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For Mark, Millie, and Emma



Introduction

“Call me Ishmael.” This has to be one of the most famous opening
sentences in literature. I’m embarrassed to say that I didn’t get past it for a
long time—Moby-Dick was in the guilt-inducing category of “books you
should have read,” which obviously made me rebel against doing so, as I
feared it would be the worst of all things: worthy. Thank goodness I decided
one day to finally take the plunge, because it’s probably not an exaggeration
to say it changed my life. It set me thinking about the links between
mathematics and literature, which led ultimately to this book.

It all started when I heard a mathematician mention that Moby-Dick
contains a reference to cycloids. The cycloid is a beautiful mathematical
curve—the mathematician Blaise Pascal found it so distractingly
fascinating that he recounted thinking about it to relieve the pain of
toothache. But applications to whaling are not usually listed on its résumé.
Intrigued, I decided it was high time to finally read this Great American
Novel. To my surprise and delight, I found that right from the start, Moby-
Dick abounded with mathematical metaphors. The more Melville I read, the
more mathematics I discovered. And it wasn’t just Melville. Leo Tolstoy
writes about calculus, James Joyce about geometry. Mathematicians appear
in work by authors as disparate as Arthur Conan Doyle and Chimamanda
Ngozi Adichie. And how about the fractal structure that underlies Michael
Crichton’s Jurassic Park or the algebraic principles governing various
forms of poetry? Mathematical references in literary works go back at least
as far as Aristophanes’s The Birds, first performed in 414 BCE.

There have been occasional academic studies on mathematical aspects
of specific genres or authors. But even in the case of Melville, whose



affinity for mathematics is (for me) so obvious in his work, I could find just
a handful of scholarly articles. The more holistic connections between
mathematics and literature have not received the attention they deserve. My
goal in this book is to convince you not only that mathematics and literature
are inextricably, and fundamentally, linked, but that understanding these
links can enhance your enjoyment of both.

Mathematics is often viewed as being quite separate from literature and
other creative arts. But the perceived boundary between them is a very
recent idea. For most of history, mathematics was part of every educated
person’s cultural awareness. More than two thousand years ago, Plato’s
Republic put forward the ideal curriculum of arts to be studied, which
medieval authors split into the trivium (grammar, rhetoric, logic) and the
quadrivium (arithmetic, music, geometry, astronomy). Together, these are
the essential liberal arts. There is no artificial dichotomy here between
“mathematics” and “art.”

The eleventh-century Persian scholar Omar Khayyám, to whom the
poetry collection known as the Rubaiyat is attributed (modern scholars
believe it to be the work of several authors), was also a mathematician,
creating beautiful geometrical solutions to mathematical problems whose
full algebraic solutions would not be found for another four hundred years.
In the fourteenth century, Chaucer wrote both The Canterbury Tales and a
treatise on the astrolabe. There are innumerable such examples, not least
that of Lewis Carroll, who, of course, was a mathematician first and author
second.

But there is a deeper reason why we find mathematics at the heart of
literature. The universe is full of underlying structure, pattern, and
regularity, and mathematics is the best tool we have for understanding it—
that’s why mathematics is often called the language of the universe, and
why it is so vital to science. Since we humans are part of the universe, it is
only natural that our forms of creative expression, literature among them,
will also manifest an inclination for pattern and structure. Mathematics,
then, is the key to an entirely different perspective on literature. As a
mathematician, I can help you see it too.



I’ve always loved patterns—whether that’s patterns of words, numbers,
or shapes. I’ve loved patterns since before I knew that what I was doing was
mathematics. Gradually it became clear that I was going to be a
mathematician, but that came with consequences. In the British education
system in recent decades, mathematics has come to be treated exclusively
as a science subject, far removed from the humanities. If you want to study
mathematics after the age of sixteen, you probably have to pick the
“science” stream. At the end of my very last English class at school, in
1991, the teacher gave me a lovely handwritten note with a long list of
books she thought I might like, saying, “Sorry to lose you to the lab.” I was
sorry to be considered lost, too. But I wasn’t lost—and if you’ve ever had to
“choose” one subject over another, you aren’t lost either. I love language; I
love the way words fit together; I love the way that fiction, like
mathematics, can create, play with, and test the limits of imaginary worlds.
I went off to Oxford to study mathematics, very happy to be living one
street away from the pub where my childhood literary heroes C. S. Lewis
and J.R.R. Tolkien had met each week to discuss their work.

After completing a master’s degree and Ph.D. in Manchester, in the
north of England, I moved to London for a job at Birkbeck, one of the
colleges of the University of London, in 2004, and became a full professor
there in 2013. During all this time, although my “day job,” so to speak, has
been teaching and research, mainly in the area of abstract algebra known as
group theory, I became increasingly interested in the history of
mathematics, particularly in how mathematics is part of our broader cultural
experience. I’ve always felt that what I do as a mathematician fits in with
other creative arts, like literature or music. Good mathematics, like good
writing, involves an inherent appreciation of structure, rhythm, and pattern.
That feeling we get when we read a great novel or a perfect sonnet—that
here is a beautiful thing, with all the component parts fitting together
perfectly in a harmonious whole—is the same feeling a mathematician
experiences when reading a beautiful proof. The mathematician G. H.
Hardy wrote that “a mathematician, like a painter or poet, is a maker of
patterns.… The mathematician’s patterns, like the painter’s or the poet’s,
must be beautiful; the ideas, like the colours or the words, must fit together



in a harmonious way. Beauty is the first test: there is no permanent place in
the world for ugly mathematics.”

Becoming Gresham Professor of Geometry in 2020 gave me the chance
to bring together my decades of thinking about mathematics and its place in
history and culture. This professorship is one of the few Tudor jobs still
around—it was created in 1597 in the will of the Elizabethan courtier and
financier Sir Thomas Gresham, and I’m the thirty-third person, and the first
woman, to do it. I get to give public lectures on any mathematical subject of
my choosing, though fortunately it’s been well over a century since
professors were required to deliver each lecture twice: once in English and
once in Latin.

So with being a professor of mathematics at Birkbeck and concurrently
a professor of geometry at Gresham, as well as raising two wonderful
daughters, I know what you are thinking: Sarah, what do you do with all
your spare time? The answer is that, as I’ve always done, I read. Constantly
and widely. The best thing about e-readers is that there are no pages to turn,
which meant I could read even with a sleeping baby in my arms. That’s how
I finally found the time to read War and Peace, which was full of
mathematical surprises.

Each year my good friend Rachel and I set ourselves the challenge of
reading the Booker Prize shortlist before the winner is announced. This
gives us about six weeks to read six books. In 2013, one of the shortlisted
books (and in fact the eventual winner) was Eleanor Catton’s The
Luminaries. Catton made use of several structural constraints in the novel,
including a mathematical sequence known as a geometric progression.
There are hidden clues and rewards for the reader aware of the mathematics
behind the scenes—a haul of stolen gold worth precisely £4,096 is not a
coincidence, for example—and understanding the geometric progression
unfolding throughout gives you another dimension of enjoyment. This is
just one of many literary uses of mathematical structures that I’ll show you
in this book.

It’s worth pointing out as well that the links between mathematics and
literature do not run in just one direction. Mathematics itself has a rich
heritage of linguistic creativity. Going back to early India, Sanskrit



mathematics followed an oral tradition. Mathematical algorithms were
encoded in poetry so that they could be passed on by word of mouth. We
think of mathematical concepts as relating to precise, fixed words: square,
circle. But in the Sanskrit tradition, your words must fit into the meter of
your poem. Number words, for example, can be replaced with words for
relevant objects. The number 1 can be represented by anything that is
unique, like the moon or the earth, while “hand” can mean 2, because we
have two hands—but so can “black and white,” because they form a pair.
An expression like “three voids teeth” doesn’t mean a visit to the dentist,
but that three zeros should follow the number of teeth we have: a poetic
way to say 32,000. The huge array of different words and meanings lends a
compelling richness to the mathematics.

Mathematical language continues to be figurative—when we need new
words for things, we reach for metaphors. Once these words have been
established for long enough, we tend to forget that they have other layers of
meaning. But sometimes circumstances can intervene to remind us. As a
master’s student, I spent a semester studying at the University of Bordeaux,
in southwest France, and reading mathematics in French lent a slight air of
surreality to the mathematics because of the use of words and metaphors I
didn’t yet know in a mathematical context. Those few months of study
opened my eyes forever to the creative metaphorical language underpinning
much of mathematics. Learning a subject called algebraic geometry in
French, I got a distinctly agricultural vibe from the word gerbe, which until
then I had previously been aware of only in the phrase gerbe de blé (wheat
sheaf). Sometimes you can overtranslate—for a while I thought there was a
result called the walrus theorem, because the French word morse translates
to “walrus,” when in fact it was named after its discoverer, the respected
mathematician (and non-walrus) Marston Morse.

Just as mathematics makes use of literary metaphors, literature abounds
with ideas that a mathematically attuned eye can detect and explore. This
adds an extra dimension to our appreciation of a work of fiction. Melville’s
cycloid, for example, is a curious curve with many wonderful properties,
but unlike curves such as the parabola and ellipse, you probably haven’t
heard of it unless you are a mathematician. That’s a real shame, because the



properties of this curve are so beautiful that it was nicknamed “the Helen of
geometry.” Making a cycloid is quite easy. Imagine a wheel rolling along a
flat road. Now mark a point on the rim somehow, say with a blob of paint.
That blob will trace out a path in space as the wheel rolls, and this path is
called a cycloid. This is a fairly natural idea, but we don’t have evidence of
its being studied until the sixteenth century, and things didn’t really heat up
until the seventeenth and eighteenth centuries, when it seemed that
everyone who was interested in mathematics had something to say. It was
Galileo, for example, who came up with the name “cycloid”: he wrote that
he had worked on cycloids for fifty years.

So the fact that the cycloid gets a mention not just in Moby-Dick but in
two great works of eighteenth-century literature, Gulliver’s Travels and
Tristram Shandy, again shows us mathematics in its rightful place—not
“other” but part of intellectual life. When Gulliver visits the land of Laputa,
he finds the inhabitants obsessed with mathematics. Dining with the king,
he reports that “servants cut our bread into cones, cylinders, parallelograms,
and several other mathematical figures.” There is a shoulder of mutton “cut
into an equilateral triangle” and “a pudding into a cycloid.” Meanwhile,
over at Shandy Hall, Tristram’s uncle Toby is having terrible trouble trying
to construct a model bridge. After consulting various learned sources
(there’s even a reference to a real-life mathematical paper in the extremely
clever-sounding journal Acta Eruditorum), he decides, rather rashly, that a
cycloid-shaped bridge is the way forward. But it doesn’t go well: “My uncle
Toby understood the nature of a parabola as well as any man in England—
but was not quite such a master of the cycloid;—he talked however about it
every day—the bridge went not forwards.”

Part of the enjoyment of reading Tristram Shandy and other great books
is the dazzling richness and breadth of their allusions—literary, cultural,
and, yes, mathematical. If you’re reading classic literature, then it makes
sense to be at least a little familiar with works of Shakespeare because of
their profound literary and cultural influence. Is there a mathematical
equivalent to the works of Shakespeare, references to which abound in
classic literature? A strong contender would be the books of Euclid, known



collectively as The Elements of Geometry, or just Euclid’s Elements. They
are probably the most influential mathematics books of all time.

There’s an anecdote about how the philosopher Thomas Hobbes got
hooked on geometry, told by his biographer John Aubrey:

Being in a gentleman’s library Euclid’s Elements lay open, and
’twas the forty-seventh proposition in the first book. He read the
proposition. “By G—d,” said he, “this is impossible!” So he reads
the demonstration of it, which referred him back to such a proof;
which referred him back to another, which he also read.… At last he
was demonstratively convinced of that truth. This made him in love
with geometry.

This is a nice story, and it tells us a lot about how mathematics was
viewed. Euclid’s Elements lay open, notice, because Hobbes was in “a
gentleman’s library,” not “a mathematician’s study.” This stuff was
considered part of the well-rounded education of an informed person. More
than this, Aubrey assumes that we, the readers, are familiar with Euclid. He
refers to Book I, Proposition 47, as if we will know it. We do know it, in
fact, because it is Pythagoras’s theorem.

The beautiful certainties encapsulated in Euclidean geometry—axioms
and definitions leading inexorably to theorems and proofs—have both
inspired and consoled literary figures, from George Eliot and James Joyce,
both in their different ways lovers of mathematics, whom we’ll meet in
Chapter 6, to poets like William Wordsworth and Edna St. Vincent Millay.
In his “Prelude,” Wordsworth speaks of geometry bringing “a pleasure quiet
and profound” that can “beguile [your] sorrow”:

Mighty is the charm
Of those abstractions to a mind beset
With images, and haunted by herself,
And specially delightful unto me
Was that clear synthesis built up aloft
So gracefully;…
… an independent world



Created out of pure intelligence.

Everybody knew about the perfection of Euclid, so in the nineteenth
century the tremendously exciting discovery of geometries beyond the
Euclidean world—things like so-called non-Euclidean geometries, where
parallel lines can sometimes meet—instantly caught the public’s
imagination. I’ll show you how these ideas have been interpreted in
literature by everyone from Oscar Wilde to Kurt Vonnegut. By seeing
mathematics and literature as complementary parts of the same quest to
understand human life and our place in the universe, we immeasurably
enrich both fields.

In Part I of this book, we will explore the fundamental structures of
literary texts, from plot in novels to rhyme schemes in verse. I’ll show you
the underlying mathematics of poetry. I’ll give you the lowdown on writing
that, like The Luminaries, deliberately uses constraints, such as the
mathematically inspired work of the French literary group the Oulipo,
whose members included Georges Perec and Italo Calvino. In the house of
literature, these are the foundations, the load-bearing beams. It’s here that
we’ll find mathematical ideas hidden in plain sight.

What comes next is the decoration, the wallpaper, the carpets. Many
authors have reached for mathematical metaphors in their writing, and the
symbolism of numbers is rich and ancient. These turns of phrase,
metaphors, and allusions will be our focus in Part II of the book.

But who lives in our house? What is our writing about? In Part III, I’ll
show you how mathematics can become part of the story—with novels
featuring overtly mathematical themes and sometimes even mathematicians
as characters. We will look at mathematical ideas that have caught the
public’s imagination, from fractals to the fourth dimension, and how they
have been explored in fiction. We’ll look too at how stereotypes of
mathematicians, and the idea of mathematics itself, have been used in
fiction.

If you don’t yet love mathematics, I want this book to show you the
beauty and wonder of it, how it is a natural part of our creative lives, and
why it deserves its place with literature in the pantheon of the arts. I want it



to give you an extra perspective on the writing and writers you know,
introduce you to writing you don’t, and give you a new way of experiencing
the written word. If you happen to be a mathematician, then you already
have poetry in your soul, but we’ll look at how that is manifested in places
you may never have realized, as part of an enduring conversation between
literature and mathematics. I warn you: you’re going to need a bigger
bookcase.



Part I

Mathematical Structure, Creativity, and Constraint



1
One, Two, Buckle My Shoe

The Patterns of Poetry

The connections between mathematics and poetry are profound. But they
begin with something very simple: the reassuring rhythm of counting. The
pattern of the numbers 1, 2, 3, 4, 5 appeals to young children as much as the
rhymes we sing with them (“Once I caught a fish alive”). When we move
on from nursery rhymes, we satisfy our yearning for structure in the rhyme
schemes and meter of more sophisticated forms of poetry, from the
rhythmic pulse of iambic pentameter to the complex structure of poetic
forms like the sestina and the villanelle. The mathematics behind these and
other forms of poetic constraint is deep and fascinating. I’ll share it with
you in this chapter.

Think of the nursery rhymes of your childhood. I bet you can still
remember the words. That’s the power of pattern—our mathematical brains
delight in it. The subliminal counting of rhythm and rhyme feels so natural
that it helps us remember, hence the oral tradition of poems telling the
deeds of great heroes. Many traditional rhymes involve counting up
cumulatively, adding a new line with each verse and counting back down to
one every time. There’s an old English folk song, “Green Grow the Rushes,
O,” which builds up to twelve—the last line of every verse is the
melancholy “One is one and all alone and ever more shall be so.”
Meanwhile, the Hebrew Echad Mi Yodea (“Who Knows One”) rhyme,
traditionally sung on Passover, uses rhythm and counting to teach children



important aspects of the Jewish faith. It ends with “four are the matriarchs,
three are the patriarchs, two are the tablets of the covenant, One is our God,
in heaven and on earth.”

There are many mathematical mnemonics that we may have learned at
school for remembering things like the first few digits of  “How I wish I
could calculate pi”: that’s not me expressing a desire to calculate  it’s the
mnemonic. The number of letters in each word tells you the next number in
the decimal, which begins 3.141592. If you need more digits, a longer
mnemonic is “How I need a drink, alcoholic in nature, after the heavy
lectures involving quantum mechanics!” That one has been around for at
least a century and is credited to the English physicist James Jeans. In fact,
it’s now a niche hobby to compose verse in “pilish,” in which the word
lengths are defined by the digits of 1 My favorite example of this is “Near
a Raven,” a pilish version of Edgar Allan Poe’s “The Raven,” by Michael
Keith:

Poe, E.
Near a Raven

Midnights so dreary, tired and weary.
Silently pondering volumes extolling all by-now obsolete lore.
During my rather long nap—the weirdest tap!
An ominous vibrating sound disturbing my chamber’s antedoor.
“This,” I whispered quietly, “I ignore.”

There’s no need to learn this poem in its entirety, though—it’s been
estimated that a mere forty digits of  are enough to calculate the
circumference of the entire known universe accurate to less than the size of
a hydrogen atom. So the first verse alone is more than enough for all
practical purposes.

The pilish “Raven” is based on a mathematical constant, but its contents
aren’t mathematical. There is, however, at least one well-known poem that
poses a mathematical puzzle. You may know it:

As I was going to St. Ives,



I met a man with seven wives.
Each wife had seven sacks,
Each sack had seven cats,
Each cat had seven kits.
Kits, cats, sacks, and wives,
How many were going to St. Ives?

I remember trying to multiply all those sevens as a kid—only to realize
I’d fallen for the oldest misdirection trick in the book.

Much more sophisticated mathematical problems have been expressed
in verse, though. As I mentioned in the introduction, it was the standard
format for mathematics in the Sanskrit tradition. The twelfth-century Indian
mathematician and poet Bhaskara wrote all his mathematical works in
verse. Here is one of the poems in a book he dedicated to his daughter
Lilavati:

Out of a swarm of bees, one fifth part settled on a blossom of
Kadamba,

and one third on a flower of Silindhri;
three times the difference of those numbers flew to the bloom of a

Kutaja.
One bee, which remained, hovered and flew about in the air,
allured at the same moment by the pleasing fragrance of jasmine and

pandanus.
Tell me, charming woman, the number of bees.

What a lovely way to write about algebra!
We don’t tend to write our mathematics in verse nowadays, more’s the

pity, but the aesthetic link with poetry remains: the goal of both is beauty, a
beauty that makes a virtue of economy of expression. Poets and
mathematicians alike have praised each other’s specialisms. “Euclid alone
has looked on Beauty bare,” wrote the American poet Edna St. Vincent
Millay in a 1922 sonnet paying homage to Euclid’s geometry. For the Irish
mathematician William Rowan Hamilton, both mathematics and poetry can
“lift the mind above the dull stir of Earth.” Einstein is reported to have said



that mathematics is the poetry of logical thought. A mathematical proof, for
example, if it’s any good, has a lot in common with a poem. In both cases,
each word matters, there are no superfluous words, and the goal is to
express an entire idea in a self-contained, usually fairly short, and fairly
structured way.

I’m going to show you a proof now, because it’s a beautiful thing and it
is pure poetry. It’s the proof, attributed to Euclid (though we don’t really
know who came up with it), that there are infinitely many prime numbers.
Remember, primes are the numbers, like 2, 3, 5, 7, and so on, that can’t be
divided up into smaller whole number parts. The number 4, for instance,

isn’t prime because you can break it up as  And 6 is Every one
of the counting numbers after 1 is either a prime number or can be broken
up (the technical term is “factorized”) into prime numbers, and even more
brilliantly, this can be done in really only one way, as long as you are happy

to say that  is basically the same thing as  By the way, the
number 1 feels as if it ought to be prime because it can’t be divided up, but
we exclude 1 from the list because otherwise you’d have to say that 

 and there would be infinitely
many ways to factorize every number—yuck! We get around this by
defining a prime number as a number greater than 1 whose only factors are
1 and itself.

Understanding the prime numbers is as important to math as
understanding the chemical elements in science, because just as every
chemical substance is made up of a precise combination of elements (every
molecule of water, or H2O, has exactly two hydrogen atoms and one oxygen
atom, for instance), every whole number has a particular prime
decomposition. One of the most exciting discoveries of early mathematics
was that, unlike chemical elements, the prime numbers go on forever.
Actually, at the time, the contrast would have been even more stark,
because for the ancient Greeks there were just four elements—earth, air,
fire, and water—that were believed to make up all things.

Here’s a proof that there are infinitely many prime numbers:



What if we had a list of all primes, a finite list?
It would start with 2, then 3, then 5.
We could multiply all the primes together, and add 1 to make a new

number.
The number is 2 times something plus 1, so 2 can’t divide it.
The number is 3 times something plus 1, so 3 can’t divide it.
The number is 5 times something plus 1, so 5 can’t divide it.
None of the primes on our list can divide it.
Either our number is prime, or a new prime not on our list divides it.
Either way, the list isn’t complete. It can’t be done.
There can’t be a finite number of primes.
QED

It’s a poem, I tell you!
The resonances between poetry and mathematics were expressed well

by the American poet Ezra Pound in The Spirit of Romance (1910): “Poetry
is a sort of inspired mathematics, which gives us equations, not for abstract
figures, triangles, spheres and the like, but equations for the human
emotions.” Pound made another analogy between mathematics and poetry
—the way that both can be open to many layers of interpretation.2 I would
say that mathematicians have a very similar understanding of what makes
the greatest mathematics: concepts that hold within them many possible
interpretations—structures that can be found in different settings and so
have a universality to them. The key thing here is that the elegant brevity of
a mathematical expression, just like a poem, can encompass multiple layers
of meaning, and the more layers and interpretations it can contain, the
greater the artistry. Mathematics, like Walt Whitman, contains multitudes,
both literally and allegorically. The only difference is that we hope it does
not contradict itself!

It’s quite hard to give a definition of what poetry is. Sometimes it rhymes,
there are almost always line breaks, there’s usually a rhythm, a meter, and
so on. What we can broadly say is that poems have some sort of constraint,



whether that’s a meter (iambic pentameter, for example), or a rhyme
scheme, or a given number of lines in each stanza. Even completely free
verse will probably have line breaks, stanzas, and rhythm. One occasionally
hears expressed that understanding how something is put together takes
away the mystery and therefore spoils it. We don’t want to know how the
magician does his tricks—we want to believe in magic. The difference is
that poetry is more than artifice. How can understanding something do
anything other than add to your appreciation of it? That’s how I feel about
the underlying mathematics of structure and pattern.

Submitting yourself voluntarily to a particular constraint spurs
creativity. The discipline required means you have to be inventive, creative,
and thoughtful. In haiku, with their seventeen syllables, no syllable can be
wasted. On a rather less exalted level, the humorous limerick form has to
get from setup to payoff in just five lines. The Irish poet Paul Muldoon
made the brilliant comment that poetic form “is a straightjacket in the sense
that straightjackets were a straightjacket for Houdini.” This may set the
record for most uses of the word “straightjacket” in a sentence, but the
sentiment is exactly right—the constraint itself is part of the genius of the
work.

Constraints in poetry come in many flavors. In the Western tradition,
particular rhyme schemes have been favored, and a handful of rhythms
have been adopted—those iambs and trochees of classical verse. There is
counting, pattern, and therefore mathematics behind both types of
constraint. But in other traditions, different pattern-creating devices are
used that involve more explicit use of numbers. That’s where we’ll begin
our discussion of the mathematics of poetic constraints.

Let me tell you a story that begins in the imperial court of eleventh-
century Japan. Murasaki Shikibu, a noblewoman at the court and lady-in-
waiting to Empress Shoshi, wrote what is thought to be one of the very
earliest novels, The Tale of Genji. An epic novel of courtly love and
heroism, it is a Japanese classic, still read a millennium after it was written.
One of the novel’s distinctive features is characters’ use of poetry in
conversation, quoting or modifying well-known verses or saying the first
parts of them (just as we might do when we say, for instance, “A stitch in



time” rather than “A stitch in time saves nine”). Many of the poems in The
Tale of Genji are in what is called the tanka form. This is one example of a
more general style of classic Japanese poetry called waka. Like the more
modern haiku, such poems feature lines of 5 and 7 syllables, but where
haiku has a 5–7–5 pattern with 17 syllables in total, tanka has 5–7–5–7–7,
for a total of 31 syllables. (In fact, what is counted are not exactly
“syllables” but “sounds,” a subtle but important distinction, which I beg
experts in Japanese poetry to forgive me for not making in more detail.)3

For a mathematician, the connection with prime numbers is inescapable.
Look at the haiku: 3 lines, lengths 5 and 7 syllables, and a total of 17
syllables. The numbers 3, 5, 7, and 17 are all prime numbers. With the
tanka, there are 2 lines of 5 syllables and 3 lines of 7 syllables—and again,
2, 3, 5, 7, and 31 are all prime. Is this significant? I have read that the 5–7
pairing arose from an earlier “natural” 12-syllable entity, which is broken
into two parts with a slight pause. Making the break at 5–7 certainly seems
to me to be more exciting and dynamic than the dully exact 6–6 split or the
too unbalanced 4–8, so perhaps that’s how it came about. Since primes can’t
be divided further, the 5–7 break perhaps helps to categorize the lines as
separate indivisible entities, whereas 4, 6, and 8 all have “fault lines” that
would arguably weaken the structure.

Centuries after The Tale of Genji was written, a game became
fashionable in the parlors of sixteenth-century Japanese aristocrats: Genji-
ko. The hostess would secretly choose five incense sticks from a selection
of different scents; some of the five scents might be the same. She would
then burn them one after the other, and the guests would try to guess which
scents were the same and which were different. So you might think that all
the scents are different. Or perhaps the first and third scents are the same,
and all the others are different. The various possibilities would be
represented by little diagrams like this:

The far left diagram represents all scents being different; the next has
just the first and third matching; in the next the first, third, and fifth match,



as do the second and fourth; the far right diagram has the second, third, and
fourth matching, as well as the first and fifth. To help people describe what
their guess was, each of the different possibilities was named after a chapter
from The Tale of Genji—it turns out there are fifty-two possibilities, from
“all different” to “all the same” and everything in between.4 Several
editions of The Tale of Genji even featured these patterns next to the
corresponding chapter headings. The patterns themselves took on a life of
their own—they were used as heraldic crests and in kimono designs.

Meanwhile, thousands of miles away in Tudor England, George
Puttenham included diagrams like this in his 1589 book The Arte of English
Poesie:

They look just like sideways versions of Genji-ko pictures! In particular,
compare

What on earth is going on? Well, Puttenham is describing possible
rhyme schemes in a five-line stanza, giving diagrams to aid the reader’s
comprehension (or as he put it, “I set you downe an occular example:
because ye may the better conceive it”).

The rhyme scheme of a poem, or of a stanza within a poem, is simply
the pattern of rhymes in the last words of the lines. The earliest poems we
encounter are songs and nursery rhymes with simple rhyme schemes:

Mary had a little lamb
Its fleece was white as snow
And everywhere that Mary went
The lamb was sure to go.



This is a four-line poem—a “quatrain”—with the rhyme scheme abcb,
which means that the second and fourth lines rhyme with each other, but not
with the remaining lines. By contrast, here’s a quatrain from John Donne’s
poem “The Sun Rising”:

Busy old fool, unruly sun,
Why dost thou thus,
Through windows, and through curtains call on us?
Must to thy motions lovers’ seasons run?

This time, the scheme is abba.
If you ask a child to write you a poem, chances are you’ll get a quatrain.

As an experiment, I asked my daughter Emma just now to write me a poem
“for Mummy’s book.” She came back three minutes later with this excellent
mathematical verse:5

Endless numbers
You could count them till you die
It can outlive the universe
That is Pi.

I guess that could be either abab or abcb, depending on whether you
think “numbers” rhymes with “universe.”

For quatrains (four lines), there are fifteen potential rhyme schemes.
From most to least rhymes, we have aaaa (boring), aaab, aaba, aabb, abaa,
abab, abba, abbb, aabc, abac, abbc, abca, abcb, abcc, and abcd (not
rhyming at all). Puttenham said that only three of these were allowable:
even these he rather damns with faint praise. He describes aabb as “the
most vulgar” (meaning commonplace), abab as “usuall and common,” and,
finally, abba as “not so common but pleasant and allowable inough.” John
Donne must be so relieved!

But enough with the quatrains. For a five-line poem, which is what
Puttenham was describing in his diagrams, there are many more rhyme
schemes. We can quickly see that the problems of five-line rhyme schemes
and incense stick combinations in Genji-ko are exactly the same because we



are looking at which things in the set (of five sticks, or of five lines) match
up. Puttenham was way behind the Japanese, though, because he said that
there were just seven possible rhyme schemes for a five-line stanza,
“whereof some of them be harsher and unpleasaunter to the eare then other
some be,” while every Genji-ko player would have known that there are in
fact fifty-two possibilities.

Because of Genji-ko, mathematicians in Japan became interested in
counting the number of ways you can break up a set of objects (incense
sticks or anything else) into different parts well before Western
mathematicians considered the problem. This number of ways is nowadays
called the Bell number of the set. The Bell numbers grow very quickly. The
fourth Bell number is 15 (the number of quatrain rhyme schemes), the fifth
is 52, the sixth is 203, but the tenth is already 115,975. Actually, I think I
experienced the sixth Bell number in harrowing detail after recklessly
agreeing to host a summer sleepover for our then eleven-year-old daughter
Millie, when it seemed that all 203 possible ways for a group of six preteen
girls to split off into mutually antagonistic cliques were attempted over a
single night. The Japanese mathematician Yoshisuke Matsunaga found an
ingenious way to calculate Bell numbers for any size set way back in the
mid-eighteenth century, giving, for instance, the eleventh Bell number as
678,570. I don’t know why these numbers are named after the twentieth-
century Scottish mathematician Eric Temple Bell, who wrote a paper about
them only in 1934. He himself made it clear in the paper that he was not the
first to work on them and that they had been rediscovered many times. It’s
another example of Stigler’s law of eponymy, which states that no scientific
discovery is named after its inventor (a law that holds also for Stigler’s law
of eponymy).

Rhyme schemes are among the defining characteristics of poetic forms—
sonnets, villanelles, alexandrines, and so on. A villanelle, for example, is a
nineteen-line poem consisting of five three-line stanzas with the aba rhyme
scheme and a final abaa quatrain. There is additional structure: the first and
third lines of the opening stanza repeat, alternately, as the final line of



successive stanzas and as the last two lines of the quatrain. Probably the
most famous villanelle is “Do not go gentle into that good night,” Dylan
Thomas’s wonderful anthem to the human spirit. Sonnets, meanwhile,
consist of fourteen lines. There are different traditional rhyme schemes in
different languages, but Shakespeare and most other English-speaking
writers have used three abab quatrains, followed by a rhyming couplet.

Shakespeare was a prolific poet—the 1609 edition of his collected
sonnets contains 154 of them. But this is nothing compared to the French
author Raymond Queneau’s Cent mille milliards de poèmes, which uses the
mathematics of randomness to fit 100 trillion sonnets into a single book.
How is this possible? Let me explain. Everyone loves a sonnet, but my
editor would kill me if I wanted to include 100 trillion of them in this book,
so I decided to prolong my life by giving a smaller example to set the scene.
To that end, I’ve deployed my amazing poetry skills to write some limericks
for you instead.

Limericks are short, usually humorous poems consisting of five lines
with the rhyme scheme aabba, popularized in England in the nineteenth
century by the Victorian writer Edward Lear. Here’s a typical example from
his bestselling 1861 Book of Nonsense:

There was an Old Lady whose folly,
Induced her to sit on a holly;
Whereon by a thorn,
Her dress being torn,
She quickly became melancholy.

Lear is sometimes called the Father of Limericks, although he didn’t use
the term “limerick” himself (it’s first recorded in 1898) or even invent them.
However, with his much-loved books he certainly popularized the form,
writing an impressive 212 limericks along the way. It’s rather unclear how
they ended up being named for an Irish county. One theory is that the name
arose from a particularly popular example (not one of Lear’s) that featured
the line “Will (or won’t) you come to Limerick?”

With the amazing power of randomness, I hereby scoff at 212 limericks
and present a means to writing many more with a minimum of effort and



artistic ability. Here are two not very good limericks (shown on the left and
on the right, below) that I’ve invented to show you the method:

There once was a woman called Jane
There once was a person from Maine

Who constantly traveled by train
Who never went out in the rain

When going abroad
Damp days left her bored

She couldn’t afford
Oh how she adored

A wonderful journey by plane      
A week in the sunshine in Spain

From these two starting points, you can construct many more limericks.
You do it by randomly picking lines from the two choices you have at each
point. You can, for example, toss a coin to determine each line. If it’s heads,
you read the left-hand line; if tails, the line on the right. Brilliantly, there is
a website, justflipacoin.com, that allows you to do this even without taking
the trouble to find a physical coin. I tried it just now and got heads, tails,
tails, heads, tails. So my new limerick reads:

There once was a woman called Jane
Who never went out in the rain
Damp days left her bored
She couldn’t afford
A week in the sunshine in Spain

Since the poem has to “work” whichever option you pick for each line,
if you want to try doing something like this, you need to understand the
structure of the poem. As I noted already, the limerick has the rhyme
structure aabba, so you need three a rhymes in each limerick. That means
for two limericks you’ll need six a rhymes. In this toy example, I chose



“Jane,” “train,” “Maine,” “rain,” “plane,” and “Spain.” If you wanted a
third limerick you could weave in words like “drain,” “pain,” “complain,”
“feign,” “rein,” and so on.

Our little poem set of two limericks has two choices for each of the five
lines. There are two possible first lines. Each of these can be followed by
two possible second lines. This means we have  possibilities for the
first two lines. Each of these can in turn be followed by two options for line
3, giving  possibilities for the first three lines. At each stage, the
number of possible poems doubles. With our five lines to choose, we end
up with a total of  bona fide limericks. But if we wrote just one more
limerick, we’d have three choices for each line, meaning a total of

limericks. Here’s a third limerick for your delectation:

There once was a girl from Bahrain
Who viewed snow and hail with disdain
The cold she abhorred
She cheered when she scored
A trip to the African plain

Congratulations, you are now the proud owner of thirty-one more
limericks than are contained in the entire oeuvre of Edward Lear. If you can
add a fourth limerick to this set, then the total number will leap to 

 which is 1,024, and since I wrote only 243 of these, you are
morally entitled to more than 75 percent of the worldwide fame that will
surely result from the composition of over a thousand limericks.

We can now see just how Raymond Queneau managed to construct his
100 trillion poems. It’s exactly the same principle, just on a bigger scale.
The poems are sonnets, so they have 14 lines. Queneau chose the rhyme
scheme abab abab ccd eed. (Translations into English have tended to use
the Shakespearean abab cdcd efef gg.) Cent mille milliards de poèmes



consists of ten sonnets, printed on ten consecutive sheets. All the first lines
rhyme with each other, all the second lines rhyme with each other, and so
on. In effect, the ten sonnets line up to create a three-dimensional poem.
This means, for instance, that of the 140 total lines, 40 of them, 4 in each
poem, must end with rhyme a. Sonnets can then be made by choosing any
of 10 possible lines at each point. So I might choose line 1 from poem 3,
line 2 from poem 1, line 3 from poem 4, and so on. If I continued selecting
the poem numbers by following the digits of  nobody could stop me from

then saying I have produced a em (sorry).
How many poems are contained in this little book, then? Well, the

number of possible first lines is 10. Each can be followed by any one of ten
second lines, giving  possibilities for the first two lines. With
fourteen lines altogether, the total number of possibilities is ten multiplied
by itself fourteen times, or 100,000,000,000,000. In other words, 100
trillion. Is this the longest book ever written? If you read a different sonnet
every minute without stopping, it would take 190,128,527 years to read
them all. (Raymond Queneau did this calculation too, but he arrived at an
answer of 190,258,751 years, which made me doubt my arithmetic skills.
But a quick check shows that his is the answer you get if you read one
sonnet per minute but forget about leap years. Perhaps Queneau was very
generously allowing his readers to take a day of rest on February 29.) A
philosopher might ask: Did Queneau write all these poems? In what sense
do they exist at all? I don’t know, but Queneau was a member of a group of
writers and poets experimenting with what they termed “potential
literature.” This group was known as the Oulipo—I’ll be showing you more
of their work and ideas later. But a book of 100 trillion poems is certainly
an excellent example of potential literature.

The mathematics of poetry does not stop with rhyme schemes; wherever
there is structure, there is mathematics, and rhyme schemes are just one
way to impose structure. If we abandon rhyme, then something else needs
to take its place. One possibility that dates back to medieval times is the



sestina, and I want to talk about this form in particular because its elegant
structure works thanks only to some curious mathematics involving the
number six.

A sestina consists of six stanzas, each of six lines. The last words of
each line in the first stanza reappear as the last words of the lines in
subsequent stanzas, in a different (but specific) order. Then the whole thing
is usually finished with a three-line “envoy” that features all six end-words
somewhere in it.

I’d like to give you a complete example, if I may, so that you can see
what is going on. There’s a lot of choice, because even though this form
was first used more than eight hundred years ago, it is still in use and has
enjoyed periods of great popularity. The 1950s were even described as the
“age of the Sestina” by James Breslin (at the time, a professor of English at
UC Berkeley). There are sestinas by poets from Dante to Kipling, Elizabeth
Bishop to Ezra Pound, through to contemporary works by the American
poet David Ferry (“The Guest Ellen at the Supper for Street People”) and
by the English “thingwright”—this is the marvelous way she describes
herself on her website—Kona Macphee (the desperately sad 2002 poem
“IVF”). The example I’ve chosen is a poem by Charlotte Perkins Gilman,
who is best known nowadays for her 1892 short story, “The Yellow
Wallpaper.”

To the Indifferent Women
A Sestina

by Charlotte Perkins Gilman

You who are happy in a thousand homes,
Or overworked therein, to a dumb peace;
Whose souls are wholly centered in the life
Of that small group you personally love—
Who told you that you need not know or care
About the sin and sorrow of the world?

Do you believe the sorrow of the world
Does not concern you in your little homes?



That you are licensed to avoid the care
And toil for human progress, human peace,
And the enlargement of our power of love
Until it covers every field of life?

The one first duty of all human life
Is to promote the progress of the world
In righteousness, in wisdom, truth and love;
And you ignore it, hidden in your homes,
Content to keep them in uncertain peace,
Content to leave all else without your care.

Yet you are mothers! And a mother’s care
Is the first step towards friendly human life,
Life where all nations in untroubled peace
Unite to raise the standard of the world
And make the happiness we seek in homes
Spread everywhere in strong and fruitful love.

You are content to keep that mighty love
In its first steps forever; the crude care
Of animals for mate and young and homes,
Instead of pouring it abroad in life,
Its mighty current feeding all the world
Till every human child shall grow in peace.

You cannot keep your small domestic peace,
Your little pool of undeveloped love,
While the neglected, starved, unmothered world
Struggles and fights for lack of mother’s care,
And its tempestuous, bitter, broken life
Beats in upon you in your selfish homes.

We all may have our homes in joy and peace
When woman’s life, in its rich power of love
Is joined with man’s to care for all the world.



Let me show you how a sestina is constructed. To move from one stanza
to the next, you move around the end-words in precisely the same way each
time, a sort of ordered disorder created by working in reverse from the last
end-word backward, and interleaving them with the first end-words in the
right order, until we’ve used them all up. We can see this in Charlotte
Perkins Gilman’s sestina. The end-words in the first verse are
homes/peace/life/love/care/world. Reversing the last words gives
world/care/love…, and we interleave these with homes/peace/life…, so as
to obtain

world     care     love
     homes     peace     life

That is, world/homes/care/peace/love/life. And these are, as you can see,
exactly the end-words in the second stanza. This specific shuffling gives a
nice continuity between the stanzas, because the end of the last line in one
stanza is the end of the first line of the next. The structure continues,
though, because we repeat this same reverse interleaving on the end-words
of the second stanza to obtain the ordering of the end-words in the third
stanza. If you try this, you’ll find that it turns
world/homes/care/peace/love/life into life/world/love/homes/peace/care.
And we repeat this process to obtain the orderings for the fourth, fifth, and
sixth stanzas. There is a beautiful bit of unseen structure here, too, in that if
we were to continue to a seventh stanza, our interleaving process applied to
the sixth stanza’s ordering of peace/love/world/care/life/homes would result
in the end-words homes/peace/life/love/care/world. If this looks familiar, it
should—it’s the same ordering as we started with. The six stanzas therefore
give us, even though we don’t consciously recognize it, a complete circle of
six iterations, which if continued would bring us exactly back to our starting
point. I think we do experience and appreciate this mathematical structure
subconsciously, even though we may not detect it consciously. The
shuffling also has pleasing internal symmetries—every end-word appears at
the end of every different possible line, from first to last, in precisely one
stanza. It’s a compelling design.



Unusually for so ancient a form, we have a plausible candidate for who
invented it—the twelfth-century poet Arnaut Daniel. It was viewed as a
very refined form of poetry that only the expert troubadour could master. I
don’t know how Daniel came up with the idea—it’s a really simple
permutation, very easy to remember, and you might think, once you hit on
the process to follow, that given that the number of stanzas and the number
of lines in each stanza are equal, both six, then you’ll naturally come back
to where you started with after six shuffles. But let’s see what happens
when we try to create a “quartina” with the same process. We start with a
four-line stanza. Let’s suppose our end-words are north/east/south/west.
Remember the rule—we work in reverse order from the end, interleaving
with words from the start. So we get west/north/south/east for our second
stanza. We repeat the process to get east/west/south/north for the third
stanza, then again to get north/east/south/west for the fourth stanza. Oh, no!
We have regained our original order in the fourth stanza! So this process
would not give us four different stanzas. Even worse, you can see that the
end-word “south” gets stuck—it’s the end-word of the third line in every
stanza.

If you try to create a sestina-like poem with numbers other than six,
you’ll find that sometimes it works and sometimes it doesn’t. In the 1960s,
people started to try to figure out which values of n work. These
“generalized sestinas” were named queninas by the Oulipo, in honor of
Raymond Queneau. It turns out to be a really tricky problem. It works, for
instance, for 3, 5, 6, 9, and 11, but not for 4, 7, 8, and 10. Amazingly, it is
still an unsolved problem whether there are infinitely many values of n for
which a quenina is possible, although a 2008 paper by the mathematician
Jean-Guillaume Dumas described exactly the properties that such n would
have to have. There is a particularly nice kind of number that will always
have a quenina, a prime number called a Sophie Germain prime. It was
named after a remarkable mathematician who did brilliantly innovative
work in several areas of mathematics despite having to register at university
under a false name and get other students to send her the course notes, due
to the dreadful failing of being a woman—this was eighteenth-century
Paris, after all. A prime number is called a Germain prime if, when you



double it and add 1, the answer is again prime. The number 3, for example,
is a Germain prime because  is again prime, but 7 is not a Germain
prime because  is not prime. I can’t prove it for you, but it turns out
that a quenina is possible for every Sophie Germain prime, which I love.
Indeed, I know of at least one published “tritina” (three stanzas of three
verses; the envoy is one line that includes all three of the end-words), by the
English poet Kirsten Irving.

Talula-Does-the-Hula-from-Hawaii
by Kirsten Irving

Where do stupid names end up, these shorn tags
tied on toes by parents with the abandon
and foresight of tyrants annoying their court?

Today the three of you, now strangers, leave court
in opposite directions, untying cloakroom tags
from belongings, as you abandon

what passed for a name. That punchline abandoned
to the playground’s corrupt court
and the toilet wall’s smeared tags.

Tags abandoned, a girl who’s not Talula courts the world.

Rhyme schemes and queninas impose structure on the ending of lines,
and they already give us some fascinating mathematics to play with. But
there’s even more to explore when we consider the patterns within lines of
poetry, and that’s what we’ll turn to next.

In addition to the rhyme scheme, poetic forms often have a specific rhythm
in their lines, which we call meter. Shakespeare’s plays are full of iambic
pentameters, for instance. The “penta” bit is from the Greek word for five,
and an “iamb” is a two-syllable phrase of which the second syllable is
stressed. Thus an iambic pentameter has ten syllables, with the second one



in each pair being stressed. I’ve underlined the stressed syllables in the
following example, from the balcony scene in Romeo and Juliet.

But soft, what light through yonder window breaks?
It is the East, and Juliet is the sun.

This “di-dum di-dum di-dum di-dum di-dum” can be represented
visually using dots and dashes, just like Morse code. An iamb is  and an
iambic pentameter looks like this:

The basic patterns of stressed and unstressed syllables are called feet.
Two common examples, along with the iambs we have just seen, are
trochee ( ), as in “Quoth the Raven ‘Nevermore,’” and dactyl ( ), as in
“The Lost Leader,” by Robert Browning, which begins, “Just for a handful
of silver he left us”—actually this is three dactyls and a trochee at the end.
How many possible meters are there for a given number of syllables? There
are two possibilities for each syllable—stressed or unstressed—so the
number of one-syllable feet is two (  or ). To get to two syllables, we can
add either a  or a  to either of these, so the total is four. We can add a  or
a  to each of these four to get eight possible three-syllable meters, and it
just keeps doubling—we end up with a sequence 1, 2, 4, 8, 16, and so on,
the powers of 2.

But there’s a form of poetry in which something very different happens.
I first read about it in Jordan Ellenberg’s excellent paean to geometry,
Shape. He recounts how a mathematician friend, Manjul Bhargava, told him
about the meters of Sanskrit poetry. As in English poetry, the pattern of
syllables is important, but while with English we look at where the stresses
lie, in Sanskrit it’s the length that matters. Syllables are either laghu (light)
or guru (heavy). Crucially, laghu syllables count as one unit, and guru as
two. This means it’s a bit more complicated to work out, for instance, how
many four-syllable meters are possible. We can’t just take the number of
three-syllable meters and double it. So what do we do? Well, there’s just
one one-syllable possibility: laghu. There are two two-syllable options:



laghu laghu, or guru. For three syllables, you can check that the three
possibilities are laghu laghu laghu, laghu guru, or guru laghu. For four
syllables, let’s get a bit clever and divide the problem into two. Either the
meter starts with laghu, or it starts with guru. If it starts with laghu, then we
can choose from any of the three three-syllable meters to add on to it, to
arrive at four syllables. If it starts with guru, then we can choose either of
the two two-syllable meters to add on. So the total is 3 + 2 = 5:

laghu laghu laghu laghu
laghu laghu guru
laghu guru laghu
guru laghu laghu
guru guru

What’s more, you can always play this trick. Five-syllable meters are
either laghu + (a four-syllable meter) or guru + (a three-syllable meter). So
the number of five-syllable meters equals the number of four-syllable
meters plus the number of three-syllable meters, which is  We can carry
on like this. The next number is just the sum of the previous two numbers.
So we get a Sanskrit meter sequence like this:

1, 2, 3, 5, 8, 13, 21, …

You may have encountered this sequence before. It’s better known in
English-speaking countries as the Fibonacci sequence, popularized in
Europe in the thirteenth century by Leonardo of Pisa, whose nickname was
Fibonacci. (Sometimes it’s shown as beginning with two 1s, but it’s the
same basic principle.) Each term after the first two, as we’ve said, is the
sum of the two previous terms. For example,  The next term in the
sequence after 21 will therefore be  The Fibonacci sequence has

many interesting properties. One is that the sequence  of

ratios of consecutive terms converges to the famous golden ratio 
≈1.618.



When Fibonacci introduced the sequence in his 1202 book Liber Abaci
(“The Book of Calculation”), it was in the context of a rather fatuous puzzle
about rabbits. You start with one breeding pair of newborn rabbits. A
breeding pair mates after one month, and the female gives birth to a new
breeding pair one month after that. Rather unrealistically, the rabbits never
die, they keep breeding forever, and we have to ignore minor concerns like
rabbit incest. The question is, how many pairs of rabbits are there after one
year? We can see that the same rule applies to this sequence. In any given
month, the total number of pairs will be the number there was a month ago
plus the number of newborn pairs, which (since it takes two months from
birth to produce a new pair) is the number of pairs there were two months
ago. So each term is the sum of the previous two terms. But this sequence
had been known to poetry scholars in India for centuries before Fibonacci.
The metrical experts Virahanka (sometime between 600 and 800 CE),
Gopala (sometime before 1135 CE), and Hemachandra (around 1150 CE)
all knew the sequence and how to produce it, and there’s some evidence
that it was known even earlier, in the writings of Pingala (around 300 BCE).
Perhaps it’s time to rename the Fibonacci numbers.

Mathematics and poetry are two of our most ancient forms of creative
expression, and their connections reach back to the very beginnings of
writing itself. The earliest known works by a named author in the whole of
human history were created by a remarkable woman named Enheduanna,
who lived over four thousand years ago in the Mesopotamian city of Ur.
She wrote perhaps the very first collection of poems—a cycle of forty-two
“Temple Hymns.” But as high priestess of the moon god Nanna, she would
have needed knowledge of astronomy and mathematics as well. These come
together in her poetry, both in her use of numbers, particularly the number
seven, and in mention of calculation and geometry. The final Temple Hymn
speaks of the mathematical activities of the “true woman of unsurpassed
wisdom”:

She measures the heavens above



and stretches the measuring cord on the earth.6

From these earliest beginnings, the love affair between poetry and
mathematics has flourished. Mathematics has been there in the deep
currents of verse, underpinning its rhymes and hidden in its structures. As
the great nineteenth-century mathematician Karl Weierstrass wrote, “A
mathematician who is not somewhat of a poet, will never be a perfect
mathematician.” And poetry? It’s simply the continuation of mathematics
by other means.



2
The Geometry of Narrative

How Mathematics Can Structure a Story

At a public lecture in 2004, Kurt Vonnegut gave illustrations of the
“graphs” of some possible stories.1 The first of these was “Man in a Hole”:

In Vonnegut’s graphs, the vertical axis measures good fortune and the
horizontal axis measures time passing—a rising curve means improving
fortunes, a falling curve means things are getting worse. In “Man in a
Hole,” for instance, we start with someone going along happily when
suddenly disaster strikes, but everything works out wonderfully in the end.



A novel in this category might be David Copperfield—or, to give it its full,
glorious title, The Personal History, Adventures, Experience and
Observation of David Copperfield the Younger of Blunderstone Rookery
(Which He Never Meant to Publish on Any Account). The young David has
a very happy childhood until he is seven, when his mother first marries
beastly Mr. Murdstone, then soon afterward dies, leaving poor David
orphaned. But after many reverses and trials, David eventually finds
happiness. Vonnegut gave three other graphs, which I’ve sketched below:

“Boy meets girl,” of course, is a feature of most romantic novels. Boy
meets girl, boy loses girl, boy gets girl in the end. Happiness all around. To
pick a random example, take the story line of Jane Bennet and Mr. Bingley
in Jane Austen’s Pride and Prejudice. Jane and Bingley are fairly content
already at the start of the novel. Then they meet and fall in love, and life
looks even better. But they are separated by the machinations of proud Mr.
Darcy and snobbish Miss Bingley. Misery ensues. In the end Darcy realizes
the error of his ways and confesses all to Bingley, who at once returns to get
his girl. And they all live happily ever after.

In “Cinderella,” by contrast, the starting point is unhappiness. Poor
Cinders sleeps in the ashes of the fire (hence her name) and works all day
for her horrid stepsisters. But then things start looking up. Off she goes to
the ball, where she meets Prince Charming, but then—disaster! Midnight
strikes and all appears lost. Fortunately, her feet are so freakishly shaped
that she’s the only girl in the kingdom who can fit into the glass slipper left
behind when she fled. She marries the prince, and her happiness becomes
infinite.



The last of Vonnegut’s graphs is “Metamorphosis,” which refers to the
darkly comic story by Franz Kafka. You will remember that this is the tale
of Gregor Samsa, unhappy and alienated in his job as a traveling salesman.
One morning he wakes up and finds that during the night he has turned into
a gigantic “vermin” (usually assumed to be a cockroach). There follows a
degrading and painful descent into illness and death. Good old Kafka.

We might place works like The Metamorphosis at the pessimistic end of
the fine tradition of absurdism in literature, a style of writing amusingly
described by author Patricia Lockwood as “novels where a man turns into a
teaspoonful of blackberry jam at a country house.”2 For a truly absurd story
graph, there’s no better place to turn than the brilliant, anarchic work of
genius that is Tristram Shandy. Laurence Sterne’s novel appeared originally
in nine volumes, published over eight years from 1759 to 1767. The
narrator is Tristram Shandy, a gentleman who has decided to write his
autobiography but is continually thwarted in this aim by the intrusions of
other characters into the story. Tristram gets sidetracked by so many
digressions and diversions that he doesn’t even manage to be born until
Volume III. It’s a joyously chaotic read. Toward the end of Volume VI,
Tristram Shandy draws a diagram of his narrative “lines” so far:

“These were the four lines I moved in,” he writes, “through my first,
second, third, and fourth volumes. In the fifth volume I have been very



good,——the precise line I have described in it being this:”

He claims that this is an improvement: “except at the curve, marked A,
where I took a trip to Navarre,—and the indented curve B, which is the
short airing when I was there with the Lady Baussiere and her page,—I
have not taken the least frisk of a digression, till John de la Casse’s devils
led me the round you see marked D.—for as for c c c c c they are nothing
but parentheses.” “If I mend at this rate,” he says, “it is not impossible but I
may arrive hereafter at the excellency of going on even thus:

which is a line drawn as straight as I could draw it.… The best line! say
cabbage planters—is the shortest line, says Archimedes, which can be
drawn from one given point to another.” You will be pleased to hear that
this optimistic prediction proves entirely false, and the last volumes of the
novel romp around as gleefully as the first.

Vonnegut’s graphs and Shandy’s crazy narrative “lines” are amusing,
but are there more sophisticated, genuinely mathematical takes on narrative
and plot? This chapter takes its title from Hilbert Schenck’s story “The
Geometry of Narrative” (1983), in which a student suggests that simple plot
“lines” are just the start. He finds a way to link Shakespeare’s Hamlet to a
four-dimensional “hypercube” by arguing that we should think of instances
of a story within a story as adding a dimension. That is, instead of time
being the fourth dimension, Schenck’s protagonist, Frank Pilson, suggests
we use what he calls narrative distance:

Here are two separate three-dimensional realities: the play, Hamlet
itself, with old Claudius popping his mental cork when he sees the
Hamlet-buggered script acted out, and the shorter, smaller, on-stage
murder-of-Gonzago play. But the little play is at a greater distance
from Hamlet, both from the real audience and from the Court of



Denmark watching it on stage, since it is presented as a created
artefact within the “true” or “real” drama. So not only is this part
of Hamlet modelled by a four-dimensional geometrical object, but
the staging assumes the exact projected form of the hypercube, with
one small stage located in the middle of the other, larger one.

The rest of the story very cleverly sees the narrative camera repeatedly
zooming in, so to speak, so that the frame of reference is constantly
shifting. The part of the story you encounter first can change your
understanding of the plot—is the story a first-person account by Pilson,
telling us about his literature seminar and quoting excerpts from a story, or
are we actually reading a story about an author who happens to be working
on his novel about a student called Pilson? Our understanding of these
different levels of narrative may prompt us to revisit the text and read it
again, but from a different viewpoint or in a different order.

Shakespeare was not thinking of hypercubes when he wrote Hamlet, but
many authors have consciously chosen to impose mathematical constraints
on their narratives. As the author Amor Towles said in a 2021 interview,3

“Structure can be very valuable in artistic creation. Much as the rules of the
sonnet are valuable to the poet, adopting the rules and trying to invent,
within those rules, something that’s new and different, the structure of a
novel can do the same kind of thing.” You may be thinking, Why would a
writer bother with some fancy structure? Why not just write a good story?
This, I would argue, is a false dichotomy. All writing has structure from the
get-go. Language itself is built of component parts, each of which has
patterns. Letters make up words, words form sentences, sentences form
paragraphs, and so on. This is already a structure, analogous to the
hierarchy of point, line, plane in geometry. At each stage, further structures
can be imposed. Paragraphs, for instance, can be joined together to form
chapters. The decision is not whether to structure your work; rather it’s
what structure to choose. Within each of these levels, writers may choose to
add additional structural constraints. This added structure works best when



it feels most natural, when it fits with the narrative themes or the design of
the plot.

Let’s start at the highest level usually used in novels: the chapter.
Eleanor Catton’s The Luminaries, which was published in 2013, is an
astonishing achievement. Catton was the youngest finalist ever for the
Booker Prize. She then became, at twenty-eight, its youngest winner ever.
The judges described the book as a “dazzling,” “luminous” work, “vast
without being sprawling.” And it is indeed vast. At 832 pages, it was the
longest book ever to win the prize. The events of the novel are centered on
the gold rush town of Hokitika, New Zealand, in the mid-1860s. The first
chapter, mathematically titled “A Sphere Within a Sphere,” opens with the
prospector Walter Moody arriving in Hokitika on January 27, 1866, and
walking in on a meeting of twelve local men who have gathered to discuss a
series of recent crimes. He becomes entangled in a web of murder, strange
disappearances, attempted suicide, opium dealing, and the discovery of
£4,096 worth of stolen gold.

There are twelve chapters, or parts, each taking place over the course of
a single day in 1865 or 1866 (the novel’s first chapter begins,
chronologically, at the midpoint of events). The twelve men whom we meet
at the start of the novel are each associated with a specific sign of the
zodiac. Their actions and behavior in each of the twelve chapters are
determined in part by that sign’s astronomical configuration on the date of
the chapter. Catton did careful research into the positions of the stars and
planets in the night sky of Hokitika on those precise dates. By the way, I
don’t think that this is because she is necessarily a believer in astrology. She
says of Walter Moody that he was “not superstitious, though he derived
great enjoyment from the superstitions of others.” The astrological and
astronomical information is both a way to give structure and a way to
inform the broader meditation in the book about the interplay between fate,
circumstance, and free will.

In The Luminaries, each chapter is divided into a specific number of
sections, and in every case, the number of sections, added to the number of
the chapter, is the same: thirteen. Thus the first chapter has twelve sections,
the second chapter has eleven sections, and by the time we get to the twelfth



and final chapter, it has just one section. This kind of pattern, in which we
see the same increase or decrease each time, as in the sequence 12, 11, 10,
9,…, is known in mathematics as an arithmetic progression. Hidden in the
thirteenness of chapter number plus number of sections is a really simple
trick to add up the total number of sections in the book. It would be
annoying to have to calculate the sum  by laboriously adding the
numbers one by one. But if you go over all twelve chapters, in each case we
know that the chapter number plus the number of sections equals 13. So the
total of these thirteens, over the twelve chapters, is  This picture
shows, on the left, the chapter numbers, and on the right, the sections,
adding up to 13 every time.

But this total is double what we need, because it’s also got the  of
the chapter numbers in there. All we have to do is halve it: the total number

of parts is (12 × 13) = 78.
This trick is one of my first mathematical memories—my mother taught

it to me when I was a kid, and I thought it was pretty amazing. She
recounted the (possibly apocryphal) story of how the great mathematician
Carl Friedrich Gauss, while still in elementary school, ruined a teacher’s
attempt to get a bit of peace and quiet one afternoon, when the teacher set
Gauss’s class the task of adding up all the numbers from 1 to 100. The
young Carl apparently invented on the spot this little trick I’ve just
explained. If our book had 100 chapters with the same pattern, then the sum

 is  (100 × 101) = 5,050. Cool! I feel a bit sorry for the poor
teacher, though—all he wanted was half an hour of quiet.



The most interesting and impressive aspect of the mathematical
structure of The Luminaries is that each chapter is half the length of the last.
That constraint has significant implications for the length of the novel. We
can represent the length of the first chapter with a rectangle (we might
measure the length in words, characters, lines, pages—whatever you prefer;
it doesn’t make much difference). Here it is:

Now, the next chapter is half as long, so we can slot it in with a half-
sized rectangle on the right. Chapter 3 is half the length of Chapter 2, and
Chapter 4 is half the length of Chapter 3. I’ve shown the first few chapters
in the picture:

We can keep on going, slotting ever smaller and smaller rectangles into
this picture and never escaping from the outer square boundary. I’ve added
Chapters 5, 6, 7, and 8 to the left-hand diagram and Chapters 9 to 12 to the
right-hand diagram just to show you.



We are creating a beautiful spiral effect, with each consecutive chapter
fitting nicely into the ever smaller space remaining. What this means is that
however many chapters there are, the total length of the book is less than
twice the length of the very first chapter! There’s no escape—even if you
had a million chapters.4

We know that this book has twelve chapters. Is there some nice, easy
trick, the way there was for counting sections, to tell us exactly how long
the book will be once we know how long the first chapter is? Happily, there
is. The kind of sequence we see here with chapter lengths, namely 1
is one in which to get from one step to the next, we don’t add or subtract a

fixed amount; we rather multiply by a fixed amount (in this case ). It’s
known as a geometric progression, and the trick for adding its terms
involves an ingenious idea. I’ll show you for the case in which we halve
successive terms, because that’s what we are doing with chapter length, but
the same kind of idea works much more generally.

Okay, so let’s say our first chapter has length L, where L is measured

however you like: pages, words, whatever. Then Chapter 2 has length L.

Chapter 3 has length L, and so on. The total length of the book is going to
be



which we can make a bit simpler by bringing out that factor of L to get

Here’s the trick. Halve both sides:

See how there’s a  in each expression, lining up with each other, and a 

, and so on all the way to ? I’m now going to subtract the second
expression from the first. So on the left-hand side we’ll have the total book
length, take away half the book length, leaving half the book length. On the
right, almost everything will cancel out and we’ll just get

Doubling up, here is our patented formula for finding the length of The

Luminaries: it’s  Remember that £4,096 of stolen gold? There it is
—sewn into the very fabric of the book!

The choice to have twelve chapters fits in very nicely with the other
structural elements of the book, but as I’m about to show you, the number
of possible chapters is very closely constrained by our geometric
progression. Looking a bit more carefully at our chapter lengths, they are



related to powers of 2. The mathematical notation for powers is to put a
little superscript after the number to mean the number of times it’s
multiplied by itself. For instance, 25 means  which is 32. To get the
length of, say, the seventh chapter of our book, we have had to halve our
first chapter six times. This means the length of the seventh chapter is 

 as you can see if you look back at my equation for the total length of
the book. The twelfth and final chapter has length  Let’s say that the
shortest chapter has length S Then  in the case of the twelve-chapter
Luminaries. The total length for our twelve-chapter book was 

Replacing L with  we get  and noticing that  is just 
which is  this all simplifies beautifully to S.

Putting actual numbers in, it just takes a moment to calculate that 
 What this means is that the total length of the book is

4,095 times the length of the final chapter. It’s pretty obvious, then, that the
lengths can’t be measured in pages, or even if the last chapter was just one
page long, poor Eleanor Catton would have had to write a 4,095-page
behemoth. The Luminaries is long, but not that long. Come to think of it,
this explains why the recent TV adaptation did not follow the book’s
structure with twelve episodes, each half the length of the previous one: if
the final episode were just one minute long, the first episode would have
had to last over thirty-four hours.

It’s quite hard to bind a book of much over a thousand pages, and
probably even harder to find a publisher willing to print it, so let’s take a
thousand pages as a reasonable maximum, with about 400 words of text on
each page. Then a sensible upper limit to work to would be 400,000 words.
Even if the shortest chapter has just 100 words, then the total word count
would be  which is 409,500—that pushes the limits of what is
attainable. I have just counted the words in the final twelfth chapter of The
Luminaries, and there are 95. This gives an estimated 389,025 words. I do
not claim this as an exact figure. There is some wiggle room because there
are different ways of counting the words (do I count chapter headings? Do I
count the words “Part Twelve” and so on?). With a shortest chapter of 95



words, there’s no way the book could have more than twelve chapters—if it
had thirteen chapters, for example, the word count would more than double
to 778,145, which would definitely raise eyebrows at the printing press!

If someone really wanted to write a book with the chapter-halving
property that had more than twelve chapters, what’s the most chapters they
could write? To find the total length of a book with (let’s say) n chapters, in
terms of the length of the shortest chapter, we can repeat the exact same
calculation as we did for twelve chapters. If we had n chapters, the final

chapter would have length  or equivalently  The total length of
the book would be not be  but  Even if the shortest chapter was
just one word long, then an upper limit is reached pretty fast. To stay within
400,000 words, we could find the maximum number of chapters by solving 

 If you do this, you find that the highest n can be is 18. The last
six chapters aren’t really worth having—they would contain a total of just
63 words among them.

Why did Catton use this particular structure? Part of what makes it, and
the novel, successful is that it is not a random choice. If you wanted
something to do with twelve in your book, to emphasize the link to the
twelve signs of the zodiac, you could make each sentence twelve words
long, or have twelve chapters and  sections, or all sorts of other
possibilities. The decision to halve these twelve chapters each time, like the
waning of the moon, works because it echoes both the astronomical and
astrological themes of the book, as well as the development of the plot and
the underlying central story of the two lovers, represented by the sun and
moon. There are resonances in the text—things doubling and halving,
falling and rising, increasing and decreasing like the sun, moon, stars, and
the fates of the characters. The prostitute Anna Wetherell, despairing over
the fact that her debts have doubled in the last month, reflects that “a
woman fallen has no future; a man risen has no past.”

We feel the tension rising as the parts become more condensed. In a
2014 interview, Catton said, “I see it like a wheel, a huge cartwheel, creaky
at the beginning and spinning faster and faster as it goes.” The sense of the
inescapability of our fates increases as the constraints become ever tighter



with each chapter—we saw the literal spiraling-inward effect—drawing us
into the final, tender scene between the doomed lovers in the last chapter,
Part Twelve. It is titled “The Old Moon in the Young Moon’s Arms,” and it
takes place on January 14, 1866, just days before the events of Part One.
This is the true center of the novel, and the spiraling progression we have
seen calls to mind Yeats’s image of the “widening gyre” from his
unforgettable poem “The Second Coming,” the first four lines of which
read:

Turning and turning in the widening gyre
The falcon cannot hear the falconer;
Things fall apart; the centre cannot hold;
Mere anarchy is loosed upon the world

In the poem we follow the path of the gyre as it travels outward from
the center in the whirling storm. But in The Luminaries we are following
that path in reverse, closing further and further in upon the center.
Appropriately enough then, for a novel with so many astrological
references, The Luminaries shows us the widening gyre not straight on, but
in retrograde.

In The Luminaries, the geometric progression structure is manifested in the
physical length of chapters. But there’s another kind of structure in every
narrative: not spatial but chronological. In a novel, as E. M. Forster said,
there is always a clock. Sometimes the ticking is very loud. Aleksandr
Solzhenitsyn’s One Day in the Life of Ivan Denisovich is precisely that—it
recounts events during a single day of a ten-year sentence in the Russian
gulag. Virginia Woolf’s Mrs. Dalloway and James Joyce’s Ulysses also take
place over a single day, which just goes to show that the imposition of a
constraint does not have to restrict creativity—three more different books
are difficult to imagine. A still shorter time period is the basis of a poignant
2019 novel by the Turkish writer Elif Shafak. A woman named Leila is
brutally murdered, and as her brain starts to shut down, memories from her
life pass through her mind until her soul ultimately departs from her body.



The length of time that passes during these strange liminal moments gives
the book its title: 10 Minutes 38 Seconds in This Strange World. If you are
thinking that at this rate I’m going to claim there’s a book in which no time
passes at all, you’d be right. Life: A User’s Manual, by the French author
Georges Perec, purports to take place at a single moment: just after 8 p.m.
on June 23, 1975.

The 2016 novel A Gentleman in Moscow, by Amor Towles, goes to the
other extreme. Instead of a single day, its events take place over the course
of thirty-two years. But it has a very sophisticated chronological
framework. It’s perhaps not surprising to find mathematical structures in the
work of a writer who spent twenty years working as a Wall Street banker
before his first novel (2011’s bestselling Rules of Civility) was published.
The best fact I’ve ever heard about Towles is that when he was ten years old
he put a message in a bottle and threw it into the sea at a place called West
Chop, Massachusetts. “If this gets to China,” he wrote (or words to that
effect), “please write back.” How many children have done this, and how
few have ever had a response? But a few weeks later, someone did write
back, albeit not from China. Harrison Salisbury, then the managing editor of
The New York Times, no less, had found the bottle, and the pair
corresponded for several years, finally meeting when Towles was eighteen.
Salisbury actually makes a cameo appearance in A Gentleman in Moscow,
in his real-life role as a Russia correspondent. If you were hoping that he
fished the bottle out of the Volga River, though, I will have to disappoint
you. He picked it up on the beach at Vineyard Haven, approximately two
miles from West Chop.

Set in Moscow’s famous Hotel Metropol, A Gentleman in Moscow tells
the story of thirty-two years in the life of Count Alexander Ilyich Rostov,
sentenced in 1922 by a Bolshevik court to house arrest for life at the hotel,
where he has been living. Rostov is a brilliant character—denounced for
being an inveterate and unrepentant aristocrat, he makes a life for himself in
the hotel over the decades of his enforced residence there, holed up in a
sixth-floor attic, while life outside in Russia is changing beyond all
recognition. His life is spared only because the committee that sentences
him approves of a poem he wrote in 1913.



If you have read the book, you might have noticed that the date June 21
crops up repeatedly, and that several key events occur on this date over the
years. This is just the tip of the iceberg in terms of the hidden structure,
which Towles describes as accordion-like. Those thirty-two years over
which the story takes place might have given you a hint that powers of 2
might be involved somehow (because 32 is 25 or 2x2x2x2x2). And indeed
they are. The book begins by recounting the events of June 21, 1922, the
summer solstice, the day when Rostov begins his house arrest. We then hear
what happens one day after the arrival at the hotel, then two days, and then
five days. Then it’s ten days after, three weeks, six weeks, three months, six
months, and eventually we reach the precise anniversary, June 21, 1923.
The time periods are (roughly) doubling each time. The doubling continues:
we revisit Rostov on the summer solstice two years, four years, eight years,
and finally sixteen years after his time at the Metropol begins—to 1938.
This is the midpoint of the story, just as the summer solstice is the midpoint
of the year, when the days are at their longest and the nights shortest. What
Towles now does is to pivot on this midpoint and, in a lovely symmetry, to
reverse the sequence—we jump eight years to 1946 (which is eight years
before the end), then four years, two years and so on, repeatedly halving the
intervals, until the concluding part of the book, which again occurs on June
21, the anniversary of the count’s arrival at the Metropol. I won’t tell you
what happens, but it’s a very pleasing conclusion.

Obviously, if you are like me, you may be feeling some discomfort at
the claim that a sequence beginning 1, 2, 5, 10, 21 (three weeks) can
properly be described as a doubling. After all, two plus two equals five only
in the Orwellian torture chambers of 1984. But it all works if you start with
one year and then round down to the nearest sensible unit. Half of one year
is six months; half of that is three months. Half of three months is six-and-
a-bit weeks, so we round down to six weeks, and halving again is three
weeks, or twenty-one days. Half of twenty-one days is ten days and change,

half again is five days, half of five days is 2 , so we round down to two,



and then the final halving brings us to one day. I hereby give my
professorial seal of approval!

Just as in The Luminaries, this choice of mathematical structure, a
geometric progression and its inverse, is not random: it serves the narrative.
At the beginning, that “granularity,” as Towles refers to it, is necessary in
order that we, and Rostov, can be properly introduced to the Hotel
Metropol, his new attic quarters, and the other people who live there—the
guests and staff. As time passes, it is more appropriate to travel more
quickly—you wouldn’t want to hear in detail about every day for thirty
years. But this process should not continue indefinitely. As the end of the
narrative approaches, we need that granularity again, leading up to the final
and exciting conclusion (which I won’t spoil for you). The doubling and
shrinking is an excellent way to achieve this. It is also something like the
way human memory works, and how we experience the passage of time.
We all have very distinct memories of childhood, but then time seems to
speed up during our adulthood; as we close in on the present moment, we
have good recollection of today, yesterday, and the immediate past, but time
contracts as our memories recede into the past.

Sequences of doublings and halvings occur along the number line, but for a
two-dimensional example of mathematical structure in literature, we need
look no further than Georges Perec’s critically acclaimed Life: A User’s
Manual (or, to give it its original French title, La Vie mode d’emploi). As I
mentioned earlier, all its action takes place at a precise moment in time.
Having subverted any possibility of temporal structure, then, the way is
open to impose some other framework. The story is set in an apartment
building in Paris, 11 rue Simon-Crubellier, where the lives of its many
inhabitants are intertwined in a profusion of ways. There’s Bartlebooth, the
eccentric Englishman who has spent years learning to paint and traveling
the world creating watercolors of different ports, which he then has
converted into jigsaw puzzles that he makes it his life’s work to reassemble.
The puzzle maker and Bartlebooth’s painting tutor are fellow residents of
11 rue Simon-Crubellier. Unfortunately, Bartlebooth fails in his goal



because he dies just before 8:00 p.m. on June 23, 1975, before he can
complete all the puzzles.

The visible part of the structural edifice in this novel is the fact that the
apartment building has 100 rooms, in a  square array. This includes
attic rooms, basements, and stairwells, by the way. Each chapter is set in a
different room. So far, so good. But the structure goes much deeper than
that, and the story of the mathematics behind it involves card games,
imperial Russia, early computers, and a mistake made by one of the world’s
greatest mathematicians.

Have you ever solved a sudoku? If you have, you have constructed
what’s known as a Latin square. If you haven’t, don’t worry; I’ve made a
very small sudoku to show you what I mean. (This one is 4 × 4, but usually
in newspapers they are 9 × 9.) The grid must end up with the numbers 1
through 4 each appearing exactly once in each row and exactly once in each
column. I’ve filled in some of the numbers already; your job is to complete
the grid so that every row and every column has a 1, a 2, a 3, and a 4. (If
this were a 9 × 9 grid, we’d be working with the numbers 1 through 9.)

You can solve it by spotting, for instance, that the first column must
contain a 2, so that gap in the first column must be a 2, and that forces the
entry in the second row/second column to be 4, and so on. The completed
grid is this:



A square grid like this with all the numbers appearing exactly once in
each row and column is called a Latin square.

If you were a seventeenth-century French aristocrat looking for an
entertaining logical diversion, you might have tried a different Latin square
puzzle that was doing the rounds at the time. This one also involves a 4 × 4
grid, but this time it’s made of playing cards. In the puzzle, you have to
arrange the four highest cards (jack, queen, king, ace—we call these the
“court cards” in the UK) in each of the four suits (hearts, diamonds, spades,
clubs) of a deck of cards in a 4 × 4 grid, in a special way. Every row and
column has to contain exactly one card from each suit, and every row and
column has to contain four different court cards (an ace, a king, a queen,
and a jack). One solution to this is shown.

What we end up with here is not just one Latin square, but two. There’s
a Latin square of suits and also one of card names. In addition to this, they
play nicely with each other in that each combination is there exactly once—
we don’t have two queens of hearts, for instance. So this is a kind of
“double” Latin square. Specifically, it’s a pair of Latin squares involving
two different sets of numbers or symbols, overlaid in such a way that every
pair of symbols occurs exactly once. These are sometimes called
“orthogonal Latin squares,” or “bi-Latin squares,” or “Greco-Latin
squares”—the last of these because one set of symbols is taken from the
Greek alphabet and the other from the Latin. But I’ll stick with “double
Latin square.”



There are lots of different solutions to this card puzzle, but the precise
number (1,152) wasn’t known until the British mathematician Kathleen
Ollerenshaw worked it out several centuries later. She was quite a woman.
Born in 1912, she enjoyed mathematics very much as a child, and when she
became deaf after an illness at age eight, she found that it was one of the
few subjects (as they were taught at that time) in which her deafness did not
impede her. During her long mathematical career she also produced the first
academic paper setting forth a method to solve a Rubik’s Cube from any
starting position—this feat coming with the side effect of a thumb injury
due to too much cube manipulation, an ailment described by Reader’s
Digest as the first known case of “mathematician’s thumb.” Oh, and she
became lord mayor of Manchester and played ice hockey for England. Call
me an old romantic, but I do like the fact that she married her childhood
sweetheart, Robert Ollerenshaw, saying that she knew it must be love when
he sent her a slide rule as a present.

Back to our card puzzles. The many available solutions would certainly
be enough to entertain you for a few winter evenings. But after a while, a
bigger challenge was needed, and just such a puzzle became popular in the
1770s. It’s known as the “36 officers problem.” This time, you have six
different regiments, each with six officers of six different ranks—lieutenant,
captain, major, and so on. Again, you have to put them into a square grid, 6
× 6 this time, so that there’s exactly one of each rank and one of each
regiment in each row and column. What you need is a 6 × 6 double Latin
square. Now, this problem was doing the rounds of the St. Petersburg
aristocracy, and the story goes that Catherine the Great, empress regnant of
all Russia, no less, was intrigued by it; got stuck putting her colonels,
brigadiers, and generals into position; and called in the hotshot
mathematician Leonhard Euler, who was in Russia at the time at the St.
Petersburg academy, to help. And here’s the thing: Euler couldn’t do it
either.

Two things you need to know about Euler: first, his name is pronounced
“Oiler,” and second, he is one of the most admired and influential
mathematicians of all time, with ninety-two volumes of mathematical
works to his name. He single-handedly initiated the mathematical research



area known as graph theory, among multitudinous other things. He
introduced a lot of our modern mathematical notation, including the way we
write functions. The French mathematician Pierre-Simon Laplace, himself
no slouch, exhorted us, “Read Euler, read Euler, he is the master of us all.”
So if Euler couldn’t do something, then we pay attention. Like all
mathematicians, when I can’t solve a problem (and if that never happens to
you, it means you aren’t asking hard enough questions), I have to decide: Is
it just me failing, or is this thing actually impossible? The next step is to
crystallize this feeling with a conjecture: This problem has no solution—it
is impossible. Of course, once you say this out loud, in a mathematical
paper or at a conference, there’s a chance that someone sees a way to do it,
and then you feel a bit silly. So when you make a conjecture, you want to be
pretty confident about it. And that’s what Euler did with the 36 officers
problem: he conjectured that it wasn’t just him failing to spot a solution, but
that no solution is possible—no 6 × 6 double Latin square exists.

The only way to be sure the thing really is impossible is to prove it
mathematically. You have to give some reason why there cannot be a
solution. Just to give you an idea, I can show you that the “4 officers
problem” can’t be solved—in other words, there does not exist a 2 × 2
double Latin square. This would have two ranks and two regiments. Let’s
say you have a general and a major from Regiment 1 and Regiment 2, and
you have to put these four officers in a 2 × 2 square grid such that each row
and column contains one major and one general, and one officer from each
regiment. Since you can’t have both generals in the same row or column,
they must be at opposite corners, and there are only two ways to do this, as
I’ve shown in this picture.



Whatever corner he’s in, General 1 is therefore sharing a row with one
major and a column with the other. But oh, no! This means there’s either a
row or a column with both General 1 and Major 1 in it, and that breaks the
rule about having one officer from each regiment in each row and column.
Which is a major problem (pun absolutely intended). Being a
mathematician—we can’t help ourselves—Euler then looked for a general
(ha again!) rule about what sizes of double Latin square can exist. He knew

that  is impossible, and that the next one he couldn’t solve was 
He went further and managed to prove that there’s always a double Latin

square for odd sizes (   and so on) and when the size is a

multiple of four ( —the card puzzle—  and so on). Euler
conjectured in 1782 that for the remaining numbers, 2, 6, 10, 14, 18, and so
on, going up in fours, a double Latin square of that size is impossible. Even

to resolve the  case, the number of possibilities to rule out is
astronomical: literally millions. It was finally done, in what mathematicians
aptly call a “proof by exhaustion,” by Gaston Tarry in 1901. He didn’t
check all the cases one by one—don’t worry. He found some clever ways to
rule out lots of batches of cases in one go, so reducing the problem to
checking a smaller number, but still quite a lot, of possibilities. The upshot
is that Catherine the Great and Euler the even greater were right: the 36
officers problem is impossible. So it was looking good for Euler’s
conjecture.

But then something amazing happened. In 1959, in one of the first uses
of early computers in mathematics, E. T. Parker, R. C. Bose, and S. S.
Shrikhande managed to find a  double Latin square! Even more
amazingly, they showed that these squares exist for all other numbers
bigger than 6, even the troublesome 14, 18, and so on. Euler had been
wrong—but it took nearly two centuries to find out. This was big news—a
picture of the “impossible”  double Latin square was shown on the
cover of the November 1959 edition of Scientific American. And here’s
where we come back to Georges Perec. He was particularly interested in



exploring the potential uses of mathematical structures to create new
literary forms and constraints, so the exciting discovery of double Latin
squares that Euler thought were impossible was right up Perec’s street.

In Life: A User’s Manual, the setting is a building with ten floors and
ten rooms on each floor, creating a  square with a hundred rooms.
Perec then created several lists of ten characteristics—a list of ten fabrics,
for example. Each chapter of the novel takes place in a particular room in
the building, and thus corresponds to a particular place in the  square.
By overlaying the relevant double Latin squares, each chapter features
unique combinations of different characteristics taken from these lists of
ten. This results in a very rich narrative structure. And we’re not done yet—
there’s a final component to add to this combinatorial fireworks display.
The stories are told consecutively by following an order of rooms given by
a knight’s tour of a  chessboard. In chess (which is played on an 

 square), the knight is the only piece that cannot move to an adjacent
square. It moves two spaces in one direction and then one in the
perpendicular direction (for example, two spaces right and one space up). A
knight’s tour is accomplished when a knight travels over the entire
chessboard, visiting each space exactly once. It’s not obvious that this is
possible, but it is, and the first recorded solution is attributed to one al-Adli
ar-Rumi, who lived in Baghdad in the mid-ninth century. Are there other
solutions? Is it possible for other size chessboards? The first systematic
study of knight’s tours was carried out by, you guessed it, Euler—and the
answer to both questions is yes.

I should say that there’s no shame in making a conjecture that turns out
to be false. Euler’s conjecture led to exciting mathematics and took
centuries to resolve. So in a minute when I call him a failure, it’s definitely
tongue-in-cheek. I can only dream of being as successful a failure as Euler!
One of the themes, then, of Life: A User’s Manual is failure. Bartlebooth
fails in his life’s mission of assembling all those jigsaw puzzles. Valene, a
painter who also lives in the apartment building, fails in his plan to paint a
picture of the building showing all the rooms and the people in them. The
double Latin square of the structure includes in its story Euler’s failure to



predict its existence. And there’s one final failure, deliberately introduced
by Perec: the knight fails to tour the building! The book has not 100
chapters, but 99—there’s a basement room that is missed. I love Perec’s
“explanation,” when describing the construction of the book and its failure
to visit all the rooms: it’s not his fault. “For this,” he says, “the little girl on
pages 295 and 394 is solely responsible.”5

We have seen in this chapter how writers like Eleanor Catton and Amor
Towles have exploited mathematical structures to powerful effect in
shaping the chronologies of their novels. Georges Perec, in Life: A User’s
Manual, stepped things up considerably with intricate designs that combine
both space and time in the geometry of his narrative. But Perec was just one
member of the Oulipo, the group of writers I’ve mentioned before who do
dazzling things at the frontiers of literary constraint. They are the subject of
the next chapter.



3
A Workshop for Potential Literature

Mathematics and the Oulipo

On November 24, 1960, at a café in Paris, two Frenchmen, Raymond
Queneau and François Le Lionnais, met with a group of fellow
mathematically minded writers and literature-minded mathematicians and
formed the Ouvroir de littérature potentielle, or Oulipo (from the first letters
of the words). This translates roughly as “workshop of potential literature.”
The aim of the group was to explore new possibilities for structures that
could be used in literature, whether that be poetry, novels, or plays. Since
mathematics is the lodestone of structure, the group was particularly
interested in how mathematical ideas could be starting points for new
literary forms and structural constraints. Queneau and Le Lionnais are not
well known outside literary circles, though you are now familiar with
Queneau’s 100 trillion sonnets, but you have probably encountered
Oulipians like Italo Calvino and Marcel Duchamp—and we have already
made friends with Georges Perec.

The question of how to make something new in art is hardly unique to
1960s France, nor is it unique to literature. The Oulipian response—use
mathematics—can be seen as in some part a reaction to the surrealists, with
their automatic writing and other techniques to get material out of the
subconscious and onto the page. The basic idea of the Oulipo is that one
way to create new kinds of literature is to create new literary forms and
work within them. And what is a literary form but the imposition of some



kind of constraint upon words—the number of lines in a sonnet, for
example? Even the building blocks of language are usually understood to
come with rules—a sentence “must” contain a noun and a verb, for
instance.

There was something going on in mathematics writing at the time too
that influenced the Oulipians, and that was the series of books by Nicolas
Bourbaki that had been appearing at regular intervals since the 1940s.
Here’s an interesting thing about Bourbaki: there is not now, and never has
been, a mathematician by that name. Bourbaki was the pseudonym of a
group of mostly French mathematicians who got together to write,
collectively and anonymously, a series of books that would cover what you
might call the entire architectural foundation of modern mathematics, from
first principles. It’s a pretty amazing story—and these books are still in use
today. The volume I have, covering one of my own research interests in
algebra, is certainly rather dog-eared.

The practice of setting out the rules of engagement for your subject and
then proving theorems based on this solid foundation has a noble lineage,
going back thousands of years to Euclid. The rules of engagement are first
to define the words you’re going to use, just to establish that we all mean
the same thing when we say “circle” or “line,” and then to establish some
starting points—things that we agree are true and from which we can
deduce further truths. What this approach does for mathematicians is
exactly what a constraint like the sonnet form does for poets: it gives you a
structure and then invites you to explore it. What can I achieve within this
setting? Within the rules of Euclidean geometry, we can prove Pythagoras’s
theorem. Within the rules of sonnets, we can write “Shall I compare thee to
a summer’s day? / Thou art more lovely and more temperate.”

So what sort of “axioms” might make sense in literature? One very
simple example is the one used in what are called lipograms. These are
texts in which certain letters are forbidden. (The word “lipogram” comes
from the ancient Greek for “leaving out a letter.”) The best-known
lipogrammatic novel is our friend Georges Perec’s La Disparition,
published in 1969. It is a text satisfying a single axiom: The letter e is
forbidden. Now, in most, if not all, European languages, e is the most



challenging letter to omit, because it is the most common. In French, more
than one-sixth of the letters in normal text are e’s (including accented
versions like é and è and ê). Try to write just one sentence without an e. It’s
difficult to do. (See what I did there? Or rather: look at my action just now.)

The Oulipo did not invent lipograms. They have a long history going
back as far as ancient Greece, where the sixth-century BCE poet Lasus of
Hermione wrote at least two poems that deliberately avoided using the letter
sigma, apparently because he didn’t like it. To each his own, I suppose. A
tenth-century Byzantine encyclopedia called the Suda mentions a much
more ambitious enterprise. It tells of a poet called Tryphiodorus who, nearly
a thousand years after Lasus, produced a lipogrammatic version of Homer’s
Odyssey. The Odyssey has 24 books, and the Greek alphabet, at least at that
time, had 24 letters. Each book of Tryphiodorus’s Odyssey (which is now
lost, sadly) omitted one letter—the first book had no  the second had no 

 and so on. La Disparition was not even the first novel to omit the letter
e. That honor goes to Gadsby, a now almost forgotten 1939 novel by Ernest
Vincent Wright. The Oulipians have a cheeky term for work produced in an
Oulipian spirit that happens to predate the foundation of the Oulipo:
anticipatory plagiarism. (There is a knowing wink to the anticipatory
plagiarism of Gadsby in La Disparition—a character named Lord Gadsby
V. Wright.)

With Wright’s work, and every other lipogram, there is always a
question: Yes, it’s clever, but why do it? Does it help to make good art?
There is no particular reason to write Gadsby without the letter e—nothing
in the text makes that choice especially relevant. I have nothing against an
intellectual challenge, but you want to feel that it’s not just a sterile game.
This, I think, is what raises La Disparition above almost all other
lipogrammatic texts. It’s not just that it’s an incredibly difficult technical
challenge to produce an entire book without the most common letter in your
language. The added extra is that Perec’s book follows one of two precepts
set out by fellow Oulipian Jacques Roubaud: that a text written within a
given constraint must in some way refer to the constraint. (I’ll tell you
about his second precept later.) The plot of La Disparition revolves around



the search for something missing, which the characters in the novel
eventually realize is the letter e. There are clues for the readers, such as
chapters numbered 1 to 26 with Chapter 5 missing (because e is the fifth
letter of the alphabet). But there are also clues for the characters in the
novel. There is a hospital ward with 26 beds, but nobody is in bed 5.
There’s a 26-volume encyclopedia with no Volume V. Roubaud described
La Disparition as “a novel about a disappearance, the disappearance of the
e; it is thus both the story of what it recounts and the story of the constraint
that creates that which is recounted.”

In the novel’s postscript, Perec explains, still without the letter e, why
he has written it: “My ambition, as Author, my point, I would go so far as to
say my fixation, my constant fixation, was primarily to concoct an artifact
as original as it was illuminating, an artifact that would, or just possibly
might, act as a stimulant on notions of construction, of narration, of
plotting, of action, a stimulant, in a word, on fiction-writing today.” (The e-
less English translation here is by Gilbert Adair.) The literary critic and
leading Perec authority Warren F. Motte has suggested that La Disparition
is also a meditation on loss. Perec was orphaned in the Second World War
—his father was killed in action and his mother was murdered in the
Holocaust. As Motte points out, the absence of e means that “Perec cannot
say the words père, mère, parents, famille in his novel, nor can he write the
name Georges Perec. In short, each ‘void’ in the novel is abundantly
furnished with meaning, and each points toward the existential void that
Perec grappled with throughout his youth and early adulthood.”

Which is harder to write: a novel with no e like Perec’s La Disparition or
his sequel Les Revenentes, whose only vowel is e? Raymond Queneau
suggested a mathematical way to measure “lipogrammatic difficulty.” We
all instinctively know that omission of the letter x, say, would be easier than
omission of the letter t, and of course the longer such a text is, the harder it
is to create. Queneau’s idea was to give a precise measure of this difficulty
using the frequency distribution of letters for the language in which your
text is written. Any particular text will have slightly different proportions of



the different letters, but if you collate results over large swaths of different
texts, you can predict quite accurately the proportions of each letter that
you’d expect to find in a piece of written English. The most common
letters, in order, are e, t, a, i, and o. The least common are z, q, x, j, and k.
This knowledge was used for centuries to crack secret codes, because if
your adversary has encrypted a message by substituting letters for other
letters or symbols, then you can make an educated guess that the most
commonly occurring symbol represents the letter e, and the second most
common is t, and so on (unless your adversary has written a lipogram).
We’ll have more to say on this in Chapter 8.

Queneau’s measure of lipogrammatic difficulty is to take the frequency,
f, of the letter or letters omitted and multiply by the length n of the text in
words. In English, for instance, out of every hundred letters in a typical text,
on average two of them would be y’s and thirteen would be e’s. This is
because the frequency of y is 0.02, and the frequency of e is 0.13. So we
predict  letter y’s, and  letter e’s. We can be more
accurate if we want. To five decimal places, the frequency of e is 0.12702,
and that of y is 0.01974.

Let’s see how this works in practice. The lipogrammatic difficulty of
creating a text of five hundred words with no letter y is 
rounded to the nearest whole number. But it’s significantly harder to create
even a much shorter text with no e. A two-hundred-word e-less text has
difficulty level  (again rounded to the nearest whole number).
What about La Disparition? In French, e is even more common than in
English, with a frequency of 0.16716. This gives an eighty-thousand-word
novel like La Disparition an enormous difficulty of 13,373. Now, La
Disparition was translated into English as A Void by Gilbert Adair. If one
started from a blank slate, the difficulty level of an eighty-thousand-word e-
less text in English would be 10,162. But please don’t imagine for a second
that I think writing A Void was easier than writing La Disparition.
Translators like Adair have to face the formidable challenge of maintaining
the lipogrammatic constraint while at the same time producing a faithful
translation. It is an astonishing achievement.



A safer comparison is between the difficulty of La Disparition and the
difficulty of Les Revenentes, Perec’s follow-up novel that he joked used up
all the e’s missing from La Disparition. This time, to work out the difficulty
we have to add up the frequencies in French of all the other vowels
together. I’ve checked this and come up with a total frequency of 0.28018;
I’ve also done a very rough word count of Les Revenentes and arrived at a
total of thirty-six thousand words—that means a difficulty level of 10,086.
It’s obvious why Les Revenentes is shorter. If it were the same length as La
Disparition, it would be verging on twice as hard to write.1

A more recent lipogrammatic text that has the same self-referential
quality as La Disparition is 2001’s Ella Minnow Pea by Mark Dunn—
there’s a hint of what is to follow even in the title character’s name, which
sounds like the sequence l, m, n, o, p. The book is set on the fictional island
of Nollop, whose inhabitants revere Nevin Nollop, putative inventor of the
pangram “The quick brown fox jumps over the lazy dog.” (In case you’re
unfamiliar, a pangram is a phrase or sentence featuring every letter of the
alphabet.) There’s a statue of Nollop on the island, with the pangram
inscribed below it. One day, one of the tiles on which the letters of the
pangram are written falls off, and the island’s rulers take this as a sort of
divine instruction that this letter must be stricken from the alphabet and
banned. At this point, it disappears from the text in the book. As more
letters fall from the statue, they are banned too. The only way for this
process to cease, decides the government, is if it were to turn out that
Nollop is not actually a deity—and that can be true only if a shorter
pangram is found. At the most desperate moment, when only the letters l,
m, n, o, and p remain, the eponymous Ella manages to find a thirty-two-
letter pangram (three letters shorter than Nollop’s), the full alphabet can be
restored, and they all live happily ever after.

Before moving on from lipograms, I’ll just mention Eunoia, by the
Canadian author Christian Bök, which won Canada’s Griffin Poetry Prize in
2002. There are five chapters in the main part of the book that each use only
one vowel, with the letter y being omitted throughout. A sample sentence
from Chapter A is “A law as harsh as a fatwa bans all paragraphs that lack
an A as a standard hallmark.” The title, Eunoia, is the shortest English word



that contains all the vowels—it means a state of good health. The shortest
such word in French is somewhat better known—oiseau, meaning “bird”—
which is the title of the second part of the book. As the final section, “The
New Ennui,” states, the text “makes a Sisyphean spectacle of its labour,
wilfully crippling its language in order to show that, even under such
improbable conditions of duress, language can still express an uncanny, if
not sublime, thought.” This is beautifully put, and there’s certainly some
lovely imagery in the book. But I have to say that, though we can admire
the extraordinary technical accomplishment required to produce such a
lipogrammatic tour de force, the ratio of clever technique to emotional
punch in the work is a little too high in places. With Eunoia, I think it’s time
to draw our discussion of lipograms to a close.

There is something so French, somehow, about the Oulipo—where else
could it possibly have been formed than in a Parisian café? Yet probably the
most famous Oulipian was a Cuban-born Italian. His mother gave her son a
name intended to remind him of his heritage, only to move back to Italy
almost immediately, meaning that Italo Calvino (for it is he) was saddled
forever with a name that he described as “belligerently nationalistic.”

Calvino’s best-known work is If on a Winter’s Night a Traveler, one of
those rare books written in the second person. It’s about a reader (you)
trying to read a book called If on a Winter’s Night a Traveler. You buy it,
but it has the same sixteen pages repeated over and over again. When you
return it, it turns out that actually these pages are copies of a different book
called Outside the Town of Malbork. But something goes wrong when you
try to find that book too, leaving you with the tantalizing start of a third
book. Sections recounting your attempts to get hold of these books alternate
with the beginning chapter of each. It’s clever and funny and includes a list
of book categories that is instantly recognizable to the inveterate book
buyer (including Books You Could Put Aside Maybe to Read This Summer,
Books You Want to Own So They’ll Be Handy Just in Case, and Books
That Everybody’s Read So It’s as If You Had Read Them Too).



Perhaps you have already put aside If on a Winter’s Night a Traveler,
maybe to read this summer, so let me persuade you also to look at Calvino’s
beautiful, melancholy book Invisible Cities. To use another of his
categories, it is definitely a Book You Need to Go with Other Books on
Your Shelves: Invisible Cities nods both to the travels of Marco Polo and to
Thomas More’s Utopia, with a hint of One Thousand and One Arabian
Nights. The book contains fantastical descriptions of fifty-five cities that are
supposed to have been in Kublai Khan’s empire, ranging in length from a
paragraph or two to a couple of pages. Argia, the underground city, for
example, gets just fourteen lines—nothing can be seen from above ground,
and it’s hard to know whether the city is there at all. “The place is
deserted,” Calvino writes. “At night, putting your ear to the ground, you can
sometimes hear a door slam.” Behind all of these cities is the one city that
Marco Polo never speaks about, but of which every other city is just a
reflection: his home. “Every time I describe a city I am saying something
about Venice,” he tells the Khan.

Invisible Cities is divided into nine chapters, but the way the accounts of
the cities are divided up and numbered is rather curious. Each city falls into
a particular one of eleven categories (such as “Cities & the Dead,” or
“Continuous Cities”), with five cities of each type. Chapter 2, for example,
is shown like this in the table of contents:

2.
..…
Cities & Memory • 5
Cities & Desire • 4
Cities & Signs • 3
Thin Cities • 2
Trading Cities • 1
..…

The dotted lines represent unnamed sections in each chapter that contain
conversations between Marco Polo and Kublai Khan. Chapters 3 through 8
also have five cities, numbered 5, 4, 3, 2, 1. But Chapter 1 and Chapter 9
have ten cities each, numbered seemingly (but in fact not) at random.



Chapter 1 does not contain any 5s and Chapter 9 has no 1s. What is going
on? Why this descending order 5, 4, 3, 2, 1? Why not just have eleven
chapters with five cities in each, or five chapters with eleven? Why have
fifty-five cities in the first place? Let’s begin with that last question.

One of the inspirations for Invisible Cities was Utopia, by Thomas
More. Thomas More was a Tudor writer and statesman, eventually
becoming lord chancellor of England under Henry VIII. Unfortunately, he
opposed Henry’s decision to separate England from the Catholic Church
and was executed for treason because of it. His 1516 book, Utopia, is the
account of an imagined perfect country. (“Utopia,” a word Thomas More
coined, is derived from the Greek for either “no place” or “good place,”
depending how you convert that “U” into Greek.) Only one city, Amaurot,
is described in detail because we are told that all the others are similar. So
Calvino is filling in the gaps in More’s work by telling us about all fifty-
five cities.

Hold the front page, though. When I looked at English translations of
Utopia (it was written in Latin), they all said that there are 54 cities. This is
rather curious. I don’t know if Calvino owned an Italian translation in
which there are erroneously 55 cities. Or are we to understand that there are
54 cities in addition to Amaurot? One edition has a footnote that the 54
cities of Utopia “parallel the fifty-three counties that made up England and
Wales in More’s time, plus one for London.” My Latin’s not up to much,
but the original “quatuor et quinquaginta” does look awfully like 54, even
to me. I don’t want to start an international incident here, so to keep the
peace let me suggest that if Utopia’s 54 comes from 53 + 1, perhaps
Invisible Cities is 54 + 1, in tribute.

Now that we have 55 cities (somehow), how shall we arrange them into
chapters? Well, we have eleven kinds of city, with five of each kind. So we
could have a structure like a rectangle, with each row representing a
chapter, and each column a type of city, like this. Here, the numbers 1, 2, 3,
4, and 5 are the five cities of each type. The first column is “Cities &
Memory,” the second is “Cities & Desire,” and so on to the eleventh
column, which is “Hidden Cities.”



Chapter 1 here has City 1 of each type; Chapter 2 has City 2; and so on.
Let’s not mince words: This structure is boring. Cycling through the same
eleven elements in the same order each time does not give a feeling of
progression and does not allow for different chapters to have different
flavors.

A clue to the structure chosen by Calvino is given in the text. “My
Empire,” says Kublai Khan, “is made of the stuff of crystals, its molecules
arranged in a perfect pattern. Amid the surge of the elements, a splendid
hard diamond takes shape.” What Calvino does is shift each of the columns
successively downward like this:



In order to avoid chapters with just one or two cities in them, and to
create a pleasing symmetry, Calvino gives Chapter 1 and Chapter 9 the first
and last four rows of this structure. The intervening chapters now all have a
5, 4, 3, 2, 1 pattern, in which we see the fifth example of one type, then the
fourth of the next, and so on. Each chapter, we visit a given type for the
final time and introduce a new type. This mix of old and new, familiar and
unfamiliar, gives a subtle momentum to the book’s framework.



We can also notice that if we take Chapter 1 and Chapter 9 together,
they fit together to form a microcosm of the whole, with exactly four copies
of the “5 4 3 2 1” motif. And there we are: “A splendid hard diamond takes
shape.” It is a very elegant design. Indeed, Calvino himself said that
Invisible Cities was one of the works with which he was most pleased,
because in it he managed to say the “maximum number of things in the
smallest number of words.”

There’s one more Easter egg in the book’s structure for the
mathematical reader. In Chapter 8 of Invisible Cities, Kublai Khan
meditates on the game of chess (of course it’s in Chapter 8, because chess is
played on an 8 × 8 square): “If each city is like a game of chess, the day
when I have learned the rules, I shall finally possess my empire, even if I
shall never succeed in knowing all the cities it contains.” We have seen the
patterns drawn in the book’s structure, and look—55 cities plus 9 chapters
equals the 64 squares on a chessboard. Coincidence? Not a chance.

Like any successful franchise, the Oulipo has several spin-offs. “Oulipo,”
remember, stands for “Ouvroir de littérature potentielle,” or “workshop for
potential literature.” Any creative endeavor can have a “workshop for
potential X,” or “Ou-X-po.” There’s the Oubapo (bandes dessinées—comic



strips), the Oupeinpo (peinture—painting), and even the Oulipopo, the
Ouvroir de littérature policière potentielle: the workshop for potential
detective fiction. There are many potential potential workshops. What’s
really needed, naturally, is an Ou-ou-X-po-po, and that would have to be
followed by an Ou-ou-ou-X-po-po-po, and so on … but I digress.

If you like your Oulipo with a side order of murder, look no further than
Claude Berge’s Qui a tué le Duc de Densmore? (Who Killed the Duke of
Densmore?). Berge was a respected French mathematician who made
significant contributions to graph theory, and also a long-standing member
of the Oulipo. He loved both mathematics and literature (a man after my
own heart) and found it hard to decide which should be his career focus: “I
wasn’t quite sure that I wanted to do mathematics. There was often a greater
urge to study literature.” Berge’s story about the murder of the Duke of
Densmore not only uses a mathematical idea, it also uses a mathematical
consequence of that idea. In this way it respects the second of the precepts
put forward by Jacques Roubaud.

The first of these, if you recall, says that a text using a particular
constraint must mention that constraint in some way. The second says that if
a mathematical idea is used, then some consequence of that idea should also
be incorporated. Berge’s story involves a famous detective trying to solve
an old case—the Duke of Densmore had been murdered years ago, but the
culprit is still at large. The pool of suspects is narrowed down to a group of
seven lady friends (to put it coyly) of the duke. Each of them visited the
duke’s house in the time leading up to the murder. Over the intervening
years, they all claim to have forgotten the exact dates of their visits. But
they do remember who else was there at the time. If two people met, then
their visits must have coincided, if only briefly. What our detective ends up
with, then, is a collection of intervals of time, and all he knows about them
is which ones overlap.

This doesn’t seem a lot to go on. But there’s a clever way to visualize
the connections in a situation like this—it’s called an interval graph.
Graphs in this sense of the word are something like a map of a subway
system—you have various points (subway stations, or time intervals), and
you join together the ones that are connected (adjacent stops on a subway



line, or time intervals that overlap). For an example, let’s take a literary
family—the March girls from Little Women. Suppose that Meg, Jo, Beth,
and Amy all visit their grumpy aunt. Meg says she saw Jo and Amy there,
Jo says she saw Meg and Beth, Beth reports meeting Jo and Amy, and Amy
sees Beth and Meg. All that information can be captured efficiently in this
graph, which, if everyone is telling the truth, is an example of an interval
graph:

Here’s the thing, though. This graph has a cycle Meg—Jo—Beth—
Amy. But there is a theorem in graph theory that says that every interval
graph is “chordal.” What this means is that somewhere in every cycle there
has to be a chord—an intermediate line joining two of its points. If a graph
doesn’t have that property, then it can’t be a true interval graph. Here, it
means there must be a line either joining Meg to Beth, or one joining Amy
to Jo. The inescapable conclusion, though it pains me to say so, is that at
least one of the March girls isn’t telling the truth. Marmee will be so
disappointed. With this example, we can’t prove who is lying. (My money’s
on Amy.) But in the Densmore story, there are more suspects, and the graph
has the property that there is exactly one person who, if we removed them
from the graph, leaves the rest of the graph as a real interval graph. And
what better reason to lie than that you murdered the duke? The detective
knows the interval graph theorem and catches the killer.



As we have seen throughout this chapter, the Oulipian approach is at once
playful and earnest—one of my favorite combinations. Life, as they say, is
too important to be taken seriously. To close our guided tour of all things
Oulipo, I’ve been inspired to invent my own piece of potential literature. I
don’t think it has been done before, but if it has, then I congratulate my
predecessors on their excellent bit of anticipatory plagiarism.

In 1976, Raymond Queneau published a short article titled
“Foundations of Literature (after David Hilbert).” David Hilbert was an
important nineteenth- and twentieth-century mathematician who did a lot to
put mathematics, and especially geometry, on a firm, rigorous footing. In
geometry, people had spent the best part of two thousand years trying to
sort out once and for all what the hell was going on with Euclid’s parallel
postulate, the axiom that says if you start with a line and take any point not
on that line, there is exactly one line through that point that is parallel to the
line you started with. Nobody could prove this, which is why it had to be
taken as an axiom. But it’s less obvious than the other axioms. What people
realized in the nineteenth century is that in fact there are versions of
geometry—so-called non-Euclidean geometries—in which the parallel
postulate actually doesn’t hold, meaning that some of the properties of
Euclidean geometry may no longer follow. For example, take planet Earth.
Draw a triangle by heading from the North Pole down to the equator, then
traveling a quarter of the way along the equator, and then going back to the
North Pole. This triangle has three right angles! Have we just destroyed
geometry? No. What’s happened is that we have discovered that the
geometry of curved surfaces is different from that of flat surfaces. Here’s
another example—perspective drawing. In perspective drawing, parallel
lines meet at a “vanishing point.” This is a bit of a downer if your definition
of “parallel” is “never meeting.”

What Hilbert did, brilliantly, was to set up some rules, or axioms, of
geometry that would be general enough to cover all these different
examples, and many others, while keeping the things they all have in
common. Here are two of Hilbert’s axioms:



1. Given two distinct points, there is always a line containing
those points.

2. Given a line, any two points on the line uniquely determine
that line.

Together, these rules say that any two points will lie on one, and only
one, line. These axioms are true in standard geometry, but they are also true
for the curved “lines” on a sphere and for the lines in a perspective drawing.
In fact, there are lots of situations in which there is a useful concept of
“lines” and “points.” The important insight is that as long as the axioms are
true for our particular setup, however weird and wacky, then all the
consequences of those axioms will also be true. So we can prove theorems
that are true in a bunch of different scenarios, with no extra effort.

Back to “Foundations of Literature,” then. Queneau suggests that
literary texts could be created subject to specific literary axioms. Instead of
points and lines, we could talk about words and sentences. Having created a
set of axioms, your new literary form will consist of texts that satisfy those
axioms. The two geometric axioms we had earlier, says Queneau, would
then become the following:

1. Given two distinct words in the text, there is always a sentence
in the text containing those two words.

2. Given a sentence in the text, any two words in the text
uniquely determine that sentence.

As Queneau points out, the text describing the axioms does not itself
satisfy the axioms, and that’s fine—the definition of (say) a rhyming
couplet is not necessarily itself a rhyming couplet, though naturally I now
want to think of one that is.

Let me show you a truly strange “geometry.” It’s called the Fano plane,
named for the Italian mathematician Gino Fano, who discovered it. (In fact,
at least two other anticipatory plagiarists had independently discovered it
before him, though I don’t think he was aware of this.) The Fano plane
contains precisely seven points, and precisely seven “lines”—in my picture



they are shown as six straight lines and a circle. Each line consists of
exactly three points.

The Fano Plane

This object is breathtakingly symmetrical. Every pair of points lies on
exactly one line and every pair of lines meets in exactly one point. Every
line contains precisely three points and every point lies on precisely three
lines. It’s beautiful. Yes, there are about a million applications of this
structure, everything from cryptography to lottery tickets, from set theory to
experiment design. There’s also a link to a picture that may be more
familiar—the classic Venn diagram showing all the possible intersections
between three sets: the seven regions of the diagram correspond to the
seven points of the Fano plane. But the reason I love the Fano plane has
nothing to do with the applications. It’s purely down to its symmetrical
simplicity.

As a tribute to Queneau and the Oulipo, I have created a new axiomatic
literary form, which I have christened “Fano fiction.” The rules for Fano
fiction are simple. Each text uses a vocabulary of exactly seven words (our
“points”) and consists of exactly seven sentences (our “lines”), each of
which contains exactly three words. Each pair of words appears in exactly
one sentence, and any pair of sentences has exactly one word in common.



I’ve also required of myself that each sentence should observe the
traditional grammatical rule of having a verb in it. With only twenty-one
words in total, it’s going to have to be a pretty spare narrative. My inaugural
work of Fano fiction is encapsulated in the Fano plane diagram on the
following page.

The story tells how you, a talent agency employee, were advised that
it’s best to get hold of the next big talent, and book her fast. A T-shirt line
she endorsed flew off the shelves, and there was a bidding war for her
autobiography. You encouraged her to write the follow-up volume without
delay, and to top her best previous achievements. She did so well that you
could sell your share of the proceeds and retire a millionaire. And here’s the
Fano fiction version:

“Book top act!
Best book fast!”
Top sold fast.
Next, book sold.
“Act fast—next!
Next: top best!”
Best act: sold.



All I need to do now is sit back and wait for my Nobel Prize in
Literature.

I said at the end of the last chapter that the members of the Oulipo take
the use of constraints to extremes. Do they go too far down that route? One
accusation sometimes leveled at their work is that the constraints imposed
serve only to create clever puzzles. The first response to this objection is
that there’s no reason something can’t be clever and great art at the same
time. But more important—and this is a point Oulipians themselves have
reminded critics of from time to time—the Oulipo is a workshop of
potential literature. Its purpose is to provide possible structures, not
necessarily to provide the literature itself. As Raymond Queneau said, “We
place ourselves beyond aesthetic value, which does not mean that we
despise it.”

The fact that many terrible sonnets have been written in the course of
history does not imply that the concept of the sonnet is inherently bad; there
is some boring, arid constrained writing, just as there are boring, arid
novels. But there are also fantastic, imaginative, creative, exciting works of
constrained writing—Perec, Calvino, Queneau, and others have produced
art that we are still talking about. So that’s my defense of the Oulipo.
Everyone will have their own personal sense of the boundary between art
and artifice, but I truly think there’s something Oulipian to suit every taste.



4
Let Me Count the Ways

The Arithmetic of Narrative Choice

Have you ever played one of those story apps on your phone that require
you to make a choice at the end of each “scene”? I can almost hear the brain
cells dissolving as my daughter decides whether her character should go to
the prom with Chad or with Kyle. Naturally, I can’t help but wonder how
many ways through such games there are, and how many scenes have to be
written. Many books, plays, and even poems give us a choice of how to
read them. Mathematics can help us to understand the implications. Imagine
an interactive story in which at the end of each page you pick one of two
options, each of which takes you to a different page. On the face of it, you’d
need two different second pages, but then four different third pages, eight
fourth pages, and so on. Incredibly, even if you make only ten choices in the
whole book, it would need to be more than two thousand pages long! This
obviously can’t be how such books are constructed.

In this chapter, we’ll look at the mathematics of narrative choice. We’ll
learn how to write a play in which the audience gets to decide what happens
next without the actors’ having to learn hundreds of scenes, and we’ll
explore what happens when you write a story in the shape of a Möbius strip.

We saw in Chapter 2 some playful examples of graphs representing the
plots of stories. But there is a different kind of graph that can be used in



plays, books, or other forms of literature in which the creators make
available more than one path through the text. This can be done by directing
the reader in various ways, or by giving the reader (or theatergoer) choices
at key points, or by introducing randomness. The graphs I’m talking about
are networks with points, or vertices, joined by edges that represent some
sort of link between the points, like the interval graphs I showed you in the
last chapter. The example I gave there was a subway map. For these kinds
of maps, what we care about is the connections, not exact distances or
accurate geographical location. Another graph that’s very important in
today’s world is one in which each vertex is a web page, and we join two
pages when one includes a link to the other. These kinds of graphs represent
the connectedness of the Internet and help to determine how highly pages
are ranked in search engines. Pages with lots of links are higher up the list.
Finally, if you have ever played Six Degrees of Kevin Bacon, you’ll know
that we can also represent the connectedness of society with a graph in
which every person is a vertex and two people are linked if they have
appeared in (or directed or otherwise been involved with) the same movie.

I’m now going to show you a graph that was devised by Oulipo member
Paul Fournel, along with Jean-Pierre Enard. It’s called a theater tree, and it
was created to help write interactive plays. The idea is that at the end of
each scene, the actors ask the audience to choose between two possible plot
developments. A masked man walks onto the stage at the end of a scene,
say. The audience are asked: Is this man the king’s illegitimate son, or is he
the queen’s lover? The audience’s choice determines the scene to be played
next. This is fun for the audience, but think about the poor actors (not to
mention the poor set builders, costume designers, and prop wranglers):
every time there is another choice, the number of scenes the actors have to
learn goes up, and it goes up dramatically. If the audience makes four
choices in total, then they will see five scenes (a choice at the end of Scenes
1 to 4, and then the final Scene 5). But how many scenes do the actors have
to learn? There’s one Scene 1. Then the audience makes a choice, and so
there would be two versions of Scene 2. Then there’s another choice, so
these two Scene 2s bifurcate into four Scene 3s, then eight Scene 4s, and
finally sixteen Scene 5s. If you add this up, you get thirty-one scenes. (Is



this ? Yes, it is.) The scene structure can be shown in a graph,
working down from Scene 1 at the top to all the possible Scene 5s at the
bottom:

Here’s where Fournel and Enard come in. They used the fact that there
are other graphs that start from a single vertex (Scene 1) and still have a
choice of two paths below each vertex but have fewer vertices in total. This
means that the audience can still experience an interactive play with five
choices, but the actors will be a lot happier.

Let’s look at Fournel and Enard’s suggested graph—the theater tree. As
you can see, there are only fifteen scenes:

How does this work? In the theater tree, we start at the top with Scene 1,
then work down, making our choice at each point. But whereas in the
original play we had four different versions of Scene 3, the theater tree
manages to have just two. How? Well, the writer has to ensure that
whichever version of Scene 2 is played, by the end of the scene it’s possible



to choose between the same two options for Scene 3. For example, if the
audience decided at the end of Scene 1 that the masked stranger was the
king’s son, then in their Scene 2 a new person, the queen’s lover, could
dramatically appear. Meanwhile, for those who said the stranger should be
the queen’s lover, their Scene 2 could introduce the king’s son. This way, in
either case, the decision at the end of Scene 2 can be “Should the king’s son
and the queen’s lover fight a duel, or should they turn out to be old
friends?” At the end of Scene 4, the audience again is given a choice: “Do
you want a happy ending, or a tragic ending?” In order for the four Scene 4s
to resolve to just two endings, the final scene is split into a bridging scene—
5a (in gray)—and a conclusion—5b (in black). Counting up all the scenes
and half scenes, we arrive at a total of fifteen.

In both these setups, the audience sees five scenes. How many possible
plays are there for the audience? The answer is the total number of paths. In
both cases, the answer is sixteen. This is because each choice splits the play
universe in two. With one choice, there are two plays. With two choices,
you get four plays; with three choices it’s eight, and with four choices it’s
sixteen. Paul Fournel pointed out that creating sixteen separate five-scene
plays would require writing eighty scenes. Even the inefficient version of an
interactive play improved on this with thirty-one scenes. But the theater tree
is even better. Graph theory has reduced the performers’ workload by sixty-
five scenes: an impressive 81 percent.

I wondered whether it was possible to do even better. The answer is yes,
but with a caveat. If you went to see an interactive play created using the
theater tree, your experience—four choices made, five scenes—would be
indistinguishable from one created using the larger 31-scene tree. At least, it
would be if you saw it only once. If you went back the next day for another
go, there’s a good chance you’d see some of the same scenes, even if you
picked different options. The illusion of the full tree works for only a single
viewing—which is fine, of course. During that single viewing you would
not feel that your choices were illusory in any way. However, here is a more
efficient tree that still gives the audience four choices:



This time, I’ve deployed the same trick that the theater tree uses to
prevent the need for four different Scene 3s, but I’ve applied it to every
scene. It requires that each time a choice is made, by the end of the resulting
scene the choice has to turn out to have been irrelevant. Should two people
fight or turn out to be friends? The scene that follows must somehow make
both things true, whichever the audience picked, so that subsequent choices
are not constrained. This is because at each point, only two scenes are
available, so both have to make sense, whatever the sequence of choices. If
the audience votes for a fight, then maybe the characters start fighting, but it
emerges that they are friends who have had a disagreement. If the audience
wants them to be friends, then fine, they greet each other as friends but an
argument ensues that results in a fight. It would likely become fairly
obvious as an audience member in a play like this that your choices are not
really having any effect. My graph may be more efficient, but it will likely
lead to a worse play than a theater tree would.

I’m not aware of vast numbers of productions of theater-tree plays. But
there have certainly been interactive TV shows, one example being 2018’s
Bandersnatch, part of the Black Mirror series on Netflix. It has 150 minutes
of footage ingeniously put together to create 250 segments. Choices made
by the viewer determine which segments are played, and in what order.
There are reportedly more than a trillion paths through the story, each
lasting on average ninety minutes. Such shows would be prohibitively
expensive to make unless efficient graphs are used. Without them, every
choice doubles the number of scenes that must be written and filmed, so



that, as I said at the start of this chapter, even ten choices over eleven scenes
would require more than two thousand scenes (the exact number is ).
The analogue of the hyperefficient but boring graph in which there are just
two versions of each scene after the first would require twenty-one scenes
—but viewers would soon smell a rat. The best solutions will be somewhere
between these two extremes.

There is a form of literature that uses just this kind of combination of
free choice and hidden structure, but on a vastly more ambitious scale. I’m
talking about the “choose your own adventure”–style books that many of us
had as kids. They were very popular in the 1980s, then fell out of favor as
computer games started to be able to create the same kind of experience.
But now they are having a bit of a revival. If you’re not familiar with this
genre, basically you, the reader, are a character in the book: you are thrown
into events, and you have to decide what to do at regular intervals. If you
want to investigate that mysterious cave you just found, turn to page 144. If
you want to take the path to the castle, turn to page 81. If instead you want
to cross the bridge and fight the troll, turn to page 121. Sometimes
randomness is introduced—you may need to roll dice to determine whether
you beat the troll in the fight you decided to pick with it. If you win, go to
page 94; if you lose, go to page 26. Reading these books involves
potentially hundreds of choices (unless you foolishly choose to get into an
argument with a troll, in which case you’re likely a goner after only a few
pages). The arithmetic of choice tells us straightaway that many pages must
appear on several narrative paths. Otherwise, in a book with 100 choices,

even if there are just two options each time, the book would be  pages
long. Even if each page were just a tenth of a millimeter thick, it would take
the light from your flashlight (I assume you are reading the book under the
covers because your parents told you to go to sleep hours ago) 26.8 billion
years to get from the first page to the last. In reality, a scaled-up version of
something like the theater tree has to be used.

To find out more, I needed to talk to an expert. For my ninth birthday, I
was given a book called The Warlock of Firetop Mountain, the first volume
in the wildly successful Fighting Fantasy series of interactive books in
which “You are the hero.”1 The book came out in 1982, and it was written



by Ian Livingstone and Steve Jackson. Since these names have been etched
on my brain for over forty years, I was delighted when Sir Ian, as he is now
known, agreed to speak to me about how he constructs his branching
narrative adventure stories. As well as being the co-creator of the Fighting
Fantasy series, which has sold more than twenty million books worldwide,
he’s also a gaming legend—co-founder of Games Workshop, which brought
Dungeons & Dragons to the UK, and of Eidos Interactive, publisher of the
Tomb Raider games.

When we meet, Sir Ian explains that he creates each book using a
flowchart, done by hand, and he shows me the original chart for Deathtrap
Dungeon (Puffin, 1984). He starts with a basic path and then gradually adds
branch points—places where decisions are made. Very little is
predetermined. “We know the overall story arc, but what happens along the
way is an iterative process.” For example, “You might decide you want an
iron door, then you think, ‘Well, how do we get in here? Is it open? No, I
want it to be locked, there’s something important in there.’ So we need a
key.… You then go back earlier in the story and add a box to a room that
they’ve been in, and the key is in the box.” Each event or decision is
numbered at random, and those numbers are then crossed off a master list
(the Fighting Fantasy books all have four hundred sections, or
“references”). There are many story strands in play, but there are always
what Sir Ian calls pinch points, at which you go back to a node that gives
important information and brings the story back into one passageway again.
These pinch points are vital in preventing an exponential increase in the
number of possible choices.

As you go along with the writing, you have to keep checking that there
is definitely at least one successful path through the book, as well as
making sure there aren’t any loops from which there’s no escape. And then
there’s the question of difficulty. There’s great skill in designing the book so
that the challenge is at the right level—not enough monsters to fight, and
it’s too easy; too many, and the reader becomes dispirited. “Oh, no, not
another army of the undead,” you sigh. Sir Ian’s books are carefully
calibrated to avoid either extreme. He does have fun with readers, though.
“My joy is always trying to lure people to their doom,” he jokes. “The



petals along the floor where they fall on the poison spikes.” He also enjoys
the occasional red herring, “littering the dungeon with useless objects that
they pick up, and then they miss the important items.”

At that point I think guiltily of the decisions I’d advised my daughter
Emma to make earlier that day when we’d been reading The Warlock of
Firetop Mountain together. “So you’re saying that maybe the reader goes
straight for the shiny silver amulet, but actually…”

“It’s the wooden duck you needed, yes,” he says.
So be warned.
There are differences between constructing a game book and

constructing a computer game. In a computer game, the program can keep
track of what objects are where. Suppose one section says, “You enter the
hidden chamber. There is a bag of gold on the floor, which you may take if
you wish. You may exit either north or east.” In a computer game, if you
take the bag of gold, then if you go back to the chamber, the program will
not tell you there is a bag of gold on the floor. But the book can’t tell
whether or not you have picked up the gold without having two versions of
the rest of the story, which would double the length of the rest of the book.
It’s also very clunky to have instructions like “This room has some gold in
it, unless you already took the gold on a previous visit.” So the book can’t
allow you to return to that room.

If you can’t go backward and forward like this, how many choices
would a reader get to make, and therefore how many parts of the book will
they see, during a typical read-through? It’s usually between 100 and 150,
says Sir Ian. For me that’s a very impressive ratio—you are seeing around a
third of the book’s content each time, while making a very large number of
choices.

That leads to another crucial property of the book’s design: a single
choice must not cut out huge swaths of the adventure, or there won’t be
room for those 150 choices. Remember that the writer also has to maintain
the overall story arc to make it a compelling adventure. Each choice has to
be meaningful too. There has to be an actual consequence of going left
instead of right, or of talking to a person or not talking to them. “Because if
it’s the same no matter what you choose, then why bother making it



interactive? There are multiple layers of the component parts of making a
thrilling adventure in which you are the hero.”

There’s a real mathematical tension here between efficiency, control,
and choice. We’ve already seen that to avoid a book the size of a house, we
have to have pinch points where many story lines converge. This means that
great skill is required in the wording of these passages. Readers will be
coming from several points, and whatever happens has to make sense to
everyone. There’s another aspect of word choice that Steve Jackson and Ian
Livingstone were very careful with, right from the start: “I’m proud to say
that we never assumed it was a male playing these books.… When they
meet someone it’s ‘Fellow stranger’ and ‘You’re a very fine-looking
person.’ … I’m very proud that even in 1982 we did that, and I think that’s
key to its popularity.” I think he’s right.

Finally—asking for a friend—what is Sir Ian’s view on cheating? Good
news: he’s okay with it. “I call it peeking around the corner,” he says.
Another tactic is the “five-finger bookmark.” This is the technique of
keeping your fingers in the pages from the last few choices, so that if your
latest decision proves to have been unwise, you can think better of it.
Discretion, after all, is the better part of valor.

In “choose your own adventure” books, readers influence their own journey
through the story. But even when the author remains fully in the driver’s
seat, the narrative path down which they direct us may be far from a straight
line. The simplest examples are what are called reverse poems. These
poems are first read in the normal way, from top to bottom, but then after
the last line the reader is asked to reread the poem in reverse, from bottom
to top. Usually, the top-to-bottom version is pessimistic, and the bottom-to-
top version challenges that negative worldview. The poem “Lost
Generation,” by Jonathan Reed, begins with these three lines:

I am part of a lost generation
And I refuse to believe that
I can change the world



When read in reverse, those first three lines become an optimistic
assertion of possibility:

I can change the world
And I refuse to believe that
I am part of a lost generation

If you want to write your own reverse poem, there are plenty of
templates available.2 The way to do it is to have statements like “It’s a fact
that” or “It’s not true that” interspersed with assertions, as in the following:

Math is just numbers.
It’s not true that
Math is beautiful.

Now read it in reverse.
Geometrically speaking, what a reverse poem does is to add a mirror

line so that we reflect the poem back on itself, creating a poetical
palindrome. A more explicit use of geometry is found in the (very!) short
story “Frame-Tale,” by the American writer John Barth, which appears in
his 1968 anthology, Lost in the Funhouse. A frame tale is a story within a
story, like the play within a play in Hamlet. “Frame-Tale” consists of a
single page, with a few words printed on each side, along with the
instructions “Cut on dotted line, twist end once, and fasten AB to ab, CD to
cd.” Cutting along this line gives you a narrow strip. On the first side of the
strip are the words ONCE UPON A TIME THERE. On the other side are the words
WAS A STORY THAT BEGAN. Now, if you just glued the ends of the strip
together you’d get a band with ONCE UPON A TIME THERE on the outside and
WAS A STORY THAT BEGAN on the inside. But introducing the twist creates not
a band but a mathematical surface known as a Möbius strip.

The Möbius strip is a strange and interesting thing. Discovered in 1858
by the German mathematician August Ferdinand Möbius, it has what
sounds like an impossible property: it is a thing you can create from an
ordinary piece of paper, but it has only one side. I beg you to make one
right now. Just take a narrow strip of paper, give it a twist, and tape the ends



together. If you hold the Möbius strip anywhere, one of your fingers is on
the top side and one on the bottom. But if you draw a line along the center
of the strip, starting on your chosen “top” side and parallel to the edges,
you’ll find the line eventually passing along what was the “bottom,” and a
bit later coming back to the place you started. What this means is that the
Möbius strip has just one surface! In spite of this, it’s still true that at any
given point, there’s a matching point on the reverse, so at each stage there
appears to be a back and a front—but this is just an illusion. I can’t stop
myself from asking you to cut the Möbius strip along the central line you’ve
just drawn and see what happens. Nothing to do with literature, but it’s
really cool. And if you cut the resulting thing in half along its center line,
something even crazier happens—do try it.

Anyway, the effect of the instructions in Barth’s story is to create an
infinite loop of stories: “Once upon a time there was a story that began
‘Once upon a time there was a story that began “Once upon a time there
was a story that began ‘Once upon a time…’”’” Here’s the thing, though:
the fact of its being a Möbius strip (a literal, physical plot twist) isn’t really
taken advantage of. The effect—of a story whose end is its own beginning,
forming an endless loop—would be produced more simply with a circle.
Just write the sentence “Once upon a time there was a story that began” on
one side of a strip of paper and glue its ends together. So I would say that
“Frame-Tale” really ought to be classified as a circular story, rather than a
Möbius strip.

The best circular story I have read is by the Argentine novelist Julio
Cortázar. “Continuity of Parks” is just over a single page long, so I hope
you will forgive me for potentially spoiling it for you by summarizing the
plot. A man sits down in the green chair in his study to finish reading a
novel. In the novel, two lovers are planning a murder. After their final tryst,
they depart into the night, she in one direction, he in the other. He silently
enters the house of the man he plans to kill, creeps up the stairs, and enters
the study, where his victim is sitting in his green chair, reading … And then
you can of course start the story again and read it, this time knowing the
fate of the man in the green chair.



In circular stories, every time we return to the beginning, every new
“Once upon a time” adds another layer of narrative distance. If we use
Hilbert Schenck’s idea from Chapter 2, that each additional level of
narrative distance creates another dimension in the story, then these circular
stories are examples of infinite dimensional narratives. However, we can
never actually realize these dimensions, because we must at some point put
the story down. I don’t know what the highest-dimensional story ever
written is, and in some sense this is a battle that can’t be won because as
soon as we did find a winner, we could create a story beginning “I once
read the following story” and then quote the now second-place tale in full.3

Circling back (if I may) to Möbius strips, at least one writer has made
fuller use of their properties. The British author Gabriel Josipovici
published a collection called Mobius the Stripper in 1974. (This isn’t a typo,
by the way—the spelling used by Josipovici is Mobius, not Möbius.) The
title story has text split into a top and bottom half throughout. You can read
either half first. The story in the top half is about a man called Mobius, who
is indeed a stripper at a nightclub—he physically strips in order to try to
mentally strip away the baggage of society and find his true self. The story
in the bottom half is of a writer in a slump, trying to free his mind and come
up with new ideas. A friend suggests he go and see the act of this guy
Mobius, and that starts the writer thinking. He decides to make up a story
about Mobius, even though he has never met him—that’s where the bottom
story ends. Now we can seamlessly loop back into the first story, but this
time we see it as a story created by the writer.

This could have been just another circular story. However, Josipovici is
cleverer than that. In traveling around a real Möbius strip, as we noticed
earlier, at any point on your journey there is a corresponding point on the
reverse side—you’ll reach it exactly halfway through your trip. Mobius the
Stripper mirrors this: events in the two halves of the story leak through into
the other halves, just as ink on a Möbius strip would show through faintly
on the other side. The stories bleed into each other, and it is impossible to
say which is the “real” story—is the author writing a fictional account of a
real Mobius, or is Mobius entirely imagined, in which case, where did the
author get the idea from? Incidentally, there is a higher-dimensional



analogue of a Möbius strip—a “solid” that doesn’t have an inside or an
outside. It’s called a Klein bottle (after the mathematician Felix Klein).
Please write to me if you’ve heard of any Klein-bottle-shaped novels!

The reader can choose from two possible paths through Mobius the
Stripper, and many more through The Warlock of Firetop Mountain. But in
all the examples we have seen so far, although readers can make choices,
they are still following a road map created by the author. Even those 100
trillion sonnets from Chapter 1 require you to put the lines in a prescribed
order. There are books, however, that throw away the map completely. Our
combinatorial cavalcade continues with my contender for the best value
purchase of all time, a 1969 book by the English writer B. S. Johnson,
memorably described by his biographer Jonathan Coe as “Britain’s one-man
literary avant-garde of the 1960s.”4 Johnson, born in London in 1933, was a
fascinating character. His father was a stock clerk at a bookshop; his mother
had been a maid and then a waitress. He didn’t follow the sort of path we
expect of our literary greats. By age fourteen he was at a school whose aim
was to prepare pupils for future office work, where he was taught
“shorthand, typing, commerce and book-keeping, besides the usual things.”
He left at seventeen with the School Certificate, which, in theory at least,
qualified him to go to university, but “no one had ever gone to University
from Kingston Day Commercial School.” So he got a job.

Five years later, a friend at work (he was an accounts clerk in the
payroll department of a bakery) showed him the prospectus for Birkbeck—
a college of the University of London that held all its lectures in the
evenings so that people working during the day could still get a university
education. Birkbeck started in 1823 and is still going—I was amazed and
delighted to discover Johnson’s Birkbeck connection because I have been
teaching there for nearly twenty years and am constantly banging on about
the vital importance of giving people the chance to pursue higher education
at any stage in their lives. Anyway, Johnson applied, was accepted, and
started studying at Birkbeck in the autumn of 1955. He did well and
decided to become a full-time student, transferring at age twenty-three to



another London college, King’s (in spite of the Birkbeck registrar’s attempt
to dissuade him by saying that at King’s he would be “surrounded by
eighteen-year-old girls”). He wrote poetry, plays, and film and television
scripts, as well as soccer and tennis match reports for national newspapers,
but it is for his seven novels that he is best remembered.

Each of them experiments with form. For example, in Albert Angelo, a
hole is cut into pages 147 and 149 so that the reader can look ahead to an
event that will take place on page 151—we can perhaps think of this as
adding a loop to the “graph” of the story. In House Mother Normal, a story
is told from nine different viewpoints over nine chapters, each, except the
last, having twenty-one pages. But there is additional structure. Each event
in the narrative occurs at exactly the same place on the same page of each
chapter. The story then becomes, instead of a single line, a series of parallel
curves overlaid—it is a plane rather than a line. Poignantly, the narrators at
each stage have increasingly advanced forms of dementia, and as their
thoughts become more fragmentary and disordered, this externally imposed
structure becomes more or less the last remnant of order staving off the
chaos of senility.

Johnson was not the first to experiment with this kind of structure.
House Mother Normal echoes a 1947 short novel by Philip Toynbee, Tea
with Mrs. Goodman, which features events described by seven characters
entering and leaving the same room at various times, with, for example,
Time Period 4 being described by Narrator C on page C4. But there is little
humanity in Tea with Mrs. Goodman—it’s another example of the fact that
structure for the sake of structure, in literature just as in mathematics, risks
being arid and pointless. As Jonathan Coe writes, “Everything that is sterile
and academic in Toynbee’s novel he [Johnson] humanizes: formal
experiment becomes not a substitute for emotion and sympathetic
involvement but the very means by which these things are brought about.”

In 1969, B. S. Johnson published The Unfortunates. It is “a book in a
box,” consisting of twenty-seven chapters, or sections. The first and last
chapter are specified, but there are also twenty-five intervening sections that
can be read in any order. They are not numbered, and because the sections
are not bound into a book, there is no default order to follow. Your path is



totally random. Each reading order will give you a different experience
because of the knowledge that you have, or don’t have, when you read a
given part of the plot. The Unfortunates was not the first book to exploit
random choice. A few years earlier, the French writer Marc Saporta had
published Composition No. 1, an unbound novel whose pages could be read
in any order at all. But this makes it extraordinarily difficult to tell any kind
of story, and moreover, it detracts from the randomness because, as Johnson
wrote, it imposes a different kind of structure on the material, “another
arbitrary unit—the page and what type can be fitted on it.”

What turns The Unfortunates from an arch intellectual exercise into a
successful and meaningful work of fiction is that the form is chosen for a
reason, and the use of the form enhances the meaning of the work. The
novel concerns a sports journalist traveling to report on a football (or, as our
American friends have it, soccer) match. This arises from a real-life
incident in Johnson’s life, when as one of the sports reporters for The
Observer newspaper, he was by chance assigned a match in Nottingham to
report on. When he arrived at the train station, he realized with a jolt that
this was the same town where he had first met a dear friend of his, Tony
Tillinghast, who had recently died of cancer at just twenty-nine years old.
Johnson described how on that day “the memories of Tony and the routine
football reporting, the past and the present, interwove in a completely
random manner, without chronology.” When submitting the finished
manuscript, Johnson wrote to his editor that “to me, at least, it really does
reflect the random way in which past and present interact in the mind: it is
an enactment of randomness which the bound book simply cannot achieve.”

Each of us reading The Unfortunates constructs, by our choices, a
different book. How many potential books, then, are in the Unfortunates
box? As you might imagine, it’s quite a lot! Let’s do a toy example just to
get a feel for things. Consider the obscure art house movie The Incredibles.
If you are not familiar with it, this was a 2004 Pixar movie about a family
of superheroes: Mr. Incredible, his wife, Elastigirl, and their kids, who also
have various superpowers. Given how much money it and its 2015 sequel
made, it was surely only a matter of time before we got origin story movies
for Mr. Incredible and Elastigirl. In fact, having looked into it, I discovered



that there was an official Disney book in 2018 called A Real Stretch: An
Elastigirl Prequel Story. Let us postulate a future in which you can plan a
movie marathon consisting of The Incredibles along with Mr. Incredible:
The Prequel and Elastigirl: The Prequel. The order in which you watch
them will affect your experience of each film. How many Incredibles movie
trilogy experiences can you have? Movie 1 can be any of the three. For
Movie 2, you’ve already used up one option, so you now have only two
movies to choose from. For Movie 3, you’ve used up two of the three
options, so there’s only one choice left. We can see the possibilities in a
diagram:

At each stage, the number of choices goes down by one. The total
number of possible trilogies is 3 X 2 X 1 = 6.

Okay, so now we’ve had a warm-up. It’s time to go back from The
Incredibles to The Unfortunates (poor things). In this case, the first and last
chapters are fixed for us, and we read the middle 25 chapters in any order
we like. This means there are 25 choices for your second chapter, 24 for
your third (you’ve already used up one choice), 23 for your fourth, and so
on, until there is just one possible 26th chapter left. The total number of
ways to read the book is therefore



Mathematicians have a shorthand for this calculation—we write it as
25! to save ink (the exclamation point is read as “factorial”). In general, the
factorial of a number N is the product of everything up to that number. So 

 as we saw. The number N! is the number of ways of ordering
N things, and as N grows, N! gets to be very large very fast. If you do all
those multiplications to find 25! you find that 

That’s 15.5 septillion, if it helps (and I know it doesn’t). If all eight
billion people in the world dropped everything and each started reading a
different version of The Unfortunates every day, it would take more than
five trillion years for the full collection to be read. Going by my book club,
some of whose members don’t even manage our one book a month (ladies,
you know who you are), I’m afraid to say we may not have time to get
through it.

In case any defenders of Composition No. 1 want to protest that it
should win the “Best Value Book of All Time” award, as it has more
potential versions, well, that’s true. It consists of 150 pages, which can be
read in any order. This means there are (to use our swanky factorial
notation) 150! potential readings of the book, which is inconceivably many.
To the nearest round number, it’s 6 followed by 262 zeros. But this division
of the book into so many short fragments really damages the quality of the
narrative and, in my view at least, makes for a vastly inferior read. I have
taken account of that in my careful consideration of the award, and I stand
by my view that the prize should go to B. S. Johnson.

In the lacuna between reading book chapters in a random order and reading
them from first to last lies Julio Cortázar’s experimental novel Hopscotch.
Cortázar was one of the most innovative writers of the last century, known
for short stories such as “Blow-Up” (which inspired the 1966 Michelangelo
Antonioni movie of the same name) and the circular story “Continuity of



Parks” that I mentioned earlier. Hopscotch (Rayuela in Spanish) revolves
around Horacio Oliveira, a discontented Argentinian intellectual, and the
ragtag group of bohemians he associates with, especially his lover, La
Maga, and Morelli, a novelist (and Cortázar’s alter ego), who himself is
writing a novel that will be “out of line, untied, incongruous, minutely
antinovelistic (although not antinovelish).” The shape of the book is like the
game of hopscotch, in which you alternately have your feet on the left, on
the right, and in the middle. The book has 155 chapters. Chapters 1 to 36
are “From the Other Side,” Chapters 37 to 56 are “From This Side,” and
Chapters 57 to 155 are “From Diverse Sides”—with a subtitle, “Expendable
Chapters.” We are encouraged to “play” the book—to hop from chapter to
chapter, to be an active participant in the unfolding story.

Cortázar includes a page of instructions with two routes through the
book. As he says, “In its own way, this book consists of many books, but
two books above all.” The first book is obtained by reading in a normal
fashion, starting with Chapter 1 and working through the successive
chapters in order. This book ends with Chapter 56, “at the close of which
there are three garish little stars which stand for the words The End.
Consequently, the reader may ignore what follows with a clean conscience.”
Of course, he doesn’t really want you to do that, or not only that. He wants
you to follow the second, more interesting path, which I’ll explain in a
moment. The book has a huge range of cultural references, but in particular,
it contains many subtle and not-so-subtle allusions to that other great
meandering narrative, Tristram Shandy, which I mentioned in Chapter 2.

One such echo is the annoying categorization of two forms of reader—
the pedant who just reads chapters in order and then stops, versus the
creative reader who joins in the fun—as the female reader and the male
reader. Looking at my copy of Tristram Shandy, I found that Chapter 20
begins by asking the female reader to go back and read again the previous
chapter, as she has missed an important point about Shandy’s mother. While
she goes back and looks again, Shandy tells us remaining readers,

I have imposed this penance upon the lady, neither out of
wantonness nor cruelty; but from the best of motives; and therefore



shall make her no apology for it when she returns back:—’Tis to
rebuke a vicious taste, which has crept into thousands besides
herself,—of reading straight forwards, more in quest of the
adventures, than of the deep erudition and knowledge which a book
of this cast, if read over as it should be, would infallibly impart with
them—The mind should be accustomed to make wise reflections, and
draw curious conclusions as it goes along.

Cortázar, similarly, is quoted as saying, “In Hopscotch I defined and
attacked the Lady Reader who is incapable of waging true amorous battle
against the book, a battle like that of Job with the angel.” I can perhaps
forgive such nomenclature from Laurence Sterne (1714–1768), but it’s hard
to stomach coming from Julio Cortázar (1914–1984).

The “hopscotch” route through Hopscotch is explained by Cortázar in
his introduction. It should begin with Chapter 73 “and then [follow] the
sequence indicated at the end of each chapter. In case of confusion or
forgetfulness, one need only consult the following list,” which list begins
73–1–2–116–3 and so on, interspersing one or more of the main 1–56
chapters, in order, with one or more of the expendable chapters. Whichever
way you choose to read the novel, you will miss something. The “straight”
reading gives you a story, but you don’t get the two hundred pages of
“Expendable Chapters”: the footnotes, the digressions, the newspaper
stories. The “hopscotch” route appears to cover everything, but brilliantly it
actually misses out a complete chapter—Chapter 55. (I won’t tell anyone if
you cheat and read it anyway.) Also, if you actually follow the instructions,
you will never finish reading the book. At the end of Chapter 77, you have
read every chapter except 55, 58, and 131. Chapter 77 sends you to Chapter
131. Chapter 131 sends you to Chapter 58. Chapter 58 sends you to Chapter
131. Cortázar has trapped you in an infinite loop! He has created a paradox
—a book that is both finite and infinite at the same time. If you follow his
instructions, that is. Of course, truly inventive readers will refuse to abide
even by Cortázar’s rules and will choose their own way to engage with the
book.



Assuming you have chosen to engage with this book by starting at the
beginning and reading the chapters in order, then you’ll have seen many
ways that mathematics can shine a light on the hidden structures of
literature. Next time you read a poem, you’ll know how its patterns and
rhythms have an underlying mathematical story to tell. You now understand
how the choices you make in reading a book, and the choices the author
makes in writing it, have mathematical implications for the shape and size
of the narrative. Along the way I’ve shown you the strange and wonderful
world of the Oulipo. You know how to quantify difficulty in lipograms, and
how to construct 100 trillion stanzas5 starting with just ten. Above all, I
hope I’ve shown that behind every work of literature there is structure, and
behind every structure there is delightful mathematics to explore.



Part II

Algebraic Allusions
The Narrative Uses of Mathematics



5
Fairy-Tale Figures

The Symbolism of Number in Fiction

Why do wishes come in threes? Why is it the seventh son of a seventh son
who has magical powers? A handful of numbers—3, 7, 12, and 40 among
them—seem particularly resonant, featuring in everything from religious
texts to fairy tales, proverbs to nursery rhymes. In a very unscientific
sample of numbers in phrase and fable, I inspected the contents of my own
brain and came up with, among other things, Macbeth’s three witches;
Snow White’s seven dwarfs; the three fates, three graces, and nine muses of
ancient Greece; the nine realms of Norse mythology; the Five Pillars of
Islam; and biblical references like the seven deadly sins, the twelve
apostles, the twelve tribes of Israel, the forty days and nights of Noah’s
flood, the seventh seal, and so on. Some numbers have acquired more than
their fair share of symbolic or cultural meaning. Is this just coincidence, or
is there anything special, mathematically, about these chosen few magic
numbers? I want to persuade you that, at least in part, there is.

In Part I, we looked at how mathematics can appear in the underlying
structures of literature. Continuing our metaphor of the house of literature,
Part II concerns how mathematics can furnish this house. The words
themselves, the metaphors, the figures of speech: mathematics is to be
found in all of them. I’ll begin in this chapter with the most easily spotted
manifestation of math: the use of numbers themselves. (I’ll get on to
Tolstoy’s calculus metaphors later.)



Why do some numbers have more cultural significance and feature
more in literature than others? This is a challenging question for
mathematicians—the problem is that all numbers are our friends (something
my sister, then aged five, said to our mother before going over to the dark
side and defecting to physics). If a mathematician looks at any number hard
enough, we can’t help but find interesting things about it. I was being
profiled for a British magazine called Oh Comely a few years ago, and since
I’m a mathematician, and it was issue number 22 of the magazine, they
asked me if I could tell them something interesting about the number 22. To
begin with, I wasn’t sure—it’s not prime, it’s not square. And actually at
some point I gave up and decided I’d just talk about a fun mathematical
puzzle I’d come across recently, which asks you to say what the next
number in the following sequence is: 1, 11, 21, 1211, 111221 … you can try
to guess the next number if you like before you read on. This sequence is
called a “say what you see” sequence. Each term is just the description of
the term before it. Beginning with “1,” that’s “one 1,” so the next term is
11, and then 11 is “two 1’s,” so we write 21. Then 21 is “one 2, one 1,” and
we write 1211, and we continue in the same way with 111221 and so on.
You can make a sequence like this with any number you like as the starting
point.1 Believe it or not, there is one, and only one, number, out of the
infinitude of all numbers, that is fixed by this process. That is, if you “say
what you see,” you get the same number back. Guess what that number is?
Yep, it’s 22. That excellent coincidence is my long-winded way of
reminding us that all numbers are interesting if you give them a chance.

Let’s get back to our discussion of magic numbers, known to
anthropologists as pattern numbers. Each of the smaller pattern numbers
has its own distinctive personality, and different cultures have different
favorites—though I’d argue that small odd numbers, in particular 3 and 7,
seem to have the widest-ranging cultural resonances. The higher pattern
numbers, on the other hand, are not chosen because of their individual
character but rather tend to fall into one of three (again with the three)
types. Probably your best bet if you want to be special is to be a round
number, like 10, 12, 40 (40 has additional layers of symbolism that we’ll
talk about later), 100, or 1,000. These numbers, particularly the higher



powers of 10, are not meant to be a literal count. (If I’ve told you that once,
I’ve told you a hundred times.) Rather, they signify a generic large quantity.
In Ireland you are greeted with a hundred thousand welcomes—céad míle
fáilte. The Chinese version of the English birthday greeting “Many happy
returns” is “May you live a hundred years.” In the animal kingdom, what in
English are known as “centipedes” in fact have just forty-two legs. By
contrast, the same creature in German has a thousand legs (Tausendfüßler),
whereas the Russian сороконожка (sorokonozhka) comes in closest to
reality with forty legs (сорок being the Russian for “forty”).

The second way for a big number to gain special significance is to be a
kind of extrapolation of a smaller magic number. In the Old Testament book
of Genesis, we are told that if Cain is avenged seven times, then Lamech
shall be avenged seventy-seven times. (In another extrapolation, Lamech
lives for 777 years.) There are also many occurrences of 70 and 7 × 70 in
the Bible.

The third way for a large number to get into the picture is for it to be
close to a round number. Numbers like 99 and 999 feel to us like upper
limits—they are the biggest you can get without overstepping the boundary
of the next big number. (This is why retailers use the psychological trick of
pricing things at 99¢ or $9.99.) In the Islamic faith, according to one of the
hadiths of Abu Hurayrah, Allah has ninety-nine names—that is, one
hundred minus one—and whoever knows them will go to Paradise. In some
traditions these ninety-nine names point to one most superior, greatest
hundredth name (in Sufism it is “I am,” for example). By contrast, numbers
that are just above a large round number serve to emphasize their great size.
Think of the thousand and one Arabian nights, or the long time conveyed
by the expression “a year and a day,” which is often how long it takes for
brave heroes to return from adventures in fairy tales. Or even the “mille
tre” (1,003) lovers that Leporello reports Don Giovanni to have had in the
famous aria from Mozart’s opera. And that’s in Spain alone!

The large round numbers and their near neighbors relate to our counting
system, which is based on the number 10. The reason for this is not
mathematical, but anatomical: 10 is how high we can count before running
out of fingers. Some cultures have counted in base 5 (one hand) or in base



20 (fingers and toes), and you see the occasional vestige of this in language
—three score and ten (another biblical 70), or the French word for 99
—“quatre-vingt-dix-neuf,” which literally means “four times twenty plus
ten plus nine.” A wily six-appendaged female Martian might tell stories not

for 1,001 nights ( ) but 217 
The two large numbers that seem not quite to fit in our list are 40 and

12. A dozen is a very useful quantity, and there’s a mathematical reason for
it, namely that it has lots of factors. The number 12 is divisible by 1, 2, 3, 4,
and 6, so it’s easy to share a dozen of something among a few people. In old
predecimal English coinage, a shilling was twelve pence. That means you
can easily make half a shilling (sixpence), a third of a shilling (fourpence,
or one groat), a quarter of a shilling (thruppence), and one sixth of a shilling
(tuppence). By the way, if you’ll allow me to get something off my chest
here: Wizard money in the Harry Potter books is the most irritatingly
mathematically implausible currency in fiction. It just could not have
emerged in the organic way that currency systems develop. There are three
denominations: twenty-nine bronze Knuts make up a silver Sickle, and
seventeen Sickles make a golden Galleon. Since 29 and 17 are both prime
numbers, they can’t be divided at all—you can’t even have half a Galleon.
How nonsensical!

Even though we Muggles nowadays use the decimal system for our
money, we still buy our eggs in dozens, and we still divide our year into
twelve months, with four three-month seasons, and our clock into twelve
hours. Our ancient length measure, the foot, is twelve inches long. How
long is an inch? That’s easy: the English king Edward II defined it in 1324
to be the length of “3 barleycorns, round and dry.” I don’t keep up to date
with trends in cobbling, so I’m unsure if it’s still true, as King Edward
decreed, that the difference between one shoe size and the next is the length
of one barleycorn. The cultural significance of twelve includes the twelve
apostles, the twelve days of Christmas, and fairy-tale dozens like the twelve
princes who are turned into ravens in the Brothers Grimm tale “The Twelve
Brothers.” You may also recall the twelve dancing princesses who are
carried in twelve boats across a magical lake each night to dance until dawn
with twelve princes.



Just as 12 is a “good” number, 13, being 12 plus an odd 1 out, becomes
a bad number by association. There were twelve apostles plus Jesus at the
last supper, and we all know how that went. In our house, though, we like
the number 13: not only were both my husband and my daughter born on
the thirteenth day of the month, but for at least three years in a row, owing
to the girls’ passion for Taylor Swift, I’ve had to make a birthday cake for
her on December 13. Meanwhile the 12 + 1 aspect of 13 gives us the
baker’s dozen. This phrase appears to have originated from a time when the
law required bakers to sell goods like bread rolls by the dozen, but subject
to a minimum weight requirement. In order not to risk coming in under the
required weight, the baker would often throw in an extra roll just to be sure.

The number 40 is an interesting one. It has significant cultural
resonance, which makes itself felt everywhere from “Ali Baba and the
Forty Thieves” to the forty days and nights Jesus spent in the desert, which
themselves mirror the forty days and nights Moses spent on Mount Sinai. If
we take a nap, we say we are having forty winks; everybody in England
knows that if it rains on Saint Swithin’s Day, we will have forty days of
rain; and of course we mustn’t forget those forty-legged Russian centipedes.
More topically, the origin of our word “quarantine” comes from the forty
(quaranta) days that medieval visitors to Venice had to be kept in isolation
to prevent the spread of plague. (Totally by coincidence, “40” also happens
to be the answer to the famous quiz question “What is the only number in
the English language whose letters are in alphabetical order?”)

Yes, 40 is “round” in the sense that it is a multiple of 10, but that’s not
enough of an explanation, since numbers like 30 and 50 are not accorded
the same significance. There are a couple of things in 40’s favor, though.
First, it is “round” not only with respect to base 10, but also with respect to
a base 20 counting system, being two score. One explanation in the context
of time periods is that it’s close to being 42, and 42 days is six weeks. But
perhaps the true reason in this case is not mathematical but biological. I’ve
personally been hyperaware of counting to 40 twice in my life because
pregnancy lasts forty weeks. This could be one reason to associate the
number 40 with a period of preparation ending in a great change.



Let’s talk about small pattern numbers. You may remember that I began this
chapter by sieving my brain for numbers, which resulted in a lot of
instances of 3 and 7, with a few 5s and 9s thrown in. Does this mean that all
small pattern numbers are odd? Well, no. If it means anything, it means that
the contents of my brain are odd, but my family and friends could have told
you that straightaway.

All of us are the products of our own heritage, but a fascinating picture
emerges from exploring folktales and legends from a broader range of
traditions. There are several cultures in which the numbers 4, 6, and 8 play
important roles. I want to explore these even numbers first before moving
on to odd numbers, culminating with 3 because I believe that of all the
small pattern numbers it has the most far-reaching influence on the structure
of narrative.

The number 4 occurs almost nowhere in European folktales, though it
has a few cameo roles in English-language fiction: think T. S. Eliot’s Four
Quartets, John Updike’s Rabbit Angstrom tetralogy, and the Seasonal
Quartet by the Scottish author Ali Smith, a series of four interlinked novels
named for the four seasons. In children’s literature you might remember the
four Pevensie children, Peter, Susan, Lucy, and Edmund, in C. S. Lewis’s
Narnia books, and the four Houses (Gryffindor, Ravenclaw, Hufflepuff, and
Slytherin) at Hogwarts. There are obvious parallels between these, which I
can’t be the first to notice—not least the categorization of all of humanity as
either brave, clever, kind, or evil. Aslan the lion, the god of Narnia,
explicitly associates the Pevensie children with points of the compass (Peter
is north, for example), which handily illustrates one reason why the number
four occurs as a sacred number in all four corners (see what I did there?) of
the globe. It is particularly prevalent in Native American creation stories—a
claim that, naturally, I shall illustrate with four examples.

In Sioux and Lakota creation stories, the Creating Power remade the
world by singing four songs. The first song caused rain to begin. With the
second song the rain intensified. The third song caused the rivers to
overflow. Then he sang a fourth song and stamped on the earth four times,
splitting it open so the water covered the entire world and all the creatures
from the old world died. Then he sent four animals to swim down through



the waters to bring up a lump of mud. The loon, the otter, and the beaver all
failed, but the turtle succeeded. This mud the Creating Power shaped into
new lands. Then he made men and women from four colors of earth: red,
white, black, and yellow.

A Chelan story, meanwhile, tells of four Wolf brothers, armed
respectively with a one-forked, two-forked, three-forked, and four-forked
spear, who killed the Great Beaver and divided its flesh into pieces from
which different tribes were created. The Cherokee describe the earth as a
huge floating island, held above the seas by four ropes representing the four
sacred directions. Finally, in the Navajo tradition, we live in the fourth
world, above three underworlds where the animal, insect, and spirit peoples
dwell. When people arrived in the fourth world—our world—they named
four sacred mountains and four sacred stones to lie at the borders of their
lands. Ever Changing Woman, the wife of the Sun, made four clans from
the flakes of her skin, and these are the descendants of the Diné, now
known as the Navajo. My favorite part of the story comes when the Navajo
gods are arranging the heavens, having placed the four sacred mountains in
their proper positions. They put the sun and the moon in the sky, then start
arranging the stars in a carefully designed pattern. But Coyote grows bored
with waiting and tugs on the blanket where the stars are lying, hurling them
randomly into the sky. That’s why, even though deities prefer order, the
stars are strewn chaotically around the heavens.

The four compass points give us a way to navigate the surface of the
world. If we add in up and down, we get the six directions required to
navigate in the air. But since humans have not been able to fly until rather
recently (it didn’t work out so well for Icarus), the number 6 has fewer
cultural resonances than the number 4. Judeo-Christian tradition has it that
the world was created in six days, the seventh day, the Sabbath, being when
God put his feet up and had a rest, hence our seven-day week. The Qur’an
also tells of creation in six stages, but the stages are usually taken to
represent significant time periods—eons rather than days. The number 6 has
the nice mathematical property that it is both the sum and the product of the
first three numbers, because  More than this, it was
viewed by early mystics as being “perfect” because 6 is divisible by 1, 2,



and 3, and so 6 is the sum of all of its factors. (I should really say “proper
factors” because strictly speaking, 6 is a factor of itself.) This means that 6
is beautifully and exactly constructed from its own building blocks. Saint
Augustine said that this was why God had chosen to create the world in six
days, and that the structure of the creation was split precisely into 
with “Let there be light” on the first day, then two days to create the earth
and the sea, followed by three days to create all the living things. The next
perfect number after 6 is 28, because  The Hellenistic
Jewish philosopher Philo of Alexandria wrote that not only was the world
created in six days because 6 is perfect, but this is also the reason why the
lunar month is 28 days long.

If I had a mean streak, I’d suggest that you get a pencil and paper and
try to find the next three perfect numbers. It would take a while. The next
one after 6 and 28 is 496, followed by 8,128, and then a gigantic gap until
33,550,336. I’m not aware of any appearances of these latter numbers in
theology. Perfect numbers have been known, studied, and hunted for at least
two thousand years. They are remarkably rare. At the time of writing, only
fifty-one perfect numbers are known—we don’t know whether there are
more;2 the last one to be found was discovered in 2018. So 6 is,
mathematically speaking, very special and rare.

But in terms of literature, not many fairy tales use 6 as an important
number, and I think that when they do the role of 6 is usually better
understood as “7 minus 1” than as 6 in its own right. There are several
German folktales featuring seven children: one sister and six brothers. I’ve
also seen stories with twelve children: one sister and eleven brothers. I think
it makes more sense to see these as 7s and 12s than 6s and 11s, though
folklorists are welcome to send me their dissertations on the use of 6 in
myth and legend.

In Chinese tradition, some numbers acquire connotations of good or bad
luck by an accident of language, because sounds have different meanings
based on intonation. The word for “eight” sounds like the word for
“prosper,” so is considered very auspicious, and efforts are made to include
the number 8 in important events. The opening ceremony of the Beijing
Olympics, for example, began at 8 minutes and 8 seconds past 8 p.m. on the



8th day of the 8th month of 2008. The word for “four,” by contrast, sounds
very similar to the word for “death,” and so 4 is naturally considered
unlucky (bad news for me, born on the fourth of April). But these are
linguistic rather than mathematical considerations.

In cultures that do not have the added linguistic imperative to view 8 as
lucky, it does still sometimes make an appearance. The Persian poet Amir
Khusrau’s twelfth-century work Hasht-Bihisht (eight paradises) is named
for the traditional concept of the afterlife with eight paradises (one more
than the seven hells, because God is merciful) surrounded by eight gates.
This work is not well known in the English-speaking world, but you are
likely to be familiar with a word derived from one of its tales: “The Three
Princes of Serendip.” (Serendip is the classical Persian name for Sri Lanka.)
When the English writer Horace Walpole wanted a word to describe a
fortunate chance event, he recalled this tale in which the princes were
“always making discoveries, by accidents and sagacity, of things which
they were not in quest of.” And that’s how, in 1754, the English language
acquired the word “serendipity.”

I have not yet mentioned the simplest numbers of all, the number 1 and
the number 2. These are so instrumental that we almost don’t see them. It
would be barmy to assert that “Beauty and the Beast” is full of the number
1 because there is one beauty, one beast, one castle, one enchantress, one
rose, and one talking teapot. The number 1 is somehow apart from all other
numbers. This is true in mathematics as well. Even though a prime number
is defined to be a number that can’t be divided up into smaller factors (so
that 3 is prime because we can write it only as  or , but 6 isn’t
prime because we can split it into  or ), we exclude 1 from the
list of primes. But it is the building block of all other numbers. We can
make every number, or every whole number at least, by just adding 1 to
itself enough times. It’s the start of everything. But at the same time, if you
have one of an item, you aren’t really “counting” anything.

It’s a little bit the same with 2. Even though it’s incredibly important
(the first and only even prime number, for a start), there’s not enough going
on with it for it to be a pattern number. A narrative with only binaries does
not excite us for long. That being said, almost all fairy tales have at least



one binary division: good versus evil, for example, Snow White versus the
Evil Queen (#NotAllStepmothers). In mathematics, the number 2, being the
first even number, is the first one that can be broken into two equal parts
like this. Binary arithmetic, in which every number is expressed in terms of
1s and 0s (or true/false, or good/evil, if you prefer), is the basis of all
computers. (It’s also the basis of the old joke that there are 10 kinds of
people in the world: those who understand binary and those who don’t.)3

The fact that even numbers can be broken in half and also split into pairs
could, I think, be a contributing factor to their having a slightly different
role from odd numbers when they occur as small pattern numbers. The
numbers 3, 5, and 7 are particularly “strong” in the sense that they can’t be
broken up. Not only are they odd, which means they can’t be broken into
two halves or split into pairs, but they are prime, so they can’t be split up at
all. The number 9, by contrast, isn’t prime, but the only way to break it up is
as three 3s, which makes it potentially extra-special, if 3 is a pattern number
in your culture already. Shakespeare uses the number 9 in Macbeth as a
magnifier of 3 in this way. The three witches, who make three prophecies
and hail Macbeth by three titles (thane of Glamis, thane of Cawdor, and
“king hereafter”), are a satanic version of the Holy Trinity. Here is what
they chant as they circle the fire:

The weird sisters, hand in hand,
Posters of the sea and land,
Thus do go, about, about:
Thrice to thine, and thrice to mine
And thrice again, to make up nine.

Nine can be even further magnified. In Act I, Scene 3, the first witch
plans to curse a sailor whose wife has insulted her: “Weary se’nnights nine
times nine / Shall he dwindle, peak and pine.” In other words, the hex will
last eighty-one weeks.

Nine can also be deployed in a similar way to 99 and 999—it is almost,
but not quite, a large round number. This usage is sometimes found in



Chinese folktales. For instance, in “The Bird with Nine Heads,” the bird
kidnaps a princess. When her rescuer comes to the cave where she is
imprisoned, he sees her tending to the bird’s wound, “for the hound of
heaven had bitten off his tenth head, and his wound was still bleeding.”
Other stories tell of a time when there were ten suns in the sky (10
signifying “a lot”), but nine of them were crushed between mountains and
destroyed by the huntsman Yang Oerlang or, alternatively, shot down with
arrows by the archer Hou I. That is why we have just one sun now.

Cats are very lucky creatures because they get nine lives. Or at least
they do in the English-speaking world. Mexican, Brazilian, Spanish, and
Iranian cats get seven lives, another auspicious number. The number 7, as
well as being odd and prime, has an additional astronomical symbolism:
before telescopes were invented, we could see seven astronomical bodies
that, unlike the stars, seemed to move around freely in the sky. These were
the sun, the moon, and the five closest planets: Mercury, Venus, Mars,
Saturn, and Jupiter. The number 7 thus acquired an important significance.
This, and the fact that four seven-day weeks fit nicely into one twenty-
eight-day cycle of the moon, is almost certainly why we have a seven-day
week, why many creation stories have the world being created in seven
days, and probably also why, on a less exalted plane, Snow White meets
seven dwarfs.

The number 5, unlike 7, has not an astronomical but an anatomical
symbolism: it’s literally a handful. The Five Pillars of Islam, the Five
Symbols of Sikhism—these can be counted on the fingers of your hand.
While in ancient Greek tradition there are four elements, in China there are
five: fire, earth, metal, water, and wood. For geometers, 5, among the
numbers that surround it, is an anomaly. An artist can make a regular tiling
pattern with equilateral triangles, squares, or regular hexagons (bees can
also do the last of these). But this cannot be done with regular pentagons.
One thing you can do with five points, though, is make a star shape. Even
better, you can draw it in a single continuous line, moving from point to
opposite point, without taking your pencil off the paper. This is impossible
for any smaller number, and if you try it for 6 you find the design splits into
two triangles. Alchemical folklore has associated the five-pointed star



known as the pentagram with such mischievous pursuits as summoning
demons, because it was believed to be a protective talisman, preventing the
demons from escaping its continuous boundary. In Goethe’s play Faust,
Mephistopheles cannot leave Faust’s study because there is a pentagram
drawn above the door. But hang on, asks Faust:

The pentagram prohibits thee?
Why, tell me now, thou Son of Hades,
If that prevents, how cam’st thou in to me?

Mephistopheles replies that the final line of the pentagram is incomplete
—the outer angle was left unfinished, with the lines not quite meeting.
Because of that small error, Mephistopheles has been able to materialize in
the room, but enough of the pentagram has been drawn to prevent him
going beyond it. The technique to construct a perfect pentagram with only a
straightedge and compass has been known to mathematicians for at least
two thousand years. If only Faust had been better at geometry, all that
unpleasantness could have been avoided.

To finish the chapter, let’s dive into all things three. The number 3 has an
astonishing hold on Western minds. If you can get hold of it, I highly
recommend the 1968 essay “The Number Three in American Culture” by
the anthropologist Alan Dundes.4 It lists a mind-boggling array of
threenesses. In the world of nursery rhymes, trebling is common, either of
words (“Row, row, row your boat”) or phrases (“Do you know the muffin
man, the muffin man, the muffin man”). This extends to common
expressions—nobody gets “two cheers,” after all. We learn our ABCs, not
our ABCDs. Races start with “Ready, set, go,” and three finishing positions
are rewarded with gold, silver, and bronze. Three-letter abbreviations are
everywhere: JFK, VIP, SOS, DNA, HBO, and let’s not forget USA. Clothes
come in small, medium, and large (or, if other sizes exist, they are given in
reference to these three—XS, XXS, XL, XXL, and so on). Three-word
phrases also abound: hook, line, and sinker; lock, stock, and barrel; wine,
women, and song. We treble things for emphasis: the truth, the whole truth,



and nothing but the truth. At the end of more than twenty pages, Dundes
challenges the reader: “If anyone is skeptical about there being a three-
pattern in American culture, let him give at least three good reasons why.”

In terms of literature, the first aspect of threeness that we notice in
narrative is sets of three characters. Three little pigs, three billy goats gruff,
three good fairies, three bears. Countless tales involve three brothers being
set a task. The first two try and fail; the third, the youngest, bravest,
cleverest, and most underrated, succeeds. Or there are three sisters (as in
“Beauty and the Beast”). The elder two are usually some charmingly
misogynistic mix of vain, ugly, greedy, and stupid. Sometimes they are
stepsisters, as in “Cinderella.” The youngest, modest and beautiful, gets to
marry the handsome prince. This pattern is also seen in jokes that take the
form of a story involving three characters. Sometimes it’s a minister, a
priest, and a rabbi. Mathematicians sometimes make jokes against
themselves that involve, for example, a physicist, an engineer, and a
mathematician confronted with some problem.

In both the fairy tales and the jokes, the structure is that the same basic
situation occurs twice with basically the same outcome, and then the third
character encounters the situation and something different happens. In the
joke, the two “normal” people react normally, then the fool does something
ridiculous. In the fairy tale, this is inverted. The first two characters fail, and
the third succeeds. The first two pigs, for example, build their houses of
straw and twigs, but the third pig builds his house of brick. The first two
brothers don’t help the ugly old beggarwoman, but the youngest brother
does. She inevitably turns out to be an enchantress in disguise, and she
showers him with riches. The narrative reason for this is obvious—we
require two repetitions to get to know the pattern so that the breaking of the
pattern in the third iteration can surprise or amuse us.

Of course, it’s not just in fairy tales that we encounter numbers. Dante’s
Divine Comedy has a huge amount of mathematical metaphor, with several
numbers being accorded special significance. But it’s the number 3 that is
most fundamental to both its construction and its symbolism. No doubt the
reason for this is the great spiritual importance, for Dante, of the Trinity
(God the Father, God the Son, God the Holy Ghost). There are three books.



Purgatorio and Paradiso have 33 cantos, while Inferno breaks the
symmetry with 33 + 1 (well, it is hell, I suppose). This brings the total to
100. Each canto is a poem written in a style invented by Dante called terza
rima: stanzas of three lines, with an interlocking rhyme scheme: aba, bcb,
cdc, ded, efe, and so on, for as long as you like. (Each canto is rounded off
by a single line rhyming with the middle line of the final three—here it
would be f.) This interlocking scheme, as well as linking consecutive
stanzas together in an elegant way, gives an additional threeness to the
proceedings because apart from possibly the first and last rhymes, every
other rhyme appears exactly three times. There are nine (three times three)
circles of hell, split into three parts corresponding to the three main kinds of
sin that get you admitted. Paradise also has nine circles, or nine heavens.
And in the very last canto, Canto 33 of Paradiso, when Dante is on the
verge of ascending to the vision of God, he sees “three circling spheres,
three-coloured, one in span”—three perfect rainbows, in other words.

What can explain the hold that the number 3 has on our psyche? I
propose that the mathematics of triangles and trichotomies enables the
triumph of the triple. Three, in geometry, is very special. First, it’s the
smallest number of points that can define a two-dimensional shape. If you
have only two points, then you get just a line. Three points (as long as they
don’t all lie on the same line) give you a triangle. But it’s better than that.
Imagine trying to make a rigid, stable structure out of sticks or rods. With
two rods, you can’t do anything. You can join two ends together, but the
other two ends just flop about uselessly. But if I start with three rods of any
lengths I like, I can fit them together in exactly one way to make a triangle.
If you also have three rods of the same length and do the same thing, our
two triangles will look the same. That’s the second special thing about the
number 3. It is not true for any higher number. With four rods, there are
infinitely many quadrilaterals (four-sided shapes) you can make. Even in
the superspecial case in which I want all four side-lengths to be the same,
there are infinitely many possibilities. You can make a square, sure, but then
you can squeeze it at the corners to make a series of ever-thinner diamonds.
The triangle is the only straight-line shape that can’t be deformed in this



way. That’s why in structures made with steel rods, such as geodesic domes,
the basic shape is the triangle. It is the strongest shape.

The third (of course) special geometric property of the number 3 is that
three is the largest number of points you can have in a plane that are all the
same distance from one another. The three points of an equilateral triangle
are mutually equidistant. It’s impossible to draw four or more points on a
piece of paper all of which are the same distance from each of the others.
(You can do it for four points if you go to the third dimension, with what’s
called a tetrahedron, but even then, this is a shape made by joining four
equilateral triangles together.) These geometric properties of the triangle
could be one reason why sets of three things give us a sense of strength and
completeness, and also often of equitability. All for one and one for all, as
the Three Musketeers say. With two, it’s just the up or down, left or right, or
north or south of a line. With three, suddenly we can encompass a whole
space.

The final mathematical aspect of 3 is the trichotomy. Imagine the whole
number line laid out, and stick a pin in it at a point x. Every other number
has a relation to x, and there are precisely three possibilities (a trichotomy).
It is less than x, or it equals x, or it is greater than x. This kind of trichotomy
is all over the place in mathematics. Every angle is either acute (less than 90
degrees), a right angle (equal to 90 degrees), or obtuse (greater than 90
degrees). Numbers are negative, positive, or zero. Time can be past,
present, or future. In statistics, a data point can be higher than the mean,
lower than the mean, or bang-on average.

A variant of this idea is the set of three we obtain from the two extremes
plus the middle. Smallest, biggest, and everything in between. Sunrise,
daytime, sunset. Birth, life, death. Trichotomies like this happen regularly,
in both the language and the structure of narrative. We have three layers for
adjectives: good, better, best; bad, worse, worst; brave, braver, bravest. The
youngest of three fairy-tale brothers is invariably the wisest; the youngest
sister is always the prettiest; the third billy goat gruff is the biggest and
defeats the troll. And what better example of trichotomy than the threefold
verdicts given by everyone’s favorite housebreaker, Goldilocks? Daddy
Bear’s porridge is too hot. Mummy Bear’s porridge is too cold. Baby Bear’s



porridge is just right. Goldilocks was clearly familiar with Aristotle’s
doctrine of the mean. He says that every ethical virtue is a golden mean
(just right) between two vices—one an excess, the other a deficiency.
Courage is a virtue, an excess of courage is the vice of recklessness, and a
deficiency of courage is the vice of cowardice. When it comes to money,
liberality is a virtue, an excess of liberality is profligacy, and a deficiency is
miserliness. And when it comes to beds, Daddy Bear’s bed is too hard,
Mummy Bear’s is too soft, and Baby Bear’s epitomizes the Aristotelian
mean—it’s just right.

Stories themselves have a beginning, middle, and end. The most
common multivolume set is the trilogy. These often are trilogies only in
hindsight; a common structure is a self-contained initial volume, followed
by a Book 2 that ends on a cliff-hanger, or at least with matters unresolved,
and then a concluding Book 3 wrapping up all the loose ends, so that the
trilogy is a larger-scale version of beginning, middle, end. Consider also the
three-act play, in which each scene itself must also have a beginning,
middle, and end. The book you are holding in your hands itself has three
parts.

The appearance of magic numbers in fiction may be the most obvious
manifestation of mathematics in literature, but that’s just the beginning.
Later, I’ll show you the ways in which much more sophisticated
mathematical ideas, from geometry to algebra and even calculus, have
made their appearance in great works of literature, from Moby-Dick to War
and Peace. Numbers are such a crucial part of human thought that they are
even hidden inside words themselves, sometimes in the most unexpected
places. Think of the fateful bowl of punch that dashes Becky Sharp’s hopes
for a proposal from Jos Sedley in Vanity Fair. No numbers there, right?
Except that the word “punch” derives from the Sanskrit word for “five,”
panca, because the drink originated with an Indian concoction that had five
ingredients. Numbers really are part of the fabric of language, in (to use the
ancient Greek word for “ten thousand”) myriad ways.



6
Ahab’s Arithmetic

Mathematical Metaphors in Fiction

I mentioned in the introduction that the seeds for this book were planted
when I heard a mathematician mention that Moby-Dick contains a reference
to an interesting curve called a cycloid. Curiously enough, when I emailed
my friend Tony (the mathematician in question) a couple of years back to
thank him for his recommendation, he replied saying I’d been the one to
recommend it to him—so I guess we’ll never know the truth. At any rate,
one morning I sat down on the train, opened the book, started reading, and
within a few minutes encountered a brilliant description with a definite
mathematical tinge to it. Ishmael spends the night at the Spouter-Inn, whose
landlord is somewhat stingy with his drinks: “Abominable are the tumblers
into which he pours his poison. Though true cylinders without—within, the
villainous green goggling glasses deceitfully tapered downwards to a
cheating bottom. Parallel meridians rudely pecked into the glass, surround
these footpads’ goblets.” It’s a great image, and there’s an undeniably
geometrical air to the true cylinder marked with parallel meridians. It
piqued my interest.

As I read on, I kept encountering mathematical allusions, so many in
fact that it became clear to me that Melville obviously relished
mathematical ideas—they were bound to escape from his mind onto the
page, and when he reached for a metaphor, more often than not something
mathematical would present itself. In praising the loyalty of his cabin boy,



Captain Ahab says, “True art thou, lad, as the circumference to its centre.”
And indeed this is exactly right—the points on the circumference of a circle
steadfastly remain exactly the same distance from the center, all the way
around.

The world of mathematics is a glorious source of metaphors. Some of
these have become clichés in everyday speech, like “squaring the circle”—a
reference to the ancient Greek problem of constructing a square with the
same area as a given circle. Few people using this phrase know that the
mathematical proof of its impossibility took more than two millennia to
find. But sometimes you’ll come across authors who, like Melville, clearly
have an affinity for mathematics and cannot help but use mathematical
metaphors in their writing. In this chapter, I’ll give you a guided tour of
some of the loveliest mathematical allusions in the work of classic writers
like Melville, George Eliot, Leo Tolstoy, and James Joyce. Understanding
these references adds another layer to our enjoyment of great literature, and
it’ll give you a totally new perspective on some much-loved books, as well
as on their authors.

Before I show you any more of Melville’s mathematical metaphors, I want
to tell you a little about Melville himself and how he came to write what D.
H. Lawrence described as “a surpassingly beautiful book … a great book, a
very great book, the greatest book of the sea ever written. It moves awe in
the soul.” Melville tried various professions (teacher, engineer, deckhand on
a whaling ship) before writing his first novel, Typee, a fictionalized account
of his time with the Polynesian tribe of that name. This, and the follow-up,
Omoo (the Polynesian word for “wanderer”), were well received, and he
wrote three more seafaring stories over the next few years. I am focusing on
Moby-Dick, his sixth book, because it’s my favorite of Melville’s books and
it’s the best known.1 But Melville’s love of mathematics seeps into
everything he does. In his earlier novel Mardi, he has a character cry out,
“Oh Man, Man, Man! Thou art harder to solve, than the Integral Calculus.”
His publisher was clearly concerned that discussing philosophy and
mathematics might not be as profitable as writing about scantily clad young



Polynesian ladies, and Melville reassured him that the next book would
contain “no metaphysics, no conic-sections, nothing but cakes & ale.”
Fortunately for literature, he comprehensively failed to keep that promise.

Moby-Dick was written in 1850 and published in 1851. Reviews
were … mixed. Harper’s New Monthly Magazine loved it: “The genius of
the author for moral analysis is scarcely surpassed by his wizard power of
description.” But a reviewer for the London Athenaeum felt that “Mr.
Melville has to thank himself only if his horrors and his heroics are flung
aside by the general reader, as so much trash belonging to the worst school
of Bedlam literature.” It’s amazing to think that the author of Moby-Dick
more or less gave up writing within a few years of its publication; he spent
the last two decades of his life working for the US customs service and died
in obscurity in 1891. His lifetime earnings from perhaps the most influential
American novel of the nineteenth century amounted to $556.37. We don’t
know much about Melville the man—as an indication of how carefully he
guarded his privacy, he used to hang a towel over the doorknob of his study
so that nobody could look through the keyhole. Few of his letters survive,
and all that his close friend Nathaniel Hawthorne could find to say was that,
although he was a gentleman, he was “a little heterodox in the matter of
clean linen.” But listen: if you’ve not done so already, please overlook the
dirty laundry and read Moby-Dick. It’s like no other book.

Our narrator, Ishmael, goes to work as a deckhand on a whaling ship,
the Pequod, with its captain, Ahab; first mate, Starbuck (of coffee shop
fame); and second mate, Stubb. Gradually it becomes clear that Ahab is
obsessed with hunting and killing the great white whale Moby Dick—a
previous encounter with whom led to Ahab’s losing his leg. (By the way,
the book is titled Moby-Dick, but the whale is named Moby Dick. If you are
angry about the inconsistency, please take it up with Ishmael.) Ultimately,
Ahab’s hubristic and monomaniacal pursuit of the white whale drives him
to insanity, endangering the whole crew, and let’s just say it doesn’t end
well for Ahab.

This is no ordinary adventure story. There are “excerpts” discussing
mentions of whales and whaling from a dizzying array of sources, including
Shakespeare, the Bible, and books on natural history and navigation.



There’s a whole chapter on the meaning of Moby Dick’s whiteness, and
many philosophical musings from Ishmael and others. Ishmael explains that
the book must necessarily have a huge compass because its subject,
Leviathan, is so vast. “Give me a condor’s quill!” he says. “Give me
Vesuvius’s crater for an inkstand!”

If I asked you to predict where mathematics might appear in a
nineteenth-century sea story, you might think of quadrants and sextants and
quite rightly suggest that it could be involved in descriptions of navigation.
We do indeed hear about Ahab’s doing mathematical calculations “on the
upper part of his ivory leg,” and Ishmael talks of “studying the mathematics
aloft there” in the crow’s nest where he perches, scanning the sea for signs
of whales. But Melville goes a lot deeper. The almost magical powers of
mathematics, for those initiates who can decipher its “cabalistic
contrivances,” are spoken of by the crew with a mixture of awe and
suspicion: “I have heard devils can be raised with Daboll’s arithmetic,” says
the second mate, Stubb. Generations of American schoolchildren would
have been familiar with Daboll’s Arithmetic, the most widely used textbook
in US schools for the first half of the nineteenth century. (The full title is
Daboll’s Schoolmaster’s Assistant: Being a Plain, Practical System of
Arithmetic, Adapted to the United States.) The author, Nathan Daboll, was a
Connecticut mathematics teacher, and we know that Melville used Daboll’s
Arithmetic as a pupil and probably as a teacher. You would have Daboll for
arithmetic and Euclid for geometry.

Looking at the book with modern eyes, it’s not at all surprising that
Stubb compared it to some sort of alchemy. It provides techniques, which
are to be learned by rote, for all manner of calculations, from the basics of
arithmetic to currency conversion and rules for calculating interest,
annuities, profit and loss, and ship tonnage. Methods are even given for the
extraction of square roots and cube roots by hand. The rules given are often
presented almost as magic formulae. For instance, to convert from South
Carolina dollars to Maryland dollars, “multiply the given sum by 45, and
divide the product by 28.” Or there’s the mysterious “Rule of three direct,”
which teaches, “By having three numbers given to find a fourth, which shall
have the same proportion to the third, as the second has to the first.” Here is



the rule for finding the circumference of a circle, given its diameter: “As 7
is to 22, so is the given diameter to the circumference. Or, more exactly, as
115 is to 355; the diameter is found inversely.” The circumference of a
circle is its diameter d multiplied by  but amazingly there is no mention of 

 here, or the fact that these rules work because  and  are
approximations to  They are just magic numbers to be deployed.

For Stubb, mathematics is mysterious, even malign. But for Ishmael,
mathematics, and symmetry in particular, symbolize virtue. The sperm
whale has a “pervading dignity” because of the “mathematical symmetry”
of its head. In describing this head, Ishmael even claims to define a new
mathematical concept. He explains, “Regarding the Sperm Whale’s head as
a solid oblong, you may, on an inclined plane, sideways divide it into two
quoins, whereof the lower is the bony structure, forming the cranium and
jaws, and the upper an unctuous mass wholly free from bones.” In a
footnote, he explains, “Quoin is not a Euclidean term. It belongs to the pure
nautical mathematics. I know not that it has been defined before. A quoin is
a solid which differs from a wedge in having its sharp end formed by the
steep inclination of one side, instead of the mutual tapering of both sides.”
This could have come straight out of a geometry book!

You could argue that it’s fair enough to get a bit geometrical when
describing a shape (though it does indicate at least comfort and facility with
these terms), but Euclid gets name-checked in several other places too.
When explaining that the whale’s eyes, being on opposite sides of its head,
present its brain with two completely distinct views that must be processed
simultaneously, Ishmael says that if the whale can really do this, then “it is
as marvelous a thing in him, as if a man were able simultaneously to go
through the demonstrations of two distinct problems in Euclid.” The best
mathematical moments in Moby-Dick are in places like this, where Melville
throws in a mathematical allusion just for the fun of it.

It takes a geometer’s eye, for instance, to connect a whale’s fin to the
gnomon of a sundial, as in Ishmael’s observation here:



When the sea is moderately calm, and slightly marked with
spherical ripples, and this gnomon-like fin stands up and casts
shadows upon the wrinkled surface, it may well be supposed that the
watery circle surrounding it somewhat resembles a dial, with its
style and wavy hour-lines graved on it. On that Ahaz-dial the
shadow often goes back.

Pleasingly enough, that mention of Ahaz recalls what is now thought to
be the earliest written reference to sundials, in the Old Testament book of
Isaiah. God causes the shadow on a sundial to move miraculously backward
ten degrees, as a sign that he will cure the sickness of Hezekiah, son of
King Ahaz of Judah.

But perhaps the most fascinating bit of geometry in Moby-Dick involves
cycloids, those mathematical curves I mentioned at the start of this chapter.
Ishmael thinks about them while he is cleaning the great try-pots on the
deck of the Pequod. Try-pots are huge metal vats—think massive cauldrons
—where the whale blubber is rendered to produce oil:

Sometimes they are polished with soapstone and sand, till they shine
within like silver punchbowls.… While employed in polishing them
—one man in each pot, side by side—many confidential
communications are carried on, over the iron lips. It is a place also
for profound mathematical meditation. It was in the left hand try-pot
of the Pequod, with the soapstone diligently circling round me, that I
was first indirectly struck by the remarkable fact, that in geometry
all bodies gliding along the cycloid, my soapstone for example, will
descend from any point in precisely the same time.



A cycloid, if you recall, is the curve traced out by a point on the edge of
a rolling circle or wheel:

It’s not something that has ever been routinely taught in schools, but it’s
one of the most famous curves in mathematics. I said in the introduction
that it was nicknamed “the Helen of geometry” because of its beautiful
properties, but that’s only part of the story. The epithet also alludes to the
many squabbles it caused among competing mathematicians. The list of
people who studied it reads like a roll call of seventeenth-century
mathematicians, including René Descartes, Isaac Newton, and Blaise
Pascal. Pascal, a brilliant mathematician, more or less invented the
mathematical study of probability.2 At one point he stopped studying
mathematics in favor of theology. But one night he had a terrible toothache.
To distract himself, he started thinking about cycloids, as one does, and to
his surprise the pain went away. Naturally, he took this as a sign that God
was okay with his interest in mathematics, and he kept thinking about
cycloids for eight more days, during which time he discovered many of
their properties—things like the area under their arches.

Mathematicians in the past frequently argued about who had proved
things first, and priority disputes could get heated. (Such things are easier to
resolve now, with an electronic trail of breadcrumbs to follow.) A
mathematician named Gilles de Roberval, for example, proved lots of
things about the cycloid, but he refused to publish any of them. Then,



whenever someone announced a new result, Roberval would angrily retort
that he had established that ages ago. Roberval knew, for example, that the
area under any arch of the cycloid is exactly three times the area of the
circle that made it.

Part of the reason for this silly behavior was that Roberval’s job was a
professorship that was reappointed every three years via a competition
whose problems were set by the incumbent professor. So there was a strong
incentive to have a set of problems that only you knew how to solve.
Finding the area under a given cycloid would have been, at least for a few
years, just such a problem.

The best thing about the cycloid for me is that it makes an unexpected
appearance in a context that seems to have nothing to do with the way it’s
constructed. In trying to improve clock design, the Dutch mathematician
Christiaan Huygens was interested in finding out whether there is a curve
with the property that something sliding down the curve would get to the
bottom of the curve in exactly the same time no matter where it started
from. This is called the tautochrone problem, and he solved it in 1659—you
can read all about it in his 1673 blockbuster Horologium Oscillatorium.
There’s another problem, called the brachistochrone problem: given two
points, find the path between them that would get something from the
higher point to the lower point, falling under gravity, in the quickest time.
Amazingly, the solution to both these problems is our friend the cycloid!

It’s the tautochrone problem that Ishmael is talking about. If you have a
try-pot in the shape of one of those cycloid arches (turned upside down, of
course), then wherever you release your soapstone from, it will take exactly
the same amount of time to reach the bottom. Specifically, the time of

descent is always  seconds (that g is acceleration due to gravity, and r is
the radius of the circle that made the cycloid). What’s brilliant is that, on
Earth, g is about 9.8, and the square root of that is about 3.13. Since that’s
on the bottom of the fraction, and  which is about 3.14, is on the top, these
almost exactly cancel out. This means that, to quite a good approximation,
the time of descent in the cycloid is just the square root of the radius of the
circle it’s made from. Wow!



How did Melville/Ishmael know this? We can’t be sure—it wouldn’t
have been in the standard school curriculum of the time. But a researcher
named Meredith Farmer discovered that there was a rather exceptional
mathematics teacher at the school young Herman attended in 1830 and
1831, the Albany Academy. Records state that every afternoon there was
spent on “arithmetic”: each student “is employed one hour in his arithmetic
lesson and engaged during the remainder of the Afternoon in entering sums
into a large ciphering book.” This doesn’t sound too promising. But Farmer
realized that Herman’s teacher for these classes was none other than Joseph
Henry, professor of mathematics and natural philosophy (as natural science
was then known), a brilliant teacher and at the same time a well-known
scientist who would go on to be the first secretary of the Smithsonian. He
discovered inductance, which is why the unit of inductance is called the
henry. Herman excelled in these lessons and won a prize for being “the first
best in his class in ciphering books” (his prize was a book of poetry).
Joseph Henry in fact wrote to the academy board a few months before
Herman won his award, asking to add a more advanced textbook for the
“higher students.” He was a passionate, inspiring teacher—some of his
more advanced lessons were even given as public lectures. I can’t prove it,
but there’s every chance Henry taught Melville and the other “higher
students” about cycloids and nurtured Melville’s enthusiasm for
mathematics.

There’s a broader mathematical theme underlying Moby-Dick, and that’s
the symbolism of mathematics as a way of understanding, and to some
extent trying to control, our environment. Mathematics helps us to navigate
the unknowable universe. Ishmael certainly values data: his own body is
used to record them. He tells us that “the skeleton dimensions [of the
whale] I shall now proceed to set down are copied verbatim from my right
arm, where I had them tattooed; as in my wild wanderings at that period
there was no other secure way of preserving such valuable statistics.” But it
is a mistake to assume that analysis is the same as control, just as it is a
mistake to reject mathematics completely. Ahab veers between the two
extremes. He studies charts and records of whale sightings obsessively,
convinced that he can predict where Moby Dick will turn up. But later, as



his madness grows, he rejects the mathematical calculations of navigation,
trampling his quadrant into pieces and ultimately sailing on instinct alone.
Mathematics is abandoned, leaving us adrift in the ocean.

Ahab’s obsession with Moby Dick leads him to the irrational belief that by
knowing the behavioral patterns of whales in general, he can somehow
derive certain knowledge about a specific whale. This seems a dubious
enough proposition with regard to whales, but the patterns of human society
are even more complicated. To what extent can information about the
population as a whole tell us anything about a single person? The interplay
between the actions of individuals and the broader statistical sweep of
events is a major theme for another nineteenth-century novelist, George
Eliot. Her 1876 novel, Daniel Deronda, begins in a casino, with Gwendolen
Harleth playing roulette, the outcome of which is governed by the laws of
probability. Life outcomes, however, cannot be predicted. If we trust that
the next throw of the dice will go in our favor, we are likely to be
disappointed. In Silas Marner (1861), another Eliot novel full of chance and
randomness, the community trusts that drawing lots to determine whether
Silas Marner is guilty of theft will result in a true verdict. But that’s not
what happens.

Chance events, at the gambling table or in life, have certain probabilities
of occurring, but even so, there is no way of knowing to whom they will
happen and when. Statistics was in its infancy as a mathematical science in
the nineteenth century. The word “statistics” comes from the German word
Statistik, meaning something like “science of the state.” In English, it used
to be called “political arithmetic.” Originally, it was not much more than
counting: What is our population? What is our production of wheat each
year? Statistical analysis came later, importing the techniques from
probability to explore chance, and the types of data that were considered
were broadened significantly to include things like crime statistics or causes
of death. This led to a lot of soul-searching about the implications for free
will and fate. Charles Dickens was troubled by the law of averages. If the
number of people killed so far this year is below the annual average, he



wrote, “is it not dreadful to think that before the last day of the year some
forty or fifty persons must be killed—and killed they will be.” Even
something as deeply personal as the decision to end your own life, says the
French sociologist Émile Durkheim in his 1897 book Suicide: A Study in
Sociology, is nevertheless part of a “collective tendency.”

There’s a scene in Daniel Deronda in which Daniel and his friend
Mordecai join a discussion in a pub:

But to-night our friend Pash, there, brought up the law of progress,
and we got on statistics; then Lilly, there, saying we knew well
enough before counting that in the same state of society the same
sort of things would happen, and it was no more wonder that
quantities should remain the same than that qualities should remain
the same, for in relation to society numbers are qualities—the
number of drunkards is a quality in society—the numbers are an
index to the qualities, and give us no instruction, only setting us to
consider the causes of difference between social states.

Numbers are “qualities” (that is, properties)—numbers have the power
to tell us about society. But they still cannot tell us the fate of an individual,
just as knowledge of the probabilities of roulette cannot tell us whether the
next number will be red or black.

Daniel Deronda, with its themes of gambling and fate, explores this
idea on both the micro and macro levels. Gwendolen, who loses her money
at the gambling table that night, comes home to the news that her family’s
fortune has been lost in the vicissitudes of the economy. Her decision to
marry the dreadful Grandcourt is described as a roulette-like gamble too.
The variations in Gwendolen’s fortunes through the novel are spins of the
wheel on a larger scale. She wins at roulette, then loses. Her family is rich,
then ruined. She enters into an unhappy marriage, which ends with
Grandcourt’s accidental death. But even though ideas of probability might
suggest that the bad (losing, being ruined, an unhappy marriage) would be
balanced out in the long term by the good (winning, being wealthy, a happy
marriage), this novel gives the lie to the idea that balance must be restored
within any particular time period. At the end of the novel, Gwendolen does



not get to marry Daniel, the man she loves. We do not find out the rest of
her story. All we have is her resolution that “I shall live. I shall be better.”

George Eliot (her real name was Mary Ann Evans) was born in 1819,
the same year as Herman Melville. She had an abiding interest in
mathematics, and though unlike Melville she didn’t have the opportunity
for a formal schooling in mathematics, it’s clear from both her novels and
her surviving letters and notebooks that her knowledge of the subject was
considerable.3 She constantly reaches for mathematics to illuminate her
thoughts. In fact, a student at the University of Leicester, Derek Ball, wrote
his entire Ph.D. dissertation on the mathematics in George Eliot’s novels.4

Once you are on the lookout, you’ll see it everywhere. In Middlemarch
(1871–72), the inconsistency of Mr. Brooke’s largesse is satirized
mathematically: “We all know the wag’s definition of a philanthropist: a
man whose charity increases directly as the square of the distance.” When
Mr. Brooke is trying to work out why on earth his lovely young niece
Dorothea would want to marry boring old Edward Casaubon, he concludes
that “woman was a problem which … could be hardly less complicated than
the revolutions of an irregular solid.” Daniel Deronda himself studies
mathematics at Cambridge—“the study of the higher mathematics, having
the growing fascination inherent in all thinking which demands intensity,
was making him a more exclusive worker than he had been before.”

The mathematical knowledge that Eliot displays goes far beyond the
superficial. Take, for instance, the introduction of Mr. Casson, landlord of
the Donnithorne Arms, in her first novel, Adam Bede (1859):

Mr. Casson’s person was by no means of that common type which
can be allowed to pass without description. On a front view it
appeared to consist principally of two spheres, bearing the same
relation to each other as the earth and the moon: that is to say, the
lower sphere might be said, at a rough guess, to be thirteen times
larger than the upper.… But here the resemblance ceased, for Mr.
Casson’s head was not at all a melancholy-looking satellite, nor was
it a “spotty globe,” as Milton has irreverently called the moon.



It’s a pleasing metaphor, and we can instantly form a mental picture of
Mr. Casson from it. But as Derek Ball points out, the specific use of the
number 13 betrays a significant mathematical literacy. First, we have to ask
to what it refers. The diameter of the earth is 7,918 miles, which is about
3.7 times the 2,159-mile diameter of the moon, so it’s not that. The volume
of the earth is about 49 times that of the moon, so it’s not that either. But
when we look “on a front view,” as Eliot says, at two spheres, what we see
is in fact two circles. So what our brains perceive intuitively in this situation
is likely to be the respective sizes, or areas, of these circles. Lo and behold,
the cross-sectional area of the earth is 13.45 times that of the moon, hence
the number 13. What’s even more impressive is that Eliot must have used a
good approximation for the diameters. If you try this calculation with a
starting point of 8,000 miles for the diameter of the earth and 2,000 for the
moon, you’d get a ratio of 16 times, not 13. Even if you use my “about 3.7
times” approximation, you arrive at a number closer to 14 than 13. What
does this tell us? That Eliot chose a mathematical image, that she made a
sensible choice about which ratio to choose, and that she was able to
calculate that ratio to a high level of accuracy.

George Eliot’s interest in mathematics was lifelong. She had a large
acquaintance among the scientists and mathematicians of the day, and she
kept extensive notebooks full of interesting observations on a wide variety
of topics. Many, though, are mathematical. On probability, for example, she
recounted a curious phenomenon known today as Buffon’s needle. Imagine
you have wooden floorboards. If you drop a needle onto the floor, and if the
needle’s length equals the width of the boards, then the probability that the

needle will lie across two floorboards is exactly  You can actually use this
expression to find an approximation for  by performing the experiment
repeatedly. If you drop the needle 25 times and it falls across two

floorboards 16 times, then you have obtained the approximation  for 
which gives that  Not far off.

Eliot studied mathematics both informally and formally, including
attending a course of twice-weekly geometry lectures in 1851. Even in the



final year of her life, she was still actively learning mathematics, telling a
friend that she was studying conic sections every morning. (Conic sections
are the different curves that can be made by slicing through a cone: the
parabola, ellipse, and hyperbola. I’ve always found it kind of cute that each
of these curves also gives us an adjective to describe writing, which can be
parabolic, elliptical, or hyperbolic.) Her novels reflect her interest in
contemporary mathematical and scientific discoveries. In fact, Henry James
actually criticized Middlemarch for being “too often an echo of Messrs.
Darwin and Huxley.” But it was to mathematics that Eliot would turn for
consolation, especially at times of stress. A letter of hers from 1849
recounts her recipe for recovering from a difficult period in her personal
life: “I take walks, play on the piano, read Voltaire, talk to my friends, and
just take a dose of mathematics every day.”

The habit of taking solace in the reassuring certainty, the eternal truth,
of mathematics is something that is shared by Adam Bede in Eliot’s novel
of the same name. When Adam’s father dies and Adam is telling himself
that life must go on, it’s to mathematics that he reaches for a comparison.
As he says, “The square o’ four is sixteen, and you must lengthen your
lever in proportion to your weight, is as true when a man’s miserable as
when he’s happy.”

The idea that mathematics can be a soothing balm for the tribulations of
life can also be found in the work of a writer immeasurably far removed
from Eliot’s world: the Russian author Vasily Grossman. His 1959
masterwork, Life and Fate, was described in a 2021 New York Times essay
by the editor and writer Robert Gottlieb as “the most impressive novel
written since World War II.” This epic novel recounts the story of brilliant
physicist Viktor Shtrum and his family against a backdrop of war, the Battle
of Stalingrad, and Communism. Grossman studied mathematics and physics
at university, and the name Shtrum was chosen as a tribute to his friend, the
real-life physicist Lev Yakovlevich Shtrum (1890–1936), who was executed
during Stalin’s “great purge.” In the novel, Shtrum finds mathematics and
equations a lodestone of rationality to cling to in a chaotic world:



His head had been full of mathematical relationships, differential
equations, the laws of higher algebra, number and probability
theory. These mathematical relationships had an existence of their
own in some void quite outside the world of atomic nuclei, stars,
and electromagnetic or gravitational fields, outside space and time,
outside the history of man and the geological history of the earth.…
It was not mathematics that reflected the world; the world itself was
a projection of differential equations, a reflection of mathematics.

With this outlook, it is mathematics that is the true reality, and
everything else is simply a pale imitation. It’s not possible in real life to
construct an absolutely perfect circle, for example, but the mathematical
concept of a circle encapsulates a higher truth. This higher truth is what is
real to Shtrum, and its very perfection soothes the soul.

Life is messy. History is messy. Humans will keep acting unpredictably. For
both Viktor Shtrum and George Eliot, mathematics is an escape from all
that. But for Leo Tolstoy in War and Peace, mathematics is a way to coerce
the chaos into sense. He uses mathematical allusions several times in the
novel, but unless I want my book to be as long as his, I must restrict myself
to mentioning just two.

When Stephen Hawking was writing A Brief History of Time, he was
famously warned that every equation he included would cut sales in half.
Well, he got away with it (I hope I do too), and so did Tolstoy when he
invented an equation and dropped it into the middle of the action in War
and Peace. Let me tell you about it.

When the French retreat from Moscow, they keep coming off worse in
skirmishes with small groups of Russian troops, even though the French
army is huge. This, says Tolstoy, seems to contradict conventional military
wisdom that believes the strength of an army depends on its size alone.
That, he says, is like claiming that momentum depends only on mass, when
in fact it is the product of mass and velocity. In the same way, the strength
of an army must be the product of its mass and some unknown x. Military



science usually puts this unknown factor down to the genius of the
commanders. But, says Tolstoy, the sweep of history is not decided by
individuals. This x is rather the “spirit of the army, that is to say, the greater
or lesser readiness to fight and face danger felt by all the men composing an
army, quite independently of whether they are, or are not, fighting under the
command of a genius.” Like any good math teacher, Tolstoy even gives us
an example. Suppose ten men (or battalions, or divisions) defeat fifteen,
sustaining four casualties. Then the winning side loses four to the fifteen

lost by their opponents “and therefore  Consequently ” This
equation, as Tolstoy rightly points out, does not tell us what x and y are, but

it does give us a ratio between them. Because  =3.75, we can now say
that the winning army has 3.75 times as much fighting spirit as the losing
side. And, he concludes, “by bringing variously selected historic units
(battles, campaigns, periods of war) into such equations, a series of
numbers could be obtained in which certain laws should exist and might be
discovered.” Ah, yes, the classic final sentence of every application ever
made for renewal of grant funding: “More research is needed.”

If it’s a surprise to see Tolstoy detonate an equation in the middle of the
Napoleonic battlefield, then wait until he brings the big guns out: he uses
calculus as a metaphor for understanding the whole of human history. In
War and Peace, he argues powerfully against the idea that the course of
history can be altered by the actions of any one person. The French army, he
says, does not retreat from Moscow toward Smolensk because Napoleon
has ordered it. Rather, Napoleon gave the order to retreat because “the
forces which influenced the whole army and directed it along the
[Smolensk] road acted simultaneously on him also.”

So how do we make sense of these historical forces? Tolstoy begins by
reminding us of that old puzzle of Achilles and the tortoise—known as
Zeno’s paradox. Achilles runs ten times as fast as the tortoise, so he should
win any race, even if he gives the tortoise a head start. But in the time it
takes Achilles to catch up to where the tortoise started, the tortoise has
moved a little farther forward. And by the time Achilles reaches that next



place, the tortoise has moved again. It seems that Achilles can never
overtake the tortoise—which is obviously ridiculous. The paradox, says
Tolstoy, is caused by the fact that the movement of Achilles and the tortoise
is being artificially divided into discrete, discontinuous parts, whereas in
reality, the motion of both is continuous. Fortunately, there is a branch of
mathematics that tells you exactly how to turn the discrete into the
continuous.

Calculus was developed in the late seventeenth century by two of the
all-time mathematical greats, Isaac Newton and Gottfried Leibniz. (There
were bitter arguments about who had thought of it first.) It’s fantastic for
solving problems that involve movement and change, like the motion of the
planets, or objects accelerating under gravity (which is the other thing
Newton is famous for). If something is moving at a fixed speed, we can
work out how far it will travel—if it’s going 40 miles per hour, then after an
hour, it has gone, well, 40 miles. But what if the speed is constantly
changing? How can we work it out then? What we could try is measuring
the speed every minute, say, and then assuming that’s the speed for the
whole minute, working out the distance traveled in that minute, and adding
up all those little distances. If we want to get more accurate, we could
measure the speed every 30 seconds, or every second, or every nanosecond.
Each time we are adding up ever tinier distances, summing over an ever
larger number of these tiny changes, or “differentials.” But the challenge
you face is that in the limit, you’d be trying to add an infinite number of
zeros. Calculus is the technique that allows us to deal with these
infinitesimal numbers rather than imposing an artificial division into
separate units. It is one of the great achievements of mathematics.

Tolstoy explains that we need to do the same thing with history: “The
movement of humanity, arising as it does from innumerable arbitrary
human wills, is continuous. To understand the laws of this continuous
movement is the aim of history. But to arrive at these laws, resulting from
the sum of all those human wills, man’s mind postulates arbitrary and
disconnected units,” such as particular events in isolation, or the actions of
some king or commander. “Only by taking infinitesimally small units for
observation (the differential of history, that is, the individual tendencies of



men) and attaining to the art of integrating them (that is, finding the sum of
these infinitesimals) can we hope to arrive at the laws of history.”

In War and Peace, Tolstoy is railing against the “great man” theory of
history. It’s not the great leader who is the x factor for the victorious army,
but the collective fighting spirit. It’s not the king or emperor who directs the
course of events, but wider forces. He counteracts the theory with his
fighting spirit equation and with the calculus metaphor we’ve just
discussed. For him, mathematics is an emblem of logical rigor, a way to
access the objective truth, and the only chance we have of understanding
history.

War and Peace, with its mixture of history, philosophy, and narrative, was
unlike any other novel. Tolstoy, in fact, said he didn’t think of it as a novel
at all. I want to finish this chapter with a look at the mathematics in another
uncategorizable book: James Joyce’s Ulysses.

I mentioned in the introductory chapter that Joyce had an admiration for
mathematics, but if we think about what he is famous for, the stream-of-
consciousness style of books like Ulysses and especially Finnegans Wake,
he might be the author we would least think of associating with structure of
any kind, never mind mathematics. And yet there’s a diagram from Euclid
right in the center of Finnegans Wake. There’s a chapter full of calculations
in Ulysses.

Geometry gets a mention in the first paragraph of the first page of
Joyce’s first published book, Dubliners: “Every night as I gazed up at the
window I said softly to myself the word paralysis. It had always sounded
strangely in my ears, like the word gnomon in the Euclid and the word
simony in the Catechism.” This mention of the gnomon is not a random
allusion, either. The word is mostly used nowadays, if it’s used at all, to
refer to the sticking-up part of the sundial that casts a shadow (as we saw in
Moby-Dick), but its geometric meaning is a parallelogram with a smaller
parallelogram cut out of it. This “shape with a missing part” is a good
description of Dubliners. Sometimes the missing part in a story is around
meaning—the language used is ambiguous and we cannot see the



motivations of the characters. Other times it is parts of the action that are
omitted. In one story we are with a young woman, Eveline, at home, until
she stands up suddenly, and the narrative jumps to a scene somewhere
entirely different. We aren’t party to her decision to leave the house, or
where to go, or how she gets there.

Joyce had a reverence for, even an awe of, mathematics. Like Melville,
he studied Euclid’s geometry at school. Though he was not such a star
student as Melville, Joyce was certainly familiar with algebra and geometry,
and his extensive notebooks reveal a fascination with mathematical ideas.
He was curious about concepts of limits and infinity—there’s a page on

which he writes things like 0 =  1 =  ∞ =  These represent
limits, because if we divide 1 by ever larger numbers, we approach, but do
not ever quite reach, zero, and the same is true for the characterization of

infinity as  Sometimes there is pseudomathematics too, as in the

jotting  which is a rather facetious “formula” about the Holy
Trinity.

Writers on Joyce have sometimes used mathematical analogies to
describe his work, but not perhaps for the reasons I might do so. The writer
of this 1941 obituary, for example, doesn’t seem to have a very clear idea of
what mathematics actually is:

Joyce was also the great research scientist of letters, handling words
with the same freedom and originality that Einstein handles
mathematical symbols. The sounds, patterns, roots and connotations
of words interested him much more than their definite meanings.
One might say that he invented a non-Euclidean geometry of
language; and that he worked over it with doggedness and devotion.

I have some issues with this. Firstly, Einstein didn’t just say “Ooh, I
think an m next to this c2 would look cool.” It’s not the handling of the
symbols that Einstein was good at, it’s the meaning of the concepts. It



reminds me of the time I was asked to prettify an equation for a newspaper
article. Apparently, the graphic design department said it didn’t look
exciting enough visually—could I zhuzh it up a bit? I told them, not if you
want it still to be true. Secondly, what could a “non-Euclidean geometry of
language” possibly be? The obituarist simply grabbed a clever-sounding
term from mathematics to say that Joyce did something exciting and new.

In this century, non-Euclidean geometry, while still very exciting, is not
new. Nowadays, we get told that Joyce invented fractals. (We’ll delve more
into fractals in Part III.) I read an essay recently that posits the fractal (a
new and exciting math concept circa 1980–2000) as “an active Joycean
concept” and credits Joyce with “anticipating a fractal formalism that would
not be officially discovered until well into the latter half of the twentieth
century.” For me, this goes too far. We have to be very careful about
crediting writers with this kind of fortune-telling. Let me give an over-the-
top example to prove a point. The scientist Murray Gell-Mann described
how James Joyce provided the name for a new kind of subatomic particle
discovered in the 1960s: “In one of my occasional perusals of Finnegans
Wake, by James Joyce, I came across the word ‘quark’ in the phrase ‘Three
quarks for Muster Mark.’ … The number three fitted perfectly the way
quarks occur in nature.” (For example, every proton contains three quarks.)
Do we conclude from this that Joyce anticipated quantum physics? Of
course not—and we shouldn’t go around saying he anticipated fractals
either. It’s a shame, because as an analogy for what Joyce does in Ulysses,
fractals are great. Zoom in as far as you like into the human experience, one
might say, and the complexity is not diminished. The mind’s experience of
a single day, a single hour, is as richly detailed as the memories of a
lifetime. Notwithstanding this fact, James Joyce didn’t invent fractals. He
doesn’t need to have done that to be brilliant.

So, what can a conversation between James Joyce and mathematics tell
us? Is it just that the work of Joyce is so dense with both meaning and
ambiguity that we can put any meaning we like into it? In the case for the
defense, I bring to your attention Joyce’s own words: one entire chapter of
Ulysses was, he said, a “mathematical catechism.” I want to explain that a
little.



You might remember that Ulysses is loosely based on Homer’s Odyssey,
an epic poem recounting the adventures of Odysseus, king of Ithaca, over
ten years as he travels home after the Trojan Wars. The name Ulysses is the
Latinized version of Odysseus. The action in Joyce’s book is transplanted to
Dublin and describes the events of one fairly ordinary day in the life of one
fairly ordinary middle-aged man, Leopold Bloom (Ulysses), a young man
he meets, Stephen Dedalus (representing Telemachus—Odysseus’s son),
and Bloom’s wife, Molly (Penelope). Each chapter is associated in some
way with an episode from the Odyssey: Chapter 11 is known as “Sirens”
and is full of singing and music; Chapter 17 is known as “Ithaca” because it
describes Bloom returning home at the end of the day, accompanied by
Stephen Dedalus; and the final chapter in the book is “Penelope,” with
Molly Bloom’s famous stream-of-consciousness monologue as she falls
asleep.

What does mathematics do for James Joyce in Ulysses? There are
mathematical references scattered throughout the book, but “Ithaca” is the
most overtly mathematical chapter. It is, says Joyce, a “mathematico-
astronomico-physico-mechanico-geometrico-chemico sublimation of
Bloom and Stephen … to prepare for the final amplitudinously curvilinear
episode Penelope.” He goes further: it is best read by “someone who is a
physicist, mathematician and astronomer and a number of other things.”
The structure of “Ithaca” is a series of questions—a catechism—that
parodies scientific certainty. The books of Euclid were a cornerstone of
mathematical education in Jesuit schools, and they were held up for
millennia as the apotheosis of pure logic. The joke in “Ithaca” is the attempt
to apply this logic to things that definitely aren’t behaving rationally.

Stephen Dedalus and Leopold Bloom’s nocturnal wanderings around
Dublin are given a pseudogeometric veneer of respectability here in the
opening question and response:

What parallel courses did Bloom and Stephen follow returning?
Starting united both at normal walking pace from Beresford

place they followed in the order named Lower and Middle Gardiner
streets and Mountjoy square, west … they [crossed] the circus



before George’s church diametrically, the chord in any circle being
less than the arc which it subtends.

In other words, they took a shortcut across the circle, as it’s quicker than
going around. When they arrive home, it is to “the 4th of the equidifferent
uneven numbers,” which is Joyce’s way of saying that Bloom’s house
number is seven. Bloom lights a fire using “irregular polygons” of coal. In
the kitchen, there are “four square handkerchiefs folded unattached
consecutively in adjacent rectangles,” suspended from a “curvilinear rope.”
It reads like a crazy math problem. Joyce really goes to town with all this a
few pages later. Stephen is younger than Bloom, and the disembodied
questioner would like to know “what relation existed between their ages.”
The answer to this is glorious:

16 years before in 1888 when Bloom was of Stephen’s present age
Stephen was 6. 16 years after in 1920 when Stephen would be of
Bloom’s present age Bloom would be 54. In 1936 when Bloom
would be 70 and Stephen 54 their ages initially in the ratio of 16 to
0 would be as 17½ to 13½, the proportion increasing and the
disparity diminishing according as arbitrary future years were
added, for if the proportion existing in 1883 had continued
immutable, conceiving that to be possible, till then 1904 when
Stephen was 22 Bloom would be 374 and in 1920 when Stephen
would be 38, as Bloom then was, Bloom would be 646 while in 1952
when Stephen would have attained the maximum postdiluvian age of
70 Bloom, being 1190 years alive having been born in the year 714,
would have surpassed by 221 years the maximum antediluvian age,
that of Methuselah, 969 years, while, if Stephen would continue to
live until he would attain that age in the year 3072 A.D., Bloom
would have been obliged to have been alive 83,300 years, having
been obliged to have been born in the year 81,396 B.C.

It all reminds me of a mathematical puzzle posed by Gustave Flaubert
(an author much admired by Joyce) in an 1841 letter to his sister Caroline:
“Since you are now studying geometry and trigonometry, I will give you a



problem. A ship sails the ocean. It left Boston with a cargo of wool. It
grosses 200 tons. It is bound for Le Havre. The mainmast is broken, the
cabin boy is on deck, there are 12 passengers aboard, the wind is blowing
East-North-East, the clock points to a quarter past three in the afternoon. It
is the month of May. How old is the captain?” You are getting a lot of
information here, but none of it actually helps you to solve the problem. We
are back to the data overdose of Captain Ahab.

The stream-of-consciousness style of much of Ulysses, and orders of
magnitude more in Finnegans Wake, belies the fact that every word is
nonetheless carefully chosen.5 Bloom’s inner monologue through the day is
full, like everyone’s, of half-facts, snatches of quotations, fragments of
misremembered science. The “Ithaca” chapter positions itself as
authoritative, but Joyce inserts a huge number of errors that get in under the
radar of the catechistic style. It reminds us that even sources like
dictionaries and encyclopedias are not infallible. They are, after all, written
by people. (My favorite dictionary definition of all time, by the way, is in
the British Chambers Dictionary I have on my shelf, which defines an
éclair as “a cake, long in shape but short in duration.”)

Like the scientific “facts” in “Ithaca,” many of the numerical
calculations are incorrect. Some are incorrect on purpose, some probably
aren’t. When Leopold Bloom sits down at the end of the day and tallies up
his expenditure, the fact that he “forgets” to write down the money spent in
a brothel is not an error in Joyce’s arithmetic. But there are also several
miscalculations around Bloom’s and Stephen’s ages and the year Bloom
would have had to be born to achieve the correct proportions. For example,
for Bloom to be 1,190 years old (seventeen times Stephen’s age of seventy)
in 1952, he would have been born in the year 762, not 714. We can see
where the mistake comes from—if Bloom was born in the year 714, he
would reach the age of 1,190 in 1904, when the book is set. But that would
not preserve the 17:1 ratio of their ages. Even if these are deliberate
mistakes, the number of corrections Joyce made to the calculation of
Bloom’s budget over the course of several drafts and proofs of the novel is
good evidence that he did have some difficulty in manipulating the



numbers, in spite of having performed relatively well in arithmetic exams at
school.

But arithmetic is not mathematics, just as spelling is not literature, and
there is a lot more than just arithmetic in “Ithaca.” I want to show you a fun
digression about powers because it resulted in a certain kind of number
being named after James Joyce. Here is Leopold Bloom, thinking about the
numbers involved in calculations about distances between the stars:

Some years previously in 1886 when occupied with the problem of
the quadrature of the circle he had learned of the existence of a
number computed to a relative degree of accuracy to be of such
magnitude and of so many places, e.g., the 9th power of the 9th
power of 9, that, the result having been obtained, 33 closely printed
volumes of 1,000 pages each of innumerable quires and reams of
India paper would have to be requisitioned in order to contain the
complete tale of its printed integers of units, tens, hundreds,
thousands, tens of thousands, hundreds of thousands, millions, tens
of millions, hundreds of millions, billions, the nucleus of the nebula
of every digit of every series containing succinctly the potentiality of
being raised to the utmost kinetic elaboration of any power of any of
its powers.

Now, this is slightly silly of Bloom, because he doesn’t actually have to
do the calculation to know that the 9th power of 9 (or 99), whatever it is
(okay, it’s 387,420,489), is definitely less than the 9th power of 10, which is
1,000,000,000. So, the 9th power of the 9th power of 9 is going to be less
than  which is a 1 with 81 zeros after it. (It’s
196,627,050,475,552,913,618,075,908,526,912,116,283,103,450,944,214,7
66,927,315,415,537,966,391,196,809, if you want to know.) But let’s be
kind and assume that what Bloom meant to say was not the 9th power of the
9th power of 9, but 9 to the 9th power of 9. It’s a curious fact about powers
that if you try to do a power of a power, you have to be really careful what

you mean by it. What is ? Does it mean 33 which is 27, raised to the
power 3? This would be  which is 19,683. Or does it mean 3 raised to



the power 33 which is 327 or just over 7.5 trillion? With exponents, it really

matters where you put your brackets: 
In honor of Joyce, mathematicians have named numbers like  Joyce

numbers. The nth Joyce number is  If you thought powers of two
grew quickly, these Joyce numbers, being exponents of exponents, grow

even faster. The first Joyce number,  is 1. The second,  is 16.
The third is 7.5 trillion, and the fourth is already too long sensibly to write,
with 155 digits. If Bloom had been thinking of the ninth Joyce number, 

 then he wasn’t too far off with his estimate of the number of books
required to contain it. It’s possible that Joyce had read about this number
somewhere because in 1906 the mathematician C. A. Laisant proved that 

 has 369,693,100 digits. Over the thirty-three volumes of a thousand
pages that Bloom recalls, this would mean squeezing around eleven
thousand digits onto each page—just about possible, with a tiny typeface,
no line spacing, large pages, and narrow margins.

This is certainly not the only large number in the Joycean oeuvre, and it
is a mathematically sophisticated example of the tradition of those “upper
limit” numbers like 99 and 999 that we saw in Chapter 5, because the

number  is very large but not infinite. It is enormous, but bounded.
We’ll leave to the more arcane academic journals the joys of deciphering
the mathematics of Finnegans Wake, but I can’t help mentioning, in the
context of symbolic numbers, the novel’s famous hundred-letter words, like
this one:
bababadalgharaghtakamminarronnkonnbronntonnerronntuonnthunntrovarrh
ounawnskawntoohoohoordenenthurnuk, which I’m sure you can tell is the
sound of a thunderclap. Specifically, the one that reverberated around the
heavens at the moment of the fall of Adam and Eve. There are ten of these



“thunder words,” but in fact they don’t all have exactly one hundred letters.
The first nine do, and then the final one has 101 letters, making a grand
total of 1,001, another symbolic number with many cultural resonances.

Coming back to “Ithaca,” Stephen departs as he entered, with geometry:

How did they take leave, one of the other, in separation?
Standing perpendicular at the same door and on different sides

of its base, the lines of their valedictory arms, meeting at any point
and forming any angle less than the sum of two right angles.

This is a conscious mangling of Euclid’s fifth postulate: If a straight line
falling on two straight lines makes the interior angles on the same side less
than two right angles, the two straight lines, if produced indefinitely, meet
on that side on which are the angles less than the two right angles.6 If the
men had remained parallel, as they were at the start of the chapter, then
these interior angles would add up to 180°, which is two right angles, and
the lines would not be able to meet. Or at least they wouldn’t in standard
Euclidean geometry. Joyce knew that kinds of geometry had been
discovered in which the parallel postulate does not hold, but the setup has
given us parallel lines, so the mathematical catechism has resulted in a
contradiction—another in-joke from Joyce for the mathematically inclined.

For the writers in this chapter, mathematics is more than a way to
communicate: it is a vital way of understanding the world. Mathematics has
meaning, whether you are a village carpenter like Adam Bede or a
deckhand like Ishmael. It is a refuge, a solace. Still, there are risks. Melville
shows us the tragic outcome of assuming, like Ahab, that statistics give us
complete control, and Joyce’s absurdist calculations remind us that just
because a number sounds impressive, that doesn’t make it correct. The
novels in this chapter have shown life through the prism of mathematics,
from the smallest scale to the largest—from late-night rambles in Dublin to
the entire sweep of human history. For these novelists, mathematics is the
key.



7
Travels in Fabulous Realms

The Math of Myth

In Jonathan Swift’s 1726 novel, Gulliver’s Travels, the intrepid traveler
Lemuel Gulliver visits the miniature land of Lilliput. He gives lots of detail
about the precise dimensions of the people there, and he describes how the
king of Lilliput arranges for Gulliver to be fed:

His Majesty’s mathematicians, having taken the height of my body
by the help of a quadrant, and finding it to exceed theirs in the
proportion of twelve to one, they concluded from the similarity of
their bodies, that mine must contain at least 1724 of theirs, and
consequently would require as much food as was necessary to
support that number of Lilliputians.

While we do not judge satirical novels by the plausibility of their
science, this is still an irresistible challenge. Where does this 1,724 come
from, and is it correct? Spoiler alert: no, it’s not, and if Mr. Gulliver is going
to bring my Lilliputian colleagues’ academic integrity into question with a
howler like this, it’s my duty as a mathematician to defend them. Previously
in this part of the book, I’ve shown you how mathematics makes itself
visible in fiction in several ways, from symbolic pattern numbers to lovely
mathematical metaphors. In this chapter, we’re going to explore another
way that mathematics can be deployed: the narrative technique that I call
performative arithmetic. As in the calculation above, it’s often used when



the narrator is recounting something that may appear unbelievable. A dash
of solid fact, in the form of a mathematical calculation, gives plausibility to
proceedings.

This is exactly what’s going on when Gulliver visits the floating island
of Laputa later in his travels. He gives us another calculation. The island is,
he says, “exactly circular, its diameter 7,837 yards, or about four miles and
a half, and consequently contains ten thousand acres.” We readers can
check this calculation for ourselves. An acre is 4,840 square yards, so ten
thousand acres is a good approximation for the amount of land such a circle
can contain—to the nearest whole number, it is 9,967 acres. The sleight of
hand here is the elision between the verifiability of the arithmetic and the
verifiability of the narrative. The mathematics is (roughly) correct, but that
does absolutely nothing to establish that such a circular island exists. The
spurious precision of 7,837 yards is probably designed to increase the
illusion that this is a report of reality. It actually makes the calculation less
accurate because the much rounder number of 7,850 would have given an
area of 10,000 acres almost exactly—less than half an acre short.

In this chapter, I’ll give you the tools to turn the tables on some literary
logic and ask: Does this really stack up? We can check the working of the
Lilliputian mathematicians and can laugh with Voltaire at the self-
aggrandizing antics of the humans who turn out to be the tiniest of creatures
in comparison to the giant visitor Micromégas, from his planet near Sirius.
Are these fantastical lands possible, and what would life be like for their
inhabitants? I’ll show you the math that proves just how magical these
creatures must be.

As Peter Pan tells Wendy, “You see children know such a lot now, they
soon don’t believe in fairies, and every time a child says, ‘I don’t believe in
fairies,’ there is a fairy somewhere that falls down dead.” Not wanting to
have any fairy slaughter on my conscience, I must emphasize that if
anything I say makes it seem as if flying horses or giants or tiny people
can’t exist, all I mean is that if you do encounter one, something beyond our
normal laws is occurring. As we’ll see, creatures like the giant spiders that
live in the Forbidden Forest at Hogwarts must be highly magical beings to
defy all the mathematics that might otherwise “prove” they can’t exist.



Which is absolutely fine by me (as long as I don’t have to be in a room with
one).

I want to talk about giants first because my feeling is that, over the course
of history, they have been taken more seriously than other fantastical beings
as creatures that could potentially exist. There are several giants in the
Bible, for example. In children’s literature we meet Roald Dahl’s beloved
BFG, the half-giant Hagrid from the Harry Potter series, and many others.
Giants have been popular in satirical novels, too. The French author
François Rabelais (who gives us the adjective Rabelaisian, meaning “bawdy
and crude”) is most famous for his Life of Gargantua and Pantagruel, a
five-volume work concerning two giants and their exploits. To give you just
a hint of the cheerful tone of voice in which it’s written, the full English
title of the volume in which we first meet Pantagruel is The Horrible and
Terrifying Deeds and Words of the Very Renowned Pantagruel King of the
Dipsodes, Son of the Great Giant Gargantua. The exaggerated size of a
giant emphasizes our own inescapable physicality, so it’s a way to poke fun
at our occasional coyness about ourselves. Rabelais enjoys being ridiculous.
Gargantua (from whom we get the word “gargantuan”) is born by climbing
out of his mother Gargamella’s ear, and it only gets sillier from there. The
books are full of numbers and calculations about things like how much
fabric is needed for Gargantua’s codpiece (sixteen and a quarter ells, or
about twenty yards, since you ask), but they are thrown about with gleeful
abandon, much as we might now joke that something costs a million
bajillion dollars.

None of the numbers given to describe the size of Gargantua make any
attempt at consistency—it’s all just exuberant silliness. We hear that the
baby Gargantua’s milk was supplied from a herd of “seventeen thousand
nine hundred and thirteen cows of the towns of Pautille and Brehemond.”
For his shoes “were taken up four hundred and six ells of blue crimson-
velvet, and were very neatly cut by parallel lines, joined in uniform
cylinders.” He combs his hair with a nine-hundred-foot comb whose teeth
are entire elephant tusks. When Gargantua visits Paris and relieves himself



in the street, he accidentally drowns “two hundred and sixty thousand four
hundred and eighteen, besides the women and little children.” In more
numerical bawdiness, when Gargantua’s wife dies, he thinks fondly of a
certain “little” part of her anatomy “yet it had in circumference full six
acres, three rods, five poles, four yards, two foot, one inch and a half of
good woodland measure.” This is all good fun, but because Rabelais
doesn’t tell us how big the giants are, it’s pointless even to ask whether they
could exist in real life, because we don’t have enough information to make
a reasonable assessment.

Let’s visit Brobdingnag, then, because there we have very precise
information. Brobdingnag, the land that Lemuel Gulliver visits after
Lilliput, is a kind of inverse to that country, because everything in
Brobdingnag is twelve times as big in every dimension as in our world.
This is rather convenient in that it means anything that would normally be
an inch long (a wasp, for example) is now a foot long. So it’s not just the
people that are giants, but the plants and animals too, and even the weather.
On one occasion, Gulliver is unlucky enough to be caught outside in a
hailstorm: “I was immediately by the force of it, struck to the ground: and
when I was down, the hailstones gave me such cruel bangs all over the
body, as if I had been pelted with tennis-balls.… Neither is this at all to be
wondered at, because nature, in that country, observing the same proportion
through all her operations, a hailstone is near eighteen hundred times as
large as one in Europe.”

Where does this “near eighteen hundred” come from? Well, we know
that every dimension is multiplied by 12. So the hailstones are twelve times
as long, twelve times as wide, and twelve times as high as ours. This means
their volume is not twelve times as much, but  times as much,
or, “near eighteen hundred” (though really it’s nearer seventeen hundred).
This is the start of the problem with giants. If you scale something up in
every dimension by the same factor—here it’s 12, but let’s say it is some

fixed k—then the volume would change by a factor of  which
we write in mathematical notation as k3 because there are three k’s
multiplied together. In other words, the volume changes with the cube of



the scaling factor. Meanwhile, any area connected with the object will only
change with the square of the scaling factor. To see what I mean, have a
look at the diagram below. I’ve shown what happens to a box if we enlarge
it in each dimension by a factor of 2. Imaginatively enough, it has width w,
depth d, and height h.

That means the box has volume v, where  Now, if we
enlarge by a factor of 2, the new, bigger box has width 2w, depth 2d, and
height 2h, That gives it a volume of  So yes, this agrees
with our reasoning, because 8 = 23. On the other hand, the area A of the
base of the original box is w × d but the doubled box has base area 2w × 2d
= 4A and 22 = 4.

I said that this squaring factor was true of any area connected with the
object. What I meant by that is that it’s not just the base area that increases
by the square of the scaling factor, but, for example, the area of any cross
section through the box, and also its surface area, that has this property. We
don’t need to work out the exact formula for the surface area to know this
(but if you want to, it’s ); it’s enough just to realize that the
calculation involves adding together a bunch of areas that involve two of
the measurements multiplied together, and so doubling each of the
measurements will multiply the total by 4. In the more general case, the box
enlarged by a factor of k will have volume k3V and area K2A This fact is
known as the square-cube law.

Here’s where things get nasty for giants. When humans are moving
around, the weight of their bodies must be supported by their skeletal
structure. Studies show that the human femur (thigh bone) will break under
about ten times the pressure it normally has to carry. You might remember
from high school science that pressure is the force per unit area. That is,



pressure = . The area here is the cross-sectional area of the femur. The
force exerted comes from our mass being pulled down by gravity, and our
mass is roughly proportional to our volume. All this means that the pressure

on our femurs is proportional to . Now, if we scale up the human
body by a factor of k, the square-cube law tells us that the volume increases
by a factor of k3 but the area increases by a factor of only k2 Putting this all
together shows that the pressure on the scaled-up human’s bones will be

proportional not to the original , but to , which, if we cancel a

couple of k’s, is k × . In other words, the pressure on the scaled-up
human’s bones is k times the pressure on our bones. The Brobdingnagians
are twelve times the size of Gulliver. That means the pressure on their
bones, just standing still, is twelve times the pressure on his bones. But
bone can take only ten times normal pressure before breaking; the
Brobdingnagians’ bones would break as soon as they tried to move.

So the Brobdingnagians cannot really exist. The same is unfortunately
true for the BFG, and for Giant Pope and Giant Pagan of John Bunyan’s
Pilgrim’s Progress, who are an estimated sixty feet tall, ten times the height
of the hero, Christian (unless divine intervention is involved—all bets are
off with an omnipotent deity). King Kong, if he could exist at all (the films
are far from consistent about the size he is supposed to be), would be
incredibly weak—he would barely be able to support his own weight, never
mind jumping around on skyscrapers and punching airplanes out of the sky.
Fay Wray could probably beat him in a fight!

There is some hope, though, for slightly smaller giants. In the Harry
Potter books, Rubeus Hagrid, Keeper of the Keys at Hogwarts School of
Witchcraft and Wizardry, is a half-giant. He’s described as being twice the
normal height but, crucially, three times the normal width. Assuming that
he’s also three times the normal depth, that would mean the cross-sectional
area of his bones is 9 (or 3 squared) times ours, but his mass is only 18
times ours, not 27 times. That would mean the pressure on his bones is



twice what it is on ours. He could definitely still walk around, and maybe
even run, but he would likely be prone to broken bones, and he should
certainly not take up skipping. The same goes for King Og of Bashan, a
biblical giant whom Moses meets in the book of Deuteronomy. His exact
dimensions aren’t given, but we are told that his bed was 13 feet long, so he
was perhaps scaled up by a factor of two, thereby doubling the pressure on
his bones. Again, survivable, but he wouldn’t be a mighty warrior.1

Before we move on, I want to tell you about Micromégas. It’s a short
satirical novel by Voltaire, which I am both grateful and annoyed to have
heard about accidentally. I’m one of those people whose brain won’t shut
up even when I want it to, and so I often listen to an audiobook or the radio
to drift off to sleep. Of course, it can’t be anything too exciting. The
audiobook company Audible, realizing that lots of people do this, released a
series of “Bedtime Stories for Adults” that were deliberately not very
exciting. I am appalled to have to tell you that the second of these was A
Short Account of the History of Mathematics, by W. W. Rouse Ball. How
dare they! In with this, and a book on quilt collecting, was Micromégas, by
Voltaire, which I’d never heard of. Imagine my delight when it turned out to
be the story of a giant named Micromégas, from a planet orbiting Sirius,
who visits Earth. What’s more, Voltaire describes his exact size and talks
about the calculations that mathematicians can make to determine the size
of his home planet. So, Monsieur Voltaire, you brought mathematicians into
this. Let’s see how your calculations fare.

Micromégas is a satire on human vanity and pomposity. We puny beings
chatter among ourselves, thinking ourselves important, but we are as ants
compared to Micromégas. He is so huge he can’t even see us. He visits our
solar system, first meeting the people of Saturn, who are 6,000 feet tall,
before traveling to Earth. He can communicate with humans, whose voices
are ridiculously tiny, only by means of an ear trumpet that, for reasons best
known to himself, he makes from his own fingernail clippings. Now,
Micromégas is described, essentially, as a human scaled up by a factor of
24,000. The square-cube law tells us that the pressure on his bones is
therefore 24,000 times the pressure on ours. He would immediately collapse
under his own weight on Earth, as indeed would his Saturnine friends. But



this got me wondering whether perhaps on a different planet, with different
gravitational forces, giant humanlike beings could in fact exist.

Voltaire writes:

Certain geometers,2 always of use to the public, will immediately
take up their pens, and will find that since Mr. Micromégas,
inhabitant of the country of Sirius, is 24,000 paces tall, which is
equivalent to 120,000 feet, and since we citizens of the earth are
hardly five feet tall, and our sphere 9,000 leagues around; they will
find, I say, that it is absolutely necessary that the sphere that
produced him was 21,600,000 times greater in circumference than
our little Earth. Nothing in nature is simpler or more orderly.

So let’s have a look at this calculation, shall we? I suspect that Voltaire
is teasing these geometers a little for being so certain about everything.
What is claimed is that since Micromégas is 24,000 times our height, then
his planet must be 24,000 times the circumference of ours. So it should be
9,000 leagues multiplied by 24,000. Already there’s a problem, because
9,000 times 24,000 is 216,000,000. Sorry, Voltaire, but you are a factor of
10 off. A bigger issue is whether it is right even to make this deduction.
Would giants be expected to come from a giant planet? The answer has to
involve gravity. Remember that when we talked about the pressure on our
bones, I said that the force comes from gravity acting on our mass. If you
visit a planet where gravitational pull is twice what it is on Earth, then the
pressure on your bones will double. We can work this in the other direction
and say that if Micromégas comes from a planet where the pressure on his
bones matches the pressure on humans’ bones on Earth, that planet must
have gravity 1/24,000th of Earth’s gravity.

Can such a planet exist? What’s the gravity on an Earth scaled up by a
factor of 24,000? The laws of gravity have been known since Isaac Newton:
the force of gravity obeys what’s called an inverse square law. This means
that the pull of gravity exerted on you by an object (say, the earth) depends
on 1 over the square of your distance from that object. If your distance from
the center of the earth doubles, then the force of gravity would be divided
by the square of 2—that is, 4. But wait, you say, surely that would mean



that gravity would be lower at the top of Mount Everest than it is at sea
level? And yes, that’s absolutely true. At the top of Mount Everest, gravity
is 9.77m/s2, while on the surface of the Arctic Ocean, gravity has been
measured at 9.83m/s2. So, if you want to lose weight, forget the diet; just
move to higher ground.

The other thing that affects gravity on a planet is the mass of that planet.
If the mass doubles, then gravity doubles. We can encapsulate all this in a
simple expression:

That symbol  means “proportional to.” It’s saying that while these
things aren’t exactly equal, they vary exactly in line with each other. If the
right-hand side doubles, so does the left. So, imagine we do the simplest
possible thing and just double Earth. Its volume, and hence its mass, will
increase with the cube of the scaling factor, so the mass will increase by a
factor of 8. But at the same time the distance from the center to the surface
—in other words, the radius—will also double, so the square of the radius
increases with the square of the scaling factor. Thus, the square of the radius
increases by a factor of 4. This is just like the square-cube law! The net
effect is that gravity on the double-Earth planet is going to double.

If we had an Earth-like planet whose radius was 24,000 times ours, its
gravity would also be 24,000 times ours. So this would be even worse for
Micromégas than Earth. To get the same pressure on his bones as we
experience on our Earth, his planet, if it’s like ours in everything but size,
would have to be not 24,000 times the size, but 1/24,000th the size.
Micromégas could not live on a planet 1/24,000th the size of Earth. He is
120,000 feet tall, and the circumference of such a planet would be only
5,478 feet. It would be like a human trying to live on the surface of a grape.
Voltaire’s geometers were totally wrong. What we will never know is
whether Voltaire was aware of these two errors. He may have introduced
one or even both of them on purpose just to show that even such clever



people as geometers are fallible—this is a satire on pomposity, after all.
Alternatively, his arithmetic might just not have been very good.

We could go further and wonder about more sophisticated scenarios—
planets that are not earthlike, for instance. We could get the same gravity on
a bigger planet if it was less dense, because while the mass of a planet does
depend on its volume, it also depends on its density. Perhaps the huge Sirian
planet has a lower density. The least dense planets that we know of are
known, rather whimsically, as super-puff planets. They have a density about
1 percent of Earth’s, which means the best we can hope for on the Sirian
planet is 240 times our gravity. It’s still hopeless. Life-forms on other
planets are extremely unlikely to resemble humans, of course. Next time
you are reading a science fiction novel in which aliens invade Earth, you’ll
be able to cast your expert eye over the descriptions of these aliens and get
a fairly good idea what size planet they must come from, and whether their
terrestrial sojourn is going to result in any broken alien legs. The
mathematics of the square-cube law can give us some useful ground rules.

The square-cube law is bad news for the Goliaths of this world, but it also
raises some questions about animals. The smallest mammal is the
bumblebee bat, which weighs a tiny 1.7 grams (less than a sixteenth of an
ounce) and is about an inch and a quarter long. Compare this to the
gargantuan (thank you, Rabelais, for the adjective) blue whale, which has
been recorded at sizes of up to 98 feet long and weights over 200 tons. How
can this be? Big animals are not, and cannot be, small animals simply
scaled up, because they would be crushed under their own weight. The
answer is evolution. Think about the legs of a mouse compared to those of
an elephant. The elephant’s legs must be proportionately much thicker
because the cross-sectional area of its bones has to keep pace with the
increase in volume, and hence mass. The square-cube law was first
observed by Galileo (though he did not give it a name) in this context.

We know that mammals can evolve to be very big, but fiction has been
fascinated with other giant creatures, such as the six-foot cockroaches
infesting the New York subway in the 1997 Guillermo del Toro movie



Mimic, based on a short story by the American science fiction author
Donald A. Wollheim. And who can forget Them!, a 1954 movie featuring
giant ants rampaging through the New Mexico desert? Or, as the original
poster for the movie had it: “A horror horde of crawl-and-crush giants
clawing out of the earth from mile-deep catacombs!” Their unnatural size
turns out to have been caused by radiation from testing the atomic bomb.
Are giant insects possible? How about the elephant-sized acromantula
Aragog, a magical giant spider living in the Forbidden Forest of Hogwarts?

The heaviest adult insect we know of is the aptly named giant wētā,
which can grow to a hideous 8 inches long and a weight of over 2.5 ounces.
Meanwhile, the grubs of the Goliath beetle can be even heavier, at an
appalling 4 ounces (though shorter at 4.5 inches). Stick insects can be
longer but are much lighter because of their sticklike shape. The longest
insect ever recorded was a giant stick insect at the Insect Museum of West
China. It was an unforgivable 25 inches long. Spiders can grow even bigger.
The Goliath birdeater is the heaviest spider known to science, at 6.2 ounces,
with a length of 5.2 inches. I apologize that you now know that. At this
point we may be quite keen for mathematics to step in and prove that
insects and arachnids can’t get even larger than this. Forgive my anti-bug
prejudice, by the way. I like a butterfly or bumblebee as much as the next
person, but I draw the line at giant beetles, however essential they are to the
ecosystem. Happily for any other bugophobes around, there are some
natural limits, in spite of what evolution can manage in terms of adaptations
like thicker legs and so on.

The first issue is that insects and arachnids have their skeleton on the
outside of their body (exoskeleton). While this gives them a strong
structure, it means that they have to shed their skin, usually several times,
as they grow. While the new skin is hardening, it leaves them not only
vulnerable but very weak. Above a certain size, periodically losing your
exoskeleton just doesn’t work.

Another factor at play is oxygen. Like all animals, insects and arachnids
need oxygen to survive, and it must reach every part of the body. Larger
animals, like mammals and birds, have circulatory systems in which blood,
pumped by the heart, carries oxygen around the body in blood vessels.



Oxygen gets into our bodies through the lungs. It is absorbed through the
surface of the lung, which for this reason has many tiny folds to maximize
surface area. According to the American Lung Association (and they should
know), the total surface area of your lungs is about the size of a tennis
court, and if you laid all the airways running through your lungs in a long
line, it would stretch fifteen hundred miles.

Now, insects and arachnids don’t have lungs. They have a substance
like blood, but it does not transport oxygen. Instead, they absorb oxygen
directly from their body surface, and it travels to their cells through tiny
tunnels called tracheae. And here’s where the square-cube law comes in.
The amount of oxygen an insect can absorb is proportional to its surface
area. But the amount it needs is proportional to the number of cells it has,
which grows with its volume. As we know, surface area depends on the
square of the scaling factor, but this will soon be outpaced by the fact that
volume depends on the cube of the scaling factor. Our giant insects would
suffocate.

Just to reassure ourselves, let’s work out an approximate maximum size
for a spider. Research at the University of California, Irvine, in 2005
showed that insects can actually cope with concentrations of oxygen just
one-fifth of what is in our atmosphere. According to the square-cube law, if
we scale up our bug by a factor of k, then each square centimeter of surface
area needs to supply k times more oxygen. Therefore, in theory, the upper
limit of growth is five times, before the bug suffocates. Our friend Aragog
is said to be elephant-sized, about two to three meters long. Even a ten-
times-scaled Goliath birdeater would be only 4'4" so Aragog must definitely
be magical. If we use a five-times-scaled Goliath birdeater as our
maximum, then we are looking at a spider around two feet long. I still
wouldn’t want to bump into one of those.

Any paleoentomologists reading this will be protesting at this point that
prehistoric insects grew much bigger (shudder). For example, there were
species of very large dragonfly-like creatures called Meganisoptera. Among
the largest of these were Meganeura monyi, which were flying around
Europe in the late Carboniferous period, about 300 million years ago,
before even the dinosaurs came along. One fossil specimen had a wingspan



of 2'4" and an estimated mass of over seven ounces. How is this possible?
One factor is that at various points in prehistory, oxygen concentrations in
the atmosphere were much higher than they are now. This increases what
can be absorbed through the exoskeleton. But perhaps more important is
predation. When insects had the skies to themselves, they could grow very
large with impunity. But once pterosaurs came on the scene, things
changed. A two-foot dragonfly makes a delicious meal for a pterodactyl.

Just as insects and arachnids don’t benefit from being large, warm-
blooded creatures find it difficult to be tiny. That’s probably why insects
and arachnids have evolved to be smaller, thus filling a niche that mammals
can’t. Unlike insects, warm-blooded creatures lose heat from the surface of
our bodies, so our heat loss is proportional to our surface area. As we
shrink, the amount of heat our bodies produce decreases much faster than
our surface area. Small mammals lose heat much more quickly compared to
the amount of heat they generate, and at some point they just can’t maintain
their body temperature. There are various evolutionary tricks to deal with
this. Small mammals usually have a much more spherical shape than larger
ones, and are covered in fur (compare a mouse with a rat—the mouse is
fluffier and rounder in shape). We also don’t find small mammals in colder
climates. We get Arctic hares, but not Arctic rabbits. Mammals are of
course smallest when they are born, and they often have fur or other
adaptations to help them stay warm during this phase—think of “puppy
fat.” It’s the same with birds—those adorable little newborn ducklings are
much fluffier than their parents. At the other end of the scale, overheating
can be a real problem for the largest mammals, whose huge bodies produce
more heat than their proportionally smaller surface area can easily dissipate.
Adaptations for this issue include things like the large ears of an African
elephant.

It seems that colossi cannot bestride the earth (at least not without
supernatural help of some kind). But what about that other staple of fairy
tales and fables: tiny people? We’ve already encountered the Lilliputians,
and what’s more, we know their exact size, thanks to Lemuel Gulliver.



Shrink rays, miniaturizing potions, or mysterious radioactive fogs have all
caused movie characters to become various levels of tiny. The eponymous
Doctor Cyclops shrank his terrified victims to a height of twelve inches in
the 1940 movie, while The Incredible Shrinking Man (1957) is doomed to
continue shrinking forever. More recently, the hapless inventor in Honey, I
Shrunk the Kids zaps his children to a quarter of an inch in height—a
tremendous shrinking factor of about two hundred, while Matt Damon
shrinks to five inches tall in the 2017 movie Downsizing.

Fairies, pixies, and other fantastical creatures are small, but they aren’t
specifically miniature humans, nor, usually, are their exact sizes given, so
it’s hard to deduce much about their physical properties. One of my
daughters once required me to make a dress for the tooth fairy, to be left out
with the tooth. From that I can tell you that (a) I’m not a very good
seamstress, and (b) the tooth fairy is two inches tall; but (c) if she fits into
that dress, she definitely does not have standard human proportions.

We do have slightly more information about literature’s best-loved tiny
family. Pod and Homily Clock, and their daughter Arrietty, are Borrowers
in the popular series of children’s books by Mary Norton. The Borrowers
are essentially small versions of humans, an estimated one-sixteenth of our
size, who live in human houses in out-of-the-way places. The Clocks live
under the grandfather clock in the hall of Aunt Sophy’s house. They live by
“borrowing” things they need—needles, safety pins, matchboxes, buttons,
bits of paper, spools of thread—all those little things you can never find
when you need them, and now you know why. You might have seen the
charming Studio Ghibli movie Arrietty, which adapts the first Borrowers
novel.

What would life be like for these little people? I’m going to focus
mainly on life in Lilliput, because Gulliver tells us the exact dimensions of
the Lilliputians and their world (a factor of twelve smaller than ours), but
you can play around with the same ideas in other worlds. When Gulliver is
shipwrecked on his travels, he washes up on the shores of Lilliput and, after
initially being pinioned to the ground by the Lilliputians, is accepted into
their society, giant though he is. He even assists them in the war between
Lilliput and neighboring Blefuscu, these two realms representing,



respectively, Britain and France. The issue over which the war is fought is
as small as the creatures fighting it: in Lilliput, tradition dictates that you
open your soft-boiled eggs at the little end, whereas the Blefuscans are Big-
Endians, and naturally this insult to decency cannot stand. We are invited to
witness the ridiculousness of these arguments and compare them to our own
petty concerns.

The first thing to say about life in a small country is that Lilliputians
benefit hugely from the square-cube law when it comes to strength.
Remember that when we talked about how much pressure is on the bones of
a scaled human, we found that if you scale by a factor of k, the pressure on
the bones also scales by a factor of k. Here, we are scaling by a factor of
1/12, and so the same thing happens to the pressure on Lilliputians’ bones.
They would be comparatively much stronger, able to carry many times their
own weight. In stories, we sometimes see tiny people in peril because they
are in a high place, like on top of a human table or being carried on
Gulliver’s shoulder. The fall from such a height, while negligible to us,
would surely be fatal to a Lilliputian, right? Well, there’s a curious thing
about falling. The reason it’s dangerous is that as we fall, kinetic energy
builds up, which is all released very suddenly when we hit the ground. But
we don’t keep on accelerating indefinitely. You may have heard the phrase
“terminal velocity” in this context. As we fall, we accelerate under gravity,
but there is a small opposing force upward due to air resistance. This air
resistance is proportional to the speed we are moving at but also to the area
in contact with the air. As our speed increases, the air resistance increases,
until at some point the two forces (gravity and air resistance) balance out,
and at that point we stop accelerating—we are at terminal velocity.

Human terminal velocity is a pretty conclusive 50 meters per second.
It’s been calculated by NASA that we have a good chance of walking away
from an impact at up to 12 meters per second, but anything higher than that
risks serious injury or death. The reason parachutes work is that they
increase our area, and this increases the air resistance, meaning the
equilibrium point is reached sooner and the terminal velocity is therefore
lower. So what’s the terminal velocity for a scaled-down human? Well, the
downward force due to gravity is proportional to our mass, which is



proportional to our volume. And air resistance is proportional to our surface
area. This means that if we are scaled by a factor of k, the downward force
due to gravity is scaled by k3 and the upward force due to air resistance is
scaled by k2—the square-cube law strikes again! This means that these
forces will now match up only at k times the original terminal velocity. For

our Lilliputians, the scaling factor is k =  so their terminal velocity is just
one-twelfth of ours, a mere 4.2 meters per second.

Okay, so we are happily falling through the air. What happens when we
hit the ground? All that kinetic energy we have built up has to be dissipated.
I did a few calculations and it turns out that the maximum survivable

velocity of a human scaled by a factor of k is proportional to . Now,
humans can survive 12 meters per second. So the scaled humans can

survive 12 ×  meters per second. If you plug k =  into this, you find
that Lilliputians can survive impact at a velocity of  or about 42
meters per second. But hang on—their terminal velocity is just 4.2 meters
per second. That means that whatever height they fall from, their speed will
never exceed 4.2 meters per second, and so they can easily survive a fall
from any height. No need to rappel down Gulliver’s legs—they can just
jump off his head and be completely fine. The scientist J.B.S. Haldane
made a similar point about animals falling in a 1927 essay, “On Being the
Right Size,” with an arresting metaphor. He said that you can drop a mouse
down a thousand-yard mine shaft and it will be fine. But a man is killed,
and a horse, says Haldane, “splashes.”3

Another terrifying situation for shrink-ray victims is getting trapped in
some vast receptacle, like a jam jar. But this again is no problem. In fact, to
jump to a particular height uses an amount of energy roughly proportional
to your mass. Meanwhile, the amount of energy that muscles produce is
also roughly proportional to their mass. That means the scaling factors
cancel out here, and the height a scaled-down human can jump to is more or
less the same as the height a usual human can manage, around a meter,
unless you are an adept high jumper. So our Borrower in a jam jar can



simply hop out without difficulty. Incidentally, this also shows the silliness
of those claims you sometimes see that if a flea were the size of a person, it
could jump over a skyscraper. In fact, before our unfortunate giant flea
suffocated and collapsed under its own body weight, it could jump to about
the same height as its standard-sized brethren, about seven inches.

So far, then, everything is looking pretty good for our Lilliputians. But
there are some downsides. I have already pointed out that small mammals
have a lot of work to do to keep warm. Because they lose heat
proportionately much faster than us, getting cold will be a serious risk. A
few years after Gulliver visited Lilliput, this heat loss phenomenon actually
changed the life of a young instrument maker in eighteenth-century
Glasgow. He was asked to take a look at the university’s scale model of the
famous Newcomen steam engine, a very early steam engine designed by
Thomas Newcomen, widely used for pumping water out of mines. The
engine worked by repeatedly heating and cooling a cylinder—the cooling
condensed the steam, creating a partial vacuum that made the piston move.
The engine did work, but it wasn’t very efficient because a lot of heat
energy was lost by this repeated temperature change. The scale model,
though, didn’t work at all, and the mysterious thing was that it was very
accurately done, just like the full-size engine, except smaller. Now that you
are an expert on the square-cube law, you can perhaps spot the problem.
The heat loss that made the real engine somewhat inefficient was hugely
magnified in the model because heat loss depends on surface area and heat
production is proportional to volume—just as in animals.

In trying to create a working model, the ingenious instrument maker
came up with the idea of a separate condenser, which was a groundbreaking
development in steam engine design and a major contributor to the
Industrial Revolution. James Watt—for that was the young man’s name—
became famous, and the scientific unit of power, the watt, is named for him.
All because of the square-cube law.

I don’t know whether the Lilliputians had steam engines, but frankly
that is the least of their worries. I’m afraid there is bad news concerning
their metabolic rates. Gulliver reports the calculation of the Lilliputian
mathematicians that because he is twelve times as big as they are in all



dimensions, he will need 1,724 times as much food as they do. The
reasoning behind this is presumably that because his mass is 123 times
theirs, his energy needs are 123 times theirs as well. This number is actually
1,728 (readers of a certain vintage may have dim memories of learning this
number in school because it’s the number of cubic inches in a cubic foot).
Some editions of Gulliver’s Travels do in fact correct the 1,724 stated in the
text to 1,728. We’ll never know whose error it was originally—the
Lilliputian mathematicians? (Fie! Surely not!) Gulliver’s faulty
recollection? Jonathan Swift’s arithmetic? It could just be a simple printer’s
error. If I had to choose one of these, unfortunately I’d have to plump for
Swift’s arithmetic.

I already mentioned his description of Laputa: exactly circular, with a
diameter of 7,837 yards and an area of ten thousand acres. As I said, this
7,837 may be precise, but it’s not accurate. To be fair to Swift, it’s not a
particularly easy calculation to do by hand—you have to convert acres into
square yards, then divide by  take the square root of that to get the radius
of the circle, and then double it to find the diameter. Thank goodness for the
calculator app on my smartphone. I shall magnanimously forgive Mr. Swift,
even as he caricatures mathematicians by saying that the citizens of Laputa
are so obsessed with mathematical speculations that they don’t look where
they are walking and to prevent injury need to employ servants to hit them
with a bag of pebbles carried for the purpose, to distract them from their
reveries. How silly to imagine that mathematicians can get distracted …
anyway, what was I saying? Ah, yes, even the 1,728 number is not quite
right, because we now know that there is a slightly more complicated
relationship between the size of an animal and the amount of energy it uses.

Warm-blooded animals, like humans and other mammals, lose heat
from their bodies at a rate proportional to their surface area. But animals
use energy on other things too—keeping organs going, pumping blood,
digesting food, and so on, and we might expect the amount of energy
required for that to be approximately related to the mass of the animal. This
means the probable amount of energy needed—the metabolic rate of the
animal—is going to depend on both its surface area and its mass. The mass
m of an animal of a given shape is proportional to the cube of its height, and



the surface area is proportional to the square of its height. So if the
metabolic rate were entirely due to heat loss (surface area), it would depend
on the square of the cube root of height, or m2/3 whereas if it were entirely
due to keeping organs going, it would depend directly on the mass.

A Swiss scientist named Max Kleiber investigated mammals of
different sizes in the 1930s, and he found that, to an impressive degree, the
metabolic rate of a mammal is proportional to its mass m raised to the
power ¾. What this means is that if we know a particular mammal requires
100 calories a day to survive, then an animal twice the mass will require not

 calories but  which is about 168 calories. This rule of thumb is
now known as Kleiber’s law. Current dietary guidelines say that an adult
male, like Gulliver, needs about 2,500 calories a day. The mass of a

Lilliputian mini-Gulliver is just th that of Gulliver. So Kleiber’s law

tells us that mini-Gulliver will need  × 2,500 calories a day. This
works out to a puny 9.3 calories. So far, so good.

But there’s a huge problem. As I mentioned before, in Lilliput
everything is at 1/12 scale, not just the people. The trees, the crops, the
livestock, everything is dollhouse size. But as anyone who has ever been on
a diet knows, the number of calories in a given food is calculated from its
mass. A hundred grams of sugar has twice as many calories as fifty grams
of sugar, sadly. This means that the mathematics of Lilliputian agriculture is
just not going to add up. To see what I mean, let’s use the handy fact that an
apple has approximately one hundred calories. Gulliver could get his calorie
intake, then, from twenty-five apples each day. Now let’s work out how
many mini-apples our mini-Gulliver would need. His little apples are,

again, th the mass of normal apples. This means that each one

contains just  calories, which is a tiny 0.058 calories. The
consequences of this are serious. To get his required daily calories, mini-



Gulliver would have to eat 161 Lilliputian apples.4 This is more than six
times as many normal apples as Gulliver would have to eat. Mini-Gulliver
would have to spend all day picking and eating apples! Imagine having to
eat twenty-five meals a day—I’m no economist, but I think the farming
industry would struggle to cope, and there might not be much time for the
finer things like culture and waging war over which end to open your eggs.

The final challenge in Lilliput is water. You see, all liquids have surface
tension; it’s what allows things like raindrops and bubbles to form.
Different substances have different amounts of surface tension, but it is an
intrinsic property of a given liquid that, like density, is not affected by scale.
If you immerse any object in water, it will come out covered in a thin film
of water, about half a millimeter thick. This is why we have towels.
Crucially, this half millimeter depends only on the surface tension and
adhesive properties of water and not on the size of the object. If the body
surface area of an average adult is about 1.8 square meters, the weight of
the water you carry out of the bath is about 2 pounds. The average adult
weighs 165 pounds, so 2 pounds added to this is not an issue.

The problem is that for a Lilliputian, their surface area, being an area,
changes with the square of the scaling factor, so because 12 squared is 144,

the weight of water they carry will be th of what we carry, about a
quarter of an ounce. Unfortunately, an adult Lilliputian’s weight depends on
their volume and so varies with the cube of the scaling factor.
Consequently, a Lilliputian will weigh around 1.5 ounces. Suddenly the
water is 14 percent of their weight, which would be like us putting on a 23-
pound coat. Swimming would be a lot more tiring for Lilliputians than it is
for normal-sized humans. I wouldn’t want to be the children in Honey, I
Shrunk the Kids either. They shrink by a factor of 200, which means that
being immersed in water would be fatal to them—they would be
surrounded by a wall of water twice their own body weight and would
drown.

Meanwhile, a Lilliputian getting caught in the rain would be in for quite
an ordeal. The size of raindrops is determined by the surface tension of
water, so it would have to be the same in Lilliput. This means each raindrop



would weigh about one-sixth of a percent of the Lilliputian’s weight. This
doesn’t sound like much, but it would be like us being pelted with
baseballs. It’s a racing certainty that fairies, pixies, and elves (if they are
small ones rather than the man-sized elves of Middle-earth) will do all they
can to avoid the rain.

I can’t quite bear to leave these considerations without mentioning the
drinking habits of hobbits. In Middle-earth, the imagined world of J.R.R.
Tolkien’s Lord of the Rings trilogy, hobbits like Bilbo Baggins are around
three feet six inches tall, essentially like humans except for their furry feet
and slightly pointed ears. One scene in Peter Jackson’s film of Book 1 of
the trilogy has a hobbit excitedly discovering that beer in the human pub in
the village of Bree comes in vast measures called “pints.” Now, hobbits
aren’t that much smaller than humans, so we might think the effect of a pint
wouldn’t be that much different. But given that the effect of alcohol is
roughly proportional to your volume, we have to cube the scaling factor.
When you do this, you find that a pint of beer will have the same effect on a
hobbit as five pints will have on a man. They had better stick to halves!

In the first part of this book, we uncovered the hidden mathematical
structures of literature. In this second part, mathematics has become visible
in the words and allusions of writing. We’ve seen that even the numbers we
encounter in stories have a symbolism deeply rooted in mathematics. There
are good mathematical reasons why there are three wishes, seven dwarfs,
forty thieves, and a thousand and one Arabian nights. Mathematical ideas
themselves are crafted into wonderful metaphors by writers like George
Eliot and Herman Melville. Actual calculations can also be pressed into
service. James Joyce uses them both to reveal and to obscure. Leopold
Bloom’s budget is telling in its omissions, while the dizzying permutations
of Dedalus’s and Bloom’s relative ages appear to make sense but do not.

In this chapter, we’ve seen how authors like Jonathan Swift and Voltaire
use calculations in a different way, humorously using our instinctive trust in
the “truth” of mathematics to lend an air of authority to their fantastical
stories. We’ve kept the receipts, though, and that lets us poke a little



affectionate fun, in our turn, at the prospect of rampaging giant insect
hordes or miniature civilizations.

Mathematical symbolism and metaphor are present in every kind of
literature, from the humblest of fairy tales right through to War and Peace.
They are right there waiting to be discovered—and now you have the tools
to find them.



Part III

Mathematics Becomes the Story
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Taking an Idea for a Walk

Mathematical Concepts So Compelling They Escape into Fiction

Every so often, a mathematical idea grabs the public imagination. In the
twentieth century, mathematical hot topics such as fractals and
cryptography were key plot features in novels, though not always in an
entirely accurate manner. (If anyone feels like setting up a Bad Math
Award, there are plenty of contenders.) In the nineteenth century, the
mysterious new “fourth dimension” was all the rage. Flatland (1884), a
bestselling book by Edwin Abbott, used the ideas of two, three, and four
dimensions to satirize Victorian values, and it has spawned numerous spin-
offs and sequels since then. The protagonist of Flatland is a living,
breathing embodiment of geometry, in the form of a square, and much of
the plot revolves around the mathematics of dimensionality.

This final part of this book shows mathematics coming into the
spotlight. We have built the foundation of our house of literature with
mathematical structures, we have furnished it with mathematical metaphors,
and now we’re ready to populate our house with mathematical characters,
ideas, and people. In this chapter, I’ll show you how the mathematics that
made it out of the textbooks and into the popular consciousness has been
treated in fiction, not just with occasional number-related metaphors (or
“figures of speech,” as these should clearly be called) but as an integral part
of the narrative.



We’ll take a tour around Flatland and meet its curious polygonal
inhabitants, and then we’ll see how other authors have plotted a course to
higher dimensions.

Edwin Abbott Abbott was a teacher, clergyman, and author. For most of his
career he was headmaster of the City of London School, a boys’ school that
he had himself attended as a child. Some years after Abbott’s time, a sister
school was set up, the City of London School for Girls, which I attended
between 1988 and 1993. Another link between us is that one of the people
who taught Abbott mathematics was Robert Pitt Edkins, who from 1848 to
1854 was Gresham Professor of Geometry and thus my academic ancestor.
Nothing would please me more than learning that, like him, I may have
inspired future mathematical fiction writers.

Edwin Abbott was well known in his time not only as a brilliant teacher
and headmaster but also as a respected thinker and author. He wrote more
than fifty books on theology and education, in particular the teaching of
English and Latin, including such titles as Handbook of English Grammar
(1873), Oxford Sermons Preached Before the University (1879), and that
racy 1893 page-turner Dux Latinus: A First Latin Construing Book. In such
company, 1884’s Flatland: A Romance of Many Dimensions is rather a
surprise.

The events of Flatland are narrated by “A. Square,” a respectable
member of Flatland society. His universe is entirely two-dimensional, a flat
plane whose inhabitants are geometric figures.

In the first part of the book, A. Square describes Flatland, satirizing
some of the worst aspects of Victorian society—the rigid class structure, the
restrictive perception and treatment of women, and religious dogmatism in
the ruling priestly class. In Flatland, the men are all polygons (triangles,
squares, and so forth), while women are lines. They are one-dimensional
beings in a two-dimensional world, incapable by their very nature of any
kind of equality with men. (I must stress that this absolutely was not
Abbott’s view. He was a strong proponent of improving access to education
for girls and women, and he was in contact with several prominent women



who also supported this cause, including George Eliot.) Moving around
Flatland, a woman viewed end-on is just a point—almost indiscernible.
This can be very dangerous to the men—you can be impaled accidentally
by a careless woman, and of course they are all careless. For this reason,
whenever women leave their houses, they must maintain a constant “peace
cry” to warn others of their presence. Some regions also insist that women
constantly wiggle their back ends from side to side, or that they be
accompanied by a man if leaving the house. Houses in Flatland are regular
pentagons, because square houses have sharp right-angled corners that pose
a health risk to anyone accidentally bumping into them. There are separate
male and female entrances, also for safety reasons: we don’t want any men
to be accidentally eviscerated by their wives coming out of the house as
they are going in. Here is a diagram from the book, showing a typical
house:

Note the dreadful pun—the sides RO and OF together make the ROOF.
For the male population of Flatland, regularity and symmetry are all-

important markers of status. At the bottom of the pile are the poor
benighted isosceles triangles. These degenerates can do damage with their
sharp angles, and thus the more obedient among them can be used as
soldiers. However, there is some chance of upward mobility: “After a long
series of military successes, or diligent and skillful labours, it is generally
found that the more intelligent among the Artisan and Soldier classes
manifest a slight increase of their third side or base, and a shrinkage of the
other two sides.” This increase of angle happens at the rate of about half a



degree every generation, as long as everyone continues to behave himself.
As the apex angle increases, the isosceles triangle becomes closer and
closer to being equilateral, with all the angles equal at 60° and all the sides
the same length. In Square’s own ancestry, progress was set back five
generations after one poor man with an almost equilateral angle of 59.5°
accidentally “transfixed” a polygon “through the diagonal.” His sins were
visited upon his sons, who were born with apex angles of just 58°

Happily, Square’s father was pronounced Equilateral. When this goal of
60° is reached, “the condition of serfdom is quitted, and the freeman enters
the class of Regulars.” From that point on, every son is a regular polygon
with one more side than his father. (A “regular” polygon is one whose
angles are all equal and whose sides are all the same length, so an
equilateral triangle is a “regular triangle.” A regular quadrilateral is better
known as a square, and then we speak of regular pentagons, regular
hexagons, and so on.) Our protagonist, A. Square, is a square because his
father was an equilateral triangle. His sons are regular pentagons and his
grandsons are regular hexagons. They are thus of a higher social class and
therefore his superiors—in Flatland the commandment would be not “honor
thy father and mother,” but “honor thy sons and grandsons.” It makes child-
rearing somewhat challenging, I imagine. At the very apex (so to speak) of
society are the polygons with so many sides that they are almost
indistinguishable from, and are referred to as, circles. Nobody would be so
ill-bred as to actually attempt to count the sides of these noblemen. “It is
always assumed, by courtesy, that the Chief Circle has ten thousand sides.”

I expect you have several questions at this point. How is it, for example,
that given the increase in sides or angles of each generation, not everyone is
by now a circle? The answer is that fertility seems to lessen as your social
standing increases. The underclasses are constantly reproducing (but only
rarely creating equilateral triangles), while circles may have one child at
best. Regularity may also be disrupted by moral failings, and some children
of “good” families may be born with many sides that are slightly irregular.
This flaw can sometimes be corrected by expensive and painful treatment at
the Circular Neo-Therapeutic Gymnasium. Satirizing a belief common in
Victorian England that the poor can’t help being stupid and venal because



it’s in their nature, Square asks, rhetorically, “Why blame the lying, thievish
Isosceles when you ought rather to deplore the incurable inequality of his
sides?” Should we forgive them their sins, then? Of course not. “In dealing
with an Isosceles, if the rascal pleads that he cannot help stealing because of
his unevenness, you reply that for that very reason, because he cannot help
being a nuisance to his neighbours, you, the Magistrate, cannot help
sentencing him to be [executed]—and there’s an end of the matter.”

Given the vital importance of social rank in Flatland, it is imperative to
know, when you meet someone, what shape he is. In our three-dimensional
world, which Square calls Spaceland, we have no trouble distinguishing a
square from a triangle, because we can look at it from above and see its
angles and count its sides. But if you exist on a flat plane, this is impossible.
Every polygon looks like a line. Abbott/Square gives us a picture to
illustrate the problem, comparing the view of a triangle and of a pentagon.
“It will be obvious,” says Square, “to every child in Spaceland who has
touched the threshold of Geometrical Studies, that, if I can bring my eye so
that its glance may bisect an angle (A) of the approaching stranger, my view
will lie as it were evenly between his two sides that are next to me (viz. CA
and AB), so that I shall contemplate the two impartially, and both will
appear of the same size.” These two shapes appear indistinguishable to the
two-dimensional eye.

Fortunately, the atmosphere in Flatland is slightly foggy. This means
that objects in the distance are dimmer than objects nearby, and we can tell



triangle and pentagon apart because the triangle’s edges recede more
rapidly into the distance than those of the pentagon. Through years of
careful training, one can learn to decipher these slight gradations of light,
and thus avoid the shame of accidentally addressing a pentagon as though
he were a triangle. Only triangles and squares can appear to be women (the
horror), and only then from certain angles, because all higher polygons have
at least two sides visible from any viewpoint. This analysis by light assumes
regularity—that all the angles of a given figure are the same. Anyone born
with significant irregularity, therefore, is an existential threat to society.
Imagine seeing an angle of 120° approaching and, assuming you were
addressing a hexagon, inviting the gentleman into your house, only to make
the appalling discovery that you had been associating with an irregular
quadrilateral! Such aberrations must be destroyed at birth.

Square also mentions that color has been banned since an unfortunate
incident in which a low Isosceles managed to paint himself in such a way
that he was mistaken for a Dodecagon—a twelve-sided polygon—and
managed to inveigle his way into the affections of a nobleman’s daughter. It
was only after their marriage that the deception was detected—of course the
girl had no recourse but suicide. Part I of Flatland concludes with a
discussion of how women are treated in Flatland, with Square arguing
against their exclusion from education. In the final sentence, he makes a
“humble appeal to the highest Authorities to reconsider the regulations of
Female education,” a plea that Abbott himself made in Spaceland on many
occasions.

Part II of the book kicks into a higher gear, geometrically speaking.
Square is visited by a stranger named Sphere who takes him on a spiritual
journey of enlightenment in which he discovers that there are worlds with
more than two dimensions. Abbott wants to show us Spacelanders that we
are as stuck in our ignorance about four dimensions as Square is about
three.

Before Sphere makes his entrance, Square dreams of Lineland, a one-
dimensional world consisting of a single line. Men here are line segments,
and women are points. Since it’s impossible to pass one another within the
confines of a line, the creatures of this world spend their whole lives next to



the same neighbors. They see only points, so the social hierarchy is
determined by length. The Monarch of Lineland is the longest line, at 6.457
inches. Since everyone’s relative position in Lineland is unchangeable,
reproduction certainly cannot involve proximity. It is done, apparently, by
song. A line having two endpoints, the natural order in that world is that
each man has two wives; when the group reproduces, one wife has twin
girls, the other has a single boy. “How else,” says the Monarch, “could the
balance of the Sexes be maintained, if two girls were not born for every
boy? Would you ignore the very alphabet of nature?”

Square tries to explain to the ignorant Monarch that there is a second
dimension—left and right as well as north and south. He first demonstrates
this by saying that he can see who all of the Monarch’s neighbors are, and
describing them. This having failed to convince, Square then “walks
through” Lineland; that is, he passes his body across the line. From the
Monarch’s point of view, the disconcerting effect is of a line popping in and
out of existence. In another dream, Square goes to Pointland, which consists
of a single point. The King of Pointland is himself the entire universe that
he rules. He cannot even conceive of the existence of other beings, so it is
impossible to converse with him—he believes that Square’s voice must
simply be another aspect of his own thoughts.

We are introduced to Sphere on an evening when Square has just been
chiding his Hexagon grandson for asking silly questions about geometry.
Square has explained that 32, or 9, represents the number of square inches in
a square whose side is three inches long. So the square of a number has a
geometrical, not just an algebraical, meaning. The young Hexagon says that
this must mean that 33 must also have a geometrical meaning. Nonsense,
says Square. And it’s at this point that Sphere appears. “The boy is not a
fool,” he says. There is a meaning, and a very natural one. Square is baffled
as to how this stranger has appeared in his house. Because the intersection
of a sphere with a plane is a circle, Square assumes he is talking to an
eminent member of society and is extremely respectful. Sphere starts to
explain that he is not just a circle but a “circle of circles.” He passes upward
through the plane of Flatland just as Square had passed through Lineland.



This time, Square sees a circle growing larger and larger, then decreasing
again until it completely vanishes.

But Square cannot conceive of this “up” and “down,” so Sphere resorts
to analogy: “We begin with a single Point, which—being itself a Point—has
only one terminal Point. One Point produces a Line with two terminal
Points. One Line produces a Square with four terminal points.… 1, 2, 4 are
evidently in Geometrical Progression. What is the next number?” Square
can confidently answer that the next number is eight. Sphere replies,
“Exactly. The one Square produces a something-which-you-do-not-as-yet-
know-the-name-for-but-which-we-call-a-Cube with eight terminal Points.”
Sphere continues his explanation: if we define the “sides” of a shape as the
boundary parts that have dimension one less than the shape, then a Point
has 0 sides, a Line has 2 “sides” (the two extremal points), a Square has 4
sides, so following the pattern 0, 2, 4 … the “Cube” would have 6 “sides,”
and indeed cubes do have six square faces.

When Square still fails to grasp what is going on, Sphere finally takes
him outside Flatland, to see it from above. This is, at last, what converts
Square to the “Gospel of Three Dimensions.” Having had his mind opened
up, he asks Sphere to take him to the Land of Four Dimensions. Just as
Sphere can see the inside of Square, Square asks to be able to go to the
fourth dimension and see the inside of Sphere. Surely there is a fourth
dimension, where, following the patterns earlier, we can extend a cube to
form a shape with 16 terminal points and 8 sides? (Nowadays, the four-
dimensional cube that Square imagines is typically called a hypercube, or
sometimes a tesseract—the derivation may be from the Latin tessera,
“cube,” because it is a shape made of cubes.1) And why not a fifth, sixth,
seventh, eighth dimension? Sphere, though, absolutely rejects such heretical
ideas. He returns Square to Flatland, where he is imprisoned for preaching



the doctrine of higher dimensions. Just as the inhabitants of Pointland,
Lineland, and Flatland have been hubristic enough to assume that their
worlds constitute the whole universe, the lesson for us is that we should not
be, like Sphere, similarly arrogant. We should embrace the idea of the
fourth dimension and beyond.

Why would someone like Edwin Abbott write a book explaining the fourth
dimension? I have said that it was all the rage in the late 1800s. To
understand why, we need a brief diversion into mathematical history.

The word “geometry” comes from geo, “earth,” and metros,
“measurement.” If you want to know the size of a field, or to divide up a
parcel of land into four equal parts to settle an inheritance, you need
geometry, and in particular you need the geometry of the plane, because
even though the surface of the earth is curved, that curvature over small
distances is so slight as to be irrelevant in calculations. Surveying
techniques like triangulation, in which you have two angles and one side of
a triangle and can deduce the other angle and sides, can use this
“Euclidean” geometry very effectively. Later, the geometry of three
dimensions came along, and for astronomical uses, the geometry of spheres
was needed. But the concept of a fourth dimension was never discussed.

As can sometimes happen in mathematics, one of the things that made
the breakthrough possible was what seemed like a fairly small innovation in
notation. Until much later than you might think, what we call algebra was
all written out in words. You might say something like “The square, added
to four times the number, is equal to twelve. Find the number.” Nowadays
we would write this as the equation  and we could solve it using the
quadratic formula or by factorizing. Amazingly, we can actually pinpoint
the very first written equation, because by definition an equation is of the
form “something = something else,” and the equals sign was invented by
Robert Recorde, a Welshman working in Tudor England. The equals sign
was one of many notational inventions of his, and he decided to represent it
as a pair of parallel lines because “noe two things can be more equall.” The



world’s first equation, by the way, appearing in Recorde’s 1557 book, The
Whetstone of Witte, is  Can you solve it?

For a long time, different letters were used for a thing, its square, and its

cube. An expression we would write as  might be written instead as Q
+ 4N (where N is the number and Q is its square). The notation just didn’t
allow for  to be “naturally” extended to x4, x5, and so on, much less
the even more general xn. It was Descartes who introduced the exponential
notation we use today, in his book La Géométrie (1637), which made
beautiful links between geometry and algebra. The book also established
our modern convention of using letters from the end of the alphabet, like x,
y, and z, for variables, and letters from the beginning of the alphabet, like a,
b, and c, for constants. So if you ever wondered why we mathematicians are
so x-obsessed, blame Descartes.

Meanwhile, other kinds of geometry than our Euclidean geometry of the
plane were coming ever closer to being discovered. To paraphrase
Hemingway’s description of bankruptcy, it happened gradually, then
suddenly. As we discussed in Chapter 3, concerted attempts to prove the
famous parallel postulate (that given a line, and a point not on that line,
there is exactly one line through that point parallel to the given line) had
failed, and eventually people realized that it was completely independent of
the other rules of Euclidean geometry (such as the axiom that every pair of
points can be joined by a line). During the nineteenth century,
mathematicians found that in fact there are geometries in which the parallel
postulate does not hold true. This discovery opened a Pandora’s box of new
ideas in mathematics.2

At the same time, physicists were starting to investigate things like
electricity and discovering the existence of electromagnetic fields, in which
every point in three-dimensional space has not only its three spatial
coordinates but additional information, or coordinates, such as the
magnitude and direction of the field. This means that each point may have
four, five, six, or even more numbers associated with it, and the
accompanying mathematics treats these numbers in the same way as the
“real” spatial dimensions. Going into higher dimensions, especially with the



increasing sophistication of algebra, became the next big thing. Nowadays,
we are quite comfortable with phrases like “multidimensional analysis,”
which really just means many numbers associated with each data point. The
“dimensions” here are simply the different quantities we are measuring. For
instance, in a mathematical model of the earth’s climate, each point in the
atmosphere will have its three spatial coordinates plus data like
temperature, pressure, and wind speed and direction—that’s seven
dimensions already.

Pure mathematicians don’t really mind if a thing doesn’t “exist”—the
idea of a seventy-four-dimensional hyperpyramid is just interesting in its
own right. What would that mean? What even is such a pyramid? I bet it
must be a seventy-three-dimensional hypercube all of whose vertices are
joined to a single additional vertex in the seventy-fourth dimension. And
then I want to work out how many total vertices there would be and how
many edges and faces and hypercubes, and a general formula for an n-
dimensional hyperpyramid, and so on. If you ever find a stray
mathematician in the wild and decide to adopt them, just be sure to give
them a lot of paper and pencils, and they will be quite happy. However,
even though “being useful” and “existing” are not top priorities for the
beautiful imagined worlds of pure mathematics, I will say that not long after
Flatland’s publication came the formulation of four-dimensional space-
time, of which time is the fourth dimension, along with the three standard
dimensions of space. This is the perfect framework for Einstein’s theory of
relativity. Much more recently, physicists have been postulating an even
higher-dimensional universe. If the string theorists are to be believed, the
universe may in fact be ten-dimensional, or even twenty-three-dimensional.
So all this fun mathematics does have proper scientific uses, if you like that
sort of thing.

In Flatland, the fourth dimension is conceived by A. Square as being
another spatial dimension.3 That’s also the interpretation used by authors
positing it as an explanation for ghosts and other supernatural things, an
idea ridiculed by Oscar Wilde in his 1887 haunted house parody, “The
Canterville Ghost”: “There was evidently no time to be lost, so, hastily
adopting the Fourth Dimension of Space as a means of escape, [the ghost]



vanished through the wainscoting, and the house became quite quiet.” We
three-dimensional beings can move about at will over a plane, stepping over
the lines forming the walls of any building and appearing to change shape
by altering which part of ourselves intersects with the plane. Sphere could
break into any safe in Flatland and steal the contents, and a four-
dimensional being could perform similar feats in our three-dimensional
world. It’s been proved, for example, that every knot, however complicated,
can be unraveled in four dimensions. I don’t know how hyperbeings
manage for shoelaces, poor things.

Several authors have explored these ideas. In the 1928 short story “The
Appendix and the Spectacles” by Miles J. Breuer, a Dr. Bookstrom sets
himself up as a surgeon who can perform operations without the use of a
scalpel, indeed without making any incisions at all. It turns out that he is a
Ph.D. in mathematics, not a medical doctor. His studies of the fourth
dimension, which is described as being at right angles to the usual three
dimensions, have allowed him to develop a way to move the patient “along
the fourth dimension,” and then (for example) remove their appendix
without making any cut at all.

A more chilling depiction of four-dimensional beings is given in Ford
Madox Ford and Joseph Conrad’s 1901 novel, The Inheritors. It begins
when the narrator, Arthur, meets a woman who claims to come from the
fourth dimension, “an inhabited plane—invisible to our eyes, but
omnipresent.” He is initially dismissive, but he comes to believe, or half
believe at least:

I heard the Dimensionists described: a race clear-sighted, eminently
practical, incredible; with no ideals, prejudices, or remorse; with no
feeling for art and no reverence for life; free from any ethical
tradition; callous to pain, weakness, suffering and death.… The
Dimensionists were to come in swarms, to materialise, to devour
like locusts, to be all the more irresistible because indistinguishable.
There would be no fighting, no killing; we—our whole social system
—would break as a beam snaps, because we were worm-eaten with
altruism and ethics.



The Dimensionists do indeed take over. They are inexorable. That
Arthur elsewhere categorizes these cold, callous, amoral people as part of a
“mathematical monstrosity” is symptomatic of a particular kind of anti-
math sentiment: that numbers and equations are antithetical to all the things
that make life worth living: love, joy, kindness, art. Mathematicians,
according to this creed, are mere calculating machines for whom human
emotions are a tedious distraction. I refute that proposition, naturally. This
book forms part of the case for the defense.

In the stories we’ve looked at so far, the fourth dimension has been an extra
dimension of space. But there’s an alternative outlook. In À la recherche du
temps perdu, Marcel Proust writes that a particular church is “for me
something entirely different from the rest of the town; an edifice occupying,
so to speak, a four-dimensional space—the name of the fourth being time.”
We are all moving along the axis of time at a rate of one second per second.
If you could work out how to change this rate, then you would have
invented a time machine.

Many novels feature time travel, but the grandfather of them all is H. G.
Wells’s The Time Machine. He had explored the idea of time and the fourth
dimension in short stories like “The Chronic Argonauts,” but it was with
The Time Machine that the idea really took flight. The Time Traveller (as
the character in that novel is known) explains matters to his friends by
analogy: “You know of course that a mathematical line, a line of thickness
nil, has no real existence. They taught you that? Neither has a mathematical
plane. These things are mere abstractions.” By the same token, he says, a
cube having only length, breadth, and thickness cannot have a real existence
—an “instantaneous cube” cannot really exist. “Clearly,” he continues, “any
real body must have extension in four directions: it must have Length,
Breadth, Thickness, and—Duration.”

In this interpretation, we are all four-dimensional beings. What I see of
you at any moment is what you might call a temporal cross section. I see
you at a particular location and at a particular time. As the Time Traveller
puts it, “Here is a portrait of a man at eight years old, another at fifteen,



another at seventeen, another at twenty-three, and so on. All these are
evidently sections, as it were, Three-Dimensional representations of his
Four-Dimensioned being, which is a fixed and unalterable thing.” What the
Time Traveller has done is to build a machine to allow him to move freely
through time, just as we have built machines to allow us to escape gravity
and move freely in the vertical direction of space.

For an entirely different account of space-time, let’s meet Billy Pilgrim.
In Kurt Vonnegut’s novel Slaughterhouse-Five, Billy becomes “unstuck in
time” during the Second World War. He moves constantly between different
parts of his own life—he has seen his birth and death many times, and all
the events between. Into this temporal chaos comes an alien race called the
Tralfamadorians, who abduct Billy on the night of his daughter’s wedding.
They can see in four dimensions and try to help Billy understand what is
happening to him. They have a very fatalistic attitude to life and death
because, on Tralfamadore,

When a person dies he only appears to die. He is still very much
alive in the past, so it is silly for people to cry at his funeral. All
moments, past, present, and future, always have existed, always will
exist. The Tralfamadorians can look at all the different moments just
the way we can look at a stretch of the Rocky Mountains, for
instance.

Billy adopts their fatalism as a coping mechanism—when he hears that
someone is dead, he simply shrugs and says what Tralfamadorians say
about dead people: “So it goes.” Our loved ones still exist, they are just
elsewhen.

For such an unassuming little book, Flatland has cast a long shadow. Its
ideas have been explored by several authors. In 1957, Dionys Burger wrote
a sequel, Sphereland, in which a surveyor discovers a triangle whose angles
sum to more than 180°. Working with Square’s grandson Hexagon, who is
now a trained mathematician, they realize the implication: Flatland is not a



plane. They are in fact living on the surface of a very large sphere.4

Naturally this does not go down well with the hidebound establishment.
Flatland does not concern itself with the practicalities of two-

dimensional life. Obviously it’s impossible for two-dimensional beings to
exist … or is it? In 1984, A. K. Dewdney’s The Planiverse attempted to
answer just that question. The Planiverse of his conception is a two-
dimensional universe, not a flat plane within a three-dimensional world.
Such a universe would have to have different physical laws, and the book
does an amazing job of working out some of the implications. The setup for
the book is that Dewdney and a group of students create a computer
simulation, 2DWORLD, of a putative two-dimensional universe. But one
day, for reasons that are obscure, they start to be able to see another world
that they didn’t create, and to communicate with a being called Yendred,
who lives on a planet called Arde. The Ardean world is circular, and the
beings live on its surface—their two dimensions are east/west and up/down.
The book is presented as if it is recounting real events, but there are lots of
jokey references to give the game away. Among these are the fact that
“Yendred” is suspiciously like “Dewdney” backward, and that one of the
students in the research project is named Alice Little, which is surely a
reference to the Alice Liddell for whom Alice’s Adventures in Wonderland
was written. (In the 2001 reissue of the book, Dewdney claims that a lot of
people thought the original account was real, but this claim itself may have
been a joke.)

Once you start thinking about how a two-dimensional civilization could
work, the problems quickly mount. If you try to build a house on Arde,
nobody can walk around it, because they are trapped in their two
dimensions of up/down and east/west. So all buildings are underground,
with “swing staircases”—staircases that lift up and down to let people move
past doorways. A supporting wall cannot have a doorway in it, because
every time that door was opened the house would collapse. And how is a
building to be constructed? “Nails are useless, since they part any piece of
material they are driven through. Saws are impossible. A beam could only
be cut with something like a hammer and chisel.” The solution is to
construct buildings mainly with very strong glue. Meanwhile, the basic



biological functions are challenging to imagine. A digestive tract that ran
through the body would break the body into two parts. Tubes are
impossible, and Ardeans would have to have exoskeletons, because an
internal skeleton would fill the body with impassable barriers, so preventing
the flow of bodily fluids. The solution for the passage of those fluids is
“zipper organs” that open and close to allow bubbles of material to pass
through the body. I am awed by the ingenuity of The Planiverse—if you
like getting into technical details, it’s definitely recommended. Dewdney
even includes, in an appendix to the book, explanations of how the Ardeans
could create machines like steam engines and internal combustion engines.
It’s quite astonishing what is possible.

The Planiverse opens up new realms of invention because it doesn’t
dismiss from the outset the idea that a two-dimensional universe can exist.
That same outlook is fundamental to the most creative mathematical
thinking. We’ve seen how in the nineteenth century we learned, with the
help of Flatland and other books, to love the fourth dimension. Nowadays
we are quite happy talking about any number of dimensions: one, two,
three, four, five … you can go as high as you like. But imagine that
Square’s grandson had asked if you could have dimensions between these
numbers. Of course not, he would have replied—the very suggestion of
something one-and-a-half-dimensional is preposterous. And nineteenth-
century Spacelanders would have agreed. But in the twentieth century a
new idea blew these preconceptions out of the water. It was an idea that,
toward the end of the century, gained a huge amount of traction in the
public imagination. And it appears in one of the most popular novels of the
1990s. That’s where we’ll begin the story.

Michael Crichton’s Jurassic Park is the story of a reckless biotech company
that manages to genetically engineer dinosaurs using DNA extracted from
the blood of prehistoric mosquitoes that have been trapped in amber. Being
the bad guys, they decide that the way to use this amazing discovery is not
to increase scientific understanding of these marvelous creatures but rather
to open a dinosaur theme park, on a small island off the coast of Costa Rica.



Naturally, they are certain that nothing can go wrong. Readers of a nervous
disposition should look away now, because it’s my solemn duty to inform
you that there is a chance that if you visit, you will get eaten by a
velociraptor. The park’s owners arrogantly believe, because they have
designed it and set it up, that they have full control over everything that
happens on the island. Seemingly small mishaps or unexpected events are
treated as just that—minor glitches to deal with and move on from. But
nature is not a piece of clockwork. Tiny changes can become magnified
until the entire system becomes unpredictably chaotic.

Crichton chooses two mathematical ways to emphasize this theme of his
novel. First, there is a character, Dr. Ian Malcolm, who is an expert in chaos
theory. He and two paleontologists are invited to the island as consultants.
Malcolm describes how even small fluctuations in a system can lead to
huge unpredictable events down the line. This is the idea encapsulated by
the famous “butterfly effect.” When predicting the weather, tiny changes
(like the minuscule effect on air currents of a butterfly flapping its wings)
have cumulative effects that can eventually mean the difference between
clear skies and a hurricane. Weather systems are extremely complex, and
computer simulations that predict the weather are rarely accurate beyond a
few days out. The reason is that, however precisely you input your initial
data (temperature, wind speeds, and so on), there will always be a tiny
difference between the input and the exact real information. You might
input 4.56 when the real measurement is 4.56112 … You cannot enter
infinitely many digits, so what you put into the algorithm is always
rounded. Absolute precision is impossible.

For some mathematical models, this doesn’t matter. For instance,
suppose you want to know where an object will end up 24 hours from now,
based on your measurement of its initial position. If you know it is moving
at 100 miles per hour, and you are off in its initial position by 1 mile, then
the object will move 2,400 miles, and you’ll still be off by 1 mile in your
prediction of its final position. However much time passes, your prediction
will remain just 1 mile out. In some sense, you have control over the error.
But suppose now that what you are measuring is not its initial position but
its initial speed, and you want to know where it will be 24 hours from now.



If you get the speed out by 1 mile per hour, so that in fact the object is
moving at 101 miles per hour, not 100, then each hour will increase the
inaccuracy of the prediction so that after 24 hours your prediction of its
position will be not 1 mile out, but 24 miles. That’s a 1 percent error, and
the error will double every day.

It’s even worse if the error is with the acceleration. If you make an error
of just 1 mile per hour in your measurement of the object’s acceleration, so
that instead of moving at a constant speed of 100 miles per hour its speed is
slowly increasing by 1 mile per hour, then guess how far out your
prediction of its position will be, just one day later, even if you get the
starting position and speed exactly right? It’s 288 miles, well over a 10
percent error in just one day. This same error over the course of a week
would lead you to be off by 14,112 miles. Which is pretty bad, given that
the distance from the North Pole to the South Pole is only 12,440 miles.
The object could be more or less anywhere on Earth’s surface at this point.
Small initial discrepancies can spiral out of control, which is why when
navigating we perform regular course corrections.

In Jurassic Park, the mathematician Dr. Malcolm is there to explain this
issue in words, but the book also gives us a visual clue to what’s happening.
At the start of each section, a curious design appears, which changes and
grows as the story develops, over seven “iterations.” The “first iteration”
looks like this:

It’s a fairly simple design made up of straight lines at right angles.
Here’s the second iteration:



The shape that is being built up has a very simple construction rule, and
you can try it yourself. Go and get a piece of paper and cut a long thin strip
off it. Now bend that strip in half and unfold it, setting it on its edge, so the
bend makes a right angle. You’ll see that the fold you created has turned the
straight strip into an L shape.

This is the first step. Now do it again. Fold it back up, then fold it in
half again, then unfold. It’s a slightly more complicated pattern now, but
still made of straight lines and right-angle bends.



If you keep going with this process, here’s the outcome after three, four,
and five folds:

If you look at the middle picture, you’ll see that the patterns of left
bends and right bends are precisely those of the “first iteration.” And the
picture on the right, which comes from five folds, is the “second iteration.”
Continuing with this very simple folding game leads to the developing
shape. It doesn’t take long before the pictures become very complicated,
and it gets increasingly difficult to guess whether, when the paper is
unfolded, the next bend in the paper will be to the left or to the right. By the
final section of Jurassic Park, when things on the island have reached a
breaking point, what started as a simple design has evolved into a
fearsomely complicated diagram. We could in principle carry on the process
indefinitely, with the eventual outcome looking like an intricate curved
shape, some parts resembling other parts at different scales. Here are the
third, fourth, and fifth “iterations”:



There has been a teeny bit of cheating here on the part of the illustrator
of Jurassic Park, because a few steps have been missed. We already jumped
straight to four folds to get the first iteration. That’s fair enough, because
the first few steps really aren’t very promising. The second iteration
corresponds to five folds, and the third to six folds. But in programming the
next few folds, I realized that the fourth iteration, which should correspond
to seven folds, actually corresponds to eight. The fifth iteration arises from
ten folds, the sixth is from twelve, and the seventh is probably from
fourteen, though by the time we get to that stage, it’s hard to detect the
individual lines because the resolution is not good enough. Here are my
versions of the sixth and seventh iterations:

This shape was discovered by NASA physicist John Heighway and
christened the Heighway dragon by his colleagues William Harter and
Bruce Banks, who, together with Heighway, were the first to explore its
properties. Nowadays it’s usually simply called the dragon curve. It entered
the popular consciousness in 1967, when it appeared in Martin Gardner’s
Mathematical Games column in Scientific American, illustrated with a
diagram something like this one:



He wrote, “The curve vaguely resembles a sea dragon paddling to the
left with clawed feet, his curved snout and coiled tail just above an
imaginary waterline.” Rather unfortunately, the resemblance to dragons is
weaker in the versions shown in Jurassic Park, because they are shown
upside down compared to the diagram given in Scientific American. They
are, as Harter joked, dead dragons.

The dragon curve is an example of what’s known as a fractal—a shape
that is produced by a repeated, or iterative, process continued indefinitely.
Like the number  we can never produce them perfectly, because we
cannot in real life complete infinitely many steps. It’s hard, by hand, to
carry out even a few iterations. I didn’t produce the dragon curve pictures
by folding paper. There’s an alternative way to do it, which is a simple
repeated process that can be explained to a computer. At each stage, you
replace every straight line by a bent line, alternating bending left and right.
You can see what I mean if I show you it happening—this is step 3 moving
to step 4, and I’ve kept the lines from step 3 as dotted lines—each of them
has been replaced by a bent line. I’ve shown an arrow in the first step,
starting at the top, where we replace the first line with a left bend:

Michael Crichton found the dragon curve to be a compelling illustration
of the fact that huge and unpredictable complexity can emerge from even
the simplest starting points—and it gets bonus points for its appropriately
reptilian name. In Jurassic Park, the exploration of ideas around chaos and
complexity is interesting and worthwhile. Is this literature? I say yes. Don’t
get me wrong, some of the writing is rather “He pulled up the schematics
from the mainframe and punched the coordinates into the console,” but it’s
still a damn good read.



The use of fractals in a book like Jurassic Park is an indication of their
reach in the popular culture of the time. At the turn of the 1990s, when the
book appeared, fractals were having quite a moment. Fractal art, inspired by
the famous Mandelbrot set (named for the mathematician Benoit
Mandelbrot, who coined the term “fractal”), was appearing on dorm room
posters, magazine covers, and T-shirts. Literature caught on to the trend too.
John Updike’s 1986 novel, Roger’s Version, features a computer scientist,
Dale, repeatedly zooming in on computer-generated fractal structures to
seek the hand of God. Tom Stoppard’s wonderful 1993 play, Arcadia,
incorporates fractals along with several other mathematical ideas—we’ll
have more to say about it in Chapter 10. Why did fractals suddenly take off
like this? The answer is to do with the way they are constructed.

It’s hard to imagine a simpler process than folding a strip of paper, or a
more basic iteration than “replace each straight line with a bent line.” If you
try to draw the dragon curve by hand, it’s quite frustrating because you have
to erase previous steps to add in all the bent lines. But there is a fractal that
I used to enjoy doodling during chemistry classes (sorry, Dr. Vuik) with the
advantage that you don’t need to delete previous steps. You start with a
simple triangle. Then, at each stage, you add a triangle to the middle third
of each straight line. The first three steps look like this:

After infinitely many steps (or at least my approximation of infinity,
which happens to be six) we get this appealing shape, which is called the
Koch snowflake curve:



The Koch curve is one of the oldest fractals to be discovered—it was
described by the Swedish mathematician Helge von Koch in a paper way
back in 1904, long before the word “fractal” was invented (it gets name-
checked in Roger’s Version, incidentally). It’s an unusual fractal in that the
first few hand-drawn steps can give us a good idea of the eventual shape.
But for fractals like the dragon curve and others, we can really start to make
sense of things only after many steps. That’s why the study of fractals didn’t
really take off until we could start using computers to calculate hundreds or
even thousands of iterations, and that’s why they exploded onto the cultural
scene in the late twentieth century.

Where does this word “fractal” come from? Well, think of a square of
side length 1 (1 centimeter or 1 inch, or any other unit, take your pick). If
we multiply the length of the side by 3, we get a square of area 9. In
general, if we multiply the length by x, we multiply the area by x2. The 2 in
x2 comes from the fact that squares are two-dimensional. For a three-
dimensional shape, like a cube of side length 1, trebling the length of each
side gives a cube of volume 27. In general, if we multiply the length by x,
we multiply the volume by x3. So the dimension is 3. (This may remind you
of our discussion of the square-cube law earlier.) In the simplest case,
multiplying the length of a line by x gives a line of length x1, confirming the
fact that lines are one-dimensional. Now, what is the dimension of the Koch
curve? It is easier if we work with just one side of the triangle, so we start
with a line of length 1, then replace the middle third of the line with two
line segments equal in length to the portion removed, making that little
extra triangle, and so on. What happens to the curve if our starting line is
trebled in length? The picture below shows the starting line and the finished
curve in each case:



In the finished curve we now have four copies of the curve that was
made with the original line. So multiplying the line length by 3 had the
effect of multiplying the curve’s length by 4. Since 4 is more than 31 and
less than 32 the dimension of the Koch curve lies between 1 and 2. It is
some fractional quantity, not a whole number. It turns out that the

dimension is roughly 1.26 (because ). Hence the word “fractal”: they
have fractional dimension.

Finding the dimension of the dragon curve is a little more involved, but
it is roughly one-and-a-half-dimensional. So we can, after all, have
dimensions between the whole numbers, an idea that would have seemed as
strange to Edwin Abbott Abbott as the idea of three dimensions was to A.
Square.

That’s all very well, you say. But surely there’s no such thing as a (-1)-
dimensional space, right? The lessons of literature, and of mathematics, tell
us we would be unwise to rule it out.

Although the Koch snowflake was discovered at the very start of the
twentieth century, a deeper exploration of fractal geometry really became
possible, as we’ve seen, only when the technology caught up. Whole new
vistas of geometry were opened up by the invention of computers.
Something exactly analogous happened in the field I want to spend the rest
of this chapter exploring: cryptography. The history of code making and
code breaking is long, and everyone loves a secret code, so it’s no surprise
that they crop up in fiction. But we have to wait until 1843 for a story that
really revolves around cryptography. That was the year that Edgar Allan
Poe won a $100 prize for “The Gold-Bug,” an enjoyable code-cracking
adventure in which the notorious pirate Captain Kidd leaves encrypted
instructions for finding a fabulous hoard of treasure.



Why so late? After all, secret messages have been exchanged for
thousands of years. One instance, dating back to 499 BCE, is recounted by
the ancient Greek historian Herodotus. It seems that Histiaeus, ruler of the
city of Miletus, wanted to send a secret message to his ally Aristagorus
instigating a revolt against the Persians. So he shaved the hair of a
trustworthy slave, tattooed the request onto his head, and waited for the hair
to grow back. Then the slave was sent off to Aristagorus, who could shave
the slave’s head and read the message.

Methods like this, whereby you hide the message rather than put it in
code, are called steganography, from the Greek for “hidden writing.” The
problem is that if this is all you do, then should the message be discovered,
all is lost—assuming the discoverer can read. Until the comparatively
recent past, most people were illiterate, so this was less of an issue. Data
from the United States are available only from about 1870, but in the
United Kingdom, literacy was less than 20 percent until the sixteenth
century; by 1820 this had jumped to nearer 60 percent (this is
unrepresentative of the global picture, though; it’s estimated that worldwide
at this time only 12 percent of people could read or write). When most
people can read, suddenly steganography starts to look insufficient. You
have to start encrypting your secret messages in other ways—and that’s
where cryptography comes in. That tipping point was likely reached in
America around 1800.

Poe himself had a long-standing interest in cryptography—perhaps not
surprising when you consider that a secret code had been, two years before
Poe’s birth, a crucial part of one of the most sensational trials of the
century: that of Aaron Burr for treason. Burr had sent an encrypted message
appearing to state his intention to establish an independent country in parts
of some southern states and Mexico. The recipient of the message, General
Wilkinson, decrypted it and then sent it to the president, Thomas Jefferson.
But during the trial it emerged that Wilkinson had doctored the message to
make himself look innocent. Ultimately, Burr was acquitted.

Public interest in cryptography was high enough in 1839 that when Poe
challenged readers of a Philadelphia magazine to send in their encrypted
messages, he received hundreds of letters. (He later claimed that all the



ciphers had been easily solved, except one that was an obvious hoax.) He
went on to publish a series of articles on “Secret Writing” in 1841, during
his time as editor of Graham’s Magazine. As he points out in these articles,
the exchange of secret messages has been taking place for thousands of
years, using a multitude of techniques. He used two of these techniques in
“The Gold-Bug.”

Poe was a master storyteller. His gothic tales (“The Tell-Tale Heart,”
“The Fall of the House of Usher”) still make us shudder today, and he has a
good claim to have invented detective fiction with “The Murders in the Rue
Morgue.” He was also a successful poet—“The Raven” brought him instant
fame—as well as a brilliant magazine editor and literary critic. It has to be
said that Poe did not pull his punches as a critic. The poet James Russell
Lowell once joked that he “seems sometimes to mistake his phial of
prussic-acid for his inkstand.” Comparing two writers, Cornelius Mathews
and William Ellery Channing, Poe said that “if the former gentleman be not
the very worst poet that ever existed on the face of the earth, it is only
because he is not quite so bad as the latter. To speak algebraically:—Mr. M.
is ex-ecrable, but Mr. C. is x plus 1-ecrable.”

This pun hints tantalizingly at a mathematical inclination, and there’s
further evidence in Poe’s writing. In an essay on poetry, he writes that the
subject is very amenable to analysis: “One tenth of it, possibly, may be
called ethical; nine tenths, however, appertain to the mathematics.” In a
story about a hot-air balloon flight,5 the protagonist, Hans Pfaall, is able to
calculate altitude by a “simple” application of spherical geometry,
remembering that “the convex surface of any segment of a sphere is, to the
entire surface of the sphere itself, as the versed sine of the segment to the
diameter of the sphere.” Unsurprisingly, Poe scored very highly in
mathematics when attending the US Military Academy; a fellow student
said he had a “wonderful aptitude.”

While Poe remarked on the undoubted power of mathematics and its
importance in training the mind to think analytically, he was careful to
stress that mathematical skill in the abstract was not enough: a true genius
must be able to make logical inferences in the real world. There’s an
interesting conversation in his story “The Purloined Letter” between the



protodetective Auguste Dupin and the narrator in which Dupin is explaining
why a certain suspect, the Minister, has been underestimated by the Prefect
of Police. The Prefect believes that all fools are poets and thus deduces
erroneously that all poets (including the Minister) must be fools. The
narrator counters that the Minister “has written learnedly on the Differential
Calculus. He is a mathematician, and no poet.” No, says Dupin, he is both.
“As poet and mathematician, he would reason well; as mere mathematician,
he could not have reasoned at all.” This isn’t quite how I might phrase it—
but mathematicians tend to believe something very similar. A true
mathematician is not a mere calculating whiz. They must also have
intuition, a sense of the beautiful. For Poe’s Dupin, and all the Sherlock
Holmeses and Hercule Poirots who have followed him, the real magic
happens when you apply the powerful techniques of inference by pure logic
outside the confines of abstract mathematics. The meeting point of abstract
analysis and real-world intuition is cryptography.

Let’s see how Poe used cryptography in “The Gold-Bug.” The story
tells how down-on-his-luck William Legrand discovers instructions for
finding treasure that are concealed using both steganography (in this case,
invisible ink, which is revealed by the application of heat) and
cryptography. When the message does appear, it is an encrypted sequence
of symbols. Legrand guesses that a so-called substitution cipher has been
used—in which each letter is replaced by a different symbol.

Substitution ciphers date back at least two millennia. The earliest known
use of the idea dates all the way back to Roman emperor Julius Caesar. He
replaced each letter by the one three farther along in the alphabet, so that a
becomes d, b becomes e, and so on. This simple technique is still known as
a Caesar shift. But it wasn’t just military commanders using these
techniques. The Kama Sutra describes, among (ahem) other things, sixty-
four arts that women should study; along with singing, dancing, flower
arranging, “arithmetical recreations,” and poetry composition, item forty-
four is “the art of understanding writing in cypher, and the writing of words
in a peculiar way.” One of the techniques known to be in use at the time
was a kind of substitution cipher in which letters were paired together. This
has the advantage that encryption and decryption involve the same process:



if, say, a and q are paired, then a is encrypted as q, q is encrypted as a, and
the same procedure will decipher the message.

But substitution ciphers can be much more sophisticated than this. They
can use any rearrangement of letters and can also replace them with any
symbols. On the face of it, deciphering such a code looks like an
insuperable challenge. You can’t just try all the possibilities. There are 

 403,291,461,126,605,635,584,000,000 ways to shuffle the
twenty-six letters of the English alphabet. Happily, a mathematical analysis
of language can help. Mathematical analysis to aid in decryption dates back
at least to the ninth century CE, when the Islamic philosopher and
mathematician Al-Kindi wrote his Manuscript on Deciphering
Cryptographic Messages, which explained how to perform a frequency
analysis. It’s a powerful technique that is almost guaranteed to work if you
have a sufficiently long sample of the encrypted text. I mentioned in
Chapter 3, when we talked about lipograms, that if a text has been
encrypted by substituting letters for other letters or symbols, then you can
make the educated guess that the most commonly occurring symbols in the
ciphertext correspond to the most commonly occurring symbols in English
(or whatever language the message was written in).

This is precisely what Legrand does in “The Gold-Bug.” The most
frequently used letters in English are e, t, and a, and it would be a highly
unusual text that did not have e as by far its most common letter. So you
have a good idea which letter of the ciphertext represents e. It also helps to
know common letter pairs and words. The words “the” and “and” are likely
to occur regularly. Legrand explains that once he has guessed that 8
represents e on this basis, he finds the string “;48” occurring seven times:
it’s likely, then, that; means t and 4 means h. This is especially likely
because; is the second most frequently seen symbol in the message and so
probably represents t just on that basis. However, Poe/Legrand makes life
harder for himself by using an incorrect frequency list: he claims that, in
order, the letters appearing most regularly in English are e, a, o, i, d, h, n, r,
s, and t, which massively underestimates t and overpromotes d.

Nowadays, it’s very easy with computers to analyze large amounts of
text and find their frequency distributions. But back in Poe’s day and



before, this would have been a much more challenging job. When Samuel
Morse was trying to work out which characters should be quickest to send
by telegraph, in order to construct the most efficient code, he came up with
an ingenious shortcut. At that time, printers would manually typeset pages
by arranging individual letters on the page. They would therefore have
many more of the most commonly used letters on hand. Morse simply
counted the number of each letter that the printer kept, to get a rough idea
of the relative frequencies of each letter. This is much quicker than
analyzing pages and pages of text by hand.

Are there any ciphers that aren’t susceptible to this kind of analysis?
One example appears in Jules Verne’s 1864 novel Journey to the Center of
the Earth. In the story, the eccentric but brilliant Professor Liedenbrock and
his nephew, Axel, decipher an ancient coded parchment that gives
instructions to make said journey. The encryption this time is what’s called
a transposition cipher. These ciphers are essentially a prespecified anagram
of the message. The advantage here is that, with an anagram, frequency
analysis tells you nothing—the number of occurrences of each letter
matches exactly that of the original message, because its letters have simply
been rearranged rather than substituted. Here’s an example:

Suppose I want to encrypt the message “Pure mathematics is, in its way,
the poetry of logical ideas” (something Einstein is supposed to have said). I
first write it vertically in columns, so that to read it you work down the
columns from left to right:



Then you copy down the rows as a horizontal message: “Ptinyell
uhcittoi resthrgd emiseyie maswpoca atiaofas.” The original message is
now rather effectively obscured.

But if you know what has been done, you can retrieve it simply by
reading off the first letter of each “word,” then the second, and so on.
(Alternatively, you can copy it into a 6 × 8 grid and read down the
columns.) Much more complicated permutations are possible, but as long as
I know the permutation that has been carried out, I can crack the code.

If I don’t know it, then the task gets a bit harder. Frequency analysis is
useless. However, with a column method like this, the length of the
message gives you a big clue (even if I didn’t helpfully leave a space
between each “word”). Our message is 48 letters long. We created a 6 × 8
rectangle (and ). There are really only a few possibilities to try, which
we can get from the numbers that divide 48. If words of 8 letters don’t
work, we can try words with 6 letters, and failing that, we can quickly
exhaust all the other possibilities: 2, 3, 4, 12, 16, 24. No point trying 1 or
48, as that gives us back the original message straightaway.

This column cipher is the basis of the secret message in Journey to the
Center of the Earth. There are some obscuring factors—the message is
written in Icelandic runes that must be converted into the Latin alphabet,
and then when the message is untangled it still looks wrong because it has



been written backward. But young Axel and his uncle get there pretty
quickly once they hit on the correct cipher. And that’s the case in many,
perhaps most, precomputer cryptography stories. The toughest challenge is
to determine what code has been used—and there are many. Sherlock
Holmes, with his usual modesty, pronounces himself to be familiar with all
forms of secret writing: he is “the author of a trifling monograph upon the
subject, in which I analyse one hundred and sixty separate ciphers.” The
only thing to do is to try every cipher you know and see if you get
anywhere.

One encryption method in fiction that surprised me was a trick, in a
1906 short story by O. Henry, that basically invents predictive text almost a
century before cell phones. In “Calloway’s Code,” a journalist has to get a
message across enemy lines, past censors who will destroy it if they find
any pertinent information. He sends what appear to be garbled phrases like
“brute select.” Eventually, a young reporter by the name of Vesey realizes
that the code is “newspaper English.” All you have to do is think what word
always follows the given word in the clichéd language of newspapers:
“brute force,” “select few.” Then “brute select” becomes “force few”—in
other words, the army is small. Calloway’s editor is torn: on the one hand,
Vesey has helped the paper get a great scoop; on the other, his method
reflects rather badly on the literary standards of his newspaper. “I will let
you know in a day or two,” he says, “whether you are to be discharged or
retained at a larger salary.”

Just like the study of fractals, the biggest strides in cryptography have
become possible only since the invention of computers. In fact, the
connection is even stronger. One could argue that computers were invented,
at least in part, to crack codes. Many books, plays, and films have told the
story of the code breakers who cracked the Nazi Enigma machine cipher in
World War II, the most well known of which is perhaps Robert Harris’s
novel Enigma (adapted into a 2001 movie of the same name). The German
Enigma machines had multiple dials that were put into new positions every
day, specified by a codebook given to operators. Even if you had access to a
machine, it was useless without knowing the settings. Each day, the race to
crack that day’s code had to begin anew because the settings were changed.



To give you an idea of the astronomical challenge involved, let me tell
you just a little about the Enigma machine. It looks a bit like a small
typewriter. The operator types a message, which the machine encrypts; the
encrypted message is then sent to a receiver and deciphered using another
Enigma machine. First, the operator inserts three of a possible five
“scramblers,” in a specified order, each in one of twenty-six possible
orientations. There are  ways to choose the scramblers, and 
ways to arrange them once chosen. Already this is far more than could be
checked by hand. But it gets worse. Inserted between the keyboard and the
scramblers is a “plugboard” that swaps ten pairs of letters. The number of
ways to choose ten pairs of letters from an alphabet of twenty-six is vast—
150,738,274,937,000, or around 151 trillion. The total number of Enigma
settings is the product of the 60 ways to choose the scramblers, the 17,576
ways to arrange them, and the 151 trillion plugboard settings. It is an
incredible 158,962,555,218,000,000,000. Even if you could invent a
machine that could check a billion settings per second, it would take more
than five thousand years to work through all the possibilities. And the
settings, remember, change every day. No wonder the Nazis thought it was
unbreakable.

But here’s where the mathematician Alan Turing comes in. He came up
with a brilliant insight that allowed him to cancel out the effect of the
plugboard, those 151 trillion additional combinations. Working with a team
of cryptanalysts, he designed a machine called the Bombe that could work
through the 17,576 scrambler possibilities for a given set of scramblers.
Several Bombes would run in parallel, each working on one of the sixty
choices of scramblers. Eventually the Allies were able to crack each day’s
code within hours, and the Germans had no idea. It’s estimated that this
breakthrough shortened the war by two years. Alan Turing was a gifted
mathematician who tragically died before his astonishing contribution to the
war effort could be made public. Hugh Whitemore’s 1986 play, Breaking
the Code, poignantly tells this story. The end of Turing’s life was made
miserable after he was prosecuted for homosexuality, and he died, almost
certainly by suicide, after eating an apple laced with cyanide. It’s often said



(though sadly it’s probably apocryphal) that the Apple logo is a tribute to
Turing.

Now that computers are on the scene, whole new vistas of cryptography
have opened up. All recently developed encryption methods rely on
mathematics. Many a thriller has featured a genius cryptographer saying
something like “Jeez, they’re using a quantum elliptic curve encryption
algorithm with a thousand-twenty-four-bit key,” but that’s more window
dressing than mathematics. A book that really does involve modern
mathematical ideas about cryptography is Neal Stephenson’s
Cryptonomicon. If you want to learn a lot more about cryptography than I
have the space to tell you, and you want to do it in the form of a brilliantly
exciting, funny, and suspenseful nine-hundred-page epic that features
expressions like

in its very first chapter, then Cryptonomicon is the book for you.
For a different experience, I can’t resist sharing with you a few of the

delights of Dan Brown’s oeuvre. I enjoyed The Da Vinci Code thoroughly.
But, my goodness, there’s a lot of mathematical nonsense in it. Here’s a
“mathematician” in the book talking about the golden ratio, otherwise
known by the Greek letter phi ( : “As we mathematicians like to say, PHI is
one H of a lot cooler than PI.” No. No, we don’t. I mentioned the golden
ratio in Chapter 2, when we were talking about the Fibonacci sequence 1, 1,
2, 3, 5, 8, 13,… The sequence of the ratios of consecutive terms of this

sequence converges to  which equals  (1 + ). It’s an interesting



number, but one H of a lot of guff is spouted about it, not least by Dan
Brown. No, Leonardo da Vinci’s Vitruvian Man is not based on it. Nor did
the Roman architect Vitruvius (which is where the Vitruvian part comes
from) make any claims about the golden ratio and the human body. Oh, and
while we are here, it’s not true that “mathematician Leonardo Fibonacci
created this succession of numbers in the thirteenth century.” The worst bit
(brace yourselves) is when the hero of the book, Robert Langdon,
professional “symbologist,” breaks the hearts of mathematicians
everywhere when he says that phi equals 1.618. That’s just an
approximation of it, because, like its much cooler friend , it can never be
fully written down—it goes on forever. To cut it down in its prime like that,
when part of its allure is its mysterious infinitude … it’s a tragedy. In fact,

the other name for  the Divine Proportion, was coined by the sixteenth-
century Italian scholar Luca Pacioli because, like the divine, it can never be
fully known. It does not “equal” 1.618. All right, I’ll stop now. But there
should be trigger warnings for mathematicians at the start of that chapter of
The Da Vinci Code.

Anyway, the novel features a beautiful young female cryptographer,
Sophie Neveu, and a rather older male academic, Robert Langdon, in a race
against time to uncover the secret of a shocking conspiracy at the heart of
the Catholic Church. The first encryption method they encounter is a simple
anagram. Later on, we meet the Atbash cipher, an ancient cipher originally
used in the Hebrew alphabet. Its name tells us how to use it. The Hebrew
alphabet begins aleph, beth, gimel, daleth (roughly a, b, g, d), and ends
qoph, resh, shin, taw (k, r, sh, t). The cipher simply reverses the alphabet.
Aleph swaps with taw, beth swaps with shin, and so on. That is, 

: Atbash. In English we might call it the Azby cipher. I don’t
know about you, but if I were the leader of an ancient and powerful society
charged with preserving the truth about the Holy Grail, I might use
something a bit more secure.

Dan Brown’s Digital Fortress is a totally different book. It features a
beautiful young female cryptographer and an older male academic in a race
against time to uncover the secret of … hang on a minute! Okay, maybe



there are some similarities. This time the cryptographer6 works for the US
National Security Agency. (“Susan Fletcher’s legs. Hard to imagine they
support a 170 IQ” is an example of the style of writing.) She and academic
David Becker (legs presumably able to support whatever his IQ is) are
drawn into a convoluted scenario involving the NSA trying to prevent the
release of an “uncrackable” encryption method.

A lot of big cryptography words are used in Digital Fortress, but they
are entirely irrelevant to the story because the actual codes that Susan and
David solve are at least two thousand years old. I’ll mention just one. It’s
attributed in the book to Julius Caesar, who Susan says is the “first code-
writer in history”—we’ll pass over that one in silence—and it’s a special
case of the column cipher used in Journey to the Center of the Earth. The
example I gave before had 48 characters, which we arranged into a 6 × 8
rectangle. This Caesar variant has an extra requirement: the grid used must
be a square one—the same number of rows as columns. This makes life
easier for the recipients, because there is no trial and error required. If you
receive a message 144 characters long, you simply take the square root of
144, which is 12, copy the message into a 12 × 12 grid, and read down the
columns to retrieve the message.

The consequence of this method might already have struck you: most
numbers don’t have an exact square root. No problem, apparently.
According to Susan, each message has a letter count that is an exact square
number. Seems a bit implausible. There’s poor Caesar, sweat dripping off
his toga, brow furrowed, the future of Rome at stake, trying to work out
how, by Jupiter, he can express himself in a perfect square number of
letters. Fortunately, there’s a simple solution: Your message can be any
length you like. At the end, you simply pad it out with enough letters to get
up to the next square number. To send a twelve-letter message, for instance,
Caesar can just add four letters at the end so that the total is 16 (4 squared),
then follow the usual procedure. When the message is received, perhaps it
reads vvvxeiiondcxiiio. A quick count gives sixteen letters. The square root
of that is four, so we write the message into a 4 × 4 square grid:



We can then read off the original message column by column. The last
four letters, unless Caesar is being unexpectedly informal, can be discarded.

I want to finish the chapter with two cryptographic techniques that use
numbers. Having said that essentially all encryption algorithms since the
invention of computers rely on mathematics, I thought I had better give at
least one example. It’s called RSA, these being the initials of the second set
of people to invent it. The first person was a mathematician named Clifford
Cocks, who was at the time working for the British equivalent of the NSA,
the Government Communications Headquarters. His work was classified,
so nobody knew about his discovery until many years later. The idea behind
it is ingenious. The encryption method can be made completely public,
encrypted text can be printed on the front page of every newspaper, and still
it can’t be cracked. It’s based on the mathematical observation that while
it’s very easy to multiply numbers, it’s really hard to factorize them—to
break them up into their component parts.

What I mean is this: given a piece of paper, you could quite quickly find
 but if I asked you to find all the numbers that divide exactly into

8,633, it would take ages—you’d have to just keep trying numbers until you
found one that worked. (I won’t keep you in suspense: 8,633 is actually 

 and these numbers are both prime, so the only factors are 1, 89, 97,
and 8,633.) This lopsidedness in the difficulty of multiplication compared to
factorization is the basis of RSA.7 A number N that’s the product of two
very large primes p and q is made public, but the primes themselves are not
revealed. Then messages are encrypted using this N (essentially by
converting them into a number, raising that number to a large power,



dividing by N, and transmitting the remainder). There’s a neat mathematical
trick to reverse this process and retrieve the original code, but it can be done
only if you know p and q. Because there’s no known quick method to
factorize large numbers, p and q can’t be determined by an adversary, even
when they know N, so as long as you use big enough numbers, the code
can’t be cracked.

The other encryption method, which is much older, also uses numbers,
but in a completely different way. It’s called a book cipher, and an example
of it occurs in the Sherlock Holmes story The Valley of Fear. The setup is
simple. If you and I want to send each other secret messages, we agree in
advance on a book that we both own. To send you a message, like “Cover
blown,” I have to find the words “cover” and “blown” somewhere in the
book. If “cover” appears as the sixth word on line twelve of page 132, I
send 132 12 6, while 415 3 15 would represent the fifteenth word of the
third line of page 415. There are variations of this method; for instance, you
can instead list words on the page rather than line, but this technique
involves more counting. The code is uncrackable without knowing the
book. If we were suspected, though, our enemy could in extremis try all the
books that both of us own. In The Valley of Fear, Sherlock Holmes faces
the challenge of trying to crack such a code without knowing the book. He
is helped by the fact that the page number 532 is given, which means the
book has at least 532 pages, and that the code gives a column number as
well—how many books are printed in columns? This narrows things down
enough for Holmes and Watson to find the book and crack the code.

To finish this chapter, I’m challenging you to crack a book cipher. But
what’s the book? It has to be something both you and I own. How could I
possibly know of a book that you are guaranteed to have in your possession
at this precise moment? With that conundrum ringing in your ears, I’ll
finish the chapter with the code. Good luck!

26 13 1
41 11 2

137 31 3
9 17 9



15 2 7



9
The Real Life of Pi

Thematic Mathematics in the Novel

“I am a person who believes in form, in harmony of order.… I’ll tell you,
that’s one thing I hate about my nickname, the way that number runs on
forever.” So says “Pi” Patel, the narrator of Yann Martel’s Booker Prize–
winning novel Life of Pi. It’s the story of a shipwrecked boy who survives
by spending 227 days in a lifeboat with a Bengal tiger named Richard
Parker. Pi, the famous mathematical constant relating the circumference of
a circle to its diameter, is a fascinating number, and, as Pi Patel says, it does
indeed go on forever. It is “irrational”—it cannot be written as a fraction or
a decimal that terminates. This idea of “the irrationality of Pi” is also, in a
play on words, a key theme of the novel—we cannot ever be sure how
much, if any, of his dreamlike experience was real and how much imagined.

In this chapter, I’ll show you some of the ways that elemental
mathematical ideas have been used to illuminate or advance the themes of a
narrative. In Chapter 8 we saw how literature has responded to the fads and
fashions of popular mathematics. Now we’ll see how authors have engaged
with timeless mathematical themes: the properties of numbers like  ideas
of the infinite, and even the nature of mathematical thought itself.

In Yann Martel’s novel, Pi Patel recounts his early life in Pondicherry,
India. He tells us that he was named after a swimming pool—the Piscine
Molitor in Paris—because a close family friend and champion swimmer
used to talk so much about visiting it during his youth. Unfortunately,



“Piscine Patel” sounds too much like “Pissing Patel,” and after years of
teasing he decides drastic action is required for the first day at his new
school. When his turn arrived to state his name,

I got up from my desk and hurried to the blackboard. Before the
teacher could say a word, I picked up a piece of chalk and said as I
wrote:

My name is
Piscine Molitor Patel,

Known to all as
—I double underlined the first two letters of my given name—

For good measure I added

3.14

and I drew a large circle, which I then sliced in two with a diameter,
to evoke that basic lesson of geometry.

This does the trick, and from then on, he is Pi. As he says, “In that
Greek letter that looks like a shack with a corrugated tin roof, in that
elusive, irrational number with which scientists try to understand the
universe, I found refuge.”1

The random-seeming sequence of digits in  echoes the curious and
unpredictable currents of the sea, as Pi and Richard Parker later float on the
endless blue ocean. But the digits of  are not random. There are ways to
calculate them that allow us to delve as far as we like into this particular sea
of numbers, many billions of digits if we wish. The true mystery of  to
me, is how it manifests itself in the most unexpected places in mathematics.
We all know that  relates to circles, right? Definitely nothing to do with
squares. But there’s a sequence involving the square numbers 1, 4, 9, 16,
25, and so on that is connected to  in the most curious way. If we try to
work out the sum , where those dots mean “carry on forever,” it
seems to get closer and closer to a particular value, around 1.64. This was
first noticed in about 1650, and mathematicians spent more than eighty



years trying to find out exactly what this number is. The great Leonhard
Euler, whom we met in Chapter 2, managed to show in 1734 that,
amazingly, . Even though I’ve seen the proof, it’s still mind-
boggling. The number  crops up in many other places, too. The equation
for the famous “bell curve” in statistics involves  and it even occurs in the
meandering patterns of rivers. It’s been found that if you divide the length
of a river, including all its wiggles, by the as-the-crow-flies distance from
source to mouth, the answer approximates to 

Many mathematicians, from Archimedes to Newton to Charles Dodgson
(better known as Lewis Carroll), have come up with ways of calculating
approximations to  but because its digits go on forever, we can never
know it exactly. For Pi Patel, this is a cause of frustration. He wants things
to have clearly defined endings. “What a terrible thing it is,” he says, “to
botch a farewell.… Where we can, we must give things a meaningful shape.
For example—I wonder—could you tell my jumbled story in exactly one
hundred chapters, not one more, not one less?… It’s important in life to
conclude things properly. Only then can you let go.” Life, of course, is not
tidy. All of our stories have interconnecting threads. There are no neat
endings, just convenient stopping points. For Pi, after his months on the
ocean with Richard Parker, perhaps it may be some consolation to know
that Life of Pi is, in fact, precisely one hundred chapters long.

It’s not just the book that has a pleasing length; Pi’s time at sea is
exactly 227 days. This doesn’t seem, at first glance, like a particularly
significant number, but I believe it is. First, if it is not, then why does
Martel give us the exact number? And second, he said in an interview, when
asked why he had chosen Pi’s companion to be a tiger, that he had
considered a rhino first, “but rhinos are herbivores and [I] didn’t see how I
could keep a herbivore alive for 227 days in the Pacific. So finally I settled
on what now seems the natural choice, a tiger.” This strongly implies that
he had the 227 in mind very early on. I was so excited when I spotted why.

It cannot be a coincidence that the fraction  is a very good approximation
to  Unlike  it is a rational number—we can write it as a simple,
straightforward fraction. We can know it precisely. We can give it what Pi



yearns for, a meaningful shape. Martel has said that he chose the name Pi
because it’s an irrational number, yet “scientists use this irrational number
to come to a ‘rational’ understanding of the universe. To me, religion is a bit
like that, ‘irrational,’ yet with it we come [to] a sound understanding of the

universe.” Martel’s clever sleight of hand in bringing  to mind with a 227-
day voyage appears to achieve the impossible: it makes Pi rational.

The number  has many properties that appear paradoxical. It is irrational,
yet its very definition involves a ratio: the diameter of a circle to its
circumference. It is a finite number, yet its never-ending digits continue to
infinity. Paradox and the infinite (and indeed paradoxes of the infinite) are a
recurring theme in the work of the Argentinian author Jorge Luis Borges.
His story “The Library of Babel” features a mathematical oxymoron—a
finite number of things that somehow have to fill a space that extends
forever in all directions. The story is a first-person account of an inhabitant
of the Library—which is the universe. This “librarian” spends his life
wandering the hexagonal rooms of the Library, all of which are identically
laid out, reading the books and trying to understand the meaning of the
cosmos. (I love the work of Borges, which is playful and profound in equal
measure, and beautifully written. Please pick up a book of his short stories
without delay if you’ve never read him.)

This particular story has an added resonance because Borges himself
was a librarian—director, in fact, of the National Public Library of
Argentina. He was surrounded by books from childhood; his father had a
large collection of both Spanish- and English-language works. “If I were
asked to name the chief event in my life,” Borges once remarked, “I should
say my father’s library.” For such a bibliophile, it must have been a
devastating loss when his eyesight started to deteriorate in his thirties; by
his late fifties he had become completely blind. That knowledge makes the
following sentence from “The Library of Babel” (published in 1941, when
Borges was in his early forties) especially poignant: “Like all men of the
Library, I have traveled in my youth; I have wandered in search of a book,



perhaps the catalogue of catalogues; now that my eyes can hardly decipher
what I write, I am preparing to die just a few leagues from the hexagon in
which I was born.”2

The Library is an astonishing thing, says the librarian: it contains all
possible books. Every book that has been written, that is being written now,
that will one day be written, that will never be written, that has been started
and abandoned, that has been banned, that has been lauded, that has never
been imagined exists in the Library. All the volumes in the Library are the
same size, shape, and length (410 pages exactly). Already this sounds
strange—but it’s all right because War and Peace, say, can be spread over
several volumes, while The Great Gatsby can take up part of one volume,
with the remaining pages left blank.

The narrator and other librarians spend their lives wandering the Library
seeking knowledge. Since all books are contained in the Library, it is
inevitable that somewhere on its shelves is a book explaining how the
Library came to exist, and what its structure is. There is a book telling you
everything that will happen to you for the rest of your life. There is a book
listing the winning numbers of every lottery on earth. There is even a copy
of Once Upon a Prime, but given that every possible book is in the library,
there are also millions of almost-copies. If the book you are holding in your
hand contains any awful spelling errors or mathematical faux pas, clearly
you have accidentally picked up one of these near-miss versions. As
Borges’s narrator says, “It suffices that a book be possible for it to exist.
Only the impossible is excluded. For example: no book can be a ladder,
although no doubt there are books which discuss and negate and
demonstrate this possibility and others whose structure corresponds to that
of a ladder.”

What kind of a building could contain such a vast number of books?
Here is how Borges begins his story:

The Universe (which others call the Library) is composed of an
indefinite and perhaps infinite number of hexagonal galleries, with
vast air shafts between, surrounded by very low railings. From any
of the hexagons one can see, interminably, the upper and lower



floors. The distribution of the galleries is invariable. Twenty shelves,
five long shelves per side, cover all the sides except two.… One of
the free sides leads to a narrow hallway which opens on to another
gallery, identical to the first and to all the rest. To the left and the
right of the hallway there are two very small closets. [These are for
sleeping and other physical requirements.] Also through here passes
a spiral stairway, which sinks abysmally and soars upwards to
remote distances.

Every room of the Library, then, has the same design, and the Library
continues indefinitely in all directions. This presents a problem, because
even though the number of possible books is almost unimaginably vast, it
is, as I hope to convince you shortly, nevertheless finite. (There’s a lot
going on, mathematically speaking, in Borges’s story, so much so that the
mathematician William Bloch wrote an entire book about it. But I want to
focus just on this main paradox.)

Can the librarians be correct that the entire Library is of the unending
structure described and that at the same time every possible book appears in
the Library just once, with no duplicate copies? Let’s explore this idea a
little more. Borges gives us a bit more to go on about the contents of each
room and the shape and size of each book. Each hexagonal room, says the
librarian, has bookshelves on four of its walls—we must leave room for the
entry and exit, after all. These four walls each contain five bookshelves.
Each shelf holds 32 books. (Just a note here for those reading Borges in
English translation: at least one translation has 35, not 32, but I did check
the Spanish version and it says 32, so I’m sticking with that.) A bit of
mental arithmetic later, and we find that each room of the Library contains
exactly  books.

Now for the harder question: How many books are there in the Library?
We need a little more information from the story. All the books, says the
librarian, are identical in their format. Each has 410 pages. Each page has
40 lines, each line has 80 characters, and there are 25 characters,
comprising 22 alphabet letters, along with the comma, the period, and the
space. Borges doesn’t tell us precisely what the alphabet letters are.



Obviously, this isn’t the English alphabet with its 26 letters, nor the Spanish
one, which has all ours plus ñ. Depending on whom you ask, the classical
Latin alphabet had between 21 and 23 letters, so perhaps this is what Borges
had in mind. In any case, with 80 characters in the 40 lines of 410 pages,
that’s a total of  characters. I don’t know about you, but I
definitely needed a calculator for that one. In the story, the librarian says
that there are characters on the spines of the books as well. We don’t know
how many, but since the writing on book spines is usually written vertically,
a reasonable assumption, given that the pages inside have 40 lines, is that
there is room for 40 characters on the spine. There are twenty-five choices
for each character. This is a bit like our calculations with limericks and
sonnets earlier, but just as a reminder: imagine that our books just use 3
characters, a, b, and c, and imagine that each book is just 2 characters long.
We have three choices for the first character, a, b, or c. When adding the
second character, each of these three can be followed by three choices for
the second character, which means there are  possibilities. Here they
are:

aa      ba      ca      ab      bb      cb      ac      bc      cc

If we add another letter, then each of the 32 possibilities for the first two

letters has three ways to add a third letter. So the total is  Here they
are:

aaa      baa      caa      aba      bba      cba      aca      bca      cca
aab      bab      cab      abb      bbb      cbb      acb      bcb      ccb
aac      bac      cac      abc      bbc      cbc      acc      bcc      ccc

If each book with a three-letter alphabet had seven letters in total, then
there would be  possible books. I thought I was picking
those numbers randomly, but I realize that in 3 and 7 I have chosen two of
the most ingrained pattern numbers in Western thought—I guess there’s no
escaping. If a three-letter alphabet book has n letters, then there are 3n such
books. By exactly the same argument, the number of Babel-style books
with n characters and twenty-five possibilities for each one (including



spaces, commas, and periods, remember) is 25n Since each book contains
1,312,000 characters, there are a whopping  different possibilities for
the contents of a book. We mustn’t forget about the spine, either. We are
assuming that there are forty additional characters on the spine. This means
there are  books in the Library of Babel.

At this point, a calculator isn’t going to cut it. In fact, even a computer
is going to be fairly useless, because  is a ridiculously vast number.
The nearest power of ten to it is , which is 1 followed by 1,839,153
zeros. Writing down all those zeros, if you could write a respectable five
every second, would take 102 hours. More importantly, this number proves
categorically that the Library of Babel cannot be part of our universe. In our
universe, scientists estimate that there are “only” 1080 atoms, so unless you
can think of a way to fit untold billions of books onto every atom, the
Library universe must be different from our own, and much bigger.

Whatever universe we postulate, there is a problem. We have 
books, and they are contained in a series of identical rooms each of which
contains exactly 640 books. To find out how many rooms there are in the
Library, then, we just have to divide  by 640. But  is a bunch of
25s multiplied together, and 25 is an odd number. If you multiply a load of
odd numbers together, the outcome at the end is still an odd number. In this
case, it’s an unimaginably vast one, but it’s still odd. And you can’t divide
an odd number by 2 and end up with a whole number; that’s more or less
the definition of an odd number. We don’t have to actually do the
calculation, then, to know for sure that  is not a whole number. But
this would mean that the Library doesn’t have a whole number of rooms!

In his book, Bloch suggests that one way to fix this might be to tweak
the numbers from the story. He shows that a whole number of rooms will
result if we let each shelf have forty-nine books rather than thirty-two, and
change the number of characters allowed to twenty-eight. But I prefer as far
as humanly possible to follow the rules given in the story, otherwise what’s
the point? We do have a tiny bit of ambiguity to cling to, and that’s the
writing on the spines of the books. We have decided that there are forty
characters on the spine of each book (and this can include spaces).
Changing the number of characters actually won’t solve the problem,



though, because however many there are, we still end up with lots of 25s
multiplied together, which is still an odd number. However, I have two
suggestions that I hope respect the Babel universe. The first is that because
book titles don’t usually have periods, we could assume that not twenty-five
but twenty-four characters are allowed for book spines. This would mean
that there are 2440 possible book spines, and we already know that there are 

 possible book contents. So the total number of books in the Library
would be  This, at least, is an even number. And it is in fact
exactly divisible by 640. Remember that an expression like 2440 means a
string of forty 24s multiplied together. We can break that apart however we
like—for instance, a string of seven 24s followed by thirty-three 24s, all
multiplied together. In other words,  Bear with me while I do a
little calculation:

Aha! This huge number is a multiple of 640. This means that the
Library fits exactly into a whole number of those hexagonal rooms, namely 

My other suggestion is based on something in the story itself. When the
librarian is explaining the rules of the Library, he tells us that “the best
volume of the many hexagons under my administration is entitled The
Combed Thunderclap and another The Plaster Cramp and another
Axaxaxas mlö.” By the way, this last one is an in-joke that references one of
Borges’s other stories, “Tlön, Uqbar, Orbis Tertius.” The phrase axaxaxas
mlö means something like “the moon rose” in the language of a planet—
Tlön—that may or may not be real, the only evidence for whose existence
is snatches of information found in certain copies of certain books. Since all
possible books exist in the Library of Babel, it must certainly contain all
works by Borges, and all literature from Tlön, whether Tlön exists or not. In



any case, since one of the book spines contains the accented letter ö, then
perhaps the choice for spine letters is greater than twenty-five. If we allow
just one extra letter, so that there are twenty-six choices for each spine
letter, then we get a factor of 2640 in our calculation of the number of books,
and the upshot, again, is a total number that is exactly divisible by 640.
Either way, I think we can stick closely enough to the spirit of the story and
still end up with a whole number of hexagonal rooms.

Having established that there is a very large, but still finite, number of
rooms in the Library, the big question is: How do we square this with the
fact that the Library is supposed to continue indefinitely in all directions?
Can mathematics help us figure out a possible structure that has all the
qualities stated in the text? For instance, we have these ventilation shafts
that pass through the center of each hexagon, upward and downward
forever. There are also staircases spiraling up and down from corridors
between hexagons. What that tells us is that the configuration of hexagons
and staircases must be exactly the same on each vertical level.

We also know that exactly two of the walls of the hexagon do not
contain bookshelves. One or both of these walls lead to a corridor linking
two hexagons together horizontally (it also connects to a spiral staircase).
All hexagons are identical, so either just one wall of every hexagon leads to



a corridor, or two walls do. The first possibility is not going to work. The
reason is that it would isolate pairs of hexagons on any level. If Hexagon A
links to Hexagon B, then Hexagon B already has the corridor from Hexagon
A, and so can’t be joined to any other hexagon. But the story tells of
traveling “miles to the right” and “90 levels up,” for instance, so we cannot
have just two hexagons on each level. So we had better have two corridors
leading from each hexagon. One possibility is what I’ve shown here, with
the corridors leading off opposite walls. Then each horizontal layer is a
chain of hexagons in a line:

But perhaps the corridors are on adjacent walls, or have one bookcase
wall between them rather than two. If that’s the case, then there are many
more possibilities for the floor plan on each level, which I invite you to
explore. Let’s assume for the moment, though, that each horizontal level is
a line of linked hexagons, replicated above and below—I picture a kind of
huge rectangular chain mail mesh of hexagons.

This is all very well, but we are supposed to be able to move around
forever, up, down, right, and left, without reaching the end. There is a shape
that, although finite, has no end and no beginning. We use it to symbolize
eternal love when we wear wedding rings: the circle. Moving around a
circle we can carry on forever, and any point feels like any other. This is a
one-dimensional “infinite line” that fits in a finite space. Going up a
dimension, we can walk all over the surface of a sphere (such as our own
planet) without ever reaching its end or falling off the edge. A sphere big
enough to hold all the books in the Library of Babel would certainly not be
something you could circumnavigate in a lifetime, so it would feel infinite
while still being finite.

But our rectangular mesh of rooms can’t quite be sitting on the surface
of a three-dimensional sphere—if you try to wrap a rectangular piece of
paper around a ball you’ll see the problem. Some parts inevitably get



(technical term) smooshed together. This is why mapmaking is such a
challenging art—you can’t draw a map of the spherical earth without
distortion. One solution to the challenge is to go up a dimension. The
Library universe could exist as the three-dimensional surface of a four-
dimensional sphere! Mathematically speaking, this works nicely, but there’s
another possibility that I like better. It may indicate a misspent youth, but
my favorite contender for the shape of the Library of Babel is what you
might call the “space invaders” solution. In days of yore when early
computers had the memory capacity of an amnesiac goldfish, there were
lots of alien-zapping games that had you moving through space shooting
enemy craft, and, presumably to save memory, if your ship exited from the
right-hand edge of the screen, it would reappear at the corresponding point
on the left-hand edge, as if these were the same point in space. Or you
might find that flying off the bottom of the screen caused you to reappear at
the top of the screen.

Mathematicians do this sort of thing all the time in the area of
mathematics known as topology. You just decree that, for instance, the
bottom boundary of the screen is exactly the same set of points as the top
boundary and identify those two edges with each other. At the cost of a bit
of distortion, we can make this happen for real in three dimensions—
turning a flat surface into a slightly curved one by just curving the rectangle
around and gluing the two edges together to make a cylinder.

Trying this with our mesh of hexagonal rooms works nicely. The
vertical layers now form a vast circle, and we could move up and down
between layers and never come to an endpoint. Nor would we find
ourselves turning upside down; after all, people on the other side of the
world from you are not all standing on their heads. But what about the
horizontal layers? They still have a boundary, a “last hexagon,” at the far
left and far right of the cylinder. Mathematicians never like to let a good
idea go to waste. We just use exactly the same trick again for the horizontal



layers. That is, when our spaceship leaves the screen on the right, it enters
again on the left. We mathematically “glue together” the two ends of the
cylinder. We can visualize this as creating what’s called a torus in the world
of math and a doughnut everywhere else. (Though not a British doughnut,
as these are filled with jam and would get the books sticky.)

The final author I want to talk about in this chapter is someone who
would definitely have enjoyed the idea of a doughnut-shaped universe filled
with all possible books. Let us leave our wandering librarians, then, and
take a trip to Wonderland.

The most famous works of fiction written by a mathematician are surely
Lewis Carroll’s Alice’s Adventures in Wonderland and its sequel, Through
the Looking-Glass. Their playful mathematics and mind-bending logic
enhance the surreal and dreamlike quality of Alice’s imagined worlds. For
me, although there are a good many overtly mathematical references in his
work, it’s his entire approach to storytelling that reveals his mathematical
cast of mind. Lewis Carroll, as you may know, was the pen name of the
Reverend Charles Lutwidge Dodgson, a mathematician and clergyman who
lived and worked at Christ Church College, Oxford, in the latter half of the
nineteenth century. The Latinized version of Charles Lutwidge is Carolus
Ludovicus, from which it’s a short step to Lewis Carroll.

All his fiction and poetry has a reductio ad absurdum flavor to it that in
fact is common to both mathematics and children’s games of make-believe.
If, for example, we assume that you can grow and shrink at will (or by
eating cake and drinking potion), then it would be possible to swim in a
lake of your own tears, as Alice does shortly after falling down the rabbit
hole. You observe the internal logic of the game—precisely as
mathematicians do. We agree on the ground rules of our mathematical
playground, and then we explore.



Mathematically, pushing assumptions to their logical limits in the hope
that they’ll break is a common proof technique. The trick is to assume the
opposite of what you think is true. Already it’s a bit Through the Looking-
Glass. This was how we proved way back in Chapter 1 that there are
infinitely many prime numbers. We assumed there weren’t, in which case
there would be a finite list containing all the prime numbers, and then we
deduced from that the existence of a prime number not on the list, which
would be impossible. This is a true mathematical reductio ad absurdum, a
trick we call “proof by contradiction.” In a similar vein, Alice’s encounter
with the Mock Turtle features, as well as some very silly puns, a sequence
that Alice tries to take to its logical conclusion. The Mock Turtle is
recounting his school days, when they studied “all the different branches of
Arithmetic—Ambition, Distraction, Uglification, and Derision.”

“And how many hours a day did you do lessons?” said Alice.…
“Ten hours the first day,” said the Mock Turtle: “nine the next,

and so on.”
“What a curious plan!” exclaimed Alice.
“That’s the reason they’re called lessons,” the Gryphon

remarked: “because they lessen from day to day.”
This was quite a new idea to Alice, and she thought it over a

little before she made her next remark. “Then the eleventh day must
have been a holiday?”

“Of course it was,” said the Mock Turtle.
“And how did you manage on the twelfth?” Alice went on

eagerly.
“That’s enough about lessons,” the Gryphon interrupted in a

very decided tone.

And no wonder, because in this plan, they would have had to learn for
fewer than zero hours on every subsequent day.

There is a good deal of absurd arithmetic in Lewis Carroll’s verse too.
In his poem “The Hunting of the Snark” (subtitled “An Agony in 8 Fits”),
ten crew members, all of whose names begin with b, set out on a voyage to
track down the snark, though ultimately they fail because it turns out that all



along the snark was a boojum. At one point the Beaver is struggling to work
out how to add two to one to get three. The Butcher steps in to help. He
“explained all the while in a popular style, which the Beaver could well
understand”:

Taking Three as the subject to reason about—
A convenient number to state—
We add Seven, and Ten, and then multiply out
By One Thousand diminished by Eight.
The result we proceed to divide, as you see
By Nine Hundred and Ninety and Two:
Then subtract Seventeen, and the answer must be
Exactly and perfectly true.

At first glance this looks, to use a technical term, like a load of
nonsense. But in fact it is a clever little mathematical trick, a series of
precise logical steps that leads inexorably (if ridiculously) to the right
answer. The Butcher is trying to show that 3 is the answer to the fiendish
sum 2 + 1. So he starts with 3 and then does a bunch of arithmetical
calculations that if you follow them through carefully, actually bring you
back precisely to 3 again. But even better, this works whatever number you
start with. If I start with my favorite number, 4, I’ll end up with 4. Try it:
We add 7 and 10 to our number. So we have 4 + 17 = 21. Then multiply this
by 1000 - 8, which is 992. Then we divide by 992. So far, then, we have

found  which is just 4 + 17. The final instruction is to subtract
17, which brings us back to 4. Wherever you start, the answer must indeed
be exactly and perfectly true.

There’s one specific number that Lewis Carroll seems to have been a
little obsessed with: 42. It crops up all over the place in his writing. In
Alice’s Adventures in Wonderland (which happens to have forty-two
illustrations), the King of Hearts, infuriated by the rapidly enlarging Alice’s
disruption of court proceedings, reads out from his notebook, “Rule Forty-
two. All persons more than a mile high to leave the court.” When Alice
follows the White Rabbit into his hole, she tumbles down a very deep well,



and keeps falling down and down. She wonders if she will fall right through
the earth. It’s a curious mathematical fact that falling through a tunnel
leading between any two points on the earth’s surface takes a constant
amount of time (being a pure mathematician, I ignore prosaic things like
friction and air resistance). Guess how long it would take Alice to fall all
the way through the earth to the other side? You got it: forty-two minutes.

There are other possible 42s hidden in Through the Looking-Glass.
While Alice’s Adventures in Wonderland is full of playing cards, in Through
the Looking-Glass the theme is chess. The entire book has the structure of a
chess game, white versus red, with Alice moving through a board laid out
over the fields. Alice meets several of the pieces during the course of her
adventure, which it’s possible, says Lewis Carroll, to play as a real game of
chess with Alice as a pawn who crosses the board to become a queen.
During one conversation, Alice tells the White Queen she is 7 and a half
years old exactly, or 7 years, 6 months; 7 times 6 is, of course, 42. The
Queen’s age is much greater: 101 years, 5 months, and a day. How many
days is that? The answer depends on where your leap years go, but the
highest attainable total is 37,044. Is this a randomly chosen number?
Perhaps. But the Red Queen and the White Queen, being from the same
chess set, are presumably the same age. So their combined age is 74,088

days. What of that? Well, it’s exactly  I struggle to believe that
this is a coincidence.

I’ve never read a convincing explanation as to why Lewis Carroll was
so fixated on 42. In spite of his enthusiasm for logic, I suspect he just took a
shine to it. But there is one school of thought that says there might be a
religious interpretation. In the preface to “The Hunting of the Snark,” for
example, we hear how the crew’s rules had entangled them in a logical
impasse:

Rule 42 of the Code, “No one shall speak to the Man at the Helm,”
had been completed by the Bellman himself with the words “and the
Man at the Helm shall speak to no one.” So remonstrance was
impossible [and] during these bewildering intervals the ship usually
sailed backwards.



Some people believe that the number 42 is a reference to an important
religious document, the Forty-Two Articles of Thomas Cranmer, which laid
out important doctrinal rules of the Church of England. Lewis Carroll was
an Anglican priest, so he would certainly have been familiar with this
document. Article 42, by the way, is “All men shall not be saved at the
length.” Make of that what you will.

The number 42 has become much better known in the last forty-two
years (or thereabouts: the TV series appeared in 1981) for its role in
Douglas Adams’s book The Hitchhiker’s Guide to the Galaxy. He may have
been inspired by Lewis Carroll—after all, the episodes of the original radio
series, on which the TV series and books were based, were named Fit the
First, Fit the Second, and so on, just like the parts of “The Hunting of the
Snark.” In The Hitchhiker’s Guide, an alien civilization of hyperbeings
creates a huge computer called Deep Thought that takes seven and a half
million years (a million Alice ages) to determine the answer to “Life, the
Universe, and Everything.” After those eons have passed, Deep Thought
reveals that the ultimate answer is 42. The problem then becomes to work
out, in a sort of existential version of Jeopardy!, what is the question?

Let’s address a final arithmetical mystery. This one combines numbers
with Carroll’s favorite pastime: setting up a mathematical chain of events
that leads down a logical rabbit hole. When Alice arrives in Wonderland,
she starts to doubt her own sanity because everything is so confusing. She
decides to see if she still knows reliable things like multiplication tables.
“Let me see: four times five is twelve, and four times six is thirteen, and
four times seven is—oh dear! I shall never get to twenty at that rate!” Poor
Alice—but what does she mean, she’ll never get to twenty? The prosaic
interpretation is that traditionally we learn our times tables only up to
twelve, and, following her pattern, if  and  then  

   and  Since we stop at twelve, we won’t reach 

But there’s a much more mathematically interesting interpretation, and
that’s trying to find a scenario in which 4 times 5 really is 12. This isn’t as
ridiculous as it seems when you remember that clocks follow an arithmetic
in which 6 plus 8 is 2. What I mean is, if you add eight hours to six o’clock,



you don’t arrive at fourteen o’clock (unless you are in the military and have
to use the twenty-four-hour clock), but two o’clock. In some situations,
then, it’s legitimate to say that 

Another way to get surprising answers to sums is to work in an
unexpected base. In our usual base 10, we write numbers in terms of powers
of 10 (units, 10s, 100s, 1,000s, and so on), so that 1101 in base 10 means
one thousand one hundred and one. But in binary or “base 2” arithmetic, we
work in powers of 2 (units, 2s, 4s, 8s, and so on). This time, 1101 means 8
plus 4 plus 1: in other words, 1101 equals 13. And we can write sums that
look crazy but are correct: 1 + 1 = 10, or 10 + 1 + 1 = 100. Computer
programmers occasionally use a base 16 system (hexadecimal). In
hexadecimal, 14, say, would mean 1 lot of 16 plus 4 units. In other words,
20. So in hexadecimal, we can correctly write that  The game now
becomes, in what number base is it true that ? It turns out the answer
is base 18, because in base 18, 12 means one lot of 18 plus 2, which indeed
is twenty. What about ? Here we need base 21, because  is 24, and
13 in base 21 means one lot of 21 plus 3, which is the required 24. This
pattern continues nicely if we add 3 each time to the base. We get

 (base 24)

 (base 27)

 (base 30)

The pattern continues up to 4 times 12, which indeed does equal 19 in
base 39 (one lot of 39 plus 9). But frabjous day! Callooh! Callay! We can
never get to 20 like this. Four times 13 is 52, and to fit the pattern the next
base should be 42 (there it is again). But in base 42, writing “20” would
represent two 42’s, which is 84. So we really will never get to 20. I
especially like that the pattern breaks not only at base 42, but also when the
total reaches 52—which is the number of playing cards in a pack. It’s a nice
reference to the later appearance of cards, like the Queen of Hearts, as
characters in the story.



The examples I’ve shown you are glimpses of the common thread that
runs through all Lewis Carroll’s writing, both mathematical and
nonmathematical: a drive to understand the power and possibilities of logic.
As well as his children’s books, he invented games and puzzles, many for
children, that were aimed at teaching the laws of logical inference, starting
with the most basic syllogisms (All men are mortal; Socrates is a man;
therefore Socrates is mortal) and moving to sequences of deductions with as
many as a dozen or more sentences strung together.

Carroll’s fiction, including the Alice books, is for me simply another
facet of his lifelong exploration into how far we can get by setting the scene
and then following the logic. The discussions of words and their meanings
in the Alice books is one telltale sign of these mathematical undercurrents.
For a mathematician, there is resonance in Humpty Dumpty’s remark
“When I use a word it means just what I choose it to mean—neither more
nor less.” In mathematics we have to be absolutely clear about the meanings
of the words we are using, and must not load them with unspoken qualities.
It’s not mere pedantry—any ambiguities risk tying us in logical knots and
can even mean our deductions are false. It doesn’t matter what names we
give to our new concepts, but we have to be careful to get the definitions
right. As I mentioned earlier, all sorts of things go wrong if our definition of
prime numbers allows 1 to be prime. Just like Humpty Dumpty, a
mathematician’s words must mean no more, or less, than what they say.

Lewis Carroll, along with other Victorian mathematicians like John
Venn (of Venn diagram fame), was interested in taking this precision further
and codifying the very processes of logic itself. This “symbolic logic”
allows you not just to look at whether individual statements are true or
false, but to make deductions about the truth or falsity of statements made
by connecting them with words like “and,” “or,” or “implies.” Even these
simple words can trip us up if we aren’t careful. The word “or,” for
instance, can mean different things according to context. Don’t believe me?
Would you like a cup of tea or a cup of coffee? In that sentence, we all
know “both” isn’t encompassed in “or.” On the other hand, a job
advertisement saying that applicants should be fluent in Spanish or
Portuguese would presumably not exclude people fluent in both languages.



In normal speech we can tell from context which meaning is intended. If
you are trying to create a set of rules of logic that covers all possibilities,
you don’t have that luxury.

The “symbolic” bit of “symbolic logic” comes from the fact that we use
symbols for words like “or” and “and,” and with them we construct a sort of
algebra of logic. The aim is to be able to extract all possible logical
conclusions from a collection of statements. One example given by Carroll
is these two sentences: “No son of mine is dishonest” and “All honest men
are treated with respect.” Now, we don’t concern ourselves with
determining whether these sentences are true or false. Our job is to say what
can be deduced, assuming they are true. Carroll describes how this is just
one instance of a more general archetype, of the form “No x is not y, and
every y is z.” If both these are true, then it must follow that “no x is not z.”
Carroll represents these ideas both with diagrams and with symbols. In
symbolic form, using his notation, we have the rather forbidding 

 (here,  means “and,” and  means “therefore”). Once we
know this general formula, we can apply it in our special case, where x is
“my sons,” y is “honest,” and z is “treated with respect.” And hey presto,
we can deduce that “no son of mine fails to be treated with respect.” Carroll
assures us that it gets easier with practice!

This example comes from a book that Lewis Carroll wrote, aimed at
popularizing symbolic logic for the general public. In the introduction, he
extols its virtues thus:

Mental recreation is a thing that we all of us need for our mental
health.… Once master the machinery of Symbolic Logic, and you
have a mental occupation always at hand, of absorbing interest.… It
will give you … the power to detect fallacies, and to tear to pieces
the flimsy illogical arguments, which you will so continually
encounter in books, in newspapers, in speeches, and even in
sermons, and which so easily delude those who have never taken the
trouble to master this fascinating Art. Try it. That is all I ask of you!



Lewis Carroll’s contributions to the academic study of symbolic logic
were valuable and important. As befits his character, he was adorably
enthusiastic too about bringing the joys of that subject to the masses. In
spite of his valiant efforts, though, I’m sorry to say that it did not really
catch on as a fun family pastime.

I can’t resist ending this chapter with a story that may be apocryphal but
is so good it deserves to be true. Believing unlikely things is, after all, just a
matter of practice, says the White Queen: “When I was your age, I always
did it for half-an-hour a day. Why, sometimes I’ve believed as many as six
impossible things before breakfast.” Legend has it, anyway, that Queen
Victoria was so delighted with Alice that she asked to be sent the very next
book Mr. Carroll produced. History does not relate her reaction on receipt
of An Elementary Treatise on Determinants, with Their Application to
Simultaneous Linear Equations and Algebraical Geometry. One suspects
she was not amused.



10
Moriarty Was a Mathematician

The Role of the Mathematical Genius in Literature

In the bestselling Millennium series, there’s a scene at the start of the
second book in which the hero, Lisbeth Salander, comes up with a short
proof of Fermat’s Last Theorem. This may be the most famous misnomer in
mathematical history. The mathematician Pierre de Fermat, undoubted
genius though he was, made a great many claims that he didn’t back up
with proof. This “theorem” of his was one such statement. In mathematics,
we call these things conjectures. Most of Fermat’s conjectures were
resolved either by Fermat himself or by other mathematicians within a few
years. But this particular one was not—hence the “last.” What made it even
more enticing was the accompanying marginal note—“I have a truly
marvelous proof, but this margin is not big enough to contain it.” Hundreds
of mathematicians tried to find this proof, but as the decades stretched into
centuries, nobody succeeded. Even partial progress involved major new
mathematical advances, far beyond anything Fermat could have had in
mind. Eventually, in one of the great achievements of the last half century,
the problem was cracked, and a proof found, by Andrew Wiles in 1993,
using brilliant, beautiful, incredibly sophisticated mathematical machinery.

Anyway—we are asked to believe that Lisbeth Salander, genius hacker
with no mathematical training, has proved what I propose should be called
not “Fermat’s Last Theorem” but “Fermat’s midlife boast.” This gambit, of
course, is shorthand for Salander’s being a maverick genius, with perhaps a



side order of being good only at logic, not human emotion. The author
might just as well have written, “Insert evidence of extreme cleverness
here.”1

In this final chapter of the book, I’m going to show you some of the
ways that people who do mathematics have been portrayed in literature. All
too often, as mentioned briefly in Chapter 8, we see the trope of the
emotionless, uncaring, obsessive, even insane mathematician. This
stereotyped portrayal does mathematics a disservice, perpetuating the idea
that only “freak” geniuses can be mathematicians when really everybody
can delight in the fascination of mathematics. More sympathetic portrayals
are out there, and I’ll show you some of these too, from Aldous Huxley’s
heartrending “Young Archimedes” to Alice Munro’s Too Much Happiness,
a mesmerizing fictionalized account of the life and death of the Russian
mathematician Sofya Kovalevskaya.

Let’s begin our account with the most straightforward, if unrealistic,
type of mathematician in literature: the character motivated entirely by
logic, untrammeled by messy things like emotion. In Isaac Asimov’s much-
loved Foundation novels, a mathematician named Hari Seldon uses a new
field of probability theory called psychohistory to predict the future of the
galaxy. The seemingly stable galactic empire will fall, and there will be
thirty thousand years of chaos. But if we use mathematics, we can reduce
that ages-long darkness to just one millennium.

What I think appeals to a lot of people in Asimov’s books is the
beguiling fantasy that scientists, and especially mathematicians, are driven
by pure reason, that cleverness can get you out of any fix, and that
everything can finally make sense if you can just ramify the ninth-
dimensional asymptotes over a tangential vector field. Sadly, you can’t,
first, because life isn’t like that, and second, because I’ve just made up all
those phrases, so they are meaningless. These books don’t have great
dialogue, and the characters are not three-dimensional, but that’s not their
point. It’s all about the ideas. Hari Seldon exists to explain the ideas. He
doesn’t need a backstory. The big-budget TV adaptation released in 2021
tried a bit harder with backstory, not always successfully. I did find myself
scoffing at the young math genius who lists primes when she’s nervous,



until I remembered that when, as a teenager, I had to walk past the bus stop
where boys from the local school congregated to catcall passing girls, I used
to construct the rows of Pascal’s triangle in my head to stay calm.

A mathematician like Hari Seldon, in fiction, is less of a character and
more of a plot device, a being of perfect logic. You get the feeling that if
they do the right thing, it’s only because it happens to coincide with doing
the logical thing. They are essentially amoral. If the equation had another
solution, then they could just as easily turn into the villain of the piece.

On that note, let’s meet Professor James Moriarty, the “Napoleon of
crime,” nemesis of Sherlock Holmes. He is a man “endowed by nature with
a phenomenal mathematical faculty” and apparently an expert in the
“Binomial Theorem.” He wrote a treatise on it that enjoyed a “European
vogue” and won him “the Mathematical Chair at one of our smaller
universities.” The binomial theorem is a real theorem, but I have to say that
since it was, even by that time, a rather elementary result in pure
mathematics, this is as silly as portraying someone as a professor of
adverbs. An academic career is not, ultimately, for Moriarty—instead he
decides to use his vast intellect to become a criminal mastermind.

But there’s something about this characterization that bothers me.
Holmes, after all, is something of a mathematician himself—he has written
a treatise on cryptography, for example. He venerates pure logic, chiding
Watson for bringing emotions into things: “Detection is, or ought to be, an
exact science.… You have attempted to tinge it with romanticism, which
produces much the same effect as if you worked a love-story or an
elopement into the fifth proposition of Euclid.” So why is it the evil
Moriarty who is a mathematician rather than the logic-obsessed Holmes?
My suspicion is that it’s because of the stereotype of the mathematician as a
mere calculating machine. That phrase, in fact, was used by Conan Doyle in
his initial version of Holmes, “but I had to make him more of an educated
human being as I went on with him.” He must become human, or we won’t
form an emotional attachment to him.

Moriarty, by contrast, was created for a single purpose: to kill off
Holmes. He makes his first appearance in what Conan Doyle, tiring of
writing detective stories, had intended to be the last Holmes mystery: “The



Final Problem.” Moriarty doesn’t need to be a human being. He is simply
the perfect anti-Holmes: his true equal in intellect and therefore the only
person who can kill him. Since they are mathematically equal, the only
possible outcome occurs: they cancel each other out, plunging to their
deaths together over the Reichenbach Falls.

Or so we thought. Naturally, the fan base revolted. Twenty thousand
people canceled their subscription to The Strand Magazine, where the
stories were published, and Conan Doyle received hundreds of anguished,
pleading, even angry letters (including one from a distraught lady that
began “You brute”). After eight long years, a period known to fans as the
Great Hiatus, Conan Doyle eventually gave in to the pressure and came
back with a real humdinger (The Hound of the Baskervilles). He would go
on to write more than thirty additional Holmes stories, several of which also
feature Moriarty.

Literature has its fair share of tortured geniuses (the chess prodigy Beth
Harmon, in The Queen’s Gambit by Walter Tevis, is just one example), so
it’s no surprise that mathematicians get this treatment too.2 Aldous Huxley
is best known for his dystopian novel Brave New World, but in 1924 he
wrote a poignant story about a mathematical child prodigy. In “Young
Archimedes,” the narrator recounts how, during a stay in an Italian villa, his
young son, Robin, befriends a local peasant boy, Guido, a thoughtful child
“given to sudden abstractions.” Guido loves music, and, seeing this, the
narrator starts to teach him to play the piano, at which he shows great
aptitude. But that’s not Guido’s true passion. One day, the narrator happens
to spot the two boys drawing in the sand, and to his astonishment he finds
that Guido has discovered Pythagoras’s theorem for himself and is showing
Robin a proof of it. (Robin couldn’t be less interested, and makes Guido rub
it out and draw a picture of a train instead.) That’s part of the tragedy—that
nobody around this young boy can make sense of the beauty that he sees in
mathematics. The narrator begins exploring geometry with Guido, and even
teaching him algebra. Guido’s delight in it is wonderful. But then it is all
taken away. The villa’s owner, Signora Bondi, prevails upon Guido’s father



to allow her to take him away to train him as a pianist. She confiscates the
geometry books and forbids him to do mathematics, and Guido’s chance of
becoming a great and more important, fulfilled, mathematician is gone. It
reminds me of those famous lines from Gray’s “Elegy”: “Full many a
flower is born to blush unseen / And waste its sweetness on the desert air.”

In “Young Archimedes,” Huxley remarks that child prodigies are
usually either musical or mathematical, or both: “Till he was thirty Balzac
gave proof of nothing but ineptitude; but at four the young Mozart was
already a musician, and some of Pascal’s most brilliant work was done
before he was out of his teens.” I’m not sure how true this is—it seems a bit
harsh on poor Balzac—but for me the most fundamental thing that music
and mathematics have in common (and chess too—another arena in which
child prodigies appear) is pattern. All human beings have an innate
appreciation of pattern, and at the extremes, an ability to pick up on and
mimic patterns can get you a long way in both mathematics and music. You
don’t have to understand a Mozart sonata to be technically capable of
playing it, and you don’t have to understand an equation to learn the
algorithm that solves it. You can get a fair distance by spotting patterns and
learning tricks, and that might be why it’s more possible to be a prodigy in
these disciplines. Some of these child geniuses do go on to be exceptional
mathematicians—or musicians; most do not, and that’s fine. I want
everyone to enjoy mathematics, just as everyone can enjoy music,
independent of our level of skill. To say it’s pointless doing it unless you are
going to be amazing at it is as stupid as saying nobody should play sports
except Olympic athletes.

To give him his due, Huxley does not portray Guido as just a learner of
tricks, a reciter of the digits of  but a true mathematician taking a deep joy
in discovery. Still, the idea of mathematics as a “strange distinct talent,” as
Huxley puts it, is an invidious one. Human beings are mathematical beings,
and we can all engage with mathematical ideas. It’s not true that you either
have it or you don’t, nor that if you aren’t already a genius when young,
there’s no hope for you. Unfortunately, the gatekeepers of mathematics have
not always felt that way. In 1940 the English mathematician G. H. Hardy
wrote A Mathematician’s Apology, describing his views on what



mathematics is and why it’s important. There’s a lot I like about the book—
he is very eloquent in his description of mathematics as a creative art like
poetry or painting.3 But he opens by saying that even to be writing such a
piece is an admission that he’s past it, as a mathematician, because
exposition is “for second-rate minds.” Wow. And don’t try to do
mathematics if you’re over forty, or (perish the thought) a woman, because
mathematics, he says, “is a young man’s game.”

What happens when a child prodigy grows up is a question explored in
the charming and funny novel Uncle Petros and Goldbach’s Conjecture by
Apostolos Doxiadis. Published in English in 2000 (a reworking by Doxiadis
of his earlier Greek-language version), it tells the story, through the eyes of
his nephew, of the eponymous Uncle Petros and his doomed attempts to
prove a famous mathematical conjecture. Featuring entertaining cameo
appearances by real mathematicians, including Hardy, what the book does
really well is to capture something of the emotional experience of actually
doing mathematical research. Apostolos Doxiadis studied mathematics at
university, and it shows.4 It’s not that there is a lot of complicated algebra in
the book, more that the descriptions of life as a working mathematician ring
very true. Going into battle with a theorem can involve months or even
years of frustration, as you try over and over again to find the key idea that
makes everything work. Sometimes, eventually, inspiration strikes, and you
make progress. Those days are exhilarating and make everything
worthwhile.

Occasionally, at times of despondency and fatigue, your brain lies to
you and makes you think you have solved the problem, just to get you to
stop work for the day: “Petros now often had the feeling that he was almost
a hair’s breadth away from the proof. There were actually even a few
exhilarating minutes, late on a sunny January afternoon, when he had the
short-lived illusion that he had succeeded.” This happens to every
mathematician—the only thing to do is step away from your work before
you see the inevitable error, and take a few hours’ rest. Who knows, you
might dream the proof that night. (I’ve experienced this only once—I woke
up in the middle of the night, wrote something down on a piece of paper,
and went back to sleep. Next morning I looked at what I’d scribbled,



expecting to see nonsense, and was surprised to see a correct calculation of
the crucial proof step I’d been missing.) The risk with new research is
always that you may never be able to prove the theorem, and then you may
have nothing to show for your years of work. That’s why most
mathematicians always have at least two research problems going. Putting
all your eggs in one basket, like Uncle Petros, and devoting your whole life
to a single problem is a very dangerous strategy, especially when that
problem is one of the great unsolved puzzles of mathematics.

Goldbach’s conjecture, which Uncle Petros studies, was first stated in
1742 by Christian Goldbach: it says that every even number greater than 2
can be written as the sum of two prime numbers; 40, for instance, is 17 +
23. This is a beguilingly simple statement that feels as if it should be easy to
prove. But nobody has yet managed to do so. Petros, a brilliant young
mathematician, decides at the age of twenty-four that he is the man for the
job. In any other field, he says, at that age “he would have been a promising
beginner with years and years and years of rich creative opportunities ahead
of him. In mathematics, however, he was already at the peak of his powers.
He estimated that he had, with luck, at the most ten years in which to dazzle
humanity” before his mathematical powers began to wane. This belief
means that Petros puts enormous, unsustainable pressure on himself to
make rapid progress.

Now I don’t buy this “young man’s game” business, not from Uncle
Petros and not from G. H. Hardy. Admittedly, I have skin in the game here,
being neither young nor a man, but even so. Yes, of course some of the
most famous mathematicians have done their most important work before
the age of forty. But for many of them that’s because they did everything
before the age of forty—it took until the mid-nineteenth century for average
life expectancy to exceed that age. It’s a romantic notion, but like the cliché
that all the best rock stars die at twenty-seven, it doesn’t stand up to
scrutiny.5

The literary mathematicians we’ve seen so far do not paint a promising
picture: the choice seems to be between emotionless logician and tragic



prodigy. But there are other ways to be a young mathematician, and you can
even be a good detective while you’re at it.

The narrator of The Curious Incident of the Dog in the Night-Time, by
Mark Haddon, is a big fan of Sherlock Holmes. He is Christopher Boone, a
fifteen-year-old boy who loves mathematics, seeing it as a consoling oasis
of order in a world of chaos. Christopher struggles to understand people’s
emotions and behaviors, their idioms and impulsiveness. He always tells the
truth, because a lie is something that didn’t happen. But there are infinitely
many things that didn’t happen, and once you contemplate lying, you start
thinking about them all, and it’s overwhelming. The story begins on the
night that the neighbor’s dog is found dead, and Christopher decides he will
solve the mystery of who killed him.

The title of the book is a clue to Christopher’s love of Sherlock Holmes:
it is a reference to Conan Doyle’s short story “The Adventure of Silver
Blaze,” and to a clever piece of deduction by Holmes, who, like
Christopher, sees things that others miss. The story concerns the theft of a
champion racehorse, Silver Blaze, and the murder of his trainer. Holmes
and Watson head to Dartmoor to investigate the crime, which they discuss
with Inspector Gregory from Scotland Yard. A tallow candle, a milliner’s
bill, and five gold sovereigns are found on the body of the deceased, and
three sheep in a nearby field have gone lame. Inspector Gregory, trying to
make sense of the baffling array of evidence, consults Holmes:

“Is there any point to which you would wish to draw my attention?”
“To the curious incident of the dog in the night-time.”
“The dog did nothing in the night-time.”
“That was the curious incident,” remarked Sherlock Holmes.

The fact that the dog did nothing, it’s revealed later, is a crucial clue: it
shows that the person responsible for the crime was not a stranger—if he
were, the dog would have barked.

As Christopher tries to understand what happened to the neighbor’s dog,
he tells us more about his world and how he navigates it. He has behavioral
difficulties, and although no specific label is given in the book, Mark
Haddon has since said that if Christopher were diagnosed, it would be with



a form of autism. But he stresses that the book is not about a boy with a
particular diagnosis; it’s about “a young mathematician who has some
strange behavioural problems.” Haddon made the conscious decision not to
do extensive research into the details of autism because, as he says, there is
no “typical” person with autism: “They’re as large and diverse a group of
people as any other group in society.” To which I could add: there is no
typical mathematician, and they’re as large and diverse a group of people as
any other group in society.

Christopher talks a lot about mathematics in the book, and prime
numbers in particular fascinate him. The chapters of the book are numbered
not 1, 2, 3, 4, and so on but 2, 3, 5, 7, 11, and so on—the prime numbers—
because Christopher likes them and it’s his book. He explains an ancient
Greek technique for finding the primes: “First, you write down all the
positive whole numbers in the world. Then you take away all the numbers
that are multiples of 2. Then you take away all the numbers that are
multiples of 3. Then you take away all the numbers that are multiples of 4
and 5 and 6 and 7 and so on. The numbers that are left are the prime
numbers.” (This is because, if you recall, prime numbers are the ones that
are multiples of only themselves and 1, so by eliminating all multiples of
smaller numbers, whatever is left is prime.) Christopher expresses the
nature of primeness very poetically: “Prime numbers are what is left when
you have taken all the patterns away. I think prime numbers are like life.
They are very logical but you could never work out the rules, even if you
spent all your time thinking about them.” I love this description, and I love
Haddon’s portrayal of Christopher as a fully rounded human being. He is no
tragic prodigy. His fully realized character is a counterpoint to the austere
mathematical logic of Holmes and Moriarty.

The next mathematician I’d like you to meet offers a delightful contrast to
Lisbeth Salander and her unlikely proof of Fermat’s Last Theorem.
Thomasina Coverly is the exuberant mathematician in Tom Stoppard’s
joyful play Arcadia. The play begins in 1809 with thirteen-year-old
Thomasina discussing Fermat’s Last Theorem with her tutor, Septimus



Hodge (himself no slouch mathematically). He has asked her to prove the
theorem, knowing that she will fail, in an attempt to distract her for a while
so that he can read poetry in peace. It’s a rather pleasing coincidence that
Arcadia was first performed in 1993, just two months before Andrew
Wiles’s proof was announced. Since I’ve not actually told you yet what
Fermat’s Last Theorem says, perhaps we should hear it from Septimus:
“When x, y and z are whole numbers each raised to the power of n, the sum
of the first two can never equal the third when n is greater than 2.” What
does this mean? Well, we all learn Pythagoras’s theorem in school. In a
right triangle, the square of the hypotenuse is equal to the sum of the
squares of the other two sides, right? That means that if we have a right
triangle with sides x, y, and z, where z is the hypotenuse—the side opposite

the right angle—then it’s always the case that 
There are lots of solutions to this that are whole numbers. For example, 

 because , and  Sets of numbers like 3,

4, 5 that satisfy the equation  are called Pythagorean triples. I
still remember the excitement of discovering when I was Thomasina’s age
that there are infinitely many whole number solutions (one of the many
times my eternally patient mother had to tell me that no, I wasn’t the first to
notice this). Just take any odd number, square it, and then the whole
numbers on either side of half the square go with your odd number to make
a triple. So if we take 5, for instance, then 5 squared is 25. Half that is 12½,

so the numbers nearest that are 12 and 13. And hey presto, 
And for 7, we square it to get 49, half of which is 24½, and sure enough, 

 It’s such a lovely pattern! (It would seem I’m still excited
about it more than thirty years later.)

Given that we have all these examples of solutions to it

shouldn’t be too hard to find some examples of  right? Only,
no. Nobody could find any. (I should clarify Septimus slightly, because we
also ask that the solutions be positive whole numbers, to avoid obtaining



boring facts like .) The plot thickens. Nobody could find any

solutions of  either, or, for that matter,  when
anything is any whole number bigger than 2. This was the observation that
Fermat made in his marginal note, for which he claimed a marvelous proof.

It’s a testament to Stoppard’s mathematical literacy that he does not
follow the lazy trope of having his genius Thomasina find a proof of
Fermat’s Last Theorem. Even better, he toys with us by having her say “Oh!
I see now! The answer is perfectly obvious.” Cue eye rolls from every
mathematician in the audience. Septimus replies dryly, “This time you may
have overreached yourself,” before promising her an extra spoonful of jam
with her rice pudding if she can find Fermat’s proof. But she responds,
“There is no proof, Septimus. The thing that is perfectly obvious is that the
note in the margin was a joke to make you all mad.”

Thomasina Coverly is a fictional mathematician, but in her portrayal are
echoes of a real one who was more or less her contemporary: Ada
Lovelace. Ada’s mother, Annabelle, was herself mathematically gifted, so
much so that she was nicknamed “the princess of parallelograms” by her
husband, and Ada’s father, Lord Byron. That marriage was by all accounts a
complete disaster, and Ada never met her father, who died when she was
eight years old. Ada grew up loving mathematics, and in pursuing her
studies she became acquainted with many well-known mathematicians and
scientists. She is best known now for her work with the mathematician and
engineer Charles Babbage on early precursors to the computer. There is at
least one computer language named in her honor.

Babbage invented the first mechanical computers, the Difference
Engine and the Analytical Engine. At that time, mathematical tables (listing
things like logarithms, or sines and cosines) were crucial in navigation and
engineering, but they were full of errors, errors that could cost lives.
Babbage had the idea of creating computing machines to automate the
work. Not all the machines he designed were built, but the ones that have
been built have worked. The Analytical Engine has all the characteristics of
modern computers—a memory, inputs and outputs, and programmability—
the idea was to use punched cards, as the Jacquard looms of that era did.



Ada Lovelace worked on the Analytical Engine, creating an algorithm (for
finding something called Bernoulli numbers) that has been called the
world’s first computer program. “We may say most aptly,” she wrote, “that
the Analytical Engine weaves algebraical patterns just as the Jacquard loom
weaves flowers and leaves.” She called her approach to mathematics
“poetical science.”

Babbage perhaps had less of a poetic instinct—certainly his surviving
attempts at poetry are pretty dreadful. However, there’s a lovely anecdote
about an interaction between Babbage and Alfred, Lord Tennyson, that I
can’t resist sharing. In a 1900 edition of Tennyson’s early works, the editor,
John Churton Collins, notes that all printed versions of Tennyson’s poem
“The Vision of Sin” up to 1850 include the lines “Every minute dies a man /
Every minute one is born.” These lines, says Collins, caused Babbage to
write a tongue-in-cheek letter of complaint to Tennyson:

I need hardly to point out to you that this calculation would tend to
keep the sum total of the world’s population in a state of perpetual
equipoise, whereas it is a well-known fact that the said sum total is
constantly on the increase. I would therefore take the liberty of
suggesting that, in the next edition of your excellent poem, the
erroneous calculation to which I refer should be corrected as
follows: Every minute dies a man, And one and a sixteenth is born. I
may add that the exact figures are 1.167, but something must, of
course, be conceded to the laws of metre.

Collins believes that Tennyson took this objection seriously and
substituted “moment,” a less precise period of time, for “minute,” which
finesses away the problem. And that, claims Collins, is why every printing
of the poem from 1851 onward reads, “Every moment dies a man / Every
moment one is born.”

Ada Lovelace spoke of the Analytical Engine weaving algebraical
patterns rather than flowers and leaves. But in Arcadia, Thomasina tries to
bring these ideas together, to work out how we can describe natural
phenomena with equations. We’ve all heard of the “bell curve” in statistics
(also known as the “normal distribution”). If there is a curve like a bell,



asks Thomasina, why not a curve like a bluebell? She comes up with a great
idea for a kind of mathematics that might produce such a curve, and at that
point in the play Stoppard can’t resist a little in-joke about Fermat. “I,
Thomasina Coverly, have found a truly wonderful method whereby all the
forms of nature must give up their numerical secrets and draw themselves
through numbers alone. This margin being too mean for my purpose, the
reader must look elsewhere for the New Geometry of Irregular Forms by
Thomasina Coverly.”

This “Geometry of Irregular Forms” features shapes produced by
repeated iterations, what we now call fractals. If you think about how plants
grow, something like a fern emerges from precisely the same sort of process
as the dragon curve and snowflake curve that I showed you in the last
chapter. Now that we are able to get computers to do the hard work for us
(thanks to pioneers like Lovelace and Babbage), we can produce extremely
convincing and lifelike images of plants, trees, and other organisms. They
have this “self-similarity” so characteristic of fractals, in that zooming into
the picture produces something that looks just the same as the original
picture. Here’s the starting point for a “plant” design I made—just four
straight lines:

This isn’t going to get me hired by Pixar. But then the magic happens.
Each iteration adds smaller versions of the initial design at specified points



of existing lines, just as a growing fern or tree does. Here’s the second
iteration—look out for the four smaller copies of the first design:

By the sixth iteration, we get something that looks very organic:

Another example of fractals in the natural world is coastlines—they
wiggle in and out at any scale from which they are viewed, and increasing
the scale just reveals more of the same structure. River systems also have a
fractal structure—as you go upstream, the rivers branch off into smaller
rivers, then smaller and smaller streams, each having the distinctive S-
shaped curves of the larger waterways they connect to. The same kind of
structures can be seen in lightning, with its constantly forking paths, and
even in our own bodies—our brains themselves appear to be fractal in



design, with bifurcating pathways allowing for maximum connectivity. It
really seems that fractals are the geometry of nature. They are, as a line
from Arcadia has it, “how nature creates itself, on every scale, the
snowflake and the snowstorm.”

Tom Stoppard has said that Thomasina Coverly is not Ada Lovelace,
but many authors have found Lovelace an inspiration. The future British
prime minister Benjamin Disraeli wrote a rather overblown novel, Venetia,
published in 1837, whose title character is a not-very-well-disguised
version of Ada. This portrayal focused less on the mathematician than on
the racy life of a scandalous poet’s daughter. Each age and each writer has
their own Ada. The American playwright Romulus Linney wrote Childe
Byron about the tragedy of the separation of a father and his daughter. He
imagines the adult mathematician Ada Lovelace, ill with the cancer that
ultimately killed her, grappling with her conflicted feelings about her father.
The title Childe Byron refers to Byron’s most famous poem, Childe
Harold’s Pilgrimage, in which he writes of “Ada! Sole daughter of my
house and heart.” Linney, reading Byron’s lines on Ada, “I see thee not. I
hear thee not. But none can be so rapt in thee,” felt deeply the resonances
with his own life. “My daughter Laura, the actress,” he said, “her mother
and I were separated and divorced when she was a baby, so these lines just
laid me out.”

By far my favorite Ada Lovelace, though, is the fabulous heroine of
Sydney Padua’s highly entertaining 2015 graphic novel, The Thrilling
Adventures of Lovelace and Babbage, set in a parallel universe where the
two protagonists have managed to get the Analytic Engine to work and use
it to fight crime and generally be awesome.

The literary mathematicians we’ve discussed so far are, apart from a few
walk-on parts, fictional—even Sydney Padua’s “Ada Lovelace” is not
meant to be a true-to-life portrayal. But my next example of a
mathematician in literature is not just real, she is depicted as such. In Too
Much Happiness, the Nobel Prize–winning author Alice Munro gives a
poignant fictionalized account of the last days in the life of the



mathematician Sofya Kovalevskaya.6 This may be the most human
portrayal of a mathematician I have read in literature. Kovalevskaya
throughout is not a tortured genius, a freak, an unnatural being. It is
certainly part of her story that she struggled to gain acceptance—this was
the nineteenth century, after all. But that is not the focus of the writing. She
has some unhappiness in her personal life, but this is not lazily portrayed as
a necessary consequence of being a mathematician. That she didn’t end up
in a long-lasting, loving relationship is not because she is a coldhearted
logician unable to interact with human beings. She isn’t solving differential
equations because she can’t get a husband, nor is she failing to get a
husband because she insists on solving differential equations. In Munro’s
tale, as in life, sometimes these things just happen, or don’t.

In the story, we follow Kovalevskaya on her return to Stockholm
University from a visit to her mathematician friend and mentor Karl
Weierstrass, who had made her the first, and at that time only, female
mathematics professor in Europe. Munro, as is her right, plays slightly with
the time lines, but her narrative fits well with the known facts, and she gives
us a convincing version of Kovalevskaya, lauded by the mathematical
community in France after winning one of its most prestigious prizes, but
still an outsider. “They had given her the Bordin Prize, they had kissed her
hand and presented her with speeches and flowers in the most elegant
lavishly lit rooms. But they had closed their doors when it came to giving
her a job. They would no more think of that than employing a learned
chimpanzee.” Thankfully the world has moved on, but there are some
resonances for me, as a woman mathematician, even though more than a
century separates the start of Kovalevskaya’s working life and the start of
mine. Even now, the myth persists in some circles that women are in some
way not as suited to mathematics as men.

Of course, I was not the first woman to study at my university, as
Kovalevskaya was at hers, Heidelberg University in Germany, where she
registered in 1869. Still, my former Oxford college, Balliol, had been
admitting women students for only fourteen years (after more than seven
hundred years as an all-male institution) when I arrived there as an
undergraduate in 1993. There are still places in the world where girls are



not even allowed to attend school. Munro alludes to these challenges
without ever being heavy-handed. Her writing has a lovely economy—she
has Kovalevskaya’s lover remark that she should perhaps return to Sweden
because her students and her daughter need her—“a jab there, a suggestion
familiar to her, of faulty motherhood?” I identified quite hard with that one!
When I returned to my mathematics lectureship after my first maternity
leave, a colleague asked, “Can your husband not afford to let you give up
work?”—the assumption being that I must surely want to stop. The
colleague in question had children himself. I suppose his wife couldn’t
afford to let him stop doing mathematics, poor thing, so he had to struggle
on.

Kovalevskaya grew up in a well-to-do Russian family that, while
wishing their daughters to be educated to a certain degree (presumably
enough to secure eligible husbands), frowned upon the young Sofya’s
unseemly enthusiasm for mathematics. Perhaps, though, her fate was
written on the wall—literally. In her autobiography, A Russian Childhood,
she recalled that when her family moved to the country, they ran out of
wallpaper partway through decorating the nursery and just used random
paper to finish the job. But “by happy chance, the paper for this preparatory
covering consisted of the lithographed lectures of Professor Ostrogradsky
on differential and integral calculus, which my father had acquired as a
young man.” Sofya spent many hours staring at this “mysterious wall,”
trying to parse its curious sentences. Years later, at fifteen, she started
learning calculus, and her tutor was amazed at how quickly she picked up
the concepts, almost as if she had known them in advance. “And, as a
matter of fact, at the moment when he was explaining these concepts I
suddenly had a vivid memory of all this, written on the memorable sheets of
Ostrogradsky, and the concept of limit appeared to me as an old friend.”

Kovalevskaya’s mathematical success was hard-won. At that time it was
impossible for Russian women to study at Russian universities, and
unmarried women could leave the country only with their father’s
permission. Sofya’s father would never have agreed, so, as Munro’s story
recounts, she entered into a “white marriage” with a young man
sympathetic to the cause. Vladimir Kovalevsky, a paleontologist, married



Sofya in Russia; they then traveled together to Germany and lived apart
while they both pursued their studies. Several years later they did end up in
a sexual relationship (we’re all human), and Sofya had a child by him, but
she and Vladimir soon became estranged again, and he eventually
committed suicide. Though this was tragic, it may have helped
Kovalevskaya’s career, because a widow is (or was at that time) much more
respectable than an estranged wife.

Alice Munro, with her great skill as a short story writer, paints for us, in
a few beautifully crafted vignettes, a rich and compelling portrait of
Kovalevskaya. The unfolding tragedy of her early death is interspersed with
her reflections and memories of her struggles to balance mathematics with
everything else she wanted from life. The triumph of being the first woman
to gain a mathematics Ph.D. is succeeded by the temptation to rest on her
laurels. “She was learning, quite late, what many people around her
appeared to have known since childhood—that life can be perfectly
satisfying without major achievements. It could be brim full of occupations
that did not weary you to the bone.” For a while, she used her talents in
ways “not so disturbing to other people or so exhausting to herself, as
mathematics.” But mathematics, her old friend, was waiting for her when
she was ready to return. In fact, after Vladimir’s death, she refused to eat
for five days but then seems to have resolved that life must go on, and that
mathematics could provide a solace. “She asked for paper and pencil,”
writes Munro, “that she might continue working on a problem.”

Kovalevskaya’s mathematics was deep and important. Weierstrass said
that each of the three papers she presented for her thesis was worthy of a
Ph.D. in its own right. The work she did for the Bordin Prize represented a
major advance in a problem of classical mechanics that had been studied by
Euler and Lagrange. She was also a writer. As a teenager she knew
Dostoyevsky—in fact she had something of a crush on him, so it must have
been a bit of a blow when he proposed marriage to her older sister (it didn’t
happen—their father disapproved). She also met George Eliot at a literary
salon on a trip to England. As well as her autobiography, which was well
received (one enthusiastic contemporary reviewer even compared it to
Tolstoy’s Childhood), she published a novel, Nihilist Girl, as well as plays,



poetry, and short stories. She had several works in progress at the time of
her death. Who knows what she might have achieved had she lived longer.

Readers of this book will, I hope, be convinced already that there is
nothing unnatural about combining mathematics and literature. But
Kovalevskaya had this to say to a friend who questioned it: “Many people
who have never had occasion to learn what mathematics is confuse it with
arithmetic and consider it a dry and arid science. In actual fact it is the
science which demands the utmost imagination.” She continues:

It is impossible to be a mathematician without being a poet in soul.
… One must repudiate the old prejudice by which poets are
supposed to fabricate what does not exist, and that imagination is
the same as “making things up.” It seems to me that the poet must
see what others do not see, must see more deeply than other people.
And the mathematician must do the same.

Mathematics is an important part of Sofya Kovalevskaya’s life, but
Alice Munro does not let it define Kovalevskaya as a human being—that’s
one reason why Too Much Happiness is such a great piece of writing. The
same is true for the fictional mathematician who is a central character in
Chimamanda Ngozi Adichie’s magnificent Half of a Yellow Sun. The book
tells the story of the devastating 1967–70 Nigerian-Biafran war through the
eyes of a handful of people caught up in it. The war was an unimaginable
tragedy. It’s estimated that more than a million people died. Adichie’s novel
is a stunning, compassionate story of those years. I urge you to read it.
Much of the story involves Odenigbo, a professor of mathematics at
Nsukka University; his eventual wife, Olanna; and their live-in servant, the
houseboy Ugwu.

In Odenigbo, Adichie, like Alice Munro, creates not a stereotype but a
totally believable person. He is charismatic, idealistic, flawed. He is
passionate about politics, about his Igbo identity, and about education. As
he says, “How can we resist exploitation if we don’t have the tools to
understand exploitation?” Don’t get me wrong, he loves mathematics too.
When Olanna moves to Nsukka to live with Odenigbo, it does not stop him
from heading off the very next day for a mathematics conference. Even that,



though, is important not just for mathematics but for personal reasons: “He
would not have gone if the conference was not focused on the work of his
mentor, the black American mathematician David Blackwell. ‘He is the
greatest living mathematician, the greatest,’ he said.”

I remember hearing an academic, thankfully retired now, claiming that
it’s not possible to introduce cultural diversity into the math curriculum.
The “reason” he gave was that Black mathematicians are such a recent
phenomenon that any of their work would be too advanced to explain to his
undergraduate students. Utter nonsense, of course—I’d only that week been
telling my first-year students about research on magic squares by the
Nigerian mathematician Muhammad Ibn Muhammad Al-Fulani Al-
Kishwani (who died in 1741). It was even worse when I remembered that
the course this colleague was teaching was on what’s known as game
theory, one of whose most important figures is the selfsame David
Blackwell who mentored Odenigbo.

The word “trailblazer” is perhaps overused, but if anyone has earned it,
it’s Blackwell. After earning his Ph.D. at the University of Illinois in 1941
at only twenty-two years of age—the seventh Ph.D. in mathematics ever
awarded to an African American—he then did a year’s fellowship at
Princeton’s Institute for Advanced Study but was prohibited from attending
classes or doing research at Princeton University, which at the time did not
admit Black students and had no Black faculty, despite the university’s
collaborative relationship with IAS. Blackwell would go on to chair the
Statistics Department at the University of California, Berkeley, for thirty
years. But the first time he applied for a post there he was turned down
because the wife of the head of the Mathematics Department, whose official
role included hosting dinners for faculty members, refused to entertain the
idea of having a person of color in her house.

Over the course of his career, David Blackwell published more than
eighty academic papers and was highly influential in mathematics, with
dozens of Ph.D. students, well-regarded textbooks, and a reputation as an
excellent teacher. What’s he doing in Adichie’s book, though? Well,
Adichie was brought up in Nsukka after the Biafran war. Her mother was an
academic registrar, and her father, James Nwoye Adichie, was, guess what,



professor of statistics at Nsukka University. I wouldn’t be so reductive as to
say that Odenigbo “is” Adichie’s father—he certainly isn’t—but there are
interesting crosscurrents in their stories. James Nwoye Adichie earned his
Ph.D. at UC Berkeley while David Blackwell was department chair, and he
would certainly have known him. Blackwell wasn’t his direct supervisor,
but I’ve checked the records, and he did supervise at least two other
Nigerian Ph.D. students. I like to think that the young Chimamanda heard
her father speak of him.

I also had a look at James Adichie’s publications. It gave me pause to
see a telltale gap between 1967 and 1974. That bland absence, so easy to
overlook, but what turmoil and trauma it conceals. In Half of a Yellow Sun,
when Olanna and Odenigbo return to their old home after the war, they find
that most of their books and papers have been burned. Odenigbo “began to
search through the charred paper, muttering, ‘My research papers are all
here, nekene nke, this is the one on my rank tests for signal detection…’”
This little detail is poignant. We can’t know what papers Adichie senior
might have published between 1967 and 1974 if the war hadn’t happened,
but such a title would fit nicely with his real-life paper “Rank Tests in
Linear Models.” As Odenigbo and his family start to rebuild their lives after
the war, “books came for Odenigbo from overseas. For a war-robbed
colleague, the notes read, from fellow admirers of David Blackwell in the
brotherhood of mathematicians.”

Chimamanda Ngozi Adichie has talked about the problem of the “single
story,” in the context of stereotypes of “Africans.” She recounted how “a
student told me that it was such a shame that Nigerian men were physical
abusers like the father character in my novel [Purple Hibiscus]. I told him
that I had just read a novel called American Psycho and that it was such a
shame that young Americans were serial murderers.” Of course she does
not actually think this, because she, and all of us, have been exposed to
many stories of America and what it means to be American. The danger of
having only a single story, a single version of an American, or a Nigerian,
or, dare I say it, a mathematician, is that a single story creates stereotypes,
and the problem with stereotypes, says Adichie, “is not that they are untrue,
but that they are incomplete.” In literature, as in life, there are as many



different ways to be a mathematician as there are different ways to be a
person.
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Roberts approaching me for a profile in The New York Times, and that
article opened a lot of doors for me, so, Siobhan, I definitely owe you a
good dinner next time you are in London!

Thanks also to Sir Ian Livingstone for giving his time so generously for
me to pick his brains about how he writes his epic Fighting Fantasy books.



I am lucky to have a wonderful group of friends who have shared this
journey (and many others) with me. Thank you to Caroline Turner, who
among other things introduced me to Charlotte Robertson and Jenny Heller
at the fabulous Robertson Murray Literary Agency. Thank you to Rachel
Lampard, who reads the Booker Prize short list with me every year, and has
been so kind and supportive over the last few years. Thank you to Alex
Bell, whom I met when we were very pregnant with our first babies, and
our families have been close ever since. Alex, you’re a rock! I’m sorry I
couldn’t sneak the words supercalifragilisticexpialidocious,
hippopotomonstrosesquipedalian, floccinaucinihilipilification,
honorificabilitudinitatibus, contraremonstrance, and epistemophilia into the
book like you dared me to. Or could I? And thank you, too, to my
wonderful book club, the Ladies Wot Read. We’ve been meeting every
month since 2006 and seen one another through good and bad times with
love and support (and occasionally we also discuss the book). Alex, Claire,
Claire, Colette, Emma, Hadassah, Lucy, and Rachel: thank you.

I have the great good fortune to have grown up in a house filled with
both books and ideas. My dad, Martin, trained me and my sister, Mary, up
very well as independent researchers by sending us to a dictionary every
time we asked the meaning of a word. Mary put up with my many foibles,
and she didn’t mind coming with her little sister to the geological museum
during my rocks-and-minerals phase, or talking with me on long car
journeys about four-dimensional shapes during my … well, that phase is
still ongoing, to be fair. My mum, Pat, who died in 2002 of multiple
sclerosis, was always there for me when I was young, supplying cuddles,
soothing away my (many) worries, and of course asking me interesting
mathematical questions when I was bored. She went with me to lectures by
the then–Gresham Professor of Geometry Christopher Zeeman. I wish she
could have known that one day it would be her little girl up there. I think of
you every day, Mum. Thank you.

My brilliant, beautiful daughters, Millie and Emma, bring so much joy
into my life. (They have also taught me the importance of being at peace
with chaos.) They’ve had so much to deal with in the past few years, and



have coped amazingly. You can’t write a book without time, and they have
given me that time with a good grace.

Finally, and most important, my husband, Mark. I find it hard to put into
words how much he has done for me. He has always given me
unconditional support for everything I have wanted to do, and this book is
no exception. I’m the family worrier, and he’s the chief morale officer. He
talks me down from my periodic “why on earth did I think I could do this”
freak-outs. He makes me a nice cup of tea when he can sense I need one. I
know he will always be there for me, and I for him. He’s the best husband
and father it’s possible to be. This book wouldn’t exist without him.



Notes

1: One, Two, Buckle My Shoe

1. The zeros are represented by ten-letter words, in case you were wondering! If you want to
compose a bit of pilish of your own, the first forty digits are
3.141592653589793238462643383279502884197.

2. Pound says that “an ‘image’ is that which presents an intellectual and emotional complex in an
instant of time.… It is this presentation of such a “complex” instantaneously which gives that
sense of sudden liberation; that sense of freedom from time limits and space limits; that sense of
sudden growth, which we experience in the presence of the greatest works of art” (“A Few Don’ts
by an Imagist,” Poetry, Chicago, March 1913). He explained that just as in poetry, the same
mathematical expression can often be interpreted on several different levels.

3. For a comprehensive academic treatment, try The Poetics of Japanese Verse—Imagery, Structure,
Meter, by Koji Kawamoto (University of Tokyo Press, 2000). I’d also recommend Abigail
Friedman’s The Haiku Apprentice: Memoirs of Writing Poetry in Japan (Stone Bridge Press,
2006), a charming account of her experiences learning to write haiku while working as an
American diplomat in Tokyo. In terms of online resources, an excellent place to start is the website
www.graceguts.com, run by the poet and haiku expert Michael Dylan Welch.

4. A full set of all fifty-two Genji-ko diagrams, as well as some from The Arte of English Poesie, is
presented in the essay “Two Thousand Years of Combinatorics” by the mathematician and
computer scientist Donald Knuth, which appears in Combinatorics: Ancient & Modern, edited by
Robin Wilson and John J. Watkins and published by Oxford University Press in 2013. He believes,
like me, that the best way for humans to communicate, whether mathematics or anything else, is
through story. This extends to his philosophy of computer programming, which he says would be
much improved if we considered programs to be works of literature. He also wrote a novel in
1974. Surreal Numbers: How Two Ex-students Turned On to Pure Mathematics and Found Total
Happiness is, as perhaps the title indicates, rather of its time. But it deserves a mention in this book
because it is, to my knowledge, the only novel to introduce a piece of mathematics research—the
invention of new kinds of numbers by the mathematician John Conway—before it was published
anywhere else.

5. Copyright for this important 2021 poem rests with the author, Emma Hart, aged ten at the time of
composition. It is reproduced here with her gracious permission.

6. There are several translations of the Temple Hymns, but this one, by Sarah Glaz, is my favorite.
Glaz is a respected mathematician and poet whose published books include both an academic
textbook on abstract algebra and a book of poetry, Ode to Numbers (Antrim House, 2017). The
title takes its name from a poem by the Chilean poet Pablo Neruda.



2: The Geometry of Narrative

1. From a public lecture given by Vonnegut in 2004 at Case Western Reserve University. You can
watch it online at https://youtu.be/4_RUgnC1lm8.

2. The quote is from Lockwood’s 2021 novel, No One Is Talking About This.
3. Towles was interviewed for the BBC Radio 4 Bookclub on April 8, 2021. At the time of writing,

the episode is available on the BBC iPlayer at https://www.bbc.co.uk/programmes/m000tvgy.
4. The spiraling effect is converging around a point that turns out to be exactly two-thirds of the way

along the square and one-third of the way up (if you’re a mathematician you might enjoy proving
this).

5. Perec made this remark in his article “Four Figures for Life: A User’s Manual,” which appears in
English translation in the anthology Oulipo Compendium (Atlas Press, 2005). It is noted there that
the girl in question appears on pages 231 and 318 in the English edition.



3: A Workshop for Potential Literature

1. There is a translation by Ian Monk of Les Revenentes with the title The Exeter Text: Jewels,
Secrets, Sex. It comes out with a lipogrammatic difficulty level of  though again this is not
a fair comparison once you take into account the superadded challenge of translation.



4: Let Me Count the Ways

1. Not everyone approved of the Fighting Fantasy books. A church group published an eight-page
pamphlet with dire warnings about the dangers of reading them, saying that because you are
interacting with ghouls and demons, you might get possessed by the Devil: “A worried housewife
in deepest suburbia phoned her local radio station and said that having read one of our books her
child levitated.” This didn’t seem to put people off. “Kids are thinking—what, for £1.50 we can
fly? I’ll have some of that!” Teachers, on the other hand, were delighted that these books were
actually getting kids reading. It’s reported that they increased literacy by 20 percent, and it’s
certainly good for the vocabulary—“Hey, Dad, what’s a sarcophagus?”

2. If you’d like to see another example of a reverse poem, I highly recommend Brian Bilston’s
“Refugees,” which he has made available online.

3. Nesting a narrative like this is sometimes known as metalepsis, by the way, for any lovers of
ancient Greek out there. There’s an example of many-layered metalepsis in another of the stories
from Lost in the Funhouse. In “Menelaiad,” there are a full seven nested stories. Menelaus (king of
Sparta) struggles to find his way through the labyrinth of his own narrative: “When will I reach my
goal through its cloaks of story?” he asks in desperation.

4. Coe’s biography of B. S. Johnson is excellent—it’s the source of much of the biographical
information I include here and is well worth a read. Jonathan Coe, Like a Fiery Elephant (Picador,
2004).

5. I can’t say “sonnets” because I’m showing off with an e-free sentence.



5: Fairy-Tale Figures

1. Suppose we start a “say what you see” sequence at 42 (after all, according to The Hitchhiker’s
Guide to the Galaxy, 42 is the answer to “Life, the Universe, and Everything”). We’d get a
sequence starting 42, 1412, 11141112, 31143112. The brilliant mathematician John Conway,
subject of a wonderful 2015 biography by the Canadian author Siobhan Roberts, studied “say what
you see” sequences and found they have some truly remarkable properties, which are worth
googling if you ever want your mind blown by how much amazing math can come from a little
puzzle.

2. I’m certain that there are, but that’s just a hunch—nobody has a mathematical proof yet.
3. Bonus alternative version for mathematicians: There are 10 kinds of people in the world. Those

who understand binary, those who don’t, and those who weren’t expecting this joke to be in base 3.
4. The essay is “The Number Three in American Culture,” in Every Man His Way: Readings in

Cultural Anthropology (Prentice-Hall, 1968). By all accounts, Dundes, an American folklorist, was
not afraid of controversy—he even received death threats after he wrote an article called “Into the
Endzone for a Touchdown,” positing a homoerotic subtext in the language and rituals of American
football.



6: Ahab’s Arithmetic

1. I go into a bit more detail in my paper “Ahab’s Arithmetic: The Mathematics of Moby-Dick,”
Journal of Humanistic Mathematics 11, no. 1 (January 2021): 4–32,
https://scholarship.claremont.edu/jhm/vol11/iss1/3, DOI: 10.5642/jhummath.202101.03.

2. Blaise Pascal is maybe best known outside mathematics for what’s now known as Pascal’s wager,
which essentially says that humans, in our behavior, are betting for or against the existence of God.
There are four possibilities: you believe and God exists; you believe and God doesn’t exist; you
don’t believe but God exists; and you don’t believe and God doesn’t exist. If you believe and God
exists, then great (assuming you behave accordingly). Off you go to Heaven for all eternity. If you
believe and you are wrong—there is no God—then you lose out on perhaps some pleasures during
your finite life, perhaps people laugh at you, you have to get up early to go to church, and so on.
But your losses are finite. On the other hand, suppose you don’t believe. If there is no God, then
again, you’re okay. But if there is a God, then you will go to Hell for all eternity, so your losses are
infinite. Even if you think the probability that God exists is tiny, there is still a nonzero probability.
Anything nonzero multiplied by infinity is infinity. Therefore, if you act purely rationally, says
Pascal, you should act as if God exists and try to believe in God, because the expected gains of
believing are infinite (however low the probability of God’s existence), whereas the expected
losses of not believing are also infinite.

3. George Eliot had strong views about the education of women, and The Mill on the Floss (1860)
hints at them. Brother and sister Maggie and Tom Tulliver have very different educational
experiences. Euclid is wasted on Tom, who doesn’t get along with geometry at all, but Maggie,
who could have gained great pleasure from it, is not given the opportunity. Later on, she begins
teaching herself, from Tom’s Euclid and some of his other schoolbooks. She “began to nibble at
the thick-rinded fruit of the tree of knowledge, filling her vacant hours with Latin, geometry and
the forms of syllogism, and feeling a gleam of triumph now and then that her understanding was
quite equal to these peculiarly masculine studies.”

4. Derek Ball’s dissertation, Mathematics in George Eliot’s Novels, is at the time of writing available
from the University of Leicester, in the UK. You can download it from
https://leicester.figshare.com/articles/thesis/Mathematics_in_George_Eliot_s_Novels/10239446/1.
If you are interested in the broader links between mathematics, science, and creativity in the
nineteenth century, Professor Alice Jenkins of the University of Glasgow has written extensively
on these topics. Her book, Space and the “March of Mind”: Literature and the Physical Sciences
in Britain, 1815–1850 (Oxford University Press, 2007), is an academic exploration of the
conversation between science and literature in nineteenth-century Britain.

5. Can I tell you a secret? I haven’t read Finnegans Wake; I’ve just dipped in and out. I felt much
better about this when I read a brilliant article called “Finnegans Wake for Dummies,” by
Sebastian D. G. Knowles, which I highly recommend if you can get hold of the fall 2008 issue of
the James Joyce Quarterly. The first sentence is this: “I begin with a confession: in September
2003, after attending two decades of Joyce symposia, teaching over a dozen courses on Joyce,
writing a book entirely devoted to Joyce’s work, and editing another, I had still not yet read
Finnegans Wake.” In desperation, he signed up to teach a course on it, and that’s what finally did
the trick.

6. In Chapter 3, I stated the fifth postulate of Euclid in a different way: that given a line and a point
not on the line, there is exactly one line through that point, parallel to the given line. This version,
which is known as Playfair’s axiom, after the Scottish mathematician John Playfair, who



publicized it in the eighteenth century, is logically equivalent to the one Joyce is referencing, but
much easier to work with. It’s the version that Hilbert used in his Foundations of Geometry that we
mentioned in Chapter 3. Joyce’s version is what was in the original Greek text.



7: Travels in Fabulous Realms

1. The tallest person who has ever lived is Robert Wadlow (1918–1940). He had a pituitary gland
disorder, which meant that his body produced too much growth hormone, and this condition
continued throughout his life. By the time he was eight, he was taller than his father; when he died,
aged twenty-two, he was 8 feet 11.1 inches (2.72 meters) tall and weighed 315 pounds (199
kilograms). He had a job with the International Shoe Company doing promotional work—the
schtick was that if they could make the size 37 shoes that Wadlow wore, then they could make
shoes for anyone. Wadlow required leg braces when walking and had little feeling in his legs and
feet—ultimately this was what caused his death, because he didn’t feel that a minor abrasion from
one of his leg braces had become infected until it was too late to stop the sepsis from spreading.

2. Some editions have “algebraists” rather than “geometers.”
3. The essay appeared in the book Possible Worlds and Other Essays, published by Chatto and

Windus in 1927, but is easy to find online too. Haldane also has bad news about angels during a
discussion of flight in which he explains that if you scale up something like a bird by a factor of
four, the power required for it to fly increases by a factor of 128. He goes on to say that an angel
“whose muscles developed no more power, weight for weight, than those of an eagle or a pigeon
would require a breast projecting for about four feet to house the muscles engaged in working its
wings, while to economize in weight, its legs would have to be reduced to mere stilts.”

4. There have been a couple of real scientific papers on the plausibility of tiny people like Lilliputians
and Borrowers, which make for entertaining reading if you like that sort of thing (and who
doesn’t?). I didn’t want to make the calculations of Lilliputians’ recommended calorie intake even
more complicated, but a 2019 paper suggests that Lilliputians actually need 57 calories, not the 9.3
in my rough estimate, because of Quetelet’s observations about how mass changes with height. But
that just makes things even worse in terms of Lilliput’s economy. Check out T. Kuroki,
“Physiological Essay on Gulliver’s Travels: A Correction After Three Centuries,” in The Journal
of Physiological Sciences 69 (2019): 421–24. Meanwhile, in “What Would the World Be Like to a
Borrower?” (Journal of Interdisciplinary Science Topics 5, 2016), J. G. Panuelos and L. H. Green
give more detail about several aspects of life for Borrowers, including discussions of their voices
—likely too high-pitched and faint for us to hear them.



8: Taking an Idea for a Walk

1. Just as any picture of a three-dimensional cube cannot render every side as a square, any drawing
of a hypercube necessarily distorts some of the lengths. One way to get around the challenge of
representing a three-dimensional cube on a two-dimensional page is to draw what’s called the net
of the cube. This is a diagram with six squares that can be cut out and folded up in three
dimensions to make a cube. In the same way, we can make a three-dimensional net of eight cubes
that could be folded up in four dimensions to make a hypercube. It’s this version of the hypercube
that appears in Salvador Dalí’s famous 1954 painting Crucifixion (Corpus Hypercubus).

2. These strange new geometries seemed incomprehensibly alien to many. Even Ivan Karamazov, the
most intellectual of the Karamazov brothers in Dostoyevsky’s 1880 novel, struggled with them.
Ivan compares trying to understand the divine to trying to understand non-Euclidean geometry.
There are geometers and philosophers, he says, who “dare to dream that two parallel lines, which
according to Euclid can never meet on earth, may meet somewhere in infinity. I have come to the
conclusion that, since I can’t understand even that, I can’t expect to understand about God. I
acknowledge humbly that I have no faculty for settling such questions, I have a Euclidean, earthly
mind, and how could I solve problems that are not of this world?”

3. Flatland wasn’t the first time that two-dimensional beings trying to grasp a three-dimensional
world had been invoked as an analogy. The German physicist Hermann von Helmholtz had
discussed how we would interpret the world if we were two-dimensional beings living on the
surface of a sphere. The most important precursor to Flatland is the article “What Is the Fourth
Dimension?” by Charles Howard Hinton, which was almost certainly read by Abbott. Hinton was
a mathematician, teacher, and writer, a great popularizer of science. The article asks us to imagine
“a being confined to a plane” and to suppose “some figure, such as a circle or rectangle, to be
endowed with the power of perception.” Does that sound familiar?

4. Angles in triangles on the surface of a sphere really do add up to more than 180° We don’t have to
worry about it in everyday life, because it turns out that the amount by which the sum exceeds
180° is proportional to how much of the sphere’s surface is contained in the triangle. But this
knowledge was vital for one of the more impressive technical feats of the nineteenth century: the
Great Trigonometrical Survey, a seventy-year undertaking with the aim of mapping the whole of
India with high precision. The distances being measured were so vast that the curvature of the
earth, and its effect on the angles in a triangle, had to be taken into account in the calculations.

5. The story is “The Unparalleled Adventure of One Hans Pfaall.”
6. “Cryptographic mathematicians,” the book says, are “by nature high-strung workaholics.” Are

they, though? Anecdote is not data, but I met some of the mathematicians at Royal Holloway
(where Brown’s other cryptographer heroine, Sophie Neveu, is supposed to have trained) when I
gave an invited seminar there a few years ago, and they were a lovely bunch who gave every
appearance, over tea and biscuits, of being relaxed and genial, and not at all addicted to workahol.

7. Okay fine, RSA stands for Rivest-Shamir-Adleman. It’s really not their fault that they get all the
credit and fame. They earned it. Clifford Cocks doesn’t begrudge them it either. As he said, “You
don’t get into this business for public recognition.” You can read more about RSA in Simon
Singh’s excellent history of cryptography, The Code Book, which includes this Clifford Cocks
quote in its chapter on public key cryptography.



9: The Real Life of Pi

1. Life of Pi is far from being the only work of literature to mention this fascinating number. For
maximum erudition, check out this passage from the beginning of Umberto Eco’s Foucault’s
Pendulum (a novel I’ve heard described as “the thinking person’s Da Vinci Code”): “That was
when I saw the Pendulum.… I knew—but anyone could have sensed it in the magic of that serene
breathing—that the period was governed by the square root of the length of the wire and by π, that
number which, however irrational to sublunary minds, through a higher rationality binds the
circumference and diameter of all possible circles. The time it took the sphere to swing from end to
end was determined by an arcane conspiracy between the most timeless of measures: the
singularity of the point of suspension, the duality of the plane’s dimensions, the triadic beginning
of π, the secret quadratic nature of the root, and the unnumbered perfection of the circle itself.”
You don’t get that in Dan Brown.

2. My quotations are from James E. Irby’s English translation of Jorge Luis Borges, Labyrinths,
Penguin Classics edition (2000).



10: Moriarty Was a Mathematician

1. Fermat’s Last Theorem has been rolled out in this way on several occasions over the years. Pre-
Wiles, your characters could gain fame and fortune by finding any proof. Post-Wiles, they have to
find the elusive “short” proof. There was an episode of the British TV show Doctor Who in 2010
in which the Doctor tells the “real proof”—in other words, the short one—of Fermat’s Last
Theorem to a group of geniuses as proof that they should trust his intelligence. By contrast, Jorge
Luis Borges, with his customary erudition, carefully doesn’t claim that Unwin, the mathematician
in “Ibn Hakkan al-Bokhari, Dead in His Labyrinth,” has proved the theorem. He has simply
published a paper on “the theory supposed to have been written by Pierre Fermat in a page of
Diophantus.” There’s another twist on it in the 1954 short story “The Devil and Simon Flagg,” by
Arthur Porges, in which the mathematician Simon Flagg tricks the Devil into a wager. If the Devil
can answer one question, he can have Flagg’s soul. If not, he must give Flagg wealth, health, and
happiness all his days and leave him in peace for eternity. The question: “Is Fermat’s Last
Theorem true?” The Devil fails to answer, and Flagg gets his reward.

2. Beth is good at math, as it happens—Tevis tells us that she is at the top of her class at the
orphanage. That’s actually a crucial part of the story, because it means that she is the one chosen to
go down to the basement after the Tuesday arithmetic class to clean the board erasers—something
considered a privilege. It’s there that she first sees the janitor playing chess and persuades him to
teach her. I’m pleased to report that Tevis does not, as the TV adaptation did, give Beth’s mother a
backstory as a suicidal mathematician.

3. Hardy also made a major contribution to mathematics by taking the time to read a letter he
received from a complete stranger one day, a clerk from India with no formal mathematical

education, that was filled with crazy-looking formulae like 1 + 2 + 3 + 4 + … =  There is a
context in which this formula makes sense, and Hardy recognized that whoever had written this
letter, and derived this mathematics more or less by pure intuition, had a rare talent. He managed
to get funding to bring his correspondent, whose name was Srinivasa Ramanujan, over to England
to work with him. Ramanujan proved to be one of the most brilliantly original mathematical
thinkers of the twentieth century, and it is to Hardy’s credit that he recognized his gift and did all in
his power to support him. Ramanujan’s story is told in the wonderful 2007 play A Disappearing
Number, by Simon McBurney and his theater company, Complicité.

4. It shows even more in Doxiadis’s bestselling 2009 graphic novel Logicomix, co-written with the
computer scientist Christos Papadimitriou, about the twentieth-century quest for the foundations of
mathematical truth, which is also highly recommended. At the start of the twentieth century, there
was a concerted attempt to put the whole of mathematics on the strictest possible logical
foundation. The idea was to try to create a sort of mathematical language in which every possible
mathematical statement could be expressed. Then you could agree on a list of initial assumptions,
or axioms, and, proceeding in accordance with strictly defined rules of inference, either prove or
disprove each statement. But the mathematician Kurt Gödel blew the whole thing out of the water
in 1931 when he proved that any such mathematical system must be inadequate in that there would
be true statements you could make that could not be proved within the system. This development
was a profound disappointment to the logicians who had made it their life’s work to try to
systematize the whole of mathematics. Perhaps that’s why the New York Times review of
Logicomix was titled “Algorithm and Blues.”



5. For example, Jimi Hendrix, Kurt Cobain, Janis Joplin, Jim Morrison, Amy Winehouse, and Brian
Jones died at twenty-seven. But Elvis Presley, John Lennon, David Bowie, and hundreds of others
did not.

6. There is some ambiguity about how best to transliterate Софья ВасильевнаКовалевская into the
English alphabet. Russian full names have three parts, the first name, the patronymic (based on the
father’s first name), and the surname. So because Sofya’s father’s name was Vasily, and her
husband’s surname was Kovalevsky, her full name was Sofya Vasilyevna Kovalevskaya. Both the
patronymic and the surname have a male and a female form. Quite often, people are addressed by
their first name and patronymic, and, to add to the fun, lots of first names have diminutive forms.
Anyone who’s ever read a Russian novel knows the problem—you read ten increasingly confusing
pages about this Sasha chap who’s suddenly appeared before you realize it was just Aleksandr
Petrovich all along. Anyway, with Sofya Kovalevskaya I’ve gone for what current consensus
seems to believe is the most accurate rendering. But you’ll also see Sofia, Sophia, Sophie, or even
the diminutive Sonya, as well as Kovalevsky, Kovalevski, Kovalevskaia, and even Kovalevskaja.
Alice Munro went for Sophia Kovalevsky.



A Mathematician’s Bookcase

We have come to the end of our mathematical guided tour of the house of
literature. Mathematics is there in the foundation, in the rhythms of poetry
and the structures of prose. It is there in the decoration of the house, the
metaphors and allusions. And it is there in the characters who move through
the house, who bring it to life.

I’ve gathered here a collection of some of the books on my shelves that
we have discussed—with a few bonus recommendations thrown in for good
measure. I hope that I have given you a new perspective on both
mathematics and literature, and new ways to enjoy them both. May this be
just the start of your journey. Happy reading!

1: One, Two, Buckle My Shoe
Tom Chivers (editor), Adventures in Form: A Compendium of Poetic Forms, Rules and Constraints

(Penned in the Margins, 2012).
Jordan Ellenberg, Shape: The Hidden Geometry of Absolutely Everything (Penguin Press, 2021). He

has also written a well-received novel, The Grasshopper King (Coffee House Press, 2003).
Michael Keith’s pilish poem “Near a Raven” is available on his website, cadaeic.net (that strange

word “cadaeic” is not in any dictionary—but if you let a = 1, b = 2, and so on, you will see what’s
going on). He has also written an entire pilish book, the only one I know of: Michael Keith, Not a
Wake: A Dream Embodying (Pi)’s Digits Fully for 10000 Decimals (Vinculum Press, 2010).

Raymond Queneau’s Cent mille milliards de poèmes has been translated into English more than once.
Stanley Chapman’s version uses the rhyme scheme abab, cdcd, efef, gg, and Queneau’s reaction
was apparently “admiring stupefaction,” so that seems a good place to start. It appears in Oulipo
Compendium, edited by Harry Mathews and Alastair Brotchie (Atlas Press, 2005).

Murasaki Shikibu, The Tale of Genji, translated by Royall Tyler (Penguin Classics, 2002).

For poetry with explicitly mathematical themes, check out these three collections:
Madhur Anand, A New Index for Predicting Catastrophes (McClelland and Stewart, 2015).
Sarah Glaz, Ode to Numbers (Antrim House, 2017).
Brian McCabe, Zero (Polygon, 2009).

2: The Geometry of Narrative



Eleanor Catton, The Luminaries (Little, Brown, 2013).
Georges Perec, Life: A User’s Manual, translated by David Bellos (Collins Harvill, 1987).
Hilbert Schenck, “The Geometry of Narrative,” Analog Science Fiction / Science Fact (Davis

Publications, August 1983).
Catherine Shaw has written several Vanessa Duncan novels. The first is The Three-Body Problem

(Allison and Busby, 2004).
Laurence Sterne, The Life and Opinions of Tristram Shandy, Gentleman (1759–1767).
Amor Towles, A Gentleman in Moscow (Viking, 2016).

3: A Workshop for Potential Literature
Christian Bök, Eunoia (Coach House Books, 2001).
Alastair Brotchie (editor), Oulipo Laboratory: Texts from the Bibliothèque Oulipiènne (Atlas Anti-

Classics, 1995).
Italo Calvino, If on a Winter’s Night a Traveler, translated by William Weaver (Harcourt Brace

Jovanovich, 1982).
Italo Calvino, Invisible Cities, translated by William Weaver (Harcourt Brace Jovanovich, 1978).
Mark Dunn, Ella Minnow Pea: A Novel in Letters (Anchor, 2002).
Harry Mathews and Alastair Brotchie (editors), Oulipo Compendium (Atlas Press, 2005).
Warren F. Motte, Oulipo: A Primer of Potential Literature (Dalkey Archive Press, 1986).
Georges Perec, A Void, translated by Gilbert Adair (Harvill Press, 1994).
Georges Perec, Three by Perec, translated by Ian Monk (David R. Godine Publisher, 2007). This

contains The Exeter Text: Jewels, Secrets, Sex, Monk’s translation of Les Revenentes, the novel
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4: Let Me Count the Ways
John Barth, Lost in the Funhouse, reissue edition (Anchor, 1988).
Julio Cortázar, Hopscotch, Blow-Up, We Love Glenda So Much (Everyman’s Library, 2017)—this
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1980s. Most of the books were written by Edward Packard or R. A. Montgomery. I’m pretty sure
I had The Abominable Snowman (Bantam Books, 1982).
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Annemarie Schimmel’s book The Mystery of Numbers (Oxford University Press, 1993) devotes a

chapter not quite to each number (she’d be writing it for all infinity if she did) but to all the small
numbers. It’s in this little book that I first learned that cats have different numbers of lives
depending on their nationality.

If you’d prefer a purely mathematical guide to numbers and their properties, you can’t go wrong with
The Penguin Dictionary of Curious and Interesting Numbers by David Wells (Penguin, 1997).



For a really deep dive into the language of numbers and the origin of number words and number
symbols in different languages and cultures, try Karl Menninger’s Number Words and Number
Symbols: A Cultural History of Numbers (Dover, 1992). It has quite an old-fashioned tone of
voice (it’s a translation of the 1958 German edition) but is full of fascinating nuggets.

6: Ahab’s Arithmetic
Herman Melville, Moby-Dick (1851).
George Eliot’s novels all contain mathematical allusions. We discussed Adam Bede (1859), Silas

Marner (1861), Middlemarch (1871–1872), and Daniel Deronda (1876).
Vasily Grossman, Life and Fate (NYRB Classics, 2008).
Leo Tolstoy, War and Peace (1869).
James Joyce, Dubliners (1914), and Ulysses (1922). I’m not going to tell you to read Finnegans Wake

(1939).

7: Travels in Fabulous Realms
Mary Norton, The Borrowers (1952). There were several later Borrowers books too.
François Rabelais, Life of Gargantua and Pantagruel (published in English 1693–1694).
Jonathan Swift, Gulliver’s Travels (1726).
Voltaire, Micromégas (1752).

8: Taking an Idea for a Walk

Books relating to Flatland and the fourth dimension

Edwin A. Abbott, Flatland: A Romance of Many Dimensions (1884). You might also like Ian
Stewart’s The Annotated Flatland (Perseus Books, 2008).

Dionys Burger, Sphereland (Apollo Editions, 1965).
A. K. Dewdney, The Planiverse: Computer Contact with a Two-Dimensional World (Poseidon Press,

1984).
Fyodor Dostoyevsky, The Brothers Karamazov (1880).
Charles H. Hinton, An Episode of Flatland: or, How a Plane Folk Discovered the Third Dimension

(S. Sonnenschein, 1907).
Rudy Rucker, The Fourth Dimension and How to Get There (Penguin, 1986).
Rudy Rucker, Spaceland: A Novel of the Fourth Dimension (Tor Books, 2002).
Ian Stewart, Flatterland (Perseus Books, 2001).

Books relating to fractals

Michael Crichton, Jurassic Park (Arrow Books, 1991).
John Updike, Roger’s Version (Knopf, 1986).
Several Richard Powers novels discuss fractals, including The Gold Bug Variations (Harper, 1991),

Galatea 2.2 (Harper, 1995), and Plowing the Dark (Farrar, Straus and Giroux, 2000), in which an
artist works with computer scientists to design a virtual world using, in part, fractals.

Books relating to cryptography

Dan Brown, The Da Vinci Code (Doubleday, 2003) and Digital Fortress (St. Martin’s Press, 1998).
Arthur Conan Doyle, “The Adventure of the Dancing Men” (in The Return of Sherlock Holmes,

1905) and The Valley of Fear (1915). Both had previously appeared in The Strand Magazine.



John F. Dooley (editor), Codes and Villains and Mystery (Amazon, 2016), is an anthology that
includes the O. Henry story “Calloway’s Code.”

Robert Harris, Enigma (Hutchinson, 1995).
Edgar Allan Poe, “The Gold-Bug” (1843) and “The Purloined Letter” (1844); both available in

numerous short story collections and editions of Poe’s works.
Neal Stephenson, Cryptonomicon (Avon, 1999).
Jules Verne, Journey to the Center of the Earth (1864).
Hugh Whitemore, Breaking the Code (Samuel French, 1987).

9: The Real Life of Pi
Jorge Luis Borges, Labyrinths, Penguin Modern Classics edition (Penguin Books, 2000). This

collection includes “The Library of Babel” as well as several other wonderful stories with a
mathematical flavor. “The Library of Babel” is also included in William G. Bloch, The
Unimaginable Mathematics of Borges’ Library of Babel (Oxford University Press, 2008).

Lewis Carroll, Alice’s Adventures in Wonderland (1865) and Through the Looking-Glass, and What
Alice Found There (1871). For mathematical discussions of Lewis Carroll’s work, I recommend
Martin Gardner’s The Annotated Alice (Penguin Books, 2001) and Robin Wilson’s Lewis Carroll
in Numberland (Penguin Books, 2009).

Yann Martel, Life of Pi (Mariner Books, 2002).

10: Moriarty Was a Mathematician
Chimamanda Ngozi Adichie, Half of a Yellow Sun (Knopf, 2006).
Isaac Asimov, Foundation (Gnome Press, 1951), the first of seven books in the Foundation series.
Apostolos Doxiadis, Uncle Petros and Goldbach’s Conjecture (Faber and Faber, 2001).
Mark Haddon, The Curious Incident of the Dog in the Night-Time (Doubleday, 2003).
Aldous Huxley, “Young Archimedes” (1924). It is the first story included in Clifton Fadiman’s

Fantasia Mathematica (Simon and Schuster, 1958). This anthology contains a broad selection of
mathematically themed short stories, poetry, and quotations. I have to say that some of them
haven’t aged particularly well, but the collection is still worth dipping into.

Sofya Kovalevskaya, A Russian Childhood (Springer, 1978) and Nihilist Girl (Modern Language
Association of America, 2001).

Stieg Larsson, The Girl Who Played with Fire (Knopf, 2009)—the second in the Millennium series,
following The Girl with the Dragon Tattoo.

Alice Munro, Too Much Happiness (Knopf, 2009).
Sydney Padua, The Thrilling Adventures of Lovelace and Babbage: The (Mostly) True Story of the

First Computer (Pantheon Books, 2015).
Tom Stoppard, Arcadia: A Play in Two Acts (Faber and Faber, 1993). I also recommend his play

Rosencrantz and Guildenstern Are Dead (Faber and Faber, 1967), for its fascinating exploration
of probability, chance, and fate.

Walter Tevis, The Queen’s Gambit (Random House, 1983).

There are many books featuring mathematicians that we didn’t have the space to discuss. Here are a
few to get you started:
Catherine Chung, The Tenth Muse (Ecco, 2019), the story of a brilliant young mathematician taking

on the Riemann hypothesis, one of the great unsolved problems of mathematics. It weaves in
stories of real women mathematicians who, in Chung’s words, “posed as schoolboys, married
tutors, and moved across continents, all to study and excel at mathematics.”



Apostolos Doxiadis and Christos Papadimitriou, Logicomix: An Epic Search for Truth (Bloomsbury,
2009), a graphic novel narrated by a fictional Bertrand Russell and featuring mathematicians such
as David Hilbert, Kurt Gödel, and Alan Turing.

Jonathan Levi, Septimania (Overlook Press, 2016). This entertaining novel features mathematician
Louiza, along with Isaac Newton and Newton expert Malory, about whom Levi says that “in the
Kingdom of Mathematicians, he as a Historian of Science … bestrode the River Cam with the
charisma and stature of a Colossus.” As 2021–23 president of the British Society for the History
of Mathematics, I can confirm that all our members are incredibly charismatic and you will
probably become more so yourself if you join.

Simon McBurney / Théâtre de Complicité, A Disappearing Number (Oberon, 2008), a stage play
about the Indian mathematician Srinivasa Ramanujan and his work with G. H. Hardy.

Yoko Ogawa, The Housekeeper and the Professor (Picador, 2009), a touching and poignant story of a
mathematics professor who lives with only eighty minutes of short-term memory, and the
friendship that develops with his housekeeper and her son.

Alex Pavesi, Eight Detectives (Henry Holt, 2020). This novel centers on a mathematician who has
analyzed the permutations of murder mysteries. I don’t want to tell you anything about it because
I’ll spoil it for you, but I very much enjoyed it.
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