

Python Flask for Web Development

Build Web Applications in Python Using

Flask Framework
www.emenwa.com

https://emenwa.com/

CONTENTS
Contents
Introduction

What is Flask?

Why Do Most People Use Flask?
Scalable
Flexible
Easy to Navigate
Lightweight
Documentation

Why Do Some Hate Flask?
Few resources
Large Flask app hard to learn
Maintenance

Chapter 1 – Learning the Strings
The PEP Talk

PEP 8: Style Guide for Python Code
PEP 257: Docstring Conventions

Relative imports

Application Directory

Installing Python

Installing Python

Install Pip

Chapter 2 – Virtual Environments
Use virtualenv to manage your environment

Install virtualenvwrapper

Make a Virtual Environment

Installing Python Packages

Chapter 3 – Project Organisation
Patterns of organization
Initialization

Blueprints

Chapter 4 – Routing & Configuration
View decorators

Configuration

Instance folder
How to use instance folders

Secret keys

Configuring based on environment variables

Variable Rule

Chapter 5 – Build A Simple App
The actual app

Development Web Server

Chapter 6 - Dynamic Routes
Converter

Chapter 7 – Static Templates
Rendering HTML Templates

A String
render_template() function

File Structure Strategies
Module File Structure
Package File Structure

Chapter 8 - The Jinja2 Template Engine
Variables

Filters

Control structure
Conditions
loop

Chapter 9 - Bootstrap Integration with Flask
What is Bootstrap?

Code Flask App with Bootstrap

Create a Real Flask Website
Getting Bootsrap

Web App

Page redirect

Template inheritance
What is Template Inheritance

Adding Bootstrap
Nav bar From Bootstrap

Chapter 10 – HTTP Methods (GET/POST) & Retrieving Form Data
GET

POST

Web Forms
Login page template
Back-End

Bootstrap forms

Chapter 11 – Sessions vs Cookies
Sessions

Sessions or Cookies?

How to set up a Session
Session Data

Session Duration

Chapter 12 – Message Flashing
flash() Function

Displaying Flash Message

Displaying More Than 1 Message

Chapter 13 – SQL Alchemy Set up & Models
Creating A Simple Profile Page

Database Management with Flask-SQL Alchemy

How to use database

Models

Chapter 14 - CRUD
The Flask Book Store
Your static web page with Flask

Handling user input in our web application

Templates

Back-end

Add a database

Front-end

Initializing

Retrieving books from our database

Updating book titles

Deleting books from our database

Chapter 15 – Deployment
Web Hosting

Amazon Web Services EC2
Heroku
Digital Ocean

Requirements for deployment
Gunicorn

Deploy!
Set up Git
Push your Site

INTRODUCTION
Two ways that people can use a computer to make websites are Django and
Flask. Web developers use two different programs to create sites and web
apps. These two programs are called frameworks, and they help people make
fun, cool sites that look nice and run fast. Django is one of the top
frameworks because it is open source and works well. But you must learn
about web apps to build different web pages and website templates. You will
need to create different apps from scratch to develop a single web app. The
second way, Flask, is simpler and easier.

Flask is a newer framework that is easier to learn for building simple web
apps. That is a lovely place to start learning web development.

That is why you should be happy that you are on this journey to learn how to
build websites and web apps with Flask.

What is Flask?
Flask is a micro web framework written in Python. Python is very easy to
learn, and there are lots of people that like it. Flask gives programmers a lot
of freedom to write software how they want. It also has a lot of extensions
that make adding new functionality easy.

Flask is a program that helps you build websites. Flask helps you by giving
an easy way to create new features, like spreadsheets or games. Flask allows
you to do whatever you want, so you can make whatever you want. What
else? Flask is free!

Flask is a web framework that makes it easy to create new websites. It was
created by a person called Armin Ronacher. Flask is similar to Django, which

is another framework. Like Django, Flask helps develop websites with forms
and queries because it allows you to use programming code (Python) tools to
change HTML pages into the format you want.

Python is a language with many modules or frameworks that let you use
Python to build your website. But Flask and Django are the ones that people
like the most. Flask gives you more options for web programming.

To grasp what Flask is, you must be familiar with a few basic terms.

The Web Server Gateway Interface (WSGI), pleasantly pronounced
"whiskey," has emerged as the industry standard for creating Python web
applications. The WSGI standard creates a recognizable interface for web
servers and online applications.

Werkzeug. Requests, response objects, and other valuable features are
implemented by this WSGI toolkit. This enables it to be built upon a web
framework. One of the foundations upon which Flask is constructed is
Werkzeug.

jinja2. Many users use the Python templating engine jinja2. A web templating
system generates dynamic web pages using a template and a specific data
source.

Python is the language used to create Flask. The Werkzeug WSGI toolkit and
Jinja2 template engine serve as the basis for Flask. Pocco created both of
them.

Why Do Most People Use Flask?
Scalable
Flask can quickly help you grow a tech project like a web app as a micro-
framework. If you want to make a small app that can grow rapidly and in
ways you haven’t thought of, it’s a good option. It is easy to use and has few
dependencies, so it works well even as it gets bigger and bigger.

Flexible
This is Flask’s main benefit. One of the Zen of Python principles states that

simplicity is better than complexity because it can be easily rearranged and
relocated.

This allows your project to quickly change direction and prevents the
structure from collapsing when a part is altered. Flask is even more flexible
than Django itself because it is simple and can be used to build smaller web
apps.

Easy to Navigate
As with Django, navigating easily allows web developers to focus on coding
quickly without feeling overwhelmed. The microframework saves web
developers time and effort and gives them more control over their code and
what’s possible.

Lightweight
When we use this term to describe a tool or framework, we’re talking about
its design—it has a few parts that need to be assembled and reassembled. It
doesn’t rely on many extensions to function. Web developers have some
control over this design.

A developer can split a single Flask app into different modules. Each module
works like a separate building block that can do its part of the job. All of this
means that the structure’s parts are flexible, moveable, and can be tested on
their own.

Documentation
Flask users will find many examples and tips arranged in a structured
manner, per the creator’s theory. Developers are quickly introduced to the
framework’s features and capabilities, which encourages their use.

Why Do Some Hate Flask?
Few resources
Flask doesn’t have an extensive library of tools like Django. Developers have
to add extensions like libraries manually. Funnily enough, if you add many
extensions, the program may slow down from too many queries.

Large Flask apps are usually complex
Because Flask web app development can take several turns, a web developer

entering midway through the project may fail to understand how it's been
developed. Programmers may struggle with the microframework's modular
architecture because they must learn all of its components.

Maintenance
Flask is diverse in terms of technologies. However, the company will have to
update and implement if a Flask app technology becomes obsolete or
withdrawn. Complex apps have higher maintenance and implementation
costs.

Typically, it should not take you more than a few weeks at most to learn
Flask and start to develop apps. However, that depends on your other
commitments and reasons for learning.

This book is divided into short chapters, which are isolated lessons. Many
teachers would write their books and tutorials as a long lesson where they
create an example app and update it throughout the book to demonstrate
concepts and tasks. That is not the case here. In this book, we include
examples in each lesson to illustrate the concepts, but we have examples from
other chapters that may not even be related to the previous. Hence, the book
is not meant to be combined into one large project.

This book will help you learn Flask by building a series of projects and
showing you verifiable screenshots so that you can use the skills to create
different projects with Flask. Please, as you read this book, I recommend
opening your computer and implementing the codes as we go. The lessons in
this book will help you create a web application on your own.

Let’s start coding!

CHAPTER 1 – LEARNING THE STRINGS
Assuming that you are an intelligent programmer, you must identify and use
specific terms and conventions that guide the format of Python codes. You
might even know some of these conventions. This chapter discusses them. It
will be brief.

The PEP Talk
A PEP is an abbreviation for "Python Enhancement Proposal." Python.org
indexes and hosts these proposals. PEPs are classified into several categories
in the index, including meta-PEPs, which are more informative than
technical. On the other hand, technical PEPs analyze enhancements to
Python's internals.

PEPs such as PEP 8 and PEP 257 guide how we write our code. Guidelines
for coding style are included in PEP 8. PEP 257 specifies procedures for
docstrings, the widely used method of documenting code.

PEP 8: Style Guide for Python Code
Python code should follow PEP 8 as the coding style. This is like a format for
writing Python programs. You can read about it if you want.

When your code grows to multiple files with hundreds or thousands of lines
of code, PEP 8 style will make it much more readable. Furthermore, if your
project will be open source, potential contributors will likely expect and feel
at ease working with code written with PEP 8 in mind.

One crucial suggestion is to use four spaces per indentation level. Not tabs. If
you violate this convention, switching between projects will be difficult for
you and other developers. Inconsistency like this is annoying in any
language. Because that indented space is vital in Python, switching between
tabs and spaces could result in errors that are difficult to debug.

PEP 257: Docstring Conventions
Another Python standard is covered by PEP 257, and it is called docstrings.

A docstring is a string literal that appears as the first statement in the
definition of a module, function, class, or method. A docstring of this type
becomes the object's __doc__ unique attribute.

Relative imports
When developing Flask apps, relative imports make things a little easier. The
idea is straightforward.

For example, if you are developing an app and need to import User model
from myapp/models.py module. You might use the app's package name, such
as myapp.models. This would indicate the location of the target module
relative to the source using relative imports. We use a dot notation instead of
a slash, with the first dot representing the current directory and each
subsequent dot representing the following parent directory.
myapp/views.py

An absolute import gives us the User model
from myapp.models import User

A relative import does the same thing
from .models import User

This method makes the package much more modular, which is a good thing.
Now you can change the name of your package and use modules from other
projects without changing the import statements.

In summary, what will help you advance in your development journey is to

follow the style used in this book,

follow the coding style shown in PEP 8,

use docstrings defined in PEP 257 to document your app,

import internal modules with relative imports.

Application Directory
I assume you are new to Flask, but you can use Python. Otherwise, I highly
recommend starting your journey by learning Python basics.

Anyway, open your Python text editor or IDE and let us start. The first task is
to create a folder where your project will sit. I use Visual Studio Code.

Open the Terminal, and type in the following code:
mkdir microblog

That will create the folder. Now cd into your new folder with cd microblog.

Installing Python
Install Python if you don't already have it on your computer. It is possible to
download an installer for Python from the official website if your operating
system does not include a package. Please keep in mind that if you're using
WSL or Cygwin on Windows, you won't be able to use the Windows native
Python; instead, you'll need to download a Unix-friendly version from
Ubuntu or Cygwin, depending on your choice.

Installing Python
First, go to Python’s official website and download the software. It is pretty
straightforward. Now, after downloading, run the program.

When installing, click on Customise, and you can check these boxes. Most
significantly, pip and py launcher. You may leave out the “for all users” if the
computer is not yours.

Click on next. Check Add Python to environment variables,” and install.

Install Pip
Pip is a Python package manager that will be used to add modules and
libraries to our environments.

To see if Pip is installed, open a command prompt by pressing Win+R, typing
"cmd," and pressing Enter. Then type "pip help."

You should see a list of commands, including one called "install," which we'll
use in the next step:

It's time for Flask to be installed, but first, I'd like to talk about the best
practices for installing Python packages.

Flask, for example, is a Python package available in a public repository and
can be downloaded and installed by anyone. PyPI (Python Package Index) is
the name of the official Python package repository (some people also refer to
this repository as the "cheese shop"). A tool called pip makes it easy to install
a package from the PyPI repository.

You can use pip to install a program on your computer as follows:
pip install <package-name>

Unfortunately, this method of installing packages does not work in
many cases. To run the command above, you'll need to be an administrator on
your computer, which means you'll need to be logged in as an administrator.
Even if you don't have to deal with that, think about what happens when you
do the installation described above. The package will be downloaded from
PyPI and added to your Python installation using the pip command-line tool.
After that, all your Python scripts can access the package you just installed.
Suppose you've finished a web application using Flask version 1.1, which
was the most current version of Flask when you started but has since been
replaced by Flask version 2.0. You'd like to use the 2.0 version for a second
application, but if you replace the 1.1 version you already have installed, you
could end up causing problems for your older application. Do you see what
I'm getting at? It would be ideal if Flask 1.1 and Flask 2.0 could coexist on

the same computer. Flask 1.1 will work as a backend for your older
application, and the newer app will have the current version at the time.

Python uses virtual environments to deal with the issue of maintaining
various versions of packages for various applications. That is what we will
discuss in the next chapter.

CHAPTER 2 – VIRTUAL ENVIRONMENTS
You can install more software now that the application directory has been
configured. For your app to function correctly, you will require various
software. You must first have at least the Flask package, and the Python
installed. If not, you might be reading the incorrect book. The environment
for your program is everything that must be accessible for it to run. There are
numerous things we can do to set up and maintain the environment for our
app. This chapter is focused on that.

When installing packages privately without impacting the Python interpreter
that is already installed on your system, you can do so in a virtual
environment, which is a duplicate of the Python interpreter.

Virtual environments are highly useful because they prevent the system's
Python interpreter from becoming clogged with mismatched packages and
versions. You may make sure that applications only have access to the
packages they require by setting up a virtual environment for each project.
This allows you to create more virtual environments and keeps the global
interpreter clean. Additionally, since virtual environments may be created and
operated without administrator privileges, they are superior to the system-
wide Python interpreter.

Use virtualenv to manage your environment
virtualenv is a program that isolates whatever application you are developing
in a virtual environment. A virtual environment implies that all the software
your program depends on is stored in a single folder. This means that the
software is only usable by your application.

The Python interpreter is a type of virtual environment (a copy). Installing
packages in a virtual environment has no impact on the Python interpreter
used by the entire system. Only the copy is. As a result, creating a separate
virtual machine just for each application is the best way to ensure you can
install any version of your packages. Additionally, virtual environments do
not require an administrator account because they are owned by the user who
creates them.

Instead of using system-wide or user-wide package directories, we can
download them to a separate, dedicated folder for our application. For each
project, we can choose the version of Python we want to use and which
dependencies we want to have available.

It's possible to switch between various versions of the same package with
Virtualenv. This kind of scalability can be crucial when working on an older
system with multiple projects requiring different software versions.

As a result of using virtualenv, you'll be limited to a small number of Python
packages on your machine. Virtualenv will be one of these. Pip may be used
to install virtualenv.

Virtual environments can be created as soon as virtualenv is installed on your
computer. Run the virtualenv command in your project's directory to get
started. The virtual environment's destination directory is the only parameter
required.
pip install virtualenv

Now that we've installed virtualenv, we can make different environments to
test our code. But it can be hard to keep track of all of these places. So we'll
pip install another package that will help us.

Install virtualenvwrapper
virtualenvwrapper is a package that lets you control the virtual environments
that virtualenv makes. Use the following line to install the virtual wrapper for
our Flask projects.
pip install virtualenvwrapper-win

Make a Virtual Environment
The structure of the command that makes a virtual environment looks like
this:
python -m venv virtual-environment-name

The -m venv suggestion launches the venv package from the source file as a
standalone script with the name given as an argument.

Inside the microblog directory, you will now make a virtual environment.
Most people call virtual environments "venv," but you can call them
something else if you'd like. Make sure that microblog is your current
directory, and then run this command:
python3 -m venv venv

(you can use any name different from venv)

After the command is done, you'll have a subdirectory called venv (or, like
mine, blog inside the microblog folder. This subdirectory will have a brand-
new virtual environment with a Python interpreter for this project only.

Now, activate the virtual environment by using the following line:
blog\Scripts\activate

Once done with activating the virtual environment, You’ll see “(blog)” next
to the command prompt. The line has made a folder with python.exe, pip, and
setuptools already installed and ready to go. It will also turn on the Virtual
Environment, as shown by the (blog).

The PATH environment variable is updated to include the newly enabled
virtual environment when you activate it. A path to an executable file can be
specified in this variable. When you run the activation command, the name of
the virtual environment will be appended to the command prompt as a visual
cue that the environment is now active.

After a virtual environment has been activated, the virtual environment will
be used whenever python is typed at the command prompt. Multiple
command prompt windows necessitate individual activation of the virtual
environment.

Installing Python Packages
All virtual environments have the pip package manager, which is used to
install Python packages. Similar to the python command, entering pip at a
command prompt will launch the version of this program that is a part of the
active virtual environment.

Make sure the virtual environment is active before running the following
command in order to install Flask into it:
pip install flask

When you run this prompt, pip will install Flask, and every software Flask
needs to work. You can check the packages installed in your virtual
environment using pip freeze. Type the following command:

Type deactivate at the command prompt to return your Terminal's PATH
environment variable and the command prompt to their default states once
you've finished working in the virtual environment.

Each installed package's version number is shown in the output of pip freeze.

Most likely, the version numbers you get will be different from those shown
here.

You can also make sure Flask was installed correctly by starting Python and
trying to import it:

 If there
are no errors, you can give yourself a pat on the back. You are ready to move
on to the next level.

CHAPTER 3 – PROJECT ORGANISATION
Flask doesn't help you to organize your app files. All of your application's
code should be contained in a single folder, or it could be distributed among
numerous packages. You may streamline developing and deploying software
by following a few organizational patterns.

We'll use different words in this chapter, so let's look at some of them.

Repository - This is the folder for your program on the server. Version
control systems are typically used to refer to this word.

Package: This is a Python library that holds the code for your application.
Creating a package for your project will be covered in greater detail later in
this chapter, so just know that it is a subdirectory of your repository.

Module: A module is one Python file that other Python files can import. A
package is nothing more than a collection of related modules.

Patterns of organization
Most Flask examples will have all the code in a single file, usually called
app.py. This works well for small projects with a limited number of routes
and fewer than a few hundred lines of application code, such as those used
for tutorials.

When you're working on a project that's a little more complicated, a single
module can get cluttered. Classes for models and forms must be defined, and
they will be mixed in with the script for your routes and configuration. All of
this can slow down progress. To solve this problem, we can separate the
different parts of our app into a set of modules that work together. This is
called a package.

run.py

This file is executed to launch a
development server. It obtains a copy
of the application from the package
and runs it. This will not be used in
production but is heavily utilized
throughout the development phase.

requirements.txt

This file lists all Python packages on
which your application depends. You
can have different files for
development and production
dependencies.

config.py
This file contains most of the
variables your project needs for

This listing's structure lets you group the different parts of your application in
a way that makes sense. Model class definitions are grouped together in
models. The definitions of routes and forms are in views.py. and forms.py,
respectively (we have a whole chapter for forms later).

This table gives a breakdown of the parts included in the majority of Flask
projects. You will likely have many additional files in your repository, typical
of Flask apps.

configuration.

/instance/config.py

This file includes configuration
variables that should not be tracked
by version control. This includes API
keys and database URIs with
embedded passwords. Additionally,
this contains variables unique to this
instance of your program. For
example, you may have DEBUG =
False in config.py but DEBUG =
True in instance/config.py on your
local development system. Because
this file will be read after config.py,
DEBUG = True.

/yourapp/
This is the package that contains your
application.

/yourapp/__init__.py
This file initializes your application
and assembles its diverse
components.

/yourapp/views.py

This is where route definitions are
made. It may be separated into its
package (yourapp/views/), with
related views organized into
modules.

/yourapp/models.py

This is where you define the
application's models. Similar to
views.py, this may be separated into
many modules.py.

/yourapp/static/

This directory contains the public
CSS, JavaScript, images and other
files you want to make public via
your app. It is accessible from
yourapp.com/static/ by default.

This is where you’ll put the Jinja2

/yourapp/templates/ templates for your app.

Initialization
All Flask applications need to create an application instance. Using a protocol
called WSGI, pronounced "wiz-ghee", the web server sends all requests from
clients to this object so that it can handle them. The application instance is an
object of the class Flask. Objects of this class are usually made in this way:
from flask import Flask

app = Flask(__name__)

The only thing that has to be given to the Flask class constructor is the name
of the application's main module or package. Most of the time, the __name__
variable in Python is the correct answer for this argument.

New Flask developers often get confused by the __name__ argument passed
to the application constructor. Flask uses this argument to figure out where
the application is, which lets it find other files that make up the application,
like images and templates.

Blueprints
At some time, you may discover that there are numerous interconnected
routes. If you're like me, your initial inclination will be to divide opinions. Py
into a package and organize the views as modules. It may be time at this
stage to incorporate your application into blueprints.

Blueprints are essentially self-contained definitions of your application's
components. They function as apps within your app. The admin panel, front-
end, and user dashboard may each have their own blueprint. This allows you
to group views, static files, and templates by component while allowing these
components to share models, forms, and other features of your application.
Soon, we will discuss how to organize your application using Blueprints.

CHAPTER 4 – ROUTING & CONFIGURATION
Web applications that run on web browsers send requests to the web server to
the Flask application instance. For each URL request, the Flask application
instance needs to know the code to execute, so it keeps a map of URLs to
Python functions. A route is a link between a URL and the function that calls
it.

Modern web frameworks employ routing to aid users in remembering
application URLs. It is useful to be able to browse directly to the required
page without first visiting the homepage.

The Python programming language has them built in. Decorators are often
used to sign up functions as handler functions that will be called when certain
events happen.

The app.route decorator made available by the application instance is the
easiest way to define a route in a Flask application. This decorator is used to
declare a route in the following way:
@app.route("/")
def index():
 return "<h1>Hello World!</h1>"

In the previous example, the handler for the application's root URL is set to
be the function index(). Flask prefers to register view functions with the app.
route decorator. However, the app.add_url_rule() method is a more traditional
way to set up the application routes. It takes three arguments: the URL, the
endpoint name, and the view function. Using the app.add_url_rule(), the
following example registers an index() function that is the same as the one
shown above:
def index():
 return "<h1>Hello World!</h1>"

app.add_url_rule("/", "index", index)

Similar to index(), view functions manage application URLs. Going to

http://www.example.com/ in your browser would cause the server to run
index if the app runs on a server with the domain name www.example.com
(). This view function's return value is the response the client receives. This
answer is the page displayed to the user in the browser window if the client is
a web browser. As we'll see later, a response from a view function could be
as straightforward as an HTML string, or it might be more intricate.

You'll notice that many of the URLs for services you use on a daily basis
have sections that can be modified if you pay attention to how they are
constructed. For instance, https://www.facebook.com/your-name> is the URL
for your Facebook profile page. Your username is a part of this, making it
particular to you. Flask can handle these URLs using a special app.route
decorator. The steps to configure a route with an active portion are as
follows:
@app.route("/user/<name>")
def user(name):
 return "<h1>Hello, {}!</h1>".format(name)

The portion of a URL for a route that is enclosed in angle brackets changes.
Any URLs that match the static portions will be mapped to this route, and the
active part will be supplied as an argument when the view function is called.
In the preceding illustration, a personalized greeting was provided in
response using the name argument.

The active components of routes can be of other kinds in addition to strings,
which are their default. If the id dynamic segment has an integer, for
example, the route /user/int:id> would only match URLs like /user/123.
Routes of the types string, int, float, and path are all supported by Flask. The
path type is a string type that can contain forward slashes, making it distinct
from other string types.

URL routing is used to link a specific function (with web page content) to its
corresponding web page URL.

When an endpoint is reached, the web page will display the message, which

is the output of the function associated with the URL endpoint via the route.

View decorators
Decorators in Python are functions used to tweak other functions. When a
function that has been decorated is called, the decorator is instead invoked.
The decorator may then perform an action, modify the parameters, pause
execution, or call the original function. You can use decorators to encapsulate
views with code to be executed before their execution.

Configuration
When learning Flask, configuration appears straightforward. Simply define
some variables in config.py, and everything will function properly. This
simplicity begins to diminish while managing settings for a production
application. You might need to secure private API keys or utilize different
setups for various environments. For example, you need a different
environment for production.

This chapter will cover advanced Flask capabilities that make configuration
management easier.

A basic application might not require these complex features. It may be
just enough to place config.py at the repository's root and load it in app.py or
yourapp/__init__.py.

Each line of the config.py file should contain a variable assignment. The
variables in config.py are used to configure Flask and its extensions, which
are accessible via the app.config dictionary — for example,
app.config["DEBUG"].
DEBUG = True # Turns on debugging features in Flask
BCRYPT_LOG_ROUNDS = 12 # Configuration for the Flask-Bcrypt extension
MAIL_FROM_EMAIL = "abby@example.com" # For use in application emails

Flask, extensions, and you may utilize configuration variables. In this
example, we may use an app.config["MAIL_FROM_EMAIL"] to specify the
default "from" address for transactional emails, such as password resets.
Putting this information into a configuration variable makes future

modifications simple.

Instance folder
Occasionally, you may be required to define configuration variables
containing sensitive information. These variables will need to be separated
from those in config.py and kept outside of the repository. You may hide
secrets such as database passwords and API credentials or setting machine-
specific variables. To facilitate this, Flask provides us with the instance folder
functionality. The instance folder is a subdirectory of the repository's root
directory and contains an application-specific configuration file. We do not
wish to add it under version control.

How to use instance folders
If you want to load configuration variables from an instance folder, you can
use the function app.config.from_pyfile(). First, set the
instance_relative_config = True when creating your app with the Flask()
function. The app.config.from_pyfile() will load the file from the instance/
folder.
app.py or app/__init__.py

app = Flask(__name__, instance_relative_config=True)
app.config.from_object("config")
app.config.from_pyfile("config.py")

Now, instance/config.py can contain variable definitions identical to those in
config.py. Additionally, you should add the instance folder to the ignore list
of your version control system. To accomplish this with Git, add instance/ to
a new line in.gitignore.

Secret keys
The instance folder's private nature makes it an ideal location for establishing
keys that should not be exposed to version control. These may include your
application's private or third-party API keys. This is particularly crucial if
your program is open source or maybe in the future. We generally prefer that
other users and contributors use their own keys.
instance/config.py

SECRET_KEY = "Sm9obiBTY2hyb20ga2lja3MgYXNz"
STRIPE_API_KEY = "SmFjb2IgS2FwbGFuLU1vc3MgaXMgYSBoZXJv"
SQLALCHEMY_DATABASE_URI = (
 "postgresql://user:TWljaGHFgiBCYXJ0b3N6a2lld2ljeiEh@localhost/databasename"
)

Configuring based on environment variables
Don’t add the instance folder under version control. This means you cannot
trace configuration changes to the config setup in your instance. If you have
one or two variables, this may be overlooked. Still, you don't want to risk
losing precisely calibrated setups for different environments (production,
staging, development, etc.).

Upon load, Flask gives us the option to choose a configuration file based on
the value of an environment variable. As a result, we can store different
configuration files in our repository and load the appropriate ones as needed.
Once a large number of configuration files have been produced, we can move
them into the appropriate configuration directory.

We'll take advantage of the app.config.from envvar() function to figure out
which configuration file to import.

yourapp/__init__.py

app = Flask(__name__, instance_relative_config=True)

Load the default configuration
app.config.from_object("config.default")

Load the configuration from the instance folder
app.config.from_pyfile("config.py")

Load the file specified by the APP_CONFIG_FILE environment variable
Variables defined here will override those in the default configuration
app.config.from_envvar("APP_CONFIG_FILE")

Variable Rule
App routing is the process of mapping a certain URL to the function designed
to complete a given action. The most recent Web frameworks employ routing
to aid users in remembering application URLs.

To hard-code each URL while creating an application is pretty inconvenient.
Creating dynamic URLs is a better way to handle this problem.

Using variable elements in the rule parameter allows you to create URLs on
the fly. Variable-name> is the name of this variable component. It is passed
as a parameter to the function that corresponds to the rule.

Let's examine the idea of variable rules in great detail.

Dynamic URLs can be created with the use of variable rules. They are
essentially the variable sections added to a URL using the variable name> or
converter: variable name> tags. It is passed as a parameter to the function that
corresponds to the rule.

Syntax:

@app.route('hello/<variable_name>')

OR

@app.route('hello/<converter: variable_name>')

CHAPTER 5 – BUILD A SIMPLE APP
You've understood the various parts and configurations of a Flask web
application in the previous sections. Now it's time to write your first one. In
the example below, the application script defines an application instance, a
single route, and a single view function, as we've already said.

I'll be using Visual Studio Code, which has installed the Python extension.

The first step is to create a project folder. Mine is firstapp. Name yours
whatever.

After you have cd that folder, create a virtual environment. I will name mine
envi.
python -m venv envi

Now, type code in the Terminal, and run. Visual Studio Code will open in a
new window. Now, open the app folder in the new window like this:

Next, open the Command Palette. Go to View and click on Command Palette
(or press Ctrl+Shift+P). Select Python: Select the Interpreter command.

This means you want to see interpreters that are available to VS can locate.
Here's mine.

Go to the Command Pallete again and search Terminal. Click on Terminal:
Create New Terminal (SHIFT + CTRL + `)

Can you see the name of your virtual environment at the bottom left corner?
Mine has the "envi" as the name of my virtual environment.

Now that the Virtual environment is active, install Flask in the virtual
environment by running pip install flask in the Terminal.

When you start a separate command prompt, run envi\Scripts\activate to
activate the environment. It should begin with (envi), indicating that it is
engaged.

The actual app
Now, we will create a new file named app.py inside the firstapp folder.

In app.py, we will add a code to import Flask and construct a Flask object
instance. This object will serve as the WSGI application.
from flask import Flask

app = Flask(__name__)

We will now call the new application object's run () function to run the main
app.
if __name__ == "__main__":
 app.run()

We develop a view function for our app to display something in the browser
window. We will construct a method named hello() that returns "Hello,
World!
def hello():
 return "Hello World!";

Now, let us assign a URL route so that the new Flask app will know when to
call the hello() view function. We associate the URL route with each view
function. This is done with the route() decorator in front of each view
function like this.
@app.route("/")
def hello():
 return "Hello World!"

The complete app.py script is like this:
from flask import Flask

app = Flask(__name__)

@app.route("/")
def hello():
 return "Hello World!"

if __name__ == "__main__":
 app.run(debug=True, host="0.0.0.0", port=3000)

Development Web Server
Using the flask run command, you can start a development web server for
Flask applications. This command looks in the FLASK_APP environment

variable for the name of the Python script that includes the application
instance.

To run the app.py application, first, make sure the virtual environment you
set up earlier is running, and that Flask is installed in it.
python -m flask run

When the server fires up, it goes into a loop that receives requests and
handles them. This loop will keep going until you press Ctrl+C to stop the
program.

Open your web browser and type http://localhost:5000/ in the url bar while
the server is running. The screenshot below shows what you'll see once
you're connected to the app.

Now that is the base url we set a route to. Adding anything else to the URL
will mean that your app won't know how to handle it and will send an error
code 404 to the browser.

The app.run() method can also be used to programmatically start the Flask
development web server. In older Flask versions that didn't have the flask
command, the server had to be started by running the application's main
script, which had to end with the following code:
if __name__ == "__main__":
 app.run()

This is no longer necessary because of the flask run command. However, the
app.run() function can still be helpful in some situations, such as unit testing.

CHAPTER 6 - DYNAMIC ROUTES
Let's now consider an alternative routing method. The next illustration
demonstrates how an alternative implementation of the program adds a
second, dynamic route. Your name appears as a customized greeting when
you visit the active URL in your browser.

In this chapter, I will describe variable rules, converters, and an example of
dynamic routing.

We've discussed routes, views, and static routing when the route decorator's
rule parameter was a string.
@app.route("/about")
def learn():
 return "Flask for web developers!"

If you want to use dynamic routing, the rule argument will not be a constant
string like the /about. Instead, it is a variable rule you passed to the route().

We have learned about Variable Rules. However, read through this script to
better get a glimpse of the variable rule:
"""An application to show Variable Rules in Routing"""
from flask import Flask

app = Flask(__name__)

@app.route("/")
def home():
 """View for the Home page of your website."""
 return "This is your homepage :)"

@app.route("/<your_name>")
def greetings(your_name):
 """View function to greet the user by name."""
 return "Welcome " + your_name + "!"

if __name__ == "__main__":
 app.run(debug=True, host="0.0.0.0", port=3000)

This is the result:

What happens if you add /name?

Like magic! How can you do this? Pretty easy. Follow me.

The first thing you will find different in the new code is the second view
function, greetings (). There is the variable rule: /<your_name>.

That means the variable is your_name (whatever you type after the /). We
then pass this variable as a parameter to the greetings() function. That is why
it is called to return a greeting to whatever name is passed to it. Facebook is
not that sleek now, is it?

Converter
The above example used the URL to extract the variable your_name. Flask
now converted that variable into a string and passed it to the greetings()
function. That is how converters work.

Here are the data types Flask converters can convert:

Strings: this goes without saying

int: they convert this only for when you pass in positive integers

float: also only works for positive floats

path: this means strings with slashes

uuid: UUID strings means Universally Unique Identifier strings used
for identifying information that needs to be unique within a system or
network.

Let us learn about another feature for web apps.

CHAPTER 7 – STATIC TEMPLATES
This chapter will teach you how to create and implement static and HTML
templates. You will also learn file structure strategies.

Clean and well-structured code is essential for developing apps that are
simple to maintain. Flask view functions have two different jobs, and this can
cause confusion.

As we can see, a view function's one obvious purpose is to respond to a
request from a web browser. The status of the application, as determined by
the view function, can also be altered by request.

Imagine a user signing up for the first time on your website. Before clicking
the Submit button, he fills up an online form with his email address and
password.

The view method, which manages registration requests, receives Flask's
request on the server containing the user's data. The view function interacts
with the database to add the new user and provide a response to display in the
browser. These two responsibilities are formally referred to as business logic
and presentation logic, respectively.

Complex code is produced when business and presentation logic are
combined. Imagine having to combine data from a database with the required
HTML string literals in order to create the HTML code for a large table. The
application's maintainability is improved by placing presentation logic in
templates.

That is why a template is necessary. A template is a file that contains
placeholder variables for the dynamic parts of a response that are only known
in relation to a request's context. The process known as rendering is what
gives variables their real-world values in exchange for the final response
string. Flask renders templates using the powerful Jinja2 template engine.

Rendering HTML Templates
Flask expects to find template files in the leading application directory's
templates subfolder. These templates are actually HTML files.

Flask can render HTML using two methods:

as string

using render_template function

A String
You can use HTML as a string for the function.

Here is an example:
from flask import Flask

app = Flask(__name__)

@app.route("/")
def home():
 return "<h1>There's Something About Flask!</h1>"

if __name__ == "__main__":
 app.run(debug=True, host="0.0.0.0", port=3000)

When you run that and follow your local host link, this is what you get:

This came out well as a template because we use HTML tags h1. We can use
any HTML codes in the scripts, and Flask will read it well.

render_template() function
Now, the string is suitable for simple one-page websites. For big applications,
you must add your templates as separate files.

In this case, you create the HTML code and keep the file separate in the
folder. You will then call the file in the views function by the file names.

Flask will use the render_template() function to render the HTML templates.

This function uses the following parameters:

template_name_or_list: that is the template file name or names if they
are more than one

context: these are variables that are in the template script.

The render_template() returns the output using the view instead of a string.

Here is an example:
def view_name():
 return render_template(template_name)

In this case, we would already have a template saved, perhaps as home.html
or index.html, with the HTML code in it. When you run the app, Flask will
run all the HTML codes included in the script, and the view will display them
on the web browser.

File Structure Strategies
When you run the program, Flask will execute the script and run through
your \templates folder to find the HTML files you reference in the script. You
must place the folder correctly so that there will be no errors. These are the
correct file structures that Flask can read:

Module File Structure
This is a very simple and straightforward structure where all the application
logic is in a single .py file. The templates folder will be the same folder as the
.py file where the developer keeps the HTML files.

Package File Structure
In many complex apps, the script is divided into separate .py files. In this
case, you must present all the .py files in the same package. A package is a
folder that contains an __init__.py file.

You must create the templates folder in the main application package to use
this structure in your application.

So, let us do it together. First, know what we want to do: we want to render a
home.html template with the render_template() function in our web app,
app.py.

You will create a templates folder and then create a file inside the new folder
and call it home.html.

Fill home.html with this code:
<!DOCTYPE html>
<html>
<h1>This is where we say FLASK! :)</h1>

</html>

Now, we can change our app.py code to call the HTML code.
from flask import Flask, render_template

app = Flask(__name__)

@app.route("/")
def home():
 return render_template("home.html")

if __name__ == "__main__":

 app.run(debug=True, host="0.0.0.0", port=3000)

Look at the result!

CHAPTER 8 - THE JINJA2 TEMPLATE ENGINE
Jinja2 is a Python template engine. It can be used instead of Python's standard
string interpolation, that is, adding data to strings. Flask can easily read Jinja2
templates, which is easier to write than the typical Python code. Jinja2
templates have a more natural language format.

Jinja2 templates are written in HTML or XML and then turned into "jinja"
bytecode, which the Jinja environment can read and use. The python
compiler module turns the templates into bytecode, which is then run by an
interpreter that parses and runs jinja scripts built from HTML or XML
templates.

Templates are files that contain both static and dynamic data placeholders. To
create a finished document, a template is rendered with precise data. The
Jinja template library is used by Flask to render templates. Templates will be
used in your application to render HTML shown in the user's browser.

We have to place the template file in the templates folder. The templates are
in the root folder of the project.

For example, we can have our home.html to be:
<!DOCTYPE html>
<html>
{% raw %}
<h1>Hello {{ name }} </h1>
{% endraw %}
<h1>This is where we say FLASK! :)</h1>

</html>

We will now write the view function as the following code:
@app.route("/user/<name>")
def index(name):
 return render_template("home.html", name=name)

The Jinja2 template engine is built into the application by the Flask function
render_template(). The template's filename is the first argument to the
render_template() function. The rest of the arguments are key-value pairs that

show the real values of the variables in the template.

Variables
A template file is just a normal text file. The part to be replaced is marked
with double curly brackets ({{ }}), in which the variable name to be replaced
is written. This variable supports basic data types, lists, dictionaries, objects,
and tuples. The same as in template.html:
{% raw %}

<p> A value form a string: {{ name }}. </p>
<p> A value form a int: {{ myindex }}. </p>
<p> A value form a list: {{ myindex }}.
<p> A value form a list: {{ mylist[3]] }}. </p>
<p> A value form a list: {{ mylist[3] }}.</p>
<p> A value form a list, with a variable index: {{ mylist[myindex] }}. </p>
<p> A value form a dictionary: {{ mydict['key'] }}. </p>
<p> A value form a dictionary: {{ mydict['key'] }}.
<p> A value form a tuple: {{ mytuple }}. </p>
<p> A value form a tuple: {{ mytuple }}.</p>
<p> A value form a tuple by index: {{ mytuple[myindex] }}. </p>

{% endraw %}

Filters
As you write your apps, you may want to change some parts of your values in
the template when they come on. For example, you may set the code to
capitalize the first letter in a string, remove spaces, etc. In Flask, one way to
do this is by using a filter.

Filters in the Jinjia2 template engine work like pipes in Linux commands. For
example, they can capitalize the first letter of a string variable.
{% raw %}

<h1>{{ name | capitalize}}</h1>

{% endraw %}

Both filters and the Linux pipeline command can be spliced. For example,
you can splice a line to do two things at the same time. Let us write a line to

capitalize values and take out whitespace before and after.
{% raw %}

<h1>{{ name | upper | trim }}</h1>

{% endraw %}

As you see in the code, we connected the filter and the variable with the pipe
symbol |. That is the same as processing the variable value.

Here are some standard filters web developers use:

filter description
safe rendering is not escaped
capitalize initial capitalization
lower all letters lowercase
upper all letters uppercase
title Capitalize the first letter of each word in the

value
trim removes the first blank character
stripttags removes all HTML tags from the value

when rendering

Control structure
Jinja2 has a number of control structures that can be used to change how the
template is run. This section goes over some of the most useful ones and
shows you how to use them.

Many times, a smarter template rendering is needed, which means being able
to program the rendering, such as having a style for boys and the same style
for girls. Control structure instructions need to be specified with command
markers, and some simple control structures are explained below.

Conditions
This kind of structure is when you use a conditional statement, i.e., an if-else
structure in the template.

Here's an example of how you can add a conditional statement to a template:
{% raw %}

{% if gender=='male' %}
Hello, Mr {{ name }}
{% else %}
Hello, Ms {{ name }}
{% endif %}

{% endraw %}

The view function will be:
@app.route("/hello2/<name>/<gender>")
def hello2(name, gender):
 return render_template("hello2.html", name=name, gender=gender)

This is no different from the typical python code structure.

loop
If your web page has lists, for example, a control structure you want to use is
loops. for loops are better suited. For example, let us display a list with ul.
{% raw %}

 {% for name in names %}
 {{ name }}
 {% endfor %}

{% endraw %}

CHAPTER 9 - BOOTSTRAP INTEGRATION WITH

FLASK
Bootstrap is the most common CSS framework. It has more than 150k stars
on Github and a very large ecosystem that supports it. To make this chapter
more useful, we'll look at an open-source Flask project with a beautiful UI
styled with Bootstrap. This project comes in two flavors: a low model that
uses components downloaded from the official Bootstrap Samples page and a
production-ready model with more pages (home, about, contact) and a
complete set of features.

What is Bootstrap?
Twitter's Bootstrap is a free web browser framework that makes it simple to
construct aesthetically pleasing, clean web pages that function on desktop and
mobile platforms with all current web browsers.

Bootstrap is a client-side framework that doesn't directly interact with the
server. The user interface elements must be created using HTML, CSS, and
JavaScript code once the server sends HTML answers that connect to the
appropriate Bootstrap Cascading Style Sheets (CSS) and JavaScript files. It is
easiest to do all of this using templates.

Getting Started
The first step in integrating Bootstrap with your program is to modify the
HTML templates as needed. The following code will allow you to create an
HTML file and view it in your browser.:
<!doctype html>
<html lang="en">

<head>
 <title>My First Bootstrap Page</title>

 <!-- Bootstrap CSS -->
 <link href="https://cdn.jsdelivr.net/npm/bootstrap@5.0.2/dist/css/bootstrap.min.css"
rel="stylesheet">
</head>

<body>
 <h1 class="text-primary">
 Let's learn Bootstrap

 </h1>

 <!-- Bootstrap Javascripts -->
 <script src="https://cdn.jsdelivr.net/npm/bootstrap@5.0.2/dist/js/bootstrap.bundle.min.js"></script>

</body>

</html>

However, you can do this even better and faster with a Flask extension called
Flask-Bootstrap, and you can install it with pip:
pip install flask-bootstrap

You can initialize Bootstrap into your script very quickly.

Code Flask App with Bootstrap
Now, go back to your app folder. You can delete and start over or open a new
base folder. Create a new app.py file and fill it with the following code:
from flask import Flask, render_template

app = Flask(__name__)

@app.route("/")
def main():
 return render_template('index.html')

if __name__ == "__main__":
 app.run()

Once that is saved, you can create an index.html template in the templates
folder. Fill it with this demo script I adapted from W3Schools:

<!DOCTYPE html>
<html lang="en">

<head>
 <title>Python Flask & Bootstrap 4</title>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet"
href="https://maxcdn.bootstrapcdn.com/bootstrap/4.5.2/css/bootstrap.min.css">
 <script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.16.0/umd/popper.min.js"></script>
 <script src="https://maxcdn.bootstrapcdn.com/bootstrap/4.5.2/js/bootstrap.min.js"></script>
 <style>
 .fakeimg {
 height: 200px;
 background: #aaa;
 }
 </style>
</head>

<body>

 <div class="jumbotron text-center" style="margin-bottom:0">
 <h1>Python Flask & Bootstrap 4</h1>
 <p>Resize this responsive page to see the effect!</p>
 </div>

 <nav class="navbar navbar-expand-sm bg-dark navbar-dark">
 Navbar
 <button class="navbar-toggler" type="button" data-toggle="collapse" data-
target="#collapsibleNavbar">

 </button>
 <div class="collapse navbar-collapse" id="collapsibleNavbar">
 <ul class="navbar-nav">
 <li class="nav-item">
 Link

 <li class="nav-item">
 Link

 <li class="nav-item">
 Link

 </div>
 </nav>

 <div class="container" style="margin-top:30px">
 <div class="row">

 <div class="col-sm-4">
 <h2>About Me</h2>
 <h5>Photo of me:</h5>
 <div class="fakeimg">Fake Image</div>
 <p>this is everything I know</p>
 <h3>Some Links</h3>
 <p>I love Flask!.</p>
 <ul class="nav nav-pills flex-column">
 <li class="nav-item">
 Active

 <li class="nav-item">
 Link

 <li class="nav-item">
 Link

 <li class="nav-item">
 Disabled

 <hr class="d-sm-none">
 </div>
 <div class="col-sm-8">
 <h2>Learning Flask!</h2>
 <h5>Title description, 2022</h5>
 <div class="fakeimg">Fake Image</div>
 <p>Some text..</p>
 <p>This is a revolution in the name of Flask, and everything is done in Visual Studio Code.
</p>

 <h2>TITLE HEADING</h2>
 <h5>Title description, Sep 2, 2017</h5>
 <div class="fakeimg">Fake Image</div>
 <p>Some text..</p>
 <p>Another long text about how the world is going, and we are here learning about Flask.
What
 a beautiful thing to know, but after this, there is nothing more because we are all enjoying
 exercitation ullamco.</p>
 </div>
 </div>
 </div>

 <div class="jumbotron text-center" style="margin-bottom:0">
 <p>Footer</p>
 </div>

</body>

</html>

Run the program by running python -m flask run in the Terminal while your
virtual environment is running, and you will see a complete Flask demo
website like this:

Let us create a standard website where users can log in, sign up, and register.

Create a Real Flask Website
Create a new folder inside your base folder for your new website project. I
call it app. Inside it, we are going to create a new views.py file.

So, let us begin with the homepage. Every website needs a very specific
home page, and your home page will likely be very different from the rest of
your website.

We'll have a separate home page, the only page that doesn't "extend" any
header stuff like most pages. Bootstrap takes care of almost all the graphic
stuff for you, which is great. You only have to decide where things go; the
rest is styled for you. It really does help a lot, too.

To use Bootstrap, you'll need to ‘add’ it to your website. How do we do that?

Getting Bootsrap

It is as simple as installing Python. Go to the official Bootstrap website here:
https://getbootstrap.com/. Go to the download page and download it.

Now, extract the zip file. Go to your Terminal and create a static folder inside
the new project folder called static. So run mkdir static. Move the two folders
js and css to the static folder.

After that, we'll need to look through the documents to see what's available. I
usually just quickly scroll through until I see something that looks interesting.

You'll most likely be interested in the pages with components or JavaScript.
Below each thing shown is the code that made it. Note that all the features
should work if you copy and paste them onto your page. You will need to add
the script to the JavaScript. See the videos if you don't know what that means.
In short, you just need to include the required javascript file at the end of
your HTML body tags. This means that you need to call the javascript
functions before you include the javascript function in the script tags.

The file we end up making is this:
<!DOCTYPE html>
<html lang="en">

<head>
 <meta charset="utf-8">
 <title>Python Programming Tutorials</title>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link href="{{ url_for('static', filename='css/bootstrap.min.css') }}" rel="stylesheet">
 <link rel="shortcut icon" href="{{ url_for('static', filename='favicon.ico') }}">
</head>

<header>

https://getbootstrap.com/docs/5.2/getting-started/download/

 <div class="navbar-header">

 <img style="max-width:120px; margin-top: -7px;"
 src="{{ url_for('static', filename='images/mainlogo.png') }}">

 </div>

 <div class="container-fluid">
 <button type="button" class="btn btn-primary" aria-label="Left Align"
 style="margin-top: 5px; margin-bottom: 5px; height: 44px; margin-right: 15px">
 Start Learning
 </button>
 <div style="margin-right: 10px; margin-left: 15px; margin-top: 5px; margin-bottom: 5px;"
 class="container-fluid">
 </div>
 </div>
</header>

<body>

 <script src="//code.jquery.com/jquery-1.11.1.min.js"></script>
 <script type="text/javascript" src="{{ url_for('static', filename='js/bootstrap.min.js') }}"></script>

</body>

</html>

This is the main.html file.

Web App
Let's actually go ahead to start building our first web page or website with
flask. I have created a new .py file I call app.py in the project folder. Fill it
with the following code:
from flask import Flask

app = Flask(__name__)

@app.route("/")
def home():
 return "Welcome to my Main Page <h1>Hello!<h1>"

@app.route("/<name>")
def user(name):
 return f"Hello {name}"

if __name__ == "__main__":

 app.run()

In this code, we have created a new app route. This will create a Hello and
put whatever you put in after the slash.

Page redirect
Now, what if you want to redirect different pages from your code? For
example, if we're going to get to a separate page, we need to type that actual
page, but sometimes a user goes to a page they're not supposed to be. Perhaps
they are not authenticated. We need to redirect them to the home page.

We go back to our app.py, and import two modules called redirect and
url_for. These two will allow us to return a redirect from a specific function.
Here is the new file:
from flask import Flask, redirect, url_for

app = Flask(__name__)

@app.route("/")
def home():
 return "Welcome to my Main Page <h1>Hello!<h1>"

@app.route("/<name>")
def user(name):
 return f"Hello {name}!"

@app.route("/admin")
def admin():
 return redirect(url_for("user", name="Admin!"))

if __name__ == "__main__":
 app.run()

In this example, we assume that we have an admin page that can only be
accessed by someone who's signed in or is an admin. After creating the
decorator, we input the redirect to redirect the user to a different page. We
then type in the url_for() function, and inside it, we put the name of the
function we want to redirect to inside of strings. Restart your server and add
the slash admin to be redirected to the home page.

Template inheritance
Template inheritance is an extremely useful tool, so you're not repeating
HTML code, JavaScript, or whatever it's going to be throughout your entire
website. It essentially allows you to create a base template that every other
one of your templates will work off of, and that is what we will use for our
website with bootstrap.

I'm also going to be showing you how we can add Bootstrap to our website
and just create a basic navbar.

What is Template Inheritance
If we look at the bootstrap website, for example, we can see that this website
has a theme, and we can kind of detect that theme by the navbar. You see a
specific color, buttons, links and so on. All pages on that website have the
same theme in terms of colors and buttons.

It would be boring and stupid to keep writing the code to generate this navbar
on every single web page they have because this will stay the same for most
of the pages.

Flask at least makes this really easy because we can actually inherit
templates. Now I'm going to do to illustrate this is just create a new template.

I'm just going to create a new file. I will save this as base.html, representing
the base template or the base theme of my website. It will store all the HTML
code that will persist throughout most or the entire website. So, populate the
base.html with the following code:
<!doctype html>

<html>

<head>
 <title>Home Page</title>
</head>

<body>
 <h1>{{content}}</h1>
</body>

</html>

We'll start working with a few things here, so since this is our base template,
we are not going to ever render this template. We'll always use this as
something from which the child templates, which will be, for example,
index.html, will inherit.

Inheritance essentially means to use everything and then change a few small
things are overwrite some functionality of the parent, which in this case is
going to be the base.html, so the way that we can allow our child templates to
change specific functionality of the base template is by adding something
called blocks.
<!doctype html>
<html>

<head>
 <title>{% block content %}{% endblock %}</title>
</head>

<body>
 <h1>Abby’s Website</h1>
</body>

</html>

You can see the block in the curly brackets with the same tags used to write
you know for loops and if statements in HTML code. The name directly after
block is the name of the block. We then simply end the block by typing
endblock with similar syntax. This says we're going to define a block we're
going to call content, and in this block, we will allow the child template to
give us some content that we will fill in.

Let us now go to the child template I can inherit. Create a new index.html in
the templates folder. Create this block and then tell the block where what
content I want. Then it will substitute it inside here for a title and use that title
when we render the template.

Here is the code in the index.html file:
{% extends "base.html" %}
{% block title %}Home Page{% endblock %}
{% block content %}
<h1>My Home!</h1>
{% endblock %}

Our base.html
<!doctype html>
<html>

<head>
 <title>{% block title %}{% endblock %}</title>
</head>

<body>
 <h1>Abby's Website</h1>
 {% block content %}
 {% endblock %}

</body>

</html>

I'm going to do is actually give some content for that block title, so this is the
exact same as what we had in our base template, except this time I'm actually
going to put some stuff in between kind of blocks, so I'm going to say and
block like that so block content and block and then inside here I'm actually
just going to put homepage now what this is going to do is very similar just
kind of like an HTML tag where this homepage now will be replaced with
whatever this block title is and that will actually show now for us inside title
so very useful. I'm going to put something that just says Abby's website, and
this h1 tag will be shown on every page no matter what.

Our app.py:

from flask import Flask, redirect, url_for, render_template

app = Flask(__name__)

@app.route("/")
def home():
 return render_template("index.html")

if __name__ == "__main__":
 app.run(debug=True)

The result:

So, every page we go to will have Abby’s Website as the inherited template.

I was saying that we're going to have some more complex components. I'm
going to show you how we can add a nav bar now and then how we can use
the base template so all our other templates will have that nav bar on it. Let's
actually talk about adding Bootstrap.

Adding Bootstrap
If you're unfamiliar with Bootstrap, it is a CSS framework for quickly
creating and styling your website. To add, it is actually pretty easy.

You will go to the Bootstrap website and grab the codes! It is basically copy
and paste. Don’t think programmers are magicians. We don’t cram stuff.
Simply go here on your browser https://getbootstrap.com/docs/4.3/getting-

started/introduction/ and grab the codes.

I'm going to look where it says CSS, and I will copy the link with the copy
button.

I'm going to take that CSS link and paste that inside the head tags of my
website, in this case, the base.html template. Next, I'm going to go to where it
says Js and copy that too and put them at the end of the body.

This will allow us to use a library of different classes and a bunch of different
kinds of styling from bootstrap to make our website look nicer.

If you look at the codes, you will see cdn at the end. That means we don't
need to download any Bootstrap files because this will just grab the CSS and
JavaScript code from the Bootstrap server.

Nav bar From Bootstrap
I will show you how we can just grab a sidebar layout or a navbar layout
from the bootstrap website. Go to the sidebar and search for whatever you
need. In this case, the nav bar. Look for one that you like, as there are a
bunch of different nav bar codes.

Just place the code on the website in the base template right after the first
body tag. Any child template will automatically have this nav bar at the top
of it.

Our current base.html code:
<!doctype html>
<html>

<head>
 <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@4.3.1/dist/css/bootstrap.min.css"
 integrity="sha384-

ggOyR0iXCbMQv3Xipma34MD+dH/1fQ784/j6cY/iJTQUOhcWr7x9JvoRxT2MZw1T"
crossorigin="anonymous">
 <title>{% block title %}{% endblock %}</title>
</head>

<body>
 <nav class="navbar navbar-expand-lg navbar-light bg-light">
 Navbar
 <button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbarNav"
 aria-controls="navbarNav" aria-expanded="false" aria-label="Toggle navigation">

 </button>
 <div class="collapse navbar-collapse" id="navbarNav">
 <ul class="navbar-nav">
 <li class="nav-item active">
 Home (current)

 <li class="nav-item">
 Features

 <li class="nav-item">
 Pricing

 <li class="nav-item">
 Disabled

 </div>
 </nav>
 <h1>Abby's Website</h1>
 {% block content %}
 {% endblock %}
 <script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"
 integrity="sha384-
q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo"
 crossorigin="anonymous"></script>
 <script src="https://cdn.jsdelivr.net/npm/popper.js@1.14.7/dist/umd/popper.min.js"
 integrity="sha384-
UO2eT0CpHqdSJQ6hJty5KVphtPhzWj9WO1clHTMGa3JDZwrnQq4sF86dIHNDz0W1"
 crossorigin="anonymous"></script>
 <script src="https://cdn.jsdelivr.net/npm/bootstrap@4.3.1/dist/js/bootstrap.min.js"
 integrity="sha384-
JjSmVgyd0p3pXB1rRibZUAYoIIy6OrQ6VrjIEaFf/nJGzIxFDsf4x0xIM+B07jRM"
 crossorigin="anonymous"></script>

</body>

</html>

The new face of the website:

If you wanted to change anything associated with the navbar, obviously, all
the codes here so you can change them, but that's just what I wanted to show
you regarding how we can add bootstrap.

There are several other frameworks for styling, but I like bootstrap because
it's pretty easy.

CHAPTER 10 – HTTP METHODS (GET/POST) &
RETRIEVING FORM DATA

The templates you worked with in this course are one-way, meaning that
information can only flow from the server to the user. Most applications also
need the information to flow in the opposite direction, from the user to the
server, where it is accepted and processed.

Your website may want to collect data from users instead of serving them.
This is done with forms.

With HTML, you can make web forms that users can use to enter
information. The data from the form is then sent to the server by the web
browser. This is usually done as a POST request.

We'll talk about HTTP methods in this chapter. The standard way to send and
receive information from and to a web server is through HTTP methods.
Simply put, a website runs on one or more servers and sends information to a
client (web browser). The client and the server share information using
HTTP, which has a few different ways to do this. We will talk about the ones
called POST & GET that are often used.

GET
GET is the most common way of getting or sending information to a website.
GET is the most commonly used HTTP method to retrieve information from
a web server, depending on how this information is going.

POST
POST is a way of doing this securely, so GET is an insecure way of getting
the most commonly used information. People often use the POST method to
send information to a web server. It is often used when sending sensitive
information, uploading a file, or getting form data. With POST, you can send
data to a web server in a safe way.

A basic example of that is when we type something in the URL bar or in the
address bar. For instance, if you have your local server running, you will see
a command that pops up saying GET in the console when you go to the home
page. Whenever we type something that's not secure, anyone can see it, and
the data will be sent to the server here. Then it will return us the actual web
page using a GET method.

If we were to use POST, what we would actually do is send secure and
encrypted information. Something that cannot be seen from either end and is
not stored on the actual web server. That is the difference between GET and
POST.

The best way to think of it is whenever you're using a GET command, it's
something that's not secure that you don't care if someone sees it. It's
typically typed in through the address bar where it's just a link you redirect to,
and then with POST, that's something secure. It's usually form data. It's
something that we're not going to be saving on the actual web server itself
unless we're going to be sending that to it.

Web Forms
Let's now go through a basic example of web forms in a website. You can use
the same app.py we have been working with here. You only need to add a
few different pages for this example first. Here is what the new code will be
like:
from flask import Flask, redirect, url_for, render_template

app = Flask(__name__)

@app.route("/")
def home():
 return render_template("index.html")

@app.route("/login", methods=["POST", "GET"])
def login():
 return render_template()

@app.route("/<usr>")
def user(usr):
 return f"<h1>{usr}</h1>"

if __name__ == "__main__":
 app.run(debug=True)

So what I want to do is set up a page here for logging in

Login page template
Now, I'm going to go and build out the login page template inside my
templates folder. Create a new file and call this login.html; inside, we'll start
creating the form. Here is the script to create a form:
{% extends "base.html" %}
{% block title %}Login Page{% endblock %}

{% block content %}
<form action="#" method="post">
 <p>Name:</p>
 <p><input type="text" name="nm" /></p>
 <p><input type="submit" value="submit" /></p>
</form>
{% endblock %}

So we start by extending that base.html and then do the tags for our title. So
essentially, a form is a way to send information to the website.

Whenever we know we will get some information from a form, we need to
put our form tags in HTML. I'm just going to specify that here, and we need
to say the action this form will take now. The action is essentially just a URL
we want to redirect to once this form is submitted.

We've decided how the form will be sent. This means that when the form is
sent, we will send a request with the data to the web server.

Note the name of the text input field. We will use this to get the value of the
field from our Python code.

So we've created the form. You need to go back to the app.py and render the
new template.

Back-End
First, add request to the imports in your app.py script. So the first line is like

this:
from flask import Flask, redirect, url_for, render_template, request

Now, add the new login.html in the login function block like this:
@app.route("/login", methods=["POST", "GET"])
def login():
 return render_template("login.html")

Now, we have rendered this template. We need to figure out how we'll get
this information and handle it from this side. You can test your new update
by restarting the server in your console and going to the url/login.

You should see a basic little box where we can type some things in, and we
have a submit button.

However, when you hit that button, all you see is a hashtag here, and it's
different because it's using POST. If you refresh the page, you will get a GET
request rather than a POST.

The job of the request we imported is to determine in this login function
whether we called the GET request or the POST request. I will show you how
we can check whether we reach this page with a GET request or a POST

request.

Basically, all we're going to do is use an if-else clause. We say if
request.method == POST, then we're going to do something specific.
Otherwise, we'll do something else.

In this case, what I'm going to do is move this render down here, so if we
have the get request, what we're going to do is render the log in template
because that means you know we didn't click the submit button we're just
going to the /login page so let's show it here but if we have POST what I want
to do is actually get the information that was from that little name box and
then uses that and send us to the user page where we can display the user's
name.

So how do we do that? It's pretty easy, so all we need to do is set up a
variable that will store our users' names. We need to say user equals
request.form, and then we will put the dictionary key that we want for the
name corresponding. In the login.html script, we had name = nm, so we'll put
nm as a dictionary key in the code. What that's going to do is actually give us
the data that was typed into this input box.
def login():
 if request.method == "POST":
 user = request.form["nm"]
 return redirect(url_for("user", usr=user))
 else:
 return render_template("login.html")

We are using the redirect(url_for) function to make sure that this page will
not be blank before we go to the next page. We are telling Flask to use the
data from the form to redirect us to the user page. Refresh your server and
test it out.

After clicking submit:

You can see that we get redirected to a page that says our name.

That is how we actually get information from a form, and obviously, if you
have more than one info you want, you just add it to the input type in the
login.html script. Then you can get all those information by just using the
name as a dictionary key on the request.form.

Bootstrap forms
If you want to create a beautiful form, you can use Bootstrap. Just like we got
the code for the nav bar, you can get the code for a good form.

{% extends "base.html" %}
{% block title %}Login Page{% endblock %}

{% block content %}
<form action="#" method="post">
 <div class="mb-3">
 <label class="form-label" for="inputEmail">Email</label>
 <input type="email" class="form-control" id="inputEmail" placeholder="Email">
 </div>
 <div class="mb-3">
 <label class="form-label" for="inputPassword">Password</label>
 <input type="password" class="form-control" id="inputPassword" placeholder="Password">
 </div>
 <div class="mb-3">
 <div class="form-check">
 <input class="form-check-input" type="checkbox" id="checkRemember">
 <label class="form-check-label" for="checkRemember">Remember me</label>
 </div>
 </div>
 <button type="submit" class="btn btn-primary">Sign in</button>

</form>
{% endblock %}

This code is still built on the base template.

You have learned the basics behind this. Notice that request.form comes in as
a dictionary, meaning you can access each object using the key.

Most applications need to take information from the user through web forms,
store that information, and use it for the user experience. The next chapter is
about sessions and cookies in Flask.

CHAPTER 11 – SESSIONS VS. COOKIES
This chapter is about sessions. Now to try to explain what sessions are, I'm
going to give you an example of what we did in the previous chapter and talk
about how we could do this better.

So essentially, we had a login page, and once we logged in, we got the user's
name, and then we redirected them to a page that showed them their name.
But every time we want to see the users' names, we need them to log in again
and again.

What if we want to direct to another page and that page wants the user's
name? that means we have to set up a way to pass the user's name to that
page. For example, if we want to set up a page for a specific user. That means
we have to use a parameter, set up another link, and so on. That is not the
best way to do things, and sometimes you know you don't want to redirect to
a page it says /Abby or /Jo.

What we're going to do to pass around information through the back-end and
our different web pages is use something called sessions.

Sessions
Sessions are great because they're temporary. They're stored on the web
server and simply there to quickly access information between your website's
different pages. Think of a session as something you'll load to use while the
user is on your website.

That session will work when they're browsing on the website, and then as
soon as they leave, it will disappear. For example, on Instagram or Facebook,
when someone logs in, a new session will be created to store their username.
Probably some other information as well about what they're doing on the
website at the current time, and then as they can go between different pages,
those pages can access that session data so it can say okay, so I moved to my
profile page this is the profile of Abby I know that because I stored that in a
session. So let's show all the information I have stored in the session that only
Abby needs to see.

Then, as soon as that user leaves the web page or logs out, all of that session
data is erased. And the next time they log in, data will be reloaded into the

session, where it can be used for the rest of the pages.

Sessions or Cookies?
Do you accept cookies? You may have seen this a lot. I just want to quickly
explain the difference between a cookie and a session to clear up any
confusion.

Cookie: This feature is stored on the client side (in the user’s web browser)
and is NOT a safe way to store sensitive information like passwords. It is
often used to remember where a user left off on a page or their username so
that it will be filled in automatically the next time they visit the page.

Session: This is saved in a temporary folder on the web server. It is encrypted
and is a safe way to store information. Sessions are often used to store
information that the user shouldn't be able to see or modify.

How to set up a Session
I want to do an example where the user logs in, we create a session for them
that stores the name, and then we can redirect to another page that doesn't
have this /user.

In this basic example, a user logs in, and we will hold their username in a
session until they log out.

Let us open our app.py and add session from flask and timedelta from
datetime to the first lines.
from flask import Flask, redirect, url_for, render_template, request, session
from datetime import timedelta

When the user presses login or submit on that login page, we will set up
session data based on whatever information they typed in.

I will paste the finished script up here and explain the process:
from flask import Flask, redirect, url_for, render_template, request, session
from datetime import timedelta

app = Flask(__name__)
app.secret_key = "hello"
app.permanent_session_lifetime = timedelta(minutes=5)

@app.route("/")
def home():
 return render_template("index.html")

@app.route("/login", methods=["POST", "GET"])
def login():
 if request.method == "POST":
 session.permanent = True
 user = request.form["nm"]
 session["user"] = user
 return redirect(url_for("user"))
 else:
 if "user" in session:
 return redirect(url_for("user"))

 return render_template("login.html")

@app.route("/user")
def user():
 if "user" in session:
 user = session["user"]
 return f"<h1>{user}</h1>"
 else:
 return redirect(url_for("login"))

@app.route("/logout")
def logout():
 session.pop("user", None)
 return redirect(url_for("login"))

if __name__ == "__main__":
 app.run(debug=True)

After importing session, the first and most important thing in sessions is the
data to set up.

Under the login function, we set the session to the user = user. This is to set
up some data for our session to store data as a dictionary just like we've seen
this requests.form. If I want to create a new piece of information in my
session, I can simply type the name of whatever I want that dictionary key to
be and then set it equal to some specific value. In this case, this is the user
who clicks Submit to the form.

How do we get that information to use on another page? Next, I will change
the redirect to redirect to the user, but I'm not going to pass the user as an
argument without passing any information from the user function.

To do that, I need a conditional clause in the user function. This new
statement will first check if there's any information in the session before I
reference the user's dictionary key. Technically, someone could just type
/user and access the user page without being logged.

That is as easy as it is to store and retrieve session data.

Next, the else statement. This is what Flask will do if this session does not
exist. If there is no user in my session, that means that the user has not logged
in yet or has left the browser and needs to log in again. That is the job of the
redirect line.

Now, what does the secret key do? It is essentially the way that we decrypt
and encrypt data. The line is usually typed at the beginning of the script as
app.secretkey with any string you want.

Session Data
If someone logs out, you probably want to delete all the information
associated with their session or at least some of that information. So you need
a new page for logout.

The job of the session.pop() function is to remove some data from our
session. In the function, we pass in “user”, None. What this is going to do is
actually remove the user data from my sessions. This is just how you remove
it from the dictionary. Then this none is just a message that's associated with
removing that data.

After that, we must return the user to the login page. So we'll say url_for
(“login”).

Session Duration
Remember that as it stands, the session data is deleted when the user closes
the browser. That is why we need the permanent sessions. Now what I'm
going to do to set up the permanent session here is define how long I want a
permanent session to last. So you may have sometimes noticed you know you

revisit a website a few days later, and you just log in immediately. You don't
actually have to, you know, go through the process, or maybe your
information is already typed in, and you just hit login. We will store some of
this information in permanent sessions, which means keeping it longer. So
that every time you go back to that web page, you can quickly access
information that you need, and you don't need to log back.

CHAPTER 12 – MESSAGE FLASHING
In this chapter, we will talk about flashing messages on the screen.
Essentially, message flashing shows some kind of information from a
previous page on the next page when something happens on the GUI.

For example, say I log in, it redirects me to another page and then maybe on
the top of that page, it says logged in successfully, login error, or if I log out,
perhaps I'm going to get redirected to another page. Still, I want to show on
that other page that I logged out successfully, so I'll flash a message in a
specific part of that page so that the user has some idea of what they actually
did. This is to give them a little bit more interaction with the page.

flash() Function
Instead of thinking about changing the whole page or passing through some
new variables to show on the screen, you can just flash a message quickly
with a module called flash().

All you need to do is to import flash. Then you can use this function to
display or kind of like post the messages that are to be flashed and then from
the different pages, we can decide where we want to flash those, and we'll do
that in a second.

We will use the same app.py from the previous section because we will also
deal with sessions and log in.

The simple syntax is
flash(message, category)

A basic example of when you might want to flash a message in our app.py
script is where a user logs out. When we log out, we go to a logout page that
pops our session and redirects us back to the login page. What if we can show
a “Logged out successful” message on that page so that they know there
wasn't an error?

First, import flash from flask. That means it goes in the first line. So go to the
logout function in the script and input the following line before the redirect
line:
flash("You Have Logged Out Successfully!", "info")

The next parameter for this is the category, which is optional. Still, I'm going
to put “info” as the category. One of the built-in categories includes a
warning, info, and error.

Displaying Flash Message
Now that we have written a message, we need to display the message from
our different pages. So go to the login page, and inside the block content,
write a templated code here to show all of the flashed messages that come up:
{% extends "base.html" %}
{% block title %}Login Page{% endblock %}

{% block content %}
{% with messages = get_flashed_messages() %}
{% if messages %}
{% for msg in messages %}
<p>{{msg}}</p>
{% endif %}
{% endif %}
{% endwith %}
<form action="#" method="post">
 <p>Name:</p>
 <p><input type="text" name="nm" /></p>
 <p><input type="submit" value="submit" /></p>
</form>
{% endblock %}

The new thing in this is the with, which is just another Python syntax you can
use here. It says to check if there's any to display. We'll loop through them
and show them.

Notice that we can have more than one flash message, which means if we go
between a few different pages, we'll show two or three flash messages on a
specific page.

As you see, when I logged out, I saw the message.

The problem we have now is that this message pops out whenever you type
/log out, even if you had not been logged in before. In that case, we could
check if we have a user in the session and only if we do will we say you've
been logged out.

What will we do? We will add an if statement to check if the user was in
session and then display their name and say they have been logged out.
from flask import Flask, redirect, url_for, render_template, request, session, flash
from datetime import timedelta

app = Flask(__name__)
app.secret_key = "hello"
app.permanent_session_lifetime = timedelta(minutes=5)

@app.route("/")
def home():
 return render_template("index.html")

@app.route("/login", methods=["POST", "GET"])
def login():
 if request.method == "POST":
 session.permanent = True
 user = request.form["nm"]

 session["user"] = user
 return redirect(url_for("user"))
 else:
 if "user" in session:
 return redirect(url_for("user"))

 return render_template("login.html")

@app.route("/user")
def user():
 if "user" in session:
 user = session["user"]
 return f"<h1>{user}</h1>"
 else:
 return redirect(url_for("login"))

@app.route("/logout")
def logout():
 if "user" in session:
 user = session["user"]
 flash(f"{user}, You Have Logged Out Successfully!", "info")
 session.pop("user", None)
 return redirect(url_for("login"))

if __name__ == "__main__":
 app.run(debug=True)

If you run this, you will get the result:

Not logged in, it displays this without the flash message.

Displaying More Than 1 Message
We will change the app.py and create a new user.html file to do this example.

Let's start by creating a new HTML file that we'll use to render the user page.
With the app.py right now, we just have some h1 tags. Let us make
something that looks a little bit nicer.
{% extends "base.html" %}
{% block title %}User{% endblock %}
{% block content %}
 {% with messages = get_flashed_messages() %}
 {% if messages %}
 {% for message in messages %}
 <p>{{ msg }}</p>
 {% endfor %}
 {% endif %}
 {% endwith %}
<h2>User Authenticated</h2>
<p>Welcome, {{user}}</p>
{% endblock %}

Now, we go to the user function in the app.py file and render the new
template.

We can also flash a new message after running the log-in function. We could
also flash “You are not logged in” when the person tries to enter the /user
page from the url.
from flask import Flask, redirect, url_for, render_template, request, session, flash
from datetime import timedelta

app = Flask(__name__)
app.secret_key = "hello"
app.permanent_session_lifetime = timedelta(minutes=5)

@app.route("/")
def home():
 return render_template("index.html")

@app.route("/login", methods=["POST", "GET"])
def login():
 if request.method == "POST":
 session.permanent = True
 user = request.form["nm"]
 session["user"] = user
 flash("You Are Logged In!")
 return redirect(url_for("user"))
 else:
 if "user" in session:

 flash("You Are Logged In!")
 return redirect(url_for("user"))
 return render_template("login.html")

@app.route("/user")
def user():
 if "user" in session:
 user = session["user"]
 return render_template('user.html', user=user)
 else:
 flash("You Are NOT Logged In!")
 return redirect(url_for("login"))

@app.route("/logout")
def logout():
 if "user" in session:
 user = session["user"]
 flash(f"{user}, You Have Logged Out Successfully!", "info")
 session.pop("user", None)
 return redirect(url_for("login"))

if __name__ == "__main__":
 app.run(debug=True)

Now, let us test it out:

That is the message flashing. In the next chapter, we'll get into the basic
database and discuss how to set up a scalable web server.

CHAPTER 13 – SQL ALCHEMY SET UP & MODELS
In this chapter, what we're going to be doing is talking about databases and
how we can actually save user-specific information to the database.

Application data is organized and kept in a database. When necessary, the
program then issues queries to retrieve specific portions of the data. The
majority of online applications make use of relational model-based databases.
Because they employ Structured Query Language, these databases are
sometimes known as SQL databases. However, document-oriented and key-
value databases, also known as NoSQL databases, have gained popularity as
alternatives in recent years.

A few database models will be made.

A Flask add-on called Flask-SQLAlchemy makes it simpler to use
SQLAlchemy in Flask programs. Strong relational database framework
SQLAlchemy is compatible with a variety of database backends. It has both a
high-level ORM and a low-level way to access the SQL features of the
database.

Creating A Simple Profile Page
We want to collect few data from the user. When the user logs in, they're
brought to a page where they can modify some information about themselves.
This is called CRUD (create-update-update-delete).

Well, to keep things simple, we're just going to make that information an
email. In this program, we will create, and each user will upload an email.
When they go there, they can change their email, they can update it, they can
delete the email, and we'll save that in a database and then the next time that
the user logs in, we'll look for that email, and we'll display it, and then they
can change it. This will give you an idea of how we have persistent
information in CRUD programs in Flask.

Database Management with Flask-SQL Alchemy
We will need to install it as an extension in our virtual environment. Stop
your server in the command prompt or terminal and do a pip install flask-
SQLalchemy.

pip install flask-sqlalchemy

Once done, open your app.py and import sqlachemy.

Now we're just going to work on some of the front-end stuff for the website.
So we will start by getting the form set up, grabbing some information from
the form with a post request and then we'll get into the database.

The first step is the user.html file.
{% extends "base.html" %}
{% block title %}User{% endblock %}
{% block content %}
{% with messages = get_flashed_messages() %}
{% if messages %}
{% for message in messages %}
<p>{{ msg }}</p>
{% endfor %}
{% endif %}
{% endwith %}
<form action="#" method="POST">
 <input type="email" name="email" placeholder="Enter Email" value="{{email if email}}" />
 <input type="submit" value="submit" />
</form>
{% endblock %}

And look closely at the changes in the app.py file:
from flask import Flask, redirect, url_for, render_template, request, session, flash
from datetime import timedelta
from flask_sqlalchemy import SQLAlchemy

app = Flask (__name__)
app.secret_key = "hello"
app.permanent_session_lifetime = timedelta(minutes=5)

@app.route("/")
def home():
 return render_template("index.html")

@app.route("/login", methods=["POST", "GET"])
def login():
 if request.method == "POST":
 session.permanent = True
 user = request.form["nm"]
 session["user"] = user
 flash("You Are Logged In!")
 return redirect(url_for("user"))

 else:
 if "user" in session:
 flash("You Are Logged In!")
 return redirect(url_for("user"))
 return render_template("login.html")

@app.route("/user", methods=["POST", "GET"])
def user():
 email = None
 if "user" in session:
 user = session["user"]

 if request.method =="POST":
 email = request.form["email"]
 session["email"] = email
 else:
 if "email" in session:
 email = session["email"]

 return render_template('user.html', email=email)
 else:
 flash("You Are NOT Logged In!")
 return redirect(url_for("login"))

@app.route("/logout")
def logout():
 if "user" in session:
 user = session["user"]
 flash(f"{user}, You Have Logged Out Successfully!", "info")
 session.pop("user", None)
 session.pop("email", None)
 return redirect(url_for("login"))

if __name__ == "__main__":
 app.run(debug=True)

The result:

I've actually made a change in the base template too. I've added this html
thing that says div class equals container-fluid. It is a bootstrap class that
covers the entire web page.

Here is the entire code:
<!doctype html>
<html>

<head>
 <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@4.3.1/dist/css/bootstrap.min.css"
 integrity="sha384-
ggOyR0iXCbMQv3Xipma34MD+dH/1fQ784/j6cY/iJTQUOhcWr7x9JvoRxT2MZw1T"
crossorigin="anonymous">
 <title>{% block title %}{% endblock %}</title>
</head>

<body>
 <nav class="navbar navbar-expand-lg navbar-light bg-light">
 Navbar
 <button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbarNav"
 aria-controls="navbarNav" aria-expanded="false" aria-label="Toggle navigation">

 </button>
 <div class="collapse navbar-collapse" id="navbarNav">
 <ul class="navbar-nav">
 <li class="nav-item active">
 Home (current)

 <li class="nav-item">

 Login

 <li class="nav-item">
 Logout

 </div>
 </nav>
 <h1>Abby's Website</h1>
 <div class="container-fluid">
 {% block content %}
 {% endblock %}
 </div>

 <script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"
 integrity="sha384-
q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo"
 crossorigin="anonymous"></script>
 <script src="https://cdn.jsdelivr.net/npm/popper.js@1.14.7/dist/umd/popper.min.js"
 integrity="sha384-
UO2eT0CpHqdSJQ6hJty5KVphtPhzWj9WO1clHTMGa3JDZwrnQq4sF86dIHNDz0W1"
 crossorigin="anonymous"></script>
 <script src="https://cdn.jsdelivr.net/npm/bootstrap@4.3.1/dist/js/bootstrap.min.js"
 integrity="sha384-
JjSmVgyd0p3pXB1rRibZUAYoIIy6OrQ6VrjIEaFf/nJGzIxFDsf4x0xIM+B07jRM"
 crossorigin="anonymous"></script>

</body>

</html>

I did with sessions to save the users email in a session, and then once we have
it in a session, we can change the user page to have a method. That is the
change in the user function in the app.py file. Like our login page, you can
see the methods=”POST” and “GET”.

I set up a bit of code to collect and save the email in the session. And we use
the if statement to check the current method.

You can play around with the code and even show some message to the user
to tell them that their email is saved.

If you go to /login, you can see that it still has the email saved. If we close a
web browser as we did not use a permanent session, the data will go away
and won't be saved.

How to use database
Now it's time to talk about databases. We've done great in saving data but
have not set up a database to collect it. The data is saved in the session. This
means that the data will disappear once you close the browser or after 5 mins.

To set up a database, you need to create a Flask application object for the
project and set the URI for the database to use. Add this line immediately
after the __name__
app = Flask (__name__)
app.config ['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///users.sqlite3'
app.config ["SQLALCHEMY_TRACK_MODIFICATIONS"] = False
app.secret_key = "hello"
app.permanent_session_lifetime = timedelta(minutes=5)

db = SQLAlchemy(app)

We use users because that's what we're going to use, and then again sqlite3.
The second line shows that we're not tracking all the modifications to the
database. And the last line creates the database.

Models
Now, let us create models for the data we want to collect and save into the
database we have created.
class students(db.Model):
 _id = db.Column('id', db.Integer, primary_key = True)
 name = db.Column(db.String(100))
 email = db.Column(db.String(100))

So that you can understand how databases work, I will explain object relation
mapping. Object Relation Mapping is used to identify and store objects. SQL
is based on objects. The objects are referenced by tables like Ms Excel.
Tables hold the information in the RDBMS server. A relational database
management system (RDBMS) is a group of programs experts use to create,

update, administer and otherwise interact with a relational database like SQL.

Object-relational mapping is a method for relating an RDBMS table's
structure to an object's parameters. SQLAlchemy helps you do CRUD
operations without having to write SQL statements.

You must set up the table, that is, what we want to represent. Any pieces of
information can be stored in rows and columns in our database for each
object you want to collect. In this case, we want a single column, that is, the
name and email of a user.

The columns will represent pieces of information, and the rows will represent
individual items. We want to store users, and our users are going to have. In
this case, just a name and an email, and that's all we want to store. We define
a class to represent this user object in our database. That is why we call it
users. You can play around with the names if you want to store more than
names, emails, or different information.

Every single object that we have in our database needs to have a unique
identification. That is why we set an _id class. The identification could be a
string, boolean or an integer. After selecting the db.column name, we set the
input type and the length or the maximum length of the string that we want to
store. In this case, we use 100 characters.

Lastly, we will need to define the function that shows the database that we
are collecting the data from the user.
def __init__(self, name, email):
 self.name = name
 self.email = email

This __init__() method will take the variables we need to create a new object
because technically, we can store some values here that will be None values.
Some objects might not actually have a value for that property. For example,
say we have gender as an option, and now some people decide not to declare
that, and we want to leave that as none.

The next thing to do is go to the bottom of the script to add something
db.create_all(). This is a method to actually create this database if it doesn't
already exist in our program whenever we run this application.

from flask import Flask, redirect, url_for, render_template, request, session, flash
from datetime import timedelta
from flask_sqlalchemy import SQLAlchemy

app = Flask (__name__)
app.config ['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///users.sqlite3'
app.config ["SQLALCHEMY_TRACK_MODIFICATIONS"] = False
app.secret_key = "hello"
app.permanent_session_lifetime = timedelta(minutes=5)

db = SQLAlchemy(app)
class students(db.Model):
 _id = db.Column('id', db.Integer, primary_key = True)
 name = db.Column(db.String(100))
 email = db.Column(db.String(100))

 def __init__(self, name, email):
 self.name = name
 self.email = email

@app.route("/")
def home():
 return render_template("index.html")

@app.route("/login", methods=["POST", "GET"])
def login():
 if request.method == "POST":
 session.permanent = True
 user = request.form["nm"]
 session["user"] = user
 flash("You Are Logged In!")
 return redirect(url_for("user"))
 else:
 if "user" in session:
 flash("You Are Logged In!")
 return redirect(url_for("user"))
 return render_template("login.html")

@app.route("/user", methods=["POST", "GET"])
def user():
 email = None
 if "user" in session:
 user = session["user"]

 if request.method =="POST":
 email = request.form["email"]
 session["email"] = email
 else:
 if "email" in session:
 email = session["email"]

 return render_template('user.html', email=email)
 else:
 flash("You Are NOT Logged In!")
 return redirect(url_for("login"))

@app.route("/logout")
def logout():
 if "user" in session:
 user = session["user"]
 flash(f"{user}, You Have Logged Out Successfully!", "info")
 session.pop("user", None)
 session.pop("email", None)
 return redirect(url_for("login"))

if __name__ == "__main__":
 db.create_all()
 app.run(debug=True)

CHAPTER 14 - CRUD
Now, let us create a simple web app where users can create, update, delete
and read posts. This is called a CRUD app. We will give our users the ability
to store information about books. The database is SQLAlchemy and SQLite.

The app we're making here isn't meant to be valid on its own. But once you
know how to write a simple web app that takes user input and stores it in a
database, you are well on your way to writing any web app you can think of.
So, we'll keep the example application as simple as possible so you can focus
on the tools themselves instead of details about the application.

You have learned how to set up and model a database. Now is time to watch
it work and build web apps.

The Flask Book Store
First, we need to create a simple database. Then our app lets users to write
book titles and upload as text. They can also read posts that they have added,
change or delete them.

CRUD scripts are found in almost every web app out there. Whatever you
want to build, you'll need to get user input and store it (let your user create
information), show that information back to your user (let your user read
data), find a way to fix old or wrong information (let your user update
information), and get rid of information that isn't needed (let your user delete
information) (allow users to delete information that was previously added).
This will make more sense when we see how each CRUD operation works in
our web application.

Ensure that the following are installed:

Flask

SQLAlchemy

Flask-SQLAlchemy

You can install everything with pip by running the following command:
pip3 install --user flask sqlalchemy flask-sqlalchemy

Remember to install them in your virtual environment.

Your static web page with Flask
Flask is simple. That is one of its biggest selling points as a web framework.
We can get a simple page running in only a few lines of code. Create a folder
for your project, create a file inside it called bookmanager.py or leave it as
app.py.

In this case, book is my virtual environment. You can create a basic page
with this code in your app.py:
from flask import Flask

app = Flask(__name__)

@app.route("/")
def home():
 return "This is an app"

if __name__ == "__main__":
 app.run(host='0.0.0.0', debug=True)

Handling user input in our web application
You know the basics of how this works, but I will just go over it a bit. We
have a simple web app that doesn't do much now. We want to create an app
to take the users' content. We'll do this by adding an HTML form that sends
information from the front-end of our application (what our users see)
through Flask and to the back-end (our Python code).

In the Python code for our above application, we set up the string "This is an
app." This was fine because it was only one line, but as our front-end code

grows, defining everything in our Python file will become more complex.
Flask lets you keep different things separate by using templates.

Templates
Create a index.html file in your templates folder. This is the first template for
this project. You can fill it with the following code:
<html>

<body>
 <form method="POST" action="/">
 <input type="text" name="book">
 <input type="submit" value="Add">
 </form>
</body>

</html>

This is a simple HTML page that has:

A text input that will link any text entered to the name "book."

A simple form

A submit button with the word "Add" on it.

A direction to send the data ("post") to our web application's main page (the /
route, which is the same page we set up in our app.py file).

We need to make two changes to the app.py file to use our new template.
Add render_template to the imports section, and replace “This is an app” with
the following:
return render_template("home.html")

Start your server and check in your web browser:

This is a simple box where the user can type in text and click "Add." Doing
this will send the text to the back-end of our app, and we'll all be on the same
page. Before we can try it, our back-end code needs to be changed to handle
this new feature.

Back-end
A method="POST" line in our index.html file says that the data in the form
should be sent using HTTP POST. We have learned that Flask routes only
accept HTTP GET requests by default. What matters to us is that if we send
in our form right now, we'll get an error message that says, "Method not
allowed." Because of this, we need to change our app.py file so that our web
application can handle POST requests.

So import request and update your new home function to be like this:
@app.route("/", methods=["GET", "POST"])
def home():
 if request.form:
 print(request.form)
 return render_template("index.html")

Here's what we did:

We changed our route decorator by adding methods=["GET", "POST"]). This
will get rid of the "Method not allowed" error we got when we tried to send
the form before. By default, Flask lets all routes accept GET requests. Here,
we tell it to let both GET and POST requests.

We use the if request.form to see if the form was just sent by someone. If
they did, we can use the request.form variable to get the information they sent

in. We'll just print it out to make sure our form works.

Restart your server and test the page now. Type anything into the box and
click "Add." In the console, the string you typed should show up as output,
like in the picture below.

Flask stores all of the form data in an ImmutableMultiDict, a fancy Python
dictionary. It saved the user's input as a tuple typed into the form, and "title"
is the name we gave it in the home.html template.

You see the two items I added. You can play around with this with flash
messages or everything. This is only a sample to help open your creative
mind.

We are not there yet. Now that we know how to get user input and do
something with it let's learn how to store it.

Add a database
To help our Flask app remember our users' input, we need to add the items to
a database. We have learned how to set up and model a database in the last
chapter. Let us do that now.
import os

from flask import Flask, render_template, request

from flask_sqlalchemy import SQLAlchemy

project_dir = os.path.dirname(os.path.abspath(__file__))
database_file = "sqlite:///{}".format(os.path.join(project_dir, "bookdatabase.db"))

app = Flask(__name__)
app.config["SQLALCHEMY_DATABASE_URI"] = database_file

db = SQLAlchemy(app)

On line 1, we add an import for the os Python library. This lets us access
paths on our file system relative to our project directory.

In line 7, we import SQLAlchemy's Flask version (we had to install both
Flask-SQLAlchemy and SQLAlchemy). We only import Flask-SQLAlchemy
because it extends and depends on the SQLAlchemy base installation.

In lines 9 and 10, we find out where our project is and set up a database file
with its full path and the sqlite:/ prefix to tell SQLAlchemy which database
engine we are using.

Next, we show our app where to store our database.

Then, we set up a connection to the database and store it in the db variable.
This is what we'll use to talk to our database.

Lastly, we set up the database.

This recap summarizes how to set up the SQLAlchemy database for your
program. Now we can give the database what to store and how to store it in
our database.

For a real book store app, there are many details the user may need to post
and the programmer would have to model a lot of information, like the book's
author, title, number of pages, date, etc. For simplicity, we are only allowing
users to post titles. Add the code below to app.py. This is how each book will
be stored in our database. Make sure to add the code below the line db =
SQLAlchemy(app) since we use db to define the book model.
class Book(db.Model):
 title = db.Column(db.String(80), unique=True, nullable=False, primary_key=True)

 def __repr__(self):
 return "<Title: {}>".format(self.title)

Front-end
When a user types in the name of a book, we can now make a Book object
and store it in our database. To do this, update the home() function once more

so that it looks like this.

def home():
 if request.form:
 book = Book(title=request.form.get("title"))
 db.session.add(book)
 db.session.commit()
 return render_template("index.html")

When we get input, we no longer need to send it to the console. Instead, we
make a new Book object using the "title" field from our form. We assign this
new Book to the book variable.

Then, we include the book into our database and save the modifications.

This is the app.py:
import os

from flask import Flask, render_template, request

from flask_sqlalchemy import SQLAlchemy

project_dir = os.path.dirname(os.path.abspath(__file__))
database_file = "sqlite:///{}".format(os.path.join(project_dir, "bookdatabase.db"))

app = Flask(__name__)
app.config["SQLALCHEMY_DATABASE_URI"] = database_file

db = SQLAlchemy(app)
class Book(db.Model):
 title = db.Column(db.String(80), unique=True, nullable=False, primary_key=True)

 def __repr__(self):
 return "<Title: {}>".format(self.title)

@app.route("/", methods=["GET", "POST"])
def home():
 if request.form:
 book = Book(title=request.form.get("title"))
 db.session.add(book)
 db.session.commit()
 return render_template("index.html")

if __name__ == "__main__":
 app.run(host='0.0.0.0', debug=True)

Initializing
When we write codes like app.py, Python, Flask, or other frameworks need to
run the code every time we run the program. There is a way to run a setup
code that will be one-time only.

Open a python shell. You can do this in your Terminal or command prompt
by typing Python or Python3. This will open up the Shell. In the shell, run the
following 3 lines.
>>> from app import db

>>> db.create_all()

>>> exit()

You may now return to your online application and add as many book titles
as you like. Our CRUD application is complete, and we have reached the C
stage, where we can generate new books. The next step is to restore our
ability to read them.

Retrieving books from our database
We'd want to retrieve all the latest books from the database and show them to
the user every time they visit our web app. Using SQLAlchemy, we can
quickly and easily store a Python variable with all the books in our database.
Just before the end of the home() method, add a line to retrieve all of the
books and change the final line so that the books are passed to our front-end
template. Home() should end with these two lines.
books = Book.query.all()
return render_template("index.html", books=books)

You can currently render all the books in the home.html file using a Jinja for
loop. While you're working on the file, feel free to add the headers we'll need
for the form and the list of books to appear. Here is the complete code for the
index.html page.
<html>

<body>
 <h1>Add book</h1>
 <form method="POST" action="/">

 <input type="text" name="book">
 <input type="submit" value="Add">
 </form>

 <h1>Books</h1>
 {% for book in books %}
 <p>{{book.title}}</p>
 {% endfor %}
</body>

</html>

Simply save the file and refresh the program in your browser to see the
changes take effect. You should now see the books as you add them, as
shown below.

We have successfully finished the C and the R of our CRUD program. That
is, our users can now Create and Read their content. Next, How can we
update that Aby to a book title?

Updating book titles
Now, the last and probably the most complex part of the project is data
updates.

We only present a representation of the data on our front end. As a result, the
user won't be able to alter anything. As an alternative, we request that you
send us a more recent title while we archive the earlier one. The newly
updated book can be found using the old title in our code, which will replace
it with the one the user submitted.

We'll create each title in its own distinct form because it's unlikely that the
user will want to manually enter both the old and new titles. The previous
title will be available to us when the user gives the revised one. We will use a
hidden HTML input to get the previous title without having it appear in the
user interface.

Change the for loop in our home.html file to the following:
 {% for book in books %}
 <p>{{book.title}}</p>
 <form method="POST" action="./update">
 <input type="hidden" value="{{book.title}}" name="oldtitle">
 <input type="text" value="{{book.title}}" name="newtitle">
 <input type="submit" value="Update">
 </form>
 {% endfor %}

The form is similar to the previous form that we used to add new books. Here
are a few critical updates:

We first need to direct this form's data submission to the /update app route,
not the home page. Since we have not created a decorator for it, we must do
that in our app.py file.

We use a secret input on line 4 to provide the "old" title of the book. This
area will automatically be filled from the program database. So the user will
see it.

Open your app.py file and add a redirect to the imports list.

Now add the new route decorator for /update with the following block:
@app.route("/update", methods=["POST"])
def update():
 newtitle = request.form.get("newtitle")
 oldtitle = request.form.get("oldtitle")
 book = Book.query.filter_by(title=oldtitle).first()

 book.title = newtitle
 db.session.commit()
 return redirect("/")

If you refresh the application page in your browser, you should see something
that looks like the image below. It is possible to alter the titles of already-
created books by editing the corresponding input field and clicking the
"Update" button.

After updating:

Well done. You have seen how we handle the CRU with Flask. Now, let us
give the user the power to Delete books that they no longer want to see.

Deleting books from our database
This feature is not completely different from how we created the Update
feature. In this case, we don’t need to call the old title. Open the index.html
file and create another form with the for loop.
 <form method="POST" action="./delete">
 <input type="hidden" value="{{book.title}}" name="title">
 <input type="submit" value="Delete">
 </form>

Next, add a new app route decorator in the app.py for the /delete route and
create the function.

After deleting:

We have created a Flask app that handles CRUD operations like magic! This
is the basics. You can use this to create a standard app anyhow you want by
playing around with the code and Bootstrap.

These are the working codes:

app.py:
import os

from flask import Flask, render_template, request, redirect

from flask_sqlalchemy import SQLAlchemy

project_dir = os.path.dirname(os.path.abspath(__file__))
database_file = "sqlite:///{}".format(os.path.join(project_dir, "bookdatabase.db"))

app = Flask(__name__)
app.config["SQLALCHEMY_DATABASE_URI"] = database_file

db = SQLAlchemy(app)
class Book(db.Model):
 title = db.Column(db.String(80), unique=True, nullable=False, primary_key=True)

 def __repr__(self):
 return "<Title: {}>".format(self.title)

@app.route('/', methods=["GET", "POST"])
def home():
 books = None
 if request.form:
 try:
 book = Book(title=request.form.get("title"))
 db.session.add(book)
 db.session.commit()
 except Exception as e:
 print("Failed to add book")
 print(e)
 books = Book.query.all()
 return render_template("index.html", books=books)

@app.route("/update", methods=["POST"])
def update():
 try:
 newtitle = request.form.get("newtitle")
 oldtitle = request.form.get("oldtitle")
 book = Book.query.filter_by(title=oldtitle).first()
 book.title = newtitle
 db.session.commit()
 except Exception as e:
 print("Error in updating title")
 print(e)
 return redirect("/")

@app.route("/delete", methods=["POST"])
def delete():
 title = request.form.get("title")
 book = Book.query.filter_by(title=title).first()
 db.session.delete(book)
 db.session.commit()
 return redirect("/")

if __name__ == "__main__":
 app.run(host='0.0.0.0', debug=True)

Our index.html will look like this:
<html>

<body>
 <h1>Add book</h1>
 <form method="POST" action="/">
 <input type="text" name="title">
 <input type="submit" value="Add">
 </form>

 <h1>Books</h1>
 <table>
 {% for book in books %}
 <tr>
 <td>
 {{book.title}}
 </td>
 <td>
 <form method="POST" action="./update" style="display: inline">
 <input type="hidden" value="{{book.title}}" name="oldtitle">
 <input type="text" value="{{book.title}}" name="newtitle">
 <input type="submit" value="Update">
 </form>
 </td>
 <td>
 <form method="POST" action="./delete" style="display: inline">
 <input type="hidden" value="{{book.title}}" name="title">
 <input type="submit" value="Delete">
 </form>
 </td>
 </tr>
 {% endfor %}
 </table>
</body>

</html>

The new code now has error handling codes.

When we first learnt about databases, I stated that each object must be
distinct. If we try to add a book with the same title twice or change the title of
an existing book to one that already exists, an error will occur. The revised
code will have a try: except: block around the home() and update() blocks.

CHAPTER 15 – DEPLOYMENT
At long last, our app is ready for release. The deployment has begun. There
are a lot of factors to consider, which can make this procedure tedious. When
it comes to our production stack, there are also many options to consider. In
this section, we'll go over a few key components and the various
customization paths available to us for each of them.

Web Hosting
Since the beginning of this tutorial, you have been using your local server,
which only you can access. You need a server that is accessible to everyone.
There are thousands of service providers that give this, but I use and
recommend the three below. The specifics of getting started with them are
outside the scope of this book. Therefore I won't be covering them here.
Instead, I'll focus on why they're a good choice for Flask app hosting.

Amazon Web Services EC2
Amazon Web Services (AWS) is the most common option for new
businesses, so you may have heard of them. I am talking about the Amazon
Elastic Compute Cloud (EC2) for your Flask app. The main selling feature of
EC2 is the speed with which new virtual computers, or "instances" in AWS
lingo, may be created. Adding more EC2 instances to our app and placing
them behind a load balancer allows us to swiftly expand it to meet demand
(we can even use the AWS Elastic Load Balancer).

For Flask, AWS is equivalent to any other form of the virtual server. In a
matter of minutes, we can have it running our preferred Linux distribution,
complete with our Flask app and server stack. However, this necessitates that
we have some expertise in systems management.

Heroku
Heroku is a platform for hosting applications developed on top of existing
AWS capabilities, such as Elastic Compute Cloud (EC2). As a result, we
could enjoy EC2's benefits without learning the ins and outs of systems
administration.

When using Heroku, we simply push our application's source code repository
to their server through git. This is handy when we don't feel like logging into

a server through SSH, configuring the software, and thinking out a sensible
deployment strategy. These luxuries don't come cheap, but both AWS and
Heroku provide some levels of service at no cost to the user.

Digital Ocean
In recent years, Digital Ocean has emerged as a serious alternative to
Amazon Web Services EC2. In the same way that EC2 allows us to easily
create virtual servers, Digital Ocean will enable us to create what they call
droplets. In contrast to the lower tiers of EC2, all droplets use solid-state
drives. The most appealing feature for me is the interface's superior
simplicity and ease of use compared to the AWS control panel. If you're
looking for a hosting service, I highly recommend Digital Ocean.

Using Flask for deployment on Digital Ocean is similar to using EC2. We're
going to install our server stack on a new Linux distribution.

Requirements for deployment
This section will discuss the software that must be installed on the server
before we can begin to host our Flask application. As a case study, I will use
Heroku as our deployment server. What do you need to deploy to Heroku?

Before Heroku accepts to deploy your app, you need to add two files to your
project folder and install the app runner called Gunicorn:

You must create a requirements.txt file to specify your app's dependencies
and a special Heroku file called Procfile.

Gunicorn
It is easy to get this by installing with pip:
pip install gunicorn

After that, use the following command to create the requirements.txt file.
pip freeze > requirements.txt

Your app's dependencies will be determined mechanically by pip and
dumped into requirements.txt.

In the end, Heroku will look to the Procfile to determine how to launch our
application. It will be instructed to use the gunicorn web server instead of the
local development server.

Create a file named Procfile and save it in the project's root folder with the
following contents:
web: gunicorn app:app

Replace the first “app” with the name of the module or file for your main
flask file and the second “app” with the name of your flask app.

My app’s module name is app because the script is in the file app.py, and the
other is the app name also app because that’s the name of my script in the
file.

Once you have the requirements.txt and Procfile in your root folder, you can
deploy!

Deploy!
While there are a number of options for getting your app up and running on
Heroku, git is by far the most straightforward.

Set up Git
A git repository should have been created for your project's directory; all that
remains is to make a commit of all of your code. Now run git init to initialize
git for your code.

git init

git add .

git commit -m “initial commit”

These three commands will configure and commit your script so that Heroku
knows that you are ready for deployment.

Push your Site
Finally, use the following command to push your program up for production
into the Heroku environment:

Type heroku create in your terminal and wait for a few minutes. Then run the
following line:
git push heroku main

It may take a few seconds to push your code. That command takes your code
to the Heroku server. Now is time to switch from SQLAlchemy models to the
new PostgreSQL database that Heroku understands. Type python in your
command line to open the shell and run the following commands:
>>> from app import db
>>> db.create_all()

When you type exit(), you will close the shell. To test your web app, type
heroku open. It will take you to a free domain name with your code running
in production.

	Contents
	Introduction
	What is Flask?
	Why Do Most People Use Flask?
	Scalable
	Flexible
	Easy to Navigate
	Lightweight
	Documentation

	Why Do Some Hate Flask?
	Few resources
	Large Flask app hard to learn
	Maintenance

	Chapter 1 – Learning the Strings
	The PEP Talk
	PEP 8: Style Guide for Python Code
	PEP 257: Docstring Conventions

	Relative imports
	Application Directory
	Installing Python
	Installing Python
	Install Pip

	Chapter 2 – Virtual Environments
	Use virtualenv to manage your environment
	Install virtualenvwrapper
	Make a Virtual Environment
	Installing Python Packages

	Chapter 3 – Project Organisation
	Patterns of organization
	Initialization
	Blueprints

	Chapter 4 – Routing & Configuration
	View decorators
	Configuration
	Instance folder
	How to use instance folders

	Secret keys
	Configuring based on environment variables
	Variable Rule

	Chapter 5 – Build A Simple App
	The actual app
	Development Web Server

	Chapter 6 - Dynamic Routes
	Converter

	Chapter 7 – Static Templates
	Rendering HTML Templates
	A String
	render_template() function

	File Structure Strategies
	Module File Structure
	Package File Structure

	Chapter 8 - The Jinja2 Template Engine
	Variables
	Filters
	Control structure
	Conditions
	loop

	Chapter 9 - Bootstrap Integration with Flask
	What is Bootstrap?
	Code Flask App with Bootstrap
	Create a Real Flask Website
	Getting Bootsrap

	Web App
	Page redirect
	Template inheritance
	What is Template Inheritance

	Adding Bootstrap
	Nav bar From Bootstrap

	Chapter 10 – HTTP Methods (GET/POST) & Retrieving Form Data
	GET
	POST
	Web Forms
	Login page template
	Back-End

	Bootstrap forms

	Chapter 11 – Sessions vs Cookies
	Sessions
	Sessions or Cookies?
	How to set up a Session
	Session Data
	Session Duration

	Chapter 12 – Message Flashing
	flash() Function
	Displaying Flash Message
	Displaying More Than 1 Message

	Chapter 13 – SQL Alchemy Set up & Models
	Creating A Simple Profile Page
	Database Management with Flask-SQL Alchemy
	How to use database
	Models

	Chapter 14 - CRUD
	The Flask Book Store
	Your static web page with Flask
	Handling user input in our web application
	Templates
	Back-end
	Add a database
	Front-end
	Initializing
	Retrieving books from our database
	Updating book titles
	Deleting books from our database

	Chapter 15 – Deployment
	Web Hosting
	Amazon Web Services EC2
	Heroku
	Digital Ocean

	Requirements for deployment
	Gunicorn

	Deploy!
	Set up Git
	Push your Site

