


inside front cover

Product development life cycle—providing a feedback loop from
product delivery back to the software development process





  

 
 

Shipping Go
DEVELOP, DELIVER, DISCUSS, DESIGN, AND GO AGAIN

 
Joel Holmes

 
 

To comment go to liveBook

 
 

Manning

Shelter Island

 
For more information on this and other Manning titles go to

www.manning.com

 

https://livebook.manning.com/#!/book/shipping-go/discussion
https://www.manning.com/


Copyright

For online information and ordering of these  and other
Manning books, please visit www.manning.com. The
publisher offers discounts on these books when ordered in
quantity.

For more information, please contact

  

Special Sales Department
Manning Publications Co.

20 Baldwin Road
PO Box 761

Shelter Island, NY 11964
Email: orders@manning.com

  

©2023 by Manning Publications Co. All rights reserved.

  

No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by means
electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers
to distinguish their products are claimed as trademarks.
Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the
designations have been printed in initial caps or all caps.

https://www.manning.com/
mailto:orders@manning.com


♾ Recognizing the importance of preserving what has been
written, it is Manning’s policy to have the books we publish
printed on acid-free paper, and we exert our best efforts to
that end. Recognizing also our responsibility to conserve the
resources of our planet, Manning books are printed on paper
that is at least 15 percent recycled and processed without the
use of elemental chlorine.

 

          

    

        

          
Manning Publications Co.

          
20 Baldwin Road Technical

          
PO Box 761

          
Shelter Island, NY 11964

        

  

                    



Development editor:  

        

Becky Whitney

        

          
Technical development editor:  

        

          
Arthur Zubarev

        

          
Review editor:  

        

          
Adriana Sabo

        

          
Production editor:  

        

          
Andy Marinkovich

        

          
Copy editor:  

        

          
Michele Mitchell

        

          
Proofreader:  

        

          
Melody Dolab

        

          
Technical proofreader:  

          
Alex Rios



                

          
Typesetter and cover designer:  

        

          
Marija Tudor

        

  

  

ISBN: 9781617299506



dedication
To my wife, Chelsea, 

who encourages me to follow my dreams; 

and to my sons, Eli and Abel, 

for whom all of my dreams exist.



contents
  

      Front matter

preface

acknowledgments

about this book

about the author

about the cover illustration
  

Part 1. Startup
  1 Delivering value

  1.1    Simple concepts

  1.2    Small pieces
Continuous

Process

Quality

Delivery

  1.3    Building your product
Initial setup

Basic validation

Zero-cost deployment

Code confidence

Integrations

Portability

Adaptability

User acceptance

Scaled product



End to end

  1.4    Feedback loop

  2 Introducing continuous integration

  2.1    Where to start?

  2.2    A greenfield project

  2.3    The assembly line

  2.4    Warehouses

  2.5    Material

  3 Introducing continuous testing

  3.1    What to test

  3.2    Writing unit tests

  3.3    Refactor, refactor, refactor

  3.4    Testing pyramid

  3.5    System testing

  3.6    Adding it to the pipeline

  3.7    Code coverage

  4 Introducing continuous deployment

  4.1    Delivery

  4.2    Developers as operators

  4.3    Setting up a deployment account

  4.4    As you like it

  4.5    Function as a Service (FaaS)

  4.6    Platform as a Service

Part 2. Scaling
  5 Code quality enforcement



  5.1    Reviewing code
Keep it small

Keep an open mind

Keep it moving

Keep it interesting

Keep it the same

  5.2    Constraints on development

  5.3    Standardizing our code through format and lint checks

  5.4    Static code analysis

  5.5    Code documentation

  5.6    Git hooks

  5.7    Flow

  6 Testing frameworks, mocking, and dependencies

  6.1    Dependency inversion principle

  6.2    Defining an interface

  6.3    Dependency injection

  6.4    Testing stubs

  6.5    Mocking
Setting up our test suite

Using our mocks in test

  6.6    Fake

  6.7    Just the base of the pyramid

  7 Containerized deployment

  7.1    What is a container?

  7.2    What is a Buildpack?

  7.3    Let’s build a container



  7.4    Adding a container build to your pipeline

  7.5    Deploying to a container runtime

  7.6    Writing your own image

  7.7    Local environment organization

  7.8    Containers, containers everywhere

Part 3. Going public
  8 Configuration management and stable releases

  8.1    Configuration

  8.2    Advanced configuration
Environmental variables

File

Flag

  8.3    Hiding features
Updating the port

External client

  8.4    Semantic versioning

  8.5    Change log

  8.6    Accountability and handling failure

  9 Integration testing

  9.1    Phasing out the old

  9.2    Behavior-driven design

  9.3    Writing BDD tests in Go

  9.4    Adding a database

  9.5    Releasing

10 Advanced deployment

10.1    Not quite IaaS



10.2    Your first cluster

10.3    Building blocks

10.4    Scaling and health status

10.5    Automatically deploying

10.6    Deploying Redis using Helm

10.7    Updating deployment configuration

11 The loop

11.1    Startup

11.2    Acceleration

11.3    Cruising

11.4    Elements of development
Process

Testing

Delivering

11.5    The OODA loop

11.6    Conclusion
  

Appendix A. Using Kotlin

Appendix B. Using Python

Appendix C. Using JavaScript

Appendix D. Using Terraform
  

index
  



front matter

preface

I’ve been thinking for a very long time about writing this
book. At the beginning of my software engineering career, I
could not have cared less about processes and procedures for
getting things done. It all seemed so boring. But given some
inspiration from my managers, I started diving into API
development, Agile processes, unit testing, continuous
delivery, and integration, and I soon found myself drowning
in resources, guides, and conference talks.

It wasn’t until I read The Phoenix Project by Gene Kim,
George Spafford, and Kevin Behr that it all clicked. Here was
a story about a company struggling to develop and ship
quality software products. Where was this book when I
started out?! I paired The Phoenix Project with The Pragmatic
Programmer, by Andy Hunt and Dave Thomas, and felt like I
had gained a brand-new perspective on my career.

Like all young idealists, I annoyed my colleagues with my
newfound knowledge and sense of superiority, only to be
brought back to earth by others who showed me where we
had already implemented some of the concepts I learned. I
interviewed coworkers and those who’d worked in the
industry for many years and then used this information,
along with books by Martin Fowler and Kent Beck, to help me
understand areas where my company could improve.



Soon, I sent write-ups and documents to my bosses and
made suggestions during meetings--but there were too many
ideas and too little time. Frustrated at my lack of progress
internally and with a mountain of research material and
sample code piling up, I decided to move onward in my
career journey.

It took me landing three additional positions to put many of
these ideas into practice and experiment with others. As
you’ll find out in this book, we developers need to not only
deliver on ideas but also reflect on how we can make them
better. I found this theme of the continuous feedback loop
throughout all the books I read about writing, testing, and
deploying software but never all in one book with examples.
When Manning approached me to write this book, it was
originally about a completely different topic, and then, over
the course of various forms of feedback by editors,
reviewers, early purchasers, and industry professionals, we
arrived at the book you are now reading. The embodiment of
the process described in this book went into making the book
(deployments and CI were even used). Even the title was
changed several times to nail down the one that best
describes what the book is about!

You’ll find that I’ve structured the book in a way that mirrors
the complexity that arises with growth. Startups and
preliminary projects need to be fast and light to find their
market, whereas in the later stages, they need to consider
code, architecture, and testing more broadly and at scale, so
I focus on describing easy and inexpensive solutions at the
beginning and introduce more advanced and complex



solutions at the end. I also hope you see that the material I
present here is modular. Languages, platforms, and
deployment patterns don’t matter. What does matter is
building a process. To emphasize this, I use many languages
and deployment patterns throughout the book.

I chose Go as the primary language because it is what I write
code in daily. But I’ve worked in many languages, and many
concepts described in this book are language agnostic, so
we’ve selected a few other popular languages as examples in
the appendices. Additionally, at the end of the book, I discuss
a split in patterns in the industry, using infrastructure as
code, as compared to container-based deployment
strategies.

In the spirit of The Phoenix Project (and its inspiration, The
Goal, by Eliyahu Goldratt), this book is told in a semi-
narrative format. My hope here is to have you, the reader,
draw on your own experiences and struggles so that you can
compare it to the ones I’m writing about. Did you encounter
the same problem? How did you fix it? Would this strategy
have helped? Or could it be adapted to help in the future?

This book does not have to end when you close it.

acknowledgments

When I started writing this book, I didn’t realize how many
people would be involved. First and foremost, I would like to
thank my wife, Chelsea, who supported me in this endeavor



and all the other endeavors I’ve participated in. It wasn’t the
best plan on paper to start a new job and write a book with
two children to manage, but she helped me stick with it and
push the book over the finish line.

I’d also like to thank my two sons, Eli and Abel, who inspire
and challenge me in all the best ways. Their curiosity and
interest forced me to think about concepts that seemed self-
explanatory and to find a way of explaining them, which is, in
a technical sense, what most programming books try to do
for people!

This book could not have been written without the immense
support of Manning’s publishing team. Thank you, Andy
Waldron, for working with me on finding a theme (and the
right title!) for this book, which I am truly proud to have
written. Thank you also to Aliénor Latour, who advised me on
the technical aspects of the content and on the overall tone
and direction of the book.

As a reviewer of many Manning books myself, I especially
appreciate all those who provided feedback in the book
reviews. To Alain Lompo, Alex Harrington, Alex Lucas, Amit
Lamba, Arun Saha, Bhagvan Kommadi, Borko Đurković,
Camal Cakar, Clifford Thurber, Diego Stamigni, Eldon
Alameda, Jorge Ezequiel Bo, Katia Patkin, Kent Spillner, Laud
Bentil, Manoj Reddy, Marleny Núñez Alba, Mattia Di Gangi,
Michele Di Pede, Mihaela Barbu, Muneeb Shaikh, Nathan B
Crocker, Philippe Vialatte, Roman Zhuzha, Ryan Quinn,
Sergio Britos Arévalo, Sudeep Batra, Tiklu Ganguly,
Tymoteusz Wolodzko, and Walter Alexander Mata López,



your suggestions helped make this a better book. And I
appreciate those who purchased this book early via MEAP
and provided feedback and support.

I am very grateful for all the help, guidance, patience, and
laughs that Becky Whitney provided. She was an amazing
guide throughout the entire writing process and eased my
mind about many of my decisions. Writing this book would
have been overwhelming to me without her guidance and,
instead, it was a well-organized journey.

To Thoro.ai for giving me the freedom and encouragement to
write this book.

To Frank, who took me under his wing and received talks,
papers, and a repository of experience in return.

To Mike L., who discussed process and improvement first
thing in the morning with me to come up with ideas for this
book.

To John M. and Verone, who gave me my first job and
encouraged me to grow.

To my parents, who encouraged me to grow and reach for
new goals.

To my high school English teachers, who encouraged my
writing and helped me establish my voice.

To Otto, who, with every walk we took, led me one step
closer to the end of this book.



about this book

Shipping Go is intended to walk you through building a
product. Experimenting and hacking will require process and
automation to help turn an idea into something other people
use. Placing this book into a single category is difficult
because it intentionally moves you into areas of testing and
infrastructure along with creating process and automation.
You’ll find yourself moving between Development, QA, and
Ops worlds in developing an experimental project. Putting all
these elements together is an automated pipeline that
provides a feedback cycle that we enhance as we progress
throughout. 

Who should read this book?

This book, which is intended for anyone who has a solid
grasp on any programming language, was conceived and
written as the first book you should read after you’ve learned
Go, JavaScript, Python, or whatever other fun language
you’re excited to build something in. Given this knowledge,
you will be given a crash course in the software development
process, continuous integration and deployment, and various
infrastructure elements. This book was written using
examples in a particular language and cloud infrastructure
that is transferable to other languages, as demonstrated in
the appendices.

Managers and architects may find the concepts useful to help
design teams around new projects. These concepts can be



slowly introduced to existing development environments as
well as new ones. Considering the advancements in both
languages and architecture, you may fear that the book
content will become outdated, yet the concepts should
project forward toward new languages and infrastructure
elements. What is written here is only a subset of what can
be done but should serve as a solid foundation for you and
your team to build on.

How this book is organized: A roadmap

This book is organized into three parts, consisting of a
chapter apiece on process, testing, and infrastructure that
progress in complexity in each part. This way, you can hop
into the book at the pertinent chapter or part related to your
area of expertise (or lack thereof). Each concept should be
transferable to other languages and pieces of infrastructure.
In the appendices, you will find examples of the same
pipeline in other languages.

About the code

The code is basic-level Go code with the CI engine using
GitHub actions. These actions use YAML as the primary
language, which is easily transferable to other systems,
though the libraries will be different. I chose (for no
particular reason) Google Cloud as the cloud host throughout
this book; you can swap it out with similar products in other
cloud offerings. Additionally, I chose the route of container-
based deployments rather than standing up individual
servers as a matter of preference, as many greenfield



projects tend to move in this direction. However, appendix D
provides some basic infrastructure examples.

This book contains many examples of source code both in
numbered listings and inline with normal text. In both cases,
source code is formatted in a fixed-width font like
this to separate it from ordinary text. Sometimes code is
also in bold to highlight code that has changed from
previous steps in the chapter, such as when a new feature
adds to an existing line of code.

In many cases, the original source code has been
reformatted; we’ve added line breaks and reworked
indentation to accommodate the available page space in the
book. In rare cases, even this was not enough, and listings
include line-continuation markers (➥). Additionally,
comments in the source code have often been removed from
the listings when the code is described in the text. Code
annotations accompany many of the listings, highlighting
important concepts.

You can get executable snippets of code from the liveBook
(online) version of this book at
https://livebook.manning.com/book/shipping-go. The
complete code for the examples in the book is available for
download from the Manning website at www.manning.com
and from GitHub at https://github.com/holmes89/hello-api.

liveBook discussion forum

Purchase of Shipping Go includes free access to liveBook,

https://livebook.manning.com/book/shipping-go
https://github.com/holmes89/hello-api


Manning’s online reading platform. Using liveBook’s exclusive
discussion features, you can attach comments to the book
globally or to specific sections or paragraphs. It’s a snap to
make notes for yourself, ask and answer technical questions,
and receive help from the author and other users. To access
the forum, go to
https://livebook.manning.com/book/shipping-go/discussion.
You can also learn more about Manning's forums and the
rules of conduct at https://livebook.manning.com/discussion.

Manning’s commitment to our readers is to provide a venue
where a meaningful dialogue between individual readers and
between readers and the author can take place. It is not a
commitment to any specific amount of participation on the
part of the author, whose contribution to the forum remains
voluntary (and unpaid). We suggest you try asking the
author some challenging questions lest their interest stray!
The forum and the archives of previous discussions will be
accessible from the publisher’s website for as long as the
book is in print.

about the author

https://livebook.manning.com/book/shipping-go/discussion
https://livebook.manning.com/discussion


JOEL HOLMES is a software developer who has focused on
building cloud-native applications. He has worked at several
startups and has helped to architect, design, and develop
new products and services to help those companies develop
and grow. Along the way, he has been able to help establish
tools and processes that have helped development and
increased quality. He lives in Pittsburgh with his family and
currently works at Thoro.ai building cloud applications in the
growing robotics industry.

The technical editor on this book is ALIÉNOR LATOUR, a Golang
tech lead focused on quality and simplicity in her team’s
software, and an advocate for diversity in development roles.
Outside of work hours, she travels Europe for Scottish dance
events, knits, sews skirts with pockets, and reads about
linguistics and sociology.

about the cover illustration

The figure on the cover of Shipping Go is captioned “Femme
de Martavan en Sirie,” or “Woman of Martavan in Syria,”



taken from a collection by Jacques Grasset de Saint-Sauveur,
published in 1797. Each illustration is finely drawn and
colored by hand.

In those days, it was easy to identify where people lived and
what their trade or station in life was just by their dress.
Manning celebrates the inventiveness and initiative of the
computer business with book covers based on the rich
diversity of regional culture centuries ago, brought back to
life by pictures from collections such as this one.



Part 1. Startup

The beginning of a new project is extremely exciting and at

times a bit daunting. You aren’t encumbered by old code or
bugs, but you are starting from scratch on an idea that you
aren’t sure will work. You don’t know if the market will like it
or if it will stand up to high loads of traffic. You definitely
don’t want to paint yourself into a corner too quickly, nor do
you want to make things so broad that it becomes impossible
to reason about. This is the difference between having a
narrow, unstable base and an expansive, cumbersome base.

The goal is to be flexible at this stage. Build your product so
that it can change and grow comfortably for both you and
your team. In this section, we discuss how to start a project
with documentation and a plan in chapter 2. We establish a
simple and flexible way of writing tests in chapter 3 early on
to help find bugs quickly. We release a product to production
that will cost nothing until it is heavily used in chapter 4.
Throughout this process, we build tools that automate a good
portion of the process of moving your code through testing
and delivery.



1 Delivering value

This chapter covers

Using small chunks of work to increase workflow
Establishing feedback loops for product and process improvement
Outlining phases of product growth and development
Iterating between various feedback cycles

What you will find in this book has been gathered from past
practices in Agile software development, lean startup ideals,
and DevOps culture. This book is intended for those who
want to take the language they’ve learned and build
something with it. You know how to write code, and you want
to ship it. The concepts and processes taught here should be
agnostic to the technology or language you use, but I provide
concrete examples using Go and GitHub Actions. By using
their terminology, you should be able to easily adapt what I
write here to Python and GitLab or JavaScript and CircleCI,
but in this book, we will ship Go code.

The book follows a semi-narrative format wherein I put you
in the shoes of a developer at a company that wants to
rapidly develop an enhanced product. While this project is
simple, the intention is to give you an idea of the process of
developing a product. Many of these elements are drawn in
part from my personal experiences and hindsight. This
pattern may also not fit your company’s culture or process,
but hopefully you can find some elements that help your



team move forward. The focus here is the process and
mentality rather than the technology.

Finally, each section is broken down so that you deliver a
product at the end. Each chapter will build off of the existing
chapters, but you can stop at any point if you are satisfied
with the process. Each section brings your product to scale in
different ways, such as by expanding teams or higher
resource utilization. We explore integration with legacy
systems and different deployment options based on cost.

1.1 Simple concepts

This book brings together concepts and processes from
across various industries to help with the quick creation of
quality software. Some of these concepts predate the
development of computers and the software development
industry. Over the past few decades, software companies
have looked to other industries to help them build products
more efficiently to meet the demands of their customers.
What they found were processes that created fast feedback
from their customers. Based on that feedback, they were
able to adapt their product. Adapting their products allowed
them to grow into the Googles, Apples, and Facebooks of
today, yet they are rooted in the assembly lines of the
industrial revolution and the lean manufacturing techniques
created in Japan.

Let’s assume you are reading this book so that you can build
a product. You have some idea that you think will change



your company (or the world), and you want to see if it works.
Is this what customers want? Does this help your company?
It is hard to know. Projects may get started and eventually
fail. They may pivot or change or just be left to the scrap
heap of experience. If a project is almost predestined to
change or be thrown out, then how much effort should you
put in?

It’s curious to think of putting in the least amount of effort as
possible into something. It can seem lazy or uninspired.
Instead, consider being told you need to build a device that
takes someone from one location to another in the fastest
way possible. With no additional details, you could spend
years creating and designing an airplane only to find out your
customer needs to travel 10 miles. Compare the two
development processes in figure 1.1.

In software, this happens all of the time. Companies pivot.
They start small and evolve. They fail. They make millions.
How do they do it? It comes from a notion of developing
three key features: people, process, and product. People
drive organizations and product development. A process
helps us underline how the work should be done. Finally, the
product opens us up to feedback from our customers. Once
you’ve established your process, you can automate it as
much as possible. This allows your team of people to sit at
one end and a product to be delivered at the other end.



Figure 1.1 Talk with customers to get an accurate idea of which
product to build them.

Your team will develop features or make changes that your
customer wants. These changes will then be delivered to
your customers, who in turn will create a discussion about
the product or feature. This will trigger a design step, which
will start the whole thing over. I like to refer to this loop as
the four Ds: develop, deliver, discuss, and design. This is a
feedback loop and becomes a key part of our value stream,
as seen in figure 1.2.



Figure 1.2 Develop, deliver, discuss, design loop

The value stream is exactly as it sounds, the flow of work
that creates value within the company. This means
establishing a relationship with your customers and building
a product that you think will be valuable to them. Yet your
investment should be as small as possible until you can learn



what your customer wants. How do you reduce your
investment costs? Through automation. When your source
code is committed, it should be treated as a raw resource,
and the manufactured product should be delivered at the
end.

We can look to another profession for the answers. Industrial
engineers have been dealing with how to deliver products for
a long time. We can look at innovations such as the assembly
line, which showed us the benefits of automated handoffs
between workstations. We can look at lean manufacturing
techniques to help us understand the importance of reducing
work in progress and just-in-time delivery to reduce waste.
The technology world has watched and adopted many of
these principles to help design and build delivery pipelines,
which automate the flow of work from a single idea to a
feature in your application. These ideas and features are
created when a customer asks for them just in time for
development rather than by guessing the customer’s desires
and spending time and money upfront developing something
that may not be what they want. This pipeline can be seen in
figure 1.3, wherein a raw resource goes in one end, a
product is shipped, and customer feedback is given to design
a new feature. This cycle is pivotal to the success of
companies and is a concept we will explore throughout this
book.



Figure 1.3 Code is moved along a pipeline where it is analyzed, built,
and then shipped as a library to a device or a server.

We can see that the code goes through a series of automated
steps to verify quality before a product is built and shipped to
the end customer. This can be through a library package that
is used in another project, a device out in the field for an
update, or a server running in the cloud. All move along with
little to no human interaction, making the timeline
dependable between when the code is written and when the
customer gets to use the product.

1.2 Small pieces

A key theme you will find in this book is creating small,



iterative steps to invite feedback into your process. So, as we
build our product, we will take small, iterative steps so that
you can see how a product grows. You may find the steps in
section 1 too simple for your needs and choose to skip them.
Or you may find that you only need up to the end of part 2 to
take your product to market.

Imagine you have spent three weeks developing a feature
that hasn’t been looked at or tested by anyone. How long do
you think it will take for someone to test all of the different
pieces of your feature? How many bugs do you think they’ll
find? How quickly can you turn around on those bugs? How
much change has accrued while you developed this feature?

Creating small pieces of work allows us to decrease our work
in progress (WIP) and speed up delivery. In Eliyah Goldratt’s
book The Goal (Routledge, 2014), the author points out that
WIP ties up revenue. You invest time and money in
something that is not getting to the customer. This is a loss
of value until it is delivered. Creating smaller amounts of
work ties up less revenue in your value stream, so we will
focus on smaller chunks of work to deliver value early and
often.

While each chapter is important to building a complete
pipeline, in the end you will find that your pipeline will be
different because each product and company is different.
What stays the same is the process. Ideas go in, code gets
written, and products ship out. Figure 1.4 demonstrates this
loop.



Figure 1.4 Product development goes through a life cycle that starts
with raw materials and results in a product that customers provide
feedback on, resulting in improvements and changes to the product.

Collaboration becomes key in this step because you are
tearing down the walls between different groups. It used to
be that tribes existed in companies that were constantly at
war with each other. Testers blamed developers for poor-
quality code. Developers blamed operations for slow
deployments. Operations blamed testers for the number of
deployments that happened because of missed bugs. This is
unhealthy and harmful to our customers, so instead of
putting up walls, we tear them down, put lines of
communication between them, and collaborate on building a
tool that takes in ideas and delivers value.



You will be given a holistic view of product development so
that you can turn your ideas into products. What does this
view look like from a distance? What steps do we need to
build our pipeline? Let’s take a look.

1.2.1 Continuous

There are so many continuous things: continuous integration,
continuous testing, continuous delivery, continuous
improvement. What do they all have in common? They are . .
. continuous—a cycle, a full rotation, a circle. All of these
“continuous” things tell us that they all need to connect at
the beginning. Toyota incorporated this model to build its
famous Toyota Production System (TPS). The company is
constantly evaluating each phase of its development process,
from the way the assembly line runs, to manual assembly, to
experimentation. Each phase has a feedback cycle where any
employee can seek ways of improving the company.

From a development perspective, being continuous allows
you to write code without much concern about doing a lot of
manual work after that. If a pipeline is assembled correctly,
checking in a piece of code should trigger a list of automated
processes that will give you feedback about the code. It may
fail a quality assessment or not compile, but the developer is
notified and can fix it, creating a loop. If the deployment was
successful, the developer can move on to the next task,
continuing the process of improvement.

This book is written in a way that tries to follow this pattern.
The TPS has many steps and hits a very broad market, so it



would be too theoretical for this book. What we will do
instead is break it down into three broad categories: process,
quality, and delivery.

Each phase can be simple or complicated depending on your
needs and where you are in your product development. What
is provided is not a prescription but guidelines to help you
implement these various techniques.

1.2.2 Process

Humans are still an essential element of software
engineering. They come up with designs. They write the
code. They verify the results. But humans aren’t needed for
everything. In fact, the more you can invest in less human
time, the greater benefits you will get from your team.

This isn’t to say that you automate away your development
team. Instead, consider this: Would you rather spend an
hour deploying an application or developing a new feature?
We adopt an approach that is found in TPS: “automation with
a human touch.” This means we try to automate as much as
possible, which increases how efficiently we work. But this is
not a black box or a set of corporate commands. Instead, the
developers create and add the necessary tools to help them
in their development.

What does this look like? Well, it becomes a set of
documents, scripts, and tools that help make development
go quickly. What format should my code be in? Use a
formatter tool. How do I create a new feature? Use a code



generator. How can we improve our deployment process?
Use a pipeline.

This process is going to be fragile at first but will evolve into
something essential to your team. You will find that the flow
of work through your company will become easier and you
will be able to meet demands quickly and efficiently.

1.2.3 Quality

Quality is a tricky word and the basis for some philosophical
discussion. Robert Pirsig, in his book Zen and the Art of
Motorcycle Maintenance (Mariner Books, 2005), put it this
way:

“Quality . . . you know what it is, yet you don’t know what it is.
But that’s self-contradictory. But some things are better than
others, that is, they have more quality. But when you try to say
what the quality is, apart from the things that have it, it all goes
poof! There’s nothing to talk about. But if you can’t say what
Quality is, how do you know what it is, or how do you know that it
even exists? If no one knows what it is, then for all practical
purposes it doesn’t exist at all. But for all practical purposes it
really does exist.”

So when people say “delivering a quality product,” what does
that mean? For our purposes, we’ll say that first and
foremost quality does not mean perfect. No code or product
will ever be perfect. Quality, therefore, becomes an
approximation of perfection.

Perfection can be approximated by putting additional quality
measurements into your development process. What you,



your team, and your company must do is determine your
definition of quality for your customers. Your code may be
beautiful, but in most cases, it gets compiled and is never
seen by a customer. If that beautiful code has bugs, is it
quality code? Or if you have code that works and has worked
for years but is difficult to read or debug, is that quality
code?

Our quality checks will mostly be through various types of
test code. Different patterns and strategies will be used to
ensure that our product is functioning as expected by the
developer and the customer. This step reduces waste in our
system, which occurs through rework (bugs) and delays
(missed requirements). We use tests in a variety of ways to
give ourselves confidence that our product works before we
ship it. This will not address everything we need for quality
code. Things such as code clarity and maintainability also
help with the quality of our code and will be additional steps
we add. In the end, though, it is the writers and maintainers
of the code who are the stewards of quality.

1.2.4 Delivery

Delivery is the last step needed before we can loop back to
the beginning. This is where the value comes into our
pipeline. After the code has been written and pushed, we
validate what we wrote by how our customers react to it.
Changes may be requested, or the user may be satisfied or
dissatisfied. This feedback loop only happens once a product
is delivered.



Delivery is the act of shipping an artifact. An artifact can be a
version of a library, an executable binary, a container image,
or something else that can be used by another person.
Artifacts can be delivered privately and publicly. In some
cases, a company will build what’s called a release candidate,
which is a product that is almost ready to be given out to the
general public. This candidate can be run through another set
of automated tests to check for performance problems (load
testing), usability problems (UI testing), or if it even works
(smoke testing). The manual tests can be run to explore the
product, get a stamp of approval, and be released to the
public, as shown in figure 1.5.

Figure 1.5 Code is built into an executable file or wrapped in a
universal runtime, such as a container.



The process of making an artifact run is known as a
deployment. In some cases, this can range from installing an
application on a server, setting up a new function on a
serverless environment, running a new container on a
container-run engine, or simply doing an over-the-air update
to the customer’s machine (e.g., operating system updates).
It is at this point that we begin to see the full value in what
we have built, as shown in figure 1.6.

Figure 1.6 The output is shipped to a customer as a library onto an
embedded device or a server.

Throughout this process, we continue to learn what
customers want and need and how they use the product,
which provides information back to our development team. If
an application doesn’t start, we know we broke something



that needs to be repaired. If it falls over when too many
people use it, we know something needs to be changed. If
only a small set of users finds the feature unhelpful or not of
value, we may need to go back to the drawing board.

1.3 Building your product

What happens in the product development cycle is very
similar to the scientific method. You have a hypothesis, and
you do experiments to see if your hypothesis is correct.
Sometimes you may need to change the parameters of your
experiments or explore a different direction. Products can be
similar. Your idea (hypothesis) may not meet the market
needs, so you make a change (experiment) and ultimately
find if it is successful. In either case, you learn something.

As part of building your product, there will be various stages.
As you progress, each part can become more complicated
and will outline the mature stages of a product.

1.3.1 Initial setup

What goes into starting a new project? Is it just a great idea,
or is it more? When you are starting a project, as we do in
chapter 2, you need to gather information about what the
system is supposed to do and how you expect it to work. As
you progress, you need instructions and scripts to set up the
project for others. When working in an organization or on a
larger project, you will not be the only one doing the work.
Someone at some point will want to contribute, and it’s



easier to document the steps now than worry about it later.

Documentation and scripts will help you scale team members
and contributors. Building a basic pipeline also becomes
important at the onset because retrofitting one can often be
tricky. In this section, we start down our path toward
industrial programming instead of hacking. There is a time
and place for both types of programming, but in this
instance, we worry about building a product and not vetting
an idea. Once we’ve established some basic installation and a
process, we will add to it as we go.

1.3.2 Basic validation

Validating that your code works as expected is another step
along the path to developing a great product. Teams often
push items like testing toward the bottom of their priority
lists because they feel their product is too volatile at the
beginning, but tests are more than just security blankets for
developers. Instead, they tell developers about the business
rules they are writing and steer the product toward their
intended goal. These guard rails can help developers in the
long term, and establishing them as basic validation in a
pipeline helps accelerate the growth of a product and gives
autonomy to developers by documenting the business
expectations through code. We explore this process in
chapter 3 by setting up a basic unit testing process.

1.3.3 Zero-cost deployment

Without shipping, you have a product that sits on a shelf.



Deployment is taking your product and putting it out there on
a server so that someone can use it. Yet when you look at all
of the options, there are tons of things to consider. The
biggest of these is cost. That is why there is such a large
focus on low-cost technologies to get products deployed.

Starting in chapter 4, we will walk through various options
that are free and scale with your company as your user base
grows. I like to call this “zero cost” because early on, it
should not cost you anything to run a product to get market
validation. To do this, we will explore serverless technologies
such as deployed functions and hosted platforms.

1.3.4 Code confidence

The standardization of work is a core tenant of industrialized
production. In the same way, developers have created
techniques to standardize how software is written. As a team
grows, coding standards and formatting will become
important. By using these techniques, we can catch bugs
earlier and continue to check the quality of the product
automatically before it even gets tested.

Additionally, in chapter 5, we will explore a code review
process and see how this can aid in creating a quality product
and how it can be used as a teaching mechanism for team
members. We will also use documentation to help our team
understand the code we write and work toward creating code
that is easy to understand.

1.3.5 Integrations



Systems rarely work in a vacuum. They either interact with a
database, a file system, or another application. This is known
as integration, which becomes a critical part of testing our
systems. In chapter 6, we will explore different techniques
for testing integrations with other systems. We will interact
with simple stubbed systems as well as more advanced
mocking techniques. To do this, we will need to create a
layer that allows us to invert the dependencies so that we
develop against an abstraction instead of a concrete system.
In doing this, we will give ourselves higher flexibility.

1.3.6 Portability

“It worked on my machine” is a trope that occurs often in
software development circles. You spend months creating a
system, and you know all of the ins and outs of it. Suddenly,
someone else wants to run it and it won’t work. They follow
your setup, but you missed a dependency. You developed it
on Linux, but they are using Windows.

How do we resolve this? In chapter 7, we will explore
abstraction tools that help us with virtualization and
packaging our product so that it can run on a universal
runtime. This will be done using Buildpacks and containers.
Ultimately, we will integrate this into a system that is
portable for everyone, including our various cloud
deployment options.

1.3.7 Adaptability

As you ship your product, you will find yourself building



incomplete features or turning features off. Typically,
companies create a separate product to test before releasing
it to a customer “once it is stable,” but this has been found to
reduce teams' productivity and can often cause delays in
shipping. Instead, the industry has moved toward changing
the way our applications work through the use of
configuration. By configuring our applications, as we will do
in chapter 8, we can change the functionality without
changing the code itself. This means that experimental
features can be tested by setting a variable or changing an
endpoint by changing a flag. Configuration means you can
adapt your applications so that they can move as quickly as
you do.

1.3.8 User acceptance

Simple tests are great at testing how functions and methods
work within your application. They help you hone in on the
technical aspects but do little to tie your work to what the
user wants. A user may want an API that expects a specific
format or a business rule that has specific expectations. In
this instance, our testing shifts from technical to something a
little more “squishy.” In chapter 9, we explore other
techniques. We are not interested in how it is done but rather
whether we are meeting the specifications set out for us. “If
my balance is less than the amount to withdrawal, then I
should get an error” is an example of a specification we
would want to test.

1.3.9 Scaled product



Using various abstractions in our deployment environments
will help us build a customer base. Over time, these
abstractions will cost you and your company either money or
performance, so you start ripping apart these abstractions,
which requires more technical expertise about the servers
and systems you are building, for a reduced cost and the
ability to scale servers as you see fit. In chapter 10, we will
explore creating and delivering products on visualized server
instances and how to maintain these products through code.

1.3.10 End to end

The final step in any product, once it has reached a critical
mass, is to test it for quality. By this point, we will have
created several ways of testing quality through testing and
linting. But as the product rolls to production, we will want to
assert what the customer will experience. Often this is done
through a quality assurance team, but we want to automate
as much of this as possible so that our team can explore
more nuanced bugs or search for areas of improvement. In
chapter 11, we will add our final capstone to our pipeline,
which will give us a sense of whether our entire system
works as expected from the stance of a customer. We focus
on pushing the quality checks throughout the system, but we
should, in the end, have a final check to see if everything
works as a whole. Since this is an expensive operation (in
terms of time and upkeep), we save it for last, as it is often
the last piece to be implemented once a product has
matured. In chapter 11, we will demonstrate some tests to
allow your team to explore other areas of improvement.



1.4 Feedback loop

I guess it’s easy to ask what the point of all of this is. The
answer is simply to allow you to create fast and tight
feedback loops throughout the growth of your product, team,
and company. These principles are also easily transferable to
other businesses and projects.

Agility is a term thrown around a lot in software
development, and it aims to capture the idea of being nimble
and quick to change direction. Yet I feel that this is an
inadequate term because it can often feel like you are playing
a game of dodgeball trying to deflect or dodge feedback
rather than embrace it. Instead, our development process
should be like driving a race car where you need to make
split-second decisions to keep moving toward the finish line.
As we move through this book, I hope you can find some
guidance for your project and your team on how to move
forward and win the race.

Summary

Product development is a process that constantly
changes.
Focusing on feedback loops will help guide areas of
improvement.
Automation is key to establishing faster feedback loops.



2 Introducing continuous integration

This chapter covers

Documenting requirements in your source code
Establishing a central code repository as the starting point for your
pipeline
Automating the steps needed to build your product by using a
continuous integration system
Creating a basic application to start development

It’s Monday, and you’ve been drinking your morning coffee
and scrolling through emails when you see an invitation to a
meeting titled “Kickoff.” You check the time and realize you
are going to be late. Grabbing your laptop, you run to the
conference room and see just one person sitting there, a
product manager. As you close the door and walk to a seat,
they say, “Glad you could make it; sorry about the last-
minute invite, but we need to get something built this week.
Our company would like to explore creating a new hello
translation service that is cheaper and faster than our legacy
system. In the future, we want to expand beyond just
translating ‘hello,’ but our system will not scale. The
conversation has been going on too long at this point, and I
want to prove to them we can get something done quickly
and still meet their targets. Do you think we can do it?”

A new service to replicate the functionality of an old service
in less than a week, with better performance and at a



cheaper cost? Sure, why not? What do you have to lose?

“What I want is for you to do this in pieces and write it so
that we can get feedback quickly. Also, I want to demo this
tomorrow from a live server. It doesn’t need to be perfect; it
just needs to show what we were able to do in a day. I also
want it so that we can have others join you once this demo is
over. And we need to be sure it works as we expect and that
we can prove why it does.”

As they’re talking, you quickly open a terminal and type
mkdir hello-api && touch hello-api/README.md. You
open your README.md file and write the code in the following
listing.

Listing 2.1 README.md

# Hello API

 

## Release Milestones

 

### V0 (1 day)

- [ ] Onboarding Documentation

- [ ] Simple API response (hello world!)

- [ ] Unit tests

- [ ] Running somewhere other than the dev machine

 

### V1 (7 days)

- [ ] Create translation endpoint

- [ ] Store translations in short-term storage

- [ ] Call existing service for translation

- [ ] Move towards long-term storage

“Great, once you are done, let me know, and we can chat
about the next steps. I appreciate you doing this. I think it
will be great for us to show our company how rapid product



development can work and make us a success.”

You leave the room with your laptop and go get some more
coffee. When you get back to your desk, you look at the
time: 9:15. It’s time to start coding.

2.1 Where to start?

Beginning a project based on an idea can be a little
overwhelming. What language do you write it in? How should
it be structured? What are the various use cases?

Interestingly, none of that matters. If you are asked to
create something in a day, you will go with the language you
are most comfortable with. You will write the code in the
simplest way possible. You will never know all of the use
cases, so it is best to just get something in the hands of the
customers. With this project, you have the benefit of knowing
some business requirements because there is a legacy
system, but in most cases, you will never know.

As you start, it is a great idea to create a document to write
down your setup process, milestones, testing process, and so
forth. You already started the documentation in your meeting
when you started a README.md. Most developers will open
this file first, and it is a great way of communicating
asynchronously. The README file is not a new concept and
has been a fixture of software development for decades. Its
purpose is to give the user relevant information to configure,
install, run, or use a piece of software. What goes into your



README depends on your team, but often it will hold the
following:

Instructions on how to run the software
Configurations in your environment to run the software
Known dependencies
Troubleshooting information
Common use cases and examples of using the software
Software milestones

Figure 2.1 shows how a document acts as a map for new
team members.

Figure 2.1 The README document is a pointer to all other documents
within your product. This will help enhance the developers’



understanding of how to contribute, run, build, or debug your product.

You have already added one of these items from the list:
software milestones. Now you want to add a description of
what the software does, what it needs, and how to start
working on it. The README has now become a lab notebook
in which you tell others what you are doing and how to
replicate the experiment. It should also have a thesis or a
purpose that tells the reader what this product does. If you
find it hard to write a thesis, you may not have a great idea
of what you are building. Let’s write this out:

# Hello API

This is an improved version of the current hello-api we use
in production. It will use less memory and be cheaper to run
in production, and it will scale, expand to additional words,
and be more stable:

## Dependencies

 

- Go version 1.18

 

## Setup

 

## Release Milestones

...

Great! You’ve used this to make your first decision. Choosing
Go was natural for you because it is a fun, newer language
you’ve been using in your spare time. It will be a great way
to introduce this to your company and has a reputation for
using little memory, being scalable, and being stable. Notice



that you left Setup blank. This is intentional. This is a living
document that should be updated when infrastructure
changes are implemented. This will help us throughout the
chapter by guiding us to the logical step that we should take
next.

2.2 A greenfield project

For this book, we use a Unix-based development
environment. Why? Because most of the deployment services
we will use are Linux based. Windows even has this neat
feature available to run Ubuntu Linux inside Windows.
Between Linux and Windows, we have a pretty large share of
users. macOS will work for most things, so we need to
indicate when it won’t. This is very important to note, so we
should probably add this to our README.md file:

...

## Setup

 

...

Development expects to run in a Unix-like system. If you are
running Windows, please consider following these directions
(http://mng.bz/VpQr).

Now we need to install Go. It would be easy to simply paste a
link to a download and tell users to follow the instructions.
However, you might be on version 1.7.2 and the next person
on 1.7.3, and the person after that on a different version.
Soon everyone is on a different version, which seems benign

http://mng.bz/VpQr


but could become a problem when you’re helping a colleague
solve a problem, because it works on your machine and not
theirs.

It’s at times like this when we want to use standardized tools
to help create repeatable tasks. To do this, we will create a
Makefile—a standard in the developing world, which can
become very complex. Our Makefile will just house some
small commands that we can reference in the documentation
and aid us in development. Open a new Makefile in your code
editor, and add the code in the following listing.

Listing 2.2 Makefile

GO_VERSION :=1.18

 

.PHONY: install-go init-go                                         ❶
 

setup: install-go init-go                                          ❷
 

 

#TODO add MacOS support

install-go:                                                        ❸
  wget "https://golang.org/dl/go$(GO_VERSION).linux-amd64.tar.gz"

  sudo tar -C /usr/local -xzf go$(GO_VERSION).linux-amd64.tar.gz

  rm go$(GO_VERSION).linux-amd64.tar.gz

 

init-go:                                                           ❹
  echo 'export PATH=$$PATH:/usr/local/go/bin' >> $${HOME}/.bashrc

  echo 'export PATH=$$PATH:$${HOME}/go/bin' >> $${HOME}/.bashrc

❶ .PHONY is used to define some of our methods in advance so that we can use
them in the setup phase.

❷ Runs commands to install Go and setup environment

❸ Downloads a specific version of Go and installs it

❹ Adds Go location to your local environment



Alternatives

The following code is in Make because it is used fairly often by the DevOps
community and developers:

- TaskFile[https://taskfile.dev/] - Modern Make alternative using YAML

NOTE If you are not using Bash as your shell, you will have to modify these
steps to add Go to your system path.

Notice the TODO comment here. This is okay. Remember that
we are trying to move fast but also be helpful. What is
important is to document what is missing so that others will
know when they join your codebase. TODO items are a great
way for people to start contributing! Add the code in the
following listing to your README.

Listing 2.3 README.md

...

## Setup

 

### Install Go          ❶
`sudo make setup`

 

### Upgrade Go          ❶
`sudo make install-go`

...

❶ macOS is not supported by this Makefile yet.

By using standardization and documentation, you establish a
guide on how to work on this product. This is almost like



pulling out a set of building instructions for a table from Ikea.
Anyone who picks it up should be able to follow the directions
and have a running application. Standardizing our system
allows others to contribute. Given our tools and our
documentation, the next step in the evolution of product
development is automation. For factories, this came in the
form of the assembly line. For software, it came from the
continuous integration pipeline.

2.3 The assembly line

Once producers were able to standardize the way they did
their work in their homes, they started moving to centralized
factories. These factories still had each worker sitting at their
workbench assembling items by themselves. One worker’s
job may have been to cut the leather for a shoe and then
deliver the stack of cut pieces to another worker, who
attached it to a bottom piece, and so on. Today, assembly
lines are much different. Some people stand and do
repetitive tasks, but with the advent of more advanced
automation, these stations have become more skilled and
nuanced, requiring special training and knowledge, much like
today’s software developers.

In software, we can imagine this as a developer sitting at
their machine, writing code, compiling it, and then deploying
it. While many people produce code this way, it does not
scale well. Artisans will produce custom furniture, and in the
same way, many programmers will sit at home hacking away
at a project on their own. But this isn’t industrial



development. These are solo projects. Most companies do
not need artisanal software; they need predictability and
reliability.

What is needed is a way of automating the flow of items
through a factory so that workers aren’t doing everything
themselves or spending time handing things off. In factories,
this was called the assembly line; in software development, it
is called a continuous integration pipeline.

A continuous integration pipeline, or CI system, is just an
application that moves code along a set of predefined
processes. A CI system can be as simple as copying a file to
a different location to as complicated as handling multiple
deployments and quality checks. In this book, we will move
from the former to the latter using GitHub Actions. Table 2.1
outlines some of the most common CI systems.

Table 2.1 Continuous integration servers have also evolved over the
years and often have a cloud-based hosting solution so you don’t need
to run them yourself.

          
Continuous 

integration system

        

          
Year

        

          
Hosted service

        

          
Azure DevOps

          
2005

          
Yes



                        

          
TeamCity

        

          
2006

        

          
Yes

        

          
Circle CI

        

          
2011

        

          
Yes

        

          
Jenkins

        

          
2011

        

          
No

        

          
Travis CI

        

          
2012

        

          
Yes

        

          
GitLab

        

          
2014

        

          
Yes

        

          
GitHub Actions

          
2020

          
Yes



                        

GitHub Actions is a fairly new technology to help create
integration pipelines for developers’ source code. It uses a
special YAML file to help us define the various stages that we
want our code to go through, when to run the stages, and
what to do if something doesn’t work. The pipeline is broken
down into a set of jobs. Each job can have a series of steps
involved and can depend on other jobs. Each step can either
run a command directly on the underlying system (bash
commands, scripts, etc.) or use libraries to help do repetitive
tasks (set up Go, check out code, etc.). When you look at
some definitions, you will see things like actions/setup-
go@v2, which means we will use the GithubAction
command to set up our Go environment with the proper
version.

Additionally, we want to understand the first pipeline we are
building. At first, all we want to do is create a binary and
upload it as an artifact to our GitHub repository. You should
see the following steps:

1. Set up Go.
2. Check out the code.
3. Build a binary.
4. Copy the file to the upload directory.
5. Upload the artifact to GitHub.

To show how simple it is, we will create our pipeline now



before we have written any code. In your terminal, type
mkdir -p .github/workflows && touch
.github/workflows/pipeline.yml, and open the file. In
it, we will add the code in the following listing.

Listing 2.4 pipeline.yml

name: CI Checks

 

on:

  push:

    branches:                                                ❶
      - main

jobs:                                                        ❷
  build:

    name: Build App

    runs-on: ubuntu-latest                                   ❸
    steps:

 

    - name: Set up Go 1.x                                    ❹
      uses: actions/setup-go@v2

      with:

        go-version: ^1.18

 

    - name: Check out code into the Go module directory      ❺
      uses: actions/checkout@v2

 

    - name: Build

      run: make build                                        ❻
 

    - name: Copy Files                                       ❼
      run: |

           mkdir  artifacts

           cp api artifacts/.

 

    - name: Archive                                          ❽
      uses: actions/upload-artifact@v2

      with:

          name: api                                          ❾
          path: artifacts



❶ We will only run this CI process when a change is made to the main branch.

❷ These are the various stages that are run in our pipeline.

❸ Run this on a Linux-based machine.

❹ Ensures that our image has Go 1.18 or higher

❺ Pulls code from a local repository

❻ Tells our build command to build a binary

❼ Copies the resulting binary to a directory to upload

❽ Creates an archive to be attached to the workflow with the binary

❾ Names the binary directory something you will be able to identify it with

Hopefully, some of you will have caught that we have a new
make target listed. Here, we are standardizing our build using
make build. Why? Well, Go allows us to configure our builds
using flags and various other features, and we want to make
sure that we have it standardized. For now, we will use the
simple Go build, but in future chapters, we will have
alternative configurations that we will want to use. Let’s add
our build command to our Makefile using the code in the
following listing.

Listing 2.5 \.gitignore

GO_VERSION := 1.18

 

setup:

    ...

 

build:

    go build -o api cmd/main.go      ❶

❶ The build command will compile the main application into a binary named api.

You may be wondering where the code is built. Trust me,
we’ll get there. For now, you can see how we can tie in the



standardized build system to our assembly line. Our
developers can use the same commands that we use on the
assembly line to ensure they work locally but will be
triggered automatically on our pipeline. If we need to change
the process, it can then be reflected across both local and
production environments.

NOTE You changed a process. Did you update the documentation?

The assembly line is often mistaken as an invention of Henry
Ford. However, the concept of an assembly line goes back
decades before Ford’s use of it on his famous Model T.
Clothing, machines, bicycles, and boats were all applications
of the concept of moving pieces between divided pieces of
labor as far back as the industrial revolution. Automated
tracks of materials would move around assembly or unit
production. You can compare the two in figure 2.2.

Figure 2.2 Assembly lines have evolved over the years in what they
can do. Automation enhances the worker’s ability to create higher-
quality products more efficiently.

Henry Ford didn’t even create the automated assembly line.
What he is famous for is his application of the assembly line
by creating core principles that efficiently delivered his



product from start to finish.

His principles were simple:

Place the tools and people in the order of operation.
Optimize the flow for each station of work.
Automate the line to move the product being assembled.

These principles boil down to grouping tools and workers:
create a system that is easy to assemble and requires pieces
to move automatically from each stage. Today, assembly
lines are more sophisticated and have higher levels of
automation, but the principles remain the same: make your
tools easy to use, use the tools efficiently, and automate the
flow to the next step.

We have just created our assembly line, moving our artisan
development into industrial development. What we need to
do now is find a way of moving materials into factories and
moving products out.

2.4 Warehouses

I live in Pittsburgh, the Steel City. It got that name because
of the large steel industry that was built here in the late
1800s. Throughout the outskirts of the city today, you will
still see functioning steel mills and abandoned ones. What
caused the steel industry to be so big here? Was it the
climate? The population? The technology? No. The success
was its proximity to the materials needed to create steel and



its proximity to the distribution networks of the time. Coal,
iron, and limestone would come down from the mountains
surrounding the city and nearby areas into the factories. The
factories would then produce steel and ship it out on the
railroad or on barges down one of the rivers.

The proximity of resources and distribution networks are
essential to modern production as well. Instead of relying on
the location of natural resources, now companies will build
warehouses to store their materials until they can get around
to processing them. When a product is completed, it then
goes to another warehouse until it is needed by a customer.
These warehouses also go by another, more generic name:
repositories.

Repositories are locations to store things. In software, we
have code repositories that store our code. As with
manufacturing, we want our source code to have close
proximity to our factory to make product development more
efficient. In our case, we want our software code to be close
to our pipeline code as it gets assembled. Code repositories
come in many shapes and sizes, but we will use Git for our
code repository hosted on GitHub.

We will build a project to use throughout the book. The
source code can be found at
https://github.com/holmes89/hello-api. In each chapter, we
add new tasks and procedures to our repository to show how
we can test, build, and deploy multiple products from a single
repository.

First, if you haven’t already signed up for a GitHub Account,

https://github.com/holmes89/hello-api


go to https://github.com/join and then http://mng.bz/xdxq
(SSH access to your account).

Then navigate to the upper right-hand corner, click the plus
sign, and select New Repository. Then you will be on a setup
page. Pick a name and add a description if you’d like. Follow
the setup in figure 2.3.

https://github.com/join
http://mng.bz/xdxq


Figure 2.3 Provide a name, and create a .gitignore file using a Go
template.

Then click Create Repository. Congratulations! You’ve created
a repo. Please make sure that you have Git installed
(http://mng.bz/AlXE). Then we will configure our local
directory to use this repository. In your directory, run the

http://mng.bz/AlXE


following code:

git init

git remote add origin git@github.com:holmes89/hello-api.git

We now can store our code in a central location, and our
actions will produce a binary that is also shared here with
others. This repository is essential for the growth of our
product. Once we share our code, others can start
contributing and sharing as well. Our code is the material
used by our system to build, test, and ship our products.

This means that our product code, testing code, and
infrastructure code all reside in the same repository, where
they can be processed and used to ship the product. Not only
does our product code get checked for quality, but so does
our test code and infrastructure code. We will see this as we
move throughout this book. It is visualized in figure 2.4,
where you see that material that is used for a product is
shipped to a single assembly, and a product is then shipped.



Figure 2.4 In manufacturing, materials are delivered from a repository
of raw resources and are then assembled into a finished product,
which is delivered to a customer.

The repository will need to hold everything that goes into
making our product. This includes product code, deployment
code, infrastructure definitions, testing plans, auto-

mated testing frameworks, and so forth. This may seem
radical to some people, but it is core to the idea of
continuous integration. This is the single source of truth for
how to build our product and creates a sense of ownership
for everyone working on it. You may find that a project may
require more than one repository or rely on external
systems. These fall into different patterns of development
and deployment. We focus on a single project repository in
this instance to keep our work simple and organized. What
we want is code going in and a product going out, as
illustrated in figure 2.5.



Figure 2.5 Similar to the manufacturing process, we can assemble our
source code into a product through an integration layer to then be
shipped to a customer.

With a single repository, you can solve a lot of organizational
problems. For example, by having your test code in the same
repository as your product code, you can have your assembly
line easily run integration tests after a build before the
artifact is deployed. Otherwise, a trigger may need to happen
on the testing repository to start tests after the build has
been completed. Or you may find that you have a chicken or
egg problem when it comes to releasing a new feature or
schema change. As I mentioned before, this will need to be
based on how you and your team want to structure it.

Some items may not be required to check into your
repository. Specifically, things like compiled binaries and



external libraries aren’t typically checked in but are scraps
left over from your development that you don’t want to add
to the repository. To handle this, we can create a special file
called .gitignore. Create one, open it, and add the
following:

# Binaries for programs and plugins

*.exe

*.exe~

*.dll

*.so

*.dylib

 

# Test binary, built with `go test -c`

*.test

 

# Output of the go coverage tool, specifically when used with LiteIDE

*.out

 

# Dependency directories (remove the comment below to include it)

# vendor/

 

api       ❶

❶ We do not want to save the binary to our source control.

This should prevent us from adding these files to our
repository so that it stays clean. You may not need all of
these files, but they are standard files you wouldn’t want to
check into your repository.

We now have standardization with a Makefile, documentation
in a README, process in the form of a pipeline, storage in the
form of a repository, and shipping in the form of a release.
All we are missing is the material to produce our product.



2.5 Material

Where is the code? Why haven’t we written a single line of
Go yet? Why are we going through all of this setup before we
even have a product?

These are good questions, and to be honest, it does seem a
little backward to be putting in all of this work to build a
pipeline and document it without anyone else working on the
project and no code written. This was intentional, though, to
prove a point. Our process should be agnostic of the code we
have written. I chose Go for this book for a variety of
reasons, but you may be a JavaScript or Python developer,
and these principles still apply. We can imagine that our
project changes from a hello-service to a good-bye-
service, and all of the work we did will not change. The
code does not matter!

To demonstrate this magic, let’s write our code. Type mkdir
cmd && touch cmd/main.go, open the file, and add the
code in the following listing.

Listing 2.6 main.go

package main

 

import (

    "encoding/json"

    "log"

    "net/http"

)

 

func main() {

 



    addr := ":8080"                                     ❶
 

    mux := http.NewServeMux()

 

    mux.HandleFunc("/hello",

      func(w http.ResponseWriter, r *http.Request) {    ❷
        enc := json.NewEncoder(w)

        w.Header().

        Set("Content-Type",

        "application/json; charset=utf-8")              ❸
        resp := Resp{

            Language:    "English",

            Translation: "Hello",

        }

        if err := enc.Encode(resp); err != nil {

            panic("unable to encode response", err)

        }

    })

 

    log.Printf("listening on %s\n", addr)               ❹
 

    log.Fatal(http.ListenAndServe(addr, mux))           ❺
}

 

type Resp struct {                                      ❻
    Language    string `json:"language"`

    Translation string `json:"translation"`

}

❶ Hardcoding system port; for now, we will be able to configure it in the future.

❷ Creates a single handler, for now, to meet the minimum requirements of our
system

❸ Sets the default header type since this will be a REST API

❹ Additional logging information for the server port; this information is often helpful
for running multiple servers on a single machine.

❺ Runs the server

❻ Common structure to store translation information

We will use the internal HTTP mux library and Gorilla Mux in
this book, but there are other options as well:



Gin
kit
beego

Let’s also package our code so that others will know which
libraries it depends on. To do this, we will initialize a Go
module. For more information on Go modules, please visit
https://go.dev/blog/using-go-modules.

Type make build and then ./api, and see your server run.
Test it by running it in a separate terminal:

curl localhost:8080/hello

{"language":"English","translation":"Hello"}

Just like magic. Now, for my next trick, we will let our
pipeline produce a binary. In your terminal type

git add .

git commit -am "Initial creation"

git push origin main

Navigate to GitHub, click on the Actions tab, and see your
pipeline run. Hopefully, everything turns green. Click on the
run, and you will see a binary called api. Download it and
run it, and you will see that it works the same as the local
instance. You can play around with the code and change the
output to see the pipeline run and deliver new binaries.

This code is pretty dumb, but this is intentional. Think about
the level of effort put in and what this opens up for others. If
a coworker is waiting on this to work to build a UI, they don’t

https://go.dev/blog/using-go-modules


need the fully developed system to start integrating. Or, if
we aren’t sure exactly what our customer wants quite yet,
we can just get this out there for a demo. It’s not perfect,
but it works. And this is the essence of continuous integration
and deployment: small slices of work that can keep you
moving forward. Now that we have the basic code written,
we need to put it on the conveyor belt for assembly and
delivery.

We can now deliver a product for someone to use as we go
back and improve the code we wrote. Breaking down tasks
into small pieces is essential to creating a high-quality
product that meets customers’ demands. It also reduces the
risk of introducing more code and features than what we
need or can support.

Our project manager wanted a demo by tomorrow to show
that this will work, and you have just done that. It isn’t
dynamic, and that’s okay. That is a complexity we will add
along the way, but it will be easy now that we have an
automated way to do it.

You look at your clock and realize that it is time for lunch.
You stand up and see the head of the QA department walking
right toward your desk. Your eyes lock, and they wave,
yelling, “Hey, do you have a quick minute?” You nod and sit
back down.

Summary



The code repository is the start of your pipeline where all
code lives.
Use scripts and tools to make environments uniform for
all developers and systems.
Document everything in your code base to make
developers productive from day one.
Automate all tasks associated with your code.



3 Introducing continuous testing

This chapter covers

Creating a process of writing tests as you write code
Establishing testing boundaries for sections of code
Creating a quality gate using tests in our pipeline
Using code coverage as a guide for refactoring and testing

The head of QA comes by your desk and grabs the chair next
to you. They look a little frustrated, which makes sense
because the QA team has been under immense pressure to
get a new release out the door. It always seems like they are
hammered with a ton of bugs, problems, and misinterpreted
features. The development and QA teams always seem to be
butting heads instead of working together to solve problems.
The QA team feels that they are the gateway of a quality
project, while development feels that QA gets in the way.
Developers keep releasing buggy code and are engaged in a
sadistic version of Whack-a-Mole with bugs. This relationship
is so strained that it is unhealthy. When you saw QA coming
toward your desk, you knew that this wasn’t going to be an
easy conversation.

“Look, I’m sure you know that we are underwater at this
point with the weekend release coming up. But I just got
word that you are writing a new project to replace our
existing translation service. We’ve been debugging that
product for years, and at this point it is stable, so I’m not



sure I’m comfortable replacing it. Yet our PM insists that this
is something we need to do to grow as a company. I know
you are still in the early stages of development, but I want
there to be some sort of assurance that this product will work
and that my team won’t have to spend hours finding the
same bugs we encountered years ago. Our time shouldn’t be
wasted dealing with these little bugs. We need to be focusing
on our product being the best possible one for the customer.
Do you understand?”

You nod your head and take some notes. No one likes to
write bad software. No one feels good after they are blamed
for a bug. No one likes to create more work for anyone else.
QA stands for quality assurance, but this is a misnomer. A
single person or group will never be able to assure quality, so
having a special team be responsible for quality seems
dubious. Quality should be the focus of everyone in the
company, and various groups should test the product in
different ways to make sure it’s the best product you can
release. You decide to sketch this out and explain your plan
to the head of QA.

“What you are proposing is moving testing closer to the
source code and using it as a way of documenting various
test cases,” the QA lead comments. “I know we have some
unit tests in other areas, but they don’t ever seem to catch
the bugs we need. Our problem is that these tests seem to
be written after the code, and they don’t meet our business
requirements. They are also never run, so we don’t use
them. It would be nice if we could have these tests run
before anyone needs to test them. Do you think that’s



something you would be able to do?”

Sure, why not? You take some notes, find the bugs and
feature requests for the old system, and get to work.

3.1 What to test

Where do you start? This is a great question, especially if you
are somewhat new to development. Programming books will
show you the language, and many will go as far as to show
you the modern testing frameworks or libraries, but they
won’t show you how to write tests. They also won’t show you
what to test. Determining what to test and how to test it is a
skill that develops over time and is something for which your
team should have set standards.

For example, the head of QA is concerned about repeated
bugs and wasted time. Developers are also concerned about
bugs because they waste time. QA has been trained to think
about various use cases, while developers have a clearer
understanding of how the system works. When you are given
a task to develop, it doesn’t hurt to sketch out some use
cases and test cases ahead of time. Once this list has been
written, bounce it off of someone to see if you missed
anything. Let’s look at our code in the following listing.

Listing 3.1 Main.go

package main

 

import (

    "encoding/json"



    "fmt"

    "log"

    "net/http"

)

 

func main() {

 

    addr := ":8080"

 

    mux := http.NewServeMux()

 

    mux.HandleFunc("/hello",

      func(w http.ResponseWriter, r *http.Request) {

        enc := json.NewEncoder(w)

        w.Header().

        Set("Content-Type",

        "application/json; charset=utf-8")

        resp := Resp{

            Language:    "English",

            Translation: "Hello",

        }

        if err := enc.Encode(resp); err != nil {

            panic("unable to encode response")

        }

    })

 

    log.Printf("listening on %s\n", addr)

 

    log.Fatal(http.ListenAndServe(addr, mux))

}

 

type Resp struct {

    Language    string `json:"language"`

    Translation string `json:"translation"`

}

What was our code supposed to do? Translate a given word
into another language. Does our code do that? No.
Remember, we did a minimal amount of work in the last
chapter to get our pipeline working. Now we are going to
focus on what the business or customers want from our code.
If we look at our current implementation, we’ll notice that
there are three parts: the translation service, the translation



handler, and the server. The service may be the least clear
because it is the hardcoded value in the Resp struct. But in
the future, this will be the core piece of our product and will
not be hardcoded. The handler will be in charge of taking the
requests and converting them so that they can be passed to
the service and return the results. The server will then run
the handler to tie the whole thing together.

The best way to start testing is to break our work into easily
testable units. These are called systems under test, or SUT.
The SUT has a clear boundary on what you are testing and
should be treated as a black box, meaning that you are
mostly testing the inputs and asserting the outputs are
correct. We will break our SUTs into the following categories:
service, handler, and server.

Right now, our code is one giant main method that makes it
difficult to test, so let’s break it down. First, let’s tackle the
service that houses all of our business logic. Remember that
our service is a translation service, so the main business
functions could be defined as taking a word plus a language
and returning the translated word. The definition would look
something like this:

func Translate(word string, language string) string

Let’s create the file:

mkdir translation

touch translation/translator.go

Great; this gives us something to start with. Let’s create a



package called translation. In it, we will create a file called
translator.go. Open translator.go, and add the code in
the following listing.

Listing 3.2 translator.go

package translation        ❶
 

func Translate(word string, language string) string {

    return ""              ❷
}

❶ A new package is created for translations.

❷ Defines the minimum response for tests

Now that we’ve established our initial package, we need to
come up with an idea of what we should be testing. We have
established the least amount of code needed to write a test.
Let’s now take a moment and think about what would need
to be tested. Sometimes a great primer for writing tests can
be to follow a given-when-then format. This format is derived
from behavior-driven development and gives us a general
format for how we want to structure our tests. For example,
“Given a word when it is to be translated into English should
then return the word.”

Here, we have broken down the business need. Let’s write
out some more to complete our unit testing list:

Given a word when it is to be translated into English
should then return the word.
Given a capitalized word or language when translating
should then return the same answer as an uncapitalized



word or language.
Given a word or language with extra spaces when
translating should then return the same answer as a
word or language without spaces.
Give a word or language when translating that is not
supported should then return an empty string.

Here is where you can involve your testers or team. Send
them this list to make sure you didn’t miss anything and that
it meets the business requirements. Remember, this is just a
starting point. You may find that this list expands as you
write more tests. This list is crucial in writing solid and
consistent tests that help instill confidence in your code.

3.2 Writing unit tests

We have our approved list of tests; now we can start writing
them. For that, we will use Go’s built-in testing library and
focus on writing the least amount of code possible to satisfy
that test. Let’s do that using our first item on the list. Open
your test file, and add the code in the following listing.

Listing 3.3 translator_test.go

package translation_test                                       ❶
 

import (

    "testing"

    "github.com/holmes89/hello-api/translation"

)

 

func TestTranslate(t *testing.T) {

    // Arrange                                                 ❷



    word := "hello"

    language := "english"

 

    // Act

    res := translation.Translate(word, language)               ❸
 

    // Assert

    if res != "hello" {                                        ❹
        t.Errorf(`expected "hello" but received "%s"`, res)    ❺
    }

}

❶ Uses a separate package to provide black box testing

❷ Adds all variables to be used in tests for clearer organization

❸ Calls the function to be tested and captures the result

❹ Checks the expected value

❺ Provides clear error responses for easier debugging of tests

Here is our first test. You will notice a few interesting things
about this code. The first is the Arrange, Act, Assert
pattern that we have established. Do you notice how they
translate from the Given, When, Then sentences from our
business needs list? This is to help us focus on what we are
testing and point back to a list of testable items. We’ll
incorporate this back into the tests shortly so that the cases
that we have covered are more clear.

You will also notice the use of the black box testing approach.
This refers to code packages in which tests cannot see inside
the code to see how it works. This allows us to write tests
that assert behavior and not implementation. Remember that
the system under test should be tested on its inputs and
outputs and not how it works internally. This also requires
you to think of an appropriate interface, or exposed definition



for your application and code. The unit you are developing is
an abstraction for others to use. Writing good tests helps
drive a good interface. Having a good interface is important
because once an interface is exposed, you will need to
support it in the future, and it will become hard to change.

Run all of your tests by typing the Go test command go
test ./.... You should see a failure. Now we need to fix it.
Again, we will try to write the least amount of code possible
to satisfy this test. We can handle that in our code by just
returning the word, as in the following listing.

Listing 3.4 translator.go

package translation

 

func Translate(word string, language string) string {

    return word       ❶
}

❶ Provides the minimum effort in fixing the test

After running this test, you will see that it passes! This is
what in test-driven development is called the red, green,
refactor. First, the test fails the first expectation, giving you a
red error; then you fix the test, which makes it go green;
then you add to the test or change the underlying code to
make it simpler, which is refactoring. This limits the amount
of work you are doing for the given feature.

Test-driven development is a design practice that many
developers follow and was popularized by Kent Beck. In his
book, Test-Driven Development By Example (Addison-Wesley



Professional, 2002), Beck outlines a pattern of writing a
failing test, making it pass, and then changing the code to
make it fail again by taking an item off of the test list that we
wrote earlier.

Why not just write all of the tests at once and be done with
them? This is a great question and one that we should
consider in a larger context. Test-driven development is a
development pattern. It influences how you do something. By
following this pattern, you are forcing developers to think
through the code they are writing in the context of the
requirements. It moves the development stage to a
secondary operation by forcing the developer to first consider
the requirements, prove that the requirements are satisfied,
and then actually implement them.

To think of this another way, you can view each test as an
experiment you wish to do to prove that your code works. In
the scientific method, there are three main steps you
complete: question, test, and results. With your test code,
you can wonder what the result of input x should be based
on the expected business logic. Testing will call the method,
and the results will be asserted in your code.

A developer, Ian Cooper, put it another way when he
advocated for developers to be “duct tape programmers.”
With a basic test and interface defined, the developers should
just move forward and make it work. Then they can use tests
to help refine their implementation, revisit it, and be
confident that it works as expected. This drive helps
developers meet the requirements without over-engineering



a solution. Code is supposed to be dynamic, not static, so
developers should be revisiting their code, refactoring it to be
better, and constantly improving.

We’ve now satisfied this test. To verify it, run your go test
./... command again, and see things passing. Now let’s
add some more languages.

3.3 Refactor, refactor, refactor

For our demo, we want to support some other languages.
Let’s add German and Finnish to our requirements, and while
we are at it, we can cross off one of our test cases:

Given a word when it is to be translated into English
should then return the word.
Given a capitalized word or language when translating
should then return the same answer as an uncapitalized
word or language.
Given a word or language with extra spaces when
translating should then return the same answer as a
word or language without spaces.
Given a word or language when translating that is not
supported should then return an empty string.
Given the word hello when translating should then be
translated into “hallo” and “hei” for languages German
and Finnish.

We crossed off the first item because we have a satisfied test
case. This does not mean that this test will never fail. It will



fail eventually, but we have in place a test to protect us from
having the business case missed.

NOTE If you find yourself changing a test instead of changing the
implementation, you should consider the business effect of the change.
Tests align with business requirements.

Let’s add some language support. We will update our tests to
include the code in the following listing.

Listing 3.5 translator_test.go

package translate_test

 

import (

    "testing"

    "github.com/holmes89/hello-api/translation"

)

 

func TestTranslate(t *testing.T) {

    res := translation.Translate("hello", "english")            ❶
    if res != "hello" {

        t.Errorf(`expected "hello" but recieved "%s"`, res)

    }

 

    res = translation.Translate("hello", "german")              ❷
    if res != "hallo" {

        t.Errorf(`expected "hallo" but recieved "%s"`, res)

    }

 

    res = translation.Translate("hello", "finnish")             ❸
    if res != "hei" {

        t.Errorf(`expected "hei" but received "%s"`, res)

    }

 

    res = translation.Translate("hello", "dutch")               ❹
    if res != "" {

        t.Errorf(`expected "" but received "%s"`, res)

    }

 

}



❶ Tests to see if translation works for English

❷ Tests to see if translation works for German

❸ Tests to see if translation works for Finnish

❹ Tests to see that Dutch returns an empty string

Run it, and see that the test fails.

That means that we have different features to add to our
service. Switch back to our translator.go file, and modify
it so that we can handle these new test cases. Again, our
tests are helping to drive the functionality of our code. Here
we see that we are supporting translations in both German
and Finnish but not Dutch, and that if a translation is not
found, we return an empty string.

In this case, we are not just testing the “happy path” but also
a negative one. Asserting the behavior of positive results is
important, but more often than not, errors or edge cases are
going to occur. Edge cases are rare or extreme conditions
that can happen on a system and that you aren’t expecting.
An example of this is inputting strange characters as input or
very large or small numbers. Here we can say that we need
to handle the case when we don’t have a translation for a
language. The following listing outlines what the code would
look like.

Listing 3.6 translator.go

package translation

 

func Translate(word string, language string) string {

    switch language {        ❶
    case "english":



        return "hello"

    case "finnish":

        return "hei"

    case "german":

        return "hallo"

    default:

        return ""            ❷
    }

}

❶ Checks the language being passed and returns the translated word

❷ If unknown, returns an empty string

You should be able to see your test pass now. This cycle can
continue for a long time. In some cases, you can head off
some of the minor things right away. Keep in mind that you
shouldn’t leap too far ahead in your development at the risk
of over-design. Try to anticipate some different use cases, as
we will see in the next section. For now, we have established
a pattern for working on this function.

Can you see some other edge cases in our code? Did we
capture them on our list?

Tests will also need to be refactored to help make things
clearer and easy to expand. I’m sure some of you who are
familiar with writing software cringed a little at the repetitive
code in our tests. We can alter our structure slightly to make
it easier to add tests through the use of table tests. The
following listing provides an example of how we can refactor
our tests to be concise.

Listing 3.7 translator_test.go

package translation_test

 



import (

    "testing"

    "github.com/holmes89/hello-api/translation"

)

 

func TestTranslate(t *testing.T) {

    // Arrange

    tt := []struct {                                             ❶
        Word        string

        Language    string

        Translation string

    }{

        {                                                        ❷
            Word:        "hello",

            Language:    "english",

            Translation: "hello",

        },

        {

            Word:        "hello",

            Language:    "german",

            Translation: "hallo",

        },

        {

            Word:        "hello",

            Language:    "finnish",

            Translation: "hei",

        },

        {

            Word:        "hello",

            Language:    "dutch",

            Translation: "",

        },

    }

 

    for _, test := range tt {                                    ❸
        // Act

        res := translation.Translate(test.Word, test.Language)   ❹
 

        // Assert

        if res != test.Translation {                             ❺
            t.Errorf(

                `expected "%s" to be "%s" from "%s" but received "%s"`,

                test.Word, test.Language, test.Translation, res)

        }

    }

}



❶ Creates an array of anonymous structs containing all test cases

❷ Each case houses input and output results for tests.

❸ Iterates over sets of test cases

❹ Runs the test and captures the results

❺ Checks results and responds with proper errors

This pattern of testing is common in Go and other languages
because it puts all of your test scenarios in one place and
again pushes for a cleaner interface to our test code.

Now our assertion area is very small and is no longer
repeated, and our tests are organized in such a way that we
can quickly add more results. Run your tests to make sure
the refactoring worked. Everything should pass. Now let’s
add a case that we may have not been expecting. Remember
that our system is supposed to just handle “hello” for the
time being. What happens if we input a word other than
“hello”? Let’s see what happens when we add the code in the
following listing.

Listing 3.8 translator_test.go

package translate_test

 

import (

    "testing"

    "translation"

    "github.com/holmes89/hello-api/translation"

)

 

func TestTranslate(t *testing.T) {

    tt := []struct{

        Word string

        Language string

        Translation string

    }{

...



        {                  ❶
            Word: "bye",

            Language: "dutch",

            Translation: "",

        },

    }

...

}

❶ Negative case of an untranslatable word and unsupported language

Run your test. It passes. Was this what you were expecting?
Did you cover all of the other cases? Remember earlier when
I asked about other edge cases? This is where you need to
put on your user hat and not your developer hat to start
seeing where your code can go wrong. Often, we rely on
other team members to find these cases (often in QA), but if
it has reached that point in testing, then you are wasting
valuable cycles and potentially sending out bugs in your
code.

NOTE The closer the quality checks are to the implementation, the less
chance there is for rework, which translates into higher levels of work in
progress, which translates to lost money.

Alan Perlis, a famous computer scientist, once said, “A
software system can best be designed if the testing is
interlaced with the designing instead of being used after the
design.” This sums up why we are focusing on unit tests at
the moment. Unit tests can be integrated into our
development process to create leaner and more well-defined
code. The corresponding tests will help guard us against
making business-level logic changes that would affect the
system. This does not mean that more tests are better. What



is needed are quality tests that assert functionality and not
fragile tests that fail constantly.

Now that we can start thinking more from a user perspective,
we can focus on adding more edge cases to our unit tests to
ensure that things are working as expected. Let’s add
another test (see the following code listing).

Listing 3.9 translator_test.go

package translate_test

 

import (

    "testing"

    "translation"

    "github.com/holmes89/hello-api/translation"

)

 

func TestTranslate(t *testing.T) {

    // Arrange

    tt := []struct{

        Word string

        Language string

        Translation string

    }{

...

        {                    ❶
            Word: "bye",

            Language: "german",

            Translation: "",

        },

    }

...

}

❶ Negative case of an untranslatable word with a supported language

Run your test. Now you should see a failure! We get “hallo”
back when we are looking for an empty string since we are
only translating “hello.” How can we solve this? Go to our



service again and add the code in the following listing.

Listing 3.10 translator.go

package translation

 

func Translate(word string, language string) string {

    if word != "hello" {         ❶
        return ""

    }

 

    switch language {

    case "english":

        return "hello"

    case "finnish":

        return "hei"

    case "german":

        return "hallo"

    default:

        return ""

    }

}

❶ Adds check for supported word

Run your test again; now it passes! There is one final case
we should possibly consider at this point. All too often
developers will forget about input sanitation, or the process
of making input uniform. This can range from white space
being used, to negative numbers, invalid parameters, and
uppercase or lowercase letters, just to name a few. How
robust would our service be right now if we were to add
uppercase letters? Let’s find out by adding the code in the
following listing.

Listing 3.11 translator_test.go

package translate_test

 



import (

    "testing"

    "github.com/holmes89/hello-api/translation"

)

 

func TestTranslate(t *testing.T) {

    // Arrange

    tt := []struct{

        Word string

        Language string

        Translation string

    }{

...

        {

            Word: "hello",

            Language: "German",      ❶
            Translation: "hallo",

        },

        {

            Word: "Hello",           ❷
            Language: "german",

            Translation: "hallo",

        },

        {

            Word: "hello ",          ❸
            Language: "german",

            Translation: "hallo",

        },

    }

...

}

❶ Edge case of capitalized language

❷ Edge case of the capitalized word

❸ Edge case of space in word

I know I said one final case, but here are three different test
cases! Can you guess what the fixes need to be?

Often it is the job of the service to implement “input
sanitation” to ensure that the service is durable and flexible
enough to handle most incoming messages. This is often a



favorite verification technique that many QA members will
attempt to do as soon as you create a service or a web page
and should be handled at various levels just in case. In this
instance, we can add a method that cleans the input for both
the language and the word, using the code in the following
listing.

Listing 3.12 translator.go

package translation

 

import "strings"

 

func Translate(word string, language string) string {

    word = sanitizeInput(word)                          ❶
    language = sanitizeInput(language)                  ❷
 

    if word != "hello" {

        return ""

    }

 

    switch language {

    case "english":

        return "hello"

    case "finnish":

        return "hei"

    case "german":

        return "hallo"

    default:

        return ""

    }

 

}

 

func sanitizeInput(w string) string {                   ❸
    w = strings.ToLower(w)

    return strings.TrimSpace(w)

}

❶ Sanitizes incoming word

❷ Sanitizes incoming language



❸ Creates a function to sanitize input

Tests should pass now, but this is just the tip of the iceberg.
We still have a lot of additional testing to do. We’ve only
tackled the service layer, and it is still pretty fragile. Now we
need to examine how the values get to the service in the first
place, and this is through our handler.

3.4 Testing pyramid

Earlier we identified three distinct pieces of our system to be
tested: service, handler, and server. Each portion can be
tested in different ways. Broadly, these tests are separated
into two categories:

Unit-level tests—Small, contained tests that run portions
of code in isolation. These can be viewed as testing
individual boards and screws that are building a bridge. If
one is rotten or rusted, you don’t want to use it. In
isolation, these tests become easier to write and manage
and are the foundation of any automated test platform.
System-level tests—Require interactions between various
code segments or systems. This category envelops a
large number of testing types and practices that become
complicated to manage and therefore become less
reliable or more expensive (in time and resources) to
run.

Figure 3.1 demonstrates this difference.



Figure 3.1 Testing is broken down into individual units, which are
tested in isolation, and systems, which test how things work in
integrated environments.

Unit tests are the fastest tests to run and should encompass
all of the building blocks (or units) of our system. In figure
3.2, we can see testing as a pyramid wherein the unit tests
form the base because of the number of tests. If the unit
tests do not pass, we should not move up the testing
pyramid to more extensive tests. This saves us time, as unit
tests should be fast to run, easy to understand, and simple to
debug. As we move up the pyramid, we see integration tests
that verify the functionality between units of work, often
including the integration with an external dependency such
as a database. Finally, you have a layer of testing that



verifies the system as a whole or tests it from end to end to
see that the system works completely as expected. Additional
types of end-to-end testing are available, such as load
testing, which tests how the system functions with a large
number of users. The inverted pyramid in figure 3.2 is an
unstable pattern, while the regular pyramid supports itself.

Figure 3.2 End-to-end tests are smaller at the top because they are
more expensive and not as dependable. They should be supported by
larger suites of integration and unit tests. Each layer should run on its
own. Start with unit tests and progress up the pyramid in different
phases.

Moving up the pyramid on the left, each layer becomes
smaller. This is because as we move up, the ability to run
these tests become more expensive because they may
require dependencies or more resources. They may also not
be consistent in how they run, and therefore the results may
not be deterministic, or predictable. If we were to flip the



pyramid into a “snow cone” on the right, we can imagine the
world we would be in. End-to-end tests constantly change
because of the ever-evolving nature of our application. If we
spend so much time expanding that level of testing, we will
have an immense amount of rework with no ability to verify if
the underlying modules are working. If a failure occurs, you
untangle all of the inner workings of the system to verify the
results, whereas if you have an extensive unit test suite, you
can verify bugs or changes at the module level.

You will find where you will need to expand or contract to
test based on your team’s needs. We have already
established unit tests at the service level, establishing our
base. Now we want to expand it to include some other
automated tests to ensure our system works as expected.

3.5 System testing

Now that we’ve established a separate service for translation,
we can call this service with a REST handler. In Go and many
programming languages or frameworks, the implementation
of the HTTP protocol is agnostic to the output: HTML, plain
text, GraphQL syntax, and almost anything that can be
returned. We try to organize our Handler files by the type of
response they send. In this case, we send a REST API
response.

REST stands for Representational State Transfer, which is a
generic name for a generic style of API writing. Though most
will associate it with JSON (JavaScript Object Notation), it



can also be used with files or the XML format. The design is
extremely flexible using the basic HTTP calls (POST, PUT,
DELETE, etc.) and using HTTP headers to send the
information to the user to help decode the information. For
right now, we will use JSON for our format.

To do this, we create a new package called handlers/rest.
In it, we will create a file called translate.go:

mkdir -p handlers/rest

touch handlers/rest/translate.go

touch handlers/rest/translate_test.go

For now, we know that our service only handles a single
word, “hello,” so we are only going to support that request;
otherwise, we will return a “not found,” or 404 error. By
default, the translation will be English unless the user passes
?language= parameter. Let’s use the code in the following
listing to build an empty handler to get our tests started.

Listing 3.13 translator.go

package rest                             ❶
 

import (

    "encoding/json"

    "net/http"

)

 

type Resp struct {                       ❷
    Language    string `json:"language"`

    Translation string `json:"translation"`

}

 

func TranslateHandler(w http.ResponseWriter, r *http.Request) {

    enc := json.NewEncoder(w)

    w.Header().Set("Content-Type", "application/json; charset=utf-8")



    resp := Resp{                        ❸
        Language:    "English",

        Translation: "Hello",

    }

    if err := enc.Encode(resp); err != nil {

        panic("unable to encode response")

    }

}

❶ New rest package for API work

❷ Builds a struct to house the response structure

❸ Hardcoded response for initial work

I’m sure you realize that this is the content from our main
function. However, we will replace this with the actual
business logic shortly. This process allows us to iterate and
test as we go. We have also pulled our handler out of the
main function so that it can be easily tested. Like our unit
test, we want to test just an individual portion of the code,
but unlike our unit test, we depend on an external part of the
same system to test. A change in the translate library
would affect this test, so it is not considered a unit test but a
system test. In future chapters, we will refactor this to work
in isolation, but for now, we’ll have it integrate directly with
the service (see the following listing).

Listing 3.14 translator_test.go

package rest_test                                             ❶
 

import (

    "encoding/json"

    "net/http"

    "net/http/httptest"

    "testing"

 

    "github.com/holmes89/hello-api/handlers/rest"             ❷



)

 

func TestTranslateAPI(t *testing.T) {

 

    // Arrange

    rr := httptest.NewRecorder()                              ❸
    req, _ := http.NewRequest("GET", "/hello", nil)           ❹
 

    handler := http.HandlerFunc(rest.TranslateHandler)        ❺
 

    // Act

    handler.ServeHTTP(rr, req)                                ❻
 

    // Assert

    if rr.Code != http.StatusOK {                             ❼
        t.Errorf(`expected status 200 but received %d`, rr.Code)

    }

 

    var resp rest.Resp

    json.Unmarshal(rr.Body.Bytes(), &resp)                    ❽
 

    if resp.Language != "english" {

        t.Errorf(`expected language "english" but received %s`,

            resp.Language)

    }

 

    if resp.Translation != "hello" {

        t.Errorf(`expected Translation "hello" but received %s`,

            resp.Translation)

    }

}

❶ Creates a new testing package to use black box testing

❷ Imports a rest package for testing

❸ Creates an HTTP recorder that will be used for assertion

❹ Creates a new request against a given endpoint with no body content

❺ Registers a handler to test against

❻ Serves the content to pass through the handler for a response based on the
request

❼ Checks the status code from the response

❽ Decodes the body of the response into a struct to be asserted



Run the tests, and you should get a failure! This is because
we are not using the service to lowercase our messages.
Let’s change our handler to now use the service instead of
the hardcoded values we wrote. We will find that our tests in
the handler and the service will be “tightly coupled,” meaning
that changes in one affect the other and that the series of
tests will look similar. But remember what we are testing
here is not the logic of the service but rather the handling
and transformation of the request and response process.

You will also notice that we are not only asserting the body of
the response message but also the status code. HTTP status
codes help convey additional information to the end user by
telling them what happened at a system level. 200 OK is one
of the most common and tells us that everything went fine.
Table 3.1 lists common codes to use to help send messages.

Table 3.1 Common HTTP messages that most APIs utilize

          
Code

        

          
Message

        

          
Common Uses

        

          
200

        

          
OK 

        

          
Everything went as expected.

        

                              



201

        

Created 

        

New entity was added to the 
system.

        

          
401

        

          
Unauthorized 

        

          
Missing credentials.

        

          
403

        

          
Forbidden 

        

          
Not allowed to access to endpoint 
or resource.

        

          
404

        

          
Not Found 

        

          
Cannot find resource or endpoint.

        

          
500

        

          
Internal Server 
Error 

        

          
System failed for some unknown 
reason.

        

          
503

        

          
Service 
Unavailable 

          
System isn’t working and is known.

        



        

In general, these codes are broken into several broader
categories, as spelled out in table 3.2.

Table 3.2 General grouping of HTTP messages

          
Code

        

          
Type

        

          
Common Uses

        

          
1xx

        

          
Informational

        

          
Information about the system.

        

          
2xx

        

          
Successful

        

          
Everything went as expected.

        

          
3xx

        

          
Redirect

        

          
Something has moved and needs 
to change the request.

        

          
4xx

          
Client error

          
Client has something wrong.



                        

          
5xx

        

          
Server error

        

          
Server failed to process request.

        

Our response code should reflect the type of message we are
returning. The proper message in the body of our response
should provide the necessary information. We do this by
adding the code in the following listing.

Listing 3.15 translator.go

const defaultLanguage = "english"

 

func TranslateHandler(w http.ResponseWriter, r *http.Request) {

    enc := json.NewEncoder(w)

    w.Header().Set("Content-Type", "application/json; charset=utf-8")   ❶
 

    language := defaultLanguage                                         ❷
    word := strings.ReplaceAll(r.URL.Path, "/", "")                     ❸
    translation := translation.Translate(language, word)                ❹
    resp := Resp{

        Language:    language,

        Translation: translation,

    }

    if err := enc.Encode(resp); err != nil {

        panic("unable to encode response")

    }

}

❶ Sets the header for the content type to be a JSON specification

❷ Default language to English for now

❸ Gets word from the URL path



❹ Translates the word

We will now add some additional functionality. But, as before,
let’s restructure these tests to be table tests so that we can
rapidly refactor what we are writing. We’ll rewrite it using the
code in the following listing.

Listing 3.16 translator_test.go

func TestTranslateAPI(t *testing.T) {

    tt := []struct {                                           ❶
        Endpoint            string

        StatusCode          int

        ExpectedLanguage    string

        ExpectedTranslation string

    }{

        {

            Endpoint:            "/hello",

            StatusCode:          http.StatusOK,

            ExpectedLanguage:    "english",

            ExpectedTranslation: "hello",

        },

        {

            Endpoint:            "/hello?language=german",

            StatusCode:          http.StatusOK,

            ExpectedLanguage:    "german",

            ExpectedTranslation: "hallo",

        },

    }

 

    handler := http.HandlerFunc(rest.TranslateHandler)         ❷
 

    for _, test := range tt {                                  ❸
        rr := httptest.NewRecorder()

        req, _ := http.NewRequest("GET", test.Endpoint, nil)

 

        handler.ServeHTTP(rr, req)

 

        if rr.Code != test.StatusCode {

            t.Errorf(`expected status %d but received %d`,

                test.StatusCode, rr.Code)

        }

 



        var resp rest.Resp

        json.Unmarshal(rr.Body.Bytes(), &resp)

 

        if resp.Language != test.ExpectedLanguage {

            t.Errorf(`expected language "%s" but received %s`,

                test.ExpectedLanguage, resp.Language)

        }

 

        if resp.Translation != test.ExpectedTranslation {

            t.Errorf(`expected Translation "%s" but received %s`,

                test.ExpectedTranslation, resp.Translation)

        }

    }

}

❶ Defines test cases to be an endpoint, status, translation, and language

❷ Registers Handler

❸ Iterates through all test scenarios

Run your tests, and you’ll see a new failure. Let’s fix the test
(see the following code listing).

Listing 3.17 translator.go

func TranslateHandler(w http.ResponseWriter, r *http.Request) {

    enc := json.NewEncoder(w)

    w.Header().Set("Content-Type", "application/json; charset=utf-8")

 

    language := r.URL.Query().Get("language")      ❶
    if language == "" {

        language = defaultLanguage

    }

    word := strings.ReplaceAll(r.URL.Path, "/", "")

    translation := translation.Translate(word, language)

    resp := Resp{

        Language:    language,

        Translation: translation,

    }

    if err := enc.Encode(resp); err != nil {

        panic("unable to encode response")

    }

}



❶ Retrieves language from query parameters

Run your tests, and add one more case, where if a
translation is missing, the response should be 404 Not
Found with no values. Let’s add it (see the following listing).

Listing 3.18 translator_test.go

func TestTranslateAPI(t *testing.T) {

    tt := []struct{

        Endpoint string

        StatusCode int

        ExpectedLanguage string

        ExpectedTranslation string

    }{

        {

            Endpoint: "/hello",

            StatusCode: 200,

            ExpectedLanguage: "english",

            ExpectedTranslation: "hello",

        },

        {

            Endpoint: "/hello?language=german",

            StatusCode: 200,

            ExpectedLanguage: "german",

            ExpectedTranslation: "hallo",

        },

        {

            Endpoint: "/hello?language=dutch",     ❶
            StatusCode: http.StatusNotFound,

            ExpectedLanguage: "",

            ExpectedTranslation: "",

        },

    }

    ...

}

❶ On a missing language or translation, we should get a 404 error code.

See the failures, and fix the code (see the following listing).

Listing 3.19 translator.go



func TranslateHandler(w http.ResponseWriter, r *http.Request) {

    enc := json.NewEncoder(w)

    w.Header().Set("Content-Type", "application/json; charset=utf-8")

 

    language := r.URL.Query().Get("language")

    if language == "" {

        language = "english"

    }

    word := strings.ReplaceAll(r.URL.Path, "/", "")

    translation := translation.Translate(word, language)

    if translation == "" {

        language = ""

        w.WriteHeader(http.StatusNotFound)

        return

    }

    resp := Resp{

        Language:    language,

        Translation: translation,

    }

    if err := enc.Encode(resp); err != nil {

        panic("unable to encode response")

    }

}

We should have success!

3.6 Adding it to the pipeline

Now that we’ve refactored our services, we should update
our function and add the tests to the pipeline. First, let’s
update our main.go file to use our new handler and service
(see the following listing).

Listing 3.20 main.go

package main

 

import (

    "log"



    "net/http"

)

 

func main() {

 

    addr := ":8080"                                    ❶
 

    mux := http.NewServeMux()

 

    mux.HandleFunc("/hello", rest.TranslateHandler)    ❷
 

    log.Printf("listening on %s\n", addr)              ❸
 

    log.Fatal(http.ListenAndServe(addr, mux))          ❹
}

❶ Sets the port to listen on

❷ Registers the translation Handler

❸ Logs the listening port

❹ Runs the server and logs if it fails

Ah, that looks so much cleaner! We have successfully pulled
out a good portion of our application into smaller pieces that
can be tested on their own, making the system easier to
reason about. We’ve spent all of this time writing these tests
so that we can use them to help verify functionality when we
check our code. Once we add this to our pipeline it will be
just like the build step in that it protects us from pushing
broken changes out, yet testing becomes our first “gate” in
the system.

A quality gate is a term used in industrial engineering in
which a product is checked for quality before various stages
along the assembly line. You want to protect each stage from
wasting time. In our little program, the build step runs fairly
quickly, but on larger, more complicated systems, build times



can take much longer, so we want to make sure we don’t
waste time trying to build something that is broken or
shipping code that doesn’t work as intended.

Suppose that you are planning on cooking a meal. You mix a
bunch of ingredients for a recipe to get to a step and realize
that the main ingredient has gone bad. Now you either need
to run to the store quickly or scrap the whole thing, wasting
either time or money. But if you had checked the quality of
all of the ingredients ahead of time, you would have been
able to save yourself some trouble.

We will structure our pipeline to do the same. By adding a
testing step before the build step, we can make sure that our
code is running before we build. Most CI systems allow you
to create a dependency graph between various steps in order
to chain these steps together to save time and effort on the
system as a whole. We will extend this in the future to add
additional guards, builds, and deployments that can be run in
parallel.

For now, let’s add the test check to the pipeline from the
code in the following listing.

Listing 3.21 pipeline.yml

name: CI Checks

 

on:

  push:

    branches:                                               ❶
      - main

jobs:

  test:

    name: Test Application



    runs-on: ubuntu-latest                                  ❷
    steps:

    - name: Set up Go 1.x                                   ❸
      uses: actions/setup-go@v2

      with:

        go-version: ^1.18

    - name: Check out code into the Go module directory     ❹
      uses: actions/checkout@v2

    - name: Downloads

      run: go get -t ./...

    - name: Run Test

      run: go test ./...                                    ❺
  build:

    name: Build  App

    runs-on: ubuntu-latest

    needs: test                                             ❻
    steps:

 

    - name: Set up Go 1.x

      uses: actions/setup-go@v2

      with:

        go-version: ^1.18

 

 ...

❶ Only runs on the main branch

❷ Defines base operating system

❸ Sets up the Go environment

❹ Checks out the code

❺ Runs tests

❻ Waits for tests to pass before moving onto the build step

Commit your changes, and push your branch! Go to your
repository, and watch the tests run. Now you can see the
results.

3.7 Code coverage



Writing tests to see if the code works is helpful. We added
several tests to poke and prod various parts of our system
and added functionality as we went. But did we get it all? Do
we need to test everything?

Many languages, including Go, provide the ability to see the
“code coverage” of your tests, which means they will
highlight a percentage of the code that has been tested and
highlight areas that may have been missed. As your code
grows, you will have branches of logic that you may need to
test or additional error conditions that may occur, and it is
always helpful to make sure you can extend the testing so
you hit all of the areas you need. Let’s see how much we
have already tested:

go test ./... -cover

Figure 3.3 shows the coverage.

Figure 3.3 Output reflects the coverage of lines in a package.

You should see a chart showing all of the tested files and the
coverage amounts, along with a total at the bottom. The
percentage tells us that we haven’t hit all of our code and
should perhaps consider adding more testing. You may be
wondering how much coverage is needed. Over time, your
code coverage should increase due to the addition of more
tests. This ensures that you are improving your system over



time. This can mean writing more tests in areas that are
lacking or even deleting unused code.

Code coverage can be a hot topic in some development
groups. Some people say you need to cover every line of
code and test every possible way a portion of code can be
executed to ensure the highest quality. While this is a
worthwhile endeavor, it won’t mean that your code is
working as intended. Attempting to reach total code coverage
can lead to poorly written tests that are difficult to maintain
over time. Often arbitrary goals like this, while well intended,
lead toward blocking the overall goal of the company:
delivering a product.

What we want to do is enforce a certain level of testing, say
80%, and we also want to provide our developers an easy
way to see if there are any branches or areas they are
missing that they can easily add tests to. We will add some
tools to our Makefile to make this easier.

Go has a built-in tool that allows you to output a coverage
profile and then use tools that help you manipulate it so that
you can see the coverage and generate a report. First, let’s
open our Makefile and add the code in the following listing.

Listing 3.22 Makefile

test:

    go test ./... -coverprofile=coverage.out              ❶
 

coverage:

    go tool cover -func coverage.out | grep "total:" | \

    awk '{print ((int($$3) > 80) != 1) }'                 ❷



❶ Generates the output coverage from the test

❷ Uses the code coverage tool to find the total line count and check the value to
make sure it meets coverage expectations

This script will help ensure that the coverage profile is
created instead of just running go test. Remember, we want
to provide the same tools to our developers that the pipeline
will use to help keep the two in sync. The second line
provides a bit of “Unix magic” that pipes the results from the
coverage tool into a grep command to look for the total and
then checks the result to make sure it is higher than our
minimum testing threshold. The result of this will return an
error code if the condition does not pass, meaning that our
pipeline will fail.

Now we can use this same coverage profile to generate a
coverage report, which we will add as an artifact to our
pipeline. It will help guide our current and future testing
efforts to see where we are lacking. This can also help
leaders on the team determine if they should do a testing
day where developers take a day to clean up code and add
tests. We’ll discuss more activities like this in later chapters,
but what you should understand now is that communication
is key to building a successful team. Reports that come from
the pipeline are great in helping steer the overall developer
experience and product development as time goes on.

NOTE Communication is key to building a successful team.

To generate a report, we will add another tool to the
Makefile:



report:

    go tool cover -html=coverage.out -o cover.html

In the report in figure 3.4, you will see lines that you have
been able to test and those that have been missed. Do you
see any areas that we could have tested? Can we refactor
our code so that it is easier to get to these missing sections?
Try it yourself to see if you can get to a higher level, and
time yourself to see how long that takes and if it helps to
solve a possible bug.



Figure 3.4 Lines are highlighted in green if the test code has covered
that code, while lines in red have not. If you are unable to differentiate
the color, please note that the error section is the only untested area
of the code.

These output files should be stored locally and should not be
checked into our source control. Open your .gitignore, and
add the following:



coverage.out

cover.html

Now we can update our CI code to run a coverage check and
upload a report. Your team could do some additional steps
post-processing to allow for publishing these results to a
team dashboard or a Slack post for others to see easily, but
for now, we will allow it to be downloaded along with the
binary (see the following listing).

Listing 3.23 pipeline.yml

name: CI Checks

 

on:

  push:

    branches:

      - main

jobs:

  test:

    name: Test Application

    runs-on: ubuntu-latest

    steps:

    - name: Set up Go 1.x

      uses: actions/setup-go@v2

      with:

        go-version: ^1.18

    - name: Check out code into the Go module directory

      uses: actions/checkout@v2

    - name: Run Test

      run: make test                 ❶
    - name: Coverage Check

      run: make coverage             ❷
    - name: Generate Report

      run: make report               ❸
    - name: Copy Files

      run: |

           mkdir  reports

           cp cover.html reports/.

 

    - name: Archive                  ❹



      uses: actions/upload-artifact@v2

      with:

          name: reports

          path: reports

❶ Uses the test make command

❷ Checks coverage for the tests

❸ Generates a report based on coverage

❹ Uploads reports to an archive

We have now successfully added the first check on our
system. Testing can seem cumbersome at first to some, and
others may need convincing of its benefits, but it is an easy
way to make sure you are moving forward with quality code.
In the future, you will find a test that saves you from making
a mistake. Even while writing this book, I’ve found that the
tests that I’ve written have fixed bugs in my sample code.
Stopping to think and work through the problems at hand
helps you become a better developer as well.

Testing is a very sensitive area for some development teams.
Some members will have a higher level of passion for it than
others. It becomes important that you and your team
establish the testing patterns and practices you’d like to
accomplish and standardize them if possible. Testing should
not become dogmatic, nor should it hinder the development
of your product. It is a tool to tell your company and your
customers that you are meeting their expectations.

You look up and see people leaving the office. It’s the end of
the day, and you’ve committed and pushed your code. When
you navigate to the repository, you see a nice little green
check mark, and you smile. In a day, you’ve written a proof



of concept with tests to go along with it. Tomorrow you will
need to find a way to get it live before your demo at noon.
Luckily, you have a plan in mind.

Summary

Automated testing helps validate that the system works
as expected.
Unit tests are small, independently run tests that focus
on a small portion of code.
System tests integrate into multiple modules that assert
the overall behavior of the system.
Focus on testing the interface to the code and not the
code itself.
Strive for high test coverage, but it’s okay for it to be
less than 100%.



4 Introducing continuous deployment

This chapter covers

Differentiating between delivery and deployment
Delivering an application to an artifact repository
Deploying an application to a hosted service
Using health checks to verify your application is running

You get to work early. After dropping your stuff off at your
desk, you migrate to the coffee machine. As you arrive, you
see a group of operations people talking. You’d like to say
this is a coincidence, but it’s not. You know that the
operations team gets in early and that this is the best time to
talk to them.

Greeting them, you casually mention the demo you have
been working on. Someone groans: “I can’t see how they can
expect us to keep doing this. We just don’t have the
resources to keep funding and running these little projects.
We have a backlog of work to be done: new projects,
deployments, system upgrades, and performance tuning. On
top of that, we are constantly being pulled off because of
emergencies. I’m not blaming you, but it’s just a nightmare
sometimes.”

It is a nightmare sometimes. You remember completing a
feature just a couple of months ago and waiting for it to be
deployed. It took over a week for the scheduled release, and
the deployment failed because someone else’s configuration



change broke the system. What transpired was a whole-day
event with people going through all of the changes trying to
figure out what broke. The gap between creating the code
and the deployment of it was too great and caused so many
problems.

“What I’d like to do is have developers own more of the
deployment piece. We set up the process and approved
services and they own the deployments themselves. We
would help update and maintain the machines while they
focus on the deployments and problems surrounding them. If
we could use some of these new services that don’t require
us to maintain a server, it would be ideal. But honestly, I
don’t know what this model would look like and if anyone
would go for it. In the long run, it would save us money and
time.”

That’s exactly what you were hoping someone would say.
Give the power to the developer. Run the service without the
server overhead. Iterate quickly and deliver often. You
mention that you could include it as part of your demo.

“Really?” the operations person says, “You’d add that scope
to your project for us? That would be great, and I’d love to
hear about what you find and what options we could have.”

Taking this as permission, you pour your coffee and head
back to your desk.

4.1 Delivery



The first thing you realize is that you want to get this into the
hands of other people eventually. Yesterday it was the QA
team who were interested, and tomorrow it may be the
entire development team. You need to put the compiled
product out there for others to easily consume. You need to
deliver.

NOTE See chapter 2 for a list of pipeline tools to use like Jenkins, GitLab,
and CircleCI.

To do this, we can attach a binary to our pipeline, just like
we did with the code coverage report in the last chapter.
Let’s open up our pipeline.yml file and add the code in the
following listing.

Listing 4.1 pipeline.yml

name: CI Checks

 

on:

  push:

    branches:

      - main

 

jobs:

    test:

        ....

    deliver:                                                       ❶
        name: Release

        needs: build

        runs-on: ubuntu-latest

        steps:

        - name: Checkout code

            uses: actions/checkout@v2

        - name: Download binary                                    ❷
            uses: actions/download-artifact@v2

            with:

                name: api

        - name: Create Release



            id: create_release

            uses: actions/create-release@v1

            env:

                GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}          ❸
            with:

                tag_name: ${{ github.ref }}                        ❹
            release_name: Release ${{ github.ref }}                ❺
            body: |

                Still in experimentation phase

            draft: true                                            ❻
            prerelease: true                                       ❼
        - name: Upload Release Binary

            uses: actions/upload-release-asset@v1

            env:

                GITHUB_TOKEN:

                  ${{ secrets.GITHUB_TOKEN }}

            with:

                upload_url:

                  ${{ steps.create_release.outputs.upload_url }}   ❽
            asset_path: api

            asset_name: api

            asset_content_type: application/octet-stream           ❾

❶ Creates a new step in our pipeline called deliver

❷ Downloads the binary from our build step

❸ GitHub Actions provides an internal token for authorization to update your
repository.

❹ Tags the release using the changed reference that triggered the build. Now it is
just changing to the main branch that will be used later for other deployment
triggers. This is a property that is passed to us from the GitHub Action
environment.

❺ Names the release using the same mechanism as in the previous step

❻ This is not a finalized release, so we mark it as a draft so that it is not viewable by
customers.

❼ Similarly, we aren’t finalized, so we mark this as a pre-release.

❽ Uploads the binary file to the release URL created in a previous step

❾ The content type is a binary, so we need to define this as an octet stream so that it
can be recognized by GitHub.



We can now push our change to our pipeline and watch it
run. Once complete, you should see a new release on the
Releases tab on your repository, as shown in figure 4.1.

Figure 4.1 The page contains all the information we need right now,
along with a downloadable binary.

There you have it! You are delivering a product right away,
but this isn’t the end of our pipeline. The reason we are
focused on just publishing our product is that it is the
simplest form of delivery—providing a product for someone
to use, but that doesn’t necessarily mean deployment, which
is making the product run. Deployment is the final step in a
process in which you run and use your product as a service.
Not all products get deployed, but all should be delivered. A
library is a common product that is not deployed but
delivered. Deployments can also get complicated (as we will
see) based on their run location. Building and running new
servers or software upgrades are additional forms of
deployment. In this chapter, we will tackle both.



The only way to know if a product is viable in a marketplace
is to get it out there. Once people start using your product,
you receive feedback on what they want, what they like, and
what they don’t like. This feedback drives the development of
your product. Thus far, we’ve written what is known as a
minimal viable product, or MVP. Though our example is
simple, you should be able to see that what you first write
doesn’t need to be perfect. In fact, it will never be perfect.
Many companies wait too long to get feedback on what they
are building because they don’t put themselves out there fast
enough.

Feedback can be in the form of a single person who has a
vision, a group of pilot users, investors, or the general public.
Getting your product out isn’t the only thing you need to
worry about. You must also focus on how fast you can get
your product released. This is what we’ve been building
toward. Our pipeline will help transform our code into a
product and release it. It is this last step that we still need to
finish, but once we have done so, we can start iterating on
our process to make a better product.

It might seem strange that we are already releasing
something this early in the book, but this is the essence of
what we are trying to do. Like our product, our pipeline will
never be perfect. You and your team need to revise and
enhance your pipeline just as you do your product.
Manufacturers go through a similar process of not only
creating and enhancing the products they make but also
increasing the efficiency with which they produce them.



4.2 Developers as operators

To some of you, this process may seem odd. Why am I doing
the deployment when I have an entire operations team to
handle it? This is a good question. Many companies will
structure their teams to be focused on particular areas in
which they are specialists. While this allows individuals to
focus on being experts in specific areas, it often puts up
barriers between teams. This can put teams at odds with one
another and prevent positive collaboration. The collaboration
breaks down because it becomes easier to play a blame
game instead of taking the time to understand the problems
and working together toward a solution.

Take the following scenario: A tester finds a bug with an
incorrect date on a report and files a ticket assigned to a
developer. The developer looks at the bug and writes, “This
works fine on my machine; the server must not be
configured for the correct time zone” and attaches a
screenshot. The ticket then gets punted to the operations
team, and they just reassign the ticket with the comment
“Server is configured properly; will not complete.” There the
ticket sits for weeks while everyone thinks it isn’t their
problem.

Who is the victim here? QA? Developers? Operations? Wrong.
It’s the customer.

When we don’t work as a team, we don’t understand each
other’s roles. When we don’t understand each other’s roles,
we don’t think of solutions that can help them and ultimately



the customer.

In the early days of NASA’s space program, there was a
realization that mission control was having problems
troubleshooting and understanding the technologies they
were developing and using. This was all new to everyone
because no one had been in space at that time. Gene Kranz,
then a procedures officer (he later became the flight director
during Apollo 13), realized there was a disconnect and that
engineers needed to become operators. Engineers built the
systems; they understood them technically but never actually
used them as part of a larger system. Operators, on the
other hand, did not need to understand the inner workings of
the device; they just needed to know how to make it run and
what problems it could create.

Today we can look at the same process as asking our
software engineers to become operators. This is known as
DevOps, which combines software development and IT
operations. As Gene Kranz found during the early days of
NASA, systems can become complicated very quickly, and
there is a loss of knowledge between each line of
communication. In space missions, if someone didn’t know
what caused a blinking red light, the results could have been
catastrophic.

DevOps has taken over the industry in so many ways, but
often it becomes a misnomer and ends up being operations.
Real DevOps comes when a developer has the opportunity to
deploy and manage products in production, while operations
teams can make changes to code for either deployments or



problems with the product. It’s a portmanteau for a reason.
The teams become blended. In fact, if I had it my way, I
would call it DevOpQas and include the testing as part of all
of this.

We have already done some DevOps work in our project, but
I find that it’s good to take a quick aside to tell you why it is
important. As a developer, you can have insight into how
your code works; as an operations member, you have insight
into how it should run. There will be operations members
who have a better understanding of how a project should be
deployed, and they can guide you through the solution or
provide examples or modules for you to use. There will be
developers who will be able to help enhance and build
deployments and pipelines to make their products run
efficiently.

To build effective products, you need to find a way to work as
a team. Understanding is the key to success, and that
success will make your customers happy.

4.3 Setting up a deployment account

A notification appears in your email. It reads, “Thanks for
looking into deploying your project on your own. I have
elevated your account on our Google Cloud account for you
to experiment with. For your demo, I would suggest looking
into some of their ‘as a service’ products. Try a few out and
let me know what you think. We can talk later.”



Great! You now have the power to deploy things in
production. Use this power wisely!

This is exciting because you’ve been reading up on various
products and ways of deploying them. However, before you
can get started, you need to create an account and set up a
deployment key. To create the account, we will need to
navigate to https://cloud.google.com/free. Click on Get
Started for the link. After your account is set up, we will
create a deployment key by using a service account.

NOTE We will use Google’s Cloud Platform (GCP) for all of the
deployments we do here. GCP offers a great free tier that allots a credit
for their products, and many of their products run for free under a
specific load. We can use GCP to develop and deploy our product without
incurring any upfront costs. The principles we adopt here are easily
transferable to other platforms such as Amazon Web Services (AWS)
and Microsoft Azure.

To do this, go to the right-hand hamburger menu, find APIs
& Services, and select Credentials, as shown in figure 4.2.

https://cloud.google.com/free


Figure 4.2 Find the Credentials page.

Once on this page, click the Create Credentials button at the
top, and select Service Account.

NOTE A service account is extremely important to have whenever you
are building a product on an external system. Your account houses
things like credit cards and other personal identifying information and
typically has full access to the full range of products on a given platform.
It is also locked with specific permissions and privileges that will not
compromise your account if for some reason a person outside of your
organization gains access to it. The service account setup will look like
figure 4.3.



Figure 4.3 Create a new service account.

Here, you will choose a name that you feel is appropriate.
You should create a service account for a specific product you
are building or a specific service you are utilizing. In this
case, we will focus on the product itself and call it hello-api.

Next, we will be prompted to select specific roles for a
service account. We will add additional permissions in the
future, but for now, use the search prompt that appears to
select the following roles:

App Engine admin—Provides administrator functions for
App Engine, such as deleting and calling endpoints
App Engine deployer—Permits deployment of App Engine
applications
Cloud build editor—Allows the user to edit cloud functions
Cloud functions admin—Allows the user to create and
destroy cloud functions
Cloud functions developer—Allows the creation and



editing of cloud functions
Storage admin—Allows files to be stored

Select products from figure 4.4.

Figure 4.4 Each product will be used for different permissions for
different products.

Once all of these are selected, click Continue, and then click
Done. Click on your newly created user, and then select Keys



at the top.

Click Add Key → Create New Key, select JSON, and download
the file. This is a credentials file that we can then add to our
GitHub account as a secret for deployments. Keep it safe
somewhere. Figure 4.5 shows an example key setup.

Figure 4.5 Create a new key for deployment.

In the meantime, open a tab, navigate to your GitHub
repository, and select Settings → Secrets. There, create a
new secret called GCP_CREDENTIALS. Add the contents of
your JSON file to this and save it. Now we can add our
function to the pipeline as shown in figure 4.6.



Figure 4.6 Add the contents of the key to a secret in GitHub.

Now we are ready to create a deployment for any product we
want to run our application. But which do we choose?

4.4 As you like it

Gone are the days when most of us worried about setting up
a physical server. AWS launched its compute platform in
2006, and it revolutionized how companies run and maintain
their servers. Servers were then virtualized and controlled by
a set of unique API commands that allowed for the easy
creation and destruction of server instances and provided a
great abstraction, known as Infrastructure as a Service
(IaaS), for developers to work with. The following year, in
2007, a company called Heroku made the job even easier for
developers to get their products deployed. They created what
is known as Platform as a Service (PaaS). This platform



provided abstractions that allowed developers to quickly
create and iterate on their applications. Between these two
companies, we have seen a revolution in serverless
applications and cloud computing.

Today, other products are labeled “as a service.” Each
service provides a different layer of abstraction to a
developer as it is needed. Abstractions are helpful because
they hide certain details about the underlying system from
the user. This abstraction comes at two costs. First is the
financial cost of using the abstraction because often the
higher the abstraction, the higher the overall cost. Over time,
if a product takes off, it may become more affordable to start
using other services that are cheaper but rely more on
developers to maintain them. The second cost is the inability
to access certain features hidden by the abstraction. For
example, in a Function as a Service, the user is not able to
use system libraries to do things such as image processing or
video splitting. As with everything, this comes with various
trade-offs and is something you and your company will need
to decide on. As you can see in figure 4.7, all of these
services run on servers, but what you need to worry about
varies based on the abstraction. Moving from right to left,
your cost often becomes time, while moving from left to
right, the cost becomes money.



Figure 4.7 Each type of “as a service” product provides various levels
of abstraction that you as the customer interact with and provide
releasable items based on this abstraction. Below the abstraction are
various elements of servers that in the past have been the
responsibilities of entire teams to maintain.

The way you develop your code also changes when moving in
different directions. Moving to the right provides a lot of
abstraction and therefore focuses on a single function that
can be run. Moving to the left allows you to utilize more
system-level functions such as storage and operating system
calls. Table 4.1 outlines the various services.

Table 4.1 “As a service” applications

                              



Abbreviation

        

Service

        

Products

        

          
IaaS

        

          
Infrastructure 
as a Service

        

          
AWS EC2, Google Compute

        

          
CaaS

        

          
Container as a 
Service

        

          
AWS ECS, Google Cloud Run

        

          
PaaS

        

          
Platform as a 
Service

        

          
Heroku, Google App Engine, AWS 
Elastic Beanstalk

        

          
FaaS

        

          
Function as a 
Service

        

          
AWS Lambda, Google Cloud 
functions

        

To create an effective demonstration for your company, you
must first outline the cost decisions for what you are doing
and show how flexible your product can be in each of these



environments as time progresses. An operations member
suggested picking one, but you think, “Why not pick two for
the demonstration?” The first deployment type will
demonstrate rapid development at a low cost through a
Function as a Service (FaaS), and the second will
demonstrate a scalable application service through a Platform
as a Service (PaaS). Most companies will move from right to
left in figure 4.7 until they find the one that fits them best.
We will use this approach throughout the book so that we
can pull back various layers of abstraction.

First, let’s create a serverless application due to its low-cost
usage. A serverless application is another name for a FaaS
application because it has a single entry point that is the
function, and the developer doesn’t need to know or
understand anything about the platform or runtime. This
abstraction buys your team time as they will not need to
focus on doing security updates to systems or library
upgrades for a container. Nor do they need to pay for idle
time on the system. Most cloud solutions will charge you by
the hour to have a service run. FaaS instead focuses on the
number of invocations your function encounters. This allows
you and your team to experiment with your product while it
is in development and incurs little to no costs.

4.5 Function as a Service (FaaS)

Unfortunately, there is no universal way to create FaaS
applications across different platforms. You define a package
and function to run a command from, and that is what is built



and deployed on GCP. Go uses a standard http.Handler, so
there will be little to change for our product. However, GCP
will look only in a designated root folder and will not handle
functions in sub-packages.

Open a new faas.go file in the root of your project, and put
in the code in the following listing.

Listing 4.2 Adding a proxy handler to move our calls

package faas

 

import (

  "net/http"

 

  "github.com/holmes89/hello-api/handlers/rest"

)

 

func Translate(w http.ResponseWriter, r *http.Request) {

  rest.TranslateHandler(w, r)

}

You can always use an http.Mux here to reroute multiple calls
in the future through a single function.

That’s all we need to do to get our function working. Now we
can create a deployment step to our pipeline. Open your
pipeline.yml file, and add the deployment step (see the
following listing).

Listing 4.3 pipeline.yml

jobs:

...

  deploy-function:

    name: Deploy FaaS

    runs-on: ubuntu-latest

    needs: test



    if: ${{ github.event_name == 'push' && github.ref == 'refs/heads/main' }}

    steps:

    - name: Check out code into the Go module directory

      uses: actions/checkout@v2

      with:

        fetch-depth: 0

    - name: Deploy function

      id: deploy

      uses: google-github-actions/deploy-cloud-functions@main

      with:

        name: translate                                        ❶
        entry_point: Translate                                 ❷
        runtime: go116

        credentials: ${{ secrets.gcp_credentials }}            ❸
    - id: test

      run: curl "${{ steps.deploy.outputs.url }}/hello"        ❹

❶ Gives the function a name to reference

❷ Gives the name of the function to call

❸ Uses the secret that is registered for the service account to conduct the
deployment

❹ Tests the call to see if it works

When tests pass, the deployment step will occur. From the
output from your deployment, you should see an endpoint.
Before you can call it, you will need to update the
permissions to allow public access to this endpoint. Navigate
to your Google Cloud console and search for “functions.” You
should see your newly created function, as shown in figure
4.8.



Figure 4.8 Edit the permissions on the function.

NOTE You may need to enable the Cloud functions: http://mng.bz/KlOZ.

Click Add Member, type “allUsers,” and give it the Cloud
function invoker role. It will give you a prompt telling you
that this will make your function public, as seen in figure 4.9.

http://mng.bz/KlOZ


Figure 4.9 Make your function open to the public.

Press the confirmation in the prompt, open up a browser, and
type in the URL found in the pipeline output with
/translate/hello?language=german. You should see the
response come back! Change the language. What do you
see? Play around with different inputs and see what you can
do to make it work (or cause it to break!).

When your trial runs out, you may incur some costs for
running these various applications. To prevent this, remove
the applications when you are done with this book.

To underline the power of what we just did, let’s modify our
code by supporting a new language. Open your
translate.go file, and add a translation for French using



the code in the following listing.

Listing 4.4 translate.go

func Translate(word string, language string) string {

  word = sanitizeInput(word)

  language = sanitizeInput(language)

 

  if word != "hello" {

    return ""

  }

 

  switch language {

  case "english":

    return "hello"

  case "finnish":

    return "hei"

  case "german":

    return "hallo"

  case "french":       ❶
    return "bonjour"

  default:

    return ""

  }

 

}

❶ New line to check to see if your CI works

Don’t forget to add the test! (See the following listing.)

Listing 4.5 translator_test.go

func TestTranslate(t *testing.T) {

  // Arrange

  tt := []struct {

    Word        string

    Language    string

    Translation string

  }{

    ...

    {

      Word:        "hello",



      Language:    "french",

      Translation: "bonjour",

    },

  }

    ...

}

Commit and push your changes. Wait for the deployment to
be done, and try making your call again, but this time with
the language as French. This is a quick iteration with fast
delivery and feedback to meet the needs of your customers.
You are now continuously delivering a product at a minimum
cost with the ability to learn and grow. At some point, you
may find that your demand is growing, and you will need to
scale to meet that demand. Or you may find that your
product isn’t meeting expectations and you need to pivot.
Using a serverless pattern, you only pay for what you use, so
the risk is minimized.

4.6 Platform as a Service

The benefits of FaaS are that they provide enough
abstraction to make it fast and easy to develop and deploy
an application. This abstraction comes at a cost of both
financial expense and control. In general, you will find that
the fewer abstractions you have, the cheaper it will be to run
your applications, to a certain point. There is an expensive
operating cost to trying to host your own servers and
infrastructure for a product that hasn’t been tested.
Alternatively, you pay a premium for Amazon or Google to
handle this for you. Eventually, you will need to shift if your
product becomes popular. Now we will move from FaaS to



PaaS.

PaaS allows you to hand over your source code, and then the
platform will identify, build, and run your application for you.
In 2007, Heroku become one of the first PaaS available, and
it revolutionized the way people develop and deploy
programs. Their platform provided an abstraction that was
built on top of AWS cloud computing, which provided
customers the benefit of developing an application without
worrying about provisioning or paying for servers. This paved
the way for other offerings from Amazon and Google to
provide similar abstractions as offerings to their customers.

For many standalone services, it becomes important to check
whether the application is running and healthy. Typically, this
service can be used to great effect if there are dependencies
involved, such as a database connection. Using a health
check endpoint will tell the running platform that the service
is working and ready. Otherwise, the platform may try
restarting the application or mark the deployment as failed.
Before we start moving our application to a PaaS, let’s add a
health check endpoint. We don’t have any external
dependencies, so we will use the code in the following listing
to write a simple handler in the handlers/health.go file.

Listing 4.6 health.go

package handlers

 

import (

  "encoding/json"

  "net/http"

)

 



func HealthCheck(w http.ResponseWriter, r *http.Request) {

  enc := json.NewEncoder(w)

  w.Header().Set("Content-Type", "application/json; charset=utf-8")

  resp := map[string]string{"status": "up"}                             ❶
  if err := enc.Encode(resp); err != nil {

    panic("unable to encode response")

  }

}

❶ We just hardcode a response now because we don’t need to check the connection
to any service. In the future, we could add more details here about the status of
specific dependencies.

Now that we have this endpoint, we need to make some
slight modifications to our main.go file.

Listing 4.7 main.go

func main() {

  addr := fmt.Sprintf(":%s", os.Getenv("PORT"))

  if addr == ":" {

    addr = ":8080"

  }

 

  mux := http.NewServeMux()

 

  mux.HandleFunc("/translate/hello", rest.TranslateHandler)

  mux.HandleFunc("/health", handlers.HealthCheck)             ❶
 

  log.Printf("listening on %s\n", addr)

 

  log.Fatal(http.ListenAndServe(addr, mux))

}

❶ We add the health check to the /health endpoint to ensure we can call it.

Now that our application has a health check, let’s deploy it to
a PaaS.

Why didn’t we add the health check to the FaaS? As a



function, typically we don’t expect it to have a long-running
state. Instead, it is invoked and shut down. In some
platforms, these functions stay running for a short period to
reduce warm-up, which is the process of starting the
application. Having a health check is typically something that
is needed for a long-running service to know if it should be
shut down or restarted.

It wasn’t long after Heroku provided a PaaS that Google
responded with Google App Engine. Originally focused on
Java and Python applications, it now supports a wide variety
of languages, including Go. App Engine will use your source
code and run it in a sandboxed or isolated runtime to prevent
your application from affecting other applications. This form
of virtualization and abstraction ensures that your application
will be safe and secure while providing an easy way of
developing and deploying a scalable application. Google
worries about whether the platform is running, as well as
about upgrading servers and installing libraries, so you don’t
have to. This is the power of using a PaaS; it gives you
control of a full application without worrying about the
underlying runtime. Deploying to App Engine is as easy as
deploying a Cloud function, with one addition: we need to
provide an app.yaml in the root project folder file to describe
the deployment. Let’s create one at the root of our project
using the code in the following listing.

Listing 4.8 app.yaml

runtime: go116

main: ./cmd

liveness_check:



  path: "/health"

  check_interval_sec: 30

  timeout_sec: 4

  failure_threshold: 2

  success_threshold: 2

readiness_check:

  path: "/health"

  check_interval_sec: 5

  timeout_sec: 4

  failure_threshold: 2

  success_threshold: 2

  app_start_timeout_sec: 300

This is all Google needs to start our application and make
sure things are running. To deploy this, we need to add a
step to our pipeline. Instead of replacing the function, we
deploy both. Below the function step, add the code in the
following listing to our pipeline.

Listing 4.9 pipeline.yml

name: CI Checks

 

on:

  push:

    branches:

      - main

 

jobs:

...

  deploy-paas:

    name: Deploy PaaS

    runs-on: ubuntu-latest

    needs: test

    steps:

    - name: Check out code into the Go module directory

      uses: actions/checkout@v2

      with:

        fetch-depth: 0

    - name: Deploy App

      id: deploy

      uses: google-github-actions/deploy-appengine@main

      with:



        credentials: ${{ secrets.gcp_credentials }}

    - id: test

      run: curl "${{ steps.deploy.outputs.url }}/translate/hello"

That’s it! Now we can push our changes and call the endpoint
that is output from the deployment. From here, we can grow
and get feedback from our customers. This feedback will feed
more growth and steer our application into something useful.
The seamlessness we have between writing code and seeing
it in production helps bolster the productivity and
engagement of developers. No longer does it take hours or
days to see the work; instead, it is there in a matter of
minutes. Moving forward, we will enhance our pipeline to
have better development practices, reduce bugs, and have
more advanced deployments, but for now, we can reflect on
how powerful and easy it is to build a pipeline.

You commit your changes and push them to your repository.
At that moment you look up and see the PM walking toward
you quickly. “Hey,” they say, “are you ready for the demo?”

Summary

Deliver the product with a description of what is changing
to help customers adapt and use your product.
Always deliver and deploy to receive customer feedback.
A health check endpoint is an easy way of communicating
the status of a deployed product.
Each type of deployment has various levels of abstraction
to help a developer quickly release products.



FaaS helps create simple, easy-to-manage applications at
a higher cost in the long run.
PaaS helps give you a more complete server to run your
application on, but with easy deployment options.



Part 2. Scaling

In part 1, we established a pipeline, testing procedure, and

deployment, so in part 2, we can focus on hardening our
process to reduce bugs and continue to deliver to our
customer. We should get some feedback about how the
product is being used and adopted and use this information
to focus on adding more features and improving our
performance.

At this point, your team will grow, and you will all need to get
on the same page. Standardization and code quality checks
will help avoid wasting developers' time by verifying that the
code works before it is even run, and that is what we will
work on in chapter 5. In chapter 6, we will see that testing
becomes more important as we move toward a more
modular system with our code and its organization. Finally, in
chapter 7, we will make our application portable and
accessible to other developers by packaging it in a universal
way.



5 Code quality enforcement

This chapter covers

Standardizing our code’s format by using formatting tools and
linters
Reducing bugs and vulnerabilities in our code by introducing static
code analysis tools
Automating quality checks before pushing code to a repository
Organizing our code and documenting it for clearer usage and reuse
Creating a culture of learning through code reviews

“As you can see, we can structure our projects in a way that
empowers our developers to deliver quickly, efficiently, and
with quality, while lowering costs. We have written and
deployed a new version of our translation application in a day
with flexible deployment options along with automated
quality checks.”

Your project manager is smiling from ear to ear as they say
this and sit back down. Your demo went really well. Without
going into the nitty-gritty details, you were able to
demonstrate your new application and even push a live
change during the demo to show the quick turnaround you
can achieve. Your CTO looked intrigued but not convinced.

“What you have demonstrated looks promising, but I’m not
convinced this will scale. We have a bunch of other
developers, an entire QA team, and an operations team that
all need work. I need to see a plan that shows me how we



can spread this throughout the organization. I need to see
how you can integrate with existing systems, teams, and
developers before I consider doing this company wide. Can
we meet on Friday to have these questions answered?”

You nod your head. It all makes sense to you since
developers don’t often work in a vacuum. Plus, this is an
iterative process, and you just got a bunch of great feedback.

“Great!” says your project manager, “I’ll get us something on
the books. Please make sure you have a plan, documents,
and another demo ready for Friday. You hit this one out of
the park. Let’s see if you can do it again.”

5.1 Reviewing code

Thus far, you’ve worked in a vacuum—just you and your
code. This isn’t how software is usually made. Instead, most
projects are a collaborative effort among several people.
Over time this group of people becomes a team. As a team,
they create sets of rules to operate by, learn from each
other, and help improve each other. But how do we do this?

We have already introduced this tool: the repository. Not
only does a repository store your code, but we can place it in
a holding pattern until someone else allows it to be
incorporated. Imagine again that our repository is a
warehouse. When a shipment of goods comes in, someone
needs to sign for it. If the boxes are damaged or missing,
there is a trail back to the person who accepted the goods.



There is a sense of accountability.

In the same way, we want to have our team sign off on
whatever we are introducing to the code repository. To do
this, we use a mechanism called a pull request, which is a
review process of code against a repository. This will protect
the source code and educate others about the changes you
are making. Let’s add this protection to our repository now.

To do this, we need to navigate to our repository. Click
Settings → Branches. Here you will see a section called
“Branch Protection Rules” where you will see a form on which
you input the name of the branch you want to protect and
the specific rules associated with it. Fill it in as in figure 5.1:
add the branch you are protecting and what needs to be
done to protect this branch. This will protect the main branch
from direct commits (unless you are an admin) and will
prevent merges until you have one review and checks have
passed.



Figure 5.1 Setting up branch protection in GitHub Repo

You should notice that we have also selected that checks
should pass before merging. We already have some checks in
place with our unit tests, and we will add these checks
throughout the chapter (and book) to help aid our reviews
and protect the developer’s time. But for now, let us focus on
the branch protection we just introduced. At this point, no
one (other than an admin) will be able to commit directly to



your main branch. Instead, they must submit a pull request
for others to view. This means that any changes require
approval from one other person as a way of tracking
accountability throughout the product. If a bug is introduced,
it is no longer a single individual’s mistake but that of the
whole team since they didn’t catch it in a review.

Code reviews seem to be a slow and cumbersome process
when you are just trying to get work done. But I can assure
you that they are not. They provide an excellent way of
teaching others and informing your team about what you are
changing. Even while working alone on a project, I find
myself creating pull requests for myself. This helps me
review what has changed and can help me identify bugs and
problems. This is like reviewing a paper you’ve written and
finding mistakes and glaring problems that you missed in the
initial draft. What makes for an effective review, and what do
you look for?

5.1.1 Keep it small

Limit reviews to 300 lines of code (including test code). Why?
Because we as humans have a short attention span. Even if
you can read a novel all day or a technical journal on a lunch
break, you may not be able to handle a large review. A
review is more like reading a recipe than a book. Long,
drawn-out, complex recipes are prone to failure because you
may miss a step. Here, you may miss a line of code or a
small bug. While this might be caught by some tools we’ll
introduce later, it could still slip through. Having a smaller
review lets us focus on the task, merge quickly, and merge



often, as we talked about in chapter 1, using trunk-based
development.

Small reviews are not a hard-and-fast rule but something
your team will have to learn to do. This first comes from
understanding how to break tasks down into small chunks to
allow your code reviews to be smaller. A 2,000-line change
could be broken into 10 reviews of about 200. While this may
seem excessive, you will likely find that your team can focus
more on the small changes and point out problems. Also, it
may not be just one person doing the development at one
time, as demonstrated in chapter 1 with the task breakdown
between API and UI work.

5.1.2 Keep an open mind

Code reviews are a team-building exercise and should be
treated as such. They are not personal attacks or challenges
to you as a developer. Nor are they a way to embarrass
other developers. They are opportunities for you to learn and
teach.

The author Stephen King says that the first step to becoming
a good writer is to become an active reader. I believe that
the same holds for developers. To become a better
developer, you need to read more code. As a team, this
allows more senior developers to show younger developers
different techniques and ways to write code and solve
problems. For younger developers, it becomes a way to show
senior developers new techniques and solutions to problems.
I personally love code reviews. I think it’s a fantastic way to



build and work with a team.

Treat code reviews as a philosophical discussion with friends
rather than a political one. There are no hard-and-fast rules
in development, but there are always areas in which to learn
from others as in a philosophical discussion. Once it becomes
personal, it becomes more difficult for others to learn, and
often someone will start putting up their guard or being
defensive and cease to learn instead of seeing the other side.
To this day, I do not know how something as innocent as a
code review can become such a sore spot for teams, but they
often do. Here are some tips for how I think you can avoid
this:

1. Treat others as you want to be treated.
2. Check your ego at the door.
3. Don’t waste others’ time with bad code.
4. Learn from feedback, and try not to repeat mistakes.
5. Take discussions offline instead of going back and forth in

comments.
6. Keep an open mind as to what others are doing.
7. Make sure it works.

This list comes from experience with my past teams; 99% of
the problems can be solved by communication, and the other
1% can be solved by process. Use code reviews as a way of
connecting and building a team, not as a way of making
yourself look better or others look bad.

5.1.3 Keep it moving



Reviews should be a priority because they are considered
work in progress (WIP). As you’ve learned in earlier chapters,
WIP is money stuck in the pipeline. Let’s do some math. If a
developer makes $100,000 a year, every hour of
development amounts to about $50 worth of work. As that
code sits in a review state, we do not receive any money
from that work. I’m sure you are thinking, “If I’m reviewing
code, I’m not writing code, and that is wasted time and
money.” If you spend time writing code while the code sits in
the review, you increase the WIP and do not deliver the
value. Soon a mass of reviews are in progress and nothing is
completed.

It may also seem that switching tasks between writing code
and reviewing code can be costly because you can forget
where you are and what you were doing. The answer to this
problem is learning to work reviews into your daily routine.
Associate the task with something. When you find yourself
with a fresh cup of coffee, do your reviews. I’d sit down
every morning with my coffee, do my reviews, and then start
my day. Once it was time for a second cup (or the ultimate
conclusion of the beverage drinking occurred), I would do
more reviews. We always find time for the things we want to
do but rarely try to do things we don’t want to do. We grow
frustrated that no one reviews our code, but we don’t take
the time to review theirs.

NOTE Build the time in and make sure others know that you are waiting
on a review (politely).

Remind others that time stuck in review is time away from



delivering to a customer.

5.1.4 Keep it interesting

Code review after code review can become dull, so it is
important to keep things interesting. Talk with your team to
see how things can change and improve in your review
process. Go through your review, and ask questions or make
comments. This is a great way of getting feedback from
others. Have challenges to see who can eliminate the most
code through a refactor or who can find a new way to write a
unit test.

This seems dumb, but it helps with team morale. Like
anything, it keeps people coming back for more. I once
worked with a group that required a funny GIF as part of the
pull request submission process, and reviewers not only
needed to review the code but rate the GIF. Again, this helps
build team morale, and while it seems like it is contrived or a
waste of time, the cohesiveness of the team grows, and team
members become more productive.

5.1.5 Keep it the same

While experimenting is fun and keeps people engaged, it is
also important to establish some standards. GitHub allows for
pull request templates, which allow you to create a standard
format for a pull request, including a checklist. The checklist
is a great way to remind others of what they need to do
before submitting the request. To do this, open your source
code, create a new directory called .github, and add a file



called PULL_REQUEST_TEMPLATE.md. The next listing shows
an example template that can help with a pull request.

Listing 5.1 PULL_REQUEST_TEMPLATE.md

### Description

Please explain the changes you made here.

 

### Associated Task

Please list closed, fixed, or resolved issues here with a # and the number.

 

### Checklist

- [ ] Code compiles correctly

- [ ] Added tests that fail without the change (if possible)

- [ ] All tests passing

- [ ] Extended the documentation

Here, you have asked what was done and what sort of
documentation you have for the work, as well as for a list of
things that should be done before submitting.

When working as a team on the code review process, you
should do regular check-ins about what is working and not
working. In doing this, you can start to refine the process.
There are still things you can do to automate the process and
teach others. We’ll see how to make it so the human doesn’t
have to bear all of the load of the review but work together
with the machines to help guide and teach.

5.2 Constraints on development

There is an infamous scene from the famous show I Love
Lucy where the main character Lucy and her friend Ethel
work on an assembly line and it all goes wrong. Lucy and



Ethel are working at a chocolate factory putting chocolates
from the assembly line into wrappers. In the beginning, the
two can keep pace with the flow of chocolates moving by
them, but an unfortunate incident happens that causes them
to fall behind. Panicking, the two go to comedic lengths to
stem the flow of chocolates. To the public, this is an
unfortunate and hilarious exposition of what can happen if
workers fall behind on an assembly line. Industrial engineers
watching this clip see only one thing: a constraint. A
constraint is also known as a bottleneck. It is the location in
an assembly line that determines the throughput of the
factory.

In his novel The Goal, Eliyahu Goldratt outlines what is
known as the “theory of constraints,” in which he states that
optimizations in any system that are not constraints are
pointless. In our I Love Lucy example, enhancing the speed
at which the chocolates are made is pointless if Lucy and
Ethel cannot wrap them in time. This is demonstrated in
figure 5.2. If A (Lucy) produces four items per minute and B
(Ethel) can only process one item per minute, we will start
overproducing items. Soon, excess inventory will begin to
pile up, and the total throughput of our entire system will
only equal one item per minute.

Figure 5.2 Step B can only process one item from step A. Work will
eventually build up in front of B, and any enhancements to A or C will
not help with the throughput.



According to Goldratt, the focus of any company should be
on trying to increase the throughput of the constraint and
protecting its time from being wasted at that stage. This is
known as elevating the constraint. There are several ways of
elevating a constraint. In our I Love Lucy example, Lucy and
Ethel may not have had a problem if additional workers
helped them or if they had a machine that allowed them to
wrap 10 times the number of chocolates. In another
scenario, let’s imagine Lucy and Ethel could keep a decent
pace and were able to wrap 100 chocolates an hour, but 10%
of them were defective for some reason. Their throughput
would have gone down to 90 chocolates an hour. Once we’ve
identified our constraint, we can find new ways of making it
productive and protect it so that we have higher throughput.

Software development also has constraints. Almost the entire
process is automated by a computer, which means that the
slowest part of our pipeline is the developer. The actual
thinking and development of features should be what
determines the throughput of our pipeline. Code generation
and reviews take time and are not automated tasks;
therefore, time should be protected. A simple solution could
be to add more workers. Adding more team members could
mean more people writing code, but it gets complicated. As a
team grows, a larger number of communication lines are
required to maintain relationships and collaborate. Typically,
most companies follow the two-pizza rule, in which a team
should have no more people than can be fed by two pizzas.
Any larger and you start seeing diminishing returns on team
productivity.



NOTE Fred Brooks famously said that adding more people to a project
doesn’t speed up delivery time, just as “nine women cannot make a
baby in one month.”

If adding more people isn’t the solution, we need to make
sure we protect their time. We can measure throughput for a
company by measuring features and counting bugs as rework
or work with defects. We can then focus on elevating our
constraint by making it easy to develop code and catch bugs
before they happen. This can be done by making our code
easy to read, write, and fix and providing a mechanism for
learning and teaching other developers about what we write.
In this chapter, we check the quality of our code before we
merge it and use this quality check as a way of learning and
improving our system.

5.3 Standardizing our code through format
and lint checks

It is common on assembly lines for the various stations to be
standardized so that workers don’t have to waste energy or
time trying to determine which pieces go where. If we look
back at Lucy and Ethel, we could only imagine how far
behind they could have gotten if they needed to determine
which wrapper color went on various pieces of chocolate.
Instead, all of the wrappers and chocolates were
standardized to help with the flow so that Lucy and Ethel
could wrap them as quickly as they could.

Standardization then becomes an important element in



helping with the flow through our development pipeline. As
we outlined in chapter 2, standardizing the way we set up
our environments and workstations is important to the
overall developer experience, but that standardization needs
to be extended. If we consider wrappers and chocolates as
part of the materials flowing through Lucy’s chocolate
factory, we need to consider how we can standardize our
materials through our pipeline. But how do you standardize
code?

NOTE It is important to distinguish here between industrial programming
versus personal projects. Industrial programming means that others will
be working with you on a product that others will consume. Here,
standardization becomes important so that everyone is on the same
page. Personal projects don’t need this level of rigor if you are just
experimenting with something. If a personal project becomes an
industrial product, it is always best to consider rewriting it with these
principles in place.

Each piece of code written must serve some special or
individual purpose; otherwise, it wouldn’t be written. You
won’t have the same unique chunks of code delivered by
each of your developers. What can be standardized is the
way the code looks and feels, its documentation, established
patterns for pieces of code, and tests. Standardization then
becomes a process of coming up with a general code style
and deciding how to enforce that style so that when others
look at your code, it is indistinguishable from that of code
written by another teammate. This is typically done through
a style guide, wherein the group establishes a set of rules
about the format of their code. In general, this can be as



simple (or controversial) as using tabs versus spaces,
keeping brackets on the same line or the next line, spaces
between functions, and many more. This will vary between
languages and teams.

In addition to formatting rules, Go provides a guide for
writing idiomatic Go code, which many linters will try to
enforce. We will discuss linters later, but the following article
also provides reasoning for the various format decisions that
were made when writing the Go language:
https://golang.org/doc/effective_go.

Go, however, has its own style, so this becomes a
nonproblem. The running joke is “Nobody likes Go format,
everyone loves Go format,” meaning that there is most likely
something that people don’t like about some aspect of the Go
formatting tool, but everyone likes the fact that a standard
formatter exists and no one needs to worry about it. It is
simple to use and built in. Go to your project directory, and
type

go fmt ./...

You may see something change, or you may not. Go will
move brackets to the same line as the function declaration,
replace spaces with tabs, consolidate spaces between
functions, and so much more. The point is that, as a
developer, you should worry about things other than the
format of your code. Additional tools are out there for other
languages, such as JavaScript’s prettier package and
Python’s autopep8. But it is one thing to have formatting

https://golang.org/doc/effective_go


standards and another to enforce their usage.

We need to do two things to help our developer: first,
automate the process; second, enforce it. Let’s start on the
second portion so that we can see it in action and then
automate it.

To enforce these rules, we should have already set some
limitations on the main branch. We will set our pipeline to
enforce checks before the merge button is allowed to be
pushed.

Currently, our CI system only runs on changes to the main
branch, so we will need to update the pipeline.yml file to
run on pull requests. Open that file, and add the code in the
following listing.

Listing 5.2 pipeline.yml

name: CI Checks

 

on:

  pull_request:                                                             ❶
    branches:

      - main

  push:

    branches:

      - main

...

  deploy-function:

    name: Deploy FaaS

    runs-on: ubuntu-latest

    needs: test

    if: ${{github.event_name=='push' && github.ref == 'refs/heads/main'}}   ❷
    steps:

...

  deploy-paas:

    name: Deploy PaaS



    runs-on: ubuntu-latest

    needs: test

    if: ${{github.event_name=='push' && github.ref == 'refs/heads/main'}}   ❷
    steps:

...

❶ Runs on pull requests to main

❷ Only runs deployments on pushes to the main branch, not pull requests

Additionally, we want to add a new check to see if formatting
occurred before merging, so we will add a step to our
pipeline. We will add this command to our Makefile (see the
following listing).

Listing 5.3 Makefile

...

report:

  go tool cover -html=coverage.out -o cover.html

 

check-format:

  test -z $$(go fmt ./...)      ❶

❶ This will check the results of running the format command to see if there were any
changes. If so, it returns a failing value.

Now we can update our pipeline to run this step, as in the
following listing.

Listing 5.4 pipeline.yml

jobs:

  test:

    needs:

      - format-check                   ❶
    name: Test Application

...

  format-check:

    name: Check formatting



    runs-on: ubuntu-latest

    steps:

    - name: Set up Go 1.x

      uses: actions/setup-go@v2

      with:

        go-version: ^1.18

    - name: Check out code into the Go module directory

      uses: actions/checkout@v2

    - name: Run Format Check

      run: make check-format           ❷

❶ Since formatting is less expensive than running tests, let’s save time by checking
the format first.

❷ Calls our check format command from the Makefile to see the results

Now create a branch called task/quality-check-enforcement-
formatting, and commit your changes. Push the new branch,
and create a pull request. Watch as the CI pipeline runs to
make sure all of your changes work. Did it fail? If so, look
into the failure. If it passes, feel free to try to make it fail by
messing up the formatting and pushing again. Once
everything is working, merge it. Congratulations! You have
added a guard to your main branch. In fact, we’ve added
two: formatting and testing now both need to pass in order
to merge to main. This also relieves our team from needing
to ask people to format. Next, we need to help our team by
automatically finding bad code and security flaws that can’t
be found by linting but by another tool called static code
analysis.

5.4 Static code analysis

Software is used to automate a formerly manual task. While
humans are essential to reviews, they can make mistakes.



Luckily, many bad coding practices and anti-patterns can be
automatically recognized by software called static code
analysis tools. These tools comb through your code looking
for known patterns that are often related to bugs or security
vulnerabilities. Some can be used to enforce good
programming practices like documentation and spelling.
Adding static code analysis tools to your pipeline can help
reduce bugs and protect reviewers from wasting their time
on “bad code.”

To do this, we will use two tools. One is a tool built into Go,
and the other is a community-supported tool that provides an
extensive array of libraries to support additional checks. Let’s
first start with Go’s internal command go vet, which is great
for providing fast results about bugs in your code. Let’s run it
now to see if there are any problems. To do this, type

go vet ./...

The three dots, like in testing, tell the program to run the vet
tool across all packages. Hopefully, you should see nothing
as part of the results. Open cmd/main.go, and change one
line (see the following code listing).

Listing 5.5 main.go

...

func main() {

  addr := fmt.Sprintf(":%s", os.Getenv("PORT"), "error")     ❶
  if addr == ":" {

    addr = ":8080"

  }

  ...

}



❶ Adding an extra variable can cause this line to fail.

Now run the go vet command, and you should see an error.
The vet tool checks your source code and finds that you have
a format command that has more variables than expected.
This is great because it will catch a potential bug. We should
add this to our pipeline so that we can do the checks. Once
again, running this is much faster than running tests (or will
be in the future), so we should add it before we test, but we
can also run it after format checking. Let’s update our
pipeline to run these checks using the code in the following
listing.

Listing 5.6 pipeline.yml

vet:

    name: Check formatting

    runs-on: ubuntu-latest

    steps:

    - name: Set up Go 1.x

      uses: actions/setup-go@v2

      with:

        go-version: ^1.18

    - name: Check out code into the Go module directory

      uses: actions/checkout@v2

    ...

    - name: Vet

      run: go vet ./...     ❶

❶ Runs built-in Go tool for checking code

This will now run before we run our tests and after we check
the formatting. This is great because it gives us a pipeline
through which we can test the code quality and give specific
feedback to our developers if something fails. We can think



of this as various sieves through which we filter stones.
Bigger holes allow larger rocks through, but as we
progressively decrease the size, the smaller the stones
become and the more easily you can see the individual
stones. In the end, you are left with the different sizes of
stones that you want.

In the same way, our code will move through, providing us
with easy-to-digest errors and improvements to make until
we are left with a product that is ready to review. The
pipeline approach works well for targeting and pointing out
the various problems but can also result in longer lead time.
Lead time refers to the time between the start and stop of a
process from the moment an issue or feature is raised and
gets delivered to the customer. The time between each of
these steps is known as cycle time. If a cycle time is a subset
of the overall lead time, we can focus on optimizing our cycle
times to reduce the overall lead time to our customer. In
figure 5.3, you can see that the overall lead time between a
customer’s request to delivery should be reduced to meet
their needs. To do that, we can consider reducing the cycle
times of each step in our pipeline.



Figure 5.3 Overall lead time is the time from the creation of the task
to its delivery to a customer.

We can imagine that our pipeline could run multiple stages at
the same time, such as linting, vetting, and testing. This
becomes computationally expensive because you are running
machines or processes in parallel, but you get your results
faster and can see all problems that have occurred. This is
another spot in which your team will need to determine how



you want to run your pipeline. In this example, we will run a
hybrid of parallel and sequential steps in our pipeline.

NOTE GolangCI Lint is an aggregate linting tool that allows developers to
select from a myriad of linters.

go vet is a great starting place for statically checking our
code, but it doesn’t need to stop there. A tool called
golangci-lint can be installed on your machine and used
as a pipeline step. GolangCI-Lint allows you to select from
numerous linting and static-checking libraries to help extend
your quality assessments. The full list is available on the
libraries page, but we will use a few here to get started. By
default, it will run several checks that will look for unused
code, ineffective variable assignments, missing error checks,
and much more. In addition, we will add a check for security.
To do this, we need to create a new file called
.golangci.yml. Create it in the root directory, and add the
code in the following listing.

Listing 5.7 golangci.yml

linters:

  enable:

    - gosec           ❶
 

output:               ❷
  format: colored-line-number

 

  # print lines of code with issue, default is true

  print-issued-lines: false

 

  # print linter name in the end of issue text, default is true

  print-linter-name: true



❶ Adds linter to the file

❷ Customizes the output format of the linter

The linter we are using will automatically look for this
configuration file when it runs within this project.

Code security is an often overlooked step in static code
analysis, but a crucial one. Security checks can allow for
things such as which randomization libraries and functions to
use as well as what kind of hashing you may need. Your code
may not use these things, but one day you may find (if you
have your linter on) that you need to. Now that we have a
broad understanding of what this tool can do, let’s add it to
our pipeline (see the following code listing).

Listing 5.8 pipeline.yml

jobs:

  test:

    needs:

      - format-check

      - lint                                      ❶
    name: Test Application

  lint:

    name: Lint

    runs-on: ubuntu-latest

    steps:

      - uses: actions/checkout@v2

      - name: Lint

        uses: golangci/golangci-lint-action@v2    ❷

❶ Adds a lint check as a dependency

❷ Adds a lint action to pipeline

Create a branch called task/add-static-check, commit your
code, and create a pull request. What do you see? It should



error! Why? Well, it looks like we are missing an error check
on a function. If we had only seen this earlier, we could have
saved ourselves some time. Let’s remedy this by adding the
installation and static check to our Makefile using the code in
the following listing.

Listing 5.9 pipeline.yml

setup: install-go init-go install-lint

...

install-lint:           ❶
  sudo curl -sSfL \

 https://raw.githubusercontent.com/golangci/golangci-lint/master/install.sh\

 | sh -s -- -b $$(go env GOPATH)/bin v1.41.1

 

static-check:

  golangci-lint run

❶ Grabs the content from the linter locally

Great, now we can run make lint locally and get the same
errors. Fix the line by adding the code in the following listing.

Listing 5.10 Makefile

func TestTranslateAPI(t *testing.T) {

...

 

  for _, test := range tt {

    ...

    _ = json.Unmarshal(rr.Body.Bytes(), &resp)    ❶
  }

}

❶ This needs to capture the error message even though we are not using it.

Commit your changes and push. Now everything should be
green, and you can merge. This simple step will save you



from several bugs and problems along the way. Situations
like missing error checks can hide underlying problems that
occurred while the system is running. Ineffective
assignments are another common problem, wherein a
variable is set but never used, which could lead to a bug.
These tools add mild overhead but save you in the long run.
Take the time as a team to evaluate and use them as you
see fit, and let them evolve with your team.

5.5 Code documentation

Writing code should be like telling a story. You start with an
idea and then define the structure. Most developers will not
start writing code by first writing comments. They will most
likely write a function just once and hopefully never need to
come back to it. More frequently, someone will need to use
the function or package for some reason or another, and it is
the developer’s job to tell the story of what the function does
so that others don’t need to dive into the code to figure it
out. This comes down to making sure the title of the story is
clear and the description is sound.

Because this is my first venture into writing, I can say that
writing can be difficult. But I have found coming up with what
to write on a function comment much more challenging. You
need to first come up with a good name for the function that
is helpful to people. This needs to be something that makes
sense, like Translate and TranslateFile instead of T and
TFile. Alternatively, you don’t need to tell a story with a
name like



TranslatesFileWithCaseInsensitiveAndUnixBasedHome

Dir. Instead, you would put in the comments how someone
should expect the function to work. We’ve avoided package-
level and function-level comments until now.

Go has built into it the capabilities of hosting a
documentation server, wherein the library will parse your
source code looking for comments above package
declarations and above functions to create documentation.
However, anything in the include directory will be skipped
because it cannot be used in a dependency.

Since we don’t have the documentation, we should remedy
that. However, we also want to make sure that after we go
through this exercise, no one follows us by not commenting
on their code. This is known as a scout philosophy, in which
you “leave it better than you found it.” To do this, let’s add a
new static code analysis tool to check the comments. We will
use a checker that requires comments on all exported
functions and packages. Additionally, we will add a spell-
check and ensure that all comments end in a period. Open
.golangci-lint.yml, and add the code in the following
listing.

Listing 5.11 \golangci-lint.yml

linters:

  enable:

    - gosec

    - godot                       ❶
    - misspell

    - stylecheck

 

linters-settings:                 ❷



  stylecheck:

    # Select the Go version to target. The default is '1.13'.

    go: "1.18"

    checks: ["all","ST1*"]

 

issues:

  exclude-use-default: false      ❸
 

output:

  format: colored-line-number

 

  # print lines of code with issue, default is true

  print-issued-lines: false

 

  # print linter name in the end of issue text, default is true

  print-linter-name: true

❶ Adds linters to check comments and style

❷ Settings for linter where we want to capture stylistic problems

❸ Some of these lint errors are hidden by GolangCI-Lint, so we want to disable that.

Style checks will ensure that our comments are required and
that we follow some other standards for comment writing.
godot and misspell will make sure that our strings and
comments are well punctuated and spelled correctly. Once
you’ve added this file, run make static-check and see the
results. Fix the code by adding comments that you feel are
appropriate. Push your changes and merge. Remember,
comments should explain what the function does, not how it
does it. For example, the function Translate would have a
comment such as “Translate will take a given word and
language and will return the translation if available;
otherwise, it will return an empty string.”

5.6 Git hooks



We’ve protected our main branch, added quality checks, and
then added various requirements on the main branch. We
now need to focus on localizing the changes to our
development environment. As a general rule, it is important
to localize changes to your pipeline so that your developers
can easily reproduce them locally. If you find that verifying
changes locally becomes a problem, you should consider
changing your pipeline. Localized functions allow developers
to ensure their code should work before pushing it to a pull
request. Imagine trying to guess if your code will pass before
creating a pull request. This would create delays and
problems along the way. For the most part, we have already
automated a lot of the functions our pipeline has done, but
we failed to ensure that developers are using them locally.

The policy will only get you so far. Often a developer will
write some code in earnest, push it, create a pull request,
and move on only to find in a few hours that the pull request
failed for one reason or another. Similarly, when seeing a
new pull request, developers will flock to review and approve
it only to find that there are errors that prevent it from being
merged. This wastes time for the developer, reviewer, and
the CI pipeline. Moving these checks as close as possible to
the source will help move the process along.

Git has a beautiful feature called hooks that ties into various
functions supported by Git. A hook will run when a specific
function is executed, either before or after. In our case, we
want to create a pre-commit hook that will run before we
commit our changes. This hook will verify that our code is
properly formatted and that the static code analysis runs as



expected. We need to ensure that these functions are
installed for everyone, and they therefore should be part of
our setup. First, we must create the script, which is just a
simple shell script. Create a file called scripts/hooks/pre-
commit, and add the code in the following listing.

Listing 5.12 pre-commit

#!/bin/sh

 

STAGED_GO_FILES=$(git diff --cached --name-only -- '*.go')     ❶
if [[ $STAGED_GO_FILES == "" ]]; then                          ❷
    echo "no go files updated"

else

    for file in $STAGED_GO_FILES; do

        go fmt $file                                           ❸
        git add $file

    done

fi

 

golang-ci run                                                  ❹

❶ Grabs all Go files

❷ If there aren’t any, print the message.

❸ Runs format on all files and adds the file to the commit

❹ Runs lint check

Now we will create a script that adds this to our .git/hooks
directory as part of initialization (see the following listing).
Once there, it will run before any branch push, so be aware
of error messages!

Listing 5.13 Makefile

setup: install-go init-go copy-hooks

...



copy-hooks:

  chmod +x scripts/hooks/*       ❶
  cp -r scripts/hooks .git/.

❶ Creates a script and copies files

Problems should now be caught in a local environment as a
team tries to use these hooks to ensure that basic tasks are
being completed, but be aware of the time cost of these
functions. Notice that we did not add the test stage to the
pre-push. This is because tests take a longer time to run as
opposed to static checks. Try to find a happy medium. Make
sure things don’t take too long and interrupt the
development flow. You and your team may find that these
hooks are more obtrusive than helpful, in which case you
should discuss their usage and function with your team.

5.7 Flow

A psychologist named Mihaly Csikszentmihalyi studied the
way people work and how it relates to happiness and
creativity. He believed that people enjoy what they do if they
can establish a sense of flow or state of concentration and
absorption in the task at hand. This is also known as “being
in the zone.” If you play sports or an instrument, I’m sure
you’ve found yourself in a state of flow. You can see the next
play, anticipate the next note, or become absorbed in what
you are doing at the moment.

Csikszentmihalyi discovered that this pattern can be reflected
in work as well, as long as it engages the worker in some



way. Developers find this flow when writing code. Some of
the most innovative and efficient code can come from an
engaged development team. What can cause problems,
though, is the interruption of flow, such as by these:

Meeting overload
Broken builds and tests
Local development problems
Heisenbugs, bugs that are inconsistently reproducible
Coworkers popping in to talk or ask a question

Why does this matter? Because the flow of your team
members is important. Making things easier will help to
create a better flow for them. What we want to focus on is
the flow that goes from an idea to implementation. The fewer
disruptions we have at this stage, the better. This flow comes
from the person doing the work, and anything that interrupts
the flow interrupts their ability to be successful.

On the other hand, loose quality enforcement can lead to
interruptions in the form of bugs and errors. There is no
formula for what works best with teams. If you are a team of
senior-level developers, you may require fewer guardrails. If
you are a team of less experienced developers, you may find
you need more. The key here is to communicate. Talk to
each other regularly. Refine and enhance.

Overall, this chapter has been about helping your team work
together. I realize that this is a challenging and unique area,
as every team will be different, so you will notice that I have
repeated a similar line time and again: do what works best



for your team. We have built a pipeline, and we are adding to
it. With each addition comes more complexity, but this
complexity can often help teams as they grow and evolve.
Most of these steps and protections will help your team in the
long run. It may be by catching bugs or errors, but in some
cases, it will keep people on their toes.

Parents often use timers as a way of communicating that it is
time to leave rather than telling their kids it’s time to go. This
helps because the parent and the child have agreed that the
timer is the thing that determines when it is time to go and
not a seemingly arbitrary announcement from the parent.
The timer is the communication tool. In the same way, team
members will respond better to a program telling them to
comment on their code rather than a team member because
both have agreed on a single tool to keep them in check.

“Hey, do you have a minute?” Startled, you look up and see
your project manager with someone you’ve never met
before. “I want to introduce you to Yvonne, an intern who is
going to help you meet the demo on Friday. She doesn’t
have a bunch of experience, but I’m sure you can help her
get up to speed fairly quickly.” Any help is welcome,
especially now that you’ve standardized your work.

Summary

Code quality checks can reduce bugs and standardize
work.
Formatting can standardize a workspace and make it



easier for newcomers to onboard.
Static code analysis will check your code for known anti-
patterns and ask you to fix them.
Moving quality checks to the front of the pipeline can
reduce wait time and catch bugs before deployment.
Constantly review and improve your development
process to ensure the flow of the developer’s work.



6 Testing frameworks, mocking, and
dependencies

This chapter covers

Isolating code from external dependencies by using interfaces
Injecting dependencies into services to create composable portions
of code
Constructing suites of tests to reduce boilerplate setup and
teardown for tests
Stubbing and mocking dependencies to create isolated tests that
are reliable
Simulating calls to an external service to test the logic of a client
service

“So you want to sit with me and tell me what to code? Won’t
that be a waste of your time?” You’ve just given the intern
permission to access the repository and sat down next to her
at her desk. You explain that she should download the
repository and follow the directions on the README, and you
will sit there to answer any questions. After making some
minor notes on where to expand the documentation, you
move on to coding. The intern will add some new
functionality to the system and write the code while you
explain what to write.

This process of “pair programming” is a great technique to
bring people on board and explain the code base. It also is a
great team-building activity. One person can write the tests



while the other implements the solution. In this case, you will
write the test and explain what it does, and it will then be the
intern’s job to implement it with you there to guide her and
provide pointers and input. Before you can do this, though,
you need to define what you’re going to build, so you pull up
an editor and write the code in the following listing in your
translate.go handler.

Listing 6.1 translate.go

type Translator interface {

    Translate(word string, language string) string     ❶
}

❶ Extracting our method into an interface allows us flexibility in the implementation.

“You want me to implement this interface in a new service?
Why? Everything seems to work fine now. What will an
interface do to help?” You smile; it’s always fun to teach.

6.1 Dependency inversion principle

“Depend on abstractions, not concretions.” This is the
dependency inversion principle. This is a design principle that
is found in software development. It is a fairly simple concept
that helps developers create clean and focused code. Instead
of using an implemented class or function directly, we
depend on the abstraction.

The best way that I can explain this concept is to imagine a
scenario where electrical plugs didn’t exist. How hard would it
be if you had to directly wire your lamp or TV to your home’s



electrical system? I’m sure you would think twice before you
rearranged your furniture. Instead, we created plugs and
outlets. We don’t care about the wiring in our house, the
circuit breaker (unless one is flipped), the line to the house,
the transformer, or where the electricity comes from. It just
simply works for us. If your lamp breaks tomorrow, it can be
replaced, and you don’t need to worry about putting in a new
outlet. The plug should just fit.

This is what is known as an interface, an abstraction that
allows someone to easily use something more complex
behind the scenes. We talked about abstractions in chapter 4
and how they can be helpful in software development. It’s no
surprise that developers want to help abstract some of their
code for others to use. Similarly, they want to be able to
improve and change things without causing major refactors
or problems. This is where interfaces come in. In software
development, an interface defines the functions of a given
struct or class. Once a struct has all of the request functions,
it satisfies the interface and can be used in the place of
another service that also satisfies the interface. Just like the
lamps, we can change out pieces of code that help us grow
and improve.

Some developers will forgo the creation of interfaces and
instead create portions of code that are tightly coupled and
intertwined. This makes it hard for us to test effectively and
enhance our code in the future. We need to modularize our
code so we can do a better job of testing it, which can be
done through the use of interfaces.



6.2 Defining an interface

Interfaces are also called protocols, which help define
boundaries between systems and provide a way to
communicate between those boundaries. Protocols and
interfaces create a definition of how to communicate through
established structures or patterns. Just like different outlet
faces on an electrical socket can tell us what sort of
electricity is on the other side, an interface will tell our user
how to use a service by defining method definitions (as seen
in figure 6.1).

Figure 6.1 Various interfaces are designed to abstract the delivery of
electricity.

This allows our developers to write their code toward an
interface definition rather than a concrete implementation,
allowing us to make changes that don’t affect the entire
system. This is important as we develop because we may
find that we need to slowly replace portions of our code while
still supporting backward compatibility or testing features
that are not ready for wide consumption. Later in this
chapter, we will do this, but let’s start with the simple
example in the following listing.



Listing 6.2 example.go

package main

 

import "fmt"

 

type Greeter interface {                     ❶
    Greet() string

}

 

type spanishGreeter struct {}

 

func (g *spanishGreeter) Greet() string {    ❷
    return "hola"

}

 

type englishGreeter struct {}

 

func (g *englishGreeter) Greet() string {    ❸
    return "hello"

}

 

func printGreeting(greeter Greeter) {        ❹
    fmt.Println(greeter.Greet())

}

 

func main() {

    printGreeting(&spanishGreeter{})

    printGreeting(&englishGreeter{})

}

❶ The interface defines a method that a struct needs to have to satisfy the interface.

❷ The spanishGreeter struct adds the method and therefore satisfies the interface.

❸ In the same way, the englishGreeter also satisfies the interface.

❹ A generic method can then be written that uses the interface as input.

We created two structures that satisfy the same interface.
This allows us to abstract the parameters of the function to
take the interface and swap between the two structures. This
can be seen in figure 6.2 where we have a service using an



interface to hide the underlying implementation. Though this
is a trivial example, we will see it be more powerful in the
future as we customize our application. What we can see now
is that we can implement any number of structs to satisfy
this interface without changing the caller. Though I have
never encoun-tered this scenario, imagine using an interface
for a backend datastore. With an interface, you could satisfy
the interface using Postgres, RedisDB, MongoDB, or any
number of technologies and not have to change your code.
This rarely happens but prevents you from locking into a
given implementation.

Figure 6.2 Interfaces allow us to swap between different services that
satisfy the interface without changing our logic in the consuming
service.

Why does this matter? By making use of interfaces, we can
also simplify how we test our code. Let’s look at our handler
function as an example. Right now, it is dependent on the
service struct for translations. If we were to change the
underlying implementation of services, we would hope that
this wouldn’t affect our handler. But when we think about it,
our handler should work independently of the underlying
service. All the handler cares about is the output translation



and nothing else, so we want to add an abstraction within the
handler to make it easier to test (see the following code
listing).

Listing 6.3 translate.go

type Translator interface {

    Translate(word string, language string) string     ❶
}

❶ Extracting our method into an interface allows us flexibility in the implementation.

You may wonder why we are defining this interface here and
not somewhere else. The handler is the consumer of the
interface and therefore defines the functionality it needs
following the dependency inversion principle we discussed
earlier. We define the interface we want and then create the
implementation that satisfies this interface type. Go uses
something called duck typing to help map an interface to its
implementation. The term duck typing is a type system
wherein the object needs to satisfy certain behaviors. It
comes from a duck test: “If it walks like a duck and quacks
like a duck, then it must be a duck.” The handler can define
what it expects from a structure through the use of an
interface and ignore the underlying implementation. This
means our implementation can come from anywhere, and a
single implementation can satisfy many interfaces. As
developers, we want to split our interfaces into small chunks
known as interface segregation to help them be more
composable and reusable. Go’s standard library has a
wonderful example of this (see the following listing).



Listing 6.4 io.go

type Reader interface {                   ❶
    Read(p []byte) (n int, err error)

}

 

type Writer interface {                   ❷
    Write(p []byte) (n int, err error)

}

 

type ReadWriter interface {               ❸
    Reader

    Writer

}

❶ The reader interface only has one method to satisfy . . .

❷ . . . and so does the writer interface.

❸ A composite interface can then be created from each of these interfaces.

A service may only want to implement Reader or Writer or
both. You can treat interfaces like Legos that you assemble
so that you can use what you need and nothing more. This is
all well and good, but how do we use this composability? We
create a structure that fulfills the interface and injects it into
a consuming struct. This is known as dependency injection.

6.3 Dependency injection

I’ve always imagined dependency injection as putting a
different engine in a different car. Many car bodies share the
same engine, and many car bodies support different engines.
For example, the 2022 Toyota Camry allows you the option
to have a four-cylinder, six-cylinder, or four-cylinder hybrid
engine all in the same type of car, in the same way that



hybrid engines can also be used on other vehicles. This is a
streamlined way for companies to reuse designs while giving
their users the variety that they need.

NOTE We are going to wire these dependencies by hand, but there are
tools out there that will do it for you. These include Wire, Fx, and Kit.

In the same way, we can build our code to use different
services and elements while not affecting our current
implementation. Code changes. Ideas change. Features get
added. What is important is that these changes should not
require an entire rearchitecting or rebuilding of our system.
Instead, we should be able to define how the service should
work in abstract terms and then satisfy them with concrete
implemen-tations so they are not tightly coupled, wherein a
change in one service requires a change in another service.
Instead, a change in a given service shouldn’t affect the
underlying functionality of another service. In the previous
section, we talked about the merits of writing an interface.
You can view your interface as a way of standardizing how a
service will work. With this standard in place, you can then
make changes as you need. You can attach the larger engine,
the smaller engine, or the hybrid without doing a major
overhaul. Let’s see how this works. We’ve already written our
interface for translation, and now we need to make the
handler use it and the service satisfy it. Open your
translate.go file, and add the code in the following listing.

Listing 6.5 translate.go

// TranslateHandler will translate calls for caller.

type TranslateHandler struct {



    service Translator                                               ❶
}

 

// NewTranslateHandler will create a new instance of the handler using a

// translation service.

func NewTranslateHandler(service Translator) *TranslateHandler{      ❷
    return &TranslateHandler{

        service: service,

    }

}

 

...

 

// TranslateHandler will take a given request with a path value of the

// word to be translated and a query parameter of the

// language to translate to.

func (t *TranslateHandler) \

    TranslateHandler(w http.ResponseWriter, r *http.Request) {       ❸
...

    translation := t.service.Translate(word, language)               ❹
...

}

❶ Our handler now becomes a struct that depends on an interface to satisfy the
translations.

❷ We create a convenience method to create the instance so that you don’t miss out
on any dependencies.

❸ Changes the method to be attached to our struct

❹ Replaces our translation method with the interface

We’ve created a struct that holds our interface and allows us
to call it in our handler function. Let’s now update our service
to satisfy the interface so we can still use it and get our
system building again. Open translator.go, and add the
code in the following listing.

Listing 6.6 translate.go

// StaticService has data that does not change.



type StaticService struct{}                                                ❶
 

// NewStaticService creates new instance of a service that uses static data.

func NewStaticService() *StaticService {                                   ❷
    return &StaticService{}

}

 

// Translate a given word to a the passed in language.

func (s *StaticService) Translate(word string, language string) string {   ❸
...

}

❶ Creates a new struct to attach our existing function to

❷ Creates a method to instantiate this struct

❸ Attaches the function to the struct and satisfies the interface needed by the
handler

Now comes the dependency injection. As the name implies,
we will inject the dependent services into the handler struct.
Open main.go, and add the code in the following listing.

Listing 6.7 main.go

func main() {

...

    mux := http.NewServeMux()

 

    translationService := translation.NewStaticService()                    ❶
    translateHandler := rest.NewTranslateHandler(translationService)        ❷
    mux.HandleFunc("/translate/hello", translateHandler.TranslateHandler)   ❸
...

}

❶ Creates the new static service

❷ Creates a new handler with the service as a dependency

❸ Registers the function with the mux

As you can see, we create the service we need and pass it to



our handler, which registers the translation function call. We
now have control over what service the handler can use. We
will take advantage of this later as we expand our services.
Our FaaS will also fail now that we’ve made the change to
the handler. See if you can fix it yourself.

What is interesting is that during this exercise you can
witness how difficult it is to make small changes when your
services become tightly coupled. We can see here that
making our changes to our handler and service has broken
several pieces of our code, including our tests. Right now,
our code base isn’t that big, so imagine what would have
happened on a larger project!

Now we need to fix our tests. Let’s do the minimum to fix
this, and then we’ll improve our tests to take advantage of
the changes we’ve made. Open translate _test.go, and
add the code in the following listing.

Listing 6.8 translate_test.go

func TestTranslateAPI(t *testing.T) {

 

...

    underTest := rest.NewTranslateHandler(translation.NewStaticService())  ❶
    handler := http.HandlerFunc(underTest.TranslateHandler)                ❷
...

}

❶ Updates the tests to create the new handler

❷ Registers the handler for the test

Implement the changes to translator_test.go (see the
following listing).



Listing 6.9 translate_test.go

func TestTranslate(t *testing.T) {

...

 

    underTest := translation.NewStaticService()                   ❶
    for _, test := range tt {

        // Act

        res := underTest.Translate(test.Word, test.Language)      ❷
...

    }

}

❶ Creates a new static service to test against

❷ Uses this for getting the results for the different test cases

You’ll notice that I used a variable called underTest in both
of these files. This is a nice pattern to follow because it allows
you to explicitly see what you are testing. Now we should be
able to see all of our tests run without a problem. Commit
your changes and push your branch.

Why did we go through all of the trouble of refactoring to not
have anything change functionally?

The first reason is to underline the importance of creating
interfaces early in development instead of doing it later. You
can see the difficulty and pain of making these changes after
the fact instead of planning them out before. I did this as a
lesson. I remember as a junior developer being assigned the
task of creating interfaces for all of the services in our
system. It was tedious. It was painful. Worst of all, the
interfaces were sloppy.

Sloppy interfaces are the ones that do too much and have



too many parameters. They are too broad and difficult to
reason about. They have low cohesion or coincidental
cohesion because they are grouped arbitrarily and with little
thought given to their function. Alternatively, if we were to
think about our service at the onset, we could build
something with high cohesion or functional cohesion and
group them in a well-defined set of tasks. Functional
programmers often tout the superiority of their languages
because most functions will eventually fall into small, highly
cohesive functions. But the same can be true of any language
if you give it enough time and thought. See table 6.1.

Table 6.1 Cohesion is used to define how well a structure or class is
defined.

          
High cohesion

        

          
Clearly defined purpose and 
method definitions

        

          
Low cohesion

        

          
Broad responsibilities that are often 
all in one class or struct

        

An easy example of this is a class named Validation versus
a class named UserRegistrationValidation. In the first
case, you have a class that houses too many functions for all



types of validation within your system, whereas the second
provides a more focused validation of a specific step in a
business process. The second reason for putting you through
all of this is so we can decouple our tests and make them
more atomic, or independent, which in the long run, will give
us stability and speed up our development. Let’s take a look
at what that will look like.

6.4 Testing stubs

With dependency injection, we give ourselves some control
over a service that we didn’t have before. In chapter 3, we
introduced the concept of black box testing: we can’t see
inside the method or structure we are testing and must test
it externally. As our applications become more complex, the
service we are writing tests for may become more difficult to
reason about. Dependency injection allows us to constrain
and isolate various parts of the underlying code we are trying
to test. This is known as scientific control within experiments
to help minimize the effects of the independent variable or
the thing you are trying to test. In our current
implementation of the handler, we cannot control how the
underlying translation service will work, so we cannot control
our tests.

Here is an example. Currently, in our handler tests, we
expect /translate/hello?language=dutch to return a
404 message. If we implement the Dutch translation in our
underlying service, our test will break! This means that our
handler tests are coupled with the underlying service, which



is not what we want to test. Instead, we want to understand
what will trigger the responses expected from the handler
itself. If a result comes back as valid, we want to return a
200, which is the HTTP code for success, along with the
corresponding value. If it is not found, a 404 error code will
be returned.

But now that we can inject our own dependency, we can
create our own service specifically for testing. This is known
as a stub. Stubs are very simple implementations of any
structure (service, repository, utility) that can be used in
testing as well as in systems under development. A stub
mostly lacks complicated logic and returns hardcoded values.
This allows us to test the service with known expectations of
the underlying stubbed service.

NOTE Stubs can be great placeholders while code is under development.
In chapter 2, we talked about splitting up work among team members to
get the smallest delivered code possible. This can be accomplished by
looking at your code as layers and stubbing the underlying dependencies
as you move forward. In this example, you would stub the service that
feeds the code to the handler and solely focus on the handler. Once the
handler is delivered, consuming applications can start the often painful
integration process earlier while you continue to build out the business
logic.

To see this in action, let’s update our test code as in the
following listing.

Listing 6.10 translate_test.go

type stubbedService struct{}                                               ❶



 

func (s *stubbedService) Translate(word string, language string) string {  ❷
    if word == "foo" {                                                     ❸
        return "bar"

    }

    return ""

}

 

func TestTranslateAPI(t *testing.T) {

 

    tt := []struct {

        Endpoint            string

        StatusCode          int

        ExpectedLanguage    string

        ExpectedTranslation string

    }{

        {

            Endpoint:            "/translate/foo",

            StatusCode:          200,

            ExpectedLanguage:    "english",

            ExpectedTranslation: "bar",

        },

        {

            Endpoint:            "/translate/foo?language=german",

            StatusCode:          200,

            ExpectedLanguage:    "german",

            ExpectedTranslation: "bar",

        },

        {

            Endpoint:            "/translate/baz",

            StatusCode:          404,

            ExpectedLanguage:    "",

            ExpectedTranslation: "",

        },

    }

 

    h := rest.NewTranslateHandler(&stubbedService{})                       ❹
    handler := http.HandlerFunc(h.TranslateHandler)

 

    ...

}

❶ Creates an empty struct to satisfy your interface

❷ Satisfies the interface expected by the handler

❸ Creates a simple method within the interface to test against



❹ Injects the stubbed service for testing

You’ll notice that some things are different here. Mostly, we
changed the test to focus on the results that come back from
our service instead of trying to push the logic through to the
service. What we want to test is this:

That the default language is English if no language is
passed
That if a language is passed, the language is returned
That if a word that is not translated, we expect a 404 and
empty values

I personally like to make clear to the developer that they are
test values, thus the use of foo, bar, and baz. This helps
people realize that we are working with fake data instead of
real data and focuses their attention on the actual logic. This
will run well, but it lacks some fidelity. Specifically, we are
missing the actual values passed to the service itself. Right
now, we have a bug in our code that was left there
intentionally. In our testing chapter, we talked about building
services that are robust and that handle the standardization
of input. While we built utilities to support this on the service,
we failed to pay attention to this on the handler. We can
make a call like in the following listing.

Listing 6.11 translate_test.go

func TestTranslateAPI(t *testing.T) {

 

    tt := []struct {

        Endpoint            string

        StatusCode          int



        ExpectedLanguage    string

        ExpectedTranslation string

    }{

        ...

        {

            Endpoint:            "/translate/foo?language=GerMan",    ❶
            StatusCode:          200,

            ExpectedLanguage:    "german",                            ❷
            ExpectedTranslation: "bar",

        },

    }

 

    ....

}

❶ Input here shows inconsistent capitalization from what we are expecting on the
service.

❷ The expectation is that the results should be lowercase.

Our test would fail. We want to make sure that the language
is lowercase when we return the value. This way, the results
are always standard and our consumers can develop against
it properly. We want to not only verify that the returned
value is lowercase but also make sure we are passing the
lowercase version to our service. How do we do that?

We could add the logic to our stub to do the verification, but
this becomes complicated. Instead, we can focus on using
something that gives us more control around the testing logic
by using a mock.

Before we get to mocking, let’s circle back to what we are
trying to achieve. We are not testing dependencies within our
application; instead, we are testing how part of our
application works with the dependencies. This distinction has
to be clear because we want each piece to be independently



testable and verifiable. Therefore, when you find that a
portion of your code depends on an external library or
service, you should consider how it will be incorporated into
your testing strategy.

6.5 Mocking

In baseball, batters typically warm up with a pitching
machine. This machine stands in for a person to help the
batter practice their swing. In practice, the batter may face a
live player who throws them the ball. This person isn’t a
pitcher but is someone who can give the batter just enough
variation that makes it higher fidelity by making it more
realistic. Finally, during the game, the hitter will encounter a
real pitcher, and hopefully they are ready.

In testing we want to exercise our code in the same way. In
the previous section we talked about stubs, which act as a
placeholder for a service but with expected results. These
stubs don’t do very much, and you may find that you are
adding strange logic code in your stub to make your tests
work as expected. Before you go down that path you should
consider mocking.

Mocking is like a stub but with more detail. With mocks you
create a similar object, but you can attach methods that
allow you to assert if certain methods were called and with
what values. It can change functionality per test so that you
can test error handling and strange values. Overall, it
provides you with a deeper insight into how your function



works and how you can test every edge case.

To help demonstrate this we will first add a feature to our
system and then test it with a mock. If we cannot find the
result in our database, we will call an external service using a
client to fetch the result from the old system. To do this, we
will first create an interface so that we can interchange them
when we are ready to release the feature. Let’s see what this
service looks like:

touch translation/remote_translator.go

Next, add the code in the following listing.

Listing 6.12 remote_translator.go

package translation

 

var _ rest.Translator = &RemoteService{}                                  ❶
 

// RemoteService will allow for external calls to existing service for 

➥translations.

type RemoteService struct {

    client HelloClient                                                    ❷
}

 

// HelloClient will call external service.

type HelloClient interface {                                              ❸
    Translate(word, language string) (string, error)

}

 

// NewRemoteService creates a new implementation of RemoteService.

func NewRemoteService(client HelloClient) *RemoteService {

    return &RemoteService{client: client}

}

 

// Translate will take a given word and try to find the result using the 

client.

func (s *RemoteService) Translate(word string, language string) string {



    resp, _ := s.client.Translate(word, language)                         ❹
    return resp

}

❶ Verifies that the struct we are building satisfies the interface. This will cause a
compile-time error if not satisfied.

❷ Uses a new interface for making calls to external API

❸ Creates an interface for the client that calls and translates

❹ Uses the client to make external calls

Notice that we’ve added a new interface called HelloClient.
Right now, all we have the service do is call the client and
return the results. This will be the basis for our test. With
mocking, you will find out that a lot of boilerplate occurs, so
it is easier to organize our tests in test suites or groupings
of tests that have a similar setup and tear down functionality.
This means that we can establish our mock and test against
it in various ways without conflicting setups or strange side
effects.

6.5.1 Setting up our test suite

Luckily, there is a great testing tool kit called testify that
will handle both suites and mocking. This library provides
suites, assertion helpers, and mocks to help us with our
testing. To use this, we will import our first external library:

go get -u github.com/stretchr/testify

NOTE GoMock is a popular alternative to Testify’s mock tool. It has a
mechanism for generating specific mocks for your interfaces.



Now let’s create our test file and set up our suite:

touch translation/remote_translator_test.go

Next, add the code in the following listing.

Listing 6.13 remote_translator_test.go

package translation_test

 

import (

    "context"

    "errors"

    "testing"

 

    "github.com/stretchr/testify/mock"

    "github.com/stretchr/testify/suite"

    "github.com/holmes89/hello-api/translation"

)

 

func TestRemoteServiceTestSuite(t *testing.T) {                              

❶
    suite.Run(t, new(RemoteServiceTestSuite))

}

 

type RemoteServiceTestSuite struct {                                         

❷
    suite.Suite                                                              

❸
    client *MockHelloClient

    underTest *translation.RemoteService

}

 

func (suite *RemoteServiceTestSuite) SetupTest() {                           

❹
    suite.client = new(MockHelloClient)

    suite.underTest = translation.NewRemoteService(suite.client)

}

 

type MockHelloClient struct {                                                

❺
    mock.Mock                                                                



❻
}

 

func (m *MockHelloClient) Translate(word, language string) (string, error) { 

❼
    args := m.Called(word, language)                                         

❽
    return args.String(0), args.Error(1)                                     

❾
}

❶ Go’s testing framework expects tests to start with the word Test and have the (t
*testing.T) method. This will be used to trigger our suite.

❷ Builds a suite that houses whatever dependencies we need to run our tests

❸ Extends the Suite struct to use default methods

❹ SetupTest will run before each test. Here, we initialize the mocked client and the
service to test.

❺ Creates a Mock struct to satisfy the interface

❻ Extends Mock to use methods to track calls

❼ Satisfies the interface for the Mock

❽ Asserts that the values were called with the expected values

❾ Returns the values from the mock

We have wrapped our traditional testing mechanism from the
testing library in a struct that extends a Suite struct. With
this structure, testify can use the SetupTest function to
run before we run any tests. We then use the Mock structure
to extend the functionality we will need to verify and
manipulate the test so that we can try various edge cases.
Testify allows you to use various setup and teardown
commands to help reduce duplication of code, and in the
case of mocks, reset their values.

We will explore some additional setup and teardowns in the



next section, but for now, you can see how we are organizing
our suite so that we can focus on the actual tests.

6.5.2 Using our mocks in test

We have written a service that calls a remote endpoint for a
value and returns it to the user. This obviously isn’t what we
want long term, but we’ll let the tests drive the writing of this
service. First, let’s get our tests written (see the following
listing), and then we will work on enhancing our service.

Listing 6.14 remote_translator_test.go

package translation_test

...

 

func (suite *RemoteServiceTestSuite) TestTranslate() {

    // Arrange

    suite.client.On("Translate", "foo", "bar").Return("baz", nil)   ❶
 

    // Act

    res := suite.underTest.Translate("foo", "bar")

 

    // Assert

    suite.Equal(res, "baz")                                         ❷
    suite.client.AssertExpectations(suite.T())                      ❸
}

❶ Tells the mock what to expect as input and what to return

❷ Suites have assertion libraries that act as convenience methods in testing. Here,
we check if the values are equal.

❸ Asserts the calls were made on the mock

Now run your tests, and see if they pass. This gives us more
control over the dependency to verify that the service was
called along with asserting the values by which the service



was called. This is powerful because all too often, bugs can
happen because a service may expect values to come in a
certain format that the calling service may have forgotten or
missed. Mocks provide a way for us to verify the values as
part of the setup (see the following listing).

Listing 6.15 remote_translator_test.go

package translation_test

...

 

func (suite *RemoteServiceTestSuite) TestTranslate_CaseSensitive() {

    // Arrange

    suite.client.On("Translate", "foo", "bar").Return("baz", nil)    ❶
 

    // Act

    res := suite.underTest.Translate("Foo", "bar")                   ❷
 

    // Assert

    suite.Equal(res, "baz")

    suite.client.AssertExpectations(suite.T())

}

❶ This is the same expectation we had before from our mock. We will try to see if
our method passes the expected input to the service it’s calling.

❷ Here, we change the input so that the test will fail.

Run this, and you should see a failure. It says it expected the
input to be foo, not Foo. Here, the mock verifies the
expectations we set earlier. Now we need to change our
function to reflect this requirement (see the following listing).

Listing 6.16 remote_translator.go

package translation

 

import (

    "strings"



)

...

// Translate will take a given word and try to find the result using the 

client.

func (s *RemoteService) Translate(word string, language string) string {

    word = strings.ToLower(word)

    language = strings.ToLower(language)              ❶
    resp, _ := s.client.Translate(word, language)

    return resp

}

❶ Lowercases the input so that your tests pass

Now your tests should pass. Not only can we use a mock to
verify the input, but it allows us to control the output. Here,
we can add a simple test with minimal changes to see what
happens if we get an error (see the following listing)

Listing 6.17 remote_translator_test.go

package translation_test

...

 

func (suite *RemoteServiceTestSuite) TestTranslate_Error() {

    // Arrange

    suite.client.On("Translate", "foo", "bar").Return("baz", 

    ➥ errors.New("failure"))                         ❶
 

    // Act

    res := suite.underTest.Translate("foo", "bar")

 

    // Assert

    suite.Equal(res, "")                              ❷
    suite.client.AssertExpectations(suite.T())

}

❶ Now we return an error to see how we handle it.

❷ We should not get an answer back.

Ah, we aren’t handling the error in our service! Let’s fix that



using the code in the following listing.

Listing 6.18 remote_translator.go

package translation

 

import (

    "strings"

    "log"

)

...

// Translate will take a given word and try to find the result using the 

client.

func (s *RemoteService) Translate(word string, language string) string {

    word = strings.ToLower(word)

    language = strings.ToLower(language)

    resp, err := s.client.Translate(word, language)

    if err != nil {                                    ❶
        log.Println(err)

        return ""

    }

    return resp

}

❶ Handles the error

Now we can verify how we handle this error. See how we
could easily extend the test without changing how our mock
is created? Stubs don’t provide this level of control by default
and need to have special programming to handle these types
of cases. Instead, our mock provides us with the ability to
inject errors and verify inputs without needing to change the
underlying implementation.

NOTE Why even test the error? It may seem pointless in this example,
but it can be helpful in most cases. Errors happen constantly in code,
and business rules need to be associated with each type of error. Here,
we just log the error and return an empty string. Our test verifies that no



matter what, we should return an empty string in the case of a failed
translation.

The final feature we want to add to our service is a cache.
Most times, when calling an external or remote service, it is
important to save the values to reduce the number of calls.
This makes your service faster because it doesn’t require
waiting on a response from a server; it also makes it
dependable, and in some cases, it saves you money. We
want to verify that if we make the call with the same value, it
only happens once. Our mock can keep track of this for us
(see the following listing).

Listing 6.19 remote_translator_test.go

package translation_test

...

 

func (suite *RemoteServiceTestSuite) TestTranslate_Cache() {

    // Arrange

    suite.client.On("Translate", "foo", "bar").Return("baz", nil).Times(1)  ❶
 

    // Act

    res1 := suite.underTest.Translate("foo", "bar")

    res2 := suite.underTest.Translate("Foo", "bar")                         ❷
 

    // Assert

    suite.Equal(res1, "baz")

    suite.Equal(res2, "baz")

    suite.client.AssertExpectations(suite.T())

}

❶ Asserts that this command was only run once

❷ Makes the call twice to test the cache. Notice that we are using capitalization so
we know that our business logic should lowercase the value before looking in the
cache.



You should see a failure when you run your test. Let’s fix this
by using an in-memory map in the next listing.

Listing 6.20 remote_translator.go

package translation

 

import (

    "fmt"

    "log"

    "strings"

 

    "github.com/holmes89/hello-api/handlers/rest"

)

 

// RemoteService will allow for external calls to existing service 

➥ for translations.

type RemoteService struct {

    client HelloClient

    cache map[string]string                                    ❶
}

 

...

// NewRemoteService creates a new implementation of RemoteService.

func NewRemoteService(client HelloClient) *RemoteService {

    return &RemoteService{

        client: client,

        cache: make(map[string]string),                        ❷
    }

}

 

// Translate will take a given word and try to find the result using the 

client.

func (s *RemoteService) Translate(word string, language string) string {

    word = strings.ToLower(word)

    language = strings.ToLower(language)

 

    key := fmt.Sprintf("%s:%s", word, language)                ❸
 

    tr, ok := s.cache[key]                                     ❹
    if ok {                                                    ❺
        return tr

    }

 



    resp, err := s.client.Translate(word, language)            ❻
    if err != nil {

        log.Println(err)

        return ""

    }

    s.cache[key] = resp                                        ❼
    return resp

}

❶ Uses an in-memory map for a cache

❷ Creates the map as part of initialization

❸ Creates a key for your map to store the translation

❹ Checks the cache for the key

❺ If the value was found, returns it

❻ Makes the translation call

❼ Stores the value in the cache

Perfect! Now run your tests and see that they all pass. Mocks
can be a powerful tool for testing, but be warned that they
can become complicated and your tests can become hard to
follow. This is where as a team you will need to focus on the
compatibility or easy assembly of services and functions and
the relationship between them. If a test becomes burdened
with a bunch of mocks, the service may need to be broken
up. If a mock needs to be changed constantly because of a
changing interface, you may need to rethink your
abstraction. Mocks aren’t the silver bullet for testing; they’re
just one tool to help you test your code in isolation and
enhance your unit testing.

6.6 Fake



Finally, we will add one more set of unit tests for a client that
calls an external API. Here, we come up against a different
type of interface testing, this time with an API that we don’t
control. Like our other interfaces tests, we can establish a
contract or definition of what this API should look like and
use a fake to simulate it.

WARNING We don’t have control over the other API, just our own, and if
something were to change on the other API, we could end up with
failures. This fake is simulating an external dependency, or a system
outside our control, and therefore should be monitored and heavily
logged in case failures such as outages occur. Advanced system patterns
such as Circuit Breakers should be used, but they are outside the context
of this book. I suggest Cloud Native Patterns (Manning, 2019) by
Cornelia Davis.

A fake is an object, struct, or service with limited capabilities.
So far, we have described stubs and mocks in the context of
testing. We will use the term fake as a definition of an object
that stands in for an external service. Fakes provide this last
category of tools to help us verify the base units of our code
before we start moving toward integrating with external
integration.

Go provides the ability to create a test server to call against,
which makes our testing easier. We will use a fake HTTP
server to build our fake to test a client we create. Let’s set up
our suite before we get into the details of the
implementation. First, create the files using

touch translation/client.go

touch translation/client_test.go



and then add the code in the following listing.

Listing 6.21 client_test.go

package translation_test

 

import (

    "encoding/json"

    "io"

    "io/ioutil"

    "net/http"

    "net/http/httptest"

    "testing"

 

    "github.com/stretchr/testify/mock"

    "github.com/stretchr/testify/suite"

)

 

 

func TestHelloClientSuite(t *testing.T) {

    suite.Run(t, new(HelloClientSuite))

}

 

type HelloClientSuite struct {

    suite.Suite

    mockServerService *MockService

    server            *httptest.Server                                     ❶
    underTest         translation.HelloClient                              ❷
}

 

type MockService struct {

    mock.Mock

}

 

func (m *MockService) Translate(word, language string) (string, error) {   ❸
    args := m.Called(word, language)

    return args.String(0), args.Error(1)

}

❶ Use a test server to run against

❷ We are going to be testing the interface defined here.

❸ Similar mock to the ones we’ve seen before to help us inject values into the



handler

To set up our client test, we will need to create a handler
that captures the message to test what the client passes (see
the following listing).

Listing 6.22 client_test.go

func (suite *HelloClientSuite) SetupSuite() {                             ❶
    suite.mockServerService = new(MockService)

    handler := func(w http.ResponseWriter, r *http.Request) {

        b, _ := ioutil.ReadAll(r.Body)

        defer r.Body.Close()

 

        var m map[string]interface{}

        _ = json.Unmarshal(b, &m)

 

        word := m["word"].(string)

        language := m["language"].(string)

 

        resp, err := suite.mockServerService.Translate(word, language)    ❷
        if err != nil {

            http.Error(w, "error", 500)

        }

        if resp == "" {

            http.Error(w, "missing", 404)

        }

        w.Header().Set("Content-Type", "application/json")

        _, _ = io.WriteString(w, resp)

    }

    mux := http.NewServeMux()

    mux.HandleFunc("/", handler)

    suite.server = httptest.NewServer(mux)                                ❸
}

 

func (suite *HelloClientSuite) TearDownSuite() {

    suite.server.Close()                                                  ❹
}

❶ SetupSuite is used because we don’t want to create a new server for each test,
just this group of tests.

❷ Use the mock to get information and then handle the response using the correct



error codes.

❸ Start the test server.

❹ Shut down the server at the end of the suite.

NOTE We are setting up a database within the context of our test.
Alternatively, you can use tools such as WireMock, which is language
agnostic.

We are setting up a fake server with an HTTP handler that
uses a mock so that we can test how the client handles
various message types. Specifically, we want to see what
happens when an error occurs, the result cannot be found, or
a good result is found. The actual test cases will need to be
written out once we’ve built the client, but you can see here
how the setup of our suite will drive that design from the
start. Let’s use the code in the following listing to write our
client and then write our tests.

Listing 6.23 client.go

package translation

 

import(

    "errors"

    "log"

    "encoding/json"

    "io/ioutil"

    "net/http"

)

 

var _ HelloClient = &APIClient{}                                ❶
 

type APIClient struct {

    endpoint string                                             ❷
}

 

// NewHelloClient creates instance of client with a given endpoint



func NewHelloClient(endpoint string) *APIClient {

    return &APIClient{

        endpoint: endpoint,

    }

}

 

// Translate will call external client for translation.

func (c *APIClient) Translate(word, language string) (string, error) {

req := map[string]interface{}{

        "word":     word,

        "language": language,

    }

    b, err := json.Marshal(req)

    if err != nil {

        return "", errors.New("unable to encode msg")

    }

 

    resp, err := http.Post(c.endpoint, "application/json", 

    ➥ bytes.NewBuffer(b))                                      ❸
    if err != nil {

        log.Println(err)

        return "", errors.New("call to api failed")

    }

    if resp.StatusCode == http.StatusNotFound {                ❹
        return "", nil

    }

    if resp.StatusCode == http.StatusInternalServerError {

        return "", errors.New("error in api")

    }

    b, _ = ioutil.ReadAll(resp.Body)

    defer resp.Body.Close()

    var m map[string]interface{}                               ❺
    if err := json.Unmarshal(b, &m); err != nil {

        return "", errors.New("unable to decode message")

    }

    return m["translation"].(string), nil

}

❶ Types check to make sure it fulfills the interface

❷ Stores the passed-in endpoint to call

❸ Makes the external call to the server

❹ Checks the status codes to properly handle the response

❺ Uses a generic struct to get values from the JSON



Now the client will make the call to a server based on the
provided endpoint and handle the results, giving the calling
service the translated text. As you can see, we have plenty of
paths to go down for tests, and most of them are failure
cases. We will go through a few cases, but I’ll let you finish
up the others. Since we have almost everything already set
up, the last thing we need to do before writing our tests is
add our new client to the test suite (see the following listing).

Listing 6.24 client_test.go

func (suite *HelloClientSuite) SetupSuite() {

    ...

    suite.underTest = translation.NewHelloClient(suite.server.URL)    ❶
}

❶ Creates the client in the suite and passes the unique server URL to it

Now we can start writing some tests. We can use the mock
the same way we did in our other tests to manipulate the
output of our fake server. First, we will take the happy path
rather than two failure cases (see the following listing).

Listing 6.25 client_test.go

func (suite *HelloClientSuite) TestCall() {

    // Arrange

    suite.mockServerService.On("Translate", "foo", "bar").Return(`{

    ➥ "translation":"baz"}`, nil)                                    ❶
 

    // Act

    resp, err := suite.underTest.Translate("foo", "bar")

 

    // Assert

    suite.NoError(err)                                                ❷
    suite.Equal(resp, "baz")

}



 

func (suite *HelloClientSuite) TestCall_APIError() {

    // Arrange

    suite.mockServerService.On("Translate", "foo", "bar").Return("", 

➥ errors.New("this is a test"))                                      ❸
 

    // Act

    resp, err := suite.underTest.Translate("foo", "bar")

 

    // Assert

    suite.EqualError(err, "error in api")                             ❹
    suite.Equal(resp, "")

}

 

func (suite *HelloClientSuite) TestCall_InvalidJSON() {

    // Arrange

    suite.mockServerService.On("Translate", "foo", "bar").Return(`invalid 

    ➥ json`, nil)                                                    ❺
 

    // Act

    resp, err := suite.underTest.Translate("foo", "bar")

 

    // Assert

    suite.EqualError(err, "unable to decode message")

    suite.Equal(resp, "")

}

❶ Makes the system return valid JSON

❷ Checks to see that there wasn’t an error

❸ Returns an error to test the error status

❹ Checks the returned error value to make sure the right error was passed

❺ Makes the system fail by sending the wrong content

Can you add tests for bad input and not found responses?

6.7 Just the base of the pyramid

In chapter 3, we talked about how unit tests provide us with
the base we need for the rest of our tests. In that chapter,



our tests were fairly simple, but as you can see, once other
functions and systems get involved, they become more
complicated. This dependency can be avoided by creating
abstractions, but those abstractions need to be tested in a
realistic way. It is up to you to find this out and explore ways
of keeping your services as simple as possible. If your test
code becomes complicated, it might cause you to pause and
look at your code to see if it can be simplified and refactored.
See table 6.2.

Table 6.2 Comparing stubs, mocks, and fakes

          
Type

        

          
Pros

        

          
Cons

        

          
Stub 

        

          
Easy to create 
and 
manipulate

        

          
Verification can become 
complicated.

        

          
Mock 

        

          
Records 
interactions for 
later 
verification

          
More complex setup and teardown.

        



        

          
Fake 

        

          
Higher-fidelity 
interactions 
with a 
simulated 
system

        

          
Complicated to write and maintain.

        

Our introduction to stubs, mocks, and fakes gives you tools
to help you write better tests. Be aware that these tools
should not preempt good design. When writing code, you will
sometimes find that you have a ton of mocks floating around
or that your fake becomes too complicated. These are
canaries in your coal mine, and these should raise some flags
about your implementation. Maybe your code needs to be
broken up. Maybe you need to rethink your design. In any
case, you need to watch and think about how you are testing
and writing your code. Tests provide an excellent mirror to
what you are doing. Complicated structs are hard to write
tests for and therefore are more prone to errors. Cracks in
the foundation of your testing pyramid, as seen in figure 6.3,
will lead to a decrease in confidence about your code, so take
your time to think about what you are writing and how you
are structuring your tests and your code.



Figure 6.3 We have now covered the base of our pyramid using these
techniques.

We find ourselves slowly crawling up the pyramid and still
have the middle and top layers to add to our system to help
us establish some confidence in what we are building. But
these tests are going to become even more complicated to
manage and less dependable, and therefore will require a
different part of our pipeline. The theme I’m trying to
establish in this book is this notion of starting from a place of
simplicity and moving toward the complex. Complexity
should be avoided if at all possible but is sometimes
unavoidable as a trade-off. You alone will be able to
determine when it is time to move toward complexity based
either on features or the size of your team. Working
together, you and your team will figure out the best way to
build, test, and run your application.

“Wow, that was neat. I didn’t realize I would be contributing
something so important on my first day.” You smile. It is



really nice to see someone learn something new and help
them understand how your system works. A few more pair
programming sessions like this and the intern will be ready to
teach the next person who comes on board. So far, she’s
been able to contribute both test code and feature code. Now
it’s time to teach her the infrastructure.

Summary

Interfaces can be used to define the communication
between services and act as an abstraction to isolate
your code.
Services that satisfy an interface can then be passed into
a service as a dependency allowing you to inject the code
you want to support the service.
Suites allow you to set up and tear down tests and
groups of tests in a uniform way.
Stubs are lightweight structures that can help you test a
service without external dependencies in a simple way.
Mocks add more dimensions to your tests by allowing you
to verify calls and their content.
Fakes can be used in conjunction with mocks and stubs
to stand in completely for another service.



7 Containerized deployment

This chapter covers

Building a standardized way of deploying applications across
multiple machines
Using Buildpacks to build optimized containers for hosted
infrastructure
Customizing a deployment using a Dockerfile
Deploying containers to hosted environments
Organizing containers for local development

“Listen, I understand that this project is now gaining some
traction, but we need to be able to integrate with it as soon
as we can. The old service is at the center of everything we
do, so you will need to give us documentation on how to run
what you already have,” says Carol. You are just sitting down
with your lunch when she sits down at the same table. Carol
has been the team lead over at the mobile application team
for several years now. She runs a tight ship and doesn’t like
surprises—like to one your PM put you in charge of
developing. You smile and say you’ll get her team something
by the end of the day. Something simple that they won’t
have to do anything crazy to use.

“It would be nice if it’s the exact system you are using in
production and can be used locally.” This is important.
Having a system work the same on your machine as it does
in production is huge. Of course, you could point her team to



the binary you publish on your repository, but your binaries
are compiled for Linux, not for macOS or Windows, which the
mobile app team uses. You need something more universal.

What can you do? How can you deliver a product in a way
that runs uniformly in any environment? How can you ensure
that it runs efficiently and is secure? The answer is
containers.

If you look at some trucks driving down the highway, you will
see a large metal cargo container on the back. These are the
same containers you see at shipping docks in harbors and on
the backs of trains. They are all the same ISO containers that
adhere to ISO standard 668:2020 and have the dimensions
of 8 feet wide, 20 or 40 feet long, and 8 feet 6 inches high.
This standardization allows items to be transported easily by
all of these different vehicles, as demonstrated in figure 7.1.

Figure 7.1 Container vessels have a flat surface that allows for many



containers to be moved at once.

Prior to the invention of these containers, ships, trucks, and
trains had break bulk cargo or essentially loosely bound,
nonstandard containers such as barrels and boxes. Trying to
find space for such items became a complicated puzzle and
required extra manual labor to move items from one vehicle
to another. The transition to containers made it so that
shipping products were standardized in a way that made the
transportation of goods easy and efficient.

Shipping software today can often feel like break bulk cargo
if you consider the state of the operating systems and
computer architectures. Suppose we want to write code that
supports Linux, macOS, and Windows but also runs on 32-bit
or 64-bit Intel or ARM architectures. How many binaries
would we need to ship? If we take three operating systems
and four architectures, we would have 12 different binaries
that would need to be built and run for that specific machine.
This becomes the same problem of irregular barrels and
boxes that the shipping industry had and often falls victim to
the meme “it works on my machine.” As mentioned before,
we want uniformity in the items we build and the products
we ship.

How can we solve this problem? The same way the shipping
industry did: containers.

7.1 What is a container?



To better understand how a container works, we need a brief
overview of how an operating system works. An operating
system’s job is to manage various resources within the
physical machine. This includes storing information in
memory or on a hard disk or deciding which programs to
execute. A container is a self-contained operating system
that is virtualized, meaning it runs on a machine that doesn’t
use a physical machine directly. This virtual machine works
with the underlying operating system to run various
applications. Container runtimes are virtual machines that
work with the host operating system to share the same
kernel, or the service that chooses which applications run.
These abstraction layers give us the ability to hide the
underlying implementation layers, as seen in figure 7.2.

Figure 7.2 Applications work with an operating system within the
container, which interacts with the container runtime. The runtime
then runs as a process within the host operating system like any other
application.

NOTE In this book, we use one of the more popular container tools:
Docker. Alternatively, you can use Podman, which is gaining popularity.

What does this mean for you? When we create a container,



we create a standardized format to run on a given runtime.
Containers are built from images or snapshots of what our
system should look like. You can think of this as being sort of
like a template or a saved file that gets loaded and runs on
the system. A single image can be used to create many
containers. These images are defined and built for a given
runtime, much like our application binaries, but the runtime
allows our container to run anywhere that implements this
specification. Currently, the most common runtime for most
developers is Docker, so much so that Docker and containers
are often used interchangeably (like calling a tissue a
Kleenex), but there are many different implementations of
the container specification.

You may be thinking, “What does this mean for you?” Well,
as you can imagine, as your company grows, you may not all
be using Go. Python or JavaScript may be introduced. Or you
may have dependencies like databases and queuing systems.
All of these pieces require configuration and setup. If you are
working in Go, you may not want to have to go through the
hassle of installing Python to integrate with another team’s
product. You don’t want your developers taking precious time
trying to install or update to the latest version of Postgres.
Instead, you can rely on Docker to help manage, maintain,
and run all of these dependencies. This frees you up to focus
on your development.

Because Docker is a common runtime for containers, many
developers will have it installed on their machines to help
them run their applications and application dependencies
uniformly. But as you move away from your host machine



and want to ship your container to a hosted environment,
you may find that there are other ways of optimizing and
building your containers to have them run more efficiently in
that environment. There is a joke that the “cloud” is just
someone else’s machine. This joke, though, is true. It is all
just some other machine somewhere else, and with many
different cloud providers building and implementing their
hardware and custom runtimes, it can sometimes be better
to build images optimized for their runtimes. This can be
done by using their base images or allowing them to help
build the images for you, which is known as Buildpacks.

7.2 What is a Buildpack?

In chapter 4, we deployed our application using a PaaS
framework in Google Cloud. In both of those deployments,
we did not need to focus on how those applications were
being run or where they were running; they were abstracted.
We can imagine, though, how all of this works. At the very
base of everything are physical machines running the code,
but there are layers of virtualization and abstraction. You, as
the developer, do not need to worry about things like
security patches and kernel upgrades; just focus on your
code. There is some hidden magic that determines what code
you are running and how to deploy it, and suddenly it works.

The cloud is just someone else’s computer.

Buildpacks work in a very similar way and are inextricably
linked with how many PaaS work under the hood. In fact,



this technology was first developed by Heroku in 2011 and
has been used by various other companies such as Pivotal
and Google to help run their PaaS. The concepts are simple:
you provide the code, and they’ll build the image. Under the
hood, PaaS are building their custom images based on the
libraries and dependencies that their platforms need to make
the code run as efficiently as possible and deploy them as
containers in their hosting environment. This gives you
resilience and substantial uptime, and they can get the most
out of their hardware by running isolated, secure, and
maintainable applications.

If you are building an application, Buildpacks will give you a
lot of features that will make your application more robust,
such as advanced caching, multiprocessing, language
detection, and much more. The recent Buildpacks game-
changer is the notion of Cloud Native Buildpacks which allows
you, as the developer, to take advantage of the PaaS-like
ecosystem of building an application with the portability of
using containers.

What goes on inside of a Buildpack? When triggering a
Buildpack, it goes through two stages: detection and builds.
When triggering a build, the Buildpack analyzes your source
code to first determine if it can recognize the source code
and build the container; this is known as the detection stage.
In our case, it will look for Go files or a .mod file. If we were
building a Javascript application, it would look for a package
.json file, or if a Java application, it would look for a
pom.xml file.



When entering the building stage, the Buildpack will
determine what the runtime should be, how the library
should be built, the installation of dependencies, and the
compilation and running of the application itself. It does this
through the use of a builder, which is an image specifically
used for creating the application based on the detection done
in the previous step. The building and running of an image
are done through a stack, which combines the build and run
environments.

Docker is just one container runtime. There are many other
container runtimes out there that aren’t as popular.

All of this can allow different groups to create a process for
identifying and building applications specific to their runtimes
and environments. This means that Google, Amazon, Heroku,
and Microsoft can build their own container runtimes that are
optimized for their hardware, and you can tap into that
performance by using their Buildpack. Let’s try it with
Google.

7.3 Let’s build a container

To start, we will use a Buildpack to build and run our
container locally. Then we will use the same process to
deploy the container to production. Following that, we will
work on building our own container using our own definition
and deploy that as well. This way, you will know how to build
and maintain your own containerized deployment and local
development. First, we must install our container runtime, in



this case, Docker.

Docker has three different installation types depending on
your operating system, so it will be best if you follow the
directions for the one that best suits you. Directions can be
found at https://docs.docker.com/get-docker/. This will give
us our container runtime. Now we need to create a container.
To do this, we will use a Buildpack and install pack, which is
a tool built and maintained by Cloud Native Buildpacks. It can
be installed by following the directions at
https://buildpacks.io/docs/tools/pack/.

pack will help us choose and build our application into a
container using a defined Buildpack. To demonstrate this,
let’s see what pack suggests we use to build our application.
Type pack builder suggest and see what options come
up:

Google:              gcr.io/buildpacks/builder:v1    Ubuntu 18 base image

    with buildpacks for .NET, Go, Java, Node.js, and Python

Heroku:              heroku/buildpacks:18            Base builder for 

    Heroku-18 stack, based on ubuntu:18.04 base image

Heroku:              heroku/buildpacks:20            Base builder for 

    Heroku-20 stack, based on ubuntu:20.04 base image

Paketo Buildpacks:   paketobuildpacks/builder:base   Ubuntu bionic base image

    with buildpacks for Java, .NET Core, NodeJS, Go, Python, Ruby, NGINX and

    Procfile

Paketo Buildpacks:   paketobuildpacks/builder:full   Ubuntu bionic base image

    with buildpacks for Java, .NET Core, NodeJS, Go, Python, PHP, Ruby, 

    Apache HTTPD, NGINX and Procfile

Paketo Buildpacks:   paketobuildpacks/builder:tiny   Tiny base image (bionic 

    build image, distroless-like run image) with buildpacks for Java Native 

    Image and Go

Notice that these packs are not focused on a specific
language but rather provide a broad foundation for multiple

https://docs.docker.com/get-docker/
https://buildpacks.io/docs/tools/pack/


languages. You may also notice that these languages are
those that are supported for FaaS and PaaS offerings on
Google. This is because underneath, our FaaS and PaaS are
running within a container using a Buildpack. Now let’s build
our application by typing the following:

pack build hello-api --builder gcr.io/buildpacks/builder:v1

Let’s look at what it did. The builder identifies that our
application is a Go project from our module file and looks for
a main package to run. Some configurations can be done if
you have more than one main function. Each Buildpack will
have its own configuration. To see how our container runs,
type

docker run hello-api

You should see your server run. Call your translation
endpoint and see that your application is running in a nice,
neat, portable package. Now that you can build a container,
let’s publish it so that others can use it.

7.4 Adding a container build to your
pipeline

Now we want to make this an artifact available through our
releases, just like we did with our binary. Why do we want a
container if we already have the binary? Remember what
containers are: a universal runtime for your application



independent of the underlying operating system. Since our
other development teams want to use our application, we
can simply share a container with them so that they don’t
need to worry about dependencies, libraries, or runtimes.
This way, they don’t need to have any underlying knowledge
of Go or even of how to start our application and instead can
run the container like they would any other application. They
don’t even need to build our container; we can provide it for
them in a registry.

A container registry is just a storage area for images that are
created for a container. The default registry on Docker is hub
.docker.com, in which you can find all sorts of images to
use. Each item in the registry can be pulled to run or be used
as a base image for other images to be built from. Like
Legos, images can be stacked on top of each other to build
products. The image from which a container starts is known
as the base. Figure 7.3 shows how this could work.

Figure 7.3 Layers of containers

At the bottom, you have an image such as an operating
system. This layer can then be the base for another layer,
such as a language. Then you can use that layer for building



your application. These layers can add up over time and
become complex, but they all get stored in this registry.
When you run a container, more often than not, you want to
pull it from a registry rather than build it on your own.
Registries can act as private places for you and others to
store and run your containers. In this chapter, we will publish
our application to two repositories: one for public
consumption and one for us to run in Google Cloud. Since we
can now build our container using a Buildpack, we can
publish the container to a registry.

To publish our container, we want to add it to our pipeline so
that it is continuously delivered. Open your pipeline.yml,
and add a container build section using the code in the
following listing.

Listing 7.1 pipeline.yml

containerize-buildpack:

    name: Build Container buildpack

    runs-on: ubuntu-latest

    needs: test                                                              

❶
    steps:

    - name: Check out code into the Go module directory

      uses: actions/checkout@v2

    - name: Install Pack

      run: (curl -sSL "https://github.com/buildpacks/pack/releases/download/

      v0.21.1/pack-v0.21.1-linux.tgz" | sudo tar -C /usr/local/bin/ 

      --no-same-owner -xzv pack)                                             

❷
    - name: Build

      run: pack build gcr.io/${{ secrets.GCP_PROJECT_ID }}/hello-api:latest 

      --builder gcr.io/buildpacks/builder:v1                                 

❸
    - name: Set up Cloud SDK

      uses: google-github-actions/setup-gcloud@master

      with:



        project_id: ${{ secrets.GCP_PROJECT_ID }}

        service_account_key: ${{ secrets.gcp_credentials }}

        export_default_credentials: true

    - name: Configure Docker

      run: gcloud auth configure-docker --quiet                              

❹
    - name: Push Docker image to GCP

      run: docker push gcr.io/${{ secrets.GCP_PROJECT_ID }}/hello-api:latest 

❺
    - name: Log in to the GHCR

      uses: docker/login-action@master                                       

❻
      with:

        registry: ${{ env.REGISTRY }}

        username: ${{ github.actor }}

        password: ${{ secrets.GITHUB_TOKEN }}

    - name: Tag for Github                                                   

❼
      run: docker image tag gcr.io/${{ secrets.GCP_PROJECT_ID }}/hello-api

      :latest ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}:latest

    - name: Push Docker image to GHCR                                        

❽
      run: docker push ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}:latest

❶ Only builds our container after the source code has passed unit tests

❷ Installs Pack through curl for our build stage

❸ Uses the pack command to build our container targeted for GCP

❹ Configures Docker to use GCP for the container registry

❺ Pushes the container to GCP registry

❻ Logs into GitHub Container Registry

❼ Retags the image for GitHub

❽ Pushes the new tag to GitHub Container Registry

If you commit and push your changes, you should see a
container now listed on your artifacts page. To test this, we
can simply do the following:

docker run ghcr.io/holmes89/hello-api:latest



Now that you’ve automatically built and pushed your
containers, we need to run them. To do this, we will use a
container runtime.

7.5 Deploying to a container runtime

We’ve created a container using a Buildpack. We’ve published
the container to the Google Container Registry. Now let’s
deploy our container. What advantage does using a container
runtime provide? Why did we go through all of this?

For the first time in this book, we have a point of inflection
between how an application is run in the cloud and how it
runs on our machine. Our container now runs in a universal
runtime. This is the closest we can get to an abstraction that
we can run locally the same way it’s run in the cloud. This is
a powerful tool because it solves the problem of “it runs on
my machine” and “I’m struggling with this framework.” This
is why containers are such a popular solution in today’s
development process.

A famous (or infamous) container orchestration tool is
Kubernetes, which gives developers tools to deploy
applications built on containers within a resilient, clustered
environment. It’s a big, complicated, and powerful tool.
Kubernetes is beyond the scope of this book, but I mention it
here because it is the foundation of some other container
runtimes that we will use. These containers are underneath
the hood of products such as Google Cloud Run and FaaS;
you can’t see the container, but it’s there. Google runs your



container for you using Kubernetes in an isolated process,
but you don’t need to worry about maintaining the cluster,
writing deployments, and setting up incoming requests.
Instead, you follow a pattern and deploy the container, and
Google takes care of the rest.

In figure 7.4. we can see that we continue to move toward
less abstraction and more control over our deployment
process. We can now define the container and have it run in
a universal runtime. We will use Google Cloud Run, but we
could just as easily ship this product onto AWS ECS or a
Kubernetes cluster.

Figure 7.4 We are now using our container as our shippable product.

Now we can set up a container deployment just as easily as
all of the other deployments we’ve completed thus far. We



just need to open our pipeline.yml and add the code in the
following listing.

Listing 7.2 pipeline.yml

deploy-container:

    name: Deploy Container buildpack

    runs-on: ubuntu-latest

    needs: containerize-buildpack

    if: ${{ github.event_name == 'push' && github.ref == 'refs/heads/main' }}

    steps:

    - name: Deploy to CaaS

      id: deploy

      uses: google-github-actions/deploy-cloudrun@main

      with:

        service: translate                                              ❶
        image: gcr.io/${{ secrets.GCP_PROJECT_ID }}/hello-api:latest    ❷
        credentials: ${{ secrets.gcp_credentials }}

    - id: test                                                          ❸
      run: curl "${{ steps.deploy.outputs.url }}/hello"

❶ This is the name of the service you are deploying.

❷ The path to the image you are deploying

❸ Validates that the endpoint works

7.6 Writing your own image

What if you don’t want all of the extra stuff that’s in the
Buildpack container? Remember, the Buildpack is structured
to run well in the containerized environment with underlying
libraries, configurations, and services to all help your
products run well in their runtime. But with these libraries
comes some additional overhead, in this case, space. For a
deployed environment, this may not be a big deal, but what
if we wanted to make it smaller or debug information?



Why smaller? For a development team, it may make sense to
have smaller images floating around or a special
development image for debugging purposes. In either case,
we can’t rely on the Buildpack abstraction to do this for us,
so we will need to define our Dockerfile to build them.

The beautiful thing about Go is that it compiles into a binary
and in most cases does not rely on external libraries to run.
This means that you can make a binary and put it on the
smallest base image possible. A base image is the starting
place from which our container is built. If you look through
different container definitions, you will find images for
Ubuntu, Debian, Windows, and so forth. These images are
built and maintained by teams that install security patches,
upgrades, libraries, and in some cases applications. This way,
you can run something like Postgres without installing it on
your machine, or use a base image for Go so that you don’t
need to install Go. Let’s see how this works by creating a
Dockerfile. Type touch Dockerfile in the root of your
directory. The following listing shows the result.

Listing 7.3 Dockerfile

FROM golang:1.18 AS deps               ❶
 

WORKDIR /hello-api                     ❷
ADD *.mod *.sum ./

RUN go mod download                    ❸
 

FROM deps as dev                       ❹
ADD . .                                ❺
EXPOSE 8080

RUN CGO_ENABLED=0 GOOS=linux go build -ldflags "-w -X main.docker=true" \

    -o api cmd/main.go                 ❻



CMD ["/hello-api/api"]

 

FROM scratch as prod                   ❼
 

WORKDIR /

EXPOSE 8080

COPY --from=dev /hello-api/api /       ❽
CMD ["/api"]

❶ Uses the base image of the most recent version of Go

❷ Creates a working directory to store source code

❸ Only copies module files and downloads dependencies. Putting this in its own step
allows for caching and faster future builds.

❹ Creates a new stage of the build to use caching ability

❺ Adds remaining source code

❻ Builds the binary with flags for container optimization. We do not utilize this build
flag, but the compiler will.

❼ Uses base scratch image for the smallest image possible

❽ Copies the binary over from the dev stage

We can then build our image by typing docker build -t
hello-api:min . and for our dev image docker build -t
hello-api:dev --target dev .. Now that both images
are built, let’s compare how large they are! We can simply
type docker images, and you’ll see your three image
definitions, their tags, their size, and when they were built:

hello-api               dev            78b80879b282   4 minutes ago   962MB

hello-api               min            64d767be4d62   4 minutes ago   4.74MB

hello-api               latest         a6052d265459   41 years ago    129MB

Wow! Our dev image is obviously the largest, but our min
image is 3% the size of the Buildpack image! Why is that?
Earlier we talked about how containers work. Each image is



based on another image. Each time a new container is built,
a layer gets added to your image. You can see this when you
pull images as part of this build. Beneath all of those layers is
the very base image that all images come from, as you can
see in figure 7.5. It is called scratch and is completely
empty, so your application needs to be self-contained—just
like our Go binary! That means we can copy our binary over
to the scratch image, and it will interact with the runtime to
run, just like any other container but without the bloat. This
way, you don’t have to worry about outdated libraries or
security patches. However, you can’t debug because there
isn’t a command line. It’s a trade-off, but it can be extremely
useful to ship around to other users.

Figure 7.5 Containers use layers to help construct the image. The
more layers you have, the larger your image becomes, and the more
security vulnerabilities arise.

Now let’s add these containers to our pipeline and publish
them to our registry using the code in the following listing.

Listing 7.4 pipeline.yml

containerize:

    name: Build Containers



    runs-on: ubuntu-latest

    needs: test

    steps:

    - name: Check out code into the Go module directory

      uses: actions/checkout@v2

    - name: Build Min

      run: docker build -t ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}:min .  ❶
    - name: Build Dev

      run: docker build -t ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}:dev 

      ➥ --target=dev .                                                     ❷
    - name: Log in to the GHCR

      uses: docker/login-action@master                                      ❸
      with:

        registry: ${{ env.REGISTRY }}

        username: ${{ github.actor }}

        password: ${{ secrets.GITHUB_TOKEN }}

    - name: Push Docker min image to GHCR                                   ❹
      run: docker push ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}:min

    - name: Push Docker dev image to GHCR                                   ❺
      run: docker push ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}:dev

❶ Builds the min image and tags it

❷ Builds the dev image using dev as the target for the build

❸ Logs in to GitHub Container Registry

❹ Pushes the min image to the registry

❺ Pushes the dev image to the registry

When your code is pushed, you should now see that you
have three different containers. This can become extremely
helpful when we start tagging our product for stable releases.
These can be considered our latest builds for the time being
and are used to test new features that may not be stable.
Now that we are shipping our containers, we can integrate
them into our development process, and others can as well.

7.7 Local environment organization



You have a containerized service. You are shipping it for
other developers to use. But your development is becoming
dependent on other services as well. Is there something
containers can do to help you in your development and
shipping?

As you start down the path of using containers in your
development environment, you will find that things such as
environmental variables, port numbers, and runtime args can
get a little clunky. You will find that you are going back to
restarting a container and forgetting how it was configured.
Or you may find that running a full integration of your
application requires more than one container. This is where
tools like docker-compose can help. docker-compose is a
tool for running and organizing multiple containers. By
writing a simple YAML file, you will be able to build and run
containers in a simple, universal environment. As has been
emphasized throughout this book, it is important to have
simple-to-use tools to help developers. The compose file will
even integrate into our CI pipeline by organizing our build
parameters.

To begin, let’s install Docker Compose. If you are using Mac
or Windows, you are in luck! It is already installed as part of
your Docker Desktop installation. If you are on Linux, you
will need to follow the simple install here:
https://docs.docker.com/compose/install/

Once you have it installed, you will find a list of commands to
use by typing docker-compose. Here, you will see options to
build, create, and run services or commands. Compose

https://docs.docker.com/compose/install/


requires the presence of a docker-compose.yml file to
work. It will progressively look into parent directories until a
suitable file is found. This YAML file is specially structured to
give every service a unique name to reference, along with
the image name, parameters, and many other options to
help developers configure their containers to start. The
names used in the file can also act as DNS entries for an
internally run network that docker-compose builds, allowing
services to reference each other if need be. We will explore
this in upcoming chapters. For now, we will make a basic file
to create our containers. Create and open docker-
compose.yml in the root directory of your project, and add
the code in the following listing.

Listing 7.5 docker-compose.yml

version: "3.8"

services:

  api-min:                                    ❶
    profiles: ['prod']                        ❷
    image: ghcr.io/holmes89/hello-api:min     ❸
    port: 8080:8080

    build: .

  api-dev:                                    ❹
    profiles: ['dev']                         ❺
    image: ghcr.io/holmes89/hello-api:dev     ❻
    port: 8080:8080

    build:

      context: .

      target: dev                             ❼

❶ Specifies the name of the service for internal use

❷ Labels the service as part of the prod group for targeted deployments and builds

❸ The image you wish to use for this service



❹ Separates the dev service target for debugging purposes

❺ Labels the service as part of the dev group for additional testing features

❻ The image you wish to use for this service

❼ Specifies the target if you are using this for building your Docker image

We can see that we have defined both of our builds in
docker-compose, which allows us to simply type docker-
compose build api-min to build our min file. Try it out!
Additionally, we have added the concept of profiles, which
will help as our application grows. Try docker-compose --
profile prod up to see the min file start. Try this with your
dev profile too.

This will become important once we add dependencies and
advanced testing, but for now, we will use this for shipping.
We can now update our pipeline to reference our compose
file rather than bake our configuration into the build
command directly. This will save us time and energy as we
move along in our development.

Now that we have successfully deployed a tool to help us
build our application and run it, we are poised to expand our
capabilities. We can slowly and efficiently start building our
application with its dependencies for easy local development.
We can ensure that our services work the same on our
machine as they do in our deployed environment because we
are using the same artifact. Our compose file can act as a
loose definition of our infrastructure that we can eventually
evolve to suit our needs and act just like our production
environment. This loose coupling of services allows us to
focus on our code instead of trying to focus on the



infrastructure.

7.8 Containers, containers everywhere

Containers are popular, and I’m sure you can see why.
Portability and simplicity were game changers in the
development world. Now entire operating systems can be
shipped with products inside of them with minimal setup on
the user end. Entire infrastructures and systems are built
using containers. They run as cloud applications, build
systems, and even robots. This is the peak of software
development, right?

Not really. The gains we have with containers are certainly
helpful for developers and with the developer experience but
are sometimes unnecessary. As we saw in previous chapters,
sometimes software can be written to be a simple function
that does everything you need. Or you can have a simple
application that is hosted on a shared platform. Containers
may lie underneath the surface of many of these
technologies, but developers may not need to use them.
Building and maintaining containers means that you are
responsible for things like upgrades, security patches, and
how to best build your application. This can create complexity
in its own right.

There is no silver bullet in technology, so always be wary of
people who preach otherwise. Consider the technical cost of
running and building containers before adopting them. The
portability of the product is the most important aspect. If you



find that you are struggling with a container, you may be
using it wrong. Remember that there are trade-offs to
everything. You need to consider them before adopting a
technology. In this case, a container may not be the best
solution for instances of high-performing applications
because you are running a virtual machine. Containers can
be great for running tests in a clean environment, but the
tests shouldn’t be reliant on the container to run tests locally.

But, as we will see in the upcoming chapters, containers have
their place in the development cycle and can help us be more
productive. As always, work with your team, and find what
works best for you.

Summary

Containers provide an abstraction with the local operating
system to help create a universal runtime for
applications.
Buildpacks focus on creating containers that run
efficiently on managed platforms.
Use container runtimes to use your container locally as
well as in a production environment.



Part 3. Going public

If you’ve made it this far, you may find that your team and

customer base have grown to a point that you are swamped
with feature requests and a more complicated product. This
is a good problem to have! It means that not only are you
are writing new features for customers, but you have a large
enough team to explore how to configure your system to
experiment with your customers’ experience.

To do this, in chapter 8, we will look at configuring our
application to change without changing its code. We will use
this configuration to help us focus on writing tests based on
feature requests running against an entire system instead of
the modular pieces of code in chapter 9. Then we’ll move our
application to a larger production ecosystem in chapter 10
using containers. Chapter 11 is a summary of all you have
learned.



8 Configuration management and stable
releases

This chapter covers

Creating configuration management to change application
functions
Exploring different options for configuration management
Hiding new or incomplete features with configuration feature flags
Communicating software changes through release notes and
versioning

“I just can’t see how we can safely roll this out while we are
still testing or how we can easily cut over to the new system
once we are comfortable,” the QA lead says during a kickoff
meeting. “I mean, we’ve been happy with the automated
testing, and it has caught a few bugs already, but we can’t
sign off on releasing this into the wild yet.”

“We can’t just have this sitting around, though. We need to
be able to show that this rewrite is worth it. We have shown
that we can make changes quickly and release often, but we
need some real traffic to see how this is going to hold up,
and the only way we can do that is if we start letting our
customers use it.” Your project manager is beyond
exasperated at this point. You’ve just gone through an entire
rollout plan meeting, and once again, it feels like QA is
stopping any sort of progress.



But as you sit there, you have to feel that QA has a point. We
aren’t sure how this will operate under different loads, and
we aren’t sure how this will work in our entire ecosystem.
You mention this, but when you get a sideways glare from
your project manager, you start to propose a solution rather
than point out a problem.

You mention that the new system relies on the old system for
translations we don’t currently have in the database. You also
mention that the current storage device for your system is
just an in-memory key-value store—definitely something you
need to change if you want this to be in production.

“Exactly my point: there are just too many changes that
need to happen before we can even start testing it and sign
off on it in production,” someone from QA interjects.

You patiently correct them. “No, we will continue to release
but will slowly cut people over once we are sure things are
working as expected. Similarly, you will only ship one binary,
but it will be able to change based on various settings.”

“We need to list what we want to start integrating with in
order to go live.” Your project manager stands up, grabs a
marker, and writes the following:

Change API port.
Add ability to change client endpoint for legacy systems.
Turn off client calls.
Add a database for long-term storage.

“Do you think you can get this done in a week? We need to



get this rolling soon,” your project manager says. You nod;
using configuration management, you can build a system
that you can use to turn various features on and off.

8.1 Configuration

All programs deal with two things: input and output.
Programs take in data and emit data. Some will simply print
“Hello World!” (that’s the output). Some will only read log
messages and store them in a database (that’s input). But
you can imagine providing input to an application to make it
change its functionality.

Take, for instance, an application that is a counter. It may
look something like the code in the following listing.

Listing 8.1 main.go

package main

 

import (

    "bufio"

    "fmt"

    "os"

)

 

func main() {

    fmt.Println("Welcome to advanced counter. Press Enter to increment 

value.")

    reader := bufio.NewReader(os.Stdin)

    count := 0

    for {

        fmt.Printf("Count is: %d\n", count)

        _, _ = reader.ReadString('\n')

        count++

    }

}



This is simple enough, but instead of having the counter
increment by one, maybe we want it to increment by two, so
we change the line count++ to count = count + 2. Great!
But now you want to increment by 100. I hope you can see
where we are going here. This is not scalable or transferable
to other use cases. What if we could use just one piece of
code to do this and not need to recompile it each time? We
would provide input to the application when it started, which
would affect its output. This input to change the functionality
is known as a configuration. To configure this application, we
will use what is known as an environmental variable: a
variable stored in your terminal session. We will explore
other configuration techniques in the following sections.

To allow configuration, we would use something like the code
in the following listing.

Listing 8.2 main.go

package main

 

import (

    "bufio"

    "fmt"

    "os"

    "strconv"

)

 

func main() {

    fmt.Println("Welcome to advanced counter. Press Enter to increment 

value.")

    reader := bufio.NewReader(os.Stdin)

    count := 0

    inc, err := strconv.Atoi(os.Getenv("INC"))

    if err != nil {

        fmt.Println("invalid incrementor, defaulting to 1")

        inc = 1

    }



 

    for {

        fmt.Printf("Count is: %d\n", count)

        _, _ = reader.ReadString('\n')

        count += inc

    }

}

If you run this code, you will see the warning message, but if
you were to run something like INC=2 go run counter.go,
you would see the values increment by two. This seems
simple but is extremely valuable, especially for things like

Database connection information
Password salts
Client endpoints
Log levels

NOTE We will build our tools for configuration management. However,
you can use the popular Viper library to manage configuration that way.

How can we add configuration to our API? Can we manage
the configuration in different ways?

8.2 Advanced configuration

For our application, we will look at adjusting our application
functionality by loading various configurations. First, let’s
identify the features we want to be modified:

Custom port number
Storage type (database, in memory)



Storage connection information (if a database)
External client endpoint (if none, do not call)

Let’s define this as a struct we can pass around in our
application. Create a new package called config, and in it,
create a file called core.go. In that, we will define a struct
as in the following listing.

Listing 8.3 core.go

type Configuration struct {

    Port            string `json:"port"`                ❶
    DefaultLanguage string `json:"default_language"`

    LegacyEndpoint  string `json:"legacy_endpoint"`     ❷
    DatabaseType    string `json:"database_type"`       ❸
    DatabaseURL     string `json:"database_url"`        ❹
}

❶ Stores the port as a string, but we will validate that it is in the proper format later.

❷ This is the endpoint for our client to call and can be injected if it is not an empty
string.

❸ Actively passes in the database type for future enhancements

❹ This is similar to the legacy endpoint in that if it is empty, we will use the in-
memory database.

Notice we put JSON text decorators on the struct. This is
because we are going to load our configuration in three
different ways:

With environmental variables
With files
With flags



Typically, these are the three most common ways to
configure an application. There are other ways as well, but
we’ll focus mainly on these. By defining a core structure
around our configuration, we can create a common function
that will allow us to go through these steps to configure our
system. First, we load whatever variables we can through the
environment, then override them from a JSON file, and
finally rely on flags to load information into our application.

Let’s write out our load function to work in this way. To start,
we can come up with a set of values to start with, which we
will call defaultConfiguration. Our default configuration
can look like the following listing.

Listing 8.4 core.go

var defaultConfiguration = Configuration{

    Port:            ":8080",                ❶
    DefaultLanguage: "english",

}

❶ Creates a basic structure with just the port number as default

Given this default state, we can add various ways of
changing the configuration.

8.2.1 Environmental variables

Environmental variables are stored in a user session in the
system. These values can be hardcoded or passed into an
application by prepending the command with the variable.
This is an easy way to inject values into a system before it
starts and can be used dynamically if your system calls the



environmental variable repeatedly. We will add a method to
the configuration struct to load the variables from the
environment and then return them to the calling method
using the code in the following listing.

Listing 8.5 core.go

package config

 

import "os"

...

 

// LoadFromEnv will load configuration solely from the environment

func (c *Configuration) LoadFromEnv() {

    if lang := os.Getenv("DEFAULT_LANGUAGE"); lang != "" {      ❶
        c.DefaultLanguage = lang

    }

    if port := os.Getenv("PORT"); port != "" {

        c.Port = port

    }

}

❶ Inline checks if the language is set in the ENV and then updates the structs
variable.

We are checking for two variables, DEFAULT_LANGUAGE and
PORT. If they are set, we override the configuration settings;
otherwise, we use the defaults. We also introduce a helper
method because people often want to forgo the colon in the
port definition, so we will create a method to make sure it’s
there and is a valid number (see the following listing).

Listing 8.6 core.go

package config

 

import "os"

...



 

// ParsePort will check to see if the port is in the proper format and a 

number

func (c *Configuration) ParsePort() {

    if c.Port[0] != ':' {                                         ❶
        c.Port = ":" + c.Port

    }

    if _, err := strconv.Atoi(string(c.Port[1:])); err != nil {   ❷
        fmt.Printf("invalid port %s", c.Port)

        c.Port = defaultConfiguration.Port                        ❸
    }

}

❶ Prepends a colon if it is not present

❷ Verifies that the value of the string is an integer

❸ If it is not, reverts to the default port

8.2.2 File

While environmental variables provide an easy way of loading
configurations, there is still a more portable way: by using a
file. JSON or YAML files are common ways of storing and
loading configuration within a system and allow for portability
between environments. The common configuration file can be
modified for your local environment and your production
environment without changing the underlying code. We add a
new flag to allow us to pass in a configuration file explicitly
and create a new function to parse the file and load
variables. Let’s first create a new function to load a
configuration file through JSON using the code in the
following listing.

Listing 8.7 core.go

import (

    "encoding/json"



    "errors"

    "io/ioutil"

    "log"

    "os"

    "strconv"

)

 

...

 

// LoadFromJSON will read a JSON file and update the configuration based 

➥ on the file.

func (c *Configuration) LoadFromJSON(path string) error {

    log.Printf("loading configuration from file: %s\n", path)

    b, err := ioutil.ReadFile(path)                              ❶
    if err != nil {

        log.Printf("unable to load file: %s\n", err.Error())

        return errors.New("unable to load configuration")

    }

    if err := json.Unmarshal(b, c); err != nil {                 ❷
        log.Printf("unable to parse file: %s\n", err.Error())

        return errors.New("unable to load configuration")

    }

    // Verify required fields

    if c.Port == "" {                                            ❸
        log.Printf("empty port, reverting to default")

        c.Port = defaultConfiguration.Port

    }

    if c.DefaultLanguage == "" {

        log.Printf("empty language, reverting to default")

        c.DefaultLanguage = defaultConfiguration.DefaultLanguage

    }

    return nil

}

❶ Reads the contents of the file from the path

❷ Parses the content into the struct

❸ Unmarshalling the JSON will not overwrite existing values if they are not present,
but we want to validate for invalid settings.

8.2.3 Flag

There are times when a user may want to inject variables



more explicitly. This is useful when you switch environments,
because environmental variables can be stored in a session
using export DEFAULT_LANGUAGE=Finnish and will not
need to prepend the command with the variable setting.
Using flags is a common way of passing in variables to
servers at runtime. More often than not, you’ve used flags in
other areas when starting an application. Any time you’ve
done ./foo -h, you’ve passed an h flag to the service,
indicating you want help with that application. We will add a
flag to set the port, which is a common feature most servers
provide.

To do this, we will create a LoadConfiguration function
that will tie all of our configuration pieces together (see the
following listing). We will layer our configuration, so pay
attention to which variables may be overwritten. In our
configuration function, we will have the following order of
operations:

1. Use the default configuration.
2. Load a file if provided.
3. Use environmental variables.
4. Use flags.

Listing 8.8 core.go

import (

    "encoding/json"

    "errors"

    "flag"

    "io/ioutil"

    "log"

    "os"



    "strconv"

)

...

//LoadConfiguration will provide cycle through flags, files, and finally 

➥ env variables to load configuration.

func LoadConfiguration() Configuration {

    cfgfileFlag := flag.String("config_file", "", "load configurations from 

    a file")                                                ❶
    portFlag := flag.String("port", "", "set port")

 

    flag.Parse()                                            ❷
    cfg := defaultConfiguration

 

    if cfgfileFlag != nil && *cfgfileFlag != "" {           ❸
        if err := cfg.LoadFromJSON(*cfgfileFlag); err != nil {

            log.Printf("unable to load configuration from json: %s, using 

            default values", *cfgfileFlag)

        }

    }

 

    cfg.LoadFromEnv()                                       ❹
 

    if portFlag != nil && *portFlag != "" {                 ❺
        cfg.Port = *portFlag

    }

 

    cfg.ParsePort()                                         ❻
    return cfg

}

❶ Adds flag and description of flag

❷ Processes flags

❸ Checks to see if a file is passed in

❹ Loads environmental variables

❺ Checks to see if the port value is set and not empty

❻ Parses our port to make sure it’s valid

We have built a system that allows you to change the
functionality without changing the code itself. You can
imagine larger files with more configurations available to hide



features that are under development or change functionality
without needing to rebuild. This is a powerful tool that can be
used by your team to help build a robust product.

8.3 Hiding features

Next time you are in your car, look at the steering wheel and
the dashboard. Do you notice any pieces of plastic that look
as though a button could go there? These are known as
blanks and are for different types of car packages. This
means that the same steering wheel or console can be made
for all types of cars, but only specific cars will have buttons
for those features, as shown in figure 8.1. An example is a
button for managing heated seats. If you bought a basic car,
this would be blank, but if you bought the luxury package, it
would be there.



Figure 8.1 Plastic fills expansion slots in various vehicle models.

This is a form of feature flagging, wherein you can build
something the same way but adapt to which features are
available to customers. This practice can be used to hide
features from users who haven’t paid for them (free versus
paid tier), features that are still under development, or
features you want to roll out to only a few customers for
testing.

Now that you’ve built the ability to change your
configuration, let’s update our code to use it. Here, we will
explore modifying our application as well as modifying our
service. In it, you will also find how this will relate to and be
used with our dependency injection. To start, we will adjust
our port number, and then we’ll move on to updating our
client and storage code.



8.3.1 Updating the port

Since we have built our configuration struct, we now need to
load it in our main method. To do this, we will simply call our
LoadConfiguration method. Once we have the
configuration, we can start using it in constructing our main
function in our main binary, and not our function for
simplicity. That being said, all of the configuration changes
we explore can also be attached to our function or whatever
application we are writing. Let’s see what updating our port
number in our cmd/main.go file looks like in the following
listing.

Listing 8.9 core.go

import (

    "log"

    "net/http"

 

    "github.com/holmes89/hello-api/config"

    "github.com/holmes89/hello-api/handlers"

    "github.com/holmes89/hello-api/handlers/rest"

    "github.com/holmes89/hello-api/translation"

)

 

func main() {

 

    cfg := config.LoadConfiguration()    ❶
    addr := cfg.Port                     ❷
 

....

    log.Printf("listening on %s\n", addr)

 

    log.Fatal(http.ListenAndServe(addr, mux))

}

❶ Loads our configuration

❷ Replaces the hardcoded string with the configuration port



Now let’s test these different configuration changes. First,
create a configuration JSON file called config.json. It
should look like this:

{

    "port": 8079

}

Notice that we are missing some fields. This is okay since we
handle the default values as part of the loading of the file.
Let’s run through some different tests to see our
configuration in action:

go run cmd/main.go --config_file config.json

2022/03/31 14:19:44 loading configuration from file: config.json

2022/03/31 14:19:44 listening on :8079

Great! Now let’s test our ENV var, which can be set in several
ways on Unix-like systems. One way is to use the export
variable, which is then stored in the session. The alternative
way is to set the variable before the command. Here is an
example:

PORT=8081 go run cmd/main.go --config_file config.json

2022/03/31 14:21:59 loading configuration from file: config.json

2022/03/31 14:21:59 listening on :8081

Notice how the ENV variable is now taking precedence over
the config file. Finally, we can test the port flag:

PORT=8081 go run cmd/main.go --config_file config.json --port 8082

2022/03/31 14:23:36 loading configuration from file: config.json

2022/03/31 14:23:36 listening on :8082



All three ways of configuring our system are working. At this
point, we can move on to using our configuration to change
our connections to external services.

8.3.2 External client

In chapter 6, we explored dependency injection and
interfaces. In that chapter, we built a static client and remote
client. Here, we will decide which client to load based on
whether the client URL is set in our configuration. To do this,
let’s again open our cmd/main.go file and add the code in
the following listing.

Listing 8.10 main.go

func main() {

 

    cfg := config.LoadConfiguration()

 

...

 

    var translationService rest.Translator                             ❶
    translationService = translation.NewStaticService()                ❷
    if cfg.LegacyEndpoint != "" {

        log.Printf("creating external translation 

        ➥ client: %s", cfg.LegacyEndpoint)

        client := translation.NewHelloClient(cfg.LegacyEndpoint)       ❸
        translationService = translation.NewRemoteService(client)      ❹
    }

 

    translateHandler := rest.NewTranslateHandler(translationService)   ❺
 

}

❶ Creates a variable that is of the type of the interface to pass into the handler

❷ By default, creates the static service



❸ If the legacy endpoint is set, creates a new client

❹ Inserts that client into the creation of a remote service

❺ Injects the service into the handler

You should see that we are using our interface to help load
the client we want and pass it into our handler. Again, we
can change the environmental variables to affect the client
endpoint. Setting it will allow you to call an external service.
In this case, if we pass in the URL http://hello-
api.joelholmes.dev and call the endpoint, we should
hopefully see it respond with a valid response.

We still have some different features to build out, such as a
persistent storage backend (e.g., a database), but we’ll
handle them in the next chapter. We also did not incorporate
the default language into our handler. I’m going to leave that
up to the reader to handle.

Now we have something we can pass off to our QA folks to
test while we move forward with our development. We can
continuously deploy our application with minor bug fixes and
changes without affecting the overall system. Testing can
now occur in parallel with development, and only after we
feel that everything is working as planned can we release it.
But now we are facing a new potential problem. With bugs
being fixed and features being developed, how can we know
what version of our software we are testing or releasing?
How can we communicate this to our users and team
members?



8.4 Semantic versioning

To communicate with others what software version they are
using, we will use two tools: versioning and a change log.
Every time you update the software, you should notice that a
special indicator is given about the software version being
installed. The most common way of doing this is called
semantic versioning. Figure 8.2 shows an example.

Figure 8.2 iPhone software version

Now that we are releasing a product, it is important to
indicate to users which version they should be using. Often,
developers like to be on the bleeding edge of releases
because some new features and problems have been fixed.
However, this means you are on the bleeding edge of bugs
as well. Software versioning solves this problem.

These releases often look like v1.2.3, 1.2.3-e5ad2, or 1.2.3-
alpha. This is to indicate some information about the stability
of the software along with the compatibility of the changes.
Releases with a partial hash (e5ad2 above) or a Greek letter
(alpha, beta, etc.) are often known as developer builds,
which indicate they are not quite ready for everyone to use.



A released software version typically has a structure like the
one shown in figure 8.3.

Figure 8.3 Semantic versioning helps distinguish between large,
possibly breaking, changes and minor fixes. The usage of this is up to
the discretion of the team and should be communicated to
consumers of products, as they may be dependent on certain
features.

As you can see, things such as “major” and “minor” changes
are very subjective. The most important thing to focus on is
breaking functionality. If an endpoint is removed or a method
call is redefined, that is most likely a change in the major
version, while a bug fix or feature may be a minor or patch
fix.

Git tags are a great way of communicating these kinds of
changes and a way for us to integrate them into our release
strategy. We want to constantly integrate but may not be
ready to always release to the public, so we add special rules
to our build process if a tag is pushed versus when we push
small changes. In later chapters, we will construct a
deployment process that supports the latest development
build and a release to our production system.

Some APIs provide what is known as an /info endpoint to



help communicate the product version to the developers and
the users. An /info endpoint is extremely helpful when
someone is trying to see if a release was successful or where
a bug may have been introduced. Let’s add one to our
application. In the handlers directory, create an info.go
file (see the following listing).

Listing 8.11 info.go

package handlers

 

import (

    "encoding/json"

    "net/http"

)

 

var (                                            ❶
    tag  string

    hash string

    date string

)

 

func Info(w http.ResponseWriter, r *http.Request) {

    enc := json.NewEncoder(w)

    w.Header().Set("Content-Type", "application/json; charset=utf-8")

    resp := map[string]string{                   ❷
        "tag":  tag,

        "hash": hash,

        "date": date,

    }

    if err := enc.Encode(resp); err != nil {

        panic("unable to encode response")

    }

}

❶ These are variables that will be set through the compilation process. We want
these values to be linked to the binary instead of read through an environment
variable because it should be associated with the binary itself.

❷ Maps the values to the response



Let’s add this handler to the main.go file (see the following
listing).

Listing 8.12 main.go

func main() {

 

    ...

 

    mux.HandleFunc("/health", handlers.HealthCheck)

    mux.HandleFunc("/info", handlers.Info)             ❶
 

    log.Printf("listening on %s\n", addr)

 

    log.Fatal(http.ListenAndServe(addr, mux))

}

❶ Just like the health check, we need to add this handler to our service, but this time
at the info endpoint.

Now we need to pass values to these variables through our
build command. The information we are passing is the most
recent tag information, the hash, and the build date. This can
help us determine the exact change that occurred based on
the hash and the general time since it has been released
based on the build date. To populate these fields, we need to
update our build process. Open your Makefile, and edit the
build command to add some additional flags (see the
following listing).

Listing 8.13 Makefile

GO_VERSION := 1.18.5

TAG := $(shell git describe --abbrev=0 --tags --always)               ❶
HASH := $(shell git rev-parse HEAD)                                   ❷
 

 



DATE := $(shell date +%Y-%m-%d.%H:%M:%S)                              ❸
LDFLAGS := -w -X github.com/holmes89/hello-api/handlers.hash=$(HASH) 

              -X github.com/holmes89/hello-api/handlers.tag=$(TAG) 

              -X github.com/holmes89/hello-api/handlers.date=$(DATE)  ❹
....

 

build:

    go build -ldflags "$(LDFLAGS)" -o api main.go                     ❺

❶ We use the git command to get the most recent tag version from our repo and
store it as a variable.

❷ We use the git command to get the most recent hash from our repo and store it
as a variable.

❸ We use the shell to grab the current timestamp of the build to help us determine
how long it’s been since a deployment.

❹ We combine all of these values into build flags that target variables in the handler
package we defined so that they are embedded in the binary.

❺ Adding the ldflags adds the build flags we want to the go build command.

Type make build, run your application using ./api, and call
the /info endpoint by using the following:

curl localhost:8080/info

You should see the results come back with the information
populated. Since we made the change to the build
command in the Makefile, we don’t need to make any
changes to our pipeline to support this feature. What we do
want to do is create a release only if our repository is tagged.
Open your pipeline file again, and add a special rule to only
do a release when we push a tag, as in the following listing.

Listing 8.14 pipeline.yml



name: CI Checks

 

on:

  push:

    branches:

      - main

    tags:                                                                  ❶
      - v*

jobs:

  ...

  deliver:

    name: Release

    needs: build

    runs-on: ubuntu-latest

    if: github.event_name == 'push' && contains(github.ref, 'refs/tags/')  ❷
    steps:

❶ We want to run our build on tags as well as pushes to the main branch.

❷ Only run this step if it is being tagged.

8.5 Change log

Now that we are capturing various versions, we should have
a better description of the changes between the release. We
can automate this process by using a tool that will look at the
commit messages we make and add them to the body of the
release. This is great because it forces us to remember that
the messages we write will be read by others. We will
enhance this in future chapters, but let’s get the basics in
place now. We need to edit the deliver section of our
pipeline (see the following listing).

Listing 8.15 pipeline.yml

name: CI Checks

 



on:

  push:

    branches:

      - main

    tags:

      - v*

 

jobs:

  ...

  deliver:

    name: Release

    needs: build

    runs-on: ubuntu-latest

    if: github.event_name == 'push' && contains(github.ref, 'refs/tags/')

    steps:

      - name: Checkout code

        uses: actions/checkout@v2

      - name: Download binary

        uses: actions/download-artifact@v2

        with:

          name: api

      - name: Changelog                                 ❶
        uses: scottbrenner/generate-changelog-action@master

        id: Changelog

      - name: Create Release

        id: create_release

        uses: actions/create-release@v1

        env:

          GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

        with:

          tag_name: ${{ github.ref }}

          release_name: Release ${{ github.ref }}

          body: |                                       ❷
            ${{ steps.Changelog.outputs.changelog }}

          draft: false                                  ❸
          prerelease: false

      - name: Upload Release Binary

        uses: actions/upload-release-asset@v1

        env:

          GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

        with:

          upload_url: ${{ steps.create_release.outputs.upload_url }}

          asset_path: api

          asset_name: api

          asset_content_type: application/octet-stream



❶ Uses this library to automatically create a Changelog to append to the release

❷ Adds the output of the library to the body of the release

❸ Makes these releases official by resetting the draft to false and release to false

Commit your changes and push them. Then we will tag our
release with the v0.0.1 release:

git add .

git commit -m "created info endpoint"

git push

git tag "v0.0.1"

git push origin v0.0.1

Check your releases now, and you can see v0.0.1 has been
released! Download the file, and test to see if your info
endpoint works. Now go to your deployment, and call the info
endpoint. What do you see? Hopefully, you can see the
version as well as some other information required to identify
the build.

When you look at the release, there should be a description
that reflects the commit messages you’ve been writing. This
becomes another location for accountability on the part of
you and your teammates. Just as comments such as
“updated text” aren’t very helpful to developers, they also
will not be helpful to your customers. Instead, you should
consider putting a process in place of having effective
comments that outline the changes you’ve done. A good
example of this is “Corrected the spelling error on the About
Page” or “Created new stub API endpoint for Issue #43”
where Issue #43 refers to some internal ticketing system.

By automating this process, you help build accountability and



thoughtfulness into your work. The main goal of a team is to
find a way to work together and communicate effectively.
Through this process, your team will gain a level of resilience
and independence to help them feel empowered to solve
existing problems and handle new ones that arise. This does
not happen overnight but is a culture you need to help
create.

8.6 Accountability and handling failure

Mistakes are going to happen. They happen to every person
and every team. Companies will often see a mistake as a
failure in process or people and will add additional constraints
and extend deployment timelines to be sure there aren’t any
bugs or problems. Teams will be created to ensure the
quality of a product before it is shipped, often leading to
longer and longer lead times (deployment timelines).

But let’s consider the alternative. What if we accepted a
failure-tolerant culture, that mistakes are going to happen no
matter what we do? How does our culture change? Who finds
the problems, and who solves them? How quickly can we fix
them, and how can we learn from our mistakes?

This mindset is what Kent Beck often refers to as “bravery” in
his various programming books. He describes putting
processes in places such as automated testing, code
standardization, pair programming, and many more to allow
for fast development practices that rely on “brave”
developers to be able to confront problems that may arise.



Toyota has a similar process where anyone on an assembly
line has the opportunity to stop all production by pulling what
is called the “andon cord.” This simple process halts the line
and triggers a light to indicate where the problem is located.
Then everyone will swarm to that spot to see what the
problem is, solve the problem, and learn.

This process of learning from a problem allows the
organization as a whole to think about mitigating problems in
the future and participating in the feedback cycle established
within its culture. This is known as a generative culture,
where the organization prioritizes improvement in capacity,
quality, and innovation. How does this compare to the risk-
averse culture described before? Surely everyone means well
in extending timelines and adding special teams to ensure
quality. If we compare the generative culture to a
bureaucratic culture, we see small differences. Where
generative organizations investigate failure, bureaucratic
organizations look for who caused the problem. Generative
cultures provide freedom to their employees to make and
improve the company and its processes, while bureaucratic
cultures restrict responsibilities and silo groups from helping
each other improve.

Ron Westrum studied various organizations and created this
typology model. His findings were that generative cultures
can mitigate risks and increase organizational safety. In the
development world, this means fewer bugs and major
outages happening in production. If a problem occurs, the
organization will learn from it and find ways to make sure it
doesn’t happen again without restricting others’ abilities to



contribute. In table 10.1, you can see a breakdown of the
two distinct types of company cultures.

Table 8.1 Types of company cultures

          
Bureaucratic

        

          
Generative

        

          
Information may be ignored.

        

          
Information is actively sought.

        

          
Messengers are tolerated.

        

          
Messengers are trained.

        

          
Responsibilities are 
compartmentalized.

        

          
Responsibilities are shared.

        

          
Bridging between teams is allowed 
but discouraged.

          
Bridging between teams is 
rewarded.



                

          
Organization is just and merciful.

        

          
Failure causes inquiry.

        

          
New ideas create problems.

        

          
New ideas are encouraged.

        

What does this mean for our development team?

As an organization, you need to create a generative culture
for your developers that gives them the ability to move fast
but learn from mistakes. Give a voice to everyone in the
organization to express concerns, and try to solve problems
as they arise. Do “blameless postmortem” meetings to help
find the root cause and invest in improving your process.
Everyone should have a voice about technical problems as
well as team dynamics and improvements.

Since we are building tools and pipelines to move our code
from implementation to running in production, we can use
our pipeline to add more checks, guards, and analysis to our
code before it goes to production. We can focus on making
deployments so seamless that we can patch bugs quickly and
efficiently as they happen or provide the ability to roll back
our changes by reverting our code and redeploying a
previous version.



The final and most important step is the visibility of problems
as they occur. When a build or deployment fails, it becomes
the responsibility of everyone on the team to not point
fingers. This should be done through some alert system
(email, Slack message, throwing a rubber chicken). The team
should be able to solve the problem and resolve the build and
deployment process before any additional work is done. Once
the problem is resolved, work can continue. What is
important is that just like at Toyota, everyone learns from
the experience and thinks of ways to improve the system.

If you have the capacity on your team, having someone
monitor and gather metrics about your process and system
can create a great feedback mechanism for finding areas to
improve. Situations like flaky tests, long build times, frequent
build failures, and dependency timeouts can be the result of
poorly written tests, a slow build server, a bad development
environment, and the need for artifact caching. But you will
not know that these problems are there or how they should
be prioritized if you aren’t gathering metrics and talking to
your team.

As you type away in your editor, you hear the ding of your
email. You stop, open it, and read the following from the QA
team, “I saw you just released an update of the software that
integrates with our existing API. The document says I can
test this locally, and I assume it’s not running in production.
This is pretty great! Any chance you can start implementing
something similar with a database? It would be great to start
moving in that direction with the product. Thanks!”



You smile. It looks like you’ve convinced them you can
develop hidden features without affecting your system. Time
to start planning the database.

Summary

Configuration allows you to modify an application’s
function without changing its code.
Configuration combined with dependency injection can
allow you to hide incomplete or untested features.
Semantic versioning communicates the scale of changes
to a system.
Change logs provide a synopsis of the work that has been
completed.
Generative cultures allow for growth and change within
an organization.



9 Integration testing

This chapter covers

Converting user requirements to descriptive tests
Writing tests that follow a behavior-driven design pattern
Integrating external dependencies into tests using containers

You are sitting in the conference room with your project
manager, a QA lead, an Ops lead, and the CEO. The project
manager stands at the front of the room and starts the
presentation.

“It’s called a strangler application. The name ‘strangler
application’ comes from the strangler fig tree, which builds
itself around a host tree until the host tree dies. As sad as it
sounds, we want to eventually sunset our old application. We
feel our application has been tested enough to start rolling it
out to a select group of customers. The new service will start
out depending on the old service like it does today, but over
time, we can gradually phase the old one out once we are
satisfied that we haven’t missed anything.”

You look around the room and notice everyone nodding their
heads.

“This seems to mitigate some of our risks because we can
always switch back to the old service if we have any
problems,” the QA lead adds.



“Exactly. We have built a system for writing flexible software
that can be responsive to our needs. What are the final
pieces we are missing?” your project manager adds, looking
around the room.

The Ops lead chimes in, “A database with all of the
translations will be needed if we want to shut down the old
system.”

Someone from QA adds, “Additional testing around that
would be helpful. Can we automate that?”

A few weeks ago, you would have never expected that, but
now you have established some credibility around automated
testing. Your team is buying into this new development
process, and it’s showing.

You walk up to the board and write

Convert client calls to database calls.
Migrate old data.
Establish integration tests that meet feature
requirements.

“Looks like we have a plan. Great work, everyone,” the CTO
says as they stand up and walk out of the room. That is your
cue to get started.

9.1 Phasing out the old

Strangler applications are great at converting old code into



new code a little bit at a time. We already started the process
of creating a link between the old system and the new
system when we created the external client back in chapter
6. If you remember, we call the external system if we do not
have the value in a cache. Our interface looks like this:

type Translator interface {

    Translate(word string, language string) string

}

Up to this point, we’ve built a framework of flexibility. This
allows us to slowly phase out the old application by using our
configuration management along with dependency injection
to change how the new system interacts with the old system.
First, we need to choose a database to store our data. Once
we are convinced everything is working as expected, we will
remove the external client and hopefully shut the old system
down.

To manage this, we will overload our configuration to have a
database connection. If we see this connection, we will
override the external client. We will need to add some values
to our configuration (see the following listing).

Listing 9.1 core.go

type Configuration struct {

    Port            string `json:"port"`

    DefaultLanguage string `json:"default_language"`

    LegacyEndpoint  string `json:"legacy_endpoint"`

    DatabaseURL     string `json:"database_url"`      ❶
    DatabasePort    string `json:"database_port"`     ❷
}



❶ Adds Database URL for connection

❷ Adds port in case the standard port is not in use

To create all of this, we should consider how to verify that
our changes are working, so we will write some integration
tests that test the system as a whole. Thus far, we’ve mostly
focused on basic unit tests and have simulated external
integrations. Instead of simulating these integrations, we
should also create a set of tests to verify these interactions.
The most common integration point is often between an
application and a database. Now we want to move our
system over to connect to a database instead of calling the
external client, but we want to have the flexibility to turn the
client call on and off.

First, we will focus on creating a new connection that
matches our existing interface. Then, based on our
configuration, we will make an external service call, a
database call, or a hybrid that makes an external call only if
the value is not present in the database. Before we do
anything, we should write some tests to validate the existing
functionality, and then integrate the database and verify that
it works. These tests will validate the user’s experience
rather than the overall functionality of a module of code, so
we will take a slightly different approach than what we did
before.

9.2 Behavior-driven design

In chapter 3, we talked about test-driven development



(TDD), which helped us focus on how a unit of code was
intended to function. This meant that we could focus on
providing the proper inputs to get the expected outputs. We
spent time verifying that portions of the system were called
by mocking them, and it required a little bit of our technical
knowledge to understand how everything should work. We
can take this same format and abstract it a bit more.
Imagine that your project manager, CEO, or even your
customers wrote the tests and that you wrote the
implementation. This is exactly what behavior-driven design
is supposed to do. We start looking at things at a
macroscopic level and then look at a larger picture of how
the product or feature will be used. Instead of focusing on
Arranging our tests, Acting on our function, and Asserting our
values (remember the three As from chapter 3), we instead
focus on a Given, When, Then structure that can be written
in clearer text and tested against. The following listing
provides an example that we can use for our application.

Listing 9.2 app.feature

Feature: Translation Service             ❶
  Users should be able to submit a word to translate words within the 

application

 

  Scenario: Translation                  ❷
    Given the word "hello"               ❸
    When I translate it to "german"

    Then the response should be "Hallo"

❶ The feature is the deliverable item.

❷ The scenario is how the feature is used.

❸ Given, When, Then describes what happens.



This domain-specific language (DSL) is known as Gherkin and
is used to allow nontechnical people to write requirements
that can be converted automatically into tests. Once in your
testing framework, these requirements become your
validation criteria or assertions in our Arrange, Act, Assert
pattern. What’s great about this is that you are validating
against requirements that someone else wrote or that can be
referred to as part of your development process. No longer
can a project manager say you didn’t meet the requirements
if they wrote the descriptions and all of the tests passed!

NOTE We are focused on running our BDD tests using a Go runner;
however, you can write more comprehensive integration suites using
Selenium or Cypress.

What is special about the Gherkin language is that multiple
libraries can use it. Each one of these features can be tied to
specific unit tests or used to test user interfaces. The point is
that our project managers can start writing code for us in this
special language, and we can then use it to verify that a
feature is complete through multiple means. For example,
let’s assume we are creating a UI with our API. We can use
this same feature file to write our Go backend tests,
JavaScript UI tests, and automated QA end-to-end tests. As
long as the feature is there but the tests are not
implemented, our build will fail. This is intentional because
the requirements of our system have changed.

Taking this feature request, we can plug it into our testing
pipeline; however, we will not test individual packages but
instead test the main package, which runs the whole



application. At a high level, we can verify that we meet the
expectations of our users. We will use this feature definition
to drive our tests. To do this, we will use a library called
Godog, which falls under the Cucumber project, the top
open-source project for BDD. Cucumber has written other
libraries for other languages that support Gherkin as well.

9.3 Writing BDD tests in Go

To start, we will set up our BDD testing by writing our feature
definitions and tests. We will set up our tests and write them,
but the expectation is that they will fail. Once they are
written, we will work on fixing them by attaching our
database. By the end of the chapter, we will be able to verify
that our services work entirely as expected.

The first thing we need to do is install a new tool called
Godog. To do this, let’s first add an entry to our Makefile (see
the following listing).

Listing 9.3 Makefile

setup: install-go init-go install-lint install-godog

...

install-godog:

    go install github.com/cucumber/godog/cmd/godog@latest    ❶

❶ Installs the Godog binary

Next, run the installation to verify that it works. We should
be able to copy our feature to a directory to test. Godog has
many different ways to run tests, but for now, we will rely on



the default behavior, which is to look for feature files in a
local directory called features. Since we will test the API
binary, we will create that directory in the cmd directory.

Once you’ve created the cmd/features directory and copied
over our app .feature, we can navigate to the cmd
directory and type godog run. You should see a snippet of
generated code like in the following listing.

Listing 9.4 console

func iTranslateItTo(arg1 string) error {                               ❶
        return godog.ErrPending

}

 

func theResponseShouldBe(arg1 string) error {

        return godog.ErrPending                                        ❷
}

 

func theWord(arg1 string) error {

        return godog.ErrPending

}

 

func InitializeScenario(ctx *godog.ScenarioContext) {                  ❸
        ctx.Step(`^I translate it to "([^"]*)"$`, iTranslateItTo)      ❹
        ctx.Step(`^the response should be "([^"]*)"$`, theResponseShouldBe)

        ctx.Step(`^the word "([^"]*)"$`, theWord)

}

❶ Our text is converted into functions with similar names capturing particular input.

❷ Until implemented, we can use this special error type.

❸ Tests enter here to set up and run each scenario step.

❹ Each step has a special capture group that provides input to the appropriate
function.

Obviously, this code is incomplete but gives us a basis to
start. Copy the text, and create a new file called



main_test.go in that directory. We will also create a struct
to help capture some of the input we need for our tests. The
code will look like the following listing.

Listing 9.5 main_test.go

package main                                                          ❶
 

import (

    "github.com/cucumber/godog"                                       ❷
)

 

type apiFeature struct {}                                             ❸
 

func (api *apiFeature) iTranslateItTo(arg1 string) error {

    return godog.ErrPending

}

 

func (api *apiFeature) theResponseShouldBe(arg1 string) error {

    return godog.ErrPending

}

 

func (api *apiFeature) theWord(arg1 string) error {

    return godog.ErrPending

}

 

func InitializeScenario(ctx *godog.ScenarioContext) {

    api := &apiFeature{}

 

    ctx.Step(`^I translate it to "([^"]*)"$`, api.iTranslateItTo)     ❹
    ctx.Step(`^the response should be "([^"]*)"$`, api.theResponseShouldBe)

    ctx.Step(`^the word "([^"]*)"$`, api.theWord)

}

❶ We use the main package so that we can reference the methods inside to start
the application.

❷ Use the Godog library to help set up the tests.

❸ This struct will help store information throughout the tests.

❹ Functions are now within the context of our feature struct.



Our test is set up, but we are unable to access and run our
main function, so we want to create the ability to start a
server the same way main() does. This is typically done by
creating a function that houses the logic of the application
creation and having the main function call it. We will refactor
our main.go file to match this pattern (see the following
listing).

Listing 9.6 main.go

package main

 

import (

    "log"

    "net/http"

 

    "github.com/holmes89/hello-api/config"

    "github.com/holmes89/hello-api/handlers"

    "github.com/holmes89/hello-api/handlers/rest"

    "github.com/holmes89/hello-api/translation"

)

 

func main() {

 

    cfg := config.LoadConfiguration()

    addr := cfg.Port

 

    mux := API(cfg)                                        ❶
 

    log.Printf("listening on %s\n", addr)

 

    log.Fatal(http.ListenAndServe(addr, mux))

}

 

func API(cfg config.Configuration) *http.ServeMux {        ❷
 

    mux := http.NewServeMux()

 

    var translationService rest.Translator

    translationService = translation.NewStaticService()

    if cfg.LegacyEndpoint != "" {



        log.Printf("creating external translation client: %s", 

cfg.LegacyEndpoint)

        client := translation.NewHelloClient(cfg.LegacyEndpoint)

        translationService = translation.NewRemoteService(client)

    }

 

    translateHandler := rest.NewTranslateHandler(translationService)

 

    mux.HandleFunc("/translate/hello", translateHandler.TranslateHandler)

    mux.HandleFunc("/health", handlers.HealthCheck)

 

    return mux                                            ❸
}

❶ The main function just runs the server now instead of configuring the service’s
HTTP and service endpoints.

❷ This function will assemble the service and HTTP endpoints to be passed to the
server.

❸ The mux router is returned to be attached to an HTTP server.

You should be able to start your application and have it still
work. Now we can wire our Godog tests. To verify our
results, we will call our API and parse the results. While Go
has the capability of calling HTTP endpoints, we’ll use a
library to help us make the code a little easier to read. To do
this, install go get github.com/go-resty/resty/v2. Resty
helps make writing API calls a little clearer. For example, if
we wanted to call our API using Resty, it would look
something like the following listing.

Listing 9.7 Resty example

resp, err := resty.New().R().                             ❶
        SetHeader("Content-Type", "application/json").    ❷
        SetQueryParams(map[string]string{                 ❸
            "language": "german",

        }).



        Get("http://localhost:8080/translate/hello")      ❹

❶ Creates a new request

❷ Sets the header to be JSON

❸ Sets query Params for language to German

❹ Calls the endpoint using GET

We need the input for this call in order to verify our tests.
Remember earlier when we looked at the methods Godog
generated for us? They have string inputs that we can set in
a feature test structure. Let’s add the code in the following
listing to our struct.

Listing 9.8 main_test.go

type apiFeature struct {

    client   *resty.Client          ❶
    server   *httptest.Server       ❷
    word     string                 ❸
    language string                 ❹
}

❶ Shared client for tests

❷ Creates a test server to avoid port conflicts

❸ The word being used

❹ The language being translated to

Now we can store the values in the various steps (see the
following listing).

Listing 9.9 main_test.go

func (api *apiFeature) iTranslateItTo(arg1 string) error {

    api.language = arg1     ❶
    return nil



}

 

func (api *apiFeature) theWord(arg1 string) error {

    api.word = arg1

    return nil

}

❶ Saves the values to the struct

Let’s initialize our feature struct using the code in the
following listing to have a server start up and shut down for
each scenario.

Listing 9.10 main_test.go

func InitializeScenario(ctx *godog.ScenarioContext) {

 

    client := resty.New()                    ❶
    api := &apiFeature{                      ❷
        client: client,

    }

 

    ctx.Before(func(ctx context.Context, sc *godog.Scenario) 

      (context.Context, error) {             ❸
        cfg := config.Configuration{}

        cfg.LoadFromEnv()                    ❹
 

        mux := API(cfg)                      ❺
        server := httptest.NewServer(mux)    ❻
 

        api.server = server

        return ctx, nil

    })

 

    ctx.After(func(ctx context.Context, sc *godog.Scenario, err error) 

      (context.Context, error) {

        api.server.Close()                   ❼
        return ctx, nil

    })

 

    ctx.Step(`^I translate it to "([^"]*)"$`, api.iTranslateItTo)

    ctx.Step(`^the response should be "([^"]*)"$`, api.theResponseShouldBe)



    ctx.Step(`^the word "([^"]*)"$`, api.theWord)

}

❶ Creates a shared client

❷ Creates a new feature struct for sharing

❸ Uses before and after hooks to manage the server

❹ Loads the config from Env (could also use default)

❺ Creates the same mux as the main function

❻ Creates the test server

❼ Closes the server after the scenario

Finally, we can test the call. We will do this in the
theResponseShouldBe function. In it, we assemble the API
call and verify the results as in the following listing.

Listing 9.11 main_test.go

func (api *apiFeature) theResponseShouldBe(arg1 string) error {

    url := fmt.Sprintf("%s/translate/%s", api.server.URL, api.word)    ❶
 

    resp, err := api.client.R().

        SetHeader("Content-Type", "application/json").

        SetQueryParams(map[string]string{

            "language": api.language,                                  ❷
        }).

        SetResult(&rest.Resp{}).                                       ❸
        Get(url)

 

    if err != nil {

        return err

    }

 

    res := resp.Result().(*rest.Resp)

    if res.Translation != arg1 {                                       ❹
        return fmt.Errorf("translation should be set to %s", arg1)

    }

 

    return nil

}



❶ Creates the URL to call based on the word

❷ Sets the language to translate

❸ Captures the result in a known struct

❹ Verifies the word

And there we have it! Type godog run again, and see what
the results are. Now create another scenario for another
language if you want! Does it work? Next, let’s add our
requirements for the database.

9.4 Adding a database

To start, we’ll add a new requirement that requires us to
move outside of our static data set and instead uses an
external database. This same set of tests could have been
used for connecting to our external service. Imagine for a
minute that the QA team is writing all of these requirements
against the old system originally. Then you move them to the
new project as you start your strangler application. You will
know when you’ve reached a level of parity when all of the
tests pass. Once we’ve flipped a configuration to use the
database, we can once again verify that everything is ready
to be deployed (see the following listing).

Listing 9.12 app.feature

Feature: Translation Service

  Users should be able to submit a word to translate words within the 

application

 

  Scenario: Translation

    Given the word "hello"

    When I translate it to "german"



    Then the response should be "Hallo"

 

  Scenario: Translation

    Given the word "hello"

    When I translate it to "bulgarian"

    Then the response should be "Здравейте"

If we run our tests now, we should see a failure. Think back
to chapter 3 and remember our fail, pass, fail pattern. This
means our project manager or someone else can monitor our
progress on a feature as we develop it. Reports can be
generated to show the coverage and progress toward
completing all scenarios within a given feature and can be
dubbed feature complete.

It’s also extremely important to note that this set of app
features can be tested on both a backend API and a frontend
screen. The completeness of a feature can be verified by a
series of integration tests, not just a single one!

As for our feature, we can imagine a larger collection of
translations that we need to verify. Our current solution of
keeping all our translations in a switch statement in code is
not scalable, nor does it allow us to add or remove languages
without restarting the service, so we will add a database to
our system. Databases are specialized data storage
applications that do a much better job of managing and
handling our various pieces of data. We will then test the
integration between our service and the external
dependency, which in this case is a database.

There are many database options, but we will use the
extremely simple (yet powerful) key-value store called Redis,



which is very lightweight and will work very similarly to the
caching mechanism we implemented earlier. We’ll break
down this work into development and then testing. We need
to have a way to establish a connection before we can set up
our tests. Remember, all we need is a service that
implements our Translator interface, and we can drop it
right into our existing handler.

First, let’s add Redis to our infrastructure. Remember in
chapter 7 when we introduced docker-compose to help us
build our containers? We will use the same technology to
manage our dependencies. Let’s add Redis as a dependency
to our docker-compose.yml file, as in the following listing.

Listing 9.13 docker-compose.yml

version: "3.8"

services:

  ...

  database:                   ❶
    image: redis:latest       ❷
    ports:

     - '6379:6379'            ❸
    volumes:

     - "./data/:/data/"       ❹

❶ Creates a new service called database

❷ Uses the latest Redis container definition

❸ Exposes the Redis port for use by the API

❹ Mounts the database backup for testing use

If you run docker-compose up -d database and then type
docker exec -it database redis-cli, you should see a



prompt appear. If you type ping, you should get a pong
response. Congratulations! You’ve just started a database!

Let’s create a connection. We already updated our
configuration to handle the connection string to the database.
Now we’ll create a new file in the translation package.
We’ll call it database.go. The first thing we do is create a
function that returns a connection struct. We’ll use this struct
to implement the Translator interface. We’ll create just
enough code to be able to start writing our tests. Let’s write
the code in the following listing.

Listing 9.14 database.go

package translation

 

import (

    "context"

    "fmt"

 

    "github.com/go-redis/redis/v9"

    "github.com/holmes89/hello-api/config"

    "github.com/holmes89/hello-api/handlers/rest"

)

 

var _ rest.Translator = &Database{}                                    ❶
 

type Database struct {

    conn *redis.Client

}

 

func NewDatabaseService(cfg config.Configuration) *Database {          ❷
    rdb := redis.NewClient(&redis.Options{

        Addr:     fmt.Sprintf("%s:%s", cfg.DatabaseURL, cfg.DatabasePort),

        Password: "", // no password set

        DB:       0,  // use default DB

    })

    return &Database{

        conn: rdb,

    }



}

 

func (s *Database) Close() error {                                     ❸
    return s.conn.Close()

}

 

func (s *Database) Translate(word string, language string) string {

    return ""                                                          ❹
}

❶ This is a type verification so that we know our service satisfies the interface.

❷ Returns a new connection struct using database configuration

❸ A close function is needed to clean up a connection.

❹ Just do the minimal amount of work to get started.

Now we can create our integration tests. Thanks to our
operations team, we were able to get a backup of the
production database, so as part of our tests, we will load the
backed-up database into a Docker container and run our
service against it. This will simulate, as closely as possible, a
production environment to test. Let’s create the setup for our
suite (see the following listing).

Listing 9.15 main_test.go

var (

    pool     *dockertest.Pool

    database *dockertest.Resource

)

 

func InitializeTestSuite(sc *godog.TestSuiteContext) {                 ❶
 

    var err error

 

    sc.BeforeSuite(func() {

        pool, err = dockertest.NewPool("")                             ❷
        if err != nil {

            panic(fmt.Sprintf("unable to create connection pool %s", err))

        }



 

        wd, err := os.Getwd()

        if err != nil {

            panic(fmt.Sprintf("unable to get working directory %s", err))

        }

 

        mount := fmt.Sprintf("%s/data/:/data/", filepath.Dir(wd))      ❸
 

        redis, err := pool.RunWithOptions(&dockertest.RunOptions{      ❹
            Repository: "redis",

            Mounts:     []string{mount},

        })

        if err != nil {

            panic(fmt.Sprintf("unable to create container: %s", err))

        }

        if err := redis.Expire(600); err != nil {

            panic("unable to set expiration on container")

        } //Destroy container if it takes too long

        database = redis

    })

 

    sc.AfterSuite(func() {

        database.Close()                                               ❺
    })

}

❶ This will run before each suite, which differs from the setup that runs on each
scenario.

❷ Creates a new docker connection pool

❸ Mounts the database backup

❹ Runs the docker container

❺ Shuts down the container when finished

Now we need to update our scenario setup as well (see the
following listing).

Listing 9.16 main_test.go

func InitializeScenario(ctx *godog.ScenarioContext) {

 

...



    ctx.Before(func(ctx context.Context, sc *godog.Scenario) (context.Context, 

error) {

        cfg := config.Configuration{}

        cfg.LoadFromEnv()

 

                cfg.DatabaseURL = "localhost"               ❶
                cfg.DatabasePort = database.Port("6379")    ❷
 

        mux := API(cfg)

        server := httptest.NewServer(mux)

 

        api.server = server

        return ctx, nil

    })

...

}

❶ Sets the database to connect to Docker on your machine

❷ The Docker library randomly creates a port to connect to.

Finally, we edit our main file to use the new URL from the
database we just started (see the following code listing).

Listing 9.17 main.go

if cfg.DatabaseURL != "" {                            ❶
        db := translation.NewDatabaseService(cfg)

        translationService = db

    }

❶ If the database is set, we use this as our service through dependency injection.

Now we can run our tests and see them fail. Great! Let’s
update our implementation code to retrieve files. According
to the documentation, the translated values are stored in a
format of language:word, where all word variables are in
English, so our logic becomes fairly simple, as in the
following listing.



Listing 9.18 database.go

func (s *Database) Translate(word string, language string) string {

    out := s.conn.Get(context.Background(), fmt.Sprintf("%s:%s", 

      word, language))         ❶
    return out.Val()           ❷
}

❶ Queries the database by constructing the key from the word and language

❷ Returns the string value

Run our tests again, and you should see them pass!

NOTE Hopefully, some of you were wondering why we didn’t create tests
specifically to test the database instead of relying on the integration
tests. This is because it was out of the scope for this chapter, but it is a
great exercise. You can use the same database setup as earlier or look
into some other in-memory database testing solutions.

Can you think of other tests that could be added? Or other
features that we perhaps didn’t cover?

9.5 Releasing

Let’s look at our testing pyramid (figure 9.1).



Figure 9.1 End-to-end tests are smaller at the top because they are
more expensive and not as dependable. They should be supported by
larger suites of integration and unit tests. Each layer should run on its
own, starting with unit tests and progressing up the pyramid in
different phases.

We have covered all tiers of the pyramid, starting with our
unit tests from chapter 3, our acceptance tests from chapter
6, and now our integration tests from this chapter. Does this
mean we’re done? No, not even close. This is when you and
your team need to start monitoring how much coverage you
have and how long these tests take. Ideally, you don’t want
your test suites to run more than 5–10 minutes for them to
be effective. Integration tests can be separated into various
groups for speed. For example, a subset of tests can run
against the core features, while a longer suite could be used
for all regressions (old problems). This group of tests is often
referred to as functional testing, or tests that verify the
specifications of the application. Table 9.1 gives a brief



overview of these different types.

Table 9.1 Types of functional tests

          
Type

        

          
Description

        

          
Answers the 

question

        

          
Smoke test

        

          
Preliminary test to check for basic 
functionality

        

          
Does it turn 
on?

        

          
Sanity test

        

          
Validates high-level calculations 
such as aggregations or 
mathematical calculations

        

          
Is the count of 
items correct?

        

          
Regression 
test

        

          
Verifies that previously reported 
bugs have been addressed

        

          
Did this used 
to work?

        

                              



Usability test

        

Evaluates customer interactions 
with the product

        

How do 
people use 
this feature?

        

When would it be appropriate to run these tests in our chain?
In the previous chapter, we discussed releases: we want to
release only when our code is stable, so we want to use
these tests as a way of knowing that everything is stable to
release. In theory, all of our unit tests and acceptance tests
should support our integration tests, so there shouldn’t be
any surprises when we tag or release. Yet we want one final
guard against releasing broken code, so we will add an
integration testing phase in our build (see the following code
listing) that will happen only after a release has been made
but before it is pushed to production.

Listing 9.19 ci.yaml

smoke-test:

        name: Smoke Test Application

        needs:

        - test

        runs-on: ubuntu-latest

        steps:

        - name: Set up Go 1.x

        uses: actions/setup-go@v2

        with:

            go-version: ^1.18

        - name: Check out code into the Go module directory

        uses: actions/checkout@v2

        - name: Install Godog

        run: go install github.com/cucumber/godog/cmd/godog@latest    ❶
        - name: Run Smoke Tests

        run: |

            go get ./...

            godog run --tags=smoke-test



  build:

    name: Build App

    runs-on: ubuntu-latest #

    needs: smoke-test                                                 ❷
    steps:

    ...

  containerize-buildpack:

    name: Build Container buildpack

    runs-on: ubuntu-latest #

    needs: smoke-test                                                 ❸

❶ Installs Godog and runs your smoke tests

❷ Builds the application only after the smoke tests succeed

❸ Builds the container only after the smoke tests succeed

We decide to put the feature tests after the unit tests. This
allows us to move up the testing tree before we start to
build. The way we constructed our integration tests means
we can get insight if our system works when it starts up. In
the days of hand-soldered circuit boards, this was known as a
smoke test because if it smoked when it was plugged in,
there was a problem. Today’s smoke tests verify that a
system starts and has basic functionality. Therefore, our
integration tests can be our smoke tests as well.

Often, labels are given to certain tests to denote if they are
part of a smoke test or a larger regression test suite. These
can correspond to the functional testing types. We can
possibly run additional checks after our smoke tests run. A
smoke test failure will stop the pipeline, but a regression
suite may be a flag for someone to verify that something has
changed. This becomes an automated QA system that can
allow QA members to spend most of their time exploring the
system to find additional bugs. In the next listing, let’s adjust



our scenarios to use labels and update one last flag to our CI
for smoke tests.

Listing 9.20 api.feature

Feature: Translate API

  Users should be able to submit a word to translate

 

  @smoke-test

  Scenario: Translation

    Given the word "hello"

    When I translate it to "german"

    Then the response should be "Hallo"

  @smoke-test

  Scenario: Translation unknown

    Given the word "goodbye"

    When I translate it to "german"

    Then the response should be ""

  @smoke-test

  Scenario: Translation Bulgarian

    Given the word "hello"

    When I translate it to "bulgarian"

    Then the response should be "Здравейте"

  @regression-test                      ❶
  Scenario: Translation Czech

    Given the word "hello"

    When I translate it to "Czech"

    Then the response should be "Ahoj"

❶ A separate test type to be run

Edit our CI to run only the smoke tests first and then a
second step to test regressions (see the following listing).

Listing 9.21 ci.yaml

smoke-test:

...

        run: |

            go get ./...

            godog run --tags=smoke-test

    regression-test:                              ❶



        name: Regression Test Application

        needs:

        - test

        runs-on: ubuntu-latest

        steps:

        - name: Set up Go 1.x

        uses: actions/setup-go@v2

        with:

            go-version: ^1.18

        - name: Check out code into the Go module directory

        uses: actions/checkout@v2

        - name: Install Godog

        run: go install github.com/cucumber/godog/cmd/godog@latest

        - name: Run Smoke Tests

        run: |

            go get ./...

            godog run --tags=regression-test      ❷

❶ Establishes a longer or more comprehensive test suite to run periodically

❷ Specifies the regression suite

As you see your pipeline turn green, the QA manager walks
by. Now is a great time to show them what you’ve been able
to accomplish. You show the different feature tests and
explain how we can take all of the requirements they want
and put them in the various test suites. Upon seeing the
green scenarios, they smile, the first time you’ve seen them
do so.

Summary

Using behavior-driven development helps the whole team
establish requirements.
Gherkin provides a universal language to write behavior-
driven tests that can be implemented by different teams.
External dependencies for integration tests can be



provided by using containers to replicate real-world
services.
Tags can be used to help focus test suites and shorten
the overall runtime of tests.



10 Advanced deployment

This chapter covers

Creating a Kubernetes cluster
Deploying an API in Kubernetes
Deploying a database using Helm
Configuring your API to use the database

“If you look at these charts, you can see that our new service
has actually helped drive more traffic to our services. Our
mobile application team was able to whip together a quick
application using some of the same techniques adopted for
the translation service. This application has had wide
adoption and is trending in all app stores. However, since the
translation service is still running as an on-demand service,
we find that it is more expensive than running dedicated
servers, so we are left with two options: use a dedicated
container orchestrator like Kubernetes or build dedicated
virtual machines to run the service.”

Everyone looks at the graphs the DevOps lead is showing.
There are some nods of an agreement, but the CTO finally
speaks up.

“I thought the whole point was to move away from dedicated
services and toward a ‘serverless’ approach. Won’t this
reduce our delivery to market? Are there alternatives?”

The DevOps lead advances the slide and says, “We have a



longer-term goal of moving toward a container orchestration
framework like Kubernetes. This is because we may not get
100% utilization out of a dedicated virtual machine to handle
more applications on the same level or resources. We are
working with various teams to start implementing container
creation for their products so that we can host all of them on
a Kubernetes, or K8S, cluster. However, none of us have
worked with Kubernetes before, so there could be a bit of a
learning curve. The alternative is to create custom images
and deploy them to virtual machines. We call this the classic
deployment process. It is error-prone right now because we
have little process around it. However, we’ve learned from
this process that having as much as possible in the repository
helps with productivity overall, so we will adopt
‘infrastructure as code’ on some of our older services to help
us maintain our infrastructure more clearly. Unfortunately,
we don’t have anyone with experience in this area and are
swamped, so we may rely a bit on the development team to
get things started. Would that be okay?”

You smile and nod. The fact that these initiatives and
ideologies are now starting to spread to other teams shows
tremendous improvement overall by the company. Working
on a more robust deployment process for the entire company
can seem a little daunting, but it will be well worth the value.

“In an attempt to not seem too trendy, I think it’s worthwhile
to do a research spike on both. Do you think you can get me
some estimates of the level of work for the Kubernetes
cluster first? If we can move the entire company in that
direction, I think it will make sense for us financially, but we



need to make sure it won’t monopolize developer time. We
can then experiment with the infrastructure as code at a later
date.”

10.1 Not quite IaaS

We have come to a crossroads in our deployment
progression. Remember that we are treating various
abstractions with our deployments and using them as a
service. In previous infrastructure chapters, we explored
using a function as a service (FaaS), wherein a small,
lightweight, on-demand application runs only when
requested. We then moved to a platform as a service (PaaS),
wherein we simply hand over our binary, and a server is
magically created around it. Our last deployment used
containers as a service (CaaS), wherein a container is built
and run, giving us exposure to an underlying virtualized
environment for more system-level integrations.

At this point, if you find that we need fewer abstractions and
even more control, we can go one of two different ways. One
is to go on a full Infrastructure as a Service (IaaS) route by
building and running our physical infrastructure using virtual
machines and load balancers to direct traffic to our
application. The other way is to set up, run, and manage a
container orchestration tool such as Kubernetes. In this
chapter, we choose the latter because it is trendy due to its
varied development toolset and developer-friendly interfaces.
Appendix D briefly outlines the alternative for those who may
want to take the true IaaS route. Instead, we are going to be



in the middle of the IaaS and CaaS stacks shown in figure
10.1.

Figure 10.1 We are now using our container as our shippable product.

Kubernetes is not quite IaaS. It lives somewhere between the
CaaS and IaaS realms. This is because Kubernetes handles
much of the underlying infrastructure through abstractions.
Features like node scaling and load balancing are all created
and maintained by the Kubernetes cluster. As the developer,
you are only concerned with defining the types of resources
you want and submitting them to the cluster to then run.
This building of resources in an abstract way is the core of
IaaS. Tools like Terraform are used to maintain and build
actual infrastructure, just like Kubernetes.

Instead of servers and load balancers, Kubernetes works with



deployments and services. These abstractions allow
Kubernetes to shift workloads across different server
instances based on the load on the server. Kubernetes
reduces a lot of the maintenance and management around
your applications because it handles tasks such as load
balancing, service restarts, and so on. Because of this,
Kubernetes has become a very popular option for many
teams that have scaled from on-demand to dedicated
services for optimal uptime.

10.2 Your first cluster

We need to first create a cluster (see the following listing).
Instead of installing Kubernetes locally, we will rely on GCP
to create one for us. To do this, we will use the GCP tool.

Listing 10.1 Creating a cluster

gcloud container clusters create \

--zone=us-central1-a                                                        ❶
gcloud services enable \

 containerregistry.googleapis.com container.googleapis.com                  ❷
gcloud components install gke-gcloud-auth-plugin                            ❸
gcloud container clusters get-credentials hell-cluster --zone=us-central1-a ❹

❶ Creates the cluster in a given zone

❷ Enables registry access for your containers

❸ Installs the authentication plugin

❹ Retrieves credentials for your cluster to be used in kubectl

NOTE If you don’t want to go through the hassle of setting up a cluster in
the cloud, there are plenty of local tools, such as Minikube and KinD.



And you should have access to your nodes. That’s it. Google
makes it very simple for you. If you wish to use another
cloud provider, there may be additional steps. Now you are
ready to deploy.

For a full list of regions and zones that are closer to where
you live, visit http://mng.bz/91Ro.

10.3 Building blocks

You can find countless books, talks, and blog posts about
Kubernetes and all of its building blocks, so I will not go into
it here. We need to worry about two things: deployments and
services. Deployments run a container or group of containers
(pods) that scale (replica sets), which is exactly what GCP’s
Cloud Run did for us in chapter 7. A service creates an
endpoint that directs calls to our deployment. This essentially
acts as a load balancer that can distribute calls equally
among multiple server instances.

Let me explain each of these two core elements in more
detail. A deployment can be thought of as a wrapper around
two lower entity definitions for Kubernetes. Pods are groups
of containers (a play on the Docker Whale; a group of whales
is a pod). If you want more than one copy of your pod to run,
wrap it in a replica set, which runs multiple instances of your
pod. Finally, a deployment wraps the scaling in health checks
and definitions to call the pod.

A service acts like a router to your application. It can be as

http://mng.bz/91Ro


simple as a forwarding port to your underlying application,
similar to a DNS lookup that a browser does when loading a
website or as complicated as a load balancer with specific
rules for how to route calls for A/B testing or feature testing.

Both of these definitions lack a lot of detail, which should
suffice for what we are trying to accomplish. However, I
encourage you to look at Marko Luksa’s Kubernetes in Action
(Manning, 2017) for more details.

Let’s start by creating our deployment. First, we need to
create a new directory called k8s in your root directory and a
directory beneath it for the service called hello-api. Here,
we will create a new file called deployment.yml. In it, we
need to write our deployment definition. The key is to have
one instance of our container running. Luckily, we have a
container image uploaded that we can use. The code in the
following listing shows the deployment definition, which will
be /k8s/hello-api/deployment.yml.

Listing 10.2 deployment.yml

apiVersion: apps/v1

kind: Deployment                     ❶
metadata:

  name: hello-api                    ❷
spec:

  replicas:                          ❸
  selector:

    matchLabels:

        app: hello-api

  template:

    metadata:

      labels:

        app: hello-api



    spec:

      containers:

      - name: hello-api

        imagePullPolicy: Always

        image: gcr.io/PROJECT_NAME/hello-api:latest

        ports:

        - containerPort: 8080        ❹
          name: hello-api-svc        ❺

❶ The type of Kubernetes object we are creating

❷ The name of the deployment

❸ The number of pods to run

❹ This port matches what the container is listening on.

❺ How to reach this application

Now we apply our deployment using kubectl. If it is not
installed, you can do so by following the instructions on
https://kubernetes.io/docs/tasks/tools/. Once installed, you
simply need to run kubectl apply -f k8s, and all files in
that directory will be applied. If we type kubectl get pods,
we should now see our running API pod.

Now let’s set up the service in /k8s/hello-
api/service.yml. Our service is very simple, as it just
needs to open a port to point to our deployment, as shown in
the following listing.

Listing 10.3 service.yml

apiVersion: v1

kind: Service             ❶
metadata:

  name: hello-api

spec:

  selector:

    app: hello-api

https://kubernetes.io/docs/tasks/tools/


  type: LoadBalancer      ❷
  ports:

  - port: 80

    protocol: TCP

    targetPort: 8080      ❸

❶ The Service type will route incoming requests to deployments.

❷ The Load Balancer will utilize underlying cloud infrastructure to route messages to
your deployment.

❸ Maps to the port the deployment depends on

Now we can call apply and see our service show up. We can
test it by calling the endpoint provided at kubectl describe
service hello-api.

10.4 Scaling and health status

A service critical to any system should have some sort of
redundancy. In software, you want your customers to avoid
any downtime and be able to meet the demands that people
are asking on your system. This is known as scaling: the
system can grow to meet the demands put upon it by
distributing the requests among several running services. In
doing so, you reduce the chances of a system running out of
memory or having long responses. There are two types of
scaling: vertical and horizontal. Vertical scaling allows you to
add more power to a machine to handle the increased load.
Horizontal scaling allows you to create additional instances of
servers to handle the load. In this section, we will focus on
scaling horizontally for our deployments.

We haven’t had to worry too much about scaling up to this



point because the system we are deploying the application on
has handled all of our scaling. If you were to make 1 million
requests against our FaaS, PaaS, or CaaS services we put up,
you would see that they have multiple running instances to
handle the load. Meanwhile, our Kubernetes deployment
would not be able to scale at this point because we haven’t
given it the proper settings to do so. We will only focus on
manual scaling and health checks here, but books like
Kubernetes in Action can show you other methods.

Again, we do not want outage time, so we need to allow
Kubernetes to know when a deployment is ready so that it
can shut down the old deployment. This is known as a rolling
deployment. To do this, we tap into the health check
endpoints we added in chapter 4. Here, we will add liveness
(Is the service running?) and readiness (Is it ready to receive
requests?) checks. Both will let Kubernetes know that our
pod is ready. To do this, we need to modify our deployment
file by adding the code in the following listing.

Listing 10.4 deployment.yml

apiVersion: apps/v1

kind: Deployment

metadata:

  name: hello-api

spec:

  replicas: 1

  selector:

    matchLabels:

        app: hello-api

  template:

    metadata:

      labels:

        app: hello-api

    spec:



      containers:

      - name: hello-api

        imagePullPolicy: Always

        image: gcr.io/PROJECT_NAME/hello-api:latest

        ports:

        - containerPort: 8080

          name: hello-api-svc

        livenessProbe:

          httpGet:

            path: /health       ❶
            port: 8080

          initialDelaySeconds: 3

          periodSeconds: 3

        readinessProbe:

          httpGet:

            path: /health

            port: 8080

          initialDelaySeconds: 3

          periodSeconds: 3

❶ This call will check every 3 seconds to see if it is returning a 200 response.

The liveness probe will check to see if the container is up and
running, while the readiness probe will start directing traffic
to the pod. In this instance, we will use the health endpoint.
Here, we determine if the system is ready by checking if the
HTTP server responds. If not, the pod will be shut down and
a new one will start in its place.

In this instance, our liveness probe and readiness probe are
the same. This, however, is not always the case. Let’s say,
for example, that you had two processes running in your pod,
an API and a cache. Caches can sometimes be warmed or
preloaded with data. In this case, the liveness probe would
be healthy, but the pod would only be ready to accept
messages after the cache was warmed. Think of it as starting
your car versus putting it into gear. If either of the checks
takes longer than expected, the pod will be deleted and a



new one created to start the process over.

With the liveness and readiness probes in place, we can now
scale the service by adding replicas. To do this, we just need
to edit one line, as shown in the following listing.

Listing 10.5 deployment.yml

apiVersion: apps/v1

kind: Deployment

metadata:

  name: hello-api

spec:

  replicas: 3       ❶
  selector:

    matchLabels:

        app: hello-api

  template:

    metadata:

      labels:

        app: hello-api

    spec:

      containers:

      - name: hello-api

        imagePullPolicy: Always

        image: gcr.io/PROJECT_NAME/hello-api:latest

        ports:

...

❶ Increases the number of instances to 3

This will create three separate pods for this service. Commit
these changes. We will be able to see how all this works after
we create automatic deployments. But at the moment,
Kubernetes gives us the control to add and remove advanced
deployment practices with a few lines of code. In the past,
this configuration would have been difficult to maintain and
monitor because you would have been dealing with physical
machines, load balancers, and monitoring tools. Instead,



Kubernetes provides all of this for you so that you can get
started on deploying. Because it is all code, it becomes much
easier for us to update our deployments.

10.5 Automatically deploying

In the past, we deployed our code when we merged to main.
This gave our customers the bleeding edge of our
development each time we merged our pull requests.
However, in chapter 8, we introduced the concept of tags,
which allow us to mark a deployment as stable. With this
stability, we can easily track what code has been deployed
and what fixes and features we can target for future
releases. Once this cadence is established, we can easily
estimate the time it takes to deliver new releases to our
customers.

All of this is to say is that tagging your products and
codebases is extremely important. It also meshes well with
our containerized releases because containers also use
release tags. Our deployment code has a reference to a
latest tag, which loosely translates to “I don’t care what
version it is; I want the newest.” We feel like we have moved
past this point (maybe this would be a good setup for a
development environment!) and now want to tag, so we
should create a container build process that pushes a new
tagged version of our container when our code is tagged. We
will use the same tagging strategy we discussed in chapter 8,
but this will also be based on what your team decides. Let’s
modify our code to do that, as in the following listing.



Listing 10.6 pipeline

containerize-buildpack:

    name: Build Container buildpack

    runs-on: ubuntu-latest #

    needs: smoke-test 

    if: github.event_name == 'push' && contains(github.ref, 'refs/tags/')

    steps:

  ...

Let’s try it out:

git tag v0.0.1

git push origin v0.0.1

You should see a new container tagged and pushed to GCP.
Now that we can tag our containers, we need to have a
process of updating our deployment. There are two rules of
thought with managing these types of deployments:
automated or retroactive. In the automated world, you
create a process that runs apply whenever a file is changed
in the K8s directory. This means that you change the code,
and the pipeline keeps track of the cluster credentials and
state. This is a great place to get to, but until those
processes are clearly defined and working efficiently, many
will update their repo with the applied changes retroactively.
This is typically done by putting a PR up with the changes
and waiting for approval. Once it’s approved, you apply the
code and then merge.

We now have a CD process in place using Kubernetes. We
aren’t running our production-level system. To do that, we
need our database and configuration.



10.6 Deploying Redis using Helm

Many platforms like Kubernetes that use infrastructure as
code allow additional tools and abstractions to extend it or be
built on top of it. In this case, Kubernetes works well with a
tool called Helm. Helm is like a package manager but for
your Kubernetes cluster. It will use a similar deployment
mechanism known as a Helm Chart to deploy applications.
Helm charts are used mostly for out-of-the-box functionality
in production but can be tweaked to suit your needs.

In this instance, we will use Helm to deploy Redis for our
cluster, but first we need to install Helm. To do so, follow the
instructions at https://helm.sh/docs/intro/install/.

I’m hoping that you have been wondering where our Makefile
was for this section. We need it now to help us manage our
deployments. First, we will create the Helm deployment and
then the steps to deploy our app. Helm allows us to configure
our deployments by passing specific settings as we apply the
chart. These settings are often things like scaling or security
values. In our case, we want our Redis database to be secure
by using a password. To do that, we edit our Makefile so that
we can have a deployment command with some
configurations (see the following listing).

Listing 10.7 Makefile

install-redis:

  helm repo add bitnami https://charts.bitnami.com/bitnami       ❶
  helm install redis-cluster bitnami/redis --set password=$$(

  ➥ tr -dc A-Za-z0-9 </dev/urandom | head -c 13 ; echo '')      ❷

https://helm.sh/docs/intro/install/


 

deploy:

  kubectl apply -f k8s

❶ Uses a specialized Kubernetes deployment of Redis

❷ Generates a random password to use

Run make install-k8s-redis, and we should be able to
watch the new pods come online. The database is now
running, so we can configure our system to run against it.
For that, we need to create a configuration map.

10.7 Updating deployment configuration

In chapter 8, we went through the work of making our
application change its functionality through configuration.
Now we can use this same mechanism using Kubernetes.
Since Kubernetes clusters do not consist of a single machine,
we can’t simply set environmental variables on each system,
nor can we add a configuration file to the individual server.

Instead, Kubernetes treats this as a resource, just like a
deployment or service. We can create and reference a
configuration map, which defines a set of similarly used
configuration values that decouple our environmental
variables from the consuming container. This means we will
have a configuration map for our service to consume. Since
we are now in production, we should also consider updating
our Redis server by using a special configuration type called
a secret. First, let’s make our map.

Configuration maps are just like any other Kubernetes



resource in that we can create them using a file. Let’s create
a new config.yml file under the k8s/hello-api directory.
In it, we will add the code in the following listing.

Listing 10.8 config.yml

apiVersion: v1

kind: ConfigMap

metadata:

  name: hello-api

data:

  database_url: "redis-cluster"     ❶

❶ Sets ENV vars in the config map

Apply it by typing kubectl apply -f k8s/hello-
api/config.yml, and you should see a notification that a
new resource was created.

Before we attach the configuration to our service, we should
also create a secret for our Redis server. Secrets are a little
different than configuration maps in that you don’t want to
store them as files on our system because of a security risk,
nor do you want to make them easily visible within our
cluster.

NOTE While Kubernetes has a special field called a secret, it does not
mean this is encrypted or secure, only that it is obfuscated from the end
user. A robust production system should consider a secret manager like
Vault.

Secrets are mostly used for things like usernames and
passwords. They don’t need to be like your email or bank
login that you need to remember. Instead, as we saw earlier,



we can provide a random string to be the password, and
Kubernetes will manage it for us. When we created our Redis
deployment, a password was provided. We don’t need it; we
can just reference it in the same way as a configuration map.
To put these values in our deployment, we need to set some
environmental variables. Let’s open that and add the code in
the following listing.

Listing 10.9 deployment.yml

apiVersion: apps/v1

kind: Deployment

metadata:

  name: hello-api

spec:

  replicas: 1

  selector:

    matchLabels:

        app: hello-api

  template:

    metadata:

      name: hello-api

      labels:

        app: hello-api

    spec:

      containers:

      - name: hello-api

        imagePullPolicy: Never

        image: holmes89/hello-api:v0.3

        ports:

        - containerPort: 8080

          name: hello-api-svc

        env:

        - name: DATABASE_URL         ❶
          valueFrom:

            configMapKeyRef:

              name: hello-api

              key: database_url

        - name: DATABASE_PASSWORD    ❷
          valueFrom:

            secretKeyRef:

              name: redis-cluster



              key: redis-password

              optional: false

❶ Sets DB URL from the configuration map

❷ Sets Password from the Helm secret

These values should match the values we had in our
application configuration when we run this locally. The
configuration values get loaded into the containers as they
start. To see this work now, we can simply reapply our
deployment using kubectl apply -f k8s. Once it is
running, we can verify the results by querying against the
database by trying a query in a different language:

curl <url>:80/translate/hello?language=arabic

Hopefully, you see the proper translation!

It’s now Friday, two weeks since you started this whole
project, and less than a day from the Kubernetes kickoff
meeting. You sit down and draft a quick email to the team
telling them your status and drafting your findings in a
design document to help the team move forward. Smiling,
you reflect on how far your company has come. You’ve
helped create a culture of experimentation while maintaining
standards and easing development. Everyone seems pleased,
but you know it will not be perfect. Things will need to
change, new applications will need to be developed, and
hopefully you will be able to help.

Summary



Kubernetes clusters abstract deployments across multiple
servers managed by your team.
Deployments create groups of containers called pods that
can scale depending on demand or required availability.
Services route calls to deployments.
Secrets and configuration files can be used to populate
environmental variables for application configuration.



inside back cover

Software development pipeline—automate the movement of code
through various checks and ultimately deliver a product to the
customer



11 The loop

This chapter covers

Outlining the phases of startups and projects
Working through extensions to core areas of improvement

“I honestly didn’t think we would be able to pull this off. It is
amazing what we’ve been able to change in just the past few
weeks,” the project manager says, beaming. “We are going
to move all of our projects to this style of development. If we
are lucky, we can start experimenting with smaller projects
and faster release cycles. The cost of updating software is so
much lighter now. We’ve also reduced our server costs by
deploying small applications as functions and then migrating
them to our Kubernetes cluster.”

You can’t help but smile too. The project manager still hasn’t
seen the future payout of this pattern. When automation
came to textile creation, it changed a 100% manual job into
a 2% manual job. The long-term effects were more jobs in
textile manufacturing and more products for everyday
consumers. By automating 98% of the workflow, your
company will now be able to produce more products and
tools to help your company grow.

The funny thing about this story is that it won’t have an end.
You may end up building a new product again. You may
move up to managing a team of developers. You may end up
leaving your company for another or go out on your own.



What is important is that it starts over. This last chapter is
called “The loop” because, if you remember from chapter 1,
you will need to go back and design after you deliver. This
happens for systems and processes as well. Each time a new
project starts, you should consider what could have been
better the last time or other ideas you want to explore. As
this book comes to a close, we’ll review each stage or part
(startup, acceleration, cruising) that the book was broken
down into as well as each element in that stage (process,
test, deliver) and decide what to look for in the future.

11.1 Startup

It is obviously the goal for any project to be delivered early
and under budget. This doesn’t always happen, but when
creating a new product or proof of concept, anything goes.
We want to establish some processes and quality checks and
not worry too much about scaling.

This is why we focused on development setup, unit tests, and
serverless functions in the first section of this book. Getting
developers on board will be the most important task. It’s like
organizing a worksite. If you have a clear outline of where
things are and where they are going, you will spend less time
giving direction and focus more on the development itself. In
terms of where things were, we established a central
repository and mechanism for moving code through our
organization. This automated some of the work that our team
needed to do and freed them up to focus on the code. Having
this established early on is essential because it frees up



developers to do other work. However, you should consider
how often this task will need to be done before automating it.
If you find yourself stopping your work more than once a
week to do the same task, consider automating it.

Your software will change over time, but no more so than at
the beginning of development. This is why simple tests that
verify core functionality are a worthwhile investment rather
than having end-to-end coverage right at the start. While
some will scoff at accruing technical debt so early on in a
project, I feel that if a project pivots or closes, it will be
considered lost time. The trick is to recognize the turning
point when a project is here to stay and tests should be
improved. A good rule is to consider where you find bugs
early on. If you find bugs or waste time with errors, maybe
you should consider adding tests. Once you’ve crossed this
horizon, a larger code cleanup plan should be considered.
This can be a code cleanup blitz: everyone takes a section of
code and adds tests and documentation.

Deployment should also be cheap and easy, which is why we
selected FaaS and PaaS at the beginning. FaaS is more than
capable of running your entire startup forever. You may find
that you never need to switch from a FaaS because of how
they scale and how your organization is structured. But at
some point, you may find that it is cheaper to change to
another deployment type. Or you may find that the functions
aren’t scaling the way you want. In either case, you need to
keep an eye on usage and metrics around these functions. All
major cloud-hosting platforms provide this sort of insight and
allow you to set alerts. Consider discussing what sort of



alerts you want to have and coming up with a migration plan,
if necessary. You will be happy you considered this and have
a plan early on instead of doing a fire drill in the middle of
the night on a Saturday.

The startup phase of application development is the
equivalent of trailblazing. You may find you’ve walked in the
wrong direction. You may find that you are heading in the
right direction but haven’t walked far enough. You may find
that you shouldn’t even be in this area at all. In all of these
cases, it doesn’t make sense to set down roots quite yet.
Something temporary like a tent would suffice, so consider
this phase the tent phase. You need to be mobile and
temporary, not established. Once you feel the pain of the
lack of durability, consider moving on to the next phase.

11.2 Acceleration

Once you are sure your product is here to stay, the next
phase of development kicks in. This is the acceleration stage:
you start to build rapidly. You’re done blazing trails and have
found a great place for a home base. You not only need to
grow fast but grow in the right direction. That is why we
focused on taking what we’ve built in the startup phase and
expanding it. Now we put up walls and a roof on our tent and
consider how the town will grow.

In this phase, we focused more on standardization and
documentation. In building a home or an office, certain
contractor standards are used. Boards are measured in feet



or meters. Screws have a particular head type. Concrete
needs certain proportions to set properly. We did the same
with our linting and vetting procedures. We also wanted to
establish better documentation to outline where our code is
and how it is used. This is the equivalent of blueprints and
schematics for our system.

We also focused on structuring our application to be modular.
When you still need to be flexible within a constrained space,
the last thing you need is a large and rigid item to maneuver.
Having a modular system allows you to conform to the space
in an easier way. Consider the difference between moving a
couch and three chairs around a sitting room. Which is
easier? In the same way, we structured our code to inject
certain dependencies through the use of interfaces and
tested them using mocked and stubbed tests. This way, each
modular piece was tested independently, meaning we don’t
need to rewrite our tests unless the functionality changes in
that one module.

We then took this new code and put it into a portable
runtime using containers. First, Buildpacks were used to build
optimized containers for Google’s container runtime. Then we
created our containers for developer use cases. Being able to
ship our code around like this shows how teams may need to
interact and share across different application boundaries.
Having the ability to run and document dependencies in this
way can alleviate integration problems in the future. Also
consider the implications this can have on your ability to test
your applications. QA departments or groups can create
temporary deployments to run automated test scripts without



affecting your production deployment.

Acceleration is used to describe this phase because it’s
important to not stop. You’ve figured out where to build, and
now you need to expand. There is a certain speed that an
object needs to reach to rid itself of the pull of gravity. This
can only happen if you continue to accelerate. This is a
compounding force, not just a static one. As you accelerate,
you gain more and more speed, but it is harder and harder to
get to that edge until, finally, you’ve escaped.

11.3 Cruising

Once you’ve escaped the pull of gravity, you no longer need
to accelerate. Instead, you can cruise and explore. This does
not mean that you’re done. You’ve made it. You’ve gotten to
a point where you can have the freedom to improve and
explore. Course corrections will be needed, and mistakes will
still happen.

When we got to this point, we were able to focus on making
our applications flexible and stable. We can change the way
our applications run based on the variables we put in. This
functionality can be extended to move beyond adding default
values or endpoints for database connections. Instead, you
can use it to hide features that have not been completed.
There are even ways to remotely manage these settings,
meaning that you can simply flip a switch on a digital
dashboard, and all of a sudden, your application will run
differently.



Managing this flexibility is what makes your company
succeed. After escaping the gravity of starting, you can now
explore the vast reaches of your business. This becomes the
key part of your success. In The Lean Startup (Currency,
2011), Eric Reise talks about the need to be flexible in a
startup to find what the customer wants and do nothing more
than that. This has been our guiding light throughout the
book: keep it simple and keep changing. This helps us create
the underlying tools necessary to deliver quickly and
efficiently while continuing to improve. Once we are cruising,
we can start building the process around how we develop
features. We can use the behavior-driven development skills
we learned in chapter 9 to help guide and focus our
development. We can then start considering other forms of
testing such as exploratory testing, wherein a team tries to
break our system by generating tons of load or putting
special characters into input fields. This can then be
automated via user-simulated testing frameworks like
Selenium or Cypress.

Hopefully, all of this leads you to find that you need to adjust
your infrastructure. You’ll know when you’ve reached this
point when someone comes to you, says that your cloud bill
is too high, and asks if there is something you can do about
it. This will most likely come before anything else. This is
because you are paying for the abstraction to have AWS or
Google run your application for you. It’s a convenience fee.
Once at this point, you need to focus on infrastructure; only
then does it make sense to look at cool tools like Kubernetes.
This is not a hard-and-fast rule, but focus on simple rather
than complex. If you don’t have the team to support



infrastructure like Kubernetes, you shouldn’t worry about it.
Focus on developing a product that you can show, and then
worry about optimizing how and where it runs.

I say all of this from experience. I’ve been working in
startups for around a decade and have seen how teams grow
and where mistakes are made. All too often, developers and
managers want to reach for a new and shiny technology or
tool to get a job done when they don’t need to. A former
manager of mine once said, “People want to grab for a new
tool all of the time but don’t know how to use it. The old
beat-up tools are old and beat up for a reason—it’s because
they work.” This isn’t to say that you shouldn’t keep an eye
on the new and shiny. In fact, you will need to incorporate
them to keep growing and to keep up, as well as to keep
your developers engaged. The skill lies in determining which
tools to use and how to use them. As a team, you should
discuss, plan, and research before starting down that path
and think about supporting what you make for the future.

Here is an example of wasting time on something shiny from
my recent past. I was working on an application that was
very similar to applications I have built before. A message
came in with some metric data, and I needed to normalize it
to be displayed on various dashboards. I decided that I
wanted to make this system totally event based and that all
communication throughout the service would be
asynchronous, so I built a complex system around a tool I’ve
had my eyes on for a year or so. I was excited and happy
with what I built—until I wasn’t. I soon realized that I had
built something more complex than what was needed, and



while it would scale, it did not need to scale in the way I
thought it would. Then I realized that the library I was using
became deprecated within two weeks of development, and
suddenly the timeline to refactor what I had just written was
moved up.

The lesson is that I built something shiny and new for me,
not for the customer. I over-designed and over-developed,
and then I had to face the consequences of rebuilding what I
had just built. This came from a lack of planning and
discipline on my end. It’s important to find a way to make
sure that doesn’t happen in the future. What was the
mitigating tactic I came up with so this sort of problem
doesn’t happen again? I started writing design documents
and placing them in a folder in my repo so that people can
review designs before the work is done and referred to them
to see how the system was built. These are known as RFCs,
and they are very helpful in allowing teams to think about
and discuss designs before they develop.

These are just some things you will experience as your
project or product grows through the various stages. Let’s
now look at the various elements of each stage and discuss
how you can go beyond what we covered in process, testing,
and delivering.

11.4 Elements of development

When we started this book, I mentioned that what I present
is not new—at least not new to the industry. The hope is that



I provide a handbook to get you and your business started.
Software development didn’t click until I started reading
comparisons between software development and
manufacturing.

I can imagine my various coworkers at my startup all
fulfilling different roles. Wearing hard hats and uniforms, I
can see my manager directing a fellow developer on a forklift
while my project manager moves folders with various orders
from different stations. Meanwhile, a QA team member is
checking boxes on their clipboard, making note of the
slightest imperfection. Finally, our Ops team comes by, loads
it up on a truck, and ships it out of the building.

That was exactly how the teams were divided, and that’s
exactly how work flowed through our system. It took a lot of
work for us to figure out how to work together, build good
relationships, and establish trust. A few months before we
were purchased, I came up with a plan to present how to
streamline this work. The result was a pipeline similar to this
book to help automate the process of taking an idea and
making it real with a few clicks of a mouse.

When perusing the research for this idea, I found that some
great books described CI/CD pipelines, testing
methodologies, and code standardization practices but didn’t
put them together with examples. When I looked at the
books, I organized them into process, testing, and delivery.

11.4.1 Process



Working on a team is hard, whether your team members are
your best friends or complete strangers. Everyone does
things differently, and it’s up to you to figure out how to get
along and make things together. Waste can cause problems
in teams. When you waste someone’s time with an
incomplete feature, sloppy code, or an obvious bug, it can
quickly escalate from annoying to disrespectful. Once
disrespect for a coworker has set in, it becomes difficult for a
team to mesh and collaborate.

Processes save time. By establishing standards and practices,
you reduce the amount of waste produced by saving people’s
time and interactions. If a program can tell you that your
code looks bad, that saves someone else the effort of telling
you, and you will receive fast, concise feedback. Yet these
simple but effective tools are often overlooked. The simple
pipeline that we created at the beginning established our
process, and we added to it throughout the book.
Establishing a process of verifying, testing, and deploying
automatically reduces the time wasted in handing off and
getting to production. This pipeline is illustrated in figure
11.1.



Figure 11.1 Our process of moving code through our pipeline

You should also have a process for your process. While this
seems cyclical, it is helpful. Periodically evaluating how you
are building and delivering your product will help you
improve. This is known as continuous improvement (a
different CI than the continuous integration we did earlier).
Toyota realized that when they were able to increase their
productivity, their employees were not at full capacity,
meaning they could do additional work because their jobs
had become simpler, so Toyota asked their employees to use
this extra time to improve their process: to see where they
were inefficient or falling short. This isn’t done by picking
some arbitrary area that you feel needs improvement. The
employee and manager need metrics, evaluations, and
designs before your improvement becomes part of a process.



What does this mean for your team? Ensure that you and
your teammates are at full capacity and that you are allowing
yourself some time to find areas of improvement. Setting up
metrics around delivery time, build time, and response time
can all be used to improve your application and your process.
Think of how you want to use testing and how your pipeline
is working. What are the ergonomics of your development
environment? Is it hard to set up, or does it require someone
else to get it working? Is your computer crashing if you don’t
run things a particular way? Does it make sense to develop
another way?

Always be thinking of improving not only your software but
also the way you develop software. One way of doing that is
through targeted and appropriate testing.

11.4.2 Testing

Testing in startups is such a tricky thing to get right. Your
code is changing so much and so often that your tests can
sometimes get in the way of what you are developing. You
spend all of your time writing tests for a given piece of code
that changes within a week. Why should you spend time
testing when it can go away in an instant?

Let me ask you this: How do you know if a particular piece of
code will stay or go? You don’t. While I’ve been on the end of
deleting or rewriting my tests more often than I can
remember, I can distinctly remember projects where we had
zero test coverage and paid a penalty for it in the long run.
We soon encountered so many bugs in production that the



time would have been better spent writing the test code in
the first place.

What should you do? Should you just not write tests until it’s
painful? Absolutely not! This will decrease your productivity
and increase your overall lead time. To solve this problem,
we need to think about testing throughout the process, not
just at one particular stage. The overall trend of the book
was to move from simple to complex. In the same way, your
tests should evolve to become more complex and robust by
checking various portions of the code in different ways. This
saves you and the rest of your team time.

But how much should you test, and what should you test?
The answer is to start simply with basic unit tests around
deterministic sections of code. These are your typical
algorithmic functions that calculate balances or error rates.
You give it a set of data, and the same answer kicks out each
time. This is done by using the basic unit tests and the
mocking techniques we talked about in chapters 4 and 7.
Chapter 10 explored integration-level testing against larger
services. We didn’t get to a full-system, end-to-end, UI-to-
API-level testing. All of this should reflect what we see in our
testing pyramid (figure 11.2).



Figure 11.2 The testing pyramid focuses on building a foundation of
unit tests.

By starting with the smaller chunks of work and building up,
we build a solid foundation for testing. If you do anything, do
automated unit tests. These are the foundation of your
quality assessment of your product. Keep these quality
checks as close to the code as possible in all cases, but
specifically for the unit tests. If you find that your unit tests
are breaking or getting in the way, you need to reconsider
your testing process. Writing good unit tests is an art as
much as it is a science. You find what to test and what not to
test. Test-driven development, as mentioned in chapter 4, is
extremely helpful in helping us whittle down tests to their
core elements.

You may find that your approach to testing is fine but that
you are constantly changing them. This is an indication of
thrashing in other places. Do you have a grasp of the code
you are writing? Are others writing quality tests? Are you



getting the correct requirements? Is the project clearly
defined? If any of these questions are answered “no,” you
should have a team meeting.

Testing brings to light more than just bugs in your code. It
helps you find bugs in your process. As an example, I’ve
worked for several companies that have had very
complicated setups for writing tests. Entire test databases
need to be loaded, certain software needs to be installed or
running, and scripts need to run to set up your test
environment. While these by themselves are not dangerous,
they lead to frustration among team members because they
struggle with the setup rather than writing the test. When
you find that team members don’t want to write tests or test
locally due to local development environments, you have a
bug in your process.

The eventual goal in all of this automated testing is the goal
of any sort of automation: freeing others up to do more
creative work. If you can build automated tests suites at all
levels, your team will start to be able to explore areas of
improvement such as these:

Performance of different functions or systems
Usability of the product
Rare or extreme edge cases (before customers identify
them)
User workflow improvements

There are many other areas of improvement. The point is
that testing is an essential part of creating a feedback loop



that is only going to help your company grow. The only way
to find out if it works as expected is to release it to the
public.

11.4.3 Delivering

Options for delivering your products shift more quickly than
sand dunes. Not too long ago, companies installed their own
servers and hardware. Then it became the cloud with all of
these virtualized servers. At the time, there were few options
for cloud computing, but now there are many, and many
more come out each month. Like electricity, computing is
becoming a utility that is accessible to anyone with a
computer and a credit card. Because of the vast expansion of
cloud technologies, tools have been built to sit on top of this
vast system of computational utilities. Platforms like
Kubernetes and serverless frameworks are all operating
within the context of abstracted computational resources
(see figure 11.3).



Figure 11.3 We focused on various *aaS products, but as time goes
on, there may be other abstracted computational resources.

But we cannot expect the changes to stop there. While other
concepts of process and testing will have small improvements
and changes over time, the general principles will stay the
same. How you deliver your product will change significantly
in the future. We are already seeing trends in moving
computational resources onto CDN networks, which were
originally used for caching web pages. Now they can run
lightweight APIs and computations on the “edge” of the
network.

All of this is to say that in a few years, chapters 4, 7, and 10
may refer to outdated technology in the cloud world. In fact,
I guarantee they will. But this doesn’t mean that this book
will become outdated. Like the other concepts, some core



pieces are essential. First and foremost, your pipeline falls
squarely in the realm of delivery. We started the book by
talking about automated delivery and its importance. We also
discussed the fact that delivery can mean multiple things
depending on the technology. We focused on cloud
technologies because they are a simple way to start. But
delivery can happen in IoT devices by pushing software
updates or just downloadable binaries or packages for people
to install. Your pipeline should be able to take the code you
write and deliver an artifact, pure and simple.

The delivery of cloud products will change, but those rules
will also remain the same: start with the easiest and
cheapest until you know more about how your product is
used. In journalism, they tell you to follow the five Ws of
investigation to get to the bottom of a story, and those apply
here as well:

Who will be using your product?
What are they doing with your product?
Where are people using the product?
When are people using it the most?
Why are people using your product?

All of these items are essential for delivering what a
customer needs and wants. The questions almost seem
repetitive in that sense, right? When you deliver your
product, you need to find ways of investigating these areas.
For example, if you find that most of your users are in
Europe and not the United States, you should consider
deploying in a cloud region in Europe until you can scale to



multiple deployment zones. Only with metrics can you find
these things out.

This was a core piece that I was not able to cover in the
book, but it is essential. Metric gathering helps you
determine where to take your product. It answers the
investigation questions and helps you justify future work to
your employer and team. Moving forward, it will be up to you
to determine how to evolve your delivery and product over
time.

11.5 The OODA loop

In the early 1960s, Colonel John Boyd developed a military
strategy called the OODA loop:

Observe—Collect data.
Orient—Analyze the data.
Decide—Determine the course of action based on your
analysis of the data.
Act—Act on what was decided.

The process repeats, which puts you back in the observation
stage (figure 11.4).



Figure 11.4 The OODA loop

I hope you can see the parallels with what we were able to
accomplish in this book. The project manager observed the
cost and maintenance of the old system. In orienting
themselves with the data, they decided that a new service
should be built at a lower cost. Then they acted by starting
this project.

Then it looped!

You observed how the old system was built. Having been
oriented in the current development process, you were able
to decide that the lowest cost method is to write a simple API
run through a FaaS for low cost and maintenance. You acted
by creating a CI process that delivers this simple function.

It looped again!

You observed that your FaaS was a successful proof of
concept. The analysis determined that the process would not
scale to other teams. You decided to increase testing and
create a portable application for other teams to use.

Then it looped again!



Driven by the success of your containerized product,
management observed that others should do the same. To do
this, we required increased levels of process and testing and
needed to create a containerized deployment environment.
We decided to add configuration management and
integration testing to our process and create a Kubernetes
cluster.

And the loop will continue!

When you think of your product development as a loop
instead of a long line, you’ll find that your development
mindset changes. Just like a loop, products don’t end.
Instead, they evolve. Yes, just like all evolution, you will
have products that go extinct, but evolution is full of victors
and losers; that’s just the way it is. It is those who cannot
adapt that die. Instead, focus on how your product can adapt
by observing, orienting, deciding, and acting.

11.6 Conclusion

I recently had lunch with a former manager of mine. We
were discussing his role and how things had changed. “I
don’t get to do much development anymore, and I don’t have
any engineers report directly to me, so I don’t see much
code. But what I can’t seem to get away from is our pipeline.
I’m constantly checking and trying to improve it. I’m not sure
why I can’t leave it alone.”

It made sense to me. He was now at a point where the



details of the code were not important. What was important
was the delivery and then shipping it to customers. He didn’t
need to know how a test was written or what language the
product was written in. All he needed to see was that a
certain standard was established and a process was being
used. Beyond that, he needed to trust the rest of the team to
do their jobs.

The journey up to this point has paralleled my career, along
with that of many others. I started this book by saying that
there wasn’t anything new in these pages, and I hope you
recognized some patterns or processes listed here. The
success of a project lies outside the control of the developer
or the company. The only thing you can do is make sure you
deliver. Delivering a quality product that can quickly adapt to
the market and your customer needs is within your control.
All you need is to build the tools to deliver, assemble a team
around them, and explore.

Summary

A product is a journey, not a destination.
Pipelines help manage processes within a team without
micromanaging.
Change is inevitable, so you need to find a way to orient
yourself within that change.



Appendix A. Using Kotlin

Throughout the book, I have mentioned that software
development and code maintenance patterns are not limited
to a single language or technology, so the following sections
will quickly demonstrate how to introduce these same
processes using three popular languages, Kotlin, JavaScript,
and Python, and present an alternate deployment option
using tools from HashiCorp. To start, we’ll look into Kotlin, a
language built on the JVM and growing in popularity as it
matures.

Kotlin has the benefit of being built on top of existing
technologies in Java, which means that the tools and
patterns are fairly mature. We will build a new CI pipeline
using Kotlin-specific tools, but the steps will remain mostly
the same in our Makefile. To start, we will build our hello-api
again using Kotlin and Redis.

A.1 Frameworks

Frameworks both aid and hinder development teams.
Sometimes a framework will help you launch your product
quickly, but over time, you may find that you struggle
against it, losing your momentum. Taking the time to
research available frameworks and reassessing the ones you
are using are very important. Look for these features:

Ease of use



Documentation quality
Viability

All three are very important. You don’t want to use a
framework that is obscure and no longer supported because
bugs and vulnerabilities may arise, and you will not be able
to fix them. At the same time, you don’t want to adopt a
framework that doesn’t support the technology you want to
use. In the Java development world, an up-and-coming
framework called Quarkus fits all these criteria. Luckily, this
framework can be used with Kotlin and was built to run in
container-based ecosystems. Developed and supported by
Red Hat, Quarkus provides many drivers and out-of-the-box
tools to help rapidly build and test APIs. To set it up, follow
these steps:

Install Java (http://mng.bz/e1mz).
Go to code.quarkus.io.
Name the group com.manning and the artifact hello-
api.

Keep the Build Tool as Maven, Java Version 17.
In the filters section, add Kotlin, RESTEasy Reactive
Kotlin Serialization, and Redis Client.
Click Generate your application, and open your project.

NOTE Spring is a big player in Java/Kotlin frameworks and has excellent
documentation in both Java and Kotlin.

Once these steps are complete, we can unzip our project and
get started.

http://mng.bz/e1mz


A.2 Coding

Quarkus gives us a lot without us needing to do anything.
Like many modern JVM-based frameworks, Quarkus makes
extensive use of annotations to take care of most of the
wiring. This can be extremely helpful but also a mystery
when it comes time for debugging. We first create four files
in our com/manning/hello-api package. First is the main
function, which we will call TranslationResource.kt. This
will be our entry point for translations, as shown in the
following listing.

Listing A.1 TranslationResource.kt

package com.manning.hello-api

 

import javax.inject.Inject

import javax.ws.rs.GET

import javax.ws.rs.Path

import javax.ws.rs.PathParam

import javax.ws.rs.Produces

import javax.ws.rs.QueryParam

import javax.ws.rs.core.MediaType

 

@Path("/translate")                                    ❶
class TranslationResource {

 

    @Inject                                            ❷
    private lateinit var service: ITranslationService

 

    @GET                                               ❸
    @Path("/{word}")                                   ❹
    @Produces(MediaType.APPLICATION_JSON)

    fun translate(

        @PathParam("word") word: String,

        @QueryParam("language") language: String?

    ) = service.translate(language, word)              ❺
}



❶ Base path for the request

❷ Dependency injection of translation service

❸ REST GET method

❹ Subpath for request

❺ Call service based on path and query params

When our application starts, Quarkus will look for all of our
paths and add them to the main controller, just like we did
manually in Go. There is nothing special about this code
other than that we mount an interface as our service to
handle the translation. This interface will act as a barrier
behind the actual Redis implementation, just like we did in
Go. That interface is defined in ITranslationService.kt
as in the following listing.

Listing A.2 ITranslationResource.kt

package com.manning.hello-api

 

interface ITranslationService {

    fun translate(language: String?, word: String): Translation?    ❶
}

❶ Defines interface method that returns optional translation object

Pretty simple, right? It’s almost exactly the same as our Go
interface. We optionally return a Translation type. This is
defined in a separate Translation.kt file which will
replicate our Translation struct from Go (see the following
listing).

Listing A.3 TranslationResource.kt



package com.manning.hello-api

 

data class Translation(      ❶
    val language: String?,

    val translation: String?

)

❶ Creates a data class or DTO for messages

Finally, we can get to the Redis connection. Here, we have a
bit more code (see the next listing) and the actual retrieval
from Redis itself.

Listing A.4 RedisTranslationService.kt

package com.manning.hello-api

 

import io.quarkus.redis.datasource.RedisDataSource

import org.eclipse.microprofile.config.inject.ConfigProperty

import javax.enterprise.context.ApplicationScoped

import javax.inject.Inject

 

@ApplicationScoped

class RedisTranslationService : ITranslationService {

 

    @Inject

    private lateinit var redisAPI: RedisDataSource        ❶
 

    @ConfigProperty(name = "default.language")

    var defaultLanguage: String? = "english"              ❷
 

    override fun translate(language: String?, word: String): Translation? {

        val commands = redisAPI?.string(String::class.java)

        val lang = language?.lowercase() ?: defaultLanguage

        val key = "$word:$lang"

        val translation = commands?.get(key)              ❸
        return if (translation == null) {

            null

        } else {

            Translation(language = lang, translation = translation)

        }

    }



}

❶ Injects Redis client

❷ Sets default language from config

❸ Gets translation from Redis

In order for Redis to connect, we need to provide some
properties that it can grab to connect. These values can be
overridden, just like in Go, by passing in environmental
variables. By default, we want to use localhost, so we will fill
out our resources/application.properties file like this.

Listing A.5 application.properties

quarkus.redis.hosts=redis://localhost:6379     ❶
quarkus.redis.client-type=standalone

quarkus.datasource.jdbc=false

 

default.language=english

❶ Default property of where to connect to Redis

Now that we have the code, let’s introduce how we build and
run it. Then we will use this for testing. Finally, we’ll wrap
this all in a pipeline.

A.3 Maven

Maven is a build tool under the Apache project that allows
Java developers to manage their project dependencies (like
our go.mod file) as well as incorporate different build and
testing scripts (like our Makefile). Other build tools such as
Gradle can be used to fulfill similar tasks. In this section, we



will focus on using Maven. Maven projects are managed by
using a pom.xml file, which you will find at the root of the
setup project you downloaded along with an mvnw script. This
script is a wrapper around basic Maven tooling so that
developers don’t need to worry about environment-specific
variables (e.g., their operating system and base Maven file).

We will use Maven to build, run, and test our code. First, let’s
run what we’ve written. Make sure you have your Redis
database running, and then type in ./mvnw compile
quarkus:dev in a terminal window. You’ll see a bunch of
files being downloaded and then compiled, and finally you’ll
see a message that says the server is listening. At this point,
try your trusty curl commands from previous chapters to
test it.

Now that we have an understanding of how Maven looks, we
will use it for running our unit tests.

A.4 Testing

For our testing example, we will jump right into integration
tests because they give us a sense of how tests are written in
Kotlin, and integration tests typically are more involved at
setup and teardown. This will give us a great overview while
providing a jumping-off place to fill in the rest of the testing
pyramid. For our test, we again use a container for the
database and a library called RestAssured, which will give us
a nice REST testing framework for verification. To get
started, create a file called TranslationTest.kt in the test



folder (see the following listing).

Listing A.6 TranslationTest.kt

package com.manning.hello-api

 

import io.quarkus.test.common.QuarkusTestResource

import io.quarkus.test.junit.QuarkusTest

import io.restassured.RestAssured.given

import org.hamcrest.CoreMatchers.equalTo

import org.junit.jupiter.api.Test

 

@QuarkusTestResource(RedisTestContainer::class)     ❶
@QuarkusTest                                        ❷
class TranslationTest {

 

    @Test

    fun testHelloEndpoint() {

        given()

            .`when`().get("/translate/hello")

            .then()

            .statusCode(200)

            .body("translation", equalTo("Hello"))

            .body("language", equalTo("english"))

    }

 

    @Test

    fun testHelloEndpointGerman() {

        given()                                     ❸
            .`when`().get("/translate/hello?language=GERMAN")

            .then()

            .statusCode(200)

            .body("translation", equalTo("Hallo"))

            .body("language", equalTo("german"))

    }

}

❶ Depends on a container

❷ Tells the build tool that this is a test

❸ Tests the request using fluent assertion

The tests should seem familiar from earlier in the book. Now



we need to create another file that tells our testing plugin
that this particular test is an integration test. To do that, we
simply create a file with the content in the following listing.

Listing A.7 TranslationTest.kt

package com.manning.hello-api

 

import io.quarkus.test.junit.QuarkusIntegrationTest

 

@QuarkusIntegrationTest                   ❶
class TranslationIT : TranslationTest()

❶ Defines this test suite as an integration test

That’s it! Finally, we need our database container to run our
tests against. To do this, we add a dependency to our
pom.xml file. There, under dependencies, you will add the
lines in the following listing.

Listing A.8 pom.xml

<dependency>

      <groupId>org.testcontainers</groupId>

      <artifactId>testcontainers</artifactId>

      <version>1.17.3</version>

      <scope>test</scope>

    </dependency>

Then we create a file called RedisTestContainer.kt and
add the code in the following listing.

Listing A.9 RedisTestContainer.kt

package com.manning.hello-api

 

import io.quarkus.test.common.QuarkusTestResourceLifecycleManager



import org.testcontainers.containers.BindMode

import org.testcontainers.containers.GenericContainer

import org.testcontainers.utility.DockerImageName

 

class RedisTestContainer : QuarkusTestResourceLifecycleManager {

 

    private val redisContainer = GenericContainer(DockerImageName.parse(

    ➥"redis:latest"))                                     ❶
        .withExposedPorts(6379)

        .withClasspathResourceMapping("data", "/data", BindMode.READ_ONLY)

 

    override fun start(): MutableMap<String, String> {     ❷
        println("STARTING redis ")

        redisContainer.start()

        println("redis://${redisContainer.getHost()}:${

        ➥redisContainer.getMappedPort(6379)}")

        return mutableMapOf(Pair("quarkus.redis.hosts", "redis://${

        ➥redisContainer.getHost()}:${

        ➥redisContainer.getMappedPort(6379)}"))

    }

 

    override fun stop() {

        println("STOPPING redis")

        redisContainer.stop()

    }

}

❶ Creates a redis container with the mounted data directory

❷ Establishes a command map for retrieving messages

That’s it! To test, run ./mvnw clean test, and you will see
your test run successfully!

A.5 Linting and the initial pipeline

For linting, we use an open source tool called ktlint, which
is written and maintained by Pinterest as an open source
project. It supports both a downloadable, standalone app as
well as a Maven plugin. Here, we will use the prebuilt binary



to make installation a little more straightforward. We often
make linting the first step of our pipeline because it is the
simplest and often the fastest step to run. Let’s create our
pipeline up to build and deploy, which we will finalize in the
next section.

Create a new workflow file in
.github/workflows/pipeline.yml using the code in the
following listing.

Listing A.10 pipeline.kt

name: Kotlin Checks

 

on:

  push:

    branches:

      - main

env:

  REGISTRY: ghcr.io

  IMAGE_NAME: ${{ github.repository }}

 

jobs:

  format-check:

    name: Check formatting

    runs-on: ubuntu-latest

    steps:

    - uses: actions/checkout@v3

    - uses: actions/setup-java@v3           ❶
      with:

        distribution: 'temurin'

        java-version: '17'

        cache: 'maven'

    - name: Download Ktlint                 ❷
      run: curl -sSLO https://github.com/pinterest/ktlint/releases/

      ➥download/0.47.1/ktlint && chmod a+x ktlint

    - name: Lint

      run: ./ktlint

  test:

    name: Test Application

    needs:



      - format-check

    runs-on: ubuntu-latest

    steps:

    - uses: actions/checkout@v3

    - uses: actions/setup-java@v3

      with:

        distribution: 'temurin'

        java-version: '17'

        cache: 'maven'

    - name: Run Test

      run: ./mvnw clean test                ❸

❶ Defines the Java version

❷ Installs and runs ktlint

❸ Deletes all old files and runs tests

If you commit your changes and push them, you should see
the tests run and the lint pass!

A.6 Containerizing

The final step is putting this application into a container. To
do this, we use another neat Quarkus trick. In recent years,
specialized compilers have been developed to allow Java
code to be compiled into native system code. This allows
your containers and packages to be smaller in size and to run
faster. Additionally, you no longer need to be as concerned
about JVM security patches and updates; instead, you only
need to worry about the OS’s security problems. Quarkus has
taken this technology and added it to the build system for
Quarkus apps. Quarkus even provides you with the Maven
steps and Docker container to use, so right away we can add
the last job to our pipeline and verify that it works (see the
following listing).



Listing A.11 pipeline.kt

name: Kotlin Checks

 

jobs:

...

  containerize:

    name: Build and Push Container

    runs-on: ubuntu-latest #

    needs: test

    steps:

    - uses: actions/checkout@v3

    - uses: actions/setup-java@v3

      with:

        distribution: 'temurin'

        java-version: '17'

        cache: 'maven'

    - name: Build

      run: ./mvnw package -Pnative -Dquarkus.native.container-build=true   ❶
    - name: Build Container

      run: docker build -f src/main/docker/Dockerfile.jvm -t

      ➥gcr.io/${{ secrets.GCP_PROJECT_ID }}/hello-api:kotlin-latest       ❷
    - name: Set up Cloud SDK

      uses: google-github-actions/setup-gcloud@main

      with:

        project_id: ${{ secrets.GCP_PROJECT_ID }}

        service_account_key: ${{ secrets.gcp_credentials }}

        export_default_credentials: true

    - name: Configure Docker

      run: gcloud auth configure-docker --quiet

    - name: Push Docker image

      run: docker push gcr.io/${{ secrets.GCP_PROJECT_ID }}/hello-api:

      ➥kotlin-latest

    - name: Log in to the GHCR

      uses: docker/login-action@master

      with:

        registry: ${{ env.REGISTRY }}

        username: ${{ github.actor }}

        password: ${{ secrets.GITHUB_TOKEN }}

    - name: Tag for Github

      run: docker image tag gcr.io/${{ secrets.GCP_PROJECT_ID }}/hello-api:

      ➥kotlin-latest ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}:

      ➥kotlin-latest

    - name: Push Docker image to GCP

      run: docker push ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}:

      ➥kotlin-latest                                                      ❸



❶ Builds a native Java binary

❷ Uses an internal Dockerfile to build a container

❸ Pushes the container to the registry

Once you’ve pushed this last change, download your
container or deploy it to your Kubernetes cluster to see how
it works!

Kotlin and Quarkus are both relatively new in the world of
Java-based languages and frameworks. This makes them
poised to meet the challenges of current software
development. While this chapter just touches the surface, I
encourage you to dig deeper and experiment more because
JVM languages are not going away, and you may find a lot of
work in helping migrate and improve Java applications in the
future.



Appendix B. Using Python

In this appendix, we will build an API and pipeline with
Python-specific tools using Python 3.8 with pip installed.
Please ensure that you have it installed
(https://www.python.org/downloads/).

B.1 Poetry

Before we build our project, we need to create a repeatable
environment to work in. Python follows a common practice of
sharing libraries among several projects. Languages like C,
Java, and even Go use a central repository of libraries that
are downloaded and stored locally on your machine. The
problem with this process is that if you are not keeping track
of the versions, the next person who sets up their
development environment may have different versions of
libraries, which can introduce new issues or break current
functionality. Most of these languages, therefore, store the
version of the library so that the environment can be set up
almost identically.

With Go, we have the go.mod file which will allow Go to
redownload all dependencies for a given module. Python
provides us with a very basic option called the virtual
environment which allows developers to act like they are
running on a fresh installation of Python with no additional
libraries. Any subsequent libraries are installed using a tool
called pip. After they are installed, you can create a

https://www.python.org/downloads/


requirements document. This is created by the pip freeze
command which outputs all libraries installed. If we want
something more explicit in our application dependency, it will
require us to use a separate tool called Poetry to handle
libraries, installation, and building.

First, we need to install Poetry by running this command:

curl -sSL https://install.python-poetry.org | python3 -

Then we create a new project by typing the command:

poetry new hello-api

Simple as that! Now let’s write our API.

B.2 Coding

We will use a combination of tools to host our API. The
framework that will create the handlers is called FastAPI, a
relatively new routing library that is, well, fast. It will run on
a uvicorn server. As before, our backend will require a Redis
database, so we need those dependencies as well. To add
those libraries to our project, we simply type this:

poetry add fastapi \

uvicorn redis

The libraries will be installed, and your pyproject.toml will
be updated for these dependencies. Now we can create our



application. Create a new file in the hello_api directory
called app.py, and add the code in the following listing.

Listing B.1 app.py

from fastapi import FastAPI, Depends

import hello_api.deps as deps

from hello_api.repo import RepositoryInterface

 

app = FastAPI()                ❶
 

repo = deps.redis_client       ❷
 

 

@app.get("/translate/{word}")

def translation(

    word: str, language: str = "english", repo: RepositoryInterface =

    ➥Depends(repo)

):                             ❸
    resp = repo.translate(language, word)

    return {"language": language.lower(), "translation": resp}

❶ Creates a base handler

❷ Loads the redis client

❸ Injects the Redis client into the handler

This handler should look familiar. Here, we create the app, a
set of dependencies, and a route to translate the word. Our
translation function requires an interface and a dependency
to fulfill the interface, so let’s create those. First, we create
the interface in a file called repo.py with the code in the
following listing.

Listing B.2 repo.py

class RepositoryInterface:                                  ❶
    def translate(self, language: str, word: str) -> str:



        """translates word into given language"""

        pass

❶ Establishes an interface that can be duck typed

While we name this an interface, it technically isn’t because
Python doesn’t have explicit interface types. This is a simple
way to leverage Python’s duck-typing system, just like we did
in Go. This interface is more like an abstract class in which
the methods are not supposed to be implemented, only
defined. All we need to do is implement the interface in our
redis.py with the code in the following listing.

Listing B.3 repo.py

import redis

import os

from hello_api.repo import RepositoryInterface

 

class RedisRepository(RepositoryInterface):                     ❶
 

    host: str = os.environ.get("DB_HOST", "localhost")

    port: str = os.environ.get("DB_PORT", "6379")

    default_language: str = os.environ.get("DEFAULT_LANGUAGE", "english")

 

    def __init__(self, client=None) -> None:                    ❷
        if client is None:

            self.client = redis.Redis(host=self.host, port=self.port)

        else:

            self.client = client

 

    def translate(self, language: str, word: str) -> str:       ❸
        """translates word into given language"""

        lang = language.lower() if language is not None else

        ➥self.default_language

        key = f"{word.lower()}:{lang}"

        return self.client.get(key)

❶ Implements the interface

❷ Instantiates the client or sets an optional client variable



❸ Satisfies the interface

Here, you can see that we extend the interface and
implement its methods. We can create our connection and
handle the requests. The last step is to leverage FastApi’s
dependency injection tool by creating a file called deps.py,
which will house functions to fetch the required dependency
to run the service with the code in the following listing.

Listing B.4 deps.py

from hello_api.repo import RepositoryInterface

from hello_api.redis import RedisRepository

 

 

def redis_client() -> RepositoryInterface:    ❶
    return RedisRepository()

❶ Required for FastAPI dependency injection

To run your application, type

uvicorn hello_api.app:app

and you should be in business! Now let’s add our checks.

B.3 Testing

We will use a different approach to testing our Python
application than what we did in the Go chapters. Instead of
using a Redis container to simulate the database connection,
we will instead use an in-memory Redis replacement called
redislite. We will use dependency injection to replace the



actual connection, and everything should be the same. We
need to add two testing libraries for our tests to work by
running the following commands:

poetry add redislite \

requests

Create a directory called tests, and add the code in the
following listing.

Listing B.5 test_hello_api.py

from hello_api.app import app, repo

from fastapi.testclient import TestClient

from redislite import Redis

 

from hello_api.repo import RepositoryInterface

from hello_api.redis import RedisRepository

import unittest

 

 

class AppIntegrationTest(unittest.TestCase):

    def redis_client(self) -> RepositoryInterface:            ❶
        self.fake_redis = Redis()

        self.fake_redis.set("hello:german", "Hallo")

        self.fake_redis.set("hello:english", "Hello")

 

        return RedisRepository(client=self.fake_redis)

 

    def setUp(self):                                          ❷
        self.repo = self.redis_client()

        self.client = TestClient(app)

        app.dependency_overrides[repo] = self.redis_client    ❸
 

    def test_english_translation(self):

        response = self.client.get("/translate/hello")

        assert response.status_code == 200

        assert response.json() == {"language": "english", "translation":

        ➥"Hello"}

 

    def test_german_translation(self):



        response = self.client.get("/translate/hello?language=GERMAN")

        assert response.status_code == 200

        assert response.json() == {"language": "german", "translation":

        ➥"Hallo"}

❶ Internal function to create a mock redis client

❷ Sets up the test

❸ Overrides the dependency function with an internal function

Now we should be able to verify that our tests work. To do
this, we will use a tool to help us keep our tests and
formatting standardized.

B.4 Nox

Nox is an open source tool that allows you to organize and
standardize your testing and linting scripts. To use this tool,
you must install Nox globally, so open a new terminal
window, and type the following commands:

pip install --user --upgrade nox

Next, we create a noxfile.py file at the root of the project.
We then add the options in the next listing to the file.

Listing B.6 noxfile.py

import nox

 

nox.options.sessions = "lint", "tests"                   ❶
locations = "hello_api", "tests", "noxfile.py"           ❷
 

@nox.session

def tests(session):



    session.run("poetry", "install", external=True)      ❸
    session.run("pytest")

 

@nox.session

def lint(session):

    args = session.posargs or locations

    session.install("flake8", "flake8-black")

    session.run("flake8", *args)

❶ Jobs that can be completed

❷ Files the jobs can be completed on

❸ Runs the command

That’s it! Notice that Nox uses flake8 as our linter. We want
to configure it a bit, and to do this, we need to create a
.flake8 file and add the code in the following listing.

Listing B.7 \.flake8

[flake8]

select = E123,W456      ❶
max-line-length = 88    ❷

❶ Defines rules for linting

❷ Sets the max line width

Nox will take care of the rest for us. To lint and test, we need
to run the following commands:

nox -rs lint

nox -rs tests

You will see the script run through each of these stages with
the proper output. We have the linting and testing
incorporated, which are the last steps before the pipeline
defines the container it should run in.



B.5 Defining the container

Packaging scripting languages are a bit different than
packaging compiled languages. In our Go and Kotlin
examples, we built the application and were left with a file
that we could distribute and copy around. In languages such
as Python and JavaScript, it becomes more important to set
up the environment correctly for the scripts to run;
otherwise, they will fail on startup or in the middle of a
request. This is why we chose a package and dependency
manager like Poetry. It will manage all of this for us. Let’s
define our container, as in the next listing.

Listing B.8 Dockerfile

FROM python:3.10.7-slim-bullseye as base

 

ENV PYTHONFAULTHANDLER=1 \                                              ❶
    PYTHONHASHSEED=random \

    PYTHONUNBUFFERED=1

 

WORKDIR /app

 

FROM base as builder

 

ENV PIP_DEFAULT_TIMEOUT=100 \

    PIP_DISABLE_PIP_VERSION_CHECK=1 \

    PIP_NO_CACHE_DIR=1 \

    POETRY_VERSION=1.1.15

 

RUN pip install "poetry==$POETRY_VERSION"                               ❷
COPY pyproject.toml poetry.lock ./

RUN poetry config virtualenvs.create false \

  && poetry install

COPY hello_api hello_api

ENV PORT 8080

EXPOSE 8080

CMD ["uvicorn","hello_api.app:app","--port","8080","--host","0.0.0.0"]  ❸



❶ Production-level environmental variables for container

❷ Installs poetry

❸ Runs server

We have our Dockerfile and can move on to our pipeline.

B.6 Creating the pipeline

This pipeline will lint, test, and build the container. To get
started, create a new workflow file in
.github/workflows/pipeline.yml and add the following
code. First we will set up Nox to run our linter (see the
following listing).

Listing B.9 pipeline.yml

name: Python Checks

 

on:

  push:

    branches:

      - main

 

env:

  REGISTRY: ghcr.io

  IMAGE_NAME: ${{ github.repository }}

 

jobs:

  format-check:

    name: Check formatting

    runs-on: ubuntu-latest

    steps:

    - uses: actions/checkout@v3

    - uses: actions/setup-python@v4

      with:

        python-version: '3.10'

    - run: pip install --user --upgrade nox    ❶
    - name: Run Check Lint



      run: nox -rs lint                        ❷

❶ Installs Nox

❷ Runs Nox lint

Then, in the next listing, we will use Nox to run our tests.

Listing B.10 pipeline.yml

name: Python Checks

...

jobs:

...

  test:

    name: Test

    runs-on: ubuntu-latest

    needs: format-check

    steps:

        - uses: actions/checkout@v3

    - uses: actions/setup-python@v4

      with:

        python-version: '3.10'

    - run: pip install --user --upgrade nox

    - name: Run Tests

      run: nox -rs tests    ❶

❶ Uses Nox to run tests

Finally, we will build and ship our container in the following
listing.

Listing B.11 .pipeline.yml

name: Python Checks

...

jobs:

...

  containerize:

    name: Build and Push Container

    runs-on: ubuntu-latest #

    needs: test



    steps:

    - uses: actions/checkout@v3

    - name: Build Container

      run: docker build -t gcr.io/${{ secrets.GCP_PROJECT_ID }}/hello-

      ➥api:python-latest .                                              ❶
    - name: Set up Cloud SDK

      uses: google-github-actions/setup-gcloud@main

      with:

        project_id: ${{ secrets.GCP_PROJECT_ID }}

        service_account_key: ${{ secrets.gcp_credentials }}

        export_default_credentials: true

    - name: Configure Docker

      run: gcloud auth configure-docker --quiet

    - name: Push Docker image

      run: docker push gcr.io/${{ secrets.GCP_PROJECT_ID }}/hello-

      ➥api:python-latest

    - name: Log in to the GHCR

      uses: docker/login-action@master

      with:

        registry: ${{ env.REGISTRY }}

        username: ${{ github.actor }}

        password: ${{ secrets.GITHUB_TOKEN }}

    - name: Tag for Github

      run: docker image tag gcr.io/${{ secrets.GCP_PROJECT_ID }}/hello-

      ➥api:python-latest ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}:

      ➥python-latest

    - name: Push Docker image to GCP

      run: docker push ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}:python-

      ➥latest

❶ Builds a Docker image

Due to how large the Python ecosystem is, at this point there
may be a bunch of other ways to create and deploy your
Python application. The point is that tools and processes can
be put in place to protect your code and reduce bugs. This is
especially important for languages like Python because they
trade type safety and compile time errors for flexibility,
allowing for rapid development.



Appendix C. Using JavaScript

Node.js is a JavaScript runtime that allows developers to
write applications to run outside of the web browser. This has
led to the growth of JavaScript libraries, helping developers
write backend services. We can use tools to connect to
databases and create APIs. Let’s get started.

C.1 Node Package Manager

NPM, or the Node Package Manager, is the central build and
dependency management tool we’ll use for our API. We will
use the Express library. First, make sure you have Node
installed from https://nodejs.org/en/download/; then install
the Express Generator application:

npm install express-generator -g

express hello-api

Once the code has been generated, edit the package.json
file using the code in the following listing.

Listing C.1 package.json

{

    "name": "hello-api",                          ❶
    "version": "0.0.1",

    "description": "Simple api",

    "private": true,

    "jest": {                                     ❷
        "testEnvironment": "node"

    },

https://nodejs.org/en/download/


    "scripts": {                                  ❸
        "test": "jest --config jest.config.js",

        "start": "node ./bin/www",

        "format": "prettier --single-quote --write --use-tabs .",

        "check-format": "prettier --single-quote --use-tabs --check .",

        "lint": "eslint \"**/*.js\" --max-warnings 0 --ignore-pattern

        ➥node_modules/"

    },

    "author": "Joel Holmes",

    "license": "MIT",

    "dependencies": {                              ❹
        "debug": "^4.3.4",

        "express": "^4.18.1",

        "morgan": "^1.10.0",

        "redis": "^4.3.0"

    },

    "devDependencies": {                           ❺
        "eslint": "^8.23.0",

        "eslint-plugin-jest": "^27.0.1",

        "jest": "^29.0.0",

        "prettier": "^2.7.1",

        "supertest": "^6.2.4",

        "testcontainers": "^8.13.1"

    }

}

❶ The name of the package

❷ Jest configuration settings

❸ NPM has a built-in execution mechanism to run scripts based on locally installed
packages.

❹ Libraries required to run the application

❺ Libraries to test or develop the application

The package.json file houses all of the dependencies and
scripts needed to test, build, and run our application. After
making these changes, type npm install to add all of these
dependencies to our project. We have set up the basic
structure and can now start coding.



C.2 Coding

You’ll notice that Express generated a lot of files for you. The
main one is app.js. This is your entry route to your API.
Open it, and replace it with the code in the following listing.

Listing C.2 app.js

let express = require('express');                                 ❶
let logger = require('morgan');

 

let translateRouter = require('./routes/translation');            ❷
const { Repository } = require('./repository/translation');       ❸
 

class App {

    app = express();

    repo = undefined;

    constructor(host, port) {                                     ❹
        this.app.use(logger('dev'));

        this.app.use(express.json());

        this.app.use(express.urlencoded({ extended: false }));

        this.repo = new Repository(host, port);

        this.app.get('/translate/:word', translateRouter(this.repo));

    }

 

    async close() {

        return this.repo.close();

    }

}

 

module.exports = { App };                                         ❺

❶ Imports express framework

❷ Imports translation handler

❸ Imports repository

❹ Constructs application class

❺ Exports the app to be used by the running application



Hopefully, you notice the difference between the generated
code and what you wrote. We use the object-oriented
paradigm of JavaScript to help us with future unit testing.

We have a router and repository to define. Let’s define the
router first. Create a directory called routes. This will house
our translation.js file and will be the location of any other
routes or groups of routes that you want to define. Create
the file, and add the code in the following listing.

Listing C.3 translation.js

const translation = (translationService) => {                            ❶
    return async (req, res) => {

        let language = req.query.language || 'english';                  ❷
        const resp = await translationService.translate(language,

        ➥ req.params.word);

        resp                                                             ❸
            ? res.json({ language: language.toLowerCase(), translation:

              ➥ resp })

            : res.status(404).send('Missing translation');

    };

};

 

module.exports = translation;

❶ Functional definition for handler

❷ If a query parameter is not passed, default to English.

❸ If a response is given, return it; otherwise, it returns 404.

As you can see, this function requires the translation service
to be passed to the function. This is different from what we
do in other languages with dependency injection and
stronger type checks. Instead, we pass the function in to
handle the business logic. Alternatively, we could have



created a class, as we did with the main app.

NOTE We are organizing our files by function and not by domain,
meaning we place all routes in a directory and all repository methods in
each directory. An alternate way is to have a translation directory
with a repo.js and a route.js file.

Now we need to define the translation repository. Create a
directory called repository and a file called
translation.js, and add the code in the following listing.

Listing C.4 translation.js

const redis = require('redis');

 

class Repository {

    constructor(host, port) {

        this.host = host ? host : process.env.DB_HOST || 'localhost';

        this.port = port ? port : process.env.DB_PORT || '6379';

        this.defaultLanguage = process.env.DEFAULT_LANGUAGE || 'english';

        const connectionURL = `redis://${this.host}:${this.port}`;

        console.log(`connecting to ${connectionURL}`);

        this.client = redis.createClient({ url: connectionURL });

        this.client.on('connect', () => {                             ❶
            console.log('connected to redis');

        });

        this.client.on('error', (err) => console.log('client error',

        ➥ err));                                                     ❷
        this.client.connect();

    }

 

    async translate(language, word) {

        const lang = language                                         ❸
            ? language.toLowerCase()

            : this.defaultLanguage.toLowerCase();

        const key = `${word.toLowerCase()}:${lang}`;

        const val = await this.client.get(key);

        return val;

    }

    async close() {

        this.client.quit();



    }

}

 

module.exports = { Repository };

❶ Adds logging when the database is connected

❷ Adds logging for errors

❸ Checks for language; if not specified, uses the default

Here, we build a connection to the Redis database and a
function to retrieve the translation. To test this, open a
terminal window and type npm start. We have a functioning
API; let’s test it.

C.3 Testing

We will jump right into an integration test using the testing
framework Jest and a container library called
testcontainers, which will provide us with a Redis
database. Before we write our tests, we want to create a
configuration file for our test framework Jest. Create a
jest.config.js file, and add the following code:

module.exports = {

    testTimeout: 30000,

};

This will give our container time to start before our tests.
Now we can write our integration test using the code in the
following listing.

Listing C.5 app.test.js



const { GenericContainer } = require('testcontainers');

const { App } = require('./app');

const request = require('supertest');

 

let container;

let app;

let api;

 

beforeAll(async () => {                                               ❶
    container = await new GenericContainer('redis')

        .withExposedPorts(6379)

        .withCopyFileToContainer('./data/dump.rdb', '/data/dump.rdb')

        .start();

    const port = container.getMappedPort(6379);

    const host = container.getHost();

    api = new App(host, port);                                        ❷
    app = api.app;

});

 

afterAll(async () => {

    await api.close();

    await container.stop();

});

 

describe('Translate', () => {

    test('hello translation in english to be hello', async () => {    ❸
        const response = await request(app).get('/translate/hello');

        expect(response.body).toEqual({

            translation: 'Hello',

            language: 'english',

        });

        expect(response.statusCode).toBe(200);

        return response;

    });

    test('hello translation in german to be hallo', async () => {

        const response = await request(app).get(

        ➥'/translate/hello?language=GERMAN');

        expect(response.body).toEqual({ translation: 'Hallo', language:

        ➥'german' });

        expect(response.statusCode).toBe(200);

        return response;

    });

});

❶ Sets up tests by starting a container



❷ Passes values to construct the app

❸ Writes a test to call the endpoint

Now run npm test to see your tests pass.

C.4 Linting

Our next step is to check formatting and static code analysis.
We will use Prettier and ESLint to help us with these steps. In
the package .json code, we added scripts for running these
libraries for formatting, checking format, and linting. To run
these, simply type the following commands:

npm run format

npm run check-format

For linting, we need to create a configuration file for our
linter (see the next listing).

Listing C.6 \.eslintrc.json

{

    "env": {                             ❶
        "node": true,

        "commonjs": true,

        "es2021": true

    },

    "extends": "eslint:recommended",

    "overrides": [                       ❷
        {

            "files": ["**/*.test.js"],

            "env": {

                "jest": true

            },

            "plugins": ["jest"],

            "rules": {



                "jest/no-disabled-tests": "warn",

                "jest/no-focused-tests": "error",

                "jest/no-identical-title": "error",

                "jest/prefer-to-have-length": "warn",

                "jest/valid-expect": "error"

            }

        }

    ],

    "parserOptions": {

        "ecmaVersion": "latest"

    },

    "rules": {                           ❸
        "indent": ["error", "tab"],

        "linebreak-style": ["error", "unix"],

        "quotes": ["error", "single"],

        "semi": ["error", "always"]

    }

}

❶ Defines the environment

❷ Passes in Jest formatting rules

❸ Defines additional formatting rules

Now you can run the lint step by typing

npm run lint

It was pretty simple to incorporate these steps right into our
script. This shows the power of having a single tool that can
fulfill multiple areas of our pipeline. The final step before we
assemble our pipeline is to define the container.

C.5 Defining the container

Much like the Python container we made in appendix B,
JavaScript requires an environment to be set up for the
scripts to run. NPM is installed as part of the base image so



that we can run the install process for our dependencies and
run the main app. The following listing shows our container
definition.

Listing C.7 Dockerfile

FROM node:17                    ❶
 

# Create app directory

WORKDIR /usr/src/app

 

# Install app dependencies

COPY package*.json ./

 

RUN npm ci --only=production    ❷
 

# Bundle app source

COPY . ./

ENV PORT 8080

ENV NODE_ENV production

EXPOSE 8080

CMD [ "node", "./bin/www" ]     ❸

❶ Base image

❷ Cleans and installs dependent packages required for production

❸ Runs using a wrapper script provided by Express

Finally, we can build our pipeline.

C.6 Building the pipeline

This pipeline is similar to those in the other chapters in that it
will have linting, testing, and container steps, as shown in
the following listing.

Listing C.8 pipeline.yml



name: JavaScript Checks

 

on:

  push:

    branches:

      - main

env:

  REGISTRY: ghcr.io

  IMAGE_NAME: ${{ github.repository }}

 

jobs:

  format-check:

    name: Check formatting

    runs-on: ubuntu-latest

    steps:

    - uses: actions/checkout@v3

    - uses: actions/setup-node@v3

      with:

       node-version: 17

    - run: npm ci                ❶
    - name: Run Check Format

      run: npm run check-format  ❷
    - name: Run Check Lint

      run: npm run lint          ❸

❶ Cleans and installs dependencies

❷ Runs format check

❸ Runs lint

First we will do a simple clean, install, and format checking
before we move on to our integration tests (see the following
listing).

Listing C.9 pipeline.yml

name: JavaScript Checks

...

jobs:

...

  test:

    name: Test



    runs-on: ubuntu-latest

    needs: format-check

    steps:

    - uses: actions/checkout@v3

    - uses: actions/setup-node@v3

      with:

       node-version: 17

    - run: npm ci

    - name: Test

      run: npm run test     ❶

❶ Runs tests using npm script

When the integration tests have completed, we can finally
build our container to ship (see the next listing).

Listing C.10 pipeline.yml

name: JavaScript Checks

...

jobs:

...

  containerize:

    name: Build and Push Container

    runs-on: ubuntu-latest #

    needs: test

    steps:

    - uses: actions/checkout@v3

    - name: Build Container

      run: docker build -t gcr.io/${{ secrets.GCP_PROJECT_ID }}/hello-api:

           ➥javascript-latest .         ❶
    - name: Set up Cloud SDK

      uses: google-github-actions/setup-gcloud@main

      with:

        project_id: ${{ secrets.GCP_PROJECT_ID }}

        service_account_key: ${{ secrets.gcp_credentials }}

        export_default_credentials: true

    - name: Configure Docker

      run: gcloud auth configure-docker --quiet

    - name: Push Docker image

      run: docker push gcr.io/${{ secrets.GCP_PROJECT_ID }}/hello-api:

           ➥javascript-latest

    - name: Log in to the GHCR

      uses: docker/login-action@master



      with:

        registry: ${{ env.REGISTRY }}

        username: ${{ github.actor }}

        password: ${{ secrets.GITHUB_TOKEN }}

    - name: Tag for Github

      run: docker image tag gcr.io/${{ secrets.GCP_PROJECT_ID }}/hello-api:

           ➥javascript-latest ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}:

           ➥javascript-latest

    - name: Push Docker image to GCP

      run: docker push ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}:

           ➥javascript-latest

❶ Builds a container



Appendix D. Using Terraform

Infrastructure as code is not a new concept, but over the
years, the tools have changed from scripts and images that
are on physical hardware your company owns to tools built to
work in the cloud. Kubernetes and serverless platforms have
taken the spotlight off of other tools that help build
infrastructure within these various cloud environments. There
are trade-offs and benefits to all different types of
deployments. In this appendix, examples are provided for
one last tool to give you a broad overview of the deployment
landscape.

D.1 Building the image

My first job was with the IT department in high school. While
working there, I was able to assist in unboxing and wiring the
computer labs. After all the computers were unboxed and
plugged in, I would turn them all on, rapidly tapping on keys
to enable network mode. Within a few minutes, I would see
an installer start to run, and within the hour, we had 20
identical machines. Every week I would repeat this magic
with amazement.

The amazement hasn’t worn off. Today we need to do the
same task in the cloud with our applications. Instead of
unboxing physical servers, we push our images to ephemeral
ones. When you create a server in the cloud, it is a virtual
machine on a larger server cluster. It can go down and start



right back up on a completely different box in a completely
different part of the building it’s in.

To build the image, we will use Packer
(https://www.packer.io/), a tool by HashiCorp that builds
server images based on the specifications provided. Then we
will create a Packer image definition with the code in the
following listing.

Listing D.1 hello-api.pkr.hcl

variable "project_id" {                         ❶
  type    = string

}

 

variable "git_sha" {

  type    = string

  default = "UNKNOWN"

}

 

source "googlecompute" "hello-api" {            ❷
  project_id = ${var.project_id}

  source_image_family = "ubuntu-2204-lts"

  image_name = "hello-api-${var.git_sha}"       ❸
  ssh_username = "packer"

  zone = "us-central1-a"

}

 

build {                                         ❹
  sources = [sources.googlecompute.hello]

 

  provisioner "file" {

    destination = "/home/ubuntu/hello-api"

    source      = "api"

  }

 

  post-processor "manifest" {

    output = "manifest.json"

    strip_path = true

    custom_data = {

      sha = "${var.git_sha}"

https://www.packer.io/


    }

  }

}

❶ Input variables needed for the build

❷ The base image we will be building from

❸ The name of the image we are going to create

❹ Special builder that copies our binary over to the image

This will build an image with the name of the commit that
was merged. Next, we need to adjust our account to be able
to deploy images. Run the commands in the following listing.

Listing D.2 hello-api.pkr.hcl

gcloud projects add-iam-policy-binding YOUR_GCP_PROJECT \

    --member=serviceAccount:GITHUB_SERVICE_ACCOUNT_NAME@YOUR_GCP_PROJECT.

    ➥iam.gserviceaccount.com \

    --role=roles/compute.instanceAdmin.v1

 

gcloud projects add-iam-policy-binding YOUR_GCP_PROJECT \

    --member=serviceAccount:GITHUB_SERVICE_ACCOUNT_NAME@YOUR_GCP_PROJECT.

    ➥iam.gserviceaccount.com \

    --role=roles/iam.serviceAccountUser

 

gcloud projects add-iam-policy-binding YOUR_GCP_PROJECT \

    --member=serviceAccount:GITHUB_SERVICE_ACCOUNT_NAME@YOUR_GCP_PROJECT.

    ➥iam.gserviceaccount.com \

    --role=roles/iap.tunnelResourceAccessor

This will allow our GitHub pipeline to use Packer to build the
image. Next, we will write the server to run the image.

D.2 Deploying the image

To define our infrastructure, we use Terraform



(https://www.terraform.io/), another HashiCorp tool.
Terraform provides a language to define servers, load
balancers, databases, and more. It also keeps track of the
state of your infrastructure, which will be important when
you need to change or delete a service. We need to install
Terraform locally so that we can set up a few necessary
pieces. To begin, create a directory called infra and then a
sub-directory called global. In these, we will add the code in
the following listing to a main.tf file.

Listing D.3 main.tf

resource "google_storage_bucket" "default" {    ❶
  name          = "hello-api-bucket-tfstate"

  force_destroy = false

  location      = "US"

  storage_class = "STANDARD"

  versioning {

    enabled = true

  }

}

❶ Defines a state bucket to store our current infrastructure values

Then run terraform apply and confirm. This bucket will
hold the state of our entire system so that we can make
changes. If this file were to be stored on a laptop, no one
else could make changes. If the file were lost, you would lose
the state of your infrastructure and would need to modify it
by hand.

Next, we will define the server and variables needed to
deploy. Create a directory called infra/server, and add the
code in the following listing.

https://www.terraform.io/


Listing D.4 main.tf

terraform {                                                 ❶
 backend "gcs" {

   bucket  = "hello-api-bucket-tfstate

   prefix  = "terraform/state"

 }

}

 

resource "google_compute_instance" "hello_api" {            ❷
  name         = "hello-api"

  machine_type = "f1-micro"

  zone         = "us-east1-a"

 

  boot_disk {

    initialize_params {

      image = ${var.image_name}                             ❸
    }

  }

 lifecycle {

    create_before_destroy = true

  }

  metadata_startup_script = "sudo chmod +x /home/ubuntu/hello-api && sudo

  ➥/home/ubuntu/hello-api"                                 ❹
}

 

resource "google_compute_firewall" "hello_api" {            ❺
  name    = "hello-api-firewall"

  network = "default"

 

  allow {

    protocol = "tcp"

    ports    = ["8080"]

  }

  source_ranges = ["0.0.0.0/0"]

}

 

 

output "public_dns" {                                       ❻
  value = google_compute_instance.hello_api.public_dns

}

❶ Defines the backend we will use and the state file

❷ Creates the server instance



❸ Inputs the image name

❹ The script that runs when the server starts

❺ Creates a hole in the firewall to access the service

❻ Output endpoint to call the API

Now we can create our pipeline.

D.3 Creating the pipeline

Our pipeline will compile our binary, package it with Packer,
and then create a server. Upon any commit, the server will
redeploy (see the next listing).

Listing D.5 pipeline.yml

name: Terraform Depoyment

 

on:

  push:

    branches:

      - main

 

jobs:

  build-image:

    name: Build image

    runs-on: ubuntu-latest

    steps:

    - name: Set up Go 1.x #

      uses: actions/setup-go@v2

      with:

        go-version: ^1.18

    - name: Check out code into the Go module directory #

      uses: actions/checkout@v2

    - name: Build

      run: make build #

    - name: Build Artifact

      uses: hashicorp/packer-github-actions@master

      with:

          command: build



          arguments: "-color=false -on-error=abort"

          target: packer.pkr.hcl

          working_directory: infrastructure/packer

      env:

          PACKER_LOG: 1

          PKR_VAR_git_sha: $(git rev-parse --short "$GITHUB_SHA")

          PKR_VAR_project_id: ${{ secrets.GCP_PROJECT_ID }}

  deploy-server:

    name: Deploy Server

    runs-on: ubuntu-latest

    steps:

    - uses: hashicorp/setup-terraform@v2

    - name: Init

      run: terraform init

    - run: export TF_VAR_image_name=hello-api-$(git rev-parse --short

      ➥"$GITHUB_SHA")

    - name: install

      run: terraform apply -auto-approve

Infrastructure can get complicated, and this pipeline only
shows a simple way of creating a continuous deployment. It
differs from chapter 10 because this infrastructure code is
automatically deployed instead of being integrated manually.
In the output of the pipeline, you find the endpoint you need
to call the service.



index
Symbols
?language= parameter 44
/info endpoint 144, 146

A
adaptability 13
agility 14
api binary 28
Arrange, Act, Assert pattern 33
artifacts 10

B
base images 122, 125 – 127
BDD (behavior-driven design)

overview of 153 – 154
writing tests for 154 – 159

Beck, Kent 34
behavior 33
behavior-driven design 153
black box testing 32 – 33
build command 145 – 146
builder 121
Buildpacks 120 – 121
bureaucratic culture 148

C
CaaS (Container as a Service) 65, 168
change logs 146 – 148
CI (continuous integration)

code repositories 23 – 26
pipeline 19 – 23
starting development 16 – 18
writing code 26 – 28

CIS (Continuous Integration Systems) 20
classic deployment process 168



Cloud Native Buildpacks 120
Cloud Native Patterns (Davis) 110
code coverage 51 – 55
coincidental cohesion 100
config package 136
configuration files 138 – 139
configuration management

accountability and handling failure 148 – 150
advanced configuration 136 – 140
configuration files 138 – 139
environmental variables 137 – 138
flags 139 – 140

change log 146 – 148
hiding features 140 – 143
external client 142 – 143
updating ports 141 – 142

overview of 134 – 136
semantic versioning 143 – 146

configuration map 175
configuration struct 137
console example 155
constraints 80 – 81
container registry 122
containerized deployment

base images 125 – 127
Buildpacks, defined 120 – 121
containers 119 – 120, 129
local environment organization 127 – 129

containers 129
adding to pipeline 122 – 123
building 121 – 122
defined 119 – 120
deploying to a container runtime 124 – 125
JavaScript 215 – 216
Kotlin 200
Python 206 – 207

continuous deployment



as a service applications 64 – 65
deployment account setup 60 – 64
developers as operators 59 – 60
Function as a Service 65 – 68
Platform as a Service 69 – 71
product delivery 57 – 59

continuous improvement 184
continuous integration. See CI
continuous testing

adding tests to pipeline 49 – 51
code coverage 51 – 55
refactoring 35 – 41
system testing 43 – 49
systems under test 30 – 33
testing pyramid 41 – 43
unit testing 33 – 35

contract 110
Cooper, Ian 34
Created message 46
curl commands 196
cycle time 86

D
Davis, Cornelia 110
DEFAULT_LANGUAGE variable 137
deliver section, of pipeline 146
delivery 57 – 59
dependency injection 97 – 100
dependency inversion principle 94
deployment 10

containerized
adding containers to pipeline 122 – 123
base images 125 – 127
building containers 121 – 122
Buildpacks, defined 120 – 121
containers 129
containers, defined 119 – 120



deploying to a container runtime 124 – 125
local environment organization 127 – 129

continuous
as a service applications 64 – 65
deployment account setup 60 – 64
developers as operators 59 – 60
Function as a Service 65 – 68
Platform as a Service 69 – 71
product delivery 57 – 59

Kubernetes
automatically deploying 174
building blocks 170 – 171
creating clusters 169 – 170
deploying Redis using Helm 175
overview of 168 – 169
scaling and health status 171 – 173
updating deployment configuration 175 – 177

zero-cost 12
deployment account setup 60 – 64
dev profile 128
developer builds 144
developers as operators 59 – 60
distribution networks 23
docker-compose tool 127
docker-compose.yml example 128
documentation 88 – 90
duck typing 96

E
edge cases 36
ENV variable 142
environmental variables 135, 137
exploratory testing 181
export variable 142
external dependency 110

F
FaaS (Function as a Service) 65, 168



fakes
comparing stubs and mocks to 114 – 115
overview of 110 – 114
pros and cons of 114

feature complete 159
feature hiding 140 – 143

external client 142 – 143
updating ports 141 – 142

feedback loops 14
flags 139 – 140
flow 91 – 92
Forbidden message 46
format checks 81 – 84
four D’s 5
Function as a Service (FaaS) 65 – 68, 168
functional cohesion 100
functional tests 163 – 166

G
GCP (Google’s Cloud Platform) 61
generative culture 148
Git hooks 90 – 91
GitHub Actions 20
GithubAction command 21
go test ./... command 34 – 35
go vet command 84 – 85
Goal, The (Goldratt) 7, 80
golangci-lint tool 87
Goldratt, Eliyah 7, 80
Google’s Cloud Platform (GCP) 61
greenfield project 18 – 19
grep command 52

H
h flag 139
health check endpoint 69
health status 171 – 173
Helm, deploying Redis using 175



high cohesion 100
hooks 90
horizontal scaling 172
HTTP Messages 46
hub.docker.com registry 122

I
IaaS (Infrastructure as a Service) 64 – 65, 168
images

base images 125 – 127
Terraform
building 218 – 219
deploying 220 – 221

independent variable 100
industrial programming 82
Infrastructure as a Service (IaaS) 64 – 65, 168
initial setup 11 – 12
integration

continuous
code repositories 23 – 26
pipeline 19 – 23
starting development 16 – 18
writing code 26 – 28

overview of 12 – 13
integration testing

adding databases 159 – 163
behavior-driven design
overview of 153 – 154
writing tests for 154 – 159

converting old code into new code 152 – 153
functional tests 163 – 166

interface segregation 96
interfaces 33, 94 – 97
Internal Server Error 46

J
JavaScript

building pipeline 216 – 217



coding 211 – 213
defining containers 215 – 216
linting 214 – 215
Node Package Manager 210 – 211
testing 213 – 214

JSON (JavaScript Object Notation) 43

K
kernel 119
Kotlin

coding 194 – 196
containerizing 200
frameworks 193 – 194
linting and initial pipeline 199 – 200
Maven 196
testing 196 – 198

ktlint tool 199
Kubernetes

automatically deploying 174
building blocks 170 – 171
creating clusters 169 – 170
deploying Redis using Helm 175
overview of 168 – 169
scaling and health status 171 – 173
updating deployment configuration 175 – 177

Kubernetes in Action (Luksa) 170, 172

L
latest tag 174
lead time 86
Lean Startup, The (Reise) 181
linting

JavaScript 214 – 215
Kotlin 199 – 200
standardizing code 81 – 84

load testing 42
LoadConfiguration function/method 139, 141
local environment organization 127 – 129



low cohesion 100
Luksa, Marko 170

M
main function 44
main package 122, 154
main.go example 145
Maven 196
Mock structure 105
mocking 103 – 110

comparing stubs and fakes to 114 – 115
pros and cons of mocks 114
setting up test suite 104 – 106
using mocks in tests 106 – 110

mux library 27
mvnw script 196
MVP (minimal viable product) 59

N
Not Found message 46
Nox 205 – 206
NPM (Node Package Manager) 210 – 211

O
OK message 46
OODA loop 187 – 188
over-the-air update 10

P
PaaS (Platform as a Service) 64 – 65, 69 – 71, 168
pack tool 121
personal projects 82
pip freeze command 202
pip tool 202
pipeline.yml example 57, 123, 125, 127
Pirsing, Robert 9
Poetry 202
PORT variable 137



portability 13
pre-commit hook 90
prettier package, JavaScript 82
protocols 95
proximity of resources 23
pull request 76, 79
PULL_REQUEST_TEMPLATE.md 80
Python

coding 203 – 204
creating pipeline 207 – 209
defining containers 206 – 207
Nox 205 – 206
Poetry 202
testing 204 – 205

Q
quality 9, 14
quality enforcement

code documentation 88 – 90
constraints 80 – 81
effective code reviews 76 – 80
keeping things interesting 79
keeping things moving 79
limiting reviews 77 – 78
open mind 78
standardization 79 – 80

flow 91 – 92
Git hooks 90 – 91
quality testing and assurance 14
standardizing code through format and lint checks 81 – 84
static code analysis 84 – 88

quality gates 50

R
red, green, refactor 34
Redis, deploying using Helm 175
redislite in-memory Redis replacement 204
refactoring 35 – 41



registries 122
regression test suite 165
Reise, Eric 181
release candidates 10
remote_translator_test.go 105 – 110
remote_translator.go 104
replica set 170
repositories 23 – 26
Resp struct 31
REST (Representational State Transfer) 43
rolling deployment 172

S
scaling 13, 171 – 173
scientific control 100
scout philosophy 89
scratch image 126
secret configuration type 176
semantic versioning 143 – 146
serverless application 65
Service Unavailable message 46
SetupTest function 105
smoke tests 165
snapshots 119
software development elements 182 – 187

delivering 186 – 187
process 183 – 184
testing 184 – 186

software development pipeline
adding containers to 122 – 123
adding tests to 49 – 51
continuous 8
delivery 9 – 11
process 8 – 9
quality 9

software development stages 11 – 14
acceleration 180 – 181



adaptability 13
code standardization and review 12
code validation 12
cruising 181 – 182
initial setup 11 – 12
integration 12 – 13
portability 13
quality testing and assurance 14
scaling 13
startup 179 – 180
user acceptance 13
zero-cost deployment 12

stacks 121
standardization 12

effective code reviews 79 – 80
through format and lint checks 81 – 84

static code analysis 84 – 89
stubs 114

comparing mocks and fakes to 114 – 115
pros and cons of 114
testing 100 – 103

style guides 82
Suite struct 105
SUT (systems under test) 30 – 33
system testing 43 – 49
system-level tests 42

T
TDD (test-driven development) 34, 153
Terraform

building images 218 – 219
creating pipeline 221 – 222
deploying images 220 – 221

Test-Driven Development By Example (Beck) 34
testcontainers library 213
testing 184 – 186

continuous



adding tests to pipeline 49 – 51
code coverage 51 – 55
refactoring 35 – 41
system testing 43 – 49
systems under test 30 – 33
testing pyramid 41 – 43
unit testing 33 – 35

defining interfaces 95 – 97
dependency injection 97 – 100
dependency inversion principle 94
fakes 110 – 114
integration
adding databases 159 – 163
behavior-driven design 153 – 159
converting old code into new code 152 – 153
functional tests 163 – 166

JavaScript 213 – 214
Kotlin 196 – 198
mocking 103 – 110
setting up test suite 104 – 106
using mocks in tests 106 – 110

Python 204 – 205
quality testing and assurance 14
testing stubs 100 – 103

testing pyramid
comparing stubs, mocks, and fakes 114 – 115
functional tests 163 – 166
overview of 41 – 43

theory of constraints 80
theResponseShouldBe function 158
tightly coupled services 99
TODO items 19
TPS (Toyota Production System) 8
translate library 44
translation package 32, 160
TranslationResource.kt main function 194
Translator interface 160



translator_test.go example 68
translator.go example 39, 41
two-pizza rule 81

U
Unauthorized message 46
underTest variable 100
unit testing 33 – 35
unit-level tests 42
user acceptance 13
UserRegistrationValidation class 100
uvicorn server 203

V
validation 12
Validation class 100
value stream

basic concepts 4 – 7
feedback loops 14
product development pipeline
continuous 8
delivery 9 – 11
process 8 – 9
quality 9

product development stages 11 – 14
adaptability 13
code standardization and review 12
code validation 12
initial setup 11 – 12
integration 12 – 13
portability 13
quality testing and assurance 14
scaling 13
user acceptance 13
zero-cost deployment 12

small, iterative steps 7 – 8
vertical scaling 172
virtual environment 202



virtual machine 119

W
WIP (work in progress) 7, 79
word variables 163

Z
Zen and the Art of Motorcycle Maintenance (Pirsing) 9
zero-cost deployment 12


	inside front cover
	Shipping Go
	Copyright
	dedication
	contents
	front matter
	preface
	acknowledgments
	about this book
	Who should read this book?
	How this book is organized: A roadmap
	About the code
	liveBook discussion forum

	about the author
	about the cover illustration

	Part 1. Startup
	1 Delivering value
	1.1 Simple concepts
	1.2 Small pieces
	1.2.1 Continuous
	1.2.2 Process
	1.2.3 Quality
	1.2.4 Delivery

	1.3 Building your product
	1.3.1 Initial setup
	1.3.2 Basic validation
	1.3.3 Zero-cost deployment
	1.3.4 Code confidence
	1.3.5 Integrations
	1.3.6 Portability
	1.3.7 Adaptability
	1.3.8 User acceptance
	1.3.9 Scaled product
	1.3.10 End to end

	1.4 Feedback loop
	Summary

	2 Introducing continuous integration
	2.1 Where to start?
	2.2 A greenfield project
	2.3 The assembly line
	2.4 Warehouses
	2.5 Material
	Summary

	3 Introducing continuous testing
	3.1 What to test
	3.2 Writing unit tests
	3.3 Refactor, refactor, refactor
	3.4 Testing pyramid
	3.5 System testing
	3.6 Adding it to the pipeline
	3.7 Code coverage
	Summary

	4 Introducing continuous deployment
	4.1 Delivery
	4.2 Developers as operators
	4.3 Setting up a deployment account
	4.4 As you like it
	4.5 Function as a Service (FaaS)
	4.6 Platform as a Service
	Summary

	Part 2. Scaling
	5 Code quality enforcement
	5.1 Reviewing code
	5.1.1 Keep it small
	5.1.2 Keep an open mind
	5.1.3 Keep it moving
	5.1.4 Keep it interesting
	5.1.5 Keep it the same

	5.2 Constraints on development
	5.3 Standardizing our code through format and lint checks
	5.4 Static code analysis
	5.5 Code documentation
	5.6 Git hooks
	5.7 Flow
	Summary

	6 Testing frameworks, mocking, and dependencies
	6.1 Dependency inversion principle
	6.2 Defining an interface
	6.3 Dependency injection
	6.4 Testing stubs
	6.5 Mocking
	6.5.1 Setting up our test suite
	6.5.2 Using our mocks in test

	6.6 Fake
	6.7 Just the base of the pyramid
	Summary

	7 Containerized deployment
	7.1 What is a container?
	7.2 What is a Buildpack?
	7.3 Let’s build a container
	7.4 Adding a container build to your pipeline
	7.5 Deploying to a container runtime
	7.6 Writing your own image
	7.7 Local environment organization
	7.8 Containers, containers everywhere
	Summary

	Part 3. Going public
	8 Configuration management and stable releases
	8.1 Configuration
	8.2 Advanced configuration
	8.2.1 Environmental variables
	8.2.2 File
	8.2.3 Flag

	8.3 Hiding features
	8.3.1 Updating the port
	8.3.2 External client

	8.4 Semantic versioning
	8.5 Change log
	8.6 Accountability and handling failure
	Summary

	9 Integration testing
	9.1 Phasing out the old
	9.2 Behavior-driven design
	9.3 Writing BDD tests in Go
	9.4 Adding a database
	9.5 Releasing
	Summary

	10 Advanced deployment
	10.1 Not quite IaaS
	10.2 Your first cluster
	10.3 Building blocks
	10.4 Scaling and health status
	10.5 Automatically deploying
	10.6 Deploying Redis using Helm
	10.7 Updating deployment configuration
	Summary

	11 The loop
	11.1 Startup
	11.2 Acceleration
	11.3 Cruising
	11.4 Elements of development
	11.4.1 Process
	11.4.2 Testing
	11.4.3 Delivering

	11.5 The OODA loop
	11.6 Conclusion
	Summary

	Appendix A. Using Kotlin
	A.1 Frameworks
	A.2 Coding
	A.3 Maven
	A.4 Testing
	A.5 Linting and the initial pipeline
	A.6 Containerizing

	Appendix B. Using Python
	B.1 Poetry
	B.2 Coding
	B.3 Testing
	B.4 Nox
	B.5 Defining the container
	B.6 Creating the pipeline

	Appendix C. Using JavaScript
	C.1 Node Package Manager
	C.2 Coding
	C.3 Testing
	C.4 Linting
	C.5 Defining the container
	C.6 Building the pipeline

	Appendix D. Using Terraform
	D.1 Building the image
	D.2 Deploying the image
	D.3 Creating the pipeline

	index
	inside back cover

