

Scaling

Google Cloud

Platform

Run Workloads Across Compute,

Serverless PaaS,

Database, Distributed Computing,

and SRE

Swapnil Dubey

www.bpbonline.com

http://www.bpbonline.com/

Copyright © 2023 BPB Online

All rights reserved. No part of this book may be reproduced, stored in a retrieval

system, or transmitted in any form or by any means, without the prior written

permission of the publisher, except in the case of brief quotations embedded in

critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the

accuracy of the information presented. However, the information contained in

this book is sold without warranty, either express or implied. Neither the author,

nor BPB Online or its dealers and distributors, will be held liable for any damages

caused or alleged to have been caused directly or indirectly by this book.

BPB Online has endeavored to provide trademark information about all of the

companies and products mentioned in this book by the appropriate use of

capitals. However, BPB Online cannot guarantee the accuracy of this

information.

Group Product Manager: Marianne Conor

Publishing Product Manager: Eva Brawn

Senior Editor: Connell

Content Development Editor: Melissa Monroe

Technical Editor: Anne Stokes

Copy Editor: Joe Austin

Language Support Editor: Justin Baldwin

Project Coordinator: Tyler Horan

Proofreader: Khloe Styles

Indexer: V. Krishnamurthy

Production Designer: Malcolm D'Souza

Marketing Coordinator: Kristen Kramer

First published: 2023

Published by BPB Online

WeWork, 119 Marylebone Road

London NW1 5PU

UK | UAE | INDIA | SINGAPORE

ISBN 978-93-55512-840

www.bpbonline.com

http://www.bpbonline.com/

Dedicated to

Two strong ladies in my life

My Mom Sushma

My Wife Vartika

&

My Kids – Sayesha & Stavya

About the Author

The author of the book is Swapnil Dubey. He has a

Master’s Degree in Data Analytics, along with a total of 14

years of experience in various domains such as eCommerce,

Ad Serving, Oil & Gas, and BFSI, using technologies like

Kubernetes, Apache Spark, and Apache Airflow. He has also

spoken at multiple national and international conferences,

both in corporate as well as in academia. He is also a

certified Professional Architect for Google Cloud and

Microsoft Azure. Dubey currently hold the position of Cloud

Architect, at Schlumberger India Technology Center – Pune.

About the Reviewer

Peeyush Maharshi is seasoned enterprise architect with

thought leadership and diverse background.

He provides technical leadership on architecture and

engineering standards through reference architectures and

best practices. Peeyush in involved in bootstrapping a world

class engineering and application development team, that is

focused on lean engineering practices and cloud

integration/migration, and building customer-centric

solutions using his expertise in Technology, Enterprise

Architecture, Data Strategy and Engineering.

Peeyush has extensive experience on large cloud migration

execution on AWS, Azure and GCP, using factory-based

model delivery, including data discovery, assessment and

disposition strategy finalization, actual migration execution

with adoption of DevOps principles and applying different

modernization themes.

He has working experience with USA, Europe, Middle East

and Australian customers. Peeyush has also played the role

of technical reviewer for many books such as “The Java EE

Architect Handbook” 2nd Ed., “Microservices for Java

Architects” and so on.

Acknowledgement

Any accomplishment requires the effort of many people, and

this work is no different. First and foremost, I would like to

thank my family (especially my father figure, mentor and

guardian, Mr. N.R. Tiwari) for continuously encouraging and

supporting me in writing the book — I could have never

completed this book without their support.

I am grateful to the Courses and the Enterprises which gave

me support throughout the learning and understanding

process of the Google Cloud Platform. Thank you for all the

hidden support provided. I gratefully acknowledge Mr.

Peeyush Maharshi for his kind technical scrutiny of this

book.

My gratitude also goes to the team at BPB Publications for

being supportive and patient during the editorial review of

the book.

A big thank you to the Tech Center Manager (Rashmi

Kumat), Tech Center HR Manager (Shamecka Ferrnandis)

and Intellectual Property team of Schlumberger for

providing the clearance to publish the book.

Preface

The book will cover the basic building blocks of cloud scaling

in general, and will give good insights into some key

indicators using which, enterprises can start their journey

and measure success on the cloud. It also covers the right

heuristics to measure cost and the need for governance to

control changes. This book maps a lot of theoretical jargon

in the industry with real-world examples and scenarios.

The book will describe each GCP component that is scalable

on the Google Cloud Platform, describe the architecture and

internal details of components with the intention of giving

the audience the feel of potential areas inside components

(managed offering from GCP) where scaling makes sense,

and will eventually go ahead to describe them in depth with

sufficient real-world scenarios, theory, and hands-on

content. All aspects of manual scaling, predictive scaling,

and autoscaling are covered wherever applicable.

This book has a section on the SRE practices in the industry

and how these industry practices can be implemented and

hosted on Google Cloud. It covers the out-of-the-box as well

as custom scenarios of the SRE world. At the end, you will

investigate the two most common architectures –

Microservices and Bigdata – and will see how you can do

reliability engineering for them on GCP.

This book is divided into 16 chapters. The details are listed

as follows:

Chapter 1, Basics of Scaling Cloud Resources: This

chapter will give users an introduction to concepts of scaling

infrastructure resources in the cloud world. It will be a

generic chapter (not specific to GCP), which will introduce

concepts and terminologies used across the book.

Chapter 2, KPI for Cloud Scalability: This chapter will

talk about the KPIs one should look into, to identify when

and in what amount to scale. Breach of any of these metrics

means a high risk of not meeting the SLAs.

Chapter 3, Cloud Elasticity: This chapter will introduce

the audience to the term cloud elasticity. It will introduce

key elasticity parameters to be taken into consideration,

while designing workloads for the cloud.

Chapter 4, Challenges of Infrastructure Complexity

and the Way Forward: This chapter will introduce to the

audience the infrastructural complexity and its challenges. It

will make the reader think about the importance of strict

governance needed while migrating or developing the

workloads on the cloud.

Chapter 5, Scaling Compute Engine: This chapter

describes the ins and outs of scaling GCP compute VMs.

Chapter 6, Scaling Google Kubernetes Engine: This

chapter will help the audience understand the concepts

involved in scaling container workloads.

Chapter 7, Scaling VMware Engine: This section will

educate audiences on strategies to scale the VMware

Engine cloud offering of GCP.

Chapter 8, Scaling App Engine: This chapter will enable

readers to understand in and out of the App engine

infrastructure footprint, and how they can configure the App

engine to scale up and down in a cost-effective manner.

Chapter 9, Scaling Google Cloud Function and Cloud

Run: This section will introduce to the audience at a high

level, the workload expected to be handled by these

components and will build an expert-level understanding of

how to configure scalability aspects.

Chapter 10, Configuring Bigtable for Scale: This

chapter will introduce the concepts required for deciding

and configuring the right parameters for scaling Big Table.

The chapter will start by describing the workload that

Bigtable handles along with the related architecture. These

2 explanations will be used in further topics.

Chapter 11, Configuring Cloud Spanner for Scale: This

section will introduce the readers to details of scaling of

cloud spanner instances. The chapter will start by quickly

describing the right use case for Spanner and describing the

infrastructural footprint (architecture). These will be used as

key aspects while discussing the rest of the topics.

Chapter 12, Scaling Google Composer 2: This chapter

will help the audience understand the scalability aspects of

Google composer 2. The chapter will start with one basic

introduction to Google composer showing one workflow. The

same workflow will be used to showcase the rest of the

headings in the chapter.

Chapter 13, Scaling Google Dataproc: This chapter

introduces the nuances, challenges and solutions to scale

the Dataproc cluster for big data computer workloads

written in Hadoop or Spark. The chapter will start with an

introduction to Dataproc, with one simple Spark job code

explanation. The same job will be used for the rest of the

headings as well.

Chapter 14, Scaling Google Dataflow: This chapter

introduces the concepts of Google dataflow scaling aspects

for production-grade deployments and workloads. The

structure of the chapter remains the same with an

introduction to an example, uniformly used across the rest

of the topics.

Chapter 15, Site Reliability Engineering: This chapter

will introduce the concepts of site reliability engineering on

GCP. Apart from end-to-end technical implementation, the

behavioral aspects of the SRE will also be described.

Chapter 16, SRE Use Cases: This chapter will present

examples/use cases of what is presented in the preceding

chapter.

Code Bundle and Coloured

Images

Please follow the link to download the

Code Bundle and the Coloured Images of the book:

https://rebrand.ly/ec456b

The code bundle for the book is also hosted on GitHub at

https://github.com/bpbpublications/Scaling-Google-

Cloud-Platform. In case there's an update to the code, it

will be updated on the existing GitHub repository.

We have code bundles from our rich catalogue of books and

videos available at https://github.com/bpbpublications.

Check them out!

Errata

We take immense pride in our work at BPB Publications and

follow best practices to ensure the accuracy of our content

to provide with an indulging reading experience to our

subscribers. Our readers are our mirrors, and we use their

inputs to reflect and improve upon human errors, if any, that

may have occurred during the publishing processes

involved. To let us maintain the quality and help us reach

out to any readers who might be having difficulties due to

any unforeseen errors, please write to us at :

errata@bpbonline.com

https://rebrand.ly/ec456b
https://github.com/bpbpublications/Scaling-Google-Cloud-Platform
https://github.com/bpbpublications
mailto:errata@bpbonline.com

Your support, suggestions and feedbacks are highly

appreciated by the BPB Publications’ Family.

Did you know that BPB offers eBook versions of every

book published, with PDF and ePub files available? You

can upgrade to the eBook version at

www.bpbonline.com and as a print book customer,

you are entitled to a discount on the eBook copy. Get

in touch with us at: business@bpbonline.com for

more details.

At www.bpbonline.com, you can also read a

collection of free technical articles, sign up for a range

of free newsletters, and receive exclusive discounts

and offers on BPB books and eBooks.

http://www.bpbonline.com/
mailto:business@bpbonline.com
http://www.bpbonline.com/

Piracy

If you come across any illegal copies of our works in

any form on the internet, we would be grateful if you

would provide us with the location address or website

name. Please contact us at

business@bpbonline.com with a link to the material.

If you are interested in becoming

an author

If there is a topic that you have expertise in, and you

are interested in either writing or contributing to a

book, please visit www.bpbonline.com. We have

worked with thousands of developers and tech

professionals, just like you, to help them share their

insights with the global tech community. You can make

a general application, apply for a specific hot topic that

we are recruiting an author for, or submit your own

idea.

Reviews

Please leave a review. Once you have read and used

this book, why not leave a review on the site that you

purchased it from? Potential readers can then see and

use your unbiased opinion to make purchase decisions.

We at BPB can understand what you think about our

products, and our authors can see your feedback on

their book. Thank you!

For more information about BPB, please visit

www.bpbonline.com.

mailto:business@bpbonline.com
http://www.bpbonline.com/
http://www.bpbonline.com/

Table of Contents

1. Basics of Scaling Cloud Resources

Introduction

Structure

Objectives

What is cloud scalability?

Horizontal scalability (Scale up and down)

Vertical scalability (Scale in and out)

Auto scalability

Diagonal scaling

Benefits of cloud scaling

Flexibility and speed

Ease of use and maintenance

Cost saving

Disaster Recovery

Global presence

When to scale?

Scenario 1

Scenario 2

Scenario 3

How to scale?

Manual scaling

Scheduled scaling

Automatic scaling

Key challenges of scaling

Cloud native and hybrid deployments

Load balancing

Housekeeping services

Scale versus cost relationship

Risks of improper scaling

Conclusion

2. KPI for Cloud Scalability

Introduction

Structure

Objectives

Defining KPIs

Basic cloud scalability metrics

Performance

Use case 1: Big data

Use case 2: Microservices

Use case 3: REST API

Reliability

Mean time to failure

Mean time to repair

Rate Of Occurrence Of Failure

Probability Of Failure On Demand

Costs

Total cloud cost

Forecasted cost

Availability

Indirect KPI impact of cloud scalability

Innovations

Software development and operational KPIs impacts

Customer satisfaction

Advanced metrics

Response time

Data in and out

Request per second

Average response time

Peak response time

Infrastructure utilization

Latency

Average end-to-end latency

Number of slow end-to-end transactions

Number of very slow end to end latency times

Throughput

Conclusion

Points to remember

Questions

3. Cloud Elasticity

Introduction

Structure

Objectives

Defining cloud elasticity

Example 1

Example 2

Example 3

Example 4

Benefits of elasticity

Painless and optimal scaling

Justified costs

More redundancy and flexibility

Considerable capacity

High availability

Simple management

Elasticity and cost relationship

Key challenges

Identifying the right attributes/metrics to track

Identifying the right scaling measurement value

Defining the minimum and maximum limits

Cost spikes

Difference between scalability and elasticity

Use cases

eCommerce application

Song streaming application

Conclusion

Points to remember

Questions

Answers

4. Challenges of Infrastructure Complexity and the

Way Forward

Introduction

Structure

Objectives

Defining multi-cloud and hybrid-cloud deployments

Redundant deployments

Hybrid environment

Business continuity multi-cloud or hybrid cloud

storage

Cloud bursting

Distributed deployments

Tiered hybrid

Partitioned multi-cloud

Analytics hybrid/multi-cloud

Multi-cloud deployment model

Hybrid-cloud deployment model

Need of multi-cloud deployments and hybrid-cloud

deployments

Reducing dependency/avoiding lock in

Heterogeneous deployments within an organization

Regulatory and data sovereignty

Redundant deployment for high availability

Performance improvements

Cost optimization

Challenges of multi-cloud deployments and hybrid cloud

deployments

Increased operational complexities

Increased data management complexities

Data protection challenges

Increased architectural complexities

IaaS vs PaaS for multi-cloud and hybrid cloud

deployments

Redundant deployment

Distributed deployments

IaaS vs PaaS

Docker and Kubernetes

Hadoop cluster

OpenShift Container Platform

Infrastructure as code

Governance and way out

Creating guidelines

Effective communication

Effective planning

Proper auditing

Cloud agnostic automation – benefits and risks

Conclusion

Points to remember

Questions

5. Scaling Compute Engine

Introduction

Structure

Objectives

Interacting with GCP

Using the console\UI portal

Using GCloud commands

REST APIs

Introduction to instance groups

Managed Instance Group

Creating a Managed Instance Group

Unmanaged instance group

Autoscaling groups of VMs

Scaling

Autoscaling

Predictive scaling

Scale-in controls

Maximum Allowed Reduction

Trailing Time Window

Autoscaling in Action

Developing and managing autoscalers

Scaling Based on CPU utilization

Scaling based on load balancing serving capacity

Scaling Based on cloud monitoring metrics

Configuring auto scaling for per instance metric

Configuring auto scaling for per group metric

Scaling based on schedules

Scheduling based on prediction

Creating autoscaling policy based on multiple signals

CRUD operations on autoscalers

Describing an Autoscalar

Updating a scalar

Turning off a scalar

Deleting an autoscaler

Autoscaling node groups

Reserving resources for effective auto scaling

Single project zonal reservations

Shared project zonal reservations

Consuming reservations

Consuming instances from any matching

reservation

Consuming a specific shared reservation

Creating instances without consuming reservations

Load balancing

Adding instance group to load balancer

Aligning backend service with an MIG

Adding a Managed Instance Group to a target pool

Configuring multi regional external load balancer

Cross regions load balancing

Conclusion

Points to remember

Questions

Answers

6. Scaling Kubernetes Engine

Introduction

Structure

Objectives

Building and packaging an application on Kubernetes

Kubernetes architecture

Building and deploying a web app

Scaling an application

Scale-up mechanism

Scale-down mechanism

Configuring horizontal pod scaling

Metric threshold definition

Configuring multiple metrics

Thrashing

Issuing horizontal scaling requests

Autoscaling on resource utilization

Autoscaling on external metric

Autoscaling on custom metric

Configuring vertical pod scaling

Configuring multi-dimensional pod scaling

Exponential scaling of fault tolerant workloads

Using Spot Pods

Using Spot VMs

Using preemptible VMs

Cluster autoscaler

Scaling limits

Key considerations

Node pool configurations

Network policies for scale

Load balancing

Storage

Conclusion

Points to remember

Questions

7. Scaling VMware Engine

Introduction

Structure

Objectives

VMware Engine

Creating a private cloud

Configuring autoscaling policies

Conclusion

Points to remember

Questions

Answers

8. Scaling App Engine

Introduction

Structure

Objectives

App Engine under the hood

Standard App Engine vs. flex App Engine

Standard App Engine

Configuring basic scaling

Configuring manual scaling

Configuring autoscaling scaling

Flex App Engine

Configuring manual scaling

Configuring autoscaling

Conclusion

Points to remember

Questions

Answers

9. Scaling Google Cloud Function and Cloud Run

Introduction

Structure

Objectives

Cloud Run

Nature of workloads

Infrastructural footprint

Autoscaling Container Instances

Configuring CPU allocation

Configuring maximum concurrency

Configuring minimum and maximum Container

Instances

Cloud Functions

Nature of workloads

Configuring memory

Configuring maximum and minimum instances

Addressing traffic spikes above max limits

Conclusion

Points to remember

Questions

10. Configuring Bigtable for Scale

Introduction

Structure

Objectives

Nature of data and its handling

Voluminous datasets

High throughput

Fast writes

Versioning changes

Strong consistency

Atomic writes

Selection of data

Bigtable infrastructural footprint

Scaling Bigtable options

Autoscaling triggers

Autoscaling

When to Autoscale

Manual node allocation

Programmatically Autoscaling

Limitations of Autoscaling

Conclusion

Points to remember

Questions

Answers

11. Configuring Cloud Spanner for Scale

Introduction

Structure

Objectives

Nature of workload

Cloud Spanner infrastructural footprint

Manual scaling

Autoscaling using Autoscalar

Autoscalar Architecture

Cloud scheduler

Poller cloud function

Scaler Cloud Function

End to end working

Autoscaler deployment topology

Deployment of Autoscalar per project

Centralized deployment topology

Distributed deployment

Scaling strategies as per load

Stepwise scale up

Linear scale up

Direct scale up

Conclusion

Points to remember

Multiple choice questions

Answers

12. Scaling Google Composer 2

Introduction

Structure

Objectives

Introduction to Composer

Options for horizontal scaling

Adjusting minimum and maximum number of workers

Adjusting number of schedulers

Options for vertical scaling

Adjusting worker, scheduler, web server scale and

performance parameters

Adjusting environment size

Composer Autoscaling

Role of Airflow worker set controller

Factors affecting Composer autoscaling

Composer Autoscalars

Horizontal Pod scalar

Cluster Autoscalar

Node auto provisioning

Optimizing the Airflow environment

Start with environment pre-set

Run your DAGs

Observe the environment

Monitoring the scheduler CPU and memory

Monitoring total parse time of DAGs

Monitoring worker Pod evictions

Monitoring active workers

Monitoring workers CPU and memory usage

Monitoring running and queued tasks

Monitoring the database CPU and memory usage

Monitoring the task scheduling latency

Monitoring web server CPU and memory

Commands to perform the preceding changes

Conclusion

Points to remember

Questions

Answers

13. Scaling Google Dataproc

Introduction

Structure

Objectives

Introduction to Dataproc

Manual scaling

Auto scaling

Autoscaling deep dive

Introducing Autoscaling Policies API

Autoscaling policy resource

BasicAutoscalingAlgorithm Resource

BasicYarnAutoscalingConfig Resource

InstanceGroupAutoscalingPolicyConfig Resource

CRUD on Autoscaling policies

Applying Autoscaling policies to Dataproc cluster

Limitations of scale

Graceful decommissioning of clusters

Using preemptible VMs to scale

Conclusion

Points to remember

Questions

Answers

14. Scaling Google Dataflow

Introduction

Structure

Objectives

Introduction to Dataflow

Apache Beam pipelines

Wordcount Dataflow job

Fusion optimization

Combine optimizations

Dataflow Shuffle service

Dataflow streaming engine

Dataflow Prime

Configuring infrastructure

Disk size

Machine type

Disabling public IPs

Selecting right regions

Dataflow job lifecycle

Distribution and parallelization

Execution graph

Combining optimizations

Fusion optimization

Dataflow autotuning

Horizontal autoscaling

Scaling Dataflow for batch jobs

Scaling Dataflow for streaming jobs

Horizontal scaling of streaming pipeline

Vertical auto scaling

Dynamic work rebalancing

Autoscaling algorithms

NONE

BASIC

THROUGHPUT_BASED

Scaling and Dataflow Prime right fitting

Limiting max nodes

Scaling the persistent disk

Optimizing data shuffle using Dataflow shuffle

Conclusion

Points to remember

Questions

Answers

15. Site Reliability Engineering

Introduction

Structure

Objectives

Introduction to SRE process

Defining a typical SRE process

Defining SLO, SLI and SLAs

Service Level Objectives (SLO)

Service Level Indicators (SLI)

Service Level Agreement (SLA)

Service monitoring using Google Cloud Monitoring

Selecting metrics for SLIs

Using the out of box SLI metrics

Log based metrics

Key SLIs

Setting SLO

Creating SLIs

Creating SLO

Tracking error budgets

Creating alerts

Probes and uptime checks

Aggregating logs to set up cloud monitoring dashboard

Responsibilities of SRE

Incident management

Playbook maintenance

Drills

Automating SRE actions

Conclusion

Points to remember

Questions

Answers

16. SRE Use Cases

Introduction

Structure

Objectives

GCP service grouping

Request response services

Data storage and retrieval services

Data processing services

SRE practices in the microservices world

Availability

Latency

SRE practices big data world

Correctness SLI

Freshness SLI

Coverage as an SLI

Throughput as an SLI

Conclusion

Points to remember

Questions

Answers

Index

CHAPTER 1

Basics of Scaling Cloud

Resources

Introduction

In this chapter, we will look into some key concepts for

scaling infrastructure on the cloud. The concepts mentioned

here generally apply to all major public cloud providers,

such as, Amazon Web Services (AWS), Google Cloud

Platform (GCP) and Microsoft Azure platform, although

with some strategic differences in varying offerings. We will

deep dive into the what, why, and how of cloud scalability

and expand the discussion to challenges, risks, and costs

associated with scaling.

The concepts discussed here will act as building blocks of

our future chapters.

Structure

In this chapter, we will discuss the following topics:

What is cloud scalability?

Benefits of cloud scaling

When to scale?

How to scale?

Key challenges of scaling

Scale versus cost relationship

Risks of improper scaling

Objectives

This chapter will look into the purpose and need of having a

workload on the cloud. We will also look into the types, as

well as benefits of hosting workloads in cloud platforms.

When we develop applications, it is essential to look into the

scalability aspects, because when these applications are

hosted in the cloud, they bring new types of challenges. If

this is not done correctly, there are severe cost implications.

We will then look into some real-world scenarios, to

understand the must-haves for cloud scalability. At the end

of this chapter, the audience will understand the mentioned

aspects conceptually and will be able to apply this to any

cloud platform implementation.

What is cloud scalability?

Cloud scalability refers to the capability of scaling up and

down/scaling in and out of infrastructure needs (compute,

storage and network needs) of applications, deployed in the

cloud, based on changing demands. Scalable infrastructure

is one of the key driving factors for organizations to adopt

cloud platforms for their end-to-end digital transformation

journeys. The ability to handle the sudden spike in data,

experimentation with new technology, as well as

commissioning and decommissioning of infrastructure, are

key benefits which support today’s agile way of developing

software.

In yesteryears, when the applications were deployed

primarily on-premises, increasing the infrastructure was not

a trivial activity. It involved multiple teams - Software teams

to raise requests for more infra, management team to

approve, and IT infra team to place orders. Finally, when the

hardware resources are delivered, it has to integrate with

the rest of the hosted infrastructure. This whole cycle of

making more resources available for a software application,

has multiple parties involved, who use their own time to

complete the processes. This risk associated with such a

cycle can be mitigated up to some level by proper planning.

Maintaining an on-prem infrastructure brings in a lot more

maintenance responsibilities for organizations, and

maintenance comes with due costs. A more significant

infrastructure needs more manpower to support it, not just

for normal day-to-day activities but also for a lot of energy

in Disaster Recovery, security, and availability and reliability.

Disaster Recovery is the ability of services you manage,

to recover from data center/infrastructure going down. An

inefficient disaster recovery plan will affect the availability

of your application, and in case your application is

generating revenue, this implies a loss of money for the

organization.

Security means securing your infrastructure from attacks

on data (encryption at rest and encryption in transit) and

restricting the hackers from doing any infrastructure triggers

– such as creating Virtual Machines (VMs). A non-secure

application will lower customers’ confidence in using the

services.

Availability of software systems is defined as the

availability of your services. Without availability, there is no

practical need for scaling. Reliability means that the

application did not fail, in case of adverse conditions. For

example, even if data grows multifold, the application can

process (taking a long time) with accurate results.

Today, organizations believe in starting small and growing

gradually. The applications are becoming more and more

data-intensive, and processing involves vast datasets.

However, the Service Level Agreements (SLAs) have not

increased. Moreover, technology evolution is very fast and

to pace with this evolution, an organization needs to spend

significantly in innovation. A delay in performing these new

flavors of workloads, slows down the entire time to market

strategy of end-to-end digital transformation journey of the

enterprises.

Adopting the cloud system allows organizations to quickly

scale infrastructural needs without compromising security,

reliability, and availability. Over the years, these cost and

scale models have matured well in all public clouds, and

thus, it makes a lot of sense to decide on the adoption of

models at the start of the development of the applications.

Scaling up is easy, but so is scaling down, as well. The

providers offer manual scaling and auto-scaling options,

making them cost-optimal for new generation workloads,

which further require the system to scaleup and down,

based on the data spikes in workloads. All public clouds

have a pay-as-you-go model for costs, which means that

although the infrastructure is not required, shutting them

down will also cost. Cloud platforms offer Platform as a

Service (PaaS), Infrastructure as a Service (IaaS), and

Software as a Service (SaaS) models for different

workloads.

There are primarily 4 different strategies of scaling

available: horizontal scalability, vertical scalability, auto

scalability and diagonal scalability.

Horizontal scalability (Scale up and

down)

Horizontal scaling means adding more resources to your

pool of resources. For example, if an application is deployed

on a 2 vCores, 2 GB RAM, and 10 GB hard disk machines,

and we need to scale it up, we will add one more device

with similar capabilities. What is critical here, is that we do

not modify the earlier running instance. Instead, the scale-

up (as seen in Figure 1.1) is attributed to adding one new

machine (scale up). The newly added machine could be of

similar or different capabilities. These new and old instances

are placed behind a load balancer which result in no

changes for the end users. Load balancer handles the

workload by distributing the workload among the old and

new instances. Figure 1.1 features a diagram of horizontal

scaling:

Figure 1.1: Horizontal scaling

This is applicable in cases where your processing needs are

not expected to increase with the scale of data. That means,

if we used to process 1 GB of data on one machine, and now

we want to process 2 GB of data, the application developed

is smart enough to divide processing responsibilities into 2

devices, making the situation similar to before, that is, 1 GB

per machine.

One obvious advantage of this scaling is that scaling down

is also simple, with similar complexity as scaling up.

Nonetheless, not every application is capable of scaling like

this by default. Applications developed need to be a

category of first-class functions to support this.

One famous example which fits this scaling strategy is the

Hadoop and Spark jobs. In Hadoop and Spark, the data

loaded into the file system Hadoop Distributed File

System (HDFS), is broken into blocks (HDFS blocks) of

fixed size, and each block is processed in 1 virtual

machine/container. So, an increase in data means more

blocks and hence more containers processing it.

Another example is HTTP microservices with short response

times, and decorated with load balancers. Here too, a

request lifetime is small, and one request can execute

independently from other requests in the system.

Vertical scalability (Scale in and out)

Vertical scalability means increasing the size of machines

(scale out), on which the application is hosted for scale

needs. For example, if an application is deployed on a 2

vCores, 2 GB RAM, and 10 GB hard disk machines, and we

need to scale it up (Figure 1.2), we will use a more giant

device - 4 vCores, 4GB RAM, and 20 GB hard disk. In

comparison to horizontal scaling, the pre-scaling VM has to

be abandoned, and new infrastructure has to be used.

Figure 1.2 features a diagram for vertical scaling:

Figure 1.2: Vertical scaling

This is applicable in cases where your processing needs are

expected to increase with the scale of data. If we used to

process 1 GB data on one machine of 2 vCores, 2GB RAM,

and 10 GB Hard Disk, and now we want to process 2 GB

data, the application will need a device double in size, that

is, with 4 vCores, 4GB RAM and 20 GB Hard Disk.

One advantage of this type of scaling is that all applications,

by default, can support this. Cloud providers provide

specialized type of virtual machines as per the nature of

workload. The disadvantage is that there will be an upper

limit to this. For example, in GCP, currently, we can have

machines up to a max of 416 vCores and 28.5 GB RAM.

Link:

https://cloud.google.com/compute/docs/machine-

types

An application processing a file cannot be distributed to

multiple machines. For example, the processing of images

to identify patterns cannot be broken and processed in

parallel. In this situation, if a 1 GB file needs 2 vCores, 2GB

RAM and 10 GB Hard Disk, a 2 GB file will need 4 vCores, 4

GB RAM and 200 GB Hard Disk.

Auto scalability

Auto scalability as a scaling strategy is available on cloud

platforms, allowing organizations to scale up or scale down

applications, based on some identified parameters. For

example, a web application can scale, based on the number

of incoming requests. Similarly, an application acting as a

subscriber to queues can scale based on the number of

messages unread in a Queue. The same workflow can

trigger multiple size of infrastructure; for example in Figure

1.3, the same application spins 1 VM in the morning, 2 in

the afternoon, 4 in the evening and 2 at night:

Figure 1.3: Auto scaling

Advantages are obvious: no effort is required for

maintaining the scale up and scale down of application. So,

in terms of cost, it is very effective. You only pay for what

you have used. However, the disadvantage is that such

services provided by cloud providers are their prosperity

services available for their cloud. Hence, in hindsight, it is a

use case where multi-cloud or hybrid deployment will need

efforts.

Most often, any application/example which supports

horizontal scaling are good candidates for this scaling too.

Diagonal scaling

Diagonal scaling combines horizontal scaling and vertical

scaling (as seen in Figures 1.1 and 1.2 respectively). It

constitutes adding resources to a single server, until the

server reaches maximum capability or up to a cost-effective

threshold, and then adding more nodes (horizontal) in the

current configuration to the deployment. Figure 1.4 features

diagonal scaling:

Figure 1.4: Diagonal scaling

This term was coined by Flickr’s Operation Manager John

Allspaw, who told how Flickr replaced 67 dual-CPU boxes

with 18 dual quad-core machines and recovered almost 4x

rack space, and reduced costs by about 50 percent.

In short, a delicate balance is needed between vertical and

horizontal scaling for optimal utilization of resources. High

horizontal scaling, that is, 1 vCore/less than GB RAM, will

cost a lot when stacked on RACKs in data centers. On the

other hand, having a very high machine, that is, 416

vCore/30 GB RAM, will cost more money saved in data

centers. However, these RACKs are primary concern factors

in On-premises. In Cloud, you need not worry about Infra

RACKs management; although, depending on your

workload, you may require diagonal scaling.

Benefits of cloud scaling

Every organization – large or small enterprise - uses one of

the cloud platforms for at least some percentage of their

use case, if not a complete 100%. There are significant

advantages to adopting the cloud, and if things are done

correctly as per the best practices, cloud can catalyze an

organization’s digital journey. In this section, let us look at

the key benefits of cloud resource scaling.

Flexibility and speed

In today’s software world, businesses change priority at a

fast pace. Decisions are driven by aspects of customer

needs and satisfaction, as well as work done by

competitors. Such fragile requirements produce demands

for the appropriate IT infrastructure as well. Cloud scalability

empowers IT to respond to the changes quickly.

The software team does not need to wait for the

procurement and readiness of infrastructure before planning

and committing to the deliverables. A team working on

software whose backlog is defined and stable might not see

many of these demands. A team working on a new project

could have many changing needs. Mid-size and big

organizations with significant funds can make an investment

upfront for infrastructure and can absorb the pressure

better. However, small organizations with lower funds might

not be able to do it. The cloud pay-as-you-go model bridges

this gap.

In addition to the above flexibility, teams can choose the

infrastructure, the VM capability, the storage capability, the

topology of the infrastructure, and so on, for their projects.

They can also select the version of the software. For

example, a team can get Airflow 1.x installed and used,

and others can have Airflow 2.x installed and used. Teams

can start with a class of infrastructure and version of the

software. The upgrade/downgrade of both is not difficult.

Ease of use and maintenance

IT administrators can quickly spin up storage and compute

components with few clicks and without much delay in the

cloud. Teams are entirely abstracted away from worries of

physical setup and hardware maintenance. They can

concentrate on actual work, that is, the development of

features/functionalities.

IT teams have both options - either to use the pre-

configured configurations of infrastructure or to use the

custom configurations for infrastructure, for the needs of an

organization. Thanks to the virtualization strategy behind

the entire infrastructure provisioning on the cloud, these

customizations are possible. A lot of valuable IT time is

saved and hence the cost.

Multiple ‘Infrastructure as Code’ tools like Ansible and

Terraform are available, supporting all major cloud

providers. If this is not the scenario, then the cloud provider

has its own tool for infrastructure as code, helping the IT

infra team further develop infra as per need and maintain

the state of infra. Such code makes it easy for new

deployments. For example, an application which needs to be

deployed in multiple regions, can use this script to easily

handle identical deployments across regions.

Cost saving

There are four key areas where the non-cloud deployments

were burning much cash, and cloud deployments had

improved it.

Reduction in the amount of expensive hardware

There is no need to buy costly hardware in the cloud

pay-as-you-go model. When a use case needs a

hardware component, it could be acquired, and once

the work is complete, could be terminated.

Reduction in labor and maintenance costs

As there is a reduction in actual hardware hosting in on-

prem data centers, the cost to install and maintain

reduces drastically. The responsibility to manage it

moves to the cloud provider side.

Higher productivity

Software teams are abstracted away from the

restriction of limited availability of resources for

development and testing. If the resources are less, it

could be very easily scaled up. Cloud deployments

result in the high productivity of teams.

High returns on investments

Earlier, a single experiment was costly. For example,

running a machine learning use case requiring a GPU

would have cost very high. Now, such a request could

be made quickly. Whether an infrastructure component

solves, the purpose can be identified without

purchasing them.

Disaster Recovery

With scalable cloud computing, we can deploy workloads

across multiple regions. In the case of one region going

down or being unavailable, the business continuity remains

intact, that is, the entire data and compute capability does

not suffer.

This is achieved by the cloud provider’s redundant

deployments of storage and compute resources. The

workloads spanned across multiple regions have a higher

cost, but Mean Time to Recover (MTTR) is critical for

production use cases.

To do a similar setup in a non-cloud environment, means

setting up data centers across 2 locations. This will bring

huge investments and operational costs.

Global presence

Various use cases in industry have regional regulations on

data, both at rest and in transit. You cannot process certain

datasets outside a particular region. For example, a bank in

US can have rules to process data in US region. Data cannot

move out, and for such regional constraints, cloud scaling

can be leveraged to set up a processing platform in a

particular region at scale.

When to scale?

There are three broad scenarios which need scaling up or

down as per the need. These situations could be directly

driven from business or indirectly impacting business.

Scenario 1

Each workflow/workload/user journey is solving a problem

statement. The solution’s effectiveness depends on the

results produced at the right time. In the software world,

that right time is known as Service Level Agreement

(SLA). SLA is defined by people having the acumen to

assess the proper value of SLA.

With the data growing exponentially, it is crucial to keep an

eye on whether your applications are meeting SLAs or not.

Teams enforce monitoring strategies to track and analyze

the breach of SLAs. There would be multiple reasons for

such violations, for example, network glitches and

intermittent non-availability of resources. However, if the

SLA breaches are frequent and the system’s throughput is

the same as before, it is a clear indication to scale infra for

your application.

For example, if the REST API has an SLA for 1 second and

with everything else constant, the APIs have started taking

2 seconds; one strong reason could be that the server is not

free enough to process the requests.

Another example could be a scenario where your Spark jobs

used to take less than an hour to process the hourly data

generated for a use case. Now, it has started taking more

time to analyze the growth in data size and increase

infrastructure appropriately.

On the other hand, if the processing is getting completed

much before expectation, it might be a use case to scale

down your infrastructure, as a bigger infrastructure means

higher cost.

In this situation, applications do not need a frequent scale

down, as scale down means that usage of the system has

decreased due to a reduction in business. However, there

can still be a need to reduce the infrastructure. This

scenario does look to be a good fit for manual scaling.

Scenario 2

Each software application has its own need for

infrastructure. For example, a REST Microservice can be

deployed in a container, managed by the Kubernetes

orchestration engine, and scales based on the number of

incoming HTTP requests. Similarly, there can be a data

science job (data science jobs do a lot of iterative

processing) that has a sudden need to acquire infrastructure

to run 1000 parallel code flows. Once the execution

completes, there is a need to scale down the infrastructure

received.

The point is that each application has its own need to run a

workload efficiently, and those needs can have transient

scaling needs. By transient, we need to scale up the infra,

do the processing and then scale down the infra.

In this kind of situation, it is crucial to not only scale up but

also scale down. If the system does not scale down, it can

cost very high. Since the frequency of scaling up and down

is high, manual scaling is not possible. Either we can

leverage the autoscaling provided by cloud providers, which

scale up and down based on need in a time-optimized

manner; or we can write custom scripts, which scale up and

down infra before and after the run. However, such

strategies have a risk of failure.

Scenario 3

The third scenario where it is vital to scale, is to manage

some ad hoc/temporary workloads. For example, we are

doing some performance tests for the application. It is

crucial to test the current workload expectations as well as

expectations for the next couple of years.

Similarly, you may have a big data application processing

GBs of data every hour, producing hourly reports. One day,

it was observed that the data did not arrive at the right time

for one of the hours, and we needed to re-process the data.

Then using the already configured infrastructure in its

original capacity will delay current hourly processing. In this

situation, we can either scale up the existing infra or create

an altogether new infra to execute such workflows.

This scenario refers to exceptional conditions in projects

that need a temporary increase in devices, making it a

candidate for manual scaling up and down.

How to scale?

When it comes to scaling strategies on cloud, there are 3

common strategies available across all cloud platforms:

Manual scaling

Scheduled scaling

Automatic scaling

Manual scaling

As the name suggests, manual scaling is manually running

commands to increase or decrease infrastructure. It sounds

simple, but has some hidden issues. First among them

might be: how will somebody know the correct number to

scale to? Another concern could be the time when this

action has to be taken. Yet another downside to this

strategy is identifying and making sure that we downsize

infra in off-peak hours. Otherwise, we can see an

unnecessary increase in cost.

Even with so many downsides of this approach, this strategy

is the starting point for the scale of your application, since

both migrated from on-prem or developed new. This

strategy could work for some time, but it is advised to work

and implement better strategies of scale provided by cloud

providers.

It might look naive, but it has some obvious advantages

compared to on-prem, and those are an inexpensive upfront

investment, with a short duration of scale, and manageable

upgrades to infra.

Scheduled scaling

Scheduled scaling is precisely similar to manual scaling with

one difference. Instead of manually taking actions, there are

cloud native offerings as well as scripts, that can be written

to schedule the scale up/down of the system. Identifying the

right time and correct quantity of scale still holds true. The

advantages of inexpensive investments, short duration, and

manageable upgrades also hold true.

There is an added risk in this approach. The cron

job/scheduled job running these scale-up scripts might fail

and, because of its automated nature, could get missed

from the team, resulting in a breach of SLAs. Teams utilizing

this strategy implement monitoring of these scheduled jobs

to track failures.

Automatic scaling

In this strategy, the cloud providers provide an advanced

way of scaling up and down, not based on a prediction, but

on attributes. For example, a microservice deployed as a

container in the Kubernetes orchestration platform can scale

from one to two, based on the number of incoming requests.

This is just one example. Similar strategies are available for

components, available in each cloud. Generally, this

strategy can take into consideration the following

parameters:

CPU usage

Memory usage

Dist usage

Number of incoming HTTP requests

Cloud providers develop and manage these strategies, and

therefore, once configured, these will not fail quickly.

Another advantage is that these strategies are not based on

predictions, but rather on concrete system parameters, and

hence it makes more sense to use them.

To implement the strategy at the right level, it is essential to

analyze the application and identify the correct scale

parameter. There is also a slight delay between the arising

need to scale and the actual scale happening, which must

be handled while architecting the same.

Key challenges of scaling

Scaling is one of the major reasons why enterprises move to

the cloud. However, movement to cloud becomes complex

when there is a need to span across multiple clouds like

AWS and GCP, or GCP and Azure, and so on. In such a

situation, one common strategy to scale does not work in all

providers. These discrepancies in strategies can be broadly

classified into a few sub points, as described in the following

sub-sections.

Cloud native and hybrid deployments

The business requirements of deploying workloads to

multiple clouds - public, private, and in-house - are

becoming common. Sometimes these situations are pushed

by customers. For example, a particular client x has a tie-up

with GCP, and hence they want to use GCP. Other cases

could be forced. For example, GCP is not available in China,

or few banking companies allow public cloud, while others

do not. There can be multiple combinations of these

situations.

But whenever we have such a situation, there is a need to

deploy the same software to multiple cloud providers. This

brings in the following complexities:

1. At the application code level, we have to ensure it is

written well enough to interact with cloud-native APIs.

For example, for storage needs, applications can

interact with S3 in the case of AWS, and cloud storage

in the case of GCP.

2. Added complexities to trivial tasks. Provisioning a VM

instance in a cloud is trivial. However, provisioning VMs

in multiple clouds together can become cumbersome.

This, when spread across all the components used by

an application, becomes even more complex.

3. Apart from basic setup infrastructure, the individual

components have different strategies to scale driven by

each cloud provider.

Load balancing

Load balancing available on one cloud provider usually does

not support the load balancing needs of other cloud

providers. For example, Elastic Load Balancing (ELB) by

AWS cannot distribute the load on services deployed on GCP

and vice versa.

One obvious solution could be to have a self-managed

custom load balancer, balancing loads across the clouds,

could be set up. But in that case, the management,

compatibility, and upgrades become the responsibility of the

IT team.

Housekeeping services

As was the case of incompatible load balancing, this case of

housekeeping services is for monitoring, alerting,

centralized logging, and so on. This again brings us to

developing and supporting components native to the cloud.

These days, a famous technology stack to handle this is

Prometheus and open tracing with Jaeger and Grafana,

alongside Thanos to maintain metrics.

However, this too has to be managed and maintained by a

team, bringing us back to where we started - self-managed

to unmanaged.

Apart from technology, other supporting workflows like Site

Reliability Engineering (SRE) have to evolve accordingly.

Scale versus cost relationship

The decision to move to the cloud is primarily taken at

benefits of scalability and agility, faster time to market, and

enabler for innovation. The aspects of cost are often

theoretically read, and more often than not, one comparison

of components is analyzed. For example, let us say a

company plans 100 VM for a workflow. Based on how much

time it takes to run the VMs in on-prem vs. cloud, a decision

is taken. There are a few key areas in cloud which do incur

cost and are left unnoticed initially. However, they should be

taken into consideration upfront, and are as follows:

Data retrieval and egress costs

Workload and allocated resources

Volume of data

Ideally, your cost should be a linear function of your usage,

which could be true considering all the best practices of

scaling native to the cloud are implemented. When it comes

to the actual deployment of applications managed by

enterprises, the equation is not that simple, and companies

find themselves struggling to reduce the Total Cost to

Ownership (TCO).

Major reasons behind this are as follows:

Skill gaps/Learning curves

Each cloud provider has its own defined best practices

and hence, there is often a learning curve involved

when we start adopting the cloud platform. Identifying

the right parameters to scale is important, right from

day one of the design process.

Aggressive business priorities

Business priorities keep on changing and so do the need

for iterative development of applications. These

requirements are often overoptimistic. In this situation,

even if the Non-Functional Requirements (NFR) of

scalability were originally defined, it gets de-prioritized

by teams.

Inappropriate allocation of assets

No matter how smart we are while allocating resources,

it could never be 100% optimized. Oversized VMs, high

performance storage and orphaned assets are few

common examples. Multiple surveys have reported this

reason for 30-40% higher bills.

Low emphasis on capacity planning and

appropriate monitoring

Often, these aspects are ignored at the start of the

cloud journey, and organizations start giving

importance to these aspects only when they start

receiving huge bills. By the time we start giving due

importance to this, we are already in the middle of the

journey. Now bringing in even a small change for all the

applications becomes a costly affair in itself, and then

comes the aspect of somehow retro fitting these

aspects. This might give initial indication of lower cost,

but in the long run no major advantages are observed.

This love-hate relationship of scale-cost on cloud needs to

be handled diligently, following good practices from day 1 in

the team. Cloud providers also provide some key features,

resulting in lower overall costs. You have to make sure to

use them to the fullest. A few key ones are:

Use of reserved and dedicated instances: Reserved

instances are a discounted billing concept if you commit

to the use of VM for a specified amount of time. Even if

you do not use the VM, you are committed to paying

the cost.

Use of spot instances/preemptible VMs: These are

spare VM instances provided at discounted prices

(generally ⅓ of the actual cost). If the need arises,

cloud providers will take those back without intimation.

Appropriate transition strategy from hot to cold

storage: Hot storage refers to storage power that is

higher in cost but offers fast storage and retrieval. On

the other hand, cold storage is lower in price with lower

Input/Output Operations Per Second (IOPS).

Instead of keeping the complete data in hot storage,

historical data can be moved to cold storage for audit

purposes.

Using pre-owned licenses: You can use the pre-

owned license to reduce the cost of components on the

cloud. For example, if you already have licenses of

MySQL used on-prem and plan to create a MySQL

instance in the cloud, you can use the same license; in

that case, cloud providers reduce the cost of cloud host

MySQL.

Use serverless options: You can use the various

serverless options provided by each cloud provider.

Though there is going to some initial extra work, in long

run the lesser cost associated with serverless systems

will cover up.

Risks of improper scaling

Scaling is essential; however, proper scaling is even more

critical. Scaling can affect the other applications hosted on

the cloud if not done correctly.

Cross application impacts

Whenever we define the scale-up configurations/script,

it is essential to mention the upper limit to scaling. The

addition of upper limits of all applications should be less

than the quota on the cloud. Quota in cloud terms

means the maximum limit on computing and storage

that could be spun up.

Scaling down

When the applications are scaled up, the system should

scale down, and thus the workflow fails. In the case of

autoscaling, cloud providers take care; however, in the

case of scheduled and manual scaling, its strategy

should have a very clear definition and implementation

to scale down in case of failures.

Inflated costs

Improper scaling could result in high costs. Monitoring

the price and generating alerts based on consumption

of the allocated budget is recommended.

Conclusion

Having a clear scalability plan is essential to tackle the ever-

increasing workloads due to the amount of data we produce

these days. Cloud’s pay-as-you-go model has acted as an

enabler for organizations to scale quickly as per customer

needs, experiment with new technologies, and reduce

overall time to market, by providing virtually infinite

infrastructure ready to be used with minimal management.

Cloud providers provide capabilities to perform scaling

based on multiple aspects of an application. IT could be

system metrics like CPU or memory usage or external

material like the number of requests and unread messages.

However, if scaling is not leveraged correctly, it could lead

to high costs and situations where an application can impact

other applications.

CHAPTER 2

KPI for Cloud Scalability

Introduction

The Key Performance Indicator (KPI) is defined and tracked

by all modern organizations to assess whether a company is

hitting or missing its north star growth and profitability goals.

To meet the goals, organizations must be open to change as

per the market’s needs. Cloud adoption makes companies

scalable to adopting new business, innovation, and quick

turnarounds to market needs/customer satisfaction aspects.

Selecting a cloud provider depends on how well the cloud

provider’s offering fits with that of an organization’s KPIs. It is

essential to define business KPIs, and it is also vital to define

KPIs for the enabler, that is, the selected cloud provider.

Scaling being one of the central pillars, cloud scaling KPIs

became important.

This chapter will look into Key Performance Indicators for cloud

scalability and how one should track metrics in cloud

platforms.

Structure

In this chapter, we will discuss following topics:

Defining KPI

Basic cloud metrics

Performance

Reliability

Cost

Availability

Indirect KPI Impact of cloud scalability

Advanced Metrics

Response time

Latency

Throughput

Objectives

After studying this unit, the reader should be able to

understand all about Key Performance Indicators, in context of

public cloud platforms. We will be looking into all the key

metrics that can be defined on cloud platforms and how these

key metrics can be treated as KPI. In the last section, we will

look into some advanced KPIs that enterprises use for tracking

the progress of cloud deployments/adoption.

Defining KPIs

The term ‘metric’ is derived from the term measurement.

Metric is some measurable attribute of the system. This

attribute has a current value. For example, my software can

process a 1 GB file in 1 minute. 1 GB per minute is the

measurable attribute and hence, a metric. When we define

targets for these metrics, it becomes KPI. For example, a

business can specify a target: they want to achieve a

processing capability of 2 GB per minute.

Figure 2.1 is an overview of various stages in KPI

management, starting from inception of KPI to achieving it:

Figure 2.1: Stages of KPI management

When an organization selects a cloud provider, it defines some

critical KPIs. There is a business need to deploy essential

features/fixes as soon as possible. Imagine a hypothetical

situation: an organization’s deployment frequency was once a

day on-premise, and project management wants to make it

once in an hour. Each deployment needs a specific testing

infrastructure for automated tests, which runs with each build

and release.

In this case, deployment frequency becomes the metric. Once

per day in on-prem, becomes the current value. And once per

hour becomes the target value. While adopting a cloud

provider, we need to assess whether selecting a cloud will

enable us to achieve the deployment frequency goal defined

for us by the management (business owners).

The organization has two options - Cloud X and Cloud Y. Cloud

X offers a deployment mechanism where the infrastructure

increases automatically, based on the number of deployments

triggered. In Cloud Y, there is no autoscaling for deployment

agents. Instead, it has manual scaling, and there is an upper

limit to scaling. Cloud X and Cloud Y offer to scale up; hence

both can serve the purpose. However, Cloud X becomes an

obvious choice due to auto scaling and max upper limit

limitations.

In the preceding example, to meet the business need, we

could define the Cloud scalability KPI - “How quickly the

system scales up to promoted deployments with automated

tests?” This could be further broken down into KPIs of “Fast

scaling for testing infra” and “Fast scaling of deployment

agents infra.”

Similar to the example stated above, a business KPI percolates

into a technical KPI; when it comes to scaling infrastructure on

the cloud, there are multiple industry-level metrics that mostly

every organization wants to track and define a target value for

them (KPI).

These metrics with a target value/KPI can be divided into two

categories:

Simple metrics

Compound metrics

Simple Metrics can be metrics that are not driven by other

metrics. For example, Input/Output Operations Per Second

(IOPS) for an SSD disc offered by the cloud is 3000 in cloud X

and 4000 in cloud Y. These metrics are entirely technical.

Compound Metrics are metrics that are combinations of two

or more simple metrics. For example, some databases hosted

on Cloud X can run 500 queries, and the same database on

Cloud Y gives the ability to run 1000 queries per second.

Compound metrics are closer to business and make more

sense for the software application.

The things to remember while defining KPIs are as follows:

KPIs have to be S.M.A.R.T., that is, Specific,

Measurable, Achievable, Relevant, and Time-Based.

If any KPI misses out on any of the preceding five

parameters, it will not be effective. For example, a KPI

could be Specific, Measurable, Achievable, and Relevant,

but there is no timeline associated. It makes no sense.

Efficiency is critical when defining KPIs. This is because,

let us say there is KPI to bring down the cost by 10% in

the next six months. However, if the software adoption

increases simultaneously, it would mean more infra and

hence more money. Instead, here, a better KPI would be to

define lowering the cloud cost by 10% per active user in

the next six months.

KPI should be backed up by data or evidence-based

assumptions and not intuitions and guesses.

A KPI should be defined in the context of some business

needs. There is no point in defining a KPI with no business

impact.

The heading of this chapter, “KPI for Cloud Scalability,” means

deciding the metric to track, defining a target value

(improved), and trying to achieve a targeted value in time for

applications that leverage cloud scalability.

Basic cloud scalability metrics

All the previously-defined KPIs are an intelligent aggregation of

3 basic Metrics, that is, performance, cost, and uptime. We can

measure them accurately, and all KPIs can probably be built on

top of it.

Performance

An essential aspect of developing software is to identify the

key bottlenecks and deadlocks in your system that affect the

overall performance of the system. Cloud providers provide a

level of performance, but to leverage supported/claimed

performance capabilities, the Engineering teams are expected

to develop software that will adhere to the practices suggested

by cloud providers. A team not adhering to those offered

practices will create an application that does not perform well

in leveraging the scalability aspects.

It is good to collect and monitor a wide variety of metrics

(infrastructural and behavioral); however, it is even more

critical to accurately collect specific metrics as per the

situation. These metrics depend on a case-by-case basis. For

example, if you are trying to monitor a SQL query system, a

few standard metrics which will help are:

URLs: The URLs in the web application that make use of

the query.

Average time: Average time taken by query to revert

with results.

Calls: Number of calls to a query.

Another important aspect is to make the observability of

performance numbers. Usually, cloud providers provide

portal/dashboard for the services deployed on one particular

cloud. For instance, on Google Cloud Platform we have GCP

Monitor, and on AWS we have CloudWatch. However, in case of

hybrid or multi cloud deployments, there are monitoring tools

available, that integrate with multiple clouds. A few famous

tools available in the market are AppDynamic, Datadog and

New Relic.

The performance aspects vary widely as per the nature of the

application. However, the heuristics to optimize an application

on cloud or on-premises, conceptually remains the same and

are as follows:

Maximizing usage of memory

Reduced disk I/O

Reducing data transfer over the network

Parallel processing

Appropriate class of infrastructure

Let us look into a few everyday performance considerations in

Big Data, Microservice and REST API environments on clouds:

Use case 1: Big data

For designing any big data applications, the following points

need to be taken care of:

Apply filtering of data in the starting steps of data

processing. This will reduce the size of data an application

has to process at the very start.

Optimize joining 2 datasets to reduce data transfer over

networks.

Use recommendations from cloud providers. The

recommendations could vary for the same tool used

across different cloud providers.

Strategize to implement auto scaling or at least scheduled

scaling for your workloads.

There are cloud providers that have their solution available,

and require near zero maintenance of infra. For example, GCP

has Google Dataflow, which they claim runs fastest on GCP

infrastructure. However, other big data tools are also available

under the name Google Dataproc. Teams that want to support

hybrid or multi cloud deployment generally do not opt for such

solutions. Instead, they choose a technology available across

all cloud providers, such as Apache Spark. In this case,

management of infrastructure will be the responsibility of the

IT team.

Use case 2: Microservices

For designing any microservice, it is important to keep the

following basic rules in mind:

Loosely coupled architecture.

Easy to scale, based on demand. Use of serverless

architecture wherever possible.

Small individual services, based on business functionality.

The technology stack of each microservice can be

different.

Separate datastore for each microservice.

As was the case with Big Data Applications, two ways of

deployment are possible. The first is to use a cloud specific

PaaS to host the microservice; but then, that microservice will

only run on one cloud. There is multi cloud stack available as

well. The caveat is that the management has to be taken care

of by the engineering team in the second case, whereas the

cloud provider managed everything in the first approach.

Use case 3: REST API

The design principles remain the same in the case of REST

APIs, just like for the previous two scenarios as well. They key

things to be kept in mind for the REST API are as follows:

Persistence support: Open the connection once and

reuse the connection for multiple requests saving

handshake cost with REST API calls.

Parallelism

Throttle: Support for minimum number of requests.

Low latency responses: Response within a time frame.

Selecting load balancing and content delivery network

options.

There is also a cloud-specific hosting method (using cloud

provider proprietary components such as App Engine GCP) and

a hybrid way of hosting the REST API. The hybrid strategy will

need the scaling aspects to be defined entirely and managed

by engineering teams. It is much easier to configure in utilizing

solutions specific to the cloud. Consider the Figure 2.2 for the

relation between multi cloud deployment and IT team efforts.

The bigger is the multi cloud deployment need, the better will

be the effort to maintain it. Please refer to the following figure:

Figure 2.2: Multicloud deployment vs IT team efforts

Reliability

Reliability of a software system means the ability of the

system to perform consistently according to specifications.

Software is reliable if it passes all test cases and consistently

achieves what it is intended to serve.

For instance, if a batch job processing a file of 1 GB takes an

hour, with data and infrastructure remaining similar, the job

should take an hour in multiple runs. There could be numerous

failures, for example, the network going down, VM getting

unresponsive, IOPS not happening as per expectations, and so

on. The key is how the system recovers from it and performs

at similar levels.

Cloud scalability should add more reliability to your application

simply because if any component in the cloud fails, a new one

could be easily created. Some key metrics are used while

defining reliability, and are as follows:

Mean time to failure

Mean time to failure is defined as the time interval between

2 failures. An MTTF value of 1000 means that there might be

one failure for each 1000-time unit.

An organization can measure the current MTTF value and aim

for a high mean time to failure as KPI. The MTTF value should

improve when scaling the system up or down, on the cloud.

Mean time to repair

Mean time to repair measures the average time taken to

track the errors, causing the failure and then fixing them. An

organization can measure the current MTTR value and aim for

a low mean time to repair as KPI. Lower MTTR means less time

to identify and fix the bug in the bug lifecycle, as illustrated in

Figure 2.3. When scaling the system up or down on the cloud,

the MTTR value should reduce. Please refer to the following

figure:

Figure 2.3: Defining MTTR

Rate Of Occurrence Of Failure

Rate of Occurrence of Failure (ROCOF) measures the

number of failures appearing in a unit time interval. When we

scale up the system, it should not increase ROCOF.

Probability Of Failure On Demand

Probability of Failure on Demand (POFOD) is the

probability that the system will fail when a service is

requested. Scale-up and scale-down should not have any

effect on the POCOF.

Costs

Cost is a metric on which many decisions depend. From the

first decision of selecting a cloud provider to defining the max

range for scalability, cost plays an important role.

In large organizations, typically, when a project starts on the

cloud, the cost is not given due importance. However, soon

this becomes the single most crucial aspect because of the

scale of the team, scale of use case, and scale of customers.

Cost depends on a lot of factors, both controllable and

uncontrollable. A few key controllable factors are as follows:

Cost of unused resources.

Usage of reservations and discounts.

Capacity planning your workload. Strategizing the scale

mechanism.

On the other hand, the uncontrollable factors are as follows:

Cost increase due to new customers on boarding.

Cost due to team immaturity.

To check cloud costs and improve efficiency, organizations rely

a lot on automation, mainly to keep track of resources and

identify unused resources. A few key policies implemented in

the automation are as follows:

Notify: Notification to inform when the monthly budget is

consumed.

Suspend: If a policy detects that a VM is created not

according to central governance policies, suspend the

launch of the VM.

Terminate: Terminate resources that are lying orphaned

in the system. For example, no IOPS on a storage service

or CPU activity for a while.

Revoke: Access to any account logged in from a non-

conforming IP address.

Schedule: Periodic shutdowns (especially weekends and

nights) for non-production assets to avoid wasting

resources.

Almost all cloud providers understand the importance of

providing transparent spending for each customer, and hence

they give a pretty detailed report, giving complete insight into

where the money was spent. Such reports are a good source

for understanding if resource consumption matches the

expectations. Otherwise, a deeper dive is needed into why a

cost has be incurred. For example, if a team thinks they should

be charged for 100 hours of VM time, but the price says it is

150 hours, it is a clear indication that VMs were running when

they are not supposed to.

Cost KPIs are one of the most important KPIs for cloud scaling.

It feels impressive that a system can handle the load by

scaling on the cloud. It is also imperative to keep in mind how

the money is burnt in doing so. A scaling trigger where a

business earns $1 by spending $2, is a loss of profit.

The way cost KPIs are defined depends on use case to use

case, but few widely used ones are as follows:

Total cloud cost

This refers to the total cost of your production and non-

production environment. Ideally speaking, scaling should

primarily impact total cost on production. The increased

adoption of applications will impact the production costs going

up. Your non-production environments will show an increase in

case of team size growing or some environmental impacts like

increased performance testing.

We can add a bit more context to the KPI definitions to make it

more effective and achievable.

Defining KPI for cost in production environments

Rather than tracking total cost, a more appropriate

measurement will be measuring the cost rate.

KPI = Total Cost / Environmental Factor

The denominator here - “Environmental Factor” could be

anything. For example, the number of environments (KPI

becomes cost per environment), number of users (KPI

becomes cost per user), number of runs (KPI becomes cost per

execution), GBs of data, and so on.

Defining KPI for cost in non-production

environments

In non-production environments, there could be two primary

reasons for the increase in cost:

Team size and usage of resources

Stage of software

The non-production cost increases as the size of the team

grows. If there is DEV and QA environment, the DEV

environment cost will be directly proportional to members of

the dev team, and similarly, the QA environment cost will be

proportional to QA team size.

Another aspect that could affect the cost is the stage of the

software. If the project has started new, the development cost

is expected to be less. Instead, if the project is in a scene

where the plan has too many performance runs/reliability runs,

the price is expected to increase.

Forecasted cost

Forecasting the cost of your cloud usage is vital in regards to

making the right decisions. For example, if the prediction is

that platform adoption will increase by 10 X, a better decision

could be taken in terms of scaling parameters.

There is the business forecast of the usage of the application,

and then the technical management defines the non-functional

requirements to achieve the forecasting done by the business.

It then comes to entirely technical decisions like committing

for usage, using Spot VMs, class of machine, and so on. With

every scalable aspect (technical and non-technical),

measurement of the cost will help identify profitable decisions.

Money saved on committed discounts and

reservations

Committed discounts are discounts provided by cloud

providers, if an organization uses its platform. To get

discounts, there has to be a substantial deal (in terms of

money).

On the other hand, reservations are the commitments to use a

specific infrastructure class. For example, we can say that we

will use a series of VM for six months. And when we do so, we

can get the VM reserved for six months only for our use case.

The advantage is that such VM assignments will cost less, and

the disadvantage is that even if you do not use them, you are

committed to using them for a specified time.

If cloud resource scaling could be done so that more and more

reserved instances are being used, it could lower the cost.

Similarly, if more and more scaling activity involves the

discounted price infrastructure, the cost will be under check.

A meaningful KPI here could be the cost reduction when

reserved and discounted infrastructure is used.

There could be many ways/aspects a company can look into

the above cost KPI and define use case-specific KPIs. For

example, it can be the percentage change in the price of cloud

resources over time (%) due to reserved instances, the

percentage of infrastructure running on-demand vs. covered

by discount or Spot, and so on.

Availability

Availability refers to the ability of an IT service to perform its

function. It is measured as the percentage of time the service

is available. It is a report of the past and a prediction of the

future. It tells how well the service is performed in a period of

time.

Scalability in the cloud facilitates improved availability of

systems. Availability describes how well the system provides

resources over a while. With everything getting digitized,

availability has become the most crucial aspect of generating

revenue. For example, think of a situation where the

eCommerce portal Amazon is down for 5 minutes. It straight

away means a huge loss of business.

Cloud providers that provide PaaS service, typically offer a

99.xx% availability, with few even committing 0 downtimes.

The primary idea behind making the system available, is

redundant deployment across multiple locations with an

efficient switchover.

All public clouds provide cross geographical scaling and easy

redundancy and remove Single Point Of Failures (SPOFs)

from the system.

One might think that the availability metrics and customer

satisfaction are tied, that is, a customer will be happy with

high availability. It is sometimes true, although not always, as

customer satisfaction depends on the preferred outcomes of

customers. For instance, let us assume you are an eCommerce

provider with 99.9% availability (weekly) (.1% or 10 minutes of

downtime in a week). But the .1% downtime occurs during

high usage events, such as when there are maximum

discounts offered or there is a campaign for up-selling in

progress. We can reach the availability targets, but the

customer is not happy.

In Figure 2.4, we see the classic watermelon pattern, which is

green (good) on the outside and red (bad) inside. Your output

meets the defined target but not the desired outcome. Please

refer to the following figure:

Figure 2.4: Watermelon pattern

Availability is critical for customer satisfaction and to ensure

that, redundant developments are on cloud used. There is a

term used these days, known as auto-healing (primarily in the

context of cloud). In auto-healing, the infrastructure is

configured to support minimum components, that is, let us say

we configure 10 VMs to be running at any given point of time.

Suddenly one VM goes down. Then, the system will create the

VM to ensure that we have a minimum of 10 VMs running.

Indirect KPI impact of cloud scalability

Cloud scalability can impact some KPIs in your project

indirectly. By indirectly, we mean that these KPIs can severely

get affected if the scaling of the cloud platform is done right

and in time.

Innovations

Cloud scalability allows software teams to scale infrastructure

quickly for innovation, which helps them create new workflows

and features. Not only that, but because of the scalability of

infrastructure, teams can quickly try new technologies for their

innovations. In the traditional scenario, on prep system, this

was a significant bottleneck because scalability was a

bottleneck.

KPIs like Innovation Rate (= number of innovations/number of

products * 100) and Degree Of Innovation (= newness of the

purpose-medium combination) will get impacted due to this.

Software development and operational

KPIs impacts

The comfort that new infrastructure is readily available, or the

infrastructure can scale, can significantly impact the general

software development and operational KPIs. For example,

software developer productivity KPIs (the most popular ones

being speed, cycle, and response time), will optimize. Also,

operational KPIs that measure the software’s stability in terms

of production and maintenance efficiency, will have a positive

impact.

Customer satisfaction

Cloud scalability has a positive impact on the customer

satisfaction KPIs like Customer Satisfaction Score (CSAT).

Customer Satisfaction Score is a metric used by companies to

gauge how satisfied a customer is, with a particular interaction

or their overall experience. CSAT is expected to improve

positively with faster lead time and better SLAs.

Advanced metrics

We looked into the primary metric to calculate KPIs on cloud

scalability. This section will look into some advanced metrics

used across the industry to define KPIs.

Figure 2.5 represents a scenario where the load/transactions

on the system increase progressively. Refer to the numbers in

the figure for the following explanation:

1. The X-axis represents the latency of your system.

2. The Y-axis represents the operations per second on the

system.

3. This means that the progressive operations trigger into

the system. For example, it starts with 1 task on two core

machines, then raises to 2 tasks on two cores and then 4,

6 and tasks on two cores.

4. Represents the elastic zone, that is, the system will utilize

more and more infra, to present a linear increase in

latency with the number of operations.

5. Represent the congested mode. The infrastructure is

constant, and the number of tasks launched is high. The

system is doing many contexts switching, to handle the

workloads.

6. Represents the saturation point where the time taken for

processing one operation starts increasing with more and

more tasks launched. Rather than being linear with a

positive slope (throughput), the curve is not a flat line with

a slope of zero.

7. The system’s throughput is constant after the saturation

point, no matter how many tasks are launched. The

system is saturated now to show a further increase in

throughput. Please refer to the following figure:

Figure 2.5: OPS per second vs. latency

Ideally speaking, the application needs to increase the

throughput as the load on the application increases. It means

that anything on the left of the Saturation Point works well

in favor of the application. Cloud scalability makes sure that

the infrastructure is increased as and when needed, to not

cross Saturation Point and go into consumption mode.

Response time

Applications accept requests from users and revert with a

response. The time the application takes to respond,

determines the efficiency, and the greater the efficiency, the

greater customer satisfaction is. There are five different

response metrics that we can measure, and they are as

follows:

Data in and out

The metric captures the size of each batch of requests to the

server, as well as the number of responses the server creates.

For example, if we have 1000 requests and only 100 responses

come back, the data in data out ratio is 10:1. As the load

increases, this ratio might need to be more aggressive, and

hence it means a capable backend catering to such requests.

Cloud scalability enhances this capability of handling a wavy

load. The better the cloud scalability, better is the metric.

Request per second

It measures the number of requests a server receives every

second. More requests per second can lead to slower

responses. However, cloud scalability can help scale the

infrastructure based on the number of incoming requests to

maintain a critical response time.

Average response time

It measures the amount of time a server takes to respond to a

request. Lower response time means better performance, as

the server will take less time to respond. Under heavy load,

this metric might deteriorate, and hence, cloud scalability can

help. In this situation, applications can scale based on CPU

usage or Memory usage, to maintain a consistent Average

Response Time (ART).

Peak response time

Peak response time measures the longest response time from

the server. This is nothing but an outlier in your ART

calculation. Cloud scalability can help have very few outliers,

and even if the deviation is seen, that deviation from ART

should not be much.

Infrastructure utilization

This metric measures how much infrastructure power a

request consumes, to produce a response. An application

under heavy load will increase the infra consumption, and

cloud scaling can help keep them lower.

Latency

The response time metric described above, provides

performance information about transactions. However, in the

case of asynchronous applications, it may not indicate

everything.

Let us consider a situation where a method spawns another

thread and then returns control to the calling thread. The

return of control stops the clock for the response time metric;

however, logical processing continues behind the scenes. For

such situations, we rely on latency metric. Latency metrics

reflect the response time for such asynchronous transactions.

The key metrics under this heading are as follows:

Average end-to-end latency

It is the average time taken by all the asynchronous

processing done in the system. Obviously, a low average time

here means the processing took time, which means that the

cloud scalability can help lower these metrics with efficient

scaling.

Number of slow end-to-end transactions

This is the number of end-to-end transactions which took more

than the expected value of processing in a time period. For

example, there is an eCommerce application, and the

asynchronous process for a customer checking out the cart

takes 1 minute, but in certain cases, it takes 2 minutes. Then

the count of cases where it took 2 minutes becomes the value

for this metric.

Number of very slow end to end latency times

This represents the maximum amount of time taken in an

asynchronous process. These maximum times will represent

the worst latency times.

Generally, we start with a value supported by the application

(current value); the business people define the expected value

(target value) based on customer input, and then the tech

teams try to bridge the gap between current and expected

values in a phased manner, by leveraging auto

scaling/scheduled scaling features of the cloud.

Cloud scalability should bring down the latency of the

asynchronous process by scaling up the infrastructure when

needed.

Throughput

Throughput is an indicator of performance. It is the quantity of

an activity that a system accomplishes in a unit of time. For

example, this system has a throughput of 300 transactions per

second.

Rules of the game remain the same; we start with an initial

value and define a target value with inputs from the business.

We use cloud scaling to meet the business goals.

Conclusion

To meet the goals of digit journey, organizations must be open

to change as per the market’s needs. Cloud adoption makes

companies scalable to adopting new business, innovation, and

quick turnarounds to market needs and customer satisfaction

aspects. Modern organizations define multiple KPIs in which

they want to track the overall success of their cloud

adoption/migration journeys. Traditional KPIs include

performance, reliability, cost, and availability. However, this is

not the complete list; it depends on use case to use case.

Identifying efficient and valid KPIs and their achievements are

essential to measuring the effectiveness of cost adoption.

Points to remember

1. PaaS, IaaS, and SaaS offerings from cloud providers look

very attractive upfront but identifying correct metrics and

the target values (KPI) are the key to defining the success

of cloud journeys. Before adopting, do not forget to

specify and track them.

2. It is crucial to identify the business SLAs to utilize cloud

infrastructure appropriately. For example, the data

availability constraints will define the single zone vs.

multizone solutions.

3. There could be multiple ways of accomplishing the same

tasks on each cloud. It is vital in identifying the centralized

governance of cloud actions.

Questions

1. What are some key qualities of efficient KPIs?

2. Why are cloud KPIs important to define and track?

3. Which is one key KPI for your project and why?

CHAPTER 3

Cloud Elasticity

Introduction

An aspect that organizations want to look at, apart from

reliability, cost, availability, and security, before selecting a

cloud provider, is the scalability and elasticity offered by

cloud platforms. Scalability traditionally has been an act of

manually increasing or decreasing resources on infra.

However, there is a different scaling strategy in the cloud

world, apart from traditional manual scaling, that is, auto-

scaling. Auto-scaling aims to spin up the exact number of

resources needed at a given time, to tackle the workload

without manual intervention.

We discussed the auto-scaling of cloud resources in Chapter

1, Basics of Scaling Cloud Resources, and we are going to

deep dive into it in the current chapter. Autoscaling is just

another name for cloud elasticity.

Autoscaling is the scaling of computing, network, memory,

and storage either supported by default by a cloud provider

or configured explicitly.

Structure

In this chapter, we will discuss the following topics:

Defining cloud elasticity: Defining scale in and scale-

out

Benefits of elasticity

Elasticity and cost relationship

Key challenges

Difference between cloud scalability and cloud elasticity

Use cases

E-commerce (batch job)

Song streaming (stream job)

Objectives

After reading this chapter, you should be able to understand

elasticity, its types, forms, advantages, and its relationship

with cost. It is essential to understand the flaws of

traditional scaling and how cloud providers tend to

overcome issues of over provisioning and under provisioning

in a cost-effective manner.

Defining cloud elasticity

Cloud elasticity (Autoscaling) is the capability to

dynamically scale up/down (Horizontal scaling) or scale

in/out (vertical scaling) resources, as per the need of the

application. Dynamically implies that no explicit triggers to

scale up and down are needed. Traditionally, when we used

the term scaling, it was an external action taken to trigger

the spinning up of infrastructure. There are two strategies

when we talk about scaling – scheduled and manual.

In Figure 3.1, teams used to analyze the infrastructural need

for one of the weeks (Analyze phase). Based on the

analysis, a similar workload is predicted for future weeks

(Predict phase). Cron jobs/scripts made upscaling and

downscaling as per the expected load (from Predict phase)

in week 2 (scheduled infra scaling). Please refer to the

following figure:

Figure 3.1: Scheduled scaling

The success of this strategy is dependent on the prediction

of workload. We can schedule a scale-up and a scale-down

in non-peak hours if we know the peak hours. In this

particular use case, after frequently scaling up and down as

needed, it is impossible to take the actions manually. It

becomes an excellent example for writing cron jobs which

increase the infra as per configurations for the peak hour.

The previously-described strategy is known as scheduled

scaling or predictive scaling.

There can be multiple situations where this predictive

scaling strategy might not suffice. This strategy could fail

any day due to deviations in the expected load for an hour,

which could happen due to multiple reasons, such as data

arriving late due to choking of ingestion pipeline in case of

data platforms, or consumers hitting more APIs due to some

campaign launched by the sales team in case of an

eCommerce application. Even if the workload is tackled well

and configurations are done well, there is a need to check

whether the cron job is running correctly, which again

implies additional monitoring and effort.

Another similar use case could be that of manual scaling.

Consider Figure 3.2. There is a workload running with some

infra capacity in week 1, and it was observed that there

were many breaches in SLAs. The IT team was requested to

perform manual scaling (over the under provisioned), and

infrastructure was increased by 50%. Now, the SLAs are

being met again. Please refer to the following figure:

Figure 3.2: Manual scaling

In manual scaling, the infrastructure is scaled up and down

manually, but the frequency of such triggers is very low.

Since the infrastructure remains mostly constant, and the

scale is determined by meeting the SLA of peak hours, a

significant infra remains in an over-provisioned state, in off-

peak hours (over provisioned).

In the preceding two approaches of scheduled and manual

scaling, the decision to scale up was external, that is, some

persona (IT team or the engineering team) took a call on the

amount of infrastructure to be spun at any time. No matter

how diligently we try to develop the proper infra, it will not

be optimal (there is no over provisioning and under

provisioning). That is because of multiple factors that are

both known and unknown.

Categories of unknown factors include examples related to

data. For instance, we are running a distributed commuting

job, which does a group by operation, and in specific runs,

there is a spike in the key to the group by operation. There

will be apparent delays due to long shuffling time. As

another example, let us say we have an application with

memory leak issues. No matter how well you predict the

infra, it will take a longer time or might even fail under

certain situations.

Hence, either manual or scheduled or autoscaling, scaling

decisions depend on known factors. The magnitude of these

factors cannot be generalized across runs with pinpoint

accuracy, and instead, it depends on a run to run. For

example, each run has its CPU utilization or memory

utilization. If we want the correct scaling, it is imperative to

scale up and down, based on metrics in each run. Let us

have a look at a few common examples available across

cloud providers in general.

Example 1

Consider the following Figure 3.3, which depicts a front-end

application, where scaling can happen based on the number

of incoming requests. Please refer to the following figure:

Figure 3.3: Scaling front end application

In the Figure 3.3, users are sending requests over the

internet (1), and internet requests are transferred to the

load balancer of the application (2). Load balancer passes

the request to appropriate servers (3). Servers handling the

request could be configured for scaling up (4) or scale-out

(5).

Example 2

Consider Figure 3.4. It shows an application acting as a

subscriber to a queue. Scaling of the application can happen

on the number of unread messages in the queue. Please

refer to the following figure:

Figure 3.4: Scaling a subscriber to a queue

In the Figure 3.4, users submit requests to a web server (1).

Web Servers place the user requests in a queue (2). These

user requests (messages in queue) are pulled by the

application or pushed by the queue to processing servers

(3). Based on the statistics of the number of messages, the

processing servers can scale up (4) or scale-out (5).

Example 3

Internal factors: Scaling based on CPU and memory

spikes

Consider the Figure 3.5, which demonstrates infrastructure

scaling based on CPU usage:

Figure 3.5: Scaling based on CPU usage

The left half showcases the average CPU usage for an

application. The scaling configuration is set to be 80% (1),

that is, whenever the CPU usage goes above 80%, the

system will scale (up or out and vice versa). For the

assumption, let us say that the time between 16:30 to 16:55

needs one CPU. At 16:55, there is a spike in average CPU

usage (2), and hence the system scales up (A) to a larger

machine or systems scale out (a) to 2 machines. There is a

dip (2) and a spike (3) in average CPU usage, and because

of that, the system scales down (B)/scales in(b) and scales

up(C)/scales out (c).

The example uses average CPU usage for the demonstration

of strategy. We can use average Memory spikes in place of

CPU usage, and the picture will remain similar.

Example 4

Combination of two or more internal and external

factors

The preceding three scaling up/out strategies are provided

mainly by all the cloud providers. However, due to

application complexity, there might be a need to have

custom scale up/scale out situations and hence custom

scaling metrics. The custom scaling metric here could be a

combination of two or more metrics defined.

Assume that we have an application that combines Figures

3.3 and 3.4. The application accepts triggers in two ways:

one where users can submit processing requests directly by

an HTTP call over the internet (1, 2 and 3 in the Figure 3.6),

or the users can submit a request to a front-facing web

server, which then places the processing request in a queue

and application takes one task/message from the queue and

processes it (4, 5 and 6 in Figure 3.6).

One obvious advantage of the first approach is that the user

requests get processed right away. For the second approach,

the advantage is a more resilient request submission. On

the contrary, the disadvantage of approach 1 is that the

user’s requests might fail due to system unavailability. For

approach 2, there will be a delay in the request submission

and actual processing. Approach 1 is generally used when

the human’s actions trigger application processing, whereas

approach 2 is typically taken when the users are system

users (another application starting processing). Figure 3.6

features scaling based on multiple factors:

Figure 3.6: Scaling based on multiple factors

Since the application accepts processing triggers via HTTP

over the internet and via Queue messages, an appropriate

scale-up/out could not solely depend on one metric, that is,

number of HTTP requests or number of unread messages in

a queue.

In this situation, we can define a custom scale metric in two

ways:

OR condition: Scale when the number of messages

increases to more than 5 in a queue or scale up when

the number of incoming requests exceeds 20. Though it

is technically possible to have such a configuration, it

might generally not be an ideal strategy.

AND condition: Scale when a combination of a number

of requests and number of messages reach a threshold

value. For example, a*(number of the incoming HTTP

request) + b*(number of unread messages) > 80,

where a and b are multiplying factors depending on the

type of application and SLA defined. The greater the

value of a or b, the more aggressive the scaling.

Manual scaling, as well as schedule scaling, both have their

pros and cons. To overcome those, cloud providers provide

better elasticity strategies.

SaaS services automatically come with a default

strategy implemented, which could be configured

properly as per need. For example, the app engine and

cloud functions in GCP both have a default scaling

configuration based on the load at run time, that is,

even if nothing is done by the engineering team to

support autoscaling, it is already implemented. We will

deep dive more into this topic in the upcoming

chapters.

SaaS service, where an application deployed has no

default scaling strategy in place. The complete onus lies

on the engineering team, to enable scaling of

applications. Kubernetes services available in GCP (that

is, Google Kubernetes Engine (GKE)) or Azure (that

is, Amazon Kubernetes Service (AKS)) have, by

default, no runtime scale-up configuration configured,

for horizontal and vertical scaling of applications. It has

to be done by the engineering team.

Benefits of elasticity

We have discussed multiple aspects of the elasticity of

hosting applications on the cloud. We also looked into the

advantages and disadvantages of scaling, in general, on the

cloud. It is time to be a little more specific and discuss the

various advantages and disadvantages of elasticity. Aspects

in this section have already been discussed before when we

discussed scaling in general. Here we will highlight the

benefits that autoscaling brings to the scheme of things.

Painless and optimal scaling

The elasticity gives a better scaling experience for

applications. With elasticity, teams can ensure optimal use

of spun resources, that is, whatever is being spun is actually

in use – no over/under provisioning. In contrast to elasticity,

manual scaling is scaling up and down predicted, based on

historical loads or the scaling used to meet SLAs in peak

load.

Justified costs

With all cloud providers supporting the pay-as-you-go

budget, there is no upfront cost associated with increasing

infrastructure size. But if it is not handled with care, an over-

provisioned infra could result in unnecessarily high costs. As

the application matures, it begins to bring even the slightest

of changes. So, it is crucial to understand application scaling

needs during architecture design, and implement it

accordingly. Auto-scaling provides the most optimized

solution for cost, by reducing the possibilities of over/under

provisioned systems.

More redundancy and flexibility

IT teams can host infrastructure across multiple

geographical regions to control disruptions happening in one

region. For example, the computer infrastructure could be

configured so that if one region cannot spin up VMs, the VMs

get spun in another region automatically. This cross-regional

strategy is more frequently used while saving mission-

critical datasets. Datasets stored across regions are

supported with flexibility, reliability, and automated

recovery options.

Public cloud providers support features which facilitate

redundancy and flexibility well in the following manner:

Considerable capacity

We get almost infinite compute and storage capability, as

needed. In some situations, a cloud provider might have

some restrictions which need to be checked on official

documentation, but generally, those restrictions are hand

full.

High availability

The ability to spin up additional redundant resources, helps

reduce unnecessary slowdowns and disruptions. Strategies

like canary and blue-green deployment, could be very easily

used on the cloud. Canary deployment is a strategy where

we deploy code for a small subset of users, let them use it,

and once confirmed that the functionality works as

expected, changes could be rolled out to all users.

Simple management

IT teams do various activities to manage and update the

infrastructure. This includes patching operating systems,

updating software, and making sure that the infrastructure

is secure and robust under high load. To ensure that the

infrastructural components are working well, IT teams

monitor and alert issues in the infrastructure 24*7. With

cloud providers supporting elastic infrastructure, all these

aspects are supported automatically. The whole

management of such activities is abstracted away from the

IT team.

Elasticity and cost relationship

As per the discussions till now, it is easy to appreciate the

fact that elasticity enables dynamic scaling intending to

save teams from over provisioning and under provisioning of

cloud resources. We want the spike in data or processing to

be a function of infrastructure. Consider Figure 3.7, which

shows the relationship between infrastructure and load. The

greater the load, the greater is the infra; the same SLA is

the mantra. Please refer to the following figure:

Figure 3.7: Ideal load, infra and SLA relationship

In Figure 3.7, we can see that SLA is a function of

infrastructure and load. If we can ensure that infrastructure

increases proportionally with an increase in load, the SLA or

the slope will remain constant. The value of SLA is defined

by business, but to achieve that is the responsibility of the

engineering team in all conditions. This is an ideal scenario

and only possible if the application is hosted on truly

infinitely scalable infrastructure. Under infinite load,

applications will scale infinitely to meet SLA and vice versa.

The phrase “Infinite scalability” looks fancy, but each

application should be defined with a lower and an upper

bound. A lower bound makes sure that the application

responds quickly, and an upper bound makes sure that one

application does not take all the resources and start

impacting other applications. Consider Figure 3.8:

Figure 3.8: Relationship between load, elasticity, SLA and cost

Graph 1 represents a more realistic load vs. infrastructure

mapping. Graph 2 illustrates the cost vs. infrastructure

mapping. Application is constantly running with minimum

load (1), and hence there is always a minimal cost

associated (a). When the load increases, it is tackled by the

minimal infrastructure only up to a particular limit (2 in

Graph 1) and hence the cost remains constant for the initial

load (b in Graph 2). Once the threshold is reached, the

system starts scaling up (3), and so does the increase in

cost (c). Once the maximum configured limit is reached (d

and 4), the SLA starts breaching (5) while the price remains

constant (e).

As we can see, when the system is leveraging the elasticity

of the cloud within a minimum and maximum limit, the cost

is directly proportional to infrastructure and is directly

proportional to load. Minimum and maximum prices remain

constant.

Key challenges

The biggest challenge to optimally achieving elasticity is

that there cannot be one common general strategy for

applications. Just as the number of applications can differ,

so can the permutation and combination of metrics and

values for elasticity. Generally, engineering teams start with

an educated guess of strategy and a logical guess of one set

of values for metrics. However, an application might take

several tuning iterations to achieve the proper elasticity

configurations. In this section, let us look at some key

hurdles.

Identifying the right

attributes/metrics to track

Identifying a metric whose value will define the scale up and

down scenarios might be straightforward in cases where the

triggers of load increase are clearly defined. For example,

when we already know the load definition for our

application, for instance, in the case of one of our previous

scenarios (Figure 3.3), in the HTTP REST services use case,

the load could be the number of incoming requests.

However, in cases where we combine two or more metrics,

it becomes problematic. For example, let us assume that we

have an application that can be triggered via REST call and

by placing messages in a queue (Figure 3.6). Here, it is

difficult to identify the correct contributions of each load

increase aspect. For simplicity, let us assume we defined a

custom metric-based linear relationship of REST calls and

messages in the queue.

CUSTOM SCALE ATTRIBUTE = a * Number of Requests + b*

Number of unread messages.

Identifying the correct value of a and b is complicated.

Identifying the right scaling

measurement value

Once we get the right attributes/metrics to track, another

vital question is what the scale-up and scale-down threshold

conditions should be. An example threshold condition is

scaling up when the average CPU usage is above 80%. The

question that arises is how did we arrive at the number

80%? Nobody can give a perfectly optimized number.

Engineering should start with a conservative number and

slowly start optimizing it with an eye on SLAs. The moment

a breach of SLA is seen, revert to the previous step.

Defining the minimum and maximum

limits

Defining the minimum and maximum limits is tricky, not

from the aspect of the engineering team, but more from the

business side. If you ask any business person or product

owner, they will always want an ideal situation (Figure 3.7).

However, the engineering team discusses and tries to align

expectations of business person to that of what can be

offered. Since multiple parties are involved, this becomes a

bit challenging in aligning everybody to a common

understanding.

Cost spikes

Till the time-optimal metrics and their value are identified,

engineering teams should start with slightly oversized

infrastructure. An undersized infrastructure will mean

breaching SLA, which means loss of business and credibility

in the worst cases. It is also important to quickly correct the

oversized infrastructure because we are unnecessarily

paying extra cloud costs. Maintaining a balance between

elasticity and cost is a challenging exercise.

Difference between scalability and

elasticity

Elasticity and scalability are often used interchangeably by

teams deploying workloads on the cloud. Both might sound

similar, but there are some subtle differences between

them. Table 3.1 talks about those differences:

Cloud Elasticity Cloud Scalability

Elasticity is to scale up/down and

scale in/out automatically, as per the

load on the system.

Scalability on the other hand is to

scale up/down and scale in/out,

performed explicitly by the IT

team/engineering team.

It is primarily used for use cases

where the workload and demand

Scalability is primarily used where

there is a consistent need for

increased infrastructure.

increase only for a specific amount of

time.

This is an exercise which might need

multiple iterations of performance

runs to configure properly.

Main driving factor here is the

meeting of SLAs. Generally easy to

achieve in lesser iterations.

Cost effective, as the infrastructure is

not over provisioned or under

provisioned at any given point in time.

Can lead to unused infrastructure, and

hence exaggerated costs.

Each cloud provider has a different

strategy and underlying

implementations to support elasticity.

In situations of multi cloud

deployment or hybrid deployments, it

becomes difficult to host apps

leveraging each cloud provider’s

elasticity facilities to full potential.

In case of manual and scheduled

scaling, achieving both in a hybrid

and multi cloud environment is easier.

A similar strategy could be easily

implemented.

Table 3.1: Elasticity vs. scalability

Use cases

In this section, we are going to have a look at 2 use cases,

firstly of an eCommerce application whose nature is batch

job and secondly, a use case of song streaming application,

whose nature is streaming. The use case description will

primarily describe the scalability and elasticity needs of

these two scenarios.

eCommerce application

Let us take for an example, architecture of a typical

eCommerce application. This only represents a part of an

eCommerce application; actual architecture could vary

organization to organization. In the following eCommerce

application architecture, micro service architecture has been

followed for service responding to user requests. In addition

to that, the data coming via different microservices is

logged on the queue and is further analyzed by streaming

as well as batch jobs. Let us look at each component one by

one and discuss the aspects of elasticity, as shown in Figure

3.9:

Figure 3.9: eCommerce application

Consider the preceding numerically labelled figure

(eCommerce Application) with the following subsequent

numerically labelled explanations:

1. Users trigger various API via a front-facing UI - either

web-based applications or mobile applications. These

requests go via API Gateway servers.

2. API Gateway Servers: An API Gateway is a component

that takes in all the requests from outside users and

does two main activities - requesting multiple

microservices and triggering more than one

microservices, aggregating the result, and responding.

There are API gateway servers available as PaaS across

all cloud providers. All the PaaS gateways are auto-

scalable, that is, as the number of requests increases,

the underlying infrastructure is scaled up and vice

versa.

3. API Gateway servers route the request to individual

microservices. For example, a product microservice has

all CRUD operations for a product.

4. Each logical entity can be combined as one

microservice. Cloud-specific technology is available for

hosting such microservices (labelled as 4.1 in the Figure

3.8). For example, in GCP, we can use an app engine or

cloud run to host microservices. In Azure, we can do the

same on Azure cloud services. If we select these

options, we will be able to leverage the full capability of

elasticity offered by the cloud. However, it could

become challenging to manage when we have a hybrid

or multi-cloud deployment.

In such situations, we mostly opt for container-based

deployment on microservices. Kubernetes has proved to

be the most widely used container-based orchestrator,

managing the containers. In Kubernetes, however, there

is no default autoscaling available. An application

developer has to develop the configuration to do so.

The auto-scaling metric could be the number of

incoming requests in this scenario.

It is also preferred to have the database separate for

individual microservices (Labelled as 4.2 in Figure 3.8),

as multiple microservices concurrently scaling using the

same database could lead to scaling bottlenecks. These

databases are available on the cloud as PaaS, like

MySQL available in GCP and Azure as PaaS. Cloud

providers do the complete management. In some cloud

solutions available, cloud providers expect an SLA, how

many MB of data is read and written, and cloud

providers auto scale behind the scenes to support the

SLA.

5. The events generated by different microservices are

pushed to a queue.

6. Queues are available as PaaS, which is auto scalable. As

the number of messages increases, the underlying

infrastructure also scales up. While there is no minimum

limit to the number of messages, some solutions on

certain clouds also expect a maximum limit. For

example, there is a limit to a maximum size of a queue

in the Azure Service Bus. Similarly, there are limitations

on the number of subscribers and the number of topics

that depend on the class of services used. Before

selecting a queue solution, it is crucial to analyze these

restrictions to minimize the surprises.

7. The messages in the queue (point 6 in Figure 3.8) could

be pulled with different strategies. For a streaming

application, the pulling of messages from the queue

could be high in frequency, like once every 5 seconds. It

could be different for batch jobs, a more infrequent one,

such as once every 30 minutes.

8. It is a streaming application where multiple

technologies can be used. It could be PaaS or SaaS

services. Their management effort depends on the

selected choice. However, here the critical auto-scaling

strategy will be the number of unread messages in the

queue. Streaming applications have very short SLAs,

like calculation in 2 seconds; if the number of messages

pulled by a streaming application at an average is 25

and it can meet the SLA when the number of messages

becomes 50, 2 instances are required to complete the

SLA.

9. This component is not always running but gets

triggered every 30 minutes to pull all the unread

messages after the last pull. As this is a job that gets

started once in half an hour, hosting this as a persistent

application does not make sense. Cloud providers do

provide mechanisms for such use cases. For example, in

GCP, we can set up a cloud scheduler API, which

triggers a cloud run (serverless) every 30 minutes. The

infrastructure requirements of cloud run will be taken

care of by GCP.

10. It is a batch job that runs on half-hour data and

produces reports. Batch jobs could be written in a

distributed framework like Apache Spark or Apache

Hadoop, which are open-sourced, or in a cloud-specific

distributed framework like Azure Data Factory or GCP

Dataflow. Cloud-specific solutions are serverless and

hence ideal from an elasticity point of view.

11. The data results of streaming application (8) and batch

application (10) could be saved in a no SQL

columnar/document database. Cloud providers have

their own hosted solutions for both the flavours. For

example, in GCP, we have Cloud Bigtable, which is

nothing, but GCP managed HBase (a columnar DB) or

Google Datastore (which is a document DB).

Song streaming application

Let us look at another use case of song streaming

application. In a song streaming application (described in

Figure 3.10), the preceding described microservices, real

time streaming, and batch processing use cases do exist

and the elasticity thought is precisely the same. In the big

data use case, we primarily concentrated on compute

elasticity. What we are going to discuss here, is the elasticity

of network and storage.

In song streaming or for that matter any streaming, the

main business is to deliver audio and video fragments to

users with low latency. Figure 3.10 features a song

streaming application:

Figure 3.10: Song streaming application

Consider the preceding numerically labelled figure with the

following subsequent numerically labelled explanations:

1. User request for an audio content of video content from

data plane services. The data plane services follow the

microservice architecture and align with elastic

scenarios described in the eCommerce use case, point

no 4.

2. The data lane service tries to fetch the content from

Content Delivery Network (CDN). CDN is a

geographically distributed group of servers that deliver

the blob contents. Having the servers distributed across

multiple regions is another flavour of elasticity. If a need

arises to support users from a new region, a CDN

environment setup is needed specific to that region.

3. If the CDN servers do not have the requested media file,

they use control pane services to fetch the data from

the blob location and update the data to the regional

CDN server.

4. Once the data reaches the CDN server, it is served to

the end user.

5. All metadata related to these activities are logged in a

Database.

6. Just as we have the users served via data plane,

another set of platform users known as content creators

can use a family of microservices referred to as control

pane.

7. These control pane services upload content to a central

repository, called the regional blob storage. This blob

storage is auto replicated across regions and has all the

features of disaster recovery implemented.

8. The Control pane service also logs all their metadata of

activities to a database.

Conclusion

In this chapter, we deep dived into the concepts of elasticity

on public clouds. Elasticity becomes a very important aspect

on cloud platforms simply because of the pay-as-you-go

model. On cloud, more infrastructures mean more cost, and

hence making sure the price does not blow up depends on

leveraging the elasticity provided by cloud platforms, and

this could really help teams achieve more.

In the next chapter, we will look into the challenges of

infrastructural complexity, arising due to multi cloud and

hybrid cloud deployments and the way such situations can

be tackled in an enterprise.

Points to remember

All public cloud providers give efficient support elasticity

of compute and memory. We should always try to use

the options available in cloud, out of the box, since the

management of such critical activity will remain with

the cloud provider team, rather than us handling it.

Leveraging elasticity on public cloud providers is easy,

but using elasticity efficiently is difficult. You will have to

investigate multiple aspects before taking decisions. Do

not forget: cost and elasticity go hand in hand.

Unjustified elasticity could lead to unjustified costs.

The metric to scale up/down can vary application to

application, and it is advised to think about this during

the architectural design phase of functionality.

Questions

1. Among the following statements, which is false

for cloud elasticity?

a. The property of a cloud’s capacity to grow or shrink

for CPU, memory, and storage resources to adapt to

the changing demands of an organization.

b. Cloud elasticity is often associated with horizontal

scaling.

c. It provides businesses and IT organizations the

ability to meet any unexpected jump in demand,

dynamically. No stand by infrastructure for peak

load, rather scaling happens as and when needed.

d. Elasticity is easy to use and you should always

define maximum possible limits of elasticity for you

application to make it infinitely scalable.

2. What are the challenges in cloud elasticity?

3. What are the benefits of cloud elasticity?

4. How does cloud elasticity work?

Answers

1. d. It is not easy to use cloud elasticity optimally. Ideally,

every application/workload architected on cloud should

have aspects of elasticity covered in design.

CHAPTER 4

Challenges of Infrastructure

Complexity and the Way

Forward

Introduction

There are many reasons why enterprises opt for multi-cloud

or hybrid cloud deployment. When organizations start their

journey on a cloud, complete workloads are not available

right away on the cloud. Instead, they start small, that is,

one application after another is migrated to the cloud.

However, that migrated application needs to interact with

the other applications that are running on a different cloud

or on-premise environment, where they were originally

hosted before migration.

Another reason why it is inevitable to use this deployment

model is because companies do not want vendor locking or

the application needed for a client on the cloud of their

choice. Public cloud providers have different regulatory and

data sovereignty capabilities.

There could be more reasons to support this form of

deployment; however, some key aspects must be

considered when an organization decides on such

strategies. These concerns are security, operation, and

governance. This chapter will discuss the elements that

need to be considered before designing and adopting this

strategy.

Structure

In this chapter, we will discuss following topics:

Defining multi-cloud and hybrid-cloud deployments

Multi-cloud deployment model

Hybrid cloud deployment model

Need Of multi-cloud deployments and hybrid-cloud

deployments

Challenges of multi cloud deployments and hybrid cloud

deployments

Security

APIs

Logging

IaaS vs PaaS: Benefits and challenges of choosing one

over the other

Governance and way out

Effective communication

Effective planning

Proper auditing

Cloud agnostic automation: benefits and risks

Objectives

In this chapter, we will dive deep into the needs of multi-

cloud/hybrid deployments and investigate some key

challenges that modern organizations face. We will also

assess whether to use IaaS or PaaS from a multi-cloud

perspective. In the aforementioned process, we will also see

how to ensure governance of critical components and the

cloud automation strategies, to ensure successful

management of elements adhering to this model.

Defining multi-cloud and hybrid-cloud

deployments

Multi-cloud and hybrid clouds are distributed deployment

models, where one part of the application runs in the cloud

and the other runs either on a different cloud (multi-cloud)

or on-premise (hybrid).

There are two modes of deployment: redundant deployment

and distributed deployment.

Redundant deployments

In redundant deployment, the complete application is

deployed across multiple platforms. For example, a

complete application is deployed on one public cloud in

multi-cloud deployment, and a full copy of the application is

deployed on the other. In this, not a lot of code changes or

refactoring is needed for the business logic. Some examples

of redundant deployment are hybrid environment, business

continuity multi-cloud or hybrid cloud storage and cloud

bursting.

Hybrid environment

Non-production workloads like development, testing, and

performance runs, happen on the public cloud. Production

workflows are executed either on-prem or in a public cloud,

unlike non-production environments.

Business continuity multi-cloud or hybrid cloud

storage

To avoid single points of failures in data storage, backups,

archives, and standby systems are deployed redundantly

across multiple clouds.

Cloud bursting

A sudden spike in the workload can be handled by

delegating the processing capability to a redundant

deployment, present on other cloud environments.

Distributed deployments

In a distributed model, a part of the application is deployed

on one platform and another on a different platform. For

example, in multi-cloud deployment, a part of the

application is deployed on public cloud one, and another is

deployed on public cloud two. Some examples of distributed

deployment are tiered hybrid, partitioned multi-cloud and

analytics hybrid/multi-cloud.

Tiered hybrid

An example of this can be a big data use case batch job,

running in the cloud on an elastic Hadoop cluster, that

results being served via API deployed on-prem.

Partitioned multi-cloud

In this, we deploy the application in multiple regions. It

could be due to customer business priorities and

obligations; it could also enable processing close to the

customer to reduce latency.

Analytics hybrid/multi-cloud

Processing happens in an on-prem environment, and the

result has been pushed to cloud infrastructure for

consumption.

Multi-cloud deployment model

It is the deployment of applications on IaaS, PaaS, and SaaS

solutions across multiple cloud platforms. Figure 4.1

features a diagram of the multi-cloud model:

Figure 4.1: Multi-cloud deployment

In this figure depicting multi-cloud deployment (left image),

an application uses SQL database hosted in PUBLIC CLOUD

-1, file servers in PUBLIC CLOUD -2, and blob store in

PUBLIC CLOUD - 3. The application resides within the

virtual network boundary, spanning multiple cloud

providers. This is distributed deployment of a multi-cloud

strategy. On the right side, the complete application is

deployed on PUBLIC CLOUD -1, PUBLIC CLOUD -2, and

PUBLIC CLOUD -3. This is the redundant model for multi-

cloud deployment.

A multi-cloud strategy helps avoid vendor locking, improves

business continuity by being less susceptible to

Distributed Denial-of-Service (DDoS) attacks and

Single Point of Failure (SPOF) incidents, and provides

flexibility for teams and clients in terms of options to choose

from.

An application in a multi-cloud environment needs to be

developed so that the same business logic successfully

interacts with APIs from multiple clouds. Consider the

following Figure 4.2, which showcases a real-world example

of multi cloud deployment:

Figure 4.2: Multi-cloud deployment example

In the preceding image, a data lake, and its crud APIS are

hosted in Amazon Web Services. The applications

consuming this data lake resides in Google Cloud Platform.

Hybrid-cloud deployment model

It is the deployment of applications on IaaS, PaaS, and SaaS

Solutions across multiple cloud platforms and at least one

on-prem environment. Figure 4.3 features a hybrid-cloud

model:

Figure 4.3: Hybrid deployment

In this figure depicting hybrid deployment, in the left

section, an application uses SQL database hosted in PUBLIC

CLOUD -1, file servers in On-Prem, and blob store in

PUBLIC CLOUD - 3. The application resides within the

virtual network boundary, spanning multiple cloud

providers. This is distributed deployment of a hybrid

strategy. On the right side, the complete application is

deployed on PUBLIC CLOUD -1, On-Prem, and PUBLIC

CLOUD -3. This is a redundant model for multi-cloud

deployment. Consider the following Figure 4.4, which show

cases a real-world example of hybrid deployment. This is an

extension of the example shown in Figure 4.4:

Figure 4.4: Hybrid deployment example

In the preceding figure, the data lake and CRUD APIs reside

in AWS and its consuming application resides in GCP.

However, the authentication APIs are hosted on-prem. Also,

the mainframe server of the organization is on-prem.

In hybrid cloud deployment, on-prem infrastructure can be

extended to public clouds. Public clouds being scalable can

help applications handle use cases like sudden burst in load,

backup and archiving of data, performance runs, and so on.

The most common implementation of this use case is the

migration of on-prem to the cloud, where the application is

migrated in small chunks to the cloud, without disrupting

business needs.

All major public cloud providers appreciate the need for this

deployment model, which is why cloud providers support

multiple tools to implement it. For AWS, a hybrid

deployment can use Storage Gateway and many other

services. Similarly, for Azure, we can use StorSimple.

Need of multi-cloud deployments and

hybrid-cloud deployments

Let us look at some key business drivers due to which

organizations adopt multi-cloud or hybrid deployment.

Reducing dependency/avoiding lock

in

Hybrid and multi-cloud deployment models reduce the

compulsion to depend on one cloud provider. High

dependency reduces the flexibility for clients in terms of the

adoption of applications, as most clients have their

preferred cloud vendors. So, if the application is available to

get deployed on the selected cloud vendor for customers, it

makes adoption easy and smooth. The multi-cloud

environment does provide an opportunity to innovate faster,

as different cloud providers have different strengths and

weaknesses.

Heterogeneous deployments within

an organization

There are multiple teams whose projects come together to

deliver value for an organization, within an organization.

These teams can have different cloud provider

implementations. When such a situation occurs, the multi-

cloud strategy helps all the applications integrate and

deliver value quickly.

Regulatory and data sovereignty

Each cloud provider may not have the same level of

maturity in terms of a particular country’s regulations and

data sovereignty laws. Data sovereignty means that each

country has its own rules and regulations for capture and

process data. Every cloud provider might not adhere to all

the rules set in that particular country.

Data locality and data residency are two key components

where each country working on confidential data puts

regulations. The local government rules data locality on

moving the data outside of a specific region. Data residency

refers to rules imposed by the government while storing

data in some regions. Multi-cloud and hybrid environments

are the answers to such situations.

Redundant deployment for high

availability

Redundant deployment across multiple clouds helps the

customer choose a public cloud of their preference. This is a

key aspect as most enterprises have selected a cloud

provider and do contract to use them. Redundant

deployment of applications across multiple regions (within a

cloud or across multiple clouds) improves the application’s

business continuity numbers. Business continuity means

how well your system continues to work in case of infra

failures. With redundant deployments across the cloud,

applications become less susceptible to DDoS attacks as

well as SPOF incidents.

Performance improvements

Multi-cloud deployment models help applications run

geographically closer to the user locations, reducing

processing time. There are use-cases where massive

datasets are processed, with frequent transfer of data

across regions while processing. In such cases, the time to

the process increases, and hence users can see delays more

than expected. In case of use cases where SLA for response

time is in a millisecond, regional cross movement of calls via

network might take time and also result in breaches within

the SLA.

Cost optimization

It might seem that costs are similar across significant cloud

providers. However, careful multi-cloud and hybrid

deployment can significantly reduce costs without affecting

the results. Multi-cloud facilitates processing closer to user

location, while hybrid cloud processing when on-prem infra

is free, can save cost. These are just two scenarios; there

could be many more depending on a use case to use case.

Challenges of multi-cloud

deployments and hybrid cloud

deployments

Though multi-cloud and hybrid deployments are essential,

there are multiple inherent challenges to managing them

effectively. These challenges are both technical as well as

governance based. Let us look at the critical challenges of

this deployment strategy.

Increased operational complexities

Hybrid and multi-cloud deployments increase the

operational complexity of the whole project. The greater the

platform’s diversity, the bigger are the operational

complexities to be handled. The following are a few common

ones:

Different cloud providers have different ways of

authentication and authorization: For example, in

GCP Identity and Access Management groups, which are

different from Azure, we do similar control using AD

groups. The on-prem situation could be completely

different. Not just authentication and authorization, but

we need to ensure that the consistent behavior for

auditing, logging, and policies across computing

environments are different as well.

Using consistent tooling and processes to limit

complexity: Each provider has its own tools and

technologies. For example, the logging framework in

GCP is different from that of Azure. The same is true for

monitoring and alerting as well. Engineering teams can

select a generic tool and technologies to bridge the gap.

Providing visibility across environments: It is vital

to have visibility across environments, to see if

everything is working as expected. None of the services

serving business use cases are working as expected. If

not done, it could lead to SLA breaches and customer

escalations.

Ops/DevOps team has to learn and evolve centrally

governed policies for each of the concerns described above

to minimize risks.

Increased data management

complexities

Applications deployed with multi-cloud model and hybrid

model frequently need database management solutions to

store and manage data. While sometimes these applications

use classic options like Oracle and MySQL, there is multiple

purpose-built cloud SaaS database, with advanced

capabilities like memory processing, Map-reduce, and binary

object storage. There is an obvious reason to use these

databases for better performance and efficiency. However, if

they are not handled properly, it can lead to issues stated as

follows:

Data redundancy: Enterprises try to create a copy of

data for ease of use and performance on the cloud.

However, that also exposes the risk of redundant and

consistent data.

Data security: Data is present at multiple places; all

places should have proper authentication and

authorization. Data should adhere to the same security

level irrespective of the cloud.

Performance: Network latency and platform

differences could severely impact database

performance when accessed from a different cloud or

platform.

Data protection challenges

All public cloud providers provide encryption at rest and in

transition. However, in multi-cloud deployment, data moves

in and out of a cloud provider boundary, and this data

movement across platforms becomes the most significant

challenge in protecting data. Moreover, each cloud provider

might not have the same data protection facilities available.

It is always recommended to encrypt data when it is in a

cloud boundary and when the data is in transition from one

platform to another.

Defining a custom encryption strategy across cloud

providers with custom-managed encryption keys is crucial to

maintaining consistency from a data protection perspective.

Increased architectural complexities

Since there is no uniformity across cloud providers, it is vital

to consider the cross-platform vibrations in architecture

design. A few key challenges are as follows:

Dependencies between applications deployed on

different cloud and on-prem platforms.

Involvement of different cloud providers/on-prem

environments open scenarios where data has to travel

across boundaries, which again brings unexpected

latencies in the system.

Reliance on a specific software and hardware version

that might be present on one platform but not on

another.

Different licensing restrictions of software on different

cloud providers need to be considered, while

architecting across the cloud. Terms and conditions in

the license can impact software usage across cloud

platforms.

IaaS vs PaaS for multi-cloud and

hybrid cloud deployments

Developing an application for a multi-cloud environment

needs application developers to think about the deltas in

each cloud provider. For instance, consider a Blob store

interaction in GCP vs. a Blob store interaction in Azure. It is

advisable to have the code structured to separate business

logic from infrastructure logic.

There are two strategies for a multi-cloud environment (as

was shown in Figure 4.1) and two strategies for hybrid

deployment (as was shown in Figure 4.2). Let us now look at

the strategy of application development scenarios in both

(redundant and distributed deployments).

Redundant deployment

In redundant deployment, we deploy the complete

application on multiple clouds or on-prem environments.

This can be seen in Figure 4.5:

Figure 4.5: Redundant deployment application development

In Figure 4.5, we have the business logic or the domain

code (1), which interacts with cloud-specific interaction

layers (2), to interact with multiple cloud providers (3).

Developing and maintaining the business logic (1) is part of

the development team’s responsibility. However, the

interaction layer (2) responsibility could depend on the

architecture.

Let us now see Figure 4.6, where see the presence of the

engineering teams is brought into the situation:

Figure 4.6: Redundant deployment application development

As in Figure 4.4, here too the engineering teams can opt for

developing their interaction layer and exposing all such

interactions to business logic via custom-written interfaces.

This interaction layer could be created outside of the scope

of one product, and could be used by all products as

libraries.

However, there is another approach to this. The interaction

layer is developed and managed by a separate team and

made available in the industry as a tool. This can be seen in

Figure 4.7:

Figure 4.7: Redundant deployment application development

In this case, the applications are expected to know how to

interact with the tool. The efforts of handling the multi-cloud

environment becomes the responsibility of the tool. One

such tool is Red Hat’s OpenShift Container platform. If your

application can be deployed as a container, the OpenShift

Container Platform gives you operators to interact with. Red

Shift manages the operator implementation, which has the

responsibility to interact with different clouds. For example,

an application can use a storage operator. The container

platform manages storage operator implementation for

each cloud provider. However, selecting one among multiple

implementations depends on the installation parameters of

the tool.

Distributed deployments

In the case of distributed deployments (as was seen in

Figure 4.1), the parts of the same application are deployed

on multiple platforms. Hence, in this case, the primary

concern for the engineering teams is how to communicate

between 2 portions of applications deployed on two different

platforms.

While there could be more than one way to achieve this,

microservice architecture is commonly used in this situation,

as seen in Figure 4.8:

Figure 4.8: Distributed deployment application development

Figure 4.8 is quite similar to Figure 4.1, with just one

addition: the application on different cloud providers is

deployed as microservice and two applications on various

cloud providers are interacting over HTTP protocol.

IaaS vs PaaS

While developing applications for multi-cloud or hybrid

environments, selecting the right tools upfront is crucial.

Different cloud providers have different tools supported.

Since the expectation is to have the same application code

running across multiple cloud providers, selecting a tech

stack that is easily manageable across the cloud makes

sense.

IaaS solutions like VM and disks are the easiest to support

hybrid and multi-cloud environments. However, the

engineering team must manage the benefits of cloud-like

elasticity.

Another option is to use PaaS, but due to different PaaS

solutions, the engineering team has to make sure that the

same business logic gets deployed on one technology on

cloud one and a second technology on cloud 2. For example,

microservices can be created using App Engine in GCP and

Service Fabric in Azure. Specific PaaS services might not be

available in an on-prem environment. Another example

could be that of a database being used. Cloud providers

offer different databases as PaaS; however, it might happen

that a database available in one cloud is not available in

other cloud. For example, Bigtable is managed HBase

deployment available in GCP, but not in Azure.

While there will always be some differences, the most

suitable solution cloud will be the one where these

differences are minimal. A few such tools which can be

used, are as follows.

Docker and Kubernetes

Docker is a container solution, an isolated environment that

contains applications, with all of them running on the same

OS kernel with no relation to external OS. In short, an

application packaged as docker can run in any place where

docker installation is supported.

When we talk about scaling such docker deployments, we

have orchestrator frameworks like Kubernetes, whose

primary aim is to manage the complete life cycle of a docker

container. Almost all public clouds support Kubernetes, and

the inherent platform independence provided by docker,

makes this a powerful solution for the microservices

workloads.

These days, companies have started using multi-cloud

Kubernetes, where one single Kubernetes cluster can span

across multiple clouds.

Hadoop cluster

Another everyday use case is that of a big data application

(Hadoop, Spark, and Flink). Big data applications run on the

Hadoop cluster, which again is made available by all public

cloud providers; like AWS has EMR, GCP has Dataproc, and

Azure has Azure Databricks.

OpenShift Container Platform

This industry tool is available, which abstracts away the

platform-specific differences at the installation level. Once

installed, the application running inside remains the same.

For example, once the OpenShift Container platform is

installed on Azure and GCP, the same application can run on

both environments.

Infrastructure as code

Like application code, infrastructure can be written as code

using tools like Terraform and Ansible. Rather than using

cloud-specific APIs to spin up infrastructure, these tools can

be used to set up similar infrastructures across clouds.

These tools are well compatible with multiple public cloud

providers.

Governance and way out

By governance, we refer to an agreed-upon set of standards

and policies based on assessments and analysis, to reduce

risks. Teams owning applications agree to work on a joint

expectation of tools, technologies, and processes in a multi-

cloud environment. Governance also defines the other side

of the story, that is, what steps to be followed in case of a

breach of the governance model. For effective governance,

it is imperative to do the following activities diligently.

Creating guidelines

The very first task is to work upon creating and setting up

enterprise guidelines which consists of standards and

governance rules across all the aspects of enterprise such

as business, technology, data, security, and others. The

better the guidelines, the more aligned will be the behavior

of teams, resulting in lesser surprises, while delivering the

goals.

Effective communication

It is vital to communicate the vision and strategy to all the

stakeholders and get their commitments to stick to the

process. It is critical to keep them updated with the goals,

priorities, successes, and setbacks. Developing a mapping

of high-impacted parties with the hybrid strategy, and

supporting the parties informed transparently, are both

essential for the plan’s success. Additionally, any

information relevant to stakeholders should be given on

every possible channel to minimize the chances of missing

out on a message.

Effective communication is vital because when driving even

the smallest of changes across the organization, effective

communication is essential to monitor the health of the

transformation. This ensures everybody is aligned and

resynchronized in case a problem arises.

Effective planning

Multi-cloud is a strategy that needs a lot of planning on

multiple aspects as each organization’s use case is different,

and therefore, so is the multi-cloud approach. The better the

plan, the lesser are the risks of failure. An effective plan

includes the following aspects:

Prepare for complexity: We might witness high

complexity with the multi-cloud as we utilize multiple

heterogeneous platforms. The complexity increases

with the number and type of cloud provider platforms. It

is essential to pull out metadata from each cloud

provider to view a holistic image of cloud usage to make

the right decision.

Practical cost considerations: Cost is an essential

factor, but it cannot be the only reason to use the cloud.

Choosing the right vendor to deliver business value is

vital.

Automation: To have an effective strategy for multi

cloud, it is essential to have automation. Multiple

platforms with different underlying infrastructures

expected to produce similar results are only possible if

we have a capable automation strategy. Automation

strategy should be for tasks related to application

development, like the automated test, and

infrastructural, like having CI/Cd pipelines to build and

deploy.

Security is essential: Planning for a consistent

security strategy is crucial, as different cloud providers

have different levels and types of security, and a

consistent security policy will fill the gaps between the

multiple platforms.

Plan for disaster recovery: Individual cloud providers

provide and support disaster recovery. But when it

comes to a multi-cloud environment, a disaster

recovery spanning across the environments needs to be

created.

Proper auditing

After implementing a multi-cloud deployment, we need to

periodically review the strategy to ensure we are in line with

our goals. Multi-cloud does not have a significant

investment upfront, but we can track and adjust for

practical cloud usage. For this, it is needed to set up a

central team that can review and control the deployments

both in cloud as well as on-prem.

The central team keeps an eye on the business needs, and

we can adapt a multi-cloud strategy to adjust to new

functionalities, additional applications, and other tech stack

changes.

Cloud agnostic automation – benefits

and risks

Cloud agnostic means that the solution is not dependent on

a specific cloud provider. Developing any workflows as cloud

agnostic requires significant effort and time. The tools and

infrastructure are created with features that make them

deployable across multiple platforms. When the intent is to

deploy the same application across multiple platforms,

cloud-agnostic is the way forward.

Key advantages of using cloud agnostic approach are as

follows:

Portability: Applications are not tied to the platform

and hence can easily be ported to a new platform.

Consistent performance: The application›s

performance, once tuned, will work for most of the

platforms.

Avoiding lock-in: There is no vendor lock-in as

applications can easily be moved to different platforms.

Disadvantages of the cloud agnostic approach are:

Misunderstandings: People do not understand the

cloud-agnostic approach correctly. They can think that

cloud-agnostic code, once written, can work across all

platforms; however, in practical scenarios, that is not

the case.

Implementation barriers: Cloud agnostic needs effort

from developers, and hence it might not always be

possible.

High cost: There is high possibility of required extra

effort, which leads to loss of time and more incurred

cost. So, you have to balance of time and cost as per

your organization road map.

Conclusion

There are some powerful uses cases for multi-cloud and

hybrid models; however, a lot of effort and alignment is

needed to do it effectively. Because there can be multiple

strategies that could be used, it is crucial to analyze the use

case and devise a common approach, which has to be

followed by other teams. Strong governance is needed to

control and minimize the risks that these deployment

strategies bring.

This is the last chapter covering the general concepts

around cloud scalability. In the next section (as well as a

chapter), we will pick up GCP offerings and dive deep into

the how and why of the scaling options available.

Points to remember

There are some essential needs to support multi

cloud/hybrid cloud deployment, the most critical being

regulatory and data sovereignty reasons and reducing

vendor lockin.

Multi-cloud and hybrid deployment bring in additional

responsibilities for management and architectural

challenges. It also means more work for managing

environments.

Looking into the IaaS vs. PaaS options for multi-cloud

deployment is essential. Using more IaaS means more

management, and using more PaaS means different

environments for the same business applications.

Systems following this strategy need strong governance

to control infrastructure complexities.

Questions

1. What is the difference between multi-cloud and hybrid

cloud and possible use-cases?

2. What are some common use cases of multi cloud?

3. What are the pros and cons of using a multi-cloud

strategy?

CHAPTER 5

Scaling Compute Engine

Introduction

Google Cloud Platform (GCP) provides users the ability to

create Virtual Machines (VM). These virtual machine

configurations could be either defined by Google or

customized, based on configurations defined by the user. A

group of virtual machines could be treated as one entity,

and thus collectively called an instance group. The instance

group enables features like autoscaling, high availability,

cross-region deployments, and rolling updates, for all the

virtual machines configured in the instance group. In

modern workloads, having multiple spikes in workloads

where we want processing results sooner than later, it is

crucial to scale up quickly. However, due to differences in

peak and off-peak hours, it is essential to scale down. If we

do not accommodate both aspects of scaling, we might see

unjustified costs.

Effective scaling strategy depends on the nature of the

application. Hence, it is recommended to start with the best

possible guess and fine-tune the scaling aspects in

subsequent iterations. For example, scalability configuration

for an application where the workload fluctuates fast, needs

a different scaling strategy than a workload, where the

fluctuation is not so frequent. This chapter will look into

details on how to create virtual machines and talk in-depth

about the concepts and implementation around scaling of

virtual machines in Instance Groups, especially autoscaling.

Structure

In this chapter, we will discuss the following topics:

Interacting with GCP

Introduction to instance groups

Autoscaling groups of VMs

Scaling

Autoscaling

Predictive scaling

Scale- in controls

Maximum allowed reduction configurations

Trailing time configurations

Developing and managing autoscalers

Scaling based on:

▪ Cloud monitoring metrics

▪ Scale based schedules

▪ Predictive schedules

▪ CPU utilization

▪ Load balancing serving capacity

Creating autoscaling policy based on multiple

signals

Create, Read, Update, Delete (CRUD) operations

on autoscalers

Autoscaling node groups

Reserving resources for effective autoscaling

Single Project Zonal Reservations

Shared Projects Zonal Reservations

Consuming Reservations

Load balancing

Adding instance group to load balancer

Configuring multi regional external load balancer

Cross regions load balancing

Objectives

By the end of this chapter, we will learn how to create VMs

and manage them as instance groups. We will also

understand how to scale up and down the application

seamlessly, based on user workloads, as well as, how to

make sure that the application supports self-healing and

high availability. We will then see the different autoscaling

strategies available in the Google Cloud Platform and how

we can use them effectively.

Lastly, we will talk about the complexities and solutions

related to the regional scaling of virtual machines.

Interacting with GCP

There are three ways to interact with the Google Cloud

Platform.

Using the console\UI portal

In this method, we can log in to the UI portal of Google

Cloud console (https://console.cloud.google.com) with

the user credentials, and perform actions on the portal.

Using GCloud commands

This is the second way to interact with the Google Cloud

Platform. GCloud Shell is like any available shell, with

GCloud utilities installed. ‘GCloud utilities’ are a set of shell

commands developed and managed by the Google Cloud

Platform team to perform actions. For GCloud utilities, you

have to install GCloud Shell on your local machine and do

the setup. GCP portal also provides the facility to create a

small gcloud Shell VM from UI.

This strategy is used by IT and system administrators to

interact with GCP.

REST APIs

We can also interact with the Google Cloud Platform by

triggering REST APIs. This is used when we want to interact

from within the application.

All the preceding three strategies provide identical

capabilities to the user. Refer to the appendix section, for

steps to step these up. We will use the GCloud commands

for demonstration and explanation in the chapters.

Introduction to instance groups

Google Cloud Platforms give the facility to create secure and

customizable virtual machines running in Google

Infrastructure. They provide pre-defined configuration

machine types that can be used to create virtual machines

quickly. These pre-defined configurations could be divided

into four categories:

General purpose: As the name suggests, this class of

machine is used for standard and cloud-native workloads.

The machine type options available under this category are

based on best price-performance, and give multiple flavors

of vCores to Memory options. Applications like web

applications, containerized microservices, web servers, and

so on, are ideal candidates for this machine type.

Compute optimized: This class of machines consistently

offers the highest performance per core, making it ideal for

applications requiring high computations capabilities.

Applications like multiplayer games, deep learning

workloads, and trading applications are ideal candidates for

using this class of machines.

Memory optimized: This class provides the highest

memory to vCore ratio and is ideal for applications aiming to

store or hold data in memory. Typical applications which use

this class of machines are distributed databases, real-time

streaming analytics, and caches.

Accelerator optimized machines: This class is ideal for

massively parallel computing workloads like machine

learning (seismic analysis, fluid dynamics, speech

recognition) and high-performance computing. This class is

for workloads that need GPUs.

These instances run public images of Linus and Windows

machines, or we can give out our private custom images to

create a VM.

If your workload does not fit any of the given workloads,

platforms provide the capability to define your vCore and

memory configurations, which suit your workload the best

and are also cost-optimized (such machines are known as

custom machine types). We can create a machine as small

as one vCore, to up to 96 vCore or any even number of

vCPUs. The memory could be up to 8GB per vCPU.

The following GCloud command creates a custom VM:

gcloud compute instances create scaling-gcp-custom-vm\

--custom-cpu 4 \

--custom-memory 5 \

--zone=us-central1-c

The preceding command creates a custom VM with the

name “scaling-gcp-custom-vm” with number of vCPUs as 4,

and memory as 5 GB. The machine will be created in zone

“us-central-1c”.

Note: The options configured are not the exhaustive

list of all the options. Please refer to official

documentations for complete list of options.

When a VM is created, some key points to remember are as

follows:

Each VM is created in a Google project. A Google project

can have multiple VMs. When we create a VM, we can

define the hardware or machine type, operating system,

and storage locations.

When a VM is created, there is always a small disk (boot

persistent disk) attached, on which the operating

system is running. If there is a need to attach more

disks, it must be done explicitly.

All network interfaces in the VM belong to the subnet of

a unique VPC network.

GCP offers users to create spot VMs, which are lower in cost

and are provided by Google because they are unutilized at

that point in time. Once the need arises, GCP takes them

back. Only in case of batch and fault tolerant jobs, can spot

VMs be used.

The following GCloud command creates custom VM using

SPOT instances:

gcloud compute instances create scaling-gcp-custom-vm-spot \

--custom-cpu 4 \

--custom-memory 5 \

--zone=us-central1-c --provisioning-model=SPOT

The preceding Gcloud command will create a customized

VM “scaling-gcp-custom-vm-spot” with 4 vCore and 5 GB

Memory in zone us-central1-c using spot instances.

With the preceding background on virtual machines, let us

look into instance groups. An instance group is a group of

virtual machines that can be managed as single entity. The

primary aim of creating such an entity, is to enable the

autoscaling of applications deployed on virtual machines, in

case of increase in load as well as to decrease the number

of virtual machines in case of load going down. Figure 5.1

features instance groups:

Figure 5.1: Instance groups

There are two types of groups:

Managed Instance Group

In Figure 5.1, in the right half of the image, all virtual

machines in a Managed Instance Group (MIG) have the

same hardware and operating system configurations. This is

a group of identical virtual machines created using a single

template.

Important features of Managed Instance Groups are as

follows:

Maintaining minimum number of instances: Managed

group makes sure that there is a minimum number of

instances running for the application. In case a VM for an

application fails, Managed Instance Group will create

another instance in same or in different zone.

Self-healing: A health URL is configured for the VMs and in

case the heath URL does not respond within limits, a new

VM instance is launched assuming that the VM is no more

existent.

Autoscaling: We can increase or decrease the number of

virtual machines based on number of users using the

system.

Load balancing: We can create a load balancer which

distributes user workloads across all the machines in a

Managed Instance Group. This works well with autoscaling

and auto healing configurations, as it needs new VM to be

configured by load balancer and VMs to be rejected by load

balancer.

Regional groups: We can create a Managed Instance

Group as regional, that is, spread across multiple zones. In

case of any zone going down, the number of instances is

managed by creating VMs in either zones. This enables

support for high availability.

Rolling updates: We can deploy new version of the

application with 0 downtime. In rolling updates, we can

deploy changes to instance groups one by one with load

balancer, and therefore, not allowing traffic on one of the

VMs where deployment is going on.

Managed Instance Group has 4 components, and because of

these, the preceding features are also supported.

Instance group manager: Instance group manager is a

component that controls VM location, its distribution across

regions and makes sure that minimum and maximum

number of VMs is ensured without fail. The main function of

the group manager is to make sure that the group adheres

to all the configurations defined.

Instance template: Instance template is a blueprint of

virtual machines. It is a specification which defines

configuration of the machine type, operating system, and

other specifications of machines like attached disks. We can

configure multiple instance templates in a Managed

Instance Group.

Health check: This is primarily used for auto healing. If the

health URL fails to revert, a new VM is created for the VM

where the health check was failed. It supports HTTP, HTTPS,

SSL or TCP protocol. We can define custom interval and

timeout for declaring a VM as failure.

Autoscaling policy: Policy defines the resizing metrics and

minimum/maximum size for the group.

Creating a Managed Instance Group

1. Before creating Managed Instance Group, we need to

create an instance template.

gcloud compute instance-templates create scaling-gcp-

instance-template \

--machine-type=e2-standard-4 --image-family=debian-10 \

--image-project=debian-cloud \

--boot-disk-size=250GB

The preceding GCloud command will create an instance

template with the name “scaling-gcp-instance-template”

with machine type as e2-standard-4, image family

debian-10 and attached boot disk size as 250 GB.

2. Once the instance group is created, we can use the

same instance group name while creating the Managed

Instance Group.

gcloud compute instance-groups managed create scaling-gcp-

managed-instance-grp \

--base-instance-name test --size 3 \

--template scaling-gcp-instance-template

The preceding GCloud command will create a Managed

Instance Group with the name “scaling-gcp-managed-

instance-grp”, of size 3 (3 VM are created) using the

instance template “scaling-gcp-instance-template”

created in step 1. The name of the 3 VMs will have the

prefix as test.

Managed Instance Group are of two types:

Stateless Managed Instance Group

Stateless Managed Instance Groups are those where the

systems do not save the state of application. In case of any

failures, the system creates everything from scratch. For

example, if a VM crashes, no information of the crashed VM

resides in the platform, and a completely new VM is created.

It includes disks as well as IP addresses. One information

which they preserve is the VM name, so that they can re-

create the VM with the same name. Stateless MIGs are

highly available and scalable, and provide features such as

auto healing, autoscaling, recreation and rolling updates.

Here are a few instances:

Following is GCloud command for creating a Managed

Instance Group:

gcloud beta compute instance-groups managed create

scaling-gcp-stateless-mig /

--project=scaling-gcp /

--base-instance-name=stateless-mig /

--size=1 /

--description=This\ is\ a\ stateless\ MIG.

--template=scaling-gcp-instance-template

--zones=us-central1-c,us-central1-f,us-central1-b

--target-distribution-shape=EVEN

The preceding command creates a Managed Instance

Group ‘scaling-gcp-stateless-mig’ with the following

properties:

project=scaling-gcp: This is GCP project, where we

are creating the resources.

base-instance-name= stateless-mig: The base name to

use for the Compute Engine instances that will be

created with the Managed Instance Group.

size=1: Initial number of instances in the group.

description= “”: Description of the Managed Instance

Group.

template=scaling-gcp-instance-template: Instance

template name.

zones=us-central1-c,us-central1-f,us-central1-b :

Zones where virtual machines will be created.

target-distribution-shape=EVEN: Virtual machines will

be distributing over all the zones uniformly.

The following command sets up autoscaling

configuration on managed instance.

gcloud beta compute instance-groups managed set-

autoscaling scaling-gcp-stateless-mig/

--project=scaling-gcp/

--region=us-central1 /

--cool-down-period=60 /

--max-num-replicas=6 /

--min-num-replicas=1 /

--mode=on /

--target-cpu-utilization=0.6

The preceding GCloud command updates the autoscaling

policy for the MIG ‘set-autoscaling scaling-gcp-stateless-mig’,

setting minimum number of VMs to be 1, maximum 6. A

virtual machine will be added every time the average CPU

utilization goes preceding 60%.

Stateful Managed Instance Group

We can configure a Managed Instance Group to be stateful,

that can host stateful workloads by preserving the disk, IP

addresses and metadata on the disk of the VM. Stateful

applications like databases, long running batch jobs and so

on, where one transaction/processing depends on pervious

transaction/processing. When these applications break

down, they need to start again, with the same data loaded

as it was before the application went down.

A stateful Managed Instance Group maintains the unique

state of each application on VM restart, auto healing,

recreation and rolling updates.

Stateful MIGs support auto healing, multizone deployments

and automated rolling updates, but they do not support

autoscaling. Information preserved by stateful MIGs include

instance names, persistent disks, instance-specific

metadata, and IP addresses.

gcloud beta compute instance-groups managed create scaling-

gcp-stateful-mig/

--project=scaling-gcp/

--base-instance-name=stateful-mig/

--size=1 /

--description=This\ is\ a\ stateful\ MIG /

--template=scaling-gcp-instance-template /

--zones=us-central1-c,us-central1-f,us-central1-b /

--target-distribution-shape=EVEN /

--instance-redistribution-type=NONE /

--stateful-disk=device-name=persistent-disk-0,auto-

delete=never

The preceding gcloud command creates a stateful Managed

Instance Group – ‘scaling-gcp-stateful-mig’. The properties

and values mentioned are similar to that mentioned in the

creation of Managed Instance Group, except 2 new

properties –stateful-disk and auto-delete.

stateful-disk: The configuration configures a disk persisten-

disk-0, defined by the instance template, to be stateful.

auto-delete = never, that the disk will never be deleted in

case of virtual machines going down.

Unmanaged instance group

Unmanaged instance group is a group of VMs which are not

same, that is, they have different hardware and

configurations, as well as different images. Unmanaged

instance group is required where we need different kind of

VMs (heterogeneous group) in a group added or removed

arbitrarily.

Unmanaged instance group does not provide features like

autoscaling, auto healing, regional groups and rolling

updates.

This is not the recommended way to create and manage

workloads due to its unavailability of features.

Instance group create command lets us set the parameters

as shown in Table 5.1. When we trigger a create command,

few properties are mandatory while few are optional. The

Optional property has a pre-configured value; if you want to

override it, you have to mention it.

Property Name Description

size This is the specification for number of virtual

machines created at the time of creation of instance

group. It is a mandatory property.

template Using this property, you can specify the template of

virtual machines which can be created in the instance

group. It is a mandatory property.

base-instance-name A string value specified here will become prefix of any

virtual machine launched in the instance group. It is a

mandatory property.

description A managed group creator can give a small decryption

of why, what and when of the Managed Instance

Group.

initial-delay It specifies the amount of time the virtual machine

takes in initializing. No auto healing should happen

during this time even if the VM looks unhealthy.

instance-

redistribution-type

This is the instance distribution policy across zones.

This is needed to have a uniform number for virtual

machines across zones. It is of 2 types:

PROACTIVE: The instances are redistributed

across zones proactively.

NONE: Managed Instance Group does not

redistribute instance across zones.

stateful-disk This property is used when there is a need to save the

configurations across virtual machines. This property

is demonstrated in the Stateful Managed Instance

Group section.

target-distribution-

type

A regional MIG distributes its virtual machines across

zones. The way distribution will happen depends on

the value supplied for this property.

EVEN: When this property value is set to EVEN,

Managed Instance Group creates and deletes

virtual machines to maintain an even number for

virtual machine across zones. This is

recommended for high availability scenarios.

BALANCED: This value enables Managed Instance

Group to acquire resources across zones where it

is available, while distributing the VM as uniform

as possible. This option is chosen for maintaining

high availability for non-scalable applications, like

batch jobs which do not need scalability.

ANY: This value tries to create virtual machines

with the intention of utilizing reservations for the

underutilized zones. This is recommended for

batch jobs which do not need high availability.

target-pool A target pool is a pool of instances used for IP level

load balancing.

region Region for the virtual machines of the instance group.

Zone Zone for the virtual machines. We need to either

mention zone or region but not both.

Table 5.1: Properties for instance group create command

In the rest of the chapter, we are going to investigate the

various aspects of Managed Instance Group and will dive

deep into each aspect of autoscaling, healing, load

balancing and regional configurations.

Autoscaling groups of VMs

Managed Instance Group provides the capability to auto-

scale, that is, scale-out and scale-in, based on the workload

of the application. Autoscaling helps the application handle

the workload gracefully during peak hours by scaling out

(increasing the infrastructure), and scaling in during the

non-peak hours to control cost.

When we configure autoscaling on Managed Instance Group,

the autoscaler (a daemon) constantly monitors the load on

the instance group and, based on the policy defined while

creating the instance group, identifies the total number of

VMs based on platform metrics from the previous 10

minutes. This duration of 10 minutes is the stabilization

time, which will stop very frequent upscales and down

scales.

The autoscaling policy governs the maximum and minimum

sizes. Autoscaling provides features like scale-in, which

throttles the downsizing of infrastructure, and predictive

scaling, which scales up and down based on historical

workloads.

You can create regional instance groups. As the name

suggests, these instance groups are spread to multiple

zones, and virtual machines created in the instance group

are distributed uniformly across all zones. There are various

strategies available, like the strategy of distributing VM

evenly across zones, to placing the virtual machine in any

possible zone. You can also configure certain fixed number

of zones in a region where instance can spin up.

Regional Managed Instance Groups, by default, have

proactive distribution enabled. Proactive distribution makes

sure that you have an evenly distributed number of virtual

machines in all zones. In case virtual machines are deleted

in one zone, new virtual machines are spined up in the zone

where the machines were deleted, and a few of the already

running machines from other zones are deleted.

Consider the following Figure 5.2, which has a regional

Managed Instance Group created in region ‘abc’ with VMs

(numbered 1 to 12) uniformly distributed across all 3 zones

(A,B and C). If 3 VM (stage 1) get deleted (3,5 and 9), in

case of proactive scaling, Managed Instance Group deletes

VM (stage 2) from other zones (VM 1 from Zone A and VM 2

from Zone B) and adds them to zone (1 and 2 to Zone C),

to strike uniform number of VMs (stage 3) across all the

regions. When another VM is added, it will be added in such

a way that the number of VM will remain almost same

across all zones (Stage 4). It could be added to any region in

this situation as VMs are already uniformly distributed. The

Green boxes without a number represent potential new

virtual machines. Please refer to the following figure:

Figure 5.2: Proactive distribution

In case of non-proactive scaling in a similar situation as

above, stage 3 varies. No rebalancing happens. However, in

case of adding of one more VM, generally VM is added to

the zone which has lower number of VM (Zone C). It could

have been added to Zone A and B as well. This can be seen

in Figure 5.3:

Figure 5.3: Non-proactive scaling

Scaling

Predictive scaling and autoscaling are the most widely used

strategies for scaling infrastructure on the cloud. This

section will look into the scenarios where one takes an edge

over the other and vice versa.

Autoscaling

Managed Instance Group provides the capability to define

autoscaling by adding and removing the virtual machines

based on the load on the system. It helps in gracefully

increasing the infrastructure when there is an increase in

traffic and reduces infrastructure as the traffic goes down,

making it the most effective cloud scaling strategy. In Figure

5.4, we can see the complete autoscaling process:

Figure 5.4: Autoscaling

Follow the numerical labelling with the numerical

explanations as follows.

1. It represents the Managed Instance Group. As per the

figure, two virtual machines are running.

2. Cloud monitoring metrics have constantly been pulled

and fed to the Autoscalar.

3. The autoscaling policy is defined by the user who

created/updated the autoscaling policy for the MIG.

4. Autoscalar applies the autoscaling policy on each metric

and calculates the maximum number of virtual

machines which satisfy each metric.

5. Autoscalar instructs the Compute Engine Service Agent

to increase or decrease the number of virtual machines.

6. Compute Engine service agent increases or decreases

the number of virtual machines.

7. Minimum size: Defined in the autoscaling policy.

Desired size: Decided by autoscaler based on current

load.

Scale-out size: The number of VMs that can be added.

Maximum size: Defined in the autoscaling policy.

Autoscaling works independently of auto-healing, that is, if

the number of VMs is at the minimum configured value and

one of the virtual machines fail the health check for auto-

healing, we will witness the number of virtual machines

going down below the autoscaling threshold of minimum

replicas.

If we want to define autoscaling in a regional Managed

Instance Group, you will have to ensure that the target

instance group is set to EVEN. In the case of autoscaling

policy with Autoscaling Mode as ON (increase and decrease

Virtual machine), proactive distribution scaling has to be

enabled, to ensure that we see an evenly distributed

number of virtual machines across zones. In the case of just

scale-out, enablement of proactive distribution is not

required.

If you auto-scale a regional MIG, we could see a scenario

where a new instance is added to a zone, due to the scaling

metric reaching threshold in the zone. Immediately, see a

virtual machine being deleted (same or different), as the

overall regional utilization has not reached the threshold.

Predictive scaling

In this mode, the autoscaler forecast future, loads based on

historical data and scales out the number of virtual

machines in Managed Instance Group well in advance, so

that the application is infrastructurally ready when the load

arrives.

The success of this strategy depends on two key aspects:

How predictable are your daily and weekly workloads? If

there are too many variations in the load, this strategy

might result in oversized or under-provisioned

infrastructure resulting in a breach of SLAs.

This strategy becomes more valuable, especially for

applications with considerable initialization time (cool

down time). If the application boots uptime is more than

1 minute, the run time autoscaling might not be

effective as there is a delay of more than a minute after

trigger action is taken.

Without predictive scaling, Autoscalar takes actions based

on the load in real-time; however, in the case of predictive

scaling, historical as well as current load is taken into

consideration. Additionally, Autoscalar also takes into

consideration the variability of past trends, that is, the delta

between prediction and actual need. Predictive scaling

starts before the actual need by the amount of cooling

period set by the user.

Predictive scaling works only based on CPU utilization.

Metrics of cloud load balancing and cloud monitoring are not

supported. In addition, at least three days of the history of

workloads are needed only after predictive scaling starts.

All the predictions are based on weekly and daily load

patterns. Annual and one-time load patterns are not

supported. For such scenarios, scheduled scaling works the

best. Moreover, any load pattern taking less than 10

minutes is not considered for predictions. For example, if

your application is scaled up for just 5 minutes and then

scaled down, this spike will not be considered while making

predictions.

Scale-in controls

Applications have different initialization times; few can

initialize in seconds, and few might take time in minutes.

The application, which takes less time to initialize, can scale

up and down in real-time. However, applications that take

more than minutes cannot do the same.

Applications taking minutes to initialize, if left alone with

just an autoscaling policy, might not be a good idea, as

seen, based on real-time metrics. If there is a need to scale

down and then immediately scale up again, then the

application will not be able to handle such quick spikes in

load.

To handle this situation, scale-in controls come in handy.

Scale-in controls enabled throttled scale down of

application. For example, even if the system can go down by

30% (based on real-time metrics), the application will be

allowed to scale down by 10% (defined in configuration).

To enable scale-in controls, configure the two properties in

the autoscaling policy, as explained.

Maximum Allowed Reduction

The number of virtual machines that could be

decommissioned from peak load in the trailing time window.

You can define it in two ways – Number of VMs, and percent

of VMs. It is essential to understand the nature of the

application to set this up, as a high value might result in a

large scale of the application (temporary under provision),

and a small value might result in an application not scaling

in quickly enough (temporary over-provisioning).

Trailing Time Window

It is the time from the last scale in operation. Autoscaler

analyses the activity since the previous scale is in-process,

and decides on a time window rather than real-time. The

only decision taken is whether to scale down or scale-up. If

the decision comes out to be scaled down, the reduction of

virtual machines defined by Maximum Allowed Reduction

will occur.

Autoscaling in Action

Let us have a look at all the above-discussed concepts in

practice. We will create a Managed Instances Group with all

the above-discussed concepts in action.

Let us refer to the Google Cloud Platform portal to look into

Autoscaling configuration options, as shown in Figure 5.5:

Figure 5.5: Autoscaling MIG

Follow the numerical labelling of Figure 5.5 with the

numerically labelled explanation as follows:

1. Autoscaling mode: Autoscaling in MIG can be

configured with various modes. Modes define the nature

of scaling. The available modes are shown in Table 5.2:

Autoscaling Mode Description

On: Add and

remove instances to

and from the group

This is the scaling mode that allows scale up and

down. This autoscaling mode is the most effective

as the system scales up in case of high load (and

thus ensures meeting SLA) and scales down as

load decreases (to ensure cost-effectiveness) for

applications with low cool down time.

Scale Out: Only

Add instances to the

group

This is the scale-out model, that is, the system will

auto-scale when the load increases, but it will not

scale down automatically.

Off: Do not auto

scale

This mode (default) switches off autoscaling, that

is, in case you need to scale up or scale down, you

must take steps manually.

Table 5.2: Modes available in autoscaling

2. Minimum\Maximum number of instances: The

minimum number of instances is the lowest Number

your MIG could shrink to, and the maximum is the

maximum number of VM your MIG could scale up to.

3. Autoscaling metrics: The metric whose value will

trigger a scale up or down at a given point. For

instance, in the given example, the metric is CPU

utilization, and the value is 60%. When the average CPU

utilization goes above 60%, a VM will be added

automatically, and when the overall average CPU

utilization goes below 60%, a VM is decommissioned.

There are three categories of metrics that can be

configured, as can be seen in Table 5.3:

Autoscaling

Metric

Description

CPU utilization The expected value is a number between 0 to

100. This metric, set to 60%, means that when the

average CPU utilization across VMs goes above

60%, MIG will add VM. On the contrary, when the

average CPU utilization goes below 60%, a VM will

be removed by MIG.

HTTP load balancing

utilization

This autoscaling is based on an indication of a

metric and its value. A VM will be added when the

metric reaches a particular configured target

value in the load balancer. We will look into this in-

depth in the last section of this chapter.

Cloud monitoring

metric

Google Cloud monitoring captures various metrics

out of the box. In addition, we can define our

metrics as well. This scaling option could be

configured on a per VM basis (scaling using per-

instance metric), and for the whole group (scaling

using per group metrics). For configuring this

autoscaling policy, three things are essential to be

understood:

Metric identifier: These are monitoring

identifiers. We need to select one of them, or we

can define a custom metric as well.

Target utilization level: Defines the threshold

value for the cloud monitoring metric.

Target type: This defines how the autoscaler

calculates the data.

GAUGE: In this, the autoscaler looks at the last

few minutes, computes a value, and compares it

with the utilization target to scale up or down.

DELTA_PER_MINUTE: This autoscaler looks at the last

minute to calculate the value of the metric.

DELTA_PER_SECOND: This autoscaler looks at the last

second to calculate the metric’s value.

Table 5.3: Categories of autoscaling metrics

This section also provides the option of selecting

predictive scaling. Predictive scaling improves

availability, by monitoring the daily and weekly load

patterns, as well as scaling out proactively before the

need arises.

4. Autoscaling schedules: The number of VMs is scaled

up or down based on a fixed configuration in the

Autoscaling schedule. In this example, we had not

configured autoscaling schedules.

5. Cool down periods: It is the application initialization

period. To configure a proper value, it is essential to

understand the time taken by your application to

initialize. While the application initializes, its usage data

might not represent normal conditions. Hence,

autoscaler uses remarkable down period differently as

per the need of scaling:

Scale-in: For the scale in the decision, the

autoscaler considers all the instances, even the

instances in cooling down mode.

Scale-out: For Scale-out decisions, the autoscaler

ignores data from instances where the application is

hosted in cool down mode.

Predictive mode: If the predictive mode is set and

the cool-down is defined, the scale-up of the

application will happen before the actual serving.

This before time is equal to the cool-down time

defined. For example, if the predictive scaling

defines the scaling of a VM at 11:00 AM and the

cool-down is defined as 5 minutes, the VM will be

added to MIG at 10:55 AM. From 10:55 to 11:00, the

application installation will happen (cool-down), and

at 11:00 AM, scaled-up infra is ready.

6. Scale-in controls:

This feature is especially needed when your application

takes a long time to initialize, coupled with frequent

load requirements. If you do not configure this value,

the system will scale down, and in the very next

moment, there is a need to scale up again; a scale-up of

infra will happen, but effective usage can only start

after application initialization is complete. This could

have been avoided if the system was not allowed to

scale down abruptly.

To set the scale in controls, we must set the the

following properties.

Maximum Allowed Reduction: The percent of the

number of VM allowed decommissioning in one

trailing time window. The smaller the value, the

more time to scale it will be.

Trailing Time Window: It is the time window after

which the autoscaler will attempt to scale down.

The following GCloud command for the preceding

configuration creates a Managed Instance Group:

gcloud beta compute instance-groups managed create stateful-

mig-autoscaling /

--project=scaling-gcp /

--base-instance-name=stateful-mig-autoscaling /

--size=1 /

--template=scaling-gcp-example-template /

--zones=us-central1-c,us-central1-f,us-central1-b /

--target-distribution-shape=EVEN

This command creates the autoscaling configuration:

gcloud beta compute instance-groups managed set-autoscaling

stateful-mig-autoscaling /

--project=scaling-gcp /

--region=us-central1 /

--cool-down-period=60 /

--max-num-replicas=8 /

--min-num-replicas=1 /

--mode=on /

--target-cpu-utilization=0.6 /

--scale-in-control=max-scaled-in-replicas-percent=10,time-

window=600

Developing and managing

autoscalers

In this section, we are going to dive deep into the autoscaler

configurations.

To get the information about the Autoscalar configured for a

Managed Instance Group, we can trigger the following

command on Google Cloud shell.

gcloud compute instance-groups managed describe <Managed-

Instance_Group_Name>

Example: For the above created Managed Instance Group -

stateful-mig-autoscaling

gcloud compute instance-groups managed describe stateful-mig-

autoscaling

You can also update an Autoscalar: configuration:

gcloud compute instance-groups managed update-autoscaling

<managed-instance_group-name> --max-num-replicas <max-replica>

It is now time to look into various Autoscalar configurations.

Scaling Based on CPU utilization

Autoscalar looks at average CPU utilization across all virtual

machines in this autoscaler configuration. If all virtual

machines collectively have average CPU utilization above a

certain threshold, a virtual machine is added to Managed

Instance Group.

The best example to apply this strategy is a multithreaded

application where the number of threads increases and

decreases based on the data it is processing.

The following GCloud command creates CPU-based

autoscaling:

gcloud compute instance-groups managed set-autoscaling

example-MIG \

--max-num-replicas 20 \

--target-cpu-utilization 0.60 \

--cool-down-period 90

Scaling based on load balancing

serving capacity

When the backend applications behind an external load

balancer is hosted on Managed Instance Group, external

load balancer provides two balancing modes. The first mode

is UTILIZATION and the other is RATE.

UTILIZATION: You can specify the maximum threshold for

average utilization across instances in the instance group.

RATE: You can specify the threshold for the number of

requests per second on an instance basis or per group basis.

For regional MIGs, we cannot specify group-based RATE. For

zonal, RATE on group is applicable.

When we align an autoscaler to an instance group backend

of an external HTTP load balancer, the autoscaler makes

sure to maintain a fraction of the load serving capacity.

For example, if we have a system which can handle 100

requests per second and we define the target utilization to

be 75%, autoscaler will make sure that the utilization of

backend instance should not go above 75%, that is, 75

requests per instance. The moment the number of requests

goes above 75, a virtual machine is added.

gcloud compute instance-groups managed set-autoscaling

example-managed-instance-group \

--max-num-replicas 20 \

--target-load-balancing-utilization 0.6 \

--cool-down-period 90

Scaling Based on cloud monitoring

metrics

Apart from the preceding two strategies (scaling based on

CPU metric and load balancer utilization), another family of

signals which could be used to define autoscaling strategy is

cloud monitoring metric.

When we define autoscaling based on cloud monitoring

metric, you can scale based on the following two metric

types:

Scale using the per instance metrics, in which we

analyze the metric data for each virtual machine

indicating resource utilization. When using this kind of

metrics, the system cannot scale below a size of 1 VM,

because autoscaler needs metric from at least one VM.

If you need metric of a group as a whole or there is a

need to scale down VM to zero from time to time, you

can configure per group metric.

Scale using per instance group metric, where the

group scales based on a metric whose value is

determined by taking into consideration the complete

instance group. All metrics do not qualify to be used

here, for example a metric like

compute.googleapis.com/instance/cpu/reserved_cores will not

change based on usage and hence should not be used

for autoscaling.

Apart from using the standard metrics, custom metrics can

also be used. The process of creating custom metric is out

of scope of this book. However, once you have the custom

cloud monitoring metric created, it could be utilized for

autoscaling similar to standard metrics.

Configuring auto scaling for per

instance metric

To create an autoscaler that uses cloud monitoring for

metric per instance, you have to provide a metric identifier,

the desired target utilization level as well as the utilization

target type.

The target utilization level has to be a positive number

which measures the value of the metric and takes a decision

to either add or remove virtual machine. Target type

determines how the autoscaler processes data collected.

The possible target values are as follows:

GAUGE: Autoscaler calculates the average value of data

collected from past configured number of minutes.

DELTA_PER_MINUTE: The autoscaler processes data in last one

minute and compares with target utilization.

DELTA_PER_SECOND: The autoscaler processes data per second

and compares it with target utilization.

The following GCloud command is for autoscaling

configuration:

gcloud compute instance-groups managed set-autoscaling

example-managed-instance-group \

--custom-metric-utilization

metric=example.googleapis.com/path/to/metric,utilization-

target-type=GAUGE,utilization-target=10 \

--max-num-replicas 20 \

--cool-down-period 90 \

--region us-west1

Configuring auto scaling for per

group metric

There are two strategies to define group metrics:

Instance assignment

In case of instance assignment, you specify how much work

you expect each VM to handle. Based on the work lined up,

the number of virtual machines is added. For example, let

us assume that you have a streaming application that

listens to Pub/Sub messages. If you configure each VM to

process 5 messages and there are total of 25 unread

messages, the number of virtual machines will be scaled to

5.

The following GCloud command is used to achieve the

preceding use case:

gcloud compute instance-groups managed set-autoscaling \

our-instance-group \

--zone=us-central1-a \

--max-num-replicas=100 \

--min-num-replicas=0 \

--update-stackdriver-

metric=pubsub.googleapis.com/subscription/num_undelivered_me

ssages \

--stackdriver-metric-filter=”resource.type =

pubsub_subscription AND resource.labels.subscription_id =

our-subscription” \

--stackdriver-metric-single-instance-assignment=15

Utilization target

In this strategy, the autoscaling happens in order to

maintain the utilization level. For example, assume you

have an application and you had defined a custom metric of

latency and configured autoscaling. The moment your

latency metric starts increasing, virtual machine will be

added. On the other hand, if the latency goes down, the VM

will be deleted.

The following GCloud command demonstrates the utilization

metric:

gcloud compute instance-groups managed set-autoscaling \

our-instance-group \

--zone=us-central1-a \

--max-num-replicas=100 \

--min-num-replicas=0 \

--update-stackdriver-

metric=custom.googleapis.com/example_average_latency \

--stackdriver-metric-filter “resource.type = global AND

metric.labels.group_name = our-instance-group” \

--stackdriver-metric-utilization-target=100 \

--stackdriver-metric-utilization-target-type=delta-per-

second

Scaling based on schedules

This auto-scaling strategy lets you schedule virtual machine

addition ahead of the anticipated load. We can design a

required number of virtual machines for recurring load

patterns and one-off events. Use of schedule scale is

recommended when the application takes a long time to

initialize, and you want to scale out in advance for the

upcoming load. There are two limitations to this approach:

You can only set 128 schedules per Managed Instance

Group.

The minimum duration for schedules is 5 mins.

The following GCloud command is used for creating a

scaling schedule:

gcloud compute instance-groups managed set-autoscaling

MIG_NAME \

[--min-num-replicas=MIN_NUM_REPLICAS] \

--max-num-replicas=MAX_NUM_REPLICAS \

--set-schedule=SCHEDULE_NAME \

--schedule-cron=”CRON_EXPRESSION” \

--schedule-duration-sec=DURATION \

[--schedule-time-zone=”TIME_ZONE”] \

--schedule-min-required-replicas=MIN_REQ_REPLICAS \

[--schedule-description=”DESCRIPTION”] \

[--zone=ZONE | --region=REGION]

The preceding command has already been discussed

multiple times in the previous section. In Table 5.4, we will

look into properties which are related to creating schedules:

Property Description

set-schedule SCHEDULE_NAME: The name of the scaling schedule.

schedule-cron CRON_EXPRESSION: Start time and reoccurrence

configuration represented as cron expression.

schedule-duration-sec DURATION: Duration in seconds that this schedule is

active.

schedule-time-zone Time zone of the schedule start.

schedule-description Description of the schedule.

Table 5.4: Properties related to creating schedules

The following command creates repeating schedule:

gcloud compute instance-groups managed update-autoscaling

example-mig \

--min-num-replicas=0 \

--max-num-replicas=30 \

--set-schedule=scaling-gcp-schedule \

--schedule-cron=”30 8 * * Mon-Fri” \

--schedule-duration-sec=30600 \

--schedule-min-required-replicas=10 \

--schedule-description=”Have at least 10 VMs every Monday

through Friday from 8:30 AM to 5 PM UTC”

The preceding command creates a schedule with name

‘scaling-gcp-schedule’. It runs based on the cron”30 8 * * Mon-

Fri”. The total duration of trigger is 30600 seconds and

during this schedule run, the minimum number of replicas

will be 10 virtual machines.

The following command creates a one-time schedule:

gcloud compute instance-groups managed update-autoscaling

example-mig \

--set-schedule=example-onetime-schedule \

--schedule-cron=”0 0 30 1 * 2030” \

--schedule-duration-sec=86400 \

--schedule-time-zone=”America/New_York” \

--schedule-min-required-replicas=30 \

--schedule-description=”Schedule a minimum of 30 VMs all day

for January 30, 2030” \

--zone=us-east1-b

In this example, the schedule is created which will create 30

virtual machines on each day of January.

The following command lists all the configured schedules:

gcloud compute instance-groups managed describe MIG_NAME \

[--zone=ZONE | --region=REGION]

The preceding command is used to list all the schedules

configured for an instance group.

The following command enables a schedule:

gcloud compute instance-groups managed update-autoscaling

MIG_NAME \

--update-schedule=SCHEDULE_NAME \

[--schedule-cron=”CRON_EXPRESSION”] \

[--schedule-duration-sec=DURATION] \

[--schedule-time-zone=”TIME_ZONE”] \

[--schedule-min-required-replicas=MIN_REQ_REPLICAS] \

[--schedule-description=”DESCRIPTION”] \

[--zone=ZONE | --region=REGION]

The preceding command can be used to update the

autoscaling configuration of instance group with schedule.

The following command disables schedules:

gcloud compute instance-groups managed update-autoscaling

MIG_NAME \

--disable-schedule=SCHEDULE_NAME \

[--zone=ZONE | --region=REGION]

The preceding command is used to disable a schedule.

Scheduling based on prediction

We can define autoscaling based on prediction with the

following GCloud command. Prediction takes into

consideration only the CPU utilization as a signal.

gcloud compute instance-groups managed set-autoscaling

scaling-gcp-stateless-mig \

--cpu-utilization-predictive-method optimize-availability \

--target-cpu-utilization 0.75 \

--max-num-replicas 20 \

--cool-down-period 300

The preceding GCloud command set predictive autoscaling

with target value of CPU utilization to be 75%.

Creating autoscaling policy based on

multiple signals

When we set up multiple signals for autoscaling, that is,

autoscaling configurations on multiple signals – on CPU

utilization and load balancer together – Autoscalar

calculates the number of virtual machines needed, as per

each signal and then chooses the maximum estimated

value to be the new size of the Managed Instance Group

infrastructure. AutoNation scaler accepts one signal per

metric type, except for cloud monitoring metrics and

schedules. In the cloud monitoring metric, we can select five

signals and configure 128 schedules per Managed Instance

Group.

In the following example, we are configuring 2 autoscaling

signals, that is, CPU utilization and load balancing utilization

and custom schedule:

gcloud compute instance-groups managed set-autoscaling

scaling-gcp-stateless-mig\

--target-cpu-utilization=0.8 \

--target-load-balancing-utilization=0.6 \

--set-schedule=workday-capacity \

--schedule-cron=”30 8 * * Mon-Fri” \

--schedule-duration-sec=30600 \

--schedule-min-required-replicas=10 \

--schedule-description=”Have at least 10 VMs every Monday

through Friday from 8:30 AM to 5 PM UTC” \

--min-num-replicas=1 \

--max-num-replicas=50

The preceding GCloud command is a working example that

sets autoscaling when CPU utilization exceeds 80% or load

balancing utilization exceeds 60%. Along with this, a

scheduled scaling is configured as well.

CRUD operations on autoscalers

In this section, we will go through few of the CRUD

operations which we can perform to manage the Autoscalar

configurations.

Describing an Autoscalar

gcloud compute instance-groups managed describe

INSTANCE_GROUP_NAME

The preceding GCloud command will return the complete

configuration for the Autoscalar.

Updating a scalar

gcloud compute instance-groups managed update-autoscaling

INSTANCE_GROUP_NAME--max-num-replicas MAX_NUM

The preceding GCloud command updates the maximum

number of replicas to MAX_NUM.

Turning off a scalar

gcloud compute instance-groups managed update-autoscaling

INSTANCE_GROUP_NAME--mode NEW_MODE

The preceding command will change the scaling mode to

NEW_MODE. If the value of NEW_MODE is set to OFF, the autoscaler

will be turned off.

Deleting an autoscaler

gcloud compute instance-groups managed stop-autoscaling

INSTANCE_GROUP_NAME

The preceding GCloud command stops autoscaling and

hence the Autoscalar configuration is completely lost.

Autoscaling node groups

In use cases where you use sole-tenant-groups for your

workloads, you can use the node group autoscaler to

automatically manage the sizes of node group. You can

specify the autoscaling at the time of creation or you can

update it after creating the node group.

The following command enables the Autoscalar on node

group:

gcloud compute sole-tenancy node-groups create group-name \

--node-template template-name \

--target-size size \

--maintenance-policy maintenance-policy \

--zone zone \

--autoscaler-mode mode \

--max-nodes max-nodes \

--min-nodes min-nodes

The preceding command creates a node group with

autoscaling policy already defined. There are 3 main

properties related to autoscaling (in bold); rest of the

properties are specific to node group creation, and these are

explained in Table 5.5:

Property Description

autoscalar-mode Mode for the autoscaler on this node group. It could

have 3 different values:

1. off: Disables an Autoscalar.

2. on: Enable scale in and out Autoscalar.

3. Only-scale-out: Enables only scaling out.

max-nodes Maximum size of the node group

min-nodes Minimum size of the node group. Default is zero.

Table 5.5: Properties specific to node group creation

For example, refer to the following code:

gcloud compute sole-tenancy node-groups create scaling-gcp-

node-pool \

--node-template scaling-gcp-node-pool-template \

--target-size 10 \

--maintenance-policy Default \

--zone us-central1-c \

--autoscaler-mode on \

--max-nodes 5 \

--min-nodes 1

The preceding command creates a node pool with name

‘scaling-gcp-node-pool’, using node template ‘scaling-gcp-

node-pool-template’ with maintenance policy as Default and

target-size as 10. Auto scale mode is set to ON, meaning

that the node pool can scale up and down in the range of 1

to 5.

The following command updates node group with

autoscaler:

gcloud compute sole-tenancy node-groups updatename \

--autoscaler-mode mode \

--max-nodes max-nodes \

--min-nodes min-nodes

Here, the update command (in bold) updates an existing

node group with the defined autoscaling policy defined in

the command.

Reserving resources for effective

auto scaling

To ensure your workload gets the required resources in a

zone, you can reserve them. When you reserve resources,

billing starts even if you do not use them, and stops only

when they are deleted.

Irrespective of whether you use the instance, GCP prevents

the reserved resources from assigning it to other customers.

Generally, when we agree to this kind of reservation, the

cost associated is not the same as we have in the case of

standard VMs. Since we had committed to using it, GCP has

some offer discounts.

A virtual machine can consume reservations only when the

following properties of reservations and virtual machine

match.

Project

Zone

Machine type

Minimum CPU platform

GPU type and count

Local SSD type and count

You can control the virtual machines using reservations.

There are two strategies to manage the acquisition of

reserved resources:

Shared type

This has two categories:

Single project reservation: Reserved resources

can only be used for virtual machines for one GCP

project.

Shared reservations: Reserved resources are

shared between two or more GCP projects. Both

projects can consume the reserved resources as per

their auto-scaling needs.

Consumption type

This two has two subcategories:

Automatic: The Managed Instance Group

automatically selects one reservation to consume, if

multiple reservations are available.

Specific: You can specify a certain reservation to

use, for virtual machine creation.

If a virtual machine using the reserved resources is stopped,

suspended, or deleted, the VM resources are no longer

counted as the use of reservations. The resources are

available for another virtual machine. If you delete a

reservation that is being used by VMs, the VMs will keep on

running, and the cost of those VM becomes that of general

VMs.

Single project zonal reservations

You can create reservations for compute engine zonal

resources, that can only be used in a single project. A

reservation assures obtaining capacity for resources.

The following GCloud command creates this type of

reservation:

gcloud compute reservations create RESERVATION_NAME \

--machine-type=MACHINE_TYPE \

--min-cpu-platform MINIMUM_CPU_PLATFORM \

--vm-count=NUMBER_OF_VMS \

--

accelerator=count=NUMBER_OF_ACCELERATORS,type=ACCELERATOR_TY

PE \

--local-ssd=size=375,interface=INTERFACE_1 \

--local-ssd=size=375,interface=INTERFACE_2 \

--zone=ZONE

--project=PROJECT_ID

Table 5.6 elaborates the options which can be specified in

the preceding reservation create command:

Property Description

RESERVATION_NAME The name of the reservation.

MACHINE_TYPE A predefined or custom type machine.

MINIMUM_CPU_PLATFORM Minimum number of CPUs to be used for each virtual

machine.

NUMBER_OF_VMS Number of reserved virtual machines.

NUMBER_OF_ACCELERATORS The number of GPUs to add, per instance.

ACCELERATOR_TYPE Type or class of GPU to be used.

INTERFACE_1 and

INTERFACE_2:

The type of interface you want the local SSDs for each

instance to use. Valid options are: scsi and nvme. Each

local SSD is 375 GB.

ZONE Zone for reservations

PROJECT_ID Project id where you want resources to be reserved.

Table 5.6: Properties for reservation create command

You can specify, ‘--require-specific-reservation’ flag to

indicate that only VM instances, that explicitly target this

reservation, can use it.

The following GCloud command is used to create

reservations:

gcloud compute reservations create scaling-gcp-reservation \

--machine-type=custom-8-10240 \

--min-cpu-platform=”Intel Haswell” \

--vm-count=2 \

--accelerator=count=2,type=nvidia-tesla-v100 \

--local-ssd=size=375,interface=scsi \

--require-specific-reservation \

--zone=us-central1-a

The preceding command creates a reservation scaling-gcp-

reservation with the specified configurations, like total virtual

machine count is 2, zone is us-central1-a.

Shared project zonal reservations

The concept remains the same as that of single project

zonal reservations, with one difference being that multiple

projects are configured with each reservation, which can

consume it.

The following GCloud command is used to create shared

project reservations:

gcloud compute reservations create RESERVATION_NAME \

--machine-type=MACHINE_TYPE \

--min-cpu-platform=MINIMUM_CPU_PLATFORM \

--vm-count=NUMBER_OF_VMS \

--

accelerator=count=NUMBER_OF_ACCELERATORS,type=ACCELERATOR_TY

PE \

--local-ssd=size=375,interface=INTERFACE_1 \

--local-ssd=size=375,interface=INTERFACE_2 \

--zone=ZONE \

--project=OWNER_PROJECT_ID \

--share-setting=projects \

--share-with=CONSUMER_PROJECT_IDS

Most of the options above are already explained in previous

sections. Two new properties which are new and need

discussion are explained in the following Table 5.7:

Property Description

OWNER_PROJECT_ID The project ID where you want to

create the shared reservation.

CONSUMER_PROJECT_IDS List of project IDs who can utilize a

reservation.

Table 5.7: Properties for shared project reservations

You must include the --share-setting=projects flag to share

this reservation with other projects. Optionally, add the --

require-specific-reservation flag to indicate that only VM

instances that explicitly target this reservation can use it.

The following GCloud command creates a reservation:

gcloud compute reservations scaling-gcp-reservation-zonal\

--machine-type=custom-8-10240 \

--min-cpu-platform=”Intel Haswell” \

--vm-count=10 \

--accelerator=count=2,type=nvidia-tesla-v100 \

--local-ssd=size=375,interface=scsi \

--zone=us-central1-c \

--project=scaling-gcp \

--share-setting=projects \

--share-with=scaling-gcp-1,scaling-gcp-2 \

--require-specific-reservation

The preceding command creates a reservation scaling-gcp-

reservation-zonal which is created in project scaling-gcp and

can be used in project scaling-gcp-1 and scaling-gcp-2.

Consuming reservations

In the previous two sections, we looked into how to create

reservations. In the current section, we will investigate how

to utilize those reservations:

Consuming instances from any matching

reservation

1. Create an open reservation called scaling-gcp-

reservation.

gcloud compute reservations create scaling-gcp-reservation

\

--vm-count=2 \

--machine-type=n2-standard-32 \

--min-cpu-platform “Intel Cascade Lake” \

--accelerator=count=2,type=nvidia-tesla-v100 \

--local-ssd=size=375,interface=scsi \

--zone=us-central1-b

2. The following command creates a virtual machine which

is created using any open reservation, and that matches

the instance properties in scaling-gcp-reservation,

including the virtual machine zone, virtual machine type

(machine family, Memory and vCPUs), minimum and

maximum CPU platform, GPU amount and type, and

local SSD amount and interface:

gcloud compute instances create scaling-gcp-instance-1 \

--machine-type=n2-standard-32 \

--min-cpu-platform=”Intel Cascade Lake” \

--accelerator=count=2,type=nvidia-tesla-v100 \

--local-ssd=size=375,interface=scsi \

--zone=us-central1-a \

--reservation-affinity=any

3. Create a reservation named scaling-gcp-reservation-02

with the --require-specific-reservation flag. These

reserved resources can be used only by instances that

specifically target this reservation by name:

gcloud compute reservations create scaling-gcp-

reservation-02 \

--machine-type=n2-standard-32 \

--min-cpu-platform “Intel Cascade Lake” \

--vm-count=10 \

--zone=us-central1-a \

--require-specific-reservation

4. Create a VM instance that targets scaling-gcp-

reservation-02 by name, by using the --reservation-

affinity and --reservation flags.

Ensure that the instance’s properties match the

reservation’s instance properties, including the zone,

machine type (machine family, vCPUs, and memory),

minimum CPU platform, GPU amount and type, and

local SSD interface and size.

gcloud compute instances create instance-2 \

--machine-type=n2-standard-32 \

--min-cpu-platform “Intel Cascade Lake” \

--zone=us-central1-a \

--reservation-affinity=specific \

--reservation= scaling-gcp-reservation-02

Consuming a specific shared reservation

1. Create a reservation named scaling-gcp-reservation with

the --require-specific-reservation flag. These reserved

resources can be used only by instances that

specifically target this reservation by name.

gcloud compute reservations create scaling-gcp-reservation

\

--machine-type=n2-standard-32 \

--min-cpu-platform “Intel Cascade Lake” \

--vm-count=10 \

--zone=us-central1-a \

--project=scaling-gcp \

--share-setting=projects \

--share-with=scaling-gcp-1, scaling-gcp-2 \

--require-specific-reservation

2. Create a VM instance that targets scaling-gcp-reservation

by name, by using the --reservation- affinity and --

reservation flags. To consume this reservation from any

consumer projects that this reservation is shared with,

you must also specify the project that created the

reservation, my-owner-project.

Ensure that the instance’s properties match the

reservation’s instance properties, including the zone,

machine type (machine family, vCPUs, and memory),

minimum CPU platform, GPU amount and type, and

local SSD interface and size.

gcloud compute instances create scaling-gcp-instance-2 \

--machine-type=n2-standard-32 \

--min-cpu-platform “Intel Cascade Lake” \

--zone=us-central1-a \

--reservation-affinity=specific \

--reservation=projects/ scaling-gcp/reservations/

scaling-gcp-reservation

Creating instances without consuming

reservations

If we want to create a virtual machine without using any of

the reservations defined in the project, we can use the

following command:

gcloud compute instances create scaling-gcp-instance-3 --

reservation-affinity=none

Load balancing

Google provides server-side load balancing, configuring

which, we can distribute the incoming request to multiple

virtual machine instances. Using load balancing you can:

Scale your applications

Handle high traffic

Remove unhealthy virtual machines and re-join healthy

virtual machines

Route traffic to the closest regional virtual machine

instance

GCP cloud load balancing is a managed offering from Google

and hence is highly available. If an instance of cloud load

balancing goes down, it is restarted again, all managed by

GCP.

When you set up an autoscaler of a MIG, based on load

balancing serving capacity, the autoscaler monitors the

serving capacity of an instance group and adds/removes

virtual machines. The serving capacity of an instance can be

defined in the load balancers “backend service” and can be

based on either request per second or utilization.

Adding instance group to load

balancer

Depending upon the type of load balancer, you can add a

managed/unmanaged instance group to a target pool or

backend service.

Aligning backend service with an MIG

A backend service is the most widely used and necessary

for most types of load balancing options of GCP. Backend

service can have multiple quality and quantity of options,

that can be configured. One such option is instance group.

You can configure multiple instance groups in one backend

service.

Backend service knows which instance it can use, and how

much traffic each virtual machine can handle. Back-end

services also run health check on the instances to identify

the unhealthy virtual machines and not direct the traffic to

those unhealthy machines.

We can add an instance group to a backend service using

the add-backend command, as shown in the following code:

gcloud compute backend-services add-backend

BACKEND_SERVICE_NAM --instance-group=INSTANCE_GROUP [--

instance-group-region=INSTANCE_GROUP_REGION | --instance-

group-zone=INSTANCE_GROUP_ZONE] \

--balancing-mode=BALANCING_MODE

BACKEND_SERVICE_NAME is the name of the backend service with

which we want to attach an instance group INSTANCE_GROUP.

Balancing mode defines the strategy to assess the backend

if it can handle additional load.

Adding a Managed Instance Group to a target

pool

A target pool contains one or more virtual machine

instances. A target pool is used for Network Load

Balancing (NLB), where the load balances forward the

request to target pool, and one of the machines in the

target pool processes the request. You can add Managed

Instance Group to the target pool, so that when the instance

is added or removed from instance group, the target pool is

automatically updated. To add an existing Managed Instance

Group to a target pool, follow these instructions. This causes

all VM instances that are part of the Managed Instance

Group, to be added to the target pool.

You can add a Managed Instance Group to a target pool

using the set-target-pools command.

gcloud compute instance-groups managed set-target-pools

INSTANCE_GROUP --target-pools TARGET_POOL

Here, a Managed Instance Group INSTANCE_GROUP is added to

the target pool TARGET_POOL.

A Network Load Balancer (unlike HTTP(s) load balancer) is a

pass-through load balancer. It does not proxy connections

from clients. We use target pools (a selected group of virtual

machines) to handle it. On the other hand, a HTTPs load

balancer uses backend service to pass on the request to

actual VM via URL mapping.

Configuring multi regional external

load balancer

For supporting multi regional external load balancer

configuration, the idea is to have backend service backed up

by individual regional Managed Instance Groups. When the

client triggers a request, the regional setting directs the

request to the regional subnet closer to request trigger, and

the regional subnet calls backend service and back-end

service calls regional managed instances. Figure 5.6

features a multi-regional load balancing:

Figure 5.6: Multi regional load balancing

Look at the Figure 5.4 labelled with numbers and follow the

numerically labelled explanation as following.

1. A request is a trigger for some processing.

2. Forwarding rule redirects the request to the target

HTTPS proxy.

3. Target proxy uses the rules set in URL map, to take a

decision as to which backend service will be invoked.

4. Appropriate backend service is called.

5. The load balancer finds out which exact instance a

request should be processed on. It is based on proximity

to the client.

Cross regions load balancing

We create one instance group per region and attach it to the

backend service. Incoming requests are forwarded to the

closest region. If the virtual machine in a region fails to

serve the request, the request is sent to other instances in

the same region or to a different region.

Conclusion

GCP provides provision to create VM groups – managed and

unmanaged. It is always advisable to select Managed

Instance Group over unmanaged. With Managed Instance

Group, comes a lot of vital features of mature scaling. Not

only can you apply multiple types (autoscaling and

predictive) of scaling, but also configure them enough to

support a wide variety of workloads. The autoscaler feature

of Managed Instance Group provides autoscaling based on

CPU utilizations, Load balancing serving capacity, Cloud

monitoring metrics and schedules, making it apt to be used

in production environments with variable loads.

Points to remember

GCP provides two kinds of instance groups - Managed

and Unmanaged.

GCP offers autoscaling and predictive scaling for

instance groups.

You can reserve instances which could be used while

scaling for a certain managed instance.

Platform also provides an elaborate list of configuration

parameter to handle variety of workloads.

Questions

1. Unmanaged group can have heterogenous instances

added/removed manually from group. True or False?

2. Unmanaged group does not offer autoscaling. True or

False?

3. MIG supports the deployment of containers to

container-optimized OS, that includes docker, if the

instance template used specifies a container image.

Agree or disagree?

4. What are some key advantages of using Managed

Instance Group over an unmanaged instance group?

Answers

1. True

2. True

3. Agree

CHAPTER 6

Scaling Kubernetes Engine

Introduction

Kubernetes is a well-known open-source container

orchestration platform, available as managed service with

almost all public cloud providers. In the GCP world, managed

Kubernetes comes with the name Google Kubernetes

Engine (GKE). Similarly, in AWS, it comes with the name

Amazon Elastic Kubernetes Service (EKS). Cloud providers

operating the Kubernetes platform, make Kubernetes adoption

very easy for engineering and IT teams. One of the most

famous workloads hosted on Kubernetes is the microservice

architecture. However, not just microservices but big data and

data science use cases also use the Kubernetes platform to

orchestrate workloads.

Kubernetes is open source, and so you can download a copy of

it and deploy it in your on-premises environment. The IT team

must take care of the cluster’s management and maintenance

(scheduled/unscheduled). However, looking at the capability of

Kubernetes to support so many use cases, all cloud providers

have supported Kubernetes, which abstracted the

maintenance and management aspects from the teams using

it. Kubernetes has multiple in-built strategies to scale,

including approaches based on predefined metrics within

Kubernetes set up, as well as predefined external metrics, and

custom metrics.

In this chapter, we will dive deep into the offerings of Google

Kubernetes Engine and understand how we can plan to scale

workloads on the GKE platform.

Structure

In this chapter, we will discuss the following topics:

Building and Packaging an Application on Kubernetes

Kubernetes Architecture

Building and Deploying a Web App

Scaling an Application

Configuring Horizontal Pod scaling

Configuring Vertical Pod scaling

Configuring multi-dimensional Pod scaling

Exponential Scaling of Fault Tolerant Workloads

Using Spot Pods

Using Spot VMs

Using Preemptible VMs

Cluster autoscaler

Scaling limits

Key considerations

Node pool configurations

Network policies for scale

Load balancing

Storage

Objectives

After studying this chapter, you should be able to learn how to

deploy applications on Kubernetes and how to scale up the

infrastructure manually and automatically. You will also get

good insights into spot and preemptible instances and how to

build and host applications to utilize spot infrastructures and

scale exponentially cost-efficiently.

You will also learn how to scale not just the applications but

the overall infrastructure, that is, Kubernetes cluster,

automatically, and some key considerations which will make

cluster and application autoscaling effective.

Building and packaging an application

on Kubernetes

Kubernetes manages the whole life cycle of a container –

creation, running and deletion.

There is a famous analogy for Kubernetes: if Kubernetes is

analogous to a ship, then Pods can be considered analogous to

shipping containers/packing boxes. Consider Figure 6.1 and

examine the labelling on both the left and right images to

draw the analogy:

Figure 6.1: Kubernetes and ship analogy

In Kubernetes, there is a concept of a controller node (known

as Kubernetes master) that manages multiple worker nodes.

Worker nodes host numerous pods, and pods can hold various

containers. Imagine your docker containers like packaging

boxes (labelled as 1 in Figure 6.1); these packaging boxes are

loaded in shipping containers analogous to pods in

Kubernetes. A pod is a group of one or more containers

(labelled as 2). Just as a ship can have multiple shipping

containers and manage the journey of all the shipping

containers, a Kubernetes worker node can also have many

pods managed by the Kubernetes master node (labelled as 3).

Kubernetes architecture

In this sub section, we will look into the high-level architecture

of Kubernetes. Consider Figure 6.2:

Figure 6.2: Kubernetes architecture

The corresponding descriptions for the numerically labelled

sections are as follows:

1. Master node: The master node is the component that

controls the orchestration of containers on the worker

nodes. The complete life cycle of a container is managed

and controlled by the master node. It contains the

following components:

a. Scheduler: When there is a need to create a pod, the

scheduler looks into the infra requirements and takes

a call about where that pod can be placed. Along with

that, it runs periodic health checks, to assess the

health of the cluster.

b. etcd: etcd is the placeholder for the complete

metadata of the cluster. The master node queries this

data to retrieve parameters related to the state of the

nodes, pods, and containers.

c. Controller: Controller gets the expected states of the

nodes from the API Server. It then checks the current

state of the nodes it is expected to control, identifies if

there are any deviations, and resolves them.

d. API Server: This is the gateway to communication for

worker nodes or other components in the cluster. It

acts as the front end of the Kubernetes cluster.

2. Worker node: The worker node is responsible for running

container workloads and additional components like

container runtime, kubelet, and kube-proxy. Its purpose is

to provide applications, computing, networking, and

storage resources.

a. Kubernetes provides additional services as add-ons;

these are optional services. For example, the

dashboard, which is deployed as a mini application in

the worker node and well-integrated with Kubernetes

components like kube-proxy.

b. Pods: It is a group of one or more containers with

shared storage, network, and compute power. It is the

smallest deployable unit in Kubernetes.

c. Container runtime: A container node must have a

container run time environment. For example, the

most widely used container runtime is Docker.

d. Kubelet: Kubelet is a small application running on

worker nodes and facilitates communication with the

API server. It transmits the status of components

running in the Kubernetes worker node and transmits

information like status, infra consumption, and health

status, and in return, takes commands from the API

server and executes inside the worker machine.

e. Kube-proxy: Kube-proxy is the network proxy and

load balancer that enables the network to route

requests to appropriate pods. It routes traffic to the

correct pod, based on the coming requests’ service

name and port number.

3. Image registry: Image registry is a repository or a

collation of repositories, where we store and access

container images.

Kubernetes world is big and the preceding section by no

means covers everything. However, it is enough to investigate

the scalability aspects of workloads deployed. With the

preceding basic knowledge of Kubernetes, it is time to deploy

the first sample web application to see things running.

Building and deploying a web app

This section will be a hands-on section, where you will deploy a

sample web application with the preceding architecture in

action. Table 6.1 maps the components above, with the tool

used in the example. For example, you will be using Docker as

container runtime for this example. Please refer to the

following table:

Components Tools

Container Runtime Docker

Image Registry GCP Container Registry

Kubernetes GCP managed Kubernetes.

Language and build tools Java and Maven

Table 6.1: Components - technology Mapping for GKE

Refer to the code base (scaling_kubernetes_engine) shared with

this chapter. At the root level, you will see a 10-stepword

document Deploy_Kubernetes_App.docx. Follow the exercise step

by step to deploy a basic Kubernetes based web application.

Once done, we will be using the same app for further

exercises.

1. Manual scaling of the application.

kubectl scale deployment hello-java --replicas=3

2. Deployments are just the declaration states of

components in a Kubernetes application. For example, the

deployment file mentions details like the number of

replicas. When such a thing is mentioned, Kubernetes will

make sure that it maintains the many numbers of replicas.

Generally, in the industry, we use the YAML file to create

the complete deployment specification.

In the preceding application, we can get the YAML file

using the following command:

gcloud container clusters get-credentials hello-java-cluster

--zone us-central1-c --project scaling-353402 &&kubectl get

deployment hello-java -o yaml>>deployment.yaml

This command returns a YAML configurations and dumps

them in the deployment.yaml file.

We will look into the constructs of YAML soon, but for now,

let us change the name of the application. Modify the field

.metadata.name to hello-world-1 and redeploy the YAML

configuration with the following command. The result of

using this command is shown in Figure 6.3:

kubectl apply -f deployment.yaml

Please refer to the following figure:

Figure 6.3: Kubernetes deployments

This will create one more workload in Kubernetes with

name hello-java-1, which will use the same image used by

hello-java workload.

3. You can delete a deployment using the following

command:

kubectl delete deployment hello-java

4. Let us have a look of the Deployment YAML for the

preceding application. Please note that Deployment YAML

can become very complex depending on use case to use

case:

apiVersion: apps/v1

kind: Deployment

metadata:

name: hello-java

spec:

replicas: 1

revisionHistoryLimit: 10

selector:

matchLabels:

app: hello-java

strategy:

rollingUpdate:

maxSurge: 25%

maxUnavailable: 25%

type: RollingUpdate

template:

metadata:

labels:

app: hello-java

spec:

containers:

- image: gcr.io/<gcp-project-id>/hello-java:v1

imagePullPolicy: IfNotPresent

name: hello-java

resources: {

Table 6.2 provides descriptions of the various field names for

Deployment YAML:

Field Names Description

apiVersion Version of Kubernetes API. The community

releases new APIs and improvements

periodically. This attribute refers to a release of

APIs.

kind Kubernetes has various kind of objects like

deployment, horizontal pod scaling and vertical

pod scaling.

.metadata Data that helps uniquely identify the object,

including a name string, UID, and optional

namespace

.metadata.name Name of the object.

.spec Desired state of the Kubernetes object.

.spec. replicas Number of replicas of the deployment.

.spec.strategy This field describes the deployment strategy of

a pod. Common strategies are recreate, rolling

update, and so on.

.spec.template Defines the configuration for different objects.

.spec.template.containers.image Image of the container. This is normally pulled

from image registries.

.spec.template.containers.resourc

es

Infrastructure resources which will be

configured for a pod.

Table 6.2: Deployment YAML for hello-java app

Scaling an application

There are two levels of scaling in Kubernetes. One type of

scaling is the Kubernetes cluster itself, that is, increasing the

size of the Kubernetes cluster because of obvious needs for an

increased number of deployments or no more infrastructures

left for applications to scale up.

Another form of scaling is the scaling up of application. When

the load increases/decreases in infrastructure, the deployed

application should have the capability to increase/decrease the

infrastructure for the application, either manually or

automated.

In both scenarios, manual scaling can happen; however, you

have options of autoscaling as well. Let us explore how and

when autoscaling kicks in and what the relationship is between

the preceding two scalings.

Scale-up mechanism

The cluster autoscaler is the component that scales up the size

of the cluster (increases nodes) when there are pods that are

unable to launch due to a resource crunch. We can define the

minimum and the maximum number of nodes in this policy.

Consider Figure 6.4:

Figure 6.4: Kubernetes Cluster Auto scalar

Follow the numerical labelling in the Figure 6.4 with the

explanation below:

1. It is the current Kubernetes cluster. Kubernetes cluster has

just one node, and that node contains three pods. There is

no space left to spin up another pod.

2. Two new pods need to be created. API server scans the

system for unscheduled pods every 10 seconds (by

default, governed by the flag –scan-interval). A pod is un-

schedulable when the Kubernetes scheduler cannot

identify a node to place a new pod. Kubernetes cluster

makes the Pod condition schedulable equal to false.

3. Cluster autoscaler requests for a new node from the node

group. If there is not enough space for the new pod or the

cluster, max size is not reached.

4. Based on the request from the autoscaler, a new provision

starts. Autoscaler expects the new node to be up and

running in 15 minutes (default, governed by --max-node-

provision-time). If the node does not come up in the

allotted time, another attempt is made to create a node.

5. Once a new node is added, the scheduler schedules the

pending pods on the new node.

In case any pods are still unscheduled, repeat the process

from label 2 to label 5.

Scale-down mechanism

Scaling down is needed when the workload on the application

is low (vice versa of scaling up). Scaling down is more complex

than scaling up, and following is a step-wise description of the

complete scale-down process.

1. The stage during which the evaluation of the node starts

for deletion (identified by the API server due to 10

seconds of scanning), begins when the utilization on the

node goes below 50% (default). It only checks resource

requests to identify consumption. The actual CPU and

memory details at any point are not considered.

2. After this, the Kubernetes scheduling algorithm scans the

pods on the qualified nodes and identifies if the pods

running on under-utilized node should be shifted to other

nodes.

3. If the node is not required for a period of 10 minutes, that

is, for 10 minutes, the consumption is below 50%, the

node gets deleted. Time is configurable. In addition, only

one node is deleted at a time; multiple such deletes might

result in many un-schedulable pods.

4. Nodes not used can be deleted in bulk—for example, ten

unused nodes in one go.

The basic philosophy behind the analysis done, is to make sure

that the states defined for the deployment do not get deferred.

For example, all the minimum replicas should run at any given

point, no matter what.

In the subsequent sections, we will explore the preceding two

scaling strategies – Scaling infra for application, and scaling

the complete cluster. Though you can technically configure

one among the other two without restrictions, the real power

of autoscaling inspires us to use both in combination.

Configuring horizontal pod scaling

Horizontal pod scaling means increasing/decreasing the

number of pods running for a deployment (application) in

Kubernetes. Horizontal pod scalar changes the shape of the

deployment by taking into consideration some metrics which

fall under the following categories:

Internal metrics from within a Kubernetes deployment, for

example, CPU usage and memory usage in the

deployment.

Metrics external to the deployment on Kubernetes. For

example, consider the application we deployed in the

preceding sections. The application accepts HTTP requests

and returns a response. You can define conditions such as

increasing a pod for every 100 increments of concurrent

requests.

Custom metric reported by Kubernetes object in a cluster.

For example, the rate of I\O per second by the application

on the shared local disk.

Kubernetes implements a Horizontal Pod Autoscaler (HPA),

which runs in a control loop, meaning the Pod scaler runs

periodically in a circle. By default, the interval is 15 seconds,

set by setting flag horizontal-pod-autoscaler-sync-period in kube-

controller-manager. The Horizontal Pod scaler checks the

metrics and instructs the replication controller to increase the

shape of the deployment. Consider the numerically labelled

Figure 6.5:

Figure 6.5: Horizontal Pod Scalar

Consider the figure’s numerical labelling with the following

numerically labelled points:

1. Metric server: Metric Server accumulates resource

usage data across the whole cluster. It collects data from

kubelet (running on each node) and makes it available in

the API server via the K8s Metric APIs.

2. Kubernetes application: An application hosted on a

Kubernetes cluster is also called deployment in

Kubernetes. For example, we can consider the hello-java

application. Each application has objects specified by the

configuration.

a. Deployment: A Deployment represents an

application running where we give specifications to

specify the complete details. For example, the image

to be used for the deployment should be hello-java:v1

in the container registry.

b. Replica Set: A Replica Set tries to maintain a stable

set of replica pods at any given time. For instance, if a

pod goes down due to node failure, the replica set

identifies that a new pod is needed to maintain the

current pod replica requirements, and it starts

creating one on another suitable node.

c. Replication controller: As the name suggests, it

controls the number of replicas at any given time for

deployment. It takes the final decision to increase a

pod and decrease a pod.

d. Stateful sets: This object maintains the stateful

applications. It manages the scaling and deployment

of pods and provides ordering and uniqueness

guarantees.

3. Horizontal Pod scaler: A horizontal Pod scaler is an

object that assesses the metrics in a Kubernetes cluster

and informs the replica set to scale up or down.

4. Horizontal Pod scaler scans the metrics server for reading

the metrics for which it is configured. This happens by

default after every 15 seconds.

5. The horizontal Pod scaler calculates the pods needed,

based on the metric defined for autoscaling.

6. Horizontal Pod scalar asks replica controller to

create/delete number of pods as per latest calculations on

current metrics.

Metric threshold definition

You can define the threshold for a metric in two ways.

Absolute/Raw values: You can specify absolute values

as thresholds. For example, the threshold for CPU

utilization can be set to 4 CPUs/mCPUs.

Percentage value: You can also specify the threshold in

percentages—for example, CPU utilization above 80%,

scale-up.

The value is used if you specify an absolute value for a metric,

either in CPU or memory. If you specify a percentage value for

metric (CPU or memory), the HorizontalPodAutoscaler

calculates the average utilization value against the percentage

of Pods CPU or memory utilization. The preceding strategy

holds for custom and external metrics too.

Configuring multiple metrics

If multiple metrics are configured for autoscaling, the

horizontal Pod scaler calculates the number of pods per metric

and then takes the most significant value for the pods

required. This ensures that the applications adhere to all the

scale-up policies. Assume a streaming application with

consumer being deployed on Kubernetes application, is

configured to scale on the number of unread messages in a

Pub/Sub queue, as well as configured to scale, based on CPU

consumption metrics. At the time of scaling, Autoscalar will

calculate number of pods as per number of unread messages,

and will calculate the number of pods based on CPU usage.

Assume this calculation came out to be 10 in case of scaling

based on unread Pub/Sub message and number of pods come

out to be 5 according to CPU. System will be scaled to 10.

In case a few of the metrics are unavailable in the metrics

server, the Horizontal Pod scalar will not scale down the

application from the current state. However, if there is a need

to scale up, that continues uninterrupted as per the available

metrics.

Thrashing

Thrashing is a situation where a workload requests for

increased infrastructure, and until the infra is scaled up to

process the load, the infra request decreases. Assume you

have a REST API with configuration to scale up and down

based on the number of incoming HTTP requests. If this

response time is very less, and the number of request changes

very fast, then you will see a situation where the infrastructure

was scaled up due to high number of requests. When suddenly

the number of requests is reduced, the system will try to

downscale. And in the very next instance again, there is a

need to scale up. This scaling up and down takes some

seconds and even before accomplishing it, the system tries to

scale it back. Infrastructure will go in a loop of unnecessary

scaling up and down. Auto scaler selects the most significant

recommendation to tackle this problem, based on data from

the previous 5 minutes.

Issuing horizontal scaling requests

You can define horizontal pod scaling configurations and apply

them on the application using below 3 ways:

From the UI console

Using the kubectl apply command

Using the kubectlautoscale

The first option of using UI console, can be used for one of

situations. However, it is definitely not the recommended way,

as infrastructure creation like this cannot be automated. For

the hands-on part, we will use option 2 and option 3 for our

examples.

Autoscaling on resource utilization

In this section, we will configure a horizontal pod scaler based

on CPU utilization %age. CPU utilization is an internal metric

(generated within) to a Kubernetes cluster. We will try to apply

the autoscaling configuration- “If the target CPU utilization

goes above 80%, scale up” to the hello-java application. Let us

consider an autoscaling configuration for the following

scenario:

apiVersion: autoscaling/v1

kind: HorizontalPodAutoscaler

metadata:

name: hello-java-autoscalar

spec:

scaleTargetRef:

apiVersion: apps/v1

kind: Deployment

name: hello-java

minReplicas: 1

maxReplicas: 10

targetCPUUtilizationPercentage: 80

Key specification in YAML related to scaling are highlighted in

BOLD. Table 6.3 provides the explanations:

Field Description

.metadata.name Configured as hello-java-autoscaler, it is

the name given to the Horizontal pod

scalar.

.spec.scaleTargetRef.name Configured as hello-world, it is the name

of Kubernetes deployment.

minReplicas Configured as 1, it is the minimum pods

a deployment is going to maintain.

maxReplicas Maximum number for pods.

targetCPUUtilizationPercentage Autoscaling configuration. When CPU

usage goes above 80%, it scales up.

Table 6.3: Describing YAML specification options

Create a separate YAML file for this configuration. For

demonstration, we are giving the name of file as autoscale-

hello-java.yaml.

1. Run the command to check if there is a HPA already

configured. It returns all the HPA configured in the cluster:

kubectl get hpa

2. Create a YAML file autoscale-hello-java.yaml and run the

following command:

kubectl apply -f autoscale-hello-java.yaml

3. Now when you run the following command:

kubectl get hpa

You will see the HPA object as shown in following Figure

6.6:

Figure 6.6: HPA object at CLI

4. To see a more elaborate definition of configured

Autoscaling, use the following command:

kubectl describe hpa hello-java-autoscalar

5. To delete the auto scaler configurations, use this given

command:

kubectl delete hpa hello-java-autoscalar

Equivalent kubectlauto scale command:

kubectlautoscale deployment hello-java --cpu-percent=80--min=1--

max=10

Like the preceding autoscaling configuration, based on CPU,

we can create auto scalers on memory usage as well.

Autoscaling on external metric

You can set your horizontal pod scalar to scale, based on

external parameters. By external parameter, it means the

parameter resides outside of the running application. For this,

we will take the example of scaling a Kubernetes deployment

based on the number of unread records in Pub/Sub.

In the case of GKE, we can expose all the metrics available in

GCP Cloud operation for Horizontal Pod scaler, to consume,

using the Stackdriver Adapter. Stackdriver Adapter reads the

logs generated in Cloud operations and fills up the metric

server with details. Consider the numerically labelled Figure

6.7 and its corresponding explanation:

Figure 6.7: Stackdriver Adapter Strategy

Explanation of the numerical labelling above:

1. Components like Google Pub/Sub expose metrics to the

Stack driver.

2. Stackdriver Adapter reads these supported metrics and

populates metadata in the metrics server.

3. The horizontal pod scalar reads these metrics from the

metric server and calculates the number of pods needed.

4. The new number of pods is provided to the replication

controller.

5. Replication controller, along with the deployment

manager, scales up/down the number of pods.

In the following exercise, let us create the preceding picture

technically one by one. There are 3 stages:

Stage 1: First of all, we need to have the following items up

and running, to apply any HPA:

1. Enable the google Pub/Sub API.

gcloud services enable cloudresourcemanager.googleapis.com

pubsub.googleapis.com

2. Create a Pub/Sub topic (scaling-gcp-topic) and a

subscription (scaling-gcp-topic-read).

gcloud pubsub topics create scaling-gcp-topic

gcloud pubsub subscriptions create scaling-gcp-topic-read --

topic=scaling-gcp-topic

3. Create a service account and give it the permission to

read from the topic.

gcloud iam service-accounts create scaling-gcp-pubsub-sa

gcloud projects add-iam-policy-binding $PROJECT_ID \

--member “scaling-gcp-pubsub-

sa@$PROJECT_ID.iam.gserviceaccount.com” \

--role “roles/pubsub.subscriber”

Make sure PROJECT_ID variable is populated.

4. Since we want to use this preceding service account in an

application in Kubernetes, we need to download and add

the service account to Kubernetes secrets.

gcloud iam service-accounts keys create key.json \

--iam-account scaling-gcp-pubsub-

sa@$PROJECT_ID.iam.gserviceaccount.com

kubectl create secret generic pubsub-scale-key --from-

file=key.json=./key.json

5. It is a simple subscriber application whose image resides

in container registry. Download the pubsub-hpa folder. It

contains artifacts for creating a subscriber application.

Docker build to create a local image.

docker build -t demo_hpa_external:1.0 .

Create a tag.

docker tag demo_hpa_external:1.0 gcr.io/$PROJECT_ID

/demo_hpa_external:v1

Push the image to Container Registry.

docker push gcr.io/$PROJECT_ID /demo_hpa_external:v1

Subscriber code in subscriber_main.py.subscriber_main.py

reads messages from Pub/Sub and prints the message on

console.

6. Defining a Deployment YAML and applying to Kubernetes

cluster.

kubectl apply -f pubsub-hpa.yaml

With the preceding step, a sample streaming subscriber

application is running in Kubernetes listening to a Pub/Sub

topic.

Stage 2: In stage 2, we must configure the Stackdriver

Adapter.

1. Grant the user, the ability to create required authorization

roles:

kubectl create clusterrolebinding cluster-admin-binding \

--clusterrole cluster-admin --user “$(gcloud config get-

value account)”

2. Deploy the new resource model adapter on our cluster:

kubectl apply -f

https://raw.githubusercontent.com/GoogleCloudPlatform/k8s-

stackdriver/master/custom-metrics-stackdriver-

adapter/deploy/production/adapter_new_resource_model.yaml

The preceding step will create a deployment in Kubernetes

cluster for stack driver adapter.

Stage 3: Create an autoscaling YAML configuration using the

number of unread messages as the autoscaling parameter.

apiVersion: autoscaling/v2beta2

kind: HorizontalPodAutoscaler

metadata:

name: pubsub

spec:

minReplicas: 1

maxReplicas: 10

metrics:

- external:

metric:

name: pubsub.googleapis.com|subscription|num_undelivered_messages

selector:

matchLabels:

resource.labels.subscription_id: scaling-gcp-topic-read

target:

type: AverageValue

averageValue: 1

type: External

scaleTargetRef:

apiVersion: apps/v1

kind: Deployment

name: pubsub

The highlighted section in the preceding YAML file,

demonstrates autoscaling attributes.

‘pubsub.googleapis.com|subscription|num_undelivered_messages’ is

the name of the metric pushed by Stackdriver Adapter into

metric server.

Autoscaling on custom metric

Autoscaling based on custom metric is like autoscaling based

on external metrics. In case of external metrics, the different

metrics were pushed to GCP logging out of the box. On the

externally exposed metrics, you can define the auto scaler

configuration.

Certain situations may arise when we want to define the

autoscaling configurations on metrics, which are not available

out of the box. Then, you can write code using the cloud

monitoring APIs, to create custom metric and push appropriate

values for the metrics in GCP logging (stackdriver).

Once these metrics are available, you can define autoscaling

configurations like the external metric way.

Refer to the code available in the folder custom-metric where,

custom_metric.py is a file that creates a metric and keeps

pushing data every 60 seconds for the metric. The metric is

specific to Kubernetes.

We will use this python file and create a docker image, push it

to container registry and deploy on Kubernetes.

cd custom-metric

docker build -t demo_hpa_custom_metrics:1.0 .

docker tag demo_hpa_custom_metrics:1.0 gcr.io/<gcp-project-

id>/demo_hpa_custom_hpa_metrics:v1

docker push gcr.io/<gcp-project-id>demo_hpa_custom_hpa_metrics:v1

The preceding command will deploy a custom-metric

application. Moreover, the Stackdriver Adapter application

must be up and running as it was in case of external metric.

You can now define a custom metric auto scaler. Refer to

custom.yaml in the code base.

apiVersion: autoscaling/v2beta2

kind: HorizontalPodAutoscaler

metadata:

.

spec:

.

-type: Pods

pods:

metric:

name: my_metric

target:

type: AverageValue

averageValue: 20

The highlighted section allows you to define scaling up on the

metric, created by the application my_metric, when the average

value (average across all pods) goes above 20. In that

situation, a pod is added.

Configuring vertical pod scaling

In Kubernetes Deployment YAML, you can mention the two

critical values request and limit for memory and CPU. By

setting a value for request, the cluster guarantees to allocate

the mentioned number of resources. Limit defines the

maximum amount a container infrastructure can scale up to, if

the node has resources. Let us see these two aspects of the

hello-java application we created before:

Original hello-java YAML Updated hello-java YAML

apiVersion: apps/v1

kind: Deployment

metadata:

name: hello-java

spec:

.

.

template:

.

spec:

containers:

.

resources: {}

apiVersion: apps/v1

kind: Deployment

metadata:

name: hello-java

spec:

.

.

template:

.

spec:

containers:

.

resources: {}

limits:

cpu: “1”

memory: “200Mi”

requests:

cpu: 500m

memory: “100Mi”

The preceding deployment specification will request for 500m

CPU and 100 Mi resources at the time of creation. Kubernetes

will place the pod on a certain node, based on request for CPU

and memory getting satisfied upfront. Maximum size

consumption can go up to 1 CPU and 200Mi of memory. This

will be allocated if there are resources free on the node.

Vertical Pod scalar proactively assess the containers and

provides suggestions in resources. You can view these

requests via cloud console, cloud monitoring and Cloud CLI.

The requests can be applied manually to the containers.

However, to enable vertical autoscaling, you must enable

vertical pod scaling.

gcloud container clusters update CLUSTER_NAME --enable-vertical-

pod-autoscaling -region us-central1-c

Once vertical pod scaling is enabled, like HPA, you have to

create specifications for Vertical Pod Autoscaling (VPA).

Here is a sample VPA definition for the hello-java application:

apiVersion: autoscaling.k8s.io/v1

kind: VerticalPodAutoscaler

metadata:

name: hello-java-vpa

spec:

targetRef:

apiVersion: “apps/v1”

kind: Deployment

name: hello-java

updatePolicy:

updateMode: “Off”

Note the bold part – updateMode : “Off”. This implies that

vertical scalar will only produce recommendations and will not

apply automatically. .targetRef specifies details of deployment

for which the autoscaling is defined.

Apply the following YAML:

kubectl apply -f vpa.yaml

Let the application run for some time and then try to get the

recommendations produced by the VPA configuration:

kubectl get vpa hello-java-vpa --output yaml

Please refer to the following Figure 6.8:

Figure 6.8: Vertical POD Autoscaling Config on CLI

See the sample output from the last step. If you remember, we

did not give anything related to request and limit for

containers in the original Deployment YAML (hello-java YAML).

However, VPA recommends the values.

We can enable auto scaling by giving the updateMode: “Auto”. It

means that the VPA controller can evict a Pod, reassign the

CPU and memory requests, and then create a new Pod.

Configuring multi-dimensional pod

scaling

Multi-dimensional scaling enables you to configure horizontal

scaling as well as vertical scaling.

To maintain average CPU utilization, multi-dimensional pod

scalar will increase the number of CPU in a pod (vertical scale)

and add number of pods (horizontal scaling) simultaneously.

For the example, throughout the chapter that is, hello-java

application, we can define the multi-dimensional pod scaling

configuration as follows:

apiVersion: autoscaling.gke.io/v1beta1

kind: MultidimPodAutoscaler

metadata:

name: hello-java-autoscaler

spec:

scaleTargetRef:

apiVersion: apps/v1

kind: Deployment

name: hello-java

goals:

metrics:

- type: Resource

resource:

Define the target CPU utilization request here

name: cpu

target:

type: Utilization

averageUtilization: 60

constraints:

global:

minReplicas: 1

maxReplicas: 5

containerControlledResources: [memory]

container:

- name: ‘*’

requests:

minAllowed:

memory: 1Gi

maxAllowed:

memory: 2Gi

policy:

updateMode: Auto

Generally, we do not define HPA and VPA on CPU or memory

together. We generally combine an external metric HPA with a

VPA scaling.

Exponential scaling of fault tolerant

workloads

Fault-tolerant workloads are workloads whose results do not

get affected by failures in the infrastructure.

For example, let us assume we have a processing request

queued up in Pub/Sub topic. A subscriber application is

deployed in Kubernetes, which picks up one message from the

queue at a time and acknowledges the message when the

processing completes. Now, even if the pods terminate, the

processing for one message will fail and has to be restarted.

Since the message is acknowledged for processing after

processing completes, the same failed message will be

processed by another pod.

Suppose we want to scale the same application and increase

the number of pods based on the number of messages in the

queue. Then the entire infrastructure deployed as a subscriber

application depends on the number of unread messages in the

queue.

For these and similar other situations, we can exponentially

scale using spot Pods and VMs in a cost-effective manner. As

mentioned earlier, there are two preconditions: Fault-tolerance

and horizontally scalable application.

Spot VMs are virtual machines (VM) that Google offers at a

60-90% discount, with the condition that Compute engine can

re-claim the virtual machines for other tasks. The compute

engine stops (by default), or deletes Spot Instances,

depending on some graceful shutdown instructions. Let us look

at strategies to use SPOT and preemptible infrastructure in

GKE.

Using Spot Pods

We can reduce the cost of running a workload by deploying

applications using the Spot Pods GKE clusters in autopilot

mode. Spot pods are pods launched on spot VM in a GKE

Autopilot cluster. Spot pods are much lower-priced than the

regular pods, but they can be taken away anytime. Hence, a

business-critical SLA-bound long-running application is not

recommended to run on this type of pod.

A GKE cluster in autopilot mode manages and provisions the

complete underlying infrastructure, including provisioning of

node pools and nodes, giving the ease of management to

teams. Let us look at what it takes to run this strategy. Follow

the given steps:

1. To use this option, we have to make sure that the cluster

is running in Autopilot mode.

gcloud container --project <GCP-PROJECT-ID> clusters create-

auto<CLUSTER_NAME> --region “northamerica-northeast2”

When we created the cluster earlier, we used “create” to

create standard clusters. However, if we use “create-

auto”, it creates cluster in auto mode.

2. When we add the cloud.google.com/gke-spot=true label to

our Deployment YAML, hello-java Deployment YAML will

look like this:

.

.

spec:

containers:

- name: hello-java

image: gcr.io/infinite-zephyr-353609/hello-java:v1

nodeSelector:

cloud.google.com/gke-spot: “true”

terminationGracePeriodSeconds: 25

3. Use the command kubectl apply -f <deployment-spec> to

deploy the application.

Another way to achieve the same is via defining node

affinity in Deployment YAML. By node affinity, we can

place our pods on VM, which satisfies multiple criteria.

Talking of this use case, we can define node affinity to use

spot pods, by setting

requiredDuringSchedulingIgnoredDuringExecution to use spot

VMs.

Here is modified version of the preceding used yaml:

.

.

spec:

containers:

- name: hello-java

image: gcr.io/infinite-zephyr-353609/hello-java:v1

terminationGracePeriodSeconds: 25

affinity:

nodeAffinity:

requiredDuringSchedulingIgnoredDuringExecution:

nodeSelectorTerms:

- matchExpressions:

- key: cloud.google.com/gke-spot

operator: In

values:

- “true”

The preceding YAML enables applying the node affinity criteria,

while scheduling of pods (time of creation). During scheduling

of pods, create the pods only on the VMs where the key

“cloud.google.com/gke-spot” is said to true.

Using Spot VMs

Spot VMs are priced less by 60-90%, but can be taken back

any time by GCP. Though this taking away of infrastructure can

result in application failures, a fault-tolerant application can

leverage the underlying reduced cost.

To accomplish this, we have to perform the following steps.

1. Create a node pool using spot instances.

gcloud beta container node-pools create POOL_NAME –spot

2. Use the same yaml as defined in the first example, in step

number 2, to create the deployment.

Using preemptible VMs

Preemptible VMs are very similar to Spot VMs, with just one

added condition: the preemptible virtual machines will work

for only 24 hours. It is very similar to Spot VMs, and as such,

using them in Kubernetes deployments is also similar.

As in the case of node affinity of spot VMs, this is a similar 2

step process (with an additional step), creating a cluster where

preemptible nodes can participate.

1. Create a cluster with preemptible nodes.

gcloud container clusters create CLUSTER_NAME –preemptible

2. This step is like node affinity example of spot VMs. There,

we created a node pool using spot instances. Here, we will

create node pool using preemptible instances.

gcloud container node-pools create POOL_NAME \

--cluster=CLUSTER_NAME \

--preemptible

3. Earlier, we mentioned cloud.google.com/gke-spot: “true” for

spot pods. Here you have to mention cloud.google.com/gke-

preemtible: “true”.

.

.

spec:

containers:

.

nodeSelector:

cloud.google.com/gke-preemptible: “true”

terminationGracePeriodSeconds: 25

The highlighted section instructs deployment to use Virtual

machines for which the key cloud.google.com/gke-preemptible is

set to true.

Cluster autoscaler

Till now, we looked into vertical scaling, Horizontal Pod scaling,

and Multidimensional scaling. All these scaling techniques

were scaling the infra consumption at the application level.

However, the overall cumulative infrastructure of the cluster

was constant. We can also configure our cluster to auto-scale

when the cumulative needs of all deployments in a cluster

request for a larger cluster size, when cluster is scaled up with

more virtual machines. Autopilot GKE cluster handles this

automatically using a concept called node auto-provisioning.

Cluster auto scaler works at the node pool level. Node pool is a

group of instances belonging to the managed instance group.

For reading more about managed instance groups, refer the

Chapter 5, Scaling Compute Engine. Cluster auto scaler adds

or deletes a VM in your node pool. It assesses that the pods

cannot get scheduled by periodically scanning the usage

across nodes. Thus, it tries to bring in more nodes to spin up

the pod.

Similarly, if there are many nodes with less usage, cluster auto

scaler tries to reschedule the pods spread across large

machines, to a smaller number of machines and then removes

the unused nodes. In the whole process of cluster autoscaling,

there are chances of the pods getting rescheduled from one

node to another, and this requires some time to delete a pod

first and then spin it again. This results in transient disruption

of the workload.

You can use multiple node pools in a Kubernetes cluster. If the

node pools have the same virtual machine as part of the

managed instance group, cluster auto scaler tries to scale up

in keeping the consumption of VMs across node pools similar.

This results in well spread-out cluster across multiple node

pools. If the node pool belongs to different regions, it means

that the cluster is well spread across the region too.

Scaling limits

We can define the maximum and minimum number of nodes in

a node pool. Cluster auto scaler will adhere to these

boundaries. Let us look at the process to create an autoscaling

cluster.

1. Create a cluster with autoscaling enabled.

gcloud container clusters create my-cluster --enable-

autoscaling \

--num-nodes 4 \

--min-nodes 1 --max-nodes 4 \

--zone us-central1-c

The preceding command creates a cluster of size 5. Node

autoscaling is enabled. Scaler can reduce the size of each

node pool to 1 and can expand each node pool to 5 nodes.

2. Another variation of the preceding command is as follows:

gcloud container clusters create my-cluster \

--num-nodes 3 \

--zone us-central1-a \

--node-locations us-central1-a,us-central1-b,us-central1-f \

--enable-autoscaling --min-nodes 1 --max-nodes 3

This command will spin up 3 nodes with each region (us-

central1-a, us-central1-b, us-central1-f) having at least

one node and a maximum of 3 nodes. The total maximum

size of the cluster is 9 nodes.

3. You can add another autoscaling node pool to your cluster.

gcloud container node-pools create my-node-pool \

--cluster my-cluster \

--enable-autoscaling \

--min-nodes 1 --max-nodes 2 \

--zone us-central1-c

4. You can disable auto scalar on cluster.

gcloud container clusters update my-cluster \

--no-enable-autoscaling \

--node-pool= my-node-pool \

--region= us-central1-c

Key considerations

In this section, you will investigate some key aspects to be

kept in mind which will enable effective auto-scaling in

Kubernetes. These services are independent of Kubernetes,

but Kubernetes’s way of handling workloads expects these

services to have a particular configured behaviour. A few

important considerations are as follows.

Node pool configurations

A node pool is a pool of nodes that have identical

configurations. Managed instances back node pools. Default

node pools will be used by all the deployments where you do

not mention a node pool.

Kubernetes does not restrict the number and type of

applications you can deploy; the nature of these applications

could be different, and so is the need for infrastructure. For

example, a few applications might need a specific node image

or local disk, or minimum CPU. Such situations can be many,

so it is advised to create a node pool by logically categorizing

your infrastructure needs. For example, you can defiantly start

with CPU-intensive and memory intensive pool for appropriate

applications.

For a specific node pool, you can use a concept called node

taints. When a workload is scheduled on the cluster, taints

help applications run on a particular node pool. The significant

advantage of using a node pool is controlled change and

infrastructure upgrades. You can update and manage a node

pool without affecting other node pools, and that gives a

phase-wise upgrade of the infrastructure used by the cluster.

Network policies for scale

When it comes to the way deployments in Kubernetes

interacts with the outside world, there are some best practices

to the egress and ingress roles. No service deployed in

Kubernetes should allow incoming traffic from external IP. It

should only allow the traffic from load balancer of ingress

attached. If this is not done, it could result into situations

where the scaling system is unable to contribute to processing

the workload. In addition to this, services should only accept

traffic on the protocol and port that is served by pods.

Kubernetes hosted services should only accept traffic from

services (pods) that consume them, either in the same

namespace or from another namespace. To write an ingress

policy from a pod in another namespace, we need add a label

to the namespace.

Load balancing

It is recommended to create a VPC-native GKE cluster.

Kubernetes, by default, utilizes static routes for the networking

of pods, which require the control pane to maintain the routes

to each node. However, this approach has obvious

infrastructural bottlenecks.

In GKE, you can create clusters in VPC-native mode, which

enables container-native load balancing that uses the NEG

data model. This implies connectivity between pods without

the overhead of maintaining routes, and hence no overhead of

route scaling, resulting in evenly distributed traffic among the

healthy backend endpoint groups.

Storage

When it comes to storage, cluster auto scaler has limitations

while using the local volumes. While upgrading or repairing a

cluster, compute engine instance nodes are deleted, which

also deletes all the data on the local SSDs. Local SSDs are not

cleaned up when a node is deleted due to scale down.

Additionally, when pods request for ephemeral storage, cluster

auto scaler does not support scaling up a node pool.

Conclusion

Container workloads are one of the most widely used strategy

to deploy business workloads. With enterprises moving to

cloud with pay-as-you-go model, it is important to have right

autoscaling strategies in place, to neither compromise with

SLA expectations, nor spend too much as cloud cost.

Kubernetes is a mature container orchestration platform with

all providers providing the managed flavour of it. Autoscaling

in Kubernetes has matured well to cater to current trends in

workloads. Be it Microservices workloads, Big data workloads,

AI/ML workloads or even monolithic workloads, Kubernetes has

been a preferred choice to host the workloads.

Points to remember

GCP provides managed version of Kubernetes known as

GKE.

GKE is the container orchestration platform, which

manages the complete lifecycle of a docker container.

Kubernetes expects all configurations to be YAML based,

and features like that of autoscaling, horizontal scaling,

vertical scaling and so on, could be configured just by

giving YAML configurations.

GKE offers features such as Spot VM and Preemptible VMs,

which could reduce the cost of your Kubernetes

deployments.

Questions

1. What are the main components of Kubernetes

architecture?

2. What is a pod in Kubernetes?

3. What are the different services within Kubernetes?

4. What is the Ingress network, and how does it work?

5. What is the difference between a replica set and a

replication controller?

CHAPTER 7

Scaling VMware Engine

Introduction

GCP VMware Engine is an outcome of collaboration between

GCP and VMware teams. This managed service enables

teams to run the VMware platform in GCP, thus making it

easier for enterprise customers to migrate their on-premise

workloads to the cloud. This offering provides operational

continuity, along with lowering infrastructural ownership.

Multiple VMware-specific models like on-demand

provisioning, pay-as-you-grow, and capacity optimization

exist.

VMware engine runs natively on GCP bare metal

infrastructure in GCP locations worldwide, with complete

integration with other GCP services. GCP manages the

entire infrastructure networking and other aspects, so that

customers can consume VMware securely and efficiently.

The offering includes vCenter, vSphere, vSAN, HCX, NSX-T,

and all the corresponding tools making it completely

compatible with your existing VMware tools. This

compatibility enables teams to manage workloads

seamlessly without disrupting the current security, data

protection, auditing, and networking policies.

Structure

In this chapter, we will discuss the following topics:

VMware Engine

Creating a private cloud

Configuring autoscaling policies

Storage capacity optimization policy

CPU performance optimization policy

Memory performance optimization policy

CPU and memory performance optimization policy

Objectives

After studying this chapter, you should be able to deploy

VMware workloads in the Google Cloud Platform and

understand the best practices around it. You will also

understand the scenarios of deployments, which will

eventually help you configure the right strategy for scaling

up and down for VMware.

VMware Engine

Enterprise applications are voluminous. Hence a big bang

migration of all services to any private cloud is impossible. It

is vital to have a mechanism to migrate applications piece

by piece to the cloud, without affecting the business

availability needs. VMware offering helps us achieve that, if

the on-premises VMware load. Consider Figure 7.1, which

represents the most standard architectural footprint of the

VMware engine:

Figure 7.1: VMware Engine

Follow the numerical labelling in the preceding figure with

the numerical explanation as follows.

1. Label 1 represents a typical VMware workload, running

in an on-premises environment.

2. VMware offering is available in GCP. GCP offers a one-to-

one mapping of components available in an on-

premises VMware tech stack and GCP-hosted VMware

stack.

3. On-premises and GCP workloads interact using the

cloud interconnect or VPN.

4. The VMware workload hosted on GCP has seamless

integration with other GCP-managed offerings.

Let us now look into how to create a sample VMware engine

application in GCP.

Creating a private cloud

To create a private cloud, follow the given steps:

1. Access the Google Cloud VMware Engine portal.

2. On the Resources page, click CREATE PRIVATE CLOUD. A

screen will open, similar to Figure 7.2:

Figure 7.2: Create VMware private cloud

3. Give a name to your cluster.

4. Select a location for your private cloud.

5. Select the class of machines.

6. Select the number of machines for the private cloud.

Generally, for production deployments, it is advised to

create private cluster of at least 3 nodes. VMware

Engine deletes private clouds that contain only 1 node

after 60 days.

Optional: You can customize the number of available

cores for each node.

7. Enter a CIDR range for the VMware management

network.

8. Enter a CIDR range for the HCX deployment network,

which is used for deploying HCX components.

NOTE: Make sure that the CIDR range does not

overlap with any of your on-premises or cloud

subnets. The CIDR range must be /27 or higher.

9. Select Review and Create.

10. Review the settings.

11. Click Create to launch provisioning the private cloud.

Private cloud creation can take anywhere between 30

minutes up to 2 hours. After the provisioning is complete,

you receive an email.

Configuring autoscaling policies

Autoscaling policies automatically scale up or down your

private cloud cluster. Autoscaling policies are based on

memory, CPU, and storage utilization thresholds. GCP

VMware monitors the workload based on metrics and

automatically adds and removes nodes from the cluster.

There is one restriction to VMware autoscaling: autoscaling

a private cluster with one VM is impossible.

You can only configure the pre-configured autoscaling

policies. There is no provisioning to create autoscaling on

custom metrics, as was the case with managed instance

group and Kubernetes. Moreover, the threshold must

withstand at least 30 minutes for the scaling action to start.

For example, if you configured to auto-scale when memory

goes above 70%, then a private cloud will only scale up if

the spike in memory remains above 70% for at least 30

minutes.

CPU and memory incremental values are generally not

interconnected. Hence, when the autoscaling is configured

for both, policies that define scale-up take OR of both

metrics, and while scaling down, AND of both metrics is

taken into consideration.

Table 7.1 features the pre-configured autoscaling policies

available:

Autoscaling policy Scale up\Add node Scale down\Remove

node

Storage capacity

optimization policy

Storage consumed >

75%

Storage consumed <

40%

CPU performance

optimization policy

CPU utilization > 70%

OR Storage consumed >

75%

CPU utilization < 45%

AND Storage consumed

< 40%

Memory performance

optimization policy

Memory utilization >

80% OR

Storage consumed >

75%

Memory utilization <

45% AND Storage

consumed < 40%

CPU and memory

performance

optimization policy

CPU utilization > 70%

OR Memory utilization >

80% OR Storage

consumed > 75%

CPU utilization < 45%

AND Memory utilization

< 45% AND Storage

consumed < 40%

Table 7.1: Autoscaling strategies for VMWare workloads

Autoscaling configuration does not allow you to change the

percentage value while configuring autoscaling. You can

however, mention the number of nodes. Figure 7.3 is a

snapshot of the autoscaling configuration screen of GCP UI

console:

Figure 7.3: Autoscaling VMware private cloud

Follow the numerical labelling in the preceding figure with

the numerically labelled explanation as follows.

1. This section represents the strategies described above.

2. Specify the number of nodes to add with each threshold

reached of scale up.

3. Specify the number of nodes to remove with each

threshold reached of scale down.

4. Cool off period is the period for which the VMware

engine will wait for a spike to normalize. If it does not,

then scaling up or down is triggered.

5. Node limits: Specify the minimum and maximum

number of nodes to be allowed for the private cluster.

Conclusion

Any enterprise that has VMware workloads in the on-prem

environment and is willing to migrate to GCP, can use the

VMware offering by the Google Cloud Platform. With

VMware, workloads can be migrated to GCP without any

changes to your application. Well-defined scale-up and down

strategies make VMware more usable from a cost

perspective.

In this chapter, we learnt how to Auto scale our VMware

workloads. We also looked into how we can create a private

VMware cloud and the different strategies which could be

used to auto scale infrastructure.

Points to remember

VMware Engine eases the migration of your on prem

VMware workloads to GCP.

There is not much configuration in autoscaling

configurations, as this platform is assumed to be like an

on-prem setup, and hence similar scaling capability as

that of an on prem application.

The VMware workload hosted on GCP has seamless

integration with other GCP-managed offerings.

Questions

1. You can define scaling based on custom metrics in

VMware Engine. True or False?

2. Can you change the threshold values of metrics (like

CPU usage) defined by VMware engine?

Answers

1. False. VMware do not allow you to scale on custom

metrics.

2. No, we can only use preconfigured values.

CHAPTER 8

Scaling App Engine

Introduction

Google App Engine is a serverless PaaS offering from GCP to

host web applications. Serverless implies that there is no

infrastructure on which the application is deployed when

there is no usage, and when the need arises, GCP keeps on

spinning new deployments for the applications. Currently,

Google App Engine is a mature platform to support

applications running on mobile or any web applications. You

are required to write business logic in one of the supported

languages (Go, PHP, Java, Python, Node.js, .NET and Ruby)

and configure the complete behaviour using the

configurations. GCP, in turn, takes care of creating and

assigning infrastructure, maintaining it, and scaling up and

down the applications.

There are some key advantages and disadvantages of using

App Engine. The major advantage of using this strategy to

write a Web app is the low number of configurations for

scaling up and down. Penalties could be that an application

deployed using App Engine is specific to run only on GCP.

Among multiple aspects of configuring and deploying

applications effectively on the App Engine, this chapter will

scratch strategies and ways to establish cost-effective

scaling applications on the App Engine.

Structure

In this chapter, we will discuss the following topics:

App Engine under the hood

Standard App Engine vs. Flex App Engine

Standard App Engine

Configuring basic scaling

Configuring manual scaling

Configuring autoscaling scaling

Flex App Engine

Configuring manual scaling

Configuring autoscaling scaling

Objectives

After studying this chapter, you will be able to handle the

scalability aspects of deployments on Google App Engine.

You will be able to select the best class of machines for your

applications, and define crucial scale-up and down

parameters for applications, by looking at current and future

ambitions of workload on applications. With the App Engine,

there is no server to maintain; you can simply deploy an

application, and you are all set for production-level aspects,

taken care of by the Google Cloud Platform.

App Engine automatically scales based on incoming traffic,

and aspects of applications like load balancing,

authorization, connection with databases, caching, traffic

splitting, logging, rollouts, and rollbacks, are natively

supported and easily configurable based on needs. There

are two modes of deployment – a standard environment and

a flexible environment. The two environments provide

developers with a lot of flexibility, with each type of

deployment having strengths and weaknesses based on the

nature of the applications. You will deep dive into standard

vs. flexible in the next section, but for now, let us start with

a simple Spring boot web application deployment in a

standard environment. The standard environment scales

down to zero instances under no load, and it automatically

scales up.

App Engine under the hood

App Engine uses Google managed environment. There are 4

key organization terms in App Engine applications, and they

are as follows:

Applications: It is an abstraction that represents all

your App Engine services. Each project has one

application. The idea behind such a notion is that a

project means an application/one use case. This

application acts as a container for your deployment of

business logic.

Services: Like microservices, you can define multiple

services in one App Engine application serving one

specific purpose.

Versions: These are point-in-time snapshots of

services. App Engine supports multiple versions of your

application at a time.

Instance: The App Engine uses the notion of instances

to define a chunk of infrastructure. A service is

deployed on an instance and scaling of service under

heavy load means increasing the number of instances

serving the service.

Consider the Figure 8.1, which demonstrates relationship

between the preceding components:

Figure 8.1: App Engine

In the preceding figure, there is just one App Engine

application (GAE APPLICATION 1), and it has multiple

services with multiple versions. Each version is running on

multiple instances.

Let us now try and understand the lifecycle of a user

request. Consider Figure 8.2:

Figure 8.2: User request cycle

In the preceding figure, a user submits processing requests

(1) to an App Engine service. These user requests are first

queued (2), and this happens for each version of service,

that is, a queue is maintained for each version of a service.

As per the completion of processing in the App Engine,

requests are pulled (3) and processed one by one. Once the

processing request is handed over to App Engine, the App

Engine can execute the processing via GCP managed

environment (4), known as a standard App Engine (or in the

user-managed environment, known as the Flex App Engine).

In this section, we will explore how to deploy a simple web

application using the Google App Engine. App Engine apps

are easy to create, easy to maintain, and easy to scale up

and down, based on traffic and storage needs.

Refer to the code base shared with this chapter; the code

base described is present in folder gae-standard-app. Perform

the steps noted as follows, to have your first Google

Standard App Engine up and running:

1. Take the code base and move to the folder gae-standard-

app.

2. Open pom.xml and update the GCP-PROJECT_ID variable with

your project id.

3. Run the following command:

mvn -DskipTests package appengine:deploy

An App Engine application with the name default will be

created. The version of the application can be modified

in the pom.

4. Trigger the command given as follows, to browse

through all the App Engine services:

gcloud app browse

This command will list all the App Engine services running in

your current project. The list also contains the base URL

which could be used to launch the web application.

Let us look more into App Engine specific constructs in the

code base. In the pom.xml file refer to the plugin section:

<build>

<plugins>

.

.

.

<plugin>

<groupId>com.google.cloud.tools</groupId>

<artifactId>appengine-maven-plugin</artifactId>

<version>2.2.0</version>

<configuration>

<version>1</version>

<projectId>GCP-PROJECT_ID</projectId>

</configuration>

</plugin>

</plugins>

</build>

The option mentioned in the deployment command (step 3)

appengine:deploy is part of the plugin app engine-maven-plugin.

This plugin deploys the application as an App Engine

service. There are a couple of important parameters passed

here:

version: This is the version of the web application. If you

want to support multiple versions of your web

application, make sure to increment this counter.

projectId: The parameter is the mention of the project id

where you want to deploy the web application.

Refer to the App Engine service descriptor file at

src/main/appengine/app.yaml. It has two properties mentioned:

runtime: It is configured as Java 11. This is the

specification for the runtime environment.

instance_class: Defines the type of machines where the

service will be deployed. The value F1(default machine

type) is specific to the machine type defined for Google

App Engine.

The location at src/main/appengine in java-based applications

holds special importance. This is the directory where you

can define all the custom configurations by default, related

to aspects of scaling, routing, and periodic (cron) tasks. In

the case of other runtimes, for example, Python, the

concept remains the same, that is, deploy your business

logic with a set of App Engine service descriptor files; the

way deployment command is triggered could be different. In

the case of Python, the following command works:

gcloud app deploy [CONFIGURATION_FILES]

Example: GCloud app deploy app.yaml dos.yaml index.yaml

Table 8.1 describes the various app descriptor files and their

purpose:

Descriptor file

name

Purpose

app.yaml Each service in your app has its own descriptor file.

You can define all the app’s setting in the app.yaml file.

It contains information like the runtime

(Java11,Python, and so on), as well as the class of

machines and the latest version identifier.

appengine-web.xml This file is needed when you are migrating an existing

App Engine service from Java 8 to Java 11. This file

specifies information about your app and helps to

differentiate between the static files (images) and

resource files within the app’s WAR file.

cron.yaml You can configure cron jobs, that is, jobs which run at

specified intervals automatically.

dispatch.yaml This configuration allows you to override the routing

rules. You can use this file to send a request to a

specific service, based on the path or hostname in the

URL.

web.xml This file is a description of how the URLs map to a

specific servlet. This is specific to java-based run

times. This file resides in app’s WAR under WEB-INF/

directory.

Table 8.1: App Engine descriptor files

In the preceding example, we looked into the GCP App

Engine standard environment. There is another environment

known as flexible App Engine environment. The primary

difference between both is that in flexible environment, the

IT teams have more control on the infrastructure. For

example, rather than adhering to standard infrastructure

provided by GCP, you can define a completely custom

infrastructure. You will get more details about the deltas in

both approaches in the next section. You can convert the

Hello World Servlet App Engine service that we deployed in

case of standard App Engine, into a flexible app

environment.

Refer to the code in the folder gae-flex app. When you will

compare the contents in two folders (gae-standard-app and

gae-flexible-app), there are only two changes in the file.

1. Changes to the pom.xml. These changes are forced

changes, as flexible environment only supports Java till

version 8. So, you will have to lower the maven artefact

version to support an older version of Java. Please note

that App Engine specific property version as well as the

Google project id remains as is.

2. Another change is the obvious one: modify the

descriptor file app.yaml. In the case of flexible App

Engine, you must define the flexible environment

specific properties, which give you more control on the

underlying infrastructure.

Apart from the preceding two changes, the rest remain

same. For example, you can deploy the application using

command:

mvn -DskipTests package appengine:deploy

Standard App Engine vs. flex App

Engine

App Engines services are best suited for web applications

(HTTP based) with microservices architecture, especially if

you have flavours for services that are good with standard

controls and need a few services with more control. Aspects

of networking and application scaling is managed by GCP. In

this section, you will investigate some critical differences in

both approaches. Studying these differences will help you

understand the need and to select the right App Engine

environment. Consider the following Table 8.2:

Standard App Engine Flexible App Engine

In standard App Engine, the service

(with a specific version) runs in

sandboxes in one of the languages

supported by the platform. You cannot

select a programming language that is

not supported by GCP.

Flexible app engine services deploy

docker containers on Google-

managed instances. You can use any

of the programming languages which

Docker supports. Since the number of

languages supported in Docker is way

ahead of the GCP standard

environment, a flexible app engine

service allows teams to make

technology selections freely.

If the service is expected to need

quick scale ups and downs, a standard

app engine will be more suitable.

If you have a workload where it is all

right for the services to scale up and

down gradually, a flexible app engine

would suit you more.

A standard environment is best suited

for optimally using infrastructure from

a cost perspective. Since the standard

environment scales up and down

quickly, the period of underutilized

and overutilized infrastructure is

minimal.

A flexible app engine takes time to

perform scale up and down. In case of

no load on a flexible environment, at

least one instance will always be up

and running, resulting in an ongoing

cost.

WebSocket and background threads

are not supported in the standard

environment.

On a flexible engine, both are

supported. A flexible app engine takes

more time to boot up.

Table 8.2: Standard App Engine vs flex App Engine

It is recommended to do a comparative study of such

features before opting for the correct type of environment.

Selecting the type of environment as soon as possible in the

development life cycle is beneficial. But if it is not possible,

always start with a standard environment, since that is the

GCP recommended approach, and many things get

managed out of the box. As soon as your team has enough

details to deploy an application in a flexible environment,

you can easily do that. As you can see in the previous

section, the business logic did not need a change. If the

basic software practices are followed, this change of

environment is only related to descriptor files.

Standard App Engine

In this and the section after, we will look into scaling aspects

of standard and flexible App Engine workloads. There are

three types of scaling supported in the standard

environment of the App Engine:

Manual scaling

In the case of manual scaling, the application keeps on

running the configured number of instances, even if

there are situations of underutilization or overutilization

of infrastructure. This implies a consistent cost even

when there is no system load.

Basic scaling

In the case of basic scaling, the number of instances is

added when the request made to service could not be

fulfilled by the current quantity of infrastructure. Scaling

down happens if the instance is kept idle for a

designated time. Since this is pre-emptive scaling, the

scaling up takes time. Hence, there are chances of your

request waiting for a certain time needed for adding

instances.

The App Engine waits for the instances to come up and

be ready to serve the requests. Until that time, user

requests are queued.

Automatic scaling

Autoscaling is a case of proactive scaling; the App

Engine scales up the environment when the thresholds

are about to be reached. Since an instance is added

before the actual need, it means a lower wait time for

requests. This is the default scaling configuration. When

you configure autoscaling, each instance maintains a

queue of incoming requests, and when this goes above

a certain threshold, the App Engine automatically starts

adding instances.

Before jumping onto the practical side of each of the

preceding strategy, let us have a look at the class of

instances supported by GCP for Standard App Engine

workloads. Table 8.3 describes the class of machines

available in Standard App Engine:

S.No Instance

Class

Memory

Limit

CPU

Limit

Supported Scaling

Types

1 F1 (default) 256 MB 600 MHz Automatic

2 F2 512 MB 1.2 GHz Automatic

3 F4 1024 MB 2.4 GHz Automatic

4 F4_1G 2048 MB 2.4 GHz Automatic

5 B1 256 MB 600 MHz manual, basic

6 B2 (default) 512 MB 1.2 GHz manual, basic

7 B4 1024 MB 2.4 GHz manual, basic

8 B4_1G 2048 MB 2.4 GHz manual, basic

9 B8 2048 MB 4.8 GHz manual, basic

Table 8.3: Machine options for standard App Engine

Manual and basic scaling share the instance class (S.no

5 to 9), whereas automatic scaling has its own separate

class (S.no 1 to 4).

The columns ‘Memory limit’ and ‘CPU limit’ define

the upper limit to one instance.

Selecting a suitable class of machine for your workload is

not straightforward. Doing multiple performance runs to

understand the best classes, would be the best course of

action. However, you can start with some educated

guesses. The following are a few scenarios and the selected

type of machines:

Applications with low memory and compute

requirements should go with F1 and B1 machines. The

idea is to scale a bare minimum infrastructure so that

the effective SLAs can be met without over-provisioning

to the best of our capabilities. However, in the case of

basic scaling, consider that each spin-up of an instance

takes time. You can compensate for that by being

aggressive while defining the scaling thresholds.

If your application is processing data, try and configure

an infrastructure that is just enough to complete one

request at a time. The strategy remains the same: to

have a bare minimum over-provisioned infrastructure.

If your application needs high compute power, and low

memory, select the F4/F2 and B8 classes of machines. It

depends on the situation, and any addition to

computing will result in memory added. Similarly, if you

have high memory requirements, select F4 and B8.

The following are the attributes which are utilized while

configuring scaling of standard App Engine.

Configuring max instances: This is the upper limit to

the number of instances you allow your application to

scale up to.

Selecting class of machines: This selection of various

classes of machines is supported by the Standard App

Engine environment.

Selecting metric: This is the metric whose value will

determine whether to scale up or down. For example,

one of App Engines’ most common and widely used

metrics is the average number of incoming requests.

Selecting threshold values: This gives a threshold

limit to the metric we defined. For example, scale up

when the average number of incoming requests goes

above 10.

Configuring basic scaling

You can configure basic scaling by adding the following code

fragment to your applications app.yaml.

basic_scaling:

max_instances: 11

idle_timeout: 10m

max_instances: Mandatory.

idle_timeout: Optional. The instance will be shut down

after this duration of time, after receiving its last

request. The default is 5 minutes (5m).

Refer to the gae-standard-basic-scaling folder and refer to

src/main/appengine/app.yaml.

Configuring manual scaling

Manual scaling can be configured by introducing the

following code fragment in the app.yaml file.

manual_scaling:

instances: 5

Instances is a mandatory property, and this could only be

applied if the class of machine is B1 or higher.

Refer to the gae-standard-manual-scaling folder and refer to

src/main/appengine/app.yaml.

Configuring autoscaling scaling

When you deploy an application in a standard App Engine

environment and do not mention anything related to

scaling, autoscaling is enabled by default with some default

behaviour. However, you can fine-tune that behaviour as per

the need of your application. You can enable autoscaling on

instances F1 or higher.

The code block as follows, when added to the app.yaml file,

enables custom autoscaling for your application:

automatic_scaling:

target_cpu_utilization: 0.65

min_instances: 5

max_instances: 100

min_pending_latency: 30ms

max_pending_latency: automatic

max_concurrent_requests: 50

Refer to the gae-standard-autoscaling folder in the code base.

Let us have a look at all the possible autoscaling options

available:

max_instances: This is an optional property ranging from 0

to 2147483647. A value of zero denotes disabling the

autoscaling property. You can configure the maximum

number of instances your application can spin up; a

proper configuration is suggested to reduce noisy

neighbourhood issues (one neighbour’s noise affecting

others) among applications. If you do not configure this

value, one of your applications can spin up many

instances, inversely affecting other applications.

min_instances: This is an optional property, and you can

specify a value in the range 0 to 1000. This property

signifies the number of instances the App Engine can

scale down to, with a reduced load.

max_idle_instances: This is an optional property with a

value from 0 to 1000. This property defines the

maximum number of idle instances which can be

running for an application at any given point in time.

A high value will allow more instances to run even if the

load does not need it. Whenever there is a sudden spike

in load, these already running idle instances are used to

perform the processing. This results in a reduced impact

of time taken by instances to heat up to serve

meaningfully. However, a high value means a higher

cost as well. A low value means more optimized for

price, reducing the instances when the usage goes

down. If there is a big spike in load again, many idle

instances could get consumed, resulting in some load

waiting for more instances to come up.

min_idle_instances: The App Engine calculates the

minimum number of instances by analyzing properties

like target_cpu_utlization and

target_throughput_utlization, and creates an extra

number of defined instances on top of it. You will be

charged for these many instances even if no workload

runs on them. If you set a minimum number of idle

instances, pending latency will affect your application’s

performance less.

target_cpu_utilization: This is an optional property, and

you can set a value in the range of 0.5 to 0.95. If not

mentioned, the default value of .65 is applied by the

Standard App Engine environment. A value of .7 means

that when the average CPU utilization goes above 70%,

new instances will be added, and traffic will be diverted

to new instances. A high value for this parameter

means laid-back scaling, resulting in lower performance

and lower cost. A low value means more aggressive

scaling, better performance, and high costs.

target_throughput_utilization : This is an optional

property and can accept a value between 0.5 to 0.95. If

not mentioned explicitly, the App Engine configures this

property to be .65. This property works in unison with

another property, max_concurrent_requests (described

next), and the App Engine environment intends to add

more infrastructure when the max_concurrent_requests

multiple by target_throughput_utilization exceeds the

value defined here.

max_concurrent_requests: This is the number of concurrent

requests the instances can handle, and any value above

the value range will result in the scaling up of

infrastructure. You can define a value in the range of 10

to 80. This property is used with

target_throughput_utilization, and when the number of

concurrent requests reaches a value equal to

max_concurrent_requests times

target_throughput_utilization, the scheduler tries to start

a new instance.

It is recommended not to use a value below ten unless

you intend to run a single-thread application. If the

value is configured to be too high, an increased API

latency might be witnessed.

max_pending_latency: This is the maximum amount of time

a request is submitted to the App Engine queue for

processing. When a request is submitted to the App

Engine, it is added to a queue. By default, the App

Engine configures it to be 10 seconds, that is, if the

processing of the request does not start in 10 seconds,

the instance will be added. A higher value means a

request will be allowed for a longer time in the queue. A

lower value means aggressive scaling and will have

obvious cost implications.

min_pending_latency: This is the minimum time a request

is definitely going to spend in the App Engine queue.

The default value is 500 ms.

A request submitted for processing will wait in queue for

at least the time configured in min_pending_latency and a

maximum of time configured by max_pending_latency. The

delta between these two values will be the time, which

will give the App Engine a chance to start processing a

request on the existing infrastructure. If it is unable to

get a slot after the max_pending_latency is achieved, a

new instance will be created, and processing will be

triggered. If your application uses automatic scaling, it

will take approximately 15 minutes of idle time, for

instances to start decommissioning them. To ensure you

have at least one instance always up and running, set

the property min_idle_instances to equal one.

Flex App Engine

As discussed earlier in the chapter, Flexible App Engine

provides more control to the engineering team to decide

upon the type of infrastructure they want to use. You can

add the following fragment in your app.yaml to override the

default resource behaviour of flex app environment:

resources:

cpu: 2

memory_gb: 2.3

disk_size_gb: 10

volumes:

- name: ramdisk1

volume_type: tmpfs

size_gb: 0.5

Refer to Table 8.4 which describes the meaning of the key

value pairs defined in the preceding yaml configuration code

fragment. To see this in action, refer to the <path name>:

Configuratio

n

Description Default

Cpu Using this property, you can configure the

number of cores. It must be one, an even

number between 2 and 32, or a multiple of 4

between 32 and 80.

1

memory_gb RAM in GB. Use the formula:

memory_gb = cpu * [1.0 - 6.5] - 0.4

.6 GB

to calculate the right value. Some space of

RAM is used in housekeeping processes.

disk_size_gb Size in GB. The minimum is 10 GB, and the

maximum is 10240 GB.

13 GB

Volumes This complex object property defines value for

the volumes attached to the Flex App Engine

instances.

NA

Table 8.4: Configuration for flex app

As it was the case with Standard Application, flex

application also supported two flavours of scaling.

Configuring manual scaling

You can update your flexible App Engine deployment with

increased number of instances as and when the need arises.

Flexible App Engine will make sure that the configured

number of instances runs even if when they are not needed.

Also, in case more instances are needed under high load,

the number of instances will not increase.

The yaml configuration fragment added as follows, can be

added to the app.yaml to enable manual scaling.

manual_scaling:

instances: 4

The preceding configuration will update the number of

running instances to 4.

Configuring autoscaling

Flex App Engine are docker images running on managed

instances, and so one will observe similarity in the way

autoscaling configuration is done.

Let us first look at the configuration options. We need to

define the following configuration options:

Number of instances: We need to define the

maximum and minimum number of instances that we

want our flex app to run on. The minimum instance

should be at least equal to one, but it is recommended

to use at least two. Like other autoscaling

configurations, you can also set the maximum number

of instances. By default, Flex services are limited to 20

instances, but you can increase or decrease that limit.

Selecting class of machines: You have already seen

how to configure infrastructure associated with an

instance of flex App Engine. It is always recommended

to create small machines, as scaling up and down

happens by instance types; even a small scaling will

add a large quantity of infra and vice versa, if our

instances are big. However, if your App Engine is

processing huge amount of data, set this value to be in

accordance with business SLAs.

Selecting metric: This is a property which specifies

the scaling metric. You had already seen multiple

examples, in case of Flex app two such metrics are

supported:

target_concurrent_requests: When this value is

specified, Flex environment calculates the total

number of requests divided by the current running

instances. If this value is greater than configured

value, an instance is added.

target__cpu_utilization: When this value is

configured, Flex environment calculates the

average CPU utilization across all instances and

checks if the average is greater than configured

value. If so, instance is added.

Selecting threshold values: Set the value for the

preceding two metrics.

The following is the code fragment which can be added to

the app.yaml to enable autoscaling for flex app service.

automatic_scaling:

min_num_instances: 1

max_num_instances: 4

cool_down_period_sec: 150

cpu_utilization:

target_utilization: 0.6

Refer to app.yaml file in folder gae-flex-autoscaling-

scaling\src\main\appengine for using the preceding definition.

Conclusion

Google App Engine is one of the most widely used PaaS

offerings from the Google Cloud Platform. Standard app

environment is the one that multiple enterprises especially

use for their production workloads because of its powerful

and cost-effective scaling. Since the GCP team manages

this, engineers are expected to write and follow the

guidelines. Google Cloud Platform also supports a Flex

environment, where a lot more control lies with engineering

teams.

Both versions of App Engine support manual and

autoscaling. Configuring the Flex App Engine also increases

efforts. All configurations are YAML based and can easily be

implemented. It is always recommended to run performance

tests to identify or fine-tune your scaling configurations.

Points to remember

Standard App Engine GCP is one of the most widely

used PaaS offering. Every cloud provider has such an

offering.

App Engine is the most advertised way to build

microservices on GCP because App Engines are

serverless, and it results in high throughput with low

costs.

App Engine has a very mature and robust yaml based

configuration to define autoscaling.

Offering like App Engine is the easiest to build for

scalability, but since App Engine is not supported by

any other cloud platforms, App Engine is not best suited

for a business or user workflow which we intend to

deploy across multiple cloud providers.

Questions

1. App Engine is only suitable for short lived request

response applications. True or False?

2. By default, scaling in Flex App Engine is set to

autoscaling. True or False?

3. You can only write, and scale applications deployed in

languages supported by Standard App Engine. True or

False?

4. Can App Engine scale across multiple regions?

Answers

1. False. There is no such limit. There are use cases in

market where long running jobs have been hosted via

App Engine.

2. False. By default, autoscaling is not present in Flex App

Engine.

3. False. In this case, you can use Flex App Engine and

define your own scale up and down configurations.

4. No, App Engine is regional. Apps are located within one

region and GCP manages App Engine application

availability redundantly across all zones in a region.

CHAPTER 9

Scaling Google Cloud Function

and Cloud Run

Introduction

In the previous chapter, we explored the App Engine – one of

the PaaS offerings from Google. In the earlier chapters, we

investigated scaling Kubernetes and computing VMs. While

Kubernetes and compute VMs are not serverless, the App

Engine was, up to a specific limit. This chapter will explore how

to use the extreme serverless offerings from Google Cloud

Platform – Cloud Runs and cloud functions.

Serverless architecture does not have any infra component

running when there is no load on the system. The nitty-gritty

of creating, hosting, and managing infrastructure is taken

further away from the engineering teams, that is, their role in

making infrastructure-related choices is further diminished.

Engineering teams can configure high-level configuration

properties related to the maximum and the minimum number

of instances and memory allocation for each instance. The rest

of the things are taken care of by the platform. As we become

more serverless, there is an obvious advantage of reduced

costs, but the control of applications is also moving away from

engineering teams.

Thus, the more serverless we go, the stricter is the

expectation of building the software as per guidelines. This can

be a significant concern when avoiding vendor locking or

supporting hybrid or multi-cloud deployments.

Structure

In this chapter, we will discuss the following topics:

Cloud Run

Nature of workloads

Infrastructural footprint

Autoscaling Container Instances

▪ Configuring CPU Allocation

▪ Configuring maximum concurrency

▪ Configuring minimum and maximum Container

Instances

Cloud functions

Nature of work loads

Configuring memory

Configuring maximum and minimum instances

Addressing traffic spikes above max limits

Objectives

After studying this chapter, you will be able to understand the

key areas where cloud functions and runs are used, which will

then help you understand the scaling needs. We will look into

the infrastructure under the hood for hosting a Cloud Run and

a cloud function, and will eventually look into the various

strategies of scaling up and down the infrastructure, based on

the need for applications.

Cloud Run

Cloud Run is a Google-managed platform to run your

containers. GCP will scale up and down your infrastructure

based on configurations. Since it primarily allows for running

containers, it brings with it the flexibility of containers, that is,

tools and technologies running inside containers. If you look

back to previous chapters, we had already discussed two other

ways of hosting containers – one via Kubernetes engine and

two via the App Engine flex environment. The selection of the

right hosting environment depends on the amount of control

you want over the infrastructure. For example, if you are going

to control networking and storage, want to set up

observability, and support stateful applications, then GKE is

the way forward. However, if such a level of flexibility and

monitoring is not needed, a Cloud Run could be used.

Cloud Run is built from Knative, and it lets you choose to run

your containers either in fully managed Cloud Run

environment or on GKE cluster with Cloud Run on GKE.

Let us quickly look at deploying a Docker-based service on

Google Cloud Run. Refer to the docker image “hello-java”

created in Chapter 6, Scaling Kubernetes. This image is

already present in the container registry. In that chapter, we

deployed the application on the GKE cluster. Here we will

deploy that in a Cloud Run.

The following command is to be executed from Google Cloud

SDK or cloud shell:

gcloud run deploy hello-java --image gcr.io/<project-id>/hello-

java:v1

Here, <project-id> is the Google Cloud Platform project id. This

will deploy the same image used in the earlier chapter, as a

microservice in Cloud Run.

Nature of workloads

Cloud Run is fully managed and is considered ideal for

stateless container-based microservices that do not need

features like colocation in pods (side cars) or node allocation

and management. The microservices deployed are HTTP

driven, and you ensure that Cloud Run handles infra,

networking, scaling, provisioning, and managing servers out of

the box.

The key features of Cloud Run are as follows:

Effortless deployments: A container-based application

could be easily deployed by triggering just a command.

Simplified developer experience: All deployments are

docker based; there is no other way of deploying

workloads on Cloud Run.

Scalable: A deployment in Cloud Run scales

automatically based on the number of incoming requests.

Flexible: All the tool and technology selection flexibility

supported by docker, are by default, supported by Cloud

Run as well.

Cloud Run scales up and down the deployment within seconds;

hence the cost of deploying workloads is optimal. There are

two flavours of workloads in Cloud Run - services and job.

Cloud Run Services is used to run code that responds to web

requests or events. For example, you can have a microservice

which takes as input a Word file and converts that to PDF.

Triggers for a Cloud Run services are Events and HTTP

requests. Since Cloud Run is serverless, it is a fair expectation

to have an auto scalable infrastructure for the microservices.

Cloud Run job is used to run code that performs work, and

quits when the work is done, unattended batch jobs. For

example, database migration and daily report generation.

Trigger from Cloud Run job could be a command from

command line or cloud scheduler. The concept of scaling

remains similar for both. We will use services throughout this

chapter to demonstrate scaling in Cloud Run. Any application

that can run in a Linux container and does not save data on a

disk, can be handled by Cloud Run.

One might argue that a conversion of Word file to PDF could

also be created as a job, or vice versa and that report

generation could be exposed as a service. However, the time

of execution is the deciding factor.

If your process can finish in seconds and respond back to the

user, create a service on Cloud Run services and if it takes

minutes to complete a work, create Cloud Run jobs. However,

there is a flip side as well. A cloud-run job can run up to a

maximum of 60 mins. So, if some use case wants to run a job

that runs more than 60 minutes, it can either look for options

to split it into two or more, or may go ahead and choose

options like Kubernetes for deployment.

Infrastructural footprint

In this section, we will see the infrastructural mapping of a

service deployed in Cloud Run. Consider Figure 9.1 that

represents a Cloud Run service. There could be a Cloud Run

job as well, but it is very similar in terms of infrastructure.

Please refer to the following figure:

Figure 9.1: Cloud Run infrastructural footprints

Refer to the numerical labelling in Figure 9.1 with the

corresponding numerical explanations as follows:

1. User submits a request for processing.

2. A service name “SERVICE A” is deployed. Current active

version is 3 (revision).

3. It represents the fact that SERVICE A has been redeployed

third time and previous 2 revisions have no infrastructural

representation left now.

4. SERVICE A Revision 3 is the current revision and is running

on 3 instances of Cloud Run containers. These containers

can be hosted in three possible ways: GCP managed Cloud

Run, Cloud Run on GKE, and Cloud Run on Anthos.

Autoscaling Container Instances

In Cloud Run, service deployment is automatically scaled

(scaled up) to handle all the incoming requests. When a

service does not receive traffic, the number of instances is

scaled down and is scaled to zero. However, if needed, you

can modify this setting to keep the service ready to serve the

load and cut down on Google Cloud Function (GCF) cold

boot time. Cold boot time is the time taken by new instances

to spin up. Even if you configure the minimum instance value,

there is always going to be a requirement of scaling up, which

makes it important to have lower stat up time for containers.

A major contributor to high start up time in case of Google

Cloud Function instances are dependencies of the code. Lower

the number of dependencies and lower is the linking

requirement of dependencies, the better will be the start time.

Moreover, if your code is using new dependencies all the time,

those dependencies must be first brought to GCF cache. On

the other side, if you can ensure that the application uses the

same version of dependencies all the time, it is highly likely

that you will get the version in the dependency cache of GCF.

A container remains active for 15 minutes without work. If no

work is allocated, the container is deleted. A deletion might

not happen only when the minimum number of instances is

specified, and the current number of containers is already at a

minimum.

Configuring CPU allocation

The number of instances running in cloud deployment depends

on the CPU utilization of existing instances when processing

requests. The target is to keep scheduled instances to a 60%

CPU utilization.

By default, the CPU is allocated to Cloud Run instances during

the request processing, container start up, and container shut

down. You can modify this behaviour and allocate dedicated

CPU slots for your deployments. This means that even when

no requests are coming, CPU is allocated. Allocating the CPU is

useful for applications that have short live background tasks

and other asynchronous tasks.

Choosing the option to have the CPU allocated all the time is

costlier than the other option of allocating the CPU when the

request processing is needed. However, the latter has obvious

initial warm-up delays. These delays could be reduced by

carefully cutting down the mention of unused dependencies at

the start, and by enabling lazy loading of modules wherever

possible. If you choose to allocate CPU per request, you will be

charged per request, that is, you will not incur any cost when

no processing is happening. However, if you allocate CPU,

there will be consistent costs incurred.

The following command configures the CPU to be allocated for

a service:

gcloud run services update SERVICE--no-cpu-throttling

To set CPU allocation only during request processing, use the

following command:

gcloud run services update SERVICE--cpu-throttling

SERVICE is the service for which we want or de-allocate the

CPU.

Configuring maximum concurrency

A single instance of Cloud Run container can serve up to 80

requests at the same time. You can increase this up to 1000.

Although it is recommended to use the default value, we can

modify it to fit our use case. For example, if your application

cannot process the parallel request, you can set the

concurrency to be equal to 1. Consider the following Figure

9.2, which showcases 2 scenarios of handling 2 user request,

one with concurrency as 1 and other with concurrency as 2:

Figure 9.2: Concurrency of cloud function

This number is just the maximum limit to the number of

requests a single instance can handle. If during the actual

execution, the CPU utilization became high and the maximum

number of requests has still not been reached, the Cloud Run

will not instantiate requests on the over-utilized instance.

You can use the following command to update the number of

Max concurrent requests:

gcloud run services update <SERVICE-NAME>--concurrency

<CONCURRENCY>

SERVICE-NAME with the name of your service.

CONCURRENCY with the maximum number of concurrent

requests per container instance.

Configuring minimum and maximum Container

Instances

You can configure the maximum and minimum limit to the

Cloud Run service deployment. When you specify maximum

run, it is just a limit, and by no means a guarantee that Cloud

Run will be able to spin up a configured number of max

instances. It depends on other factors such as quota and how

other applications behave. It is important to have the right

quota configured, which can handle current load as well as

future loads.

However, features like retries in job and setting optimized

parallelism value comes to rescue to handle such edge cases.

There is also concept of affinity available, which enables a

similar request to get handled, by the same container

speeding up the process, which will then help speed up the

execution time.

A minimum number of instances is a guarantee by Cloud Run,

that these many instances will always be running at any given

time.

The following is the command to configure the maximum and

the minimum number of instances:

gcloud run services update SERVICE--max-instances MAX-VALUE

gcloud run services update SERVICE--min-instances MIN-VALUE

SERVICE is the name of the service deployed on Cloud Run,

for which we intend to modify the maximum and minimum

number of instances.

MAX-VALUE is the maximum number of instances a Cloud

Run service can scale up to.

MIN-VALUE is the minimum number of instances a Cloud Run

service will shrink to under no load.

Cloud Functions

Cloud Functions are scalable Function as A Service (FaaS)

offering from GCP. Cloud function allows you to follow the pay-

as-you-go model, that is, pay only for the number of times you

or your activities resulted in the execution of the function. This

is a serverless execution environment for building and

connecting services. Users write single-purpose functions

attached to events emitted from cloud infrastructure or

services using cloud functions. For example, you can write a

function to process a file, the moment it is uploaded to a

Google Cloud Storage (GCS) bucket.

Nature of workloads

Cloud functions run in a fully managed, serverless

environment where the complete ownership of infrastructure,

networking, scaling, and security are taken care of by GCP.

Each function runs in its separate environment and has no way

to interact with other functions. The flexibility of using

languages in case of Cloud Run is not available with Cloud

functions, and you must write your function in GCP supported

languages. A few prominent ones are Java 11, Python 3.7,

Ruby 2.7, and so on.

Cloud functions are of two types:

HTTP functions: HTTP functions are Cloud Functions that

accept HTTP requests, perform processing, and revert with

a response. These functions support all the request

methods like GET, PUT, POST, DELETE, and OPTIONs.

Functions are securely invoked via an auto-generated TLS

certificate.

Event driven functions: These functions listen to

events, and when an event occurs, functions are

triggered. Examples of events could be – new messages in

the pub-sub or a new file uploaded to the storage bucket.

This could be further subdivided into two categories –

Background functions (functions written in Node.js,

Python, Go and Java) and Cloud Event (functions written in

.Net)

Let us have a quick look at how we can create a function.

Follow the given steps:

1. Refer to the code repo scaling_cloud_function attached with

the chapter. This repo contains just one simple hello world

function. Perform the following steps to deploy the hello

world code as a function. Navigate to the directory where

you have the main.py file.

cd scaling_cloud_function

2. Trigger the following command:

gcloud functions deploy hello_world --runtime python310 --

trigger-http --allow-unauthenticated

3. After successful deployment of cloud function, the output

will be as shown in Figure 9.3:

Figure 9.3: Output after successful deployment of cloud function

4. Use the URL mentioned to trigger the function.

The critical point to note in the preceding cloud function

sample deployment is that we only mentioned the business

logic and did not mention anything related to infrastructure.

Until now, you would have started realizing that the complete

infrastructure is abstracted away from the developers, and

engineering teams have no control over the infrastructure.

However, you can configure cloud functions-built

configurations to control the behaviour. GCP will read these

configurations and will enable infrastructure accordingly.

Configuring memory

By default, a memory of 256 MB is allotted to each function.

However, you can modify it as per the need of your

application. The amount of memory you allocate corresponds

to an amount of CPU allocated for your function. Consider

Table 9.1 for the memory and CPU correlation details:

Memory CPU

128MB .083 vCPU

256MB .167 vCPU

512MB .333 vCPU

1024MB .583 vCPU

2048MB 1 vCPU

4096MB 2 vCPU

8192MB 2 vCPU

Table 9.1: Memory - CPU ratio

The command to configure the memory for cloud function is as

follows:

gcloud functions deploy FUNCTION --memory=MEMORY_SPEC

In the preceding command, FUNCTION is the name of the

function (hello-world in our preceding example), and MEMORY_SPEC

is one of the values in the first column of Table 9.1.

Configuring maximum and minimum

instances

You can configure the maximum and the minimum number of

Cloud function instances you want the platform to run. Cloud

function scales up by creating more instances of cloud

functions, and each can execute one request at a time. A

sudden spike in load might result in hundreds of cloud

functions.

Scaling up is mostly beneficial. However, there could be a few

situations where you will want to restrict the number of cloud

functions running. For example, if your cloud function interacts

with databases, letting a high number of cloud functions can

create issues.

Refer to the following command to simultaneously configure

the maximum allowed number of cloud functions.

gcloud functions deploy FUNCTION--max-instances

MAX_INSTANCE_LIMIT

Here, FUNCTION is the function’s name, and MAX_INSTANCE_LIMIT is

the value of the maximum allowed number of cloud function

instances running at a time.

You can delete the max instance configuration by using the

following command:

gcloud functions deploy FUNCTION--clear-max-instances

You can set the minimum number of running cloud function

instances under zero load. Even if there is no load, the

minimum configured number of cloud functions will continue

to run. This is done to reduce latencies in serving the

upcoming requests. A minimum value of zero will result in the

cloud function getting launched, and then serving the request.

The launch time can also be reduced. This is beneficial in the

case where the frequency of cloud function execution is high.

The following command sets the minimum number of Cloud

function instances:

gcloud functions deploy FUNCTION--min-instances

MIN_INSTANCE_LIMIT

You can also delete this configuration by using the following

command:

gcloud functions deploy FUNCTION_NAME--clear-min-instances

Here, FUNCTION is the function’s name, and MIN_INSTANCE_LIMIT is

the minimum number of instances value.

Addressing traffic spikes above max

limits

It is recommended to set the maximum number of cloud

function limits. Otherwise, a cloud function can scale up to

very high numbers. If your cloud function is interacting with a

nonscaling component (databases connections), the system

could not work as expected and will be limited by the

nonscaling piece or can even choke in the worst case.

Mostly, when the number of requests increases, the number of

cloud function instances are added to cater to it. However, if

the maximum number of instance limit is set, you can witness

a scenario where there are insufficient instances to cater to

incoming load. In this scenario, the cloud function tries to

serve a new inbound request for up to 30 seconds:

If an instance is free in the meanwhile, processing of a

new request will start.

If no instance is free, the request will fail.

In some cases, especially with sudden traffic spikes, the

number of cloud functions can go above the maximum

configured value, and if your use case cannot tolerate this,

configure the max value to be lower than the maximum your

use case can tolerate.

Conclusion

Google Cloud Run and cloud functions are two offerings from

GCP that belong to the serverless category. Cloud Run allows

you to deploy docker containers without worrying about

networking, security, and scale infrastructure requirements.

On the other hand, Cloud Functions allow users to write single-

purpose functions attached to events emitted from cloud

infrastructure or services.

These two serverless options are cost-optimized, that is, you

only pay for how much you use. However, such ideal

conditions of complete serverless, come with known issues of

some latencies at the start of processing requests. The

underlying infrastructure is wholly abstracted from the user

and hence, the user can only configure some allowed

properties for the infrastructure to behave in a specific

manner. Cloud Run and cloud functions are propriety GCP

products, and any workload hosted on them might need

substantial work if you intend to deploy them to other cloud

providers.

Points to remember

Cloud Run and cloud functions are serverless propriety

offerings from GCP.

You can package an application as a docker container and

deploy it on Cloud Run with just one command, without

really bothering about the underlying infrastructure. You

do not need to worry about scalability and day-to-day

management of infrastructure.

You can write single-purpose functions attached to events

emitted from cloud infrastructure or services, and deploy

them as cloud functions, as was the case with Cloud Run.

There is no need to worry about scaling and maintaining

infrastructure.

As a user, you have minimal options to tweak the

infrastructure per your need. You can only mention some

properties to configure the behaviour, but essential

maintenance lies with GCP.

Questions

1. You want to migrate an application written in C++ to GCP,

and want to use one of the serverless offerings from GCP.

It is accepted to have some latencies at the start of each

process. What technology option will you suggest?

2. You have wanted to write an ingestion utility and for that

you are uploading files to GCS. There is a requirement to

check the format of each file the moment they are

uploaded. Format check has checks like schema checks

and mandatory column checks. What will you suggest

using – Cloud Run or cloud functions?

3. You have a data processing user journey, which runs for

approximately 2 hours. You want to host the preceding

user journey using Cloud Run. What will be your key

concern areas?

CHAPTER 10

Configuring Bigtable for

Scale

Introduction

Google Cloud offers multiple managed databases. GCP

offers Cloud SQL and Spanner as relational databases, Cloud

Datastore as a document database, and Bigtable as a

columnar database. Each of these different types of

database solutions is optimized for handling certain kinds of

use cases. Bigtable is used to manage large-scale structured

data. It expects data to be modelled as key-value pairs, and

Bigtable internally maintains a sorted partitioned map of

these key-value pairs.

The Bigtable is a managed version of Apache HBase (an

open sources columnar database), with some minor

differences. HBase is a column-oriented non-relational

database management system that runs on top of the

Hadoop Distributed File System (HDFS). One of the

primary initial uses of Bigtable at Google was to store a web

search index, and it has gone on to become one of the

leading technologies, backing other systems such as Cloud

Datastore and megastore.

In this chapter, we will see more details on which kind of use

cases could be handled, and that will help us appreciate

why scaling is exceptionally critical, especially for Bigtable

as a database solution.

Structure

In this chapter, we will discuss the following topics:

Nature of date and its handling

Bigtable infrastructural footprint

Scaling Bigtable options

Autoscaling

▪ When to Autoscale

▪ Autoscaling triggers

Manual node allocation

Programmatically Autoscaling

Limitations of Autoscaling

Objectives

After studying this chapter, you will be able to understand

the need and ways to scale up and down the GCP Bigtable

infrastructure. We will not only investigate the infrastructure

scaling, but will also get insights into a few aspects of the

obstacles that come up while scaling up, and learn how to

resolve them. The reader will also gain insights into the

limitations of autoscaling.

Nature of data and its handling

The first use case for why Google started using Bigtable was

for the handling of web search indexes. Web search indexes

are always supposed to be on, and the data query must be

extremely fast. To solve the said requirements, Bigtable

compromises on a few of the commonly used features of

modern databases. The key here is the performance of

queries over large datasets and infrastructure, which can

scale up to store massive data. The properties of data that

Bigtable handles are as follows.

Voluminous datasets

Datasets handled, for example, web search index data, are

expected to be of the order of petabytes. Such a large

volume of data requires multiple machines to store it, and

data is distributed across them, since just one machine

cannot hold all. When you have such a large number of

machines handling the data, the machines must use

commodity hardware. High-end machines will be difficult to

procure, and even if procurement is not an issue, high-end

machines have very high costs. It is essential to have

multiple copies of data shared across multiple machines.

This is because if the server fails, a portion of the data will

become unavailable.

High throughput

Storing a massive volume of data is one thing, but the real

business value will be compromised if you cannot query

them fast enough. Each query needs to return the result

quickly (in milliseconds), no matter how much data resides

in the system.

Fast writes

Irrespective of the already existing data and the number of

read queries, a use case of a web search index also requires

fast writes. Although the SLA requirements for these write

requests are not as high as read/search queries, it could not

be too long, as it will result in piling up of write requests.

Also, a single write request might take time, but the average

time taken by a write request is over a period matter.

Versioning changes

Data stored is expected to change rapidly over time,

bringing in the obvious requirement of storing and retrieving

the older data states without affecting the performance.

This could be handled by including a timestamp in the key.

However, a data store handling such aspects makes the

database client reading versioned data simple and light.

Strong consistency

By strong consistency, it is meant that anyone querying the

datastore will never see stale data. If the state of the same

data retrieved by two queries is different, it could potentially

lead to errors in your results.

Atomic writes

No two clients can modify the same data at a single point in

time. If allowed, it could lead to dirty read issues, and hence

the updates can result in inconsistencies in data.

Selection of data

With the way queries are constructed, it is highly likely that

the query will need specific columns or a collection of

columns of a row. In the world of columnar databases, it is

achieved by creating the column families of columns that

are expected to be retrieved together.

Examples of real-world datasets for which people around the

world had used Bigtable are as follows:

Time-series data, such as storage and compute stats

across multiple servers in a use case.

Marketing data, such as data related to customer

affinity for product.

Financial data, stock market data and transaction

data.

Internet of Things data, data related to various

sensors.

In the next section, you will see how Bigtable handles the

preceding needs and the nature of the data. The complete

data modelling is out of the scope of this book. However, a

basic understanding will help you understand the aspects of

scaling.

Bigtable infrastructural footprint

Before analysing the architecture of Bigtable, it is crucial to

understand the storage model of Bigtable.

Bigtable stores data as massive sorted partitioned maps,

served via multiple nodes. The map’s key represents the

query parameters, and the value represents the value of the

outcome of queried data. Consider Figure 10.1:

Figure 10.1: Columnar data model

Figure 10.1 features a table comprised of multiple rows (1)

and multiple columns (Column 1, Column 2, Column 3,

Column 4 and Column 5) like a Relational Database

Management System (RDBMS). Each row is identified by

a row key (1), like the primary key in RDBMS. But dissimilar

to RDBMS, columns related to each other are grouped as

column families (2). A single column can be used in multiple

column families. For example, Column 1 has been used in

both the column family.

A row and column intersection cell can have multiple values.

Each value is categorized by a timestamp (3).

With the preceding fundamental understanding of the data

model, it is time to dive deep into the architecture of

Bigtable. As stated before, Bigtable is a managed version of

Apache HBase. The architecture looks like HBase, but GCP

manages it slightly differently. These differences are

primarily in the components used; for example, HBase uses

Hadoop file system (HDFS), whereas Google Bigtable

uses Colossus, a Google-managed files system. Similarly,

there are a few other differences that add value to Google

Bigtable when compared to traditional HBase deployment.

The advantages of Bigtable over HBase are as follows:

Highly scalable: It is challenging to scale HBase beyond a

certain point; however, in Bigtable, the capacity increases

linearly by adding nodes without restrictions.

Simplified administration: HBase does need a lot of

administrative tasks, for which sometimes even downtime

happens. With Bigtable, those admin tasks get simplified.

Resizing without downtime: It was impossible to add

nodes without downtime, as new nodes needed

repartitioning to be triggered again, and the HBase cluster

was not available during that time. However, there are no

such constraints when it comes to Bigtable.

Consider Figure 10.2, which showcases the architecture of

Google Bigtable:

Figure 10.2: Bigtable architecture

Clients (1) can submit user requests (read and write) to a

pool of front-end servers (2). These front-end servers direct

the read/write requests to a cluster of nodes (Bigtable

cluster) (3). Scaling up and downscaling of Bigtable will

primarily aim to increase or decrease the number of nodes

in the cluster. A Bigtable table is sharded into chunks called

tablets, and these tablets are saved in format SS Tables (5)

on Google’s File System Colossus (4). Apart from writing

data to SS tables, the data is stored in a shared log as soon

as they are acknowledged by Bigtable, providing increased

reliability (6).

To create Bigtable, you must create instances. In these

instances, you have to create a Bigtable cluster. Each

Bigtable cluster contains nodes; these nodes are the

components that perform the read and write operations.

Scaling Bigtable options

As seen in other chapters, Bigtable also supports

autoscaling and manual scaling. In the case of autoscaling,

GCP monitors a metric, and based on a threshold value, GCP

automatically adds or removes infrastructure. Bigtable

supports a new type of scaling, that is, Programmatic

scaling. In programmatic scaling, we can use other metrics

not supported out of the box, to be used for scaling up and

down. None of these scaling requires a downtime of the

Bigtable cluster.

Autoscaling triggers

Bigtable identifies the number of nodes at any time based

on the following 4 dimensions:

CPU utilization target

Storage utilization target

Minimum number of nodes

Maximum number of nodes

Each scaling dimension in Bigtable individually calculates

the number of nodes, and Bigtable finally scales up to the

highest calculated number. For example, if the current set

up of Bigtable has five nodes, and as per target CPU

utilization, the number of nodes required is 6, and as per

storage, the number of nodes needed is 8, Bigtable will

scale the cluster to 8.

As the number of nodes in the cluster increases, Bigtable

automatically balances the storage in the cluster. During

this time, the read and write requests continue as before,

without disruptions. The balancing is needed to ensure that

the traffic is evenly distributed across nodes.

If your cluster has already reached the maximum number of

configured nodes value, and the load on the system

continues to increase, then the queries will run slow or

might even start failing in the worst cases. Removal of a

node from the cluster happens slowly when compared to

scale up. This is done to reduce the latency of queries. It

might happen that all nodes are serving query requests.

Let us have a closer look at the preceding mentioned four

dimensions as well as the logic to determine a logical value

for your application.

Autoscaling

When you intend to create a Bigtable cluster, the first thing

you must do is create instances. Once the instances are

created, you can create your Bigtable cluster. While creating

a Bigtable cluster, you get options to either select manual

scaling or autoscaling. Consider Figure 10.3, which is a

snapshot of the GCP UI console:

Figure 10.3: Bigtable Autoscaling

As you can see in Figure 10.3, you can select the scaling

type while creating the cluster.

When to Autoscale

Autoscaling brings multiple benefits:

Cloud Costs: When a Bigtable cluster is configured

with Autoscaling, Bigtable automatically reduces the

number of nodes whenever possible. This helps in

optimal utilization of infrastructure and hence more

justified cloud costs. It is important because the primary

use case that Bigtable is trying to solve, is the handling

of data of the petabyte scale. Therefore, even a tiny

cost improvement could eventually become a

substantial amount.

Performance: Bigtable automatically adds nodes when

needed. Hence, when the load increases (number of

reads and writes), Bigtable will scale up and provide the

necessary infrastructure for serving the requests.

Bigtable keeps checking the target CPU utilizations and

storage requirements, and when stats go above the

threshold, a scale-up happens.

Automation: Autoscaling reduces the management of

a cluster and its operations. If a cluster is configured for

manual scaling, an admin person must update the

number of nodes every time there is a need for faster

queries.

Though Autoscaling is helpful in scenarios where there is a

steady increase or decrease of the load on the system, in

case the workload is busy, or there are very frequent up and

down of infrastructure needed, Autoscaling might not be

able to cater to frequency. The reason behind this is that in

Bigtable, every time a new node is added, balancing data

across nodes takes place and this is not a milli-second

activity.

CPU utilization target

CPU utilization is the percent usage of cluster CPU capacity.

You can configure any value between 10% to 80%. Let us

say you had configured the value to be 50%. When the CPU

utilization goes above 50%, Bigtable will add more nodes to

bring CPU utilization below 50%. Similarly, if the CPU usage

is low, Bigtable will reduce the number of nodes.

The correct value of this parameter depends and varies

from use case to use case. The decision of the right value

depends on the throughput and latency needs of your

application. For example, in the case of a real-time

application, latency matters. On the other hand, in the case

of batch processing applications, throughput matters the

most. Generally, Bigtable offers optimal latency when the

CPU load on the cluster is 70%. However, for latency-

sensitive applications, you could set CPU utilization to be

50%. The lower the percent of CPU mentioned, the more is

the number of nodes and higher the cost.

Storage utilization target

Storage utilization is the number of terabytes consumed on

the nodes before Bigtable starts scaling. This should be

configured so that Bigtable is always ready to handle the

fluctuations in the amount of data. The capacity limit for

nodes is 5 TB per node for SSD storage and 16 TB per node

for HDD storage.

For latency-sensitive applications, configure this value to be

low, that is, approximately 60% utilization. Thus, if SSD is

configured, value should be 3 TB. Similarly, in case of HDD

storage utilization target becomes 9.6 terabytes.

Minimum number of nodes

This property sets the minimum number of nodes a Bigtable

can scale down to. The value must be greater than zero and

cannot be less than 10% of the maximum number of nodes.

You can intend to keep this value to as low as a minimum,

since that will imply the lowest consumption of nodes when

the load is less. However, the actual state of the number of

nodes is greatly affected by the preceding two properties of

storage and CPU.

You can think of having a higher value for this property in

the following example situations:

1. Because of the restriction that minimum nodes cannot

be less than 10% of maximum nodes, if your use case

needs a high maximum number of nodes for peak loads,

you will have to configure an increased number of

minimum nodes as well.

2. If your use case needs spiky read and write on Bigtable,

Bigtable will scale up. However, scale up comes with a

balancing process, which can take a few minutes. In this

situation, you can take a conservative approach and

have a higher minimum number of nodes to

accommodate a sudden high load of reading and write

on Bigtable.

Maximum number of nodes

The maximum number of nodes is the value you want your

Bigtable cluster nodes to scale up to. It has a value greater

than 0, can never be less than the minimum configured

nodes, and have a maximum value equal to 10 times the

minimum number of nodes configured. To configure this

value, identify the maximum amount of data you plan to

store on Bigtable.

Suppose you want to configure SSD for saving data. The

default value of storage utilization for SSD is 2.5 TB. If your

requirements need 20 TB to be saved, divide 20 by 2.5,

which equals to 8. It would be best if you chose a value in

multiples of 8. A higher multiple will tackle the latency

sensitiveness of your use case.

You can enable or disable autoscaling on an already created

Bigtable instance. You can also update the dimensions, that

is, CPU utilization target, minimum number of nodes, and

maximum number of nodes for a cluster. Let us have a look

at the GCloud commands to accomplish the operations.

The following GCloud command enables autoscaling on

your Bigtable instance:

gcloud bigtable clusters update CLUSTER_ID \

--instance=INSTANCE_ID \

--autoscaling-max-nodes=MAX_NODES \

--autoscaling-min-nodes=MIN_NODES \

--autoscaling-cpu-target=CPU_TARGET \

--autoscaling-storage-target=STORAGE_TARGET

The following command disables autoscaling:

gcloud bigtable clusters update CLUSTER_ID \

--instance=INSTANCE_ID \

--num-nodes=NUM_NODES --disable-autoscaling

The following command updates the autoscaling

configuration:

gcloud bigtable clusters update CLUSTER_ID \

--instance=INSTANCE_ID \

[--autoscaling-max-nodes=AUTOSCALING_MAX_NODES] \

[--autoscaling-min-nodes=AUTOSCALING_MIN_NODES] \

[--autoscaling-cpu-target=AUTOSCALING_CPU_TARGET] \

[--autoscaling-storage-

target=AUTOSCALING_STORAGE_TARGET]

In the three commands shared above, CLUSTER_ID is the

cluster of your Bigtable, which is a permanent identifier for

your cluster. INSTANCE_ID is the identifier for your instances.

MAX_NODES and MIN_NODES are the maximum and the minimum

number of nodes for the Bigtable instance. CPU_TARGET is the

percent CPU utilization target for your Bigtable instance and

can have a value between 1 to 80%. STORAGE_TARGET is the

storage utilization target in GiB per node.

Manual node allocation

You can also choose an option to scale up and down

manually. The decision of when to scale up or down depends

on someone manually assessing the correct cluster size.

Calculating the numbers should be like strategies defined in

the autoscaling section. Refer to the following code:

gcloud bigtable clusters update CLUSTER_ID \

--instance=INSTANCE_ID \

--num-nodes=NUM_NODES

NUM_NODES is the number of nodes you want your Bigtable to

scale up/down up to.

Programmatically Autoscaling

You can also scale up and down the Bigtable cluster

programmatically. Bigtable pushes many metrics to

Monitoring APIs, and you can write a code to read those

metrics and scale up or down the Bigtable instance. A

complete list of metrics can be accessed here.

https://cloud.google.com/monitoring/api/metrics_gcp

- gcp-bigtable

Consider one of the metrics:

bigtable.googleapis.com/server/latencies. It gives the server

versus the latency distribution. Another critical metric

bigtable.googleapis.com/cluster/cpu_load represents the CPU’s

cluster load.

Refer to the folder Bigtable in the repo attached with the

project. It contains a java class BigtableScalar.java,

demonstrating this scaling based on metric

bigtable.googleapis.com/cluster/cpu_load.

The whole idea demonstrated is as follows:

1. Fetch the Monitoring metrics for the last 10 minutes

using the google-cloud-monitoring library and filter the

values with filter metric.type=

bigtable.googleapis.com/cluster/cpu_load. This will return

the values for all the nodes in the Bigtable instance, and

we will pick and choose the largest value of CU

utilization percent.

2. Check if the value of CPU utilization percent is above

70%, and then add one node to the cluster. If the CPU

percent is lower than 50%, remove one node from the

cluster. These operations are performed by using the

library - Bigtable-client-core.

3. Keep running this process in a runnable thread.

Limitations of Autoscaling

You looked into how to define autoscaling of the Bigtable

cluster. However, there are limitations associated with the

process, as discussed in the following points:

Delays and latency due to load balancing

When you add or remove the number of nodes, Bigtable

tries to rebalance the data across the nodes, which can

go up to 20 minutes before seeing a performance

improvement. If the workloads involve short bursts,

autoscaling will not affect the performance immediately.

However, because of this long delay, the sudden burst

of load activity will be over, until Bigtable is ready

infrastructurally to handle the load.

To tackle this, in the case of autoscaling, you can keep

the system configured with the excess minimum

number of nodes. With programmatic and manual

scaling, it is vital to identify when there will be a high

load and increase the number of nodes proactively so

that system is ready when the actual need arises.

Schema design issues

If the schema is not well defined, it could lead to

multiple read and write requests simultaneously on the

same node. This will result in no performance

improvements even if the Bigtable cluster is scaled,

because the requests are distributed across the newly

added infrastructure.

Conclusion

Bigtable is a managed HBase datastore, backed by Google’s

file system Colossus, which handles and manages columnar

data store use cases. GCP abstracts the complete

infrastructure management and admin tasks from the user,

and gives a more uncomplicated and painless way to handle

huge amounts of petabytes of data. Google Bigtable

supports multiple ways to scale the number of nodes in the

cluster. These scaling strategies do not need downtime but

rather, rebalancing the data phase requires some time

before the actual benefits of scaling can be leveraged.

Points to remember

Bigtable is a Google Managed HBase setup that could

be easily set up and scaled.

Although GCP improves most of the pain points of

HBase in terms of management and scaling of

infrastructure, due to its inherent nature, the scale

strategies are not reflected in real-time.

It is essential to define the schema of the data well

enough. Otherwise, the benefits of scaling could not be

leveraged due to the hot spotting of user queries.

Bigtable supports autoscaling and programmatic

scaling. It is always recommended to have your

infrastructure already scaled up even if it is not needed,

especially if your application is latency sensitive. The

impact of adding infrastructure takes time to show

performance improvements.

Questions

1. Bigtable saves data in the form of key-value pairs. The

maximum size of the value is 10 MB. True or False?

2. What could be the minimum number of nodes for a

Bigtable setup whose maximum value is configured as

100 nodes?

3. Bigtable scaling is real-time. You scale up the

infrastructure, and the impact is immediate

improvement of queries. True or False?

4. Scaling up or down needs downtime in Bigtable. True or

False?

Answers

1. True. The maximum size of the value you can save in

Bigtable is 10 MB.

2. Minimum number of nodes cannot be less than 10% of

maximum number of nodes, Hence, for maximum node

100, you must set a value of 10 or higher for Minimum

nodes.

3. Scaling is not real time. It can take up to 20 minutes to

leverage true benefit of scaling due to the rebalancing

phase.

4. No. Bigtable does not require downtime for scaling.

CHAPTER 11

Configuring Cloud Spanner for Scale

Introduction

Google Cloud Spanner is Google’s mission-critical scalable relational

database service, that is fully managed globally. It supports traditional

relational database semantics like schemas, ACID transactions, and SQL

constructs. Google Spanner supports automatic and synchronous replication

across regions of availability.

Before Spanner, no solution in the market could support all the preceding

features without downtime. For its use cases like AdWords and Google Play,

Google developed cloud Spanner and has used Spanner successfully to handle

such high volumes of data for over five years. These use cases (AdWords and

Google Play) need to support millions of users throughout the day, without

being down for even a minute, as that would imply a loss of revenue. Spanner

is horizontally scalable to hundreds of machines, without the user needing any

downtime (Spanner is 99.999% up). Hence, it has become one of the most

opted for choices, to handle relational data in GCP.

Structure

In this chapter, we will discuss the following topics:

Nature of workload

Cloud spanner infrastructural footprint

Manual scaling

Autoscaling using Autoscaler

Autoscaler architecture

Autoscaler deployment topology

Scaling strategies as per load

Stepwise scale up

Linear scale up

Direct scale up

Objectives

After studying this chapter, you will be able to understand the type of

workloads Spanner is used for and how Spanner scores above the rest of the

competing technologies. You will also look into the infrastructural footprint of

Spanner and see what happens under the hood when we increase or decrease

the number of nodes. After that, we will dive deep into how to scale – manual

and auto-scaling and finally, learn of the scaling up strategies used in the

industry like stepwise scale-up and linear scale-up.

Nature of workload

Cloud Spanner is a fully managed, globally scalable, and mission-critical

database service. Google started building this service for a few use cases of ad

server and Google Play. Spanner can be used for scalable online transaction

processing databases, where you cannot afford your system to be down.

Claims at various portals say Google Spanner has handled 2 billion requests

per second at its peak, making it best suited for most of the applications within

Google, and outside as well. The Spanner has reportedly been used to hand

massive datasets in banks, gaming industries, retail industries, and

eCommerce. Three words are key for selecting this database: Relational

datasets, Google managed, and horizontally scalable without downtimes. All

the types of the preceding use cases mentioned, need these aspects in place

so that they can work 24*7 without loss of revenue, due to infrastructure

operations.

You not only get the RDBMS semantics, but Spanner also provides a key

feature of horizontal scalability where the number of instances can scale to

huge numbers without any degradation in the performance of queries. You

need to define the size of the infrastructure, and Spanner automatically

distributes your data across the infrastructure equally, resulting in better

query processing.

Data saved in Spanner is safe, as Spanner provides automated replication

across regions. What this means is that, if you deal with data that you do not

want to lose under any circumstances, Spanner could be used. Spanner

automatically creates multiple replicas across different geographical locations.

For multi-region configurations, there will be 5 replicas of created and

distributed across 3 regions by Cloud Spanner. Two regions will hold two copies

of data and the third region will have one of the copies (fifth one), also known

as witness replica. Consider the following Figure 11.1, which showcases an

example of data 3 regions and 5 copies:

Figure 11.1: Multi regional Spanner

It has 2 replicas each in us-east4 and us-east1 regions and a witness replica

in us-central1 region. The database C1 has 2 replicas in different zone in us-

east1 and us-east4, and one last witness chunk in one zone in us-centra1.

The witness replica (us-centra1) does not store the complete copy of the

data. Their responsibility is to participate in the voting to commit a write.

Consider the scenario where the database needs to survive a regional failure

and the database has application traffic from two regions. If you do not have

the third region, then you will not be able to construct a majority quorum that

could survive the loss of either region. Typically, the witness replica region will

be close to one of the two read-write regions, such that a majority quorum of

the witness and the close by region, can be used to quickly commit the writes.

Until now, you would have sensed that Spanner is for supporting a massive

volume of relational data. One of the most critical aspects of the Relational

Data model, is finding support for Atomicity, Consistency, Isolation, and

Durability (ACID) properties. Spanner supports all four aspects of ACID

properties well. It promotes robust consistency options, which keeps your data

in sync across multiple geographical locations. Spanner point-in-time-recovery

enables protection against accidental deletion or writes. For example, due to

any operation if the database gets corrupted or deleted, with Point-In-Time

Recovery (PITR), it could rollback to any point of time in last 1 hour. You can

extend one-hour up to 7 days by configuring the property

version_retention_period. PITR allows you to recover a portion of database as

well as entire databases. PITR results in increased storage utilization,

increased CPU utilization and increased time to perform schema updates.

Cloud Spanner infrastructural footprint

In Cloud Spanner, the data is saved on Google-backed distributed file system

Colossus, and the read and write of data happens via nodes. Consider Figure

11.2, which represents a regional instance of Google Cloud Spanner:

Figure 11.2: Spanner infrastructure footprints

In the preceding figure, the whole setup represents a Spanner Instance of a

regional type. You can see the nodes spread across three zones. Each zone has

three nodes represented as Node1, Node 2, Node 3, and Node 4. The Spanner

instances contain two databases, DB1 and DB2, replicated across regional

zones.

A node is a measure of computing in Spanner, which is meant to serve the

read and write queries. Node servers do not store data. When we talk about

scaling Spanner, we are talking about adding more nodes to the Spanner

instances. Nodes are responsible for reading and writing data in their zone. It

stores the data in the Google-backed distributed file system Colossus. This is

key to scaling Spanner instances because the data is not linked to a node. If

there is a failure in the node or the whole zone fails, the responsibility of

serving data is assigned to a new set of nodes, and hence no downtime

happens in Spanner.

Colossus’s storage solution has its own support for the high availability of data

and is not tied to any zone. Replicating data under the hood results in no data

loss even when the whole region goes down. Data serving might get impacted,

but data loss will not happen. Spanner partitions the rows of a database into

multiple splits; a split holds a range of contiguous rows, where the rows are

ordered by primary key. These splits are stored and replicated using Paxos

algorithm, where one replica set is elected as a leader. All the writes happen

via the leader replica while any replica which is configured as read-write or

read-only can serve the read requests.

Spanner supports 3 kinds of replication: read-write, read-only and witness

replicas (refer to Figure 11.1). Single region Spanner deployment has all

replicas marked as read-write. Apart from witness replicas, all the replicas

store data. However, witness replica does not store data – it only participates

in leader election.

The following Table 11.1 summarizes the preceding 3 replica types:

Replica type Can vote Can become leader Can serve reads

Read-write Yes Yes Yes

Read-only No No Yes

Witness Yes No No

Table 11.1: Replica types

Manual scaling

You can manually scale up and down your Cloud Spanner instance after

creating the instances. While we do not have any restrictions on scale up,

however, while scaling down, there could be situations when scaling down is

not allowed. Two such situations are as follows:

You cannot store more than 4 TB of data per node (1000 processing

units). If scaling down results in this quantity of data expanding (more

than 4 TB per node), then the operation of scaling down is not permitted.

Based on the usage patterns, Spanner has created multiple splits, and

Spanner is unable to merge the splits in case of scaling down.

For the second scenario, there are various ways of scaling down, so that the

Spanner gets the best chance of merging splits. One such strategy is to not

scale down in one go but instead scale down progressively until you reach the

most optimal scale-down number. Trigger a scale down, let the system perform

merge, and trigger another scale down once complete. The wait between

those two scales actions could be of the order of weeks.

Another critical aspect to keep in mind while scaling down is that, you have to

monitor the latencies of queries via cloud monitoring and not let the CPU

usage go above 65% in the case of regional instances, and 45% for each

region in case of multi region deployment. Query times are expected to

increase with a decrease in the number of nodes.

When not performing queries, Cloud Spanner performs background work such

as optimizing splits and protecting data. The compute capacity in Spanner is a

dedicated resource, and even when we are not running queries, the above-

mentioned background tasks continue to run.

You can update the number of nodes in three ways:

UI console: You can edit the instance and give a new value for the

number of nodes or processing units. This can be seen in Figure 11.3,

where the user will have to fill up the highlighted section with

appropriate values and then save:

Figure 11.3: Spanner scaling UI console

Another way is via Gcloud command:

gcloud spanner instances update INSATNCE_ID --nodes=NUMBER_OF_NODES

In the preceding command, INSTANCE_ID is the unique identifier for the Spanner

instance and NUMBER_OF_NODES is the value for the number of nodes you want the

Spanner to scale up or down to.

The third way to perform modification of number of nodes, is via client

libraries, that are available in 8 programming languages.

Autoscaling using Autoscalar

When we want to scale up and down the number of processing units of cloud

Spanner based on the workload, we can look up Autoscalar. Autoscale is a

companion tool that is not available as managed service but is open source

and can be configured and used easily for tackling loads on cloud Spanner.

Note that not all performance problems could be solved by increasing the

number of nodes in Spanner. For example, the hot spotting of user requests

could not be improved no matter how many nodes we scale our system.

Autoscale does not support such issues. Using Autoscalar, you can only add or

remove nodes based on some metric of computing and storage.

Autoscale keeps monitoring your instances and automatically adds or removes

nodes or processing units to ensure that CPU consumption and storage of data

per node remains within recommended limits. CPU utilization

recommendations are not to let your CPU consumption go above 65% in the

case of regional deployments and 45% for each region in the case of multi-

region deployment. Similarly, for storage, the recommendation is to set the

threshold to 75% of the maximum storage per node, multiplied by the number

of nodes.

Autoscalar Architecture

The auto scale deployment consists of Cloud Scheduler, two Pub/Sub topics,

two cloud functions, and a Fire store. The utilization metrics for computing and

storage of Spanner instances are taken via the Cloud Monitoring API by

Autoscalar, and then scaling up and down happens. Let us have a look at each

of the components.

Cloud scheduler

The Cloud scheduler runs at a configured frequency to read the metrics

coming via Cloud Monitoring API. It also compares the received values with the

configured thresholds. Cloud scheduler can perform actions concurrently for

one Spanner instance or multiple Spanner instances.

Poller cloud function

Poller cloud function collects and processes time series metrics data from all

configured instances of Cloud Spanner. Poller prepossesses the data coming

from Cloud Monitoring API and identifies the most relevant data points that will

help the Cloud function take action.

Scaler Cloud Function

The Scalar function processes the data points pulled by the Poller Cloud

function and then calculates the number of nodes/processing units to be

configured for the Spanner instance. It compares the metric value with the

threshold values to determine whether to scale up or down the infrastructure.

End to end working

In this section, you will investigate how different components operate, to

establish an act of Spanner instance scaling end to end. Consider Figure 11.4:

Figure 11.4: Autoscalar working

Follow the numerical labelling in the figure with the corresponding explanation

as follows:

1. Cloud Spanner instance continuously pushes metrics to Cloud Monitoring

APIs. For complete details of metrics exposed, visit the page -

https://cloud.google.com/spanner/docs/monitoring-cloud

2. You must configure the schedule, time, and frequency of your autoscaling

setup in the cloud scheduler. Cloud scheduler pushes a JSON message

with Autoscaler configuration for one of the Spanner instances into the

Polling Topic of Pub/Sub.

3. Polling Topic is the Pub/Sub topic that receives the JSON message from

the scheduler. Each JSON message is an instruction for Poller to perform

some action related to one of the instances.

4. Poller is a cloud function that gets triggered when a new message arrives

on the topic. This function reads the metrics from the cloud monitoring

API in a time window.

5. Poller pushes one message for each Spanner instance into the Scaling

Pub/Sub topic. This message contains the metrics and configuration

parameters related to a specific Spanner instance.

6. The Scalar topic is the Pub/Sub topic, where each message pushed by

Poller will result in a trigger of the scalar function. A scalar function

performs the actual scaling of the Spanner instance.

7. Scalar gets triggered once for each message in the Scalar topic. The

scalar function receives the current state (from the scalar topic) of the

metrics, compares them against the configured threshold values, and

comes up with a new value for the number of nodes.

8. The scalar function pulls the time when the instance was last scaled from

the fire store and compares it with the current time to identify whether

scaling up or down is allowed based on cool-down periods.

9. If there is no conflict with the cool-down period, Scalar performs the

scaling action on the Cloud Spanner instance.

In the next section, we will discuss the deployment topologies of Autoscalar.

Deployment topology simply implies the team that will manage the

components of Autoscalar deployment. Let us consider that we have two

teams, the Engineering team that writes business logic and uses a Spanner

instance, and the IT team that manages infrastructure. If it was decided that

everything will be handled by IT team, then the deployment topology will be

different when both teams hold the responsibility of partially managing the

components.

Autoscaler deployment topology

There are three deployment topologies used by teams that use Spanner. This

decision depends on how many of the IT/infra team and engineering teams

have decided to bear the responsibilities of managing the Autoscalar

deployment, since it is not available out of the box. Ideally speaking, one

Autoscalar deployment for all your Spanner needs is the way forward. Most

preferred among all three strategies is the distributed one, as it shares

management responsibility in the central team and individual engineering

teams, and provides the benefit of having different Autoscalar configurations

for each Spanner instance. This brings us to the three possible strategies, as

explored in the following.

Deployment of Autoscalar per project

This is a recommended topology for teams that want to manage separate

Autoscalar configuration and infrastructure. This is a good starting point to

introduce the Autoscalar use case in the project. The advantage of this

approach is that each team has freedom while selecting Autoscalar

parameters. The disadvantage is the management overhead of maintaining

individual Autoscalars.

Centralized deployment topology

Autoscale is deployed in one project. This Autoscalar can scale the Spanner

instances in different projects. This deployment is suited for a team managing

the configuration and infrastructure of several Autoscalers in a central place.

The advantage of this approach is that teams do not need to manage the

Autoscalar. However, the teams have to adhere to one centralized

configuration of Autoscalar.

Distributed deployment

All the components of the Autoscalar remain in the same project, except the

cloud scheduler. This deployment is a hybrid deployment where teams

managing Spanner do not want to maintain the Autoscalar, but want to have

their Autoscalar configurations.

This intends to be mid-way between the preceding two approaches. The

advantage is that teams can have different configurations of Autoscaler as

teams manage some parts, while the rest of the portion resides with the

centralized team.

Deployment of all three is out of the scope of the book. The deployment steps

are straightforward and are present in the GitHub repository of Autoscaler.

Consider table 11.2, for looking at installation/set up details of each strategy:

Deployme

nt

Strategy

Set Up Link

Per

Project

Deployme

nt

https://github.com/cloudspannerecosystem/autoscaler/blob/master/terraform/p

er-project/README.md#before-you-begin

Centralize

d

Deployme

nt

https://github.com/cloudspannerecosystem/autoscaler/blob/master/terraform/p

er-project/README.md#before-you-begin

Distribute

d

Deployme

nt

https://github.com/cloudspannerecosystem/autoscaler/blob/master/terraform/p

er-project/README.md#before-you-begin

Table 11.2: Installation guides

After the finalization and deployment of Autoscalar, you are expected to

configure its parameters. To do so, follow these steps:

1. Go to the Cloud Scheduler console page.

2. Select the checkbox next to the name of the job created by the

Autoscaler deployment, and tick on poll-main-instance-metrics.

3. Click on Edit on the top bar.

4. Modify the Autoscaler parameters shown in the job payload. The

following code is an example of the same:

[

{

“projectId”: “scaling-gcp”,

“instanceId”: “instance-1”,

“scalerPubSubTopic”: “projects/scaling-gcp/topics/spanner-scaling”,

“units”: “NODES”,

“minSize”: 2,

“maxSize”: 8

https://github.com/cloudspannerecosystem/autoscaler/blob/master/terraform/per-project/README.md#before-you-begin
https://github.com/cloudspannerecosystem/autoscaler/blob/master/terraform/per-project/README.md#before-you-begin
https://github.com/cloudspannerecosystem/autoscaler/blob/master/terraform/per-project/README.md#before-you-begin

},{

“projectId”: “scaling-gcp”,

“instanceId”: “instance-2”,

“scalerPubSubTopic”: “projects/scaling-gcp/topics/spanner-scaling”,

“units”: “PROCESSING_UNITS”,

“minSize”: 500,

“maxSize”: 3000,

“scalingMethod”: “DIRECT”

}

]

Scaling strategies as per load

You looked into the technicalities of scaling the infrastructure based on two

scaling strategies: manual and auto. This section will explore what happens

when a new node is added and how Spanner redistributes the responsibility of

serving the load. This rebalancing of responsibilities takes time, and due to

this, scaling down is not a real-time activity, that is, the moment you scale up,

you can start leveraging the benefits of scale in queries. It takes some time to

become effective. Consider Figure 11.5, to understand the rebalancing of

responsibility phase:

Figure 11.5: Rebalancing Serving

In Figure 11.5, the BEFORE SCALING phase represents two nodes in the

Spanner instance, where each node is responsible for serving specific rows.

Node 1 serves rows between 1 and 300, and node 2 serves rows between 301

and 600.

When the number of nodes is increased by one more (Node 3), Spanner

identifies the nodes under high workload and distributes the responsibility to

another node. See the AFTER SCALING section of the figure. Rows 151-200

and 201 to 250 from Node 1 are moved to be served on Node 3. Similarly, a

portion of rows from Node 2 is also shifted.

To support these scenarios, there are three strategies based on which you

should scale the number of nodes.

Stepwise scale up

Consider the situation of a use case where the application has small high

frequency spikes in workloads. Since we know scaling in Spanner takes some

time to show impact, till the time we spike for the small load, the load

decreases. To tackle this, increasing the number of nodes is recommended

instead of trying to decrease the node for these frequent small spikes.

In this strategy, when the threshold is crossed, this method scales up or down

nodes/processing units, using a fixed configurable number. For example,

increasing the number of nodes by two will result in adding two nodes.

Linear scale up

You can select a linear scale up and down strategy for patterns where load

grows gradually and no frequent ups and down are seen. The number of nodes

to be added depends on the load on the system. If two nodes are needed to

tackle the workload, two nodes will be added. This requirement of two nodes

might be 3 or 4 in the next scale-up cycle.

To calculate the new size, the following formula is used:

newSize = currentSize * currentUtilization / utilizationThreshold

Direct scale up

This strategy could be applied in workloads, where we know the workload

pattern. For example, if, over the past month, the number of nodes required at

11 AM was ten and at 1.30 was 12, a similar workload will also be assumed for

today. Scale up to 10 nodes will start at 10:50 AM, assuming an increase in

nodes will take 10 minutes to show impact. Similarly, at 11:20 AM, scale up to

12 nodes will happen. This is known as Direct scale-up because the workload is

increased on experience rather than metrics of the Spanner Instance.

Conclusion

For handling a massive amount of relational data, consider using Spanner.

There are ways in the industry to achieve it with other technologies as well,

but the Spanner is Google managed, highly available (99.999% availability),

distributed, and provides features like ACID transactions, strong consistency,

and replication.

Spanner is battle tested for production workloads, and with mature autoscaling

in place, it is one of the best tools to handle mission-critical relational

workloads.

Points to remember

Spanner is built and tested to handle critical relational workloads in your

enterprise.

The Spanner has mature scaling strategies – manual and auto – that are

widely used in the industry.

Scaling in Spanner takes time to show its true impact, as there is a

rebalance phase associated with each scale up and down.

Spanner supports autoscaling using an open-source Autoscalar, which

requires deployment and management.

There are multiple strategies recommended to deploy Autoscalar. For

example, deploy one Autoscaler for each Spanner instance, and deploy

on Autoscalar for all instances across various projects.

Multiple choice questions

1. Which of the following is not valid for Google Spanner?

a. Spanner is horizontally scalable.

b. Spanner ensures 99.999% availability.

c. Spanner scaling is real-time. You add infrastructure, and it

immediately improves the system.

d. Autoscaling of Spanner is supported out of the box by GCP.

2. What are the qualities of datasets that result in selecting Google Cloud

Spanners as the database for an application?

3. Google Spanner uses which storage solution to store data?

Answers

1. c and d are not true. Scaling nodes take some time to show impact.

Autoscaling is not supported by default. You have to install and configure

Autoscalar.

2. Highly scalable, huge, relational datasets support millions of concurrent

queries.

3. Google distributed file system – Colossus.

CHAPTER 12

Scaling Google Composer 2

Introduction

Apache Airflow is a tool for authoring, scheduling, and

monitoring data pipelines programmatically. It was created

at Airbnb in the year 2014 and was bought by Apache

software foundation in March 2016. In the year 2019, Airflow

was announced to be the Top-Level Apache Project and is

now considered a leading orchestration tool by public cloud

providers. Google Composer is managed to offer Airflow

(both 1 and 2), where the complete management of Airflow

setup is abstracted from the IT teams, and the responsibility

of managing them is taken over by GCP. Like GCP Composer,

AWS offers Amazon Managed Workflows with Apache

Airflow. The key reason why Airflow has gained so much

recognition is its proven functionality for data pipelining,

extensible framework, scalability, and large vibrant

community.

Structure

In this chapter, we will discuss the following topics:

Introduction to Composer

Options for horizontal scaling

Adjusting minimum and maximum number of

workers

Adjusting number of schedulers

Options for vertical scaling

Adjusting worker, scheduler, and web server scale

and performance parameters

Adjusting environment size

Composer Autoscaling

Role of Airflow worker set controller

Factors affecting environment scaling

Composer Autoscalars

Optimizing the Airflow environment

Observe the environment

Objectives

After studying this chapter, you will have a good

understanding of Airflow architecture and its infrastructural

footprint on GCP. You will also be able to understand the

concepts of how Airflow enables vertical and horizontal

scaling. We will then learn about the factors that affect

scaling, and the different horizontal scaling levels available.

In the end, we will investigate how to optimize the Airflow

environment for high throughput in cost-optimal manner.

Introduction to Composer

Airflow lets you build and execute workflows. A workflow is

represented as a Directed Acyclic Graph (DAG), that

contains individual pieces of work known as tasks and the

dependencies among tasks to create an execution plan also

known as DAG.

A DAG defines a task, specifies the ordering/dependencies

among tasks, and runs retries. Consider Figure 12.1 which

represents a very simple DAG that prints log statements:

Figure 12.1: Sample DAG

The following code is the DAG definition of the preceding

DAG:

1 from datetime import datetime

2 from airflow import DAG

3 from airflow.operators.dummy_operator import DummyOperator

4 from airflow.operators.python_operator import PythonOperator

5 from airflow.operators.bash_operator import BashOperator

6

7 def print_function():

8 return ‘Upload the data.’

9

10 dag = DAG(‘Scaling_GCP_DAG’, description=’Hello World DAG’,

11 schedule_interval=’0 12 * * *’, start_date=datetime(2017,

3, 20), catchup=False)

12

13 extract_demo_operator =

BashOperator(task_id=’Extract_Data’, bash_command=”echo

‘Perform extract of data.’”,dag=dag)

14 filter_demo_operator = BashOperator(task_id=’Filter_Data’,

bash_command=”echo ‘Perform filtering of data’”,dag=dag)

15 upload_demo_operator = PythonOperator(task_id=’Upload’,

python_callable=print_function, dag=dag)

16

17

extract_demo_operator>>filter_demo_operator>>upload_demo_opera

tor

In the code of the preceding sample DAG python file:

Line numbers 1 to 5 is import statements of modules.

Line numbers 7 and 8 is a simple function written in

python and called from a python task.

Line number 10 and 11 represents a DAG object. Here

you can define DAG level properties like name,

frequency, and start date.

Line numbers 13 to 15 represent the various tasks in

the DAG.

Line number 17 represents the order of execution of

tasks.

Airflow installations consist of the following components:

A scheduler is a which register/de-registers a DAG and

triggers execution of tasks.

DAGs folder contains DAG definition files; this folder is

periodically ready by the scheduler, and the DAG is

either added, removed, or updated based on the files in

the DAG folder.

An executor manages a running task, and can push and

manage the work on worker nodes.

A web server component, which provides the REST API

to interact with Airflow. A metadata database is used by

the preceding components like webserver, scheduler,

and executer, to maintain state.

Consider Figure 12.2, which shows the preceding

components in action:

Figure 12.2: Airflow architecture

Follow the numerical labelling of the preceding architecture

with the following explanation. A user interface interacts

with the web server to populate the user interface for the

end-user. A user can submit a:

1. User request for DAG execution.

2. The web server submits the request to execute a DAG

to the scheduler. The executer is a component inside

the scheduler, that takes care of managing the workers

who are going to perform the task.

3. The scheduler keeps scanning the DAGs directory to

register, modify or delete a DAG. When a user uploads a

python file representing a DAG in the DAG folder, the

scheduler scans the folder and gets the DAG registered

to the UI, by putting an entry in metadata DB.

4. The request for processing is launched on worker nodes.

5. Worker nodes keep updating the metadata database

with the latest happenings on worker nodes.

6. The scheduler also logs the complete activity

happening, to the metadata database.

7. Users can get all the happening on the scheduler and

worker via a query by the web server on the metadata

database.

Google Composer is managed offering on GCP. Let us see

how each Airflow architectural component map to GCP

offerings. Refer to Table 12.1:

Airflow Components GCP components

Webserver and Airflow UI App Engine flex.

Scheduler Pods on Kubernetes cluster

Worker Pods on Kubernetes cluster

Metadata DB Cloud SQL

DAG directory GCS bucket. The GCS bucket is

mounted in Airflow using GCS FUSE.

Table 12.1: Airflow components to GCP components mapping

If you carefully observe, all the technology under GCP

components has well-defined scaling features. When the

workload increases in a Composer environment, there is

need to increase the number of workers. Since Composer

uses Kubernetes to deploy Airflow, scaling means creating

more worker Pods in the Kubernetes cluster.

Composer distributes the preceding environment resources

in GCP managed tenant project and customer project.

Customer project is a Google Cloud Project where your

environment is created. You can create multiple Composer

environment in single project. Tenant project is a Google

managed (out of your control) project, which provides

access control and data security for your environment. Each

Composer environment will have its own tenant project.

Consider the following Figure 12.3, which displays

environment architecture of Composer when a public IP is

exposed to end user. There are other strategies as well, for

example Composer with private IP, where Composer

environment architecture varies slightly.

Figure 12.3: Airflow environment architecture on GCP

As you can see in the preceding figure, all the components

of Composer, such as Airflow workers, Redis queue, Airflow

scheduler, Logs and so on, reside within the customer

project. Tenant project just holds the components, which

ensures safe access to Composer resources via Identity

Aware proxy.

Options for horizontal scaling

In this section, you will investigate the various manual

scaling options provided by the Composer. You can scale a

Composer environment horizontally, by just adding a

greater number of components, as well as vertically, by

increasing the size of already hosted components. In

Horizontal scaling of the Composer environment, the

following options are available.

Adjusting minimum and maximum

number of workers

You can configure the maximum and the minimum number

of worker nodes for the Composer environment. Under no

circumstances, will the Composer environment breach the

min-max configurations.

There are multiple ways of modifying and applying these

configurations, such as GCP console, REST APIs, and GCloud.

In our case, we will look into GCloud options.

The command to configure the maximum and the minimum

number of worker nodes (worker Pods) on a Composer

cluster, is given as follows:

gcloud composer environments update scaling-gcp-composer \

--location us-central1 \

--min-workers 5 \

--max-workers 10

The preceding command will update Composer environment

(scaling-gcp-composer) to have a minimum of 5 worker nodes

and a maximum of 10 worker nodes.

Adjusting number of schedulers

The Composer environment can run more than one

scheduler at a time. In Composer 1, this was not the case,

and you can only configure one scheduler, which was the

major bottleneck in scaling up a Composer environment.

Configuring multiple schedulers to distribute and balance

the load between multiple schedulers results in better

performance and reliability. Moreover, if one scheduler goes

down, the Composer continues to work.

Just increasing the number of schedulers might not result in

better performance. A single scheduler might provide better

performance in situations where the extra scheduler has not

been used, and just consumes resources. The scheduler

performance depends on the number of DAGs, the number

of workers, and the number of tasks that run in the

environment. It is recommended to start with two, as just

setting to one, might result in a single point of failure. You

can configure the number of schedulers when needed, by

using the following command:

gcloud composer environments update scaling-gcp-composer \

--location us-central1 \

--scheduler-count 2

The preceding cloud command will update the number of

schedulers to 2 in the Composer environment scaling-gcp-

composer.

Options for vertical scaling

In the preceding section, you looked into horizontal scaling,

that is, increasing the number of workers and schedulers,

without modifying the class of infrastructure. However,

Composer gives you the facility to modify the existing class

of infrastructure as well.

Adjusting worker, scheduler, web

server scale and performance

parameters

You can tune attributes (CPU, memory, and storage) related

to infrastructure components of worker, scheduler and web

server.

Use the following GCloud command to modify the

parameters:

gcloud composer environments update ENVIRONMENT_NAME \

--location LOCATION \

--scheduler-cpu SCHEDULER_CPU \

--scheduler-memory SCHEDULER_MEMORY \

--scheduler-storage SCHEDULER_STORAGE \

--web-server-cpu WEB_SERVER_CPU \

--web-server-memory WEB_SERVER_MEMORY \

--web-server-storage WEB_SERVER_STORAGE \

--worker-cpu WORKER_CPU \

--worker-memory WORKER_MEMORY \

--worker-storage WORKER_STORAGE

An example of the preceding command is as follows:

gcloud composer environments update scaling-gcp-composer \

--location us-central1 \

--scheduler-cpu 0.5 \

--scheduler-memory 2.5GB \

--scheduler-storage 2GB \

--web-server-cpu 1 \

--web-server-memory 2.5GB \

--web-server-storage 2GB \

--worker-cpu 1 \

--worker-memory 2GB \

--worker-storage 2GB

In the preceding command, the value of disk and memory

needs to be a number along with unit. You can visit the

monitoring page of your Composer environment to see if

any of the preceding parameters needs modification, and

tune the attributes accordingly.

Adjusting environment size

In Composer, we have the concept of environment, which is

nothing but a standard collection of infrastructure resources,

pre-created by the GCP team. Composer contains multiple

infra components and these Environments are a good

starting point to start your Composer deployments.

Composer came up with an option to select an environment

at the time of creation, as well as environments that can be

updated from one to another, as per need. Over the period

of time, the environment drifts from these standard default

configurations. As each use case vary in nature of

workloads, engineering teams monitoring dashboard of

Composer fine tune the property values of the attributes.

The following command cloud is to be used to update the

Environment type of a Composer environment:

gcloud composer environments update scaling-gcp-composer \

--location us-central1 \

--environment-size medium

Composer Autoscaling

In Composer 2, some of the biggest benefits are the efficient

autoscaling features, where the infrastructure scales

up/down based on executed DAGs and tasks.

The Composer environment automatically increases the

number of worker nodes in case it experiences a heavy

load.

The Composer identifies if the workers are not being

used, and if so, scales them down.

You can configure the minimum and the maximum

number of workers, Composer scales up/down the

workers within defined limits.

For appreciating the factors affecting autoscaling, it is vital

to understand the autoscaling architecture of Airflow.

Consider Figure 12.4, which demonstrates the autoscaling

architecture of Composer:

Figure 12.4: Auto scaling Composer

In the preceding figure, the grey box represents the Google

cloud project, where the whole Composer is deployed. The

blue box represents the boundaries of the Kubernetes

cluster on which Airflow components (orange box) and

supporting autoscaling components (green box) are

deployed. The red box at the bottom represents the cloud

monitoring API that lies within the GCP cluster.

Follow the preceding numerical labelling with their

respective explanation as follows:

1. A client (a user triggering a job from a UI console or a

system component triggering a request via REST API)

submits an Airflow job to the Airflow scheduler.

2. The scheduler will add the job submission request to a

task queue.

3. The monitoring component of Airflow reads the number

of jobs (size of the queue) in the task queue, that are

still waiting to be processed.

4. Airflow monitoring then exports and pushes the scale

factor metrics

(composer.googleapis.com/environment/worker/scale_factor_ta

rget) to the Cloud Monitoring API.

5. The metric in Cloud monitoring is read via the Stack

Driver Adapter.

6. The stack driver Adapter provides the metric to the

Horizontal Pod scalar, and the horizontal Pod scalar

calculates the number of worker Pods based on the

scale factor metric.

7. HPA instructs the Kubernetes cluster to adhere to the

number of worker node configurations.

8. In Kubernetes, you have the concept of the controller,

which maintains the state of the cluster based on

configurations. In the last step, the Horizontal Pods

scalar sets the new number of workers in the cluster.

The default controller is overridden in the case of the

Composer by Airflow Worker Set Controller, and it

ensures that the number of worker nodes adheres to

the instruction by HPA.

Default controllers do not take into consideration if a

task is running on a Pod before removing them. In such

a case of scale down, removing a worker where a task is

running will be harmful. We will do a deeper dive into

these scenarios in the next section on “Role of Airflow

worker Set”.

9. Kubernetes clusters are created in autopilot mode,

hence the increase in the number of virtual machines in

the Kubernetes cluster will be taken care of by the

Cluster Autopilot component.

Role of Airflow worker set controller

In the case of scaling up, new workers are added, and this

means that there is no disruption for any of the running

tasks. However, at the time of scaling down, there could be

a few tasks which are being read from the task queue and

processing has started. In middle of processing, if the

worker nodes are removed, the affected tasks will have to

start again, resulting into more time being taken to process.

There could also be a few tasks which might take lot of time

on adhoc basis, for example, a task triggers a REST API or

interacts with a database, and due to some reason if REST

API or DB retrieval is slow, your task will take more time

than normal. The Scale Factor metric does not consider the

long execution time of tasks, and hence scaling down that is

just based on the scaling factor. might result in a few tasks

starving. Because the worker nodes have already been

occupied by the tasks, if we remove a worker where tasks

are already running, you will have to start from scratch.

By default, Kubernetes components, in case of scaling down,

do not look inside the happenings inside Pods. To tackle this

scale-down condition, instead of the default deployment

controller, the Composer introduced a custom deployment

controller – Airflow Worker Set Controller.

Kubernetes controllers are processes that hold the

responsibility to maintain the state of the Kubernetes

cluster. For example, if there are 4 Pods in the cluster and

based on workload, and 3 Pods are needed, the controller

will make sure that one Pod id deleted.

Airflow Worker Set Controller before downscaling, connects

with the metadata DB of the Airflow, to identify which are

those workers where no tasks are running and removes only

those workers. Because of this, there could be a situation

where the number of worker running are high than what the

autoscaling Airflow parameters intend to run. However, all

the workers will be executing some tasks.

Factors affecting Composer

autoscaling

The number of workers is identified, based on the scaling

factor target metric and this factor is calculated based on

the following factors:

Current number of workers

Number of tasks in the queue not assigned to any

worker

Number of idle workers

celery.worker.concurrency Airflow configuration

Among the aforementioned factors,

celerey.worker.concurrency is not discussed till now. Consider

Figure 12.5, which shows the high-level working of a worker

node:

Figure 12.5: Worker machine

An Airflow worker can launch multiple celery processes (3 in

the preceding diagram), configured by setting the property

celery.worker.concurrency, where each celery process picks up

a task and triggers tasks. A trigger task will read the DAG

file from metadata DB and then perform actual processing.

Composer Autoscalars

In the whole architecture of Composer autoscaling, three

Autoscalars are involved. These are as follows:

Horizontal Pod Autoscalar (HPA)

Cluster Autoscalar

Node auto-provisioning

In this section, we will see the role played by each one of

them in detail. For the in-depth analysis of these 3 scalars,

refer to Chapter 6, Scaling Kubernetes.

Horizontal Pod scalar

Horizontal Pods scalar instructs the Kubernetes cluster, on

which the Composer setup is running, to scale up or down to

a certain number of workers. Once the signal reaches the

Airflow Worker Set Controller, the system is scaled up/down

accordingly.

Cluster Autoscalar

Composer 2 deploys components on the Kubernetes cluster

and the Kubernetes cluster has a configured Cluster

Autoscalar in place. Cluster Autoscalar automatically resizes

the number of nodes in a node pool, based on workload. The

only requirement is to set the maximum and the minimum

number of nodes; the rest is automatic.

In the case of autoscaling, resources are deleted or moved

when autoscaling a cluster. The Composer is designed to

have rerun associated with tasks, meaning in case of those

disruptions, the task will be automatically recreated on a

different worker.

Node auto provisioning

Node auto provisioning automatically manages a set of

node pools on the user’s behalf. Without node auto

provisioning, GKE starts new nodes only from user-created

node pools. With node auto-provisioning, new node pools

are created and deleted automatically.

With Autopilot clusters, you do not need to worry about

provisioning nodes or managing node pools. This is because

node pools are automatically provisioned through node

auto-provisioning, and are automatically scaled to meet the

requirements of your workloads.

Cloud Composer configures these Autoscalar in the

environment’s cluster. This automatically scales the number

of nodes in the cluster, the machine type, and the number

of workers.

Optimizing the Airflow environment

Along with autoscaling, you can also control the

performance and scale parameters of the environment by

configuring the right memory, CPU, and disk for web

servers, workers, and schedulers. If such components (web

servers, workers, and scheduler) are under-scaled, the

overall scale-up capacity of the Composer environment will

be compromised. If over-provisioned, they will incur high

costs even when not in use.

There is no silver bullet to achieving a perfect number at the

start. Generally, engineering teams follow the given set of

steps to finalize a value. Consider Figure 12.6:

Figure 12.6: Optimizing Airflow process cycle

Start with environment pre-set

There are three environment pre-sets made available by the

Composer – small, medium, and large. The guidelines to

start with one of them are also given by GCP. Table 12.2 can

be used as a good starting point:

Recommended

pre-set

Number of

DAGs

Max concurrent

DAGs

Max concurrent

tasks

Small 50 15 18

Medium 250 60 100

Large 1000 250 400

Table 12.2: Composer pre-set configuration capabilities

These recommendations are taken from official GCP

documentation.

Run your DAGs

Upload all your DAGs to the DAGs directory (a GCS location).

This directory is mounted as a local directory inside the

Composer environment using GCS fuse.

Try to replicate the execution of DAGs very similar to your

actual real-world scenario.

Observe the environment

GCP Composer has a comprehensive monitoring page that

gives in-depth insights into various attributes.

Monitoring the scheduler CPU and memory

Observe the dashboard in the scheduler section of the

monitoring page. Look at the two graphs available – Total

schedulers CPU usage and total schedulers memory usage.

If the CPU usage is consistently below 25-30%, reduce

the number of schedulers or reduce the CPU of the

scheduler.

On the contrary, if the CPU usage is consistently above

80%, you can increase the number and CPU of the

scheduler.

In the case of high CPU usage of the scheduler, you can also

think of increasing the DAG file parsing interval and

increasing the DAG directory listing interval. The CPU cycles

used in parsing and registering the DAG are reduced and

hence, the scheduler will have more CPU cycles to perform

processing.

Monitoring total parse time of DAGs

When a new DAG is uploaded to Airflow, it must be first

parsed and registered by Airflow/Composer before use can

schedule it.

If the time taken to parse the DAG is very high, it means

that the scheduler is busy doing tasks. This could be

improved by increasing the number of schedulers and

CPU on a scheduler.

It is important to keep the total artifacts to the lowest

minimum in the Airflow DAGs directory. For example,

keep only the DAGs and not the jars that might be used

in an Airflow job. If you have a use case of jar, put it in a

different directory.

Monitoring worker Pod evictions

Generally, Pod eviction happens in the case where the

resources in the Pods have hit the upper limit. For example,

the major issue behind Pod eviction is out of memory error.

You can interpret this by looking at the monitoring graph

worker Pod evictions.

In the preceding situation, it is recommended to either

increase the memory available to each worker or reduce

worker concurrency. By reducing worker concurrency, a

smaller number of tasks will launch at each worker, and

worker resources will be divided among fewer tasks,

resulting in more infrastructure allocated per task.

Monitoring active workers

Observe the graph, number of active workers, and number

of tasks in the queue.

If the environment is reaching the max number of workers

and the number of tasks in the queue is continuously high,

then you can increase the number of maximum number of

worker nodes.

If there are long inter tasks scheduling delays, and the

Composer is not scaling up, it implies that there is some

setting which is not letting the Composer scale up.

These settings could be low worker concurrency, low

DAG concurrency, and low value for maximum active

runs per DAG.

Monitoring workers CPU and memory usage

Observe graphs for the CPU and memory usage by Airflow

workers: Total workers CPU usage and total workers memory

usage.

Increase the worker memory if their worker memory

consumption is consistently high or the number of Pods

is evicting at a high rate. On the contrary, if the

consumption is very low, it decreases the memory.

If the worker CPU usage is high, increase the number of

worker nodes and reduce the number of tasks that can

run concurrently on each worker. This will enable more

CPU to get allocated to each task.

Monitoring running and queued tasks

Observe the graph for the number of running tasks and the

number of queued tasks. If the number of queued tasks is

not coming down, it can be reduced by:

Increasing the value for the maximum number of

workers. Spin up more workers so that more tasks could

be pulled from the queue.

Another factor would be to look into, if and only if

workers appear to be free, is to increase the worker

concurrency. It means that the existing workers can

host more, but they are unable to do the property, and

increasing the value will result in better worker

utilization.

Monitoring the database CPU and memory

usage

Observe graphs for the CPU and memory usage by the

Airflow database: Database CPU usage and database

memory usage.

If database CPU usage is above 80%, scale-up is

needed.

In the database CPU usage is below 20%, scale down is

needed.

You can scale up and down by increasing the environment

size, that is, from small to medium or medium to large.

Monitoring the task scheduling latency

If the inter tasks latency has increased to unacceptable

limits (10 seconds or more), it simply means that either the

scheduler is overloaded or is not allowed to process fast.

Another reason could be that there are not enough workers

available to execute the scheduled jobs. This situation could

be handled by:

Increasing scheduler CPU and memory.

Increasing worker concurrency, increasing DAG

concurrency, or increasing max active runs per DAG.

Increasing the maximum number of workers.

Monitoring web server CPU and memory

If the Airflow UI performance or the response time of Airflow

REST APIs has increased, it is due to load on the webserver.

You can increase the number of CPU and memory of the web

server.

Commands to perform the preceding

changes

The following command modifies the number of

schedulers:

gcloud composer environments update scaling-gcp-composer \

--scheduler-count=2

The following command modifies the CPU and memory

of Schedulers:

gcloud composer environments update scaling-gcp-composer \

--scheduler-cpu=0.5 \

--scheduler-memory=3.75

The following command modifies the maximum number

of workers:

gcloud composer environments update scaling-gcp-composer \

--max-workers=6

The following command modifies the worker CPU and

memory:

gcloud composer environments update scaling-gcp-composer \

--worker-memory=3.75 \

--worker-cpu=2

The following command modifies the Web server

configurations:

gcloud composer environments update scaling-gcp-composer \

--web-server-cpu=2 \

--web-server-memory=3.75

The following command modifies the environment type:

gcloud composer environments update scaling-gcp-composer \

--environment-size=medium

The following command modifies the Airflow

configuration variables:

gcloud composer environments update scaling-gcp-composer \

--location us-central1 \

--update-airflow-configs=key1-value1,key2-value2

The preceding command (text in bold) accepts key-value

pair, where the key is Airflow configuration keywords, and

the values are custom configurations. Table 12.3 lists such

keys and their meaning:

Airflow Property Purpose

min_file_process_interv

al

Minimum time taken for parsing each file. A low value

means that the scheduler will have to complete this in

less time, and hence there is pressure on the

scheduler. Minimum value is 30 seconds.

dag_dir_list_interval Time elapsed between two cycles of scanning the DAG

directory to identify new and modified DAGs. This is

down by scheduler. Hence, lowering the value will

result in reducing load on scheduler. Minimum value is

30 seconds.

worker_concurrency Number of celery processes per Airflow worker. The

default value is equal to 12 * worker_CPU for your

environment.

max_active_tasks_per_da

g

DAG concurrency defines the maximum number of

task instances allowed to run concurrently in each

DAG.

max_active_runs_per_dag This attribute defines the maximum number of active

DAG runs per DAG.

Table 12.3: Key Airflow environment properties

Conclusion

Google Composer is a managed Airflow offering from GCP.

Composer support Airflow 2.x is known as Composer 2.

Composer exhibits a mature scaling framework to scale up

and down without impacting or disrupting the already

running tasks. The Composer comes up with a pre-

configured environment, which acts as a good starting point

to start scaling. Engineering teams are expected to do

performance runs to fine-tune Composer properties. Vertical

scaling is also possible in Composers.

Points to remember

GCP Composer is managed offering of Airflow 2.x.

You can spin up a Composer environment with a set of

values that could be updated at any point in time.

Kubernetes being the underlying infrastructure of

Composer provides a robust autoscaling mechanism, by

use of Autoscalar like Horizontal Pod scaling, Cluster

auto-scaling, and node auto-provisioning.

There are a few components that are not horizontally

scalable, and hence fine-tuning becomes important to

leverage the true autoscaling power of Composer.

These are the scheduler, web server, and metadata

database. These components do not auto-scale, so you

have to provide them with the maximum autoscaling in

mind for a use case.

Questions

1. When the setup of the Composer was done, the inter-

task time was very less. Over the period, it has

drastically increased. What could be the possible

reasons?

2. During scaling down the number of worker Pods,

deletion of Pods which is running a job can happen and

that can lead to a re-run of the whole task from scratch.

Yes or No?

3. What will you suggest doing, if the Composer cluster is

not overloaded but there are a lot of unprocessed tasks

in the queue?

Answers

1. This could happen due to the scheduler being occupied

with something else. One common reason for this

behavior is an increase in the number of DAG files over

the period.

2. No, it is not possible. Airflow Worker Set Controller does

not allow a worker running a task to get killed.

3. Refer to the section “Monitor running and queued

tasks” under the heading “Optimizing the Airflow

environment”.

CHAPTER 13

Scaling Google Dataproc

Introduction

Google Dataproc is a managed offering from Google Cloud

Platform (GCP), to run Hadoop and Spark jobs. In 2003, Google

released a white paper on the Google File System. In the year

2004, they released another paper on processing framework

MapReduce. These papers resulted in the release of Hadoop in the

year 2006. Hadoop solved the problem of processing huge

volumes of data using a cluster of machines (commodity

hardware). Hadoop was later improved by Spark with its first

release in the year 2014. Though there were differences in the way

data is handled inside Hadoop and Spark, both were compatible to

run on a Yet Another Resource Negotiator (YARN) cluster.

Hadoop and Spark were market leaders in the Big Data processing

industry and that has resulted in almost all data-driven enterprises

using them. When these enterprises started their cloud journey, it

was important for a cloud provider to support Hadoop and Spark

jobs on the cloud as well. That is why all public cloud providers

have support for running these workloads. AWS has Elastic

MapReduce, Azure has Databricks and GCP has Dataproc, to

enable the running of Hadoop and Spark jobs on the cloud.

In the on-premises versions of Bigdata (Hadoop and Spark jobs),

the infrastructure was fixed, which mostly resulted in either your

pipelines starving for infra or having excessive infra. However, the

overall cost of maintaining the cluster was the same. In the cloud

pay-as-you-go model, it becomes important to use optimal

quantity of infrastructure. Till now, whenever we tried to achieve

it, we always talked about Autoscaling of infrastructure. In this

chapter as well, you will see how to scale up and down your

Dataproc cluster, to achieve justified cost and high throughput

execution of Bigdata workflows.

Structure

In this chapter, we will discuss the following topics:

Introduction to Dataproc

Manual scaling

Using the GCloud command-line tool in the GCloud CLI

Edit the cluster configuration in the Google Cloud Console

Use the REST API

Auto scaling

Autoscaling deep dive

Introducing Autoscaling policies API

CRUD on Autoscaling policies

Applying Autoscaling policies to Dataproc cluster

Limitations of scale

Graceful decommissioning of clusters

Using preemptible VMs to scale

Objectives

After studying this chapter, you will understand how you can scale

your Hadoop/Spark/Dataproc cluster to meet the changing needs

of the workload. You will see the manual approach first and

eventually dive deep into auto scaling concepts of Dataproc. You

will learn about the various precautions to be taken, for graceful

commission and de-commissioning of nodes in the Dataproc

cluster. In the last section, you will see ways to reduce costs while

scaling up by using preemptible virtual machines as secondary

virtual machines.

Introduction to Dataproc

Hadoop jobs run on a cluster of commodity hardware machines,

where the fault-tolerant workloads produce reliable results, that is,

even if a node in your cluster goes down, the Hadoop framework

makes sure that the failed tasks are re-executed, and its results

are incorporated into the result. While Hadoop processing

capabilities saw a lot of improvements over the years, so was the

case when it comes to improvement in the Hadoop jobs run on

clusters. When it all started, Hadoop was using a cluster manager

Hadoop v1, which advanced over years to Hadoop 2.0 or YARN

architecture. Consider Figure 13.1:

Figure 13.1: Hadoop 1.0 vs Hadoop 2.0

In Hadoop 1.0 architecture, the responsibility to manage the

cluster and run the data processing job was tied. However, in

Hadoop 2.0, this tight coupling was broken down and the complete

cluster management responsibility was taken away by the YARN

cluster manager. While in Hadoop 1.0, a user could only write

Hadoop jobs and run them on a cluster. However, in the case of

Hadoop 2.0, the YARN cluster manager supported not just

MapReduce, but also other applications.

Apache Spark become one of the most famous tools, that not only

provided similar capabilities but also several other benefits on top

of Hadoop, such as in-memory processing and better capability to

handle a wide variety of use cases, such as that of machine

learning and graph processing.

Let us have a very high-level overview of what a cluster means in

these cases. Consider Figure 13.2:

Figure 13.2: Job submission on a cluster

Follow the numerical labelling with the explanation as follows.

1. A user/client submits a data processing request to a Hadoop

2.0/YARN cluster.

2. The YARN cluster follows the master-slave architecture. The

master manages the complete execution of a data processing

job and makes sure that the data is processed reliably on

slave nodes. It does not perform any data processing itself.

3. Slave nodes are the ones that pull the data from disks and

perform actual data processing. These slave nodes are also

known as worker nodes and the effective processing

capability depends on the number of worker nodes configured

in a cluster.

4. When slave jobs are asked to perform processing, slave nodes

launch multiple containers inside, to process a part of the

data. In the preceding case, two containers C1 and C2 are

launched on two different machines, which are part of the

same data processing job.

The preceding picture, in reality, is very complex. However, for

understanding scaling, knowing this much is enough. In the

preceding setup, Master nodes are big machines that can handle

the management of multiple jobs running on the worker nodes.

Master nodes are the single point of failure in the YARN

architecture and to tackle this, in production deployments you

deploy two name nodes to support high availability in case active

name node goes down, the secondary name node becomes active

to handle job runs. Scaling a cluster means the capability to add or

remove the worker nodes to a cluster.

Dataproc is managed to offer from GCP, which primarily provides

users with the Hadoop 2.0/YARN cluster. The complete

management related to creating, maintaining, and managing the

cluster is abstracted away from the IT teams, and GCP makes sure

that everything is running in high availability mode. Scaling of GCP

Dataproc means scaling up and down the worker nodes, which, if

done manually, is known as manual scaling, and if done in an

automated fashion, is known as Autoscaling. Consider Figure 13.3,

which is simply Figure 13.2 superimposed with GCP components to

represent GCP Dataproc:

Figure 13.3: Dataproc cluster

GCP goes further ahead and optimizes the preceding architecture

and creates worker nodes of two different types.

Primary worker node: Primary worker nodes are standard

compute engine VMs, on which data can be stored (Hadoop

file system). The data stored here is replicated with a

replication factor of 2, and backed up on GCS as well. It is not

advised to apply Autoscaling on these nodes, as scaling up is

non-disruptive, but scaling down could be because of data

stored. Data must be moved to other nodes before de-

commissioning a node.

Secondary worker node: Secondary worker nodes are

Managed instance groups with no storage availability. Their

prime aim is to scale up and down fast, adding or removing

the compute capability on a cluster.

A YARN cluster generates a wide variety of metrics, which could be

analyzed to assess whether to scale a cluster or not. A complete

list of metrics can be seen here:

https://hadoop.apache.org/docs/stable/hadoop-project-

dist/hadoop-common/Metrics.html

In GCP, these metrics are available in Cloud Monitoring.

Autoscaling uses one such metric to decide scaling, and that is

YARN memory. It might sound like a limitation, as one might argue

that scaling needs could be on basis of cores too. Dataproc

however, currently supports YARN memory metric scaling only.

Let us now go ahead and create a Dataproc cluster and launch our

first Spark job. You can create a Dataproc cluster from the UI

console, or by triggering the following GCloud command.

gcloud dataproc clusters create scaling-gcp-demo-cluster --region us-

central1 --zone us-central1-f --master-machine-type n1-standard-4 --

master-boot-disk-size 500 --num-workers 2 --worker-machine-type n1-

standard-4 --worker-boot-disk-size 500 --image-version 2.0-debian10 -

-project scaling-gcp

The preceding command will create a cluster named ‘scaling-gcp-

demo-cluster’ in region us-central1, with master and worker machine

type as n1-standard-4 in the project scaling-gcp.

There are some pre-created examples present on Dataproc nodes.

One such use case is the counting of words. Understanding Spark

APIs is out of the scope of the book. But once you have a written

Spark job, packaged as a jar, and copied to one of the nodes in the

Dataproc cluster, you can submit the following command to trigger

a Spark job.

gcloud dataproc jobs submit spark --cluster=scaling-gcp-demo-cluster

\

--region=us-central1 \

--jars=file:///usr/lib/spark/examples/jars/spark-examples.jar \

--class=org.apache.spark.examples.JavaWordCount \

-- gs://gcp-scaling-dataproc/input/*

https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/Metrics.html

The preceding command submits a Spark job on the cluster

‘scaling-gcp-demo-cluster’ in us-central1 region using the main class

‘org.apache.spark.examples.JavaWordCount’. It is further packaged in

JAR ‘spark-examples.jar’ reading input from the GCS location

‘gs://gcp-scaling-dataproc/input/*’.

Manual scaling

You can scale up and down your Dataproc cluster by increasing or

decreasing the number of primary and secondary worker nodes.

However, you cannot use a new machine type while scaling up.

Because of the way Dataproc jobs are structured, it does not

matter how many the number of nodes is, if the cumulative

compute and memory per cluster level are as per the need of

workflows. In other words, if your workload needs 10 vCPUs and

100 GB RAM, it does not matter if you made the infra available in 2

nodes of 5 vCPU and 50 GB RAM or 5 nodes of 2 vCPUs and 20 GB

RAM. There could be a few situations like that of a Data science

workflow where this might get violated, especially if you are

performing iterative processing, which involves reading data in

memory and then the data being available across multiple nodes

for processing.

If you need to change the machine type, there is no other way

apart from creating a new cluster and then migrating all your jobs

to the new cluster.

Apart from the obvious need to increase and decrease the

computing power of your cluster, another reason why we need to

scale up is so that we can increase the number of nodes to expand

available Hadoop Distributed File System storage. Generally, while

scaling up, increasing infrastructure has no downside to already

running jobs. However, when downscaling, it is vital to have at

least the infrastructure running, so that currently running jobs

does not starve due to infrastructure. Job execution will become

slow and might even freeze in the worst cases.

There are multiple ways provided by the GCP to perform the

activity. Three such ways are as follows:

1. Use the GCloud command-line tool in the GCloud CLI

You can use the following GCloud command to

increase/decrease the number of nodes (primary and

secondary) in the cluster.

gcloud dataproc clusters update cluster-name \

--region=region \

[--num-workers and/or --num-secondary-workers]=new-number-of-

workers

Assuming that we have a cluster named scale-gcp-dataproc-

cluster and want to configure the new primary node to be 5

and secondary nodes to be 2, the preceding command will

become:

gcloud dataproc clusters update scale-gcp-dataproc-cluster \

--region=us-central1 \

--num-workers = 5 \

--num-secondary-workers=2

2. Edit the cluster configuration in the Google Cloud

Console

You can scale up/down the Dataproc cluster by going to

Cluster details page and clicking on the Edit option on

Configuration, as shown in Figure 13.4:

Figure 13.4: Manual scaling

This will open a pane where you can configure the number of

primary and secondary nodes, as shown in Figure 13.5:

Figure 13.5: Manual scaling attributes

3. Use the REST API

You can also perform the preceding option, that is, setting

number of primary worker nodes to 5 and secondary worker

nodes to 2 using REST API.

PATCH

https://dataproc.googleapis.com/v1/projects/<PROJECT_ID>/regions

/us-central1/clusters/<CLUSTER_NAME>?

updateMask=config.worker_config.num_instances,config.secondary_w

orker_config.num_instances

{

“config”: {

“workerConfig”: {

“numInstances”: 5

},

“secondaryWorkerConfig”: {

“numInstances”: 2

}

},

“clusterName”: “scaling-gcp-dataproc”

}

Auto scaling

Identifying the right number of machines for a workload manually

is difficult, and thus we have the concept of auto-scaling. In

Dataproc as well, you can configure auto-scaling, such that the

infrastructure will scale up and down based on workload. These

actions of scaling up and down happens by monitoring system

metrics and then eventually Dataproc Autoscalar ensures to

maintain the value of the metrics in configured threshold ranges.

In Dataproc, you can define Autoscaling policies. It defines the

complete scaling plan for a cluster, that is, max-min nodes,

frequency, and aggressiveness to provide fine-grained control over

cluster resources throughout the cluster lifetime.

The key considerations before enabling Autoscaling are as follows:

A data processing job reads from a source and writes to a

destination. If we allow the application to scale, thanks to

Autoscaling, it will result in a lot of connections getting

created to source and input. Thus, Autoscaling should be

enabled only when the source and destination also scale

appropriately to support connections.

A Dataproc cluster generally takes the same time for creation

and Autoscaling. Thus, if you intend to scale down the

Dataproc cluster to minimum nodes when there is no job

running, it is always recommended to shut it down. Do not

use Autoscaling to shrink the Dataproc cluster to the bare

minimum number of nodes.

Not all features available in Spark and Hadoop are auto-

scalable. For example, Spark Structured Streaming is not

compatible with the Autoscaling of the Dataproc cluster.

It is not recommended to use HDFS scaling as a reason to

enable Autoscaling. HDFS is only hosted on primary nodes

and the number of primary worker nodes should be sufficient

to store HSDF data. A decommissioning of nodes in case of it

holding HDFS data, can be time consuming. The HDFS blocks

stored on the nodes should be first migrated to other nodes,

and then the nodes should be decommissioned.

Autoscaling deep dive

Let us have a look into how Autoscaling works in a Dataproc

cluster. Dataproc checks Hadoop YARN metrics at a frequency

known as the cooldown period. On each cycle of this check, the

number of worker nodes scaled up or down is calculated. This

attribute contributing to the calculation is contributed to

Autoscaling policy configurations. Autoscaling for Dataproc cluster

takes place in the following steps:

1. On each cool-down cycle, Autoscaling identifies pending,

available, allocated, and reserved memory. The multiple

calculations of such past values are averaged to identify the

needed number of worker nodes.

Here, Pending Memory is a signal that there are queued-up

tasks that are waiting to be completed, and that the delay is

due to infrastructure unavailability. Available Memory is a

signal that the cluster has extra resources available. A

negative value here means that your cluster is over-

provisioned, and that the autoscaler needs to de-commission

the number of nodes by - the current number of nodes

commissioned minus the number of worker nodes calculated

above. In case the preceding number comes out to be

positive, which represents the scale-up condition, it will be

vice versa.

2. Triggering the commissioning or de-commissioning of the

number of worker nodes, calculated by the preceding

formulae is aggressive. To control this aggression, you have

two configurations:

Scaleup factor

When there is a need to scale up the worker nodes by a few

worker nodes (calculated above), the following formula is

used to identify the actual workers.

Actual Number of workers = ROUND_UP(Estimated Number of Workers

* scaleup factor)

For example, if the formula in Step 1 calculates the estimated

number of nodes to scale up as 5, and you had configured a

scale-up factor of .5, then the cluster will be scaled by

(ROUND_UP(0.5*5)=ROUND_UP(2.5)=3) by 3 worker nodes.

Scaledown factor

As is the case with scale up, you have the configuration of

scale down as well, which works very similar to scale up. In

case of scale down, the actual number of worker nodes to

decommission is calculated by the following formula:

Actual Number of workers = ROUND_DOWN(Estimated Number of

Workers * scale down factor)

For example, if the formula in Step 1 calculates the estimated

number of nodes to scale up as 5, and you had configured a

scale down factor of .5, then the cluster will be scaled down

by (ROUND_DOWN(0.5*5)=ROUND_DOWN(2.5)=2) 2 worker

nodes.

3. Using the scale up and scale down factor in step 2, one can

know the mechanism to handle the aggressiveness of scaling.

However, Autoscaling is not triggered in every cycle. In this

section, we will look into how to control the frequency of

updates. Frequency is controlled by two factors:

scaleUpMinWorkerFraction and scaleDownMinWorkerFraction. Both

the parameters act as a threshold to determine if the scaling

will autoscale the cluster.

The rules associated with the factors are as follows:

if (actual workers > scaleUpMinWorkerFraction* current cluster

size) then scale up

if (actual workers > scaleDownMinWorkerFraction* current cluster

size) then scale down

4. If the preceding calculations result in the scaling up or down

decision, Autoscaling policies define the scale up and down

the lower limit as minInstances, and upper limit as maxInstances

of workerConfig and secondaryWorkerConfig. There is a policy

called weight, which is the ratio of primary to secondary

workers, and it is used to determine how to spill the workers

in primary and secondary worker instance groups.

The result of these set of calculations leads to the final Autoscaling

change that is to be applied on the cluster for the scaling period.

Introducing Autoscaling Policies API

For interacting with GCP Dataproc, there are three interfaces

available: GCP client libraries, gRPC ad REST APIs. Client libraries

are the ones supported by the community and are available in

multiple programming languages. If you do not have a ready-made

library present, you can write one using gRPC. However, there is

an easier way of handling the second case, and that is by using

REST APIs. Almost all programming languages support REST APIs.

In this section, you will get a good insight into the Dataproc

Autoscaling API and what each attribute means.

In the Autoscaling APIs, the resource is AutoscalingPolicy and

following that, we have various methods defined on the resource.

The resource AutoscalingPolicy describes the configuration which

Dataproc expects, and methods are just a way to pass these

configurations to the Dataproc cluster.

An Autoscaling resource can be defined as a YAML file and applied

to the Dataproc cluster by the following command: GCloud dataproc

Autoscaling-policies import. Another way is to represent the

Autoscaling Resource as JSON, and apply that to the Dataproc

cluster via REST APIs.

Autoscaling policy resource

This resource describes an Autoscaling policy for Dataproc cluster

autoscaler. Refer to the following code:

JSON Representation

{

“id”: string,

“name”: string,

“workerConfig”: {

object (InstanceGroupAutoscalingPolicyConfig)

},

“secondaryWorkerConfig”: {

object (InstanceGroupAutoscalingPolicyConfig)

},

“basicAlgorithm”: {

object (BasicAutoscalingAlgorithm)

}

}

Table 13.1 describes what each and every field in the preceding

JSON representation means:

Fields Description

id Required: Unique identifier for Autoscaling policy.

name This is the name of Autoscaling policy resource.

For projects.regions.autoscalingPolicies, the resource name of

the policy has the following format:

projects/{projectId}/regions/{region}/autoscalingPolicies/{policy_

id}

For projects.locations.autoscalingPolicies, the resource name of

the policy has the following format:

projects/{projectId}/locations/{location}/autoscalingPolicies/{pol

icy_id}

workerConfig Required. It describes Autoscaling configurations for primary worker

nodes.

It is an object of type – InstanceGroupAutoscalingPolicyConfig

(Described as follows)

secondaryWorkerCon

fig

Optional. It describes Autoscaling configurations for secondary

worker nodes.

It is an object of type – InstanceGroupAutoscalingPolicyConfig

(Described as follows)

basicAlgorithm It is an object of type BasicAutoscalingAlgorithm. This object has a

field “yarnConfig” using which the Autoscaling configurations like

scaleup, scaleDown and so on is configured.

Table 13.1: Autoscaling policy resource descriptions

BasicAutoscalingAlgorithm Resource

The configurations for BasicAutoscalingAlgorithm resource are as

follows:

JSON Representation

{

“cooldownPeriod”: string,

“yarnConfig”: {

object (BasicYarnAutoscalingConfig)

}

}

Table 13.2 describes the preceding JSON resource for

BasicAutoscalingAlgorithm:

Fields Description

cooldownPeriod This is an optional field of type string, and represents time

between two scaling events. Scaling period starts after the

completion of update operation.

By default, the value is 2 minutes. However, a lower value

means workload changes will more quickly affect the cluster

size, which might be completely unnecessary.

Bounds: [2m, 1d]. Default: 2m.

yarnConfig This is an optional field of object type

BasicYarnAutoscalingConfig (described as follows). This defines

the Autoscaling config for your YARN cluster.

Table 13.2: BasicAutoscalingAlgorithm Descriptions

BasicYarnAutoscalingConfig Resource

The configurations for BasicYarnAutoscalingConfig resource are as

follows:

JSON representation

{

“gracefulDecommissionTimeout”: string,

“scaleUpFactor”: number,

“scaleDownFactor”: number,

“scaleUpMinWorkerFraction”: number,

“scaleDownMinWorkerFraction”: number

}

Table 13.3 describes the preceding JSON resource for

BasicYarnAutoscalingConfig:

Fields Description

gracefulDecommissionTimeo

ut

This is a required field of type string. It configures the

timeout for YARN graceful decommissioning of node

managers. It is only applicable to decommissioning of

nodes, and it specifies the duration to wait for the jobs to

complete on a node before forcefully removing nodes. The

value range is in between 0 seconds to one day.

scaleUpFactor This is a required field of type number. Refer to the

explanation of scaleUpFactor in the previous section

“Autoscaling deep dive”(Point 2 with the heading Scaleup

Factor). It could take up any value in the range of 0 to 1. A

scaleup factor or 1 represents aggressive scaling, resulting

in no pending memory remaining after the update. A scale

factor of 0 means no scaling up for a cluster.

Generally, a good starting value for this attribute is .05 for

Spark and Hadoop jobs with dynamic allocation enables. For

Tez jobs and Spark jobs with a fixed executor count, we

should use the attribute value to be 1.

scaleDownFactor This is a required field of type number. Refer to the

explanation of scaleDownFactor in the previous section

“Autoscaling deep dive” (Point 2 with the heading

Scaledown Factor). It could take up any value in the range of

0 to 1. A scaleup factor or 1 represents aggressive

downscaling, resulting in no memory remaining after the

update. A scale factor of 0 disables removing of worker

nodes.

Set this value to 0.0 to avoid scaling down the cluster, for

example, on ephemeral clusters or for a single-job cluster.

scaleUpMinWorkerFraction This is an optional field of type number. Refer to the

explanation in the previous section “Autoscaling deep

dive”(Point 3). A worker cluster of 20 worker nodes and a

threshold of .2 means Autoscalar must recommend at least

4 worker nodes to be added. A value of 0 implies Autoscalar

will scale up on the recommended change. The default

value is 0 and can take any value between 0 and 1.

scaleDownMinWorkerFractio

n

This is an optional field of type number. Refer to the

explanation in the previous section “Autoscaling deep dive”

(Point 3). A worker cluster of 20 worker nodes and a

threshold of .2 means Autoscalar must recommend at least

4 worker nodes to be de-commissioned. A value of 0 implies

Autoscalar will scale down on the recommended change.

The default value is 0 and can take any value between 0

and 1.

Table 13.3: BasicYarnAutoscalingConfig descriptions

InstanceGroupAutoscalingPolicyConfig Resource

The configurations for InstanceGroupAutoscalingPolicyConfig

resources are as follows:

JSON Representation

{

“minInstances”: integer,

“maxInstances”: integer,

“weight”: integer

}

Table 13.4 describes the preceding JSON resource for

InstanceGroupAutoscaling PolicyConfig:

Fields Description

minInstances This is an optional field of type integer. It configures the

minimum number of worker instances. Default value is 0.

maxInstances This is a required field of type integer in the case of primary

worker nodes and if secondary worker nodes are configured

with minInstances, then it becomes mandatory for secondary

worker nodes as well. It configures the maximum number of

worker instances.

weight This is an optional field of type number. This represents the

ratio of primary worker nodes vs. secondary worker nodes.

For example, if this value for primary worker nodes is set to

2 and the value is set as 1 for secondary, then for each

primary worker node, Autoscaler will try to ensure 1

secondary node.

The cluster might not be able to reach the desired

configuration if it starts contradicting min/max

configurations.

If no value is set on any instance group (primary or

secondary), then the Autoscaler configures an equal value

for both, that is, 1 primary worker node and 1 secondary

worker node. If any of the groups is not set, it will be

assumed to be 0. For example, if weight is only set for

primary, a value of 0 will be assumed for secondary worker

nodes and this implies that the cluster will use primary

workers only and no secondary workers.

Table 13.4: InstanceGroupAutoscalingPolicyConfig descriptions

You can define actions on the resources mentioned above. This

action will apply the configurations on the Dataproc cluster. Table

13.5 describes these various actions which could be taken:

Actions Description

Create Create a new Autoscaling policy.

Delete Deletes an Autoscaling policy.

Get Retrieves an Autoscaling policy.

getIamPolicy Gets the access policy for a resource.

List Lists all the Autoscaling policies in the project.

setIamPolicy Sets the access policy on the specified resource.

testIamPermission Returns all the permission on a resource.

update Updates the Autoscaling policy.

Table 13.5: Autoscaling Actions

In the subsequent sections, we will see how to apply the preceding

Autoscaling resources (configurations) on a Dataproc cluster, using

the actions defined in Table 13.5.

CRUD on Autoscaling policies

You can perform all CRUD operations on Autoscaling policies, using

the resource format as JSON and action as REST API. Another

option is to use YAML representation as a resource and GCloud

commands as a way to take action. The third approach is via the

GCP console. For showcasing the different CRUD operations of

Autoscaling policies, we will use the second option, that is, YAML

and GCloud to see how these concepts look in action.

Here is an Autoscaling policy YAML file, which contains all the

attributes:

workerConfig:

minInstances: 1

maxInstances: 10

weight: 1

secondaryWorkerConfig:

minInstances: 0

maxInstances: 100

weight: 1

basicAlgorithm:

cooldownPeriod: 2m

yarnConfig:

scaleUpFactor: 0.05

scaleDownFactor: 1.0

scaleUpMinWorkerFraction: 0.0

scaleDownMinWorkerFraction: 0.0

gracefulDecommissionTimeout: 1h

Save the preceding configuration as autoscaling-policy.yaml and use

the following command to create an Autoscaling policy named

scaling-gcp-autoscaling-policy in us-central1 region.

gcloud dataproc autoscaling-policies import scaling-gcp-autoscaling-

policy \

--source=autoscaling-policy.yaml \

--region=us-central1

Once the preceding command executes, check whether the

Autoscaling policy is created or not.

gcloud dataproc autoscaling-policies list --region=us-central1

For fetching the details of a particular policy, use the following

command:

gcloud dataproc autoscaling-policies describe scaling-gcp-

autoscaling-policy --region us-central1

Here, ‘scaling-gcp-autoscaling-policy’ is the policy id.

To delete an Autoscaling policy, use the delete action:

gcloud dataproc autoscaling-policies delete scaling-gcp-autoscaling-

policy --region us-central1

In all the commands, ‘scaling-gcp-autoscaling-policy’ is the policy id

and us-centra1 is the policy region.

Applying Autoscaling policies to Dataproc

cluster

Autoscaling policies can be applied to a Dataproc cluster in two

ways:

1. At the time of creation of new cluster.

2. Updating the Autoscaling policy on an already existing cluster.

For applying an Autoscaling policy at the time of creation of new

cluster, use the following command:

gcloud dataproc clusters create scaling-gcp-dataproc-cluster \

--autoscaling-policy=scaling-gcp-autoscaling-policy \

--region=us-central1

The preceding command will create a Dataproc cluster ‘scaling-

gcp-dataproc-cluster’ with Autoscaling policy ‘scaling-gcp-

autoscaling-policy’ in region us-central1.

For applying an Autoscaling policy to an already existing cluster,

use the following command.

gcloud dataproc clusters update scaling-gcp-cluster \

--autoscaling-policy=scaling-gcp-autoscaling-policy --region=us-

central1

The preceding command will enable the policy ‘scaling-gcp-

autoscaling-policy’ on an existing cluster ‘scaling-gcp-cluster’.

For disabling the Autoscaling policy on a cluster, use the following

command:

gcloud dataproc clusters update scaling-gcp-cluster --disable-

autoscaling \

--region=us-central1

Note: Your Autoscaling policies and cluster polices can

never contradict. However, if they do, the action resulted

in contradiction will not run successfully. For example, if a

cluster has minimum size 2 created and you try to enable

Autoscaling policy with minimum of 10 nodes, the console

will show error.

Limitations of scale

Till now, we looked into all the good things about scaling. However,

there are also a few restrictions/operations that are not allowed,

when it comes to scaling a Dataproc cluster. In this section, let us

deep dive into a few key ones:

The machine types of a cluster should be consistent. You

cannot configure an Autoscaling policy that adds machines of

different types. If you have a machine type of n1-standard1,

and you want to change it to any other class, you have to

make sure that all jobs finish on the earlier cluster and only

then can you create a new cluster with updated machine

types.

GCP provides a platform where a YARN cluster is set up. So

even when GCP does not put a restriction, if the YARN cluster

has a restriction, it automatically becomes a restriction of the

platform as well. For example, a restriction on YARN is that it

cannot exceed more than 10k nodes. Hence, even if GCP has

no such condition since YAN is hosted on GCP, Dataproc has

the same restriction too.

Like the preceding point, there could be a restriction on GCP

as well, which can further restrict scaling. Make sure that you

have enough quotas defined for CPU, RAM, Disk, external IP,

QPS limitations, and so on. Ensure that they are aligned with

your scaling expectations.

There is restriction on how much memory you can attach to a

virtual machine in GCP. This restriction inherently becomes

restriction for Dataproc node as well. Maximum limit of

memory you can attach is 64 GB, and so, design your

applications accordingly.

While it looks very fascinating that a cluster can auto-scale

and are the number of worker nodes for a job, pay attention

to the input source and output source capabilities. There

could be hundreds of such threads trying to connect to the

sources, when the sources are not scaling when needed. This

puts restrictions on the throughput of the job even when it

has scaled.

Graceful decommissioning of clusters

Decommissioning removes worker nodes from the clusters. When

you downscale a cluster, the work in progress on the worker node

may stop before completion (forceful decommission). There is also

the concept of graceful decommissioning, where the cluster waits

for all the tasks to finish on a worker node and only when every

task is complete, the nodes are taken away. This feature is

available in Dataproc version 1.2 or later, and is based on the

graceful decommissioning feature of YARN. For more details visit

the link:

https://hadoop.apache.org/docs/current/hadoop-

yarn/hadoop-yarn-site/GracefulDecommission.html

https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/GracefulDecommission.html

By default, graceful decommissioning is disabled in the cluster,

and you can enable it by mentioning ‘gracefulDecommissionTimeout’

attribute in the YARN config section of Autoscaling YAML. The

timeout value can be configured as zero, which is the default, that

is, forceful decommission or duration in seconds, minutes, and

hours. The maximum value for this period is 1 day.

As a best practice, a graceful decommissioning value timeout

should be set to a value longer than the longest job running on the

cluster. If you had configured the ‘gracefulDecommissionTimeout’ time

configured as 1 hour and your cluster has jobs that take more than

an hour, consider moving them to a different cluster with a larger

time configured for the property.

Using preemptible VMs to scale

In GCP Dataproc, there are two kinds of worker nodes – primary

and secondary. Primary and secondary worker nodes perform the

same compute operations. However, secondary worker nodes do

not store data. The only function of secondary nodes is to perform

computations. While both should have the same machine type, the

attached persistent disk can vary. By default, the persistent disk

configuration in secondary nodes is just 100 GB.

There could be two kinds of secondary worker nodes – preemptible

and non-preemptible. All nodes in the secondary worker should be

of the same type, whether preemptible or non-preemptible. The

default is preemptible, meaning, they can be claimed or removed

from the cluster if GCP needs it for other tasks. Such removals can

impact job stability, but you can still use them to reduce the cost

associated with the machine. YARN workloads are designed with

the presumption that worker nodes will fail, as the original

document uses the term “commodity hardware” while describing

nodes in a Spark cluster. By nature, if a task fails, or a node is

decommissioned, the whole job is not marked as failed. Rather, the

task running on the node is re-performed and results are

aggregated. The number of times a that task is retried, is

configurable.

However, you would not want to ideally have the number of

preemptible worker nodes to be greater than 50% of your total

worker nodes. Since failures are involved, configure a higher

number of retries for the tasks.

Preemptible machines come at one-third of the cost of the non-

preemptible machines, and that is the biggest advantage in

selecting preemptible machine types. However, the cost generally

does not reduce by one-third. A task that failed due to

decommissioning of a preemptible worker node, must redo the

tasks on another worker (primary or secondary), and hence it

needs infra for rescheduling.

Conclusion

Google Dataproc is managed to host a YARN cluster, which allows

you to run Hadoop and spark jobs. The complete responsibility of

creating and managing the YARN cluster is done by GCP, and the

Engineering teams are expected to work more on creating

business values. Because Hadoop and Spark workloads are the

most famous and widely used frameworks to process huge

amounts of data, all cloud providers managed the YARN cluster. On

GCP, you can manually as well as automatically scale the Dataproc

cluster.

Dataproc allows configuring Autoscaling by defining Autoscaling

policies, along with CRUD operations, which can be applied at the

time of the creation of the Dataproc cluster or can be added

afterward as well on an old Dataproc cluster. Commissioning and

decommissioning of nodes to the cluster is not real-time, and

hence due diligence must be taken while performing the activities.

Generally commissioning does not have an impact on processing;

they only have cost implications. However, de-commissioning can

affect processing. Thus, defining graceful decommissioning is

highly recommended.

Points to remember

Google Dataproc is managed service for the YARN cluster,

enabling the deployment of Hadoop and Spark jobs.

You can scale a Dataproc cluster manually, as well as in an

automated fashion, by creating and applying Autoscaling

policies.

Autoscaling policies provide provisions to define minimum and

maximum nodes for both primary and secondary worker

nodes, along with parameters to define scaling strategies for

Autoscaling.

Autoscaling policies also provides a mechanism to configure

gracefulDecommissionTimeout attribute to make sure a worker

node is decommissioned when all the assigned work is

complete on a worker node.

Dataproc secondary worker node provides a mechanism to

create preemptible worker nodes, which results in cost-

effective scaling.

Questions

1. Can we configure preemptible and non-preemptible machines

as secondary worker node?

2. Can we change the type of worker virtual machines while

scaling up?

3. Can we apply one Autoscaling policy on multiple Dataproc

clusters?

4. What are the ways to configure Autoscaling on a Dataproc

cluster?

Answers

1. No, you can either set preemptible or non-preemptible, but

not both.

2. No, machine type has to be always same.

3. Yes, one Autoscaling policy can be applied to multiple

clusters.

4. Multiple ways - Google Client Libraires, gRPC to write custom

library, REST API, GCloud command and UI console.

CHAPTER 14

Scaling Google Dataflow

Introduction

Google Cloud Platform Dataflow is a platform on which you

can execute Apache Beam (an open-source distributed

computing framework) pipelines. Apache Beam provides

constructs to chunk and distributes datasets across multiple

machines, processes them parallelly, and aggregates the

result. An execution platform like Dataflow supports these

constructs infrastructurally and facilitates actual execution

over a cluster of machines. A beam pipeline is supported by

multiple other runners such as Spark Runner, Apache Flink,

Apache Samza, Apache Nemo, Hazzlecast Jet, and so on.

If you see closely, when we talk about scaling up such a

distributed system, there are two main areas of concern.

One is Horizontal scaling, that is, increasing the number of

virtual machines/threads, that are reading and processing a

chunk of data. A smaller chunk of data supplemented with a

thread to process each small chunk, speeds up the data

processing. The more optimal is the data chunk and parallel

threads availability, the better is the throughput of the

system.

The second concern is to shuffle the data at one machine,

and to aggregate the results of processing that took place

on multiple machines. To effectively scale a system, you will

have to take care of the preceding two concerns, and once

that is done, the time taken to process the data will become

a function of infrastructure, that is, the moment SLAs are

breached, scale up will be done. When we talk about scaling

the Apache Beam pipeline running on Dataflow runner,

scaling essentially means how Dataflow handles the aspects

of multiple worker nodes, related optimizations, and

shuffling of data.

Structure

In this chapter, we will discuss the following topics:

Introduction to Dataflow

Dataflow autotuning

Horizontal autoscaling

▪ Scaling Dataflow for batch jobs

▪ Scaling Dataflow for streaming jobs

Vertical auto scaling

Dynamic work rebalancing

Autoscaling algorithms

Scaling and Dataflow Prime right fitting

Limiting max nodes

Scaling the persistent disk

Optimizing data shuffle using Dataflow shuffle

Objectives

After studying this chapter, you will understand the basics of

Dataflow, that is, concepts and infrastructural footprints of a

Dataflow job. This understanding will eventually help you in

appreciating the concepts behind scaling (horizontal and

vertical) of the data flow job. Dataflow supports both

streaming and batch workloads written in Apache Beam.

This chapter also covers the strategies to optimize stages

like the shuffle phase, and to effectively auto-scale to

hundreds of machines. This will help reduce the chokes in

the system by effectively managing the movement of data

across the network.

Introduction to Dataflow

As discussed, Dataflow is just a platform (one option among

many supported platforms) on which you can execute

Apache Beam pipelines. Management of these execution

platforms bring along with it, a lot of management and

maintenance tasks for the IT teams. Those who had ever

worked on on-premises Hadoop cluster will know the

cumbersome day to day activity involved in managing a

cluster for distributed computing. Nodes are expected to go

up and down, network is expected to face glitches and

many other runs time issues. However, the application is

expected to process huge volumes of data with business

SLAs. The expectation from any other processing framework

is also similar. Obviously, greater the number of glitches,

slower will be the time taken in processing.

GCP Dataflow abstracts away the complete cluster

management dynamics from the IT teams. The engineering

team can then concentrate on the business logic using

Beam constructs, without bothering about anything related

to the running of the logic, involving huge datasets on a

cluster of machines. The only protocol Engineers must

adhere to, is following Beam constructs while writing the

business logic. The granular responsibilities and reliability

aspects will be taken care of by GCP Dataflow. Dataflow

supports serverless architecture, meaning that there is no

infrastructure involved when you are not processing any

data. Hence, it becomes a very cost optimal solution to

handle and process Bigdata.

In Apache beam, there are not many differences between

writing a processing logic for batch, versus writing logic for

streaming. Dataflow too offers a similar ease between two

approaches. You can pretty much manage the batch job

almost in the same manner as streaming job.

Apache Beam pipelines

Before you jump into analyzing a small word count problem

using Dataflow, let us have a look at some key concepts and

terminologies involved with an Apache Beam pipeline code.

You are going to investigate a high-level container (a

pipeline), data flowing through the pipeline (PCollections),

and manipulation of data(using transforms). Consider Figure

14.1:

Figure 14.1: A Dataflow Pipeline

Refer to the serialized points as follows:

1. Sources: A beam pipeline can read data from a wide

variety of sources. Different runners support different

options. For example, Spark runner supports Hadoop file

system as a source. Similarly, Dataflow supports a wide

variety of connectors to connect to sources supported in

GCP. The most famous ones are Cloud Storage, Big

Query, and Pub-Sub.

2. Input Data: When the data stored in sources are read

via Beam connectors in memory, it is known as input

data. Beam represents the in-memory data in the form

of PCollections. PCollections are data structures on

which you can easily apply transformations.

3. Transformations: Transformations are first-class

functions that contain the business logic to process the

data.

4. Intermediate Data - After applying a business logic

(transformation) on a row of data (an item in

PCollections), the output is a PCollections, again known

as intermediate data.

5. The intermediate data could again be used as input to a

transformation.

6. Output Data: If all the business logic is represented

and applied to a series of transformations, and we got

the result, it is known as Output data.

7. Sinks: The output data must persist in a data storage

solution. As was the case with sources, different

platforms provide different sinks. A pipeline running on

Dataflow can push the out-put data to a wide variety of

well-supported sinks such as Cloud Storage, Big Query,

Big Table, and so on.

For information on how to author a pipeline in Apache beam,

please refer to the official documentation:

https://beam.apache.org/documentation

Not all runners (Dataflow and spark), provide support for all

the constructs of Beam. For identifying the different

capabilities and their comparative analysis, visit the given

link:

https://beam.apache.org/documentation/runners/cap

ability-matrix/

Those who are new to Beam and had never written a

pipeline, please go through the official “Hello World”

example of distributed computing, that is, Word Count on

the beam website.

Wordcount Dataflow job

Once you are ready with code in Apache beam, you have to

compile that code using the Dataflow libraries and then

provide the infrastructure level parameters for execution.

For example, you can execute the preceding generic beam

pipeline code to a Dataflow code, using the following

command:

https://beam.apache.org/documentation
https://beam.apache.org/documentation/runners/capability-matrix/

mvn compile exec:java -

Dexec.mainClass=org.apache.beam.examples.WordCount \

-Dexec.args=”–runner=DataflowRunner –

gcpTempLocation=gs://GCS_BUCKET/tmp \

--project=YOUR_PROJECT –region=GCE_REGION \

--inputFile=gs://apache-beam-samples/hakespeare/* --

output=gs://YOUR_GCS_BUCKET/counts” \

-Pdataflow-runner

If you view the preceding command, the section in bold

represents properties related to the execution of the beam

code on Dataflow. Since we configured the Dataflow-runner,

these bold sections are properties that configure the

Dataflow runner. Each runner has its own set of properties.

For example, the preceding command in case of spark

runner now becomes:

mvn compile exec:java -

Dexec.mainClass=org.apache.beam.examples.WordCount \

-Dexec.args=”--runner=SparkRunner --inputFile=pom.xml --

output=counts” -Pspark-runner

So, if we summarize running an Apache beam code on the

Dataflow platform, it involves the following steps:

1. Build the beam code with Dataflow libraries.

2. Mention the runner as a Dataflow runner.

3. Provide the properties to Dataflow runner options

specific to the platform.

NOTE: Once the responsibility of executing the code

is taken by the Dataflow runner, the complete

responsibility to spin up machines, attach persistent

disks, and so on, becomes the responsibility of

Dataflow. Any optimization on the Dataflow platform

will be automatically enabled under the hood.

In the subsequent sections of the chapter, you will observe

instantiating Dataflow runner class with proper attributes.

This instantiation will configure the autoscaling behavior of

the Dataflow job. Autoscaling, class of machines, and

optimizations are all just configurations mentioned in the

Dataflow Runner class.

When a pipeline is submitted to the Dataflow platform, the

Dataflow platform creates an execution plan. If the pipeline

is valid, a successful plan is created. This plan at first is

unoptimized and the Dataflow after successfully analyzing

the structure of the pipeline and creating an execution

graph, performs optimizations under the hood. Two such

optimizations are as follows.

Fusion optimization

In this stage, Dataflow fuses multiple steps or

transformations of your pipeline, into one step. It results in

not materializing all the intermediate Pcollections in the

pipeline, since materializing each PCollections could be

costly in terms of memory and processing overhead.

Combine optimizations

An operation like GroupByKey, CoGroupByKey, and Combine,

involved a data shuffle, resulting in bringing the data with

the same key to one worker. This optimization tries to

combine and aggregate data locally on a worker node

before starting the data shuffle.

Along with optimizations, the Dataflow service offers some

advancements and customizations in different problematic

areas. By problematic, it means that these areas were

probably the ones where the jobs did not have an efficient

strategy, which Dataflow did now. Thus, the result is a very

efficient mechanism to handle complex areas in distributed

pipelines.

Dataflow Shuffle service

Operations like GroupByKey, and CoGroupByKey combine involved

data shuffle, resulting in bringing the data with the same

key to one worker. Before shuffle service, this responsibility

was handed by worker nodes, which used to consume CPU

cores, memory, and persistent disk to accomplish this.

Dataflow service is a managed service by Dataflow, which

moves the shuffle operation out of the worker VMs to a

Dataflow managed backend service.

To activate this feature in your pipeline, mention the

following parameter while triggering a job:

--experiments=shuffle_mode=service

Dataflow streaming engine

Streaming applications need to shuffle data and store time

window states. Cloud Dataflow historically performed these

operations on worker virtual machines and used persistent

disks to state states and store temporary data during the

shuffle. Consider Figure 14.2:

Figure 14.2: Streaming pipeline with and without Streaming Engine

This figure represents the scenario where the streaming

engine is not used and hence the responsibility of

maintaining states and shuffling data lies with the worker

node. The responsibility to maintain states and temporary

data is handed over to a backend service by Dataflow,

known as streaming engine. The streaming engine moves

the operation of shuffle to a Dataflow backend service,

leading to the following improvements:

Reduced usage of resources on worker VMs. Streaming

works best with small VMs (n1-standard-2 or n1-standard-

4) and does not need big persistent disk space.

Easily adaptable to spikes in data. It supports granular

scaling as worker node CPU consumption will not be

spiked due to shuffle stages.

Dataflow Prime

Dataflow is a data processing platform for your Apache

Beam code. The Dataflow platform had some shortcomings

mainly due to cohesive computation and state maintenance

of job states. Dataflow Prime is an improvement over

Dataflow, which segregates the data processing

infrastructure (compute) and state-separated architecture. It

also has features that improve efficiency, productivity, and

scalability. Dataflow Prime brings to the table the following

benefits:

Vertical scaling of worker memory

Right fitting of infrastructure

Better recommendations of configuration parameters

Smart visualizations of pipelines

The features Job Visualizer, Smart Recommendations, and

Data Pipelines are also supported for non-Dataflow Prime

jobs.

Configuring infrastructure

The preceding Dataflow job used the default values for

worker infrastructural components. As the engineering

team, it is vital to understand the nature of your application

and configure them on per need basis. Among multiple such

components, a few key Dataflow worker properties which

could be optimized while deploying the pipeline are as

follows.

Disk size

By default, the disk size for batch jobs is 250 GB and for

streaming jobs, it is 400 GB. If your use case is not writing

any data to disk and mostly processing the data in memory,

this disk space is wasted. The recommendation is to run the

job by progressively reducing the disk space to reach an

optimal level.

You can do this by either setting the value in pipeline

options or by just mentioning the following fragment in the

Dataflow job trigger command.

--diskSizeGb=30

Machine type

The default machine that a Dataflow job uses is n1 machine

type, and these machine types generally suffice all types of

purpose. However, in case of need for a powerful CPU or

high RAM, it is recommended to select the right machine

type for your job to optimally run the workflow. You can use

the default machines provided by GCP or can even mention

a custom machine type. In custom machine type, you can

use accelerators as well.

You can easily configure the machine type either as pipeline

options in code, or by simply passing the following fragment

while deploying a Dataflow pipeline:

--workerMachineType=custom-8-7424

The preceding fragment will spin up VMs with 8 cores and

7424 MB RAM.

Disabling public IPs

By default, Dataflow service not only assigns private IP but

public IP as well, to your worker VMs that are used in

Dataflow. Generally, assigning public IPs is not needed for

worker VMs. You can switch it off by passing the following

fragment while creating a Dataflow template:

--usePublicIps=false

Selecting right regions

It is recommended to run your Dataflow worker nodes in the

same region where your source and sink reside. This

reduces the cross-region movement of data, which not only

reduces cost but also reduces the time taken to bring data

into the memory of the Dataflow job.

Set the region value while deploying a Dataflow job.

--region=europe-west1

The preceding command sets the region value to Europe-

west1.

Dataflow job lifecycle

When a Dataflow pipeline is triggered, Dataflow generates

an execution graph (an execution plan), which includes a

complete plan of how each transformation and other

processing functions will run. For example, a business logic

not written in the DoFn object will run on the machine that

runs the pipeline. However, a business logic written inside

the DoFN object, is distributed across worker nodes. This is

just one example of multiple other phases that a Dataflow

job has to go through, before actually starting the execution.

These phases are the Dataflow pipeline lifecycle stages. We

are going to discuss four such stages.

Distribution and parallelization

Dataflow Service distributes and parallelizes the processing

logic among the workers. Anything processing logic written

in a ParDo transform, will result in the distribution of

processing on data across multiple worker nodes. If the

processing of any of the distributed processing fails,

Dataflow makes sure that it reruns the failed part.

Execution graph

Dataflow creates a directed acyclic graph of steps that

depicts the pipeline. This is the complete execution plan of a

pipeline running on multiple machines. The graph is known

as the pipeline execution graph.

Combining optimizations

Google Dataflow observes the complete pipeline and tries to

merge multiple steps into one step. This not only reduces

the time of execution, but also reduces the compute,

memory, and network requirements for running a job. When

constructs like CoGroupByKey and GroupByKey are involved,

Dataflow tries to locally combine the data before

distributing them across worker nodes for further

processing.

Fusion optimization

Once the complete execution plan is ready, Dataflow might

modify the graph to execute optimizations. Such

transformations include combining multiple transformations

into one step and hence resulting in a more optimized

pipeline execution. This brings us to the fact that with

Fusion optimizations, it does not matter in which order the

instructions had been passed to a Dataflow job. The

optimization phase will ultimately result in an optimized run

of the pipeline.

Dataflow autotuning

Dataflow service contains multiple autotuning features

which can optimize a running Dataflow job on the fly. In this

section, you will look into the three types (horizontal,

vertical, and dynamic work rebalancing) of autoscaling

provided in the Dataflow.

Horizontal autoscaling

Horizontal scaling, when enabled automatically, chooses an

appropriate number of worker machines to run a job. Let us

assume that there are 3 phases in your Dataflow job. In

such a case, the number of worker machines for each phase

could be different, and this automatic addition of machines

per phase is taken by Dataflow. There could be a few phases

in the pipeline which are computationally intensive when

compared to other phases and in those situations, Dataflow

can automatically spin up more machines for a phase. Once

the load decreases, these machines are automatically

teared down.

Horizontal scaling is enabled by default on all streaming and

batch jobs. You can disable it by using the following flag

while triggering a pipeline:

--autoscalingAlgorithm=NONE

If you disable autoscaling, the number of workers assigned

will be 3, by default. In case you want to modify the number

of workers, specify the following fragment while triggering a

pipeline:

--numWorkers = 5

When horizontal scaling is enabled, the user has no control

over the number of worker nodes assigned to each of the

phases. However, since the number of worker machines can

become very high in number, it is always recommended to

give an upper limit to the number of worker machines that

can be scaled up. For batch jobs, the default value for max

worker machines is 1000 and for streaming jobs, the max

number of machines is 100.

Users can override these default configurations by using the

following fragment in the trigger pipeline command:

--maxNumWorkers = MAX_NUMBER_WORKER

MAX_NUMBER_WORKER is the number of worker machines that the

user wants to allow the Dataflow job to scale up to.

Dataflow job scales are based on the amount of parallelism

in your pipeline. Parallelism of the pipeline is the total

number of threads that process data most efficiently at any

given time.

Scaling Dataflow for batch jobs

In the case of batch workloads, Dataflow tries to identify the

number of worker machines for each stage. The number of

worker machines depends on the amount of data being

processed via stage as well as the stage throughput. Based

on the two parameters, Dataflow evaluates the number of

worker machines needed to process data and scales

up/down accordingly.

The relationship between the amount of work and the

number of workers shows a sub-linear relationship. Meaning

if there are two data jobs, one with x load and the other with

2x load, then the number of worker machines in case of 2x

will not be 2 times of job with x load.

A Dataflow job scales up or down based on the following

conditions:

Worker VMs will be released/torn down if the average

CPU usage is below 5%.

The amount of parallelism that can be achieved

depends on the type of input data (zero parallelisms in

case of non-splitable formats of input), as well as the

design of the pipeline.

Scaling Dataflow for streaming jobs

In the case of a streaming pipeline with horizontal scaling

enabled, Dataflow adapts to workload changes by scaling

up/down the number of worker machines per phase.

Another aspect that contributes to scaling up/down is

resource utilization. Dataflow calculates a backlog time.

Backlog time is calculated based on the number of bytes left

to process from the input source and the throughput of the

system. A pipeline is called backlogged when this backlog

time remains above 15 seconds. Based on the value of

backlog time, the Dataflow service decides to scale up and

down. The conditions for the same are as follows:

Scale-up

If a streaming pipeline remains backlogged, with average

CPU utilization of more than 20%, for more than a couple of

minutes, Dataflow scales up. Dataflow will clear the backlog

after 150 seconds of scaling up, assuming throughput

remains constant in the whole process.

Scale-down

If the backlog is lower than 10 seconds and the average CPU

utilization is less than 75% for approximately 2 minutes, the

Dataflow scales down. After the scale-down activity, there is

an average of 75% CPU utilization for workers.

No scaling

No backlog and average CPU utilization of 75% or greater,

results in no scale down. On the contrary, the CPU usage of

20% or less with no backlog, means no scale up.

Predictive scaling

The streaming engine uses a timer backlog to enable

predictive autoscaling. Streams of data mean small discrete

datasets corresponding to a time window. These discreet

periods are known as windows. It could happen that the

streaming engine is falling short in terms of processing, that

is, let us say the expectation was to finish processing 100

items in a window, but 10 got missed out. In such a case,

the 10 missed out ones will become part of the new window,

which is expected to process 10 (from the last window) and

100 (an additional record) in next window. Hence Dataflow

can increase the number of worker instances to increase, to

cater to 110 records.

Horizontal scaling of streaming pipeline

Autoscaling

For streaming jobs using the streaming engine, autoscaling

is enabled by default. For jobs not using streaming engine,

you can enable autoscaling by specifying the following

execution parameter while triggering pipeline run:

--autoscalingAlgorithm=THROUGHPUT_BASED

--maxNumWorkers=10

The preceding execution parameter will assign the

autoscaling algorithm to be THROUGHPUT_BASED, with a

maximum number of workers to be equal to 10. Make sure

while updating the pipeline with an increased maximum

number of nodes, and do not forget to mention the

algorithm again. Otherwise, it will default to no autoscaling.

NOTE: For streaming jobs not using a streaming

pipeline, the minimum number of nodes is 1/15th of

the maximum number of nodes.

Manual scaling

You can configure a streaming pipeline to scale up and down

manually. For this, you have to configure two parameters:

Set --maxNumWorkers which is equal to the number of

worker nodes needed to handle the peak load of your

application.

Set --numWorkers to configure the number of worker

nodes and pipeline to be started with.

NOTE: You need to be very careful while selecting

the value for maxNumWorker. maxNumWorker

configures the maximum number of worker nodes

that a Dataflow job could scale up to. However, this

value also configures the number of persistent

disks. Each worker node needs one persistent disk

for execution. When the system scales up or down,

the persistent disk remains as it is, meaning you will

be paying for the persistent disk even when you are

not using it. A low value of maxNumWorker means a

lower number of persistent disks. A Dataflow worker

node can scale max up to the number of persistent

disks, as one disk is needed per worker.

Vertical auto scaling

Vertical autoscaling allows Dataflow to dynamically scale up

or down the memory configured to worker nodes. This helps

the job to cater to errors such as out-of-memory errors and

to improve efficiency as Dataflow does log of in-memory

processing. Dataflow monitors the pipeline and identifies

worker nodes choking due to lack of memory or exceeding

available memory, and then replaces that worker node with

a new worker node.

To leverage this feature, you must enable Dataflow Prime.

Dataflow Prime enables automated and optimized resource

management, reduced operational cost and improved

monitoring capabilities.

The steps which will enable this feature for your pipeline are

as follows:

Enable the Cloud Autoscaling API. Dataprime uses Cloud

autoscaling API for automatic scaling of memory.

Enable Prime in your pipeline options. You can do this

programmatically or by just passing the parameter

while triggering a Dataflow job.

--DataflowServiceOptions=enable_prime

Note: No code changes are needed in the Dataflow

code, which was previously running without this

feature.

Once the preceding two steps are down, it is time to enable

vertical autoscaling on memory. This could be done by

including the following key-value pair in the Dataflow job

trigger command:

--experiments=enable_vertical_memory_autoscaling

Vertical scaling takes place by replacing existing workers

with bigger better new workers. It is recommended to use a

custom container to improve latency arising due to transfer

of load, from old to the new worker. For details to configure

custom images in Dataflow, please read-

https://cloud.google.com/Dataflow/docs/guides/using-

custom-containers

A few points to be kept in mind, are as follows:

Only streaming jobs can be vertically scaled.

Only the memory attached to the worker nodes can be

scaled up vertically.

By default, the memory range can lie in between 6 GiB

to 16 GiB. When using GPUs, the memory range is 12

GiB to 24 GiB. These upper and lower limits can be

changed by giving resource hints.

Dynamic work rebalancing

This feature allows Dataflow jobs to dynamically re-partition

work based on run time situations. These conditions could

be:

1. Unbalanced work assignments.

2. Workers taking longer than normal to finish.

3. Workers finish faster than expected.

Dataflow automatically identifies these situations and

dynamically reassigns work to underused workers to

decrease the overall time of completion.

Dynamic load balancing process of work happens when the

pipeline is processing some data in parallel – reading data

from a source and creating Pcollections, or while working on

the result of some intermediate data shuffle operation

(GroupByKey). In case a lot of steps in your Dataflow job are

fused, there will be fewer Pcollections in the job, and

dynamic load balancing will be restricted to the number of

elements in the materialized PCollections. To apply this

dynamic load balancing to particular PCollections in the

pipeline, you can prevent fusion to ensure dynamic

parallelism.

Dynamic load balancing cannot be applied at the record

level, that is, if one of your data records is taking time to

process, it will still delay the overall job. Dataflow will not try

to rebalance the processing associated with a record.

Autoscaling algorithms

In Dataflow, there are three autoscaling modes available. A

few of these are also used in the preceding sections. These

autoscaling modes are as follows:

NONE

By specifying the autoscaling algorithm as NONE, you are

telling the Dataflow pipeline to disable scaling. In other

words, you are telling the Dataflow engine to not auto-scale

the worker pool. Your pipeline will only have a fixed number

of workers running all the time, resulting in over-utilized or

under-utilized infrastructure often. By default, the number of

workers is 3; use the parameter ‘numWorker’ to explicitly set it

to a specific value.

BASIC

In this strategy, the number of workers becomes equal to

the maxNumWorkers, until the job completes. This is deprecated

now.

THROUGHPUT_BASED

This strategy when specified, is a signal to the Dataflow job

to enable autoscaling. Autoscaling means you start with a

certain number of worker nodes, although you can scale up

to a certain higher number under peak loads. The strategy

auto-scales the worker pool based on throughput (up to

maxNumWorker).

The definition of throughput is different as per different

types of pipelines. For example, a streaming pipeline is

based on the number of new incoming records, plus the

number of records left out in the last processing, combined

with the current capability of processing, to identify the right

number of worker nodes. In the case of a batch pipeline, it

depends on average CPU utilization.

Be it streaming or batch, the intention is to utilize the

assigned resources to the max possible level and reduce the

time of processing.

Scaling and Dataflow Prime right

fitting

Dataflow provides the capability to support horizontal as

well as vertical scaling. Both flavours of scaling are applied

to worker nodes. With Dataprime, you do not need to

specify the number, size, and shape of your worker nodes.

Dataprime Right fitting feature uses resource hints to

customize worker nodes of a pipeline. You can apply this to

the complete pipeline, as well as customize individual steps

of the pipeline.

The facility to apply infra and scaling configurations at the

pipeline step level increases flexibility and capability, in

addition to benefitting by potential cost savings. You can

easily apply a higher grade of computing for compute-

intensive steps and a better memory configuration for

memory-intensive steps.

For a Dataflow job to resource hints, it is vital to use Apache

Beam 2.30.0 or later. The following resource hints are

available:

min_ram= “numberOfGB”

This is the minimum GB of RAM to allocate to workers.

Dataflow Prime uses this configuration, when allocating

value to new workers (horizontal scaling) or existing

workers (vertical scaling). This is the memory Dataflow

and it is going to apply per node and not per CPU. For

example, you can configure min_ram=20GB, such that the

Dataflow will set the worker node memory to be 20 GB

distributed across all the vCPUs.

accelerator=”type:type;count:number;configuration-options”

This property expects value in format of the GPU type,

number of GPUs, and GPU configuration options to use,

separated by a semi colon. This user-supplied

configuration helps the user to set the base value of

infrastructure, to compute the power of each worker

node. When a scaling up happens, the computing power

will increase in a discreet amount of these values.

You can configure the resource using the following

parameters while triggering a pipeline:

--resource_hints=min_ram=numberGB \

--resource_hints=accelerator=”type:type;count:number;install-

nvidia-driver”

You can configure them programmatically as well.

Limiting max nodes

By default, machine type for batch job is n1-standard-1; for

streaming engine enabled job, it is n1-standard-2 and default

machine type of non-streaming engine jobs are n1-standard-

4. Hence, while using default machine types, a Dataflow

service can scale up to maximum of 4000 cores per job. If

your use case needs a larger machine, you can select a

larger machine type.

To allocate additional memory, you can opt for custom

machine type with extended memory. For example, custom-4-

15360-ext is an n1 machine type with 4 CPUs and 15 GB of

memory. Dataflow identifies the number of worker threads

per worker VM, by looking at the number of cores in a VM. A

memory intensive workload can use a custom VM with lower

cores and high memory assigned, per CPU leading high

memory, per worker thread.

Dataflow billing is done by a number of vCPUs and GB of

memory in workers. Billing is independent of the machine

type. However, a single Dataflow job generally never

suffices to all business use cases. When you have multiple

Dataflow jobs, it is always advisable to configure a

maximum limit per Dataflow job, or else one Dataflow job

can really start consuming vCPU at a level that the other

Dataflow jobs start starving for infrastructure. As a best

practice, make sure that you have sufficient quota in your

project, enabled to successfully tackle cumulative max

scaling of all your workloads, because that is the worst-case

scenario when each application scales up to maximum.

Scaling the persistent disk

Dataflow job attaches at least one persistent disk per

instance. The default values are as follows:

The default disk size for batch jobs is 250 GB and for

streaming pipelines, it is 400 GB.

The disk size for Dataflow shuffle batch pipelines is 25

GB.

Disk size for streaming engine streaming pipelines is 30

GB.

When you decide upon the configuration of autoscaling of

your Dataflow jobs, do take into consideration the

minimum/default needs of each of your Dataflow jobs. You

need to make sure that there is a sufficient quota of

persistent disks available for the Dataflow jobs to execute.

Optimizing data shuffle using

Dataflow shuffle

Dataflow transforms like GroupByKey, CoGroupByKey and Combine

require a lot of data to be shuffled, so that data of the key

comes together for aggregation. This data shuffle

historically has been the choking point of all distributed

applications if not done correctly. Dataflow’s Shuffle

operation partitions and groups data by key in an efficient,

fault-tolerant, and scalable manner. This is available only for

batch pipelines and it moves the shuffle operation out of the

worker VM and into the Dataflow service backend.

The use of Dataflow shuffle service facilitates the following

aspects:

Reduction in CPU and memory, and persistent disk

usage on worker VMs.

Faster execution time.

Efficient horizontal scaling as virtual machines are no

longer holding shuffle data and can be scaled down

easily.

For the majority of workloads, a job running using a data

flow shuffle is expected to be executing faster and incurring

lower costs, versus where the data shuffle is happening on

the worker VMs. There is a charge associated with using the

data shuffle service, but by using the service, the overall

cost is not expected to be different.

Dataflow shuffle service is also quota bound. When there is

an increase in the number of jobs using the Dataflow

service, make sure that you have sufficient shuffle slots

available to prevent starving for resources. In regions like

Europe-west1 and us-east1 there are 160 slots available, which

could easily shuffle 100 TB of data concurrently.

Conclusion

Dataflow is the serverless (and most cost-optimized) way to

handle your big data use case, which requires the

processing of TB and PB of data. When we talk about scaling

Dataflow, we are only talking about passing proper values to

configurations of the Dataflow runner. Dataflow along with

its custom optimizations (optimizations not provided by

other runners), tries to make Dataflow efficient and resilient.

Moreover, Dataflow has features like Fusion, Streaming, and

Dataflow Shuffle, all optimized to handle the workload with

huge datasets.

Any of the scaling changes related to Dataflow optimization

can generally be passed as arguments, while triggering the

pipeline. Hence, no business logic change is expected while

optimizing the execution environment.

Points to remember

Dataflow is a serverless runner platform (an execution

platform) to Apache Beam pipelines managed by GCP.

Dataflow provides multiple optimizations to tackle big

data use case problematic areas, making it an

extremely resilient and efficient system to host

workloads.

Dataflow jobs can scale to a very high number of worker

nodes, and such high numbers involve a lot of costs if

not configured well for scaling.

Dataflow provides good source and sinks options for

various GCP services like pub-sub, big query, cloud

storage, and so on.

Questions

1. Which of the following is NOT true about Dataflow

pipelines?

a. Dataflow pipelines are tied to Dataflow, and cannot

be run on any other runner.

b. Dataflow pipelines can consume data from other

Google Cloud services.

c. Dataflow pipelines can be programmed in Java,

Python and Go.

d. Dataflow pipelines use a unified programming

model, and can thus work both with streaming and

batch data sources.

2. You cannot configure a machine with custom compute

power for your Dataflow workers. True or False?

3. Batch jobs can undergo vertical scaling under

exceptional circumstances of memory consumption

going above 90%. True or False?

4. You need to make code changes to configure the

autoscaling options to you pipelines. True or False?

Answers

1. a. Dataflow pipelines are Apache beam pipelines, and

Dataflow is just a runner. So, the same pipeline could be

executed on other platforms like Spark.

2. False. You can configure compute and memory assigned

to each worker node.

3. False. Vertical scaling is only for streaming jobs.

4. False. You can do it programmatically, however, best

practice is to send parameters while triggering a job.

CHAPTER 15

Site Reliability Engineering

Introduction

The term Site Reliability Engineering (SRE), conceptualized by

Google Engineer Ben Treynor in 2003, aims to increase the

reliability of the sites and services that a team offers. According to

Treynor’s definition, “SRE is what happens when you ask a

software engineer to design an operations team.”

At the core, an SRE team is a group of software engineers who

build and implement software to maintain the reliability of

system/services.

Consider an example of a service: an online banking system that

ideally has hundreds of financial transactions happening every

second. If this service goes down frequently, it is considered is a

loss of business for the bank. A new role Site Reliability Engineer is

introduced in software industry, whose main tasks is to make sure

that the reliability of the system is maintained without an impact

on the velocity of new features rolling out.

In a traditional system, there were two parties. One was the

developer, whose aim was to build new features at a fast pace,

and the another was the Operator, whose intent was to deploy the

new features without compromising the stability of the system.

Because of the different intents, there was always a conflict

between the two teams. To resolve this, a new role of DevOps was

introduced. While DevOps culture did talk about deploying code

fast and in high frequencies, reliability and stability were not

generally given importance. In the DevOps team, you will not hear

about a persona whose responsibility is to ensure system

reliability. This is where the SRE came in.

At this point, you need to think about which actions can make a

system/services unreliable. The major reason behind this is the

change in platform, change in services themselves (new features),

infrastructure changes, and so on. The solution to this could be

that no changes be made or limiting the number of changes to the

system. However, that limits the business. Instead, we want to

write more code and develop new features quickly, making the

application better and thus, increasing business value. SRE tries to

automate the process of evaluation of the effects the changes will

have. Since this automation has no discussions with other teams

and no manual checks, it makes releasing the changes fast and

safe. In this chapter, you will look into how to build and deploy the

automation aspects of assessing the effectiveness of changes.

Structure

In this chapter, we will discuss the following topics:

Introduction to SRE process

Defining SLO, SLI and SLAs

Service monitoring using Google Cloud Monitoring

Selecting metrics for SLIs

Out of the box platform metrics

Log based metrics

Key SLIs

Setting SLO

Tracking error budgets

Creating alerts

Probes and uptime checks

Aggregating logs to set up cloud monitoring dashboard

Responsibilities of SRE

Incident management

Playbook maintenance

Drills

Automating SRE actions

Objectives

After studying this chapter, you will learn and understand the

basics of Site Reliability Engineering in general. You will learn in

detail how to build and host the SRE automation stack on the

Google Cloud Platform. You will investigate the ‘how’ of aspects

like selecting metrics, setting objectives, tracking, alerting, and so

on. In the last section, we will discuss more about the

responsibilities owned by SRE teams.

The chapter does not intend to make you an expert in SRE

practices, rather, this will make you an expert in handling the

infrastructure part of SRE. The right value allocation to metrics,

the frequencies of the run, and other aspects defining the

reliability of the system is out of the scope of this chapter. We will

also look into the aspects of scaling the stack as well as how the

tech stack behaves when the applications scale.

Introduction to SRE process

The SRE team’s primary task is to concentrate on engineering new

products and services by automating and scaling applications and

production environments. Even though SRE concentrates on

operational stability, it helps reduce the friction of handovers from

product development teams. When it comes to SRE, there are a

few core principles that each SRE team follows:

You cannot get away from failures; they are bound to happen.

However, you can learn from them.

Automate wherever it is possible, to minimize manual

works/reworks.

The SRE team and the engineering team work together to find

the issues that lead to system breaks. No blaming is involved.

Both parties are equally responsible for the proper running of

the system.

While a lot of effort could be spent on making the service

more reliable, it is important to put in the right amount of

effort that satisfies the end user of the service. Efforts saved

could be used elsewhere.

Defining a typical SRE process

There is no definition of what falls in the SRE process and what

does not. However, looking at various use cases, a typical SRE

process is more of a set of the best practices. Consider the Figure

15.1, which shows a very high-level responsibility for SRE:

Figure 15.1: SRE responsibility

These best practices include the following:

The SRE process involves monitoring data using some

monitoring tool like Datadog, Prometheus, Nagios, and so on,

to collect information from the system on how it is

performing. Automated alerts are used when an abnormality

is detected.

When something goes wrong, SRE teams manage and apply

the backup plan to deal with the issue and restore the

appropriate state. This backup plan is known as runbooks.

Performing retrospectives from incidents, so that the SRE

team learns and matures into better handlers of such issues

in the future.

By looking at an incident, the SRE team intends to identify the

impact on customers with SLIs and SLOs. This helps them to

frame responses about such mishaps in the best possible way.

SRE teams can easily facilitate and help in deciding how fast

the development team can move with releasing new features.

They utilize the error budgets to make the best decision for

the customers.

The preceding practices help the teams in releasing newly

developed software on production without impacting customers.

Each SRE team matures with time, learning from the type,

frequency, and cause of any issue, resulting in better handling of

unwanted situations for your clients.

Defining SLO, SLI and SLAs

SRE does automated evaluation of the reliability, by bringing in a

change in the system/services. In this section, we will learn about

the three most common terminology used in SRE worlds.

Service Level Objectives (SLO)

Availability is key to successful system/services. A system that is

not available cannot do what it is intended for, and by default, will

fail. Availability in terms of SRE means, service/system performing

the intended tasks. We define a numerical percentage, which is

the threshold target for availability. Under no circumstances, can

the service be below this amount of availability. This threshold is

known as Service Level Objective (SLO). All non-functional

requirements are defined with the intent of at least maintaining for

improving the SLO for the service.

It might look like it is best to keep the SLO at 100%, and thus we

all aim for that. However, to do so, there is a generally very high

cost associated. Not just the cost, but even the technical

complexity increases exponentially as we inch closer to 100%. The

rule of thumb is to define the lowest possible value that you can

get away with, for each service. Many teams implement periodic

downtime to prevent the service from being overly available. This

downtime of services can be beneficial in identifying the

inappropriate use of services by other services.

The value of this metric is usually decided in collaboration with

product owners and with the engineering team in advance. This

results in lesser confusion and conflicts in expectations in the

future.

Service Level Indicators (SLI)

We need to make sure we understand availability and we should

have clear numerical indicators for defining availability. How we do

that is not just by defining service level objectives, but Service

Level Indicators (SLI). SLIs are more often metric over time.

Example metrics could be to request latency, batch throughput in

case of batch systems, and failures per request. These metrics are

aggregated over time, and we typically apply a function like a

percentile or median. That is how we learn whether a single

number is good or bad. An example of a good Service Level

Indicator could be is the 99th percent latency, of the latency of

request over the last 5 minutes is 300 milliseconds. Another

example could be that the ratio of error requests to the total

number of requests over the last 5 minutes, is less than 1%.

These numbers aggregated over a longer time, let us say a year,

will tell for how much time the application was down. If the total

downtime comes out to be less than 9 hours over a year, it

corresponds to 99.9 percent availability.

Service Level Agreement (SLA)

This is a commitment between the service and the customer,

about how reliable the service/system is going to be for end users.

It is promised that the availability SLO will not go below this

number or else there will be a penalty of some kind.

Because of the penalties involved, the availability SLO in Service

Level Agreement (SLA) is a looser objective in comparison to

internal SLO. The teams should feel 100% confident in maintaining

this availability. You may have an agreement with a client that the

service will be available 99% of the time each month. You can

configure an internal SLO to be 99.9% and configure alerts when

this number is breached.

The calculation is as follows:

SLA with clients: 99% availability – 7.31 hours of acceptable

downtime per month.

SLO: 99.9% availability – 43.83 minutes of acceptable

downtime per month.

Safety buffer: 6.58 hours.

No time could be enough in case the service faces a major

disruption. However, the bucket of 6+ hours above between the

internal and external objective provides peace of mind when you

deploy.

An error budget is the maximum amount of time that a technical

system can fail without contractual consequences. In the

preceding example, the time of 43.83 minutes which is the

acceptable downtime per month, is also known as the error

budget.

Service monitoring using Google Cloud

Monitoring

In the subsequent sections, you will see all the SRE philosophies

discussed above, as actual technical components and how they

look in Google Cloud Platform (GCP). You will also see a few of

the concepts getting extended more as per the needs. This section

will give a quick insight into Google Cloud Monitoring. This hands-

on exercise will give you insights into how you can use cloud

monitoring in your projects. Google acquired StackDriver in the

year 2014 and since then, the whole suite of operations is coming

out very well. Cloud monitoring is built in the cloud console.

For this exercise, follow the given steps:

1. Create a small virtual machine with the name quickstart.

2. Install a web server.

3. Install a monitoring agent.

4. Create uptime check dashboards and extend for other

metrics.

5. Enhancing the basic monitoring configuration.

6. Simulate load and see patterns on pre-configured dashboards.

7. Creating an alerting policy.

Following are the in-depth details of aforementioned steps:

1. Creating a virtual machine.

a. Go to the GCP console | Compute Engine | Instance. Click New

Instance.

b. Now fill in the fields for your instance. In the Name field,

enter quickstart-monitoring.

c. In the Machine type field, select the smallest possible

configuration. This is just a demo application and the

performance of a machine is not what we are looking for.

d. Ensure that the Boot disk is configured for Debian

GNU/Linux.

e. In the firewall field, select both Allow HTTP traffic and

Allow HTTPS traffic.

f. Leave the default values for the rest of the fields.

g. If doing it from the UI is not possible, use GCloud

command “gcloud compute instances create” to create the

virtual machine.

2. Install an Apache Web server in the virtual machine.

a. Secure Socket Shell (SSH) into the virtual machine and

to install an Apache2 HTTP Server, run the following

command:

sudo apt-get install apache2 php7.0

b. Open the browser and open the URL

http://EXTERNAL_IP. EXTERNAL_IP is the external IP of the

virtual machine. This will open a page similar to Figure

15.2:

Figure 15.2: Apache2 Debian Default Page

3. Install the google monitoring agent.

a. Run these two commands to download and update

monitoring agent.

curl -sSO https://dl.google.com/cloudagents/add-google-

cloud-ops-agent-repo.sh

sudo bash add-google-cloud-ops-agent-repo.sh --also-install

You will get a message: “google-cloud-ops-agent

installation succeeded.”

4. With the environments set up done, you can now configure

cloud monitoring. For this, let us first configure uptime

check, that will monitor web service and will inform if it goes

down.

a. Go to the Cloud Monitoring | Uptime checks | Create Uptime

Checks. Create a new one, as shown in Figure 15.3:

Figure 15.3: Uptime checks

In the preceding Figure 15.3, look at the highlighted

sections. In the Target type of the uptime check, mention

the external IP of your virtual machine. Keep the rest of

configuration as it is. Click on Create.

Now let us configure dashboards for the uptime check

stats. To do the same, follow the given steps:

STEP 1: Go to Dashboards | Select the Metric as Uptime

Check URL | Uptime_check | Check Passed, as shown in the

Figure 15.4:

Figure 15.4: Configuring uptime

STEP 2: Add the filter. Label = check_id, comparison as “=”

and value equal to the uptime check which we created,

as shown in the following Figure 15.5:

Figure 15.5: Configuring uptime

STEP 3: You can repeat step number 2 any number of

times and various available metrics, out of the box. In our

case, we further extended the dashboard to track the

following metrics for the virtual machine (quickstart-vm) –

minimum CPU utilization, mean memory utilization and

mean memory usage. Refer to Figure 15.6:

Figure 15.6: Configuring uptime

5. Enhancing the basic monitoring configuration.

For the purpose of enhancing the basic monitoring

configuration, we were using the Ops agent with the following

configuration to update the web server. More information can

be seen at

https://cloud.google.com/logging/docs/agent/ops-

agent/third-party/apache. Please refer to the following

code:

logging:

receivers:

apache_access:

type: apache_access

apache_error:

type: apache_error

service:

pipelines:

apache:

receivers:

- apache_access

- apache_error

metrics:

receivers:

apache:

type: apache

service:

pipelines:

apache:

receivers:

- apache

Edit the file /etc/google-cloud-ops-agent/config.yaml with the

preceding configurations and restart the web server.

sudo service google-cloud-ops-agent restart

6. Simulate load and see patterns on pre-configured

dashboards.

Simulate the load by doing SSH in the virtual machine and

generating a load by using the following curl command.

timeout 180 bash -c -- ‘while true; do curl localhost; sleep 2 ;

done’

Go to Monitoring | Dashboard | Apache GCE Overview, and you will

see multiple charts in the dashboard, showcasing details of

the virtual machine running the Apache Webserver, as shown

in Figure 15.7:

Figure 15.7: Monitoring dashboard

7. Creating an alerting policy.

Let us first create a notification channel. Whenever the

conditions are met, an alert will be generated. For this, you

can use various options such as Slack, Email, SMS, Pager Duty

options and so on.

In this case, as an example, let us go ahead with email. Go to

Monitoring | Alerting | Edit Notifications channel, as shown in

Figure 15.8:

Figure 15.8: Alerting channel

As the last step of the exercise, let us go ahead and configure

the alerting. Go to Monitoring | Alerting, and create a policy.

STEP 1: Select a metric | VM instance | Active Metric Categories

List | Apache | Workload/apache.traffic, as shown in Figure 15.9:

Figure 15.9: Selecting metrics

STEP 2: In the Transform data pane, set rolling window as 2

minutes and rolling window function as rate.

STEP 3: In the Configure alert trigger pane, configure Alert

Trigger as Any time series violations, threshold position as

Above threshold and Threshold value as 1000.

STEP 4: In the Configure notifications and finalize alert

section, configure the notification channel with notification as

email, incident close duration as 10 minutes and the name of

alert policy as Apache traffic Exceeding threshold and create

the policy.

Refer to the following Figure 15.10:

Figure 15.10: Configuring alert

Regenerate the load again. After the load trigger completes,

an alert mail is generated, as shown in Figure 15.11:

Figure 15.11: Firing alert

In the preceding exercise, we investigated the dashboarding and

alerting capabilities of Google cloud monitoring. The same

approach can be replicated to other workloads, where the

application can emit metrics and these metrics can be grouped

over a period. The aggregated value can be plotted in a

dashboard, and we can generate alerts when the aggregated

value reached thresholds.

Selecting metrics for SLIs

In this section, we will look into the various Service Level Indicator

metrics that you ideally should track for an application. Service

monitoring and the SLO API enables us to manage your services

the way Google manages its services. The steps involved in this

activity are as follows:

1. Identifying metrics that can be used for service-level

indicators.

2. Using the SLI to set service level objectives for the SLI values.

3. Identifying risk by using the error budget implied by the SLO,

to handle risk in your application.

Let us discuss the first point in more detail. SLI is a quantifiable

measure of service reliability. There are two kinds of SLIs – SLIs

available out of the box from GCP, and custom SLIs. Let us see

how you can leverage both approaches.

Using the out of box SLI metrics

SLIs are represented as ratios or percentages of good events to

the total events. This helps us normalize various measures of

availability and set reliability targets in a uniform way across the

services. Generally, SLIs fall into two categories: request based

and window based.

A request based SLI is the measure of good requests to the total

requests. For example, the number of HTTP requests was

successful to the total request made in each time window.

Window-based SLI measures the fraction of time intervals during

which, service meets the threshold of reliability over a given time

window. Now there could be scenarios where we need to define

altogether new metrics for the SLIs. However, here we will discuss

the metrics made available by GCP out of the box. We will see an

example of Kubernetes workload. Kubernetes emits metrics that

could be used as SLIs. These metrics available are available out of

the box, that is, the moment to configure a Kubernetes cluster,

cloud monitoring will have the metrics available.

As an example, consider a hello world app deployed on Kubernetes

(refer to Chapter 6, Scaling Kubernetes). We will use a very simple

curl command to generate some loads continuously for 5 minutes.

Go to Monitoring |Services | Define service, as shown in Figure 15.12:

Figure 15.12: Out of Box SLI metrics

The moment you click on Define service, a pane opens with all

possible metrics in your project. Select an appropriate filter

(Kubernetes GKE service in this case), and click Submit.

Immediately a service is created with dashboards.

The preceding operation from UI console can also be accomplished

by REST APIs.

{

“name”: “projects/197402864353/services/ist:<PROJECT_ID>-location-

us-central1-quickstart-kubenrtes-cluster-default-kubernetes”,

«displayName”: “kubernetes request sli”,

«telemetry»: {

«resourceName»:

«//container.googleapis.com/projects/<PROJECT_ID>/locations/us-

central1/clusters/quickstart-kubenrtes-

cluster/k8s/namespaces/default/services/kubernetes”

},

«gkeService”: {

«projectId”: “<PROJECT_ID>”,

«location»: «us-central١»,

«clusterName”: “quickstart-kubenrtes-cluster”,

«namespaceName”: “default”,

«serviceName”: “kubernetes”

}

}

We have seen how to use platform metrics. Now in the next

section, we will dive deep into log-based metrics or custom

metrics.

Log based metrics

These are the cases when none of the out of box metrics work for

us. In such a scenario, we can use the log-based metrics. This

could be done by using cloud logging, cloud monitoring and

service monitoring. In the following exercise, you will see how to

create a metric for a REST API.

Consider the following cloud logging screen of a REST API, shown

in Figure 15.13. The API returns various http status codes of 2xx

and 4xx with the obvious meanings (highlighted in yellow). Please

refer to the following figure:

Figure 15.13: Out of Box SLI metrics

You can create a metric by clicking the option on the right top

(highlighted in orange). This will open a pane with the option to

start metric creation, as shown in Figure 15.14. Select the metric

type and assign a name to the metric. Please refer to the following

figure:

Figure 15.14: Log based metric

Assign a label name according to your wish, and then a label type

and the field name. Consider the following Figure 15.15. The

entries in the Label section counts the number of http request

status. Please refer to the following figure:

Figure 15.15: Log Based Metric

Let the system run for few minutes and once the metrics are

available in the metric dashboard, you can create the dashboard in

the Monitoring | Metric Explorer tab, as shown in Figure 15.16:

Figure 15.16: Log based metric dashboard

After the preceding step, we have to now create the step of

making the SLIs.

Key SLIs

Though the number and type of metric depends on your use case,

as there is no limit to how many metrics/SLI there can be, there

are three major categories of such Service Level Indicators that

are most widely used in industry. These are, availability, latency,

and correctness, and they are discussed as follows:

Availability

An extremely important SLI is availability, which is the fraction

of time the service was unusable. It can also be described as

the ratio of the number of successful responses, to the total

number of responses. Although various enterprises aim for

high value for this SLI, achieving 100% is near impossible, and

is expressed in terms of “nines” in availability percentage. For

example, the availability of 99.9% and 99.99% can be

referred to as three and four nines.

Latency

Most use cases consider request latencies, that is, how long it

takes to return with a response as key SLI. Sometimes client-

side latency is more often the metric that impacts the end

user. Nonetheless, sometimes it is only possible to measure

latency, as the non-measurable part is out of the boundary of

SLI calculation. For example, network slowness, or API

gateway latencies.

Correctness

Correctness is the measure of how correctly your application

is behaving within a given time. You must trigger a synthetic

workload at a periodic interval and check the outcome of the

processing of the workload with configured result

expectations.

Error Rate

Error rate is defined as the ratio of requests that errored out

to the total number of requests.

Data Freshness

In case of an update of data to a system, how quickly is the

update available across all queries? For example, if a

customer does a hotel booking and opts for a room, how

quickly is this information available to others so that they do

not book the same room again?

There are a few more SLIs such as throughput and durability,

which are self-explanatory. Although we can measure lots of such

metrics, it would be best if we do not have more than a handful of

SLIs to measure. It is best to stick to 4 or 5 SLIs that directly relate

to customer satisfaction. Good SLI ties with user experience, that

is, a low SLI will represent low customer satisfaction and a high

value represents more satisfied customers. If an SLI fails to

achieve that, there is no point in capturing and measuring that SLI.

Setting SLO

SLOs are the targeted SLI indicator values that the engineering

team intends to achieve. The time window due to the difference in

the numbers of SLA and SLO depends on the confidence of the

engineering team to resolve the error. For example, if the SLA is

99% (7.31 hours of acceptable downtime per month), SLO can be a

value such as 99.9% (43.83 minutes downtime per month), which

leaves a safety buffer of 6.58 hours. This number of 6.58 hours of

downtime depends on the engineering team’s inputs and if they

need more, the SLO (99.9%) could not be further increased, which

leaves us with lowering the value of SLA.

The given steps follow the complete SLO creation process:

1. Identify the critical user journeys and arrange them in order of

impact.

2. Identify which metrics could be used as SLOs to accurately

gauge the customer satisfaction.

3. Identify the SLO target goals and SLO measurement period.

4. Create the SLI, SLO and Error budgets on consoles.

5. Create alerts.

Point numbers 1, 2, and 3 are points where the whole engineering

team collaborates with Business Team to identify the numbers. In

this section, you will investigate how you will perform step 4 on

the examples which we had already seen in the chapter. For this,

we will use the log-based metrics example. Following are the steps

to configure an SLI and then an SLO.

Creating SLIs

To configure an SLI, follow the given steps:

1. Go to Monitoring | Services | Define service | Custom Service, and

name a service as Custom Log Based SLI, as shown in Figure

15.17:

Figure 15.17: Creating SLI

2. The first thing that we must select is a metric. The metrics

available out of the platform has pre-configured metrics of

availability and latency. However, since we are using custom

metrics, there is an option to configure your metric using the

other option. The second thing is configuration of weather;

this metric is going to be count based or window-based, as

shown in Figure 15.18:

Figure 15.18: Creating SLI

3. For selecting the metric for SLI, choose the

‘log_based_get_request’ metric as seen in Figure 15.19:

Figure 15.19: Creating SLI

Creating SLO

To configure a SLO, follow the given steps:

1. First you have to define the aggregation window of the SLI, as

shown in Figure 15.20:

Figure 15.20: Creating SLO

In the preceding Figure 15.20, you can see that we had used

period type as calendar, meaning absolute days. There is

another option to select a rolling window as well. Next, we

have defined period length, that is, in what time frame we will

club the numbers for percentage calculation. Finally, we

define the goal for SLO. Here we had given it as 50%. In the

real world use cases, it is much higher than 50%.

2. You can review the configurations done above in the json

format, and can download this json file for automation

purposes, that is, creating similar set up in a new

environment via pipelines. Refer to Figure 15.21:

Figure 15.21: Finalize and save SLO

Once you click Create SLO, the SLO will be created. As you can

see, various options of error budget, Number of fired alerts,

option for creating and alert appears, as shown in the

following Figure 15.22:

Figure 15.22: Final SLO screen

Tracking error budgets

In a software system, there are a lot of metrics that can be

tracked, including infrastructure monitoring, service monitoring,

and so on. The art of tracking lies in the fact of identifying the key

SLIs and setting appropriate SLOs, that is, tracking the metrics,

which really affect end-user journeys. For example, tracking CPU

usage as an SLI might not be a good idea; however, still tracking

them for the internal infrastructure team to tackle the need for

additional CPU, might be crucial for debugging purposes. Tracking

too many metrics will result in a noisy system, where there are

high chances that the risky problems may get missed simply

because of the number of metrics that you are tracking.

There are multiple ways to track, creating dashboards for metrics,

creating automatic alerting, and so on. In the case of SRE, you are

working on metrics that affect customer satisfaction. Thus, any

metric which can affect that becomes important and we want to

have sufficient bandwidth allowed by the system, for us to work

upon, before an issue starts impacting the customers.

The SLI, SLO, and SLA combination results in the definition of error

budgets. it is never ideal to utilize our complete error budget.

Meaning, if the error budget allows the service to be down for 7

hours (99.9% SLI and 99% SLA) in a month, it makes sense to

distribute these seven hours across the month, that is, 7/30 = .23

hours of the service being down every day. If the service is burning

the error budgets at more than .23 hours a day, there are high

chances of missing the SLA.

This rate becomes an important dimension to track and generate

alerts if the rate increases. It is of prime importance to investigate

the failures happening as early as possible, so that the SLAs are

not breached. There might be a situation when the resolution

might need multiple teams to react, and hence, it is key to start

working on these deviations early. As an SRE, the following aspects

should be very clearly defined for each SLA committed to the

customer:

A very well-created incident response plan and rehearsals to

recover from it. For example, if a Blob store location going

down results in your service going down, it is important to

have a well-defined plan for how this will be tackled. Not only

plan, it is also equally vital to perform that exercise at regular

intervals for the team to feel confident in the plan. These

regular activities are called SRE drills.

It is important to trigger alerts at the right time. For example,

there is no point in alerting when a 100% budget is

exhausted. Rather, alerts at 25%,50%,75%, and 90% could

help the teams to plan the resolution well and smoothly.

As far as possible, try to automate the actions. For example, if

the service is behaving slow in certain regions, create a few

instances in the backup region to make the process fast.

Rather than tracking everything, tracking the service level

indicators which determine meeting SLO and hence SLA, is the key

to success.

Creating alerts

You can generate alerts based on the exhaustion of your error

budget on SLOs. In this section, you will see how to generate alerts

based on different percentages (25%, 50%, and 75%) of

exhaustion of error budgets.

While configuring the alerts, you need to set a lookback

duration, which is a time window for which we are going to track

the error budget. Smaller lookback durations (fast burn scenario)

result in faster detection of issues, but with a caveat that the error

rate over the course of the day may result in over-alerting by the

system. Longer duration (slow burn) if not alerted may result in

exhaustion of the error budget before the end of the compliance

period.

The second parameter is the Burn Rate threshold, which is the

percentage of the percent budget burned. If the burn rate exceeds

the time window of Lookback duration, an incident is generated. A

good starting point for a fast-burn threshold policy is 10x the

baseline with a short (1 or 2 hour) lookback period. A good starting

point for a slow-burn threshold is 2x the baseline with a 24-hour

lookback period.

An example configuration could be a situation where the Lookback

duration is 24 hours (that is, 1440 minutes) and burn rate

threshold is 3.33. That is, in 24 hours, if the burn rate is above

3.33 percent, you burnt more than what was expected in a 30-day

month. This alert makes sense, since if this continues, the chance

of breaching SLA is high. Along with the preceding mandatory

parameters, you can set the optional parameter of the alert

notification channel, that is, how to inform the concerned team

about the incident.

You can also go ahead and optionally mention the steps which

could be taken when this kind of incident happens. This could be

as simple as just telling to inform a team XYZ about the incident,

to instruct some technical action to the SRE, as shown in Figure

15.23:

Figure 15.23: SLO alert screen

One good practice is to configure different levels of alerting

mechanism. For example, the preceding daily alert on per day

basis (fast burn) could be suited for the engineering team, but for

management, it will too much. Hence, you should ideally set up an

alert over larger lookback (slow burn) duration.

Probes and uptime checks

Testing specifies acceptable behaviour of an application with

known data, while monitoring specifies acceptable behaviour in

the condition of unknown user data. It might seem that the major

risks of both known and unknown are covered by testing and

monitoring defined for the system. Unfortunately, the risk is more

complicated. The known bad request should error out, and known

good requests should work. Implementing both as part of

integration tests is a good idea, as you can run the same tests

again and again when at the time of each release.

However, it makes sense to think about setting up such checks as

monitoring probes. It might seem that it is over-engineering to do

so and therefore, pointless to deploy such monitoring because the

exact check has been applied as integration tests. However, there

are good reasons to think like that, and they are as follows:

1. The release test most probably has wrapped the server with

the front end and fake back end.

2. The tests wrapped the release binary with a load balancing

frontend and separate scalable backend.

3. Front end and backends have different release cycles, and

there are high chances of these cycles being different.

Therefore, monitoring probes is a configuration that was not

tested. Probes should ideally never fail, but if they do, it means

that either the back end or front end is not consistent in release

and production environments. One can argue that there are more

sophisticated ways that provide better system observability.

However, probes are a lightweight way to determine what is

broken, by providing insights into if the service is reachable or not.

Probes give only two answers – available or not available. This

simple answer does not provide the overall health of the system,

but it does provide critical first-level insight – reachable or non-

reachable.

For any service involving request/response, reachability is a prime

prerequisite. Probes are tailor-made for this. For a reactive queue-

based service, the same rules do not hold. Services that are not

exposed to the client’s throughput and other system indicators are

a better indicator of system health.

Generally, in the real world, it is not one service but rather, a user

journey involving multiple services working together, which makes

sense for clients. Hence, rather than probing one service, a probe

at the complete user journey makes more sense. For example, let

us say we have a user journey, where we ingest some data. Then,

an example user journey could be as follows:

User is authenticated.

Ingestion process starts.

Records are saved properly.

Records are searchable and available for other systems.

Rather than triggering probes for individual services, it is wise to

trigger a probe for complete flow. You can configure synthetic data

ingestion, which has a dataset that matches all your probable

datasets expected to be ingested by this journey. This collection of

data sets will be used by the periodic trigger of the workflow

(probes) and the pass or fail of each of the preceding steps will be

checked. The automated trigger can happen via a scheduled job

on the orchestrator or cron job existing inside Kubernetes or even

by tools such as cloud probe. You can have an additional check of

how much time will this probe take, that is, (end time - start time).

If this is below a threshold, it means your application is scaling well

and in a predictable manner.

Triggering probes explicitly might not be a need in case of

situations where the user journey has explicitly been used by end

users. When the users are using the data, you can track the

aspects of your metrics on live data, and hence there is no need to

put an extra burden on the platform.

Consider the pictorial representation of the preceding user journey

as shown in Figure 15.24:

Figure 15.24: User journey

The complete user journey is broken into 4 stages, as shown in the

preceding figure. After completion of each stage, an entry is made

in cloud logging, as “stage”:”1”, which means that in the user

journey, stage 1 is completed successfully. You can go ahead and

create a metric on this log entry, the way we did for HTTP status

codes in the example under the section Log based metrics. On the

metrics, you can also create SLO and assign error budgets.

In the preceding example, the customer satisfaction will be met

only when we get stage 4 in the same count as stage 1, that is,

the entire user journey is getting completed successfully. If that is

not happening, you can easily count which stage has a problem

and try to fix it.

Aggregating logs to set up cloud

monitoring dashboard

In this section, you will not see something new. Rather, we will

discuss how we can create customized metrics and customized

dashboards. The GCP monitoring suite provides ways to aggregate

metrics based on various mathematical functions like mean,

average, and so on.

For instance, let us consider that you do have a use case to apply

a mathematical function that is not supported out of the box.

Another situation could be that you want to combine two different

metrics together and see the contribution of both your SLO and

SLA contributions. Assume that you have a scenario, where you

want to add two metrics of a virtual machine instance and create

dashboards for them. For combining the metrics, you can use

Monitoring Query Language (MQL).

Here is an example MQL:

fetch gce_instance

| { metric ‘compute.googleapis.com/instance/disk/read_bytes_count’

; metric ‘compute.googleapis.com/instance/disk/write_bytes_count’

}

| outer_join 0

| add

This Monitoring Query Language (MQL) adds the bytes count

for read and write.

Let us see how you can configure an available dashboard using

this MQL. Follow the given steps:

1. Go to Monitoring |Dashboards |Create Dashboards.

2. On the Create Dashboard screen, apply the configuration as

shown in Figure 15.25:

Figure 15.25: Using MQL

3. Select the option of MQL. In the MQL text box, mention the

preceding MQL code and see the chart on the right side. For

more details on MQL, please see more details -

https://cloud.google.com/monitoring/mql

Along with support of giving custom queries (MQL), GCP

monitoring also provides many chart options to create dashboards.

Different chart options are used to represent data in an intuitive

way.

Consider the following Figure 15.26. The yellow rectangle covers

the different chart options, and the pink rectangle configures the

layout. You can apply filter on the metrics coming in the dashboard

(orange). You can combine multiple charts into one dashboard, add

documentations and share them easily with other teams. Please

refer to the following figure:

Figure 15.26: Creating dashboards

For example, in the following Figure 15.27, you can see multiple

charts of different sizes and documentation created:

Figure 15.27: Dashboard of multiple charts

The dashboard design is created for not only the technical teams

but also for the management teams, that want to have a look at

metrics. The dashboard supported could be very easily shared.

Moreover, each of the charts could be converted to an alert chart,

and it could be ensured that alerts will be generated when the

metrics go above threshold values. This is primarily used in cases

when you want to get notified based on the value of some metrics.

For example, if the CPU usage is 90% for the last 5 minutes,

generate an alert. This alert will not make sense for SLI.

Responsibilities of SRE

In this last section of the chapter, the reader will acquire better

understanding of responsibilities performed by SRE teams.

Although we did talk about them in the previous section, we will

dive deep into this topic now.

Incident management

Although everybody wants their services to run without a hiccup,

practically speaking, they may fail or go down. When such an

unwanted incident happens over a continued overtime window, it

is known as an Incident. Though the primary aim of SRE is to

make sure that such situations do not occur, if they do happen,

how well they restore the system to normal, depends on the

capability of the SRE.

Resolving an incident means restoring the service to normal or

mitigating the impact of the issue. Managing incident means

coordinating the efforts of multiple teams efficiently and ensuring

effective communication between the engineering parties/teams.

The basic aim is to respond to an incident in a very structured way.

Incidents could be confusing and a well-thought-through strategy

of action when such incidents occur increases the time to recover.

To ensure the readiness of the plan and effectively apply the plan,

SRE team members lead, perform, and ensure the following

actions/best practices:

1. Prioritization: The SRE team identifies the service-creating

issue and may decide to shut down or restore the service,

making sure that they preserve sufficient information behind

the cause of the incident.

2. Preparations: The SRE team prepares for these unwanted

situations or incidents by properly documenting the incident

management process in advance, in collaboration with all the

participants in the incidents.

3. Managing incident resolution: When the indent occurs,

SRE team members manage the whole resolution activity.

Incidents are tough to resolve and might take many days as

well, and it might result in a few members’ emotional states

becoming cranky. They manage the environment so that your

team is moving continuously in the right direction of

resolution.

4. Periodic improvements: The SRE team periodically re-

evaluates the plan to improve it further and make it more

effective. The plan gets updated with learning from each

incident.

5. Drills: The SRE team performs drills where they synthetically

create an incident and situation of an incident, to measure the

effectiveness/correctness of the plan.

Playbook maintenance

The playbook contains high-level instructions on how to react to

alerts. It is important to keep in mind that this critical alert is just a

temporary thing and might fade away in some time. Playbooks

contain explanation about the why, how, and what of an alert, and

attach the severity of it. It also has steps written to resolve the

alert. Whenever an alert is generated, the playbook must be

updated with every incident, to make sure we document the

reason for the latest alerts.

The contents of playbooks can very easily go out of date, and

hence they need updates after every incident and reviews after

every major release. If you had created a playbook that contains a

lot of details, the frequency of change will also be high than if you

create a generic playbook. It depends on team to team; some like

to maintain lots of information and steps, meaning that they will

rely more on the playbook to handle the situation, rather than put

their mind onto it. On the other hand, it could contain just the

basic details, and the SRE who is working, puts his mind behind

analysing everything about an issue from scratch.

Drills

A drill is a periodic activity, where the SRE team synthetically tries

to replicate a failure scenario and take the planned action against

it. If after doing that activity, the team is able to restore back the

service completely, it is assumed to be a successful drill, or else

the drill is marked as failed. In case of a failed drill, introspection of

the process is needed and optionally review of the documents

(playbooks) available for correctness and effectiveness, is also

done.

Such drills help enterprises come up with Mean Time to

Recovery (MTTR) numbers for the end users. The time taken by

most of the drills is assumed to be the time that could be quoted

for MTTR.

Automating SRE actions

Till now in this chapter, we have investigated all the concepts and

their implementation via UI console. It was good for understanding

purpose, but when it comes to creating such dashboards, SLI, SLO

and so on, in a real software project, we need it in an automated

fashion. There are multiple ways in which this could be automated,

and a few common ones are as follows:

Cloud Monitoring REST API: The payload is a JSON payload

which can be easily downloaded and modified and committed

to a repo. The Continuous Integration and Continuous

Deployment (CI/CD) pipelines can change the environment

attributes and trigger the REST APIs.

Google Remote Procedure Call (gRPC): There are

monitoring libraires available in java and python. In case the

library is not available in the language of your choice, these

gRPC method could be used to develop one.

Terraform: Monitoring dashboards can be created via using

the Terraform. Terraform has the module for Google cloud

monitoring. For more details:

https://registry.terraform.io/providers/hashicorp/googl

e/latest/docs/resources/monitoring_dashboard

Conclusion

Google team is probably one of the first teams that started

thinking about processes like SRE. SRE is important to increase the

reliability of new features in your projects. GCP offers built-in

customizable logging, monitoring, and dashboarding tools such as

PaaS. GCP also offers a way to define SLO and error budgets as

well. You can easily configure multiple alerts as per the error

budget burn down. These offerings from Google are easily

customizable where you can override all the behaviours as per

your use cases.

SRE plays a role in not only day-to-day observing the deployments,

but they also play a key role in strategizing and planning the

situation of incidents. For this, they maintain a playbook that

contains details about an issue that can occur, and they practice

the decisions to measure the effectiveness of the plan by doing

periodic drills.

Points to remember

1. SRE ensures the reliability of the system in the midst of fast-

paced feature development.

2. GCP offers managed tool stack (PaaS) for all the possible SRE

needs.

3. GCP offers facilities like logging, monitoring, dashboarding,

and alerting features in the GCP operation suite. You do not

need to worry about the scalability of the stack as it is

completely auto-scalable and managed by GCP.

4. GCP monitoring provides a rich set of already created metrics.

However, there is no restriction on incorporating new use

cases.

5. The SRE team, apart from observing the system and resolving

critical alerts, plays a key role at the time of occurrence of

incidents.

6. The SRE team updates the playbook and performs drills to

define the Meantime To Recover for an application.

Questions

1. SLAs are decided after engineering teams and business

owners agree to an availability number. True or False?

2. How does GCP allow defining custom mathematical functions

for SLI calculation?

3. Working on a resolution of an incident is the responsibility of

SRE. True or False?

Answers

1. False. Ideally, a debate happens on SLO. If the service runs

over a period meeting SLO numbers, then we define the SLA

accordingly.

2. You can define custom functions using the Monitoring Query

language. Once the metrics are aggregated, create an SLI

then SLO, and configure alerts.

3. False. It is the responsibility of the complete team including

DevOps.

CHAPTER 16

SRE Use Cases

Introduction

Applications hosted on Google Cloud Platform (GCP) not

only take advantage of a highly robust and reliable

infrastructure for running the workloads, but they also have

the advantage of integration with the components of cloud

monitoring and cloud logging, which lets you easily manage

and develop the SRE framework for your application. GCP

provides services to host request-response and data

processing applications and describes how to leverage

monitoring metrics exposed by the application as Service

Level Indicators (SLI).

Structure

In this chapter, we will discuss the following topics:

GCP service grouping

SRE practices in the microservices world

SRE practices big data world

Objectives

After reading this chapter, you will be able to understand

and use the SLI metrics provided out of the box by GCP, for

request-response and data-intensive applications. This

chapter will bridge the gap between theory (discussed in

Chapter 15, Site Reliability Engineering) and real-world

scenarios (described in the current chapter). You have

already seen how to create custom SLI (not available out of

the box) using log-based metrics in the previous chapter.

GCP service grouping

Google cloud services and be grouped into the following

types:

Request response services

In this group of services, a user requests to do some tasks

and wait for the request to complete. The following GCP

offerings support this category:

App engine

Google Kubernetes engine

Cloud Run and Cloud Functions

Cloud end points

Data storage and retrieval services

This group contains offering from GCP which store and

retrieve data based on the user request and supports

appropriate user responses. The following GCP offerings

support this category:

Cloud big table

Cloud spanner

Datastore

Cloud storage

Data processing services

This group has offerings from GCP, which perform

processing on massive datasets. The following GCP offerings

support this category:

Google Dataflow

Google Dataproc

In the subsequent sections of this chapter, you will see all

the preceding groups of services in action, explained via the

two most widely used architecture – big data and

microservice. You will see a very high-level architecture of

both the use cases, sufficient enough to understand the SRE

stack available on Google Cloud Platform.

SRE practices in the microservices

world

Microservices is an architectural approach to developing

software, where the software is composed of small and

independent services that communicate over well-defined

APIs. These services are developed and managed by

separate teams, and each microservice caters to a very

specific role in the larger software package. Consider the

following Figure 16.1 which depicts an over simplified

example of microservice:

Figure 16.1: Simple microservice

Follow the numerical labelling in the figure with the

explanations given as follows:

1. An external user/client requested some work to be done

from the software system.

2. The request is received via an API gateway, which

decides which service to trigger. This selection of a

certain service could be based on the URL or some

property in the header of the requests.

3. This section represents a set of microservices – pricing,

image, and user details. These microservices have a

very specific purpose; for example, the pricing service

only deals with operations related to the pricing of a

product.

4. Microservices can interact among themselves to

orchestrate a complete user journey.

5. Each microservice has their own separate datastore.

This datastore could be of totally different technology

choices.

Let us repaint the generic picture featured in Figure 16.1,

with components specific to GCP in the following Figure

16.2:

Figure 16.2: Simple microservice using GCP

From the preceding figure, follow the labels a, b and c with

the following explanation:

a. Apigee is a Google-provided API gateway.

b. GCP provides multiple options to host microservices.

These are GKE, Cloud Function, Cloud Run, and App

Engine.

c. GCP provided options for storing data depending on the

nature of data – columnar vs. document vs. relational.

In the preceding microservices use case, the following SLIs

in Table 16.1 are the most common set of SLIs one can think

of:

SLI Description

Availability Whether the service was able to accept the user request.

Latency Time taken by service to accept a request and revert with

a response.

Throughput Number of requests handled concurrently by the system.

Success rate Number of requests handled by API successfully.

Error rate Number of requests that errored out by the API.

Table 16.1: Microservice SLIs

Now let us look at the implementation part of the preceding

SLIs and the strategy for defining Service Level Objective

(SLO) for each of the preceding SLIs.

Availability

Take pricing microservices as an example for the section.

Assume the pricing service is hosted on Google App Engine

and Cloud Spanner as the backend. The overall availability

of the service is a combination of availability of the Cloud

Spanner and availability of service hosted on App Engine. It

will be a fair assumption to make, that each request made

on App Engine will ideally interact with Cloud Spanner.

Hence, the availability of Cloud Spanner will impact the

availability of services on the App Engine. For example, if

the availability of Cloud Spanner is 99.9%, by no means

does the pricing service on App Engine can have availability

better than 99.9%.

The 99.9% is just a number and it depends on the class of

infrastructure being used for deployment. If we denote the

availability of storage as a% and the availability of

computing as b%, then b can never be greater than a.

One can debate that in case of non-availability of the Cloud

Spanner in the preceding case, one might apply retries or

even park the data temporarily in memory. However, that

will affect the latency API or freshness SLI. So, in that case,

your other SLIs will take a hit. The choice therefore depends

on use case to use case. We need to define availability SLO

and the SLA for the service, keeping into consideration that

you will need time to debug the issues related to Spanner as

well as issues related to App Engine.

App Engine standard environment pushes metric data to

cloud monitoring using the gae_app monitored resource type,

and HTTP/server/response_count metric type.

You can apply a filter to data by using the response_code

metric label to calculate “success” and “total” responses.

You can create an SLI definition by creating a TimeSeriesRatio

of “success” to the “total” count.

“serviceLevelIndicator”: {

“requestBased”: {

“goodTotalRatio”: {

“totalServiceFilter”:

“metric.type=\”appengine.googleapis.com/http/server/resp

onse_count\”

resource.type=\”gae_app\”

metric.label.\”response_code\”>\”499\”

metric.label.\”response_code\”<\”399\””,

“successServiceFilter”:

“metric.type=\”appengine.googleapis.com/http/server/resp

onse_count\”

resource.type=\”gae_app\”

metric.label.\”response_code\”<\”299\””,

}

}

}

Similar to App Engine’s availability, Cloud Spanner

availability SLI could be defined as well. The concept

remains the same, that is, the Spanner writes data to cloud

monitoring using the spanner_instance resource type and

query_count as metric type. As was the case with the App

Engine, now you can define a filter of “success” to the

“total” number of database queries and create an SLI

definition by creating a TimeSeriesRatio of “success” to the

“total” count.

“serviceLevelIndicator”: {

“requestBased”: {

“goodTotalRatio”: {

“totalServiceFilter”:

“metric.type=\”spanner.googleapis.com/query_count\”

resource.type=\”spanner_instance\”

metric.label.\”database\”=\”my_database\””,

“successServiceFilter”:

“metric.type=\”spanner.googleapis.com/query_count\”

resource.type=\”spanner_instance\”

metric.label.\”database\”=\”my_database\”

metric.label.\”status\”=\”ok\””,

}

}

}

Latency

While defining the latency SLO and SLA, keep in mind the

cumulative behaviour of latency of computing logic hosted

on App Engine and data residing in cloud spanner. Individual

latency of App Engine and cloud spanner could be

calculated using the standard metrics on Monitoring APIs.

For measuring the latency of the App Engine standard

environment, use the monitored resource type as gae_app

and HTTP/server/response_latenices as metric type. You can

represent the latencies in a distribution cut structure. The

following SLO expects 95% of all requests to fall between 0

to 50 ms in latency over a rolling period of 1 min.

{

“serviceLevelIndicator”: {

“requestBased”: {

“distributionCut”: {

“distributionFilter”:

“metric.type=\”appengine.googleapis.com/http/server/res

ponse_latencies\”

resource.type=\”gae_app\””,

“range”: {

“min”: 0,

“max”: 50

}

}

}

},

“goal”: 0.95,

“rollingPeriod”: “60s”,

“displayName”: “95% requests under 50 ms”

}

For measuring latencies in Spanner, you can use the

spanner_instance as monitored resource type and

API/request_latencies as metric type. You can filter the data

using the method metric label to measure latencies. You can

express the request-based SLI using the distribution as

demonstrated in the following code:

{

“serviceLevelIndicator”: {

“requestBased”: {

“distributionCut”: {

“distributionFilter”:

“metric.type=\”spanner.googleapis.com/api/request_laten

cies\”

resource.type=\”spanner_instance\”

metric.label.\”database\”=\”scaling_gcp_database\””,

“range”: {

“min”: 0,

“max”: 50

}

}

}

},

“goal”: 0.95,

“rollingPeriod”: “60s”,

“displayName”: “95% requests under 50 ms “

}

Other SLIs, throughput, success rate and error rate can be

easily created using the preceding showcased metrics in

different combinations. For example, for throughput, create

an SLI on just the number of requests (successful or errored

out). Similarly for success rate, count the total number of

successful requests in a window. For error rate, the number

of errored out request in a time window.

SRE practices big data world

For use cases that include massive data processing (big

data), SLIs like latency and availability do not make much

sense. Availability and latency are terms more relevant in

cases where a user is waiting for a response in real-time.

This data processing happens either in batch mode or

streaming mode, and in both cases, availability and latency

are not the right measure of customer satisfaction, as no

customer/client is waiting for a response. Rather, when we

talk about SRE practices in Bigdata, we talk about two more

terms:

Freshness: Number of times the user received the

latest data for read operations on the API, despite the

underlying data store being updated with a certain write

latency.

Correctness: Correctness is the measure of how many

processing errors the pipeline encounters.

You will see the implementation of the preceding two SLIs,

but before that, let us go ahead and describe big data use

cases. Consider the following generic high-level big data

architecture diagram in Figure 16.3:

Figure 16.3: Simple big data processing

Follow the numerical labelling in the figure with the

explanations given as follows:

1. Data sources are devices that generate a huge volume

of data. For example, in IoT devices, this data is sensor

data. Similarly, in the case of a mobile app, it is the

data generated by the user using your app.

2. Data is either stored in Blob Store or any other data

store.

3. Real-time data is published onto a queue for real-time

streaming scenarios.

4. Batch processing is a form of data processing that has a

well-defined start time and end time, and is usually

associated with collecting a huge volume of data and

then triggering processing.

5. Stream processing is a form of processing, where the

data is processed in real-time. Generally, systems do

not wait for data to accumulate, and processing

happens either in real-time or in near real-time.

6. The streaming and batch processing applications often

save their data in a well-structured format in a data

store. This datastore contains data that is as per the

queries defined by consumption systems. For example,

let us consider a downstream system that needs to get

an average income per city, and this average income

per city is calculated by the processing pipelines and

the result is saved in a data store.

Let us now see what the preceding picture looks like when

we superimpose GCP technology with the architecture

described above. Consider Figure 16.4:

Figure 16.4: Simple big data processing on GCP

In the preceding figure, follow the labels a, b, c, and d with

the following explanation.

a. Blob store in GCP is known as Google Cloud Storage.

b. The queue service available in GCP is Google Pub/Sub.

c. For processing, GCP offers Dataproc and Dataflow for

both batch and streaming pipelines.

d. The most common data store for analytics purpose on

GCP is Cloud Spanner and Bigtable.

You can track the availability and latency metrics for cloud

storage and analytics datastore, but as said, the nature of

the application does not involve an entity waiting for a

response right away. Hence, freshness and correctness are

better SLIs for such use case. Google Cloud provides a

mechanism to define correctness and freshness for both

Dataproc, as well as Dataflow pipelines.

Correctness SLI

Correctness SLI is defined as the chunk of data that

produced the correct result. The outcome of processing is

generally validated against heuristics; for example, an

image processing pipeline cannot produce an image of zero

bytes. Similarly, in a financial transaction, the difference in

balance before the transaction, to the balance after the

transaction, is equal to the transaction or not.

Another way to configure this, is by using a known synthetic

dataset and triggering it periodically to check the results of

processing with a pre-known result.

For this example, let us assume we have the pipelines

written in Google Dataflow. Dataflow writes metric to cloud

monitoring using the monitored resource type dataflow_job

and metric type job/element_count, which counts the number

of elements added to Pcollection so far. Adding all of them

grouped with a job name, gives the total records processed

by the job.

From your data flow job, emit a log-based metric in case of

error with a severity metric label. You can use the

logging.googleapis.com/log_entry_count metric type in the

dataflow_job resource and count the number of errors logged

with configured severity count. You can use the ratio to

express the correctness of SLI by using a TimeSeriesRatio

structure.

“serviceLevelIndicator”: {

“requestBased”: {

“goodTotalRatio”: {

“totalServiceFilter”:

“metric.type=\”dataflow.googleapis.com/job/element_count

\”

resource.type=\”dataflow_job\”

resource.label.\”job_name\”=\”scaling_gcp_job\””,

“badServiceFilter”:

“metric.type=\”logging.googleapis.com/log_entry_count\”

resource.type=\”dataflow_job\”

resource.label.\”job_name\”=\” scaling_gcp_job \”

metric.label.\”severity\”=\”error\””,

}

}

}

The preceding configuration will count the total number of

elements in the job named scaling_gcp_job as well as the

total number of logs whose severity is marked as error.

Freshness SLI

In a batch pipeline, Freshness can be defined as the time

elapsed since a processing run was completed successfully

for a given output. In other words, the processing was

completed, and the data got uploaded to the datastore.

When we query the data, the new data should be the

output. The time between pushing the data and successfully

pulling the updated data is Freshness. Similarly, in the case

of streaming applications, freshness SLI can be defined as

the time difference between the most recent processed

record present and current time.

Dataflow pushes metrics to cloud monitoring using the

dataflow_job monitored resources type and

job/per_stage_system_lag metric type, which tracks the

maximum duration that a data item has been processing or

awaiting processing. Freshness SLI is generally represented

by using the DistributionCut structure. In the following

example, the SLO expects that the oldest data element is

processed in under 50 seconds, 90% of the time, over a

rolling one-minute window:

{

“serviceLevelIndicator”: {

“requestBased”: {

“distributionCut”: {

“distributionFilter”:

“metric.type=\”dataflow.googleapis.com/job/per_stage_sy

stem_lag\”

resource.type=\”dataflow_job\”

resource.label.\”job_name\”=\”scaling_gcp_job\””,

“range”: {

“min”: 0,

“max”: 50

}

}

}

},

“goal”: 0.90,

“rollingPeriod”: “60s”,

“displayName”: “90% data elements processed under 50 s”

}

Apart from the preceding two SLIs, there are other SLIs

available as well. Two of them, which make sense in the

case of data-intensive applications, are as follows:

Coverage as an SLI

This is the portion of valid data processed successfully. To

determine this, you must first identify a valid record and

skip the bad records. Next, you must do a simple count

operation of all the good records.

Throughput as an SLI

The portion of time when the data processing rate was

higher than the threshold. The most common way to

measure the amount of work done regardless of the size of

data is bytes processed per second.

Conclusion

Services hosted on GCP push the metrics to Google cloud

monitoring and once the metric is pushed, the same could

be used to define SLI and SLO for the applications. One key

aspect to reaching an SLO number for a service, is to

understand the SLO numbers of any service which is been

triggered from inside of the original service. For metrics,

which are not available, out of the box, one very common

strategy is to use the log-based metric to generate logs with

appropriate labels or some other information, and then

utilize them while defining SLIs.

The recommendation is to use the out-of-the-box metrics

since that requires less management by engineering teams.

Points to remember

Request-response type systems have availability and

latency as the two most critical SLIs.

Data-intensive applications have a freshness rate and

correctness SLIs.

Google service push metric to cloud monitoring, which

could be used for SRE purposes.

Questions

1. How will you configure a metric for SLI which is not

available out of the box in cloud monitoring?

2. Name SLIs apart from freshness and correctness for

data-intensive applications.

3. Name SLIs apart from availability and latency for a

request-response use case.

Answers

1. Custom metrics are supported via the log-based metrics

strategy.

2. Coverage, and Throughput SLI.

3. Success and Error rate.

Index

A

ACID properties 197

advanced metrics 29, 30

latency 32

response time 31

Airflow 1.x 8

Airflow 2.x 8

Airflow environment

active workers, monitoring 223, 224

commands 225, 226

DAGs, running 222

database CPU and memory usage, monitoring 224

environment pre-set 222

observing 222

optimizing 221, 222

running and queued tasks, monitoring 224

scheduler CPU and memory, monitoring 223

task scheduling latency, monitoring 225

total parse time of DAGs, monitoring 223

web server CPU and memory, monitoring 225

worker Pod evictions, monitoring 223

workers CPU and memory usage, monitoring 224

alerts

creating 297

Amazon Elastic Kubernetes Service (EKS) 111

Amazon Kubernetes Service (AKS) 41

Amazon Web Services (AWS) 1

Apache Airflow 209

Apache Beam pipelines 253, 254

App Engine 151-154

standard App Engine, versus flex App Engine 157, 158

web application, deploying 154-157

automatic scaling 12, 13

auto scalability 6

Autoscalar architecture 201

Cloud scheduler 201

end to end working 202, 203

poller cloud function 202

scalar cloud function 202

Autoscalar on node group

enabling 99, 100

autoscaler configurations 91

autoscaling policy, creating based on multiple signals 97, 98

cloud monitoring metrics based autoscaling 92, 93

CPU-based autoscaling 91

for per group metric 93, 94

for per instance metric 93

load balancing serving capacity based autoscaling 92

schedule based scaling 95-97

scheduling, based on prediction 97

Autoscaler deployment topology 203

centralized deployment topology 204

deployment of Autoscalar per project 204

distributed deployment 204, 205

autoscaling 36

implementing, in Managed Instances Group 87-90

autoscaling algorithms

BASIC 265

NONE 264

autoscaling, Bigtable

benefits 188

CPU utilization target 188

limitations 191, 192

manual node allocation 190, 191

maximum number of nodes 189, 190

minimum number of nodes 189

programmatically autoscaling 191

storage utilization target 189

autoscaling container instances

CPU allocation, configuring 173, 174

maximum and minimum limit, configuring 175

maximum concurrency, configuring 174, 175

autoscaling, in Dataproc

Autoscaling Policies API 240

considerations 237, 238

working 238, 239

Autoscaling Policies API 240

applying, to Dataproc cluster 246, 247

BasicAutoscalingAlgorithm resource 241, 242

BasicYarnAutoscalingConfig resource 242, 243

CRUD operations 245, 246

InstanceGroupAutoscalingPolicyConfig resources 244, 245

limitations 247, 248

resource 240, 241

autoscaling policies, VMware Engine

configuring 147-149

availability metric 3, 27, 28

Average Response Time (ART) 31

B

BASIC algorithm 265

THROUGHPUT_BASED 265

Bigtable 181

advantages, over HBase 185

architecture 185, 186

atomic writes 183

data handling 182

data selection 183

fast writes 183

high throughput 183

infrastructural footprint 184, 185

scaling options 186

strong consistency 183

versioning changes 183

voluminous datasets 182

Burn Rate threshold 297

C

challenges, of scaling

cloud native and hybrid deployments 13

housekeeping services 14

load balancing 13, 14

cloud agnostic

advantages 68

disadvantages 68

cloud elasticity 35

and cost relationship 43-45

benefits 41

challenges 45, 46

defining 36-38

examples 38-41

versus, scalability 46

cloud elasticity, benefits

considerable capacity 42

high availability 42

justified costs 42

painless and optimal scaling 42

redundancy and flexibility 42

simple management 43

cloud elasticity use cases

eCommerce application 47-49

song streaming application 49, 50

Cloud Functions 176, 177

event driven functions 176

HTTP functions 176

maximum and minimum instances, configuring 178, 179

memory, configuring 177, 178

traffic spikes above max limits, addressing 179

cloud monitoring dashboard

logs, aggregating for 300

Cloud Run 170, 171

autoscaling container instances 173

features 171, 172

infrastructural footprint 172, 173

cloud scalability 2

auto scalability 6

diagonal scaling 6, 7

horizontal scalability 3, 4

indirect KPI impact 28

versus, elasticity 46

vertical scalability 4, 5

cloud scalability metrics

advanced metrics 29, 30

availability 27, 28

costs 24

performance 20, 21

reliability 23

cloud scaling

automatic scaling 12

key challenges 13

manual scaling 11, 12

risks, of improper scaling 16

scenarios 10, 11

scheduled scaling 12

cloud scaling, benefits 7

cost saving 9

Disaster Recovery 9

ease of use 8

flexibility 8

global presence 9

maintenance 8

speed 8

Cloud Spanner 195, 196

autoscaling, with Autoscalar 201

infrastructural footprint 198, 199

manual scaling 199-201

multi-regional spanner 197

cluster autoscaler 137

scaling limits 138

clusters

decommissioning 248

Composer Autoscalars 220

Cluster Autoscalar 221

Horizontal Pods scalar 221

node auto provisioning 221

Composer autoscaling

Airflow worker set controller, using 219, 220

benefits 217-219

factors affecting 220

Compound Metrics 19

cost KPIs 25

cost metric 24, 25

forecasted cost 26, 27

total cloud cost 26

CRUD operations, on autoscalers

autoscalar, deleting 99

autoscalar, describing 98

autoscalar, turning off 99

autoscalar, updating 99

Customer Satisfaction Score (CSAT) 29

custom scale metric

AND condition 41

OR condition 41

D

Dataflow autotuning 260

dynamic work rebalancing 264

horizontal autoscaling 260

scaling, for batch jobs 261

scaling, for streaming jobs 261, 262

streaming pipeline, horizontal scaling 262

vertical autoscaling 263, 264

Dataflow infrastructure

disk size 257, 258

machine type 258

public IPs, disabling 258

right regions, selecting 258

Dataflow job

max nodes, limiting 266

persistent disk, scaling 267

Dataflow job lifecycle 259

distribution 259

execution graph 259

fusion optimization 259

optimizations, combining 259

parallelization 259

Dataflow Prime 257

Dataflow Prime right fitting

scaling 265, 266

Dataflow shuffle 256

for optimizing data shuffle 267

Dataflow streaming engine 256

diagonal scaling 6, 7

Directed Acyclic Graph (DAG) 210-212

Disaster Recovery 2

Distributed Denial-of-Service (DDoS) attacks 56

distributed deployments 55

analytics hybrid/multi-cloud 56

partitioned multi-cloud 55

tiered hybrid 55

E

elasticity. See cloud elasticity

Elastic Load Balancing (ELB) 13

error budget 276

tracking 296

exponential scaling

fault-tolerant workloads 134

F

fault-tolerant workloads

exponential scaling 134

Flex App Engine 163

autoscaling, configuring 164, 165

manual scaling, configuring 164

forecasted cost 26, 27

Function as A Service (FaaS) 176

G

GCP service grouping 308

data processing services 308, 309

data storage and retrieval services 308

request response services 308

Google Cloud Function (GCF) 173

Google Cloud Platform (GCP) 1, 71, 73

console\UI portal, using 73

GCloud commands, using 73

REST APIs 73

Google Cloud Storage (GCS) bucket 176

Google Composer 209, 210

components 213, 214

horizontal scaling options 214

vertical scaling options 216

Google Dataflow 251-253

Google Dataproc 229-234

autoscaling 237

manual scaling 234-236

Google Kubernetes Engine (GKE) 41, 111

governance 66

communication 66

effective planning 67

guidelines, creating 66

proper auditing 67

H

Hadoop Distributed File System (HDFS) 4, 181

Horizontal Pod Autoscaler (HPA) 121

horizontal Pod scaler 122

horizontal Pod scaling

configuring 121, 122

metric threshold definition 122, 123

multiple metrics, configuring 123

horizontal scalability 3, 4

horizontal scaling 36

horizontal scaling options, Composer 214

maximum and minimum number of worker nodes, adjusting 215

number of schedulers, adjusting 215

hybrid-cloud deployments

business drivers 58-60

challenges 60-62

defining 54

IaaS, versus PaaS 62

model 57, 58

I

IaaS versus PaaS 65

distributed deployment 64

Docker and Kubernetes 65

Hadoop cluster 65

infrastructure as code 66

OpenShift Container Platform 66

redundant deployment 62-64

image registry 115

indirect KPI impact, cloud scalability 28, 29

customer satisfaction 29

software development and operational KPIs impacts 29

Infinite scalability 43

Infrastructure as a Service (IaaS) 3

Infrastructure as Code tools

Ansible 8

Terraform 8

Input/Output Operations Per Second (IOPS) 19

instance groups 73, 75

autoscaling 82, 83

Managed Instance Groups 76

unmanaged instance group 80

K

KPIs 17

defining 18, 19

Kubelet 115

Kube-proxy 115

Kubernetes 111

application, building 113

application, packaging 113

application, scaling 118

architecture 114

image registry 115

master node 114

worker node 114

Kubernetes considerations

load balancing 140

network policies, for scaling 139

node pool configurations 139

storage 140

L

latency metrics 32

average end-to-end latency 32

number of slow end-to-end transactions 32

number of very slow end to end latency times 32

throughput 32

load balancing 107

backend service, aligning with MIG 107, 108

cross regions load balancing 109

instance group, adding to load balancer 107

MIG, adding to target pool 108

multi regional external load balancer, configuring 109

log based metrics 286-289

logs

aggregating, for setting up cloud monitoring dashboard 300-302

lookback duration 297

M

Managed Instance Group (MIG)

autoscaling 83-85

creating 77

features 76, 77

predictive scaling 85, 86

scaling 83

Stateful Managed Instance Group 79, 80

Stateless Managed Instance Group 77-79

manual scaling 11, 12, 37

master node, Kubernetes 114

API Server 114

controller 114

etcd 114

scheduler 114

Mean Time to Recover (MTTR) 9, 304

metrics, for SLIs

key SLIs 289, 290

log based metrics 286-289

out of box SLI metrics, using 285, 286

selecting 284

Microsoft Azure 1

multiple metrics, horizontal pod scaling

autoscaling, on custom metric 129, 130

autoscaling, on external metric 125-129

autoscaling, on resource utilization 124, 125

configuring 123

scaling requests, issuing 123, 124

trashing 123

multi-cloud deployments

business drivers 58-60

challenges 60-62

defining 54

IaaS, versus PaaS 62

model 56, 57

N

Network Load Balancing (NLB) 108

node groups

autoscaling 99, 100

NONE algorithm 264

O

out of box SLI metrics

using 285, 286

P

performance metric 20, 21

big data use case 21, 22

microservices use case 22

REST API use case 22, 23

pipeline execution graph 259

Platform as a Service (PaaS) 3

pods 115

Point-In-Time Recovery (PITR) 197

pre-defined configurations

accelerator optimized machines 74

compute optimized 74

general purpose 74

memory optimized 74

predictive scaling 37

preemptible VMs

using 136, 137, 249

private cloud

creating 145-147

Probability of Failure on Demand (POFOD) 24

R

Rate of Occurrence of Failure (ROCOF) 24

redundant deployments 55

business continuity multi-cloud or hybrid cloud storage 55

cloud bursting 55

hybrid environment 55

reliability metric 3, 23

mean time to failure 23, 24

mean time to repair 24

Probability of Failure on Demand (POFOD) 24

Rate of Occurrence of Failure (ROCOF) 24

request based SLI 285

reservations, consuming

instances, consuming from matching reservation 104, 105

instances, creating without 107

specific shared reservation, consuming 106

reserved resources

consuming 104

consumption type 101, 102

for effective auto scaling 101

shared project zonal reservations 103, 104

shared type 101

single project zonal reservations 102, 103

response time metric

average response time 31

data in and out 31

infrastructure utilization 31

peak response time 31

request per second 31

runbooks 274

S

Saturation Point 30

scale

versus, cost relationship 14-16

scale-in controls 86

maximum allowed reduction 86

trailing time window 86

scaling 83

scaling in Kubernetes 118

horizontal pod scaling, configuring 121, 122

multi-dimensional pod scaling, configuring 132, 133

scale-down mechanism 120

scale-up mechanism 119, 120

vertical pod scaling, configuring 130-132

scaling options, Bigtable

autoscaling 187

triggers, autoscaling 186, 187

scaling strategies, as per load 206

linear scale up 207

stepwise scale up 206

scheduled scaling 12, 36, 37

security 3

Service Level Agreement (SLA) 3, 10, 276

Service Level Indicators (SLI) 275, 276

creating 291, 292

Service Level Objectives (SLO) 275

alerts 297

creating 293-295

setting 290, 291

service monitoring

with Google Cloud monitoring 276-284

Simple Metrics 19

Single Point of Failure (SPOF) 28, 56

Site Reliability Engineering (SRE) 14, 271

actions, automating 304

drills 304

incident management 302, 303

playbook maintenance 303

principles 273

typical SRE process 274

SLO alerts

probes and uptime checks 298, 299

S.M.A.R.T. 20

Software as a Service (SaaS) 3

Spot Pods

using 134-136

Spot VMs

using 136

SRE practices big data world 314, 315

correctness SLI 316

freshness SLI 317

SLI coverage 318

SLI throughput 318

SRE practices, in microservices world 309, 310

availability 311, 312

latency 312, 313

Standard App Engine

automatic scaling 159

autoscaling scaling, configuring 161-163

basic scaling 158

basic scaling, configuring 160

manual scaling 158

manual scaling, configuring 161

scaling, configuring 160

Stateful Managed Instance Group 79, 80

Stateless Managed Instance Group 77-79

T

target pool 108

total cloud cost

KPI, defining for cost in non-production environments 26

KPI, defining for cost in production environments 26

Total Cost to Ownership (TCO) 14

typical SRE process

defining 274

U

unmanaged instance group 80, 81

V

Vertical Pod Autoscaling (VPA) 131

vertical scalability 4, 5

vertical scaling 36

vertical scaling options, Composer

environment size, adjusting 217

parameters, adjusting 216

VMware Engine 143-145

W

web application, Kubernetes

building 115, 116

deploying 117, 118

window-based SLI 285

Wordcount Dataflow job 254, 255

Dataflow Prime 257

Dataflow Shuffle service 256

Dataflow streaming engine 256, 257

fusion optimization 255

infrastructure, configuring 257

optimizations, combining 256

worker node, Kubernetes 114

container runtime 115

Kubelet 115

Kube-proxy 115

pods 115

Y

Yet Another Resource Negotiator (YARN) cluster 229

	Cover Page
	Title Page
	Copyright Page
	Dedication Page
	About the Author
	About the Reviewer
	Acknowledgement
	Preface
	Errata
	Table of Contents
	1. Basics of Scaling Cloud Resources
	Introduction
	Structure
	Objectives
	What is cloud scalability?
	Horizontal scalability (Scale up and down)
	Vertical scalability (Scale in and out)
	Auto scalability
	Diagonal scaling

	Benefits of cloud scaling
	Flexibility and speed
	Ease of use and maintenance
	Cost saving
	Disaster Recovery
	Global presence

	When to scale?
	Scenario 1
	Scenario 2
	Scenario 3

	How to scale?
	Manual scaling
	Scheduled scaling
	Automatic scaling

	Key challenges of scaling
	Cloud native and hybrid deployments
	Load balancing
	Housekeeping services

	Scale versus cost relationship
	Risks of improper scaling
	Conclusion

	2. KPI for Cloud Scalability
	Introduction
	Structure
	Objectives
	Defining KPIs
	Basic cloud scalability metrics
	Performance
	Use case 1: Big data
	Use case 2: Microservices
	Use case 3: REST API

	Reliability
	Mean time to failure
	Mean time to repair
	Rate Of Occurrence Of Failure
	Probability Of Failure On Demand

	Costs
	Total cloud cost
	Forecasted cost

	Availability

	Indirect KPI impact of cloud scalability
	Innovations
	Software development and operational KPIs impacts
	Customer satisfaction

	Advanced metrics
	Response time
	Data in and out
	Request per second
	Average response time
	Peak response time
	Infrastructure utilization

	Latency
	Average end-to-end latency
	Number of slow end-to-end transactions
	Number of very slow end to end latency times

	Throughput

	Conclusion
	Points to remember
	Questions

	3. Cloud Elasticity
	Introduction
	Structure
	Objectives
	Defining cloud elasticity
	Example 1
	Example 2
	Example 3
	Example 4

	Benefits of elasticity
	Painless and optimal scaling
	Justified costs
	More redundancy and flexibility
	Considerable capacity
	High availability
	Simple management

	Elasticity and cost relationship
	Key challenges
	Identifying the right attributes/metrics to track
	Identifying the right scaling measurement value
	Defining the minimum and maximum limits
	Cost spikes

	Difference between scalability and elasticity
	Use cases
	eCommerce application
	Song streaming application

	Conclusion
	Points to remember
	Questions
	Answers

	4. Challenges of Infrastructure Complexity and the Way Forward
	Introduction
	Structure
	Objectives
	Defining multi-cloud and hybrid-cloud deployments
	Redundant deployments
	Hybrid environment
	Business continuity multi-cloud or hybrid cloud storage
	Cloud bursting

	Distributed deployments
	Tiered hybrid
	Partitioned multi-cloud
	Analytics hybrid/multi-cloud

	Multi-cloud deployment model
	Hybrid-cloud deployment model
	Need of multi-cloud deployments and hybrid-cloud deployments
	Reducing dependency/avoiding lock in
	Heterogeneous deployments within an organization
	Regulatory and data sovereignty
	Redundant deployment for high availability
	Performance improvements
	Cost optimization

	Challenges of multi-cloud deployments and hybrid cloud deployments
	Increased operational complexities
	Increased data management complexities
	Data protection challenges
	Increased architectural complexities

	IaaS vs PaaS for multi-cloud and hybrid cloud deployments
	Redundant deployment
	Distributed deployments

	IaaS vs PaaS
	Docker and Kubernetes
	Hadoop cluster
	OpenShift Container Platform
	Infrastructure as code

	Governance and way out
	Creating guidelines
	Effective communication
	Effective planning
	Proper auditing

	Cloud agnostic automation – benefits and risks
	Conclusion
	Points to remember
	Questions

	5. Scaling Compute Engine
	Introduction
	Structure
	Objectives
	Interacting with GCP
	Using the console\UI portal
	Using GCloud commands
	REST APIs

	Introduction to instance groups
	Managed Instance Group
	Creating a Managed Instance Group

	Unmanaged instance group

	Autoscaling groups of VMs
	Scaling
	Autoscaling

	Predictive scaling
	Scale-in controls
	Maximum Allowed Reduction
	Trailing Time Window
	Autoscaling in Action

	Developing and managing autoscalers
	Scaling Based on CPU utilization
	Scaling based on load balancing serving capacity
	Scaling Based on cloud monitoring metrics
	Configuring auto scaling for per instance metric
	Configuring auto scaling for per group metric
	Scaling based on schedules
	Scheduling based on prediction
	Creating autoscaling policy based on multiple signals

	CRUD operations on autoscalers
	Describing an Autoscalar
	Updating a scalar
	Turning off a scalar
	Deleting an autoscaler

	Autoscaling node groups
	Reserving resources for effective auto scaling
	Single project zonal reservations
	Shared project zonal reservations
	Consuming reservations
	Consuming instances from any matching reservation
	Consuming a specific shared reservation
	Creating instances without consuming reservations

	Load balancing
	Adding instance group to load balancer
	Aligning backend service with an MIG
	Adding a Managed Instance Group to a target pool

	Configuring multi regional external load balancer
	Cross regions load balancing

	Conclusion
	Points to remember
	Questions
	Answers

	6. Scaling Kubernetes Engine
	Introduction
	Structure
	Objectives
	Building and packaging an application on Kubernetes
	Kubernetes architecture
	Building and deploying a web app

	Scaling an application
	Scale-up mechanism
	Scale-down mechanism
	Configuring horizontal pod scaling
	Metric threshold definition

	Configuring multiple metrics
	Thrashing
	Issuing horizontal scaling requests
	Autoscaling on resource utilization
	Autoscaling on external metric
	Autoscaling on custom metric

	Configuring vertical pod scaling
	Configuring multi-dimensional pod scaling

	Exponential scaling of fault tolerant workloads
	Using Spot Pods
	Using Spot VMs
	Using preemptible VMs

	Cluster autoscaler
	Scaling limits

	Key considerations
	Node pool configurations
	Network policies for scale
	Load balancing
	Storage

	Conclusion
	Points to remember
	Questions

	7. Scaling VMware Engine
	Introduction
	Structure
	Objectives
	VMware Engine
	Creating a private cloud
	Configuring autoscaling policies
	Conclusion
	Points to remember
	Questions
	Answers

	8. Scaling App Engine
	Introduction
	Structure
	Objectives
	App Engine under the hood
	Standard App Engine vs. flex App Engine
	Standard App Engine
	Configuring basic scaling
	Configuring manual scaling
	Configuring autoscaling scaling

	Flex App Engine
	Configuring manual scaling
	Configuring autoscaling

	Conclusion
	Points to remember
	Questions
	Answers

	9. Scaling Google Cloud Function and Cloud Run
	Introduction
	Structure
	Objectives
	Cloud Run
	Nature of workloads
	Infrastructural footprint
	Autoscaling Container Instances
	Configuring CPU allocation
	Configuring maximum concurrency
	Configuring minimum and maximum Container Instances

	Cloud Functions
	Nature of workloads
	Configuring memory
	Configuring maximum and minimum instances
	Addressing traffic spikes above max limits

	Conclusion
	Points to remember
	Questions

	10. Configuring Bigtable for Scale
	Introduction
	Structure
	Objectives
	Nature of data and its handling
	Voluminous datasets
	High throughput
	Fast writes
	Versioning changes
	Strong consistency
	Atomic writes
	Selection of data

	Bigtable infrastructural footprint
	Scaling Bigtable options
	Autoscaling triggers
	Autoscaling
	When to Autoscale

	Manual node allocation
	Programmatically Autoscaling

	Limitations of Autoscaling
	Conclusion
	Points to remember
	Questions
	Answers

	11. Configuring Cloud Spanner for Scale
	Introduction
	Structure
	Objectives
	Nature of workload
	Cloud Spanner infrastructural footprint
	Manual scaling
	Autoscaling using Autoscalar
	Autoscalar Architecture
	Cloud scheduler
	Poller cloud function
	Scaler Cloud Function
	End to end working

	Autoscaler deployment topology
	Deployment of Autoscalar per project
	Centralized deployment topology
	Distributed deployment

	Scaling strategies as per load
	Stepwise scale up
	Linear scale up
	Direct scale up

	Conclusion
	Points to remember
	Multiple choice questions
	Answers

	12. Scaling Google Composer 2
	Introduction
	Structure
	Objectives
	Introduction to Composer
	Options for horizontal scaling
	Adjusting minimum and maximum number of workers
	Adjusting number of schedulers

	Options for vertical scaling
	Adjusting worker, scheduler, web server scale and performance parameters
	Adjusting environment size

	Composer Autoscaling
	Role of Airflow worker set controller
	Factors affecting Composer autoscaling
	Composer Autoscalars
	Horizontal Pod scalar
	Cluster Autoscalar
	Node auto provisioning

	Optimizing the Airflow environment
	Start with environment pre-set
	Run your DAGs
	Observe the environment
	Monitoring the scheduler CPU and memory
	Monitoring total parse time of DAGs
	Monitoring worker Pod evictions
	Monitoring active workers
	Monitoring workers CPU and memory usage
	Monitoring running and queued tasks
	Monitoring the database CPU and memory usage
	Monitoring the task scheduling latency
	Monitoring web server CPU and memory

	Commands to perform the preceding changes

	Conclusion
	Points to remember
	Questions
	Answers

	13. Scaling Google Dataproc
	Introduction
	Structure
	Objectives
	Introduction to Dataproc
	Manual scaling
	Auto scaling
	Autoscaling deep dive
	Introducing Autoscaling Policies API
	Autoscaling policy resource
	BasicAutoscalingAlgorithm Resource
	BasicYarnAutoscalingConfig Resource
	InstanceGroupAutoscalingPolicyConfig Resource

	CRUD on Autoscaling policies
	Applying Autoscaling policies to Dataproc cluster

	Limitations of scale
	Graceful decommissioning of clusters
	Using preemptible VMs to scale
	Conclusion
	Points to remember
	Questions
	Answers

	14. Scaling Google Dataflow
	Introduction
	Structure
	Objectives
	Introduction to Dataflow
	Apache Beam pipelines
	Wordcount Dataflow job
	Fusion optimization
	Combine optimizations
	Dataflow Shuffle service
	Dataflow streaming engine
	Dataflow Prime

	Configuring infrastructure
	Disk size
	Machine type
	Disabling public IPs
	Selecting right regions

	Dataflow job lifecycle
	Distribution and parallelization
	Execution graph
	Combining optimizations
	Fusion optimization

	Dataflow autotuning
	Horizontal autoscaling
	Scaling Dataflow for batch jobs
	Scaling Dataflow for streaming jobs
	Horizontal scaling of streaming pipeline

	Vertical auto scaling
	Dynamic work rebalancing

	Autoscaling algorithms
	NONE
	BASIC
	THROUGHPUT_BASED

	Scaling and Dataflow Prime right fitting
	Limiting max nodes
	Scaling the persistent disk
	Optimizing data shuffle using Dataflow shuffle
	Conclusion
	Points to remember
	Questions
	Answers

	15. Site Reliability Engineering
	Introduction
	Structure
	Objectives
	Introduction to SRE process
	Defining a typical SRE process

	Defining SLO, SLI and SLAs
	Service Level Objectives (SLO)
	Service Level Indicators (SLI)
	Service Level Agreement (SLA)

	Service monitoring using Google Cloud Monitoring
	Selecting metrics for SLIs
	Using the out of box SLI metrics
	Log based metrics
	Key SLIs

	Setting SLO
	Creating SLIs
	Creating SLO

	Tracking error budgets
	Creating alerts
	Probes and uptime checks
	Aggregating logs to set up cloud monitoring dashboard
	Responsibilities of SRE
	Incident management
	Playbook maintenance
	Drills

	Automating SRE actions
	Conclusion
	Points to remember
	Questions
	Answers

	16. SRE Use Cases
	Introduction
	Structure
	Objectives
	GCP service grouping
	Request response services
	Data storage and retrieval services
	Data processing services

	SRE practices in the microservices world
	Availability
	Latency

	SRE practices big data world
	Correctness SLI
	Freshness SLI
	Coverage as an SLI
	Throughput as an SLI

	Conclusion
	Points to remember
	Questions
	Answers

	Index

