
Hands-on
Guide to
Apache Spark 3

Build Scalable Computing Engines for
Batch and Stream Data Processing
—
Alfonso Antolínez García

Hands-on Guide to
Apache Spark 3

Build Scalable Computing Engines
for Batch and Stream Data

Processing

Alfonso Antolínez García

Hands-on Guide to Apache Spark 3: Build Scalable Computing Engines for Batch
and Stream Data Processing

ISBN-13 (pbk): 978-1-4842-9379-9 ISBN-13 (electronic): 978-1-4842-9380-5
https://doi.org/10.1007/978-1-4842-9380-5

Copyright © 2023 by Alfonso Antolínez García

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: Laura Berendson
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image by Lucas Santos on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to readers
on GitHub (https://github.com/Apress). For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

Alfonso Antolínez García
Madrid, Spain

https://doi.org/10.1007/978-1-4842-9380-5

To my beloved family

v

Table of Contents

About the Author ��� xi

About the Technical Reviewer ��� xiii

Part I: Apache Spark Batch Data Processing �� 1

Chapter 1: Introduction to Apache Spark for Large-Scale Data Analytics ���������������� 3

1.1 What Is Apache Spark? ... 3

Simpler to Use and Operate ... 4

Fast .. 5

Scalable ... 5

Ease of Use .. 6

Fault Tolerance at Scale .. 6

1.2 Spark Unified Analytics Engine ... 7

1.3 How Apache Spark Works ... 8

Spark Application Model .. 8

Spark Execution Model .. 9

Spark Cluster Model .. 9

1.4 Apache Spark Ecosystem .. 12

Spark Core ... 12

Spark APIs ... 12

Spark SQL and DataFrames and Datasets ... 12

Spark Streaming .. 14

Spark GraphX ... 16

vi

1.5 Batch vs. Streaming Data ... 17

What Is Batch Data Processing? .. 19

What Is Stream Data Processing? ... 19

Difference Between Stream Processing and Batch Processing .. 20

1.6 Summary... 21

Chapter 2: Getting Started with Apache Spark ��� 23

2.1 Downloading and Installing Apache Spark .. 23

Installation of Apache Spark on Linux ... 24

Installation of Apache Spark on Windows ... 28

2.2 Hands-On Spark Shell ... 35

Using the Spark Shell Command ... 36

Running Self-Contained Applications with the spark- submit Command 43

2.3 Spark Application Concepts .. 56

Spark Application and SparkSession ... 56

Access the Existing SparkSession ... 57

2.4 Transformations, Actions, Immutability, and Lazy Evaluation .. 62

Transformations ... 62

Narrow Transformations .. 64

Wide Transformations .. 64

Actions ... 65

2.5 Summary... 65

Chapter 3: Spark Low-Level API ��� 67

3.1 Resilient Distributed Datasets (RDDs) ... 67

Creating RDDs from Parallelized Collections ... 68

Creating RDDs from External Datasets .. 70

Creating RDDs from Existing RDDs .. 73

3.2 Working with Key-Value Pairs ... 74

Creating Pair RDDs .. 74

Showing the Distinct Keys of a Pair RDD ... 76

Table of ConTenTs

vii

Transformations on Pair RDDs ... 78

Actions on Pair RDDs ... 97

3.3 Spark Shared Variables: Broadcasts and Accumulators ... 101

Broadcast Variables ... 102

Accumulators .. 104

3.4 When to Use RDDs .. 106

3.5 Summary... 107

Chapter 4: The Spark High-Level APIs �� 109

4.1 Spark Dataframes ... 109

Attributes of Spark DataFrames .. 114

Methods for Creating Spark DataFrames .. 114

4.2 Use of Spark DataFrames ... 154

Select DataFrame Columns ... 154

Select Columns Based on Name Patterns ... 159

Filtering Results of a Query Based on One or Multiple Conditions 161

Using Different Column Name Notations ... 162

Using Logical Operators for Multi-condition Filtering .. 164

Manipulating Spark DataFrame Columns .. 165

Renaming DataFrame Columns ... 168

Dropping DataFrame Columns ... 169

Creating a New Dataframe Column Dependent on Another Column 172

User-Defined Functions (UDFs) .. 175

Merging DataFrames with Union and UnionByName ... 176

Joining DataFrames with Join ... 182

4.3 Spark Cache and Persist of Data .. 187

Unpersisting Cached Data ... 190

4.4 Summary... 191

Chapter 5: Spark Dataset API and Adaptive Query Execution ������������������������������ 193

5.1 What Are Spark Datasets? .. 193

5.2 Methods for Creating Spark Datasets ... 194

Table of ConTenTs

viii

5.3 Adaptive Query Execution ... 196

5.4 Data-Dependent Adaptive Determination of the Shuffle Partition Number 198

5.5 Runtime Replanning of Join Strategies ... 200

5.6 Optimization of Unevenly Distributed Data Joins .. 200

5.7 Enabling the Adaptive Query Execution (AQE) ... 201

5.8 Summary... 202

Chapter 6: Introduction to Apache Spark Streaming �� 203

6.1 Real-Time Analytics of Bound and Unbound Data ... 203

6.2 Challenges of Stream Processing ... 204

6.3 The Uncertainty Component of Data Streams ... 205

6.4 Apache Spark Streaming’s Execution Model .. 205

6.5 Stream Processing Architectures .. 206

The Lambda Architecture .. 206

The Kappa Architecture ... 209

6.6 Spark Streaming Architecture: Discretized Streams ... 210

6.7 Spark Streaming Sources and Receivers .. 211

Basic Input Sources ... 212

Advanced Input Sources .. 232

6.8 Spark Streaming Graceful Shutdown .. 232

6.9 Transformations on DStreams ... 239

6.10 Summary... 241

Part II: Apache Spark Streaming �� 243

Chapter 7: Spark Structured Streaming ��� 245

7.1 General Rules for Message Delivery Reliability .. 246

7.2 Structured Streaming vs. Spark Streaming .. 248

7.3 What Is Apache Spark Structured Streaming? .. 249

Spark Structured Streaming Input Table ... 250

Spark Structured Streaming Result Table ... 250

Spark Structured Streaming Output Modes .. 251

Table of ConTenTs

ix

7.4 Datasets and DataFrames Streaming API ... 254

Socket Structured Streaming Sources .. 257

Running Socket Structured Streaming Applications Locally ... 262

File System Structured Streaming Sources ... 265

Running File System Streaming Applications Locally .. 268

7.5 Spark Structured Streaming Transformations... 271

Streaming State in Spark Structured Streaming ... 271

Spark Stateless Streaming .. 272

Spark Stateful Streaming .. 272

Stateful Streaming Aggregations ... 274

7.6 Spark Checkpointing Streaming ... 283

Recovering from Failures with Checkpointing ... 287

7.7 Summary... 287

Chapter 8: Streaming Sources and Sinks ��� 289

8.1 Spark Streaming Data Sources ... 289

Reading Streaming Data from File Data Sources .. 290

Reading Streaming Data from Kafka ... 293

Reading Streaming Data from MongoDB ... 303

8.2 Spark Streaming Data Sinks ... 311

Writing Streaming Data to the Console Sink ... 311

Writing Streaming Data to the File Sink .. 312

Writing Streaming Data to the Kafka Sink ... 313

Writing Streaming Data to the ForeachBatch Sink .. 314

Writing Streaming Data to the Foreach Sink ... 319

Writing Streaming Data to Other Data Sinks ... 325

8.3 Summary... 329

Chapter 9: Event-Time Window Operations and Watermarking ��������������������������� 331

9.1 Event-Time Processing ... 332

9.2 Stream Temporal Windows in Apache Spark .. 332

What Are Temporal Windows and Why Are They Important in Streaming 333

Table of ConTenTs

x

9.3 Tumbling Windows .. 335

9.4 Sliding Windows .. 342

9.5 Session Windows .. 349

Session Window with Dynamic Gap .. 354

9.6 Watermarking in Spark Structured Streaming .. 359

What Is a Watermark? ... 359

9.7 Summary... 365

Chapter 10: Future Directions for Spark Streaming ��� 367

10.1 Streaming Machine Learning with Spark .. 368

What Is Logistic Regression? .. 370

Types of Logistic Regression ... 371

Use Cases of Logistic Regression .. 371

Assessing the Sensitivity and Specificity of Our Streaming ML Model 381

10.2 Spark 3.3.x .. 385

Spark RocksDB State Store Database ... 386

10.3 The Project Lightspeed ... 388

Predictable Low Latency ... 389

Enhanced Functionality for Processing Data/Events ... 389

New Ecosystem of Connectors .. 390

Improve Operations and Troubleshooting .. 391

10.4 Summary... 391

 Bibliography ��� 393

Index ��� 397

Table of ConTenTs

xi

About the Author

Alfonso Antolínez García is a senior IT manager with a

long professional career serving in several multinational

companies such as Bertelsmann SE, Lafarge, and TUI

AG. He has been working in the media industry, the building

materials industry, and the leisure industry. Alfonso

also works as a university professor, teaching artificial

intelligence, machine learning, and data science. In his spare

time, he writes research papers on artificial intelligence,

mathematics, physics, and the applications of information

theory to other sciences.

xiii

About the Technical Reviewer

Akshay R. Kulkarni is an AI and machine learning evangelist

and a thought leader. He has consulted several Fortune 500

and global enterprises to drive AI- and data science–led

strategic transformations. He is a Google Developer Expert,

author, and regular speaker at major AI and data science

conferences (including Strata, O’Reilly AI Conf, and GIDS).

He is a visiting faculty member for some of the top graduate

institutes in India. In 2019, he has been also featured as one

of the top 40 under-40 data scientists in India. In his spare

time, he enjoys reading, writing, coding, and building

next-gen AI products.

PART I

Apache Spark Batch
Data Processing

3

CHAPTER 1

Introduction to Apache
Spark for Large-Scale
Data Analytics
Apache Spark started as a research project at the UC Berkeley AMPLab in 2009. It

became open source in 2010 and was transferred to the Apache Software Foundation in

2013 and boasts the largest open source big data community.

From its genesis, Spark was designed with a significant change in mind, to store

intermediate data computations in Random Access Memory (RAM), taking advantage

of the coming-down RAM prices that occurred in the 2010s, in comparison with Hadoop

that keeps information in slower disks.

In this chapter, I will provide an introduction to Spark, explaining how it works, the

Spark Unified Analytics Engine, and the Apache Spark ecosystem. Lastly, I will describe

the differences between batch and streaming data.

1.1 What Is Apache Spark?
Apache Spark is a unified engine for large-scale data analytics. It provides high-level

application programming interfaces (APIs) for Java, Scala, Python, and R programming

languages and supports SQL, streaming data, machine learning (ML), and graph

processing. Spark is a multi-language engine for executing data engineering, data

science, and machine learning on single-node machines or clusters of computers, either

on-premise or in the cloud.

© Alfonso Antolínez García 2023
A. Antolínez García, Hands-on Guide to Apache Spark 3, https://doi.org/10.1007/978-1-4842-9380-5_1

https://doi.org/10.1007/978-1-4842-9380-5_1

4

Spark provides in-memory computing for intermediate computations, meaning

data is kept in memory instead of writing it to slow disks, making it faster than Hadoop

MapReduce, for example. It includes a set of high-level tools and modules such as

follows: Spark SQL is for structured data processing and access to external data sources

like Hive; MLlib is the library for machine learning; GraphX is the Spark component

for graphs and graph-parallel computation; Structured Streaming is the Spark SQL

stream processing engine; Pandas API on Spark enables Pandas users to work with large

datasets by leveraging Spark; SparkR provides a lightweight interface to utilize Apache

Spark from the R language; and finally PySpark provides a similar front end to run

Python programs over Spark.

There are five key benefits that make Apache Spark unique and bring it to the

spotlight:

• Simpler to use and operate

• Fast

• Scalable

• Ease of use

• Fault tolerance at scale

Let’s have a look at each of them.

 Simpler to Use and Operate
Spark’s capabilities are accessed via a common and rich API, which makes it possible

to interact with a unified general-purpose distributed data processing engine via

different programming languages and cope with data at scale. Additionally, the broad

documentation available makes the development of Spark applications straightforward.

The Hadoop MapReduce processing technique and distributed computing model

inspired the creation of Apache Spark. This model is conceptually simple: divide a huge

problem into smaller subproblems, distribute each piece of the problem among as many

individual solvers as possible, collect the individual solutions to the partial problems,

and assemble them in a final result.

Chapter 1 IntroduCtIon to apaChe Spark for Large-SCaLe data anaLytICS

5

 Fast
On November 5, 2014, Databricks officially announced they have won the Daytona

GraySort contest.1 In this competition, the Databricks team used a Spark cluster of 206

EC2 nodes to sort 100 TB of data (1 trillion records) in 23 minutes. The previous world

record of 72 minutes using a Hadoop MapReduce cluster of 2100 nodes was set by

Yahoo. Summarizing, Spark sorted the same data three times faster with ten times fewer

machines. Impressive, right?

But wait a bit. The same post also says, “All the sorting took place on disk (HDFS),

without using Spark’s in-memory cache.” So was it not all about Spark’s in-memory

capabilities? Apache Spark is recognized for its in-memory performance. However,

assuming Spark’s outstanding results are due to this feature is one of the most common

misconceptions about Spark’s design. From its genesis, Spark was conceived to achieve a

superior performance both in memory and on disk. Therefore, Spark operators perform

regular operations on disk when data does not fit in memory.

 Scalable
Apache Spark is an open source framework intended to provide parallelized data

processing at scale. At the same time, Spark high-level functions can be used to carry

out different data processing tasks on datasets of diverse sizes and schemas. This is

accomplished by distributing workloads from several servers to thousands of machines,

running on a cluster of computers and orchestrated by a cluster manager like Mesos

or Hadoop YARN. Therefore, hardware resources can increase linearly with every new

computer added. It is worth clarifying that hardware addition to the cluster does not

necessarily represent a linear increase in computing performance and hence linear

reduction in processing time because internal cluster management, data transfer,

network traffic, and so on also consume resources, subtracting them from the effective

Spark computing capabilities. Despite the fact that running in cluster mode leverages

Spark’s full distributed capacity, it can also be run locally on a single computer, called

local mode.

1 www.databricks.com/blog/2014/11/05/spark-officially-sets-a-new-record-in-large-
scale-sorting.html

Chapter 1 IntroduCtIon to apaChe Spark for Large-SCaLe data anaLytICS

http://www.databricks.com/blog/2014/11/05/spark-officially-sets-a-new-record-in-large-scale-sorting.html
http://www.databricks.com/blog/2014/11/05/spark-officially-sets-a-new-record-in-large-scale-sorting.html

6

If you have searched for information about Spark before, you probably have read

something like “Spark runs on commodity hardware.” It is important to understand the

term “commodity hardware.” In the context of big data, commodity hardware does not

denote low quality, but rather equipment based on market standards, which is general-

purpose, widely available, and hence affordable as opposed to purpose-built computers.

 Ease of Use
Spark makes the life of data engineers and data scientists operating on large datasets

easier. Spark provides a single unified engine and API for diverse use cases such as

streaming, batch, or interactive data processing. These tools allow it to easily cope with

diverse scenarios like ETL processes, machine learning, or graphs and graph-parallel

computation. Spark also provides about a hundred operators for data transformation

and the notion of dataframes for manipulating semi-structured data.

 Fault Tolerance at Scale
At scale many things can go wrong. In the big data context, fault refers to failure, that is to

say, Apache Spark’s fault tolerance represents its capacity to operate and to recover after

a failure occurs. In large-scale clustered environments, the occurrence of any kind of

failure is certain at any time; thus, Spark is designed assuming malfunctions are going to

appear sooner or later.

Spark is a distributed computing framework with built-in fault tolerance that takes

advantage of a simple data abstraction named a RDD (Resilient Distributed Dataset)

that conceals data partitioning and distributed computation from the user. RDDs are

immutable collections of objects and are the building blocks of the Apache Spark data

structure. They are logically divided into portions, so they can be processed in parallel,

across multiple nodes of the cluster.

The acronym RDD denotes the essence of these objects:

• Resilient (fault-tolerant): The RDD lineage or Directed Acyclic Graph

(DAG) permits the recomputing of lost partitions due to node failures

from which they are capable of recovering automatically.

• Distributed: RDDs are processes in several nodes in parallel.

Chapter 1 IntroduCtIon to apaChe Spark for Large-SCaLe data anaLytICS

7

• Dataset: It’s the set of data to be processed. Datasets can be the result

of parallelizing an existing collection of data; loading data from an

external source such as a database, Hive tables, or CSV, text, or JSON

files: and creating a RDD from another RDD.

Using this simple concept, Spark is able to handle a wide range of data processing

workloads that previously needed independent tools.

Spark provides two types of fault tolerance: RDD fault tolerance and streaming

write-ahead logs. Spark uses its RDD abstraction to handle failures of worker nodes

in the cluster; however, to control failures in the driver process, Spark 1.2 introduced

write-ahead logs, to save received data to a fault-tolerant storage, such as HDFS, S3, or a

similar safeguarding tool.

Fault tolerance is also achieved thanks to the introduction of the so-called DAG,

or Directed Acyclic Graph, concept. Formally, a DAG is defined as a set of vertices and

edges. In Spark, a DAG is used for the visual representation of RDDs and the operations

being performed on them. The RDDs are represented by vertices, while the operations

are represented by edges. Every edge is directed from an earlier state to a later state. This

task tracking contributes to making fault tolerance possible. It is also used to schedule

tasks and for the coordination of the cluster worker nodes.

1.2 Spark Unified Analytics Engine
The idea of platform integration is not new in the world of software. Consider, for

example, the notion of Customer Relationship Management (CRM) or Enterprise

Resource Planning (ERP). The idea of unification is rooted in Spark’s design from

inception. On October 28, 2016, the Association for Computing Machinery (ACM)

published the article titled “Apache Spark: a unified engine for big data processing.”

In this article, authors assert that due to the nature of big data datasets, a standard

pipeline must combine MapReduce, SQL-like queries, and iterative machine learning

capabilities. The same document states Apache Spark combines batch processing

capabilities, graph analysis, and data streaming, integrating a single SQL query engine

formerly split up into different specialized systems such as Apache Impala, Drill, Storm,

Dremel, Giraph, and others.

Spark’s simplicity resides in its unified API, which makes the development of

applications easier. In contrast to previous systems that required saving intermediate

data to a permanent storage to transfer it later on to other engines, Spark incorporates

Chapter 1 IntroduCtIon to apaChe Spark for Large-SCaLe data anaLytICS

https://dl.acm.org/doi/pdf/10.1145/2934664

8

many functionalities in the same engine and can execute different modules to the

same data and very often in memory. Finally, Spark has facilitated the development of

new applications, such as scaling iterative algorithms, integrating graph querying and

algorithms in the Spark Graph component.

The value added by the integration of several functionalities into a single system

can be seen, for instance, in modern smartphones. For example, nowadays, taxi drivers

have replaced several devices (GPS navigator, radio, music cassettes, etc.) with a single

smartphone. In unifying the functions of these devices, smartphones have eventually

enabled new functionalities and service modalities that would not have been possible

with any of the devices operating independently.

1.3 How Apache Spark Works
We have already mentioned Spark scales by distributing computing workload across a

large cluster of computers, incorporating fault tolerance and parallel computing. We

have also pointed out it uses a unified engine and API to manage workloads and to

interact with applications written in different programming languages.

In this section we are going to explain the basic principles Apache Spark uses to

perform big data analysis under the hood. We are going to walk you through the Spark

Application Model, Spark Execution Model, and Spark Cluster Model.

Spark Application Model
In MapReduce, the highest-level unit of computation is the job; in Spark, the highest-

level unit of computation is the application. In a job we can load data, apply a map

function to it, shuffle it, apply a reduce function to it, and finally save the information

to a fault-tolerant storage device. In Spark, applications are self-contained entities that

execute the user's code and return the results of the computation. As mentioned before,

Spark can run applications using coordinated resources of multiple computers. Spark

applications can carry out a single batch job, execute an iterative session composed of

several jobs, or act as a long-lived streaming server processing unbounded streams of

data. In Spark, a job is launched every time an application invokes an action.

Unlike other technologies like MapReduce, which starts a new process for each task,

Spark applications are executed as independent processes under the coordination of the

SparkSession object running in the driver program. Spark applications using iterative

Chapter 1 IntroduCtIon to apaChe Spark for Large-SCaLe data anaLytICS

9

algorithms benefit from dataset caching capabilities among other operations. This is

feasible because those algorithms conduct repetitive operations on data. Finally, Spark

applications can maintain steadily running processes on their behalf in cluster nodes

even when no job is being executed, and multiple applications can run on top of the

same executor. The former two characteristics combined leverage Spark rapid startup

time and in-memory computing.

Spark Execution Model
The Spark Execution Model contains vital concepts such as the driver program,

executors, jobs, tasks, and stages. Understanding of these concepts is of paramount

importance for fast and efficient Spark application development. Inside Spark, tasks

are the smallest execution unit and are executed inside an executor. A task executes

a limited number of instructions. For example, loading a file, filtering, or applying a

map() function to the data could be considered a task. Stages are collections of tasks

running the same code, each of them in different chunks of a dataset. For example, the

use of functions such as reduceByKey(), Join(), etc., which require a shuffle or reading

a dataset, will trigger in Spark the creation of a stage. Jobs, on the other hand, comprise

several stages.

Next, due to their relevance, we are going to study the concepts of the driver program

and executors together with the Spark Cluster Model.

Spark Cluster Model
Apache Spark running in cluster mode has a master/worker hierarchical architecture

depicted in Figure 1-1 where the driver program plays the role of master node. The Spark

Driver is the central coordinator of the worker nodes (slave nodes), and it is responsible

for delivering the results back to the client. Workers are machine nodes that run

executors. They can host one or multiple workers, they can execute only one JVM (Java

Virtual Machine) per worker, and each worker can generate one or more executors as

shown in Figure 1-2.

The Spark Driver generates the SparkContext and establishes the communication

with the Spark Execution environment and with the cluster manager, which provides

resources for the applications. The Spark Framework can adopt several cluster

managers: Spark’s Standalone Cluster Manager, Apache Mesos, Hadoop YARN, or

Kubernetes. The driver connects to the different nodes of the cluster and starts processes

Chapter 1 IntroduCtIon to apaChe Spark for Large-SCaLe data anaLytICS

10

called executors, which provide computing resources and in-memory storage for RDDs.

After resources are available, it sends the applications’ code (JAR or Python files) to the

executors acquired. Finally, the SparkContext sends tasks to the executors to run the

code already placed in the workers, and these tasks are launched in separate processor

threads, one per worker node core. The SparkContext is also used to create RDDs.

In order to provide applications with logical fault tolerance at both sides of the

cluster, each driver schedules its own tasks and each task, running in every executor,

executes its own JVM (Java Virtual Machine) processes, also called executor processes.

By default executors run in static allocation, meaning they keep executing for the entire

lifetime of a Spark application, unless dynamic allocation is enabled. The driver, to keep

track of executors’ health and status, receives regular heartbeats and partial execution

metrics for the ongoing tasks (Figure 1-3). Heartbeats are periodic messages (every 10 s

by default) from the executors to the driver.

Figure 1-1. Apache Spark cluster mode overview

Chapter 1 IntroduCtIon to apaChe Spark for Large-SCaLe data anaLytICS

11

Figure 1-2. Spark communication architecture with worker nodes and executors

This Execution Model also has some downsides. Data cannot be exchanged between

Spark applications (instances of the SparkContext) via the in-memory computation

model, without first saving the data to an external storage device.

As mentioned before, Spark can be run with a wide variety of cluster managers.

That is possible because Spark is a cluster-agnostic platform. This means that as long as

a cluster manager is able to obtain executor processes and to provide communication

among the architectural components, it is suitable for the purpose of executing Spark.

That is why communication between the driver program and worker nodes must be

available at all times, because the former must acquire incoming connections from the

executors for as long as applications are executing on them.

Figure 1-3. Spark’s heartbeat communication between executors and the driver

Chapter 1 IntroduCtIon to apaChe Spark for Large-SCaLe data anaLytICS

12

1.4 Apache Spark Ecosystem
The Apache Spark ecosystem is composed of a unified and fault-tolerant core engine,

on top of which are four higher-level libraries that include support for SQL queries, data

streaming, machine learning, and graph processing. Those individual libraries can be

assembled in sophisticated workflows, making application development easier and

improving productivity.

 Spark Core
Spark Core is the bedrock on top of which in-memory computing, fault tolerance, and

parallel computing are developed. The Core also provides data abstraction via RDDs

and together with the cluster manager data arrangement over the different nodes of the

cluster. The high-level libraries (Spark SQL, Streaming, MLlib for machine learning, and

GraphX for graph data processing) are also running over the Core.

 Spark APIs
Spark incorporates a series of application programming interfaces (APIs) for different

programming languages (SQL, Scala, Java, Python, and R), paving the way for the

adoption of Spark by a great variety of professionals with different development, data

science, and data engineering backgrounds. For example, Spark SQL permits the

interaction with RDDs as if we were submitting SQL queries to a traditional relational

database. This feature has facilitated many transactional database administrators and

developers to embrace Apache Spark.

Let’s now review each of the four libraries in detail.

 Spark SQL and DataFrames and Datasets
Apache Spark provides a data programming abstraction called DataFrames integrated into

the Spark SQL module. If you have experience working with Python and/or R dataframes,

Spark DataFrames could look familiar to you; however, the latter are distributable across

multiple cluster workers, hence not constrained to the capacity of a single computer. Spark

was designed to tackle very large datasets in the most efficient way.

A DataFrame looks like a relational database table or Excel spreadsheet, with

columns of different data types, headers containing the names of the columns, and data

stored as rows as shown in Table 1-1.

Chapter 1 IntroduCtIon to apaChe Spark for Large-SCaLe data anaLytICS

13

Table 1-1. Representation of a DataFrame as a Relational Table or Excel

Spreadsheet

firstName lastName profession birthPlace

antonio dominguez Bandera actor Málaga

rafael nadal parera tennis player Mallorca

amancio ortega gaona Businessman Busdongo de arbas

pablo ruiz picasso painter Málaga

Blas de Lezo admiral pasajes

Miguel Serveto y Conesa Scientist/theologist Villanueva de Sigena

On the other hand, Figure 1-4 depicts an example of a DataFrame.

Figure 1-4. Example of a DataFrame

A Spark DataFrame can also be defined as an integrated data structure optimized

for distributed big data processing. A Spark DataFrame is also a RDD extension with

an easy-to-use API for simplifying writing code. For the purposes of distributed data

processing, the information inside a Spark DataFrame is structured around schemas.

Spark schemas contain the names of the columns, the data type of a column, and its

nullable properties. When the nullable property is set to true, that column accepts

null values.

SQL has been traditionally the language of choice for many business analysts, data

scientists, and advanced users to leverage data. Spark SQL allows these users to query

structured datasets as they would have done if they were in front of their traditional data

source, hence facilitating adoption.

Chapter 1 IntroduCtIon to apaChe Spark for Large-SCaLe data anaLytICS

14

On the other hand, in Spark a dataset is an immutable and a strongly typed data

structure. Datasets, as DataFrames, are mapped to a data schema and incorporate type

safety and an object-oriented interface. The Dataset API converts between JVM objects

and tabular data representation taking advantage of the encoder concept. This tabular

representation is internally stored in a binary format called Spark Tungsten, which

improves operations in serialized data and improves in-memory performance.

Datasets incorporate compile-time safety, allowing user-developed code to be error-

tested before the application is executed. There are several differences between datasets

and dataframes. The most important one could be datasets are only available to the Java

and Scala APIs. Python or R applications cannot use datasets.

 Spark Streaming
Spark Structured Streaming is a high-level library on top of the core Spark SQL engine.

Structured Streaming enables Spark’s fault-tolerant and real-time processing of

unbounded data streams without users having to think about how the streaming takes

place. Spark Structured Streaming provides fault-tolerant, fast, end-to-end, exactly-once,

at-scale stream processing. Spark Streaming permits express streaming computation

in the same fashion as static data is computed via batch processing. This is achieved

by executing the streaming process incrementally and continuously and updating the

outputs as the incoming data is ingested.

With Spark 2.3, a new low-latency processing mode called continuous processing

was introduced, achieving end-to-end latencies of as low as 1 ms, ensuring at-least-

once2 message delivery. The at-least-once concept is depicted in Figure 1-5. By default,

Structured Streaming internally processes the information as micro-batches, meaning

data is processed as a series of tiny batch jobs.

Figure 1-5. Depiction of the at-least-once message delivery semantic

2 With the at-least-once message delivery semantic, a message can be delivered more than once;
however, no message can be lost.

Chapter 1 IntroduCtIon to apaChe Spark for Large-SCaLe data anaLytICS

15

Spark Structured Streaming also uses the same concepts of datasets and DataFrames

to represent streaming aggregations, event-time windows, stream-to-batch joins, etc.

using different programming language APIs (Scala, Java, Python, and R). It means

the same queries can be used without changing the dataset/DataFrame operations,

therefore choosing the operational mode that best fits our application requirements

without modifying the code.

Spark’s machine learning (ML) library is commonly known as MLlib, though it is not

its official name. MLlib’s goal is to provide big data out-of-the-box, easy-to-use machine

learning capabilities. At a high level, it provides capabilities such as follows:

• Machine learning algorithms like classification, clustering,

regression, collaborative filtering, decision trees, random forests, and

gradient-boosted trees among others

• Featurization:

• Term Frequency-Inverse Document Frequency (TF-IDF)

statistical and feature vectorization method for natural language

processing and information retrieval.

• Word2vec: It takes text corpus as input and produces the word

vectors as output.

• StandardScaler: It is a very common tool for pre-processing steps

and feature standardization.

• Principal component analysis, which is an orthogonal

transformation to convert possibly correlated variables.

• Etc.

• ML Pipelines, to create and tune machine learning pipelines

• Predictive Model Markup Language (PMML), to export

models to PMML

• Basic Statistics, including summary statistics, correlation between

series, stratified sampling, etc.

As of Spark 2.0, the primary Spark Machine Learning API is the DataFrame-based

API in the spark.ml package, switching from the traditional RDD-based APIs in the

spark.mllib package.

Chapter 1 IntroduCtIon to apaChe Spark for Large-SCaLe data anaLytICS

16

 Spark GraphX
GraphX is a new high-level Spark library for graphs and graph-parallel computation

designed to solve graph problems. GraphX extends the Spark RDD capabilities by

introducing this new graph abstraction to support graph computation and includes a

collection of graph algorithms and builders to optimize graph analytics.

The Apache Spark ecosystem described in this section is portrayed in Figure 1-6.

Figure 1-6. The Apache Spark ecosystem

In Figure 1-7 we can see the Apache Spark ecosystem of connectors.

Figure 1-7. Apache Spark ecosystem of connectors

Chapter 1 IntroduCtIon to apaChe Spark for Large-SCaLe data anaLytICS

17

1.5 Batch vs. Streaming Data
Nowadays, the world generates boundless amounts of data, and it continues to augment

at an astonishing rate. It is expected the volume of information created, captured,

copied, and consumed worldwide from 2010 to 2025 will exceed 180 ZB.3 If this figure

does not say much to you, imagine your personal computer or laptop has a hard disk of

1 TB (which could be considered a standard in modern times). It would be necessary for

you to have 163,709,046,319.13 disks to store such amount of data.4

Presently, data is rarely static. Remember the famous three Vs of big data:

• Volume

The unprecedented explosion of data production means that

storage is no longer the real challenge, but to generate actionable

insights from within gigantic datasets.

• Velocity

Data is generated at an ever-accelerating pace, posing the

challenge for data scientists to find techniques to collect, process,

and make use of information as it comes in.

• Variety

Big data is disheveled, sources of information heterogeneous, and

data formats diverse. While structured data is neatly arranged

within tables, unstructured data is information in a wide variety

of forms without following predefined data models, making it

difficult to store in conventional databases. The vast majority of

new data being generated today is unstructured, and it can be

human-generated or machine-generated. Unstructured data is

more difficult to deal with and extract value from. Examples of

unstructured data include medical images, video, audio files,

sensors, social media posts, and more.

3 www.statista.com/statistics/871513/worldwide-data-created/
4 1 zettabyte = 1021 bytes.

Chapter 1 IntroduCtIon to apaChe Spark for Large-SCaLe data anaLytICS

http://www.statista.com/statistics/871513/worldwide-data-created/

18

For businesses, data processing is critical to accelerate data insights obtaining deep

understanding of particular issues by analyzing information. This deep understanding

assists organizations in developing business acumen and turning information into

actionable insights. Therefore, it is relevant enough to trigger actions leading us

to improve operational efficiency, gain competitive advantage, leverage revenue,

and increase profits. Consequently, in the face of today's and tomorrow's business

challenges, analyzing data is crucial to discover actionable insights and stay afloat and

profitable.

It is worth mentioning there are significant differences between data insights, data

analytics, and just data, though many times they are used interchangeably. Data can be

defined as a collection of facts, while data analytics is about arranging and scrutinizing

the data. Data insights are about discovering patterns in data. There is also a hierarchical

relationship between these three concepts. First, information must be collected and

organized, only after it can be analyzed and finally data insights can be extracted. This

hierarchy can be graphically seen in Figure 1-8.

Figure 1-8. Hierarchical relationship between data, data analytics, and data
insight extraction

When it comes to data processing, there are many different methodologies, though

stream and batch processing are the two most common ones. In this section, we will

explain the differences between these two data processing techniques. So let's define

batch and stream processing before diving into the details.

Chapter 1 IntroduCtIon to apaChe Spark for Large-SCaLe data anaLytICS

19

 What Is Batch Data Processing?
Batch data processing can be defined as a computing method of executing high-volume

data transactions in repetitive batches in which the data collection is separate from

the processing. In general, batch jobs do not require user interaction once the process

is initiated. Batch processing is particularly suitable for end-of-cycle treatment of

information, such as warehouse stock update at the end of the day, bank reconciliation,

or monthly payroll calculation, to mention some of them.

Batch processing has become a common part of the corporate back office processes,

because it provides a significant number of advantages, such as efficiency and data

quality due to the lack of human intervention. On the other hand, batch jobs have some

cons. The more obvious one could be they are complex and critical because they are part

of the backbone of the organizations. As a result, developing sophisticated batch jobs

can be expensive up front in terms of time and resources, but in the long run, they pay

the investment off.

Another disadvantage of batch data processing is that due to its large scale and

criticality, in case of a malfunction, significant production shutdowns are likely to occur.

Batch processes are monolithic in nature; thus, in case of rise in data volumes or peaks of

demand, they cannot be easily adapted.

 What Is Stream Data Processing?
Stream data processing could be characterized as the process of collecting,

manipulating, analyzing, and delivering up-to-date information and keeping the state of

data updated while it is still in motion. It could also be defined as a low-latency way of

collecting and processing information while it is still in transit. With stream processing,

the data is processed in real time; thus, there is no delay between data collection and

processing and providing instant response.

Stream processing is particularly suitable when data comes in as a continuous

flow while changing over time, with high velocity, and real-time analytics is needed

or response to an event as soon as it occurs is mandatory. Stream data processing

leverages active intelligence, owning in-the-moment consciousness about important

business events and enabling triggering instantaneous actions. Analytics is performed

instantly on the data or within a fraction of a second; thus, it is perceived by the user as

a real-time update. Some examples where stream data processing is the best option are

Chapter 1 IntroduCtIon to apaChe Spark for Large-SCaLe data anaLytICS

20

credit card fraud detection, real-time system security monitoring, or the use of Internet-

of- Things (IoT) sensors. IoT devices permit monitoring anomalies in machinery and

provide control with a heads-up as soon as anomalies or outliers5 are detected. Social

media and customer sentiment analysis are other trendy fields of stream data processing

application.

One of the main disadvantages of stream data processing is implementing it at scale.

In real life data streaming is far away from being perfect, and often data does not flow

regularly or smoothly. Imagine a situation in which data flow is disrupted and some

data is missing or broken down. Then, after normal service is restored, that missing or

broken-down information suddenly arrives at the platform, flooding the processing

system. To be able to cope with situations like this, streaming architectures require spare

capacity of computing, communications, and storage.

 Difference Between Stream Processing
and Batch Processing
Summarizing, we could say that stream processing involves the treatment and analysis

of data in motion in real or almost-real time, while batch processing entails handling and

analyzing static information at time intervals.

In batch jobs, you manipulate information produced in the past and consolidated in

a permanent storage device. It is also what is commonly known as information at rest.

In contrast, stream processing is a low-latency solution, demanding the analysis of

streams of information while it is still in motion. Incoming data requires to be processed

in flight, in real or almost-real time, rather than saved in a permanent storage. Given

that data is consumed as it is generated, it provides an up-to-the-minute snapshot of the

information, enabling a proactive response to events. Another difference between batch

and stream processing is that in stream processing only the information considered

relevant for the process being analyzed is stored from the very beginning. On the other

hand, data considered of no immediate interest can be stored in low-cost devices for

ulterior analysis with data mining algorithms, machine learning models, etc.

A graphical representation of batch vs. stream data processing is shown in Figure 1-9.

5 Parameters out of defined thresholds.

Chapter 1 IntroduCtIon to apaChe Spark for Large-SCaLe data anaLytICS

21

Figure 1-9. Batch vs. streaming processing representation

1.6 Summary
In this chapter we briefly looked at the Apache Spark architecture, implementation, and

ecosystem of applications. We also covered the two different types of data processing

Spark can deal with, batch and streaming, and the main differences between them.

In the next chapter, we are going to go through the Spark setup process, the Spark

application concept, and the two different types of Apache Spark RDD operations:

transformations and actions.

Chapter 1 IntroduCtIon to apaChe Spark for Large-SCaLe data anaLytICS

23

CHAPTER 2

Getting Started with
Apache Spark
Now that you have an understanding of what Spark is and how it works, we can get you

set up to start using it. In this chapter, I’ll provide download and installation instructions

and cover Spark command-line utilities in detail. I’ll also review Spark application

concepts, as well as transformations, actions, immutability, and lazy evaluation.

2.1 Downloading and Installing Apache Spark
The first step you have to take to have your Spark installation up and running is to go to

the Spark download page and choose the Spark release 3.3.0. Then, select the package

type “Pre-built for Apache Hadoop 3.3 and later” from the drop-down menu in step 2,

and click the “Download Spark” link in step 3 (Figure 2-1).

Figure 2-1. The Apache Spark download page

© Alfonso Antolínez García 2023
A. Antolínez García, Hands-on Guide to Apache Spark 3, https://doi.org/10.1007/978-1-4842-9380-5_2

https://doi.org/10.1007/978-1-4842-9380-5_2
https://spark.apache.org/downloads.html

24

This will download the file spark-3.3.0-bin-hadoop3.tgz or another similar name

in your case, which is a compressed file that contains all the binaries you will need to

execute Spark in local mode on your local computer or laptop.

What is great about setting Apache Spark up in local mode is that you don’t need

much work to do. We basically need to install Java and set some environment variables.

Let’s see how to do it in several environments.

 Installation of Apache Spark on Linux
The following steps will install Apache Spark on a Linux system. It can be Fedora,

Ubuntu, or another distribution.

 Step 1: Verifying the Java Installation

Java installation is mandatory in installing Spark. Type the following command in a

terminal window to verify Java is available and its version:

$ java -version

If Java is already installed on your system, you get to see a message similar to the

following:

$ java -version

java version "18.0.2" 2022-07-19

Java(TM) SE Runtime Environment (build 18.0.2+9-61)

Java HotSpot(TM) 64-Bit Server VM (build 18.0.2+9-61, mixed mode, sharing)

Your Java version may be different. Java 18 is the Java version in this case.

If you don’t have Java installed

 1. Open a browser window, and navigate to the Java download page

as seen in Figure 2-2.

Chapter 2 GettinG Started with apaChe Spark

https://www.java.com/en/download/linux_manual.jsp

25

Figure 2-2. Java download page

 2. Click the Java file of your choice and save the file to a location (e.g.,

/home/<user>/Downloads).

 Step 2: Installing Spark

Extract the Spark .tgz file downloaded before. To unpack the spark-3.3.0-bin-hadoop3.tgz file

in Linux, open a terminal window, move to the location in which the file was downloaded

$ cd PATH/TO/spark-3.3.0-bin-hadoop3.tgz_location

and execute

$ tar -xzvf ./spark-3.3.0-bin-hadoop3.tgz

Chapter 2 GettinG Started with apaChe Spark

26

 Step 3: Moving Spark Software Files

You can move the Spark files to an installation directory such as /usr/local/spark:

$ su -

Password:

$ cd /home/<user>/Downloads/

$ mv spark-3.3.0-bin-hadoop3 /usr/local/spark

$ exit

 Step 4: Setting Up the Environment for Spark

Add the following lines to the ~/.bashrc file. This will add the location of the Spark

software files and the location of binary files to the PATH variable:

export SPARK_HOME=/usr/local/spark

export PATH=$PATH:$SPARK_HOME/bin

Use the following command for sourcing the ~/.bashrc file, updating the

environment variables:

$ source ~/.bashrc

 Step 5: Verifying the Spark Installation

Write the following command for opening the Spark shell:

$ $SPARK_HOME/bin/spark-shell

If Spark is installed successfully, then you will find the following output:

Setting default log level to "WARN".

To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use

setLogLevel(newLevel).

22/08/29 22:16:45 WARN NativeCodeLoader: Unable to load native-hadoop

library for your platform... using builtin-java classes where applicable

22/08/29 22:16:46 WARN Utils: Service 'SparkUI' could not bind on port

4040. Attempting port 4041.

Spark context Web UI available at http://192.168.0.16:4041

Chapter 2 GettinG Started with apaChe Spark

27

Spark context available as 'sc' (master = local[*], app id =

local-1661804206245).

Spark session available as 'spark'.

Welcome to

 ____ __

 / __/__ ___ _____/ /__

 _\ \/ _ \/ _ `/ __/ '_/

 /___/ .__/_,_/_/ /_/_\ version 3.3.0

 /_/

Using Scala version 2.12.15 (Java HotSpot(TM) 64-Bit Server VM,

Java 18.0.2)

Type in expressions to have them evaluated.

Type :help for more information.

scala>

You can try the installation a bit further by taking advantage of the README.md file

that is present in the $SPARK_HOME directory:

scala> val readme_file = sc.textFile("/usr/local/spark/README.md")

readme_file: org.apache.spark.rdd.RDD[String] = /usr/local/spark/README.md

MapPartitionsRDD[1] at textFile at <console>:23

The Spark context Web UI would be available typing the following URL in your

browser:

http://localhost:4040

There, you can see the jobs, stages, storage space, and executors that are used for

your small application. The result can be seen in Figure 2-3.

Chapter 2 GettinG Started with apaChe Spark

28

Figure 2-3. Apache Spark Web UI showing jobs, stages, storage, environment, and
executors used for the application running on the Spark shell

 Installation of Apache Spark on Windows
In this section I will show you how to install Apache Spark on Windows 10 and test the

installation. It is important to notice that to perform this installation, you must have a

user account with administrator privileges. This is mandatory to install the software and

modify system PATH.

 Step 1: Java Installation

As we did in the previous section, the first step you should take is to be sure you have

Java installed and it is accessible by Apache Spark. You can verify Java is installed using

the command line by clicking Start, typing cmd, and clicking Command Prompt. Then,

type the following command in the command line:

java -version

If Java is installed, you will receive an output similar to this:

openjdk version "18.0.2.1" 2022-08-18

OpenJDK Runtime Environment (build 18.0.2.1+1-1)

OpenJDK 64-Bit Server VM (build 18.0.2.1+1-1, mixed mode, sharing)

Chapter 2 GettinG Started with apaChe Spark

29

If a message is instead telling you that command is unknown, Java is not installed or

not available. Then you have to proceed with the following steps.

Install Java. In this case we are going to use OpenJDK as a Java Virtual Machine. You

have to download the binaries that match your operating system version and hardware.

For the purposes of this tutorial, we are going to use OpenJDK JDK 18.0.2.1, so I have

downloaded the openjdk-18.0.2.1_windows-x64_bin.zip file. You can use other Java

distributions as well.

Download the file, save it, and unpack the file in a directory of your choice. You can

use any unzip utility to do it.

 Step 2: Download Apache Spark

Open a web browser and navigate to the Spark downloads URL and follow the same

instructions given in Figure 2-1.

To unpack the spark-3.3.0-bin-hadoop3.tgz file, you will need a tool capable of

extracting .tgz files. You can use a free tool like 7-Zip, for example.

Verify the file integrity. It is always a good practice to confirm the checksum of a

downloaded file, to be sure you are working with unmodified, uncorrupted software. In

the Spark download page, open the checksum link and copy or remember (if you can)

the file’s signature. It should be something like this (string not complete):

1e8234d0c1d2ab4462 ... a2575c29c spark-3.3.0-bin-hadoop3.tgz

Next, open a command line and enter the following command:

certutil -hashfile PATH\TO\spark-3.3.0-bin-hadoop3.tgz SHA512

You must see the same signature you copied before; if not, something is wrong. Try

to solve it by downloading the file again.

 Step 3: Install Apache Spark

Installing Apache Spark is just extracting the downloaded file to the location of your

choice, for example, C:\spark or any other.

Chapter 2 GettinG Started with apaChe Spark

https://openjdk.org/install/
https://www.java.com/en/download/
https://www.java.com/en/download/
https://spark.apache.org/downloads.html
https://www.7-zip.org/
https://downloads.apache.org/spark/spark-3.3.0/spark-3.3.0-bin-hadoop3.tgz.sha512

30

 Step 4: Download the winutils File for Hadoop

Create a folder named Hadoop and a bin subfolder, for example, C:\hadoop\bin, and

download the winutils.exe file for the Hadoop 3 version you downloaded before to it.

 Step 5: Configure System and Environment Variables

Configuring environment variables in Windows means adding to the system

environment and PATH the Spark and Hadoop locations; thus, they become accessible

to any application.

You should go to Control Panel ➤ System and Security ➤ System. Then Click

“Advanced system settings” as shown in Figure 2-4.

Figure 2-4. Windows advanced system settings

You will be prompted with the System Properties dialog box, Figure 2-5 left:

 1. Click the Environment Variables button.

 2. The Environment Variables window appears, Figure 2-5 top-right:

 a. Click the New button.

Chapter 2 GettinG Started with apaChe Spark

https://github.com/cdarlint/winutils

31

 3. Insert the following variables:

 a. JAVA_HOME: \PATH\TO\YOUR\JAVA-DIRECTORY

 b. SPARK_HOME: \PATH\TO\YOUR\SPARK-DIRECTORY

 c. HADOOP_HOME: \PATH\TO\YOUR\HADOOP-DIRECTORY

You will have to repeat the previous step twice, to introduce the

three variables.

 4. Click the OK button to save the changes.

 5. Then, click your Edit button, Figure 2-6 left, to edit your PATH.

Figure 2-5. Environment variables

Chapter 2 GettinG Started with apaChe Spark

32

 6. After that, click the New button, Figure 2-6 right.

And add these new variables to the PATH:

 a. %JAVA_HOME%\bin

 b. %SPARK_HOME%\bin

 c. %HADOOP_HOME%bin

Configure system and environment variables for all the
computer’s users.

 7. If you want to add those variables for all the users of your

computer, apart from the user performing this installation, you

should repeat all the previous steps for the System variables,

Figure 2-6 bottom-left, clicking the New button to add the

environment variables and then clicking the Edit button to add

them to the system PATH, as you did before.

Figure 2-6. Add variables to the PATH

Chapter 2 GettinG Started with apaChe Spark

33

Verify the Spark installation.
If you execute spark-shell for the first time, you will see a great bunch

of informational messages. This is probably going to distract you and

make you fear something went wrong. To avoid these messages and

concentrate only on possible error messages, you are going to configure

the Spark logging parameters.

Go to your %SPARK_HOME%\conf directory and find a file named log4j2.

properties.template, and rename it as log4j2.properties. Open the file with Notepad

or another editor.

Find the line

rootLogger.level = info

And change it as follows:

rootLogger.level = ERROR

After that, save it and close it.

Open a cmd terminal window and type spark-shell. If the installation went well,

you will see something similar to Figure 2-7.

Figure 2-7. spark-shell window

Chapter 2 GettinG Started with apaChe Spark

34

To carry out a more complete test of the installation, let’s try the following code:

val file =sc.textFile("C:\\PATH\\TO\\YOUR\\spark\\README.md")

This will create a RDD. You can view the file’s content by using the next instruction:

file.take(10).foreach(println)

You can see the result in Figure 2-8.

Figure 2-8. spark-shell test code

To exit spark-shell, you can press Ctrl-D in the Command Prompt window or

type :q.

Open a web browser and type the URL http://localhost:4040/. You can also use the

name of your computer, instead of localhost. You should see an Apache Spark Web UI

similar to the one shown in Figure 2-9. The following example shows the Executors page.

Chapter 2 GettinG Started with apaChe Spark

35

Figure 2-9. Apache Spark Web UI

If you have Python installed, you can run PySpark with this command:

pyspark

The PySpark Command Prompt window can be closed using quit().

2.2 Hands-On Spark Shell
Apache Spark comes with a series of command-line utilities through which you can

interact with Spark’s APIs. Spark provides shell utilities for several programming

languages such as spark-shell for Scala, pyspark for Python, spark-sql for SQL, and

sparkR for the R language.

Spark also supplies other specialized command-line tools like spark-submit,

run- example, and spark-class. You can use spark-submit to execute self-contained

applications written in Java, Scala, Python, or R using the Spark API and submit them

to the different Spark cluster managers (YARN, Kubernetes, Mesos, and Standalone),

supplying execution time options and configurations. Apache Spark comes with several

examples coded in Scala, Java, Python, and R, which are located in the examples

directory. The shell spark-example can be used to run examples written in Scala

and Java:

#For Scala and Java examples:

$ $SPARK_HOME/bin/run-example SparkPi

Chapter 2 GettinG Started with apaChe Spark

36

For examples written in Python or R, you can use spark-submit directly:

#For Python examples:

$ $SPARK_HOME/bin/spark-submit examples/src/main/python/pi.py

#For R examples:

$ $SPARK_HOME/bin/spark-submit examples/src/main/r/dataframe.R

 Using the Spark Shell Command
The Spark shell is an interactive command-line environment to interact with Spark

from the command line. The Spark shell is known as a REPL (Read-Eval-Print Loop)

shell interface. A REPL interface reads each input line, evaluates it, and returns the

result. It is mostly used to run ad hoc queries against a Spark cluster. The Spark shell is

a very convenient tool to debug your software and explore new features while getting

immediate feedback. There are specific shell scripts for different languages such as

spark-shell to launch the Spark Scala shell; pyspark for Spark with Python, also called

PySpark; and sparkr to submit R language programs to Spark.

 The Scala Shell Command Line

One of the main features of the Spark shell is that it creates the SparkSession and

SparkContext for you. You can access the SparkSession and SparkContext through their

objects, spark for the former and sc for the latter.

Remember you can start the spark-shell script by executing

$SPARK_HOME/bin/spark-shell

~ % spark-shell

Setting default log level to "WARN".

To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use

setLogLevel(newLevel).

Spark context Web UI available at http://192.168.0.16:4040

Spark context available as 'sc' (master = local[*], app id =

local-1662487353802).

Spark session available as 'spark'.

Welcome to

Chapter 2 GettinG Started with apaChe Spark

37

 ____ __

 / __/__ ___ _____/ /__

 _\ \/ _ \/ _ `/ __/ '_/

 /___/ .__/_,_/_/ /_/_\ version 3.3.0

 /_/

Using Scala version 2.12.15 (Java HotSpot(TM) 64-Bit Server VM,

Java 18.0.2)

Type in expressions to have them evaluated.

Type :help for more information.

scala>

This automatically instantiates the SparkSession as spark and SparkContext as sc:

scala> :type spark

org.apache.spark.sql.SparkSession

scala> :type sc

org.apache.spark.SparkContext

You can access environment variables from the shell using the getenv method as

System.getenv('ENV_NAME'), for example:

scala> System.getenv("PWD")

res12: String = /Users/aantolinez

spark-shell also provides online help by typing

scala> :help

All commands can be abbreviated, e.g., :he instead of :help.

:completions <string> output completions for the given string

:edit <id>|<line> edit history

:help [command] print this summary or command-specific help

:history [num] show the history (optional num is commands to show)

:h? <string> search the history

...

...

:save <path> save replayable session to a file

:settings <options> update compiler options, if possible; see reset

Chapter 2 GettinG Started with apaChe Spark

38

:silent disable/enable automatic printing of results

:warnings show the suppressed warnings from the most recent

line which had any

scala>

Please, do not confuse the inline help provided by :help with spark-shell runtime

options shown by the spark-shell -h option.

The -h option permits passing runtime environment options to the shell, allowing

a flexible execution of your application, depending on the cluster configuration. Let’s

see some examples in which we run Apache Spark with Apache Hudi; set the cluster

manager (YARN), the deployment mode, and the number of cores per executor; and

allocate the memory available for the driver and executors:

$SPARK_HOME/bin/spark-shell \

--master yarn \

--deploy-mode cluster \

--driver-memory 16g \

--executor-memory 32g \

--executor-cores 4 \

--conf "spark.sql.shuffle.partitions=1000" \

--conf "spark.executor.memoryOverhead=4024" \

--conf "spark.memory.fraction=0.7" \

--conf "spark.memory.storageFraction=0.3" \

--packages org.apache.hudi:hudi-spark3.3-bundle_2.12:0.12.0 \

--conf "spark.serializer=org.apache.spark.serializer.KryoSerializer" \

--conf "spark.sql.catalog.spark_catalog=org.apache.spark.sql.hudi.catalog.

HoodieCatalog" \

--conf "spark.sql.extensions=org.apache.spark.sql.hudi.

HoodieSparkSessionExtension"

In the next example, we define at runtime the database driver and version we would

like to be used:

$SPARK_HOME/bin/spark-shell \

--master yarn \

--deploy-mode cluster \

--driver-memory 16g \

Chapter 2 GettinG Started with apaChe Spark

39

--executor-memory 32g \

--executor-cores 4 \

--driver-class-path /path/to/postgresql-42.5.0.jar \

--conf "spark.sql.shuffle.partitions=1000" \

--conf "spark.executor.memoryOverhead=4024" \

--conf "spark.memory.fraction=0.7" \

--conf "spark.memory.storageFraction=0.3" \

Another important spark-shell feature is that, by default, it starts using local[*]

as master and assigns a spark.app.id with local-xxx schema and a spark.app.

name="Spark shell". All the properties set by default and environment variables used in

the running environment can be examined by looking at the Web UI launched by spark-

shell and accessible via the URL http://localhost:4040/environment/ as can be seen in

Figure 2-10.

Figure 2-10. The Apache Spark Web UI on port 4040

As mentioned before, you can run interactive applications by typing your code in the

command line. For example, let’s create a dataframe from a data sequence:

scala> import spark.implicits._

import spark.implicits._

scala> val cars=Seq(("USA","Chrysler","Dodge","Jeep"),("Germany","BMW","VW",

"Mercedes"),("Spain", "GTA Spano","SEAT","Hispano Suiza"))

Chapter 2 GettinG Started with apaChe Spark

40

cars: Seq[(String, String, String, String)] =

List((USA,Chrysler,Dodge,Jeep), (Germany,BMW,VW,Mercedes), (Spain,GTA

Spano,SEAT,Hispano Suiza))

scala> val cars_df = cars.toDF()

cars_df: org.apache.spark.sql.DataFrame = [_1: string, _2: string ... 2

more fields]

scala> cars_df.show()

+-------+---------+-----+-------------+

| _1| _2| _3| _4|

+-------+---------+-----+-------------+

| USA| Chrysler|Dodge| Jeep|

|Germany| BMW| VW| Mercedes|

| Spain|GTA Spano| SEAT|Hispano Suiza|

+-------+---------+-----+-------------+

The following is a practical example of how spark-shell can be used to retrieve

information from a production database:

scala> val df_postgresql = spark.read.format("jdbc").option("url",

"jdbc:postgresql://ec2-52-77-8-54.us-west-1.compute.amazonaws.com:5432/

db").option("driver", "org.postgresql.Driver").option("dbtable","schema.

table").option("user","user_password").option("password", "your_db_

password_here").load()

df_postgresql: org.apache.spark.sql.DataFrame = [category_id: smallint,

category_name: string ... 2 more fields]

scala> df_postgresql.show()

+-----------+--------------+--------------------+-------+

|category_id| category_name| description|picture|

+-----------+--------------+--------------------+-------+

| 1| Beverages|Soft drinks, coff...| []|

| 2| Condiments|Sweet and savory ...| []|

| 3| Confections|Desserts, candies...| []|

| 4|Dairy Products| Cheeses| []|

Chapter 2 GettinG Started with apaChe Spark

41

| 5|Grains/Cereals|Breads, crackers,...| []|

| 6| Meat/Poultry| Prepared meats| []|

| 7| Produce|Dried fruit and b...| []|

| 8| Seafood| Seaweed and fish| []|

+-----------+--------------+--------------------+-------+

Finally, to leave spark-shell, you just need to type :q.

 The Pyspark Shell Command Line

If you prefer programming with Python, you can invoke the pyspark shell. As with

spark-shell, you can run it by typing in a terminal:

$SPARK_HOME/bin/pyspark

~ % pyspark

Python 3.6.12 (default, May 18 2021, 22:47:55)

[GCC 4.8.5 20150623 (Red Hat 4.8.5-28)] on linux

Type "help", "copyright", "credits" or "license" for more information.

SLF4J: Class path contains multiple SLF4J bindings.

SLF4J: Found binding in [jar:file:/usr/share/aws/glue/etl/jars/glue-

assembly.jar!/org/slf4j/impl/StaticLoggerBinder.class]

...

...

22/09/07 16:30:26 WARN Client: Same path resource file:///usr/share/aws/

glue/libs/pyspark.zip added multiple times to distributed cache.

Welcome to

 ____ __

 / __/__ ___ _____/ /__

 _\ \/ _ \/ _ `/ __/ '_/

 /__ / .__/_,_/_/ /_/_\ version 3.3.0

 /_/

Using Python version 3.6.12 (default, May 18 2021 22:47:55)

SparkSession available as 'spark'.

>>>

Chapter 2 GettinG Started with apaChe Spark

42

As with spark-shell, the pyspark shell automatically creates a SparkSession

accessible as spark and a SparkContext available through the variable sc. It also sets

up a shell Web UI server with URL http://localhost:4040/. By default, it uses port 4040;

however, if this port couldn’t bind, ports 4041, 4042, and so on will be explored until one

is found that binds.

As mentioned before with spark-shell, you can run interactive applications in

spark by typing your code in the command line. In the following example, we create a

dataframe from a list of tuples:

>> cars = [("USA","Chrysler","Dodge","Jeep"),("Germany","BMW","VW",

"Mercedes"),("Spain", "GTA Spano","SEAT","Hispano Suiza")]

>> cars_df = spark.createDataFrame(cars)

>> cars_df.show()

+-------+---------+-----+-------------+

| _1| _2| _3| _4|

+-------+---------+-----+-------------+

| USA| Chrysler|Dodge| Jeep|

|Germany| BMW| VW| Mercedes|

| Spain|GTA Spano| SEAT|Hispano Suiza|

+-------+---------+-----+-------------+

The pyspark shell also admits runtime configuration parameters. The following is an

example of pyspark executed with configuration options:

$SPARK_HOME/bin/pyspark \

--master yarn \

--deploy-mode client \

--executor-memory 16G \

--executor-cores 8 \

--conf spark.sql.parquet.mergeSchema=true \

--conf spark.sql.parquet.filterPushdown=true \

--conf spark.sql.parquet.writeLegacyFormat=false Hands_On_Spark3_Script.py

> ./Hands_On_Spark3_Script.log 2>&1 &

Unlike spark-shell, to leave pyspark, you can type in your terminal one of the

commands quit() and exit() or press Ctrl-D.

Chapter 2 GettinG Started with apaChe Spark

43

 Running Self-Contained Applications
with the spark- submit Command
If you look at the $SPARK_HOME/bin directory, you will find several spark-submit scripts.

Spark provides different scripts for distinct operating systems and purposes. Therefore,

for Linux and Mac, you need the spark-submit.sh script file, while for Windows you

have to employ the spark-submit.cmd command file.

The spark-submit command usage is as follows:

~ % $SPARK_HOME/bin/spark-submit --help

Usage: spark-submit [options] <app jar | python file | R file> [app

arguments]

Usage: spark-submit --kill [submission ID] --master [spark://...]

Usage: spark-submit --status [submission ID] --master [spark://...]

Usage: spark-submit run-example [options] example-class [example args]

Some of the most common spark-submit options are

$ $SPARK_HOME/bin/spark-submit \

 --master <master-url> \

 --deploy-mode <deploy-mode> \

 --class <main-class> \

 --conf <key>=<value> \

 --driver-memory <value>g \

 --executor-memory <value>g \

 --executor-cores <number of cores> \

 --jars <comma separated dependencies>

 ... # other options

 <application-jar> \

 [application-arguments]

Now, we are going to illustrate how spark-submit works with a practical example:

$ $SPARK_HOME/bin/spark-submit \

--deploy-mode client \

--master local \

--class org.apache.spark.examples.SparkPi \

/$SPARK_HOME/examples/jars/spark-examples_2.12-3.3.0.jar 80

Chapter 2 GettinG Started with apaChe Spark

44

If you have run this piece of code as it is, you would have surely seen some stuff like

this coming out to your console:

22/08/30 22:04:30 WARN Utils: Your hostname, MacBook-Pro.local resolves

to a loopback address: 127.0.0.1; using 192.168.0.16 instead (on

interface en0)

22/08/30 22:04:30 WARN Utils: Set SPARK_LOCAL_IP if you need to bind to

another address

22/08/30 22:05:00 INFO SparkContext: Running Spark version 3.3.0

. . .

. . .

22/08/30 22:05:03 INFO DAGScheduler: Job 0 finished: reduce at SparkPi.

scala:38, took 1.174952 s

Pi is roughly 3.142520392815049

22/08/30 22:05:03 INFO SparkUI: Stopped Spark web UI at

http://192.168.0.16:4043

22/08/30 22:05:03 INFO MapOutputTrackerMasterEndpoint:

MapOutputTrackerMasterEndpoint stopped!

22/08/30 22:05:03 INFO MemoryStore: MemoryStore cleared

22/08/30 22:05:03 INFO BlockManager: BlockManager stopped

22/08/30 22:05:03 INFO BlockManagerMaster: BlockManagerMaster stopped

22/08/30 22:05:03 INFO OutputCommitCoordinator$OutputCommitCoordinatorEndpo

int: OutputCommitCoordinator stopped!

22/08/30 22:05:03 INFO SparkContext: Successfully stopped SparkContext

22/08/30 22:05:03 INFO ShutdownHookManager: Shutdown hook called

22/08/30 22:05:03 INFO ShutdownHookManager: Deleting directory /

private/var/folders/qd/6ly2_9_54tq434fctwmmsc3m0000gp/T/spark-30934777-

e061-403c-821d-0bbaa2e62745

22/08/30 22:05:03 INFO ShutdownHookManager: Deleting directory /private/

var/folders/qd/6ly2_9_54tq434fctwmmsc3m0000gp/T/spark-3e2e234c-7615-4a9c-

b34f- 878d149517e2

“Pi is roughly 3.142520392815049” in bold is the information you are really

interested in.

Chapter 2 GettinG Started with apaChe Spark

45

As we mentioned before in “Step 5: Configure System and Environment Variables,” to

avoid such a bunch of information that makes it difficult to find the final outcome of your

application, you can tune your Spark configuration a little bit to show you just ERROR

messages, removing INFO lines.

Assuming you are using Apache Spark 3.3.0, in a terminal window, do the following:

$ ls $SPARK_HOME/conf

fairscheduler.xml.template spark-defaults.conf.template

log4j2.properties.template spark-env.sh.template

metrics.properties.template workers.template

Rename the log4j2.properties.template file, and name it as log4j2.properties:

$ mv $SPARK_HOME/conf/log4j2.properties.template $SPARK_HOME/conf/log4j2.

properties

Edit the log4j2.properties file:

$ vi $SPARK_HOME/conf/log4j2.properties

Find the following line

Set everything to be logged to the console

rootLogger.level = info

And change it to

Set everything to be logged to the console

rootLogger.level = ERROR

Save the file, and run the Spark example application again:

$ $SPARK_HOME/bin/spark-submit \

--name "Hands-On Spark 3" \

--master local\[4] \

--deploy-mode client \

--conf spark.eventLog.enabled=false \

--conf "spark.executor.extraJavaOptions=-XX:+PrintGCDetails

 -XX:+PrintGCTimeStamps" \

Chapter 2 GettinG Started with apaChe Spark

46

--class org.apache.spark.examples.SparkPi \

/$SPARK_HOME/examples/jars/spark-examples_2.12-3.3.0.jar 80

Pi is roughly 3.1410188926273617

$

This time you will see a clean exit.

Let’s now review the meaning of the most common options.

 Spark Submit Options

You can get all spark-submit options available by running the following command:

$ $SPARK_HOME/bin/spark-submit --help

Let’s explain the most relevant spark-submit options and configurations used with

Scala and Python—PySpark.

 Deployment Mode Options

The --deploy-mode option specifies whether the driver program will be launched

locally (“client”) or will be run in a cluster (“cluster”). Table 2-1 describes the meaning of

each option.

Table 2-1. The Apache Spark Deployment Modes

Option Description

cluster in cluster mode, the driver program will run in one of the worker machines inside

a cluster. Cluster mode is used to run production jobs.

client

(default option)

in client mode, the driver program runs locally where the application is submitted

and the executors run in different nodes.

 Cluster Manager Options

The --master option specifies what cluster manager to use and the master URL for the

cluster to run your application in. You can see the different cluster managers available

and how to use them in Table 2-2.

Chapter 2 GettinG Started with apaChe Spark

47

Table 2-2. The Apache Spark Cluster Managers

Option Template Description

Standalone spark://ip:pOrt UrL of the master node, ip address, and port, which is

7077 by default.

Mesos mesos://host:port the master UrLs for Mesos.

Yarn --master yarn Cluster resources managed by hadoop Yarn.

kubernetes k8s://https://host:port kubernetes host and port:

k8s://https://<k8s-apiserver-host>:<k8s-apiserver-port>

Local local run Spark locally with no parallelism and just one worker

thread (i.e., at all).

local[k], run Spark locally with k number of cores or worker threads.

local[k,F] run Spark locally with k worker threads and F maxFailures

or number of attempts it should try when failed.

local[*]

(default: local[*])

run Spark locally with as many worker threads as logical

cores are available.

Here are a few examples of these common options:

Run application locally on 4 cores

(base) aantolinez@MacBook-Pro ~ % $SPARK_HOME/bin/spark-submit \

 --class org.apache.spark.examples.SparkPi \

 --master local[4] \

 /$SPARK_HOME/examples/jars/spark-examples_2.12-3.3.0.jar 80

zsh: no matches found: local[4]

Note if you are using the zsh, also called the Z shell, you would have to escape
[4] in --master local[4] \ with "\", like --master local\[4] \;
otherwise, you will get the following error message:

zsh: no matches found: local[4]

Chapter 2 GettinG Started with apaChe Spark

48

(base) aantolinez@MacBook-Pro ~ % $SPARK_HOME/bin/spark-submit \

 --class org.apache.spark.examples.SparkPi \

 --master local\[4] \

 /$SPARK_HOME/examples/jars/spark-examples_2.12-3.3.0.jar 80

Spark standalone cluster and a Python application

$SPARK_HOME/bin/spark-submit \

 --master spark://192.168.1.3:7077 \

/$SPARK_HOME/examples/src/main/python/pi.py

Spark standalone cluster in client deploy mode and 100 cores

$SPARK_HOME/bin/spark-submit \

 --class org.apache.spark.examples.SparkPi \

 --master spark://192.168.1.3:7077 \

 --executor-memory 20G \

 --total-executor-cores 100 \

/$SPARK_HOME/examples/jars/spark-examples_2.12-3.3.0.jar 80

Spark standalone cluster in cluster deploy mode with supervised option.

--supervise automatically restarts the driver if it fails with a non-zero

exit code.

$SPARK_HOME/bin/spark-submit \

 --class org.apache.spark.examples.SparkPi \

 --master spark://192.168.1.3:7077 \

 --deploy-mode cluster \

 --supervise \

 --executor-memory 20G \

 --total-executor-cores 100 \

 /$SPARK_HOME/examples/jars/spark-examples_2.12-3.3.0.jar 80

Spark on a YARN cluster in cluster deploy mode

export HADOOP_CONF_DIR=PATH_TO_HADOOP_CONF_DIR

$SPARK_HOME/bin/spark-submit \

 --master yarn \

 --deploy-mode cluster \

 --class org.apache.spark.examples.SparkPi \

 --executor-memory 10G \

Chapter 2 GettinG Started with apaChe Spark

49

 --num-executors 20 \

 /$SPARK_HOME/examples/jars/spark-examples_2.12-3.3.0.jar 80

Run on a Mesos cluster in cluster deploy mode

$SPARK_HOME/bin/spark-submit \

 --class org.apache.spark.examples.SparkPi \

 --master mesos://207.184.161.138:7077 \

 --deploy-mode cluster \

 --executor-memory 16G \

 --total-executor-cores 64 \

 /$SPARK_HOME/examples/jars/spark-examples_2.12-3.3.0.jar 80

Spark on a Kubernetes cluster in cluster deploy mode

$SPARK_HOME/bin/spark-submit \

 --class org.apache.spark.examples.SparkPi \

 --master k8s://xx.yy.zz.ww:443 \

 --deploy-mode cluster \

 --executor-memory 20G \

 --num-executors 50 \

 /$SPARK_HOME/examples/jars/spark-examples_2.12-3.3.0.jar 80

 Tuning Resource Allocation

When submitting an application to your cluster, you can pay attention to its execution

performance, thus making your Spark program run faster. The two main resources

Apache Spark cares about are CPU and RAM. To take advantage of what a Spark cluster

can offer, you can control how much memory and cores the driver and executors

can use.

The options enumerated in this section not only affect Spark performance but

the cluster in which it could be running as well. For example, they influence how the

resources requested by Spark will fit into what the cluster manager has available.

In Table 2-3 you can see which parameters to tune and their technical description.

Chapter 2 GettinG Started with apaChe Spark

50

Table 2-3. The Apache Spark Driver and Executor Resource Management Options

Option Description

--executor-cores • number of CpU cores to be used by the Spark driver for the executor process.

• the cores property controls the number of concurrent tasks an executor can run.

• --executor-cores 5 means that each executor can run a maximum of five

tasks at the same time.

--executor-

memory

• amount of raM to use for the executor process.

• this option affects the maximum size of data Spark can cache and allocate

for shuffle data structures.

• this property impacts operations performance like aggregations, grouping,

and joins.

--num-executors

(*)

it controls the number of executors requested.

--driver-memory Memory to be used by the Spark driver.

--driver-cores the number of CpU cores given to the Spark driver.

--total-executor-

cores

the total number of cores granted to the executor.

(*) Note Starting with Cdh 5.4/Spark 1.3, you can bypass setting up this
parameter with the spark.dynamicallocation.enabled property, turning on dynamic
allocation. dynamic allocation permits your application to solicit available
executors while there are pending tasks and release them when unused.

 Dynamically Loading Spark Submit Configurations

In general it is recommended to avoid hard-coding configurations in your application

using the SparkConf if your application could be run in different cluster configurations

such as different cluster managers, distinct amounts of memory available, etc.

because it cannot be modified by the user once a SparkConf object has been passed to

Apache Spark.

Chapter 2 GettinG Started with apaChe Spark

51

Thus, instead of establishing SparkContext configuration in your source code, as

you can see in the following code snippet, it is better to leave that configuration ready to

receive dynamic parameters when the program is called:

// Hard-coding cluster configuration parameters in Scala

// Create Spark configuration

val conf = new SparkConf()

 .setMaster("local[4]")

 .setAppName("Hands-On Spark 3")

 .set("spark.executor.memory", "32g")

 .set("spark.driver.memory", "16g")

// Create Spark context

val sc = new SparkContext(conf)

#Hard-coding cluster configuration parameters in PySpark

conf = SparkConf()

conf.setMaster("spark://localhost:7077")

conf.setAppName("Hands-On Spark 3")

conf.set("spark.executor.memory", "32g")

conf.set("spark.driver.memory", "16g")

sc = SparkContext(conf=conf)

The SparkContext is created only once for an application; thus, another more flexible

approach to the problem could be constructing it with a void configuration:

// SparkContext with a void configuration in Scala

val sc = new SparkContext(new SparkConf())

SparkContext with a void configuration in PySpark

conf = SparkConf()

sc = SparkContext(conf=conf)

Then you can dynamically pass configuration parameters to your cluster at runtime:

$SPARK_HOME/bin/spark-submit \

--name "Hands-On Spark 3" \

--master local[4] \

--deploy-mode client \

Chapter 2 GettinG Started with apaChe Spark

52

--conf spark.eventLog.enabled=false \

--conf "spark.executor.extraJavaOptions=-XX:+PrintGCDetails

 -XX:+PrintGCTimeStamps" \

--class org.apache.spark.examples.SparkPi \

/$SPARK_HOME/examples/jars/spark-examples_2.12-3.3.0.jar 80

Spark submit allows you to fine-tune your cluster configuration with dozens of

parameters that can be sent to the SparkContext using the --config/-c option or by

setting the SparkConf to create a SparkSession.

These options control application properties (Table 2-4), the runtime environment

(Table 2-5), shuffle behavior, Spark UI, compression and serialization, memory

management, execution behavior, executor metrics, networking, scheduling, barrier

execution mode, dynamic allocation (Table 2-6), thread configurations, security, and

runtime SQL configuration, among others (Table 2-7). Next, we will explore some of the

most common ones.

Table 2-4. Spark application properties

Property Description

spark.app.name

(default value, none)

the name of your application.

spark.driver.cores

(default value, 1)

in cluster mode, the number of cores to use for the driver process

only.

spark.driver.memory

(default value, 1g)

amount of memory to use for the driver process. in client mode, it

should be set via the --driver-memory command-line option or

the properties file.

 Application Properties

Chapter 2 GettinG Started with apaChe Spark

53

Table 2-6. Spark allocation resources

Property Description

spark.dynamicAllocation.

enabled

(default value, false)

whether to use dynamic resource allocation to adjust the

number of executors processing your application based on

existing workload.

spark.dynamicAllocation.

executorIdleTimeout

(default value, 60 s)

if dynamic allocation is enabled, an executor process will be

killed if it has been idle for a longer time.

spark.dynamicAllocation.

cachedExecutorIdleTimeout

(default value, infinity)

if dynamic allocation is enabled, an executor process will

be killed if it has cached data and has been idle for a longer

time.

 Runtime Environment

Table 2-5. Spark runtime environment

Property Description

spark.driver.

extraClassPath

(default value, none)

extra classpath entries to prepend to the classpath of the driver. in client

mode, it should be set via the --driver-class-path command-line

option or in the default properties file.

the option allows you to load specific Jar files, such as database

connectors and others.

 Dynamic Allocation

Chapter 2 GettinG Started with apaChe Spark

54

Table 2-7. Other Spark options to control application properties

Property Description

spark.sql.shuffle.partitions

(default value, 200)

number of partitions to use when shuffling data

for joins or aggregations.

spark.rdd.compress

(default value, false)

whether to compress serialized rdd partitions

saving considerable space at the cost of extra

CpU processing time.

spark.executor.pyspark.memory

(default value, not set)

if set, the amount of memory to be allocated to

pySpark in each executor. this option has different

behaviors depending on the operating system.

spark.executor.memoryOverhead

(executorMemory * spark.executor.

memoryOverheadFactor), minimum of 384

amount of additional memory allocated per

executor process.

the maximum memory to run per executor is

determined by the sum of spark.executor.

memoryOverhead, spark.executor.memory,

spark.memory.offHeap.size, and spark.

executor.pyspark.memory.

 Others

The following is an example of the use of some of these options in the command line:

$SPARK_HOME/bin/spark-submit \

--master yarn \

--deploy-mode cluster \

--conf "spark.sql.shuffle.partitions=10000" \

--conf "spark.executor.memoryOverhead=8192" \

--conf "spark.memory.fraction=0.7" \

--conf "spark.memory.storageFraction=0.3" \

--conf "spark.dynamicAllocation.minExecutors=10" \

--conf "spark.dynamicAllocation.maxExecutors=2000" \

--conf "spark.dynamicAllocation.enabled=true" \

--conf "spark.executor.extraJavaOptions=-XX:+PrintGCDetails

 -XX:+PrintGCTimeStamps" \

Chapter 2 GettinG Started with apaChe Spark

55

--files /path/of/config.conf, /path/to/mypropeties.json \

--class org.apache.spark.examples.SparkPi \

/$SPARK_HOME/examples/jars/spark-examples_2.12-3.3.0.jar 80

Configuration can be passed to Spark in three different ways. Hard-coding, taking

advantage of SparkConf properties, overrides others, taking the first order of priority:

 val config = new SparkConf()

config.set("spark.sql.shuffle.partitions","500")

val spark=SparkSession.builder().appName("Hands-On Spark 3").config(config)

The second order of priority would be via spark-submit, as part of its --config

attributes. And finally, the last one is through the $SPARK_HOME/conf/spark-defaults.

conf file. The last has the advantage that the configuration established in this file applies

globally, meaning to all Spark applications running in the cluster.

In the following, we show an example of a user-developed application and how it can

be submitted to Apache Spark.

Let’s develop a small program called Functions, which performs a single operation,

adding two numbers:

object Functions {

 def main(args: Array[String]) = {

 agregar(1,2)

 }

 val agregar = (x: Int, y: Int) => println(x+y)

}

Save the file as Functions.scala and compile it as follows. We assume you have Scala

installed on your computer:

~ % scalac ./Functions.scala -d Functions.jar

Then, submit the JAR file to your Spark installation:

 ~ % spark-submit --class Functions ./Functions.jar

3

You can see the number 3 as program output.

Chapter 2 GettinG Started with apaChe Spark

56

2.3 Spark Application Concepts
Hitherto, you have downloaded and configured Apache Spark, gotten familiar with

the Spark shell, and executed some small examples. Now, let’s review some important

terminology of the Spark application necessary to understand what is happening when

you execute your code:

• Spark application is a user-developed program on top of Spark that

uses its APIs and consists of an executor running on a cluster and a

driver program.

• SparkSession is the entry point to communicate with Spark and

allows user interaction with the underlying functionalities through

Spark APIs.

• Tasks are the smallest execution unit and are executed inside an

executor.

• Stages are collections of tasks running the same code, each of them

in different chunks of a dataset. The use of functions that require a

shuffle or reading a dataset, such as reduceByKey(), Join() etc., will

trigger in Spark the creation of a stage.

• Jobs comprise several stages and can be defined as entities that

permit the execution and supervision of applications in a Spark

cluster.

 Spark Application and SparkSession
As we have mentioned before, the SparkSession is the entry point to communicate

with Spark and to have access to its functionalities available via the Spark Dataset and

DataFrame APIs. The SparkSession is created using the SparkSession.builder()

constructor, and creating a SparkSession is the first statement in an application.

The SparkSession was introduced with Spark 2.0, and the new class org.apache.

spark.sql.SparkSession was provided to replace SparkContext, SQLContext,

StreamingContext, and HiveContext, contexts available prior to version 2.0.

The number of SparkSessions is pretty much unbounded; it means that you can have

as many SparkSessions as needed. This is particularly useful when several programmers

are working at the same time on the same cluster or when you want to logically segregate

Chapter 2 GettinG Started with apaChe Spark

57

your Spark relational entities. However, you can only have one SparkContext on a single

JVM. New SparkSessions can be created using either SparkSession.builder() or

SparkSession.newSession().

 Access the Existing SparkSession
In environments that have been created up front, if necessary, you can access the

existing SparkSession from your application using the SparkSession.Builder class with

the method getOrCreate() to retrieve an existing session. In the following there are two

code snippets in Scala and PySpark showing you how to do it:

// Know about the existing SparkSession in Scala

import org.apache.spark.sql.SparkSession

val currentSparkSession = SparkSession.builder().getOrCreate()

print(currentSparkSession)

// SparkSession output

org.apache.spark.sql.SparkSession@7dabc2f9

Know about the existing SparkSession in PySpark

currentSparkSession = SparkSession.builder.getOrCreate

print(currentSparkSession)

SparkSession output

pyspark.sql.session.SparkSession object at 0x7fea951495e0

You can get the active SparkSession for the current thread, returned by the builder,

using the getActiveSession() method:

The active SparkSession for the current thread

s = SparkSession.getActiveSession()

print(s)

You can also create a new/another SparkSession using the newSession() method.

This method will create a new session with the same app name, master mode, and

SparkContext of the active session. Remember that you can have one context for each

Spark application:

Chapter 2 GettinG Started with apaChe Spark

58

// Create a new SparkSession

val aNewSession = spark.newSession()

print(aNewSession)

org.apache.spark.sql.SparkSession@2dc9b758

Out[6]: aNewSession: org.apache.spark.sql.SparkSession = org.apache.spark.

sql.SparkSession@2dc9b758

Get the Current Spark Context Settings/Configurations

Spark has a certain number of settings and configurations you might be interested

in specifying, including application properties and runtime parameters. You can use the

following code in Scala or PySpark to collect all the current configurations:

// Get all Spark Configs

val configMap:Map[String, String] = spark.conf.getAll

The output you will receive could be similar to this:

configMap: Map[String,String] = Map(spark.sql.warehouse.dir -> file:/

Users/.../spark-warehouse, spark.executor.extraJavaOptions -> -XX:+Ignore

UnrecognizedVMOptions --add-opens=java.base/java.lang=ALL-UNNAMED --add-

opens=java.base/java.lang.invoke=ALL-UNNAMED --add-opens=java.base/java.

lang.reflect=ALL-UNNAMED --add-opens=java.base/java.io=ALL-UNNAMED --add-

opens=java.base/java.net=ALL-UNNAMED --add-opens=java.base/java.nio=ALL-

UNNAMED --add-opens=java.base/java.util=ALL-UNNAMED --add-opens=java.

base/java.util.concurrent=ALL-UNNAMED --add-opens=java.base/java.util.

concurrent.atomic=ALL-UNNAMED --add-opens=java.base/sun.nio.ch=ALL-UNNAMED

 --add-opens=java.base/sun.nio.cs=ALL-UNNAMED --add-opens=java.base/sun.

security.action=ALL-UNNAMED --add-opens=java.ba...

Get current configurations via PySpark

configurations = spark.sparkContext.getConf().getAll()

for conf in configurations:

 print(conf)

The output you will receive could be similar to this:

('spark.driver.extraJavaOptions', '-XX:+IgnoreUnrecognizedVMOptions

 --add-opens=java.base/java.lang=ALL-UNNAMED --add-opens=java.base/java.

lang.invoke=ALL-UNNAMED --add-opens=java.base/java.lang.reflect=ALL-

Chapter 2 GettinG Started with apaChe Spark

59

UNNAMED --add-opens=java.base/java.io=ALL-UNNAMED --add-opens=java.

base/java.net=ALL-UNNAMED --add-opens=java.base/java.nio=ALL-UNNAMED

 --add-opens=java.base/java.util=ALL-UNNAMED --add-opens=java.base/java.

util.concurrent=ALL-UNNAMED --add-opens=java.base/java.util.concurrent.

atomic=ALL-UNNAMED --add-opens=java.base/sun.nio.ch=ALL-UNNAMED --add-

opens=java.base/sun.nio.cs=ALL-UNNAMED --add-opens=java.base/sun.security.

action=ALL-UNNAMED --add-opens=java.base/sun.util.calendar=ALL-UNNAMED

 --add-opens=java.security.jgss/sun.security.krb5=ALL-UNNAMED')

('spark.app.submitTime', '1662916389744')

('spark.sql.warehouse.dir', 'file:/Users/.../spark-warehouse')

('spark.app.id', 'local-1662916391188')

('spark.executor.id', 'driver')

('spark.app.startTime', '1662916390211')

('spark.app.name', 'PySparkShell')

('spark.driver.port', '54543')

('spark.sql.catalogImplementation', 'hive')

('spark.rdd.compress', 'True')

('spark.executor.extraJavaOptions', '-XX:+IgnoreUnrecognizedVMOptions

 --add-opens=java.base/java.lang=ALL-UNNAMED --add-opens=java.base/java.

lang.invoke=ALL-UNNAMED --add-opens=java.base/java.lang.reflect=ALL-

UNNAMED --add-opens=java.base/java.io=ALL-UNNAMED --add-opens=java.

base/java.net=ALL-UNNAMED --add-opens=java.base/java.nio=ALL-UNNAMED

 --add-opens=java.base/java.util=ALL-UNNAMED --add-opens=java.base/java.

util.concurrent=ALL-UNNAMED --add-opens=java.base/java.util.concurrent.

atomic=ALL-UNNAMED --add-opens=java.base/sun.nio.ch=ALL-UNNAMED --add-

opens=java.base/sun.nio.cs=ALL-UNNAMED --add-opens=java.base/sun.security.

action=ALL-UNNAMED --add-opens=java.base/sun.util.calendar=ALL-UNNAMED

 --add-opens=java.security.jgss/sun.security.krb5=ALL-UNNAMED')

('spark.serializer.objectStreamReset', '100')

('spark.driver.host', '192.168.0.16')

('spark.master', 'local[*]')

('spark.submit.pyFiles', '')

('spark.submit.deployMode', 'client')

('spark.ui.showConsoleProgress', 'true')

Chapter 2 GettinG Started with apaChe Spark

60

In a similar way, you can set the Spark configuration parameters during runtime:

// Set the Spark configuration parameters during runtime in Scala

spark.conf.set("spark.sql.shuffle.partitions", "30")

Set the Spark configuration parameters during runtime in PySpark

spark.conf.set("spark.app.name", "Hands-On Spark 3")

spark.conf.get("spark.app.name")

Output: 'Hands-On Spark 3'

You can also use the SparkSession to work with the catalog metadata, via the catalog

variable and spark.catalog.listDatabases and spark.catalog.listTables methods:

// List Spark Catalog Databases

val ds = spark.catalog.listDatabases

ds.show(false)

+-------+----------------+--+

|name |description |locationUri |

+-------+----------------+--+

|default|default database|file:/Users/.../spark-warehouse |

+-------+----------------+--+

// List Tables Spark Catalog

val ds = spark.catalog.listTables

ds.show(false)

+------------+--------+-----------+---------+-----------+

|name |database|description|tableType|isTemporary|

+------------+--------+-----------+---------+-----------+

|hive_table |default |null |MANAGED |false |

|sample_table|null |null |TEMPORARY|true |

|table_1 |null |null |TEMPORARY|true |

+------------+--------+-----------+---------+-----------+

Chapter 2 GettinG Started with apaChe Spark

61

 SparkSession in spark-shell

The SparkSession object is created by the Spark driver program. Remember we

mentioned in a previous section that the SparkSession object is automatically created for

you when you use the Spark shell and it is available via the spark variable. You can use

the spark variable in the Spark shell command line like this:

scala> spark.version

Spark Version : 3.3.0

 Create a SparkSession Programmatically

The more secure way of creating a new SparkSession in Scala or PySpark is to use the

object org.apache.spark.sql.SparkSession.Builder with the constructor builder()

while at the same time calling the getOrCreate() method. Working this way ensures that

if a SparkSession already exists, it is used; otherwise, a new one is created:

// Scala code to create a SparkSession object

import org.apache.spark.sql.SparkSession

object NewSparkSession extends App {

 val spark = SparkSession.builder()

 .master("local[4]")

 .appName("Hands-On Spark 3")

 .getOrCreate();

 println(spark)

 println("The Spark Version is : "+spark.version)

}

org.apache.spark.sql.SparkSession@ddfc241

The Spark Version is : 3.3.0

PySpark code to create a SparkSession object

import pyspark

from pyspark.sql import SparkSession

spark = SparkSession.builder.master("local[4]") \

 .appName("Hands-On Spark 3") \

 .getOrCreate()

Chapter 2 GettinG Started with apaChe Spark

62

print(spark)

print("Spark Version : "+spark.version)

Spark Version : 3.3.0

2.4 Transformations, Actions, Immutability,
and Lazy Evaluation

The Spark core data structures, RDD (Resilient Distributed Dataset), and dataframes

are immutable in nature; it means once they are created, they cannot be modified. In

this context, immutable is a synonym of unchangeable. Spark operations in distributed

datasets are classified as transformations and actions.

 Transformations
Transformations are operations that take a RDD or dataframe as input and return a new

RDD or dataframe as output. Therefore, transformations preserve the original copy of the

data, and that is why Spark data structures are said to be immutable. Another important

characteristic of the transformations is that they are not executed immediately after they

are defined; on the contrary, they are memorized, creating a transformations lineage

as the one shown in Figure 2-11. For example, operations such as map(), filter(), and

others don’t take effect until an action is defined.

Figure 2-11. Example of a transformations lineage

Chapter 2 GettinG Started with apaChe Spark

63

A transformations lineage means the sequence of operations applied are recorded in

a diagram called a DAG (Directed Acyclic Graph) (Figure 2-12) and executed only when

an action is triggered. This idea of deferring transformations until an action takes place is

what it is known as lazy evaluation of the transformations. Put in a simple way, when you

define operations as those mentioned before, nothing happens until you instruct Spark

what to do with the data. Lazy evaluation is the way Spark optimizes operations, because

it allows Spark to select the best way to execute them when the complete workflow is

defined.

Figure 2-12. An example of a Directed Acyclic Graph

The following are some basic transformations in Spark:

• map()

• flatMap()

• filter()

• groupByKey()

• reduceByKey()

• sample()

• union()

• distinct()

Transformations can define narrow dependencies or wide dependencies; therefore,

Spark implements two types of transformations, narrow transformations and wide

transformations.

Chapter 2 GettinG Started with apaChe Spark

64

 Narrow Transformations
Narrow transformations are operations without data shuffling, that is to say, there is

no data movement between partitions. Thus, narrow transformations operate on data

residing in the same partition as can be seen in Figure 2-13.

Figure 2-13. Example of narrow transformations

Narrow transformations are the result of functions such as map(), mapPartition(),

flatMap(), filter(), or union().

 Wide Transformations
Wide transformations are operations involving data shuffling; it means there is data

movement between partitions as can be seen in Figure 2-14.

Figure 2-14. Example of wide transformations

Wide transformations are more costly in terms of computing and network resources

because they implicate shuffle operations, meaning data must be moved across the

network or at least between partitions.

Chapter 2 GettinG Started with apaChe Spark

65

Wide operations are the result of functions such as groupByKey(), join(), distinct(),

aggregateByKey(), aggregate(), repartition(), or intersect().

 Actions
Actions, on the other hand, are Spark operations returning a single value—in other

words, operations not returning another data structure, RDD, or dataframe. When an

action is called in Spark, it triggers the transformations preceding it in the DAG.

Examples of functions triggering actions are aggregate(), collect(), count(), fold(),

first(), min(), max(), top(), etc.

2.5 Summary
In this chapter we have covered the more essential steps to have Spark up and running:

downloading the necessary software and configuration. We have also seen how to

work with the Spark shell interface and how to execute self-contained applications and

examples using the Spark shell interface. Finally, we went through the Spark concepts

of immutability, lazy evaluation, transformations, and actions. In the next chapter,

we explain the Spark low-level API together with the notion of Resilient Distributed

Datasets (RDDs).

Chapter 2 GettinG Started with apaChe Spark

67

CHAPTER 3

Spark Low-Level API
Although the term application programming interface (API) is mostly used regarding

web services or resources shared through the Web, when it comes to Apache Spark,

it possesses an additional meaning, referring to the way users can interact with the

framework.

Spark has several APIs for different purposes. In this chapter we are going to study the

so-called low-level API or Spark Core API, which facilitates users’ direct manipulation of

the Spark Resilient Distributed Datasets (RDDs), which are the Spark building blocks for

the other Spark data structures of higher level such as DataFrames and datasets.

3.1 Resilient Distributed Datasets (RDDs)
The Resilient Distributed Datasets (RDDs), datasets, DataFrames, and SQL tables are

the Spark core abstractions available; nevertheless, RDDs are the main Spark core

abstraction. RDDs are immutable collections of objects, meaning once they are created,

they cannot be changed. Immutable also means that any operation over an existing RDD

returns a new RDD, preserving the original one.

Datasets handled as RDDs are divided into logical partitions (as seen in Figure 3-1)

that can be processed in parallel across different nodes of the cluster using a low-level

API. To manage parallel processing and logical partitioning, RDDs provide the concept

of abstraction; thus, you do not have to worry about how to deal with them. Other Spark

data entities such as dataframes and datasets are built on top of RDDs. The operations

supported by Spark RDDs are transformations and actions.

Additionally, RDDs are fault-tolerant entities, meaning they possess self-recovery

capacity in case of a failure. RDDs operate over fault-tolerant file systems like GFS, HDFS,

AWS S3, etc. If any RDD partition breaks down, operations can continue, recovering

the data from another one. On top of that, when Spark runs in a cluster like YARN, for

example, it provides additional failure protection as Spark can recuperate from disasters.

© Alfonso Antolínez García 2023
A. Antolínez García, Hands-on Guide to Apache Spark 3, https://doi.org/10.1007/978-1-4842-9380-5_3

https://doi.org/10.1007/978-1-4842-9380-5_3

68

RDDs can be created by parallelizing already existing collections or from external

datasets, such as text, sequence, CSV, and JSON files in a local file system, HDFS, AWS S3,

HBase, Cassandra, or any other Hadoop-compatible input data source.

We are going to explore the three methods of creating Spark RDDs.

 Creating RDDs from Parallelized Collections
Parallelized collections can be created by calling the parallelize method of the

SparkContext on an existing collection of the driver program. In doing this, the collection

of elements are transformed into a distributed dataset and can be processed in parallel.

You can use the sparkContext.parallelize() function to create RDDs from a collection

of elements.

In Figure 3-2 it is graphically shown how the sparkContext.parallelize() function

works when transforming a list of elements into a RDD.

Figure 3-1. RDD logical partitions

Chapter 3 Spark Low-LeveL apI

69

Figure 3-2. Creating a RDD using sparkContext.parallelize()

Next, you can see how you can implement the RDD depicted in Figure 3-2 with

PySpark:

alphabetList = ['a','b','c','d','e','f','g','h','i','j','k','l']

rdd = spark.sparkContext.parallelize(dataList, 4)

print("Number of partitions: "+str(rdd.getNumPartitions()))

Number of partitions: 4

The following is another example, this time in Scala, of how to create a RDD by

parallelizing a collection of numbers:

// A Scala example of RDD from a parallelized collection

val myCollection = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

val rdd = spark.sparkContext.parallelize(myCollection)

Remember from the previous chapter the PySpark shell automatically provides the

SparkContext “sc” variable; thus, we can use sc.parallelize() to create a RDD:

A PySpark RDD from a list collection

rdd = sc.parallelize([1,2,3,4,5,6,7,8,9,10])

Chapter 3 Spark Low-LeveL apI

70

Now rdd is a distributed dataset that can be manipulated in parallel. Therefore, you

can use RDD functions to operate the array of elements:

scala> rdd.reduce(_ + _)

res7: Int = 55

scala> rdd.reduce(_ min _)

res8: Int = 1

scala> rdd.reduce(_ max _)

res9: Int = 10

One important parameter when parallelizing collections is the number of partitions

to slice the dataset into. Spark sets this parameter automatically according

to the cluster available; nevertheless, you can always specify your own number of

partitions, passing the number as a second parameter to sc.parallelize()

(e.g., sc.parallelize(myCollection, 4)).

 Creating RDDs from External Datasets
Spark can create a RDD from any Hadoop-compatible source, for example:

• Local file system

• HDFS

• Cassandra

• HBase

• AWS S3

• Etc.

Spark supports numerous file formats like

• Text files

• Sequence files

• CSV files

• JSON files

• And any Hadoop input format

Chapter 3 Spark Low-LeveL apI

71

A RDD can be created from a text file using the SparkContext’s textFile method. This

method takes as parameter the URL of the file, either its path in case of using a local file

system or a URI gs://, hdfs://, s3://, etc. in case of accessing it from a distributed file

system. For example, here’s for a file located in your local file system:

scala> val readmeFile =

sc.textFile("/YOUR/SPARK/HOME/README.md")

readmeFile: org.apache.spark.rdd.RDD[String] =

/YOUR/SPARK/HOME/README.md MapPartitionsRDD[7] at textFile at <console>:26

If you are using a file located in your local file system, it must be available on the

same path to all the nodes. Thus, you have two options: either you copy it to each worker

node or use a network-shared file system such as HDFS. The following is an example of

how you can load a file located in a distributed file system:

scala> val myFile = sc.textFile("gs://${BUCKET_NAME}/FILE.txt")

When working with files, it is common to distribute the information across multiple

files because appending all the information to just one of them could result in a size

difficult to manage, or you can be interested in splitting the information among different

files, because every file could have a meaningful name and so on. This often results in

folders with files that should be operated collectively to have meaningful information.

To facilitate this operation, all of Spark’s file-based input methods support folders,

compressed files, and wildcards. For example, the method textFile() shown before can

be used as textFile("/path/"), textFile("/path/*.csv"), textFile("/path/*.gz"),

etc. When multiple files are used as input, the order of the partitions created by Spark

depends on the order the files are uploaded from the file system.

You can also control the number of partitions a read file is divided into. For example,

the textFile() method accepts a second parameter to specify the number of partitions,

as you can see in the following example:

scala> val myFile = sc.textFile("/YOUR/SPARK/HOME/README.md", 10)

By default, Spark will split the file’s data into chunks of the same number as file blocks,

but as you have just seen, you can request Spark to divide your file into more partitions.

However, what you cannot do is to request from Spark fewer partitions than file blocks.

Apart from the textFile() method, the Spark Scala API also supports other

input data formats. For example, the wholeTextFiles() method can be used to read

multiple small UTF-8-encoded text files from HDFS, a local file system, or any other

Chapter 3 Spark Low-LeveL apI

72

Hadoop- compatible URI. While textFile() reads one or more files and returns one

record per line of each file processed, the wholeTextFiles() method reads the files

returning them as a key-value pair (path of the file, file content), hence preserving the

relationship between the content and the file of origin. The latter might not happen

when textFile() processes multiple files at once, because the data is shuffled and split

across several partitions. Because the process of sequentially processing files depends

on the order they are returned by the file system, the distribution of rows within the file

is not preserved.

Since each file is loaded in memory, wholeTextFiles() is preferred for small file

processing. Additionally, wholeTextFiles() provides a second parameter to set the

minimum number of partitions.

The Apache Spark API also provides methods to handle Hadoop sequence files.

This Hadoop file format is intended to store serialized key-value pairs. Sequence files

are broadly used in MapReduce processing tasks as input and output formats. The

sequence file format offers several advantages such as compression at the level of record

and block. They can be used to wrap up a large number of small files, thus solving the

drawback of some file systems in processing large numbers of small files.

Apache Spark also provides a method to save RDDs as serialized Java objects,

a format similar to the Hadoop sequence files mentioned just before. RDD.

saveAsObjectFile and SparkContext.objectFile methods can be used to save and

load RDDs. saveAsObjectFile() uses Java serialization to store information on a file

system and permits saving metadata information about the data type when written to

a file. The following is an example of how saveAsObjectFile() and SparkContext.

objectFile() can be employed to save and recover a RDD object:

scala> val list = sc.parallelize(List("España","México","Colombia","Perú","

Ecuador"))

list: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[20] at

parallelize at <console>:23

scala> list.saveAsObjectFile("/tmp/SpanishCountries")

scala> val newlist = sc.objectFile[String]("/tmp/SpanishCountries")

newlist: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[24] at

objectFile at <console>:23

scala> newlist.collect

res9: Array[String] = Array(Ecuador, España, México, Colombia, Perú)

Chapter 3 Spark Low-LeveL apI

73

 Creating RDDs from Existing RDDs
Remember RDDs are immutable; hence, they cannot be changed. However, also

remember we can produce new RDDs by applying transformations to the original one. A

RDD can be created from another one taking advantage of transformations, for example:

map(), filter(), count(), distinct(), flatMap(), etc.

The following is an example of how to create a new RDD from an existing one. In our

first step, we create a sequence of seasons. In the second step, we create a RDD from the

previous sequence using parallelize() and divide it into four partitions. In the third step,

we produce the findSeasons RDD from the seasonsParallel one, by extracting the first

letter of the previous elements. Finally, we show the content of the findSeasons RDD and

check the number of partitions findSeasons is split into. We use the collect() method

to first bring the RDD elements to the driver node:

scala> val seasonsCollection = Seq("Summer", "Autumn", "Spring", "Winter")

seasonsCollection: Seq[String] = List(Summer, Autumn, Spring, Winter)

scala> val seasonsParallel =spark.sparkContext.parallelize(seasons

Collection,4)

seasonsParallel: org.apache.spark.rdd.RDD[String] =

ParallelCollectionRDD[4] at parallelize at <console>:23

scala> val findSeasons= seasonsParallel.map(s => (s.charAt(0), s))

findSeasons: org.apache.spark.rdd.RDD[(Char, String)] = MapPartitionsRDD[5]

at map at <console>:23

scala> findSeasons.collect().foreach(c => println(c))

(S,Spring)

(W,Winter)

(S,Summer)

(A,Autumn)

scala> println("Partitions: " + findSeasons.getNumPartitions)

Partitions: 4

Chapter 3 Spark Low-LeveL apI

74

The use of collect() is dangerous because it collects all the RDD data from all the

workers in the driver node; thus, you can run out of memory if the size of the whole

dataset does not fit into the driver memory. It is very inefficient as well, because all the

data from the cluster has to travel through the network, and this is much slower than

writing to disk and much more inefficient than computation in memory. If you only want

to see some samples from your RDD, it is safer to use the take() method:

scala> findSeasons.take(2).foreach(c => println(c))

(S,Summer)

(A,Autumn)

3.2 Working with Key-Value Pairs
Some Spark RDD operations are only available for key-value pair data formats. These

operations are called pair RDD operations, and for them, Spark provides various Pair

RDD Functions, members of the PairRDDFunctions class, to handle RDD key-value

pairs. The prototypical pair RDDs are those that imply distributed reorganization of

data including Pair RDD Transformation Functions related to grouping or aggregating

elements by their keys.

On the other hand, a key-value pair is a data type represented by a collection of two

joined data elements: a key and a value. The key is a unique identifier of a data object.

The value is a variable belonging to the dataset. An example of key-value pairs could

be a telephone directory, where a person’s or business’s name is the key and the phone

number(s) is the value. Another example could be a car’s catalog in which the car could

be the key and its attributes (model, color, etc.) could be the values. Key-value pairs are

commonly used for log and configuration files.

 Creating Pair RDDs
Pair RDDs can be created using the map() function that returns a key-value pair.

However, the procedure can change depending on the language. In Scala, for example,

to be able to take advantage of the Pair RDD Functions, you need to have your data in the

form of tuples. In the following you can see a Scala example of how to get it:

Chapter 3 Spark Low-LeveL apI

75

val spark = SparkSession.builder()

 .appName("Hands-On Spark 3")

 .master("local[2]")

 .getOrCreate()

val currencyListRdd = spark.sparkContext.parallelize(List("USD;Euro;GBP;

CHF","CHF;JPY;CNY;KRW","CNY;KRW;Euro;USD","CAD;NZD;SEK;MXN"))

val currenciesRdd = currencyListRdd.flatMap(_.split(";"))

val pairRDD = currenciesRdd.map(c=>(c,1))

pairRDD.foreach(println)

(USD,1)

(Euro,1)

(GBP,1)

(CHF,1)

(CHF,1)

(JPY,1)

(CNY,1)

(KRW,1)

(CNY,1)

(KRW,1)

(Euro,1)

(USD,1)

(CAD,1)

(NZD,1)

(SEK,1)

(MXN,1)

The preceding code first creates a session of name “Hands-On Spark 3” using the

.appName() method and a local cluster specified by the parameter local[n], where

n must be greater than 0 and represents the number of cores to be allocated, hence the

number of partitions, by default, RDDs are going to be split up into. If a SparkSession

is available, it is returned by getOrCreate(); otherwise, a new one for our program is

created.

Chapter 3 Spark Low-LeveL apI

76

Next, the same example is reproduced but using PySpark this time:

currencyList = ["USD;Euro;GBP;CHF","CHF;JPY;CNY;KRW","CNY;KRW;Euro;USD",

"CAD;NZD;SEK;MXN"]

currencyListRdd = spark.sparkContext.parallelize(currencyList, 4)

currenciesRdd = currencyListRdd.flatMap(lambda x: x.split(";"))

pairRDD = currenciesRdd.map(lambda x: (x,1))

sampleData = pairRDD.take(5)

for f in sampleData:

 print(str("("+f[0]) +","+str(f[1])+")")

(USD,1)

(Euro,1)

(GBP,1)

(CHF,1)

(CHF,1)

If you want to show the full list, use the collect() method instead of take() like this:

sampleData = pairRDD.collect()

But be careful. In large datasets, this could cause you overflow problems in your

driver node.

 Showing the Distinct Keys of a Pair RDD
You can use distinct() to see all the distinct keys in a pair RDD. First, we show a Scala

code snippet revealing the distinct keys in a list of currencies:

pairRDD.distinct().foreach(println)

(MXN,1)

(GBP,1)

(CHF,1)

(CNY,1)

(KRW,1)

(SEK,1)

(USD,1)

Chapter 3 Spark Low-LeveL apI

77

(JPY,1)

(Euro,1)

(NZD,1)

(CAD,1)

Now, here’s another code snippet in PySpark to get the same result:

Returning the distinct keys.

sampleData = pairRDD.distinct().collect()

for f in sampleData:

 print(str("("+f[0]) +","+str(f[1])+")")

(GBP,1)

(MXN,1)

(CNY,1)

(KRW,1)

(USD,1)

(Euro,1)

(CHF,1)

(JPY,1)

(CAD,1)

(NZD,1)

(SEK,1)

As you can see in the preceding example, keys are not necessarily returned sorted. If

you want to have your returned data ordered by key, you can use the sorted() method.

Here is an example of how you can do it:

sampleData = sorted(pairRDD.distinct().collect())

for f in sampleData:

 print(str("("+f[0]) +","+str(f[1])+")")

(CAD,1)

(CHF,1)

(CNY,1)

(Euro,1)

(GBP,1)

(JPY,1)

Chapter 3 Spark Low-LeveL apI

78

(KRW,1)

(MXN,1)

(NZD,1)

(SEK,1)

(USD,1)

 Transformations on Pair RDDs
In this section we are going to review several of the more important transformations that

can be executed on pair RDDs.

We have already mentioned RDDs are immutable in nature; therefore,

transformation operations executed on a RDD return one or several new RDDs without

modifying the original one, hence creating a RDD lineage, which is use by Spark to

optimize code execution and to recover from a failure. Apache Spark takes advantage of

RDD lineage to rebuild RDD partitions lost. A graphical representation of a RDD lineage

or RDD dependency graph can be seen in Figure 3-3.

Figure 3-3. Example of Apache Spark RDD lineage

 Sorting Pair RDDs by Key

The method sortByKey() sorts a pair RDD. In Scala, it could be written like this:

pairRDD.sortByKey().foreach(println)

 (KRW,1)

(KRW,1)

Chapter 3 Spark Low-LeveL apI

79

(CNY,1)

(CNY,1)

(GBP,1)

(NZD,1)

(JPY,1)

(MXN,1)

(Euro,1)

(Euro,1)

(SEK,1)

(USD,1)

(USD,1)

(CAD,1)

(CHF,1)

(CHF,1)

sortByKey() admits two parameters, ascending (true/false) sorting and the

numPartitions, to set the number of partitions that should be created with the results

returned by sortByKey():

pairRDD.sortByKey(true).foreach(println)

In PySpark, we can use the following code snippet to achieve the same result:

sampleData = pairRDD.sortByKey().collect()

for f in sampleData:

 print(str("("+f[0]) +","+str(f[1])+")")

(CAD,1)

(CHF,1)

(CHF,1)

(CNY,1)

(CNY,1)

(Euro,1)

(Euro,1)

(GBP,1)

(JPY,1)

(KRW,1)

(KRW,1)

Chapter 3 Spark Low-LeveL apI

80

(MXN,1)

(NZD,1)

(SEK,1)

(USD,1)

(USD,1)

 Adding Values by Key in a RDD

The Spark PairRDDFunction reduceByKey() is a wide transformation that shuffles the

data of all RDD partitions. It merges the values of each key in a RDD using an associated

reduction function. The reduceByKey() is optimized for large datasets, because Spark

can combine the output by key before shuffling the information.

The reduceByKey() syntax is as follows:

sparkContext.textFile("hdfs://")

 .flatMap(line => line.split("ELEMENT_SEPARATOR"))

 .map(element => (element,1))

 .reduceByKey((a,b)=> (a+b))

To illustrate the power of this function, we are going to use a portion of the Don

Quixote of La Mancha to have a larger dataset. You have already seen how to load files

and transform them into RDDs. So let’s start with an example in Scala:

val DonQuixoteRdd = spark.sparkContext.textFile("DonQuixote.txt")

DonQuixoteRdd.foreach(println)

// You would see an output like this

saddle the hack as well as handle the bill-hook. The age of this

In a village of La Mancha, the name of which I have no desire to call

gentleman of ours was bordering on fifty; he was of a hardy habit,

spare, gaunt-featured, a very early riser and a great sportsman. They

to mind, there lived not long since one of those gentlemen that keep a

will have it his surname was Quixada or Quesada (for here there is some

lance in the lance-rack, an old buckler, a lean hack, and a greyhound

difference of opinion among the authors who write on the subject),

for coursing. An olla of rather more beef than mutton, a salad on most

although from reasonable conjectures it seems plain that he was called

nights, scraps on Saturdays, lentils on Fridays, and a pigeon or so

Quexana. This, however, is of but little importance to our tale; it

Chapter 3 Spark Low-LeveL apI

https://www.gutenberg.org/cache/epub/996/pg996.txt
https://www.gutenberg.org/cache/epub/996/pg996.txt

81

extra on Sundays, made away with three-quarters of his income. The rest

of it went in a doublet of fine cloth and velvet breeches and shoes to

will be enough not to stray a hair's breadth from the truth in the

telling of it.

match for holidays, while on week-days he made a brave figure in his

best homespun. He had in his house a housekeeper past forty, a niece

under twenty, and a lad for the field and market-place, who used to

val wordsDonQuixoteRdd = DonQuixoteRdd.flatMap(_.split(" "))

val tupleDonQuixoteRdd = wordsDonQuixoteRdd.map(w => (w,1))

val reduceByKeyDonQuixoteRdd = tupleDonQuixoteRdd.reduceByKey((a,b)=>a+b)

// Finally, you can see the values merged by key and added.

// The output has been truncated.

reduceByKeyDonQuixoteRdd.foreach(println)

(Quesada,1)

(went,1)

(under,1)

(call,1)

(this,1)

...

(made,2)

(it,4)

(on,7)

(he,3)

(in,5)

(for,3)

(the,9)

(a,15)

(or,2)

(was,4)

(to,6)

(breeches,1)

(more,1)

(of,13)

println("Count : "+reduceByKeyDonQuixoteRdd.count())

Count : 157

Chapter 3 Spark Low-LeveL apI

82

As usual, you can achieve the same results employing PySpark code. Let me show

it to you with an example. In this case most of the outputs have been suppressed, but

believe me the final result is the same:

DonQuixoteRdd = spark.sparkContext.textFile("DonQuixote.txt")

DonQuixoteRdd2 = DonQuixoteRdd.flatMap(lambda x: x.split(" "))

DonQuixoteRdd3 = DonQuixoteRdd2.map(lambda x: (x,1))

DonQuixoteRddReduceByKey = DonQuixoteRdd3.reduceByKey(lambda x,y: x+y)

print("Count : "+str(DonQuixoteRddReduceByKey.count()))

Count : 157

 Saving a RDD as a Text File

Though saving an existing RDD to a file is an action rather than a transformation, we are

going to introduce it here, to take advantage of the DonQuixote RDD to show you how to

save in-memory data to a fault-tolerant device.

You can save your RDDs as a string representation of elements using the

saveAsTextFile() method. saveAsTextFile() will store the RDD as a text file.

saveAsTextFile(path: str, compressionCodecClass: Optional) can take

two parameters. One of them is mandatory, path, which according to the official

documentation represents “path to text file”; however, in fact it is a folder. Spark writes

the RDD split into different files along with the success file (_success). The files are

named part-00000, part-00001, and so on.

compressionCodecClass permits specifying a compression codec to store your data

compressed.

Following with our DonQuixote example, let’s write our RDD to a file:

reduceByKeyDonQuixoteRdd.saveAsTextFile("RDDDonQuixote")

You can also create a temporary directory to store your files, and instead of letting

your operating system decide where to make that directory, you can have control over

those parameters. Here is an example in PySpark:

import tempfile

from tempfile import NamedTemporaryFile

tempfile.tempdir = "./"

RDDDonQuixote = NamedTemporaryFile(delete=True)

Chapter 3 Spark Low-LeveL apI

83

RDDDonQuixote.close()

DonQuixoteRdd3.saveAsTextFile(RDDDonQuixote.name)

print(RDDDonQuixote)

print(RDDDonQuixote.name)

Output

<tempfile._TemporaryFileWrapper object at 0x7f9ed1e65040>

/Users/aantolinez/tmp906w7eoy

from fileinput import input

from glob import glob

''.join(sorted(input(glob(RDDDonQuixote.name + "/part-0000*"))))

Output

"('(for', 1)\n('An', 1)\n('Fridays,', 1)\n('He', 1)\n('I', 1)\n

('In', 1)\n('La', 1)\n('Mancha,', 1)\n('Quesada', 1)\n('Quexana.', 1)\n

('Quixada', 1)\n('Saturdays,', 1)\n('Sundays,', 1)\n('The', 1)\n

('The', 1)\n('They', 1)\n('This,', 1)\n('a', 1)\n('a', 1)\n('a', 1)\n

('a', 1)\n('a', 1)\n('a', 1)\n('a', 1)\n..."

In the preceding example, we have used the NamedTemporaryFile() function to

create a file with a visible name in the file system. The delete parameter can take True/

False values. Setting it to False, we can close the file without it being destroyed, allowing

us to reopen it again later on.

 Combining Data at Each Partition

One of the most common problems when working with key-value pairs is grouping

and aggregating values by a standard key. In this section, we are going to use the

aggregateByKey() function for aggregating data at each partition.

As with reduceByKey(), in aggregateByKey() data is combined by a common key at

each partition before it is shuffled; however, reduceByKey() is kind of a particular case

of aggregateByKey() in the sense that the result of the combination inside individual

partitions is of the same type as the values combined. The final result, after merging

the outputs of these individual combinations, is of the same type as the values of the

individual combinations as well.

Chapter 3 Spark Low-LeveL apI

84

aggregateByKey() merges the values of a dataset by keys, and the output of this

merge can be any user-defined object. With aggregateByKey() you specify how values

are combined at the partition level (inside each worker) and, then, how the individual

outputs from these partitions are assembled together across the nodes of the cluster to

provide a final outcome.

We are going to explain this concept and the difference between reduceByKey() and

aggregateByKey() with an example.

Let’s assume you have the following dataset: ((“a”, 1), (“a”, 3), (“b”, 2), (“a”, 5),

(“b”, 4), (“a”, 7), (“b”, 6)).

First of all we are going to create a RDD out of the preceding data:

val pairs = sc.parallelize(Array(("a", 1), ("a", 3), ("b", 2), ("a", 5),

("b", 4), ("a", 7), ("b", 6)))

pairs: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[82]

at parallelize at <console>:25

If you just want to add the values by key performing a sum, both reduceByKey and

aggregateByKey will produce the same result. You can see an example in the following:

val outputReduceByKey = pairs.reduceByKey(_ + _)

outputReduceByKey.collect

outputReduceByKey: org.apache.spark.rdd.RDD[(String, Int)] =

ShuffledRDD[87] at reduceByKey at <console>:28

res49: Array[(String, Int)] = Array((a,16), (b,12))

val outputAggregateByKey = pairs.aggregateByKey(0)(_+_,_+_)

//_+_ operation inside partition, _+_ operation between partitions

outputAggregateByKey.collect

outputAggregateByKey: org.apache.spark.rdd.RDD[(String, Int)] =

ShuffledRDD[88] at aggregateByKey at <console>:27

res50: Array[(String, Int)] = Array((a,16), (b,12))

Let’s now assume you are interested in a different sort of operation, implying the

values returned are of a different kind than those of the origin. For example, imagine

your desired output is a set of values, which is a different data type than the values

themselves (integers) and the operations inside each partition (sum of integers returns

another integer).

Chapter 3 Spark Low-LeveL apI

85

Next, we explain this idea with an example:

val outcomeSets = pairs.aggregateByKey(new HashSet[Int])(_+_, _++_)

// _+_ adds a value to a set

// _++_ joins the two sets

outcomeSets.collect

res52: Array[(String, scala.collection.mutable.HashSet[Int])] =

Array((a,Set(1, 5, 3, 7)), (b,Set(2, 6, 4)))

 Merging Values with a Neutral ZeroValue

The foldByKey() aggregation is a kind of reduceByKey() with an initialization zero

value that should not impact your final results. Like reduceByKey() it uses an associated

function to combine values for each RDD’s key, but additionally it gives the possibility

of providing a neutral initialization value for each partition, such as 0 for addition, 1 for

multiplication, or an empty list in case of concatenation of lists, that can be added to the

final result an arbitrary number of times without affecting the final outcome. The zero

value is initialized per key once per partition.

In the following you can see a few examples of foldByKey() usage:

val pairs = sc.parallelize(Array(("a", 1), ("a", 3), ("b", 2), ("a", 5),

("b", 4), ("a", 7), ("b", 6)))

pairs: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[82]

at parallelize at <console>:25

pairs.foldByKey(0)(_+_).collect // With init value 0

res66: Array[(String, Int)] = Array((a,24), (b,18))

pairs.foldByKey(1)(_+_).collect // With init value 1

res68: Array[(String, Int)] = Array((a,20), (b,15))

pairs.foldByKey(2)(_+_).collect // With init value 2

res66: Array[(String, Int)] = Array((a,24), (b,18))

 Combining Elements by Key Using Custom Aggregation Functions

In this section we will explain the Spark combineByKey() generic function to

combine the elements of pair RDDs by each key using custom aggregation functions.

combineByKey() is a wide transformation as it requires a shuffle in the last stage.

Chapter 3 Spark Low-LeveL apI

86

This function turns a RDD[(K, V)] into a result of type RDD[(K, C)], for a “combined

type” C, where C is the result of any aggregation of all values of key K.

In the following you can see a PySpark example of how to use combineByKey():

pairs = sc.parallelize([("a", 1), ("a", 3), ("b", 2), ("a", 5), ("b", 4),

("a", 7), ("b", 6)])

def to_list(x):

 return [x]

def append(x, y):

 x.append(y) # The append() method adds the y element to the x list.

 return x

def extend(x, y):

 x.extend(y) # The extend() method adds the elements of list y to the

end of the x list.

 return x

sorted(pairs.combineByKey(to_list, append, extend).collect())

[('a', [1, 3, 5, 7]), ('b', [2, 4, 6])]

 Grouping of Data on Pair RDDs

When working with datasets of key-value pairs, a common use case is grouping all values

corresponding to the same key. The groupByKey() method returns a grouped RDD by

grouping the values by each key. The groupByKey() requires a function that is going to

be applied to every value of the RDD.

In the following example, we convert a Scala collection type to a Spark RDD:

// Scala collection containing tuples Key-Value pairs

val countriesTuples = Seq(("España",1),("Kazakhstan",1), ("Denmark",

1),("España",1),("España",1),("Kazakhstan",1),("Kazakhstan",1))

// Converting the collection to a RDD.

val countriesDs = spark.sparkContext.parallelize(countriesTuples)

// Output

countriesTuples: Seq[(String, Int)] = List((España,1), (Kazakhstan,1),

(Denmark,1), (España,1), (España,1), (Kazakhstan,1), (Kazakhstan,1))

Chapter 3 Spark Low-LeveL apI

87

countriesDs: org.apache.spark.rdd.RDD[(String, Int)] =

ParallelCollectionRDD[32] at parallelize at <console>:29

countriesDs.collect.foreach(println)

// Output

(España,1)

(Kazakhstan,1)

(Denmark,1)

(España,1)

(España,1)

(Kazakhstan,1)

(Kazakhstan,1)

Now we will group the values by key using the groupByKey() method:

// Applying transformation on Pair RDD.

val groupRDDByKey = countriesDs.groupByKey()

// Output

groupRDDByKey: org.apache.spark.rdd.RDD[(String, Iterable[Int])] =

ShuffledRDD[34] at groupByKey at <console>:26

groupRDDByKey.collect.foreach(println)

// Output

(España,CompactBuffer(1, 1, 1))

(Kazakhstan,CompactBuffer(1, 1, 1))

(Denmark,CompactBuffer(1))

As you can see in the preceding code, groupByKey() groups the data with respect to

every key, and a iterator is returned. Note that unlike reduceByKey(), the groupByKey()

function doesn’t perform any operation on the final output; it only groups the data and

returns it in the form of an iterator. This iterator can be used to transform a key-value

RDD into any kind of collection like a List or a Set.

Chapter 3 Spark Low-LeveL apI

88

Now imagine you want to know the number of occurrences of every country and

then you want to convert the prior CompactBuffer format to a List:

// Occurrence of every country and transforming the CompactBuffer

to a List.

val countryCountRDD = groupRDDByKey.map(tuple => (tuple._1, tuple._2.

toList.sum))

countryCountRDD.collect.foreach(println)

// Output

(España,3)

(Kazakhstan,3)

(Denmark,1)

Performance Considerations of groupByKey

In some cases groupByKey() cannot be your best option to solve certain kinds of

problems. For example, reduceByKey() can perform better than groupByKey() on very

large datasets. Though both functions will give you the same answer, reduceByKey() is

the preferred option for large datasets, because with the latter, before Spark can combine

the values by key at each partition, a general shuffle is performed, which as you already

know involves the movement of data across the network; hence, it is costly in terms of

performance.

Let’s have a look in more detail at these performance concerns with a typical word

count example over a distributed dataset using reduceByKey() first and groupByKey()

later on:

val countriesList = List("España","Kazakhstan", "Denmark","España",

"España","Kazakhstan","Kazakhstan")

val countriesDs = spark.sparkContext.parallelize(countriesList)

// Output

countriesList: List[String] = List(España, Kazakhstan, Denmark, España,

España, Kazakhstan, Kazakhstan)

countriesDs: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[39]

at parallelize at <console>:28

Chapter 3 Spark Low-LeveL apI

89

val countryPairsRDD = sc.parallelize(countriesList).map(country =>

(country, 1))

val countryCountsWithReduce = countryPairsRDD

 .reduceByKey(_ + _) // reduceByKey()

 .collect()

val countryCountsWithGroup = countryPairsRDD

 .groupByKey() // groupByKey()

 .map(t => (t._1, t._2.sum))

 .collect()

// Output

countryPairsRDD: org.apache.spark.rdd.RDD[(String, Int)] =

MapPartitionsRDD[51] at map at <console>:27

countryCountsWithReduce: Array[(String, Int)] = Array((España,3),

(Kazakhstan,3), (Denmark,1))

countryCountsWithGroup: Array[(String, Int)] = Array((España,3),

(Kazakhstan,3), (Denmark,1))

Both functions will produce the same answer; however, reduceByKey() works better

on a large dataset because Spark can combine outputs with a common key on each

partition before shuffling the data across the nodes of the cluster. reduceByKey() uses a

lambda function to merge values by each key on each node before the data is shuffled;

after that, it merges the data at the partition level. The lambda function is used again to

reduce the values returned by each partition, to obtain the final result. This behavior is

showcased in Figure 3-4.

Chapter 3 Spark Low-LeveL apI

90

Figure 3-4. reduceByKey internal operation

On the other hand, when you use groupByKey(), the key-value pairs on each

partition are shuffled across the nodes of the cluster. When you are working with big

datasets, this behavior requires the unnecessary movement of huge amounts of data

across the network representing an important process overhead.

Another reason to avoid the use of groupByKey() in large datasets are possible out-

of- memory (OutOfMemoryError) situations in the driver node. Remember Spark must

write data to disk whenever the amount of it cannot be fitted in memory. The out-of-

memory situation can happen when a single executor machine receives more data that

can be accommodated in its memory, causing a memory overflow. Spark saves data

to disk one key at a time; thus, the process of flushing out data to a permanent storage

device seriously disrupts a Spark operation.

Chapter 3 Spark Low-LeveL apI

91

Thus, the bigger the dataset, the more likely the occurrence of out-of-memory

problems. Therefore, in general reduceByKey(), combineByKey(), foldByKey(), or

others are preferable than groupByKey() for big datasets.

The groupByKey() internal operational mode is graphically shown in Figure 3-5.

Figure 3-5. groupByKey internal operation

Chapter 3 Spark Low-LeveL apI

92

 Joins on Pair RDDs

You can get the most of your key-value pair RDDs when you combine them with other

key-value pair RDDs. Combining different datasets can unleash the real analytical

capabilities of Apache Spark and allow you to find the insights of your data. Joining RDDs

is probably one of the most typical operations you will have to perform on pair RDDs.

Returning the Keys Present in Both RDDs

The join() returns a RDD after applying a join transformation to two RDDs. The

returned RDD contains only the keys that are present in both pair RDDs. The RDD

returned by join() is graphically depicted in Figure 3-6.

Figure 3-6. Result set of join() transformations

val rdd1 = sc.parallelize(Array(("PySpark",10),("Scala",15),("R",100)))

val rdd2 = sc.parallelize(Array(("Scala",11),("Scala",20),("PySpark",75),

("PySpark",35)))

val joinedRDD = rdd1.join(rdd2)

joinedRDD.foreach(println)

// Output

(Scala,(15,11))

(Scala,(15,20))

(PySpark,(10,75))

(PySpark,(10,35))

The same results can be achieved using PySpark code as you see just in the following:

rdd1 = spark.sparkContext.parallelize([("PySpark",10),("Scala",15),

("R",100)])

rdd2 = spark.sparkContext.parallelize([("Scala",11),("Scala",20),

("PySpark",75), ("PySpark",35)])

joinedRDD = rdd1.join(rdd2)

Chapter 3 Spark Low-LeveL apI

93

print(joinedRDD.collect())

Output

[('Scala', (15, 11)), ('Scala', (15, 20)), ('PySpark', (10, 75)),

('PySpark', (10, 35))]

Returning the Keys Present in the Source RDD

The leftOuterJoin() returns a pair RDD having the entries of each key present in the

source (left) RDD. The returned RDD has the key found in the source (left) RDD and a

tuple, a combination of the value in the source RDD and one of the values of that key in

the other pair RDD (right). In other words, the leftOuterJoin() returns all records from

the left (A) RDD and the matched records from the right (B) RDD.

The RDD returned by leftOuterJoin() is graphically depicted in Figure 3-7.

Figure 3-7. Result set of leftOuterJoin() transformations

In the following, you can see how to apply the leftOuterJoin() in Scala:

val leftJoinedRDD = rdd1.leftOuterJoin(rdd2)

leftJoinedRDD.foreach(println)

// Output

(R,(100,None))

(Scala,(15,Some(11)))

(Scala,(15,Some(20)))

(PySpark,(10,Some(75)))

(PySpark,(10,Some(35)))

You will obtain the same result using PySpark code as you see in the following:

rdd1 = spark.sparkContext.parallelize([("PySpark",10),("Scala",15),

("R",100)])

rdd2 = spark.sparkContext.parallelize([("Scala",11),("Scala",20),

("PySpark",75), ("PySpark",35)])

Chapter 3 Spark Low-LeveL apI

94

joinedRDD = rdd1.leftOuterJoin(rdd2)

print(joinedRDD.collect())

Output

[('R', (100, None)), ('Scala', (15, 11)), ('Scala', (15, 20)), ('PySpark',

(10, 75)), ('PySpark', (10, 35))]

Returning the Keys Present in the Parameter RDD

The rightOuterJoin() is identical to the leftOuterJoin() except it returns a pair RDD

having the entries of each key present in the other (right) RDD. The returned RDD has

the key found in the other (right) RDD and a tuple, a combination of the value in the

other (right) RDD and one of the values of that key in the source (left) pair RDD. In

other words, the rightOuterJoin() returns all records from the right RDD (B) and the

matched records from the left RDD (A).

The RDD returned by rightOuterJoin() is graphically depicted in Figure 3-8.

Figure 3-8. Result set of rightOuterJoin() transformations

Let’s see how to apply rightOuterJoin() in a Scala code snippet:

rdd1 = spark.sparkContext.parallelize([("PySpark",10),("Scala",15),

("R",100)])

rdd2 = spark.sparkContext.parallelize([("Scala",11),("Scala",20),

("PySpark",75), ("PySpark",35)])

joinedRDD = rdd1.rightOuterJoin(rdd2)

print(joinedRDD.collect())

Output

[('Scala', (15, 11)), ('Scala', (15, 20)), ('PySpark', (10, 75)),

('PySpark', (10, 35))]

Chapter 3 Spark Low-LeveL apI

95

Once again, you can get the same results by using PySpark code as you see in the

following:

rdd1 = spark.sparkContext.parallelize([("PySpark",10),("Scala",15),

("R",100)])

rdd2 = spark.sparkContext.parallelize([("Scala",11),("Scala",20),

("PySpark",75), ("PySpark",35)])

joinedRDD = rdd1.leftOuterJoin(rdd2)

print(joinedRDD.collect())

Output

[('R', (100, None)), ('Scala', (15, 11)), ('Scala', (15, 20)), ('PySpark',

(10, 75)), ('PySpark', (10, 35))]

 Sorting Data on Pair RDDs

To sort the values of a RDD by key in ascending or descending order, you can use the

Apache Spark sortByKey() transformation.

The syntax of the Spark RDD sortByKey() transformation is as follows:

RDD.sortByKey(ascending: Optional[bool] = True, numPartitions: Optional[int]

= None, keyfunc: Callable[[Any], Any] = <function RDD.<lambda>>) → pyspark.rdd.

RDD[Tuple[K, V]]

The Spark RDD sortByKey() transformation ascending option specifies the order of

the sort (ascending order by default or when set to true); for descending order, you just

need to set it to false. The numPartitions option specifies the number of partitions the

results should be split into. The sortByKey() transformation returns a tuple of data.

Let’s now see sortByKey() in action with a practical example:

val rdd2 = sc.parallelize(Array(("Scala",11),("Scala",20),("PySpark",75),

("PySpark",35)))

rdd1.sortByKey(true).foreach(println) // ascending order (true)

// Output

(R,100)

(PySpark,10)

(Scala,15)

Chapter 3 Spark Low-LeveL apI

96

rdd1.sortByKey(false).foreach(println) // descending order (false)

// Output

(PySpark,10)

(R,100)

(Scala,15)

 Sorting a RDD by a Given Key Function

Another very important Apache Spark transformation is sortBy():

RDD.sortBy(keyfunc: Callable[[T], S], ascending: bool = True,

numPartitions: Optional[int] = None) → RDD[T]

The sortBy() function accepts three arguments. The first one is a key function

(keyfunc) provided, which sorts a RDD based on the key designated and returns

another RDD.

The second one is a flag that specifies whether the results should be returned in

ascending or descending order. The default is ascending (true).

The third parameter (numPartitions) specifies the total number of partitions the

result is going to be divided into. numPartitions is an important optimization parameter,

because sortBy() involves the shuffling of the elements of RDDs, and we have already

seen it can involve unnecessary data movement.

Let’s now take a look at how sortBy() works with an example, taking advantage of

the RDD1 created from previous examples:

val rdd1 = sc.parallelize(Array(("PySpark",10),("Scala",15),("R",100)))

rdd1.sortBy(x => x._1).collect().foreach(println)

(PySpark,10)

(R,100)

(Scala,15)

// Output

(PySpark,10)

(R,100)

(Scala,15)

Chapter 3 Spark Low-LeveL apI

97

// Using now the value of the tuple to sort the data

rdd1.sortBy(x => x._2).collect().foreach(println)

// Output

(PySpark,10)

(Scala,15)

(R,100)

 Actions on Pair RDDs
As we explained before in the book, Spark actions are RDD operations returning raw

values. While transformations on a RDD return a new RDD preserving the original,

actions return a value. Consequently, any operation performed in a RDD and returning

anything other than a new RDD is an action.

Then, you have to also remember that RDD actions are able to trigger the effective

execution of a piece of code defined in a DAG (Directed Acyclic Graph). Thus, while

Spark transformations are considered lazy, meaning they are not executed right after

they are defined, actions are not.

Let’s have a look at some of the most important Spark actions.

 Count RDD Instances by Key

The countByKey() counts the number of elements in a RDD for each key and returns a

DefaultDict[key,int].

A DefaultDict is a dictionary-like object, and trying to access values that do not exist

in the dictionary will return a 0 instead of throwing an error.

Let’s see how it works with a Scala example. Consider the following pair RDD used in

previous examples:

val rdd2 = sc.parallelize(Array(("Scala",11),("Scala",20),("PySpark",75),

("PySpark",35)))

rdd2.countByKey()

// Output

res48: scala.collection.Map[String,Long] = Map(PySpark -> 2, Scala -> 2)

Chapter 3 Spark Low-LeveL apI

98

rdd2.countByKey().foreach(println)

// Output

(PySpark,2)

(Scala,2)

You can access the elements of the elementsCount dictionary just as you would do

for an ordinary dictionary:

val elementsCount = rdd2.countByKey()

println(elementsCount("Scala"))

// Output

2

Now you are going to see the same example, but this time using PySpark:

rdd2 = spark.sparkContext.parallelize([("Scala",11),("Scala",20),

("PySpark",75), ("PySpark",35)])

rdd2.collect()

Output

[('Scala', 11), ('Scala', 20), ('PySpark', 75), ('PySpark', 35)]

Grouping by the key, and getting the count of each group

rdd2.countByKey()

Output

defaultdict(int, {'Scala': 2, 'PySpark': 2})

elementsCount = rdd2.countByKey()

print(elementsCount)

#Output

defaultdict(<class 'int'>, {'Scala': 2, 'PySpark': 2})

Now you can access the elements of the elementsCount dictionary just as you would

do for an ordinary dictionary:

elementsCount['Scala']

Output

2

Chapter 3 Spark Low-LeveL apI

99

Trying to access values of elementsCount that do not exist will return 0:

elementsCount['SQL']

Output

0

 Count RDD Instances by Value

The Spark countByValue() method counts each unique value in a RDD returning a

dictionary of value-count pairs.

In the following, you can see how countByValue() works with a Scala example:

println(rdd2.countByValue())

//Output:

Map((PySpark,35) -> 1, (Scala,11) -> 1, (Scala,20) -> 1, (PySpark,75) -> 1)

Continuing with our previous RDD example, now we are going to see how to use

countByValue() with PySpark:

rdd2 = spark.sparkContext.parallelize([("Scala",11),("Scala",20),

("PySpark",75), ("PySpark",35)])

sorted(rdd2.countByValue().items())

Output

[(('PySpark', 35), 1),

 (('PySpark', 75), 1),

 (('Scala', 11), 1),

 (('Scala', 20), 1)]

 Returning Key-Value Pairs as a Dictionary

The RDD’s collectAsMap() method collects all the elements of a pair RDD in the driver

node and returns key-value pairs in the RDD as a dictionary.

We are going to see the use of this method in a Scala code snippet:

val rdd1 = sc.parallelize(Array(("PySpark",10),("Scala",15),("R",100)))

val rdd1 = sc.parallelize(Array(("PySpark",10),("Scala",15),("R",100)))

rdd1.collectAsMap()

Chapter 3 Spark Low-LeveL apI

100

// Output

res62: scala.collection.Map[String,Int] = Map(R -> 100, Scala -> 15,

PySpark -> 10)

However, if you have duplicate keys, the last key-value pair will overwrite the former

ones. In the following, the tuple (“Scala”,11) has been overwritten by (“Scala”,20):

rdd2.collectAsMap()

// Output

res63: scala.collection.Map[String,Int] = Map(Scala -> 20, PySpark -> 35)

Here is now the same example, but with PySpark this time:

rdd1 = spark.sparkContext.parallelize([("PySpark",10),("Scala",15),

("R",100)])

rdd2 = spark.sparkContext.parallelize([("Scala",11),("Scala",20),

("PySpark",75), ("PySpark",35)])

rdd1.collectAsMap()

Output

{'PySpark': 10, 'Scala': 15, 'R': 100}

Remember that if you have duplicate keys, the last key-value pair will overwrite

the previous ones. In the following, the tuple (“Scala”,11) has been overwritten by

(“Scala”,20):

rdd2.collectAsMap()

Output

{'Scala': 20, 'PySpark': 35}

 Collecting All Values Associated With a Key

The Apache Spark lookup(key) method is an action that returns all values associated

with a provided key in a list. It takes a key’s name as a parameter:

val rdd2 = sc.parallelize(Array(("Scala",11),("Scala",20),("PySpark",75),

("PySpark",35)))

rdd2.lookup("PySpark")

Chapter 3 Spark Low-LeveL apI

101

// Output

res66: Seq[Int] = WrappedArray(75, 35)

Another code snippet in PySpark shows the same result:

rdd2 = spark.sparkContext.parallelize([("Scala",11),("Scala",20),

("PySpark",75), ("PySpark",35)])

rdd2.lookup("PySpark")

Output

[75, 35]

3.3 Spark Shared Variables: Broadcasts
and Accumulators

The so-called shared variables are important Spark abstractions. In simple words, shared

variables are variables you can use to exchange information throughout the workers of

your cluster or between your driver and the workers. In other words, these are variables

intended to share information throughout the cluster.

The big data problems require the use of distributed systems. One example of these

distributed infrastructures is an Apache Spark cluster, in which the driver node and

executor nodes, usually, run in separate and sometimes remote computers.

In distributed computation, you are very often going to face the problem of sharing

and synchronizing information across the nodes of your cluster. For instance, when you

apply a function to your dataset, this function with its variables is going to be copied to

every executor. As the computation in the executors runs in an independent way, the

driver has no information about the update of the data contained in those variables;

hence, the driver cannot track the evolution of variables copied to remote nodes.

To get around this issue, Spark provides the broadcast and accumulator variables, as

a way to distribute information between executors and between executors and the driver

node, allowing the driver to keep in sync with the evolution of the values contained

in some variables of interest. Accumulators are used for writing data, and broadcast

variables are used for reading it.

Chapter 3 Spark Low-LeveL apI

102

 Broadcast Variables
Broadcast variables are read-only variables that allow maintaining a cached variable in

each cluster node instead of transporting it with each task every time tasks are sent to the

executors. Therefore, each executor will keep a local copy of the broadcast variable; in

consequence, no network I/O is needed.

Broadcast variables are transferred once from the driver to the executors and used

by tasks running there as many times as necessary, minimizing data movement through

the network as a result because that information is not transferred to the executors every

time a new task is delivered to them.

In Figure 3-9 we explain graphically the difference between using broadcast variables

and normal variables to share information with the workers.

Figure 3-9. Difference between broadcast variables and normal variables

Chapter 3 Spark Low-LeveL apI

103

If you look at the left side of Figure 3-9, we use a map operation to multiply every

RDD element by the external multiplier variable. In operating like this, a copy of the

multiplier variable will be distributed with every task to each executor of the cluster.

On the other hand, if you look at the right side of Figure 3-9, a single copy of the

broadcast variable is transmitted to each node and shared among all the tasks running

on them, therefore potentially saving an important amount of memory and reducing

network traffic.

Broadcast variables have the value() method, to store the data and access the

broadcasted information.

 When to Use Broadcast Variables

In the preceding section, we have used a simple example with a variable containing

an integer value. However, imagine a scenario in which the external variable would

constitute millions of elements. Imagine, as well, several tasks running in the same

executors will use the same variable. This scenario implies copying the variable data

together with the task to be executred to every executor. This operation will consume a

good portion of the memory available and produce a significant network traffic surplus.

Let’s now imagine a scenario like the one in section “Adding Values by Key in a

RDD” working with our DonQuixote text RDD. Visualize a more exaggerated use case in

which our map function launches several tasks in each executor and all of them use the

external variable. In that case, several copies of the same variable would be sent to each

executor.

In these circumstances, the DonQuixoteRdd text file would have to be copied to all

the cluster nodes with the associated tasks. In the code snippet shown in that section, we

sent the whole DonQuixoteRdd text file as a value to our functions. Therefore, working

in Spark cluster execution mode, passing the whole text as a parameter represents an

important network overload as it must be copied to every executor node. One of the

advantages of using broadcast variables is that the data broadcasted by Spark is cached

in serialized form and deserialized before running the task in each executor.

However, the use of broadcast variables only makes sense when tasks distributed

across the cluster nodes need the same set of data or when caching data in deserialized

format is necessary. In situations as the one depicted before, broadcast variables will

reduce the volume of serialized tasks and the network traffic overhead needed to run

jobs in a cluster.

Chapter 3 Spark Low-LeveL apI

104

One limitation of broadcast variables is that when data is broadcasted across the

cluster nodes, it should not be modified if we want to be sure each executor has the exact

same copy of the data.

 How to Create a Broadcast Variable

A broadcast variable can be created using SparkContext’s broadcast method. Let’s see it

with an example:

// Scala code for broadcast variables

val bVariable = sc.broadcast(Array(1, 2, 3, 4, 5, 6, 7, 8, 9))

bVariable: org.apache.spark.broadcast.Broadcast[Array[Int]] =

Broadcast(137)

bVariable.value

res70: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9)

Python code for broadcast variables

bVariable = spark.sparkContext.broadcast([1, 2, 3, 4, 5, 6, 7, 8, 9])

bVariable.value

Output

[1, 2, 3, 4, 5, 6, 7, 8, 9]

 Accumulators
Accumulators are variables used to track and update information across a cluster’s

executors. Accumulators can be used to implement counters and sums, and they can

only be “added” to through associative and commutative operations.

You can see in Figure 3-10 a graphical representation of the process by which

accumulators are used to collect data at the executor level and bring it to the driver node.

Chapter 3 Spark Low-LeveL apI

105

Figure 3-10. Accumulator operation

One important characteristic of accumulators is that executors cannot read the

accumulators’ value; they can only update it. The accumulator value can only be read in

the driver process.

Next is a code snippet with Scala:

// Accumulator pyspark code snipped

val rdd = spark.sparkContext.parallelize(Array(1, 2, 3, 4, 5))

val acc = spark.sparkContext.longAccumulator("AddAccumulator")

rdd.foreach(x => acc.add(x))

print("Acc value: ", acc.value) //Value collected at the driver

// Output

(Acc value: ,15)

Next is the same code snippet, but this time written with PySpark:

Accumulator pyspark code snipped

acc = spark.sparkContext.accumulator(0)

rdd = spark.sparkContext.parallelize([1,2,3,4,5])

rdd.foreach(lambda x:acc.add(x))

print("Acc value: ", acc.value) # Value collected at the driver

Output

Acc value: 15

Chapter 3 Spark Low-LeveL apI

106

Summarizing, we could say that via accumulator variables, Apache Spark provides a

way to coordinate information among executors, whereas through broadcast variables,

it provides a method to optimize sharing the same information across the nodes of the

cluster without data shuffling.

3.4 When to Use RDDs
Though it is considered that in general high-level API data structures like dataframes and

datasets will allow you to be more productive and work quicker, there are circumstances

in which you will need to use RDDs. On top of that, as we already said before, high-level

structures are in fact built on top of these fundamental primitives. Thus, it is important

to understand how they work because when you work with dataframes or datasets, Spark

turns them into RDDs under the hood. Therefore, as your code becomes more complex,

it is important to know the nuances of Spark RDD programming to be able to get the

most out of it.

Additionally, there are some scenarios in which you will be using RDDs:

• When you need a low-level control of the physical distribution of the

data partitions across the cluster

• When you need low-level transformations and actions

• When you need to make some custom operation not available in

high-level APIs

• When accessing data attributes by name or column is no longer

needed and hence imposing schema to your data is not strictly

necessary

• When you need to maintain legacy code written using RDDs

Wrapping up, we could say that RDDs give you a more fine-grained control of

your code.

Chapter 3 Spark Low-LeveL apI

107

3.5 Summary
In this chapter we briefly looked at the concept of the Spark low-level API, the notion of

Spark Resilient Distributed Datasets (RDDs) as Spark building blocks to construct other

Spark data structures such as DataFrames and datasets with a higher level of technical

isolation. We also covered the most essential operations that you can perform using

RDDs, and finally we also explained the so-called Spark shared variables: broadcasts and

accumulators. In the next chapter, we are going to focus on the Spark high-level API and

how to use it in the big data world.

Chapter 3 Spark Low-LeveL apI

109

CHAPTER 4

The Spark High-Level
APIs
Spark SQL, dataframes, and datasets are Spark high-level API components intended

for structured data manipulation, allowing Spark to automatically improve storage and

computation performance. Structured data is information organized into standardized

structure of schema, which makes it accessible and analyzable without further

treatment. Examples of structured data are database tables, Excel sheets, RDBMS tables,

Parquet files, and so on.

Spark’s high-level APIs allow the optimization of applications working with a certain

kind of data, like binary format files, beyond the limits permitted by Spark’s RDD, for

example. Dataframes and datasets take advantage of the Spark SQL’s Catalyst Optimizer

and Spark Project Tungsten, studied later in this chapter, to optimize their performance.

The most important difference between the Dataset API and DataFrame API is

probably that the Dataset implements type safety at compile time. Datasets enact

compile-time type safety, whereas DataFrames do not. Spark verifies DataFrame data

types comply with those defined in its schema at runtime, whereas dataset data types are

validated at compile time. We will cover the concept of compile-time type safety in detail

later on in this chapter.

4.1 Spark Dataframes
Introduced in Spark 1.3, seeking improvement in the performance and scalability of

Spark. The DataFrame API introduced the notion of schema to describe a data structure,

allowing Spark to optimize shuffle operations by moving data across the nodes in a more

efficient way. From a visual point of view, dataframes resemble relational database tables

or spreadsheets as the example you can see in the following:

© Alfonso Antolínez García 2023
A. Antolínez García, Hands-on Guide to Apache Spark 3, https://doi.org/10.1007/978-1-4842-9380-5_4

https://doi.org/10.1007/978-1-4842-9380-5_4

110

+--------+-----------------+-------------------+----+----+

| Nombre| Primer_Apellido| Segundo_Apellido|Edad|Sexo|

+--------+-----------------+-------------------+----+----+

| Miguel| de Cervantes| Saavedra| 50| M|

|Fancisco| Quevedo|Santibáñez Villegas| 55| M|

| Luis| de Góngora| y Argote| 65| M|

| Teresa|Sánchez de Cepeda| y Ahumada| 70| F|

+--------+-----------------+-------------------+----+----+

From a technical point of view, however, a DataFrame is a sort of view of an untyped

dataset. In other words, a DataFrame is a dataset organized into columns with a header

name. In Scala and Java, a DataFrame could be considered an untyped dataset of

type Row (Dataset[Row]), where a Row stands for an untyped JVM object. They are

a collection of rows of data organized in named columns of different data types and

formed into a schema as the one you see next:

root

 |-- Nombre: string (nullable = true)

 |-- Primer_Apellido: string (nullable = true)

 |-- Segundo_Apellido: string (nullable = true)

 |-- Edad: integer (nullable = true)

 |-- Sexo: string (nullable = true)

As you can see in the preceding schema, every dataframe column includes a set

of attributes such as name, data type, and a nullable flag, which represents whether it

accepts null values or not.

The Dataframe API is a component of the Spark SQL module and is available for

all programming languages such as Java, Python, SparkR, and Scala. Unlike RDDs,

dataframes provide automatic optimization, but unlike the former, they do not provide

compile-time type safety. This means that while with RDDs and datasets the compiler

knows the columns’ data types (string, integer, StructType, etc.), when you work with

dataframes, values returned by actions are an array of rows without a defined data type.

You can cast the values returned to a specific type employing Scala´s asInstanceOf() or

PySpark’s cast() method, for example.

Let’s analyze how the implementation of type safety influences Spark application

behavior with three practical examples.

Chapter 4 the Spark high-LeveL apiS

111

For that purpose we are going to use a small dataset populated with just three of

the most prominent Spanish writers of all times. First of all we are going to show how

type safety influences the use of a lambda expression in a filter or map function. The

following is the code snippet.

First of all we create a case class SpanishWritersDataFrame APISpanishWriters including

four personal writer’s attributes:

//spark.sparkContext.implicits._ grants access to toDF() method

import spark.sqlContext.implicits._

case class SpanishWriters(Nombre: String, Apellido: String, Edad: Int,

Sexo:String)

For this example we create a small dataset of Spanish writers:

val SpanishWritersData = Seq(SpanishWriters("Miguel", "Cervantes",

50, "M"), SpanishWriters("Fancisco", "Quevedo", 55, "M"),

SpanishWriters("Luis", "Góngora", 65, "M"))

In the next step, we create a RDD from the preceding set of data:

val SpanishWritersRDD = spark.sparkContext.parallelize(SpanishWritersData)

Now we use toDF() and toDS() to create a dataframe and a dataset, respectively:

val writersDF = SpanishWritersRDD.toDF()

val writersDS = SpanishWritersRDD.toDS()

Now we are going to see the differences between the data entities when using a

lambda function to filter the data:

// Dataframe

val writersDFResult = writersDF.filter(writer => writer.Edad > 53)

// Output

error: value Edad is not a member of org.apache.spark.sql.Row val

writersDFResult = writersDF.filter(writer => writer.Edad > 53)

 ^

//Dataset

val writersDSResult = writersDS.filter(writer => writer.Edad > 53)

// Output

writersDSResult: org.apache.spark.sql.Dataset[SpanishWriters] = [Nombre:

string, Apellido: string ... 2 more fields]

Chapter 4 the Spark high-LeveL apiS

112

Please, pay attention to the different output we get when filtering the information

in both data structures. When we apply filter to a dataframe, the lambda function

implemented is returning a Row-type object and not an integer value as you probably

were expecting, so it cannot be used to compare it with an integer (53 in this case). Thus,

using just the column name, we cannot retrieve the value coded as a Row object. To get

the Row object value, you have to typecast the value returned to an integer. Therefore, we

need to change the code as follows:

val writersDFResult = writersDF2.filter(writer => writer.getAs[Int]

("Edad") > 53)

writersDFResult.show()

// Output

+--------+--------+----+----+

| Nombre|Apellido|Edad|Sexo|

+--------+--------+----+----+

|Fancisco| Quevedo| 55| M|

| Luis| Góngora| 65| M|

+--------+--------+----+----+

The preceding example shows one of the reasons datasets were introduced. The

developer does not need to know the data type returned beforehand.

Another example of compile-time type safety appears when we query a

nonexisting column:

// Dataframe

val writersDFBirthday = writersDF.select("Birthday")

// Output

rg.apache.spark.sql.AnalysisException: Column 'Birthday' does not exist.

Did you mean one of the following? [Edad, Apellido, Nombre, Sexo];

// Dataset

val writersDSBirthday = writersDS.map(writer => writer.Birthday)

// Output

error: value Birthday is not a member of SpanishWriters

val writersDSBirthday = writersDS.map(writer => writer.Birthday)

 ^

Chapter 4 the Spark high-LeveL apiS

113

In the preceding example, you can see the difference between execution time

(dataframe) and compile time (dataset). The former will throw an error only at runtime,

while the latter will give you an error message at compile time.

Another case in which we are going to find a different behavior between DataFrames

and datasets is when we want to revert them to a primitive RDD. In this case DataFrame

reversion to RDD won’t preserve the data schema, while dataset reversion will. Let’s see

it again with an example:

// Dataframe reversion to RDD

val rddFromDF = writersDF.rdd

// Output

rddFromDF: org.apache.spark.rdd.RDD[org.apache.spark.sql.Row] =

MapPartitionsRDD[249] at rdd at <console>:75

However, we won’t be able to work normally with this reverted RDD, because in fact

the revision returns a Row of RDD. Let’s use a simple operation like to see the outcome:

rddFromDF.map(writer => writer.Nombre).foreach(println)

// Output

error: value Nombre is not a member of org.apache.spark.sql.Row

Now, we are going to do the same operation, but this time with our dataset:

// Dataset reversion to RDD

val rddFromDS = writersDS.rdd

// Output

rddFromDS: org.apache.spark.rdd.RDD[SpanishWriters] = MapPartitionsRDD[252]

at rdd at

The revision returns a real RDD, so we can normally use it:

rddFromDS.map(writer => writer.Nombre).foreach(println)

// Output

Luis

Fancisco

Miguel

It proves datasets preserve the data schema when reverted to RDD.

Chapter 4 the Spark high-LeveL apiS

114

 Attributes of Spark DataFrames
Like other Apache Spark modules, DataFrames were created from inception to deal

with big data projects as efficiently as possible. For that reason, Spark DataFrames

support being distributed across the nodes of a cluster, taking full advantage of the

Spark distributed computing architecture. User SQL queries and commands sent to the

DataFrames are managed by the Catalyst Optimizer, which is responsible for finding and

building the query execution plan that achieves the requested result more efficiently.

Spark DataFrames incorporate many important features. One of them is the

possibility to create dataframes from external sources—circumstances that are very

helpful in real life, when most of the time data is going to be given in the form of files,

databases, etc. Examples of the external file formats supported out of the box by Spark to

load data into DataFrames can be seen in Figure 4-1.

Figure 4-1. Some out-of-the-box Spark-supported formats to load data into
DataFrames

Another important feature of DataFrames is their capacity to tackle huge volumes

of data, from megabytes to petabytes. Thus, Spark DataFrames allow data management

at scale.

 Methods for Creating Spark DataFrames
DataFrames can be built in very different ways, such as manually, from external

relational databases (MySQL, PostgreSQL, Oracle, etc.) or structured data files (CSV,

Excel spreadsheets, Parquet, JSON, among others), from NoSQL databases (Hive tables,

Cassandra, HBase, or MongoDB), or from already existing RDDs and binary files.

Chapter 4 the Spark high-LeveL apiS

115

Spark provides two methods to build DataFrames manually, toDF() and

createDataFrame(). Taking advantage of these methods, you can create new DataFrames

from other already existing DataFrames, RDDs, datasets, lists, and sequences.

Although both methods are pretty much equivalent, they have some important

differences.

 Manually Creating a Spark DataFrame Using toDF()

To use toDF(), we first have to import Spark’s sqlContext.implicits._ library to have

an implicit method to convert a RDD to a DataFrame. Let’s see how to transform a RDD

into a DataFrame using toDF():

val carsData=Seq(("USA","Chrysler","Chrysler 300",292),("Germany","BMW",

"BMW 8 Series",617),("Spain", "Spania GTA", "GTA Spano",925))

val carsRdd = spark.sparkContext.parallelize(carsData) // Seq to RDD

val dfCars = carsRdd.toDF() // RDD to DF

dfCars.show()

// Output

+-------+----------+------------+---+

| _1| _2| _3| _4|

+-------+----------+------------+---+

| USA| Chrysler|Chrysler 300|292|

|Germany| BMW|BMW 8 Series|617|

| Spain|Spania GTA| GTA Spano|925|

+-------+----------+------------+---+

By default, toDF() assigns sequences “_1”, “_2”, “_3”, “_4”, and so on as column

names and tries to infer data types (string and int) and flags every column as nullable,

except for the numeric column. You can see this behavior by printing the dfCars

dataframe schema:

dfCars.printSchema()

// Output

root

 |-- _1: string (nullable = true)

 |-- _2: string (nullable = true)

 |-- _3: string (nullable = true)

 |-- _4: integer (nullable = false)

Chapter 4 the Spark high-LeveL apiS

116

The method toDF() accepts an indefinite number of parameters to be used as

column names: df.toDF(‘col1’, ‘col2’, ..., ‘colN’), as you can see in the following:

val dfBrandedCars = carsRdd.toDF("Country","Manufacturer","Model","Power")

dfBrandedCars.show()

// Output

+-------+------------+------------+-----+

|Country|Manufacturer| Model|Power|

+-------+------------+------------+-----+

| USA| Chrysler|Chrysler 300| 292|

|Germany| BMW|BMW 8 Series| 617|

| Spain| Spania GTA| GTA Spano| 925|

+-------+------------+------------+-----+

The conclusion we obtain from the preceding example is that using toDF() we have

no control over the dataframe schema. This means we have no control over column

types and nullable flags.

 Manually Creating a Spark DataFrame Using createDataFrame()

We can take advantage of the createDataFrame() method to construct DataFrames in

two forms. The first one is coupling it with toDF() while taking a RDD as a parameter.

Let’s show how it works with an example:

var df2 = spark.createDataFrame(carsData) \

.toDF("Country","Manufacturer","Model","Power")

df2.show()

// Output

+-------+------------+------------+-----+

|Country|Manufacturer| Model|Power|

+-------+------------+------------+-----+

| USA| Chrysler|Chrysler 300| 292|

|Germany| BMW|BMW 8 Series| 617|

| Spain| Spania GTA| GTA Spano| 925|

+-------+------------+------------+-----+

Chapter 4 the Spark high-LeveL apiS

117

The second way is we can use createDataFrame() to create a dataframe and unleash

its real power, allowing us to fully customize our own DataFrame schema. You can have

a good grasp of how createDataFrame() works by incorporating a schema definition in

the following example:

import org.apache.spark.sql.Row

import org.apache.spark.sql.types.{IntegerType,StringType, StructField,

StructType}

// First of all we create a schema for the carsData dataset.

val carSchema = StructType(Array(

 StructField("Country", StringType,true),

 StructField("Manufacturer", StringType,true),

 StructField("Model", StringType,true),

 StructField("Power", IntegerType,true)

))

// Notice we are using here the carsRdd RDD shown in the previous example

val carsRowRdd = carsRdd.map(carSpecs => Row(carSpecs._1, carSpecs._2,

carSpecs._3, carSpecs._4))

val dfCarsFromRDD = spark.createDataFrame(carsRowRdd,carSchema)

dfCarsFromRDD.show()

// Output

+-------+------------+------------+-----+

|Country|Manufacturer| Model|Power|

+-------+------------+------------+-----+

| USA| Chrysler|Chrysler 300| 292|

|Germany| BMW|BMW 8 Series| 617|

| Spain| Spania GTA| GTA Spano| 925|

+-------+------------+------------+-----+

Wrapping up, we could say that though both toDF() and createDataFrame()

methods can be used to create DataFrames, the former infers the data schema, while the

latter gives you full customization control over the DataFrame schema.

Chapter 4 the Spark high-LeveL apiS

118

 Data Sources for Creating Spark DataFrames

Spark SQL, through the DataFrame interface, supports a wide range of data sources.

A DataFrame can be operated in two different ways. The first one is directly, using

relational transformations we have already seen in previous chapters. The second one is

by creating a temporary view from the dataframe. The second method allows you to run

SQL queries over the data, as if you were querying traditional RDBMS.

Parquet is the default data source Spark expects to use in input/output operations.

This default format can be set using the spark.sql.sources.default property name.

Let’s see it with an example. Try to load a CSV file using the load() method:

val personasDF = spark.read.load("/Users/aantolinez/Downloads/

personas.csv")

You will receive the following error message:

Caused by: java.lang.RuntimeException: file:/Users/aantolinez/Downloads/

personas.csv is not a Parquet file. Expected magic number at tail, but

found [48, 44, 70, 10]

However, if you load a Parquet file

val personasDF = spark.read.load("/Users/aantolinez/Downloads/personas.

parquet")

everything goes well:

personasDF: org.apache.spark.sql.DataFrame = [Nombre: string, Primer_

Apellido: string ... 3 more fields]

Exactly the same would happen if you use PySpark code:

personasDF = spark.read.load("/Users/aantolinez/Downloads/personas.csv")

// Output

Caused by: java.lang.RuntimeException: file:/Users/aantolinez/Downloads/

personas.csv is not a Parquet file. Expected magic number at tail, but

found [48, 44, 70, 10]

Chapter 4 the Spark high-LeveL apiS

119

While using a Parquet format file, everything is fine:

personasDF = spark.read.load("/Users/aantolinez/Downloads/personas.

parquet")

personasDF.show(1)

Output

+------+---------------+----------------+----+----+

|Nombre|Primer_Apellido|Segundo_Apellido|Edad|Sexo|

+------+---------------+----------------+----+----+

|Miguel| de Cervantes| Saavedra| 50| M|

+------+---------------+----------------+----+----+

 Querying Files Using SQL

Sometimes directly querying a data file instead of loading it first into a DataFrame could

be interesting. Spark allows you to do it in the following way, using the same code in

Scala and PySpark and getting the same result:

spark.sql("SELECT * FROM parquet.`/Users/aantolinez/Downloads/personas.

parquet`").show()

// Output Scala and PySpark

+--------+-----------------+-------------------+----+----+

| Nombre| Primer_Apellido| Segundo_Apellido|Edad|Sexo|

+--------+-----------------+-------------------+----+----+

| Miguel| de Cervantes| Saavedra| 50| M|

|Fancisco| Quevedo|Santibáñez Villegas| 55| M|

| Luis| de Góngora| y Argote| 65| M|

| Teresa|Sánchez de Cepeda| y Ahumada| 70| F|

+--------+-----------------+-------------------+----+----+

 Ignoring Corrupt and Missing Files

Spark provides the both spark.sql.files.ignoreCorruptFiles method to ignore

corrupt files and spark.sql.files.ignoreMissingFiles method to ignore missing files

while reading files from the file system. With the former, when set to true, Spark jobs will

not crash when they find corrupted files, and the content that could have been read will

still be returned. The latter means that Spark jobs will not fail when files are missing, and

Chapter 4 the Spark high-LeveL apiS

120

as in the previous method, data that could have been read will still be returned. In this

context, a missing file is one that has been deleted after a DataFrame transformation has

been applied.

We are going to see this Spark feature with an example:

// enable ignore corrupt files

spark.sql("set spark.sql.files.ignoreCorruptFiles=true")

// personas_corrupt.parquet is not real parquet file

val corruptFiles = spark.read.parquet(

 "/Users/aantolinez/Downloads/personas.parquet",

 "/Users/aantolinez/Downloads/personas_corrupt.parquet")

corruptFiles.show()

 Time-Based Paths

Spark provides modifiedBefore and modifiedAfter options for time control over files

that should be loaded at query time.

modifiedBefore takes a timestamp as a parameter instructing Spark to only read

files whose modification time occurred before the given time. Similarly, modifiedAfter

also takes a timestamp as a parameter but this time commanding Spark to only load files

whose modification time took place after the given time. In both cases timestamp must

have the following format: YYYY-MM-DDTHH:mm:ss (e.g. 2022-10-29T20:30:50).

Let’s see this Spark behavior with an example in Scala and later on in PySpark:

val modifiedAfterDF = spark.read.format("csv")

 .option("header", "true")

 .option("modifiedAfter", "2022-10-30T05:30:00")

 .load("/Users/aantolinez/Downloads/Hands-On-Spark3");

modifiedAfterDF.show();

We can get the same result using PySpark code as you can see in the following:

modifiedAfterDF = spark.read.format("csv") \

 .option("header", "true") \

 .option("modifiedAfter", "2022-10-30T05:30:00") \

 .load("/Users/aantolinez/Downloads/Hands-On-Spark3");

modifiedAfterDF.show();

Chapter 4 the Spark high-LeveL apiS

121

The output in both cases will be the same:

+--------+-----------------+-------------------+----+----+

| Nombre| Primer_Apellido| Segundo_Apellido|Edad|Sexo|

+--------+-----------------+-------------------+----+----+

| Miguel| de Cervantes| Saavedra| 50| M|

|Fancisco| Quevedo|Santibáñez Villegas| 55| M|

| Luis| de Góngora| y Argote| 65| M|

| Teresa|Sánchez de Cepeda| y Ahumada| 70| F|

+--------+-----------------+-------------------+----+----+

Both options support the specification of a timezone via spark.sql.session.

timeZone; in this case, timestamps will reference the timezone given.

 Specifying Save Options

We have mentioned before the Spark default data source is in Parquet format; however,

Spark permits interaction with many other sources of information such as JSON, ORC,

CSV, and text files as well as Hive tables, Cassandra, etc. and JDBC data origins.

This large ecosystem of data origins and the Spark capacity to transform the data

between different formats permit Spark to be used as an efficient ETL1 tool. Spark can

load data from the sources mentioned, transform it, and save it in the formats and

repositories specified. There are four saving modes as shown in Table 4-1.

Table 4-1. Saving Modes

In Scala and Java In Any Language Meaning

SaveMode.errorifexists

(default)

“error” or

“errorifexists” (default)

an exception is sent if data already exists at the

destination when saving the DataFrame.

SaveMode.append “append” Data is appended to the destination data/table.

SaveMode.Overwrite “overwrite” if data/table already exists in the destination, it is

overwritten.

SaveMode.ignore “ignore” it works similarly to the SQL Create taBLe

iF NOt eXiStS. if data already exists in the

destination, the operation is overlooked.

1 ETL stands for Extract, Transform, and Load data.

Chapter 4 the Spark high-LeveL apiS

122

Let’s see how Spark saving modes work with an example:

val SpanishDf = spark.read.option("header", "true")

 .option("inferSchema", "true")

 .csv("/Users/aantolinez/Downloads/personas.csv")

// Writing the first DataFrame

SpanishDf.write.format("csv").mode("overwrite")

 .option("header", true)

 .save("/Users/aantolinez/Downloads/personas2.csv")

// Adding some data to append to the previous saved DataFrame

val SpanishWritersData2 = Seq(("Miguel", "de Unamuno", 70, "M"))

val SpanishWritersRdd = spark.sparkContext.parallelize(SpanishWritersData2)

val SpanishWritersAppendDF = SpanishWritersRdd.toDF()

// Appending the new data to the previous saved one

SpanishWritersAppendDF.write.format("csv").mode("append").save("/Users/

aantolinez/Downloads/personas2.csv")

Now if you have a look at the saved data in Figure 4-2, you see something surprising.

Figure 4-2. Spark saved data

The reason is as follows. By default Spark saves DataFrames, datasets, or RDDs in a

folder with the name specified and writes the content inside in multiple part files (one

part per partition) having the format file specified as extension. As you have seen in the

preceding output, Spark also writes a _SUCCESS file and a .crc file for each partition.

If for any reason you require to have the data merged into a single file and get rid of

the folder and collateral files, you can only easily achieve the first one of your wishes.

As mentioned before, Spark creates a file for each partition. Thus, one way to

get a single file is by consolidating all the shuffled data in a single partition using the

coalesce() and/or repartition() method.

Chapter 4 the Spark high-LeveL apiS

123

 NOTICE

Be careful when using the coalesce() and/or repartition() method with large

data volumes as you can overload the driver memory and get into trouble facing

OutOfMemory problems.

Let’s see how to get a single file with a simple example valid for Scala and PySpark:

SpanishWritersAppendDF.coalesce(1)

.write.csv("/Users/aantolinez/Downloads/personas_coalesce.csv")

Now, when you look at the output of the preceding code (Figure 4-3), you can see a

single CSV file; however, the folder, _SUCCESS file, and .crc hidden files are still there.

Figure 4-3. Spark saving to a single file

For further refinement, such as removing the folder and _SUCCESS and .crc

hidden files, you would have to use the Hadoop file system library to manipulate the

final output.

 Read and Write Apache Parquet Files

Apache Parquet is a free, open source, columnar, and self-describing file format for fast

analytical querying. Apache Parquet plays an important role in modern data lakes due to

its capabilities to skip irrelevant data permitting efficient queries on large datasets.

Some advantages of the Parquet columnar storage are the following:

• Columnar: Parquet is a column-oriented format. In a Paquet file,

data is stored as columns, meaning values of each column are stored

close to each other, facilitating accessibility and hence querying

performance.

• Self-description: A Parquet file combines the data itself with the data

schema and structure. This combination facilitates the development

of tools to read, store, and write Parquet files.

Chapter 4 the Spark high-LeveL apiS

124

• Compression: In a Parquet file, data compression takes place column

by column and includes flexible compression options such as

extendable encoding schema per data type. It means that we can use

different compression encoding according to the data type (long,

string, date, etc.) optimizing compression.

• Performance: The Parquet format is designed for querying

performance. The internal Parquet format structure (which is out

of the scope of this book), composed of row groups, header, and

footer, minimizes the volume of data read and hence reduces disk

I/O. Comparing Parquet with CSV files, the latter must be read in full

and uploaded into memory, while the former permits reading only

the relevant columns needed to answer our question. The Parquet

format allows retrieval of minimum data, implementing vertical and

horizontal partitioning of row groups and column chunks as you can

see in Figure 4-4. Column chunks are also organized as data pages

including metadata information.

Figure 4-4. Parquet data partitioning

 Saving and Data Compression of a DataFrame to a Parquet
File Format

The parquet() method permits saving a Spark DataFrame to a Parquet file format. By

default, this method uses the snappy compression codec:

import org.apache.spark.sql.types.{StringType, StructType, IntegerType}

val schemaWriters = new StructType()

Chapter 4 the Spark high-LeveL apiS

125

 .add("Name",StringType,true)

 .add("Surname",StringType,true)

 .add("Century",StringType,true)

 .add("YearOfBirth",IntegerType,true)

val SpanishWritersDf = spark.read.option("header", "true")

 .schema(schemaWriters)

.csv("/Users/aantolinez/Downloads/Spanish_Writers_by_Century.csv")

// Saving data with default compression codec: snappy

SpanishWritersDf.write.parquet("/Users/aantolinez/Downloads/Spanish_

Writers_by_Century.parquet")

Spanish_Writers_by_Century.parquet:

_SUCCESS part-00000-e4385fd4-fcc0-4a5c-8632-d0080438fa82-c000.gz.parquet

The compression codec can be set to none, uncompressed, snappy, gzip, lzo, brotli,

lz4, and zstd, overriding the spark.sql.parquet.compression.codec. Data can be

appended to a Parquet file using the append option:

// Saving data with gzip compression codec compression option

SpanishWritersDf.write.mode("append").option("compression", "gzip").

parquet("/Users/aantolinez/Downloads/Spanish_Writers_by_Century.parquet")

As you can see in the following, several compression codecs can be combined:

Spanish_Writers_by_Century.parquet:

_SUCCESS part-00000-e4385fd4-fcc0-4a5c-8632-d0080438fa82-c000.gz.parquet

 part-00000-d070dd4d-86ca-476f-8e67-060365db7ca7-c000.snappy.parquet

The same result can be obtained using PySpark code:

from pyspark.sql.types import StructField, StringType, StructType,

IntegerType

schemaWriters = StructType([

 StructField("Name",StringType(),True),

 StructField("Surname",StringType(),True),

 StructField("Century",StringType(),True),

 StructField("YearOfBirth", IntegerType(), True)

])

Chapter 4 the Spark high-LeveL apiS

126

SpanishWritersDf = spark.read.option("header", "true") \

 .schema(schemaWriters) \

.csv("/Users/aantolinez/Downloads/Spanish_Writers_by_Century.csv")

 Direct Queries on Parquet Files

Spark can run SQL statements directly on Parquet files through temporary views:

val parquetDF = spark.read.parquet("/Users/aantolinez/Downloads/Spanish_

Writers_by_Century.parquet")

parquetDF.createOrReplaceTempView("TempTable")

val sqlDf = spark.sql("select * from TempTable where YearOfBirth = 1600")

sqlDf.show()

// Output

+--------+-----------+-------+-----------+

| Name| Surname|Century|YearOfBirth|

+--------+-----------+-------+-----------+

|Calderón|de la Barca| XVII| 1600|

+--------+-----------+-------+-----------+

You can get the same result using PySpark code as you see in the following code

snippet:

parquetDF = spark.read.parquet("/Users/aantolinez/Downloads/Spanish_

Writers_by_Century.parquet")

parquetDF.createOrReplaceTempView("TempTable")

sqlDf = spark.sql("select * from TempTable where YearOfBirth = 1600")

sqlDf.show()

Output

+--------+-----------+-------+-----------+

| Name| Surname|Century|YearOfBirth|

+--------+-----------+-------+-----------+

|Calderón|de la Barca| XVII| 1600|

+--------+-----------+-------+-----------+

Chapter 4 the Spark high-LeveL apiS

127

 Parquet File Partitioning

Spark allows Parquet file partitioning using the partitionBy() method. File partitioning

is one of the key Spark features to improve data analytics performance and scalability.

File partitioning is a key feature to make reads faster; it allows fast access to the data,

loading smaller datasets, and processing data in parallel. Let’s see how it works with a

small example:

import org.apache.spark.sql.types.{StringType, StructType, IntegerType}

val schemaWriters = new StructType()

 .add("Name",StringType,true)

 .add("Surname",StringType,true)

 .add("Century",StringType,true)

 .add("YearOfBirth",IntegerType,true)

 .add("Gender",StringType,true)

val SpanishWritersDf = spark.read.option("header", "true")

 .schema(schemaWriters)

 .csv("/Users/aantolinez/Downloads/Spanish_Writers_by_Gender.csv")

SpanishWritersDf.write.partitionBy("Century","Gender")

.parquet("/Users/aantolinez/Downloads/Spanish_Writers_by_Gender.parquet”)

Spark creates a folder hierarchy based on “Century” as the first partition key and

recursively a group of subfolders for “Gender”, the second partition key. You can see the

mentioned hierarchy in Figure 4-5.

Chapter 4 the Spark high-LeveL apiS

128

Figure 4-5. Spark Parquet file partitioning by key

The following PySpark code snippet will return to you the same output:

from pyspark.sql.types import StructField, StringType, StructType,

IntegerType

schemaWriters = StructType([

 StructField("Name",StringType(),True),

 StructField("Surname",StringType(),True),

 StructField("Century",StringType(),True),

Chapter 4 the Spark high-LeveL apiS

129

 StructField("YearOfBirth", IntegerType(),True),

 StructField("Gender",StringType(),True),

])

SpanishWritersDf = spark.read.option("header", "true") \

 .schema(schemaWriters) \

.csv("/Users/aantolinez/Downloads/Spanish_Writers_by_Gender.csv")

SpanishWritersDf.write.partitionBy("Century","Gender") \

.parquet("/Users/aantolinez/Downloads/Spanish_Writers_by_Gender.parquet")

 Reading Parquet File Partitions

One of the ways Spark provides to speed up data processing is by enabling reading only

the portions of the data needed.

In the following Scala code snippet, you can see how to select only the data needed

from a Parquet file:

val partitionDF = spark.read.parquet("/Users/aantolinez/Downloads/Spanish_

Writers_by_Gender.parquet/Century=XX")

partitionDF.show()

+----+---------------+-----------+------+

|Name| Surname|YearOfBirth|Gender|

+----+---------------+-----------+------+

|José|Ortega y Gasset| 1883| M|

+----+---------------+-----------+------+

The same result is achieved using PySpark code:

partitionDF = spark.read.parquet("/Users/aantolinez/Downloads/Spanish_

Writers_by_Gender.parquet/Century=XX")

partitionDF.show()

 Read and Write JSON Files with Spark

Spark provides two methods for reading JSON files, loading those JSON files as

Dataset[Row] and writing data to disk in a JSON format. Spark natively supports JSON

file schema deduction, although the JSON file must include separate and valid newline-

delimited JSON objects.

Chapter 4 the Spark high-LeveL apiS

130

You can use spark.read.json("path/to/file.json") to load single-line or

multiline JSON files or Dataset[String] into a Spark DataFrame and use dataframe.

write.json("path/to/file.json") to save a Spark DataFrame as a JSON file.

Let’s see how to load a JSON file into a Spark DataFrame. In the first example, we are

going to load a file composed of newline-delimited JSON strings as the one we see in the

following:

{"id":1,"first_name":"Luis","last_name":"Ortiz","email":"luis.ortiz@mapy.cz",

"country":"Spain","updated":"2015-05-16","registered":false},

{"id":2,"first_name":"Alfonso","last_name":"Antolinez","email":"aantolinez

@optc.es","country":"Spain","updated":"2015-03-11","registered":true},

{"id":3,"first_name":"Juan","last_name":"Dominguez","email":"jdomin@xyz.org",

"country":"Spain","updated":"2015-02-15","registered":true},

{"id":4,"first_name":"Santiago","last_name":"Sanchez","email":"ssanchez

@google.com","country":"Spain","updated":"2014-10-31","registered":false}

To load a single and simple JSON file, you can use the read.json() as the example

shown next:

val df = spark.read.json("/Users/aantolinez/Downloads/Spaniards.json")

Unlike other data source formats, Spark has the capacity to infer the data schema

while reading a JSON file:

df.printSchema()

// Output

root

 |-- country: string (nullable = true)

 |-- email: string (nullable = true)

 |-- first_name: string (nullable = true)

 |-- id: long (nullable = true)

 |-- last_name: string (nullable = true)

 |-- registered: boolean (nullable = true)

 |-- updated: string (nullable = true)

Chapter 4 the Spark high-LeveL apiS

131

The same result is obtained when we use PySpark code as shown next:

jsonDf = spark.read.json("/Users/aantolinez/Downloads/Spaniards.json")

jsonDf.printSchema()

Output

root

 |-- country: string (nullable = true)

 |-- email: string (nullable = true)

 |-- first_name: string (nullable = true)

 |-- id: long (nullable = true)

 |-- last_name: string (nullable = true)

 |-- registered: boolean (nullable = true)

 |-- updated: string (nullable = true)

However, in many real cases, you are going to find files formatted as arrays of JSON

strings. One example of this file format is shown in the following:

[{"id":1,"first_name":"Luis","last_name":"Ortiz","email":"luis.ortiz@mapy.

cz","country":"Spain","updated":"2015-05-16","registered":false},

{"id":2,"first_name":"Alfonso","last_name":"Antolinez","email":"aantolinez@

optc.es","country":"Spain","updated":"2015-03-11","registered":true},

{"id":3,"first_name":"Juan","last_name":"Dominguez","email":"jdomin@xyz.org",

"country":"Spain","updated":"2015-02-15","registered":true},

{"id":4,"first_name":"Santiago","last_name":"Sanchez","email":"ssanchez@

google.com","country":"Spain","updated":"2014-10-31","registered":false}]

These kinds of files are known as multiline JSON strings. For multiline JSON files,

you have to use .option("multiline","true") while reading the data. Let’s see how it

works with an example in Scala and PySpark:

//Loading a multiline JSON strings file into a dataframe. Scala

val multilineJsonDf = spark.read.option("multiline","true")

.json("/Users/aantolinez/Downloads/Spaniards_array.json")

multilineJsonDf.show(4, false)

Chapter 4 the Spark high-LeveL apiS

132

// Output

+-------+-------------------+----------+---+---------+----------+----------+

|country|email |first_name|id |last_name|registered|updated |

+-------+-------------------+----------+---+---------+----------+----------+

|Spain |luis.ortiz@mapy.cz |Luis |1 |Ortiz |false |2015-05-16|

|Spain |aantolinez@optc.es |Alfonso |2 |Antolinez|true |2015-03-11|

|Spain |jdomin@xyz.org |Juan |3 |Dominguez|true |2015-02-15|

|Spain |ssanchez@google.com|Santiago |4 |Sanchez |false |2014-10-31|

+-------+-------------------+----------+---+---------+----------+----------+

 Reading Multiple JSON Files at Once

The read.json() method can also be used to read multiple files from different paths. To

load multiple files at once, you just need to pass their paths as elements of a list. Have a

look at how to achieve it in a Scala code snippet:

//Loading a multiline JSON strings file into a dataframe at once

val multipleJsonsDf = spark.read.option("multiline","true").json(

 "/Users/aantolinez/Downloads/Spaniards_array.json",

 "/Users/aantolinez/Downloads/Spaniards_array2.json")

// Output

+-------+-------------------+----------+---+---------+----------+----------+

|country|email |first_name|id |last_name|registered|updated |

+-------+-------------------+----------+---+---------+----------+----------+

|Spain |luis.ortiz@mapy.cz |Luis |1 |Ortiz |false |2015-05-16|

|Spain |aantolinez@optc.es |Alfonso |2 |Antolinez|true |2015-03-11|

|Spain |jdomin@xyz.org |Juan |3 |Dominguez|true |2015-02-15|

|Spain |ssanchez@google.com|Santiago |4 |Sanchez |false |2014-10-31|

|Spain |luis.herrera@xyz.es|Luis |1 |Herrera |false |2015-05-15|

|Spain |mabad@opti.es |Marcos |2 |Abad |true |2015-03-21|

|Spain |jabalos@redis.org |Juan |3 |Abalos |true |2015-02-14|

|Spain |samo@terra.es |Santiago |4 |Amo |false |2014-10-21|

+-------+-------------------+----------+---+---------+----------+----------+

Chapter 4 the Spark high-LeveL apiS

133

The same outcome is achieved using PySpark code:

multipleJsonsDf = spark.read.option("multiline","true") \

.json(["/Users/aantolinez/Downloads/Spaniards_array.json", \

 "/Users/aantolinez/Downloads/Spaniards_array2.json"])

multipleJsonsDf.show(10,False)

Output

+-------+-------------------+----------+---+---------+----------+----------+

|country|email |first_name|id |last_name|registered|updated |

+-------+-------------------+----------+---+---------+----------+----------+

|Spain |luis.ortiz@mapy.cz |Luis |1 |Ortiz |false |2015-05-16|

|Spain |aantolinez@optc.es |Alfonso |2 |Antolinez|true |2015-03-11|

|Spain |jdomin@xyz.org |Juan |3 |Dominguez|true |2015-02-15|

|Spain |ssanchez@google.com|Santiago |4 |Sanchez |false |2014-10-31|

|Spain |luis.herrera@xyz.es|Luis |1 |Herrera |false |2015-05-15|

|Spain |mabad@opti.es |Marcos |2 |Abad |true |2015-03-21|

|Spain |jabalos@redis.org |Juan |3 |Abalos |true |2015-02-14|

|Spain |samo@terra.es |Santiago |4 |Amo |false |2014-10-21|

+-------+-------------------+----------+---+---------+----------+----------+

 Reading JSON Files Based on Patterns at Once

Another command situation you can find in real life is the necessity of reading files

based on name patterns and/or reading all the files in a folder. Spark allows loading

files based on name patterns or the whole files in a directory using the same read.

json() method we have seen in previous examples. Let’s see how it works with another

example:

val patternJsonsDf = spark.read.option("multiline","true").json(

 "/Users/aantolinez/Downloads/Spaniards_array*.json")

patternJsonsDf.show(20, false)

Chapter 4 the Spark high-LeveL apiS

134

// Output

+-------+-------------------------+----------+---+---------+----------+----------+

|country|email |first_name|id |last_name|registered|updated |

+-------+-------------------------+----------+---+---------+----------+----------+

|Spain |luis.garcia@xyz.es |Lucia |9 |Garcia |true |2015-05-15|

|Spain |maria.rodriguez@opti.es |Maria |10 |Rodriguez|true |2015-03-21|

|Spain |carmen.gonzalez@redis.org|Carmen |11 |Gonzalez |true |2015-02-14|

|Spain |sara.fernandez@terra.es |Sara |12 |Fernandez|true |2014-10-21|

|Spain |luis.ortiz@mapy.cz |Luis |1 |Ortiz |false |2015-05-16|

|Spain |aantolinez@optc.es |Alfonso |2 |Antolinez|true |2015-03-11|

|Spain |jdomin@xyz.org |Juan |3 |Dominguez|true |2015-02-15|

|Spain |ssanchez@google.com |Santiago |4 |Sanchez |false |2014-10-31|

|Spain |luis.herrera@xyz.es |Luis |1 |Herrera |false |2015-05-15|

|Spain |mabad@opti.es |Marcos |2 |Abad |true |2015-03-21|

|Spain |jabalos@redis.org |Juan |3 |Abalos |true |2015-02-14|

|Spain |samo@terra.es |Santiago |4 |Amo |false |2014-10-21|

+-------+-------------------------+----------+---+---------+----------+----------+

You can get exactly the same result using PySpark code as follows:

patternJsonsDf = spark.read.option("multiline","true").json(

 "/Users/aantolinez/Downloads/Spaniards_array*.json")

patternJsonsDf.show(20, False)

In a similar way, you can use patterns to load all the JSON files from a folder. For

example, the following code snippets will allow you to read all the JSON files from a

directory and only JSON files:

// Reading all the JSON files from a directory and only JSON files

in Scala.

val patternJsonsDf = spark.read.option("multiline","true").json(

 "/Users/aantolinez/Downloads/*.json")

Reading all the JSON files from a directory and only JSON files in

PySpark.

patternJsonsDf = spark.read.option("multiline","true").json(

 "/Users/aantolinez/Downloads/*.json")

Chapter 4 the Spark high-LeveL apiS

135

Similarly, if you want to read all the files in a directory, you can use the following code:

// Reading ALL the files from a directory in Scala.

val patternJsonsDf = spark.read.option("multiline","true").json(

 "/Users/aantolinez/Downloads/")

Reading ALL the files from a directory in PySpark.

patternJsonsDf = spark.read.option("multiline","true").json(

 "/Users/aantolinez/Downloads/")

 Direct Queries on JSON Files

As with other file formats, like Parquet, Spark also allows us to query JSON files directly.

Thus, it is possible to create a SQL query string and pass it to Spark as you will do with

a RDBMS.

Suppose you want to directly query the Spaniards.json file shown in previous

examples. One way to do it could be by sending the following query to Spark:

CREATE TEMPORARY VIEW Spaniards

 USING org.apache.spark.sql.json

 OPTIONS (path '/Users/aantolinez/Downloads/Spaniards.json')

As usual, let’s see now how to implement it with Scala and PySpark coding:

// Using Scala code

val sqlContext = new org.apache.spark.sql.SQLContext(sc)

val Spaniards = sqlContext.jsonFile("/Users/aantolinez/Downloads/

Spaniards.json")

Spaniards.registerTempTable("Spaniards")

sqlContext.sql("select * from Spaniards").show(false)

// Output

+-------+-------------------+----------+---+---------+----------+----------+

|country|email |first_name|id |last_name|registered|updated |

+-------+-------------------+----------+---+---------+----------+----------+

|Spain |luis.ortiz@mapy.cz |Luis |1 |Ortiz |false |2015-05-16|

|Spain |aantolinez@optc.es |Alfonso |2 |Antolinez|true |2015-03-11|

|Spain |jdomin@xyz.org |Juan |3 |Dominguez|true |2015-02-15|

|Spain |ssanchez@google.com|Santiago |4 |Sanchez |false |2014-10-31|

+-------+-------------------+----------+---+---------+----------+----------+

Chapter 4 the Spark high-LeveL apiS

136

Exactly the same outcome can be achieved using a more compressed code:

spark.sqlContext.sql("CREATE TEMPORARY VIEW Spaniards USING json OPTIONS" +

" (path '/Users/aantolinez/Downloads/Spaniards.json')")

spark.sqlContext.sql("select * from Spaniards").show(false)

// Output

+-------+-------------------+----------+---+---------+----------+----------+

|country|email |first_name|id |last_name|registered|updated |

+-------+-------------------+----------+---+---------+----------+----------+

|Spain |luis.ortiz@mapy.cz |Luis |1 |Ortiz |false |2015-05-16|

|Spain |aantolinez@optc.es |Alfonso |2 |Antolinez|true |2015-03-11|

|Spain |jdomin@xyz.org |Juan |3 |Dominguez|true |2015-02-15|

|Spain |ssanchez@google.com|Santiago |4 |Sanchez |false |2014-10-31|

+-------+-------------------+----------+---+---------+----------+----------+

Now we are going to show how to get the same result using PySpark code:

Using PySpark code

spark.sql("CREATE TEMPORARY VIEW Spaniards USING json OPTIONS" + " (path '/

Users/aantolinez/Downloads/Spaniards.json')")

spark.sql("select * from Spaniards").show(10, False)

Output

+-------+-------------------+----------+---+---------+----------+----------+

|country|email |first_name|id |last_name|registered|updated |

+-------+-------------------+----------+---+---------+----------+----------+

|Spain |luis.ortiz@mapy.cz |Luis |1 |Ortiz |false |2015-05-16|

|Spain |aantolinez@optc.es |Alfonso |2 |Antolinez|true |2015-03-11|

|Spain |jdomin@xyz.org |Juan |3 |Dominguez|true |2015-02-15|

|Spain |ssanchez@google.com|Santiago |4 |Sanchez |false |2014-10-31|

+-------+-------------------+----------+---+---------+----------+----------+

 Saving a DataFrame to a JSON File

Apache Spark provides a similar method called write().json() to easily save

DataFrames to JSON files. The next code snippet shows how to save the multipleJsonsDf

dataframe to a permanent storage as a JSON file:

Chapter 4 the Spark high-LeveL apiS

137

multipleJsonsDf.write

 .json("/Users/aantolinez/Downloads/Merged_Spaniards_array.json")

Now we check the Merged_Spaniards_array.json has been created and split in

several partitions as expected:

ls Downloads/Merged_Spaniards_array.json

_SUCCESS

part-00000-69975a01-3566-4d2d-898d-cf9e543d81c3-c000.json

part-00001-69975a01-3566-4d2d-898d-cf9e543d81c3-c000.json

 Saving Modes

As it is with other file formats, the saving modes applicable to JSON files are the same as

those shown earlier in Table 4-1. In the next code snippet, you can see how to append

data to an already existing JSON file:

multipleJsonsDf.write.mode("append").json("/Users/aantolinez/Downloads/

Merged_Spaniards_array.json")

ls Downloads/Merged_Spaniards_array.json

_SUCCESS

part-00000-188063e9-e5f6-4308-b6e1-7965eaa46c80-c000.json

part-00000-7453b1ad-f3b6-4e68-80eb-254fb539c04d-c000.json

part-00001-188063e9-e5f6-4308-b6e1-7965eaa46c80-c000.json

part-00001-7453b1ad-f3b6-4e68-80eb-254fb539c04d-c000.json

The same code can be used for PySpark.

In previous Spark versions, saving modes were identified as SaveMode.ErrorIfExists,

SaveMode.Overwrite, SaveMode.Append, and SaveMode.Ignore. However, in the newest

Spark releases, the format mode("errorifexists"), mode("append"), etc. seems to be

the way to go.

 Load JSON Files Based on Customized Schemas

When we began using JSON files, we said Spark is able to infer the data schema

automatically for us when we read a JSON file. However, there are times in which you

could be interested in taking advantage of Spark SQL StructType and StructField classes

Chapter 4 the Spark high-LeveL apiS

138

to define your own file schema. This situation could be the case when the data schema

you got is too complex for Spark to infer it autonomously:

import org.apache.spark.sql.types.{StructType,StructField, StringType,

IntegerType,BooleanType,DateType}

val schemaSpaniards = StructType(Array(

 StructField("id",StringType,nullable=true),

 StructField("first_name",StringType,nullable=true),

 StructField("last_name",StringType,nullable=true),

 StructField("email", StringType,nullable=true),

 StructField("country", StringType,nullable=true),

 StructField("updated", DateType,nullable=true),

 StructField("registered", BooleanType,nullable=true)

))

val schemaSpaniardsDf = spark.read.schema(schemaSpaniards).json("/Users/

aantolinez/Downloads/Spaniards.json")

We can see how the new DataFrame matches the data schema previously defined:

schemaSpaniardsDf.printSchema()

// Output

root

 |-- id: string (nullable = true)

 |-- first_name: string (nullable = true)

 |-- last_name: string (nullable = true)

 |-- email: string (nullable = true)

 |-- country: string (nullable = true)

 |-- updated: date (nullable = true)

 |-- registered: boolean (nullable = true)

Now we can see the final result after loading the JSON file based on our

customized schema:

Chapter 4 the Spark high-LeveL apiS

139

schemaSpaniardsDf.show(false)

// Output

+---+----------+---------+-------------------+-------+----------+----------+

|id |first_name|last_name|email |country|updated |registered|

+---+----------+---------+-------------------+-------+----------+----------+

|1 |Luis |Ortiz |luis.ortiz@mapy.cz |Spain |2015-05-16|false |

|2 |Alfonso |Antolinez|aantolinez@optc.es |Spain |2015-03-11|true |

|3 |Juan |Dominguez|jdomin@xyz.org |Spain |2015-02-15|true |

|4 |Santiago |Sanchez |ssanchez@google.com|Spain |2014-10-31|false |

+---+----------+---------+-------------------+-------+----------+----------+

As usual, you get the same result using PySpark code. Let’s repeat the previous steps,

but this time written in PySpark:

from pyspark.sql.types import StructType,StructField,StringType,

IntegerType,BooleanType,DateType

schemaSpaniards = StructType([\

StructField("id",IntegerType(),nullable=True), \

StructField("first_name",StringType(),nullable=True), \

StructField("last_name",StringType(),nullable=True), \

StructField("email",StringType(),nullable=True), \

StructField("country",StringType(),nullable=True), \

StructField("updated",DateType(),nullable=True), \

StructField("registered",BooleanType(),nullable=True)])

schemaSpaniardsDf.printSchema()

Output

root

 |-- id: integer (nullable = true)

 |-- first_name: string (nullable = true)

 |-- last_name: string (nullable = true)

 |-- email: string (nullable = true)

 |-- country: string (nullable = true)

 |-- updated: date (nullable = true)

 |-- registered: boolean (nullable = true)

Chapter 4 the Spark high-LeveL apiS

140

Finally, you can also see the same result, as the one obtained with the Scala script:

schemaSpaniardsDf.show(4, False)

Output

+---+----------+---------+-------------------+-------+----------+----------+

|id |first_name|last_name|email |country|updated |registered|

+---+----------+---------+-------------------+-------+----------+----------+

|1 |Luis |Ortiz |luis.ortiz@mapy.cz |Spain |2015-05-16|false |

|2 |Alfonso |Antolinez|aantolinez@optc.es |Spain |2015-03-11|true |

|3 |Juan |Dominguez|jdomin@xyz.org |Spain |2015-02-15|true |

|4 |Santiago |Sanchez |ssanchez@google.com|Spain |2014-10-31|false |

+---+----------+---------+-------------------+-------+----------+----------+

 Work with Complex Nested JSON Structures Using Spark

In real life, you are barely going to find as simple JSON files as we have shown in

previous examples. In particular, if you have to work with NoSQL databases like Apache

Cassandra, MongoDB, and others, it is common to find a problem in which nested

and complex JSON structures have to be flattened to exchange the data with RDBMS

databases as part of an ETL2 process, to make it more human-readable or facilitate data

analytics. Imagine you have a data source with a schema as the one shown just in the

following:

root

 |-- Book: struct (nullable = true)

 | |-- Authors: array (nullable = true)

 | | |-- element: struct (containsNull = true)

 | | | |-- firstname: string (nullable = true)

 | | | |-- lastname: string (nullable = true)

 | |-- DOI: string (nullable = true)

 | |-- Editors: array (nullable = true)

 | | |-- element: struct (containsNull = true)

 | | | |-- firstname: string (nullable = true)

 | | | |-- lastname: string (nullable = true)

2 ETL (Extract, Transform, Load) is a process to extract, transform, and load data from several
sources to a consolidated data repository.

Chapter 4 the Spark high-LeveL apiS

141

 | |-- ISBN: array (nullable = true)

 | | |-- element: struct (containsNull = true)

 | | | |-- Hardcover ISBN: string (nullable = true)

 | | | |-- Softcover ISBN: string (nullable = true)

 | | | |-- eBook ISBN: string (nullable = true)

 | |-- Id: long (nullable = true)

 | |-- Publisher: string (nullable = true)

 | |-- Title: struct (nullable = true)

 | | |-- Book Subtitle: string (nullable = true)

 | | |-- Book Title: string (nullable = true)

 | |-- Topics: array (nullable = true)

 | | |-- element: string (containsNull = true)

 | |-- eBook Packages: array (nullable = true)

 | | |-- element: string (containsNull = true)

And you would like to transform it into a schema like the one shown in the following:

root

 |-- Afirstname: string (nullable = true)

 |-- Alastname: string (nullable = true)

 |-- DOI: string (nullable = true)

 |-- Efirstname: string (nullable = true)

 |-- Elastname: string (nullable = true)

 |-- Hardcover ISBN: string (nullable = true)

 |-- Softcover ISBN: string (nullable = true)

 |-- eBook ISBN: string (nullable = true)

 |-- Id: long (nullable = true)

 |-- Publisher: string (nullable = true)

 |-- Book Subtitle: string (nullable = true)

 |-- Book Title: string (nullable = true)

 |-- Topics: string (nullable = true)

 |-- eBook Packages: string (nullable = true)

Hence, flatten the data and get a final Spark DataFrame as the one shown in

Figure 4-6.

Chapter 4 the Spark high-LeveL apiS

142

Fi
gu

re
 4

-6
.

Fl
at

te
n

ed
 n

es
te

d
JS

O
N

 fi
le

Chapter 4 the Spark high-LeveL apiS

143

For this purpose, Spark provides some specific functions such as explode(), to

return a new row for each element in a given array or map. This function takes a column

name as a parameter containing an array or map of values. When an array is passed, it

creates a new column, named “col” by default, containing every element of the array.

When this function receives a map, it creates two new columns named “key” and

“value” by default and creates a new row for every key and value. However, explode()

ignores null or empty values; therefore, if you are interested in these values as well, you

should use explode_outer(), which returns null in case the array or map passed is null

or empty.

There are other complementary functions you might be interested in exploring, such

as posexplode() and posexplode_outer(). The former, apart from creating columns for

the elements of an array or map, also creates an additional column named “pos” to hold

the position of the array and map elements.

Let’s explain with the example shown in Figure 4-6 how some of those functions

work. Feel free to uncomment the code lines you find in the following code snippet and

run line by line the code, to see the evolution of the schema structure and data:

val dfMlBooks = spark.read.option("multiline", "true").json("file:///Users/

aantolinez/Books_array.json")

// dfMlBooks.show(false)

val df2 =dfMlBooks.select("Book.*")

// df2.printSchema()

val df3=df2.select(explode_outer($"Authors"), col("DOI"), $"Editors",

$"ISBN", col("Id"), col("Publisher"), $"Title", col("Topics"), $"eBook

Packages")

// df3.show(false)

// df3.printSchema()

val df4=df3.select(col("col.*"), col("DOI"), explode_outer($"Editors"),

$"ISBN", col("Id"), col("Publisher"), $"Title", col("Topics"), $"eBook

Packages")

// df4.show(false)

// df4.printSchema()

val df5=df4.select(col("firstname").alias("Afirstname"),col("lastname").

alias("Alastname"),col("DOI"), col("col.*"),explode_outer($"ISBN"),

col("Id"), col("Publisher"), $"Title", col("Topics"), $"eBook Packages")

// df5.show(false)

Chapter 4 the Spark high-LeveL apiS

144

// df5.printSchema()

val df6=df5.

select(col("Afirstname"),col("Alastname"),col("DOI"),col("firstname").

alias("Efirstname"),col("lastname").alias("Elastname"),col("col.

Hardcover ISBN").alias("Hardcover ISBN"),col("col.Softcover ISBN").

alias("Softcover ISBN"),col("col.eBook ISBN").alias("eBook ISBN"),

col("Id"), col("Publisher"),col("Title.Book Subtitle").alias("Book

Subtitle"),col("Title.Book Title").alias("Book Title") ,explode_

outer($"Topics").alias("Topics"), $"eBook Packages")

// df6.show(false)

// df6.printSchema()

val df7=df6.

select(col("Afirstname"),col("Alastname"),col("DOI"),col("Efirstname"),

col("Elastname"),col("Hardcover ISBN"),col("Softcover ISBN"),col("eBook

ISBN"),col("Id"),col("Publisher"),col("Book Subtitle"),col("Book

Title"),col("Topics"),explode_outer($"eBook Packages").alias("eBook

Packages"))

// df7.show(false)

// df7.printSchema()

val df8=df7.select("*")

df8.show(false)

The same outcome can be achieved using a similar PySpark code.

 Read and Write CSV Files with Spark

Apache Spark SQL provides two specific functions to read and write CSV files. The

method spark.read().csv() reads a file or directory of CSV files into a DataFrame.

Additionally, dataframe.write().csv() writes a Spark DataFrame to a CSV file.

Spark provides the option() and options() functions to customize the read() and

write() behavior. The latter permits specifying several options at once.

We are going to see how to use these four functions mentioned just above can be

used to load and write CSV files in the following examples.

The generic use of the read() function could be as follows:

val PATH ="Downloads/Spanish_Writers_by_Century_II.csv"

val df0 = spark.read.csv(PATH)

Chapter 4 the Spark high-LeveL apiS

145

df0.show(5)

// Output

+--------------------+

| _c0|

+--------------------+

|Name;Surname;Cent...|

|Gonzalo;de Berceo...|

| Juan ;Ruiz;XIV;1283|

|Fernando;de Rojas...|

|Garcilaso;de la V...|

+--------------------+

Exactly the same output would be achieved if you use PySpark code, as follows:

PySpark version to upload Spanish_Writers_by_Century_II.csv

PATH ="Downloads/Spanish_Writers_by_Century_II.csv"

df0 = spark.read.csv(PATH)

df0.show(5)

We can take advantage of the option() function to specify a field’s delimiter. The

default delimiter is “,”:

val df1 = spark.read.option("delimiter", ";").csv(PATH)

df1.show(5)

// Output

+---------+----------+-------+-----------+

| _c0| _c1| _c2| _c3|

+---------+----------+-------+-----------+

| Name| Surname|Century|YearOfBirth|

| Gonzalo| de Berceo| XIII| 1196|

| Juan | Ruiz| XIV| 1283|

| Fernando| de Rojas| XV| 1465|

|Garcilaso|de la Vega| XVI| 1539|

 +---------+----------+-------+-----------+

Chapter 4 the Spark high-LeveL apiS

146

To skip the first line and use it as column names, we can use .option("header",

"true"):

val df2 = spark.read.option("delimiter", ";").option("header", "true").

csv(path)

df2.show(5)

// Output

+---------+------------+-------+-----------+

| Name| Surname|Century|YearOfBirth|

+---------+------------+-------+-----------+

| Gonzalo| de Berceo| XIII| 1196|

| Juan | Ruiz| XIV| 1283|

| Fernando| de Rojas| XV| 1465|

|Garcilaso| de la Vega| XVI| 1539|

| Miguel|de Cervantes| XVI| 1547|

+---------+------------+-------+-----------+

Several CSV manipulation options can be specified at once using the options()

function:

val df3 = spark.read.options(Map("inferSchema"->"true","delimiter"->";",

"header"->"true")).csv(PATH)

df3.show(5)

// Output

+---------+------------+-------+-----------+

| Name| Surname|Century|YearOfBirth|

+---------+------------+-------+-----------+

| Gonzalo| de Berceo| XIII| 1196|

| Juan | Ruiz| XIV| 1283|

| Fernando| de Rojas| XV| 1465|

|Garcilaso| de la Vega| XVI| 1539|

| Miguel|de Cervantes| XVI| 1547|

+---------+------------+-------+-----------+

Compressed files can also be uploaded using the “compression” option:

Chapter 4 the Spark high-LeveL apiS

147

val GZIP_PATH = "Downloads/Spanish_Writers_by_Century_II.csv.gz"

val df5 = spark.read.option("delimiter", ";").option("header", "true").

option("compression", "gzip").csv(GZIP_PATH)

df5.show(5)

// Output

+---------+------------+-------+-----------+

| Name| Surname|Century|YearOfBirth|

+---------+------------+-------+-----------+

| Gonzalo| de Berceo| XIII| 1196|

| Juan | Ruiz| XIV| 1283|

| Fernando| de Rojas| XV| 1465|

|Garcilaso| de la Vega| XVI| 1539|

| Miguel|de Cervantes| XVI| 1547|

+---------+------------+-------+-----------+

Other important options are nullValue, nanValue, and dateFormat. The first option

permits establishing a string representing a null value. The second option permits the

specification of a string as representation of a non-number value (NaN by default). The

last option sets the string that indicates a date format (by default “yyyy-MM-dd”).

To save a Spark DataFrame to a CSV format, we can use the write() function. The

write() function takes a folder as a parameter. That directory represents the output path

in which the CSV file, plus a _SUCCESS file, will be saved:

// To save a DataFrame to a CSV file

OUTPUT_PATH="Downloads/"

df5.write.option("header","true").csv(OUTPUT_PATH)

As it happens with other file formats like Parquet, several saving options, Overwrite,

Append, Ignore, and the default option ErrorIfExists, are available.

 Read and Write Hive Tables

Apache Spark SQL also provides the capability of reading and writing data stored in

Apache Hive tables. In this section we are going to show a typical Spark workflow in

which we read data from an external source (CSV file) into a Spark DataFrame and save

it to a Hive table later on.

Chapter 4 the Spark high-LeveL apiS

148

The first and second steps you should take are to create a Hive database and table if

you do not have them:

-- Creating the Hive database we are going to use

CREATE DATABASE IF NOT EXISTS spaniards;

--Creating the Hive table we are going to use

CREATE TABLE IF NOT EXISTS spaniards.writersByCentury (

Name string,

Surname string,

Century string,

YearOfBirth int)

COMMENT 'Spaniards writers by century'

ROW FORMAT DELIMITED

FIELDS TERMINATED BY ',';

After creating the basic Hive resources, we can write our code to load the data from a

file and save it to the Hive table:

import java.io.File

import org.apache.spark.sql.{Row, SaveMode, SparkSession}

val warehouseLocation = "hdfs://localhost:9745/user/hive/warehouse"

val spark = SparkSession

 .builder()

 .appName("Hands-On Spark 3")

 .config("spark.sql.warehouse.dir", warehouseLocation)

 .enableHiveSupport()

 .getOrCreate()

import spark.implicits._

import spark.sql

val path = "file:///tmp/Spanish_Writers_by_Century.csv"

val df = spark.read.option("header", "true").csv(path)

df.show(5,false)

Chapter 4 the Spark high-LeveL apiS

149

// Output

+---------+------------+-------+-----------+

|Name |Surname |Century|YearOfBirth|

+---------+------------+-------+-----------+

|Gonzalo |de Berceo |XIII |1196 |

|Juan |Ruiz |XIV |1283 |

|Fernando |de Rojas |XV |1465 |

|Garcilaso|de la Vega |XVI |1539 |

|Miguel |de Cervantes|XVI |1547 |

+---------+------------+-------+-----------+

// Saving now the dataframe to a Hive table

df.write.mode("overwrite").saveAsTable("spaniards.writersByCentury")

After saving the data, we can go to our Hive server and check the data is already there:

hive> select * from spaniards.writersByCentury;

OK

SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".

SLF4J: Defaulting to no-operation (NOP) logger implementation

SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further

details.

Gonzalo de Berceo XIII 1196

Juan Ruiz XIV 1283

Fernando de Rojas XV 1465

Garcilaso de la Vega XVI 1539

Miguel de Cervantes XVI 1547

Francisco de Quevedo XVI 1580

Luis de Góngora XVI 1561

Lope de Vega XVI 1562

Tirso de Molina XVI 1583

Calderón de la Barca XVII 1600

Adolfo Bécquer XIX 1836

Benito Pérez Galdós XIX 1843

Emilia Pardo Bazán XIX 1851

José Ortega y Gasset XX 1883

Time taken: 9.226 seconds, Fetched: 14 row(s)

hive>

Chapter 4 the Spark high-LeveL apiS

150

 Read and Write Data via JDBC from and to Databases

Apache Spark can also write to and read from numerous data sources using a JDBC

connector. Something you have to take into consideration while using JDBC connections

to access your data is that the information returned from the source is formatted as a

Spark DataFrame, which is very convenient.

If you plan to access remote data sources using a JDBC connection, the first thing

you need is a JDBC driver compatible with your data source. In the following examples,

we are going to walk you through the implementation of JDBC connections to two of the

most popular RDBMSs, MySQL and PostgreSQL:

val spark = SparkSession.builder

.appName("Hands-On Guide to Apache Spark 3")

.master("local[*]")

.config("spark.driver.memory", "1g")

.config("spark.sql.ansi.enabled ",true)

.config("spark.jars", "./postgresql-42.5.0.jar, ./mysql-connector-

java-8.0.30.jar")

.getOrCreate()

// Connecting to a PostgreSQL remote server

val dfPostgresql = spark.read

.format("jdbc")

.option("url", "jdbc:postgresql://dbserver_url:5432/northwind")

.option("driver", "org.postgresql.Driver")

.option("dbtable","public.categories")

.option("user","YOUR_USER_HERE")

.option("password", "YOUR_PASSWORD_HERE")

.load()

dfPostgresql.show()

// Output

+-----------+--------------+--------------------+-------+

|category_id| category_name| description|picture|

+-----------+--------------+--------------------+-------+

| 1| Beverages|Soft drinks, coff...| []|

| 2| Condiments|Sweet and savory ...| []|

Chapter 4 the Spark high-LeveL apiS

151

| 3| Confections|Desserts, candies...| []|

| 4|Dairy Products| Cheeses| []|

| 5|Grains/Cereals|Breads, crackers,...| []|

| 6| Meat/Poultry| Prepared meats| []|

| 7| Produce|Dried fruit and b...| []|

| 8| Seafood| Seaweed and fish| []|

+-----------+--------------+--------------------+-------+

Now we are going to show how to connect to a MySQL database:

val jdbcMySQL = spark.read

 .format("jdbc")

 .option("url", "jdbc:mysql://dbserver_url:3306/northwind")

 .option("driver", "com.mysql.jdbc.Driver")

 .option("dbtable", "customers")

 .option("user", "YOUR_USER_HERE")

 .option("password", "YOUR_PASSWORD_HERE")

 .load()

jdbcAwsMySQL.select("id","company","last_name","first_name","job_

title")show(8)

// Output

+---+---------+----------------+----------+--------------------+

| id| company| last_name|first_name| job_title|

+---+---------+----------------+----------+--------------------+

| 1|Company A| Bedecs| Anna| Owner|

| 2|Company B|Gratacos Solsona| Antonio| Owner|

| 3|Company C| Axen| Thomas|Purchasing Repres...|

| 4|Company D| Lee| Christina| Purchasing Manager|

| 5|Company E| O’Donnell| Martin| Owner|

| 6|Company F| Pérez-Olaeta| Francisco| Purchasing Manager|

| 7|Company G| Xie| Ming-Yang| Owner|

| 8|Company H| Andersen| Elizabeth|Purchasing Repres...|

+---+---------+----------------+----------+--------------------+

Chapter 4 the Spark high-LeveL apiS

152

You can get the same result using an embedded SQL query instead of retrieving the

whole table:

val jdbcMySQL = spark.read

 .format("jdbc")

 .option("url", "jdbc:mysql://dbserver_url:3306/northwind")

 .option("driver", "com.mysql.jdbc.Driver")

 .option("query", "select id,company,last_name,first_name,job_title from

customers")

 .option("user", "YOUR_USER_HERE")

 .option("password", "YOUR_PASSWORD_HERE")

 .load()

jdbcAwsMySQL.show(8)

// Output

+---+---------+----------------+----------+--------------------+

| id| company| last_name|first_name| job_title|

+---+---------+----------------+----------+--------------------+

| 1|Company A| Bedecs| Anna| Owner|

| 2|Company B|Gratacos Solsona| Antonio| Owner|

| 3|Company C| Axen| Thomas|Purchasing Repres...|

| 4|Company D| Lee| Christina| Purchasing Manager|

| 5|Company E| O’Donnell| Martin| Owner|

| 6|Company F| Pérez-Olaeta| Francisco| Purchasing Manager|

| 7|Company G| Xie| Ming-Yang| Owner|

| 8|Company H| Andersen| Elizabeth|Purchasing Repres...|

+---+---------+----------------+----------+--------------------+

In a similar way, you can save a Spark DataFrame to a database using a JDBC

connection. Let’s see it with an example of how to add data to a MySQL database table:

import spark.implicits._

val data = Seq((6, "Alfonso"))

val dataRdd = spark.sparkContext.parallelize(data)

val dfFromRDD = dataRdd.toDF("id","name")

dfFromRDD.write

 .mode("append")

Chapter 4 the Spark high-LeveL apiS

153

 .format("jdbc")

 .option("url", "jdbc:mysql://dbserver_url:3306/northwind")

 .option("driver", "com.mysql.jdbc.Driver")

 .option("dbtable", "customers")

 .option("user", "YOUR_USER_HERE")

 .option("password", "YOUR_PASSWORD_HERE")

 .save()

There are many other options you can use when using a JDBC connection. The

ones we show next are probably the most relevant when you want to optimize the

communication with the data source:

val jdbcMySQL = spark.read

 .format("jdbc")

 .option("url", "jdbc:mysql://dbserver_url:3306/northwind")

 .option("driver", "com.mysql.jdbc.Driver")

 .option("dbtable", "customers")

 .option("numpartitions", numpartitions)

 .option("lowerbound", min)

 .option("upperbound", max)

 .option("partitioncolumn", primarykey)

 .option("fetchsize", 0)

 .option("batchsize", 1000)

 .option("user", "YOUR_USER_HERE")

 .option("password", "YOUR_PASSWORD_HERE")

 .load()

The new options add the following features:

• numPartitions: This option is used for both reading and writing and

represents the maximum number of partitions used for parallelism

processing as well as the maximum number of JDBC connections.

• partitionColumn: Represents the column of the table used for

partition. It must be of numeric, date, or timestamp format.

• lowerBound and upperBound: These options are used for reading

operations, and they establish the partition stride.

Chapter 4 the Spark high-LeveL apiS

154

• fetchsize: This option is intended to boost JDBC connection

performance: it establishes the number of rows to fetch per round

trip. The default value is 0.

• batchsize: This option only applies to writing operations, and its goal

is improving writing performance. It establishes the number of rows

to be inserted per round trip.

4.2 Use of Spark DataFrames
The main use of Spark DataFrames is to execute queries. In this section we are going to

explore some of the most common operations we can perform by making use of Spark

DataFrames such as selection, filtering, aggregations, and data grouping.

In this section we are going to take advantage of the WorldCup3 dataset to walk you

through the use of Spark DataFrames to query data.

 Select DataFrame Columns
Probably the most important transformation function you are going to use in Spark is

select(). This Spark function returns a new Spark DataFrame composed of a selected

set of columns. The returned columns can be renamed using the alias() function to

eliminate ambiguity and/or improve human readability.

The select() function takes the name(s) of one or several DataFrame columns and

returns a new Spark DataFrame containing only the selected columns. By default Spark

does not show the content of the new DataFrame. As you have seen in the book, we can

use the show() function to instruct Spark to reveal the returned values.

The following code snippet illustrates how to use show() to display the data retrieved

from a select() statement:

val dfWC=spark.read.option("header", "true").csv("file:///Users/aantolinez/

Downloads/WorldCups.csv")

dfWC.show(5,false)

3 www.kaggle.com/datasets/abecklas/fifa-world-cup?select=WorldCups.csv

Chapter 4 the Spark high-LeveL apiS

http://www.kaggle.com/datasets/abecklas/fifa-world-cup?select=WorldCups.csv

155

// Output showing only the first 5 rows

+----+-----------+----------+--------------+-------+----------+-----------+

--------------+-------------+----------+

|Year|Country |Winner |Runners-Up |Third |Fourth |GoalsScored|

QualifiedTeams|MatchesPlayed|Attendance|

+----+-----------+----------+--------------+-------+----------+-----------+

--------------+-------------+----------+

|1930|Uruguay |Uruguay |Argentina |USA |Yugoslavia|70 |

13 |18 |590.549 |

|1934|Italy |Italy |Czechoslovakia|Germany|Austria |70 |

16 |17 |363.000 |

|1938|France |Italy |Hungary |Brazil |Sweden |84 |

15 |18 |375.700 |

|1950|Brazil |Uruguay |Brazil |Sweden |Spain |88 |

13 |22 |1.045.246 |

|1954|Switzerland|Germany FR|Hungary |Austria|Uruguay |140 |

16 |26 |768.607 |

+----+-----------+----------+--------------+-------+----------+-----------+

--------------+-------------+----------+

only showing top 5 rows

The show() function without parameters displays 20 rows and truncates the text

length to 20 characters by default. However, show() can take up to three parameters:

The first one is an integer corresponding to the number of rows to display. The second

parameter can be a Boolean value, indicating whether text string should be truncated,

or an integer, denoting the number of characters to display. The third parameter is a

Boolean-type value, designating whether values should be shown vertically.

The following output displays the results of the previous example, but using the

dfWC.show(5,8) option, showing only the first five rows and just eight characters

in length:

Chapter 4 the Spark high-LeveL apiS

156

+----+--------+--------+----------+-------+--------+-----------+

--------------+-------------+----------+

|Year| Country| Winner|Runners-Up| Third| Fourth|GoalsScored|

QualifiedTeams|MatchesPlayed|Attendance|

+----+--------+--------+----------+-------+--------+-----------+

--------------+-------------+----------+

|1930| Uruguay| Uruguay| Argen...| USA|Yugos...| 70|

 13| 18| 590.549|

|1934| Italy| Italy| Czech...|Germany| Austria| 70|

 16| 17| 363.000|

|1938| France| Italy| Hungary| Brazil| Sweden| 84|

 15| 18| 375.700|

|1950| Brazil| Uruguay| Brazil| Sweden| Spain| 88|

 13| 22| 1.045...|

|1954|Switz...|Germa...| Hungary|Austria| Uruguay| 140|

 16| 26| 768.607|

+----+--------+--------+----------+-------+--------+-----------+

--------------+-------------+----------+

only showing top 5 rows

Selecting All or Specific DataFrame Columns

You can use select() to discriminate the columns you would like to query. To retrieve all

the columns in the DataFrame, you use show() as explained in the previous examples, or

you can use the wildcard “*”, as follows:

dfWC.select("*").show()

On the other hand, you can fetch specific columns from your DataFrame using

column names in one of the following query ways:

// Fetch specific columns from a DataFrame using column names

dfWC.select("Year","Country", "Winner", "Runners-Up", "Third","Fourth").

show(5, false)

Chapter 4 the Spark high-LeveL apiS

157

// Output

+----+-----------+----------+--------------+-------+----------+

|Year|Country |Winner |Runners-Up |Third |Fourth |

+----+-----------+----------+--------------+-------+----------+

|1930|Uruguay |Uruguay |Argentina |USA |Yugoslavia|

|1934|Italy |Italy |Czechoslovakia|Germany|Austria |

|1938|France |Italy |Hungary |Brazil |Sweden |

|1950|Brazil |Uruguay |Brazil |Sweden |Spain |

|1954|Switzerland|Germany FR|Hungary |Austria|Uruguay |

+----+-----------+----------+--------------+-------+----------+

// Fetch individual columns from a DataFrame using Dataframe object name

dfWC.select(dfWC("Year"),dfWC("Country"),dfWC("Winner"),dfWC("Runners-Up"),

dfWC("Third"),dfWC("Fourth")).show(5, false)

//Fetch individual columns from a DataFrame using col function.

import org.apache.spark.sql.functions.col

dfWC.select(col("Year"),col("Country"),col("Winner"),col("Runners-Up"),col(

"Third"),col("Fourth")).show(5, false)

You can also select columns from a DataFrame based on column index. You can see

a couple of examples in the following:

dfWC.select(dfWC.columns(0),dfWC.columns(1),dfWC.columns(2),dfWC.

columns(3)).show(5, false)

// Output

+----+-----------+----------+--------------+

|Year|Country |Winner |Runners-Up |

+----+-----------+----------+--------------+

|1930|Uruguay |Uruguay |Argentina |

|1934|Italy |Italy |Czechoslovakia|

|1938|France |Italy |Hungary |

|1950|Brazil |Uruguay |Brazil |

|1954|Switzerland|Germany FR|Hungary |

+----+-----------+----------+--------------+

Chapter 4 the Spark high-LeveL apiS

158

You can fetch an array of columns using a sequence of indexes:

val colIndex = Seq(0, 1, 2, 3, 4, 5)

dfWC.select(colIndex map dfWC.columns map col: _*).show(5, false)

// Output

+----+-----------+----------+--------------+-------+----------+

|Year|Country |Winner |Runners-Up |Third |Fourth |

+----+-----------+----------+--------------+-------+----------+

|1930|Uruguay |Uruguay |Argentina |USA |Yugoslavia|

|1934|Italy |Italy |Czechoslovakia|Germany|Austria |

|1938|France |Italy |Hungary |Brazil |Sweden |

|1950|Brazil |Uruguay |Brazil |Sweden |Spain |

|1954|Switzerland|Germany FR|Hungary |Austria|Uruguay |

+----+-----------+----------+--------------+-------+----------+

Sequences can also be used in several other ways, for instance, using the sequence

plus the string column names, as you see next:

val seqColumnas = Seq("Year","Country","Winner","Runners- Up","Third",

"Fourth")

val result = dfWC.select(seqColumnas.head, seqColumnas.tail: _*).

show(5, false)

Another way could be using a sequence plus the map function with a set of

column names:

dfWC.select(seqColumnas.map(i => col(i)): _*).show(5,false)

In both examples, you get exactly the same result you got in previous code snippets.

You can also use a list of columns to retrieve the desired data. Have a look at the next

example:

import org.apache.spark.sql.Column

val miColumnas: List[Column] = List(new Column("Year"), new

Column("Country"), new Column("Winner"))

dfWC.select(miColumnas: _*).show(5,false)

Chapter 4 the Spark high-LeveL apiS

159

// Output

+----+-----------+----------+

|Year|Country |Winner |

+----+-----------+----------+

|1930|Uruguay |Uruguay |

|1934|Italy |Italy |

|1938|France |Italy |

|1950|Brazil |Uruguay |

|1954|Switzerland|Germany FR|

+----+-----------+----------+

 Select Columns Based on Name Patterns
The startsWith(String prefix) and endsWith(String suffix) column functions are

used to confirm whether a string begins with a specified prefix or substring, in the first

case, or the same string ends with a defined suffix. Another interesting column function

is contains(Other), which returns a Boolean value indicating whether a pattern appears

in a column or not. These three functions can be complemented with the like()

function to achieve the same results. Let’s see how to use them to select the desired

columns using name patterns:

dfWC.select(dfWC.columns.filter(s=>s.startsWith("Y")).map(c=>col(c)):_*).

show(5,false)

// Output

+----+

|Year|

+----+

|1930|

|1934|

|1938|

|1950|

|1954|

+----+

Chapter 4 the Spark high-LeveL apiS

160

dfWC.select(dfWC.columns.filter(s=>s.endsWith("ner")).map(c=>col(c)):_*).

show(5,false)

// Output

+----------+

|Winner |

+----------+

|Uruguay |

|Italy |

|Italy |

|Uruguay |

|Germany FR|

+----------+

On the other hand, the function contains() can be used to filter rows by columns

containing a specific pattern. You can see an example in the following in which we filter

the dataset rows with letter “y” in the Winner column:

import org.apache.spark.sql.functions.col

dfWC.select("Year","Country","Winner","Runners-Up","Third","Fourth").

filter(col("Winner").contains("S")).show()

// Output

+----+------------+------+-----------+-------+-------+

|Year| Country|Winner| Runners-Up| Third| Fourth|

+----+------------+------+-----------+-------+-------+

|2010|South Africa| Spain|Netherlands|Germany|Uruguay|

+----+------------+------+-----------+-------+-------+

filter can be complemented with the function like() to achieve the same outcome:

dfWC.select("Year","Country","Winner","Runners-Up","Third","Fourth").

filter(col("Winner").like("%S%")).show()

// Outcome

+----+------------+------+-----------+-------+-------+

|Year| Country|Winner| Runners-Up| Third| Fourth|

+----+------------+------+-----------+-------+-------+

|2010|South Africa| Spain|Netherlands|Germany|Uruguay|

+----+------------+------+-----------+-------+-------+

Chapter 4 the Spark high-LeveL apiS

161

We can also use SQL ANSI language as a complement to filter dataset rows:

dfWC.createOrReplaceTempView("WorldCups")

spark.sql("select Year,Country,Winner,`Runners-Up`,Third,Fourth from

WorldCups where Winner like '%S%'").show()

// Output

+----+------------+------+-----------+-------+-------+

|Year| Country|Winner| Runners-Up| Third| Fourth|

+----+------------+------+-----------+-------+-------+

|2010|South Africa| Spain|Netherlands|Germany|Uruguay|

+----+------------+------+-----------+-------+-------+

 Filtering Results of a Query Based on One or
Multiple Conditions
So far we have been applying selection criteria at the column level. Now we are going

to see how to refine gathered data at the row level. Spark filter() and where()

functions are used to filter data at the row level based on one or multiple criteria. Both

functions return the same outcome; thus, the where() function was introduced for SQL

background compatibility.

Both filtering functions can be used alone or combined with others to refine the

results. In the following code snippet, we are using filter() individually; thus, we get

the full set of columns. In the second one, we combine it with select to limit the number

of columns retrieved to those that are of our interest:

dfWC.filter("Year < 1938").show(5,false)

// Output

+----+-------+-------+--------------+-------+----------+-----------+

--------------+-------------+----------+

|Year|Country|Winner |Runners-Up |Third |Fourth |GoalsScored|

QualifiedTeams|MatchesPlayed|Attendance|

+----+-------+-------+--------------+-------+----------+-----------+

--------------+-------------+----------+

|1930|Uruguay|Uruguay|Argentina |USA |Yugoslavia|70 |

13 |18 |590.549 |

Chapter 4 the Spark high-LeveL apiS

162

|1934|Italy |Italy |Czechoslovakia|Germany|Austria |70 |

16 |17 |363.000 |

+----+-------+-------+--------------+-------+----------+-----------+

--------------+-------------+----------+

dfWC.select(col("Year"),col("Country"),col("Winner"),col("Runners-Up"),

col("Third"),col("Fourth")).filter("Year < 1938").show(5,false)

// Output

+----+-------+-------+--------------+-------+----------+

|Year|Country|Winner |Runners-Up |Third |Fourth |

+----+-------+-------+--------------+-------+----------+

|1930|Uruguay|Uruguay|Argentina |USA |Yugoslavia|

|1934|Italy |Italy |Czechoslovakia|Germany|Austria |

+----+-------+-------+--------------+-------+----------+

In the last piece of code, you can appreciate how Spark performs query operations.

First, Spark performs the select() transformation, and then it applies the filter criteria

to the selected data. Finally, it applies the action show() to the results.

Several filter() functions can be cascaded to provide additional data refinement:

dfWC.select(col("Year"),col("Country"),col("Winner"),col("Runners-Up")).

filter("Year < 1938").filter("Country = 'Italy'").show(5,false)

// Output

+----+-------+------+--------------+

|Year|Country|Winner|Runners-Up |

+----+-------+------+--------------+

|1934|Italy |Italy |Czechoslovakia|

+----+-------+------+--------------+

 Using Different Column Name Notations
Column names inside a filter() function can also be mentioned by using 'columnName,

col(columnName), $"columnName", Dataframe("columnName") notations. Let’s see how it

works with an example:

// Using the 'columnName notation

dfWC.select("Year","Country","Winner","Runners-Up","Third","Fourth",

"GoalsScored").filter('Winner === "Spain").show(false)

Chapter 4 the Spark high-LeveL apiS

163

// Using the $"columnName" notation

dfWC.select("Year","Country","Winner","Runners-Up","Third","Fourth",

"GoalsScored").filter($"Winner" === "Spain").show(false)

// Using the col(columnName) notation

dfWC.select("Year","Country","Winner","Runners-Up","Third","Fourth",

"GoalsScored").filter(col("Winner") === "Winner").show(false)

// Using the Dataframe("columnName") notation

dfWC.select("Year","Country","Winner","Runners-Up","Third","Fourth",

"GoalsScored").filter(dfWC("Winner") === "Spain").show(false)

// Output from all code snippets

+----+------------+------+-----------+-------+-------+-----------+

|Year|Country |Winner|Runners-Up |Third |Fourth |GoalsScored|

+----+------------+------+-----------+-------+-------+-----------+

|2010|South Africa|Spain |Netherlands|Germany|Uruguay|145 |

+----+------------+------+-----------+-------+-------+-----------+

Alternatively, you can use the whether() function to get the same outcome, as you

can see in the following example:

// Using the 'columnName notation

dfWC.select("Year","Country","Winner","Runners-Up","Third","Fourth",

"GoalsScored").where('Winner === "Spain").show(false)

// Using the $"columnName" notation

dfWC.select("Year","Country","Winner","Runners-Up","Third","Fourth",

"GoalsScored").where($"Winner" === "Spain").show(false)

// Using the col(columnName) notation

dfWC.select("Year","Country","Winner","Runners-Up","Third","Fourth",

"GoalsScored").where(col("Winner") === "Spain").show(false)

// Using the Dataframe("columnName") notation

dfWC.select("Year","Country","Winner","Runners-Up","Third","Fourth",

"GoalsScored").where(dfWC("Winner") === "Spain").show(false)

// Output from all code snippets

+----+------------+------+-----------+-------+-------+-----------+

|Year|Country |Winner|Runners-Up |Third |Fourth |GoalsScored|

+----+------------+------+-----------+-------+-------+-----------+

|2010|South Africa|Spain |Netherlands|Germany|Uruguay|145 |

+----+------------+------+-----------+-------+-------+-----------+

Chapter 4 the Spark high-LeveL apiS

164

 Using Logical Operators for Multi-condition Filtering
So far we have shown how to filter dataset rows applying one condition. However, in

real life, very often we need more complex selection criteria. The power of the filter()

function can be enhanced by applying logical operators like AND, OR, and NOT, which

will allow you to concatenate multiple conditions. These logical operators can also be

represented as “&&”, “||”, and “!”. Once again, we are going to show you how to use them

with several examples:

// Using AND, "&&" logical operator

dfWC.select("Year","Country","Winner","Runners-Up","Third","Fourth",

"GoalsScored").filter(dfWC("Winner") === "Spain" and dfWC("Runners-Up") ===

"Netherlands").show(false)

// Output

+----+------------+------+-----------+-------+-------+-----------+

|Year|Country |Winner|Runners-Up |Third |Fourth |GoalsScored|

+----+------------+------+-----------+-------+-------+-----------+

|2010|South Africa|Spain |Netherlands|Germany|Uruguay|145 |

+----+------------+------+-----------+-------+-------+-----------+

// Using OR, "||" logical operator

dfWC.select("Year","Country","Winner","Runners-Up","Third","Fourth",

"GoalsScored").filter(dfWC("Winner") === "Spain" or dfWC("Runners-Up") ===

"Netherlands").show(false)

// Output

+----+------------+----------+-----------+-------+-------+-----------+

|Year|Country |Winner |Runners-Up |Third |Fourth |GoalsScored|

+----+------------+----------+-----------+-------+-------+-----------+

|1974|Germany |Germany FR|Netherlands|Poland |Brazil |97 |

|1978|Argentina |Argentina |Netherlands|Brazil |Italy |102 |

|2010|South Africa|Spain |Netherlands|Germany|Uruguay|145 |

+----+------------+----------+-----------+-------+-------+-----------+

It seems the Dutch are real experts in being the second one!

Chapter 4 the Spark high-LeveL apiS

165

One possible use of NOT or “!” could be something like the next one:

// Using NOT, "!" logical operator

dfWC.select("Year","Country","Winner","Runners-Up","Third","Fourth").filter

(not (dfWC("Winner") === "Italy" or dfWC("Runners-Up") === "Netherlands")).

show(false)

// Output

+----+-----------+----------+--------------+-----------+--------------+

|Year|Country |Winner |Runners-Up |Third |Fourth |

+----+-----------+----------+--------------+-----------+--------------+

|1930|Uruguay |Uruguay |Argentina |USA |Yugoslavia |

|1950|Brazil |Uruguay |Brazil |Sweden |Spain |

|1954|Switzerland|Germany FR|Hungary |Austria |Uruguay |

|1958|Sweden |Brazil |Sweden |France |Germany FR |

|1962|Chile |Brazil |Czechoslovakia|Chile |Yugoslavia |

|1966|England |England |Germany FR |Portugal |Soviet Union |

|1970|Mexico |Brazil |Italy |Germany FR |Uruguay |

|1986|Mexico |Argentina |Germany FR |France |Belgium |

|1990|Italy |Germany FR|Argentina |Italy |England |

|1994|USA |Brazil |Italy |Sweden |Bulgaria |

|1998|France |France |Brazil |Croatia |Netherlands |

|2002|Korea/Japan|Brazil |Germany |Turkey |Korea Republic|

|2014|Brazil |Germany |Argentina |Netherlands|Brazil |

 +----+-----------+----------+--------------+-----------+--------------+

 Manipulating Spark DataFrame Columns
When you will be working in real environments, you are very likely to manipulate the

original DataFrame, adding columns, deleting columns, and so on. Apache Spark

provides the withColumn() transformation function to manipulate Spark DataFrame

columns such as adding a new column, updating the value of a column, changing a

column data type, creating an inherited column from existing ones, etc.

The transformation performed with the withColumn() function can be applied

to all DataFrame rows or a set of them. As we have just mentioned, withColumn() is a

transformation function, and as we have already described, DataFrame transformations

return new DataFrames and are lazily evaluated.

Chapter 4 the Spark high-LeveL apiS

166

Let’s see how to take advantage of withColumn() with some examples, as usual. In

our first example, we are going to use the previous FIFA World Cup dataset, to add a

new calculated column reflecting an important missing metric, the fans attendance per

match played.

If you try to immediately apply withColumn() to add a new calculated column, you

are going to run into trouble. Why? Have a look at the data schema you got:

dfWC.printSchema()

// Output

root

 |-- Year: string (nullable = true)

 |-- Country: string (nullable = true)

 |-- Winner: string (nullable = true)

 |-- Runners-Up: string (nullable = true)

 |-- Third: string (nullable = true)

 |-- Fourth: string (nullable = true)

 |-- GoalsScored: string (nullable = true)

 |-- QualifiedTeams: string (nullable = true)

 |-- MatchesPlayed: string (nullable = true)

 |-- Attendance: string (nullable = true)

Do you see the problem? Yes, Spark identified all the columns as string. Therefore, if

you attempt to perform the operation at this stage, you will get the following errors:

// Adding a new column to DataFrame. Fans attendance per match played

import org.apache.spark.sql.functions.col

val dfWCExt=dfWC.withColumn("AttendancePerMatch", round(col("Attendance")/

col("MatchesPlayed"), 3))

dfWCExt.select("Attendance","MatchesPlayed","AttendancePerMatch").show(5)

// Output

+----------+-------------+------------------+

|Attendance|MatchesPlayed|AttendancePerMatch|

+----------+-------------+------------------+

| 590.549| 18| 32.808|

| 363.000| 17| 21.353|

| 375.700| 18| 20.872|

Chapter 4 the Spark high-LeveL apiS

167

| 1.045.246| 22| null|

| 768.607| 26| 29.562|

+----------+-------------+------------------+

Thus, the first step should be converting the columns of interest to a numeric data

type. However, if you try to directly convert some figures such as 1.045.246 to numeric,

you will also have problems, as they are saved in Metric System format. Therefore, it

could be preferable to remove “ . ” to avoid problems:

import org.apache.spark.sql.functions.regexp_replace

import org.apache.spark.sql.functions.col

import org.apache.spark.sql.types.IntegerType

val dfWC2=dfWC.withColumn("Attendance", regexp_replace($"Attendance",

"\\.", ""))

val dfWC3=dfWC2.withColumn("GoalsScored", col("GoalsScored").

cast(IntegerType))

.withColumn("QualifiedTeams", col("QualifiedTeams").cast(IntegerType))

.withColumn("MatchesPlayed", col("MatchesPlayed").cast(IntegerType))

.withColumn("Attendance", col("Attendance").cast(IntegerType))

dfWC3.printSchema()

// Output

root

 |-- Year: string (nullable = true)

 |-- Country: string (nullable = true)

 |-- Winner: string (nullable = true)

 |-- Runners-Up: string (nullable = true)

 |-- Third: string (nullable = true)

 |-- Fourth: string (nullable = true)

 |-- GoalsScored: integer (nullable = true)

 |-- QualifiedTeams: integer (nullable = true)

 |-- MatchesPlayed: integer (nullable = true)

 |-- Attendance: integer (nullable = true)

Chapter 4 the Spark high-LeveL apiS

168

Now, we can accomplish our goal of adding a new calculated column:

val dfWCExt=dfWC3.withColumn("AttendancePerMatch", round(col("Attendance").

cast(IntegerType)/col("MatchesPlayed").cast(IntegerType), 3))

dfWCExt.select("Attendance","MatchesPlayed","AttendancePerMatch").show(5)

// Output

+----------+-------------+------------------+

|Attendance|MatchesPlayed|AttendancePerMatch|

+----------+-------------+------------------+

| 590549| 18| 32808.278|

| 363000| 17| 21352.941|

| 375700| 18| 20872.222|

| 1045246| 22| 47511.182|

| 768607| 26| 29561.808|

+----------+-------------+------------------+

In the preceding example, you have already used a good bunch of the withColumn()

use cases.

 Renaming DataFrame Columns
Apache Spark provides the withColumnRenamed() transformation function to change

DataFrame column names; it can be used to rename a single column or multiple ones

at the same time. This function can also be used to rename nested StructType schemas.

The withColumnRenamed() function takes two parameters: the current name of the

DataFrame column we would like to change and the new name we would like to give to

that column. As withColumnRenamed() is a transformation, it returns a DataFrame.

Let’s see how it works with a practical example. The next code snippet renames one

of the dfWCExt columns from AttendancePerMatch to AxMatch:

val dfRenamed = dfWCExt.withColumnRenamed("AttendancePerMatch","AxMatch")

dfRenamed.select("Attendance", "MatchesPlayed","AxMatch").show(5)

// Output

+----------+-------------+---------+

|Attendance|MatchesPlayed| AxMatch|

+----------+-------------+---------+

| 590549| 18|32808.278|

Chapter 4 the Spark high-LeveL apiS

169

| 363000| 17|21352.941|

| 375700| 18|20872.222|

| 1045246| 22|47511.182|

| 768607| 26|29561.808|

+----------+-------------+---------+

Several columns can be renamed at once joining several calls to

withColumnRenamed() as shown next:

val dfRenamed2 = dfRenamed

.withColumnRenamed("Attendance","Att")

.withColumnRenamed("AxMatch","AttendancexMatch")

dfRenamed2.select("Att", "MatchesPlayed","AttendancexMatch").show(5)

// Output

+-------+-------------+----------------+

| Att|MatchesPlayed|AttendancexMatch|

+-------+-------------+----------------+

| 590549| 18| 32808.278|

| 363000| 17| 21352.941|

| 375700| 18| 20872.222|

|1045246| 22| 47511.182|

| 768607| 26| 29561.808|

+-------+-------------+----------------+

 Dropping DataFrame Columns
Apache Spark provides the drop() function to drop DataFrame columns. The drop()

function can be used to remove one column or several at once.

Spark drop() can be used by employing three different syntaxes:

• Deleting a single column: dataframe.drop(‘column name’)

• Deleting multiple columns: dataframe.drop(*(‘column 1’, ‘column 2’,

‘column n’))

• Deleting all columns of a dataframe: dataframe.drop(*list_of_

column names)

Chapter 4 the Spark high-LeveL apiS

170

Now we are going to see how to use them with several examples continuing with the

dataframes we created in the previous sections.

Let’s start by droping one of the columns (AttendancexMatch) added before:

val dfFropOne = dfRenamed2.drop("AttendancexMatch")

dfFropOne.show(5)

// Output

+----+-----------+----------+--------------+-------+----------+-----------+

--------------+-------------+-------+

|Year| Country| Winner| Runners-Up| Third| Fourth|GoalsScored|

QualifiedTeams|MatchesPlayed| Att|

+----+-----------+----------+--------------+-------+----------+-----------+

--------------+-------------+-------+

|1930| Uruguay| Uruguay| Argentina| USA|Yugoslavia| 70|

 13| 18| 590549|

|1934| Italy| Italy|Czechoslovakia|Germany| Austria| 70|

 16| 17| 363000|

|1938| France| Italy| Hungary| Brazil| Sweden| 84|

 15| 18| 375700|

|1950| Brazil| Uruguay| Brazil| Sweden| Spain| 88|

 13| 22|1045246|

|1954|Switzerland|Germany FR| Hungary|Austria| Uruguay| 140|

 16| 26| 768607|

+----+-----------+----------+--------------+-------+----------+-----------+

--------------+-------------+-------+

After that we are going to drop columns “MatchesPlayed” and “AttendancexMatch”:

val dfFropTwo = dfRenamed2.drop("MatchesPlayed","AttendancexMatch")

dfFropTwo.show(5)

// Output

+----+-----------+----------+--------------+-------+----------+-----------+

--------------+-------+

|Year| Country| Winner| Runners-Up| Third| Fourth|GoalsScored|

QualifiedTeams| Att|

+----+-----------+----------+--------------+-------+----------+-----------+

--------------+-------+

Chapter 4 the Spark high-LeveL apiS

171

|1930| Uruguay| Uruguay| Argentina| USA|Yugoslavia| 70|

 13| 590549|

|1934| Italy| Italy|Czechoslovakia|Germany| Austria| 70|

 16| 363000|

|1938| France| Italy| Hungary| Brazil| Sweden| 84|

 15| 375700|

|1950| Brazil| Uruguay| Brazil| Sweden| Spain| 88|

 13|1045246|

|1954|Switzerland|Germany FR| Hungary|Austria| Uruguay| 140|

 16| 768607|

+----+-----------+----------+--------------+-------+----------+-----------+

--------------+-------+

The same result can be obtained using PySpark code:

dfFropTwo = dfRenamed2.drop(*("MatchesPlayed","AttendancexMatch"))

dfFropTwo.show(5)

Output

+----+-----------+----------+--------------+-------+----------+-----------+

--------------+-------+

|Year| Country| Winner| Runners-Up| Third| Fourth|GoalsScored|

QualifiedTeams| Att|

+----+-----------+----------+--------------+-------+----------+-----------+

--------------+-------+

|1930| Uruguay| Uruguay| Argentina| USA|Yugoslavia| 70|

 13| 590549|

|1934| Italy| Italy|Czechoslovakia|Germany| Austria| 70|

 16| 363000|

|1938| France| Italy| Hungary| Brazil| Sweden| 84|

 15| 375700|

|1950| Brazil| Uruguay| Brazil| Sweden| Spain| 88|

 13|1045246|

|1954|Switzerland|Germany FR| Hungary|Austria| Uruguay| 140|

 16| 768607|

+----+-----------+----------+--------------+-------+----------+-----------+

--------------+-------+

Chapter 4 the Spark high-LeveL apiS

172

You can delete all the DataFrame columns at once using the following Scala code

snippet:

val allColumnsList = dfRenamed2.columns

val dfFropAll = dfRenamed2.drop(allColumnsList:_*)

dfFropAll.show(5)

// Output

++

||

++

||

++

And the same result is obtained using PySpark:

allColumnsList = dfRenamed2.columns

dfFropAll = dfRenamed2.drop(*allColumnsList)

dfFropAll.show(2)

Output

++

||

++

||

||

++

 Creating a New Dataframe Column Dependent
on Another Column
Spark SQL “case when” and “when otherwise” permit replicating the SQL CASE

statement in Spark.

Consider the following dataset:

import org.apache.spark.sql.functions.{when, _}

import spark.sqlContext.implicits._

val p = List(("Juan ","Bravo",67,"M",65000),

 ("Miguel ","Rosales",40,"M",87000),

Chapter 4 the Spark high-LeveL apiS

173

 ("Roberto ","Morales",7,"M",0),

 ("Maria ","Gomez",12,"F",0),

 ("Vanesa","Lopez",25,"F",72000))

val c = Seq("name","surname","age","gender","salary")

val df = spark.createDataFrame(p).toDF(c:_*)

df.show(5)

// Output

+--------+-------+---+------+------+

| name|surname|age|gender|salary|

+--------+-------+---+------+------+

| Juan | Bravo| 67| M| 65000|

| Miguel |Rosales| 40| M| 87000|

|Roberto |Morales| 7| M| 0|

| Maria | Gomez| 12| F| 0|

| Vanesa| Lopez| 25| F| 72000|

+--------+-------+---+------+------+

Now we are going to see how to implement when() and otherwise() in Scala:

val df2 = df

 .withColumn("stage", when(col("age") < 10,"Child")

 .when(col("age") >= 10 && col("age") < 18,"Teenager")

 .otherwise("Adult"))

df2.show(5)

// Output

+--------+-------+---+------+------+--------+

| name|surname|age|gender|salary| stage|

+--------+-------+---+------+------+--------+

| Juan | Bravo| 67| M| 65000| Adult|

| Miguel |Rosales| 40| M| 87000| Adult|

|Roberto |Morales| 7| M| 0| Child|

| Maria | Gomez| 12| F| 0|Teenager|

| Vanesa| Lopez| 25| F| 72000| Adult|

+--------+-------+---+------+------+--------+

Chapter 4 the Spark high-LeveL apiS

174

The when() clause can also be used as part of a SQL select statement:

val df3 = df.select(col("*"),

 expr("case when age < '10' then 'Child' " +

 "when age >= '10' and age <= '18' then 'Teenager' "

 + "else 'Adult' end").alias("stage"))

df3.show()

// Output

+--------+-------+---+------+------+--------+

| name|surname|age|gender|salary| stage|

+--------+-------+---+------+------+--------+

| Juan | Bravo| 67| M| 65000| Adult|

| Miguel |Rosales| 40| M| 87000| Adult|

|Roberto |Morales| 7| M| 0| Child|

| Maria | Gomez| 12| F| 0|Teenager|

| Vanesa| Lopez| 25| F| 72000| Adult|

+--------+-------+---+------+------+--------+

Here’s using the when() clause with null values:

val personas = sc.parallelize(Seq(

 ("Juan ","Bravo",67,"M",new Integer(65000)),

 ("Miguel ","Rosales",40,"M",new Integer(87000)),

 ("Roberto ","Morales",7,"M",null.asInstanceOf[Integer]),

 ("Maria ","Gomez",12,"F",null.asInstanceOf[Integer]),

 ("Vanesa","Lopez",25,"F",new Integer(32000)))

)

val dfp = personas.toDF("name","surname","age","gender","salary")

// ppower --> purchasing power

dfp.withColumn("ppower", when(col("salary") < 40000,"Low")

 .when(col("salary") >= 40000 && col("Salary") < 70000,"Medium")

 .when(col("salary").isNull ,"")

 .otherwise("High")).show()

// Output

Chapter 4 the Spark high-LeveL apiS

175

+--------+-------+---+------+------+------+

| name|surname|age|gender|salary|ppower|

+--------+-------+---+------+------+------+

| Juan | Bravo| 67| M| 65000|Medium|

| Miguel |Rosales| 40| M| 87000| High|

|Roberto |Morales| 7| M| null| |

| Maria | Gomez| 12| F| null| |

| Vanesa| Lopez| 25| F| 32000| Low|

+--------+-------+---+------+------+------+

 User-Defined Functions (UDFs)
User-defined functions are a Spark feature designed to help users extend the system’s

built-in functionalities by writing custom functions.

In this section we are going to use a UDF to categorize the previous personas

dataframe between adults and not adults. To create a UDF, the first step is to write a

function. In Scala, this kind of functions do not include the return statement, can receive

multiple parameters, and do not accept null values. Let’s code a simple function that

takes an integer value and returns a string, classifying each individual of our dataset

between “Adult” or “No adult” depending on their age:

def isAdult= (age: Integer) => {

 if(age >= 18){

 "Adult"

 }

 else{

 "No adult"

 }

}

The isAdult() function is ready to be used; however, it needs to be registered

before it is called. After registering a UDF on the driver node, Spark transfers it over to

all executor processes, making it available to all worker machines. In the following we

proceed to register the isAdult() function:

val isAdultUDF = udf(isAdult)

Chapter 4 the Spark high-LeveL apiS

176

Now that our UDF is registered, we can use it with our personas dataframe as a

normal SQL function:

val finalDF=df.withColumn("is_adult",isAdultUDF(col("age")))

finalDF.show()

// Output

+--------+-------+---+------+------+--------+

| name|surname|age|gender|salary|is_adult|

+--------+-------+---+------+------+--------+

| Juan | Bravo| 67| M| 65000| Adult|

| Miguel |Rosales| 40| M| 87000| Adult|

|Roberto |Morales| 7| M| 0|No adult|

| Maria | Gomez| 12| F| 0|No adult|

| Vanesa| Lopez| 25| F| 72000| Adult|

+--------+-------+---+------+------+--------+

 Merging DataFrames with Union and UnionByName
Very often in real life, you will have a set of data files that you would like to merge into

a single DataFrame. A typical example is when you receive several files containing

time-series data. In this case, all the files you receive will have the same data structure.

In this scenario, the Spark union() method can be used to merge several DataFrames

with the same schema. The union() method has an important limitation. It works by

combining the DataFrames by position. This means both DataFrames’ columns have to

be in the same order; if they are not, the resultant DataFrame will not be correct. If your

dataframes do not have the same structure, union() returns an error.

Let’s see how to use the union() function with a practical example in which we are

going to use two files containing production of crude oil in thousands of barrels:

val dfCOP3=spark.read.option("header", "true").csv("file:///Users/

aantolinez/Downloads/Crude_Oil_Production_3.csv")

dfCOP3.show(5)

// Output

Chapter 4 the Spark high-LeveL apiS

177

+----+------+------+------+------+------+------+------+------+------+

------+------+------+

|Year| Jan| Feb| Mar| Apr| May| Jun| Jul| Aug| Sep|

 Oct| Nov| Dec|

+----+------+------+------+------+------+------+------+------+------+

------+------+------+

|2010|167529|155496|170976|161769|167427|161385|164234|168867|168473|

174547|167272|173831|

|2011|170393|151354|174158|166858|174363|167673|168635|175618|168411|

182977|181157|189487|

|2012|191472|181783|196138|189601|197456|188262|199368|196867|197942|

216057|212472|220282|

|2013|219601|200383|223683|221242|227139|218355|233210|233599|235177|

240600|237597|245937|

|2014|250430|228396|257225|255822|268025|262291|274273|276909|272623|

287256|279821|296518|

+----+------+------+------+------+------+------+------+------+------+

------+------+------+

val dfCOP4=spark.read.option("header", "true").csv("file:///Users/

aantolinez/Downloads/Crude_Oil_Production_4.csv")

dfCOP4.show(5)

// Output

+----+------+------+------+------+------+------+------+------+------+

------+------+------+

|Year| Jan| Feb| Mar| Apr| May| Jun| Jul| Aug| Sep|

 Oct| Nov| Dec|

+----+------+------+------+------+------+------+------+------+------+

------+------+------+

|2015|290891|266154|297091|289755|293711|280734|292807|291702|284406|

291419|279982|287533|

|2016|285262|262902|282132|266219|273875|260284|268526|269386|256317|

272918|267097|273288|

|2017|275117|255081|284146|273041|284727|273321|286657|286759|285499|

299726|302564|309486|

Chapter 4 the Spark high-LeveL apiS

178

|2018|310032|287870|324467|314996|323491|319216|337814|353154|343298|

356767|356583|370284|

|2019|367924|326845|369292|364458|376763|366546|368965|387073|377710|

397094|390010|402314|

+----+------+------+------+------+------+------+------+------+------+

------+------+------+

Merging DataFrames with Duplicate Values

Unlike other SQL functions, Spark union() does not drop duplicate values after

combining the DataFrames. If you do not want to have duplicate values in your final

DataFrame, you can remove them after merging the DataFrames using the distinct()

function. The distinct() function filters duplicate values. Next, there is an example of how

to remove duplicate records.

In this example, we would like to merge dfCOP5 and dfCOP4 DataFrames. As you

can see in the following, both dfCOP5 and dfCOP4 DataFrames include records of the

year 2015, therefore resulting in duplicate 2015 rows in the combined DataFrame:

// dfCOP5 DataFrame including Year 2015 records

val dfCOP5=spark.read.option("header", "true").csv("file:///Users/

aantolinez/Downloads/Crude_Oil_Production_5.csv")

dfCOP5.show(10)

// Output

+----+------+------+------+------+------+------+------+------+------+

------+------+------+

|Year| Jan| Feb| Mar| Apr| May| Jun| Jul| Aug| Sep|

 Oct| Nov| Dec|

+----+------+------+------+------+------+------+------+------+------+

------+------+------+

|2010|167529|155496|170976|161769|167427|161385|164234|168867|168473|

174547|167272|173831|

|2011|170393|151354|174158|166858|174363|167673|168635|175618|168411|

182977|181157|189487|

|2012|191472|181783|196138|189601|197456|188262|199368|196867|197942|

216057|212472|220282|

|2013|219601|200383|223683|221242|227139|218355|233210|233599|235177|

240600|237597|245937|

Chapter 4 the Spark high-LeveL apiS

179

|2014|250430|228396|257225|255822|268025|262291|274273|276909|272623|

287256|279821|296518|

|2015|290891|266154|297091|289755|293711|280734|292807|291702|284406|

291419|279982|287533|

+----+------+------+------+------+------+------+------+------+------+

------+------+------+

To produce a clear DataFrame, we can use the following code snippet. You can see in

the following only one 2015 row is preserved:

val cleanDf = dfCOP4.union(dfCOP5).distinct()

cleanDf.show(false)

// Output

+----+------+------+------+------+------+------+------+------+------+

------+------+------+

|Year|Jan |Feb |Mar |Apr |May |Jun |Jul |Aug |Sep |

Oct |Nov |Dec |

+----+------+------+------+------+------+------+------+------+------+

------+------+------+

|2019|367924|326845|369292|364458|376763|366546|368965|387073|377710|

397094|390010|402314|

|2016|285262|262902|282132|266219|273875|260284|268526|269386|256317|

272918|267097|273288|

|2015|290891|266154|297091|289755|293711|280734|292807|291702|284406|

291419|279982|287533|

|2018|310032|287870|324467|314996|323491|319216|337814|353154|343298|

356767|356583|370284|

|2017|275117|255081|284146|273041|284727|273321|286657|286759|285499|

299726|302564|309486|

|2012|191472|181783|196138|189601|197456|188262|199368|196867|197942|

216057|212472|220282|

|2011|170393|151354|174158|166858|174363|167673|168635|175618|168411|

182977|181157|189487|

|2014|250430|228396|257225|255822|268025|262291|274273|276909|272623|

287256|279821|296518|

Chapter 4 the Spark high-LeveL apiS

180

|2010|167529|155496|170976|161769|167427|161385|164234|168867|168473|

174547|167272|173831|

|2013|219601|200383|223683|221242|227139|218355|233210|233599|235177|

240600|237597|245937|

+----+------+------+------+------+------+------+------+------+------+

------+------+------+

Another very useful Spark method when we want to merge DataFrames is

unionByName(). unionByName() permits the combination of several DataFrames by

column names instead of by their position; therefore, it is appropriate when DataFrames

have the same column names but in different positions.

The unionByName() function since Spark version 3 incorporates

allowMissingColumns. When allowMissingColumns is set to true, it allows merging

DataFrames when some columns are missing from one DataFrame.

In the following example, we merge DataFrame dfCOP1

val dfCOP1=spark.read.option("header", "true").csv("file:///Users/

aantolinez/Downloads/Crude_Oil_Production_1.csv")

dfCOP1.show(5)

// Output

+----+------+------+------+------+------+------+

|Year| Jan| Feb| Mar| Apr| May| Jun|

+----+------+------+------+------+------+------+

|2015|290891|266154|297091|289755|293711|280734|

|2016|285262|262902|282132|266219|273875|260284|

|2017|275117|255081|284146|273041|284727|273321|

|2018|310032|287870|324467|314996|323491|319216|

|2019|367924|326845|369292|364458|376763|366546|

+----+------+------+------+------+------+------+

with DataFrame dfCOP2:

val dfCOP2=spark.read.option("header", "true").csv("file:///Users/

aantolinez/Downloads/Crude_Oil_Production_2.csv")

dfCOP2.show(5)

// Output

Chapter 4 the Spark high-LeveL apiS

181

+----+------+------+------+------+------+------+

|Year| Jan| Feb| Mar| Apr| May| Jun|

+----+------+------+------+------+------+------+

|2015|290891|266154|297091|289755|293711|280734|

|2016|285262|262902|282132|266219|273875|260284|

|2017|275117|255081|284146|273041|284727|273321|

|2018|310032|287870|324467|314996|323491|319216|

|2019|367924|326845|369292|364458|376763|366546|

+----+------+------+------+------+------+------+

The dfCOP1 and dfCOP2 DataFrames only have the Year column in common:

// Using allowMissingColumns=true

val missingColumnsDf=dfCOP1.unionByName(dfCOP2, allowMissingColumns=true)

missingColumnsDf.show()

// Output

+----+------+------+------+------+------+------+------+------+------+

------+------+------+

|Year| Jan| Feb| Mar| Apr| May| Jun| Jul| Aug| Sep|

 Oct| Nov| Dec|

+----+------+------+------+------+------+------+------+------+------+

------+------+------+

|2015|290891|266154|297091|289755|293711|280734| null| null| null|

 null| null| null|

|2016|285262|262902|282132|266219|273875|260284| null| null| null|

 null| null| null|

|2017|275117|255081|284146|273041|284727|273321| null| null| null|

 null| null| null|

|2018|310032|287870|324467|314996|323491|319216| null| null| null|

 null| null| null|

|2019|367924|326845|369292|364458|376763|366546| null| null| null|

 null| null| null|

|2020|398420|372419|396693|357412|301105|313275| null| null| null|

 null| null| null|

|2015| null| null| null| null| null| null|292807|291702|284406|

291419|279982|287533|

Chapter 4 the Spark high-LeveL apiS

182

|2016| null| null| null| null| null| null|268526|269386|256317|

272918|267097|273288|

|2017| null| null| null| null| null| null|286657|286759|285499|

299726|302564|309486|

|2018| null| null| null| null| null| null|337814|353154|343298|

356767|356583|370284|

|2019| null| null| null| null| null| null|368965|387073|377710|

397094|390010|402314|

|2020| null| null| null| null| null| null|341184|327875|327623|

324180|335867|346223|

+----+------+------+------+------+------+------+------+------+------+

------+------+------+

Spark offers another option to merge DataFrames called unionAll(); however, it is

deprecated since Spark 2 in favor of union().

Wrapping up, it is important to underline that union() and unionByName() merge

DataFrames vertically on top of each other.

In the next section, we are going to see another way of joining DataFrames.

 Joining DataFrames with Join
In the last section, you saw how to glue DataFrames vertically, stacking up one over the

other. In this section you are going to see another way of combining DataFrames, but this

time horizontally, one beside the other.

Apache Spark provides the join() method to join DataFrames. Though Spark

DataFrame join would probably occupy a complete book, we are going to limit its scope

to the five most widely used join types: inner, outer, left, right, and anti joins.

The Spark DataFrame INNER join is the most popular. INNER join combines

DataFrames including only the common elements to all DataFrames involved.

As usual, let’s see how INNER join works with a practical example, and for that, the

first step is to create a couple of DataFrames to work with. The first one contains the

attributes of users from different nationalities including a field identifying the ISO 3166

country code of their country:

Chapter 4 the Spark high-LeveL apiS

183

val dfUByL=spark.read.option("header", "true").csv("file:///Users/

aantolinez/Downloads/User_by_language.csv")

// Output

+---------+--------+------+--------+-----------+------+

|firstName|lastName|gender|language|ISO3166Code|salary|

+---------+--------+------+--------+-----------+------+

| Liselda| Rojas|Female| Spanish| 484| 62000|

| Leopoldo| Galán| Male| Spanish| 604| 47000|

| William| Adams| Male| English| 826| 99000|

| James| Allen| Male| English| 124| 55000|

| Andrea| López|Female| Spanish| 724| 95000|

+---------+--------+------+--------+-----------+------+

The second one includes the names of different countries together with their ISO

3166 country codes:

val dfCCodes=spark.read.option("header", "true").csv("file:///Users/

aantolinez/Downloads/ISO_3166_country_codes.csv")

// Output

+------------+--------------+

| ISO3166Code| CountryName|

+------------+--------------+

| 484| Mexico|

| 826|United Kingdom|

| 250| France|

| 124| Canada|

| 724| Spain|

+------------+--------------+

Let’s now use an INNER join to join the preceding two DataFrames on the

ISO3166Code column:

dfUByL.join(dfCCodes, dfUByL("ISO3166Code") === dfCCodes("ISO3166Code"),

"inner").show()

Chapter 4 the Spark high-LeveL apiS

184

// Output

+---------+---------+------+--------+-----------+------+-----------+--------------+

|firstName| lastName|gender|language|ISO3166Code|salary|ISO3166Code| CountryName|

+---------+---------+------+--------+-----------+------+-----------+--------------+

| Liselda| Rojas|Female| Spanish| 484| 62000| 484| Mexico|

| Leopoldo| Galán| Male| Spanish| 604| 47000| 604| Peru|

| William| Adams| Male| English| 826| 99000| 826|United Kingdom|

| James| Allen| Male| English| 124| 55000| 124| Canada|

| Andrea| López|Female| Spanish| 724| 95000| 724| Spain|

| Sophia|Rochefort|Female| French| 250| 49000| 250| France|

| Ben| Müller|Female| German| 276| 47000| 276| Germany|

+---------+---------+------+--------+-----------+------+-----------+--------------+

Do you see something in the preceding output? Yes, the join column is duplicated.

This situation will put you into trouble if you try to work with the final DataFrame, as

duplicate columns will create ambiguity. Therefore, it is very likely you will receive a

message similar to this one: “org.apache.spark.sql.AnalysisException: Reference

'ISO3166Code' is ambiguous, could be: ISO3166Code, ISO3166Code.”

One way to avoid this kind of problem is using a temporary view and selecting just

the fields you would like to have. Let’s repeat the previous example, but this time using

the Spark function createOrReplaceTempView() to create a temporary view:

// Create a temporary view

dfUByL.createOrReplaceTempView("UByL")

dfCCodes.createOrReplaceTempView("CCodes")

// Now you can run a SQL query as you would do in a RDBMS

val cleanDf=spark.sql("SELECT u.*, c.CountryName FROM UByL u INNER JOIN

CCodes c ON u.ISO3166Code == c.ISO3166Code")

cleanDf.show(5)

// Output

+---------+--------+------+--------+-----------+------+--------------+

|firstName|lastName|gender|language|ISO3166Code|salary| CountryName|

+---------+--------+------+--------+-----------+------+--------------+

| Liselda| Rojas|Female| Spanish| 484| 62000| Mexico|

| Leopoldo| Galán| Male| Spanish| 604| 47000| Peru|

| William| Adams| Male| English| 826| 99000|United Kingdom|

Chapter 4 the Spark high-LeveL apiS

185

| James| Allen| Male| English| 124| 55000| Canada|

| Andrea| López|Female| Spanish| 724| 95000| Spain|

+---------+--------+------+--------+-----------+------+--------------+

On the other hand, a fullouter, outer, or full join collects all rows from both

DataFrames and adds a null value for those records that do not have a match in both

DataFrames. Once more, we are going to show you how to use this kind of join with a

practical example using the previous DataFrames. Please notice that the next three code

snippets return exactly the same outcome:

// Fullouter, Full and Outer join

dfUByL.join(dfCCodes, dfUByL("ISO3166Code") === dfCCodes("ISO3166Code"),

"fullouter").show()

dfUByL.join(dfCCodes, dfUByL("ISO3166Code") === dfCCodes("ISO3166Code"),

"full").show()

dfUByL.join(dfCCodes, dfUByL("ISO3166Code") === dfCCodes("ISO3166Code"),

"outer").show()

// Output

+---------+---------+------+--------+-----------+------+-----------+--------------+

|firstName| lastName|gender|language|ISO3166Code|salary|ISO3166Code| CountryName|

+---------+---------+------+--------+-----------+------+-----------+--------------+

| James| Allen| Male| English| 124| 55000| 124| Canada|

| Agnete| Jensen|Female| Danish| 208| 80000| null| null|

| Sophia|Rochefort|Female| French| 250| 49000| 250| France|

| Ben| Müller|Female| German| 276| 47000| 276| Germany|

| Amelie| Hoffmann|Female| German| 40| 45000| null| null|

| Liselda| Rojas|Female| Spanish| 484| 62000| 484| Mexico|

| Leopoldo| Galán| Male| Spanish| 604| 47000| 604| Peru|

| Andrea| López|Female| Spanish| 724| 95000| 724| Spain|

| William| Adams| Male| English| 826| 99000| 826|United Kingdom|

+---------+---------+------+--------+-----------+------+-----------+--------------+

The Spark left outer join collects all the elements from the left DataFrame and only

those from the right one that have a matching on the left DataFrame. If there is no

matching element on the left DataFrame, no join takes place.

Chapter 4 the Spark high-LeveL apiS

186

Once again, the next code snippets will give you the same result:

dfUByL.join(dfCCodes, dfUByL("ISO3166Code") === dfCCodes("ISO3166Code"),

"left").show()

dfUByL.join(dfCCodes, dfUByL("ISO3166Code") === dfCCodes("ISO3166Code"),

"leftouter").show()

// Output

+---------+---------+------+--------+-----------+------+-----------+--------------+

|firstName| lastName|gender|language|ISO3166Code|salary|ISO3166Code| CountryName|

+---------+---------+------+--------+-----------+------+-----------+--------------+

| Liselda| Rojas|Female| Spanish| 484| 62000| 484| Mexico|

| Leopoldo| Galán| Male| Spanish| 604| 47000| 604| Peru|

| William| Adams| Male| English| 826| 99000| 826|United Kingdom|

| James| Allen| Male| English| 124| 55000| 124| Canada|

| Andrea| López|Female| Spanish| 724| 95000| 724| Spain|

| Sophia|Rochefort|Female| French| 250| 49000| 250| France|

| Ben| Müller|Female| German| 276| 47000| 276| Germany|

| Agnete| Jensen|Female| Danish| 208| 80000| null| null|

| Amelie| Hoffmann|Female| German| 40| 45000| null| null|

+---------+---------+------+--------+-----------+------+-----------+--------------+

The Spark right outer or right join performs the left join symmetrical operation. In

this case, all the elements from the right DataFrame are collected, and a null value is

added where no matching is found on the left one. Next is an example, and again, both

lines of code produce the same outcome:

dfUByL.join(dfCCodes, dfUByL("ISO3166Code") === dfCCodes("ISO3166Code"),

"right").show()

dfUByL.join(dfCCodes, dfUByL("ISO3166Code") === dfCCodes("ISO3166Code"),

"rightouter").show()

// Output

+---------+---------+------+--------+-----------+------+-----------+--------------+

|firstName| lastName|gender|language|ISO3166Code|salary|ISO3166Code| CountryName|

+---------+---------+------+--------+-----------+------+-----------+--------------+

| Liselda| Rojas|Female| Spanish| 484| 62000| 484| Mexico|

| William| Adams| Male| English| 826| 99000| 826|United Kingdom|

Chapter 4 the Spark high-LeveL apiS

187

| Sophia|Rochefort|Female| French| 250| 49000| 250| France|

| James| Allen| Male| English| 124| 55000| 124| Canada|

| Andrea| López|Female| Spanish| 724| 95000| 724| Spain|

| Leopoldo| Galán| Male| Spanish| 604| 47000| 604| Peru|

| Ben| Müller|Female| German| 276| 47000| 276| Germany|

+---------+---------+------+--------+-----------+------+-----------+--------------+

Finally, the Spark anti join returns rows from the first DataFrame not having matches

in the second one. Here is one more example:

dfUByL.join(dfCCodes, dfUByL("ISO3166Code") === dfCCodes("ISO3166Code"),

"anti").show()

// Output

+---------+--------+------+--------+-----------+------+

|firstName|lastName|gender|language|ISO3166Code|salary|

+---------+--------+------+--------+-----------+------+

| Agnete| Jensen|Female| Danish| 208| 80000|

| Amelie|Hoffmann|Female| German| 40| 45000|

+---------+--------+------+--------+-----------+------+

Summarizing, in this section you have seen how to use the most typical Spark

joins. However, you have to bear something important in mind. Joins are wide

Spark transformations; therefore, they imply data shuffling across the nodes. Hence,

performance can be seriously affected if you use them without caution.

4.3 Spark Cache and Persist of Data
We have already mentioned in this book that one of Spark’s competitive advantages

is its data partitioning capability across multiple executors. Splitting large volumes

of information across the network poses important challenges such as bandwidth

saturation and network latency.

While using Spark you might need to use a dataset many times over a period of time;

therefore, fetching the same dataset once and again to the executors could be inefficient.

To overcome this obstacle, Spark provides two API calls called cache() and persist() to

store locally in the executors as many of the partitions as the memory permits. Therefore,

cache() and persist() are Spark methods intended for iterative and interactive

application performance improvement.

Chapter 4 the Spark high-LeveL apiS

188

Spark cache() and persist() are equivalent. In fact when persist() is called

without arguments, it internally calls cache(). However, persist() with the

StorageLevel argument offers additional storage optimization capabilities such

as whether data should be stored in memory or on disk and/or in a serialized or

unserialized way.

Now we are going to see with a practical example the impact the use of cache() can

have in Spark operation performance:

// We create a 10^9 DataFrame

val dfcache = spark.range(1, 1000000000).toDF("base").withColumn("square",

$"base" * $"base")

dfcache.cache() // Cache is called to create a data copy in memory

spark.time(dfcache.count()) // Cache is materialized only first execute

an action

Time taken: 57407 ms

Out[96]: res81: Long = 1000000000

spark.time(dfcache.count()) // This time count() takes advantage of the

cached data

Time taken: 2358 ms

Out[98]: res83: Long = 1000000000

If you look attentively at the preceding example, you can see that cache() is lazily

evaluated; it means that it is not materialized when it is called, but the first time it is

invoked. Thus, the first call to dfcache.count() does not take advantage of the cached

data; only the second call can profit from it. As you can see, the second dfcache.count()

executes 24.34 times faster.

Is it worth noticing that cache() persists in memory the partitioned data in

unserialized format. The cached data is localized in the node memory processing the

corresponding partition; therefore, if that node is lost in the next invocation to that

information, it would have to be recovered from the source. As the data will not be

serialized, it would take longer and perhaps produce network bottleneck.

To overcome the cache() restrictions, the DataFrame.persist() method was

introduced and accepts numerous types of storage levels via the 'storageLevel' [=]

value key and value pair.

Chapter 4 the Spark high-LeveL apiS

189

The most typical valid options for storageLevel are

• NONE: With no options, persist() calls cache() under the hood.

• DISK_ONLY: Data is stored on disk rather than in RAM. Since you are

persisting on disk, it is serialized in nature.

• MEMORY_ONLY: Stores data in RAM as deserialized Java objects.

Full data cache is not guaranteed as it cannot be fully accommodated

into memory and has no replication.

• MEMORY_ONLY_SER: Stores data as serialized Java objects.

Generally more space-efficient than deserialized objects, but more

read CPU-intensive.

• MEMORY_AND_DISK: Stores data as deserialized Java objects. If the

whole data does not fit in memory, store partitions not fitting in RAM

to disk.

• OFF_HEAP: It is an experimental storage level similar to MEMORY_

ONLY_SER, but storing the data in off-heap memory if off-heap

memory is enabled.

• MEMORY_AND_DISK_SER: Option Akin to MEMORY_ONLY_SER;

however, partitions not fitting in memory are streamed to disk.

• DISK_ONLY_2, DISK_ONLY_3, MEMORY_ONLY_2, MEMORY_AND_

DISK_2, MEMORY_AND_DISK_SER_2, MEMORY_ONLY_SER_2:

The same as the parent levels adding partition replication to two

cluster nodes.

Next, we are going to show you how to use persist() with a practical example:

import org.apache.spark.storage.StorageLevel

val dfpersist = spark.range(1, 1000000000).toDF("base").

withColumn("square", $"base" * $"base")

dfpersist.persist(StorageLevel.DISK_ONLY) // Serialize and cache

data on disk

spark.time(dfpersist.count()) // Materialize the cache

Time taken: 54762 ms

Out[107]: res90: Long = 999999999

Chapter 4 the Spark high-LeveL apiS

190

spark.time(dfpersist.count()) // Taking advantage of cached data

Time taken: 2045 ms

Out[108]: res91: Long = 999999999

Once again, you can see in the preceding example the operation performed on

persisted data is 26.8 times faster.

Additionally, tables and views derived from DataFrames can also be cached. Let’s

see again how it can be used with a practical example:

val dfWithQuery = spark.range(1, 1000000000).toDF("base").

withColumn("square", $"base" * $"base")

dfQuery.createOrReplaceTempView("TableWithQuery")

spark.sql("CACHE TABLE TableWithQuery")

spark.time(spark.sql("SELECT count(*) FROM TableWithQuery")).show()

Time taken: 2 ms

+---------+

| count(1)|

+---------+

|999999999|

+---------+

// Using already cached data

spark.time(spark.sql("SELECT count(*) FROM TableWithQuery")).show()

Time taken: 1 ms

+---------+

| count(1)|

+---------+

|999999999|

+---------+

 Unpersisting Cached Data
In a similar way, data not in use can be unpersisted to release space using unpersist(),

though Spark monitors the use your applications make of cache() and persist() and

releases persisted data when it is not used. Spark also uses the Least Recently Used

Chapter 4 the Spark high-LeveL apiS

191

(LRU) Page Replacement algorithm. Whenever a new block of data is addressed and not

present in memory, Spark replaces one of the existing blocks with a newly created one.

Let’s see how to use unpersist() taking advantage of the previous example:

val dfUnpersist = dfWithQuery.unpersist()

Out[5]: dfUnpersist: dfWithQuery.type = [base: bigint, square: bigint]

spark.time(dfUnpersist.count())

Time taken: 99 ms

Out[6]: res2: Long = 9999999

Summarizing, in this section you have seen the important performance

improvements you can get when using Spark caching techniques. In general, you

should cache your data when you expect to use it several times during a job, and the

storage level to use depends on the use case at hand. MEMORY_ONLY is CPU-efficient

and performance-optimized. MEMORY_ONLY_SER used together with a serialization

framework like Kyro is store-optimized and specially indicated when you have a

DataFrame with many elements. Storage types involving replication, like MEMORY_

ONLY_2, MEMORY_ONLY_2, and so on, are indicated if full fast recovery is required.

4.4 Summary
In this chapter we have explained what is called the Apache Spark high-level API. We

have reviewed the concept of DataFrames and the DataFrame attributes. We have talked

about the different methods available to create Spark DataFrames. Next, we explained

how DataFrames can be used to manipulate and analyze information. Finally, we went

through the options available to speed up data processing by caching data in memory.

In the next chapter, we are going to study another Spark high-level data structure named

datasets.

Chapter 4 the Spark high-LeveL apiS

193

CHAPTER 5

Spark Dataset API and
Adaptive Query Execution
In the Spark ecosystem, DataFrames and datasets are higher-level APIs that use

Spark RDDs under the hood. Spark developers mainly use DataFrames and datasets

because these data structures are the ones more efficiently using Spark storage and

query optimizers, hence achieving the best data processing performance. Therefore,

DataFrames and datasets are the best Spark tools in getting the best performance to

handle structured data. Spark DataFrames and datasets also allow technicians with a

RDBMS and SQL background to take advantage of Spark capabilities quicker.

5.1 What Are Spark Datasets?
According to the official Spark dataset documentation, datasets are “a strongly typed

collection of domain-specific objects that can be parallelized employing functional

or relational operations.” Datasets were introduced in Spark 1.6 to overcome some

dataframe limitations, and in Spark 2.0 both high-level APIs (the DataFrame and the

Dataset) were merged into a single one, the Dataset API. Therefore, DataFrames can be

thought of as datasets of type row or Dataset[Row].

Datasets combine RDD features like compile-time type safety and the capacity to

use lambda functions with dataframe features including SQL automatic optimization.

Datasets also incorporate compile-time safety, a feature only implemented in compiled

languages like Java or Scala but not available in interpreted languages like PySpark or

SparkR. That is why datasets are only available for Java and Scala.

© Alfonso Antolínez García 2023
A. Antolínez García, Hands-on Guide to Apache Spark 3, https://doi.org/10.1007/978-1-4842-9380-5_5

https://doi.org/10.1007/978-1-4842-9380-5_5
https://spark.apache.org/docs/latest/api/scala/org/apache/spark/sql/Dataset.html

194

5.2 Methods for Creating Spark Datasets
A dataset can be created following four different ways:

• Can be created from a sequence of elements

• Can be created from a sequence of case classes

• Can be created from a RDD

• Can be created from a DataFrame

A dataset can be created from a sequence of elements using the toDS() method as in

the following example:

val sequencia = Seq(0, 1, 2, 3, 4)

val sequenciaToDS = sequencia.toDS()

sequenciaToDS.show()

// Output

+-----+

|value|

+-----+

| 0|

| 1|

| 2|

| 3|

| 4|

+-----+

To create a dataset from a sequence of case classes using again the toDS() method,

we first need a case class. Let’s see how it works with a practical example. First, we create

a Scala case class named Personas:

case class Personas(Nombre: String, Primer_Apellido: String,

Segundo_Apellido: String, Edad: Int, Sexo:String)

Then we can create a sequence of data matching the Personas case class schema.

In this case we are going to use the data of some of the most famous Spanish writers of

all times:

Chapter 5 Spark DataSet apI anD aDaptIve Query exeCutIon

195

val personasSeq = Seq(

Personas("Miguel","de Cervantes","Saavedra",50,"M"),

Personas("Fancisco","Quevedo","Santibáñez Villegas",55,"M"),

Personas("Luis","de Góngora","y Argote",65,"M"))

After that we can obtain a dataset by applying the toDS() method to the personasSeq

sequence:

val personasDs = personasSeq.toDS()

personasDs.show()

// Output

+--------+---------------+-------------------+----+----+

| Nombre|Primer_Apellido| Segundo_Apellido|Edad|Sexo|

+--------+---------------+-------------------+----+----+

| Miguel| de Cervantes| Saavedra| 50| M|

|Fancisco| Quevedo|Santibáñez Villegas| 55| M|

| Luis| de Góngora| y Argote| 65| M|

+--------+---------------+-------------------+----+----+

Another way of creating a dataset is from a RDD. Again we are going to show how it

works with an example:

val myRdd = spark.sparkContext.parallelize(Seq(("Miguel de Cervantes",

1547),("Lope de Vega", 1562),("Fernando de Rojas",1470)))

val rddToDs = myRdd.toDS

.withColumnRenamed("_1","Nombre")

.withColumnRenamed("_2","Nacimiento")

rddToDs.show()

// Output

+-------------------+----------+

| Nombre|Nacimiento|

+-------------------+----------+

|Miguel de Cervantes| 1547|

| Lope de Vega| 1562|

| Fernando de Rojas| 1470|

+-------------------+----------+

Chapter 5 Spark DataSet apI anD aDaptIve Query exeCutIon

196

The fourth way of creating a dataset is from a DataFrame. In this case we are going

to use an external file to create a DataFrame and after that transform it into a dataset, as

you can see in the following code snippet:

case class Personas(Nombre: String, Primer_Apellido: String,

Segundo_Apellido: String, Edad: Int, Sexo:String)

val personas = spark.read.format("csv")

 .option("header", "true")

 .option("inferSchema", "true")

 .load("personas.csv")

 .as[Personas]

personas.show()

// Output

+--------+-----------------+-------------------+----+----+

| Nombre| Primer_Apellido| Segundo_Apellido|Edad|Sexo|

+--------+-----------------+-------------------+----+----+

| Miguel| de Cervantes| Saavedra| 50| M|

|Fancisco| Quevedo|Santibáñez Villegas| 55| M|

| Luis| de Góngora| y Argote| 65| M|

| Teresa|Sánchez de Cepeda| y Ahumada| 70| F|

+--------+-----------------+-------------------+----+----+

5.3 Adaptive Query Execution
With each release, Apache Spark has introduced new methods of improving performance

of data querying. Therefore, with Spark 1.x, the Catalyst Optimizer and Tungsten

Execution Engine were introduced; Spark 2.x incorporated the Cost-Based Optimizer;

and finally, with Spark 3.0 the new Adaptive Query Execution (AQE) has been added.

The Adaptive Query Execution (AQE) is, without a doubt, one of the most important

features introduced with Apache Spark 3.0. Before Spark 3.0, query execution plans were

monolithic; it means that before executing a query, Spark established an execution plan

and once the job execution began this plan was strictly followed independently of the

statistics and metrics collected at each job stage. In Figure 5-1 the process followed by

Spark 2.x to create and execute a query using the cost-based optimization framework is

depicted.

Chapter 5 Spark DataSet apI anD aDaptIve Query exeCutIon

197

Figure 5-1. Spark 2.x Cost-Based Optimizer (Source: Databricks)

Cost-based optimization tries to improve the quality of executing a SQL statement

by generating multiple execution plans employing execution rules and at the same time,

calculating the computing cost of each query. Cost-based optimization techniques can

improve decisions such as selecting the most efficient join type, selecting the correct

build side in a hash join, and so on.

The introduction of the Adaptive Query Execution permits the Spark SQL engine a

continuous update of the execution plan while running based on the statistics collected

at runtime. The AQE framework includes the following three major features:

• Data-dependent adaptive determination of the shuffle

partition number

• Runtime replanning of join strategies according to the most accurate

join relation size

• Optimization of unevenly distributed data joins at execution time

The Spark 3 Adaptive Query Execution (AQE) framework introduces the concepts of

materialization points and query stages. The AQE succinctly works as follows: Normally,

Spark processes run pipelined and in parallel; however, actions triggering shuffling and

broadcasting operations break that pipelining as each query stage must materialize

its intermediate results, and all running parallel processes have to materialize their

intermediate stages before the workflow can continue. These temporal interruptions

offer an occasion for query plan reoptimization.

When a query is released, the Adaptive Query Execution framework launches all

the so-called leaf stages or stages that do not depend on any other. As soon as these

stages finish their individual materializations, the AQE labels them as completed in

the physical query plan and subsequently updates the logical query plan metrics with

the fresh statistics collected from finished stages at runtime. Founded on updated

information, the AQE reruns the optimizer and the physical planner.

Chapter 5 Spark DataSet apI anD aDaptIve Query exeCutIon

198

With the now retrofitted and hopefully improved execution plan, the AQE framework

runs the query stages under those already materialized, repeating this run-reevaluate-

execute cycle until the entire query has been executed.

With the new Adaptive Query Execution framework, the SQL plan workflow looks

like the one shown in Figure 5-2.

Figure 5-2. Spark 3 Adaptive Query Execution framework SQL plan

5.4 Data-Dependent Adaptive Determination
of the Shuffle Partition Number

According to the Adaptive Query Execution official documentation, by default

Apache Spark sets to 200 the number of partitions to use for data shuffling in join and

aggregation operations. This base parameter is not necessarily the option at any time

because shuffle operations have a very important impact on Spark performance when

we are dealing with very large datasets as these operations require the rearrangement

of the information across the nodes of the cluster and movement of data through the

network.

In order to minimize the impact of data transfer, the allocation of the correct number

of partitions is key. On the other hand, the number of partitions is heavily dependent on

data volume, which in turn varies from stage to stage and operation to operation.

• If the number of allocated partitions is smaller than necessary, the

size of the information per partition could be too big to fit in memory.

Hence, writing it down to disk could be necessary, jeopardizing

performance.

Chapter 5 Spark DataSet apI anD aDaptIve Query exeCutIon

https://spark.apache.org/docs/latest/sql-performance-tuning.html

199

• In case the number of partitions is greater than required, it can

introduce additional bottlenecks:

• Firstly, the size of every partition could be very small, requiring a

large number of I/O operations to fetch the data blocks involved

in the shuffle operations.

• Secondly, too many operations can increase the number of jobs

Spark needs to handle, therefore creating additional overhead.

To tackle these problems, you can set your best estimation of the number of

partitions and let Spark dynamically adapt this number according to the statistics

collected between stages. Possible strategies to choose the best numPartitions can be

• Based on computer capacity available

• Based on the grounds of the amount of data to be processed

A graphical example of how the Adaptive Query Execution works is illustrated in

Figure 5-3.

Figure 5-3. Adaptive Query Execution (AQE)

Chapter 5 Spark DataSet apI anD aDaptIve Query exeCutIon

200

5.5 Runtime Replanning of Join Strategies
With the AQE enabled, when we want to perform join operations on tables, Spark can

determine the optimal join algorithm to use at runtime. Spark supports several join

strategies. Among them the broadcast hash join is usually the most performant one

when one of the sides of the join can fit in memory and it is smaller than the broadcast

threshold.

With the new AQE enabled, Spark can replan at runtime the join strategy according

to the information collected. As you can see in Figure 5-4, Spark develops an initial join

strategy based on the information available at the very beginning. After first computations

and based on data volumes and distribution, Spark is capable of adapting the join strategy

from an initial sort merge join to a broadcast hash join more suitable for the situation.

Figure 5-4. Dynamic join strategy adaptation

5.6 Optimization of Unevenly Distributed Data Joins
A skewed dataset is characterized by a plot frequency distribution not perfectly

symmetrical but skewed to the left or right side of the graph. Said another way, data

skew is associated with an uneven or nonuniform distribution of data among different

partitions in a cluster. In Figure 5-5 you can see a graphical representation of a real

positively skewed dataset.

Chapter 5 Spark DataSet apI anD aDaptIve Query exeCutIon

201

Figure 5-5. Positive skew

In real-life scenarios, you will often have to tackle the problem of non-ideal data

distributions. Severe data skewness can severely jeopardize Spark join performance

because for join operations, Spark has to place records of each key in its particular

partition. Therefore, if you want to join two dataframes by a specific key or column and

one of the keys has many more records than the others, its corresponding partition will

become much bigger than the others (or skewed); therefore, the time taken to process that

partition will be comparatively longer than the time consumed by others, consequently

causing job bottlenecks, poor CPU utilization, and/or out-of-memory problems.

The AQE automatically detects data skewness from shuffle statistics and divides the

bigger partitions into smaller ones that will be joined locally with their corresponding

counterparts.

For Spark, to take advantage of skew join optimization, both options

“spark.sql.adaptive.enabled” and “spark.sql.adaptive.skewJoin.enabled” have to be set

to true.

5.7 Enabling the Adaptive Query Execution (AQE)
The Adaptive Query Execution is disabled by default in Spark 3.0. In order to enable

it, you must set the spark.sql.adaptive.enabled configuration property to true.

However, advantages of the AQE can only be applied to not streaming queries or when

they include operations entailing data exchange such as joins, aggregates, or window

operators.

Chapter 5 Spark DataSet apI anD aDaptIve Query exeCutIon

202

5.8 Summary
Datasets are part of the so-called Spark high-level API together with DataFrames.

However, unlike the latter, they are only available with compiled programming languages,

such as Java and Scala. This attribute is both an advantage and disadvantage as those

programming languages’ learning curves have a more pronounced gradient than that

of Python, for example; hence, they are less commonly employed. Datasets also provide

security improvements as they are strongly typed data structures. After introducing the

concept of datasets, we focused on the Spark Adaptive Query Execution (AQE) as it is one

of the newest and more interesting features introduced in Spark 3.0. The AQE permits the

improvement of Spark query performance as it is able to automatically adapt query plans

based on statistical data collected at runtime. In the coming chapters, we have to switch

to another important Spark feature, which is data streaming.

Chapter 5 Spark DataSet apI anD aDaptIve Query exeCutIon

203

CHAPTER 6

Introduction to Apache
Spark Streaming
Spark Streaming was added to Apache Spark in 2013 as a scalable, fault-tolerant,

real- time streaming processing extension of the core Spark API. Spark Streaming natively

supports both batch and streaming workloads and uses micro-batching to ingest and

process streams of data passing the results to permanent storage or a dashboard for

online data analysis.

Spark Streaming incorporates a large ecosystem of data sources and data sinks.

Among the former we can include Apache Kafka, Apache Flume, Amazon Kinesis, and

TCP sockets as data streamers, and among the latter, we can include most of the RDBMS

and NoSQL databases such as MemSQL, PostgreSQL, and MySQL, including of course

file storage format such as Parquet or CSV.

6.1 Real-Time Analytics of Bound
and Unbound Data

Continuous streaming and real-time analytics are changing the way we consume

information nowadays. In fact, in the real world most of the information we produce and

consume is based on unbound or unconfined data. For example, our brain is processing

data and taking decisions as information is coming through in very definite time

windows.

In mathematics, unbounded means that a function is not confined or bounded.

Therefore, an unbounded set is a set that has no finite upper or lower limits. Examples of

unbounded sets could be (−∞,+∞), (5,+∞), etc. On the other hand, a set that has finite

values of upper and lower bounds is said to be bounded. That is why you would probably

hear that unbounded data is (theoretically) infinite.

© Alfonso Antolínez García 2023
A. Antolínez García, Hands-on Guide to Apache Spark 3, https://doi.org/10.1007/978-1-4842-9380-5_6

https://doi.org/10.1007/978-1-4842-9380-5_6

204

Data analytics is divided into batch and streaming processing. Traditionally, batch

data is associated with what is commonly known as bound data.

Bound data is steady, unchanging, with a known size, and within a defined

timeframe. Examples of this confined data are last year or last quarter sales data analysis,

historical stock market trades, and so on. On the other hand, unbound or unconfined

data is in motion (is not finished) and very often not in a perfect or expected sequence.

Spark Streaming works as follows: by receiving continuous data streams and dividing

them into micro-batches called Discretized Streams or DStreams, which are passed to

the Spark engine that generates batches of results.

A graphical depiction of continuous stream processing of batch streams of data to

provide real-time data analytics is shown in Figure 6-1.

Figure 6-1. Continuous stream processing enabling real-time analytics

6.2 Challenges of Stream Processing
As we analyze data using finite resources (finite number of CPUs, RAM, storage

hardware, etc.), we cannot expect to be able to accommodate it in finite resources.

Instead, we have to process it as a sequence of events received over a period of time with

limited computational resources.

While processing data streams, time introduces important challenges because there

is a time difference between the moment the information is produced and the moment it

is processed and analyzed.

Chapter 6 IntroduCtIon to apaChe Spark StreamIng

https://spark.apache.org/docs/1.0.1/api/scala/index.html#org.apache.spark.streaming.dstream.DStream

205

There are three important concepts when we deal with streaming data processing:

• Event time: It refers to the moment when the event was produced on

its producing device. This time reference can be established by the

event emitter (typically) or by the event receiver; either way, you have

to understand the additional complexity brought by operating in

different timezones, for example.

• Ingestion time: It is the time when an event flows into the streaming

process.

• Data processing time: In this case the frame of reference is the

computer in which data is being processed.

6.3 The Uncertainty Component of Data Streams
Another important aspect to consider when dealing with data streams is the uncertainty

over data throughput. In general, no assumptions can be made about the data cadence

arriving to the system; therefore, it is not possible to precisely foresee either the future

hardware resources needed or the order in the sequence of events.

Information coming from stream sources such as sensors, social networks, and so on

can suffer delays and interruptions due to numerous circumstances. In these particular

situations, one of the following can happen: Either the information is piled up, and it is

released as a kind of data avalanche as soon as the connection is restored. Or the data

is lost; hence, some gap in the sequence of events will appear. When something like

the preceding scenarios takes place, the system can be temporarily saturated by the

oversupply of data, causing processing delays or failures.

6.4 Apache Spark Streaming’s Execution Model
From inception, Apache Spark was conceived as an unified engine for batch and

streaming data processing aiming to provide some major features such as

• A rapid service restoration from failures

• Active identification of slow-running tasks, a.k.a. stragglers, and

actively dealing with them

Chapter 6 IntroduCtIon to apaChe Spark StreamIng

206

• Improved load evenness and computation resource utilization

• The capacity of consuming data streams from static datasets and

interactive SQL queries

• Built-in integration with other Spark modules like SQL, MLlib, etc.

Among the above-mentioned features, Spark’s capability to tackle slow-running

tasks or stragglers is worth mentioning. A straggler refers to a task within a stage that

takes exceptionally longer time to execute than other ones belonging to the same stage.

In terms of performance, it is always a good practice to keep an eye on stragglers as they

can frequently appear in a stage or disseminated across multiple stages.

The appearance of slow-running tasks even in a single stage can considerably delay

Spark jobs and produce a cascade effect damaging the overall performance of your

application.

6.5 Stream Processing Architectures
In this section we introduce two of the most typical real-time data processing

technological approaches, the so-called Lambda and Kappa architectures. Setting up a

proper and economically sustainable real-time processing architecture that best fits our

business needs is not something trivial.

Real-time data processing architectures are technological systems conceived to

efficiently manage the full real-time data life cycle: data intake, data processing, and

finally storage of huge amounts of data. They play a pivotal role in allowing modern

businesses to gain valuable insights from the information available. These architectures

together with data analytics techniques are the foundations of the modern data-driven

organizations that take advantage of data analysis to improve decision-making, achieve

competitive advantage and operational efficiency, and ultimately drive growth.

The Lambda and Kappa architectures are designed to cope with both batch

processing and real-time data processing.

 The Lambda Architecture
The Lambda architecture was developed by Nathan Marz, the creator of Apache Storm,

in 2011 as a scalable, fault-tolerant, and flexible architecture for massive real-time data

processing.

Chapter 6 IntroduCtIon to apaChe Spark StreamIng

207

The main characteristic of the Lambda architecture is that it incorporates two

separate lanes to process different kinds of workloads as can be seen in Figure 6-2.

The batch lane is intended to process large amounts of data and store the results in a

centralized warehouse or distributed file system such as Hadoop.

Figure 6-2. Lambda architecture for real-time stream and batch data processing

The real-time lane takes care of data as it arrives to the system, and as the batch lane,

it stores the result in a distributed data warehouse system.

The Lambda architecture has shown to satisfy many business use cases, and it is

currently in use by important corporations like Yahoo and Netflix.

The Lambda architecture is integrated by three main layers or lanes:

• Batch processing layer

• Real-time or speed layer

• Serving layer

In addition to these three main data processing lanes, some authors would add a

pre-layer for data intake:

• Data ingestion layer

Let’s succinctly review all of them.

Chapter 6 IntroduCtIon to apaChe Spark StreamIng

208

 Data Ingestion Layer

This lane is responsible for integrating on the fly the raw data coming from several data

sources. This information is supplied to the batch and speed lanes simultaneously.

 Batch Processing Layer

This lane is intended to efficiently process large amounts of information and to provide

a holistic view of the data. The batch layer is responsible for (a) integrating historical

consolidated data into the analytical process and (b) reprocessing previous results

such as retraining machine learning models. This layer oversees the full dataset, hence

producing more precise outcomes; however, results are delivered offline as it takes a

longer computation time.

 Real-Time or Speed Layer

This layer is intended for providing a low-latency and almost up-to-the-minute vision

of huge volumes of data streams complementing the batch layer with incremental

outcomes. Thanks to these incremental results, computation time is decreased. This

layer is responsible for real-time data processing and stores the results obtained in a

distributed storage (NoSQL databases or file systems).

 Serving Layer

This layer merges the results from the batch and real-time layers and constitutes the way

users use to interactively submit queries and receive the results online. This layer allows

users to seamlessly interact with full data being processed independently of whether it

is being processed on the batch or stream lane. This lane also provides the visualization

layer with up-to-the-minute information.

 Pros and Cons of the Lambda Architecture

The Lambda architecture meets many big data use cases, but at a high cost in terms of

redundancy and complexity. Therefore, it has pros and cons.

Chapter 6 IntroduCtIon to apaChe Spark StreamIng

209

Pros:

• Scalability: The Lambda architecture is suitable for horizontal

scalability meeting big data requirements.

• Fault tolerance against hardware failures.

• Flexibility handling both batch and streaming workloads.

Cons:

• Complexity: Due to its distributed nature and different technologies

being involved, this architecture is complex and redundant and could

be difficult to tune and maintain.

• Possible data discrepancies: As data is processed through parallel

lanes, processing failures can bring discrepant results from batch and

stream lanes.

 The Kappa Architecture
The Kappa architecture shown in Figure 6-3 was designed by Jay Kreps in 2014 to

confront some of the problems identified in the Lambda architecture and to avoid

maintaining two separate developments.

The Kappa architecture uses a single lane with two layers: stream processing and

serving for both batch and stream data processing workloads, hence treating every data

influx as streams of data. This architecture is simpler than Lambda as live stream data

intake, processing, and storage is performed by the stream processing layer while still

maintaining fast and efficient query capabilities.

Figure 6-3. Kappa architecture for real-time stream data processing

Chapter 6 IntroduCtIon to apaChe Spark StreamIng

210

The two layers of the Kappa architecture implement the following functionalities:

• Stream processing: This module is responsible for live data ingestion

and permanent raw data storage.

• Serving: The serving layer is responsible for the provision of the

necessary tools for data querying.

 Pros and Cons of the Kappa Architecture

Here we introduce some of the pros and cons of the Kappa architecture.

Pros:

• Simplified design, implementation, debugging, and maintenance of

the pipeline

• Facilitates pipeline migration and reorganization taking advantage of

the single-lane pipeline

Cons:

• Complexity: Though it is simpler than the Lambda architecture, the

overall infrastructure is still complex.

• Scalability issues: The use of a single streaming lane processing

unbounded streams of data can provoke bottlenecks when it comes

time to use the great volume of results processed.

6.6 Spark Streaming Architecture:
Discretized Streams

The key Spark abstraction for streaming processing is the so-called Apache Spark

Discretized Stream, commonly known as Spark DStream. DStreams, as we saw at the

beginning of the chapter, are formed by a stream of data divided into micro-batches of

less than a second. To create these micro-batches, Spark Streaming receivers can ingest

data in parallel and store it in Spark workers’ memory before releasing it to be processed.

In micro-batching, the Spark worker nodes typically wait for a defined period of time—

called the batch cycle—or until the batch size gets to the upper limit before executing the

batch job.

Chapter 6 IntroduCtIon to apaChe Spark StreamIng

211

For example, if a streaming job is configured with a batch cycle of 1 s and a batch

size limit of 128 items read, even if the number of items read is less than 128 in a second,

the job will start anyway. On the other hand, if the receivers sustain a high throughput

and the number of items received is higher than 128 in less than 1 s, the job would start

without waiting for the batch cycle to complete.

DStream is internally built on top of a series of unbounded Spark RDDs; therefore,

transformations and actions executed on DStreams are in fact RDD operations. Each

RDD contains only data from a certain slot of time as shown in Figure 6-4.

Figure 6-4. Spark DStream as a succession of micro-batches (RDDs)

The use of RDDs under the hood to manipulate data facilitates the use of a common

API both for batch and streaming processing. At the same time, this architecture permits

the use of any third-party library available to process Spark data streams.

Spark implements streaming load balancing and a faster fault recovery by

dynamically assigning processing tasks to the workers available.

Thus, a Discretized Stream (DStream) is in fact a continuous sequence of RDDs of

the same type simulating a continuous flow of data and bringing all the RDD advantages

in terms of speed and safety to near-real-time stream data processing. However, the

DStream API does not offer the complete set of transformations compared with the

Apache Spark RDD (low-level API).

6.7 Spark Streaming Sources and Receivers
In Spark Streaming, input data streams are DStreams symbolizing the input point of

incoming information and are the way to integrate data from external data sources.

Every input DStream (except file stream) is associated with a Receiver object, and it

acts as a buffer between data sources and Spark workers’ memory where data is piled up

in micro-batches before it is processed.

Chapter 6 IntroduCtIon to apaChe Spark StreamIng

https://spark.apache.org/docs/latest/rdd-programming-guide.html

212

There are two built-in streaming sources in Spark:

• Basic input sources

• Advanced input sources

 Basic Input Sources
Basic sources are those natively built in the StreamingContext API, for example, TCP

socket connections and file system sources. When a stream of data is implemented

through a socket connection, Spark listens to the specified TCP/IP address and port

creating input Discretized Streams (DStreams) from the text data received over that TCP

socket connection. Socket streams are receiver-based connections; hence, they require

the implementation of a receiver. Therefore, when implementing an input DStream based

on a socket receiver, enough resources (CPU cores) must be allocated to receive data and

to process it. Thus, when running receiver-based streams in local mode, either “local[*]”

or “local[n]” (with n > number of receivers) has to be implemented as the master URL. For

the same reason, if receiver-based streaming jobs are run in cluster mode, the number of

processing threads available must be bigger than the number of receivers.

On the other hand, file streams do not require executing receivers; in consequence,

no additional CPU resources are needed for file data ingestion. File sources are used to

ingest data from files as they appear in a system folder, hence simulating a data stream.

Input file formats supported are text, CSV, JSON, ORC, and Parquet.

 Socket Connection Streaming Sources

A socket is the union of an IP address and a network port (<IP>:<port>). Sockets permit

the connection between computers over the TCP/IP where each ending computer sets

up a connection socket.

To show how Spark Streaming can be used to ingest data by listening to a socket

connection, we are going to use an example based on a real data streaming use case; we

are going to implement a basic near-real-time streaming Hospital Queue Management

System with a CSV format as input as the ones you can see next:

1004,Tomás,30,DEndo,01-09-2022

1005,Lorena,50,DGineco,01-09-2022

1006,Pedro,10,DCardio,01-09-2022

Chapter 6 IntroduCtIon to apaChe Spark StreamIng

213

1007,Ester,10,DCardio,01-09-2022

1008,Marina,10,DCardio,01-09-2022

1009,Julia,20,DNeuro,01-09-2022

1010,Javier,30,DEndo,01-09-2022

1011,Laura,50,DGineco,01-09-2022

1012,Nuria,10,DCardio,01-09-2022

1013,Helena,10,DCardio,01-09-2022

1014,Nati,10,DCardio,01-09-2022

Next, we show two options to see our program up and running. The first code

(socketTextStream.scala) is shown next, and it is a Scala variant that can be compiled and

executed in Spark using the $SPARK_HOME/bin/spark-submit command. It is out of the

scope of this book to discuss how to compile and link Scala code, but it is recommended

to use sbt1 together with sbt-assembly2 to create a so-called “fat JAR” file including all the

necessary libraries, a.k.a. dependencies:

import org.apache.spark.sql.SparkSession

import org.apache.spark.streaming.{Seconds, StreamingContext}

import java.io.IOException

object socketTextStream {

 def main(args: Array[String]): Unit = {

 val host = "localhost"

 val port = 9999

 try {

 val spark: SparkSession = SparkSession.builder()

 .master("local[*]")

 .appName("Hand-On-Spark3_socketTextStream")

 .getOrCreate()

 spark.sparkContext.setLogLevel("ERROR")

 val sc = spark.sparkContext

 val ssc = new StreamingContext(sc, Seconds(5))

1 www.scala-sbt.org/
2 https://github.com/sbt/sbt-assembly

Chapter 6 IntroduCtIon to apaChe Spark StreamIng

http://www.scala-sbt.org/
https://github.com/sbt/sbt-assembly

214

 val lines = ssc.socketTextStream(host, port)

 printf("\n Spark is listening on port 9999 and ready...\n")

 lines.print()

 ssc.start()

 ssc.awaitTermination()

 } catch {

 case e: java.net.ConnectException => println("Error establishing

connection to " + host + ":" + port)

 case e: IOException => println("IOException occurred")

 case t: Throwable => println("Error receiving data", t)

 } finally {

 println("Finally block")

 }

 }

}

The next code snippet is a version of the preceding Hospital Queue Management

System application that can be executed in Spark using a notebook application such as

Jupyter,3 Apache Zeppelin,4 etc., which can be more convenient for learning purposes,

especially if you are not familiar with Scala code compiler tools:

import org.apache.spark.SparkConf

import org.apache.spark.sql.SparkSession

import org.apache.spark.streaming.{Seconds, StreamingContext}

import java.io.IOException

val host = "localhost"

val port = 9999

try{

 val spark = SparkSession

 .builder()

 .master("local[*]")

3 https://jupyter.org/
4 https://zeppelin.apache.org/

Chapter 6 IntroduCtIon to apaChe Spark StreamIng

https://jupyter.org/
https://zeppelin.apache.org/

215

 .appName("Hands-On_Spark3_socketTextStream")

 .getOrCreate()

 val sc = spark.sparkContext

 // Create the context with a 5 seconds batch size

 val ssc = new StreamingContext(sc, Seconds(5))

 val lines = ssc.socketTextStream(host, port)

 printf("\n Spark is listening on port 9999 and ready...\n")

 lines.print()

 ssc.start()

 ssc.awaitTermination()

}catch {

 case e: java.net.ConnectException => println("Error establishing

connection to " + host + ":" + port)

 case e: IOException => println("IOException occurred")

 case t: Throwable => println("Error receiving data", t)

 } finally {

 println("Finally block")

 }

Pay attention to the local[*] option. In this case we have used “*”; thus, the program

is going to use all the cores available. It is important to use more than one because

the application must be able to run two tasks in parallel, listening to a TCP socket

(localhost:9999) and, at the same time, processing the data and showing it on the console.

 Running Socket Streaming Applications Locally

We are going to use a featured networking utility called Netcat5 to set up a simple client/

server streaming connection. Netcat (netcat, nc, ncat, etc., depending on the system)

is available in Unix-like operating systems and uses the TCP/IP to read and write data

through a network. In this book we use the Netcat OpenBSD version (nc).

5 https://netcat.sourceforge.net/

Chapter 6 IntroduCtIon to apaChe Spark StreamIng

https://netcat.sourceforge.net/

216

The syntax for the nc command is

nc [<options>] <host> <port>

Netcat has several [<options>]; however, we are going to use only -l, which instructs

nc to listen on a UDP or TCP <port>, and -k, which is used in listen mode to accept

multiple connections. When <host> is omitted, nc listens to all the IP addresses bound to

the <port> given.

To illustrate how the program works, we are going to take advantage of the nc utility

introduced, to establish a streaming client/server connection between nc and our

Spark application. In our case nc will act as a server (listens to a host:port), while our

application will act as a client (connects to the nc server).

Whether you have built your JAR file from the previous code or are using the

notebook version, running the application consists of a two-step process:

 1. Open a terminal in your system and set up the server side of the

client/server streaming connection by running the following code:

nc -lk 9999

 2. Depending on how you are running the application

 2.1. Using a JAR file: Open a second terminal and execute your

application as shown in the following:

$SPARK_HOME/bin/spark-submit --class org.

apress.handsOnSpark3.socketTextStream --master

"local[*]" /PATH/TO/socketTextStream/HandsOnSpark3-

socketTextStream.jar

 2.2. Using a notebook: Just execute the code in your notebook.

As soon as you see the message Spark is listening on port

9999 and ready... on your screen, you can go back to step 1 and

type some of the CSV strings provided as examples, for instance:

1009,Julia,20,DNeuro,01-09-2022

1010,Javier,30,DEndo,01-09-2022

1011,Laura,50,DGineco,01-09-2022

1012,Nuria,10,DCardio,01-09-2022

1013,Helena,10,DCardio,01-09-2022

Chapter 6 IntroduCtIon to apaChe Spark StreamIng

217

1014,Nati,10,DCardio,01-09-2022

1004,Tomás,30,DEndo,01-09-2022

1005,Lorena,50,DGineco,01-09-2022

1006,Pedro,10,DCardio,01-09-2022

1007,Ester,10,DCardio,01-09-2022

1008,Marina,10,DCardio,01-09-2022

With a cadence of seconds, you will see an output like the

following one coming up on your terminal or notebook:

Spark is listening on port 9999 and ready...

Time: 1675025630000 ms

1009,Julia,20,DNeuro,01-09-2022

1010,Javier,30,DEndo,01-09-2022

1011,Laura,50,DGineco,01-09-2022

1012,Nuria,10,DCardio,01-09-2022

1013,Helena,10,DCardio,01-09-2022

1014,Nati,10,DCardio,01-09-2022

Time: 1675025635000 ms

1004,Tomás,30,DEndo,01-09-2022

1005,Lorena,50,DGineco,01-09-2022

1006,Pedro,10,DCardio,01-09-2022

1007,Ester,10,DCardio,01-09-2022

1008,Marina,10,DCardio,01-09-2022

...

 3. Application termination

awaitTermination() waits for a user’s termination signal. Thus,

going to the terminal session started in step 1 and pressing Ctrl+C

or SIGTERM, the streaming context will be stopped and your

streaming application terminated.

Chapter 6 IntroduCtIon to apaChe Spark StreamIng

218

However, this way of abruptly killing a streaming process is neither elegant nor

convenient in most of the real streaming applications. The notion of unbounded

data implies a continuous flow of information arriving to the system; thus, an abrupt

interruption of the streaming process is bound to a loss of information in all likelihood in

the majority of situations. To avoid data loss, a procedure is to halt a streaming application

without suddenly killing it during the RDD processing; it is called a “graceful shutdown,”

and we are going to explain it later on in the “Spark Streaming Graceful Shutdown” section.

 Improving Our Data Analytics with Spark
Streaming Transformations

Though the number of transformations that can be applied to RDD DStreams is limited,

the previous example can be tweaked to improve its functionality.

We can use the flatMap(function()) function, which takes function() as an

argument and applies it to each element, returning a new RDD with 0 or more items.

Therefore, replacing the code line lines.print() in the previous code snippet with

the following line

lines.flatMap(_.split(",")).print()

we get the following output:

Time: 1675203480000 ms

1009

Julia

20

DNeuro

01-09-2022

1010

Javier

30

DEndo

01-09-2022

...

Chapter 6 IntroduCtIon to apaChe Spark StreamIng

219

Time: 1675203485000 ms

1005

Lorena

50

DGineco

01-09-2022

1006

Pedro

10

DCardio

01-09-2022

...

We can also introduce the count() function to count the number of lines in our

stream. Thus, adding the count() function as you can see in the following line

lines.flatMap(_.split(",")).count().print()

and typing text lines from our example, we get an output similar to the following:

Time: 1675204465000 ms

75

Time: 1675204470000 ms

35

Time: 1675204470000 ms

260

We can also use countByValue() to count the number of occurrences of each word

in the dataset, that is to say, the number of times each word occurs in the stream.

Chapter 6 IntroduCtIon to apaChe Spark StreamIng

220

To achieve that goal, all we have to do is transform the

lines.flatMap(_.split(",")).print()

line of code into the following one:

lines.countByValue().print()

Running again the code and copying and pasting some of the lines provided as

examples, you could see an output similar to the following:

Spark is listening on port 9999 and ready...

Time: 1675236625000 ms

(1013,Helena,10,DCardio,01-09-2022,1)

(1007,Ester,10,DCardio,01-09-2022,4)

(1010,Javier,30,DEndo,01-09-2022,1)

(1011,Laura,50,DGineco,01-09-2022,1)

(1005,Lorena,50,DGineco,01-09-2022,3)

(1014,Nati,10,DCardio,01-09-2022,1)

(1004,Tomás,30,DEndo,01-09-2022,1)

(1008,Marina,10,DCardio,01-09-2022,4)

(1012,Nuria,10,DCardio,01-09-2022,1)

(1006,Pedro,10,DCardio,01-09-2022,4)

Time: 1675236630000 ms

(1007,Ester,10,DCardio,01-09-2022,1)

(1005,Lorena,50,DGineco,01-09-202,1)

(1005,Lorena,50,DGineco,01-09-2022,1)

(1014,Nati,10,DCardio,01-09-2022,1)

(1004,Tomás,30,DEndo,01-09-2022,1)

(1008,Marina,10,DCardio,01-09-2022,1)

(1006,Pedro,10,DCardio,01-09-2022,1)

Chapter 6 IntroduCtIon to apaChe Spark StreamIng

221

Time: 1675236640000 ms

(1007,Ester,10,DCardio,01-09-2022,1)

(1005,Lorena,50,DGineco,01-09-2022,1)

(1008,Marina,10,DCardio,01-09-2022,1)

(1006,Pedro,10,DCardio,01-09-2022,1)

We can improve our example even more and achieve the same result linking or

piping the previous code line with the flatMap() function we saw before:

lines.flatMap(_.split(",")).countByValue().print()

As you previously did, run the code again, copy and paste the example lines in your

terminal, and you will see again outcome similar to the next one:

 Spark is listening on port 9999 and ready...

Time: 1675236825000 ms

(01-09-202,1)

(01-09-2022,20)

(1007,5)

(1008,5)

(50,4)

(DCardio,16)

(Lorena,4)

(Tomás,1)

(Marina,5)

(Ester,5)

...

Time: 1675236830000 ms

(01-09-202,1)

(01-09-2022,13)

(1007,3)

Chapter 6 IntroduCtIon to apaChe Spark StreamIng

222

(1008,3)

(50,3)

(DCardio,10)

(Lorena,3)

(Tomás,1)

(Marina,3)

(Ester,3)

...

Time: 1675236835000 ms

(01-09-202,1)

(01-09-2022,6)

(1007,2)

(1008,1)

(50,2)

(DCardio,5)

(Lorena,2)

(Marina,1)

(Ester,2)

(DGineco,2)

...

This time the output is more informative, as you can see the Department of

Cardiology registrations are piling up. That information could be used to, for example,

trigger an alarm when the number of appointments approaches or crosses the threshold

of maximum capacity.

We could have gotten the same result by using the reduceByKey() function. This

function works on RDDs (key/value pairs) and is used to merge the values of each key

using a provided reduce function (_ + _ in our example).

To do that, just replace the following line of code

lines.countByValue().print()

with the next one:

val words = lines.flatMap(_.split(",")).map(x => (x, 1)).reduceByKey(_+_)

words.print()

Chapter 6 IntroduCtIon to apaChe Spark StreamIng

223

Repeating the process of copying and pasting example lines to you terminal will give

an output similar to this:

 Spark is listening on port 9999 and ready...

Time: 1675241775000 ms

(01-09-202,2)

(01-09-2022,22)

(1007,6)

(1008,5)

(50,5)

(DCardio,19)

(Lorena,5)

(Marina,5)

(Ester,6)

(DGineco,5)

...

Time: 1675241780000 ms

(01-09-2022,9)

(1007,3)

(1008,2)

(50,1)

(DCardio,8)

(Lorena,1)

(Marina,2)

(Ester,3)

(DGineco,1)

(Pedro,3)

...

Now we are going to introduce a more significant change in our program. We want

to analyze only specific fields of the incoming data stream. In particular we would like to

supervise in nearly real time the number of appointments by department.

Chapter 6 IntroduCtIon to apaChe Spark StreamIng

224

Remember we are processing data in CSV format, and as you probably know, CSV

files commonly incorporate a header row with the names of the columns. If we keep

the code as it was in our previous examples, that header row will be inappropriately

processed. Therefore, we must introduce a filter to screen out this row. As we do not

know the moment in time in which this header is going to arrive to our streaming

process, we have to find a way to prevent this row from being processed. As we know the

header is the only row beginning with a word (alphabetical string), instead of a number,

we can use a regular expression to filter rows beginning with a word.

Here is our code snippet tuned to filter the header row and to extract and process

only one of the fields of interest, Department Number (DNom):

import org.apache.spark.SparkConf

import org.apache.spark.sql.SparkSession

import org.apache.spark.streaming.{Seconds, StreamingContext}

import java.io.IOException

val host = "localhost"

val port = 9999

try{

 val spark = SparkSession

 .builder()

 .master("local[*]")

 .appName("Hands-On_Spark3_socketTextStream")

 .getOrCreate()

 val sc = spark.sparkContext

 // Create the context with a 5 seconds batch size

 val ssc = new StreamingContext(sc, Seconds(5))

 val lines = ssc.socketTextStream(host, port)

 printf("\n Spark is listening on port 9999 and ready...\n")

 val filterHeaders = lines.filter(!_.matches("[^0-9]+"))

 val selectedRecords = filterHeaders.map{ row =>

 val rowArray = row.split(",")

 (rowArray(3))

 }

Chapter 6 IntroduCtIon to apaChe Spark StreamIng

225

 selectedRecords.map(x => (x, 1)).reduceByKey(_+_).print()

 ssc.start()

 ssc.awaitTermination()

}catch {

 case e: java.net.ConnectException => println("Error establishing

connection to " + host + ":" + port)

 case e: IOException => println("IOException occurred")

 case t: Throwable => println("Error receiving data", t)

 } finally {

 println("Finally block")

 }

After applying these changes, if you execute the program again and paste the

following lines to your terminal

NSS,Nom,DID,DNom,Fecha

1004,Tomás,30,DEndo,01-09-2022

1005,Lorena,50,DGineco,01-09-2022

1006,Pedro,10,DCardio,01-09-2022

1007,Ester,10,DCardio,01-09-2022

1008,Marina,10,DCardio,01-09-2022

NSS,Nom,DID,DNom,Fecha

1009,Julia,20,DNeuro,01-09-2022

1010,Javier,30,DEndo,01-09-2022

1011,Laura,50,DGineco,01-09-2022

1012,Nuria,10,DCardio,01-09-2022

1013,Helena,10,DCardio,01-09-2022

1014,Nati,10,DCardio,01-09-2022

you will see an output like this:

Time: 1675284925000 ms

(DCardio,3)

(DGineco,1)

(DEndo,1)

Chapter 6 IntroduCtIon to apaChe Spark StreamIng

226

Time: 1675284930000 ms

(DCardio,3)

(DGineco,1)

(DEndo,1)

(DNeuro,1)

As you can appreciate, header lines are removed; therefore, only the lines of interest

are considered.

Next, we are going to see the other basic source directly available in the Spark

Streaming core API, file systems compatible with HDFS (Hadoop Distributed File

System).

 File System Streaming Sources

Spark Streaming can use file systems as input data sources. File streams are used for

streaming data from a folder. Spark can mount file streaming processes on any HDFS-

compatible file system such as HDFS itself, AWS S3, NFS, etc. When a file system stream

is set up, Spark monitors the path indicated and processes any files created in it. By

default, files are processed according to the file modification timestamp, with the oldest

modified files first; however, the order can be reversed using the latestFirst option

(default: false), which instructs Spark to start with the latest files modified first. Spark by

default supports different file formats such as text, CSV, JSON, ORC, and Parquet.

A DStream from files can be created using streamingContext.fileStream[KeyClass,

ValueClass,InputFormatClass](dataDirectory), though for text files

StreamingContext.textFileStream(dataDirectory) can be used. The variable

dataDirectory represents the path to the folder to be monitored.

 How Spark Monitors File Systems

Spark monitors file systems according to the following patterns:

• For paths such as "hdfs://hadoop:9000/folder/", “s3//...”, “file//...”,

etc., Spark processes the files as soon as they appear under the path.

• Glob patterns to specify directories "hdfs://hadoop:9000/folder/

textfiles/*/*" are also possible.

Chapter 6 IntroduCtIon to apaChe Spark StreamIng

https://spark.apache.org/docs/latest/streaming-programming-guide.html#file-streams

227

• All files within the path have to be in the same format.

• The number of files present under the path influences the time Spark

will take to scan it, even if no file has been updated.

• File updates within the same time window are ignored. Therefore,

once a file is processed, updating it will not cause its reprocessing.

• Spark will process files looking at the modification time, not the

creation time. Therefore, files already present in the path when the

streaming process starts will not be processed.

• Setting access time of a file using Hadoop FileSystem.setTimes()

can cause a file to be processed out of the current processing

time window.

Now we are going to see how to use Spark to continue monitoring and streaming

files from a folder. In this case we are going to continue with the basic near-real-time

streaming Hospital Queue Management System, tweaking it a little bit again to use it to

stream files from a file system.

As we previously did with the socket data source example, two versions of the

program are provided. The first one could be compiled with sbt or another Scala compiler.

The first code (textFileStream.scala) is shown next, and it is the Scala variant that

can be compiled and executed in Spark using the $SPARK_HOME/bin/spark-submit

command. In this case considering that we are going to pour CSV files into a folder, we

should start from the last version of our previous example in which we were filtering

lines beginning with a word and screening them out of the stream process:

package org.apress.handsOnSpark3

import org.apache.spark.sql.SparkSession

import org.apache.spark.streaming.{Seconds, StreamingContext}

import java.io.IOException

object textFileStream {

 def main(args: Array[String]): Unit = {

 val folder="/tmp/patient_streaming"

 try {

 val spark: SparkSession = SparkSession.builder()

Chapter 6 IntroduCtIon to apaChe Spark StreamIng

https://hadoop.apache.org/docs/current/api/org/apache/hadoop/fs/FileSystem.html#setTimes-org.apache.hadoop.fs.Path-long-long-

228

 .master("local[1]")

 .appName("Hand-On-Spark3_textFileStream")

 .getOrCreate()

 spark.sparkContext.setLogLevel("ERROR")

 val sc = spark.sparkContext

 val ssc = new StreamingContext(sc, Seconds(5))

 val lines = ssc.textFileStream(folder)

 printf(f"\n Spark is monitoring the folder $folder%s and

ready... \n")

 val filterHeaders = lines.filter(!_.matches("[^0-9]+"))

 val selectedRecords = filterHeaders.map { row =>

 val rowArray = row.split(",")

 (rowArray(3))

 }

 selectedRecords.map(x => (x, 1)).reduceByKey(_ + _).print()

 ssc.start()

 ssc.awaitTermination()

 } catch {

 case e: IOException => println("IOException occurred")

 case t: Throwable => println("Error receiving data", t)

 } finally {

 println("Finally block")

 }

 }

}

Pay attention to the local[1] option. In this case we have used only “[1]” because

file streams do not require executing a receiver; therefore, no additional cores are

required for file intake.

The next piece of code is a version of the preceding Hospital Queue Management

System application that can be executed in Spark using a notebook application such as

Jupyter, Apache Zeppelin, etc.:

Chapter 6 IntroduCtIon to apaChe Spark StreamIng

229

import org.apache.spark.SparkConf

import org.apache.spark.sql.SparkSession

import org.apache.spark.streaming.{Seconds, StreamingContext}

import java.io.IOException

val folder="/tmp/patient_streaming"

try{

 val spark = SparkSession

 .builder()

 .master("local[1]")

 .appName("Hand-On-Spark3_textFileStream")

 .getOrCreate()

 val sc = spark.sparkContext

 // Create the context with a 5 seconds batch size

 val ssc = new StreamingContext(sc, Seconds(5))

 val lines = ssc.textFileStream(folder)

 printf(f"\n Spark is monitoring the folder $folder%s and

ready... \n")

 val filterHeaders = lines.filter(!_.matches("[^0-9]+"))

 val selectedRecords = filterHeaders.map{ row =>

 val rowArray = row.split(",")

 (rowArray(3))

 }

 selectedRecords.map(x => (x, 1)).reduceByKey(_+_).print()

 ssc.start()

 ssc.awaitTermination()

}catch {

 case e: IOException => println("IOException occurred")

 case t: Throwable => println("Error receiving data", t)

 } finally {

 println("Finally block")

 }

Now it is time to run these examples and see their outcomes.

Chapter 6 IntroduCtIon to apaChe Spark StreamIng

230

 Running File System Streaming Applications Locally

In this case our program is going to monitor the selected /tmp/patient_streaming path

and process the files copied over there as soon as Spark discovers them.

As in the “Running Socket Streaming Applications Locally” section, running the

file system data source examples provided here also depends on the method you have

chosen to execute them. Here you can also choose either to build your own JAR file from

the code snippets provided before or use the notebook version. In any case, running the

application consists of a two-step process:

 1. Depending on how you are running the application

 1.1. If you are using a JAR file, open a terminal in your computer and

execute your application as shown in the following:

$SPARK_HOME/bin/spark-submit --class org.apress.handsOnSpark3.

textFileStream --master "local[1]" /PATH/TO/YOUR/

HandsOnSpark3- textFileStream.jar

 1.2. If you are using a notebook, just execute the code in your notebook.

 2. Open a new terminal in your computer to copy the CSV files

provided to the monitored folder.

As soon as you see on your screen the message Spark is

monitoring the folder /tmp/patient_streaming and

ready... , you can go back to step 2 and start copying the CSV

files to the /tmp/patient_streaming folder,6 for example:

cp /PATH/TO/patient1.csv /tmp/patient_streaming

cp /PATH/TO/patient2.csv /tmp/patient_streaming

cp /PATH/TO/patient3.csv /tmp/patient_streaming

cp /PATH/TO/patient4.csv /tmp/patient_streaming

cp /PATH/TO/patient5.csv /tmp/patient_streaming

With a cadence of seconds, you will start seeing on your terminal

session or notebook an output similar to the next one:

Spark is monitoring the folder /tmp/patient_streaming and ready...

6 It is advised to copy the files progressively to better see how Spark processes them.

Chapter 6 IntroduCtIon to apaChe Spark StreamIng

231

Time: 1675447065000 ms

(DCardio,1)

Time: 1675447070000 ms

(DEndo,1)

(DNeuro,1)

Time: 1675447075000 ms

(DGastro,1)

(DCardio,3)

(DGineco,1)

(DNeuro,2)

 3. Application termination

Once again, awaitTermination() waits for a user’s termination

signal. Thus, going to the terminal session started in step 2 and

pressing Ctrl+C or SIGTERM, the streaming context will be

stopped. If the application is run in a notebook, you can stop

the execution of the application by stopping or restarting the

Spark kernel.

 Known Issues While Dealing with Object Stores Data Sources

File systems such as Hadoop Distributed File System (HDFS) can establish the

modification time of its files at the beginning output stream that creates them. That is

to say, modification time can be set before the file writing process that creates them

is completed. Consequently, this behavior can cause Spark DStream to include those

incomplete files in the current processing window and subsequently ignore ulterior

data aggregations or file updates; therefore, some data can be lost as it is left out of the

window stream.

Chapter 6 IntroduCtIon to apaChe Spark StreamIng

232

Several techniques can be used to work around this possible problem depending

on the file system technology considered. In some cases direct data writing to the Spark

supervised path can be fine; in others files can be created in a different folder than the

final destination and finally copied or renamed to the monitored path once they are

complete, though in this case file copy or rename operations also take time and the

file metadata can also be altered, for example, the original file creation or modification

time can be overwritten with the rename or copy time. In any case, when using Spark

Streaming, attention should be paid to these details.

 Advanced Input Sources
Advanced sources are not part of the StreamingContext API and are only available

via third-party extra classes (similar drivers for peripherals in an operating system).

Examples of these advanced sources are Kafka and Kinesis.

At the time this book was written, Spark Streaming 3.3.1 was compatible with Kafka

broker versions 0.10 and higher and with Kinesis Client Library 1.2.1.

6.8 Spark Streaming Graceful Shutdown
In our previous streaming examples, we interrupted the execution of the stream process

by pressing Ctrl+C or SIGTERM, thus killing the execution while it was still listening to a

socket port or monitoring a file system directory. In a real production environment, a Spark

streaming application cannot be abruptly interrupted because data is going to be lost in

all likelihood. Imagine that while you were running our previous examples, some data

stream was being received or some file was being read from the disk when you interrupted

the job. Taking into consideration there is a time interval between each data ingestion and

processing, if you interrupt the application in between them, that information will be lost.

In a production environment, the situation is completely different. Ideally, a Spark

streaming application must be up and running 24/7. Therefore, a production job should

never stop; it should constantly be reading events/files from a data source, processing

them, and writing the output into a sink or another component of the data pipe.

However, in real life things are far away from being perfect. Sometimes we need to

stop the streaming job for several reasons; one of them could be when a new version

of our Spark application is deployed into production. In these cases, when our goal

is to perform a smooth shutdown of the Spark streaming job, we have to find a way

Chapter 6 IntroduCtIon to apaChe Spark StreamIng

233

to accomplish it without data loss. It turns out there is a procedure called Graceful

Shutdown that guarantees no job is forcefully halted while ongoing RDDs are processed.

This part of the chapter focuses on stopping processing—gracefully.

Graceful Shutdown is a feature available in Spark Streaming to facilitate a “safe”

stopping of a stream job without data loss under certain conditions we explain next.

Graceful Shutdown permits the conclusion of the jobs already in progress as well as the

ones piled up before closing the stream listening/reading process, and only after that the

streaming job is stopped; therefore, there is no data loss under certain conditions we are

going to explain later on.

To understand the Spark Streaming Graceful Shutdown feature, it is necessary to

understand how Spark Streaming jobs are stopped in advance.

The logic behind Spark start and stop streaming jobs is handled by the JobScheduler

as you can see in Figure 6-5.

Figure 6-5. JobScheduler and dependent services

The Streaming scheduler or JobScheduler is created and starts with creating the

StreamingContext procedure. The JobScheduler role is to track jobs submitted for

execution in the jobSets internal map, which is a collection of streaming jobs.

Chapter 6 IntroduCtIon to apaChe Spark StreamIng

234

Enabling Graceful Shutdown requires the creation of a Spark context with the

parameter spark.streaming.stopGracefullyOnShutdown set to true. When Graceful

Shutdown is not enabled, the JobScheduler forcefully stops stream jobs as follows:

• New data intake is prevented.

• When dynamic allocation is active, executor allocators are stopped.

• The generation of new jobs is interrupted.

• Currently executing jobs are stopped.

• Finally, job event listeners are halted.

You can see the procedure of terminating a stream process is quite “violent,”

representing data in transit is lost.

However, when Graceful Shutdown is enabled, the Spark JobScheduler behaves in a

less radical way:

• New data intake is prevented. Graceful Shutdown waits until the

receivers have received all the data in transit.

• Executor allocators are stopped. This shutdown step is not changed.

• The generation of new jobs is interrupted. The generation of new jobs

is permitted, but only for the time interval in progress.

• Currently executing jobs are stopped. Graceful Shutdown sets the

input parameter processAllReceivedData to true. This action grants

1 additional hour to the jobExecutor Thread Pool before termination.

This parameter is not configurable, and it assumes it is time enough

to finish the ongoing jobs. Otherwise, the jobExecutor Thread Pool is

terminated in 2 s.

• Job event listeners are halted. This step of the stopping process is not

changed either.

Now it is time to tweak our previous examples, to show how Graceful Shutdown

could be implemented:

import org.apache.spark.SparkConf

import org.apache.spark.storage.StorageLevel

import org.apache.spark.streaming.{Seconds, StreamingContext}

Chapter 6 IntroduCtIon to apaChe Spark StreamIng

235

import org.apache.spark.sql.SparkSession

import org.apache.hadoop.conf.Configuration

import org.apache.hadoop.fs.{FileSystem, Path}

val spark = SparkSession

 .builder()

 .master("local[3]")

 .appName("streamingGracefulShutdown")

 .config("spark.streaming.stopGracefullyOnShutdown", true)

 .getOrCreate()

import spark.implicits._

val sc = spark.sparkContext

val ssc = new StreamingContext(sc, Seconds(5))

val host = "localhost"

val port = 9999

val altFolder = "/tmp/alt_folder"

var stopFlag:Boolean = false

val groupedRecords =lines.map(record =>{

 val arrayRecords=record.split(",")

 (arrayRecords(3))

 })

groupedRecords.countByValue().print()

val words = lines.flatMap(_.split(","))

val wordCounts = words.map(x => (x, 1)).reduceByKey(_+_)

wordCounts.print()

ssc.start()

val timeout = 10000

var wasStopped = false

while (! wasStopped) {

 printf("\n Listening and ready... \n")

 wasStopped = ssc.awaitTerminationOrTimeout(timeout)

Chapter 6 IntroduCtIon to apaChe Spark StreamIng

236

 if (wasStopped)

 println("Streaming process is no longer active...")

 else

 println("Streaming is in progress...")

 // Check the existence of altFolder, /tmp/alt_folder

 if (!stopFlag) {

 val fs = FileSystem.get(new Configuration())

 stopFlag = fs.exists(new Path(altFolder))

 }

 if (!wasStopped && stopFlag) {

 println("Stopping ssc context...")

 ssc.stop(stopSparkContext = true, stopGracefully = true)

 println("ssc context has been stopped!")

 }

}

Now, before you execute the preceding code example, in a terminal set up the socket

server by typing

nc -lk 9999

After that, you can execute the preceding code snippet, and as soon as you see the

message Listening and ready... on your screen, you can start copying and pasting the

CSV example lines provided, for example:

1004,Tomás,30,DEndo,01-09-2022

1005,Lorena,50,DGineco,01-09-2022

1006,Pedro,10,DCardio,01-09-2022

1007,Ester,10,DCardio,01-09-2022

...

1010,Javier,30,DEndo,01-09-2022

1011,Laura,50,DGineco,01-09-2022

1012,Nuria,10,DCardio,01-09-2022

1013,Helena,10,DCardio,01-09-2022

1014,Nati,10,DCardio,01-09-2022

1009,Julia,20,DNeuro,01-09-2022

1010,Javier,30,DEndo,01-09-2022

Chapter 6 IntroduCtIon to apaChe Spark StreamIng

237

In a few seconds you would see an output similar to this coming out of your

program:

Listening and ready...

Time: 1675631795000 ms

(DCardio,12)

(DGineco,4)

(DEndo,4)

(DNeuro,2)

Time: 1675631795000 ms

(01-09-2022,22)

(1007,2)

(1008,2)

(Laura,2)

(Julia,2)

(50,4)

(Nuria,2)

(1009,2)

(DCardio,12)

(Javier,2)

...

Time: 1675631800000 ms

Time: 1675631800000 ms

Streaming in progress. Timeout...

Chapter 6 IntroduCtIon to apaChe Spark StreamIng

238

 Listening and ready...

Time: 1675631805000 ms

Next, in a new terminal type, the following command line

mkdir /tmp/alt_folder

to create the /tmp/alt_folder folder.

Once again, in a few seconds, after the timeout period defined, you should see the

following lines:

Stopping ssc context...

WARN ReceiverSupervisorImpl: Receiver has been stopped

Time: 1675631815000 ms

Time: 1675631820000 ms

ssc context has been stopped!

 Listening and ready...

Streaming process is no longer active...

Graceful Shutdown finished the job in queue and nicely stopped your streaming

process without losing any data.

If you look carefully through the preceding code snippet, you can see that Spark is

uninterruptedly listening to the network socket localhost:9999 (host:port) while the

flag stopFlag is false. Thus, we need to find a way to send to Spark the stop streaming

signal. We achieve that by creating a new folder in the defined file system path /tmp/

alt_folder.

Chapter 6 IntroduCtIon to apaChe Spark StreamIng

239

The next two lines of code

val fs = FileSystem.get(new Configuration())

stopFlag = fs.exists(new Path(altFolder))

permit checking whether the path defined by the altFolder variable exists. If it

exists, the stopFlag Boolean variable is set to true and hence triggers the Grateful

Shutdown process.

6.9 Transformations on DStreams
Similar to those on RDDs, transformations on DStreams allow the data from the input

DStream to be transformed according to our needs.

Apart from the transformations on DStreams already seen in previous examples,

DStreams support several other transformations available on normal Spark RDDs. Some

of the common transformations on DStreams are listed and succinctly explained in

Table 6-1.

Chapter 6 IntroduCtIon to apaChe Spark StreamIng

240

Table 6-1. Transformations on DStreams

Transformation Description

map(func) returns a new dStream after applying a function func to all the dStream

elements.

flatMap(func) Similar to map, it takes a function as an argument and applies it to each

element, returning a new rdd with 0 or multiple elements.

filter(func) returns a new dStream screening out the incoming dStream records on

which the function func returned false.

repartition(numpartitions) Changes the dStream level of parallelism, increasing or decreasing the

number of partitions.

union(otherStream) returns a dStream union of the elements of the source dStream and

otherdStream.

count() returns a new dStream counting the number of elements of a dStream.

reduce(func) returns a new dStream by aggregating the elements in each rdd of a

dStream using a function func. the function should support parallelized

computation.

countByValue() returns a new dStream of (k, Long) pairs with the frequency in each

key in the rdd of the dStream.

reduceByKey(func,

[numtasks])

returns a dStream of (key, Value) pairs aggregating the values for each

key using a reduce function.

join(otherStream,

[numtasks])

returns a new dStream of (k, (V, W)) pairs from a joining operation of

two dStreams of (k, V) and (k, W) key-value pairs.

cogroup(otherStream,

[numtasks])

returns a dStream of (k, Seq[V], Seq[W]) tuples from a dStream of (k, V)

and (k, W) pairs.

transform(func) returns a dStream after applying arbitrary rdd-to-rdd functions to a

dStream.

updateStateByKey(func) returns a "state" dStream maintaining it updated with new information

from previous dStreams.

Chapter 6 IntroduCtIon to apaChe Spark StreamIng

241

6.10 Summary
In this chapter we have explained what Apache Spark Streaming is, together with the

Spark DStream (Discretized Stream) as the basic abstraction behind the Spark Streaming

concept. We mentioned DStream is a high-level abstraction for Spark Streaming just like

RDD. We also went through the differences between real-time analytics of bound and

unbound data, mentioning the challenges and uncertainties stream processing brings

in. Next, we talked about the Spark Streaming Execution Model and stream processing

architectures. At that point, we explained the Lambda and Kappa architectures as the

main stream processing architectures available. After that, we went through the concepts

of Discretized Streams and stream sources and receivers. The last point was quite dense,

explaining and giving examples of basic and advanced data sources. The advanced topic

of Grateful Shutdown was described, giving a practical example, and finally, a list of the

most common transformations on DStreams was provided.

Chapter 6 IntroduCtIon to apaChe Spark StreamIng

PART II

Apache Spark Streaming

245

CHAPTER 7

Spark Structured
Streaming
Nowadays, in the big data world, more and more business processes and daily used

applications require the analysis of real-time or near-real-time information at scale.

Real-time data analysis is commonly associated with processes that require decisions

to be taken quickly and without delay. Therefore, infrastructures capable of providing

instant analytics, management of continuously flowing data, and fault tolerance and

handling stragglers or slow components are necessary.

Considering the main characteristics that define data streaming, in which

• Information is continuous

• Information is unbounded

• There is high volume and velocity of data production

• Information is time-sensitive

• There is heterogeneity of data sources

we can assume data faults and stragglers1 are certain to occur in this sort of environment.

Data faults and stragglers represent a serious challenge for streaming data

processing. For instance, how can we get insights from a sequence of events arriving at a

stream processing system if we do not know what is the order in which they took place?

1 Late or out-of-order events (information).

© Alfonso Antolínez García 2023
A. Antolínez García, Hands-on Guide to Apache Spark 3, https://doi.org/10.1007/978-1-4842-9380-5_7

https://doi.org/10.1007/978-1-4842-9380-5_7

246

Stream processing uses timestamps2 to sequence the events and includes different

notions of time regarding stream event processing:

• Event time: It corresponds with the moment in time in which the

event is generated by a device.

• Ingestion time: It is the time when an event arrives at the stream

processing architecture.

• Processing time: It refers to the computer time when it begins treating

the event.

In Chapter 6 we saw that Spark's first attempt to keep up with the dynamic nature

of information streaming and to deal with the challenges mentioned before was the

introduction of Apache Spark Streaming (DStream API). We also studied that DStreams

or Discretized Streams are implemented on top of Spark’s Resilient Distributed Dataset

(RDD) data structures. DStream handles continuous data flowing by dividing the

information into small chunks, processing them later on as micro-batches.

The use of the low-level RDD API offers both advantages and disadvantages. The first

disadvantage is that, as the name states, it is a low-level framework; therefore, it requires

higher technical skills to take advantage of it and poses performance problems because

of data serialization and memory management. Serialization is critical for distributed

system performance to minimize data shuffling across the network; therefore, if not

managed with caution, it can lead to numerous issues such as memory overuse and

network bottlenecks.

7.1 General Rules for Message Delivery Reliability
At this point we provide an introduction to general message delivery semantics you are

going to find in the next chapters and the importance of each one in a streaming data

processing infrastructure.

Performing complex real-time streaming analytics is not an easy task. In order

to give some context to the importance of message delivery reliability in real-time

streaming analytics, consider a streaming application collecting real-time events from

remote hosts or sensors, which can generally be called actors, scattered over multiple

2 The point in time at which an event takes place.

Chapter 7 Spark StruCtured Streaming

247

locations. Also consider these actors are going to be connected to different network

topologies and to different qualities of hardware with observable differences in message

latency (the time it takes for messages to travel from one point on a network to another),

bandwidth (the capacity for data transfer of an electronic communications system), and

reliability. Therefore, the more steps are involved in the event transmission, the more

likely the sequence of messages can be faulty.

When all of these factors are taken into account, we conclude that regarding real-

time data streaming processing, we can only rely on those properties that are always

guaranteed in order to achieve full actor’s location transparency and strict warranties on

message delivery.

When it comes down to the semantics of message delivery reliability mechanisms,

there are three following basic categories:

• At most once (at-most-once delivery): This semantic means the

message is delivered once or not at all (in a fire-and-forget manner).

This means that the message can be lost. It is the most inexpensive

in terms of highest delivery performance and least implementation

overhead as no state is kept either during the sending process or

during the transport process. As it gets rid of the overhead of waiting

for acknowledgment from the message brokers, it is suitable for

use cases in which attaining a high throughput is of paramount

importance and when losing some messages does not significantly

affect the final result, for example, analyzing customer sentiment by

listening to posts in social networks. Among millions of them, losing

a few will not probably greatly impact the final conclusions.

• At least once (at-least-once delivery): In this semantic, multiple

attempts are going to possibly be made in order to guarantee that

at least one message reaches the destination. It is suitable for use

cases in which there is little or no concern with duplication of data

but it is of utmost importance no message is lost, for example,

sensors monitoring critical components or human vital signs (body

temperature, pulse rate, respiration rate, blood pressure, etc.).

• Exactly once (exactly-once delivery): This semantic means messages

can neither be lost nor duplicated. Messages are delivered and read

once. Therefore, exactly one delivery is made to the destination.

Chapter 7 Spark StruCtured Streaming

248

Even though there is a lot of literature out there about the impossibility of achieving an

exactly-once delivery as it implies the guarantee that a message is delivered to the recipient

once, and only once, from a theoretical point of view, it exists, and we consider it in this book.

7.2 Structured Streaming vs. Spark Streaming
Considering only the Spark consolidated versions and modules, both Spark Streaming

and Spark Structured Streaming use the default micro-batch processing model; however,

while Spark Streaming employs DStreams, Spark Structured Streaming uses datasets/

DataFrames. A DStream is represented by a perpetual sequence of RDDs, which are

Spark's notion of immutable, distributed datasets that are held in memory. DStream

relies on RDDs to provide low-level transformation and processing. On the other hand,

Structured Streaming takes advantage of the DataFrame and Dataset APIs, providing a

higher level of abstraction and permitting SQL-like manipulation functions. As RDDs are

part of the low-level API, they can only work with event ingestion time, also known as

processing time or the time when the event entered the engine, therefore being unable

to efficiently tackle out-of-order events. Conversely, Structured Streaming can process

data based on the event time, the time when the event was generated, hence providing

a workaround to deal with received late and out-of-order events. Spark RDDs cannot be

optimized; therefore, they are more likely to develop inefficient data transformations,

and optimization would require extra work from the programmer side.

Additionally, using DStream is not straightforward to build in-stream processing

pipelines supporting exactly-once-guarantee delivery policies. Implementation is

possible, but requires programming workarounds. In contrast, Structured Streaming

incorporates new valuable concepts for in-stream processing:

• The exactly-once-guarantee message delivery rule is implemented

by default; therefore, theoretically, data is processed only once, and

duplicates are removed from the outcomes.

• Event-time in-stream-based processing brings the benefits

mentioned before.

Another important difference between using DStreams and Structured Streaming

is necessity or not of a streaming sink. While DStream streaming outputs are RDDs that

can be manipulated and, hence, do not have a need for a streaming sink as final output,

Spark Structured Streaming requires a streaming sink.

Chapter 7 Spark StruCtured Streaming

249

Another one is how real-time streaming is treated. While DStream simulates real-

time processing stockpiling data into micro-batches, Spark Structured Streaming uses

the concept of unbounded table, which we will explain in detail later on in this chapter,

to continuously add real-time events to the streaming flow.

Another significant difference between Spark DStreams and Spark Structured

Streaming is how the end-to-end streaming process is conducted. On one hand, Spark

Structured Streaming has a dedicated thread to check whether new data has arrived to

the stream, and if and only if there is new information to process, the stream query is

executed. On the other hand, while a Spark Streaming program is running, DStream’s

micro-batches are executed according to the batchDuration time interval parameter of

the StreamingContext() method at which the DStream generates a RDD independently

of there is live information or not.

7.3 What Is Apache Spark Structured Streaming?
Apache Spark Structured Streaming was introduced with Spark 2.0. Spark Structured

Streaming is a scalable and near-real-time stream processing engine offering end-to-end

fault tolerance with exactly-once processing guarantees. Spark Structured Streaming is

built on top of the Spark SQL library; hence, it natively incorporates the Spark SQL code

and memory optimization and facilitates the use of SQL. Structured Streaming is based

on the Dataframe and Dataset APIs.

Spark Structured Streaming incorporates several novel conceptualizations where the

most important ones are the following:

• Input table

• Result table

• Output modes

• Datasets and DataFrames Streaming API

• Event-Time Window Operations

• Watermarking

• Streaming data deduplication

• State store (a versioned key-value store)

• Output sinks

Chapter 7 Spark StruCtured Streaming

250

Let’s explain next what is behind some of these concepts. The others will be

explained in later chapters.

 Spark Structured Streaming Input Table
Spark Structured Streaming uses the concept of “input table,” which could be assimilated

to the “unbounded input table” abstraction depicted in Figure 7-1, to process every input

data. The concept of unbounded table means that every new piece of data arriving at the

system is appended as a new row to the table.

Figure 7-1. The Spark Structured Streaming unbounded input table flow diagram

Consequently, with Structured Streaming, computation is performed incrementally

with continuous result update as data comes in, permitting the representation of stream

data processing in the same fashion batch computation on at-rest data is represented.

 Spark Structured Streaming Result Table
The “result table” in Spark Structured Streaming could also be assimilated to a kind of

unbounded output table. The result table will eventually be the consequence of every

query on the input data. Every time new information is added to the unbounded input

table, it will trigger the update of the unbounded output table, consequently writing the

results to the designated output or data sink according to the out mode established. The

unbounded output table concept and how it integrates into the streaming workflow are

depicted in Figure 7-2.

Chapter 7 Spark StruCtured Streaming

251

Figure 7-2. The Spark Structured Streaming unbounded output table
flow diagram

Next, we explain the three different output modes available in Spark Structured

Streaming.

 Spark Structured Streaming Output Modes
The output mode (alias: OutputMode) is a new concept introduced by Structured

Streaming, and as we have already mentioned before, Spark Structured Streaming

requires a streaming sink.

When it comes to Spark Structured Streaming, the output mode specifies what data

is written to a streaming sink and the way of writing that data.

Spark Structured Streaming supports three output modes :

• Append mode (alias: append). This is the default behavior, and

only the new rows that arrived at the result table are written to the

output sink. Regarding streaming aggregations, new rows are those

whose intermediate states become final. This mode guarantees that

each row will be output only once; it is indicated when we are only

interested in analyzing the new data. Append mode is applicable to

only queries where rows appended to the result table are not going to

be modified, for example, those only employing select, where, map,

flatMap, filter, join, etc.

Chapter 7 Spark StruCtured Streaming

252

• Complete mode (alias: complete). This mode is only supported for

streaming aggregations, and it works by writing all the rows of the

result table every time the information is processed. It is indicated

when we want to perform data aggregation and then dump the

full result table to the data sink after every update. This mode does

not handle how the full table data is written; therefore, it is the

responsibility of the used connector to manage the information.

• Update mode (alias: update). This output mode was introduced with

Spark 2.1.1, and it will only write to the sink the updated rows since

the last trigger. It will be equivalent to the append mode when the

query does not contain aggregations.

However, no output mode mentioned is applicable to all possible streaming queries.

Table 7-1 shows an output mode vs. streaming query compatibility matrix.3

Table 7-1. Output Mode vs. Streaming Query Compatibility Matrix

Streaming Query Type Supported Output Modes

Queries with aggregation aggregation in event time

with watermark

append, update, Complete

Other aggregations Complete, update

Queries with mapGroupsWithState update

Queries with

flatMapGroupsWithState

append operation mode append

update operation mode update

Queries including joins append

Other queries append, update

The output mode is specified on the writing side of a streaming query using the

streaming.DataStreamWriter.outputMode method using either an alias or a value of the

org.apache.spark.sql.streaming.OutputMode object:

3 Based on the official Apache Spark Structured Streaming Programming Guide.

Chapter 7 Spark StruCtured Streaming

253

import org.apache.spark.sql.SparkSession

import org.apache.spark.sql.streaming.OutputMode.Update

val spark:SparkSession = SparkSession.builder()

 .master("local[*]")

 .appName("Hands-On-Spark3_Structured_Streaming")

 .getOrCreate()

val inputStream = spark

 .readStream

 .format("socket")

 .option("host","localhost")

 .option("port","9999")

 .load()

inputStream.select(explode(split(df("value")," "))

 .alias("palabra"))

 .groupBy("word")

 .count()

 .writeStream

 .format("console")

 .outputMode("complete") // Complete output mode selected

 .start()

 .awaitTermination()

// Another way of specifying

val inputStream = spark

 .readStream

 .format("socket")

 .load()

// your code goes here

 .writeStream

 .format("console")

 .outputMode(Update) // Update output mode selected

 .start()

 .awaitTermination()

Chapter 7 Spark StruCtured Streaming

254

Remember when using Structured Streaming, you always have to specify a streaming

sink and output mode.

In summary, taking into consideration the Spark Structured Streaming

characteristics enumerated before, we can say that Structured Streaming offers

consistency in the outcomes provided as it is guaranteed they are always going to be

equivalent to the ones returned by an equivalent batch process having the same input

data. However, each of these modes is applicable only to certain types of queries.

7.4 Datasets and DataFrames Streaming API
Since Spark 2.0, DataFrames and datasets can be used to process both data at rest

(bound data) and streaming data (unbound data). The most recent Spark versions can

use DataFrames/datasets to process data coming from streaming sources using the

common SparkSession entry point and apply exactly the same transformations and

actions to them that could be applied in a batch process.

Streaming DataFrames can be created via the DataStreamReader interface returned

by SparkSession.readStream() if you are using Scala, Java, or Python or the read.

stream() method if you are using R, and like the Spark SQL read() method to read

different format files into a Spark DataFrame, the details of the source data format (CSV,

JSON, etc.), schema, etc. can be specified.

As with Spark Streaming (DStreams), Structured Streaming also incorporates some

built-in data sources for data ingestion. These data sources are

• File source: Streaming data is uploaded from different format files

such as text, CSV, JSON, Parquet, etc. located in a directory using the

DataStreamReader method.

• Kafka source: Streaming data is read from Apache Kafka topics. At the

time this book was written, only Kafka broker version 0.10.0 or higher

was supported.

• Socket source: Reads UTF-8-encoded text from a socket connection.

It is not considered a fault-tolerant streaming source as it does

not support using checkpointed offsets to resubmit data after a

failure occurs.

Chapter 7 Spark StruCtured Streaming

https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/streaming/DataStreamReader.html
https://spark.apache.org/docs/latest/structured-streaming-kafka-integration.html

255

• Rate source: This streaming source is intended for testing and

benchmarking only. It is used to produce random data with two

columns, “timestamp” and “value,” at the specified number of rows

per second (rate). The “timestamp” column contains the time the

message was sent out in a Timestamp-type format, while the “value”

column allocates a Long-type number counting messages sent and

starting from 0.

• Rate per micro-batch source: This streaming data source is also

intended for testing and benchmarking only. As it happens with the

rate source, each output row contains two columns, “timestamp” and

“value.” It has the same characteristics as the rate source, but unlike

the latter, the former is intended to provide a consistent number of

rows per micro-batch (timestamp and value), that is to say, if batch

0 produces numbers 0 to 999 and their associated timestamps,

batch 1 will produce 1000 to 1999 and their subsequent timestamps,

and so on.

Next, in Table 7-2 you can see a summary of the above-mentioned data sources and

their main options. This table again is based on the official Apache Spark input sources

for streaming DataFrames and datasets.4

4 https://spark.apache.org/docs/latest/structured-streaming-programming-guide.
html#input-sources

Chapter 7 Spark StruCtured Streaming

https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#input-sources
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#input-sources

256

Table 7-2. Spark Structured Streaming Data Source Options

Source Options Fault- Tolerant

File source • path: path to the input file directory.

• maxFilesPerTrigger: maximum number of new files to be

considered in every trigger (default: no max).

• latestFirst: Whether to process the latest files first.

• fileNameOnly: Whether to check new files based on only the

filename instead of on the full path:

• default: false.

• Set fileNameOnly to “true,” and the following files

“hdfs://<host>:<port>/file.txt”, “file:///file.txt”, “s3://x/

file.txt”, etc. will be considered as the same because their

filenames are “file.txt”.

• maxFileAge: maximum age of a file in a directory before it is

ignored:

• For the first batch, all files will be considered valid.

• the max age is specified with respect to the timestamp of

the latest file and not the timestamp of the current system

(default: 1 week).

• if latestFirst is set to “true” and maxFilesPerTrigger

is set, then this parameter will be ignored, because old files

that are valid, and should be processed, may be ignored.

• cleanSource: to clean up completed files after processing.

available options are “archive,” “delete,” and “off” (default: off):

• When “archive” is provided, the sourceArchiveDir option

must be provided as well.

• Both archiving (moving files) and deleting completed files

will introduce overhead (slowdown) in each micro-batch.

See the input sources manual for more details.

Yes

(continued)

Chapter 7 Spark StruCtured Streaming

257

Table 7-2. (continued)

Source Options Fault- Tolerant

Socket source host and port (<host>:<port>) to connect to. no

rate source • rowsPerSecond: how many rows should be generated per

second, for example, 100 (default: 1).

• rampUpTime: how long to ramp up before the generating

speed becomes rowsPerSecond. maximum granularity is

seconds, for example, 5 s (default: 0 s).

• numpartitions: the partition number for the generated rows, for

example, 10 (default: Spark's default parallelism).

the number of rowsPerSecond is not guaranteed as the query

may be resource constrained; in that case numPartitions can

be modified to help reach the desired rate.

Yes

rate per

micro- batch

source

• rowsPerBatch: number of rows that should be generated per

micro- batch, for example, 100

• numPartitions: the partition number for the generated rows,

for example, 10 (default: Spark’s default parallelism)

• startTimestamp: Starting value of generated time, for

example, 1000 (default: 0)

• advanceMillisPerBatch: the amount of time being

advanced in generated time on each micro-batch, for example,

1000 (default: 1000)

Yes

kafka source Check out the kafka integration guide documentation for more

details.

Yes

Now that we have studied the basics of Spark Structured Streaming and the main

sources of data, it is time to see how streaming DataFrames work with some examples.

 Socket Structured Streaming Sources
To show how Spark Structured Streaming can be used to ingest data by listening to a

socket connection, we are going to continue using our basic near-real-time streaming

Hospital Queue Management System shown in the previous chapter, tweaking it a little

bit to make it more realistic implementing a JSON input format.

Chapter 7 Spark StruCtured Streaming

https://spark.apache.org/docs/latest/structured-streaming-kafka-integration.html

258

We show two options to see our program up and running. The first code

(readStreamSocket.scala) is shown next, a Scala variant that can be compiled and

executed in Spark using the $SPARK_HOME/bin/spark-submit command. It is out of the

scope of this book to discuss how to compile and link Scala code, but it is recommended

to use sbt together with sbt-assembly to create a so-called “fat JAR” file including all the

necessary libraries, a.k.a. dependencies:

package org.apress.handsOnSpark3

import org.apache.spark.sql.SparkSession

import org.apache.spark.sql.functions._

import org.apache.spark.sql.types.{IntegerType, StringType, StructField,

StructType}

import java.io.IOException

case class Patient(

 NSS: String,

 Nom: String,

 DID: Option[Long],

 DNom: String,

 Date: String

)

object readStreamSocket {

 def main(args: Array[String]): Unit = {

 val PatientsSchema = StructType(Array(

 StructField("NSS", StringType),

 StructField("Nom", StringType),

 StructField("DID", IntegerType),

 StructField("DNom", StringType),

 StructField("Date", StringType))

)

 val host = "localhost"

 val port = 9999

 try {

 val spark: SparkSession = SparkSession.builder()

 .master("local[*]")

Chapter 7 Spark StruCtured Streaming

259

 .appName("Hand-On-Spark3_Socket_Data_Source")

 .getOrCreate()

 spark.sparkContext.setLogLevel("ERROR")

 // Set up spark.readStream …

 import spark.implicits._

 val PatientDS = spark.readStream

 .format("socket")

 .option("host", host)

 .option("port", port)

 .load()

 .select(from_json(col("value"),PatientsSchema).as("patient"))

 .selectExpr("patient.*")

 .as[Patient]

 printf("\n Listening and ready... \n")

 val selectDF = PatientDS.select("*")

 selectDF.writeStream

 .format("console")

 .outputMode("append")

 .option("truncate", false)

 .option("newRows", 30)

 .start()

 .awaitTermination()

 } catch {

 case e: java.net.ConnectException => println("Error establishing

connection to " + host + ":" + port)

 case e: IOException => println("IOException occurred")

 case t: Throwable => println("Error receiving data", t)

 } finally {

 println("Finally block")

 }

 }

}

Chapter 7 Spark StruCtured Streaming

260

The next piece of code is a version of the preceding Hospital Queue Management

System application that can be executed in Spark using a notebook application such as

Jupyter, Apache Zeppelin, etc., which can be more convenient for learning purposes,

especially if you are not familiar with Scala code compiler tools:

import org.apache.spark.sql.SparkSession

import org.apache.spark.sql.functions._

import org.apache.spark.sql.types.{IntegerType, StringType, StructField, St

ructType,DoubleType,LongType}

import org.apache.spark.sql.{DataFrame, Dataset, Encoders, SparkSession}

import java.io.IOException

val PatientsSchema = StructType(Array(

 StructField("NSS", StringType),

 StructField("Nom", StringType),

 StructField("DID", IntegerType),

 StructField("DNom", StringType),

 StructField("Fecha", StringType))

)

case class Patient(

 NSS: String,

 Nom: String,

 DID: Option[Long],

 DNom: String,

 Fecha: String

)

val spark:SparkSession = SparkSession.builder()

 .master("local[*]")

 .appName("Hand-On-Spark3_Socket_Data_Source")

 .getOrCreate()

spark.sparkContext.setLogLevel("ERROR")

val host = "localhost"

val port = 9999

Chapter 7 Spark StruCtured Streaming

261

try {

 val PatientDS = spark.readStream

 .format("socket")

 .option("host",host)

 .option("port",port)

 .load()

 .select(from_json(col("value"), PatientsSchema).as("patient"))

 .selectExpr("Patient.*")

 .as[Patient]

 printf("\n Listening and ready... \n")

 val selectDF = PatientDS.select("*")

 selectDF.writeStream

 .format("console")

 .outputMode("append")

 .option("truncate",false)

 .option("newRows",30)

 .start()

 .awaitTermination()

} catch {

 case e: java.net.ConnectException => println("Error establishing

connection to " + host + ":" + port)

 case e: IOException => println("IOException occurred")

 case t: Throwable => println("Error receiving data", t)

}finally {

 println("In finally block")

}

Notice how we have defined the PatientsSchema schema before ingesting the data:

val PatientsSchema = StructType(Array(

 StructField("NSS", StringType),

 StructField("Nom", StringType),

 StructField("DID", IntegerType),

 StructField("DNom", StringType),

 StructField("Fecha", StringType))

)

Chapter 7 Spark StruCtured Streaming

262

When we use Spark Structured Streaming, it is mandatory to define the schema of

the information before using it.

Pay attention also to the local[*] option. In this case we have used “*”; thus, the

program is going to use all the cores available. It is important to use more than one

because the application must be able to run two tasks in parallel, listening to a TCP

socket (localhost:9999) and, at the same time, processing the data and showing it on the

console.

 Running Socket Structured Streaming
Applications Locally
We are going to use a featured networking utility called Netcat to set up a simple client/

server streaming connection. Netcat (netcat, nc, ncat, etc. depending on the system)

is available in Unix-like operating systems and uses the TCP/IP to read and write data

through a network. In this book we use the Netcat OpenBSD version (nc).

The syntax for the nc command is

nc [<options>] <host> <port>

Netcat has several [<options>]; however, we are going to use only -l, which instructs

nc to listen on a UDP or TCP <port>, and -k, which is used in listen mode to accept

multiple connections. When <host> is omitted, nc listens to all the IP addresses bound to

the <port> given.

To illustrate how the program works, we are going to take advantage of the nc utility

introduced before, to establish a streaming client/server connection between nc and

our Spark application. In our case nc will act as a server (listens to a host:port), while our

application will act as a client (connects to the nc server).

Whether you have built your JAR file from the previous code or are using the

notebook version, running the application consists of a two-step process:

 1. Open a terminal in your system and set up the server side of the

client/server streaming connection by running the following code:

nc -lk 9999

 2. Depending on how you are running the application

Chapter 7 Spark StruCtured Streaming

263

 2.1. Using a JAR file: Open a second terminal and execute your

application as shown in the following:

$SPARK_HOME/bin/spark-submit --class org.apress.

handsOnSpark3.readStreamSocket --master "local[*]"

PATH/TO/YOUR/HandsOnSpark3- readStreamSocket.jar

 2.2. Using a notebook: Just execute the code in your notebook.

As soon as you see the message Listening and ready… on your

screen, you can go back to step 1 and type some of the JSON

strings provided, for example:

{"NSS":"1234","Nom":"María", "DID":10, "DNom":"Cardio",

"Fecha":"01-09-2022"}

{"NSS":"2345","Nom":"Emilio", "DID":20, "DNom":"Neuro",

"Fecha":"01-09-2022"}

{"NSS":"3456","Nom":"Marta", "DID":30, "DNom":"Endo",

"Fecha":"01-09-2022"}

…

{"NSS":"4567","Nom":"Marcos", "DID":40, "DNom":"Gastro",

"Fecha":"01-09-2022"}

{"NSS":"5678","Nom":"Sonia", "DID":50, "DNom":"Gineco",

"Fecha":"01-09-2022"}

{"NSS":"6789","Nom":"Eduardo", "DID":10, "DNom":"Cardio",

"Fecha":"01-09-2022"}

With a cadence of seconds, you will see an output like the

following one coming up on your terminal:

Listening and ready...

Batch: 1

+----+------+---+------+----------+

|NSS |Nom |DID|DNom |Fecha |

+----+------+---+------+----------+

|1234|María |10 |Cardio|01-09-2022|

|2345|Emilio|20 |Neuro |01-09-2022|

Chapter 7 Spark StruCtured Streaming

264

|3456|Marta |30 |Endo |01-09-2022|

|4567|Marcos|40 |Gastro|01-09-2022|

|5678|Sonia |50 |Gineco|01-09-2022|

+----+------+---+------+----------+

Batch: 2

+----+-------+---+------+----------+

|NSS |Nom |DID|DNom |Fecha |

+----+-------+---+------+----------+

|6789|Eduardo|10 |Cardio|01-09-2022|

+----+-------+---+------+----------+

Batch: 3

+----+------+---+------+----------+

|NSS |Nom |DID|DNom |Fecha |

+----+------+---+------+----------+

|1009|Julia |20 |Neuro |01-09-2022|

|1010|Javier|30 |Endo |01-09-2022|

|1011|Laura |50 |Gineco|01-09-2022|

|1012|Nuria |10 |Cardio|01-09-2022|

|1013|Helena|10 |Cardio|01-09-2022|

+----+------+---+------+----------+

 3. Application termination

awaitTermination() waits for a user’s termination signal. Thus,

going to the terminal session started in step 1 and pressing Ctrl+C

or SIGTERM, the streaming context will be stopped.

This way of terminating a streaming application is neither elegant nor correct,

because the operations in progress when we terminate it are going to be lost. A more

elegant and correct approach is using Spark Structured Streaming Graceful Shutdown

we saw in the previous chapter. Thus, we encourage you to play with the previous code

adding to it the Graceful Shutdown feature.

Chapter 7 Spark StruCtured Streaming

265

 File System Structured Streaming Sources
Spark Streaming can use file systems as input databases. Spark can mount file streaming

processes on any HDFS-compatible file system such as HDFS itself, AWS S3, NFS, etc.

When a file system stream is set up, Spark monitors the path indicated and processes any

files created in it.

Spark monitors file systems according to the following patterns:

• For paths such as “hdfs://hadoop:9000/folder/”, “s3//…”, “file//…”,

etc., Spark processes the files as soon as they appear under the path.

• Glob patterns to specify directories “hdfs://<hadoop-host>:

<hadoop- port>/folder/textfiles/*/*” are also possible.

• All files within the path have to be in the same format.

• The number of files present under the path influences the time Spark

will take to scan it, even if no file has been updated.

• File updates within the same time window are ignored. Therefore,

once a file is processed, updating it will not cause its reprocessing.

• Spark will process files looking at the modification time, not the

creation time. Therefore, files already existing in the path when the

streaming process starts will not be processed.

• Setting access time of a file using Hadoop FileSystem.setTimes()

can cause a file to be processed out of the current processing

time window.

Now we are going to see how to use Spark to continue monitoring and streaming

files from a folder. In this case we are going to continue with the basic near-real-time

streaming Hospital Queue Management System, tweaking it a little bit again to use it to

stream files from a file system.

Chapter 7 Spark StruCtured Streaming

266

As we previously did with the socket data source example, two versions of the

program are provided. The first one could be compiled with sbt or another Scala

compiler:

package org.apress.handsOnSpark3

import org.apache.spark.sql.SparkSession

import org.apache.spark.sql.functions._

import org.apache.spark.sql.types.{IntegerType, StringType, StructField,

StructType}

import java.io.IOException

object dStreamsFiles {

 def main(args: Array[String]): Unit = {

 val PatientsSchema = StructType(Array(

 StructField("NSS", StringType),

 StructField("Nom", StringType),

 StructField("DID", IntegerType),

 StructField("DNom", StringType),

 StructField("Date", StringType)

)

)

 try {

 val spark: SparkSession = SparkSession

 .builder()

 .master("local[3]")

 .appName("Hand-On-Spark3_File_Data_Source")

 .getOrCreate()

 spark.sparkContext.setLogLevel("ERROR")

 val df = spark.readStream

 .schema(PatientsSchema).json("/tmp/patient_streaming")

 val groupDF = df.select("DID")

 .groupBy("DID").agg(count("DID").as("Accumulated"))

 .sort(desc("Accumulated"))

Chapter 7 Spark StruCtured Streaming

267

 printf("\n Listening and ready... \n")

 groupDF.writeStream

 .format("console")

 .outputMode("complete")

 .option("truncate", false)

 .option("newRows", 30)

 .start()

 .awaitTermination()

 } catch {

 case e: IOException => println("IOException occurred")

 case t: Throwable => println("Error receiving data", t)

 } finally {

 println("Finally block")

 }

 }

}

Next is the second version intended to be executed in a notebook such as Apache

Zeppelin, Jupyter Notebook, etc.:

import org.apache.spark.sql.SparkSession

import org.apache.spark.sql.types.{IntegerType, StringType, StructField,

StructType}

import org.apache.spark.sql.functions.desc

import java.io.IOException

val spark:SparkSession = SparkSession

 .builder()

 .master("local[3]")

 .appName("Hand-On-Spark3_File_Data_Source")

 .getOrCreate()

spark.sparkContext.setLogLevel("ERROR")

val PatientsSchema = StructType(Array(

 StructField("NSS", StringType),

 StructField("Nom", StringType),

Chapter 7 Spark StruCtured Streaming

268

 StructField("DID", IntegerType),

 StructField("DNom", StringType),

 StructField("Fecha", StringType)

)

)

try{

 val df = spark.readStream.schema(PatientsSchema)

 .json("/tmp/patient_streaming")

 val groupDF = df.select("DID")

 .groupBy("DID").agg(count("DID").as("Accumulated"))

 .sort(desc("Accumulated"))

 groupDF.writeStream

 .format("console")

 .outputMode("complete")

 .option("truncate",false)

 .option("newRows",30)

 .start()

 .awaitTermination()

} catch{

 case e: IOException => println("IOException occurred")

 case t: Throwable => println("Error receiving data", t)

}

 Running File System Streaming Applications Locally
In this case our program is going to monitor the selected /tmp/patient_streaming path

and process the files copied there as soon as Spark discovers them.

As in the “Running Socket Structured Streaming Applications Locally” section,

running the file system data source examples provided here also depends on the method

you have chosen to execute them. Here you can also choose either to build your own

JAR file from the code snippets provided before or use the notebook version. In any case,

running the application consists of a two-step process:

Chapter 7 Spark StruCtured Streaming

269

 1. Depending on how you are running the application

 1.1. If you are using a JAR file, open a terminal in your computer

and execute your application as shown in the following:

$SPARK_HOME/bin/spark-submit --class org.apress.

handsOnSpark3.dStreamsFiles --master "local[*]"

target/scala-2.12/HandsOnSpark3-dStreamsFiles-assembly-

fatjar-1.0.jar

 1.2. If you are using a notebook, just execute the code in your notebook.

 2. Open a new terminal in your computer to copy the JSON files

provided to the monitored folder.

As soon as you see on your screen the message Listening and

ready... , you can go back to step 2 and start copying JSON files

to the /tmp/patient_streaming folder,5, for example:

cp /PATH/TO/patient1.json /tmp/patient_streaming

cp /PATH/TO/patient2.json /tmp/patient_streaming

cp /PATH/TO/patient3.json /tmp/patient_streaming

cp /PATH/TO/patient4.json /tmp/patient_streaming

cp /PATH/TO/patient5.json /tmp/patient_streaming

With a cadence of seconds, you will start seeing on your terminal session or

notebook an output like this:

Listening and ready...

Batch: 0

+---+-----------+

|DID|Accumulated|

+---+-----------+

|10 |1 |

+---+-----------+

5 It is advised to copy the files progressively to better see how Spark processes them.

Chapter 7 Spark StruCtured Streaming

270

Batch: 1

+---+-----------+

|DID|Accumulated|

+---+-----------+

|20 |1 |

|10 |1 |

|30 |1 |

+---+-----------+

Batch: 2

+---+-----------+

|DID|Accumulated|

+---+-----------+

|10 |4 |

|20 |3 |

|40 |1 |

|50 |1 |

|30 |1 |

+---+-----------+

Batch: 3

+---+-----------+

|DID|Accumulated|

+---+-----------+

|10 |7 |

|20 |3 |

|50 |2 |

|30 |2 |

|40 |1 |

+---+-----------+

Chapter 7 Spark StruCtured Streaming

271

The examples provided generate untyped DataFrames; it means that the schema

provided is not validated at compile time, only at runtime when the code is executed.

So far, we have only been applying transformations to the data arriving to the

streaming process. For example, in our last program, the “Accumulated” column adds up

the input “DID” field. This is what is called stateless streaming. Suppose now a scenario

in which you want to find out the total occurrences of each value received by your

streaming application, updating the state of the previously processed information. Here

is where the concepts of streaming state and stateful streaming that we are going to see

next come into play.

7.5 Spark Structured Streaming Transformations
In this section we are going to walk you through the Spark Structured Streaming

supported data transformations. These data transformations are classified as stateless

and stateful operations. Only operations that can incrementally update DataFrame

aggregations are supported by Spark Structured Streaming. Stateful operations need to

maintain the event state across the streaming process or as long as we define.

Next, we explain the Structured Streaming notions mentioned before of streaming

state and stateless and stateful operations.

 Streaming State in Spark Structured Streaming
The state is one of the most important components of any streaming data pipeline.

Depending on the specific use case, it might be necessary to maintain the state of

different variables like counters while the streaming application is in operation.

In the process of dealing with stream data processing, every application must use

either stateless or stateful data management approaches. The main difference between

stateless and stateful operations is whether when executing incremental aggregations/

operations we need to keep track of ongoing event states.

Summarizing, in this context state basically means “ephemeral information” that

needs to be retained for a certain period of time in order to use it down the stream

process.

Chapter 7 Spark StruCtured Streaming

272

 Spark Stateless Streaming
Stateless state means that data included in the ongoing micro-batches is processed

without considering past or future information. One example of this kind of stateless

data processing could be the recollection and saving of web events (clicks, page

visits, etc.).

Stateless operations are those that can process the information independently

of the previously processed information. Examples of these operations are select(),

explode(), map(), flatMap(), filter(), and where(), to mention some of them. Stateless

operations support append and update output modes exclusively because information

processed by these operations cannot be updated downstream. On the other hand, they

do not support the complete output mode because it could be practically impossible to

accumulate the complete stream of information.

In the next section, we are going to explore how to perform stateful operations and

how the streaming configurations and resources have to be updated accordingly.

 Spark Stateful Streaming
Stateful stream processing is stream processing that maintains events’ states. It means

that an event state is maintained and shared among events along the stream process;

thus, event conditions can be maintained and/or updated over time. Stateful streams are

used to persist live aggregates in streaming aggregations.

When it comes to stateful operations, Spark Structured Streaming provides a simple

and concise API to maintain the state between different batches.

Stateful processing is necessary when we need to keep updated intermediate states

(information being processed) along the streaming process, for example, when we need

to perform data aggregation by key or event-time aggregations, assuming the ordered

arrival time of events could not be guaranteed. Depicted in Figure 7-3, you can see how

Spark uses the concept of StateStore/state store to maintain and share state information

about events between various batches.

Chapter 7 Spark StruCtured Streaming

273

Figure 7-3. Spark Structured Streaming state maintenance process

Apache Spark achieves stateful operations by saving the intermediate state

information in an in-memory key-value store named StateStore. The StateStore attains

fault tolerance, saving intermediate states in a file system directory called a checkpoint

directory.

Thus, with stateful streaming each micro-batch intermediate output is temporarily

preserved and shared between executions using the event “state.”

An example of stateful transformation is counting (df.groupBy().count()) the

number of events processed since the beginning of a query. Spark keeps the number of

events already counted in the event state and passes it to the next micro-batch, where

that number is added to the ongoing count. Event state is maintained in the Spark

executors’ memory and saved to a designated file system directory to provide fault

tolerance.

There are two types of stateful operations based on how intermediate information is

managed and removed:

• Managed stateful operations are operations that automatically

manage obsolete (“old”) states. Operators such as

• Streaming aggregations

• Stream-stream joins

• Streaming deduplication

are part of this group.

Chapter 7 Spark StruCtured Streaming

274

• Unmanaged stateful operations, such as

• mapGroupsWithState

• flatMapGroupsWithState

allow the user to define their own stateful operations.

 Stateful Streaming Aggregations
Spark stateful streaming aggregations can be classified as

• Time-based aggregations: Number of events processed per

unit of time

• No-time-based aggregations: Grouping events by key, for example

 Time-Based Aggregations

Time-based aggregations are studied in detail in Chapter 8. Thus, we are going to leave it

for now.

 No-Time-Based Aggregations

No-time-based aggregations include

• Global aggregations

Those are general aggregations with no key discrimination. In the

examples you have seen so far, it could be the number of patients

registering in a hospital:

PySpark

counts = PatientDS.groupBy().count()

// Scala

val counts = PatientDS.groupBy().count()

Chapter 7 Spark StruCtured Streaming

275

• Grouped aggregations

These are aggregations by key or with key discrimination. Adding

to the previous Hospital Queue Management System application

example, we could be interested in seeing only the number of

appointments of specific medical departments in a hospital.

In the following you can see a modified version of our Hospital

Queue Management System application example with stateful

grouped aggregations by department id and department name:

import org.apache.spark.sql.SparkSession

import org.apache.spark.sql.functions._

import org.apache.spark.sql.types.{IntegerType, StringType,

StructField, StructType,DoubleType,LongType}

import org.apache.spark.sql.{DataFrame, Dataset, Encoders,

SparkSession}

import java.io.IOException

val PatientsSchema = StructType(Array(

 StructField("NSS", StringType),

 StructField("Nom", StringType),

 StructField("DID", IntegerType),

 StructField("DNom", StringType),

 StructField("Fecha", StringType))

)

case class Patient(

 NSS: String,

 Nom: String,

 DID: Option[Long],

 DNom: String,

 Fecha: String

)

val spark:SparkSession = SparkSession.builder()

 .master("local[*]")

 .appName("Hand-On-Spark3_Socket_Data_Source")

 .getOrCreate()

Chapter 7 Spark StruCtured Streaming

276

spark.sparkContext.setLogLevel("ERROR")

val host = "localhost"

val port = 9999

try {

 val PatientDS = spark.readStream

 .format("socket")

 .option("host",host)

 .option("port",port)

 .load()

 .select(from_json(col("value"), PatientsSchema).

as("patient"))

 .selectExpr("Patient.*")

 .as[Patient]

 printf("\n Listening and ready... \n")

 val counts = PatientDS

 .groupBy(col("DID"),col("DNom"))

 .count()

 counts.writeStream

 .format("update")

 .format("console")

 .outputMode("complete")

 .option("truncate",false)

 .option("newRows",30)

 .start()

 .awaitTermination()

} catch {

 case e: java.net.ConnectException => println("Error

establishing connection to " + host + ":" + port)

 case e: IOException => println("IOException occurred")

 case t: Throwable => println("Error receiving data", t)

Chapter 7 Spark StruCtured Streaming

277

}finally {

 println("Finally block")

}

Running the previous code, you will see an output similar to the

next one:

Listening and ready...

Batch: 1

+---+------+-----+

|DID|DNom |count|

+---+------+-----+

|20 |Neuro |4 |

|40 |Gastro|1 |

|50 |Gineco|3 |

|30 |Endo |3 |

|10 |Cardio|9 |

+---+------+-----+

Batch: 2

+---+------+-----+

|DID|DNom |count|

+---+------+-----+

|20 |Neuro |11 |

|40 |Gastro|3 |

|50 |Gineco|9 |

|30 |Endo |8 |

|10 |Cardio|26 |

+---+------+-----+

Chapter 7 Spark StruCtured Streaming

278

Batch: 3

+---+------+-----+

|DID|DNom |count|

+---+------+-----+

|20 |Neuro |11 |

|40 |Gastro|3 |

|50 |Gineco|9 |

|30 |Endo |8 |

|10 |Cardio|27 |

+---+------+-----+

• Multiple aggregations

The groupBy clause allows you to specify more than one

aggregation function to transform column information. Therefore,

multiple aggregations can be performed at once. For example, you

can modify the previous code snippet as follows

val counts = PatientDS

.groupBy(col("DID"),col("DNom"))

.agg(count("*").alias("countDID"),

 sum("DID").alias("sumDID"),

 mean("DID").alias("meanDID"),

 stddev("DID").alias("stddevDID"),

 approx_count_distinct("DID").alias("distinctDID"),

 collect_list("DID").alias("collect_listDID"))

to obtain several aggregations together.

When you run the previous code and copy in your terminal

(remember nc -lk 9999) first the following JSON strings

{"NSS":"4567","Nom":"Marcos", "DID":40, "DNom":"Gastro",

"Fecha":"2023-02-23T00:00:03.002Z"}

{"NSS":"5678","Nom":"Sonia", "DID":50, "DNom":"Gineco",

"Fecha":"2023-02-23T00:00:04.002Z"}

Chapter 7 Spark StruCtured Streaming

279

{"NSS":"6789","Nom":"Eduardo", "DID":10, "DNom":"Cardio",

"Fecha":"2023-02-23T00:00:05.002Z"}

{"NSS":"1001","Nom":"Lorena", "DID":10, "DNom":"Cardio",

"Fecha":"2023-02-23T00:00:06.002Z"}

{"NSS":"1006","Nom":"Sara", "DID":20, "DNom":"Neuro",

"Fecha":"2023-02-23T00:00:07.002Z"}

{"NSS":"1002","Nom":"Teresa", "DID":10, "DNom":"Cardio",

"Fecha":"2023-02-23T00:00:08.002Z"}

{"NSS":"1003","Nom":"Luis", "DID":20, "DNom":"Neuro",

"Fecha":"2023-02-23T00:00:09.002Z"}

and after that this second set of JSON strings

{"NSS":"1004","Nom":"Tomás", "DID":30, "DNom":"Endo",

"Fecha":"2023-02-23T00:00:10.002Z"}

{"NSS":"1005","Nom":"Lorena", "DID":50, "DNom":"Gineco",

"Fecha":"023-02- 23T00:00:11.002Z"}

{"NSS":"1006","Nom":"Pedro", "DID":10, "DNom":"Cardio",

"Fecha":"023-02- 23T00:00:12.002Z"}

{"NSS":"1007","Nom":"Ester", "DID":10, "DNom":"Cardio",

"Fecha":"023-02- 23T00:00:13.002Z"}

{"NSS":"1008","Nom":"Marina", "DID":10, "DNom":"Cardio",

"Fecha":"023-02- 23T00:00:14.002Z"}

{"NSS":"1009","Nom":"Julia", "DID":20, "DNom":"Neuro",

"Fecha":"023-02- 23T00:00:15.002Z"}

{"NSS":"1010","Nom":"Javier", "DID":30, "DNom":"Endo",

"Fecha":"023-02- 23T00:00:16.002Z"}

{"NSS":"1011","Nom":"Laura", "DID":50, "DNom":"Gineco",

"Fecha":"023-02- 23T00:00:17.002Z"}

{"NSS":"1012","Nom":"Nuria", "DID":10, "DNom":"Cardio",

"Fecha":"023-02- 23T00:00:18.002Z"}

{"NSS":"1013","Nom":"Helena", "DID":10, "DNom":"Cardio",

"Fecha":"023-02- 23T00:00:19.002Z"}

Chapter 7 Spark StruCtured Streaming

280

you could see an output like the following one:

Listening and ready...

Batch: 1

+---+------+--------+------+-------+---------+-----------+---------------+

|DID|DNom |countDID|sumDID|meanDID|stddevDID|distinctDID|collect_listDID|

+---+------+--------+------+-------+---------+-----------+---------------+

|20 |Neuro |2 |40 |20.0 |0.0 |1 |[20, 20] |

|40 |Gastro|1 |40 |40.0 |null |1 |[40] |

|50 |Gineco|1 |50 |50.0 |null |1 |[50] |

|10 |Cardio|3 |30 |10.0 |0.0 |1 |[10, 10, 10] |

+---+------+--------+------+-------+---------+-----------+---------------+

Batch: 2

+---+------+--------+------+-------+---------+-----------+----------------------------+

|DID|DNom |countDID|sumDID|meanDID|stddevDID|distinctDID|collect_listDID |

+---+------+--------+------+-------+---------+-----------+----------------------------+

|20 |Neuro |3 |60 |20.0 |0.0 |1 |[20, 20, 20] |

|40 |Gastro|1 |40 |40.0 |null |1 |[40] |

|50 |Gineco|3 |150 |50.0 |0.0 |1 |[50, 50, 50] |

|30 |Endo |2 |60 |30.0 |0.0 |1 |[30, 30] |

|10 |Cardio|7 |70 |10.0 |0.0 |1 |[10, 10, 10, 10, 10, 10, 10]|

+---+------+--------+------+-------+---------+-----------+----------------------------+

Batch: 3

Chapter 7 Spark StruCtured Streaming

281

+---+------+--------+------+-------+---------+-----------+--------------------------------+

|DID|DNom |countDID|sumDID|meanDID|stddevDID|distinctDID|collect_listDID |

+---+------+--------+------+-------+---------+-----------+--------------------------------+

|20 |Neuro |3 |60 |20.0 |0.0 |1 |[20, 20, 20] |

|40 |Gastro|1 |40 |40.0 |null |1 |[40] |

|50 |Gineco|3 |150 |50.0 |0.0 |1 |[50, 50, 50] |

|30 |Endo |2 |60 |30.0 |0.0 |1 |[30, 30] |

|10 |Cardio|8 |80 |10.0 |0.0 |1 |[10, 10, 10, 10, 10, 10, 10, 10]|

+---+------+--------+------+-------+---------+-----------+--------------------------------+

Note the aggregation functions shown in the previous code snippet are included
for illustration purposes only. Obviously, functions such as sum(), mean(), stddev(),
approx_count_distinct(), and collect_list() applied to a medical department id "did"
do not make any business sense.

• Built-in aggregation functions

Spark Streaming built-in aggregation functions simplify the

process of summarizing data, which is an important component

of data analytics. To use them, you need to specify an aggregation

key for grouping and the aggregation function that defines how

the transformations will be performed across the DataFrame

columns.

Table 7-3 shows a list of the most common aggregation functions

for DataFrames. A complete list of aggregation functions for

column operations can be found in the official documentation.6

6 https://spark.apache.org/docs/3.3.2/api/R/reference/column_aggregate_
functions.html

Chapter 7 Spark StruCtured Streaming

https://spark.apache.org/docs/3.3.2/api/R/reference/column_aggregate_functions.html
https://spark.apache.org/docs/3.3.2/api/R/reference/column_aggregate_functions.html

282

Table 7-3. Spark Structured Streaming List of Aggregation Functions for

Dataframes

Aggregation Function Description

approx_count_distinct() returns a new column for approximate distinct count of a column.

avg() returns the average of the values in a group.

collect_list() returns a list with duplicates of all values from an input column.

collect_set() returns a set of the values from an input column without

duplicates.

countDistinct()(*) returns a new column for distinct elements in a column.

count() returns the number of elements in a column.

first() returns the first non-null element in a column.

last() returns the last non-null element.

kurtosis() returns the kurtosis of the values in a column. it could be used to

try to identify outliers in the data.

max()/min() they return the maximum or minimum value in a column.

mean() an alias for avg(), it returns the average of the elements in a

column.

skewness() returns the skewness of the values in a column. it is the degree

of distortion from the normal distribution.

stddev() an alias for stddev_samp(), it returns the unbiased sample

standard deviation of the expression in a group.

stddev_pop() returns population standard deviation of the expression in a

column.

(continued)

Chapter 7 Spark StruCtured Streaming

283

Aggregation Function Description

sum() returns the sum of the values in a column.

sumDistinct() returns the sum of the distinct values in a column.

variance() an alias for var_samp(), it returns the unbiased sample

variance of the values in a column.

var_pop() returns the population variance of the values in a column.

(*) Although countDistinct() appears in the literature available as a valid aggregation function
for Structured Streaming, at the time this book was written, the following message was outputted by
Spark when we tried to use it as one of the multiple aggregation functions described in the previous
section:

"Distinct aggregations are not supported on streaming DataFrames/Datasets.

Consider using approx_count_distinct() instead."

Table 7-3. (continued)

• User-defined aggregation

Finally, Spark Structured Streaming supports user-defined

aggregation functions. Check the Spark SQL Guide for more and

updated details.

7.6 Spark Checkpointing Streaming
To provide fault tolerance, Spark uses checkpointing to ensure it can recover from

failures. Checkpointing is used to persist intermediate information states in a file system

storage from which Spark can read upon failure. In stateful streaming, it is mandatory to

apply checkpointing to be able to restore transitional states in the eventuality of a failure.

The StateStore studied in the “Spark Stateful Streaming” section and depicted in

Figure 7-3 supports incremental checkpointing, meaning that only the key-values

updated are preserved, without modifying other key-value pairs present in the streaming

process.

Chapter 7 Spark StruCtured Streaming

284

To include checkpointing support in our streaming Hospital Queue Management

System application example, we are going to update our previous code snippet as

follows:

import org.apache.spark.sql.streaming._

// ...

val checkpointDir = "/tmp/streaming_checkpoint"

// ...

counts.writeStream

 // ...

 .trigger(Trigger.ProcessingTime("5 seconds"))

 .option("checkpointLocation", checkpointDir)

 // ...

 .start()

 .awaitTermination()

As you can see, we have introduced several new features that we explain in the

following:

• Trigger: Defines how often a streaming query must be triggered (run)

to process newly available streaming data—in other words, how

frequently our application has to review the data sources looking for

new information and possibly emit new data. Trigger was introduced

into Spark to set the stream batch period.

ProcessingTime is a trigger that assumes milliseconds as the

minimum unit of time. ProcessingTime(interval: String)

accepts CalendarInterval instances with or without interval

strings, for example:

• With interval strings: ProcessingTime("interval 10 seconds")

• Without interval strings: ProcessingTime("10 seconds")

There are four factory methods (options):

• Default: If no trigger is set, the streaming query runs micro-

batches one after another, as soon as the precedent micro-batch

has finished.

Chapter 7 Spark StruCtured Streaming

285

• OneTimeTrigger: With this trigger mode set, it executes the

trigger once and stops. The streaming query will execute

the data available in only one micro-batch. A use case for

this trigger mode could be to use it as a kind of daily batch

processing, saving computing resources and money. Example:

.trigger(Trigger.Once).

• ProcessingTime: The user can define the ProcessingTime

parameter, and the streaming query will be triggered with the

interval established, executing new micro-batches and possibly

emitting new data.

• ContinuousTrigger: At the time this book was written, continuous

processing was an experimental streaming execution mode

introduced in Spark 2.3.7 It has been designed to achieve

low latencies (in the order of 1 ms) providing at-least-once

guarantee. To provide fault tolerance, a checkpoint interval

must be provided as a parameter. Example: .trigger(Trigger.

Continuous("1 second")). A checkpoint interval of 1 s means

that the stream engine will register the intermediate results of

the query every second. Every checkpoint is written in a micro-

batch engine-compatible structure; therefore, after a failure, the

ongoing (supported) query can be restarted by any other kind

of trigger. For example, a supported query that was started using

the micro-batch mode can be restarted in continuous mode,

and vice versa. The continuous processing mode only supports

stateless queries such as select, map, flatMap, mapPartitions,

etc. and selections like where, filter, etc. All the SQL functions

are supported in continuous mode, except aggregation functions

current_timestamp() and current_date().

• checkpointLocation

7 For up-to-date information, please check the Apache Spark official documentation,
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.
html#continuous-processing

Chapter 7 Spark StruCtured Streaming

https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#continuous-processing
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#continuous-processing

286

This parameter points to the file system directory created for state storage

persistence purposes. To make the store fault-tolerant, the option checkpointLocation

must be set as part of the writeStream output configuration.

The state storage uses the checkpoint folder to store mainly

• Data checkpointing

• Metadata checkpointing

In case we are using stateful operations, the structure of the Spark Streaming

checkpoint folder and the state data representation folders will look as illustrated in

Table 7-4.

Table 7-4. Spark Streaming Checkpoint and the State Data Representation

Structure

The checkpointLocation Folder Structure The State Data Representation

/tmp/streaming_checkpoint

├── commits

│ ├── 0

│ ├── 1

│ ├── 2

│ └── 3

├── metadata

├── offsets

│ ├── 0

│ ├── 1

│ ├── 2

│ └── 3

└── state

 └── 0

└── state

└── 0

├── 0

│ ├── 1.delta

│ ├── 2.delta

│ ├── 3.delta

│ ├── 4.delta

│ └── _metadata

│ └── schema

├── 1

│ ├── 1.delta

│ ├── 2.delta

│ ├── 3.delta

│ └── 4.delta

├── 10

│ ├── 1.delta

│ ├── 2.delta

│ ├── 3.delta

│ └── 4.delta

Chapter 7 Spark StruCtured Streaming

287

 Recovering from Failures with Checkpointing
Upon failure or intentional shutdown, the intermediate information persisted inside

the checkpoint directory can be used to restore the query exactly where it stopped. In

addition, after restoration some changes are allowed in a streaming query and some

others not. For example, you can change the query sink from file to Kafka but not vice

versa. You can check out the most updated list of allowed and not allowed changes in

a streaming query between restarts from the same checkpoint location, looking at the

Structured Streaming Programming Guide documentation.8

7.7 Summary
In this chapter we went over the Spark Structured Streaming module. Firstly, we

studied the general semantics of message delivery reliability mechanisms. Secondly, we

compared Structured Streaming with Spark Streaming based on DStreams. After that,

we explained the technical details behind the Spark Structured Streaming architecture,

such as input and result tables as well as the different output modes supported. In

addition, we also went through the streaming API for DataFrames and datasets and

Structured Streaming stateless and stateful transformations and aggregations, giving

some interesting examples that will help you learn how to implement these features.

Finally, we studied the concepts of streaming checkpointing and recovery, giving some

practical examples. In the next chapter, we are moving forward studying streaming

sources and sinks.

8 https://spark.apache.org/docs/3.3.2/structured-streaming-programming-guide.
html#recovery-semantics-after-changes-in-a-streaming-query

Chapter 7 Spark StruCtured Streaming

https://spark.apache.org/docs/3.3.2/structured-streaming-programming-guide.html#recovery-semantics-after-changes-in-a-streaming-query
https://spark.apache.org/docs/3.3.2/structured-streaming-programming-guide.html#recovery-semantics-after-changes-in-a-streaming-query

289

CHAPTER 8

Streaming Sources
and Sinks
In the previous chapter, we went through the basics of an end-to-end Structured

Streaming process. Remember the foundations of Apache Spark Structured Streaming are

creating streaming dataframes by ingesting data from a source using the SparkSession.

readStream() method, applying business logic to it using the processing engine and

outputting the result DataFrame to a data sink using DataFrame.writeStream().

In this chapter we are going to delve into the usage of built-in data sources and sinks, as

well as how to create your own custom streaming sources and sinks using foreachBatch()

and foreach() methods to implement your own functionality and write your data to a

storage system other than that natively supported by Spark Structured Streaming.

8.1 Spark Streaming Data Sources
Remember we saw in the previous chapter Spark supports various input sources for data

ingestion. Some of them are the so-called built-in sources:

• File source: It is used for streaming data from a file system. Supported

file formats are text, CSV, JSON, and Parquet.

• Kafka source: It is used for reading data from Kafka topics. It requires

Kafka version 0.10.0 or higher.

Then, there are other data sources considered mostly for testing as they are not

fault- tolerant:

• Socket source: It reads the data from a TCP/IP socket connection.

• Rate source: It generates random data at the specified number of rows

per second, where each row of data has two columns: a “timestamp”

and a “value.”

© Alfonso Antolínez García 2023
A. Antolínez García, Hands-on Guide to Apache Spark 3, https://doi.org/10.1007/978-1-4842-9380-5_8

https://doi.org/10.1007/978-1-4842-9380-5_8

290

• Rate per micro-batch source: It is similar to the “rate” source, but in

this case it produces a consistent set of input rows per micro-batch

regardless of query execution configuration. For example, batch 0 will

produce values in the interval [0, 999], batch 1 will generate values in

the interval [1000, 9999], and so on.

 Reading Streaming Data from File Data Sources
Apache Spark Structured Streaming natively supports stream reading from file systems

employing the same file formats as those supported in batch processing (text, CSV, JSON,

ORC, and Parquet).

Spark Structured Streaming uses the DataStreamReader class for streaming text files

from a file system folder. When you define a directory as a streaming source, Spark treats

the files appearing in that location as a data stream. That means a FileStreamSource is a

source that reads text format files from a directory as they are seen by Spark. Next is an

example of how to set up a basic file source streaming:

val df = spark.readStream

 .format("text")

 .option("maxFilesPerTrigger", 1)

 .load("/tmp/logs")

You can also specify the schema of your data, for example:

val PatientsSchema = StructType(Array(

 StructField("NSS", StringType),

 StructField("Nom", StringType),

 StructField("DID", IntegerType),

 StructField("DNom", StringType),

 StructField("Fecha", StringType))

)

And then you can read the files based on the precedent schema:

val df = spark

 .readStream

 .schema(PatientsSchema)

 .json("/tmp/patient_streaming")

Chapter 8 Streaming SourCeS and SinkS

https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/streaming/DataStreamReader.html

291

In our preceding example, the returned df streaming DataFrame will have the

PatientsSchema. The “/tmp/patient_streaming” source directory must exist when the

stream process starts.

There are some important points to remember when using file sources:

• The source directory must exist when the stream process starts, as

mentioned before.

• All the files streamed to the source directory must be of the same

format, that is to say, they all must be text, JSON, Parquet, etc.,

and the schema must be also the same if we want to preserve data

integrity and avoid errors.

• Files already present in the designated folder when the streaming job

begins are ignored. This concept is depicted in Figure 8-1.

Figure 8-1. File data stream processing schema

• Spark uses system tools that list files to identify the new files.

Therefore, the files appearing in the streaming directory must be

complete and closed, because Spark will process them as soon as

they are discovered. Thus, any data addition or file update could

result in data loss.

• When Spark processes a file, it is internally labeled as processed.

Hence, it will not be processed again even if it is updated.

• In case several files should be processed, but Spark can only cope

with part of them in the next micro-batch, files with the earliest

timestamps will be processed first.

Chapter 8 Streaming SourCeS and SinkS

292

When creating a new FileStreamSource instance, two main options are available:

• schema: As we have already mentioned, it is the schema of the data,

and it is specified at instantiation time.

• maxFilesPerTrigger: It specifies the maximum number of files read

per micro-batch. Therefore, it is used to control the stream read rate

to the maximum number of files per trigger.

In the following you have a code example in which we stream data from a file source.

This example includes the schema of the files used as a data source, streams data from a

directory, and outputs the results of the transformation to the console:

package org.apress.handsOnSpark3

import org.apache.spark.sql.SparkSession

import org.apache.spark.sql.functions._

import org.apache.spark.sql.types.{IntegerType, StringType, StructField,

StructType}

import java.io.IOException

object dStreamsFiles {

 def main(args: Array[String]): Unit = {

 val PatientsSchema = StructType(Array(

 StructField("NSS", StringType),

 StructField("Nom", StringType),

 StructField("DID", IntegerType),

 StructField("DNom", StringType),

 StructField("Fecha", StringType)

)

)

 try {

 val spark: SparkSession = SparkSession

 .builder()

 .master("local[3]")

 .appName("Hand-On-Spark3_File_Data_Source")

 .getOrCreate()

Chapter 8 Streaming SourCeS and SinkS

293

 spark.sparkContext.setLogLevel("ERROR")

 val df = spark

 .readStream

 .schema(PatientsSchema)

 .json("/tmp/patient_streaming")

 val groupDF = df.select("DID")

 .groupBy("DID").agg(count("DID").as("Accumulated"))

 .sort(desc("Accumulated"))

 printf("\n Listening and ready... \n")

 groupDF.writeStream

 .format("console")

 .outputMode("complete")

 .option("truncate", false)

 .option("newRows", 30)

 .start()

 .awaitTermination()

 } catch {

 case e: IOException => println("IOException occurred")

 case t: Throwable => println("Error receiving data", t)

 } finally {

 println("Finally block")

 }

 }

}

Next, we are going to jump to another built-in data source and one of the most

commonly used nowadays. First, we are going to provide an introduction about Kafka,

and after that we are going to provide a practical example.

 Reading Streaming Data from Kafka
Apache Kafka is an open source, distributed, persistent, and highly scalable event

streaming platform enabling the development of real-time, event-driven applications,

among other features. Kafka organizes and stores events in topics, which are Kafka’s

Chapter 8 Streaming SourCeS and SinkS

294

most fundamental unit of organization. A topic is a named log of events, something

similar to a table in a relational database. Events in the log are immutable and durable,

meaning that once something has happened, they cannot be altered or deleted—

they persist unchanged and can remain in the topic for a defined period of time or,

eventually, indefinitely. Kafka logs/topics containing the events are files stored on a disk.

An example of how Kafka components interact in the Kafka architecture is shown in

Figure 8-2.

Figure 8-2. Kafka architecture

Kafka has four primary capabilities:

• Kafka allows applications to publish or subscribe to event streams,

enabling them to respond to events in real time.

• Kafka manages records preserving the order in which they occurred.

• Kafka is a fault-tolerant and scalable system that processes records in

real time.

Chapter 8 Streaming SourCeS and SinkS

295

• The simple semantics of topics allow Kafka to deliver high levels of

sustained in and out throughput and facilitate data replication to

enhance fault tolerance. Kafka topics are partitioned and replicated,

contributing to maintaining a high-performance simultaneous event

delivering service to a large number of consumers.

In Figure 8-3 you can see a graphical representation of the Kafka concepts of topic,

data partition, and replica.

Figure 8-3. Kafka concepts of topic, partition, and replica

Kafka capabilities can be leveraged through four APIs:

• Producer API: It is used to publish an event or stream of events to a

Kafka topic.

• Consumer API: Applications use it to subscribe to one or more topics

consuming the stream of data stored in the topic. Information in a

topic can be consumed in real time or can be read from historical

registers.

• Streams API: This API is more complex than the Producer and

Consumer APIs and provides the capacity to build complex data

and event streaming processes. For example, it can be used to set

up end-to-end stream jobs, receiving information, analyzing it, and

transforming it, if required.

• Connector API: This API is intended for the development of

connectors, to automate the data flow to and from a Kafka cluster.

Chapter 8 Streaming SourCeS and SinkS

296

Apache Kafka and Spark Streaming are often used together to process real-time

data streams. Coupling Kafka and Spark can lead to a reliable, performant, and scalable

streaming data processing pipeline able to cope with complex event processes. A sketch

of the Kafka-Spark Streaming integration architecture is depicted in Figure 8-4.

Figure 8-4. Kafka-Spark Streaming integration architecture

Implementing a data processing pipeline using Kafka-Spark Streaming includes data

intake from Kafka topics, manipulating and analyzing data using Spark Streaming, and

then storing the treated data in a final sink or injecting it back again into another Kafka

topic as part of another pipeline.

In the following code snippet, you have an example of how Apache Kafka and

Apache Spark Structured Streaming can work together to implement a highly scalable

real-time processing architecture:

package org.apress.handsOnSpark3.com

import org.apache.spark.sql.SparkSession

import org.apache.spark.sql.functions.{col, from_json}

import org.apache.spark.sql.types.{IntegerType, StringType, StructType,

StructField}

object SparkKafka {

 def main(args: Array[String]): Unit = {

 val spark: SparkSession = SparkSession.builder

Chapter 8 Streaming SourCeS and SinkS

297

 .master("local[3]")

 .appName("SparkStructuredStreamingHospital")

 .getOrCreate()

 spark.sparkContext.setLogLevel("ERROR")

 import spark.implicits._

 val df = spark.readStream

 .format("kafka")

 .option("kafka.bootstrap.servers", "localhost:9092")

 .option("subscribe", "patient")

 .option("startingOffsets", "earliest")

 .load()

 df.printSchema()

 val PatientsSchema = StructType(Array(

 StructField("NSS", StringType),

 StructField("Nom", StringType),

 StructField("DID", IntegerType),

 StructField("DNom", StringType),

 StructField("Fecha", StringType))

)

 val patient = df.selectExpr("CAST(value AS STRING)")

 .select(from_json(col("value"), PatientsSchema).as("data"))

 .select("data.*")

 patient.printSchema()

 val query = patient.writeStream

 .format("console")

 .outputMode("append")

 .start()

 .awaitTermination()

 }

}

Chapter 8 Streaming SourCeS and SinkS

298

As soon as you have your code ready, it is time to give it a try. The first thing we are

going to do is to start the Kafka environment.

Note at the time this book was written, kafka 3.4.0 was the latest release and
the one used in our examples. to be able to execute the code shown before, your
local environment must have Java 8+ installed.

Apache Kafka can be started using ZooKeeper or KRaft. In this book we are using

only the former.

Firstly, open a terminal session and from your $KAFKA_HOME directory execute the

following commands in order to start all services in the correct order. Run the following

commands to start the ZooKeeper service with the default configuration:

$ bin/zookeeper-server-start.sh config/zookeeper.properties

Secondly, open another terminal session and run the following commands to start

the Kafka broker service with the default configuration as well:

$ bin/kafka-server-start.sh config/server.properties

As soon as all preceding services are successfully running, a basic Kafka environment

will be ready to use. However, before we can write our first events, we have to create a topic.

Therefore, open another terminal session and run the following code to create a

“patient” topic to use with our Hospital Queue Management System data examples:

$ bin/kafka-topics.sh --create --topic patient --bootstrap-server

localhost:9092

The kafka-topics.sh command without any arguments can also be used to display

usage information. For example, it can be employed to show the details of the new

topic, such as the partition count, replicas, etc. of the patient topic. You can execute the

following command and options, to display that information:

bin/kafka-topics.sh --describe --topic patient --bootstrap-server

localhost:9092

Topic: patient TopicId: Bhq8M7cgTVqRrV18nT7dzg PartitionCount:

1 ReplicationFactor: 1 Configs:

 Topic: patient Partition: 0 Leader: 0 Replicas: 0 Isr: 0

Chapter 8 Streaming SourCeS and SinkS

299

Now is time to write some events into the patient topic just created and see the

results. To do that, we are going to create a Kafka producer using the “bin/kafka-

console- producer.sh”, which is located in the Kafka directory.

A Kafka producer is a client application that communicates with the Kafka brokers

for writing events into topics. Once the information is received, the brokers will save

it in a fault-tolerant storage for as long as we could need it, allegedly forever. This is

the reason our Spark application is going to be able to asynchronously consume the

information stored in our example topic.

To see how it works, open a new terminal session and run the producer console

client, as shown in the following, to write some events into our “patient” topic just

created. In this example we are going to use the data from the JSON files of Chapter 6. By

default, every line you type will be a new event being written to the “patient” topic:

$ bin/kafka-console-producer.sh --topic patient --bootstrap-server

localhost:9092

>{"NSS":"4567","Nom":"Marcos", "DID":40, "DNom":"Gastro", "Fecha":"01-09-2022"}

>{"NSS":"5678","Nom":"Sonia", "DID":50, "DNom":"Gineco", "Fecha":"01-09-2022"}

>{"NSS":"6789","Nom":"Eduardo", "DID":10, "DNom":"Cardio",

"Fecha":"01-09-2022"}

>{"NSS":"1234","Nom":"María", "DID":10, "DNom":"Cardio", "Fecha":"01-09-2022"}

>{"NSS":"4567","Nom":"Marcos", "DID":40, "DNom":"Gastro", "Fecha":"01-09-2022"}

> . . .

> . . .

> . . .

>{"NSS":"2345","Nom":"Emilio", "DID":20, "DNom":"Neuro", "Fecha":"01-09-2022"}

>{"NSS":"3456","Nom":"Marta", "DID":30, "DNom":"Endo", "Fecha":"01-09-2022"}

>{"NSS":"4567","Nom":"Marcos", "DID":40, "DNom":"Gastro",

"Fecha":"01-09-2022"}

>{"NSS":"4567","Nom":"Marcos", "DID":40, "DNom":"Gastro",

"Fecha":"01-09-2022"}

>{"NSS":"5678","Nom":"Sonia", "DID":50, "DNom":"Gineco", "Fecha":"01-09-2022"}

>{"NSS":"6789","Nom":"Eduardo", "DID":10, "DNom":"Cardio",

"Fecha":"01-09-2022"}

>{"NSS":"1234","Nom":"María", "DID":10, "DNom":"Cardio",

"Fecha":"01-09-2022"}

Chapter 8 Streaming SourCeS and SinkS

300

After pasting the content of the JSON files onto the Kafka producer console, run your

example program as follows:

$SPARK_HOME/bin/spark-submit --class org.apress.handsOnSpark3.com.

SparkKafka --master yarn --packages org.apache.spark:spark-sql-

kafka-0-10_2.12:3.2.0 /PATH/TO/JAR/FILE/HandsOnSpark3- Structured_Streaming_

Hospital- 1.0.jar

As soon as the program is running, you could see an output similar to the next one

coming out from your program:

root

 |-- key: binary (nullable = true)

 |-- value: binary (nullable = true)

 |-- topic: string (nullable = true)

 |-- partition: integer (nullable = true)

 |-- offset: long (nullable = true)

 |-- timestamp: timestamp (nullable = true)

 |-- timestampType: integer (nullable = true)

root

 |-- NSS: string (nullable = true)

 |-- Nom: string (nullable = true)

 |-- DID: integer (nullable = true)

 |-- DNom: string (nullable = true)

 |-- Fecha: string (nullable = true)

Batch: 0

+----+-----+---+------+----------+

| NSS| Nom|DID| DNom| Fecha|

+----+-----+---+------+----------+

|1234|María| 10|Cardio|01-09-2022|

+----+-----+---+------+----------+

Chapter 8 Streaming SourCeS and SinkS

301

Batch: 1

+----+------+---+------+----------+

| NSS| Nom|DID| DNom| Fecha|

+----+------+---+------+----------+

|4567|Marcos| 40|Gastro|01-09-2022|

|5678| Sonia| 50|Gineco|01-09-2022|

+----+------+---+------+----------+

Batch: 2

+----+-------+---+------+----------+

| NSS| Nom|DID| DNom| Fecha|

+----+-------+---+------+----------+

|6789|Eduardo| 10|Cardio|01-09-2022|

+----+-------+---+------+----------+

Batch: 3

+----+------+---+------+----------+

| NSS| Nom|DID| DNom| Fecha|

+----+------+---+------+----------+

|1234| María| 10|Cardio|01-09-2022|

|2345|Emilio| 20| Neuro|01-09-2022|

|3456| Marta| 30| Endo|01-09-2022|

|4567|Marcos| 40|Gastro|01-09-2022|

+----+------+---+------+----------+

Chapter 8 Streaming SourCeS and SinkS

302

Batch: 4

+----+-------+---+------+----------+

| NSS| Nom|DID| DNom| Fecha|

+----+-------+---+------+----------+

|4567| Marcos| 40|Gastro|01-09-2022|

|5678| Sonia| 50|Gineco|01-09-2022|

|6789|Eduardo| 10|Cardio|01-09-2022|

|1234| María| 10|Cardio|01-09-2022|

|4567| Marcos| 40|Gastro|01-09-2022|

|5678| Sonia| 50|Gineco|01-09-2022|

|6789|Eduardo| 10|Cardio|01-09-2022|

|1234| María| 10|Cardio|01-09-2022|

|2345| Emilio| 20| Neuro|01-09-2022|

|3456| Marta| 30| Endo|01-09-2022|

|4567| Marcos| 40|Gastro|01-09-2022|

+----+-------+---+------+----------+

To double-check the results of your streaming process, you can also read the events

from the Kafka brokers using a Kafka consumer, which is a client application that

subscribes to (reads and processes) events.

To see how that works, open another terminal session and run the consumer console

client as shown in the following, to read the patient topic we created before:

$ bin/kafka-console-consumer.sh --topic patient --from-beginning

--bootstrap-server localhost:9092

You will see on your screen an output similar to the following one:

{"NSS":"1234","Nom":"María", "DID":10, "DNom":"Cardio", "Fecha":"01-09-2022"}

{"NSS":"2345","Nom":"Emilio", "DID":20, "DNom":"Neuro", "Fecha":"01-09-2022"}

{"NSS":"3456","Nom":"Marta", "DID":30, "DNom":"Endo", "Fecha":"01-09-2022"}

{"NSS":"4567","Nom":"Marcos", "DID":40, "DNom":"Gastro",

"Fecha":"01-09-2022"}

. . .

. . .

Chapter 8 Streaming SourCeS and SinkS

303

{"NSS":"4567","Nom":"Marcos", "DID":40, "DNom":"Gastro",

"Fecha":"01-09-2022"}

{"NSS":"5678","Nom":"Sonia", "DID":50, "DNom":"Gineco", "Fecha":"01-09-2022"}

{"NSS":"6789","Nom":"Eduardo", "DID":10, "DNom":"Cardio",

"Fecha":"01-09-2022"}

To be able to compile the code examples used in this section, you have to use the

correct Kafka dependencies and Scala compiler version, and all depend on your Kafka,

Spark, and Scala versions installed.

So far, we have talked about Spark built-in streaming data sources like TCP/IP

sockets, files, Apache Kafka, etc. Other advanced streaming applications that can be

paired with Apache Spark to create stream pipes could be Kinesis. In the next section,

we are going to see how to create custom stream data sources using tools primarily not

intended for that purpose. In particular we are going to show you how to stream data

from a NoSQL database such as MongoDB.

 Reading Streaming Data from MongoDB
Spark Streaming allows live analysis of data streams read from MongoDB. In this section

we are going to stream data between MongoDB and Spark using Spark Structured

Streaming and the new continuous processing trigger.

To accomplish our task, we are also going to use the new v2 MongoDB Spark

connector. The latest 10.x series connector provides native integration between Spark

Structured Streaming and MongoDB and supports the new continuous trigger–type

 streaming. This connector also takes advantage of one of the features of MongoDB

version 5.1 and onward, called a “change stream cursor,” to subscribe to information

changes in the database.

Therefore, with this connector, we are going to open an input stream connection

from our MongoDB database and at the same time set up a MongoDB change stream

cursor to the designated database and data collection. This feature triggers a change

stream event as soon as new documents are inserted or the existing ones are modified

or deleted. Those event changes are forwarded to the specified consumer, in our

case Spark.

Chapter 8 Streaming SourCeS and SinkS

304

In Figure 8-5 you can see an example use case in which Spark and MongoDB are

coupled to build an event streaming architecture.

Figure 8-5. Spark-MongoDB event streaming architecture

Consider the following example that streams live information regarding medical

appointments from a MongoDB Atlas cluster onto our Hospital Queue Management

System application we have been using in previous chapters:

{"NSS":"2345","Nom":"Emilio", "DID":20, "DNom":"Neuro",

"Fecha":"01-09-2022"}

{"NSS":"3456","Nom":"Marta", "DID":30, "DNom":"Endo", "Fecha":"01-09-2022"}

Information like this in a MongoDB document looks as follows:

{

 "_id": {

 "$oid": "640cba70f9972564d8c4ef2f"

 },

 "NSS": "2345",

 "Nom": "Emilio",

 "DID": 20,

 "DNom": "Neuro",

 "Fecha": "01-09-2022"

}

Chapter 8 Streaming SourCeS and SinkS

305

In the next code snippet, we will use the new MongoDB Spark connector to read data

from our MongoDB data collection:

import org.apache.spark.sql.SparkSession

import org.apache.spark.{SparkConf, SparkContext}

import org.apache.spark.sql.streaming.Trigger

val spark:SparkSession = SparkSession

 .builder()

 .config("spark.jars.packages", "org.mongodb.spark:mongo-spark-

connector:10.1.1")

 .master("local[*]")

 .appName("Hand-On-Spark3_File_Data_Source_MongoDB")

 .getOrCreate()

val sc = spark.sparkContext

sc.setLogLevel("ERROR")

val mongoDBURI = "mongodb+srv://<user>:<password>@hands-on-spark3.abcdef.

mongodb.net/?retryWrites=true&w=majority"

val columsOfInterest = List("NSS","Nom","DID","DNom","Fecha","_id")

// define a streaming query

val df = spark.readStream

 .format("mongodb")

 .option("spark.mongodb.connection.uri", mongoDBURI)

 .option("spark.mongodb.database", "MongoDB_Data_Source")

 .option("spark.mongodb.collection", "MongoDB_Data_Source")

 .option("spark.mongodb.change.stream.publish.full.document.only", "true")

 .option("forceDeleteTempCheckpointLocation", "true")

 //.schema(PatientsSchema)

 .load()

df.printSchema()

if (df.isStreaming) printf(" ----- Streaming is running -----! \n")

import spark.implicits._

Chapter 8 Streaming SourCeS and SinkS

306

val groupDF = df.select(columsOfInterest.map(col): _*) // Here you could do

data transformation

groupDF.printSchema()

groupDF.writeStream

 .outputMode("append")

 .option("forceDeleteTempCheckpointLocation", "true")

 .format("console")

 .option("checkpointLocation", "/tmp/checkpointDir")

 //.trigger(Trigger.ProcessingTime("10 seconds"))

 .trigger(Trigger.Continuous("30 seconds"))

 .start()

 .awaitTermination()

Going through the preceding code, you notice that while reading from a MongoDB

database, we do not necessarily need to define an information schema as the schema is

inferred from the MongoDB collection.

In any case, if you prefer or need to define your data schema, you can do it and call

the stream read process as follows.

First, define the schema of your data:

val PatientsSchema = StructType(Array(

 StructField("NSS", StringType),

 StructField("Nom", StringType),

 StructField("DID", IntegerType),

 StructField("DNom", StringType),

 StructField("Fecha", StringType),

 StructField("_id", StringType))

)

After that, use it in combination with your readStream method like this, to define the

schema of the incoming data:

val df = spark.readStream

 .format("mongodb")

 .option("spark.mongodb.connection.uri", mongoDBURI)

 .option("spark.mongodb.database", "MongoDB_Data_Source")

Chapter 8 Streaming SourCeS and SinkS

307

 .option("spark.mongodb.collection", "MongoDB_Data_Source")

 .option("spark.mongodb.change.stream.publish.full.document.only", "true")

 .option("forceDeleteTempCheckpointLocation", "true")

 .schema(PatientsSchema)

 .load()

Another code line to pay attention to is the following one:

if (df.isStreaming) printf(" ----- Streaming is running -----! \n")

We have used the property isStreaming to verify that the dataset is streaming. It

returns true if the df dataset contains one or more data sources that constantly send data

as it arrives.

Finally, when writing the streamed data to the console, we have chosen the

continuous trigger type as it is supported by the latest MongoDB Spark connector.

In this case, we have set the trigger to “30 s” for the sake of readability, as using a

“1 s” trigger, for instance, would have been pulling data continuously to the console and

it would have been more difficult to collect it for the book:

 .trigger(Trigger.Continuous("30 seconds"))

Nevertheless, you can use any of the other supported trigger types, such as

• Default trigger: It runs micro-batches as soon as possible.

• ProcessingTime trigger: It triggers micro-batches with a time interval

specified.

• One-time trigger: It will execute only one micro-batch, process the

information available, and stop.

• Available-now trigger: It is similar to the one-time trigger with the

difference that it is designed to achieve better query scalability trying

to process data in multiple micro-batches based on the configured

source options (e.g., maxFilesPerTrigger).

In the next code example, we show how to modify the previous program to use

Trigger.ProcessingTime with a 10 s interval:

groupDF.writeStream

 .outputMode("append")

 .option("forceDeleteTempCheckpointLocation", "true")

Chapter 8 Streaming SourCeS and SinkS

308

 .format("console")

 .option("checkpointLocation", "/tmp/checkpointDir")

 .trigger(Trigger.ProcessingTime("10 seconds"))

 .start()

 .awaitTermination()

Well, now it is time to give the program a try.

As soon as you execute the program, insert some documents (information) in your

database. You can do as it as displayed in Figure 8-6 if you are using a graphical interface

such as MongoDB Compass.

Figure 8-6. Inserting a new document into the MongoDB database

Once the new document is inserted into the MongoDB database, you can see it

displayed as in Figure 8-7.

Chapter 8 Streaming SourCeS and SinkS

309

Figure 8-7. A new document is inserted into a MongoDB database and collection

You should see an outcome similar to the following one coming out from your

application:

root

|-- _id: string (nullable = true)

|-- NSS: string (nullable = true)

|-- Nom: string (nullable = true)

|-- DID: integer (nullable = true)

|-- DNom: string (nullable = true)

|-- Fecha: string (nullable = true)

----- Streaming is running -----!

… removed for brevity …

Chapter 8 Streaming SourCeS and SinkS

310

Batch: 1

+----+------+---+------+----------+--------------------+

| NSS| Nom|DID| DNom| Fecha| _id|

+----+------+---+------+----------+--------------------+

|3456| Marta| 30| Endo|01-09-2022|640cbaa7f9972564d...|

|4567|Marcos| 40|Gastro|01-09-2022|640cbab3f9972564d...|

+----+------+---+------+----------+--------------------+

Batch: 2

+----+-------+---+------+----------+--------------------+

| NSS| Nom|DID| DNom| Fecha| _id|

+----+-------+---+------+----------+--------------------+

|4567| Marcos| 40|Gastro|01-09-2022|640cbabdf9972564d...|

|5678| Sonia| 50|Gineco|01-09-2022|640cbac8f9972564d...|

|6789|Eduardo| 10|Cardio|01-09-2022|640cbad3f9972564d...|

+----+-------+---+------+----------+--------------------+

Batch: 3

+----+-----+---+------+----------+--------------------+

| NSS| Nom|DID| DNom| Fecha| _id|

+----+-----+---+------+----------+--------------------+

|1234|María| 10|Cardio|01-09-2022|640cbadcf9972564d...|

+----+-----+---+------+----------+--------------------+

As we have used the continuous trigger type with a 30 s interval, the data is not

streamed as it is registered, but every 30 s; otherwise, you could not see aggregated data

in different batches, unless you would be able to type quicker that the server is able to

process the information.

Now, after we have seen several stream sources, it is time to deal with data storage. In

data streaming terminology, those stores are known as data sinks.

Chapter 8 Streaming SourCeS and SinkS

311

8.2 Spark Streaming Data Sinks
As we have seen so far, Apache Spark Streaming is composed of three major logical

components: a data source (input source), the processing engine (business logic),

and finally an output destination (sink) for the resulting information after all the

computations, aggregations, transformations, etc. have been performed.

Thus, in Spark Streaming, output sinks are used to save business logic applied to an

external source. We have already seen in previous chapters that Spark Streaming uses the

class org.apache.spark.sql.streaming.DataStreamWriter as an interface to write a

streaming DataFrame/dataset to external storage systems via the writeStream method.

Spark includes a set of built-in output sinks:

• Console sink

• File sink

• Kafka sink

• ForeachBatch sink

• Foreach sink

All of them are natively supported by Spark Structured Streaming. The first one, the

console sink, is mostly intended for testing and debugging as it does not support fault

tolerance. The first three (console, file, and Kafka sinks) are already defined output

formats: console, as in format(“console”); file, as in format(“csv”)(or “json”, “orc”,

or “parquet”); and “kafka”. But what about writing the stream output to an arbitrary

storage system like a NoSQL database like MongoDB or to a relational database like

PostgreSQL? That is when Foreach and ForeachBatch sinks come into play.

Next, we study each one of them in detail.

 Writing Streaming Data to the Console Sink
As you have already seen in our examples, the results are displayed onto the console.

This data sink is not primarily intended for production systems; it would rather be a

useful development and debugging tool.

Chapter 8 Streaming SourCeS and SinkS

312

 Writing Streaming Data to the File Sink
The file sink stores the output data to a file system directory. Different file formats are

supported such as JSON, ORC, CSV, and Parquet.

Here is an example of how you can save your streaming output to a CSV file. The

code snippet is a modification of our streaming Hospital Queue Management System

application to save processed data to a file system instead of outputting it to the console:

PatientDF.writeStream

 // You have to change this part of the code

 .format("csv")

 .option("path", "/tmp/streaming_output/csv")

 // … for this

 .format("parquet")

 .option("path", "/tmp/streaming_output/parquet")

 // ...

 .trigger(Trigger.ProcessingTime("5 seconds"))

 .option("checkpointLocation", checkpointDir)

 .outputMode("append")

 .option("truncate",false)

 .option("newRows",30)

 .start()

 .awaitTermination()

Now, if you have a look at the designated output directories, you should find an

output similar to the one depicted in Figure 8-8.

Chapter 8 Streaming SourCeS and SinkS

313

Figure 8-8. Example of streaming output to the file sink in CSV and
Parquet formats

For the sake of simplicity and visibility, in Figure 8-8 we have paired both outputs

together. The CSV output format is on the left, and the Parquet output format is on

the right.

 Writing Streaming Data to the Kafka Sink
The Kafka sink publishes the output to one or more topics in Kafka.

Here is an example of how you can save your streaming output to a Kafka topic or topics:

counts.writeStream

 .format("kafka")

 .option("kafka.bootstrap.servers","host1:port1,host2:port2")

 // ...

 .option("topic", "patient")

 .option("checkpointLocation", "/tmp/kafka_checkpoint")

 .start()

 .awaitTermination()

Chapter 8 Streaming SourCeS and SinkS

314

Pay attention to the .option("kafka.bootstrap.servers","host1:port1,host2

:port2") line. As you can see, bootstrap.servers is a comma-separated list of socket

connections (host and port pairs) corresponding to the IP addresses of the Kafka brokers

in a “bootstrap” Kafka cluster. They are used by Kafka clients (producers and consumers)

to connect to Kafka clusters.

So far we took advantage of sinks where the output format was already natively

(built-in) supported like file, Kafka, or console. Now, we are going to study how to apply

our own business logic to each stream record before saving it and how to write the

information to our own defined data store using foreachBatch and foreach data sinks.

The main difference between the both of them is that while foreachBatch performs

custom logic at the micro-batch level, foreach performs that custom logic at the

row level.

Let’s now study those two sinks.

 Writing Streaming Data to the ForeachBatch Sink
The ForeachBatch sink takes a user-defined function that is executed on the output data

for every micro-batch of a streaming query, for example:

def saveToCSV = (df: DataFrame, timeStamp: Long) => {

 df.withColumn("timeStamp", date_format(current_date(),"yyyyMMdd"))

 .write.format("csv")

 .option("path", "/tmp/streaming_output/foreachBatch")

 .mode("append")

 .save()

}

// ...

// ...

PatientDF.writeStream

 .trigger(Trigger.ProcessingTime("5 seconds"))

 .option("checkpointLocation", checkpointDir)

 .outputMode("append")

 .foreachBatch(saveToCSV)

 .start()

 .awaitTermination()

Chapter 8 Streaming SourCeS and SinkS

315

As you can see, this code snippet is a small modification of our previous examples.

First of all, we have defined our own writing business logic encapsulated inside the

saveToCSV() function. This function adds a timestamp to each micro-batch processed.

Here is the code example:

// File Sink to CSV

import org.apache.spark.sql.SparkSession

import org.apache.spark.sql.functions._

import org.apache.spark.sql.types.{IntegerType, StringType, StructField,

StructType,DoubleType,LongType}

import org.apache.spark.sql.{DataFrame, Dataset, Encoders, SparkSession}

import java.io.IOException

import org.apache.spark.sql.streaming._

import org.apache.spark.sql.streaming.{GroupState,GroupStateTimeout,

OutputMode}

import org.apache.spark.sql.DataFrame

val PatientsSchema = StructType(Array(

 StructField("NSS", StringType),

 StructField("Nom", StringType),

 StructField("DID", IntegerType),

 StructField("DNom", StringType),

 StructField("Fecha", StringType))

)

case class Patient(

 NSS: String,

 Nom: String,

 DID: Option[Long],

 DNom: String,

 Fecha: String

)

def saveToCSV = (df: DataFrame, timeStamp: Long) => {

 df.withColumn("timeStamp", date_format(current_date(),"yyyyMMdd"))

 .write.format("csv")

 .option("path", "/tmp/streaming_output/foreachBatch")

Chapter 8 Streaming SourCeS and SinkS

316

 .mode("append")

 .save()

}

val spark:SparkSession = SparkSession.builder()

 .master("local[*]")

 .appName("Hand-On-Spark3_Socket_Data_Source")

 .getOrCreate()

spark.sparkContext.setLogLevel("ERROR")

import spark.implicits._

val host = "localhost"

val port = 9999

val checkpointDir = "/tmp/streaming_checkpoint"

try {

 val PatientDS = spark.readStream

 .format("socket")

 .option("host",host)

 .option("port",port)

 .load()

 .select(from_json(col("value"), PatientsSchema).as("patient"))

 .selectExpr("Patient.*")

 .as[Patient]

 printf("\n Listening and ready... \n")

 val PatientDF = PatientDS.select("*")

 PatientDF.writeStream

 .trigger(Trigger.ProcessingTime("5 seconds"))

 .option("checkpointLocation", checkpointDir)

 .outputMode("append")

 .foreachBatch(saveToCSV)

 .start()

 .awaitTermination()

} catch {

Chapter 8 Streaming SourCeS and SinkS

317

 case e: java.net.ConnectException => println("Error establishing

connection to " + host + ":" + port)

 case e: IOException => println("IOException occurred")

 case t: Throwable => println("Error receiving data", t)

}finally {

 println("In finally block")

}

Now, open a terminal session and as usual type

nc -lk 9999

Then, run the preceding code example, and when you see the following in your

notebook

Listening and ready...

go back to the previous terminal session and paste the JSON examples we provided

you in Chapter 6, for instance:

{"NSS":"1234","Nom":"María", "DID":10, "DNom":"Cardio",

"Fecha":"01-09-2022"}

. . .

{"NSS":"2345","Nom":"Emilio", "DID":20, "DNom":"Neuro",

"Fecha":"01-09-2022"}

{"NSS":"3456","Nom":"Marta", "DID":30, "DNom":"Endo", "Fecha":"01-09-2022"}

After running the previous program and pasting the data to the terminal console,

if you have a look at the designated output directory path /tmp/streaming_output/

foreachBatch/, you should find a bunch of files similar to the following:

/tmp/streaming_output/foreachBatch/

├── part-00000-07c12f65-b1d6-4c7b-b50d-2d8b25d724b8-c000.csv
├── part-00000-63507ff8-a09a-4c8e-a526-28890c170d96-c000.csv
├── part-00000-9a2caabe-7d84-4799-b788-a633cfc32042-c000.csv
├── part-00000-dabb8320-0c0e-4bb5-ad19-c36a53ac8d1e-c000.csv
├── part-00000-df0c4ba0-a9f0-40ed-b773-b879488b0a85-c000.csv
├── part-00000-f924d5cc-8e4a-4d5f-91b7-965ce2ac8710-c000.csv
├── part-00000-fd07c2e4-1db1-441c-8199-a69a064efe75-c000.csv

Chapter 8 Streaming SourCeS and SinkS

318

├── part-00001-07c12f65-b1d6-4c7b-b50d-2d8b25d724b8-c000.csv
├── part-00001-63507ff8-a09a-4c8e-a526-28890c170d96-c000.csv
├── part-00001-9a2caabe-7d84-4799-b788-a633cfc32042-c000.csv
├── part-00001-df0c4ba0-a9f0-40ed-b773-b879488b0a85-c000.csv
├── part-00001-fd07c2e4-1db1-441c-8199-a69a064efe75-c000.csv
├── part-00002-07c12f65-b1d6-4c7b-b50d-2d8b25d724b8-c000.csv
├── part-00002-9a2caabe-7d84-4799-b788-a633cfc32042-c000.csv
├── part-00002-df0c4ba0-a9f0-40ed-b773-b879488b0a85-c000.csv
├── part-00002-fd07c2e4-1db1-441c-8199-a69a064efe75-c000.csv
├── part-00003-07c12f65-b1d6-4c7b-b50d-2d8b25d724b8-c000.csv
├── part-00003-df0c4ba0-a9f0-40ed-b773-b879488b0a85-c000.csv
├── part-00003-fd07c2e4-1db1-441c-8199-a69a064efe75-c000.csv
├── part-00004-07c12f65-b1d6-4c7b-b50d-2d8b25d724b8-c000.csv
├── part-00004-df0c4ba0-a9f0-40ed-b773-b879488b0a85-c000.csv
├── part-00005-07c12f65-b1d6-4c7b-b50d-2d8b25d724b8-c000.csv
├── part-00005-df0c4ba0-a9f0-40ed-b773-b879488b0a85-c000.csv
└── _SUCCESS

Remember, Spark by default writes to disk in a distributed manner; therefore, you are

going to find the general program output as a sequence of partitioned files.

For example, we have copied and pasted the following JSON string into our console

session:

{"NSS":"1009","Nom":"Julia", "DID":20, "DNom":"Neuro",

"Fecha":"01-09-2022"}

Now, if we open the file part-00000-07c12f65-b1d6-4c7b-

b50d-2d8b25d724b8- c000.csv, for example

vi part-00000-07c12f65-b1d6-4c7b-b50d-2d8b25d724b8-c000.csv

we see the following content, including the timestamp at the end of the record, as we

expected:

1009,Julia,20,Neuro,01-09-2022,20230317

Chapter 8 Streaming SourCeS and SinkS

319

Exactly the same could be seen opening other output files:

{"NSS":"2345","Nom":"Emilio", "DID":20, "DNom":"Neuro",

"Fecha":"01-09-2022"}

2345,Emilio,20,Neuro,01-09-2022,20230317

{"NSS":"4567","Nom":"Marcos", "DID":40, "DNom":"Gastro",

"Fecha":"01-09-2022"}

4567,Marcos,40,Gastro,01-09-2022,20230317

And so forth.

In a similar way, you could write your own function to use PostgreSQL as a data sink.

You code could look like this:

def savePostgreSql = (df: DataFrame, timeStamp: Long) => {

 val url = "jdbc:postgresql://<host>:5432/database"

 df

 .withColumn("timeStamp", date_format(current_date(),"yyyyMMdd"))

 .write.format("jdbc")

 .option("driver": "org.postgresql.Driver")

 .option("url", url)

 .option("dbtable", "<your_table>")

 .option("user", "<your_user>")

 .option("password", <your_pasword>)

 .mode("append")

 .save()

}

Summarizing, foreachBatch writes each micro-batch to our designated storage

applying our custom logic.

 Writing Streaming Data to the Foreach Sink
The Foreach sink permits the application of user-defined business logic on each row

during the data writing process. It can be used to write stream data to any kind of

storage. If for any reason we cannot use foreachBatch, because a specific batch data

Chapter 8 Streaming SourCeS and SinkS

320

writer does not exist or you need to use the continuous processing mode, then foreach

could be the solution. When using foreach we have to implement three methods (open,

process, and close):

• open: Is the function in charge of opening the connection

• process: Writes data to the designated connection

• close: Is the function responsible for closing the connection

Spark Structured Streaming implements the preceding methods in the following

sequence: Method open() is called for every partition (partition_id) for every

streaming batch/epoch (epoch_id) as open(partitionId, epochId).

If open(partitionId, epochId) returns true for every row in the partition and for

every batch/epoch, then the method process(row) is executed.

The method close(error) is called if any error appears while processing the

data rows.

On the other hand, the close() method is executed if any open() method exists and

returns successfully, provided no system failure occurred in between1:

counts.writeStream

.foreach("some user logic goes here")

// ...

.start()

.awaitTermination()

Let’s see now with a simple example how foreach can be implemented. For the

purpose of this example, we have slightly modified our previous code snippet used for

the foreachBatch sink to accommodate it to meet our necessities:

// Console Sink with foreach()

import org.apache.spark.sql.{Column, Row, SparkSession}

import org.apache.spark.sql.functions._

import org.apache.spark.sql.types.{IntegerType, StringType, StructField,

StructType,DoubleType,LongType}

import org.apache.spark.sql.{DataFrame, Dataset, Encoders, SparkSession}

1 More information can be found here: https://docs.databricks.com/structured-streaming/
foreach.html

Chapter 8 Streaming SourCeS and SinkS

https://docs.databricks.com/structured-streaming/foreach.html
https://docs.databricks.com/structured-streaming/foreach.html

321

import java.io.IOException

import org.apache.spark.sql.streaming._

import org.apache.spark.sql.streaming.{GroupState,GroupStateTimeout,

OutputMode}

import org.apache.spark.sql.{DataFrame,ForeachWriter}

val PatientsSchema = StructType(Array(

 StructField("NSS", StringType),

 StructField("Nom", StringType),

 StructField("DID", IntegerType),

 StructField("DNom", StringType),

 StructField("Fecha", StringType))

)

case class Patient(

 NSS: String,

 Nom: String,

 DID: Option[Long],

 DNom: String,

 Fecha: String

)

val customWriterToConsole = new ForeachWriter[Row] {

 override def open(partitionId: Long, version: Long) = true

 override def process(record: Row) = {

 // You can transform record into a Sequence a loop through it

 //record.toSeq.foreach{col => println(col) }

 // ... or you can just print record field by field

 println("NSS: " + record.getAs("NSS")

 +" Nom: " + record.getAs("Nom")

 +" DID: " + record.getAs("DID")

 +" DNom: " + record.getAs("DNom")

 +" Fecha : " + record.getAs("Fecha"))

 }

Chapter 8 Streaming SourCeS and SinkS

322

 override def close(errorOrNull: Throwable) = {}

}

val spark:SparkSession = SparkSession.builder()

 .master("local[*]")

 .appName("Hand-On-Spark3_Socket_Data_Source")

 .getOrCreate()

spark.sparkContext.setLogLevel("ERROR")

import spark.implicits._

val host = "localhost"

val port = 9999

val checkpointDir = "/tmp/streaming_checkpoint"

try {

 val PatientDS = spark.readStream

 .format("socket")

 .option("host",host)

 .option("port",port)

 .load()

 .select(from_json(col("value"), PatientsSchema).as("patient"))

 .selectExpr("Patient.*")

 .as[Patient]

 printf("\n Listening and ready... \n")

 val PatientDF = PatientDS.select("*")

 PatientDF.writeStream

 .trigger(Trigger.ProcessingTime("5 seconds"))

 .option("checkpointLocation", checkpointDir)

 .outputMode("append")

 .foreach(customWriterToConsole)

 .start()

 .awaitTermination()

Chapter 8 Streaming SourCeS and SinkS

323

} catch {

 case e: java.net.ConnectException => println("Error establishing

connection to " + host + ":" + port)

 case e: IOException => println("IOException occurred")

 case t: Throwable => println("Error receiving data", t)

}finally {

 println("In finally block")

}

Before executing the preceding code, open a terminal session and create a socket

session as follows:

$ nc -lk 9999

Once the socket session has been created, it is time to run the code. As soon as you

see the line Listening and ready... on your screen, go back to the terminal with the socket

session open and start typing JSON lines. You can use lines like following:

{"NSS":"1234","Nom":"María", "DID":10, "DNom":"Cardio", "Fecha":"01-09-2022"}

{"NSS":"2345","Nom":"Emilio", "DID":20, "DNom":"Neuro", "Fecha":"01-09-2022"}

{"NSS":"3456","Nom":"Marta", "DID":30, "DNom":"Endo", "Fecha":"01-09-2022"}

{"NSS":"4567","Nom":"Marcos", "DID":40, "DNom":"Gastro", "Fecha":"01-09-2022"}

{"NSS":"5678","Nom":"Sonia", "DID":50, "DNom":"Gineco", "Fecha":"01-09-2022"}

{"NSS":"6789","Nom":"Eduardo", "DID":10, "DNom":"Cardio", "Fecha":"01-09-2022"}

{"NSS":"1001","Nom":"Lorena", "DID":10, "DNom":"Cardio", "Fecha":"01-09-2022"}

{"NSS":"1006","Nom":"Sara", "DID":20, "DNom":"Neuro", "Fecha":"01-09-2022"}

{"NSS":"1002","Nom":"Teresa", "DID":10, "DNom":"Cardio", "Fecha":"01-09-2022"}

{"NSS":"1003","Nom":"Luis", "DID":20, "DNom":"Neuro", "Fecha":"01-09-2022"}

You will see an output like this coming out of you program:

 Listening and ready...

NSS: 1234 Nom: María DID: 10 DNom: Cardio Fecha : 01-09-2022

NSS: 2345 Nom: Emilio DID: 20 DNom: Neuro Fecha : 01-09-2022

NSS: 3456 Nom: Marta DID: 30 DNom: Endo Fecha : 01-09-2022

NSS: 4567 Nom: Marcos DID: 40 DNom: Gastro Fecha : 01-09-2022

NSS: 5678 Nom: Sonia DID: 50 DNom: Gineco Fecha : 01-09-2022

NSS: 6789 Nom: Eduardo DID: 10 DNom: Cardio Fecha : 01-09-2022

Chapter 8 Streaming SourCeS and SinkS

324

NSS: 1001 Nom: Lorena DID: 10 DNom: Cardio Fecha : 01-09-2022

NSS: 1006 Nom: Sara DID: 20 DNom: Neuro Fecha : 01-09-2022

NSS: 1002 Nom: Teresa DID: 10 DNom: Cardio Fecha : 01-09-2022

NSS: 1003 Nom: Luis DID: 20 DNom: Neuro Fecha : 01-09-2022

Going back to the previous code example, you can see that the only differences

are the customWriterToConsole() function implementing the ForeachWriter and the

foreach sink call itself, inside the writeStream method.

Notice the implementation of the three mandatory methods—open, process, and

finally close:

val customWriterToConsole = new ForeachWriter[Row] {

 override def open(partitionId: Long, version: Long) = true

 override def process(record: Row) = {

 // You can transform record into a Sequence a loop through it

 //record.toSeq.foreach{col => println(col) }

 // ... or you can just print record field by field

 println("NSS: " + record.getAs("NSS")

 +" Nom: " + record.getAs("Nom")

 +" DID: " + record.getAs("DID")

 +" DNom: " + record.getAs("DNom")

 +" Fecha : " + record.getAs("Fecha"))

 }

 override def close(errorOrNull: Throwable) = {}

}

And notice the foreach sink call inside the writeStream method:

PatientDF.writeStream

 .trigger(Trigger.ProcessingTime("5 seconds"))

 .option("checkpointLocation", checkpointDir)

 .outputMode("append")

 .foreach(customWriterToConsole)

 .start()

 .awaitTermination()

Chapter 8 Streaming SourCeS and SinkS

325

You can modify the customWriterToConsole implementation to meet your

particular needs.

 Writing Streaming Data to Other Data Sinks
In previous sections we have seen how to use the Spark Structured Streaming built-in

data sinks. In this section we are going to see how to use the MongoDB Spark connector

to stream live data to MongoDB.

MongoDB stores the information in JSON-like documents with a variable structure,

offering a dynamic and flexible schema. MongoDB was designed for high availability and

scalability and natively incorporates built-in replication and auto-sharding.

The MongoDB sink allows you to write events from Spark to a MongoDB instance. The

sink connector converts the Spark streaming event data into a MongoDB document and

will do an append or overwrite depending on the save mode configuration you choose.

The MongoDB sink connector expects the output database created up front, while

the destination MongoDB collections can be created at runtime if they do not exist.

A graphical representation of the MongoDB connector for Spark can be seen in

Figure 8-9.

Figure 8-9. MongoDB connector for Spark representation

Next, we are going to see a practical code example, showing how to use MongoDB

as a Spark data sink. As in other previous examples, the program reads JSON files from

a directory as soon as they emerge over there and inserts the data into a MongoDB

collection. The JSON files we are using in this example are the patient examples we have

been using so far in previous examples and the ones firstly included in Chapter 6:

import org.apache.spark.sql.SparkSession

import org.apache.spark.{SparkConf, SparkContext}

import org.apache.spark.sql.types.{IntegerType, StringType, StructField,

StructType}

Chapter 8 Streaming SourCeS and SinkS

326

val spark:SparkSession = SparkSession

 .builder()

 .config("spark.jars.packages", "org.mongodb.spark:mongo-spark-

connector:10.1.1")

 .master("local[*]")

 .appName("Hand-On-Spark3_File_Data_Source_MongoDB_Sink")

 .getOrCreate()

val sc = spark.sparkContext

sc.setLogLevel("ERROR")

val mongoDBURI = "mongodb+srv://<user>:<password>@hands-on-spark3.akxgvpe.

mongodb.net/?retryWrites=true&w=majority"

val PatientsSchema = StructType(Array(

 StructField("NSS", StringType),

 StructField("Nom", StringType),

 StructField("DID", IntegerType),

 StructField("DNom", StringType),

 StructField("Fecha", StringType))

)

val df = spark.readStream

 .schema(PatientsSchema)

 .option("checkpointLocation", "/tmp/checkpoint")

 .json("/tmp/stream_mongo")

df.printSchema()

val newDF = df.select("*") // Here you could transform your data

newDF.printSchema()

newDF.writeStream

 .format("mongodb")

 .option("checkpointLocation", "/tmp/checkpoint")

 .option("forceDeleteTempCheckpointLocation", "true")

Chapter 8 Streaming SourCeS and SinkS

327

To see the code working, create a streaming directory, /tmp/stream_mongo, for

example, where to copy your JSON files.

When you run the preceding code and you see the following output

root

|-- NSS: string (nullable = true)

|-- Nom: string (nullable = true)

|-- DID: integer (nullable = true)

|-- DNom: string (nullable = true)

|-- Fecha: string (nullable = true)

you can start copying files to the designated streaming directory. For the purpose of

this example, we use the JSON files we used in Chapter 6. Here is an example of how you

can do it:

$ cp /tmp/json/patient1.json /tmp/stream_mongo

$ cp /tmp/json/patient2.json /tmp/stream_mongo

$ cp /tmp/json/patient3.json /tmp/stream_mongo

$ cp /tmp/json/patient4.json /tmp/stream_mongo

$ cp /tmp/json/patient5.json /tmp/stream_mongo

$ cp /tmp/json/patient6.json /tmp/stream_mongo

Remember the information inside those files looks like this:

{"NSS":"1009","Nom":"Julia", "DID":20, "DNom":"Neuro",

"Fecha":"01-09-2022"}

{"NSS":"1010","Nom":"Javier", "DID":30, "DNom":"Endo",

"Fecha":"01-09-2022"}

{"NSS":"1011","Nom":"Laura", "DID":50, "DNom":"Gineco",

"Fecha":"01-09-2022"}

{"NSS":"1012","Nom":"Nuria", "DID":10, "DNom":"Cardio",

"Fecha":"01-09-2022"}

{"NSS":"1013","Nom":"Helena", "DID":10, "DNom":"Cardio",

"Fecha":"01-09-2022"}

{"NSS":"1014","Nom":"Nati", "DID":10, "DNom":"Cardio",

"Fecha":"01-09-2022"}

Chapter 8 Streaming SourCeS and SinkS

328

Now, if you have a look at your MongoDB database—in our case we have used the

graphical interface MongoDB Compass to do it—you could see the data inserted from

the streaming process.

Figure 8-10 shows you how to filter the already recorded data using different data

keys. In this case we have used the department ID (“DID”). Remember MongoDB stores

the information in a JSON-like format, not in tables as traditional OLTP databases do.

Figure 8-10. MongoDB Compass filtering data by department ID (DID)

In Figure 8-11 you can see a similar filtering query, but in this case we have filtered

by the Social Security Number (SSN).

Chapter 8 Streaming SourCeS and SinkS

329

Figure 8-11. MongoDB Compass filtering data by Social Security Number (SSN)

Wrapping up, MongoDB is a well-known document-oriented, nonrelational

database intended for use with semi-structured data. It is very flexible and can handle

large volumes of heterogeneous information. Both MongoDB and Spark are published

under a free and open source license and together constitute a solid pillar to consider in

any modern data architecture.

8.3 Summary
In this chapter we went over the Spark Structured Streaming module. In particular

we have studied the most common data sources and data sinks, regarding streaming

data processing. Firstly, we studied the built-in Spark Structured Streaming data

sources, paying special attention to the most typical ones: the file, socket, and Kafka

sources. Kafka is one of most important streaming frameworks nowadays; therefore,

we developed a specific code example showing how to use it as a live stream source.

Secondly, we showed how to implement a custom data source and implemented

another practical example how to do it with MongoDB. After that, we moved forward

and repeated the same process with data sinks. First, we went through the defined data

sinks, that is to say, the console sink, file sink, and Kafka sink. Later on, we studied the

Chapter 8 Streaming SourCeS and SinkS

330

foreachBatch and foreach sinks and analyzed how they can be used by a user to create

their own tailor-made data sinks. To finalize, we also provided a practical example of a

custom-made data sink implemented once again with MongoDB. In the next chapter, we

are moving forward studying advanced streaming configurations, introducing the Event-

Time Window Operations and Watermarking.

Chapter 8 Streaming SourCeS and SinkS

331

CHAPTER 9

Event-Time
Window Operations
and Watermarking
After having studied the insights of Apache Spark Streaming and Structured Streaming,

in this chapter, we are going to focus on time-based stream processing.

Data analytics is evolving from batch to stream data processing for many use

cases. One of the reasons for this shift is that it is becoming more and more commonly

accepted that streaming data is more suited to model the life we live. This is particularly

true when we think about most of the systems we want to analyze and model—

autonomous cars receiving and emitting satellite navigation coordinates, Internet

of things (IoT) devices exchanging signals, road sensors counting vehicles for traffic

control, wearable devices, etc.—all have a common similarity; they all appear as a

continuous stream of events and in a timely manner. In fact, streaming data sources are

almost omnipresent.

Additionally, events are generated as a result of some activity, and in many scenarios

they require some immediate action to be taken. Consider, for example, applications for

fraud or anomaly detection or personalization, marketing, and advertising in real time

as some of the most common use cases of real-time stream processing and event-driven

applications.

Coherent time semantics are of paramount importance in stream processing as

many operations in event processing such as aggregation over a time window, joins, and

stragglers management depend on time.

In this chapter, we are going to go through the concept of temporal windows, also

known as time windows, for stream processing, study Spark’s built-in window functions,

and explain windowing semantics.

© Alfonso Antolínez García 2023
A. Antolínez García, Hands-on Guide to Apache Spark 3, https://doi.org/10.1007/978-1-4842-9380-5_9

https://doi.org/10.1007/978-1-4842-9380-5_9

332

9.1 Event-Time Processing
As mentioned just before, many operations in real-time event stream processing are

depending on time. When dealing with events and time, we have several options of time

marks for event, and depending on the use case at hand, we must prioritize one variant

over the others:

• Event-time: It refers to the time in which the event was created, for

example, produced by a sensor.

• Ingestion-time: It denotes the moment in time when the event

was ingested by the event streaming platform. It is implemented

by adding a timestamp to the event when it enters the streaming

platform.

• Processing-time, also called Wall-clock-time: It is the moment when

the event is effectively processed.

Next, Figure 9-1 graphically explains the previous event-time processing concepts.

Figure 9-1. Stream event-time processing schema

9.2 Stream Temporal Windows in Apache Spark
In real-time stream processing, performing actions on the data contained in temporal

windows is one of the most common operations.

Chapter 9 event-time WindoW operations and Watermarking

333

Temporal windows, also known as time windows, group stream elements by time

intervals. Apache Spark Structured Streaming also has event-time support and allows

windowed computations over event time and native support for windowing functions.

Before Apache version 3.2, Spark only supported “tumbling windows” and “sliding

windows,” but starting with Spark 3.2, Spark also includes “session windows” which

can also be used for both streaming and batch queries enabling engineers to develop

complex stream processing jobs with minimal work.

With Structured Streaming, data aggregations are very similar to Spark grouped

aggregations when applied to sliding windows. Regarding grouped aggregations,

aggregated calculations are maintained for each different element of the grouping

column. When it comes to window-based aggregations, aggregated calculations are

maintained for each window the event-time value belongs to.

Therefore, at the moment this book was written, Spark offers three types of temporal

windows to choose from:

• Tumbling windows

• Sliding windows

• Session windows

The common denominator of the precedent window types is that they are applied

over continuous streaming of data, splitting it into finite collections of information.

The application of temporal or finite time windows to stream data is particularly

indicated when we would like to perform operations like aggregations, joins, and pattern

identification. The next sections describe how the tumbling, sliding, and session window

types work and how to practically implement them. Let’s study each one of them

in detail.

 What Are Temporal Windows and Why Are They Important
in Streaming
Consider our example of the Hospital Queue Management System we have been using

so far. Consider as well that we have a counter device counting every 15 seconds the

number of patients entering a hospital. The resulting stream of events could result like in

Figure 9-2.

Chapter 9 event-time WindoW operations and Watermarking

334

Figure 9-2. Example of counting device delivering a stream of events

If we would like to know the number of patients entering the hospital, we could

add up the number of patients counted. However, the nature of a stream is that we face

a scenario of unbound data. That is to say, the flow of counts is endless, and therefore

we cannot produce a final total of the number of patients entering the facilities. One

alternative could be computing partial sums, that is to say, adding up the counts received

and updating the partial sum with the new values as they are collected. Acting like this,

we collect a series of running totals updated with new counts as it is shown in Figure 9-3.

Figure 9-3. Sequence of partial sums

However, a sequence of partial sums is a live metric as it is constantly updated.

Therefore, the strategy of rolling sums cannot be the best option if you want to analyze

data variability over time, for example, when is there a bigger influx of patients to the

hospital, in the morning or evening? Or how many patients enter the hospital every unit

of time as we see in Figure 9-4.

Chapter 9 event-time WindoW operations and Watermarking

335

Figure 9-4. Example of temporal window to count events per window time

To answer questions like the previous ones, we have different kinds of temporary

window operations. Next we are going to study the tumbling window operations.

9.3 Tumbling Windows
Tumbling windows or nonoverlapping windows discretize a stream into nonoverlapping

segments of data and apply a function against them, like the example depicted in

Figure 9-5.

The main features of tumbling windows are that disjuncts repeat, and an event only

belongs to one, and only one, tumbling window.

Figure 9-5. A ten-second tumbling window

Chapter 9 event-time WindoW operations and Watermarking

336

For the sake of simplicity, the previous figures are shown the same number of

events per window interval; however, be advised that is not always going to happen, and

 different numbers of events can fall in different temporary windows as is highlighted

next in Figure 9-6.

Figure 9-6. A ten-second tumbling window with different number of events
per window

The next code snippet uses a tumbling window of ten seconds’ size to perform

an aggregate count of the number of patients entering the hospital over the same

window time.

// Tumbling windows

import org.apache.spark.sql.SparkSession

import org.apache.spark.sql.functions._

import org.apache.spark.sql.types.{IntegerType, StringType, StructField,

StructType,DoubleType,LongType}

import org.apache.spark.sql.{DataFrame, Dataset, Encoders, SparkSession}

import java.io.IOException

import org.apache.spark.sql.streaming._

import org.apache.spark.sql.streaming.{GroupState,GroupStateTimeout,

OutputMode}

import org.apache.spark.sql.DataFrame

Chapter 9 event-time WindoW operations and Watermarking

337

val PatientsSchema = StructType(Array(

 StructField("NSS", StringType),

 StructField("Nom", StringType),

 StructField("DID", IntegerType),

 StructField("DNom", StringType),

 StructField("Fecha", StringType))

)

val spark:SparkSession = SparkSession.builder()

 .master("local[10]")

 .appName("Hand-On-Spark3_Socket_Data_Source")

 .getOrCreate()

spark.sparkContext.setLogLevel("ERROR")

import spark.implicits._

try {

 val PatientDS = spark.readStream

 .schema(PatientsSchema)

 .json("/tmp/window")

 printf("\n Listening and ready... \n")

 val PatientDF = PatientDS

 .groupBy(window(col("Fecha"), "10 seconds"))

 .agg(count("DNom").alias("Suma_x_Dpt"))

 PatientDF.writeStream

 .outputMode("complete")

 .format("console")

 .option("truncate", false)

 .start()

 .awaitTermination()

} catch {

 case e: IOException => println("IOException occurred")

 case t: Throwable => println("Error receiving data", t)

}finally {

 println("In finally block")

}

Chapter 9 event-time WindoW operations and Watermarking

338

To run the previous code example, first of all you have to create the necessary data

source (in our case “/tmp/window”) to pull the corresponding JSON files to.

Ones you have done so, run the code and when you see the message

Listening and ready...

Start copying files to the data source, for example:

$ cp json_file1.json /tmp/window

$ cp json_file2.json /tmp/window

$ cp json_file3.json /tmp/window

$ cp json_file4.json /tmp/window

$ cp json_file5.json /tmp/window

$ cp json_file6.json /tmp/window

$ cp json_file7.json /tmp/window

You will have a similar output like the following one coming out of your program:

 Listening and ready...

Batch: 0

+--+----------+

|window |Suma_x_Dpt|

+--+----------+

|{2023-02-23 01:00:00, 2023-02-23 01:00:10}|1 |

+--+----------+

Batch: 1

+--+----------+

|window |Suma_x_Dpt|

+--+----------+

|{2023-02-23 01:00:00, 2023-02-23 01:00:10}|3 |

+--+----------+

Chapter 9 event-time WindoW operations and Watermarking

339

Batch: 2

+--+----------+

|window |Suma_x_Dpt|

+--+----------+

|{2023-02-23 01:00:00, 2023-02-23 01:00:10}|6 |

+--+----------+

Batch: 3

+--+----------+

|window |Suma_x_Dpt|

+--+----------+

|{2023-02-23 01:00:00, 2023-02-23 01:00:10}|10 |

+--+----------+

Batch: 4

+--+----------+

|window |Suma_x_Dpt|

+--+----------+

|{2023-02-23 01:00:00, 2023-02-23 01:00:10}|10 |

|{2023-02-23 01:00:10, 2023-02-23 01:00:20}|1 |

+--+----------+

Batch: 5

+--+----------+

|window |Suma_x_Dpt|

+--+----------+

|{2023-02-23 01:00:00, 2023-02-23 01:00:10}|10 |

|{2023-02-23 01:00:10, 2023-02-23 01:00:20}|1 |

+--+----------+

Chapter 9 event-time WindoW operations and Watermarking

340

Batch: 6

+--+----------+

|window |Suma_x_Dpt|

+--+----------+

|{2023-02-23 01:00:00, 2023-02-23 01:00:10}|10 |

|{2023-02-23 01:00:10, 2023-02-23 01:00:20}|1 |

+--+----------+

Now if you introduce a small change in the previous code like this

 PatientDF.printSchema()

Before this part of the code

 PatientDF.writeStream

 .outputMode("complete")

 .format("console")

 .option("truncate", false)

 .start()

 .awaitTermination()

You will see the schema of your window data frame is like the following:

root

 |-- window: struct (nullable = true)

 | |-- start: timestamp (nullable = true)

 | |-- end: timestamp (nullable = true)

 |-- Suma_x_Dpt: long (nullable = false)

Therefore, if you prefer to see the window boundaries in separate columns, you can

tweak the previous code as follows:

 val PatientDF = PatientDS

 .groupBy(window(col("Fecha"), "10 seconds"))

 .agg(count("DNom").alias("Suma_x_Dpt"))

 .select("window.start", "window.end", "Suma_x_Dpt")

Chapter 9 event-time WindoW operations and Watermarking

341

And you will see the window information as shown in the following:

Listening and ready...

Batch: 0

+-------------------+-------------------+----------+

|start |end |Suma_x_Dpt|

+-------------------+-------------------+----------+

|2023-02-23 01:00:00|2023-02-23 01:00:10|1 |

+-------------------+-------------------+----------+

Batch: 1

+-------------------+-------------------+----------+

|start |end |Suma_x_Dpt|

+-------------------+-------------------+----------+

|2023-02-23 01:00:00|2023-02-23 01:00:10|3 |

+-------------------+-------------------+----------+

Batch: 2

+-------------------+-------------------+----------+

|start |end |Suma_x_Dpt|

+-------------------+-------------------+----------+

|2023-02-23 01:00:00|2023-02-23 01:00:10|6 |

+-------------------+-------------------+----------+

Batch: 3

+-------------------+-------------------+----------+

|start |end |Suma_x_Dpt|

+-------------------+-------------------+----------+

|2023-02-23 01:00:00|2023-02-23 01:00:10|10 |

+-------------------+-------------------+----------+

Chapter 9 event-time WindoW operations and Watermarking

342

Batch: 4

+-------------------+-------------------+----------+

|start |end |Suma_x_Dpt|

+-------------------+-------------------+----------+

|2023-02-23 01:00:00|2023-02-23 01:00:10|10 |

|2023-02-23 01:00:10|2023-02-23 01:00:20|1 |

+-------------------+-------------------+----------+

Batch: 5

+-------------------+-------------------+----------+

|start |end |Suma_x_Dpt|

+-------------------+-------------------+----------+

|2023-02-23 01:00:00|2023-02-23 01:00:10|10 |

|2023-02-23 01:00:10|2023-02-23 01:00:20|1 |

+-------------------+-------------------+----------+

Batch: 6

+-------------------+-------------------+----------+

|start |end |Suma_x_Dpt|

+-------------------+-------------------+----------+

|2023-02-23 01:00:00|2023-02-23 01:00:10|10 |

|2023-02-23 01:00:10|2023-02-23 01:00:20|1 |

+-------------------+-------------------+----------+

9.4 Sliding Windows
In certain cases, we might require a different kind of window. For example, we may need

overlapping windows if we would like to know every 30 minutes how many patients

entered the hospital during the last minute. To answer this kind of question, we need the

sliding windows.

Chapter 9 event-time WindoW operations and Watermarking

343

Sliding windows like tumbling windows are “fixed-sized,” but unlike them, they can

overlap. When window overlapping happens, an event can belong to multiple windows.

Overlapping occurs when the duration of the slide is smaller than the duration of

the window.

Thus, in Spark Streaming, to define a sliding window, two parameters are needed:

the window size (interval) and a sliding offset (overlapping dimension). For example, in

Figure 9-7, we have created a sliding window with ten seconds of size and sliding offset

of five seconds.

Figure 9-7. A ten-second sliding windows with sliding offset of five seconds

In the next code example, we calculate the aggregated number of people entering the

hospital every ten seconds. The example illustrates how to create a sliding window on

the column Fecha for every ten seconds and adding a sliding offset of five seconds.

Note please notice the time intervals established are very narrow for the sake of
usage illustration. the same code applied to a real hospital will probably use wider
time intervals.

Chapter 9 event-time WindoW operations and Watermarking

344

// Sliding Windows

import org.apache.spark.sql.SparkSession

import org.apache.spark.sql.functions._

import org.apache.spark.sql.types.{IntegerType, StringType, StructField,

StructType,DoubleType,LongType}

import org.apache.spark.sql.{DataFrame, Dataset, Encoders, SparkSession}

import java.io.IOException

import org.apache.spark.sql.streaming._

import org.apache.spark.sql.streaming.{GroupState,GroupStateTimeout,

OutputMode}

import org.apache.spark.sql.DataFrame

val PatientsSchema = StructType(Array(

 StructField("NSS", StringType),

 StructField("Nom", StringType),

 StructField("DID", IntegerType),

 StructField("DNom", StringType),

 StructField("Fecha", StringType))

)

val spark:SparkSession = SparkSession.builder()

 .master("local[10]")

 .appName("Hand-On-Spark3_Socket_Data_Source")

 .getOrCreate()

spark.sparkContext.setLogLevel("ERROR")

import spark.implicits._

try {

 val PatientDS = spark.readStream

 .schema(PatientsSchema)

 .json("/tmp/window")

 printf("\n Listening and ready... \n")

 val PatientDF = PatientDS

 .groupBy(window(col("Fecha"), "10 seconds", "5 seconds"))

Chapter 9 event-time WindoW operations and Watermarking

345

 .agg(count("DID").alias("Suma_x_Dpt"))

 PatientDF.writeStream

 .outputMode("complete")

 .format("console")

 .option("truncate", false)

 .start()

 .awaitTermination()

} catch {

 case e: IOException => println("IOException occurred")

 case t: Throwable => println("Error receiving data", t)

}finally {

 println("In finally block")

}

As we did in our previous tumbling windows example, before trying to run the

previous code example, first you have to create the data source for the JSON files (“/tmp/

window” folder in our case). After that, you can start pouring JSON files to that directory.

For example

$ cp json_file9.json /tmp/window

$ cp json_file8.json /tmp/window

$ cp json_file7.json /tmp/window

...

$ cp json_file1.json /tmp/window

As soon as you copy the mentioned files, and depending on the copying rate you

apply, the program will create a window size of ten seconds with a sliding interval of five

seconds. A new window of ten seconds will be created every 5, with a five-second gap

from the beginning of the previous one, as it is shown in the next program output.

Listening and ready...

Batch: 0

Chapter 9 event-time WindoW operations and Watermarking

346

+--+----------+

|window |Suma_x_Dpt|

+--+----------+

|{2023-02-23 01:00:25, 2023-02-23 01:00:35}|5 |

|{2023-02-23 01:00:35, 2023-02-23 01:00:45}|4 |

|{2023-02-23 01:00:30, 2023-02-23 01:00:40}|9 |

+--+----------+

Batch: 1

+--+----------+

|window |Suma_x_Dpt|

+--+----------+

|{2023-02-23 01:00:25, 2023-02-23 01:00:35}|10 |

|{2023-02-23 01:00:20, 2023-02-23 01:00:30}|8 |

|{2023-02-23 01:00:35, 2023-02-23 01:00:45}|4 |

|{2023-02-23 01:00:30, 2023-02-23 01:00:40}|9 |

|{2023-02-23 01:00:15, 2023-02-23 01:00:25}|3 |

+--+----------+

Batch: 2

+--+----------+

|window |Suma_x_Dpt|

+--+----------+

|{2023-02-23 01:00:25, 2023-02-23 01:00:35}|10 |

|{2023-02-23 01:00:20, 2023-02-23 01:00:30}|10 |

|{2023-02-23 01:00:35, 2023-02-23 01:00:45}|4 |

|{2023-02-23 01:00:10, 2023-02-23 01:00:20}|5 |

|{2023-02-23 01:00:30, 2023-02-23 01:00:40}|9 |

|{2023-02-23 01:00:15, 2023-02-23 01:00:25}|10 |

+--+----------+

Chapter 9 event-time WindoW operations and Watermarking

347

Batch: 3

+--+----------+

|window |Suma_x_Dpt|

+--+----------+

|{2023-02-23 01:00:25, 2023-02-23 01:00:35}|10 |

|{2023-02-23 01:00:20, 2023-02-23 01:00:30}|11 |

|{2023-02-23 01:00:35, 2023-02-23 01:00:45}|4 |

|{2023-02-23 01:00:10, 2023-02-23 01:00:20}|10 |

|{2023-02-23 01:00:30, 2023-02-23 01:00:40}|9 |

|{2023-02-23 01:00:15, 2023-02-23 01:00:25}|16 |

+--+----------+

As we did with tumbling windows, you can modify the previous code snippet as

follows:

 val PatientDF = PatientDS

 .groupBy(window(col("Fecha"), "10 seconds", "5 seconds"))

 .agg(count("DID").alias("Suma_x_Dpt"))

 .select("window.start", "window.end", "Suma_x_Dpt")

to separate window time data in two different columns.

As in the tumbling windows example, you will get a similar output like the

following one:

Listening and ready...

Batch: 0

+-------------------+-------------------+----------+

|start |end |Suma_x_Dpt|

+-------------------+-------------------+----------+

|2023-02-23 01:00:25|2023-02-23 01:00:35|5 |

|2023-02-23 01:00:35|2023-02-23 01:00:45|4 |

|2023-02-23 01:00:30|2023-02-23 01:00:40|9 |

+-------------------+-------------------+----------+

Chapter 9 event-time WindoW operations and Watermarking

348

Batch: 1

+-------------------+-------------------+----------+

|start |end |Suma_x_Dpt|

+-------------------+-------------------+----------+

|2023-02-23 01:00:25|2023-02-23 01:00:35|10 |

|2023-02-23 01:00:20|2023-02-23 01:00:30|8 |

|2023-02-23 01:00:35|2023-02-23 01:00:45|4 |

|2023-02-23 01:00:30|2023-02-23 01:00:40|9 |

|2023-02-23 01:00:15|2023-02-23 01:00:25|3 |

+-------------------+-------------------+----------+

Batch: 2

+-------------------+-------------------+----------+

|start |end |Suma_x_Dpt|

+-------------------+-------------------+----------+

|2023-02-23 01:00:25|2023-02-23 01:00:35|10 |

|2023-02-23 01:00:20|2023-02-23 01:00:30|10 |

|2023-02-23 01:00:35|2023-02-23 01:00:45|4 |

|2023-02-23 01:00:10|2023-02-23 01:00:20|5 |

|2023-02-23 01:00:30|2023-02-23 01:00:40|9 |

|2023-02-23 01:00:15|2023-02-23 01:00:25|10 |

+-------------------+-------------------+----------+

Batch: 3

+-------------------+-------------------+----------+

|start |end |Suma_x_Dpt|

+-------------------+-------------------+----------+

|2023-02-23 01:00:25|2023-02-23 01:00:35|10 |

|2023-02-23 01:00:20|2023-02-23 01:00:30|11 |

|2023-02-23 01:00:35|2023-02-23 01:00:45|4 |

Chapter 9 event-time WindoW operations and Watermarking

349

|2023-02-23 01:00:10|2023-02-23 01:00:20|10 |

|2023-02-23 01:00:30|2023-02-23 01:00:40|9 |

|2023-02-23 01:00:15|2023-02-23 01:00:25|16 |

+-------------------+-------------------+----------+

With sliding windows, we can answer questions such as what was the number of

patients visiting our hospital during the last minute, hour, etc.? or trigger events such

as “ring an alarm” whenever more than five patients for the same medical department

enter the hospital in the last ten seconds.

In the next section, we are going to study session windows which have a different

semantics compared to the previous two types of windows.

9.5 Session Windows
Session windows have an important different characteristic compared to tumbling and

sliding windows. Session windows have a variable geometry. Session windows’ length is

dynamic in size depending on the incoming events.

Session windows gather events that arrive at similar moments in time, isolating

periods of data inactivity. A session window starts with an input event collected and lasts

for as long as we keep receiving data within the gap interval duration equivalent to the

window length. Thus, in any case, it closes itself when the maximum window length is

reached. For example, in our previous examples in which we had a window size of ten

seconds, the session windows will begin right after receiving the first input. Thereafter,

all the events acquired within ten seconds will be associated with that window. This

window will close itself if it does not receive more inputs for a period of ten seconds. A

graphical depiction of how a session window works can be seen in Figure 9-8.

Figure 9-8. Ten-second session window with a gap interval of five seconds

Chapter 9 event-time WindoW operations and Watermarking

350

Session windows are the right tools when business questions like which patients

visited the hospital at a certain moment in time? Or what are the hospital busiest

moments along a defined period of time?

As usual, we include a practical example of session window usage. In the following

code snippet, you can see how session windows could be depicted as creating a window

to collect all upcoming events arriving within the timeout period. As you see, all

collected events inside the window time frame are added to the current session.

In the next example, we have implemented the session_window() to count incoming

events over a session window with a ten-second gap on the Fecha column of our

sample events.

// Session Window

import org.apache.spark.sql.SparkSession

import org.apache.spark.sql.functions._

import org.apache.spark.sql.types._

import org.apache.spark.sql.{DataFrame, Dataset, Encoders, SparkSession}

import java.io.IOException

import org.apache.spark.sql.streaming._

import org.apache.spark.sql.streaming.{GroupState,GroupStateTimeout,

OutputMode}

import org.apache.spark.sql.DataFrame

val PatientsSchema = StructType(Array(

 StructField("NSS", StringType),

 StructField("Nom", StringType),

 StructField("DID", IntegerType),

 StructField("DNom", StringType),

 StructField("Fecha", StringType))

)

val spark:SparkSession = SparkSession.builder()

 .master("local[10]")

 .appName("Hand-On-Spark3_Socket_Data_Source")

 .getOrCreate()

spark.sparkContext.setLogLevel("ERROR")

import spark.implicits._

Chapter 9 event-time WindoW operations and Watermarking

351

try {

 val PatientDS = spark.readStream

 .schema(PatientsSchema)

 .json("/tmp/window")

 PatientDS.printSchema()

 printf("\n Listening and ready... \n")

 val PatientDF = PatientDS

 .groupBy(

 session_window(col("Fecha"), "10 seconds"), col("DID")

).count()

 PatientDF.printSchema()

 PatientDF.writeStream

 .outputMode("complete")

 .format("console")

 .option("truncate", false)

 .start()

 .awaitTermination()

} catch {

 case e: IOException => println("IOException occurred")

 case t: Throwable => println("Error receiving data", t)

}finally {

 println("In finally block")

}

As you did in previous examples, before running the precedent code, you first have

to create the data source folder (again “/tmp/window” in our example). After that you

can copy JSON files provided as an example to the data source directory, for example,

like this:

$ cp json_file11.json /tmp/window

$ cp json_file9.json /tmp/window

...

$ cp json_file7.json /tmp/window

Chapter 9 event-time WindoW operations and Watermarking

352

Once the files are copied, your program should output something like this:

. . . Removed for brevity . . .

 Listening and ready...

Batch: 0

+--+---+-----+

|session_window |DID|count|

+--+---+-----+

|{2023-02-23 01:00:15.002, 2023-02-23 01:00:25.002}|20 |1 |

|{2023-02-23 01:00:18.002, 2023-02-23 01:00:31.002}|10 |4 |

|{2023-02-23 01:00:17.002, 2023-02-23 01:00:27.002}|50 |1 |

|{2023-02-23 01:00:16.002, 2023-02-23 01:00:26.002}|30 |1 |

+--+---+-----+

Batch: 1

+--+---+-----+

|session_window |DID|count|

+--+---+-----+

|{2023-02-23 01:00:15.002, 2023-02-23 01:00:25.002}|20 |2 |

|{2023-02-23 01:00:18.002, 2023-02-23 01:00:31.002}|10 |7 |

|{2023-02-23 01:00:17.002, 2023-02-23 01:00:27.002}|50 |2 |

|{2023-02-23 01:00:16.002, 2023-02-23 01:00:26.002}|30 |2 |

+--+---+-----+

Batch: 2

+--+---+-----+

|session_window |DID|count|

+--+---+-----+

|{2023-02-23 01:02:00.002, 2023-02-23 01:02:10.002}|20 |1 |

|{2023-02-23 01:00:15.002, 2023-02-23 01:00:25.002}|20 |2 |

Chapter 9 event-time WindoW operations and Watermarking

353

|{2023-02-23 01:01:34.002, 2023-02-23 01:01:44.002}|20 |1 |

|{2023-02-23 01:02:05.002, 2023-02-23 01:02:15.002}|10 |1 |

|{2023-02-23 01:00:18.002, 2023-02-23 01:00:31.002}|10 |7 |

|{2023-02-23 01:00:17.002, 2023-02-23 01:00:27.002}|50 |2 |

|{2023-02-23 01:02:20.002, 2023-02-23 01:02:30.002}|50 |1 |

|{2023-02-23 01:02:38.002, 2023-02-23 01:02:48.002}|50 |1 |

|{2023-02-23 01:01:30.002, 2023-02-23 01:01:43.002}|50 |4 |

|{2023-02-23 01:02:37.002, 2023-02-23 01:02:47.002}|30 |1 |

|{2023-02-23 01:00:16.002, 2023-02-23 01:00:26.002}|30 |2 |

|{2023-02-23 01:02:10.002, 2023-02-23 01:02:20.002}|30 |1 |

+--+---+-----+

Batch: 3

+--+---+-----+

|session_window |DID|count|

+--+---+-----+

|{2023-02-23 01:00:15.002, 2023-02-23 01:00:25.002}|20 |2 |

|{2023-02-23 01:01:34.002, 2023-02-23 01:01:44.002}|20 |1 |

|{2023-02-23 01:00:34.002, 2023-02-23 01:00:45.002}|20 |2 |

|{2023-02-23 01:02:00.002, 2023-02-23 01:02:10.002}|20 |1 |

|{2023-02-23 01:00:18.002, 2023-02-23 01:00:31.002}|10 |7 |

|{2023-02-23 01:02:05.002, 2023-02-23 01:02:15.002}|10 |1 |

|{2023-02-23 01:00:36.002, 2023-02-23 01:00:46.002}|10 |1 |

|{2023-02-23 01:02:20.002, 2023-02-23 01:02:30.002}|50 |1 |

|{2023-02-23 01:00:17.002, 2023-02-23 01:00:27.002}|50 |2 |

|{2023-02-23 01:00:30.002, 2023-02-23 01:00:48.002}|50 |5 |

|{2023-02-23 01:02:38.002, 2023-02-23 01:02:48.002}|50 |1 |

|{2023-02-23 01:01:30.002, 2023-02-23 01:01:43.002}|50 |4 |

|{2023-02-23 01:00:16.002, 2023-02-23 01:00:26.002}|30 |2 |

|{2023-02-23 01:02:10.002, 2023-02-23 01:02:20.002}|30 |1 |

|{2023-02-23 01:00:37.002, 2023-02-23 01:00:47.002}|30 |1 |

|{2023-02-23 01:02:37.002, 2023-02-23 01:02:47.002}|30 |1 |

+--+---+-----+

Chapter 9 event-time WindoW operations and Watermarking

354

 Session Window with Dynamic Gap
Another interesting feature of the session window type is that it supports what is called

dynamic gap duration1. The session window we implemented in our previous example,

though it has a variable size depending on the arrival or not of new events, has a maximum

size, the window length. The dynamic gap duration has the peculiarity of having a different

gap duration per session. Thus, instead of a fixed gap/timeout value, we can use an

expression to dynamically set the window size, adapting it to the input data characteristics.

In the following is a practical example showing you how to implement a session

window with dynamic gap duration.

// Session Windows II. Session window with dynamic gap duration

import org.apache.spark.sql.SparkSession

import org.apache.spark.sql.functions._

import org.apache.spark.sql.types._

import org.apache.spark.sql.{DataFrame, Dataset, Encoders, SparkSession}

import java.io.IOException

import org.apache.spark.sql.streaming._

import org.apache.spark.sql.streaming.{GroupState,GroupStateTimeout,

OutputMode}

import org.apache.spark.sql.DataFrame

val PatientsSchema = StructType(Array(

 StructField("NSS", StringType),

 StructField("Nom", StringType),

 StructField("DID", IntegerType),

 StructField("DNom", StringType),

 StructField("Fecha", StringType))

)

val spark:SparkSession = SparkSession.builder()

 .master("local[10]")

 .appName("Hand-On-Spark3_Socket_Data_Source")

 .getOrCreate()

1 More information: www.databricks.com/blog/2021/10/12/native-support-of-session-
window- in-spark-structured-streaming.html

Chapter 9 event-time WindoW operations and Watermarking

http://www.databricks.com/blog/2021/10/12/native-support-of-session-window-in-spark-structured-streaming.html
http://www.databricks.com/blog/2021/10/12/native-support-of-session-window-in-spark-structured-streaming.html

355

spark.sparkContext.setLogLevel("ERROR")

import spark.implicits._

try {

 val PatientDS = spark.readStream

 .schema(PatientsSchema)

 .json("/tmp/window")

 PatientDS.printSchema()

 printf("\n Listening and ready... \n")

 val PatientDF = PatientDS

 .groupBy(

 session_window(col("Fecha"),

 when(col("NSS") === "1009", "10 seconds")

 .when(col("NSS") === "2001", "30 seconds")

 .when(col("NSS") === "5000", "50 seconds")

 .otherwise("60 seconds")),

 col("DID")

).count()

 PatientDF.printSchema()

 PatientDF.writeStream

 .outputMode("complete")

 .format("console")

 .option("truncate", false)

 .start()

 .awaitTermination()

} catch {

 case e: IOException => println("IOException occurred")

 case t: Throwable => println("Error receiving data", t)

}finally {

 println("In finally block")

}

Chapter 9 event-time WindoW operations and Watermarking

356

The novelty of the previous code resides in this block of code, in which to implement

the session window with a dynamic timeout.

 val PatientDF = PatientDS

 .groupBy(

 session_window(col("Fecha"),

 when(col("NSS") === "1009", "10 seconds")

 .when(col("NSS") === "2001", "30 seconds")

 .when(col("NSS") === "5000", "50 seconds")

 .otherwise("60 seconds")),

 col("DID")

).count()

Now you can see that the session window length is dynamically established by the

value of the NSS field.

Once more, after creating the source data directory (“/tmp/window”) ,executing the

code example, and copying the JSON files provided as examples, the program will get

you an output similar to the next one.

. . . Removed for brevity . . .

 Listening and ready...

Batch: 0

+--+---+-----+

|session_window |DID|count|

+--+---+-----+

|{2023-02-23 01:00:15.002, 2023-02-23 01:00:25.002}|20 |1 |

|{2023-02-23 01:00:18.002, 2023-02-23 01:01:20.002}|10 |3 |

|{2023-02-23 01:00:17.002, 2023-02-23 01:01:17.002}|50 |1 |

|{2023-02-23 01:00:16.002, 2023-02-23 01:01:16.002}|30 |1 |

+--+---+-----+

Chapter 9 event-time WindoW operations and Watermarking

357

Batch: 1

+--+---+-----+

|session_window |DID|count|

+--+---+-----+

|{2023-02-23 01:00:15.002, 2023-02-23 01:00:45.002}|20 |2 |

|{2023-02-23 01:00:18.002, 2023-02-23 01:01:21.002}|10 |7 |

|{2023-02-23 01:00:17.002, 2023-02-23 01:01:17.002}|50 |2 |

|{2023-02-23 01:00:16.002, 2023-02-23 01:01:16.002}|30 |2 |

+--+---+-----+

Batch: 2

+--+---+-----+

|session_window |DID|count|

+--+---+-----+

|{2023-02-23 01:00:15.002, 2023-02-23 01:01:22.002}|20 |3 |

|{2023-02-23 01:00:18.002, 2023-02-23 01:01:28.002}|10 |11 |

|{2023-02-23 01:00:17.002, 2023-02-23 01:01:29.002}|50 |4 |

|{2023-02-23 01:00:16.002, 2023-02-23 01:01:23.002}|30 |3 |

+--+---+-----+

Batch: 3

+--+---+-----+

|session_window |DID|count|

+--+---+-----+

|{2023-02-23 01:00:15.002, 2023-02-23 01:01:35.002}|20 |5 |

|{2023-02-23 01:00:18.002, 2023-02-23 01:01:36.002}|10 |12 |

|{2023-02-23 01:00:17.002, 2023-02-23 01:01:38.002}|50 |9 |

|{2023-02-23 01:00:16.002, 2023-02-23 01:01:37.002}|30 |4 |

+--+---+-----+

Chapter 9 event-time WindoW operations and Watermarking

358

Batch: 4

+--+---+-----+

|session_window |DID|count|

+--+---+-----+

|{2023-02-23 01:00:15.002, 2023-02-23 01:03:00.002}|20 |7 |

|{2023-02-23 01:02:05.002, 2023-02-23 01:03:05.002}|10 |1 |

|{2023-02-23 01:00:18.002, 2023-02-23 01:01:36.002}|10 |12 |

|{2023-02-23 01:00:17.002, 2023-02-23 01:03:38.002}|50 |15 |

|{2023-02-23 01:00:16.002, 2023-02-23 01:01:37.002}|30 |4 |

|{2023-02-23 01:02:10.002, 2023-02-23 01:03:37.002}|30 |2 |

+--+---+-----+

Batch: 5

+--+---+-----+

|session_window |DID|count|

+--+---+-----+

|{2023-02-23 01:00:15.002, 2023-02-23 01:03:00.002}|20 |7 |

|{2023-02-23 01:00:18.002, 2023-02-23 01:01:36.002}|10 |12 |

|{2023-02-23 01:02:05.002, 2023-02-23 01:03:05.002}|10 |1 |

|{2023-02-23 01:00:17.002, 2023-02-23 01:03:38.002}|50 |15 |

|{2023-02-23 01:02:10.002, 2023-02-23 01:03:37.002}|30 |2 |

|{2023-02-23 01:00:10.002, 2023-02-23 01:01:37.002}|30 |5 |

+--+---+-----+

At the time this book was written and as for Spark 3.3.2, some restrictions are in place

when using session windows in streaming query:

• Output mode “update” is not supported.

• The grouping clause should include at least two columns, the

session_window and another one.

Chapter 9 event-time WindoW operations and Watermarking

359

However, when used for batch query, grouping clauses can only include the session_

window column as mentioned in the Apache Spark official documentation2.

9.6 Watermarking in Spark Structured Streaming
As we have already mentioned several times across this book, stream data is far from

ideal. We have already gone through the concepts of stranglers and late-arrival events.

Watermarking was introduced in Apache Spark 2.1 to support late-arriving data. For

example, watermarks are used in stateful streaming operations to avoid boundlessly

accumulating information in state, which in all likelihood will provoke instability due to

memory saturation, hence introducing computing latencies in the course of streaming

operations.

This section explains the basic concepts behind Watermarking and provides a

practical example for using watermarks with Spark stateful streaming operations.

 What Is a Watermark?
Watermarking could be defined as a lateness threshold. Watermarking permits Spark

Structured Streaming to tackle the problem of late-arrival events. Management of

stragglers or out-of-order events is critical in distributed architectures for the sake of

data integrity, accuracy, and fault tolerance. When dealing with this kind of complex

system, it is not guaranteed that the data will arrive to the streaming platform in the

order it was delivered. This could happen due to network bottlenecks, latency in the

communications, etc. To overcome these difficulties, the state of aggregate operations

must be retained.

Spark Structured Streaming uses watermarks as a cutoff point to control for how long

the Spark Stream Processing Engine will wait for late events.

Therefore, when we declare a watermark, we specify a timestamp field and a

watermark limit of time. For instance, consider our Session Windows code snippet. We

can modify it as shown in the following, to introduce a watermark threshold.

2 https://spark.apache.org/docs/latest/structured-streaming-programming-guide.
html#types-of-time-windows

Chapter 9 event-time WindoW operations and Watermarking

https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#types-of-time-windows
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#types-of-time-windows

360

 val PatientDF = PatientDS

 .withWatermark("Fecha", "30 seconds")

 .groupBy(

 session_window(col("Fecha"), "10 seconds"), col("DID")

).count()

In this example

• The Fecha column is used to define a 30 seconds’ watermark.

• A count is performed for each DID observed for each nonoverlapping

ten seconds’ window.

• State information is preserved for each count until the end of the

window is ten seconds older than the latest observed Fecha value.

After including a watermark, as new data arrives, Spark tracks the most recent

timestamp in the designated column and processes the incoming event within the

watermark threshold.

Here is the complete code example including a watermark of 30 seconds.

// Watermarking in Spark Structured Streaming

import org.apache.spark.sql.SparkSession

import org.apache.spark.sql.functions._

import org.apache.spark.sql.types._ //{IntegerType, StringType,

StructField, StructType,DoubleType,LongType}

import org.apache.spark.sql.{DataFrame, Dataset, Encoders, SparkSession}

import java.io.IOException

import org.apache.spark.sql.streaming._

import org.apache.spark.sql.streaming.{GroupState,GroupStateTimeout,

OutputMode}

import org.apache.spark.sql.DataFrame

val PatientsSchema = StructType(Array(

 StructField("NSS", StringType),

 StructField("Nom", StringType),

 StructField("DID", IntegerType),

Chapter 9 event-time WindoW operations and Watermarking

361

 StructField("DNom", StringType),

 StructField("Fecha", StringType))

)

val spark:SparkSession = SparkSession.builder()

 .master("local[10]")

 .appName("Hand-On-Spark3_Socket_Data_Source")

 .getOrCreate()

spark.sparkContext.setLogLevel("ERROR")

import spark.implicits._

try {

 val PatientDS = spark.readStream

 .schema(PatientsSchema)

 .json("/tmp/window")

 .withColumn("Fecha", to_timestamp(col("Fecha"),

"yyyy-MM- dd'T'HH:mm:ss.SSSX"))

 PatientDS.printSchema()

 printf("\n Listening and ready... \n")

 val PatientDF = PatientDS

 .withWatermark("Fecha", "30 seconds")

 .groupBy(

 session_window(col("Fecha"), "10 seconds"), col("DID")

).count()

 PatientDF.printSchema()

 PatientDF.writeStream

 .outputMode("complete")

 .format("console")

 .option("truncate", false)

 .start()

 .awaitTermination()

Chapter 9 event-time WindoW operations and Watermarking

362

} catch {

 case e: IOException => println("IOException occurred")

 case t: Throwable => println("Error receiving data", t)

}finally {

 println("In finally block")

}

There is another important part of the precedent code snippet you should pay

attention to.

 val PatientDS = spark.readStream

 .schema(PatientsSchema)

 .json("/tmp/window")

 .withColumn("Fecha", to_timestamp(col("Fecha"),

"yyyy-MM- dd'T'HH:mm:ss.SSSX"))

 PatientDS.printSchema()

root

 |-- NSS: string (nullable = true)

 |-- Nom: string (nullable = true)

 |-- DID: integer (nullable = true)

 |-- DNom: string (nullable = true)

 |-- Fecha: timestamp (nullable = true)

Watermark can only be used with timestamp or window columns. Thus, column

Fecha must be converted from string to timestamp type before it can be used; otherwise,

you will get an error.

Once again, if you run the precedent program and copy the JSON files provided as

examples to the data source directory (“/tmp/window”), you will get an output similar to

the following one.

. . . Removed for brevity . . .

 Listening and ready...

Batch: 0

Chapter 9 event-time WindoW operations and Watermarking

363

+--+---+-----+

|session_window |DID|count|

+--+---+-----+

|{2023-02-23 01:01:34.002, 2023-02-23 01:01:44.002}|20 |1 |

|{2023-02-23 01:02:00.002, 2023-02-23 01:02:10.002}|20 |1 |

|{2023-02-23 01:02:05.002, 2023-02-23 01:02:15.002}|10 |1 |

|{2023-02-23 01:02:20.002, 2023-02-23 01:02:30.002}|50 |1 |

|{2023-02-23 01:02:38.002, 2023-02-23 01:02:48.002}|50 |1 |

|{2023-02-23 01:01:30.002, 2023-02-23 01:01:43.002}|50 |4 |

|{2023-02-23 01:02:10.002, 2023-02-23 01:02:20.002}|30 |1 |

|{2023-02-23 01:02:37.002, 2023-02-23 01:02:47.002}|30 |1 |

+--+---+-----+

Batch: 1

+--+---+-----+

|session_window |DID|count|

+--+---+-----+

|{2023-02-23 01:02:00.002, 2023-02-23 01:02:10.002}|20 |1 |

|{2023-02-23 01:01:34.002, 2023-02-23 01:01:44.002}|20 |1 |

|{2023-02-23 01:02:05.002, 2023-02-23 01:02:15.002}|10 |1 |

|{2023-02-23 01:02:20.002, 2023-02-23 01:02:30.002}|50 |1 |

|{2023-02-23 01:02:38.002, 2023-02-23 01:02:48.002}|50 |1 |

|{2023-02-23 01:01:30.002, 2023-02-23 01:01:43.002}|50 |4 |

|{2023-02-23 01:02:37.002, 2023-02-23 01:02:47.002}|30 |1 |

|{2023-02-23 01:02:10.002, 2023-02-23 01:02:20.002}|30 |1 |

+--+---+-----+

Batch: 2

+--+---+-----+

|session_window |DID|count|

+--+---+-----+

|{2023-02-23 01:02:00.002, 2023-02-23 01:02:10.002}|20 |1 |

|{2023-02-23 01:01:34.002, 2023-02-23 01:01:44.002}|20 |1 |

Chapter 9 event-time WindoW operations and Watermarking

364

|{2023-02-23 01:02:05.002, 2023-02-23 01:02:15.002}|10 |1 |

|{2023-02-23 01:02:20.002, 2023-02-23 01:02:30.002}|50 |1 |

|{2023-02-23 01:02:38.002, 2023-02-23 01:02:48.002}|50 |1 |

|{2023-02-23 01:01:30.002, 2023-02-23 01:01:43.002}|50 |4 |

|{2023-02-23 01:02:37.002, 2023-02-23 01:02:47.002}|30 |1 |

|{2023-02-23 01:02:10.002, 2023-02-23 01:02:20.002}|30 |1 |

+--+---+-----+

Batch: 3

+--+---+-----+

|session_window |DID|count|

+--+---+-----+

|{2023-02-23 01:02:00.002, 2023-02-23 01:02:10.002}|20 |1 |

|{2023-02-23 01:01:34.002, 2023-02-23 01:01:44.002}|20 |1 |

|{2023-02-23 01:02:05.002, 2023-02-23 01:02:15.002}|10 |1 |

|{2023-02-23 01:02:20.002, 2023-02-23 01:02:30.002}|50 |1 |

|{2023-02-23 01:02:38.002, 2023-02-23 01:02:48.002}|50 |1 |

|{2023-02-23 01:01:30.002, 2023-02-23 01:01:43.002}|50 |4 |

|{2023-02-23 01:02:37.002, 2023-02-23 01:02:47.002}|30 |1 |

|{2023-02-23 01:02:10.002, 2023-02-23 01:02:20.002}|30 |1 |

+--+---+-----+

Batch: 4

+--+---+-----+

|session_window |DID|count|

+--+---+-----+

|{2023-02-23 01:02:00.002, 2023-02-23 01:02:10.002}|20 |1 |

|{2023-02-23 01:01:34.002, 2023-02-23 01:01:44.002}|20 |1 |

|{2023-02-23 01:02:05.002, 2023-02-23 01:02:15.002}|10 |1 |

|{2023-02-23 01:02:20.002, 2023-02-23 01:02:30.002}|50 |1 |

|{2023-02-23 01:02:38.002, 2023-02-23 01:02:48.002}|50 |1 |

|{2023-02-23 01:01:30.002, 2023-02-23 01:01:43.002}|50 |4 |

Chapter 9 event-time WindoW operations and Watermarking

365

|{2023-02-23 01:02:37.002, 2023-02-23 01:02:47.002}|30 |1 |

|{2023-02-23 01:02:10.002, 2023-02-23 01:02:20.002}|30 |1 |

+--+---+-----+

Batch: 5

+--+---+-----+

|session_window |DID|count|

+--+---+-----+

|{2023-02-23 01:02:00.002, 2023-02-23 01:02:10.002}|20 |1 |

|{2023-02-23 01:01:34.002, 2023-02-23 01:01:44.002}|20 |1 |

|{2023-02-23 01:02:05.002, 2023-02-23 01:02:15.002}|10 |1 |

|{2023-02-23 01:02:20.002, 2023-02-23 01:02:30.002}|50 |1 |

|{2023-02-23 01:02:38.002, 2023-02-23 01:02:48.002}|50 |1 |

|{2023-02-23 01:01:30.002, 2023-02-23 01:01:43.002}|50 |4 |

|{2023-02-23 01:02:37.002, 2023-02-23 01:02:47.002}|30 |1 |

|{2023-02-23 01:02:10.002, 2023-02-23 01:02:20.002}|30 |1 |

+--+---+-----+

9.7 Summary
In this chapter, we covered the different Event-Time Window Operations and

Watermarking with Apache Spark. First, we studied how to perform streaming

aggregations with the tumbling and sliding windows, the two types of fixed-sized

window operations. After that we learned how to implement a session window and how

to use the new Spark built-in function session_window to create a window column.

Special attention was paid to the session window with dynamic gap duration to adapt the

window length as a function of the input data. Finally, we have covered Watermarking

in Spark Structured Streaming and how it can be used to manage late-arriving events. In

the next and final chapter, we are going to explore future directions for Spark Streaming.

Chapter 9 event-time WindoW operations and Watermarking

367

CHAPTER 10

Future Directions
for Spark Streaming
Nowadays, data drives many decision-making processes for companies worldwide.

Information assists them in understanding their customers and attracting new ones.

Information is also used to streamline business processes and achieve both competitive

advantage and operational efficiency. These are the reasons why so many companies

understand the importance of data to make better decisions, improve customer

relationships, and launch strategic initiatives. Therefore, to take full advantage of

information, companies have to know how to extract its value.

At the same time, as the world digitizes, data is increasingly considered a

depreciating asset because organizations need to gain insights of huge volumes of

information in near real time. That is where stream processing comes in.

We have seen in previous chapters that stream processing permits processing and

analyzing live information. We have also seen that real-time information processing

can be used to instantly react to events and trigger proactive or reactive actions. Thus,

stream analysis enables businesses and organizations to take immediate action on

opportunities and threats.

Stream processing is finding increasing applications in event-driven architectures

and microservice processes orchestration. Another use of stream processing gaining

popularity nowadays is by coupling real-time data processing with artificial intelligence

(AI) and machine learning (ML) algorithms to make instantaneous predictions.

In the next section, we are going to show you a practical example of how to use Spark

Structured Streaming with Spark ML to apply ML algorithms to data streams, extract

patterns, gain insights into live information, and trigger decisions.

© Alfonso Antolínez García 2023
A. Antolínez García, Hands-on Guide to Apache Spark 3, https://doi.org/10.1007/978-1-4842-9380-5_10

https://doi.org/10.1007/978-1-4842-9380-5_10

368

10.1 Streaming Machine Learning with Spark
As we have already mentioned in this chapter, many data sources produce data in an

unbounded manner, for example, web logs, Internet of things (IoT) devices, transactions

from financial services, etc. These continuous streams of data were traditionally

stored and converted into bounded datasets for later batch processing. Therefore,

data collection, processing, and preparation for decision-making were complete

asynchronous processes, occurring at different moments in time.

In our time, many organizations simply cannot afford such a time delay between

data intake and decision-making due to the time value of the data. These days, many

scenarios require taking advantage of live data to proactively respond to events as close

as the information is available. For instance, consider use cases such as autonomous

driving, unmanned vehicles, etc.

In circumstances like that, rather than wait for the data to go through the whole

process, streaming analytics permits the detection of patterns in data in almost real time

and consequently triggers actions. Another important advantage of performing analyses

of in motion data is that as information properties and its patterns change over time,

streaming algorithms can adapt to them.

This section introduces how Spark Machine Learning (Spark ML) and Spark

Streaming can be coupled together to make predictions on streaming data.

Next code example shows how to train a machine learning model using Spark ML

to generate a PipelineModel to make predictions on streaming workflows. It is out of

scope of this book to teach you how to implement machine learning with Spark; thus, it

is assumed the reader has a basic knowledge of machine learning and how to implement

it with Apache Spark ML.

For the purpose of this example, we are going to use a small dataset of 303 rows and

14 columns for heart attack classification that is available for public domain and which

can be found at Heart Attack Analysis & Prediction Dataset. After training or ML model

on this dataset, we will be able to predict whether a person can suffer a heart attack

based on 13 dependent variables such as age, sex, and vital signs.

Table 10-1 shows a description of each column of the dataset.

Chapter 10 Future DireCtions For spark streaming

https://www.kaggle.com/datasets/rashikrahmanpritom/heart-attack-analysis-prediction-dataset

369

Table 10-1. Heart Attack Analysis and Prediction Dataset Columns Description

Column
name

Description and possible values

age age of the patient

sex sex of the patient

exang exercise induced angina

Value

1 Yes

0 no

ca number of major vessels (0–3)

cp Chest pain type

Value

1 typical angina

2 atypical angina

3 non-anginal pain

4 asymptomatic

trtbps resting blood pressure (in mm hg)

chol Cholesterol in mg/dl fetched via

Bmi sensor

fbs (Fasting blood sugar > 120 mg/dl)

(1 = true; 0 = false)

rest_ecg: resting electrocardiographic

results

Value

0 normal

1 having st-t wave abnormality (t wave inversions

and/or st elevation or depression of > 0.05 mV)

(continued)

Chapter 10 Future DireCtions For spark streaming

370

Table 10-1. (continued)

Column
name

Description and possible values

2 showing probable or definite left ventricular

hypertrophy by estes’ criteria

thalach maximum heart rate achieved

output

Value

0 Less chance of heart attack

1 more chance of heart attack

The column “output” represents the dependent variable, and as you can see, it

can only take two possible values: 0 and 1. Therefore, we have to deal with a binary

classification problem. For that reason, we can implement a logistic regression model as

it is suitable for probability prediction.

 What Is Logistic Regression?
Regression model (also known as logit model) is commonly used for classification and

predictive analytics. Logistic regression estimates the probability of an event occurring,

such as heart attack or no heart attack, based on a given database of independent

variables also called predictors.

Logistic regression is used to estimate the relationship between a dependent and

continuous variable and one or more independent categorical variables. Categorical

variables can only acquire a limited number of values, that is, true or false, yes or no, 1

or 0, etc.

Under the context of machine learning, logistic regression belongs to the family of

supervised machine learning models. Supervised machine learning models require a

labeled dataset to train the model.

Chapter 10 Future DireCtions For spark streaming

371

 Types of Logistic Regression
There are three types of logistic regression models based on their categorical output.

• Binary logistic regression: The dependent variable has only two

possible outcomes (e.g., 0 or 1).

• Multinomial logistic regression: The dependent variable has three or

more possible outcomes and these values have no specified order.

• Ordinal logistic regression: The dependent variable has three or more

possible outcomes, and these values have a specific order.

 Use Cases of Logistic Regression
Logistic regression can be used for regression (prediction) and classification problems.

Some of these use cases could be the following:

• Fraud detection: Identification of anomalies which are predictive

of fraud

• Disease prediction: In medicine, prediction of the likelihood of a

disease for a given population

Thus, logistic regression can facilitate prediction and enhance decision-making.

More information about the logistic regression can be found here.

After this short introduction about the concepts behind logistic regression, let’s now

focus on our code example.

First of all, we are going to create a schema for our dataframe to enumerate the

columns and their types of data while loading the data.

Here is the code.

import org.apache.spark.sql.types.{StructType,LongType}

import org.apache.spark.ml.feature.{OneHotEncoder, VectorAssembler,

MinMaxScaler, StringIndexer}

import org.apache.spark.ml.{Pipeline, PipelineModel}

import org.apache.spark.ml.classification.LogisticRegression

val schema = new StructType()

 .add("age",LongType,true)

 .add("sex",LongType,true)

Chapter 10 Future DireCtions For spark streaming

https://www.ibm.com/topics/logistic-regression

372

 .add("cp",LongType,true)

 .add("trtbps",LongType,true)

 .add("chol",LongType,true)

 .add("fbs",LongType,true)

 .add("restecg",LongType,true)

 .add("thalachh",LongType,true)

 .add("exng",LongType,true)

 .add("oldpeak",LongType,true)

 .add("slp",LongType,true)

 .add("caa",LongType,true)

 .add("thall",LongType,true)

 .add("output",LongType,true)

val spark:SparkSession = SparkSession.builder()

 .master("local[*]")

 .appName("Hand-On-Spark3_Spark_ML_and_Streaming")

 .getOrCreate()

spark.sparkContext.setLogLevel("ERROR")

val heartdF = spark.read.format("csv")

 .option("header", "true")

 .schema(schema)

 .load("file:///tmp/spark_ml")

 .withColumnRenamed("output","label")

println(heartdF.count)

heartdF.printSchema()

When you run this code, for instance, in a notebook, you will find the following output.

303

root

 |-- age: long (nullable = true)

 |-- sex: long (nullable = true)

 |-- cp: long (nullable = true)

 |-- trtbps: long (nullable = true)

 |-- chol: long (nullable = true)

Chapter 10 Future DireCtions For spark streaming

373

 |-- fbs: long (nullable = true)

 |-- restecg: long (nullable = true)

 |-- thalachh: long (nullable = true)

 |-- exng: long (nullable = true)

 |-- oldpeak: long (nullable = true)

 |-- slp: long (nullable = true)

 |-- caa: long (nullable = true)

 |-- thall: long (nullable = true)

 |-- label: long (nullable = true)

You can see in the preceding code the schema of the dataframe and column’s

data types.

A very important step when working with data is the process of data engineering and

feature engineering. As part of the data engineering process, it is always recommended

to check the existence of NULL values in our dataset.

If inadvertently you process a dataset with NULL values, at best you will receive

an error and understand something is wrong with the data, and at worst you will get

inaccurate results.

In our dataset, if you check the “oldpeak” column, running the following line of

code, you will find there are 173 NULL values

heartdF.filter("oldpeak is null").count

 res2: Long = 173

Therefore, we will have to take it into consideration along the construction of our

ML model.

The next step could be the split of our dataset between training (trainDF) and test

(testDF) subdatasets.

val Array(trainDF, testDF) = heartdF.randomSplit(weights=Array(.8, .2))

The previous line of code will randomly split the data in a 80%–20% proportion.

Eighty percent of the data will be used to train our PipelineModel and the other 20% (the

unseen data) to test it.

val lr = new LogisticRegression()

 .setMaxIter(10)

 .setRegParam(0.01)

Chapter 10 Future DireCtions For spark streaming

374

val oneHotEnc = new OneHotEncoder()

.setInputCols(Array("sex", "cp", "fbs", "restecg", "exng", "slp",

"caa","thall"))

.setOutputCols(Array("SexOHE", "cpOHE", "fbsOHE", "restecgOHE", "exngOHE",

"slpOHE", "caaOHE","thallOHE"))

val assemblerA = new VectorAssembler()

 .setInputCols(Array("age", "trtbps", "chol", "thalachh", "oldpeak"))

 .setOutputCol("features_scaled1")

 .setHandleInvalid("skip")

val scaler = new MinMaxScaler()

 .setInputCol("features_scaled1")

 .setOutputCol("features_scaled")

val assemblerB = new VectorAssembler()

 .setInputCols(Array("SexOHE", "cpOHE", "fbsOHE", "restecgOHE", "exngOHE",

"slpOHE", "caaOHE","thallOHE", "features_scaled"))

 .setOutputCol("features")

 .setHandleInvalid("skip")

val modelStages = Array(assemblerA, scaler, oneHotEnc, assemblerB, lr)

val pipeline = new Pipeline()

 .setStages(modelStages)

val PipelineModel = pipeline.fit(trainDF)

val trainingPred = PipelineModel.transform(trainDF)

trainingPred.select("label","probability","prediction").

show(truncate=false)

If you execute the precedent piece of code in your notebook, you will get an output

pretty similar to the next one.

Chapter 10 Future DireCtions For spark streaming

375

+-----+--+----------+

|label|probability |prediction|

+-----+--+----------+

|1 |[0.03400091691592197,0.965999083084078] |1.0 |

|1 |[0.05511659822191829,0.9448834017780817] |1.0 |

|0 |[0.5605994301074364,0.4394005698925636] |0.0 |

|1 |[0.03115074381750154,0.9688492561824985] |1.0 |

|1 |[0.004384634167846924,0.995615365832153] |1.0 |

|1 |[0.08773404036960819,0.9122659596303918] |1.0 |

|1 |[0.08773404036960819,0.9122659596303918] |1.0 |

|1 |[0.06985863429068614,0.9301413657093138] |1.0 |

|0 |[0.7286457381073151,0.27135426189268486] |0.0 |

|1 |[0.02996587703476992,0.9700341229652301] |1.0 |

|1 |[0.0016700146317826447,0.9983299853682174]|1.0 |

|0 |[0.36683434534535186,0.6331656546546481] |1.0 |

|1 |[0.04507024193962369,0.9549297580603763] |1.0 |

|1 |[0.013996165515300337,0.9860038344846996] |1.0 |

|1 |[0.016828318827434772,0.9831716811725653] |1.0 |

|1 |[0.2671331307894787,0.7328668692105214] |1.0 |

|1 |[0.32331781956753536,0.6766821804324646] |1.0 |

|1 |[0.09759145569985764,0.9024085443001424] |1.0 |

|1 |[0.032829375720753985,0.967170624279246] |1.0 |

|0 |[0.8584162531850159,0.1415837468149841] |0.0 |

+-----+--+----------+

only showing top 20 rows

If you pay attention to the previous outcome, you will see that the lower the

probability, the more likely the prediction to be 1, while on the other hand, the higher

the probability, the more likely the prediction to be 0.

One line of the previous code you should pay attention to is this one:

.setHandleInvalid("skip")

If you remember, our dataset has columns with NULL values. If you do not take care

of them, you will receive an error. The previous line of code skips NULL values.

Chapter 10 Future DireCtions For spark streaming

376

Once we have trained our model, we are going to divide our test dataset (tetDF) into

multiple files to simulate a streaming data flow. Then, we are going to set up a file data

source and copy each individual file to the source folder, as we did in previous chapters

simulating a stream of information.

Next is the code to divide testDF into ten partitions (individual files) and writing

them to the /tmp/spark_ml_streaming/ directory.

testDF.repartition(10)

.write.format("csv")

.option("header", true)

.mode("overwrite")

.save("file:///tmp/spark_ml_streaming/")

After executing the previous code snippet, if you have a look at the designated source

directory, you will find something similar to this:

$ tree /tmp/spark_ml_streaming/

/tmp/spark_ml_streaming/

├── part-00000-2c24d64a-2ecd-4674-a394-44aa5e17f131-c000.csv
├── part-00001-2c24d64a-2ecd-4674-a394-44aa5e17f131-c000.csv
├── part-00002-2c24d64a-2ecd-4674-a394-44aa5e17f131-c000.csv
├── part-00003-2c24d64a-2ecd-4674-a394-44aa5e17f131-c000.csv
├── part-00004-2c24d64a-2ecd-4674-a394-44aa5e17f131-c000.csv
├── part-00005-2c24d64a-2ecd-4674-a394-44aa5e17f131-c000.csv
├── part-00006-2c24d64a-2ecd-4674-a394-44aa5e17f131-c000.csv
├── part-00007-2c24d64a-2ecd-4674-a394-44aa5e17f131-c000.csv
├── part-00008-2c24d64a-2ecd-4674-a394-44aa5e17f131-c000.csv
├── part-00009-2c24d64a-2ecd-4674-a394-44aa5e17f131-c000.csv
└── _SUCCESS

Next, we have to create the streaming source to load the files from the data source as

soon as they appear in the directory.

val streamingSource=spark

 .readStream

 .format("csv")

 .option("header",true)

 .schema(schema)

Chapter 10 Future DireCtions For spark streaming

377

 .option("ignoreLeadingWhiteSpace",true)

 .option("mode","dropMalformed")

 .option("maxFilesPerTrigger",1)

 .load("file:///tmp/HeartTest/")

 .withColumnRenamed("output","label")

We have to control the quality of the data that is injected into the model; that is why

we have included the following lines:

 .option("ignoreLeadingWhiteSpace",true)

 .option("mode","dropMalformed")

to be sure that unnecessary white spaces and malformed rows do not get to

the model.

We have also added the line

.option("maxFilesPerTrigger",1)

to be sure only one file is processed at a time.

It is now time to write our PipelineModel, pass the input stream through it, and

construct the stream writer to pour the output into the sink.

val streamingHeart = PipelineModel.transform(streamingSource).select

("label","probability","prediction")

streamingHeart.writeStream

 .outputMode("append")

 .option("truncate", false)

 .format("console")

 .start()

 .awaitTermination()

Now, execute the precedent code snippet and copy the partitioned files to the data

source. For example

$ cp part-00000-2c24d64a-2ecd-4674-a394-44aa5e17f131-c000.csv /tmp/HeartTest/

$ cp part-00001-2c24d64a-2ecd-4674-a394-44aa5e17f131-c000.csv /tmp/HeartTest/

...

$ cp part-00009-2c24d64a-2ecd-4674-a394-44aa5e17f131-c000.csv /tmp/HeartTest/

Chapter 10 Future DireCtions For spark streaming

378

You will see an output similar to the next one, coming out of your program.

Batch: 0

+-----+--+----------+

|label|probability |prediction|

+-----+--+----------+

|0 |[0.7464870545074516,0.25351294549254844]|0.0 |

|1 |[0.1632367041842738,0.8367632958157262] |1.0 |

+-----+--+----------+

Batch: 1

+-----+---+----------+

|label|probability |prediction|

+-----+---+----------+

|0 |[0.9951659487928823,0.004834051207117662]|0.0 |

|0 |[0.9929886660069713,0.007011333993028668]|0.0 |

+-----+---+----------+

Batch: 2

+-----+---+----------+

|label|probability |prediction|

+-----+---+----------+

|0 |[0.6601488743972465,0.33985112560275355] |0.0 |

|0 |[0.9885105583774811,0.011489441622518859]|0.0 |

|1 |[0.004729033461790646,0.9952709665382093]|1.0 |

|1 |[0.002543643876197849,0.9974563561238021]|1.0 |

+-----+---+----------+

Chapter 10 Future DireCtions For spark streaming

379

Batch: 3

+-----+--+----------+

|label|probability |prediction|

+-----+--+----------+

|1 |[0.23870496408150266,0.7612950359184973]|1.0 |

|0 |[0.8285765606366566,0.17142343936334337]|0.0 |

|1 |[0.1123278992547269,0.8876721007452731] |1.0 |

+-----+--+----------+

Batch: 4

+-----+---+----------+

|label|probability |prediction|

+-----+---+----------+

|1 |[0.3811392681451562,0.6188607318548438] |1.0 |

|1 |[0.016044469761318698,0.9839555302386813]|1.0 |

|1 |[0.011124987326959632,0.9888750126730403]|1.0 |

|0 |[0.009425069592366693,0.9905749304076333]|1.0 |

+-----+---+----------+

Batch: 5

+-----+---+----------+

|label|probability |prediction|

+-----+---+----------+

|1 |[0.030581176663381764,0.9694188233366182]|1.0 |

|1 |[0.028952221072329157,0.9710477789276708]|1.0 |

|0 |[0.7251959061823547,0.27480409381764526] |0.0 |

+-----+---+----------+

Chapter 10 Future DireCtions For spark streaming

380

Batch: 6

+-----+--+----------+

|label|probability |prediction|

+-----+--+----------+

|1 |[0.3242653848343221,0.6757346151656779] |1.0 |

|0 |[0.9101196538221397,0.08988034617786034]|0.0 |

|1 |[0.08227291309126751,0.9177270869087325]|1.0 |

+-----+--+----------+

Batch: 7

+-----+--+----------+

|label|probability |prediction|

+-----+--+----------+

|1 |[0.09475287521715883,0.9052471247828412]|1.0 |

+-----+--+----------+

Batch: 8

+-----+--+----------+

|label|probability |prediction|

+-----+--+----------+

|1 |[0.8256079035149502,0.17439209648504983]|0.0 |

|0 |[0.31539711793989017,0.6846028820601098]|1.0 |

|0 |[0.9889473486170233,0.01105265138297673]|0.0 |

|1 |[0.12416982209602322,0.8758301779039768]|1.0 |

+-----+--+----------+

When developing a machine learning (ML) model, it is always essential to find out

whether it accurately measures what it is set out to measure.

In the next section, we are going to introduce a small variation in our example code

to show you how to assess the accuracy of a pipeline model through the measure of its

sensitivity and specificity.

Chapter 10 Future DireCtions For spark streaming

381

 Assessing the Sensitivity and Specificity of Our Streaming
ML Model
As mentioned just previously, it is not enough that a ML model makes predictions; those

predictions have to be accurate.

Sensitivity and specificity are metrics that indicate the accuracy of a test or measure

and help to determine how valid the predictions are. Whenever we create a ML model,

in this case to screen for the possibility of a person suffering a heart attack, or to detect

an abnormality, we must determine how valid that model is. In this heart attack analysis

and prediction example, our screening model is used to decide which patients are more

likely to have a condition (heart attack).

Next we show you how you can also adapt the following part of the previous code:

val streamingHeart = PipelineModel.transform(streamingSource).select

("label","probability","prediction")

streamingHeart.writeStream

 .outputMode("append")

 .option("truncate", false)

 .format("console")

 .start()

 .awaitTermination()

changing it like this

import org.apache.spark.sql.functions.{count, sum, when}

val streamingRates = PipelineModel.transform(streamingSource)

 .groupBy('label)

 .agg(

 (sum(when('prediction === 'label, 1)) / count('label)).alias("true

prediction rate"),

 count('label).alias("count")

)

streamingRates.writeStream

 .outputMode("complete")

 .option("truncate", false)

Chapter 10 Future DireCtions For spark streaming

382

 .format("console")

 .start()

 .awaitTermination()

to calculate the ongoing sensitivity and specificity, respectively, of the predictions of

the model for the test dataset.

As we are applying our PipelineModel to a stream of data, the previous metrics

(sensitivity and specificity) are going to be calculated as the rates of true positive

and true negative predictions and constantly being updated as the incoming data is

processed.

After adapting the code and repeating the streaming simulation process, your code

will show you an output similar to the one shown in the following.

Batch: 0

+-----+--------------------+-----+

|label|true prediction rate|count|

+-----+--------------------+-----+

|0 |0.5 |2 |

|1 |0.5 |2 |

+-----+--------------------+-----+

Batch: 1

+-----+--------------------+-----+

|label|true prediction rate|count|

+-----+--------------------+-----+

|0 |0.6666666666666666 |3 |

|1 |0.6666666666666666 |3 |

+-----+--------------------+-----+

Batch: 2

Chapter 10 Future DireCtions For spark streaming

383

+-----+--------------------+-----+

|label|true prediction rate|count|

+-----+--------------------+-----+

|0 |0.6666666666666666 |3 |

|1 |0.7142857142857143 |7 |

+-----+--------------------+-----+

Batch: 3

+-----+--------------------+-----+

|label|true prediction rate|count|

+-----+--------------------+-----+

|0 |0.75 |4 |

|1 |0.75 |8 |

+-----+--------------------+-----+

Batch: 4

+-----+--------------------+-----+

|label|true prediction rate|count|

+-----+--------------------+-----+

|0 |0.8 |5 |

|1 |0.7777777777777778 |9 |

+-----+--------------------+-----+

Batch: 5

+-----+--------------------+-----+

|label|true prediction rate|count|

+-----+--------------------+-----+

|0 |0.8 |5 |

|1 |0.6363636363636364 |11 |

+-----+--------------------+-----+

Chapter 10 Future DireCtions For spark streaming

384

Batch: 6

+-----+--------------------+-----+

|label|true prediction rate|count|

+-----+--------------------+-----+

|0 |0.8 |5 |

|1 |0.7333333333333333 |15 |

+-----+--------------------+-----+

Batch: 7

+-----+--------------------+-----+

|label|true prediction rate|count|

+-----+--------------------+-----+

|0 |0.7142857142857143 |7 |

|1 |0.75 |16 |

+-----+--------------------+-----+

Batch: 8

+-----+--------------------+-----+

|label|true prediction rate|count|

+-----+--------------------+-----+

|0 |0.7777777777777778 |9 |

|1 |0.7647058823529411 |17 |

+-----+--------------------+-----+

As you can see, the rates of true positive and true negative predictions are

continuously updated as the data goes in. The true prediction rate is nothing out of

this world because we are using a very small dataset and to make things worse, it had

NULL values that have been discharged.

One of the main drawbacks of logistic regression is that it needs big datasets to be

really able to get the insights of the data.

Chapter 10 Future DireCtions For spark streaming

385

If you want to dig deeper into how to use Spark ML with Spark Structured Streaming,

you can find a complete stream pipeline example following this link.

In the next section, we are going to analyze some of the expected future Spark

Streaming features that are already here.

10.2 Spark 3.3.x
The new Spark 3.3.2 version was released on February 17, 2023, the time this book was

written; therefore, some of the future improvements expected from Spark are already here1.

For instance, one of the most recent Spark Streaming related improvements has

been the addition of RocksDB state store provider, complementary to the default

implementation based on the HDFS backend state store provider.

Although the incorporation of RocksDB as a state store provider is not new, it was

included with Spark 3.2; RocksDB state store WriteBatch problems cleaning up native

memory have been recently addressed.

Before Spark 3.2, the only built-in streaming state store implementation available

was the HDFS backend state store provider (HDFSBackedStateStore). The HDFS state

store implements two different stages. During the first phase, state data is stored in a

memory map. The second phase includes saving that information to a fault-tolerance

HDFS-compatible file system.

Remember from previous chapters that stream processing applications are very

often stateful, and they retain information from previous events to be used to update the

state of other future events.

When we have stateful operations such as streaming aggregations,

streaming dropDuplicates, stream-stream joins, mapGroupsWithState, or

flatMapGroupsWithState and, at the same time, we would like to maintain the state of

a huge number of keys, this could cause processing latencies due to the problem of Java

virtual machine (JVM) garbage collection, hence producing important delays in the

micro-batch processing times.

To understand the reasons causing the previous state store problems, we have to know

that the implementation of HDFSBackedStateStore causes the state information to be

stored in the Spark executors’ JVM memory. Thus, the accumulation of large numbers of

state objects will saturate the memory originating garbage collection performance issues.

1 https://spark.apache.org/news/

Chapter 10 Future DireCtions For spark streaming

https://docs.databricks.com/_extras/notebooks/source/using-mllib-with-structured-streaming.html
https://rocksdb.org/
https://spark.apache.org/news/

386

For situations like this, Spark recently incorporated RocksDB as another state storage

provider, to permit storage of the state information in a RocksDB database.

 Spark RocksDB State Store Database
Let’s explore some of the new features RocksDB is bringing to the table and how you can

use them to improve your Spark Streaming performance.

 What Is RocksDB?

RocksDB is an embeddable persistent key-value store for fast storage based on three

basic structures: memtable, sstfile, and logfile.

RocksDB includes the following main features:

• It uses a log structured database engine.

• It is optimized for storing small to medium size key-values, though

keys and values are arbitrarily sized byte streams.

• It is optimized for fast, low latency storage such as flash drives and

high-speed disk drives, for high read/write rate performance.

• It works on multicore processors.

Apart from Spark Streaming, RocksDB is also used as a state backend by other

state- of- the-art streaming frameworks such Apache Flink or Kafka Streams which uses

RocksDB to maintain local state on a computing node.

If you want to incorporate RocksDB to your Spark cluster, setting

spark.conf.set(

 "spark.sql.streaming.stateStore.providerClass",

"org.apache.spark.sql.execution.streaming.state.RocksDBStateStoreProvider")

enables RocksDBStateStoreProvider as the default Spark StateStoreProvider.

Apart from the previous basic configuration, Spark incorporates several options you

can use to tune your RocksDB installation.

Table 10-2 includes a summary of the most common RocksDBConf configuration

options for optimizing RocksDB.

Chapter 10 Future DireCtions For spark streaming

387

Ta
bl

e
10

-2
.

R
oc

ks
D

B
 S

ta
te

 S
to

re
 P

ar
am

et
er

s

Co
nf

ig
 n

am
e

De
sc

rip
tio

n
De

fa
ul

t
va

lu
e

sp
ar
k.
sq
l.
st
re
am
in
g.
st
at
eS
to
re
.

ro
ck
sd
b.
co
mp
ac
tO
nC
om
mi
t

W
he

n
ac

tiv
at

ed
, r

oc
ks

DB
 s

ta
te

 c
ha

ng
es

 w
ill

 b
e

co
m

pa
ct

ed
 d

ur
in

g
th

e

co
m

m
it

pr
oc

es
s

Fa
ls

e

sp
ar
k.
sq
l.
st
re
am
in
g.
st
at
eS
to
re
.

ro
ck
sd
b.
bl
oc
kS
iz
eK
B

Bl
oc

k
si

ze
 (i

n
kB

) t
ha

t r
oc

ks
DB

 s
et

s
on

 a
 B

lo
ck

Ba
se

dt
ab

le
Co

nf
ig

4

sp
ar
k.
sq
l.
st
re
am
in
g.
st
at
eS
to
re
.

ro
ck
sd
b.
bl
oc
kC
ac
he
Si
ze
MB

th
e

si
ze

 (i
n

m
B)

 fo
r a

 c
ac

he
 o

f b
lo

ck
s

8

sp
ar
k.
sq
l.
st
re
am
in
g.
st
at
eS
to
re
.

ro
ck
sd
b.
lo
ck
Ac
qu
ir
eT
im
eo
ut
Ms

m
ill

is
ec

on
ds

to
 w

ai
t f

or
 a

cq
ui

rin
g

lo
ck

 in
 th

e
lo

ad
 o

pe
ra

tio
n

fo
r a

 r
oc

ks
DB

 in
st

an
ce

60
00

0

sp
ar
k.
sq
l.
st
re
am
in
g.
st
at
eS
to
re
.

ro
ck
sd
b.
re
se
tS
ta
ts
On
Lo
ad

W
he

th
er

 a
ll

tic
ke

r a
nd

 h
is

to
gr

am
 s

ta
ts

 fo
r r

oc
ks

DB
 s

ho
ul

d
be

 re
se

t o
n

lo
ad

tr
ue

sp
ar
k.
sq
l.
st
re
am
in
g.
st
at
eS
to
re
.

ro
ck
sd
b.
tr
ac
kT
ot
al
Nu
mb
er
Of
Ro
ws

W
he

th
er

 to
 tr

ac
k

th
e

to
ta

l n
um

be
r o

f r
ow

s

pe
rfo

rm
an

ce
 is

su
es

it
ad

ds
 a

dd
iti

on
al

 lo
ok

up
s

on
 w

rit
e

op
er

at
io

ns
, h

ow
ev

er
 e

na
bl

ei
ng

 it
 c

ou
ld

re
pr

es
en

t a
 p

os
si

bl
e

ro
ck

sD
B

pe
rfo

rm
an

ce
 D

eg
ra

da
tio

n

tr
ue

Chapter 10 Future DireCtions For spark streaming

388

BlockBasedTableConfig

BlockBasedTable is RocksDB’s default SST file format. It includes the configuration for

plain tables in sst format. RocksDB creates a BlockBasedTableConfig when created.

RocksDB Possible Performance Degradation

With this option enabled, it adds extra attempts to retrieve data on write operations to

track the changes of the total number of rows, bringing an overhead on massive write

workloads. It is used when we want RocksDB to upload a version of a pair key-value,

update the value, and after that remove the key. Thus, be advised turning it on can

jeopardize the system performance.

Wrapping up, RocksDB is able to achieve very high performance. RocksDB includes

a flexible and tunable architecture with many settings that can be tweaked to adapt it

to different production environments and hardware available, including in-memory

storage, flash memory, commodity hard disks, HDFS file systems, etc.

RocksDB supports advanced database operations such as merging, compaction

filters, and SNAPSHOT isolation level. On the other hand, RocksDB does not support

some database features such as joins, query compilation, or stored procedures.

10.3 The Project Lightspeed
On June 28, 2022, Databricks announced the Project Lightspeed. The Project Lightspeed

is the next-gen Spark Streaming engine.

Spark Structured Streaming has been widely adopted by the industry and

community, and as more and more nowadays applications require processing streaming

data, the requirements for streaming engines have changed as well.

The Project Lightspeed will focus on delivering higher throughput and lower latency

and reduce data processing cost. Project Lightspeed will also support the expansion of

the ecosystem of connectors, enhance new streaming functionalities, and simplify the

application deployment, monitoring, and troubleshooting.

Project Lightspeed will roll out incrementally, backing the improvement of the

following Spark Structured Streaming fields:

Chapter 10 Future DireCtions For spark streaming

389

 Predictable Low Latency
In this field, the new Apache Spark Structured Streaming is promising the increase of

workload performance as much as twice in comparison with current capabilities. Some

of the initiatives that are currently taking place in this area to support the consecution of

this objective are as follows:

• Offset management: Practical experience shows that offset

management operations consume 30% to 50% of the total pipeline

processing time. It is expected to reduce processing latency by

making these operations asynchronous and of configurable pace.

• Asynchronous checkpointing: It is expected up to 25% of

improvement in efficiency in this domain by overlapping the

execution with the writing of the checkpoints of two adjacent groups

of records. Currently checkpoints are written only after processing

each group of records.

• State checkpointing frequency: New Spark Structured Streaming

engine is expected to incorporate the parametrization of the number

of checkpoints, that is, writing checkpoints only after processing a

certain number group of records in order to reduce latency.

 Enhanced Functionality for Processing Data/Events
Project Lightspeed is going to enlarge Spark Structured Streaming functionalities in the

following fields:

• Multiple stateful operators: The new Spark Structured Streaming

is expected to support multiple state operators in order to satisfy

multiple use cases such as the following:

 ◦ Chained time window aggregation (e.g., chain of different types of

window aggregations)

 ◦ Chained stream-stream outer equality joins.

 ◦ Stream-stream time interval join plus time window aggregations

Chapter 10 Future DireCtions For spark streaming

390

• Advanced windowing: The new Spark Structured Streaming engine is

expected to provide an intuitive API to support the following:

 ◦ Arbitrary groups of window elements

 ◦ Ability to define when to execute the processing logic

 ◦ Capacity to remove window elements before or after the

processing logic is triggered

• State management: Lightspeed will incorporate a dynamic state

schema adapting to the changes in the processing logic and the

capacity to externally query intermediate information (“state”).

• Asynchronous I/O: Lightspeed is also expected to introduce a new

API to asynchronously manage connections to external data sources

or systems. This new functionality can be very helpful in streaming

ETL jobs that collect live data from heterogeneous sources and/or

writing into multiple sinks.

• Python API parity: Lightspeed will provide a new Python API

incorporating stateful processing capabilities and built-in

integrations with popular Python packages like Pandas to facilitate its

utilization by Python developers.

 New Ecosystem of Connectors
Connectors certainly make Spark users’ life easier. In this area, the Project Lightspeed is

also expected to supply the following:

• New connectors: New native connectors will be added to Spark

Structured Streaming. For example

 ◦ Google Pub/Sub, which is an asynchronous and scalable

messaging service acting as an interface between services

producing messages and services processing those messages

 ◦ Amazon DynamoDB, which is a NoSQL database service

• Connector enhancement: New functionalities are also expected in

this area, such as including AWS IAM auth support in the Apache

Kafka connector or enhancement of the Amazon Kinesis connector.

Chapter 10 Future DireCtions For spark streaming

391

 Improve Operations and Troubleshooting
Processing unbound data requires the system treating that information to be up and

running 24/7. Therefore, constant monitoring and managing of those types of systems

while keeping operating costs under control is incredibly relevant to business. Thus, as

part of Project Lightspeed, Spark is anticipated to incorporate two new set of features:

• Observability: Structured streaming pipelines will incorporate:

• Additional metrics for troubleshooting streaming performance.

• The mechanism for collection metrics will be unified.

• The capacity to export metrics data to different systems and

formats will be enhanced.

• Visualization tools will be improved.

• Debuggability: As in the previous point, structured streaming

pipelines will also integrate capabilities to visualize the following:

• How pipeline operators are grouped and mapped into tasks.

• The tasks running on the executors.

• Executors’ logs and metrics drill down analysis capacity.

10.4 Summary
In this chapter, we discussed the capacities of Spark Structured Streaming when coupled

with Spark ML to perform real-time predictions. This is one of the more relevant features

the Apache Spark community is expected to improve as more business applications

require in-motion data analytics to trigger prompt reaction. After that, we discussed the

advantages of the new RocksDB State Store to finalize with one of the most expected

Spark Streaming turning points, the Project Lightspeed, which will drive Spark

Structured Streaming into the real-time era.

Chapter 10 Future DireCtions For spark streaming

393

 Bibliography

• Akidau, T., Chernyak, S., & Lax, R. (2018). Streaming Systems: The

What, Where, When, and How of Large-Scale Data Processing (first

edition). O’Reilly Media.

• Chambers, B., & Zaharia, M. (2018). Spark: The Definitive Guide: Big

Data Processing Made Simple (first edition). O’Reilly Media.

• Chellappan, S., & Ganesan, D. (2018). Practical Apache Spark: Using

the Scala API (first edition). Apress.

• Damji, J., Wenig, B., Das, T., & Lee, D. (2020). Learning Spark:

Lightning-Fast Data Analytics (second edition). O’Reilly Media.

• Elahi, I. (2019). Scala Programming for Big Data Analytics:

Get Started with Big Data Analytics Using Apache Spark (first

edition). Apress.

• Haines, S. (2022). Modern Data Engineering with Apache Spark:

A Hands-On Guide for Building Mission-Critical Streaming

Applications. Apress.

• Introducing Native Support for Session Windows in Spark Structured

Streaming. (October 12, 2021). Databricks. www.databricks.com/

blog/2021/10/12/native-support-of-session-window-in-spark-

structured-streaming.html

• Kakarla, R., Krishnan, S., & Alla, S. (2020). Applied Data Science Using

PySpark: Learn the End-to-End Predictive Model-Building Cycle (first

edition). Apress.

• Karau, H., & Warren, R. (2017). High Performance Spark: Best

Practices for Scaling and Optimizing Apache Spark (first edition).

O’Reilly Media.

© Alfonso Antolínez García 2023
A. Antolínez García, Hands-on Guide to Apache Spark 3, https://doi.org/10.1007/978-1-4842-9380-5

https://doi.org/10.1007/978-1-4842-9380-5
http://www.databricks.com/blog/2021/10/12/native-support-of-session-window-in-spark-structured-streaming.html
http://www.databricks.com/blog/2021/10/12/native-support-of-session-window-in-spark-structured-streaming.html
http://www.databricks.com/blog/2021/10/12/native-support-of-session-window-in-spark-structured-streaming.html

394

• Kukreja, M., & Zburivsky, D. (2021). Data Engineering with Apache

Spark, Delta Lake, and Lakehouse: Create Scalable Pipelines That

Ingest, Curate, and Aggregate Complex Data in a Timely and Secure

Way (first edition). Packt Publishing.

• Lee, D., & Drabas, T. (2018). PySpark Cookbook: Over 60 Recipes for

Implementing Big Data Processing and Analytics Using Apache Spark

and Python (first edition). Packt Publishing.

• Luu, H. (2021). Beginning Apache Spark 3: With DataFrame, Spark

SQL, Structured Streaming, and Spark Machine Learning Library

(second edition). Apress.

• Maas, G., & Garillot, F. (2019). Stream Processing with Apache Spark:

Mastering Structured Streaming and Spark Streaming (first edition).

O’Reilly Media.

• MLlib: Main Guide—Spark 3.3.2 Documentation. (n.d.). Retrieved

April 5, 2023, from https://spark.apache.org/docs/latest/ml-

guide.html

• Nabi, Z. (2016). Pro Spark Streaming: The Zen of Real-Time Analytics

Using Apache Spark (first edition). Apress.

• Nudurupati, S. (2021). Essential PySpark for Scalable Data Analytics:

A Beginner’s Guide to Harnessing the Power and Ease of PySpark 3

(first edition). Packt Publishing.

• Overview—Spark 3.3.2 Documentation. (n.d.). Retrieved April 5,

2023, from https://spark.apache.org/docs/latest/

• Perrin, J.-G. (2020). Spark in Action: Covers Apache Spark 3 with

Examples in Java, Python, and Scala (second edition). Manning.

• Project Lightspeed: Faster and Simpler Stream Processing with

Apache Spark. (June 28, 2022). Databricks. www.databricks.com/

blog/2022/06/28/project-lightspeed-faster-and-simpler-

stream-processing-with-apache-spark.html

• Psaltis, A. (2017). Streaming Data: Understanding the real-time

pipeline (first edition). Manning.

BIBLIOGRAPHY

https://spark.apache.org/docs/latest/ml-guide.html
https://spark.apache.org/docs/latest/ml-guide.html
https://spark.apache.org/docs/latest/
http://www.databricks.com/blog/2022/06/28/project-lightspeed-faster-and-simpler-stream-processing-with-apache-spark.html
http://www.databricks.com/blog/2022/06/28/project-lightspeed-faster-and-simpler-stream-processing-with-apache-spark.html
http://www.databricks.com/blog/2022/06/28/project-lightspeed-faster-and-simpler-stream-processing-with-apache-spark.html

395

• RDD Programming Guide—Spark 3.3.2 Documentation. (n.d.).

Retrieved April 5, 2023, from https://spark.apache.org/docs/

latest/rdd-programming-guide.html

• Ryza, S., Laserson, U., Owen, S., & Wills, J. (2017). Advanced Analytics

with Spark: Patterns for Learning from Data at Scale (second

edition). O’Reilly Media.

• Spark SQL and DataFrames—Spark 3.3.2 Documentation. (n.d.).

Retrieved April 5, 2023, from https://spark.apache.org/docs/

latest/sql-programming-guide.html

• Spark Streaming—Spark 3.3.2 Documentation. (n.d.). Retrieved April

5, 2023, from https://spark.apache.org/docs/latest/streaming-

programming-guide.html

• Structured Streaming Programming Guide—Spark 3.3.2

Documentation. (n.d.). Retrieved April 5, 2023, from https://spark.

apache.org/docs/latest/structured-streaming-programming-

guide.html

• Tandon, A., Ryza, S., Laserson, U., Owen, S., & Wills, J. (2022).

Advanced Analytics with PySpark (first edition). O’Reilly Media.

• Wampler, D. (2021). Programming Scala: Scalability = Functional

Programming + Objects (third edition). O’Reilly Media.

BIBLIOGRAPHY

https://spark.apache.org/docs/latest/rdd-programming-guide.html
https://spark.apache.org/docs/latest/rdd-programming-guide.html
https://spark.apache.org/docs/latest/sql-programming-guide.html
https://spark.apache.org/docs/latest/sql-programming-guide.html
https://spark.apache.org/docs/latest/streaming-programming-guide.html
https://spark.apache.org/docs/latest/streaming-programming-guide.html
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html

397

Index

A
Accumulators, 104, 105
Adaptive Query Execution (AQE)

cost-based optimization framework,
196, 197

features, 197
join strategies, runtime

replanning, 200
partition number, data dependent,

198, 199
spark.sql.adaptive.enabled

configuration, 201
SQL plan, 198
unevenly distributed data joins,

200, 201
Apache Parquet, 123
Apache Spark

APIs, 12
batch vs. streaming data, 17, 18, 20, 21
dataframe/datasets, 12, 13
definition, 3
execution model, 11
fault tolerance, 6, 7
GraphX, 16
scalable, 5
streaming, 14, 15
unified API, 7

Apache Spark Structured Streaming,
249, 333

Application programming interface
(API), 3, 67

.appName() method, 75

© Alfonso Antolínez García 2023
A. Antolínez García, Hands-on Guide to Apache Spark 3, https://doi.org/10.1007/978-1-4842-9380-5

Artificial intelligence (AI), 367
Association for Computing

Machinery (ACM), 7

B
Batch data processing, 19, 207
Broadcast variables, 102–104, 106

C
Cache(), 187, 189, 190
Checkpointing streaming

example, 284
failures, 287
features, 284, 285
state data representation, 286
stateful, 283
state storage, 286

collect() method, 73
collect() method, 76
countByValue() method, 99
count() function, 219
createDataFrame() method, 116, 117
Customer Relationship Management

(CRM), 7
customWriterToConsole() function, 324

D
Data analytics, 18, 204, 331
DataFrame API, 109

Apache Parquet, 123, 124

https://doi.org/10.1007/978-1-4842-9380-5

398

attributes, 114
complex nested JSON structures, 140,

141, 143, 144
CSV files, 144–147
dataset reversion, 113
data sources, 118
data structure, 109
direct queries, parquet files, 126
file partitioning, 127, 128
Hive tables, 147–149
JDBC connector, 150, 152, 153
JSON file, read/write, 129, 131, 132
JSON files, 135, 136
JSON files, customized schemas, 137,

138, 140
JSON files, save, 136
methods, 115
direct queries, parquet files, 126
saving/data compression, parquet file

format, 124
querying files, using SQL, 119
reading multiple JSON files, 132
reading parquet file partitions, 129
read.json(), 133, 134
row-type object, 112
saving/data compression, parquet file

format, 125
saving modes, 121, 122, 137
SpanishWriters, 111
Spark SQL module, 110
time-based paths, 120, 121
toDF(), 115, 116, See also DataFrames

DataFrames
column name notations, 162, 163
drop(), 169–172
filtering, 161, 162
join(), 182–187

multi-condition filtering, logical
operators, 164, 165

name patterns, select
columns, 159–161

select (), 154, 157, 158
SQL case statement, 172–174
UDF, 175
union(), 176, 178, 180, 182
withColumn(), 166–168
withColumnRenamed(), 168

Dataset API
creating methods, 194–196
RDD features, 193
type row, 193

Data sinks
built-in output sinks, 311
writing streaming data

console sink, 311
file, 312, 313
ForeachBatch, 314–318
Foreach sink, 319–321, 323–325
Kafka, 313, 314
MongoDB, 325–329

Data sources
built-in sources, 289
file data, reading streaming

data, 290–293
Kafka, 293–296, 298–302
MongoDB, data streams read,

303, 305–310
testing, 289

Data streaming
characteristics, 245
data faults/stragglers, 245
timestamps, 246

Directed Acyclic Graph (DAG), 6, 63
Discretized Stream (DStream), 210, 211

advanced sources, 232

DataFrame API (cont.)

INDEX

399

input sources
data analytics, streaming

transformations, 218, 219, 221–226
file system, 226–229
running file system, 230
running socket, 216–218
socket connection, 212–215
TCP/IP, 212

Discretized Streams (DStreams), 204,
210–212, 239, 241, 246

Download/installation instructions, Spark
configuring environment

variables, 30–35
file integrity, 29
Linux system, 24–26, 28
page, 23
Windows, 28, 29

drop() function, 169
Dynamic gap duration, 354

E
Enterprise Resource Planning (ERP), 7
Event-driven architectures, 367
Event-time window operations

real-time event, 332
sliding windows, 343
temporal windows, 333–335
tumbling/nonoverlapping

windows, 335–342
Event-Time Window Operations and

Watermarking, 331–365

F
Fault-tolerant file systems, 67
filter(), 62–64, 73, 161, 162, 164, 272
flatMap() function, 63, 64, 73, 221, 272

foldByKey() aggregation, 85, 91
ForeachBatch sink, 311, 314–319

G
getActiveSession() method, 57
getOrCreate(), 57, 61, 75
GraphX, 4, 12, 16
groupByKey() function, 63, 65,

86–88, 90, 91

H
Hadoop, 207
Hadoop Distributed File System (HDFS),

70, 71, 226, 231, 265, 385
Hadoop MapReduce, 4, 5
High-level APIs

dataframes, 109
datasets, 109
structured data, 109

Hospital Queue Management System, 212,
214, 227, 257, 265, 275, 284, 333

I
Internet of things (IoT), 331, 368
isAdult() function, 175

J
Java Virtual Machine (JVM), 9, 10, 29, 385
join() method, 9, 56, 182

K
Kafka, 203, 254, 293–303, 311
kafka-topics.sh command, 298
Kappa, 206, 209

INDEX

400

Key-value pair
creating pair RDDs, 74–76
definition, 74
distinct keys, pair RDDs, 76, 77

Kyro, 191

L
Lambda architecture, 206

Apache Storm, 206
characteristics, 207
lanes, 207
layers, 207, 208
pros/cons, 208, 209
real-time stream/batch data

processing, 207
Lazy evaluation, 23, 62–65
Least Recently Used (LRU) Page

Replacement algorithm, 190
leftOuterJoin(), 93, 94
like() function, 159, 160
Logistic regression

classification/predictive
analytics, 370

data source, 378
supervised machine learning, 370
types, 371
use cases, 371

create streaming source, 376
dataset NULL values, 373
data source, 377–380
loading data, 371, 372
PipelineModel, 373–375, 377
run code, 372
testDF, 376

Low-level API/Spark Core API, 67,
See also Resilient Distributed
Dataset (RDD)

M
Machine learning (ML), 3, 15
--master option, 46
Mesos/Hadoop YARN, 5
Message delivery reliability

mechanisms, 246–248
Microservice processes orchestration, 367
ML algorithms, 367
MLlib, 4, 12, 15
MongoDB, 114, 140, 303–310

N, O
NamedTemporaryFile() function, 83
Netcat, 215, 216, 262
newSession() method, 57
No-time-based aggregations, 274–283

P, Q
Pair RDDs transformations

adding values, 80
adding values, 81
combining data, 84
countByKey() counts, 97
countByKey() counts, 98
countByValue(), 99
custom aggregation functions, 85
grouping data, 86–88, 90, 91
joins, 92–95
key function, sorting, 96
lineage, 78
Neutral ZeroValue, merging values, 85
returns key-value pairs,

dictionary, 99, 100
save RDD as text file, 82, 83
sortByKey(), 78, 79
sorting data, 95

INDEX

401

values associated with key, 100, 101
parquet() method, 124
partitionBy() method, 127
Persist(), 187, 189, 190
Project Lightspeed

connectors, 390
next-gen Spark Streaming engine, 388
operations/troubleshooting,

improve, 391
predictable low latency, 389
streaming functionalities, 389, 390

R
Read-Eval-Print Loop (REPL) shell

interface, 36
read.json() method, 132, 133
readStream() method, 289, 306
Real-time data processing

architectures, 206
Real-time event stream processing, 332
reduceByKey() function, 80, 222
Regression model, 370, 371
repartition() method, 122, 123
Resilient Distributed Datasets (RDDs),

6, 62, 65, 67
creating new elements, 73
external Hadoop source, 70–72
fault-tolerant entities, 67
immutable, 67
logical partitions, 68
parallelized collections, 68–70

rightOuterJoin(), 94
RocksDB, 386–388, 391

S
saveToCSV() function, 315
select() function, 154

Session windows
dynamic gap duration, 354, 355,

357, 358
gap interval duration, 349
JSON files, 351–353
session_window(), 350, 351
window length, 349

Shared variables
accumulators, 104, 105
broadcast, 102–104
definition, 101

Sliding windows
five seconds sliding interval,

345–349
fixed-sized, 343
JSON files, 345
sliding offset, five seconds, 343–345

Social Security Number (SSN), 328, 329
Spark, 3
Spark 3.3.2 version

HDFS, 385
RocksDB, 385

BlockBasedTable, 388
definition, 386
features, 386
performance, 388
state store parameters, 387

stateful operations, 385
Spark application model, 8
Spark cluster model, 9
SparkContext.objectFile method, 72
SparkContext.parallelize()

function, 68
SparkContext’s textFile

method, 71
Spark Core, 12
Spark execution model, 9
Spark high-level API, 202

INDEX

402

Spark Machine Learning (Spark ML)
dataset, 368, 370
logistic regression, 370
PipelineModel, 368
sensitivity/specificity, 381–384

SparkR, 4, 35, 36, 110, 193
SparkSession

access existing SparkSession, 57, 58
catalog metadata, 60
configuration parameters, 60
create programs, 61
shell command line, 61

definition, 56
SparkSession.builder() constructor, 56, 57
SparkSession.readStream() method,

254, 289
Spark shell

command-line tools, 35, 36
pyspark, 41, 42
Scala, 35
Scala command line, 36–40
triggering actions, 65

spark.sql.files.ignoreCorruptFiles
method, 119

spark.sql.files.ignoreMissingFiles
method, 119

Spark Structured Streaming, 14, 15,
248–251, 254, 256, 257,
264, 271–283

Spark-submit command
application properties, 52
cluster managers, 47–49
configurations, 51
control application properties, 54, 55
deployment modes, 46
dynamic allocation, 53
example, 43–46, 54
Functions.scala, 55

options, 43, 46
resources, 49
runtime environment, 53

Stateful streaming aggregations
functions, 282, 283
no-time-based, 274–278, 280, 281
time-based, 274

Stream data processing, 19, 20, 209, 211,
250, 271

Streaming
bound/unbound data, 203, 204
challenges, 204, 205
data sources/data sinks, 203
DStream, 210, 211
DStreams, transformations, 239, 241
features, 205, 206
graceful shutdown, 232–238
Kappa architecture, 209, 210
Lambda architecture, 206
uncertainty component, 205

Streaming sources (see Data sources)
Structured streaming

DataFrames/datasets API, 254
datasources, 254, 256, 257
file systems, 265, 267, 268
running file systems locally, 268,

269, 271
running socket application, 262–264
socket, 257–261

data transformations
stateless/stateful operations, 271

input table, 250
output mode, 251, 252, 254
result table, 250, 251
vs. Spark streaming, 248, 249
stateful stream, 272, 273
stateless state, 272

Supervised machine learning models, 370

INDEX

403

T
take() method, 74, 76
textFile() method, 71, 72
Time-based aggregations, 274
toDS() method, 111, 194, 195
Transformations, RDD/dataframe

DAG, 63
example, 62
narrow transformation, 64
wide transformation, 64

Tumbling/nonoverlapping
windows, 335

U, V
union() method, 63, 64, 176,

178, 182
unionByName() function,

180, 182
unpersist(), 190
User-defined functions,

175–176, 314

W
Watermarking

example, 360–362
JSON files, 362–365
late-arrival events, 359
stateful streaming operations, 359
timestamp field, 359
timestamp/window columns, 362

whether() function, 163
wholeTextFiles() method, 71, 72
withColumn() transformation function,

165, 166, 168
withColumnRenamed() transformation

function, 168, 169
writeStream method, 311, 324

X, Y
$SPARK_HOME/bin directory, 43

Z
ZooKeeper/KRaft, 298

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Part I: Apache Spark Batch Data Processing
	Chapter 1: Introduction to Apache Spark for Large-Scale Data Analytics
	1.1 What Is Apache Spark?
	Simpler to Use and Operate
	Fast
	Scalable
	Ease of Use
	Fault Tolerance at Scale

	1.2 Spark Unified Analytics Engine
	1.3 How Apache Spark Works
	Spark Application Model
	Spark Execution Model
	Spark Cluster Model

	1.4 Apache Spark Ecosystem
	Spark Core
	Spark APIs
	Spark SQL and DataFrames and Datasets
	Spark Streaming
	Spark GraphX

	1.5 Batch vs. Streaming Data
	What Is Batch Data Processing?
	What Is Stream Data Processing?
	Difference Between Stream Processing and Batch Processing

	1.6 Summary

	Chapter 2: Getting Started with Apache Spark
	2.1 Downloading and Installing Apache Spark
	Installation of Apache Spark on Linux
	Step 1: Verifying the Java Installation
	Step 2: Installing Spark
	Step 3: Moving Spark Software Files
	Step 4: Setting Up the Environment for Spark
	Step 5: Verifying the Spark Installation

	Installation of Apache Spark on Windows
	Step 1: Java Installation
	Step 2: Download Apache Spark
	Step 3: Install Apache Spark
	Step 4: Download the winutils File for Hadoop
	Step 5: Configure System and Environment Variables

	2.2 Hands-On Spark Shell
	Using the Spark Shell Command
	The Scala Shell Command Line
	The Pyspark Shell Command Line

	Running Self-Contained Applications with the spark-submit Command
	Spark Submit Options
	Deployment Mode Options
	Cluster Manager Options
	Tuning Resource Allocation
	Dynamically Loading Spark Submit Configurations
	Application Properties
	Runtime Environment
	Dynamic Allocation
	Others

	2.3 Spark Application Concepts
	Spark Application and SparkSession
	Access the Existing SparkSession
	SparkSession in spark-shell
	Create a SparkSession Programmatically

	2.4 Transformations, Actions, Immutability, and Lazy Evaluation
	Transformations
	Narrow Transformations
	Wide Transformations
	Actions

	2.5 Summary

	Chapter 3: Spark Low-Level API
	3.1	 Resilient Distributed Datasets (RDDs)
	Creating RDDs from Parallelized Collections
	Creating RDDs from External Datasets
	Creating RDDs from Existing RDDs

	3.2	 Working with Key-Value Pairs
	Creating Pair RDDs
	Showing the Distinct Keys of a Pair RDD
	Transformations on Pair RDDs
	Sorting Pair RDDs by Key
	Adding Values by Key in a RDD
	Saving a RDD as a Text File
	Combining Data at Each Partition
	Merging Values with a Neutral ZeroValue
	Combining Elements by Key Using Custom Aggregation Functions
	Grouping of Data on Pair RDDs
	Performance Considerations of groupByKey

	Joins on Pair RDDs
	Returning the Keys Present in Both RDDs
	Returning the Keys Present in the Source RDD
	Returning the Keys Present in the Parameter RDD

	Sorting Data on Pair RDDs
	Sorting a RDD by a Given Key Function

	Actions on Pair RDDs
	Count RDD Instances by Key
	Count RDD Instances by Value
	Returning Key-Value Pairs as a Dictionary
	Collecting All Values Associated With a Key

	3.3	 Spark Shared Variables: Broadcasts and Accumulators
	Broadcast Variables
	When to Use Broadcast Variables
	How to Create a Broadcast Variable

	Accumulators

	3.4	 When to Use RDDs
	3.5	 Summary

	Chapter 4: The Spark High-Level APIs
	4.1	 Spark Dataframes
	Attributes of Spark DataFrames
	Methods for Creating Spark DataFrames
	Manually Creating a Spark DataFrame Using toDF()
	Manually Creating a Spark DataFrame Using createDataFrame()
	Data Sources for Creating Spark DataFrames
	Querying Files Using SQL
	Ignoring Corrupt and Missing Files
	Time-Based Paths
	Specifying Save Options
	NOTICE
	Read and Write Apache Parquet Files
	Saving and Data Compression of a DataFrame to a Parquet File Format
	Direct Queries on Parquet Files
	Parquet File Partitioning
	Reading Parquet File Partitions
	Read and Write JSON Files with Spark
	Reading Multiple JSON Files at Once
	Reading JSON Files Based on Patterns at Once
	Direct Queries on JSON Files
	Saving a DataFrame to a JSON File
	Saving Modes
	Load JSON Files Based on Customized Schemas
	Work with Complex Nested JSON Structures Using Spark
	Read and Write CSV Files with Spark
	Read and Write Hive Tables
	Read and Write Data via JDBC from and to Databases

	4.2	 Use of Spark DataFrames
	Select DataFrame Columns
	Selecting All or Specific DataFrame Columns

	Select Columns Based on Name Patterns
	Filtering Results of a Query Based on One or Multiple Conditions
	Using Different Column Name Notations
	Using Logical Operators for Multi-condition Filtering
	Manipulating Spark DataFrame Columns
	Renaming DataFrame Columns
	Dropping DataFrame Columns
	Creating a New Dataframe Column Dependent on Another Column
	User-Defined Functions (UDFs)
	Merging DataFrames with Union and UnionByName
	Merging DataFrames with Duplicate Values

	Joining DataFrames with Join

	4.3	 Spark Cache and Persist of Data
	Unpersisting Cached Data

	4.4	 Summary

	Chapter 5: Spark Dataset API and Adaptive Query Execution
	5.1	 What Are Spark Datasets?
	5.2	 Methods for Creating Spark Datasets
	5.3	 Adaptive Query Execution
	5.4	 Data-Dependent Adaptive Determination of the Shuffle Partition Number
	5.5	 Runtime Replanning of Join Strategies
	5.6	 Optimization of Unevenly Distributed Data Joins
	5.7	 Enabling the Adaptive Query Execution (AQE)
	5.8	 Summary

	Chapter 6: Introduction to Apache Spark Streaming
	6.1 Real-Time Analytics of Bound and Unbound Data
	6.2 Challenges of Stream Processing
	6.3 The Uncertainty Component of Data Streams
	6.4 Apache Spark Streaming’s Execution Model
	6.5 Stream Processing Architectures
	The Lambda Architecture
	Data Ingestion Layer
	Batch Processing Layer
	Real-Time or Speed Layer
	Serving Layer
	Pros and Cons of the Lambda Architecture

	The Kappa Architecture
	Pros and Cons of the Kappa Architecture

	6.6 Spark Streaming Architecture: Discretized Streams
	6.7 Spark Streaming Sources and Receivers
	Basic Input Sources
	Socket Connection Streaming Sources
	Running Socket Streaming Applications Locally
	Improving Our Data Analytics with Spark Streaming Transformations
	File System Streaming Sources
	How Spark Monitors File Systems
	Running File System Streaming Applications Locally
	Known Issues While Dealing with Object Stores Data Sources

	Advanced Input Sources

	6.8 Spark Streaming Graceful Shutdown
	6.9 Transformations on DStreams
	6.10 Summary

	Part II: Apache Spark Streaming
	Chapter 7: Spark Structured Streaming
	7.1	 General Rules for Message Delivery Reliability
	7.2	 Structured Streaming vs. Spark Streaming
	7.3	 What Is Apache Spark Structured Streaming?
	Spark Structured Streaming Input Table
	Spark Structured Streaming Result Table
	Spark Structured Streaming Output Modes

	7.4	 Datasets and DataFrames Streaming API
	Socket Structured Streaming Sources
	Running Socket Structured Streaming Applications Locally
	File System Structured Streaming Sources
	Running File System Streaming Applications Locally

	7.5	 Spark Structured Streaming Transformations
	Streaming State in Spark Structured Streaming
	Spark Stateless Streaming
	Spark Stateful Streaming
	Stateful Streaming Aggregations
	Time-Based Aggregations
	No-Time-Based Aggregations

	7.6	 Spark Checkpointing Streaming
	Recovering from Failures with Checkpointing

	7.7	 Summary

	Chapter 8: Streaming Sources and Sinks
	8.1	 Spark Streaming Data Sources
	Reading Streaming Data from File Data Sources
	Reading Streaming Data from Kafka
	Reading Streaming Data from MongoDB

	8.2	 Spark Streaming Data Sinks
	Writing Streaming Data to the Console Sink
	Writing Streaming Data to the File Sink
	Writing Streaming Data to the Kafka Sink
	Writing Streaming Data to the ForeachBatch Sink
	Writing Streaming Data to the Foreach Sink
	Writing Streaming Data to Other Data Sinks

	8.3	 Summary

	Chapter 9: Event-Time Window Operations and Watermarking
	9.1	 Event-Time Processing
	9.2	 Stream Temporal Windows in Apache Spark
	What Are Temporal Windows and Why Are They Important in Streaming

	9.3	 Tumbling Windows
	9.4	 Sliding Windows
	9.5	 Session Windows
	Session Window with Dynamic Gap

	9.6	 Watermarking in Spark Structured Streaming
	What Is a Watermark?

	9.7	 Summary

	Chapter 10: Future Directions for Spark Streaming
	10.1 Streaming Machine Learning with Spark
	What Is Logistic Regression?
	Types of Logistic Regression
	Use Cases of Logistic Regression
	Assessing the Sensitivity and Specificity of Our Streaming ML Model

	10.2 Spark 3.3.x
	Spark RocksDB State Store Database
	What Is RocksDB?
	BlockBasedTableConfig
	RocksDB Possible Performance Degradation

	10.3 The Project Lightspeed
	Predictable Low Latency
	Enhanced Functionality for Processing Data/Events
	New Ecosystem of Connectors
	Improve Operations and Troubleshooting

	10.4 Summary

	Bibliography
	Index

