’s commonly used, and a general philosophy (or one for

each vendor or open source project in some cases).

One way to maximize impact is to take a step back and look at the

ecosystem of an environment from the perspective of “what do I need

for my environment?” To guide that observation, this section includes a

scorecard to use, but consider the ecosystem of a given Apple environment

more holistically. The scorecard for any two organizations is likely to be

different than any others, and the development of a way to quantify how an

organization tracks is likely best when it stems from a negotiation between

all the stakeholders involved. That might include legal, compliance,

human resources, and finance teams. Don’t get entrenched in any

opinions with the other stakeholders but do explain gently where their

support is needed.

This scorecard provides a snapshot into the technology stack required

by most organizations as well as the attributes of each in a simple

dashboard that executives can understand. Many of the technologies in

this scorecard might not be required by an organization at the time the

scorecard is created but are likely to be required at some point in the future

if not already, as the deployment (and organization) grows and becomes

more visible – and even if they’re never required, it’s good to talk about

them and just make sure that’s the case.

Chapter 13 the Future oF apple DeviCe ManageMent

709

Balanced scorecards can use four boxes in a document built in

Excel, mind map tools, or any other tool available. They’re usually a list

of attributes that an organization cares about. In the following text, see

a list of categories and some attributes to consider asking about. Most

organizations won’t adopt all of the technologies on this list, but most

should at least have a discussion about each:

Access to the organization’s network

• Network access controls

• 802.1x access

• Captive portal management

• Proxy access and PAC file distribution

• Centralized certificate, CA, and SCEP management

• Printer distribution and management

• Centralized font management

• VPN management and access

Access to organizational resources

• License tracking and reporting.

• All applications are available to Apple devices.

• Centralized collaboration suite access based on

device state.

• All file servers and content management.

• Virtualization for any applications not available for the

Mac, per job function.

Chapter 13 the Future oF apple DeviCe ManageMent

710

Cradle to Grave device management

• A seamless unboxing and deployment experience

(including imaging for legacy devices).

• Devices can be centrally managed.

• Automated application deployment.

• Standardized application packaging.

• Automated QA and User Acceptability Testing for

patches and application updates.

• Dashboard that shows standard KPIs for the fleet.

Directory services

• Leveraging directory services for single sign-

on (whether there’s a trusted bind in the

transaction or not)

• Integrated Identity Management with SSO and/or

SAML providers

• Migrate directory services into a cloud solution and

provide login window access to those directory services

Endpoint protection

• Antivirus

• Endpoint backup

• Centralized encryption management

• Centrally managed and auditable policies following

NIST guidelines (e.g., password aging and complexity)

• Log analysis

• Application access controls (whitelisting)

Chapter 13 the Future oF apple DeviCe ManageMent

711

• Threat management and mitigation

• Forensic snapshotting and antitheft

• Legal hold

World-class support

• Zero-touch assets that cover the most common tasks

necessary to get your job done

• Support staff trained on managing devices

• Centralized auditable remote access

• Service desk software that is integrated with

management platform

• User-controlled software deployment with automated

approvals from management where needed

• Device state management

• Help menu providing easy access to tickets and

standard support tools

• Automated proactive maintenance

Now there’s something to cover at the next annual review! The point

isn’t to integrate everything, but to make sure to be cognizant of what is

integrated, why, the priority of each, how to quantify the deployment, and

ultimately how it makes the user experience better while protecting your

organization. These should also be time bound and viable. It’s usually not

too smart to try and project the future of technology too far in the future,

given that the industry moves so rapidly. But do look into the near-field

future so there’s no need to rebuild infrastructure just put into place

last year.

Chapter 13 the Future oF apple DeviCe ManageMent

712

 The Tools
One of the most important aspects of device management is to choose

the right tools. These typically have a direct correlation to labor costs as

most are used to automate tasks. A large multinational enterprise needs

different tools that can scale with their footprint; a small business may

get crushed under the weight of tools that are purpose-built for, often

codesigned by, and maintained for larger organizations. Most tools aren’t

a permanent decision, though. The antivirus, backup, collaboration,

and file server access software are easily interchangeable. For a Mac,

admins can also migrate between management solutions with a scripted

workflow. However, migration between management solutions is more

difficult for iOS devices. In order to move an iOS device from one Mobile

Device Management solution to another, the devices typically need to

be reenrolled and sometimes wiped (e.g., for supervised devices). This is

the kind of migration not often undertaken, and so some vendor lock-in

can occur.

Consider how tools interoperate to plan a switch or net-new

installation as well. Many will build complex workflows that automate

workflows. As an example, if antivirus definitions for a device don’t

get updated, there are prebuilt integrations that can revoke access to

various resources and create a ticket in service desk software. This allows

administrators to automate a number of their tasks as well as tasks for

other teams, which reduces the need for more service desk and desktop

support teams and reduces the possibility of human error.

Some vendors provide connections to solutions within their own

portfolio (e.g., they may have an MDM and an antivirus tool that they

sell). Others provide support for some third-party solutions, which allows

administrators to have a consistent administrative experience across

multiple tools. Some have mature APIs but no prebuilt integrations. The

level of customization for each integration often requires more training to

learn how to build tools but comes with more options and can therefore

Chapter 13 the Future oF apple DeviCe ManageMent

713

give administrators more flexibility in how they automate tasks. This trade-

off is a consistent theme in any management stack. Bite off too much and

not much gets done.

The reason there are so many options now is that the population of

Apple devices out there warrants it. This allows niche vendors to offer

more value to customers with solutions tailored to their needs. As the

number of tools to manage various aspects of Apple devices has exploded,

it’s gotten harder to determine one that fits with each environment. Apple

innovates at such a rapid pace that those in the space can’t be everything

to everyone. Picking the right vendor therefore requires research and a bit

of diligence.

the future of apple Consulting lies within the powers of the tools we
use. there are so many options out there on the market to manage a
fleet of Macs with. Choosing one and going all in helps, but you need
to know when to pivot. ask yourself if a tool is doing everything in its
power to help administrators constantly maintaining it.

Justin esgar, Founder and organizer of aCeS Conference

One aspect of choosing the right tools is to find solutions that keep

current with Apple advances and maybe even think ahead to what Apple

might be planning next.

 The Near Future
This book has covered User Accepted MDM, User Accepted Kernel

Extension Loading, Privacy Preferences Policy Control, and now

Extensions in the System Preferences. Anyone who has paid attention

throughout this book will note these really mean one thing: transparency

for end users. The argument against some of these transparency alerts

is that when prompted so often, users click accept every time they get

Chapter 13 the Future oF apple DeviCe ManageMent

714

prompted. This leads to a fine line between how to inform people and

get their consent and how to best protect companies that issue devices to

those users.

Administrators can do more to manage devices if they can prove

ownership. Device supervision means proof that a device is owned by an

organization. It doesn’t mean that the developers who wrote supervision

actually want organizations to spy on end users without their knowledge.

This is nothing new. Apple Remote Desktop had a different icon in the

menu bar when it was in use. But in those earlier days, it was much less

likely an administrator could gain access to a credit card number, social

security number, or personally identifiable information as easily as they

can today. Further, if that data was remotely accessed, there wasn’t nearly

as much of a market for the data as there is today.

 Privacy Controls

The biggest changes over the next few years will be to continue that trend,

where users must consent to management that impacts their privacy,

but not consent to changes that impact the management of features on a

device. This might seem simple, but the balance between an organization's

telemetry and how to provide privacy on devices is far more complicated.

Organizations need to manage devices in a cost-effective manner, and

a lack of centralized administrative capabilities actually requires a lot of

deliberation and even a little backtracking here and there.

Keep in mind, Apple has changed the way devices are managed

universally. They played nicely in a system led by Microsoft, but the

challenges were different. Users didn’t use desktops in a closed Local Area

Network, they used phones and tablets on devices constantly connected

to the Internet directly. They set aside 3–40 years of corporate IT dogma

to improve security and privacy. This new theory of device management

seems popular enough that Microsoft, Google, and others have slowly

adopted most of the same options as well. Transparent management and

Chapter 13 the Future oF apple DeviCe ManageMent

715

privacy protections are what most of us want, and so we should assume

our coworkers want the same, no matter how many support cases they file

in a given month.

Being an Apple admin requires a little patience. Apple doesn’t publish

a road map that spans a decade like some vendors do. Apple doesn’t

guarantee that a given model of device will be available for five years.

Apple also doesn’t comment publicly on most of these features outside of

the Worldwide Developers Conference (WWDC). This doesn’t mean that

individuals at Apple won’t comment on what they’re up to. What “Apple”

tells their users, like any organization, is often just one person who talks

about something with no information beyond their own circle within the

company. “Apple” is a company of individuals, not a single organism.

Anyone who is in a position that provides them access to privileged

information about future plans likely isn’t willing to risk that position.

“Apple” would love to tell people more. There are a number of

questions that software developers and product managers at Apple haven’t

answered for themselves, much less written a single line of code for. And as

they chart a new course for our industry, we have to expect that Apple will

constantly be moving our cheese. Job security is a wonderful thing!

 The Apple Product Lines
Anyone new to the Apple world would probably be surprised that Apple

once distributed wireless access points, routers, 1U rack-mount servers,

rack-mount RAID enclosures, and even a full server-based operating

system called Mac OS X Server. In fact, Apple has built and sold server

services since the introduction of the Mac.

Right around the time that Oracle bought Sun, Apple doubled down on

their iOS investment and released the iPad. At the time, Apple reportedly

had $64 billion in cash on hand and so could have purchased Sun with a

relatively small investment in cash compared to what they had in reserves.

But the iPad was a much smarter investment of those resources.

Chapter 13 the Future oF apple DeviCe ManageMent

716

Apple started to spin down their own lines of servers and pull

functionality out of the operating system that didn’t align with a long-

term vision at about that same time. Apple didn’t try to be something they

weren’t anymore and sell enterprise servers. Instead, they parlayed their

success with further investments into iPhone and the emergent iPad to

become the wealthiest company in the world. Apple doesn’t want to be

a server company, and it’s doubtful that more than a few people within

Apple ever did.

Over the course of the next few years, Apple discontinued all dedicated

server hardware and slowly slimmed down on the number of services in

the Server operating system. First, they removed specialty services such

as Podcast Producer and Xgrid, then groupware functionality such as

Mail, Contacts, and Calendar services. These services were never going to

rival Office 365 or Google Apps. Apple finally canceled the macOS Server

project entirely in 2022. This allowed them to repurpose engineers to other

teams and move faster on the client platforms.

Apple simplified their product offerings when they cut more than just

the server hardware and software. Apple discontinued the Apple AirPort

Base Station from the product line. This was another moment in the slow

spin-down of various teams at Apple who had previously been tasked with

owning the entire network stack. Apple made the AirPort since the early

days of Wi-Fi, mostly out of a need to get good wireless options available

for their own lines of computers. The AirPort devices were over four times

the cost of base stations with similar specifications from competitors,

but they were solid devices and relatively easy to set up and configure.

At one point, that product line included a base station with integrated

storage as well. The AirPorts were stable, rarely had issues, rarely needed

updates, and had great range. But when similar devices started to plummet

in cost, Apple shuffled resources to more profitable adventures, as they

should have.

Chapter 13 the Future oF apple DeviCe ManageMent

717

As with server hardware, Apple has removed devices that don’t

sell well to maximize their investment into the devices that sell like

hotcakes. This is good business. Expect the trend to continue for one of

the wealthiest companies in the world (if not, according to the day, the

wealthiest company in the world). Consider how the Apple portfolio has

changed since the early days. Apple divested the LaserWriter when there

were other good options for printers users could buy. Apple made switches

and network appliances as well, but don’t need to at this point. Apple

canceled these and their servers when the Return on Investment (ROI)

calculations made it smart to do so, and they were no longer needed in the

ecosystem.

If at first you don’t succeed, try and try again. Apple tried to make

mobile devices twice before they succeeded with the iPhone. There were

more times, but they didn’t leave Apple labs. The iPod to iPhone and

iPad release will go down in business history books as one of the most

important business decisions of all time. The MacBook sells well for a

computer, although pales in comparison to the sales of iPhones and iPads.

But pay attention to those annual reports and notice the lack of discussion

about desktop computers and some Apple apps on the App Store (some of

which have never been mentioned).

 Apps
“There’s an app for that” is now part of everyday vernacular, especially

among those who work in the IT industry. Since the inception of the App

Store, millions of apps have made their way onto the Apple App Stores

and changed the way many organizations purchase and use software.

Where organizations once needed to purchase large software packages

that ran the business, the App Store has allowed people to buy smaller

apps that do various tasks and string those workflows together either with

built-in integrations or by linking various tools together with third-party

automation solutions.

Chapter 13 the Future oF apple DeviCe ManageMent

718

 Evolutions in Software Design and Architecture

The ability to link disparate tools together is facilitated by a few trends

in how software is architected. The first is that since the first iPhone was

released, software has increasingly moved from client-side apps to web-

based apps. This move has been to cut down on development costs, make

software easier to deploy at companies, and allow software to be run on

more and more platforms. Additionally, the more companies that have

transitioned into web apps, the more engineers that are trained on how to

develop for them and so the easier it has become to train engineers.

Another trend is microservices or a trend toward smaller code and

so more easily run as functions in environments like Amazon’s Lambda

service, Google’s App Engine, or a plethora of other options. These replace

large monolithic structures of code that are hard to maintain and even

harder to make parts of the code public (e.g., through APIs an app can

consume). This allows a lot of different developers to work on various

services collaboratively and not step on each other’s toes. The move away

from huge servers saves the organizations that embrace a microservice-

based architecture millions of dollars in hosting fees.

Because so many companies need their software to interoperate, the

authentication mechanisms have also evolved. Federated web identities

allow two pieces of software to trade data on behalf of a user (e.g., with

technologies like OAuth Connect and SAML) or admins (using tokens such

as a JWT). The ability to have a federated identity means administrators

can easily install plug-ins in software and automate tasks in their name.

Where authentication was once handled by Kerberos or with local salted

hashes, developers could now just import a library to do OAuth (or

implement a microservice that handles that code) and easily be able to

work with other vendors.

Chapter 13 the Future oF apple DeviCe ManageMent

719

Another aspect of how software has evolved would be URL handlers.

Websites have long looked at the http:// or https:// prefix to know that

a URL represents a web page. Before that, URI schemes could include

ftp://, smb://, or one of the originals referenced in the IETF specifications,

gopher://. It turns out that an app can register that prefix as well, known

as a URL handler, much the way that users once registered a file extension.

This allows software hosted on the Web to open an app, receive data

from the app, and send data to the app with deep linking. Most modern

software solutions not only interpret URLs this way but then interact

with microservices authenticated through a federated identity and so get

away from monolithic structures that have too much logic built into them

that cost an arm and a leg to rebuild every decade when programming

languages change. Further, if a site is built in Java, Python, or a bevy of

other languages, there are plenty of tools that allow admins to build

once in those languages and compiled as native apps for Apple and

Android (although a truly native Swift app is smaller and better in nearly

every case).

 The Evolution of Apple Software

The programming languages that Apple either distributes or designs have

changed over the years. Apple has quickly iterated the tools and code used

to create apps. This makes code more interchangeable between platforms.

The fact that code has become smaller and more modular also means

that bits of code can be shared more easily on social coding sites, such as

GitHub. This means developers can build more, faster.

The languages have changed, but Apple has always distributed

software used to develop other software (as do most operating system

vendors). The tool most often used to build software for Apple devices

today is Xcode. Xcode can be used to edit code for most any language,

Chapter 13 the Future oF apple DeviCe ManageMent

720

although a number of other tools are tailor-built for different languages.

Over the years, we’ve had programming languages that include the

following:

• Smalltalk was a language developed in 1972 with the

last stable release in 1980.

• AppleScript is a language introduced in 1993 that can

still be run on a Mac. AppleScript can be used with

services, Automator, or invoked through shell scripts

today and is meant to be used for simple automations.

• Objective-C took parts of Smalltalk messaging and

added them to C and was the main programming

language for NeXT and by virtue for subsequent Apple

products until Swift was introduced.

• Swift is licensed under the Apache 2.0 license and has

been available since 2014. Swift is now the language

most often used to write tools for Apple devices, with

many components reusable between tvOS, macOS,

and iOS.

• Python, Bash, and even Perl are common scripting

languages used on the Mac. These have been compiled

and distributed with the operating system, although

sometimes it pays (as with Python 3) to update to

newer versions. Recently, Apple has begun to remove

these from a default installation, so a native Swift app is

in most cases the best bet to automate tasks if possible.

Cocoa and Cocoa Touch aren’t languages, but APIs commonly

imported into projects when a developer writes apps for Apple products.

Cocoa apps are usually developed in Objective-C or Swift. Since Cocoa

is an API, it can also be called from Python, Perl, Ruby, AppleScript, and

Chapter 13 the Future oF apple DeviCe ManageMent

721

a cornucopia of other languages with a bridge. Cocoa provides access

to many of the built-in frameworks, and there are a number of projects

that can be found to get other frameworks in projects. Package managers

such as CocoaPods help keep them up to date and provide some build

automation where needed, although Swift Packages are a better alternative

for most.

Carbon was an API that helped bridge the gap from OS 9 to OS

X. Carbon was never updated to 64-bit, so Carbon was deprecated in

Mac OS X 10.8. Cocoa has been around for a long time, but don’t expect

it to disappear any time soon. Apple will also further restrict what lower-

level functions can be accessed from Cocoa on the Mac in the future and

continue to evolve Mac, iOS, and tvOS options for Swift.

In the first edition of the book, we said “Stay on the lookout for an

eventual shift in what chips Apple uses on the Mac.” These are all now

ARM chips made by Apple, so Swift is easily portable between machines.

This allows the same app to have different interfaces for how users

interface with apps on different types of devices. The reason watchOS isn’t

mentioned earlier is that it’s an extension that developers add into other

apps and not truly a stand-alone device.

In addition to the tools Apple provides, organizations that want

to develop cross-platform apps that don’t require much of the native

functionality found in Swift can use a number of different mobile

development platforms such as Appcelerator, AppInstitute, AppMachine,

AppMakr, Appery.io, Appy Pie, Bizness Apps, BuildFire, Como,

Crowdbotics, GoodBarber, iBuildApp, Kony, PhoneGap, ShoutEm

(Javascript), TheAppBuilder, Verivo, ViziApps, Xamarin, and Xojo. There

are a lot of these, and each appeals to a specific use case – after all, each

developer wrote theirs because they identified a gap in the market.

Low-code apps are a great gateway drug to test a thesis that any

organization might have: an app will reduce the need to buy a third-party

app/service, remove a barrier for adoption for the platform, or increase

productivity. As the app gets more complicated, then it’s likely to become

Chapter 13 the Future oF apple DeviCe ManageMent

722

too mature for a low-code type of solution such as those mentioned earlier.

Additionally, the options each of these organizations is able to provide are

limited to the options Apple makes available on the platform. However, to

satisfy the needs of multiple platforms at once and be able to get an app

out the door in days is often pretty much worth it, which explains why they

remain popular.

Now that we’ve looked at developing apps, let’s look at Apple apps and

the future of each.

 Apple Apps

The Server app is finally gone. But a few tools are still necessary to enable

the Apple platforms. Apple Configurator was written by one of Apple’s first

employees in order to address problems he saw in the classroom. The tool

has gone through several iterations over the years and has since become

an integral part of the Apple management offerings, as seen in its use

throughout this book. Other tools can do some of what Apple Configurator

does, which we’ve covered in this book, but none have reached a level of

maturity or official support where the loss of Apple Configurator would not

negatively impact the ability to deploy iOS devices en masse. Therefore,

there’s little risk to developing workflows based on Apple Configurator. In

fact, the product built on top of Configurator’s command-line interface

makes it seem like it will only become more necessary in the future, or the

introduction of APIs that allow similar functionality in other apps might

mean Configurator-type of functionality becomes parts of other apps.

Apple Remote Desktop (ARD) began life as Apple Network Assistant

and has evolved over the years. As networks have become more complex,

ARD is less useful than it once was. Today, there are a number of

competitive products ready-made for remotely controlling devices, which

include Bomgar, GoToMyPC, TeamViewer, Splashtop, and dozens of others

on the app store. Additionally, for those on a LAN, there are dozens of

options for VNC-based clients that can access the VNC server built into

Chapter 13 the Future oF apple DeviCe ManageMent

723

the Mac. ARD isn’t useful for iOS or tvOS devices. Either ARD will get

an update so it can connect over APNs or it will not likely be a product

in the future now that there’s a rich ecosystem of products that can do

what it does. In the meantime, ARD should be used if the alternatives are

cost-prohibitive or lack features needed, such as the ability to connect to

devices remotely.

Apps that should be safe are those that empower the platform. Think

of Xcode for software development and Apple Configurator for setting

up and managing large iOS device deployments. There’s not a strict ROI

calculation to be done on these, and they’re necessary for the third-party

applications available for the platform to mature. Do expect them to

evolve, though.

Productivity Apps

There are other apps as well, built into the operating system. These can

come and go, based on technology changes. For example, when all Macs

shipped with writable DVD drives, the iDVD app was necessary. Other

apps have remained somewhat consistent over time, even if they’re

packaged differently than when they were first released.

iWork was introduced in 2005 and is a collection of desktop apps that

Apple distributes to rival Microsoft Office and Google Apps. iWork includes

Pages, Numbers, and Keynote. Initially sold for $79 per copy, iWork was

then distributed for free with Apple devices manufactured after 2013 and

later just made free for iCloud account holders, once online collaboration

was added to the suite. It’s important to note that Apple has had a suite of

apps going back to 1984 with AppleWorks Classic, which would then be

spun off into Claris and come back as AppleWorks, which reached End of

Life in 2007 in favor of iWork. Microsoft Office is certainly the dominant

player in word processors, spreadsheets, and presentation software, but

Apple has maintained their own option since before the inception of the

Mac and is likely to continue to do so in the future.

Chapter 13 the Future oF apple DeviCe ManageMent

724

Professional (or prosumer as some are called) apps like GarageBand,

Logic Pro, Final Cut Pro, and iMovie are also likely to stay and just get

better with an infusion of options through various machine learning

frameworks.

 Apple Services

Apple has also long had a file distribution and sharing option. The Newton

could ship documents out of Works and into an eMate add-on for At Ease.

The Server app had file sharing, which has now been moved to a simple

service provided by client computers. The cloud is a far more interesting

topic for most enterprises. In 2000, Apple introduced iTools and in 2002

changed that to .Mac until 2008 and MobileMe until 2013. iCloud has

been the successor to that evolution and bolts on a bunch of additional

functionality, including

• Activation Lock: Locks devices from activating if

they’re wiped, without the iCloud account that was last

registered on a device. The ability to bypass Activation

Lock is a key feature of most MDM solutions.

• Backup and restore: Used to back up and restore iOS

devices.

• Back to my Mac: Share screens and files with other

computers that are using the same iCloud account. This

service doesn’t allow access to devices for accounts on

different iCloud accounts and so is not a replacement

for Remote Desktop.

• Calendar: CalDAV service provided by Apple to keep

calendars in sync between devices and share calendars

between devices.

• Email: Email service provided by Apple, with accounts

in the domains me.com and/or icloud.com.

Chapter 13 the Future oF apple DeviCe ManageMent

725

• Find My Friends: A geolocation service so friends

and family members can share their location with one

another and locate devices physically. Find My Friends

is simply called Find Friends in the iCloud interface.

• Find My Phone: Allows you to geolocate your devices

from other devices or from the icloud.com portal,

where the option is called Find iPhone.

• Handoff: Allows you to continue tasks such as writing

an email or viewing a website from one device to

another. Currently works with Mail, Maps, Safari,

Reminders, Calendar, Contacts, Pages, Numbers,

Keynote, and any third-party apps that are developed

to work with Handoff.

• iCloud Drive: File storage that is accessible between

(and often synchronized to) any devices registered with

the iCloud account and accessible from the iCloud.com

web interface.

• iCloud Keychain: Synchronizes passwords between

devices.

• iCloud Music Library: Adds any content you purchase

from one device to automatically be downloaded to

other devices.

• iCloud Photos: Synchronizes all photos and videos to

iCloud (and so to each device that uses the service).

Photos can then be placed into albums and shared to

other Apple devices.

• iWork: Shared Pages, Numbers, and Keynote

documents.

• Messages: Instant messaging service from Apple.

Chapter 13 the Future oF apple DeviCe ManageMent

726

• News Publisher: If you’ve signed up, allows you to

write articles for the Apple News app.

• Notes: Keeps content synchronized between the Notes

app on computers, mobile devices, and the iCloud web

interface.

• Photo Stream: Stores photos in My Photo Stream for 30

days (duplicative when using iCloud Photos).

• Storage: Each iCloud account gets 5GB of free storage

and then provides upgrade plans up to 2TB of storage

for syncing all files between Apple devices.

The most notable way of accessing many of these is by logging in to

iCloud at icloud.com, as can be seen in Figure 13-1. But many are hidden

as they are accessed on devices, such as the Backup and Restore feature,

which you access by looking in that option on an iOS device.

Figure 13-1. iCloud.com home screen

Chapter 13 the Future oF apple DeviCe ManageMent

727

These services become more and more integrated into the operating

system with each release. As an example, if the “Allow Handoff between

this Mac and your iCloud devices” option in the General System

Preference pane is enabled, Handoff is used to enable the Universal

Clipboard to copy and paste text, photos, and other content between

devices. Users can also send and receive iMessages from a Mac, answer

calls on an iPhone from a Mac or Apple Watch, and have websites available

in Safari that were opened on an iOS device. The frameworks available

for developers also mean that technologies like Handoff appear in more

and more apps. In the future, expect more and more services provided

by Apple and third-party apps to make use of Handoff, given how much

simpler it makes people.

The use of Bluetooth to provide an easy way to quickly transfer

information between two devices isn’t limited to Handoff. Apple

Classroom makes use of Bluetooth to allow teachers to locate nearby

devices assigned to their classes and provides teachers with the ability to

open apps, browse to a specific website, lock devices, view screens, AirPlay

the screen to another device, and set passwords on devices. These options

are similar to (although a subset of) options in Apple Remote Desktop

and expect to see more innovative uses emerge over the coming years

(something we thought would happen with iBeacons but never really

materialized).

 Apple Device Management Programs

Apple School Manager, introduced in 2016, isn’t required to use Apple

Classroom, but it does give the option for Shared iPads, which is the first

time we see multiuser iPads. It’s also the first time we see Managed Apple

IDs, which are used in Rosters in Apple School Manager. iCloud content

is then synced to multiple users in much the same way it’s done between

Macs using iCloud Storage. Apple Classroom is also made better with an

MDM solution that supports the Education profile payload.

Chapter 13 the Future oF apple DeviCe ManageMent

728

Apple School Manager does more as well. Apple School Manager

provides a portal for schools to manage Accounts (users), Classes (groups),

Roles, MDM Servers that are used (or at least the token generation for

servers), Automated Enrollment (the Device Enrollment Program), Device

Assignments (which maps devices to users), Locations, Apps and Books

(otherwise referred to as the Volume Purchase Program), and iTunes U, a

service for accessing educational content through iTunes or the iTunes U

app. Office 365 now has built-in integrations with Apple School Manager

and expects more from Shared iPad and Managed Apple IDs in the future.

Managed Apple IDs initially came to Apple School Manager and can

now be found in Apple Business Manager. Apple Business Manager is a

portal similar to Apple School Manager but designed with less learning

management in mind. While you can’t yet use Managed Apple IDs to

manage iCloud or the App Store for a given ID, expect this functionality to

mature in the future.

If an administrator started out with the standard Volume Purchase

Program and still has a number of VPP tokens, then those need to be

migrated to Apple Business Manager, but probably with a support call

to make sure it’s all done correctly. The ability to purchase credits on

a PO rather than use a credit card is a reason a number of companies

will migrate to the platform, but make sure to understand exactly what

happens with those VPP tokens before you do so in order not to orphan

previous app purchases.

Automated Device Enrollment is the new name for DEP management.

DEP should be migrated when possible in order to take use of the default

DEP server option, which allows administrators to assign a different

DEP server to each type of Apple devices, especially useful when there

are multiple vendors to manage different types of devices (e.g., an MDM

for iPhones and a different one for Macs). Apple Management accounts

are consolidated, just make sure to work with each MDM vendor to best

understand what impact to expect, given that each vendor might integrate

Chapter 13 the Future oF apple DeviCe ManageMent

729

the various services differently. That includes Apple Business Essentials,

a cloud-hosted device management platform from Apple, introduced

in 2022.

 Getting Apps to Devices
One barrier to ship a new app is actually how to get the app out of Xcode and

onto devices to test and then how to get that app onto the App Store. The first

step to doing so is testing. Testing in iOS can be done using Xcode using the

iPhone Simulator, manually distributing an .ipa file to a device (which is a

bundle of compiled files that comprise an app), or through TestFlight.

TestFlight was founded in 2010 and acquired by Apple in 2014. TestFlight

is provided to developers in the iOS Developer Program. TestFlight allows

users to install and test apps before they are distributed through the App

Store. Developers can see logs and review feedback from people who test

apps as well. If an organization will build apps, then they likely at least need

a working knowledge of TestFlight in order to support developers, who can

use TestFlight to test up to 100 apps at a time. Don’t expect TestFlight to go

anywhere, so any time spent learning how it works is time well spent, and it

helps you to understand how the App Store works a little more as well.

Once an app has been tested, it’s time to distribute the app to devices.

This can be done through web servers that distribute .ipa files for iOS and

.app files for macOS. Any attempts to build internal or third-party app

stores are typically linked to such a distribution model, and provided an

app has been notarized, this isn’t likely to go anywhere. The App Store

options for distribution continue to evolve. Those options began with gift

codes, moved to VPP, and then got the option for Business to Business

(B2B) apps, but those aren’t yet available for schools through Apple School

Manager, and they aren’t supported by all MDM solutions.

Distributing software for the Mac is a bit different. Software can be

distributed as an .app bundle, through a package file (a .pkg file), or

through the App Store. An .app bundle is easy to copy, simply compile

Chapter 13 the Future oF apple DeviCe ManageMent

730

from Xcode, and open the application. We’ve covered installing an app

through the App Store thoroughly in this book, and that process is pretty

well ironed out at this point. The process will change here and there as

options mature, such as the ability to install an iOS app on a Mac. Packages

are a bit more complex, although far simpler than App Store oddities.

A package file can be sent by a number of mechanisms. These include

the installer command in scripts, the ability to open the package and run

the installer (seen in Figure 13-2), headless when pushed by a package

through ARD or an agent-based management solution or now through

an MDM command provided the package is properly signed. Packages

can be one of the most time-intensive aspects required to manage large

fleets of Apple devices. New versions of software come out all the time,

and many contain security updates. This can make it daunting to stay

on top of the version of each piece of software deployed, especially as

deployments grow.

Figure 13-2. Installing software manually on the Mac

Chapter 13 the Future oF apple DeviCe ManageMent

731

Autopkg is an open source third-party solution that automatically

builds packages. Anyone who hasn’t begun to automate their package

build train should. Some third-party management solutions provide

packages for various software titles as well. Autopkg can also be integrated

into management tools (e.g., via the JSSImporter project to get packages

into Jamf Pro). Many large enterprises think they have a couple hundred

apps deployed only to realize they actually have a couple of thousand

once an inventory can be had from the MDM. All of this is why so

many environments really just want to get all of their software from the

App Store.

More and more software titles are distributed through the App Store.

Apple makes $99 per year and 30% (although the number can vary) of

all income generated through the App Store. As of 2018, Apple had sold

over $130 billion worth of apps, a number that has doubled since then.

This makes the App Store a considerable revenue generator for Apple.

That caused many to wonder if all software would eventually have to be

installed through the app store. Microsoft Office is used by nearly every

company in the world and so runs on a lot of Macs. Office came to the App

Store in 2018. While Office is only one of two million apps, it was a holdout

for the Mac and along with other notable titles that moved to the App Store

showed Apple chip away at apps not currently distributed through the

App Store.

Just when it seemed as though all software was destined to the App

Store, other App Stores began to emerge. These were slowed due to

adjudication until they made it to the Supreme Court. The high court

found against Apple in 2019. The two main vendors to look at if you’re

interested in what third-party app stores have to offer are GetJar, with

850,000 apps, and Appland with 135,000 apps.

Chapter 13 the Future oF apple DeviCe ManageMent

732

 Manage Only What Is Necessary
Most school districts in the early 2000s were obsessed with the dock

experience on client computers. It was as though teachers and IT

administrators in education environments just couldn’t help but obsess

over the fact that a user changing one of these was akin to the student

spray painting “O’Doyle Rules” on the wall of the school. Schools would

talk for hours about the various ways students found to break out of a

managed environment to move the Dock or remove icons from the Dock.

One of the best use cases for management in education is to make

devices simpler to use. That simple user experience on first-grade

iPads will help the kids follow along with the teacher without getting

overwhelmed. In an increasingly one-to-one world, don’t obsess about

the details. Children are really good with computers now. Show them how

to use Spotlight to find the app they need instead of relying on the Dock –

they’ll thank you later.

So why manage the Dock at all? To make it easier to get started

using a device. This is true for a lot of the other settings as well. It’s not

usually necessary to manage the background of iOS or Mac devices. It’s

appropriate in customer-facing devices like in Point of Sale environments,

but rarely in a distribution of devices where every user has their own. The

less petty settings that are managed, the more time can be spent on the

things that really matter, like security.

Administrators need to manage certificates that allow devices to join

networks, directory services settings, and the state of a device when it’s

provided to a user, so they can get to the things they need to get to most

easily. This includes the ability to put the appropriate apps on devices,

set the icons in an order that will provide for a good user experience, and

provide any settings to help configure apps to access necessary resources.

In other words, delight your coworkers rather than micromanage their

experience (within whatever compliance guidelines are necessary).

Chapter 13 the Future oF apple DeviCe ManageMent

733

But what does this have to do with the future of device management?

It’s important to consider the Apple philosophy in order to future-proof

deployments. That philosophy is to protect privacy and enable users.

Anything that is too far from what Apple engineers test in their own QA

labs risks being made out of date with a small release. This isn’t meant to

be heavy-handed, just practical.

Sometimes, we have to pay attention to the trends involved and listen

to what people from Apple tell us, even if what they say doesn’t match with

what we want to hear. For example, various representatives from Apple

discouraged the use of MCX for a couple of years. Later, that functionality

was deprecated in subsequent releases of the operating system. All

workflows that leveraged MCX had to be rearchitected to use other, more

modern techniques. This meant that some of the work was done twice.

What can we expect next? Let’s start with Agents.

 The Future of Agents
The word “agent” can mean a few things, according to the audience.

Will the future of Apple device management allow for LaunchAgents?

LaunchAgents and LaunchDaemons will be around until probably at

least 10.17. They will likely become more and more restrictive, though.

So expect some kind of signing infrastructure and potentially a vetting on

behalf of a user in order to invoke them.

Some people refer to kernel extensions as “agents.” It’s more

appropriate to call them “drivers,” but we’ve seen enough that

∗∗∗should∗∗∗ be LaunchDaemons that we might as well just address them

here. When the first edition of this book was written, Apple still allowed

third-party kernel extensions. Those have all but been removed and

replaced by extensions that are specific to a task and so can be sandboxed

more easily. A list of extensions is available at https://developer.apple.

com/app-extensions/. For example, if an app is to redirect network

information, Apple developers want to make sure that the end user has

Chapter 13 the Future oF apple DeviCe ManageMent

https://developer.apple.com/app-extensions/
https://developer.apple.com/app-extensions/

734

agreed to that (or is at least aware of it); therefore, before the network

extension is loaded into memory, the user is asked to approve of what is

happening.

Apple does still use kernel extensions. To see a list of all active kernel

extensions running on a host, use the following command:

kextstat

To see a list of the ones that are from third-party developers (likely

none on modern computers):

kextstat | grep -v com.apple

Developers like to know a system is in a given state so they know their

code will work as intended. The ability to run code with the privileges a

kext receives though is not popular within Apple, nor is anything that has

root access. First, users needed to approve kernel extensions. Then they

needed to be signed and notarized. This is similar to what has changed

with agents in the past few releases. They haven’t gone away, but they have

become more restrictive.

MDM is invoked by an agent called mdmclient. So there is no such

thing as an agentless management solution. But it’s easy to think of a

scenario where administrators cannot manage anything Apple hasn’t

previously given access to manage via API endpoints, MDM commands,

or profiles. This means less reliance on third-party agents, especially if

users can see them in System Preferences and disable them. As the other

management options are being trimmed back, consider how important

mdmclient has become. At this point, anything that can be managed with

the built-in MDM framework in macOS should be managed there; and

anything managed in other ways should be reconsidered.

The term agentless comes from the fact that MDM is an Apple-

supplied agent. Don’t be overly concerned about losing any custom or

third-party agents. Instead, if a task can be performed either with MDM or

using an agent/script/command, do so with MDM.

Chapter 13 the Future oF apple DeviCe ManageMent

735

 Other Impacts to Sandboxing
The sandbox implementation on iOS and tvOS has always provided a

locked down environment that only allows users to interact with systems

in ways Apple explicitly allows for. Administrators have to work around

this, which makes many deployments seem more logistically complicated

than they are technically complicated. That is likely to remain consistent in

the coming years as threats (not only to phishing attacks but to privacy and

persistent threats) continue to evolve.

The base sandbox implementation in macOS restricts operations in a

number of ways. Expect that restrictive nature to increase in the coming

years. This doesn’t mean that users won’t be able to browse the filesystem

with the Finder. But it does mean that we will have to change the way

we think about why, when, and how we automate settings changes and

software deployment. Rather than think about changing files manually,

consider automation by deep-linking into an app using parameters passed

to the URI, assuming the app has a URL handler registered. For example, a

remote control solution called ISL can be opened and have various settings

put into the app using the following parameters (e.g., when sent via an

open command using Terminal on a Mac):

isllight://www.islonline.net/?cmdline=--on-load%20%22disable_

dashboard%3Dtrue%26disable_computers%3Dtrue%22%20--web- login%20

WEBTOKEN%20--connect%20TARGETCOID%20--computer- password- MD5%20

MD5PASSWORD

Rather than have preferences stored in a centralized repository,

each app might eventually have to have its own preference file in the

app bundle. And Managed App Config is how this is dealt with on

iOS. Administrators can pass parameters to an app on a Mac similarly.

Look for apps that can be configured in such a manner rather than

reverting to edit defaults domains and learn how to do so in order to be in

front of any changes that may come in the future.

Chapter 13 the Future oF apple DeviCe ManageMent

736

In order to run, all apps should be signed. In order to install, all

packages should be signed. In order to load, all kexts must be signed

and notarized. The Notary service is a proof that Apple performed some

checks that apps and kexts actually do what they say they do and no

more. The added security isn’t just a perception, it also means an app

can have a hardened runtime, which lets an app run with additional

security protections. This means developers need to follow a few specific

rules though; most notably, they have to inform the user of every

entitlement in use.

These entitlements are similar to the technology that came out of

sandbox (.sb) files. Apple has enforced more sandbox technology on the

operating system. Sandboxing does restrict what administrators are able

to automate. For example, we can’t write to /System and so can’t automate

tasks that called on resources nested in there in the past. As the platform

becomes more widely used, it also becomes a more attractive target and

needs those additional security measures to be enforced. These are all

examples of parts of iOS technologies that moved into the Mac, which

brings up the question: Will iOS and macOS merge?

 iOS, macOS, tvOS, and watchOS Will Remain
Separate Operating Systems
Apple has been clear that there are no plans to merge the operating

systems. Instead, the message has been clear that each operating system is

ready-built for a given purpose, and each is used on the appropriate type

of device. This doesn’t mean they won’t merge someday, but it certainly

means that we should plan deployments for the next few years with the

assumption that they will remain separate. We should also watch for the

barriers to fall in order to unify parts of the operating systems.

As mentioned earlier in the chapter, this isn’t to say that many of the

necessary frameworks necessary to enable each won’t end up unified over

Chapter 13 the Future oF apple DeviCe ManageMent

737

time. There are far more apps for the iPhone than for any other app in

Apple’s portfolio of devices. And it stands to reason that if those apps can

run on a Mac, the Mac is a more attractive device to purchase.

Apple planned for developers to be able to build a single app that

works on the iPhone, iPad, and Mac by 2021 - that process has gone well

so far. Marzipan, initially introduced at WWDC in 2018, meant one binary

could run on any platform, but each still needs a different look and feel

that is appropriate for the screen of the other platforms to be usable, thus

enhancements to UIKit and SwiftUI. Apple then brought several of their

iOS apps to 10.14, including Home, News, Stocks, and Voice Memos. This

introduces a number of questions to look for answers to in the coming

releases, which include

• How will these work with VPP?

• How will they react to containerization technologies

like Managed Open-In, AirWatch Container, and the

MobileIron AppConnect?

• Where are preferences stored and how are they loaded?

Will Managed App Config play a larger role in the app

ecosystem?

The third-party tools are all SDKs, and so the onus will be on developers

to resolve any issues that Marzipan creates. The Mac seems to evolve more

toward iOS, but there are ways iOS has evolved toward the Mac as well.

 Will iOS Become Truly Multiuser?
The Mac didn’t have multiple users for decades but has had multiple

users for over 20 years at this point (officially since the release of

10.1 in 2001). iOS has always been a single-user operating system. The

integration between Apple School Manager and Apple Classroom gave

the first glimpse of what multiple users might look like on iOS devices.

Chapter 13 the Future oF apple DeviCe ManageMent

738

Apple School Manager, using Managed Apple IDs, allows education

environments to run different users on a single iOS device and provides a

brief glimpse into what a multiuser iOS might eventually look like.

Each user can have an app shown or hidden. So apps can be on the

device unbeknownst to a user, and when the device switches users, it

just shows a different set of apps. This gets around the need to push apps

to devices every time a user logs in. While Shared iPad is only offered

in Apple School Manager today, Managed Apple IDs are now available

in Apple Business Manager, and the future may hold a shared iPad for

enterprises.

The impact, though, might not be that we have iPads in the hands of

multiple people. The devices are just different. iPads cost less, are much

more personal devices, and, other than niche use cases, have never

needed the ability to have multiple users log in. The impact instead might

be that users authenticate to access a device and then are able to better

federate access between services with modern protocols such as OpenID

Connect, SAML, and web tokens. The federated identity picture is still in

its infancy on the Apple platforms.

 Changes in Chipsets
The advent of the Intel in Apple devices saw Apple finally welcomed into

many enterprises in ways Apple hadn’t been welcomed in the previous

decade. This allowed Apple to exploit the desires of many to have a choice

rather than just use Microsoft, all the time. Ironically, once the platform

finally caught on enough to be the darling of “innovative” leaders in

enterprises, Apple began to move away from Intel.

Apple purchased PrimeSense for $350 million in 2013 in order to make

the chips now used for Face ID. Apple purchased parts of chip maker

Dialog for $650 million in 2018 (which brought in 300 engineers). Apple

once owned part of the ARM alliance. Intel chips have had a number of

pretty substantial security vulnerabilities over the past few years. It’s also

Chapter 13 the Future oF apple DeviCe ManageMent

739

increasingly important for Apple to preemptively check that no changes

have occurred to the firmware on chips.

Apple has switched things up before. Apple has made the A series of

chips for iOS devices since 2007. The Intel transition in 2005 signaled a

move from PowerPC, which resulted in a collaboration that had begun

between Apple, IBM, and Motorola in 1991. But the shift led to a drop in

apps for a short period. Some developers had to refactor to work with the

new chips. Apple released the M1 MacBook in 2020 and the M2 MacBook

in 2022. They also released a compatibility option called Rosetta 2 to

allow for a simpler transition. To see a list of software that works with the

M-series of MacBooks, see https://isapplesiliconready.com/.

Another chip that Apple touts is the T2, a security chip introduced

in 2017 (the T1 was released the year before and brought Touch ID with

it). The T2 runs its own operating system called bridgeOS, a derivative of

watchOS. This is the basis for the secure enclave. The secure enclave is

where encrypted keys are stored and locks down the boot process. The

camera and microphone go through the T2 physically as do the encryption

mechanisms for the SSD drives on a Mac, and so the T2 becomes

important for FileVault. The T2 is likely to be embedded into all Macs at

some point.

Universal adoption of the T2 (and subsequent releases) means that

Apple suddenly has a lot of new options around Apple Pay, Face ID for

the Mac, and a number of innovations we can’t possibly have put together

because we’re not sitting in their design labs. What does this mean for

those who need to plan an enterprise deployment of Macs with a three-

year budget? It means if you have an option to buy a device with a T2

or without, it would be wise to spend a little more to get the T2-enabled

device. Chips keep Apple from innovating as quickly as they’d like, so

Apple is likely to continue to do more themselves. But the impacts to an

enterprise are minimal, other than planning purchasing options to align

with the desired life cycle of devices.

Chapter 13 the Future oF apple DeviCe ManageMent

https://isapplesiliconready.com/

740

 You’re Just Not an “Enterprise” Company
Apple is not an “Enterprise” company. Those who have been in the Apple

space for a long time have heard this throughout their entire careers. Other

companies that are mentioned as not enterprise companies include IBM,

Cisco, Microsoft, VMware, and the list goes on. It turns out that being

“Enterprise” means doing the specific thing that a 200–200,000-person

company wants a company to be doing at that moment. Many companies

say they will do things, but not every business unit can do everything a

company wants them to do all the time.

This isn’t to say Apple hasn’t become more and more “Enterprise”-

friendly over the years. Engineers once said “you’ll never be able to lock

the home screen on an iPad,” then tout that as a great feature, and later

treat it as table stakes. We’ve gone from agent-based management that

seemed barely tolerated on devices to a Mobile Device Management

framework built just for centralized and streamlined management of

devices. That framework is not ready to completely replace agents as has

been made clear throughout this book. It gets closer every year, as teams

at Apple identify each feature that organizations want to manage. That

framework works when devices aren’t on corporate networks.

Apple has a tool called Enterprise Connect. Apple has an enterprise

sales team. Apple has an Enterprise professional services team. Apple

has a number of executive briefing centers. The Apple CEO goes for long

strolls with the CEO of IBM and has meetings with presidents of various

countries. Apple built Exchange Active Sync policies into iPhone OS and,

due to overwhelming needs from large customers, invented a whole

new kind of management. Apple continues to integrate with the latest

enterprise software, whether that’s emerging SAML providers (including

Microsoft), 802.1x network requirements, etc.

Sure, Apple is not an Enterprise company. But think about this: Apple

is just getting started in the enterprise space, and as more enterprises adopt

the platform, they’re likely to become more and more enterprise focused.

Chapter 13 the Future oF apple DeviCe ManageMent

741

 Apple Is a Privacy Company
In this book, we’ve covered dozens of security features on iOS devices.

These include Managed Open-In, SIP, certificate deployment, policies,

application blacklisting, signatures, and so much more. Apple has

had a number of slips with security over the years, such as when they

accidentally showed a root password in clear text.

For the most part, these are just programming slips and mean Apple

just needs to get better with Quality Assurance, especially in a time when

competitors such as Microsoft do so well in that regard, which is amplified

in the eyes of the security community. Growing so rapidly is hard, given

that the more people who use software, the more weird things they do to

that software – and the more bugs they find.

Security and privacy are different. Apple devices have great security,

but they’ll always be able to get better. In the face of so many privacy

blunders by their competitors, one place where Apple shines is privacy.

This privacy is seen and felt in all of the recent updates that frustrate

Apple administrators. These block an administrator from performing

various tasks.

The options for managing iOS devices over the years have opened up a

lot of possibilities. iOS devices that are supervised can be managed in ways

that we never thought would be possible in the iOS 4 era. All with privacy

in mind. As an example, when Volume Purchase Program (VPP) apps are

deployed, management solutions can push an app to an Apple ID. And

if a user associates, the MDM can see the hash of the user that was used.

But the MDM doesn’t receive the actual Apple ID; thus, they protect the

privacy of the end users. Expect questions like “what are the impacts to

privacy” to come up with every new management feature provided.

This brings us to one of the most important concepts that emerged in

the minds of the authors of this book. While not much may have changed

in the ethos around device management at Apple, the need to keep users

safe has grown exponentially. The hacker mentality that brought many

Chapter 13 the Future oF apple DeviCe ManageMent

742

Mac administrators into the fold with the advent of Mac OS X creates

danger for many standard users. And so many Mac Admins have left the

platform to go manage Linux and other platforms. We all want different

things out of our careers.

 Summary
The only thing that is certain is change. The Apple platforms themselves

change constantly, and so the way we manage them must change as well.

The most important thing to ask about every new feature or change is how

to manage a feature. And yet we need to manage features far less often

than we might think.

Less is more. This doesn’t mean don’t manage anything on devices.

It does mean that if a framework to manage features and settings in the

operating system like MDM doesn’t have an option that it’s worth a second

long and hard think about whether that should be managed long and

short-term. A great example of this is how extensions can only be managed

from within the app that instantiated an extension. Anyone who manages

something that requires custom scripts should make sure to accept the fact

that they’ll own occasional changes as Apple changes the underlying tools

(e.g., from bash to zsh or the need to install python, etc.) until that setting

doesn’t need to be managed any longer.

As we’ve shown in this book, Apple has had a consistent set of tools to

manage devices since the inception of the Mac. Apple changes the tools to

address IT industry trends or larger global security and privacy concerns. But

the tools have always been there and in some cases still look similar to how

they did in 1994. The name of the tools can change, the way they connect

can change, and the way the tools manage settings can change over the

years. Most were fairly static for decades, but began to change more quickly

to address the invasion of privacy felt by many Apple customers given how

ubiquitous technology has become. That’s not likely to end any time soon.

Chapter 13 the Future oF apple DeviCe ManageMent

743

 APPENDIX A

The Apple Ecosystem
There are a lot of applications used to manage Apple devices in one way

or another. Additionally, here’s a list of tools, sorted alphabetically per

category in order to remain vendor agnostic.

 Antivirus and Malware Detection
Solutions for scanning Macs for viruses and other malware:

• AVG: Basic antivirus and spyware detection and

remediation.

• Avast: Centralized antivirus with a cloud console for

tracking incidents and device status.

• Avira: Antivirus and a browser extension. Avira

Connect allows you to view device status online.

• Bitdefender: Antivirus and malware managed from a

central console.

• Carbon Black: Antivirus and Application Control.

• Cylance: Ransomware, advanced threats, fileless

malware, and malicious documents in addition to

standard antivirus.

• Jamf Protect: Antivirus with threat hunting options.

© Charles Edge and Rich Trouton 2023
C. Edge and R. Trouton, Apple Device Management,
https://doi.org/10.1007/978-1-4842-9156-6

https://doi.org/10.1007/978-1-4842-9156-6

744

• Kaspersky: Antivirus with a centralized cloud

dashboard to track device status.

• Malwarebytes: Antivirus and malware managed from a

central console.

• McAfee Endpoint Security: Antivirus and advanced

threat management with a centralized server to track

devices.

• Sophos: Antivirus and malware managed from a

central console.

• Symantec Mobile Device Management: Antivirus and

malware managed from a central console.

• Trend Micro Endpoint Security: Application

whitelisting, antivirus, and ransomware protection in a

centralized console.

• Wandera: Malicious hotspot monitoring, jailbreak

detection, web gateway for mobile threat detection that

integrates with common MDM solutions. Wandera is

now a part of Jamf Private Access.

 Automation Tools
Scripty tools used to automate management on the Mac (some of these are

made obsolete by Apple Silicon, e.g., M1 or M2 chips):

• AutoCasperNBI: Automates the creation of NetBoot

Images (read: NBI’s) for use with Casper Imaging

• AutoDMG: Takes a macOS installer (10.10 or newer)

and builds a system image suitable for deployment

with Imagr, DeployStudio, LANrev, Jamf Pro, and other

asr or Apple Software Restore–based imaging tools

Appendix A The Apple ecosysTem

745

• AutoNBI: Automates the build and customization of

Apple NetInstall Images

• Dockutil: Command-line tool for managing dock items

• Homebrew: Package manager for macOS

• Cakebrew: Provides a pretty GUI for Homebrew

• Jamjar: Synergizes jamf, autopkg, and munki into an

aggregated convergence that cherry-picks functionality

from each product’s core competency to create an

innovative, scalable, and modular update framework

• MacPorts: An open source community initiative to

design an easy-to-use system for compiling, installing,

and upgrading either command-line, X11, or Aqua-

based open source software on Macs

• Precache: Programmatically caches Mac and iOS

updates rather than waiting for a device to initiate

caching on a local caching server

• Outset: Automatically processes packages, profiles,

and scripts during the boot sequence, user logins, or

on demand

 Backup
We highly recommend bundling or reselling some form of backup service

to your customers, whether home, small business, or large enterprises.

The flexibility to restore a device from a backup when needed is one of the

most important things to keep costs at a manageable level and put devices

back into the hands of customers in an appropriate time frame.

Appendix A The Apple ecosysTem

746

• Acronis: Centrally managed backups with image-based

restores

• Archiware: Centrally managed backups to disk and

tape with a variety of agents for backing up common

Apple requirements, such as Xsan

• Arq: One-time fee cloud-based backups and

unlimited storage

• Backblaze: Unlimited continuous backup with a 30-

day rollback feature

• Carbon Copy Cloner: File- or disk-based cloning of

files for macOS

• Carbonite: SaaS or local server–based backups of

Mac clients

• CrashPlan: Backup to cloud and local storage with a

great deduplication engine

• Datto: Local and cloud backup and restore, as well as

cloud failover for various services

• Druva: Backup for local computers as well as some

backup for cloud services

• Quest Backup (formerly NetVault): Can back up Mac

clients and Xsan volumes to a centralized tape or disk-

based backup server

• SuperDuper!: Duplicates the contents of volumes to

other disks

• Time Machine: Built-in backup tool for macOS

Appendix A The Apple ecosysTem

747

 Collaboration Suites and File Sharing
Once upon a time, a Mac server was great for shared calendars, contacts,

and email. But most businesses aren’t going to want anything to do with

the repercussions of potential downtime that can happen on a mail server.

Nothing will get your hard-earned customers to fire you faster than an

email outage. So while the Mac server is listed, consider cloud options, for

optimal customer retention:

• Atlassian: Development-oriented suite including

wiki (Confluence), issue tracking (Jira), messaging

(HipChat), and other tools

• Box: File sharing in the cloud

• Dropbox: File sharing in the cloud

• Egnyte: Caches assets from popular cloud-based

services so they’re accessible faster on networks where

they’re frequently accessed

• G Suite: Shared Mail, Contacts, Calendars. Groupware,

accessible from the built-in Apple tools, Microsoft

Outlook, and through the Web

• Kerio Connect: Shared Mail, Contacts, Calendars.

Groupware, accessible from the built-in Apple tools,

Microsoft Outlook, and through the Web

• Office 365: Shared Mail, Contacts, Calendars.

Groupware, accessible from the built-in Apple tools,

Microsoft Outlook, and through the Web

Appendix A The Apple ecosysTem

748

 CRM
Mac-friendly tools used to track contacts and communications with those

contacts:

• Daylite: Mac tool for managing contacts and

communications with those contacts

• Hike: Mac tool for managing contacts and

communications with those contacts

• Gro CRM: iOS tool for managing contacts and

communications with those contacts

 DEP Splash Screens and Help Menus
Tools that make the DEP and service desk process more user-friendly by

providing more information to users:

• ADEPT: Adds a splash screen for DEP enrollments so

users can see what is happening on their devices

• DEPNotify: Adds a splash screen for DEP enrollments

so users can see what is happening on their devices

• HelloIT: Customizable help menu so users can get

information about their systems or IT support

• MacDNA: Customizable help menu so users can get

information about their systems or IT support

• Nudge: Better alerts for things like software updates

• SplashBuddy: Adds a splash screen for DEP

enrollments so users can see what is happening on

their devices

Appendix A The Apple ecosysTem

749

 Development Tools, IDEs,
and Text Manipulators
Tools used when building scripts, writing and debugging software, and

manipulating text:

• aText: Replaces abbreviations with frequently used

phrases you define

• Atom: A modern text editor with bells and whistles

that make it work like an IDE for common scripting

languages

• BBEdit: A modern text editor with bells and whistles

that make it work like an IDE for common scripting

languages

• Charles Proxy: A proxy tool that can be used to inspect

traffic so you can programmatically reproduce the

traffic or reverse-engineer what is happening when

trying to solve issues or build tools

• CocoaDialog: Creates better dialog boxes than with

traditional tools like AppleScript

• Coda: An IDE and a modern text editor with bells and

whistles that make it work like an IDE for common

scripting languages

• Dash: Offline access to 150+ API documentation sets

• Docker: Containerization tool

• FileMaker: Rapid application development software

from Apple

Appendix A The Apple ecosysTem

750

• git: Code versioning, merging, and tracking – and with

GitHub, a repository to put code into and share code

• Hopper Disassembler: Disassembles binaries as part

of reverse engineering and security testing

• Microsoft Visual Studio: An IDE for a variety of

languages

• MySQL Workbench: Creates and edits MySQL

databases and used to build complex queries

• Navicat Essentials: Creates and edits MySQL databases

and used to build complex queries

• Pashua: Creating native Aqua dialogs from

programming languages that have none or only limited

support for graphic user interfaces on Mac OS X,

such as AppleScript, Bash scripts, Perl, PHP, Python,

and Ruby

• Platypus: Creates native Mac OS X applications from

interpreted scripts such as shell scripts or Perl, Ruby,

and Python programs

• Script Debugger: Tools like a dictionary explorer and

more IDE-esque features for building AppleScript

applications

• Sequel Pro: Creates and edits MySQL databases and

used to build complex queries

• Snippets Manager: Collects and organizes code

snippets

• Sourcetree: GUI tool for Git and GitHub

Appendix A The Apple ecosysTem

751

• Sublime Text: A modern text editor with bells and

whistles that make it work like an IDE for common

scripting languages

• TextExpander: Replaces abbreviations with frequently

used phrases you define

• TextWrangler: A modern text editor with bells and

whistles that make it work like an IDE for common

scripting languages

• Tower: A modern text editor with bells and whistles

that make it work like an IDE for common scripting

languages

• VisualJSON: Simple JSON pretty viewer for the Mac

• Xcode: Apple tool for writing apps and scripts in

common languages

 Digital Signage and Kiosks
A lot of organizations have made a great little additional revenue stream by

reselling or deploying these tools on behalf of their customers. Overall, it’s

a possible new revenue stream, and as an added bonus, you’ll likely have

an NFR (or not-for-resale copy of the software), so you can have pretty cool

signage in your office (if you’re into that kind of thing).

• Carousel Digital Signage: Runs Digital Signage from

an Apple TV

• Kiosk Pro: Turns any iPad into a single-user kiosk

tool, manageable via an API (e.g., with a Jamf Pro

integration)

• Rise Vision: Runs Digital Signage from a Mac

Appendix A The Apple ecosysTem

752

 Directory Services and Authentication Tools
Tools that provide primarily on-premises access to a shared directory of

services and allow for single sign-on to those services:

• Apple Enterprise Connect: Tool sold through Apple

that connects to Active Directory environments without

binding to Active Directory

• ADmitMac: Adds support for fringe Active Directory

requirements

• JumpCloud: Runs your directory service in the cloud

• LDAP: Open source directory service

• macOS Server Open Directory: Directory service

installed in macOS Server that is based on OpenLDAP

• Microsoft Active Directory: Centralized directory

service from Microsoft

• NoMAD: Connects clients to Active Directory

environments without binding to Active Directory and

has some other nifty features

 Identity Management
Providers of predominantly SAML- or OAuth-based single sign-on solutions

that federate security for Apple devices to access web-based services:

• Apple Business Manager: Federates Apple IDs with

Azure AD identities and syncs users from Google

Workspace

• Centrify: Provides federated login across common web

services and other SAML-capable solutions, as well as

Appendix A The Apple ecosysTem

753

resolves common issues with Active Directory. Also has

an integrated profile management tool for compliance

• Duo Mobile: Additional options in the realm of secure

identity, with lots of great research going on in the

Apple space

• LastPass Enterprise: Provides federated login across

common web services and other SAML-capable solutions

• Jamf Connect: Jamf solution for improving the local

experience when working with various Identity

Providers

• Microsoft Azure Active Directory: Active Directory

with Azure in the cloud

• Okta: Provides federated login across common web

services and other SAML- capable solutions

• OneLogin: Provides federated login across common

web services and other SAML-capable solutions

• Ping Identity: Provides federated login across common

web services and other SAML-capable solutions

 Imaging and Configuration Tools
Tools used to place devices into a given state or create that state. This

includes traditional Macs, including tools, as well as those built for iOS.

• Apple Configurator: Configures iOS and tvOS

devices en masse, automates MDM enrollment, and

distributes data.

• Blast Image Config: Will no longer be developed,

given the state of device imaging, but allows admins

Appendix A The Apple ecosysTem

754

to quickly restore and configure a Macintosh back to a

known state (10.12.2 and below).

• createOSXInstallPackage: Creates an installer package

from an “Install OS X.app” or an InstallESD.dmg

(10.12.4 and below).

• Deep Freeze: Freezes the state of a Mac.

• DeployStudio: Free imaging server for Macs.

• Google Restor: Images macOS computers from a

single source. It is an application intended to be run

interactively on a machine.

• Ground Control: Mass deploys (and enrolls) iOS

devices.

• Imagr: Replaces tools such as DeployStudio for many

organizations without the requirement of needing to be

run on OS X servers.

• libimobiledevice: Suite of tools to configure, inspect,

wipe, etc., for iOS devices.

• Winclone: Creates Windows images for deployment

onto Macs.

 Log Collection and Analysis
Centralized logging has been a necessity for large, growing fleets of

devices. Modern tools can store large amounts of logs from client

computers and allow fast and complex searching so you can triangulate

issues quickly and effectively. As an added benefit, you can also centralize

logs for network appliances, allowing you to isolate the source of issues

across an entire ecosystem of devices.

Appendix A The Apple ecosysTem

755

• Elasticsearch: Open source, very fast log analysis

• RobotCloud Dashboard: Provides more granular and

intuitive visibility into devices managed by Jamf Pro

• Splunk: Big data log analysis

• Tableau: Big data analysis

• Watchman Monitoring: Mac-focused monitoring

agent that inspects common third-party tools

• Zentral: Open source, built on Elasticsearch, but with

hooks into lots of other tools and custom recipes for

Mac logs

 Management Suites
Tools used to manage settings on Apple Devices. Each is marked as MDM,

Agent based, or both:

• Addigy: Agent and MDM based

• AirWatch: MDM and agent based

• Altiris: Agent based

• Apple Business Essentials: Light MDM for small

business

• BigFix: Agent based

• Chef: Agent based

• ConnectWise: Limited agent-based Mac management

focused on MSPs

• FileWave: MDM and agent based

• IBM MaaS360: MDM

Appendix A The Apple ecosysTem

756

• Ivanti: MDM and agent based

• Jamf Now: Small business-focused MDM

• Jamf Pro (formerly Casper Suite): MDM and

agent based

• Jamf School: MDM with a parent app

• JumpCloud: Agent based, directory based, and MDM

• KACE: Agent based

• Kandji: MDM with lots of prebuilt automations

• Kaseya: Agent-based Mac management for Managed

Service Providers

• Labtech: Agent based

• LANrev: MDM and agent based (currently being

retired)

• Lightspeed Mobile Manager: MDM

• Meraki Systems Manager: MDM

• MicroMDM: Open source MDM

• Microsoft Intune (MDM) and SCCM (agent based)

• Manage Engine: Agent based

• Mobile Guardian: MDM

• MobileIron: MDM

• Mosyle: MDM

• Munki: Agent based

• NanoMDM: Open source MDM

Appendix A The Apple ecosysTem

757

• Parallels Mac Management for SCCM: Agent-based

SCCM plug-in for Macs

• Profile Manager (macOS Server): MDM

• Puppet: Agent based

• SAL: Agent-based SaaS version of Munki, Puppet,

Django, and SB Admin 2

• SAP Mobile Secure: MDM with integrations to other

SAP products

• Solarwinds MSP: Agent based with integrated backup

and ticketing for Managed Service Providers

• Sophos: MDM

• TabPilot: MDM

 Misc
• Jamf NetSUS: Reposado packaged up for Jamf servers

(no longer actively maintained)

• InfineaIQ: Peripheral management software

• IT Glue: Stores credentials and information about

common IT tools in a SaaS- based database

• Reposado: An open source interpretation of the Apple

Software Update Server

• Sassafras Keyserver: Centralized software license

management server

• ipaSign: Programmatically resigns ipa files with

a new key

Appendix A The Apple ecosysTem

758

 Point of Sale
Similar to digital signage, but you might also operate a storefront or track

customer data in one of these solutions:

• Checkout: Point of sale solution that can run on

Apple devices

• Lightspeed: Point of sale solution that can run on

Apple devices

• PayGo: Point of sale solution that can run on

Apple devices

• Posim: Point of sale solution that can run on

Apple devices

• ShopKeep: Point of sale solution that can run on

Apple devices

• Square: Point of sale solution that can run on

Apple devices

• Vend: Point of sale solution that can run on

Apple devices

 Print Servers
Printers jam, they break, the drivers seem to be rife with problems for

every other operating system update, printers are often connected to via ad

hoc networks (like Bonjour), and you often need special software to access

the cool features. All in all, printers suck, but these tools might make them

just a tad bit easier to use or, if not, help to account for who is using them

so your customers can bill their departments back as much as possible:

• PaperCut: Printer cost accounting for the Mac

• Printopia: Allows for better printing from iOS devices

Appendix A The Apple ecosysTem

759

 Remote Management
These tools allow you to take control of the screen, keyboard, and mouse

of devices. We can’t tell you which are the best, as that’s different for every

organization. But we can tell you that tools should typically be cross-

platform and cloud based, prompt users for acceptance of the remote

control session, and audit connections so we know who is taking over what

devices.

• Apple Remote Desktop: Apple tool for remotely

controlling other Macs, sending packages to Macs, and

running scripts on Macs over a LAN or directly to an

IP address

• Bomgar: Appliance that allows for cross-platform

remote control of devices

• CoRD: RDP client

• LogMeIn: Cross-platform remote control utility

• GoToMyPC: Cross-platform remote control utility

• Remote Desktop: The official RDP client for the Mac

• Remotix: RDP and VNC server with lots of bells and

whistles

• Splashtop: Works with iOS as well (with limitations)

• TeamViewer: Cross-platform remote control utility

Appendix A The Apple ecosysTem

760

 Security Tools
Tools used to manage firewalls and FileVault and perform other tasks

required to secure Macs, based on the security posture of a given

organization:

• Cauliflower Vest: Stores FileVault keys on a

centralized server

• Crypt: FileVault 2 Escrow solution

• Digital Guardian: Data loss prevention

• Google Santa: Binary blacklisting and whitelisting

for the Mac

• iOS Location Scraper: Dumps the contents of the

location database files on iOS and macOS

• iOS Frequent Location Scraper: Dumps the contents

of the StateModel#.archive files located in /private/var/

mobile/Library/Caches/com.apple.routined/

• Little Snitch: Provides information about what

is accessing network resources and where those

resources are

• Objective-See: 's KnockKnock, Task Explorer,

BlockBlock, RansomWhere?, Oversight, and KextViewr,

tools for finding more information about ports and

services running on machines

• Osquery: Queries for information on Macs in a live,

granular search

• Portecle: Creates and manages keystores, keys,

certificates, certificate requests, and certificate

revocation lists

Appendix A The Apple ecosysTem

761

• PowerBroker: Enables standard users on a Mac to

perform administrative tasks without entering elevated

credentials

• Prey: Tracks Mac and iOS devices if they’re stolen

 Service Desk Tools
These tools are for ticketing and ticket management. It’s always great if you

can pick one that actually integrates with both your billing solution and the

various other techie bits you choose to use:

• Freshdesk: Case/ticket management that allows for

automatic billing via Freshbooks

• Salesforce Cases: Case/ticket management that

automatically integrates with Salesforce CRM

• ServiceNow: Case/ticket management with an

expansive marketplace for integrations

• Web Help Desk: Case/ticket management

• Zendesk: Case/ticket management with an expansive

marketplace for integrations

 Software Packaging
and Package Management
Tools for normalizing software for mass distribution on Apple platforms:

• Autopkg: Automates the creation of Mac software

distribution packages using recipes

• CreateUserPkg: Creates packages that create local user

accounts when installed (10.12 and below)

Appendix A The Apple ecosysTem

762

• JSSImporter: Connects Autopkg to Jamf Pro

• Iceberg: Creates Mac software distribution packages

• InstallApplication: Dynamically downloads packages

for use with MDM’s InstallApplication

• Jamf Composer: Creates Mac software distribution

packages

• Luggage: Open source project to create a wrapper that

makes pkgs for Macs so you can have peer review of a

package by examining the diffs between versions of a

Makefile

• Munkipkg: A simple tool for building packages in a

consistent, repeatable manner from source files and

scripts in a project directory

• Pacifist: A shareware application that opens macOS

.pkg package files, .dmg disk images, and .zip, .tar, .tar.

gz, .tar.bz2, and .xar archives and allows you to extract

individual files and folders out of them

• Payload-Free Package Creator: An Automator

application that uses AppleScript, shell scripting, and

pkgbuild behind the scenes to create payload- free

packages

• QuickPkg: Creates Mac software distribution packages

• Simple Package Creator: Creates Mac software

distribution packages

• Suspicious Package: Views the contents of Mac

software distribution packages

• Whitebox Packages: Creates Mac software distribution

packages

Appendix A The Apple ecosysTem

763

 Storage
Apple-focused solutions for sharing files:

• Netatalk: Better AFP connectivity to Windows and

other storage platforms from a Mac

• Promise: Apple-vetted direct attached storage (DAS),

storage area network (SAN), etc.

• Synology: Storage appliances tailored to working

with the Mac

• Xsan: The built-in Apple SAN filesystem

 Troubleshooting, Repair, and Service Tools
Tools used to fix logical problems with hard drives, check hardware for

issues, repair various system problems, or just clean up a Mac:

• AppCleaner: Cleans up unneeded files on a Mac

• AppleJack: Repairs disks/permissions and cleans

cache/swap files from single- user mode when a Mac

can’t fully boot

• Bartender: Manages items in the menu bar on a Mac

• CleanMyDrive: Drags and drops files directly to any

drive, checks disk stats, and automatically cleans

hidden junk from external drives

• Data Rescue: Data recovery tool for Mac

• Disk Doctor: Repairs logical drives and cleans up

unneeded files

• DiskWarrior: Repairs logical volume

corruption on Macs

Appendix A The Apple ecosysTem

764

• Drive Genius: Automates monitoring for hard drive

errors, finds duplicate files, allows for repartition of

volumes, clones volumes, performs secure erase, and

defragmentation

• Disk Inventory X: Visual representation of what’s on a

logical volume in macOS

• EasyFind: Finds files, folders, or contents in any file

without indexing through Spotlight

• iStumbler: Wireless discovery tool for Mac that can

locate Wi-Fi networks, Bluetooth devices, and Bonjour

services and perform spectrum analysis

• GeekTool: Puts script output and logs directly on the

desktop of a Mac

• Google Plan B: Remediates Macs that fall out of a

given state by performing a secure download of disk

images and then putting the device into a management

platform

• GrandPerspective: Visual representation of what’s on a

logical volume in macOS

• Hardware Monitor: Reads hardware sensor

information on a Mac

• Lingon: Creates, manages, and deletes LaunchAgents

and LaunchDaemons on macOS

• Memtest OS X: Tests each RAM module in a Mac

• Nmap: Advanced port scanning, network mapping,

and network troubleshooting

• Peak Hour: Network performance, quality, and usage

monitoring

Appendix A The Apple ecosysTem

765

• OmniDiskSweeper: Finds and removes unused files in

macOS to conserve and reclaim disk space

• OnyX: Verifies the startup disk and structure of system

files, runs maintenance and cleaning tasks, configures

settings (e.g., for the Finder, Dock, Safari), deletes

caches, and rebuilds various databases and indexes

• Push Diagnostics: Tests port and host access for

APNs Traffic

• Stellar Phoenix: Mac data recovery tool

• TechTool Pro: Drive repair, RAM testing, and data

protection

• TinkerTool: Graphical interface for changing

preferences on a Mac that would otherwise need to be

managed with the defaults command

• Xirrus Wi-Fi Inspector: Searches for Wi-Fi networks,

conducts site surveys, troubleshoots Wi-Fi connectivity

issues, locates Wi-Fi devices, and detects rogue apps

 Virtualization and Emulation
Not all software runs on a Mac. Customers will have certain tasks that may

require a Windows machine. You can use Citrix or a Microsoft Terminal

Server to provide for that potential requirement. Or, especially if users

need data from their Windows apps when offline, you can use a local

virtualization tool.

• Anka veertu: Runs virtual machines on a Mac

• Citrix: Publishes Windows application sessions that

end users connect to from a Mac using standard

RDP clients

Appendix A The Apple ecosysTem

766

• Parallels: Runs virtual machines on a Mac

• Microsoft Windows Terminal Server: Publishes

Windows sessions that end users connect to from a

Mac using standard RDP clients

• UTM: Free virtual machine solution

• vFuse: Script to create a VMware Fusion VM from a

DMG that hasn’t been booted

• VirtualBox: Runs virtual machines on a Mac

• VMware Fusion: Runs virtual machines on a Mac

 Honorable Mention
• The MacAdmins Slack: Join a community of 15,000

other admins charged with managing large fleets of

Apple devices.

• Apple Developer Program: Sign up for a developer

account in order to get access to beta resources and

documentation not otherwise available.

• Your Apple SE or local retail store: A great resource for

finding information!

• Coffee… lots and lots of coffee

Appendix A The Apple ecosysTem

767

 APPENDIX B

Common Apple Ports
There are a number of ports used by Apple products. The following table

lists examples of commonly used ports, along with basic information

about the Apple services which use them. The following defines the

meaning of each column of the table:

• Port: The number of the port to be used (from 0

to 65535).

• TCP or UDP: Whether communications use the

Transport Control Protocol (TCP) or User Datagram

Protocol (UDP) communications protocol.

• Protocol: The stringified name of the protocol to

be used.

• RFC: The Internet Engineering Task Force

(IETF) document number used to define how

communications for the protocol flow. Check these to

make sure they haven’t been replaced with a newer

document.

• Purpose: What the protocol is meant to do.

Note some services will use more than one port.

© Charles Edge and Rich Trouton 2023
C. Edge and R. Trouton, Apple Device Management,
https://doi.org/10.1007/978-1-4842-9156-6

https://doi.org/10.1007/978-1-4842-9156-6

768

Po
rt

TC
P

or
 U

DP
Pr

ot
oc

ol
RF

C
Se

rv
ic

e
Na

m
e

Pu
rp

os
e

7
Tc

p/
Ud

p
ec

ho
79

2
ec

ho
–

20
Tc

p
Fi

le
 T

ra
ns

po
rt

pr
ot

oc
ol

 (F
Tp

)
95

9
ftp

-d
at

a
–

21
Tc

p
FT

p
co

nt
ro

l
95

9
ftp

–

22
Tc

p
se

cu
re

 s
he

ll
(s

sh
),

ss
h

Fi
le

Tr
an

sf
er

 p
ro

to
co

l (
sF

Tp
),

an
d

se
cu

re
 c

op
y

(s
cp

)

42
53

ss
h

xc
od

e
se

rv
er

 (h
os

te
d

an
d

re
m

ot
e

Gi
t+

ss
h;

 re
m

ot
e

sV
n+

ss
h)

23
Tc

p
Te

ln
et

85
4

te
ln

et
–

25
Tc

p
si

m
pl

e
m

ai
l T

ra
ns

fe
r p

ro
to

co
l

(s
m

Tp
)

53
21

sm
tp

m
ai

l (
se

nd
in

g
em

ai
l);

 ic
lo

ud
 m

ai
l

(s
en

di
ng

 e
m

ai
l)

53
Tc

p/
Ud

p
do

m
ai

n
na

m
e

sy
st

em
 (d

ns
)

10
34

do
m

ai
n

–

67
Ud

p
Bo

ot
st

ra
p

pr
ot

oc
ol

 s
er

ve
r

(B
oo

tp
, b

oo
tp

s)

95
1

Bo
ot

ps
ne

tB
oo

t v
ia

 d
hc

p

68
Ud

p
Bo

ot
st

ra
p

pr
ot

oc
ol

 c
lie

nt

(b
oo

tp
c)

95
1

Bo
ot

pc
ne

tB
oo

t v
ia

 d
hc

p

69
Ud

p
Tr

ivi
al

 F
ile

 Tr
an

sf
er

 p
ro

to
co

l (
TF

Tp
)

13
50

Tf
tp

–

79
Tc

p
Fi

ng
er

12
88

fin
ge

r
–

Appendix B common Apple poRTs

769

80
Tc

p
hy

pe
rte

xt
 T

ra
ns

fe
r p

ro
to

co
l

(h
TT

p)

26
16

ht
tp

W
or

ld
 W

id
e

W
eb

, F
ac

eT
im

e,

im
es

sa
ge

, i
cl

ou
d,

 Q
ui

ck
Ti

m
e

in
st

al
le

r,

m
ap

s,
 iT

un
es

 U
, A

pp
le

 m
us

ic
, i

Tu
ne

s

st
or

e,
 p

od
ca

st
s,

 in
te

rn
et

 R
ad

io
,

so
ftw

ar
e

Up
da

te
 (o

s
x

li
on

 o
r

ea
rli

er
),

m
ac

 A
pp

 s
to

re
, R

Ai
d

Ad
m

in
,

Ba
ck

up
, c

al
en

da
r,

W
eb

dA
V,

Fi
na

l

cu
t s

er
ve

r,
Ai

rp
la

y,
m

ac
os

 in
te

rn
et

Re
co

ve
ry

, p
ro

fil
e

m
an

ag
er

, x
co

de

se
rv

er
 (x

co
de

 a
pp

, h
os

te
d

an
d

re
m

ot
e

Gi
t h

TT
p,

re
m

ot
e

sV
n

hT
Tp

)

88
Tc

p
Ke

rb
er

os
41

20
ke

rb
er

os
Ke

rb
er

os
, i

nc
lu

di
ng

 s
cr

ee
n

sh
ar

in
g

au
th

en
tic

at
io

n

10
6

Tc
p

pa
ss

w
or

d
se

rv
er

–
3c

om
-t

sm
ux

m
ac

os
 s

er
ve

r p
as

sw
or

d
se

rv
er

(u
nr

eg
is

te
re

d
us

e)

11
0

Tc
p

po
st

 o
ffi

ce
 p

ro
to

co
l (

po
p3

)
19

39
po

p3
m

ai
l (

re
ce

iv
in

g
em

ai
l)

Au
th

en
tic

at
ed

 p
os

t o
ffi

ce

pr
ot

oc
ol

 (A
po

p)

(c
on

ti
n

u
ed

)

Appendix B common Apple poRTs

770

Po
rt

TC
P

or
 U

DP
Pr

ot
oc

ol
RF

C
Se

rv
ic

e
Na

m
e

Pu
rp

os
e

11
1

Tc
p/

Ud
p

Re
m

ot
e

pr
oc

ed
ur

e
ca

ll
(R

pc
)

10
57

,

18
31

su
nr

pc
po

rtm
ap

 (s
un

rp
c)

11
3

Tc
p

id
en

tif
ic

at
io

n
pr

ot
oc

ol
14

13
id

en
t

–

11
9

Tc
p

ne
tw

or
k

ne
w

s
Tr

an
sf

er

pr
ot

oc
ol

 (n
nT

p)

39
77

nn
tp

Ap
ps

 th
at

 re
ad

 n
ew

sg
ro

up
s

12
3

Ud
p

ne
tw

or
k

Ti
m

e
pr

ot
oc

ol
 (n

Tp
)

13
05

nt
p

da
te

 a
nd

 T
im

e
pr

ef
er

en
ce

s,
 n

et
w

or
k

tim
e

se
rv

er
 s

yn
ch

ro
ni

za
tio

n,
 A

pp
le

TV
 n

et
w

or
k

tim
e

se
rv

er
 s

yn
c

13
7

Ud
p

W
in

do
w

s
in

te
rn

et
 n

am
in

g

se
rv

ic
e

(W
in

s)

–
ne

tb
io

s-
ns

–

13
8

Ud
p

ne
tB

io
s

da
ta

gr
am

 s
er

vi
ce

–
ne

tb
io

s-
dg

m
W

in
do

w
s

da
ta

gr
am

 s
er

vi
ce

,

W
in

do
w

s
ne

tw
or

k
ne

ig
hb

or
ho

od

13
9

Tc
p

se
rv

er
 m

es
sa

ge
 B

lo
ck

 (s
m

B)
–

ne
tb

io
s-

ss
n

m
ic

ro
so

ft
W

in
do

w
s

fil
e

an
d

pr
in

t

se
rv

ic
es

, s
uc

h
as

 W
in

do
w

s
sh

ar
in

g

in
 m

ac
os

14
3

Tc
p

in
te

rn
et

 m
es

sa
ge

 A
cc

es
s

pr
ot

oc
ol

 (i
m

Ap
)

35
01

im
ap

m
ai

l (
re

ce
iv

in
g

em
ai

l)

Appendix B common Apple poRTs

771

16
1

Ud
p

si
m

pl
e

ne
tw

or
k

m
an

ag
em

en
t

pr
ot

oc
ol

 (s
nm

p)

11
57

sn
m

p
–

19
2

Ud
p

os
U

ne
tw

or
k

m
on

ito
rin

g

sy
st

em

–
os

u-
nm

s
Ai

rp
or

t B
as

e
st

at
io

n
pp

p
st

at
us

 o
r

di
sc

ov
er

y
(c

er
ta

in
 c

on
fig

ur
at

io
ns

),

Ai
rp

or
t A

dm
in

 U
til

ity
, A

irp
or

t e
xp

re
ss

As
si

st
an

t

31
1

Tc
p

se
cu

re
 s

er
ve

r a
dm

in
is

tra
tio

n
–

as
ip

-w
eb

ad
m

in
se

rv
er

 a
pp

, s
er

ve
r A

dm
in

,

W
or

kg
ro

up
 m

an
ag

er
, s

er
ve

r m
on

ito
r,

xs
an

 A
dm

in

31
2

Tc
p

xs
an

 a
dm

in
is

tra
tio

n
–

Vs
lm

p
xs

an
 A

dm
in

 (o
s

x
m

ou
nt

ai
n

li
on

v1
0.

8
an

d
la

te
r)

38
9

Tc
p

li
gh

tw
ei

gh
t d

ire
ct

or
y

Ac
ce

ss

pr
ot

oc
ol

 (l
dA

p)

45
11

ld
ap

Ap
ps

 th
at

 lo
ok

 u
p

ad
dr

es
se

s,
 s

uc
h

as
 m

ai
l a

nd
 A

dd
re

ss
 B

oo
k

42
7

Tc
p/

Ud
p

se
rv

ic
e

lo
ca

tio
n

pr
ot

oc
ol

 (s
lp

)
26

08
sv

rlo
c

ne
tw

or
k

Br
ow

se
r

(c
on

ti
n

u
ed

)

Appendix B common Apple poRTs

772

Po
rt

TC
P

or
 U

DP
Pr

ot
oc

ol
RF

C
Se

rv
ic

e
Na

m
e

Pu
rp

os
e

44
3

Tc
p

se
cu

re
 s

oc
ke

ts
 l

ay
er

 (s
sl

 o
r

hT
Tp

s)

28
18

ht
tp

s
Tl

s
w

eb
si

te
s,

 iT
un

es
 s

to
re

, s
of

tw
ar

e

Up
da

te
 (o

s
x

m
ou

nt
ai

n
li

on
 a

nd

la
te

r),
 s

po
tli

gh
t s

ug
ge

st
io

ns
, m

ac

Ap
p

st
or

e,
 m

ap
s,

 F
ac

eT
im

e,
 G

am
e

ce
nt

er
, i

cl
ou

d
au

th
en

tic
at

io
n

an
d

dA
V

se
rv

ic
es

 (c
on

ta
ct

s,
 c

al
en

da
rs

,

Bo
ok

m
ar

ks
),

ic
lo

ud
 b

ac
ku

p
an

d

ap
ps

 (c
al

en
da

rs
, c

on
ta

ct
s,

 F
in

d

m
y

ip
ho

ne
, F

in
d

m
y

Fr
ie

nd
s,

 m
ai

l,

im
es

sa
ge

, d
oc

um
en

ts
, a

nd
 p

ho
to

st
re

am
),

ic
lo

ud
 K

ey
 V

al
ue

 s
to

re

(K
Vs

),
ip

ho
to

 J
ou

rn
al

s,
 A

irp
la

y,

m
ac

os
 in

te
rn

et
 R

ec
ov

er
y,

pr
of

ile

m
an

ag
er

, B
ac

k
to

 m
y

m
ac

, d
ic

ta
tio

n,

si
ri,

 x
co

de
 s

er
ve

r (
ho

st
ed

 a
nd

re
m

ot
e

Gi
t h

TT
ps

, r
em

ot
e

sV
n

hT
Tp

s,
 A

pp
le

 d
ev

el
op

er
 re

gi
st

ra
tio

n)
,

pu
sh

 n
ot

ifi
ca

tio
ns

 (i
f n

ec
es

sa
ry

)

44
5

Tc
p

m
ic

ro
so

ft
sm

B
do

m
ai

n
se

rv
er

–
m

ic
ro

so
ft-

ds
–

Appendix B common Apple poRTs

773

(c
on

ti
n

u
ed

)

46
4

Tc
p/

Ud
p

Kp
as

sw
d

32
44

kp
as

sw
d

–

46
5

Tc
p

m
es

sa
ge

 s
ub

m
is

si
on

 fo
r m

ai
l

(A
ut

he
nt

ic
at

ed
 s

m
Tp

)

sm
tp

 (l
eg

ac
y)

m
ai

l (
se

nd
in

g
m

ai
l)

50
0

Ud
p

is
AK

m
p/

iK
e

24
08

is
ak

m
p

m
ac

os
 s

er
ve

r V
pn

 s
er

vi
ce

, B
ac

k
to

m
y

m
ac

50
0

Ud
p

W
i-F

i c
al

lin
g

59
96

iK
ev

2
W

i-F
i c

al
lin

g

51
4

Tc
p

sh
el

l
–

sh
el

l
–

51
4

Ud
p

sy
sl

og
–

sy
sl

og
–

51
5

Tc
p

li
ne

 p
rin

te
r (

lp
R)

, l
in

e
pr

in
te

r

da
em

on
 (l

pd
)

–
pr

in
te

r
pr

in
tin

g
to

 a
 n

et
w

or
k

pr
in

te
r,

pr
in

te
r

sh
ar

in
g

in
 m

ac
os

53
2

Tc
p

ne
tn

ew
s

–
ne

tn
ew

s
–

54
8

Tc
p

Ap
pl

e
Fi

lin
g

pr
ot

oc
ol

 (A
Fp

) o
ve

r

Tc
p

–
af

po
ve

rtc
p

Ap
pl

es
ha

re
, p

er
so

na
l F

ile
 s

ha
rin

g,

Ap
pl

e
Fi

le
 s

er
vi

ce

55
4

Tc
p/

Ud
p

Re
al

-T
im

e
st

re
am

in
g

pr
ot

oc
ol

(R
Ts

p)

23
26

Rt
sp

Ai
rp

la
y,

Qu
ic

kT
im

e
st

re
am

in
g

se
rv

er

(Q
Ts

s)
, s

tre
am

in
g

m
ed

ia
 p

la
ye

rs

58
7

Tc
p

m
es

sa
ge

 s
ub

m
is

si
on

 fo
r m

ai
l

(A
ut

he
nt

ic
at

ed
 s

m
Tp

)

44
09

su
bm

is
si

on
m

ai
l (

se
nd

in
g

m
ai

l),
 ic

lo
ud

 m
ai

l

(s
m

Tp
 a

ut
he

nt
ic

at
io

n)

Appendix B common Apple poRTs

774

Po
rt

TC
P

or
 U

DP
Pr

ot
oc

ol
RF

C
Se

rv
ic

e
Na

m
e

Pu
rp

os
e

60
0–

10
23

Tc
p/

Ud
p

m
ac

 o
s

x
Rp

c–
ba

se
d

se
rv

ic
es

–
ip

cs
er

ve
r

ne
tin

fo

62
3

Ud
p

li
gh

ts
-o

ut
 m

on
ito

rin
g

–
as

f-
rm

cp
li

gh
ts

-o
ut

 m
on

ito
rin

g
(l

om
) f

ea
tu

re

of
 in

te
l-b

as
ed

 x
se

rv
e

co
m

pu
te

rs
,

se
rv

er
 m

on
ito

r

62
5

Tc
p

op
en

 d
ire

ct
or

y
pr

ox
y

(o
dp

ro
xy

)

(u
nr

eg
is

te
re

d
us

e)

–
de

c_
dl

m
op

en
 d

ire
ct

or
y,

se
rv

er
 a

pp
,

W
or

kg
ro

up
 m

an
ag

er
; d

ire
ct

or
y

se
rv

ic
es

 in
 o

s
x

li
on

 o
r e

ar
lie

r

no
te

: T
hi

s
po

rt
is

 re
gi

st
er

ed
 to

 d
ec

dl
m

62
6

Tc
p

Ap
pl

es
ha

re
 im

ap
 A

dm
in

 (A
si

A)
–

As
ia

im
Ap

 a
dm

in
is

tra
tio

n
(m

ac
 o

s
x

se
rv

er
 v

10
.2

.8
 o

r e
ar

lie
r)

62
6

Ud
p

se
ria

ln
um

be
rd

 (u
nr

eg
is

te
re

d

us
e)

–
As

ia
se

rv
er

 s
er

ia
l n

um
be

r r
eg

is
tra

tio
n

(x
sa

n,
 m

ac
 o

s
x

se
rv

er
 v

10
.3

–

v1
0.

6)

63
1

Tc
p

in
te

rn
et

 p
rin

tin
g

pr
ot

oc
ol

 (i
pp

)
29

10
ip

p
m

ac
os

 p
rin

te
r s

ha
rin

g,
 p

rin
tin

g
to

m
an

y
co

m
m

on
 p

rin
te

rs

63
6

Tc
p

se
cu

re
 l

dA
p

–
ld

ap
s

–

Appendix B common Apple poRTs

775

(c
on

ti
n

u
ed

)

66
0

Tc
p

se
rv

er
 a

dm
in

is
tra

tio
n

–
m

ac
-s

rv
r-

 ad
m

in
se

rv
er

 a
dm

in
is

tra
tio

n
to

ol
s

fo
r

m
ac

 o
s

x
se

rv
er

 v
10

.4
 o

r e
ar

lie
r,

in
cl

ud
in

g
Ap

pl
es

ha
re

 ip

68
7

Tc
p

se
rv

er
 a

dm
in

is
tra

tio
n

–
as

ip
re

gi
st

ry
se

rv
er

 a
dm

in
is

tra
tio

n
to

ol
s

fo
r

m
ac

 o
s

x
se

rv
er

 v
10

.6
 o

r e
ar

lie
r,

in
cl

ud
in

g
Ap

pl
es

ha
re

 ip

74
9

Tc
p/

Ud
p

Ke
rb

er
os

 5
 a

dm
in

/c
ha

ng
ep

w
–

ke
rb

er
os

-a
dm

–

98
5

Tc
p

ne
tin

fo
 s

ta
tic

 p
or

t
–

–
–

99
3

Tc
p

m
ai

l i
m

Ap
 s

sl
–

im
ap

s
ic

lo
ud

 m
ai

l (
ss

l
im

Ap
)

99
5

Tc
p/

Ud
p

m
ai

l p
op

 s
sl

–
po

p3
s

–

10
85

Tc
p/

Ud
p

W
eb

ob
je

ct
s

–
w

eb
ob

je
ct

s
–

10
99

,

80
43

Tc
p

Re
m

ot
e

Rm
i a

nd
 ii

op
 A

cc
es

s
to

JB
os

s

–
rm

ire
gi

st
ry

–

12
20

Tc
p

QT
 s

er
ve

r A
dm

in
–

qt
-s

er
ve

ra
dm

in
Ad

m
in

is
tra

tio
n

of
 Q

ui
ck

Ti
m

e

st
re

am
in

g
se

rv
er

16
40

Tc
p

ce
rti

fic
at

e
en

ro
llm

en
t s

er
ve

r
–

ce
rt-

re
sp

on
de

r
pr

of
ile

 m
an

ag
er

 in
 m

ac
os

 s
er

ve
r

5.
2

an
d

ea
rli

er

Appendix B common Apple poRTs

776

Po
rt

TC
P

or
 U

DP
Pr

ot
oc

ol
RF

C
Se

rv
ic

e
Na

m
e

Pu
rp

os
e

16
49

Tc
p

ip
 F

ai
lo

ve
r

–
ke

rm
it

–

17
01

Ud
p

l2
Tp

–
l2

f
m

ac
os

 s
er

ve
r V

pn
 s

er
vi

ce

17
23

Tc
p

pp
Tp

–
pp

tp
m

ac
os

 s
er

ve
r V

pn
 s

er
vi

ce

19
00

Ud
p

ss
dp

–
ss

dp
Bo

nj
ou

r,
Ba

ck
 to

 m
y

m
ac

20
49

Tc
p/

Ud
p

ne
tw

or
k

Fi
le

 s
ys

te
m

 (n
Fs

)

(v
er

si
on

s
3

an
d

4)

35
30

nf
sd

–

21
95

Tc
p

Ap
pl

e
pu

sh
 n

ot
ifi

ca
tio

n
se

rv
ic

e

(A
pn

s)

–
–

pu
sh

 n
ot

ifi
ca

tio
ns

21
96

Tc
p

Ap
pl

e
pu

sh
 n

ot
ifi

ca
tio

n
se

rv
ic

e

(A
pn

s)

–
–

Fe
ed

ba
ck

 s
er

vi
ce

23
36

Tc
p

m
ob

ile
 a

cc
ou

nt
 s

yn
c

–
Ap

pl
eu

gc
on

tro
l

ho
m

e
di

re
ct

or
y

sy
nc

hr
on

iz
at

io
n

30
04

Tc
p

is
yn

c
–

cs
of

tra
ge

nt
–

30
31

Tc
p/

Ud
p

Re
m

ot
e

Ap
pl

e
ev

en
ts

–
ep

pc
pr

og
ra

m
 l

in
ki

ng
, R

em
ot

e
Ap

pl
e

ev
en

ts

32
83

Tc
p/

Ud
p

ne
t A

ss
is

ta
nt

–
ne

t-
as

si
st

an
t

Ap
pl

e
Re

m
ot

e
de

sk
to

p
2.

0
or

 la
te

r

(R
ep

or
tin

g
fe

at
ur

e)
, c

la
ss

ro
om

 a
pp

(c
om

m
an

d
ch

an
ne

l)

Appendix B common Apple poRTs

777

(c
on

ti
n

u
ed

)

32
84

Tc
p/

Ud
p

ne
t A

ss
is

ta
nt

–
ne

t-
as

si
st

an
t

cl
as

sr
oo

m
 a

pp
 (d

oc
um

en
t s

ha
rin

g)

33
06

Tc
p

m
ys

Ql
–

m
ys

ql
–

34
78

–

34
97

Ud
p

–
–

na
t-

st
un

-p
or

t -

ip
et

he
r2

32
po

rt

Fa
ce

Ti
m

e,
 G

am
e

ce
nt

er

36
32

Tc
p

di
st

rib
ut

ed
 c

om
pi

le
r

–
di

st
cc

–

36
59

Tc
p/

Ud
p

si
m

pl
e

Au
th

en
tic

at
io

n
an

d

se
cu

rit
y

la
ye

r (
sA

sl
)

–
ap

pl
e-

sa
sl

m
ac

os
 s

er
ve

r p
as

sw
or

d
se

rv
er

36
89

Tc
p

di
gi

ta
l A

ud
io

 A
cc

es
s

pr
ot

oc
ol

(d
AA

p)

–
da

ap
iT

un
es

 m
us

ic
 s

ha
rin

g,
 A

irp
la

y

36
90

Tc
p/

Ud
p

su
bv

er
si

on
–

sv
n

xc
od

e
se

rv
er

 (a
no

ny
m

ou
s

re
m

ot
e

sV
n)

41
11

Tc
p

xg
rid

–
xg

rid
–

43
98

Ud
p

–
–

–
Ga

m
e

ce
nt

er

44
88

Tc
p

Ap
pl

e
W

id
e

Ar
ea

 c
on

ne
ct

iv
ity

se
rv

ic
e

aw
ac

s-
ic

e
Ba

ck
 to

 m
y

m
ac

45
00

Ud
p

ip
se

c
nA

T
Tr

av
er

sa
l

43
06

ip
se

c-
m

sf
t

m
ac

os
 s

er
ve

r V
pn

 s
er

vi
ce

, B
ac

k
to

m
y

m
ac

Appendix B common Apple poRTs

778

Po
rt

TC
P

or
 U

DP
Pr

ot
oc

ol
RF

C
Se

rv
ic

e
Na

m
e

Pu
rp

os
e

no
te

: c
on

fig
ur

in
g

Ba
ck

 to
 m

y
m

ac

on
 a

n
Ai

rp
or

t B
as

e
st

at
io

n
or

 A
irp

or
t

Ti
m

e
ca

ps
ul

e
in

 n
AT

 m
od

e
im

pe
de

s

co
nn

ec
tiv

ity
 to

 a
 m

ac
os

 s
er

ve
r V

pn

se
rv

ic
e

be
hi

nd
 th

at
 n

AT

45
00

Ud
p

W
i-F

i c
al

lin
g

59
96

iK
ev

2
W

i-F
i c

al
lin

g

50
03

Tc
p

Fi
le

m
ak

er
 –

 n
am

e
bi

nd
in

g
an

d

tra
ns

po
rt

–
fm

pr
o-

in
te

rn
al

–

50
09

Tc
p

(u
nr

eg
is

te
re

d
us

e)
–

w
in

fs
Ai

rp
or

t U
til

ity
, A

irp
or

t e
xp

re
ss

As
si

st
an

t

51
00

Tc
p

–
–

so
ca

lia
m

ac
os

 c
am

er
a

an
d

sc
an

ne
r s

ha
rin

g

52
22

Tc
p

xm
pp

 (J
ab

be
r)

39
20

ja
bb

er
-c

lie
nt

Ja
bb

er
 m

es
sa

ge
s

52
23

Tc
p

Ap
pl

e
pu

sh
 n

ot
ifi

ca
tio

n
se

rv
ic

e

(A
pn

s)

–
–

ic
lo

ud
 d

AV
 s

er
vi

ce
s

(c
on

ta
ct

s,

ca
le

nd
ar

s,
 B

oo
km

ar
ks

),
pu

sh

no
tif

ic
at

io
ns

, F
ac

eT
im

e,
 im

es
sa

ge
,

Ga
m

e
ce

nt
er

, p
ho

to
 s

tre
am

, B
ac

k
to

m
y

m
ac

52
28

Tc
p

–
–

–
sp

ot
lig

ht
 s

ug
ge

st
io

ns
, s

iri

52
97

Tc
p

–
–

–
m

es
sa

ge
s

(lo
ca

l t
ra

ffi
c)

Appendix B common Apple poRTs

779

(c
on

ti
n

u
ed

)

53
50

Ud
p

nA
T

po
rt

m
ap

pi
ng

 p
ro

to
co

l

An
no

un
ce

m
en

ts

–
–

Bo
nj

ou
r,

Ba
ck

 to
 m

y
m

ac

53
51

Ud
p

nA
T

po
rt

m
ap

pi
ng

 p
ro

to
co

l
–

na
t-

pm
p

Bo
nj

ou
r,

Ba
ck

 to
 m

y
m

ac

53
53

Ud
p

m
ul

tic
as

t d
ns

 (m
dn

s)
39

27
m

dn
s

Bo
nj

ou
r,

Ai
rp

la
y,

ho
m

e
sh

ar
in

g,

pr
in

te
r d

is
co

ve
ry

, B
ac

k
to

 m
y

m
ac

54
32

Tc
p

po
st

gr
es

Ql
–

po
st

gr
es

ql
ca

n
be

 e
na

bl
ed

 m
an

ua
lly

 in
 o

s
x

li
on

 s
er

ve
r (

pr
ev

io
us

ly
 e

na
bl

ed
 b

y

de
fa

ul
t f

or
 A

Rd
 2

.0
 d

at
ab

as
e)

58
97

–

58
98

Ud
p

(u
nr

eg
is

te
re

d
us

e)
–

–
xr

di
ag

s

59
00

Tc
p

Vi
rtu

al
 n

et
w

or
k

co
m

pu
tin

g

(V
nc

)

–
vn

c-
se

rv
er

Ap
pl

e
Re

m
ot

e
de

sk
to

p
2.

0
or

 la
te

r

(o
bs

er
ve

/c
on

tro
l f

ea
tu

re
)

(u
nr

eg
is

te
re

d
us

e)
sc

re
en

 s
ha

rin
g

(m
ac

 o
s

x
10

.5
 o

r

la
te

r)

59
88

Tc
p

W
Be

m
 h

TT
p

–
w

be
m

-h
ttp

Ap
pl

e
Re

m
ot

e
de

sk
to

p
2.

x

no
te

: F
or

 m
or

e
in

fo
rm

at
io

n,

pl
ea

se
 a

ls
o

se
e
ww
w.
dm
tf
.o
rg
/

st
an
da
rd
s/
wb
em

Appendix B common Apple poRTs

http://www.dmtf.org/standards/wbem
http://www.dmtf.org/standards/wbem

780

Po
rt

TC
P

or
 U

DP
Pr

ot
oc

ol
RF

C
Se

rv
ic

e
Na

m
e

Pu
rp

os
e

69
70

–

99
99

Ud
p

–
–

–
Qu

ic
kT

im
e

st
re

am
in

g
se

rv
er

70
70

Tc
p

RT
sp

 (u
nr

eg
is

te
re

d
us

e)
,

Au
to

m
at

ic
 R

ou
te

r c
on

fig
ur

at
io

n

pr
ot

oc
ol

 (A
Rc

p)

–
Ar

cp
Qu

ic
kT

im
e

st
re

am
in

g
se

rv
er

 (R
Ts

p)

70
70

Ud
p

RT
sp

 a
lte

rn
at

e
–

Ar
cp

Qu
ic

kT
im

e
st

re
am

in
g

se
rv

er

80
00

–

89
99

Tc
p

–
–

ird
m

i
W

eb
 s

er
vi

ce
, i

Tu
ne

s
Ra

di
o

st
re

am
s

80
05

Tc
p

To
m

ca
t r

em
ot

e
sh

ut
do

w
n

–
–

–

80
08

Tc
p

ic
al

 s
er

vi
ce

–
ht

tp
-a

lt
m

ac
 o

s
x

se
rv

er
 v

10
.5

 o
r l

at
er

80
80

Tc
p

Al
te

rn
at

e
po

rt
fo

r A
pa

ch
e

w
eb

se
rv

ic
e

–
ht

tp
-a

lt
Al

so
 J

Bo
ss

 h
TT

p
in

 m
ac

 o
s

x

se
rv

er
 1

0.
4

or
 e

ar
lie

r

80
85

–

80
87

Tc
p

W
ik

i s
er

vi
ce

–
–

m
ac

 o
s

x
se

rv
er

 v
10

.5
 o

r l
at

er

80
88

Tc
p

so
ftw

ar
e

Up
da

te
 s

er
vi

ce
–

ra
da

n-
ht

tp
m

ac
 o

s
x

se
rv

er
 v

10
.4

 o
r l

at
er

80
89

Tc
p

W
eb

 e
m

ai
l r

ul
es

–
–

m
ac

 o
s

x
se

rv
er

 v
10

.6
 o

r l
at

er

80
96

Tc
p

W
eb

 p
as

sw
or

d
Re

se
t

–
–

m
ac

 o
s

x
se

rv
er

 v
10

.6
.3

 o
r l

at
er

81
70

Tc
p

hT
Tp

s
(w

eb
 s

er
vi

ce
/s

ite
)

–
–

po
dc

as
t c

ap
tu

re
/p

od
ca

st
 c

li

Appendix B common Apple poRTs

781

(c
on

ti
n

u
ed

)

81
71

Tc
p

hT
Tp

 (w
eb

 s
er

vi
ce

/s
ite

)
–

–
po

dc
as

t c
ap

tu
re

/p
od

ca
st

 c
li

81
75

Tc
p

pc
as

t T
un

ne
l

–
–

pc
as

ta
ge

nt
d

(s
uc

h
as

 fo
r c

on
tro

l

op
er

at
io

ns
 a

nd
 c

am
er

a)

84
43

Tc
p

ic
al

 s
er

vi
ce

 (s
sl

)
–

pc
sy

nc
-h

ttp
s

m
ac

 o
s

x
se

rv
er

 v
10

.5
 o

r l
at

er

(J
Bo

ss
 h

TT
ps

 in
 m

ac
 o

s
x

se
rv

er

10
.4

 o
r e

ar
lie

r)

88
00

Tc
p

Ad
dr

es
s

Bo
ok

 s
er

vi
ce

–
su

nw
eb

ad
m

in
m

ac
 o

s
x

se
rv

er
 v

10
.6

 o
r l

at
er

88
43

Tc
p

Ad
dr

es
s

Bo
ok

 s
er

vi
ce

 (s
sl

)
–

–
m

ac
 o

s
x

se
rv

er
 v

10
.6

 o
r l

at
er

88
21

,

88
26

Tc
p

st
or

ed
–

–
Fi

na
l c

ut
 s

er
ve

r

88
91

Tc
p

ld
sd

–
–

Fi
na

l c
ut

 s
er

ve
r (

da
ta

 tr
an

sf
er

s)

90
06

Tc
p

To
m

ca
t s

ta
nd

-a
lo

ne
–

–
m

ac
 o

s
x

se
rv

er
 v

10
.6

 o
r e

ar
lie

r

91
00

Tc
p

pr
in

tin
g

–
–

pr
in

tin
g

to
 c

er
ta

in
 n

et
w

or
k

pr
in

te
rs

94
18

Tc
p/

Ud
p

gi
t p

ac
k

tra
ns

fe
r

–
Gi

t
xc

od
e

se
rv

er
 (r

em
ot

e
gi

t)

10
54

8
Tc

p
Ap

pl
e

do
cu

m
en

t s
ha

rin
g

se
rv

ic
e

–
se

rv
er

do
cs

m
ac

os
 s

er
ve

r i
os

 fi
le

 s
ha

rin
g

11
21

1
–

m
em

ca
ch

ed
 (u

nr
eg

is
te

re
d

us
e)

–
–

ca
le

nd
ar

 s
er

ve
r

Appendix B common Apple poRTs

782

Po
rt

TC
P

or
 U

DP
Pr

ot
oc

ol
RF

C
Se

rv
ic

e
Na

m
e

Pu
rp

os
e

16
08

0
Tc

p
–

–
–

W
eb

 s
er

vi
ce

 w
ith

 p
er

fo
rm

an
ce

ca
ch

e

16
38

4–

16
40

3

Ud
p

Re
al

-T
im

e
Tr

an
sp

or
t p

ro
to

co
l

(R
Tp

),
Re

al
-T

im
e

co
nt

ro
l

pr
ot

oc
ol

 (R
Tc

p)

–
co

nn
ec

te
d,

 –
m

es
sa

ge
s

(A
ud

io
 R

Tp
, R

Tc
p;

 V
id

eo

RT
p,

RT
cp

)

16
38

4–

16
38

7

Ud
p

Re
al

-T
im

e
Tr

an
sp

or
t p

ro
to

co
l

(R
Tp

),
Re

al
-T

im
e

co
nt

ro
l

pr
ot

oc
ol

 (R
Tc

p)

–
co

nn
ec

te
d,

 –
Fa

ce
Ti

m
e,

 G
am

e
ce

nt
er

16
39

3–

16
40

2

Ud
p

Re
al

-T
im

e
Tr

an
sp

or
t p

ro
to

co
l

(R
Tp

),
Re

al
-T

im
e

co
nt

ro
l

pr
ot

oc
ol

 (R
Tc

p)

–
–

Fa
ce

Ti
m

e,
 G

am
e

ce
nt

er

16
40

3–

16
47

2

Ud
p

Re
al

-T
im

e
Tr

an
sp

or
t p

ro
to

co
l

(R
Tp

),
Re

al
-T

im
e

co
nt

ro
l

pr
ot

oc
ol

 (R
Tc

p)

–
–

Ga
m

e
ce

nt
er

24
00

0–

24
99

9

Tc
p

–
–

m
ed

-lt
p

W
eb

 s
er

vi
ce

 w
ith

 p
er

fo
rm

an
ce

ca
ch

e

50
00

3
–

Fi
le

m
ak

er
 s

er
ve

r s
er

vi
ce

–
–

–

50
00

6
–

Fi
le

m
ak

er
 h

el
pe

r s
er

vi
ce

–
–

–

Appendix B common Apple poRTs

783

 APPENDIX C

Configure macOS
Lab Virtual Machines
with UTM
One of the most helpful tools to learn how to manage systems is to create

virtual machines that can be freely experimented with while learning a

new tool. This keeps the operating system of our “daily driver” or normal

computer free and helps keep us from traveling around with three or four

laptops to test how to use new technologies.

New virtualization tools come around every few years. Traditionally,

Parallels, VMware Fusion, and a few others were the traditional favorites

to use. Indeed, these still have the most options to tweak various settings.

However, where many once used virtual machines on a Mac to run

services full time, virtualization on the platform has now been relegated

mostly to testing. As such, an inexpensive and fast tool that uses the latest

frameworks from Apple is just as good as most others.

UTM is a virtualization tool available on the Mac App Store at https://

apps.apple.com/us/app/utm-virtual-machines/id1538878817?mt=12

with a GitHub at https://github.com/osy. UTM uses the new

virtualization framework (documented here) from Apple, so runs the most

modern virtualization stack currently available on a Mac. It also emulates

© Charles Edge and Rich Trouton 2023
C. Edge and R. Trouton, Apple Device Management,
https://doi.org/10.1007/978-1-4842-9156-6

https://doi.org/10.1007/978-1-4842-9156-6
https://apps.apple.com/us/app/utm-virtual-machines/id1538878817?mt=12
https://apps.apple.com/us/app/utm-virtual-machines/id1538878817?mt=12
https://github.com/osy

784

via the QEMU system emulation. It can run guest operating systems in

Windows, Linux, etc. – emulating RISC, ARM, Intel, etc.

Installation of UTM from the App Store is easy. Once installed, open

the UTM app and click the plus sign to create a new virtual machine. Here,

there are options to Virtualize or Emulate. Given that we’ll be installing a

beta OS from Apple for this example (which for major OS releases or point

releases is a fairly constant task at this point), we’ll click Virtualize, as seen

in Figure C-1.

Figure C-1. The opening screen for UTM

The list of operating systems will reflect those that can be run as virtual

machines with the current architecture. For a Mac running macOS 12, 13,

etc., this will be the first option, so click there (Figure C-2).

Appendix c conFiGURe mAcos lAB ViRTUAl mAchines WiTh UTm

785

Figure C-2. Selecting an operating system

The next screen gives the option to either install the OS the host

operating system is running or a different version of macOS via an IPSW

(which is downloaded from Apple’s Developer portal). Either click

Continue, as seen in Figure C-3, for the same OS or click Browse and select

the IPSW obtained from the Apple Developer portal.

Appendix c conFiGURe mAcos lAB ViRTUAl mAchines WiTh UTm

786

Figure C-3. Select the IPSW (if needed)

Once the IPSW is selected, choose the virtual hardware to allocate to

the virtual machine. The defaults for Memory and how many CPU Cores

should be fine for an initial experiment (and these can be changed later).

Indeed, for most testing, the defaults will be more than enough to test

functionality, especially with regard to hardware configurations. Click

Continue, as in Figure C-4, once the settings are appropriately configured.

Appendix c conFiGURe mAcos lAB ViRTUAl mAchines WiTh UTm

787

Figure C-4. Configure how much Memory and how many CPU Cores

The next screen decides how much space the virtual machine will

occupy. This pulls the capacity from the available hard drive space for a

machine. 64GB is a fine amount to start with (Figure C-5), but go below 32

and there may be some issues.

Appendix c conFiGURe mAcos lAB ViRTUAl mAchines WiTh UTm

788

Figure C-5. Select how much storage for the VM

Review the information in the Summary screen, as seen in Figure C-6,

and click Save to start creating the new virtual machine. Make sure the

IPSW is the one to create the specific OS desired.

Appendix c conFiGURe mAcos lAB ViRTUAl mAchines WiTh UTm

789

Figure C-6. The Summary screen

Once the VM has been created, select it in the left sidebar to see more

settings available and click the icon in the upper-right corner to change

any settings. The first option is the Information screen (Figure C-7), which

just includes some information (I like to put the date I created a VM and a

version number (or other naming schemes) in the Notes box).

Appendix c conFiGURe mAcos lAB ViRTUAl mAchines WiTh UTm

790

Figure C-7. Settings for the VM

The System option is where cores can be edited and memory added.

Again, we wouldn’t recommend below 4096 memory (see Figure C-8) for

most uses.

Appendix c conFiGURe mAcos lAB ViRTUAl mAchines WiTh UTm

791

Figure C-8. Edit the System CPU and Memory settings as needed

The Boot tab (Figure C-9) provides an option to name the guest OS

(what is seen in UTM) and change the IPSW (best to just start a new guest

OS though).

Appendix c conFiGURe mAcos lAB ViRTUAl mAchines WiTh UTm

792

Figure C-9. Change IPSW settings as needed

The Display option controls the graphics. This usually works well with

the default settings, but can be improved if needed (Figure C-10). This can

be helpful when moving a VM to a computer with a different display.

Appendix c conFiGURe mAcos lAB ViRTUAl mAchines WiTh UTm

793

Figure C-10. Change graphics information as needed

The Network screen shows the MAC address of the VM and provides

options to communicate. The Shared option (Figure C-11) allows the guest

and host operating systems to access the network interface and so work

well. For dedicated services, consider the Bridged setting for performance

purposes.

Appendix c conFiGURe mAcos lAB ViRTUAl mAchines WiTh UTm

794

Figure C-11. Edit the MAC address and network information

The next options create image files for the VMs. If deleting one, use

the Delete Drive option, or to add an additional volume into /Volumes,

use the New Drive button. Keep in mind these are image files, so don’t

overcommit how much storage is available to boot the host OS and have a

useful machine when not using VMs. Double-click the VM, and it should

fire up and allow a user to run the startup process(es) and eventually log

in, as seen in Figure C-12.

Appendix c conFiGURe mAcos lAB ViRTUAl mAchines WiTh UTm

795

Figure C-12. The VM then opens as needed (and can be paused from
the top row of icons)

In general, UTM is now one of those apps that should probably be a

part of every Mac Admins toolbelt. It’s great to have some more granular

features with a VMware or a Parallels, but the ease of use and speed of

UTM is unparalleled, which is impressive given it’s so inexpensive. Further,

there’s a gallery of other interesting guest operating systems, like Mac OS

9.2.1! That’s available at https://mac.getutm.app/gallery/.

The VMs can then be deleted or more created as new versions of

operating systems come available.

Appendix c conFiGURe mAcos lAB ViRTUAl mAchines WiTh UTm

https://mac.getutm.app/gallery/

797

 APPENDIX D

Conferences, Helpful
Mac Admins, and User
Groups
A number of Mac admins are the only ones handling Apple devices in

their particular company, school, or institution. If this is you, you are not

alone. There are a number of conferences and user groups where you can

get together with your colleagues and collectively solve your individual

problems.

Conferences
ACES Conference
When: Summer

Where: United States

Link: https://acesconf.com/

Focus: Business-focused conference for Apple consultants

Why go?: If you are an Apple consultant looking to start or build your

business, this conference provides great opportunities for networking and

learning new ways to grow your company.

Addigy Summit
When: Winter

Where: United States

Link:

© Charles Edge and Rich Trouton 2023
C. Edge and R. Trouton, Apple Device Management,
https://doi.org/10.1007/978-1-4842-9156-6

 www.addigy.com/summit

https://doi.org/10.1007/978-1-4842-9156-6
https://acesconf.com/
http://www.addigy.com/summit

798

Focus: Mac admins who use Addigy for endpoint management

Why go?: If you’re a Mac admin who uses Addigy, this vendor

conference provides Addigy users with an opportunity to learn the latest

ways to use this endpoint management tool to manage their Macs.

Command-IT
When: Winter

Where: France

Link: www.command-it.fr

Focus: Francophone Mac admins

Why go?: If you’re a Mac admin whose first language is French, this

conference speaks your language and covers the latest techniques in Mac

administration.

Jamf Nation User Conference
When: Fall

Where: San Diego, California, United States

Link: www.jamf.com/events/jamf-nation-user-conference/

Focus: Mac admins who use Jamf Software’s Jamf Pro or Jamf Now for

endpoint management

Why go?: If you’re a Mac admin who uses Jamf Pro or Jamf Now, this

vendor conference provides Jamf users with an opportunity to learn the

latest ways to use this endpoint management tool to manage their Macs.

Jamf Nation Roadshows
When: Various times

Where: Various countries

Link: www.jamf.com/events/

Focus: Mac admins who use Jamf Software’s Jamf Pro or Jamf Now for

endpoint management

Why go?: If you’re a Mac admin who wants to go to Jamf Nation

User Conference but can’t go for various reasons, Jamf has a traveling

conference that may be able to come to you.

Mac Admin and Developer Conference UK (MacADUK)
When: Winter

Appendix d conFeRences, helpFUl mAc Admins, And UseR GRoUps

http://www.command-it.fr
http://www.jamf.com/events/jamf-nation-user-conference/
http://www.jamf.com/events/

799

Where: London, England, United Kingdom

Link: https://macad.uk/

Focus: Conference for Mac admins and Apple developers

Why go?: If you’re a Mac admin based in the United Kingdom, this

conference covers the latest techniques in Mac administration and

development techniques.

Mac AdminsUA
When: Summer

Where: Kyiv, Ukraine

Link: https://macadmins.org.ua/

Focus: Conference for Mac admins

Why go?: If you’re a Mac admin based in Eastern Europe or Ukraine,

this conference provides a variety of sessions for managing your

Apple fleet.

MacDevOps YVR
When: Summer

Where: Vancouver, British Columbia, Canada

Link: https://mdoyvr.com/

Focus: Conference for Mac admins

Why go?: If you’re a Mac admin who is interested in systems

automation and DevOps, this conference provides a variety of sessions

focused on those topics and how to apply them in a Mac- centric

environment.

MacDeployment
When: Summer

Where: Calgary, Alberta, Canada

Link: https://macdeployment.ca/

Focus: Conference for Mac admins

Why go?: If you’re a Mac admin based in Canada, this community-

focused conference offers sessions on the current best practices

for deploying and maintaining Macs in education and enterprise

environments.

Appendix d conFeRences, helpFUl mAc Admins, And UseR GRoUps

https://macad.uk/
https://macadmins.org.ua/
https://mdoyvr.com/
https://macdeployment.ca/

800

MacSysAdmin
When: Fall

Where: Göteborg, Sweden

Link: https://macsysadmin.se/

Focus: Conference for Mac admins

Why go?: If you’re a Mac admin based in Europe, this conference

covers the latest techniques in Mac administration from a global

perspective.

Objective by the Sea
When: Fall

Where: Conference location changes annually

Link: https://objectivebythesea.com

Focus: Conference for Apple security and digital forensics

Why go?: If your focus is security or digital forensics in an Apple-

centric environment, this conference offers a variety of sessions focused on

the challenges of securing macOS and iOS.

Penn State MacAdmins Conference
When: Summer

Where: State College, Pennsylvania, United States

Link: https://macadmins.psu.edu/

Focus: Conference for Apple security and digital forensics

Why go?: If your focus is supporting Macs or iOS in education or

enterprise environments, this conference offers a wide variety of sessions

given by both vendors and community speakers.

Apple Worldwide Developers Conference
When: Summer

Where: San Jose, California, United States

Link: https://developer.apple.com/wwdc/

Focus: Conference for Apple development

Why go?: If your focus is developing software for Macs or iOS, this

conference is your very best opportunity to learn the latest techniques and

speak directly with Apple engineers and developers.

Appendix d conFeRences, helpFUl mAc Admins, And UseR GRoUps

https://macsysadmin.se/
https://objectivebythesea.com
https://macadmins.psu.edu/
https://developer.apple.com/wwdc/

801

X World
When: Summer

Where: Sydney, New South Wales, Australia

Link: https://auc.edu.au/xworld/

Focus: Conference for Mac admins

Why go?: If you’re a Mac admin based in Australia, this community-

focused conference offers sessions on the latest techniques in Mac

administration and development techniques.

Helpful Mac Admins
Allister Banks

Blog: www.aru-b.com

GitHub: https://github.com/arubdesu

Adam Codega

Blog: www.adamcodega.com/

Andrew Seago

GitHub: https://github.com/andrewseago

Andrina Kelly

GitHub: https://github.com/andrina

Ben Goodstein

GitHub: https://github.com/fuzzylogiq

Ben Toms

Blog: https://macmule.com/

GitHub: https://github.com/macmule

Bill Smith

Blog: https://talkingmoose.net/

GitHub: https://github.com/talkingmoose

Brandon Kurtz

Blog: https://bkurtz.io/

GitHub: https://github.com/discentem

Bryson Tyrrell

Blog: https://bryson3gps.wordpress.com/

GitHub: https://github.com/brysontyrrell

Appendix d conFeRences, helpFUl mAc Admins, And UseR GRoUps

https://auc.edu.au/xworld/
http://www.aru-b.com
https://github.com/arubdesu
http://www.adamcodega.com/
https://github.com/andrewseago
https://github.com/andrina
https://github.com/fuzzylogiq
https://macmule.com/
https://github.com/macmule
https://talkingmoose.net/
https://github.com/talkingmoose
https://bkurtz.io/
https://github.com/discentem
https://bryson3gps.wordpress.com/
https://github.com/brysontyrrell

802

Calum Hunter

Blog: https://themacwrangler.wordpress.com/

GitHub: https://github.com/calum-hunter

Clayton Burlison

Blog: https://clburlison.com/

GitHub: https://github.com/clburlison

Darren Wallace

Blog: https://dazwallace.wordpress.com/

GitHub: https://github.com/Daz-wallace

Ed Marczak

Blog: www.radiotope.com/

GitHub: https://github.com/marczak

Emily Kausalik-Whittle

Blog: www.modtitan.com/

GitHub: https://github.com/smashism

Eric Holtam

Blog: https://osxbytes.wordpress.com/

GitHub: https://github.com/poundbangbash

Erik Gomez

Blog: https://blog.eriknicolasgomez.com

GitHub: https://github.com/erikng

Graham Gilbert

Blog: https://grahamgilbert.com/

GitHub: https://github.com/grahamgilbert

Graham Pugh

Blog: https://grpugh.wordpress.com/

GitHub: https://github.com/grahampugh

Greg Neagle

Blog: https://managingosx.wordpress.com/

GitHub: https://github.com/gregneagle

Hannes Juutilainen

GitHub: https://github.com/hjuutilainen

Appendix d conFeRences, helpFUl mAc Admins, And UseR GRoUps

https://themacwrangler.wordpress.com/
https://github.com/calum-hunter
https://clburlison.com/
https://github.com/clburlison
https://dazwallace.wordpress.com/
https://github.com/Daz-wallace
http://www.radiotope.com/
https://github.com/marczak
http://www.modtitan.com/
https://github.com/smashism
https://osxbytes.wordpress.com/
https://github.com/poundbangbash
https://blog.eriknicolasgomez.com
https://github.com/erikng
https://grahamgilbert.com/
https://github.com/grahamgilbert
https://grpugh.wordpress.com/
https://github.com/grahampugh
https://managingosx.wordpress.com/
https://github.com/gregneagle
https://github.com/hjuutilainen

803

Howard Oakley

Blog: https://eclecticlight.co

Jeremy Reichman

Blog: www.jaharmi.com/

GitHub: https://github.com/jaharmi

John Kitzmiller

GitHub: https://github.com/kitzy

Joseph Chilcote

GitHub: https://github.com/chilcote

Karl Kuehn

Blog: https://wranglingmacs.blogspot.com/

GitHub: https://github.com/larkost

Michael Lynn

GitHub: https://github.com/pudquick

Mike Solin

Blog: https://mikesolin.com/

GitHub: https://github.com/flammable

Matthew Warren

Blog: https://macblog.org/

GitHub: https://github.com/haircut

Neil Martin

Blog: https://soundmacguy.wordpress.com/

GitHub: https://github.com/neilmartin83

Nick McSpadden

Blog: https://osxdominion.wordpress.com/

GitHub: https://github.com/nmcspadden

Patrick Fergus

Blog: https://foigus.wordpress.com/

GitHub: https://github.com/foigus

Pepijn Bruienne

Blog: https://enterprisemac.bruienne.com/

GitHub: https://github.com/bruienne

Appendix d conFeRences, helpFUl mAc Admins, And UseR GRoUps

https://eclecticlight.co
http://www.jaharmi.com/
https://github.com/jaharmi
https://github.com/kitzy
https://github.com/chilcote
https://wranglingmacs.blogspot.com/
https://github.com/larkost
https://github.com/pudquick
https://mikesolin.com/
https://github.com/flammable
https://macblog.org/
https://github.com/haircut
https://soundmacguy.wordpress.com/
https://github.com/neilmartin83
https://osxdominion.wordpress.com/
https://github.com/nmcspadden
https://foigus.wordpress.com/
https://github.com/foigus
https://enterprisemac.bruienne.com/
https://github.com/bruienne

804

Per Olofsson

Blog: https://magervalp.github.io/

GitHub: https://github.com/magervalp

Randy Saeks

Blog: www.rsaeks.com/

GitHub: https://github.com/rsaeks

Rich Trouton

Blog: https://derflounder.wordpress.com/

GitHub: https://github.com/rtrouton

Richard Purves

Blog: www.richard-purves.com/

GitHub: https://github.com/franton

Ryan (Last Name Not Public)

Blog: https://mrmacintosh.com

Samantha Demi

Blog: https://pewpewthespells.com/

GitHub: https://github.com/samdmarshall

Sean Kaiser

Blog: https://seankaiser.com/

GitHub: https://github.com/seankaiser

Shea Craig

GitHub: https://github.com/sheagcraig

Stéphane Sudre

Blog: http://s.sudre.free.fr/

GitHub: https://github.com/packagesdev

Steve Yuroff

Blog: https://swytechnotes.wordpress.com/

GitHub: https://github.com/swy

Tim Perfitt

Blog: https://twocanoes.com/blog/

GitHub: https://github.com/tperfitt

Tim Sutton

Appendix d conFeRences, helpFUl mAc Admins, And UseR GRoUps

https://magervalp.github.io/
https://github.com/magervalp
http://www.rsaeks.com/
https://github.com/rsaeks
https://derflounder.wordpress.com/
https://github.com/rtrouton
http://www.richard-purves.com/
https://github.com/franton
https://mrmacintosh.com
https://pewpewthespells.com/
https://github.com/samdmarshall
https://seankaiser.com/
https://github.com/seankaiser
https://github.com/sheagcraig
http://s.sudre.free.fr/
https://github.com/packagesdev
https://swytechnotes.wordpress.com/
https://github.com/swy
https://twocanoes.com/blog/
https://github.com/tperfitt

805

Blog: https://macops.ca/

GitHub: https://github.com/timsutton

Tom Bridge

Blog: https://tombridge.com/

GitHub: https://github.com/tbridge

Victor Vrantchan

Blog: https://groob.io/

GitHub: https://github.com/groob

Yoann Gini

Blog: www.abelionni.com/

GitHub: https://github.com/ygini

User Groups and Meetups
Austin Apple Admins

Where: Austin, Texas, United States

Link: www.austinappleadmins.org

London Apple Admins

Where: London, England, United Kingdom

Link: https://londonappleadmins.org.uk/

MacAdmin Monthly

Where: New York, New York, United States

Link: www.macadminmonthly.org/

MacDMV

Where: Washington, District of Columbia, United States

Link: www.macdmv.com/

Philly Apple Admins

Where: Philadelphia, Pennsylvania, United States

Link: https://phillymacadmins.com

Apple Admins of Seattle and the Great Northwest

Where: Seattle, Washington, United States

Link: www.meetup.com/Seattle-Apple-Admins/

Sydney Mac Admins Meetup

Appendix d conFeRences, helpFUl mAc Admins, And UseR GRoUps

https://macops.ca/
https://github.com/timsutton
https://tombridge.com/
https://github.com/tbridge
https://groob.io/
https://github.com/groob
http://www.abelionni.com/
https://github.com/ygini
http://www.austinappleadmins.org
https://londonappleadmins.org.uk/
http://www.macadminmonthly.org/
http://www.macdmv.com/
https://phillymacadmins.com
http://www.meetup.com/Seattle-Apple-Admins/

806

Where: Sydney, New South Wales, Australia

Link: www.meetup.com/Sydney-Mac-Admins/

Twin Cities Mac Admins Group

Where: Minneapolis, Minnesota, United States

Link: www.mspmacadmins.org/

Appendix d conFeRences, helpFUl mAc Admins, And UseR GRoUps

http://www.meetup.com/Sydney-Mac-Admins/
http://www.mspmacadmins.org/

807

 APPENDIX E

Set Up a Test Okta
Account
We’re using Okta in this chapter because their trial accounts are simple to

set up, and it’s easy to get started. Most identity providers are similar. Okta

is a solid IdP, but the concepts in this chapter should be easily portable to

other providers as well. The Okta screens are succinct, but the terms used

can vary from provider to provider.

To set up an account, go to Okta.com and click Try Okta. You’ll then

be prompted for a domain to set your account up on. Fill in the fields

requested and click the Create Account button. You’ll then get an email.

Once you have an Okta account, log in, and at the Getting Started

with Okta screen, click the Add App button to link your first app to Okta

(Figure

© Charles Edge and Rich Trouton 2023
C. Edge and R. Trouton, Apple Device Management,
https://doi.org/10.1007/978-1-4842-9156-6

 E-1).

https://doi.org/10.1007/978-1-4842-9156-6
http://okta.com

808

Figure E-1. Set up an Okta trial account

At the Add Application screen, search for the name of the tool you’d

like to add. In Figure E-2, we’ll use Jamf Pro.

Appendix e seT Up A TesT oKTA AccoUnT

809

Figure E-2. Add a web application in Okta

When the app appears, click Add, as shown in Figure E-3. Note that if

an app is using SAML, it will say as much!

Figure E-3. Selecting the application to add

Appendix e seT Up A TesT oKTA AccoUnT

810

The app is then added to your app list and can be configured. To

configure, click the new entry. You’ll then be prompted to configure SAML

2.0 (Figure E-4). Click View Setup Instructions.

Figure E-4. Configure the sign-on and credentials

Scroll down to the SAML section. Here, configure the standard or

“well-known” endpoints that are required, including the single sign-

on URL for the app you’re federating. Each app is going to be different,

and you may have to locate a support page for an app to find the correct

settings (such as URLs, encryption algorithms, etc.). In this case, you

should be able to simply click Next, as you can see in Figure E-5.

Appendix e seT Up A TesT oKTA AccoUnT

811

Figure E-5. SAML settings for federation

Click Assignments. Here, you configure each user that has access to

federate their account. Many will work with Just-in-Time (JIT) provisioning

or SCIM (System for Cross-domain Identity Management), so accounts

can be provisioned on the fly as they appear in a directory service and

deprovisioned, respectively.

JIT and SCIM are separate standards that make this kind of

management easier. JIT provisioning creates users in a service provider

Appendix e seT Up A TesT oKTA AccoUnT

812

the first time they log on, based on information in a SAML assertion.

SCIM is a standard that automates the flow of identity metadata between

domains. Accounts can be provisioned in one system and show up in

another, with additional attributes such as fields and group memberships

being automatically assigned in the process, or gated based on a grant

type for the specific service provider accessing the identity. While we’re

selecting a user manually in Figure E-6, it’s worth noting that provisioning

can be automated provided both the service provider and identity provider

support the ability to do so.

Figure E-6. Configuring the application for a user

Next, open your Okta domain on a computer you haven’t tested before.

You’ll then be prompted to install the Okta browser plug-in (Figure E-7).

Appendix e seT Up A TesT oKTA AccoUnT

813

Figure E-7. Logging in to Okta

Most identity providers offer an app that helps them to get around

certain service provider or client computer limitations on a platform

basis. For example, Okta provides a plug-in to allow password injection

for services that cannot be federated over any delegated authentication

protocol. This is a free download from the Safari Extension store. To

download the Safari Extension for the Mac, open Safari and search for Okta

(or use the link provided earlier). Simply click the Install button, or if the

extension has already been installed, click Update (Figure E-8).

Appendix e seT Up A TesT oKTA AccoUnT

814

Figure E-8. Installing the Okta Safari Extension

You also have options to install Okta for iOS. Okta Mobile is an app

for iOS. Most iOS apps from identity providers are used for 2FA with

push notification or OTP. The launcher apps that attempt to federate

authentication is an option most provide, but not really useful given that

none of the iOS solutions have matured to the point where users will love

it. We hope new options in how OAuth is handled on the platform help to

improve this user experience after iOS 15 is released.

This process was for federating an administrative screen, but the

process is similar for other self-service and app store solutions – and most

apps should follow a similar pattern for federating. Once federated, look at

some SAML responses to get a better understanding of how modern single

sign-on works.

Appendix e seT Up A TesT oKTA AccoUnT

815

Index

A
ActivationLockBypassCode, 228
Active Directory, 10, 47, 587,

588, 752
admin credentials, 592
dscl, 599–603
id command, 597, 599
local desktop admins, 589
Network Account Server, 590
open directory utility, 592, 593,

595, 596
profile

administrative
settings, 610, 611

configuring directory
service, 607

Jamf Pro, 606
MCX, 613
settings, 606, 607, 609

SAML, 618
Users & Groups System Settings

pane, 589
Addigy, 73–76, 78
ADmitMac, 27
Aeiosutil command, 332
AES-256 cryptography engine,

369, 370

Agent-based management
apps, 72, 73
automation tools, 131
frameworks, 129, 130
iOS nor tvOS, 62
LaunchDaemon and

LaunchAgent, 64–66
LaunchDaemon with launchctl,

control, 71, 72
Lingon, 66–70
MDM, 61
rootless.conf, 129
sharing setting pane, 63
UAMDM, macOS changes,

127, 128
“Agentless” technology, 207
AirWatch, 35
Alias command, 531
Alphanumeric personal recovery

key, 409
Altiris, 16
Amazon’s Lambda, 691, 718
APFS filesystem, 282
API Orchestration

cURL, 577, 578
Postman, 578–582

Apple administrators, see
Mac Admins

© Charles Edge and Rich Trouton 2023
C. Edge and R. Trouton, Apple Device Management,
https://doi.org/10.1007/978-1-4842-9156-6

https://doi.org/10.1007/978-1-4842-9156-6

816

Apple Business Essentials, 60, 208,
213, 219, 281, 729

Apple Business Manager (ABM), 209,
211, 222, 238, 241, 242, 264,
286, 295, 316, 317, 346, 349

Apple community, 587
Apple Configurator, 30, 631, 722, 723

additional information, 152
app restriction, 153, 155
install profile

iOS, 170–175
macOS, 166, 168–170
tvOS, 176, 178–182

iOS, 170
management profile, 157–159

creating, 150
viewing, 151

profile removal, effects, 200
raw profile, 162, 164, 165
remove profile

iOS, 193–197
macOS, 191, 192
tvOS, 198–200

view profile
iOS, 185–188
macOS, 182–185
tvOS, 189–191

VPN profile, 161
Apple Consultants Network

(ACN), 50
Apple Device Enrollment (ADE)

enrollment process, 205
Apple device management, 279
Apple Enterprise Connect, 614

Apple File System (APFS), 43, 343,
344, 370, 376

Apple Filing Protocol (AFP), 6
Apple Mobile Device

Management, 228
AppleNet, 4
Apple Network Administrator

Toolkit, 24
Apple Network Server, 17
Apple operating systems, 135
Apple Push Notifications (APNs),

39, 219, 228, 260, 264
Apple Remote Desktop (ARD), 25,

26, 714, 722
Apple School Manager (ASM), 34,

209, 211, 221, 222, 238, 241,
242, 264, 286, 295, 316, 317,
346, 349, 656, 695

Apple’s Configurator app, 135
AppleShare IP, 7, 17
Apple Silicon Macs, 344, 378
Apple’s Open Directory, 27
Apple’s Profile Manager, 281
AppleTalk, 3, 6
Application Layer Firewall

(ALF), 462
Application Programming

Interfaces (APIs), 19
App Notarization, 275, 436
App Store

Gift/VPP codes, 266, 267
hardware firmware, 265
ipa file, web server, 271–273
VPP, 267–270

INDEX

817

AssetCacheLocatorUtil, 341
AssetCacheManagerUtil, 340
ASWebAuthenticationSession

Azure Active Directory, 656,
658, 660–662

OAuth provider, 654
SAML response, 663, 664
web authentication session, 654

At Ease, 7, 8
Auditreduce command, 497
Authchanger command, 667
“Auth” or “authenticate”, 644
Authrestart functionality, 428, 429
AuthServer preference key, 671
AutoDMG, 41, 42
Automated Device Enrollment

(ADE), 209, 283, 343, 382, 728
Automated enrollment, 209, 219,

224, 245
cloud service API, 239, 241, 242
DEP API, 238
reseller DEP API, 238

Automated testing
CICD, 583
command-line, 517, 518, 584
expect scripting, 568, 569
git, 583
graphical-based test, 564
interpreters, 515
sandbox or technology, 514
shell commands, 519–524
Sikuli, 566–568
ticketing system, 570, 571
transparency, 515

AutoPkg, 94, 106, 585, 731
Azure Active Directory, 651

B
Backup service, 745, 746
Balanced scorecard

administrators, 714
agents, 733, 734
app store

Cocoa apps, 720, 721
device management

programs, 727, 728
DVD drives, 723
programming languages, 720
services, 724–727
software design architecture,

718, 719
Xcode, 719

chipsets, 738, 739
custom scripts, 742
directory services, 710
Dock, 732
endpoint protection, 710
Enterprise company, 740
Excel, 709
MCX, 733
multiple users, 737, 738
operating system, 736, 737
organizations, 708
organization’s network,

access, 709
privacy company, 741
privacy controls, 714, 715

INDEX

818

product lines, 715–717
sandbox implementation,

735, 736
TestFlight, 729
tools, 712, 713
worldclass support, 711

BearerToken, 643
Binary whitelisting

and binary blacklisting, 484
compliance, 487
logger command, 488
logging APIs, 488
logging levels, 491
MCX, 485
modern techniques, 484
OpenBSM, 494–496
reading logs, 489, 490
Santa, 486
searching context, 491
search parameters, 492–494

BlackBerry Enterprise Server
(BES), 37

Blueprints, 30
Bondi Blue iMac, 14
Bootstrap Token

Apple Silicon Macs, 382
disabling FileVault 2

encryption, 413–416
enabling FileVault 2 encryption,

multiple users, 399–408
encryption/decryption status,

FileVault 2, 430, 431,
433, 434

remove recovery keys,
fdesetup, 422–425

FileVault 1, 388
FileVault 2’s recovery keys,

386, 387
FileVaultMaster.keychain file,

388, 390
individual and institutional

recovery keys, 418–422
listing current FileVault 2 users,

417, 418
macOS, enabling encryption,

382, 384–386
multiple recovery keys, 409–413
recovery key reporting, 426–429

Bourne shell (sh), 516, 525, 553
Bring Your Own Device (BYOD),

208, 245
Bundle Identifier, 254
Bushel, 37
Business to Business (B2B)

apps, 729

C
Caching service

configration, 339–341
configure cache size, 338
macOS Server, 335
Sharing pane, 336, 337
type of content, 336

CalDAV service, 724
Callback URL, 700
Casper Suite, 84

Balanced scorecard (cont.)

INDEX

819

Casper Suite 1.0, 14
cat command, 162
cd command, 518
Center for Internet Security

(CIS), 487
Centralized logging, 754
-Certificate flag, 410
Certificate Signing Request

(CSR), 221
cfgutil, 323
–c flag, 548
Chef

definition, 116
edit recipe, 119, 120
installation, 116–118
Puppet, 121

Citrix, 765
CKMDMProcessManifest

AtURL, 242
ClamAV, 479–481
Cloud-based directory, 588
cmdReporter, 497
CocoaPods, 721
Codesign command-line tool, 274
Collaboration suites/file sharing, 747
Command-line interpreter, 524
Command-line tool, 322, 323
Common Vulnerabilities and

Exposures (CVEs), 461
Compliance, 435
Conditional Access, Azure AD

gating access, 674
Jamf Intune integration, 674–678
security posture, 673

Continuous integration and
continuous delivery
(CICD), 583

Cookie, 653, 654
Create-filevaultmaster-keychain

function, 390, 391
createOSXinstallPkg, 362
C shell (csh), 516
csrutil command, 450
csrutil enable and csrutil disable

commands, 451
csrutil enable command, 453
cURL command, 577, 639
Cylance, 483

D
Data protection, 370, 378
DEPNotify, 347
DEP/service desk process, 748
Development tools/IDEs/text

manipulators, 749–751
Device Enrollment Program (DEP),

34, 128, 209, 238, 281,
282, 343

Device supervision, 714
DevOps, 513
DigiDNA’s iMazing Profile

Editor, 431
Digital Signage, 751, 758
Direct attached storage (DAS), 763
Directory service

Active Directory, 588
definition, 587

INDEX

820

Distribution-style flat package, 362
Dockutil, 132
Downtime, 136
dscl command, 204, 599
Duti, 132, 474
Dynamic libraries (.dylib), 131

E
Effaceable Storage, 371
Eggplant, 564
Electronic AppWrapper, 12
eMate management, 9
Encryption

bootstrap token, 381
cryptographic keys, 370
Effaceable Storage, 371, 372
enabling on iOS, 373–375
filesystem-level cryptographic

keys, 371
macOS, 376–380
Secure Enclave, 369, 370
Secure Token, 380, 381

Endpoint Detection and Response
(EDR), 502

Enrollment commands
status, 250
UAMDM

APNs debug logging,
enable, 260–265

Approved Extensions, 255
bundle identifier, 254
Identity Dictionary Keys,

258, 259

privacy control
management, 256, 260

Privacy Service Dictionary
Keys, 256, 257

privileges, 251
team identifier, 254
UAKEL, 252, 253

user accepted MDM
enrollment, 251

Enterprise mobility management
(EMM), 37

BES, 37
exchange ActiveSync

policies, 36
MicroMDM, 38
OTA, 35

Entropy, 371
Exchange ActiveSync (EAS), 29, 35
Expect, 568
Extension Manager, 45

F
FancyFon Mobility Center

(FAMOC), 37
fdesetup, 408, 418, 427
FileVault 2’s recovery keys, 386
FileVaultMaster keychain, 390, 392
FileVaultMaster.keychain

institutional recovery
key, 410

FileWave, 37, 78–80
Firewalls/FileVault, security

tools, 760

INDEX

821

Flash storage, 372
Fleetsmith, 80–82, 84
FOO, 525
FTP servers, 5

G, H
GarageBand, 724
Gatekeeper, 465, 466, 468
Git

branch, 124
commit, 123, 124
definition, 122
remote verb, 126
repository, 126
working directory, 122

GitHub, 719
Google Cloud Functions (GCFs),

685, 687, 689
Google Cloud Platform (GCP), 683
Google Directory integration, 692
Google’s App Engine, 718
Greedy string operator (##), 534
GroundControl, 321
G Suite, 682

I
iCloud, 209

Keychain, 660
storage, 696

id command, 597
Identity Access Management, 704
Identity Providers (IdPs), 2, 27

managed Apple IDs
business, 696
schools, 695

repository of records, 638
SAML, 638
single sign-on, 637

idevicediagnostics command, 331
ideviceinstaller command, 329
ideviceprovision command, 329
Imaging/configuration tools, 753
InstallMedia command, 232
Institutional recovery keys, 387

boot drive, 398
command-line abilities, 398, 399
FileVaultMaster.keychain,

391, 393–397
public key, 391
security, 390, 391

Intel chips, 738
Internet Engineering Task Force

(IETF), 767
iOS device management, 278
iOS provisioning

Apple Configurator, 284
automation

AEiOS, 332–335
command-line tool, 322–327
GroundControl, 321, 322
libimobiledevice, 327

blueprints, create, 287, 288
device, 283
install Apple

Configurator, 284–286
manage files

INDEX

822

Apple Configurator, 295, 296
add certificates,

Blueprints, 289–294
change device wallpaper,

304, 305
debugging logs, 313, 314
device preparation,

307, 309–313
device supervision,

316, 318–320
enrollment profiles, 298–302
ipsw Operating

System, 314–316
rename device, Apple

Configurator, 303, 304
iOS simulator

copy content, 575
managing device, 574, 575
simctl, 573, 574
subcommand, 573
Xcode, 572

iPadOS, 39
iPhone Configuration

Utility, 29, 135
iPod Touch, 39
iTunes, 29
iWork, 723

J
Jamf

daemons, 85
framework, 87, 88

manage use account, 86
Jamf Connect

installation, 665
login, 666–671
NoMAD, 671–673
OpenID providers, 664
tools, 664

Jamf Pro, 85, 86, 606, 697
Jamf Protect, 502
Jamf Self Service app, 674
JavaScript Object Notation

(JSON), 640
Just-in-Time (JIT), 651

K
Kerberos SSO extension, 613–617
Keychain access

data types, 701
default user, 701
output, 703
password management

databases, 702
WebAuthn, 704

-keychain and-norecoverykey
flags, 409

-keychain flag, 409
Key encryption key (KEK), 376, 380
Knowledge Navigator, 19

L
LANCache, 77, 78
LANrev, 37

iOS provisioning (cont.)

INDEX

823

LaunchAgents,
66, 70, 72, 75, 133

LaunchDaemons, 66, 70, 75, 133
Launch Services

database, 470
“Legacy authentication”, 656
Legacy FileVault, 388
“Legacy” MCX

framework, 204
Libimobiledevice, 206

additional management
commands, 328, 330

homebrew, 327
paired device, 328
troubleshooting commands,

330, 331
Lightweight Directory Access

Protocol (LDAP), 27
Lingon, 66
Local Area Network, 714
log command, 488, 489
“log config” command, 491
Logical OR operator, 544
“log show” command, 489
“log stream” command, 489
lsquarantine

attributes, 468
ClamAV, 479–481
file handlers, 473, 474
Launch Services

database, 470–472
malware, 470
mrt, 474–478
sign an app, 478, 479

M
Mac Admins, 797–806

community, 281
online communities, 54, 56
Podcast, 619
professional user groups, 57, 58
Slack, 56, 58
WWDC, 49–53

MacADUK, 51
Mac App Store, 707
Mac Deploy Stick (MDS), 349, 368
MacDevOps, 51
Mac-friendly tools, 748
Macintosh, 3
macOS High Sierra, 127
macOS security

administrator rights, 503,
504, 506–511

reverse engineering, 498–501
signed system volume, 438
threats, 481
types of attacks, 482

macOS Server, 20–23
Mac OS X Server, 2–4, 18, 23, 27,

46, 58, 715
Mac OS X Server 10.6, 19
Mac platform, 1
Mac provisioning

ADE, 346–349, 368
Imagr, 359
installtion, 350
workflow, create, 350–358

install/upgrade

INDEX

824

applications directory,
359, 360

OS version, 360
reprovisioning

Mac, 363–366
virtual machines, 367

Intel processors, 345, 346
Silicon processors, 344
Startup Modifiers, 344, 345

Mac security
ALF, 462, 463
CVEs, 460–462
malware, 464–467
signed system volume, 437
SIP, 437
user data protections, 457,

458, 460
Managed Client Extensions (MCX),

484, 613
Managed Computing for X

(MCX), 13
ManagedMediaList

command, 232
Managed Open-In, 270, 271
managed_updates array, 95
Manual testing

build test matrix, 561–563
spare machine, 560
spreadsheet, 561, 562

MCX Profile Extensions, 204
MDM/agent based, 755, 756
mdmclient, 242–244, 734
MDM command, 730

MicroMDM, 38, 236, 237
Microsoft Authenticator app, 672,

680, 681
Microsoft Graph API, 674
Microsoft Office

applications, 630
Microsoft Terminal Server, 765
Mobile Content Management

(MCM), 36
Mobile Device Management

(MDM), 15, 30, 32, 33, 344,
346, 712

APNs, 219, 220
Apple Business Manager,

209–211, 215
Apple School Manager, 209,

211, 215
App Notarization, 275–277
buy app, distribution, 215–219
check-in, 225–227
codesign command, 274
commands, 229–237
CSR, 221–225
device supervision, 244, 245
enrolling device (see Enrollment

commands)
POST, 227
server access, 208
solution, 133, 135, 191, 316
technologies, 207
UAMDM, 245–249

Mobile Identity Management
(MIM), 36

MobileIron, 52

Mac provisioning (cont.)

INDEX

825

MobileIron
Authenticator, 681, 682

MonitorKit, 502
Monolithic imaging, 41, 343
MRT, 474–478
multicast Domain Name System

(mDNS), 5
Multifactor authentication

(MFA), 704
APIs, 685–687
Google Cloud

Function, 689–693
Google Workspace, 682–685
iCloud, 680
Microsoft Authenticator,

680, 681
MobileIron access, 681, 682
security token, 679
service account, 687, 688

Munki, 16
catalogs, 103, 105
definition, 89
featured_items

array, 101, 102
LaunchAgents, 89, 91
LaunchDaemons, 89, 90
managed_installs key, 93, 94
manifest, 92, 105, 106
nested manifests, 97, 98
optional software, 100, 101
patch software, 95, 96
removing software, 99, 100
repository, 103
SoftwareRepoURL, 105

N
National Institute of Standards and

Technology (NIST), 436
NetBoot, 40, 41
netOctopus, 9
Network protocols

AppleTalk devices, 4
AppleTalk traffic, 4
Chooser, 5
file servers, 5
LANs/WAN, 4
STP, 6

NeXT Computers, 10–12, 504
NeXTSTEP and OPENSTEP

systems, 18
Novell networks, 6

O
OAuth, 645–649
OAuth-based single sign-on

solutions, 752
Octory, 348
Okta, 704

account, 807, 808
add application, 809
configuring application, 812
logging, 813
Safari Extension, 814
SAML settings, 811
sign-on and credentials, 810

OpenBSM, 494–496
Open Directory, 588

INDEX

826

OpenID Connect
definition, 649
id-token, 649
SAML, 650, 651

Open source NoMAD, 47
Optional software, 100
ORDER BY keyword, 114
Osquery

framework, 107
installation, 109–111
installed files, 108
logging/reporting, 114, 115
runnning, 111–114
settings, 107

Osqueryd daemon, 110
“Over-the-air” (OTA)

management, 35

P
Package-based imaging, 343
pbcopy command, 575
Peripheral management

software, 757
Personal recovery keys, 386
PkgInfo property, 103
pmset command-line

tool, 629
Ports, 767–777, 779–782
POSIX-compliant Unix

environment, 45
Preferences directory, 631
Pretendcocert, 274
Printers jam, 758

Privacy Preferences Policy
Control, 713

Privacy Preferences Policy Control
Payload profiles, 256

Private directory, 444
Profile Manager, 38
Profiles

command, 202–204
macOS, 201, 202

manual configuration
settings, devices

Apple Configurator, 150
configure app limits, 140
Downtime, 136, 137
restricting apps, 143–149
Screen Time, 136, 138, 141

MCX profile extensions, 204–206
scripted configuration, 135
settings configuration, 135

ps command, 548
Push magic certificate, 224
Python/Perl, 516

Q
Quality assurance (QA), 565

R
Remote desktop management, 759
Representational state transfer

(REST), 639
RequestRequiresNetworkTether, 227
RequestType, 227, 229

INDEX

827

REST/web authentication
BearerToken, 643, 644
JSON, 640
JWT, 641–643

Return on Investment (ROI), 717
–R flag, 523

S
Safari Extension store, 813
Safari Web Inspector, 663
SAML Tracer, 663
Sandboxing, 45
Santa, 486
SCHEMA command, 112
Scripty tools, 744, 745
Secure Enclave, 369, 370, 378
Secure Token, 380, 381
Security Assertion Markup

Language (SAML), 650
Security Information and Event

Manager (SIEM), 111
Security help command, 391
Self Service App Store, 679
Service desk software, 711
Service desk tools, 761
“Service Set Identifier (SSD)”

field, 292
Shell scripting

arrays, 549, 550
Bash shell, 525
control statement, 525
exit code/return

code, 550, 551

for/while/until
statements, 546–548

if/else and case statements,
540, 542–546

OS X, 524
passing arguments, 558, 559
script logic, 552–556, 558
standard streams/

pipelines, 537–539
variable declaration, 526–529
variable mangling, 533–536
zsh, 530–533

Sikuli, 566
Slack, 334, 335
Software packaging/package

management, 761, 762
SoftwareRepoURL, 105
Software Update Server, 120
Spanning Tree Protocol (STP), 6
Startup Modifiers, 344
sToken, 269
Storage area network (SAN), 19, 763
sudo command-line tool, 505
sw_vers command, 460
Symantec software, 99
Sysdiagnose, 494
System for Cross-domain Identity

Management (SCIM), 651
System Integrity Protection

(SIP), 44, 437
configuration options, 453, 454
csrutil, 448–450
directories, 439–443
kernel extensions, 445

INDEX

828

NVRAM, 446
private directories, 444
recovery OS environment,

451, 452
resetting NVRAM, 455, 457
root account, 438
root-level directories, 443
runtime protection, 444

Systems administrator
command, 61

systemsetup command, 526

T
Target Disk Mode (TDM), 346
TCP/IP networks, 4
Team Identifier, 254
TestFlight, 729
Third-party management agents

Addigy, 73–76, 78
chef, 116
FileWave, 78–80
Fleetsmith, 80–82, 84
Jamf, 85, 86
Munki, 89

TokenUpdate commands, 224
Transparency Consent and Control

(TCC), 256, 457
Transport Control Protocol

(TCP), 767
Troubleshooting/repair/service

tools, 763–765

Trusted Endpoints policy, 694
tvOS, 40

U
Unified Endpoint Management

(UEM), 37
Unified Logging system, 488
UNIX command-line utility, 550
UNIX-oriented management

framework, 13, 15–17
UNIX shells, 516
Unlock-keychain function, 392
User Accepted MDM (UAMDM), 208
User-Approved Kernel Extension

Loading (UAKEL)
process, 252

User-Approved MDM
(UAMDM), 127

User Datagram Protocol
(UDP), 25, 767

User experience
building profiles, 635
configure user settings, 624–627
custom app store, 634, 635
default user template, 629–631
iOS

home screen, configure,
632, 633

and iPadOS devices, 620, 621
and macOS, 621

planning macOS, 621, 622
scripts, manage user settings,

628, 629

System Integrity Protection
(SIP) (cont.)

INDEX

829

transparency consent/control
protections, 622, 623

User-level protections, 457
UTM, virtual machine

change graphics information, 793
CPU, 787, 791
framework, 783
information screen, 789
IPSW, 785, 786, 792
Mac Admins toolbelt, 795
network information, 794
OS, 784, 785
settings, 790
storage, 788

V
“Variable mangling”, 533
–v flag, 548
Virtualization tool, 765
Virtual Network Computing

(VNC), 25
Viruses/malware, 743, 744
VMware Identity Manager, 679
Volume encryption key (VEK),

376, 380
Volume Purchase Program (VPP),

33, 242, 265, 271

W
Web Authentication

API/WebAuthn, 648
Web-based services, 752, 753

WebDAV, 5
Webhook

events, 699, 700
register, 697
screen, 698, 699
SimpleMDM, 700
trigger events, 696

WHERE clause, 112, 113
Windows SMB

services, 5
Worldwide Developers Conference

(WWDC), 49, 715

X
Xattr, 469
x86-based

architecture, 12
Xcode, 719, 729
XenMobile, 37, 212
XProtect, 465, 475, 477
Xserve RAID, 19, 23

Y
YiSpecter, 482

Z
Zero Trust Network Access (ZTNA),

674, 705
Zimperium, 483
Z Shell/zsh, 530
ZuluDesk API, 577

INDEX

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Preface
	Chapter 1: The Evolution of Apple Device Management
	The Classic Mac Operating Systems
	Network Protocols
	Early Device Management
	NeXT
	Mac + Unix = Mac OS X
	Server
	Apple Remote Desktop
	Ecosystem Coexistence
	iOS Device Management
	Mobile Device Management
	Apple Device Management Programs
	Enterprise Mobility
	iOS + Mac OS X = macOS
	One More Thing: tvOS
	Imaging Is Dead?

	macOS – Unix = appleOS
	Moving Away from Active Directory
	The Apple Admin Community
	Conferences
	Online Communities

	User Groups
	Summary

	Chapter 2: Agent-Based Management
	Daemons and Agents
	Use Lingon to See and Change Daemons and Agents Easily
	Controlling LaunchDaemons with launchctl

	Deeper Inspection: What Does the App Have Access To?
	Third-Party Management Agents
	Addigy
	FileWave
	The Once Mighty Fleetsmith
	Jamf
	Manage User Accounts with Jamf
	More Automation Through the Jamf Framework

	Munki
	Munki LaunchDaemons
	Customizing a Munki Manifest
	Munki Managed Installs

	Updating Software That Munki Didn’t Install
	Nested Manifests
	Removing Software with Munki
	Optional Software Installation
	Featured Items
	Building a Repository and a Catalog of Software
	Distributing the Manifest File

	osquery
	Install osquery
	Running osquery
	Logging and Reporting

	Chef
	Install Chef

	Edit a Recipe
	Puppet

	Use Git to Manage All the Things
	The Impact of UAMDM and Other Rootless Changes to macOS
	Rootless
	Frameworks
	Miscellaneous Automation Tools
	Summary

	Chapter 3: Profiles
	Manually Configure Settings on Devices
	Use Apple Configurator to Create a Profile
	View the Raw Contents of a Profile
	Install a Profile on macOS
	Install a Profile on iOS
	Install a Profile on tvOS
	View a Profile from macOS
	View a Profile from iOS
	View a Profile from tvOS
	Remove a Profile on macOS
	Remove a Profile on iOS
	Remove a Profile on tvOS
	Effects of Profile Removal

	Use the Profiles Command on macOS
	Using the Profiles Command
	MCX Profile Extensions

	Summary

	Chapter 4: MDM Internals
	What MDM Can Access
	Apple Business Manager and Apple School Manager
	Buy Apps to Distribute with MDM
	Apple Push Notifications
	Check-Ins: Device Enrollment
	MDM: Device Management
	MDM Commands
	Automated Enrollment, or DEP
	The Reseller DEP API
	The Cloud Service DEP API

	mdmclient
	Device Supervision
	UAMDM
	Enrollment Commands
	The Impact of UAMDM
	Third-Party Kernel Extension Management
	Team Identifier
	Bundle Identifier
	Using Team Identifier by Itself in a Third-Party Extension Profile
	Privacy Control Management

	Enable APNs Debug Logging
	App Deployment
	Gift and VPP Codes
	Volume Purchase Program

	Managed Open-In
	Host an .ipa on a Web Server
	Sign and Resign macOS Applications
	App Notarization

	Summary

	Chapter 5: iOS Provisioning
	iOS Provisioning
	Prepare an iOS Device Using Apple Configurator
	Install Apple Configurator
	Create Blueprints

	Manage Content
	Add Certificates for 802.1x with Profiles to Blueprints
	Install Apps with Apple Configurator
	Automate Enrollment with Apple Configurator
	Download MDM Profiles
	Configure Automated Enrollment in Apple Configurator

	Change Device Names Using Apple Configurator
	Change Device Wallpaper with Apple Configurator
	Prepare a Device
	Debugging Apple Configurator Logs
	Using an ipsw Operating System Bundle to Restore Devices
	Device Supervision Using Manual Configurations
	Automating iOS Actions
	The Apple Configurator Command-Line Tools
	Use libimobiledevice to Automate Device Management
	Use Basic libimobiledevice Options
	Dig in with Additional Management Commands
	Troubleshooting Commands

	Using AEiOS to Create Workflows

	Caching Services
	What’s Cached?
	Caching Service Configuration

	Summary

	Chapter 6: Mac Provisioning
	macOS Startup Modifier Keys
	macOS Provisioning with ADE
	DEPNotify
	Octory

	macOS Provisioning Without ADE
	Installation
	Create a Workflow
	Imagr

	Upgrades and Installations
	Reprovisioning a Mac
	Virtual Machines
	Parallels
	UTM

	Summary

	Chapter 7: Endpoint Encryption
	iOS Encryption Overview
	Enabling Encryption on iOS
	macOS Encryption Overview
	Secure Token
	Bootstrap Token
	Enabling Encryption on macOS
	FileVault Recovery Keys
	FileVault 1 and the FileVaultMaster.keychain File
	Creating an Institutional Recovery Key
	Enabling FileVault 2 Encryption for One or Multiple Users
	Enabling FileVault 2 Encryption Using One or Multiple Recovery Keys
	Disabling FileVault 2 Encryption
	Listing Current FileVault 2 Users
	Managing Individual and Institutional Recovery Keys
	Removing Individual and Institutional Recovery Keys
	Recovery Key Reporting
	Reporting on FileVault 2 Encryption or Decryption Status

	Summary

	Chapter 8: Securing Your Fleet
	Securing the Platform
	Mac Security
	Signed System Volume
	System Integrity Protection
	SIP-Protected Directories
	View SIP Protections Interactively
	Runtime Protections
	Kernel Extension Protections

	Managing System Integrity Protection
	Signed System Volume and csrutil
	Running csrutil Outside of the Recovery Environment
	Custom System Integrity Protection Configuration Options
	System Integrity Protection and Resetting NVRAM

	User-Level Protections
	Detect Common Vulnerabilities
	Manage the macOS Firewall
	Combat Malware on macOS
	XProtect and Gatekeeper

	lsquarantine
	Using lsregister to Manipulate the Launch Services Database
	Changing File Handlers
	MRT
	Signing Applications
	ClamAV

	Threat Management on iOS
	macOS Binary Whitelisting
	Compliance
	Centralized Log Capture and Analysis
	Writing Logs
	Reading Logs
	Organization and Classification
	Comparisons and Searches
	OpenBSM
	Audit Logs
	Using praudit

	Reverse Engineering
	Administrator Rights on macOS
	Summary

	Chapter 9: A Culture of Automation and Continuous Testing
	From Manual to Automated Testing
	Scripting and the Command Line
	Command-Line Basics
	Basic Shell Commands

	Shell Scripting
	Declaring Variables
	Expanding on Z Shell
	Altering Variables (Mangling)
	Standard Streams and Pipelines
	If and Case Statements
	For, While, and Until Statements
	Arrays
	Exit Codes
	More Advanced Shell Script Logic
	Passing Arguments to Shell Scripts

	Manual Testing
	Build a Test Matrix

	Automated Testing
	Graphical-Based Testing
	Sikuli
	Expect Scripting

	Posting Issues to Ticketing Systems
	Simulating iOS Environments with the Xcode Simulator
	Managing Simulated Devices
	Copy Content into the Simulator

	API Orchestration
	Use cURL to Work with APIs
	Use Postman to Work with APIs

	Release Management

	Summary

	Chapter 10: Directory Services
	Manually Bind to Active Directory
	Bind the Easy Way
	Bind with the Directory Utility

	Test Your Connection with the id Command
	Use dscl to Browse the Directory
	Programmatically Binding to Active Directory
	Bind to Active Directory Using a Profile
	Beyond Active Directory
	All the Benefits of Binding Without the Bind

	Apple Enterprise Connect
	Apple Kerberos SSO Extension
	Summary

	Chapter 11: Customize the User Experience
	Getting iOS and iPadOS Devices in the Hands of Users
	macOS
	Planning the macOS User Experience
	Transparency Consent and Control Protections on User Home Folders
	Using Profiles to Manage User Settings
	Using Scripts to Manage User Settings
	Modifying the macOS Default User Template
	Customize the Desktop
	Customize the User Preferences

	Configure the iOS Home Screen
	Custom App Stores
	Test, Test, Test
	Summary

	Chapter 12: Identity and Device Trust
	Use IdPs for User Identities
	REST and Web Authentication
	JSON
	Use JWTs As Service Accounts
	Bearer Tokens

	OAuth
	WebAuthn
	OpenID Connect
	SAML

	Cookies
	ASWebAuthSession
	Work with Azure Active Directory
	View SAML Responses

	Use Jamf Connect to Authenticate to an IdP at the Login Window
	Configure Jamf Connect Login

	Alternatives to Jamf Connect
	Use Azure AD for Conditional Access
	Configure the Jamf Integration with Intune

	Beyond Authentication
	Multifactor Authentication
	Microsoft Authenticator
	MobileIron Access
	Conditional Access for Google Workspace
	Obtain Your CustomerID from Google Workspace
	Provision a Google Cloud Function Resource

	Enable the Necessary APIs
	Create a Service Account
	Create Your Google Cloud Function
	Write Your Script

	Duo Trusted Endpoints
	Managed Apple IDs Continued
	Managed Apple IDs in Schools
	Managed Apple IDs for Business

	Webhooks
	Working with the Keychain
	Summary

	Chapter 13: The Future of Apple Device Management
	Balanced Apple Scorecard
	The Tools
	The Near Future
	Privacy Controls

	The Apple Product Lines
	Apps
	Evolutions in Software Design and Architecture
	The Evolution of Apple Software
	Apple Apps
	Productivity Apps

	Apple Services
	Apple Device Management Programs

	Getting Apps to Devices
	Manage Only What Is Necessary
	The Future of Agents
	Other Impacts to Sandboxing
	iOS, macOS, tvOS, and watchOS Will Remain Separate Operating Systems
	Will iOS Become Truly Multiuser?
	Changes in Chipsets
	You’re Just Not an “Enterprise” Company
	Apple Is a Privacy Company

	Summary

	Appendix A: The Apple Ecosystem
	Antivirus and Malware Detection
	Automation Tools
	Backup
	Collaboration Suites and File Sharing
	CRM
	DEP Splash Screens and Help Menus
	Development Tools, IDEs, and Text Manipulators
	Digital Signage and Kiosks
	Directory Services and Authentication Tools
	Identity Management
	Imaging and Configuration Tools
	Log Collection and Analysis
	Management Suites
	Misc
	Point of Sale
	Print Servers
	Remote Management
	Security Tools
	Service Desk Tools
	Software Packaging and Package Management
	Storage
	Troubleshooting, Repair, and Service Tools
	Virtualization and Emulation
	Honorable Mention

	Appendix B: Common Apple Ports
	Appendix C: Configure macOS Lab Virtual Machines with UTM
	Appendix D: Conferences, Helpful Mac Admins, and User Groups
	Appendix E: Set Up a Test Okta Account
	Index

