
[image: image]

Full Stack
Development with
MongoDB

[image:]

Covers Backend, Frontend, APIs, and
Mobile App Development Using PHP, NodeJS,
ExpressJS, Python and React Native

[image:]

Manu Sharma

[image:]

www.bpbonline.com

FIRST EDITION 2022

Copyright © BPB Publications, India

ISBN: 978-93-55510-143

All Rights Reserved. No part of this publication may be reproduced, distributed or transmitted in any form or by any means or stored in a database or retrieval system, without the prior written permission of the publisher with the exception to the program listings which may be entered, stored and executed in a computer system, but they can not be reproduced by the means of publication, photocopy, recording, or by any electronic and mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY

The information contained in this book is true to correct and the best of author’s and publisher’s knowledge. The author has made every effort to ensure the accuracy of these publications, but publisher cannot be held responsible for any loss or damage arising from any information in this book.

All trademarks referred to in the book are acknowledged as properties of their respective owners but BPB Publications cannot guarantee the accuracy of this information.

[image:]

www.bpbonline.com

Dedicated to

All Family and Friends

My Grandmother:

Smt. Pushpa Devi Sharma

My Parents:

Sh. Vijay Sharma and Smt. Neelam Sharma

My Wife: Anu Sharma

My Sister: Neha Sharma

&

Especially to My Angel Daughter: Siya Sharma

About the Author

[image:]

Manu Sharma (MPhil) has more than 17 years of industry experience in software development at the architect level, web administration, project management and execution, product development, and team management. He has worked for various multinational companies, small to mid-sized organizations, universities as well as one of the biggest conglomerates of India. He is also the founder, architect, and developer of two open-source projects. In his free time, he loves to spend his time with his family and his daughter. His other interests are singing and arts. During some weekends you can find him singing and recording music in the studios, playing the flute, or painting with brushes in his hands.

About the Reviewers

Dheeraj Chhabra is a Strategic-level professional working as Program Director in Happiest Minds Technologies Limited. He holds Masters in Computer Applications (MCA) from Indira Gandhi National Open University (IGNOU). Dheeraj has more than 18 years of work experience in IT and has worked in different established organizations at various levels from Software Developer to Program Management. He has worked on various technologies including Java Swings, Servlets, JSP, EJB, Asp, VB.Net, C#.Net, ASP.Net, SQL Server, Oracle, and more. He has played various important roles including, but not limited to, Software Engineer, Team Lead, Project Lead, Project Manager, Enterprise Solution Architect, Product Manager, and Program Manager. Dheeraj is a firm believer as well as a strong follower of Servant Leadership, Empowerment, and Continuous Integrated Development.

Dheeraj has earned various certifications such as PSM, TOGAF, PMP, PMI-ACP, SAFe 4 & 5, EXIN ASM, and is currently following his passion of continuous learning and development focused on a couple of more technical and leadership skills-oriented certifications. He is detail-oriented with a key focus on end-to-end project/program planning, execution, and delivery. He keeps a close eye to Run, Protect and Change the business.

Rohit Agarwal is an IT professional with rich experience in Data Technologies. His expertise circle around Data Engineering, Architecture, and Analytics providing end-to-end solutions to business units by creating data pipelines and building business intelligence systems to help organizations take critical business decisions based on data. He earned his Master’s degree in Information Systems from Northeastern University, Boston in the year 2017. He has a keen interest in Entrepreneurship and Innovation and has also learned the same from Harvard Extension School, Boston.

Mamoon Mushtaque is a technically accomplished IT professional with 9+ years of experience in service-based as well as product-based organizations with insightful experience in various aspects of UI development using multiple technologies. He is currently working as Lead Software Engineer at Spiralyze LLC.

Harish Kumar Buttolia has an M.Sc. (IT) from the Punjab Technical University. He worked for various Government and Private organizations. He possesses 18 years of experience in IT with a good knowledge of software and application development using open source technologies. He is having articles/publications published in renowned India/International Journals. He is always keen to learn new technologies. He is also interested in writing, reading, music, and travel.

Acknowledgement

First of all, I am thankful to almighty God for providing me with the opportunity to write a book. I am very thankful to Mr. Nrip Jain (Head, Business Development Group, BPB Publications) for believing in me and offering me to write this book.

I am also thankful to all my Gurus and Teachers in life for their teachings and blessings.

My special thanks to my daughter “Siya” for supporting me during the book journey.

I feel great to have some friends; most of them are still in touch with me including my college buddies, from ET&T as well as a few other friends – Chandrashekhar Kalia, Kapil Bharadwaj, Ankur Sood, Anugrag Sharma, Suresh Kumar, Umang Mathur, Nisha Jayna, Deepak Kumar Taank, Dhirendra Kumar, Joseph Vamsavardhan Gurja - Thank You All

I am very thankful to my uncle and neighbor – Prof. Jyoti Kumar Sharma for his guidance while I was about to start writing my first book and for encouraging me always.

I would like to thank few of my colleagues from my present organization (Spiralyze LLC) for their support, admiration, and appreciation:

Gajan Retnasaba, Yaseen Shaik, Sophie D’Souza, Dheeraj Sareen, Mitko Cabevski, Hassan Ahmad, Mamoon Mushtaque, Nikunjkumar Balar, Yuriy Kycha-Kolot, Bhavesh Vavadiya, Dhaval Balar, Sohil Hunani, Riyaz Lohiya, Jaya Prakash, Mohammad Subhani, Vaibhav Anchal, Kushal Borda, Abhishek Mohata, Himujjal Upadhyaya, Sonu Rana, Sergy Babich, Donatas Jasiunas, Cris Balano, Bash Simplicio, Rachelle Olvida, Sonali Rasane, Angelica Marbella, Quirino Lacambra IV – You people are awesome!

I would like to also thank a few people from my previous organizations: Rajesh Goyal, Santosh Kumar (@ Infopro) Amit Kumar Sen, Shahid Reza, Paarul Madaan, Sachin Chandra, Santosh Negi, Sandeep Kumar, Sunil Patnaik, Nishant Singh, Aniruddha Ratnaparkhi, Manish Singh, Sandeep Sugra (@ Shri Ram New Horizons) Anupam Srivastava, Rohit Agarwal, Daljeet Singh, Ashok Kumar, Abhishek Kumar, Ajay Kumar, Puneet Sehgal, Vikrant Singh, Abhishek Verma, Aarfi Siddique, Deepak Gautam, Naveen Jeengar, Randhir Sharma, Sushil Kumar Prajapati, Priyanshu Singh, Jyoti Deep (@ Miracle Corporate Solutions Pvt. Ltd.) Shiw Kumar Prasad, Vidushi Sasan, Yashdeep Gupta, Gaurav Mukhija (JBi Digital) Amit Puri, Dhananjay Kumar Yadav, Dheeraj Yadav, Rahul Singh Yadav, Amitesh Maurya, Saurabh Sharma (@TSI India)

My gratitude also goes to the entire team at BPB Publications for being always supportive during the entire Book Journey and whenever I need their help they were always available to help me.

Last but not least I am very thankful to all the technical reviewers of this book, I really appreciate their hard work during technical review and am thankful to them whenever they have corrected me in some places which required changes.

Preface

This book is intended for the people who want to learn MongoDB at an Advanced Level and then want to scale their knowledge to the Full Stack Software Application Development both for Web and Mobile using MongoDB.

The readers should possess some basic understanding of the Database Concepts such as MongoDB and some intermediate understanding of Programming Concepts, Programming Languages like PHP, JavaScript, Node.js, React Native, and Python.

While we cover all in very practical and step by step Full Stack Application Development using MongoDB with Chapters Features Step by Step use of MongoDB with Programming Languages like PHP, JavaScript, Node.js, React Native and Python So even if the reader have a basic programming knowledge then also reader would be able to understand these Chapters easily. Every Concept has been explained in a manner that once you start the practical development while reading this book at the end you will be more experienced in Software Development both in Web and Mobile Technologies.

This Book Covers the Step by Step Practical Development along with Screenshots for almost every Step, You will learn to develop the following 4 Software Applications using 4 Different Languages –

One Database – 4 Apps

	Backend Catalog of a Publication House – CRUD Functionality with PHP and MongoDB

	REST API Development – Creating a RESTful Web Services of a Publication House – API Development using Node.js and MongoDB

	Mobile App Development – Creating a Mobile App of a Publication House – Data-Driven Dynamic Mobile App Development using React Native and MongoDB using API Calls

	Frontend Development – Creating a Website of a Publication House – Frontend Development using Python’s Django Framework and MongoDB

The main programming languages used in this book:

	PHP

	Node.js

	JavaScript

	React Native (For Mobile Application Development)

	Python

Other languages/components used in this book:

	HTML

	CSS

	React Native Stylesheet Component

Software/modules/libraries/terms used in this book:

	Full-Stack Software Development

	Backend Software Development

	Frontend Software Development

	WAMP Stack / WAMP Server

	MERN Stack

	API Development

	MongoDB Compass

	NPM Modules

	Express.js

	CORS

	Postman

	PIP

	PyPI

	Django Framework

	PyMongo

	and Many More ….

Chapter 1 covers the concepts related to the client-side and server-side. You will learn the difference between the client and server and how the interactions happen between client and server. In the later part of this chapter, we would be also learning the client and server-side concepts in which a database like MongoDB is also involved. We would be exploring how the dynamic sites which are using databases like MongoDB work, how the server processes these requests and sends them back to the client. In the last section of this chapter we would be covering the MongoDB drivers and why they are used, what are the programming languages that are currently supported by MongoDB, and the MongoDB community availability of drivers.

Chapter 2 covers the data entry part using MongoDB Compass after creating the database and collection using MongoDB Compass so that we can have some real data to work with our next chapters.

Chapter 3 covers the introduction to PHP programming with MongoDB and how we can use PHP with MongoDB. In order to run PHP with MongoDB server, we should be having the right environment in place. So this chapter covers how we can set up the right environment to run PHP codes. In this chapter, we will learn what WAMP server is and how to install WAMP server. Later in this chapter, we will cover how we can set up MongoDB with PHP and WAMP server. In the last section of this book, we would be doing some coding and running some practical examples to connect and work with MongoDB server using PHP.

Chapter 4 covers the introduction to JavaScript programming language. We will learn Node.js programming with MongoDB and how we can use Node.js with MongoDB. In order to run Node.js with MongoDB server, we should be having the right environment in place. So this chapter covers how we can set up the right environment to run Node.js codes. In this chapter, we will learn what Node.js is and how to install Node.js. Later in this chapter, we will cover how we can set up MongoDB with Node.js. In the last section of this book, we would be doing some coding and running some practical examples to connect and work with MongoDB server using Node.js.

Chapter 5 covers the introduction to React Native Mobile Framework and then we will learn how we can build Mobile-based Apps using React Native with MongoDB programming with MongoDB and how we can use Node.js with MongoDB. In order to run React Native and build Mobile Apps with MongoDB we should be having the right environment in place. So this chapter covers how we can set up the right environment to run React Native codes. In this chapter, we will learn what React Native is and how to install React Native. In the last section of this book, we would be doing some coding and running some practical examples to connect and work with MongoDB Server using React Native.

Chapter 6 covers the introduction to Python programming language and Python programming with MongoDB and how we can use Python with MongoDB. In order to run Python with MongoDB server, we should be having the right environment in place. So this chapter covers how we can set up the right environment to run Python codes. In this chapter, we will learn what Python is and how to install Python. Later in this chapter, we will cover how we can set up MongoDB with Python. In the last section of this book, we would be doing some coding and running some practical examples to connect and work with MongoDB server using Python.

Chapter 7 covers the topics related to real application development as we are now going to start with the step by step web and mobile application development part involving various languages and frameworks like PHP, JavaScript (Node.js), Python, and React Native along with MongoDB. In this chapter, we would be learning about the application and software development terms like frontend, backend, and full stack development and try to understand the various technologies, frameworks, and stacks that are used in these various types of applications. In the later part of this chapter, we will cover the applications that we are going to develop in our next chapters and at last, we will cover an overview of various technologies and tools that we would be using to develop our web and mobile apps in our next chapters. So this chapter would be interesting for an overall overview of the next chapters which are related with the step by step full stack web and mobile application development of this book.

Chapter 8 covers the practical step by step development of CRUD based backend application using PHP and MongoDB along with frontend languages like HTML, CSS, and JavaScript. In this chapter, we will learn how to create a backend catalog of a Publication House. This chapter starts with the Overview of our web application development using PHP and MongoDB, basic requirements, and some pre-development steps which are required to be performed before we start developing our application. Later in this chapter, we will learn how we can create a dashboard for our application and various other related functionalities required for the overall development of the catalog management system for a Publication House. In this chapter, all the sections have been explained in step by step practical manner so that by the end of this chapter you feel more confident in PHP and MongoDB application development.

Chapter 9 covers the practical step by step development of REST Based APIs using Node.js, Express.js, and MongoDB along with Node.js extensions like Body Parser. In this chapter, we will learn how to create APIs for a Publication House. This chapter starts with the overview of our API development using Node.js, Express.js, and MongoDB, basic requirements, and some pre-development steps which are required to be performed before we start developing our web services. Later in this chapter, we will learn how we can use various REST-based methods and various other related functionalities required for the overall development of APIs for a Publication House. In this chapter, all the sections have been explained in step by step practical manner so that by the end of this chapter you feel more confident in Node.js, Express.js, and MongoDB web services and API development.

Chapter 10 covers the practical step-by-step development of a mobile app developed using React Native and MongoDB. We will learn how to create a mobile app for a publication house and will start with the overview of our mobile app development using React Native, Expo, Expo CLI, Node.js, Express.js, and MongoDB. We will learn how to add the “Thumbs Up” and “Thumbs Down” functionality and how to store their counts in the MongoDB database using the API calls. In this chapter, all the sections have been covered step by step and detailed manner.

Chapter 11 covers the practical step by step development of frontend application developed using Python and MongoDB. In this chapter, we will learn how to create a website for a Publication House. This chapter starts with the overview of our frontend development using Python, Django, PyMongo, and MongoDB. We will start this chapter with basic requirements. Later in this chapter, we will learn how we can build the various functionalities of the frontend application like displaying the book catalogue list and displaying the book cover images, total number of “Thumbs Up” and “Thumbs Down” for that particular book using the Python and its Django framework with the help of Python’s official MongoDB driver. In this chapter, all the sections have been explained in Step by Step Practical Manner so that by the end of this Chapter you feel more confident in Dynamic Python Application Development with MongoDB.

The four applications covered in this book
A Sneak Preview

This book covers the step-by-step practical development along with screenshots for almost every step. You will learn to develop the following 4 software applications using 4 different languages.

One Database – 4 Apps

Backend Catalogue of a Publication House – CRUD Functionality with PHP and MongoDB

[image:]

Figure 0.1: Application Dashboard Page

[image:]

Figure 0.2: Add new book page

REST API Development – Creating a RESTful Web Services of a Publication House – API Development using Node.js and MongoDB

[image:]

Figure 0.3: API Calls using Postman

[image:]

Figure 0.4: MongoDB Compass—verifying the documents updated by our API calls

[image:]

Figure 0.5: Adding dummy book with our API

Mobile App Development – Creating a Mobile App of a Publication House – Data Driven Dynamic Mobile App Development using React Native and MongoDB using API Calls

[image:]

Figure 0.6: Thumbs Up and Thumbs Down Functionality

[image:]

Figure 0.7: Expo dev tools > run on android device/emulator

[image:]

Figure 0.8: Mobile App Running successfully on Android device/emulator

Frontend Development – Creating a Website of a Publication House – Frontend Development using Python’s Django Framework and MongoDB

[image:]

Figure 0.9: Django Frontend Application home page

[image:]

Figure 0.10: Frontend - More Details Page – Thumbs Up and Thumbs Down

Code Bundle and Coloured Images

Please follow the link to download the
Code Bundle and the Coloured Images of the book:

https://rebrand.ly/pi581cf

The code bundle for the book is also hosted on GitHub at https://github.com/bpbpublications/Full-Stack-Development-with-MongoDB. In case there's an update to the code, it will be updated on the existing GitHub repository.

We have code bundles from our rich catalogue of books and videos available at https://github.com/bpbpublications. Check them out!

Errata

We take immense pride in our work at BPB Publications and follow best practices to ensure the accuracy of our content to provide with an indulging reading experience to our subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve upon human errors, if any, that may have occurred during the publishing processes involved. To let us maintain the quality and help us reach out to any readers who might be having difficulties due to any unforeseen errors, please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB Publications’ Family.

Did you know that BPB offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.bpbonline.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at: business@bpbonline.com for more details.

At www.bpbonline.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on BPB books and eBooks.

Piracy

If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at business@bpbonline.com with a link to the material.

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are interested in either writing or contributing to a book, please visit www.bpbonline.com. We have worked with thousands of developers and tech professionals, just like you, to help them share their insights with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions. We at BPB can understand what you think about our products, and our authors can see your feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

Table of Contents

1. Client and Server-Side Concepts and Introduction to MongoDB Drivers

Structure

Objectives

Client and server-side concepts

Client and server-side DB concepts

Introduction to MongoDB drivers

MongoDB drivers for programming languages (PHP, JavaScript, and Python)

Conclusion

Questions

2. Data Addition Using MongoDB Compass

Structure

Objectives

About MongoDB Compass

Launching MongoDB Compass and connecting to MongoDB server using MongoDB Compass

Creating a MongoDB database and collection using MongoDB Compass

Data addition using MongoDB Compass (creating some documents in our MongoDB collection)

Conclusion

Questions

3. Starting Up Programming with MongoDB and PHP

Structure

Objectives

Using PHP with MongoDB

Installing WAMP server on Windows operating system

Installation steps

Programming with PHP and MongoDB

Starting MongoDB server from Windows service manager

Example 1—connecting to MongoDB Server using PHP

Code 1

Example 2—fetching MongoDB Documents using PHP

Code 1

Conclusion

Questions

4. Starting Up Programming with MongoDB and JavaScript (Node.js)

Structure

Objectives

Using JavaScript (Node.js) with MongoDB

Installing Node.js on Windows operating system

Installation steps

Step 2—install Node.js on your Windows machine.

Step 3—post-installation steps and verifying Node.js on your Windows machine

Step 4—installing the MongoDB driver for Node.js using NPM

Connecting and working with Node.js and MongoDB

Example 1—connecting to MongoDB server using Node.js

Code 1

Example 2—fetching MongoDB documents using Node.js

Code 2

Conclusion

Questions

5. Starting Up Programming with MongoDB and React Native

Structure

Objectives

Introduction to React Native

Pre-development steps

Step 1—check Node.js and NPM on your system

Step 2—creating a project folder in your system

Step 3—installing Android Studio

Step 4—installing Android SDK

Step 5—setting up the environment variables

Step 6—installing Expo CLI using NPM

Step 7—creating our mobile App using Expo and Expo CLI

Step 8—running our mobile App using Expo and Expo CLI

Step 9—opening and viewing an app in mobile device using Expo app

Step 10—opening and viewing app in Android Emulator

Programming with React Native

Example 1—changing the text in our mobile App

Code 1

Code 2

Example 2—adding logo image in our mobile App

Code 1

A brief introduction to programming with React Native and MongoDB

Conclusion

Questions

6. Starting Up Programming with MongoDB and Python

Structure

Objectives

Using Python with MongoDB

Installing Python on Windows operating system

Installation steps

Step 1—download Python

Step 2—install Python on your Windows Machine

Step 3—post-installation steps and verifying Python on your Windows Machine

Step 4—installing MongoDB driver for Python using Python Package Index (PyPI)

Programming with Python and MongoDB

Example 1—connecting to MongoDB server using Python

Code 1

Example 2—fetching MongoDB documents using Python

Code 1

Conclusion

Questions

7. Full-Stack Development Using MongoDB

Structure

Objectives

Introduction to full-stack development

Frontend

Frontend technologies and stack

Native mobile apps

Hybrid mobile apps

Backend

Back-end technologies and stack

Full-stack

Full-stack development and technologies

Full-stack developer

Conclusion

Questions

8. MongoDB Step by Step Practical Application Development Using PHP

Structure

Objectives

Overview of our Web application developed using PHP and MongoDB

Requirements

Final application

Pre-development steps

Developing our application

Code 1

Code 1—our basic HTML structure

Code 2—our header.php file

Code 3—our footer.php file

Code 1—our header.php file (updated)

Code 1—our index.php file

Code 1—our styles.css file

Code 2—our scripts.js file

Backend catalog dashboard

Code 1—our index.php file

Code 2—our styles.css file

Adding new book functionality

Code 1—our add-new-book.php file

Code 2—our add-new-book.php file (updated)

Code 1—our styles.css file (appended code)

Code 2—our scripts.js file (updated code)

Code 1—our add-new-book.php file (updated code)

Code 2—our styles.css file (appended code)

Code 3—our scripts.js file (updated code)

Code 1—our add-new-book.php file (updated PHP code)

Code 2—our add-new-book.php file (updated HTML code)

Code 2—our styles.css file (appended CSS code)

Listing of catalog functionality

Code 1—finding all the documents from MongoDB collection (updated index.php file)

Code 2—displaying the list of all the documents from MongoDB collection by using PHP foreach() construct (updated index.php file—HTML part)

Code 3—our updated styles.css file (appended code)

Deleting functionality

Code 1—delete code (index.php—no change)

Code 1—delete book functionality (delete-book.php)

Code 2—delete book functionality (index.php—small update for displaying an alert after the book is deleted successfully)

Edit and update functionality

Conclusion

Questions

9. MongoDB Step by Step Practical Application Development Using JavaScript (Node.js with Express.js)

Structure

Objectives

RESTful Web services using Node.js and MongoDB—an overview

Requirements

Introduction to API

RESTful APIs

Pre-development steps

Code 1—our index.js file

Code 1—update package.json file

Developing our APIs

Code 1

Code 1 (index.js updated)

Code 1 (index.js updated)

Code 1 (index.js updated)

Code 2 (JSON body params to be used in Postman)

Code 1 (index.js updated)

Code 1 (index.js updated)

Adding REST API endpoint to delete MongoDB document based on MongoDB document ID (REST DELETE method)

Conclusion

Questions

10. MongoDB Step by Step Practical Mobile App Development Using React Native

Structure

Objectives

An overview of our mobile app developed using React Native and MongoDB

Requirements

Example 1—connecting to MongoDB via API

Code 1

Code 2

Code 3—API fetch part—networking

Code 3—style sheets

Code 4—header section

Code 5—book list section

Code 6—return part of the app

CORS

Resolving the issue

Change 1 in index.js—adding CORS module using require

Change 2 in index.js—enabling CORS in “getAllBPBBooks” route

Example 2—adding book pictures in the book list section of our mobile app

Code 1 (updated App.js file) —CSS section (added some more CSS and changed the class names to “camelCase”)

Code 2 (updated App.js File) —update in book list section and use of react native “FlatList” component instead of “.map” method

Example 3—adding “Thumbs Up” and “Thumbs Down” in the book list section of our mobile app

Code 1 (updated App.js file)—import FontAwesome from Vector Icons

Code 2 (updated App.js File)—CSS section (added some more CSS for “Thumbs Up” and “Thumbs Down”)

Code 3 (updated App.js file)—added “Thumbs Up” and “Thumbs Down” button components and functions

Code 4 (updated App.js file)—book list section (added “Thumbs Up” and “Thumbs Down” button components)

Example 4—adding database functionality to “Thumbs Up” and “Thumbs Down” of our mobile app

Change 1 in index.js—enabling CORS in “thumbsUPForBPBBook” route

Change 2 in index.js—enabling CORS in “thumbsDOWNForBPBBook” route

Code 3 (updated App.js file)—updated “Thumbs Up” and “Thumbs Down” button components, functions, and book list section

Conclusion

Questions

11. MongoDB Step by Step Practical Frontend Development Using Python

Structure

Objectives

An overview of our frontend application developed using Python and MongoDB

Requirements

Installing Python’s Django framework on Windows operating system

Installation steps

HTML

CSS

HTML—for file “bpbAppBookDetailsIndex.html”

CSS—for file “style.css”

Conclusion

Questions

Index

CHAPTER 1

Client and Server- Side Concepts and Introduction to MongoDB Drivers

In the real-world scenario, when we request any information over the network or internet, then the client and server interact with each other to pass the requested information. In this chapter, you will be learning the concepts related to client-side and server-side and how the interactions happen between them. In the later sections of this chapter, we will be covering these concepts in relation to the databases like MongoDB, and we will learn how the dynamic sites which use the databases like MongoDB work.

Structure

In this chapter, we will discuss the following topics:

	Client and server-side concepts

	Client and server-side DB concepts

	Introduction to MongoDB drivers

Objectives

After studying this chapter, the reader will be able to understand the client-side and server-side concepts and learn the difference between the client and server. The reader will also learn the client- and server-side concepts in which a database like MongoDB is involved. This chapter will also cover the MongoDB drivers and their uses, the programming languages that are currently supported by MongoDB, and the MongoDB community availability of drivers.

Client and server-side concepts

Before we move on to the programming part of this chapter and the book, let us define a few concepts related to the client and server.

Clients are those who send the requests to the server to perform specific tasks. The server receives the commands sent by the clients and performs the tasks. Once the tasks are executed and completed, the server sends the results back to the client.

There are many different types of clients as well as servers. Each of them performs specific tasks. For example, there are Web servers and Web clients. A simple example of a Web server is Apache HTTP Web server, Microsoft IIS Web server, or NGINX Web server.

Similarly, we have Web clients, which we use every day on our PCs, laptops, mobiles, tablets, and so on. So, we might be able to realize that they are Web browsers such as Google Chrome, Microsoft Edge, Mozilla Firefox, Mac Safari, Opera, and many more.

So what happens here? You will type some URL of a website that you would like to visit, like “https://bpbonline.com”, which is one of the best places to buy online IT and technology books. When you type the URL in the browser, the browser acts as a client and sends this request to the Web server on which the website of BPB Publication is running. The Web server accepts this request from the client and executes it at its end, and after that, it passes the request back as an HTML page that the browser understands easily, as shown in figure 1.1.

[image:]

Figure 1.1: Client–server architecture

Now, let us understand this example in a more interesting manner.

So, you visit the BPB Publication Online website by typing the URL “https://bpbonline.com” on your browser. Now, you want to purchase a book, and you go to the shopping cart of the website, pay the amount, and you are done. During all these steps, your client (who is your browser) and the server (on which the BPB Publication Online website is hosted) have been communicating with each other. This is the one side of the coin.

Now, let us understand what could be happening on the server-side. As you know, e-commerce websites and portals like “BPB Publication Online” run with some sophisticated technologies, and those websites are dynamic. Here, dynamic means that the content and the features on these websites keep changing as new book titles arrive every week or every day. These websites update their content instantly. You are lucky sometimes when you reach these websites during a discount period or promotional offer.

A few questions here are how do these dynamic things happen? Is something happening at only the Web server end?

The answer is No! The Web server cannot alone do such dynamic things without the help of other technologies. The internet consists of different types of technology. Each website is unique in terms of its technology stack.

To run these dynamic portals and websites, server-side programming languages such as PHP, Node JS (a server-side JavaScript environment), and Python are used. There are many other server-side programming languages available such as Java, C#, ASP.NET (.NET framework), and Ruby on Rails (RoR), but for this chapter and the upcoming chapters, we will be using examples from programming languages such as PHP, JavaScript (Node JS), and Python only.

Where was MongoDB until now? Few of us are now thinking about where MongoDB or any other database fits in the client-server picture.

Let us now understand the client and server concept in terms of database.

Client and server-side DB concepts

In the previous section, we have understood what client and server are in general terms. Now, let us move one step ahead and understand the concept of client and server where the database like MongoDB acts like a server.

MongoDB is a database server, as you all know. It also executes the requests that it receives from the clients. As a browser, it acts as a Web client for a Web server. We have MongoDB clients like MongoDB Compass, which is the official client for MongoDB, and a few others like Robo 3T that are helpful in connecting to the MongoDB server.

Whenever you install MongoDB on any OS, you need some client to connect and talk to the MongoDB Server. So, MongoDB client is a program that helps us to connect and perform various operations like the execution of the MongoDB queries and DB operations.

If you remember, we have used MongoDB Shell many times in the previous chapters, and also, we have learned about MongoDB Compass in the last chapter of that book. These are MongoDB clients who are used to connect and communicate with the MongoDB server. Here, the MongoDB client requests the MongoDB server to execute some query or command, and this is somewhat a similar manner in which a Web client requests a Web server to deliver some Web page or URL, as shown in figure 1.2.

[image:]

Figure 1.2: Client–server DB architecture

But many of you may still be thinking about how the dynamic websites and portals work with databases like MongoDB to present the dynamic data on the Web as we are not using these clients on the websites. Actually, this happens with the help of server-side programming languages such as PHP, Node JS, or Python. These programming languages have built-in drives which interact with MongoDB on the server-side.

In the next section, we will be learning about the MongoDB drivers, and later we will cover the MongoDB drivers for programming languages.

Introduction to MongoDB drivers

Database drivers are client-side libraries that are used to connect and communicate with databases. In our scenario, the MongoDB drivers work as if they are software libraries that run from the client-side and communicate with the MongoDB server. The purpose of the drivers is to provide the interface between the client-side environment and MongoDB server.

The client-side environment varies according to the programming languages they use. Any MongoDB client which interacts with the MongoDB server does this with the help of drivers. Even MongoDB Shell, which uses JavaScript language for querying the database, uses drivers to connect to the MongoDB server.

So, whether it is any desktop-based application such as MongoDB Compass, Command, shell-based application like Mongo Shell, website which is developed using MongoDB as a database server, or any mobile application which uses REST APIs to communicate with MongoDB database via some backend process, all of these use drivers, which act as an interpreter between them and MongoDB server, as shown in figure 1.3.

[image:]

Figure 1.3: Client-server DB architecture—programming languages and database drivers—communication and interactions

Any application or website that interacts with MongoDB can do this using some programming language such as PHP, Node JS, or Python, and these programming languages then interact with MongoDB using their own drivers.

Every programming language has its own MongoDB drivers to connect and communicate with the MongoDB server. MongoDB supports all major programming languages, and the list is huge. You can visit the MongoDB drivers page to view the list of all the drivers’ libraries for programming languages that are supported officially by MongoDB Inc., as shown in figure 1.4.

For more details, visit: https://docs.mongodb.com/drivers/

[image:]

Figure 1.4: MongoDB drivers—list of officially supported drivers libraries

MongoDB also supports more programming languages which are supported by the MongoDB community. If you are developing any application that is not listed on the official driver’s page. In that case, you can look at the community page to check if your language is listed on the community page or not at: https://docs.mongodb.com/drivers/community-supported-drivers, as shown in figure 1.5.

[image:]

Figure 1.5: MongoDB drivers – list of community-supported drivers libraries

MongoDB drivers for programming languages (PHP, JavaScript, and Python)

Before we start with the programming part, please note that in order to use MongoDB with these programming languages, you must have a workable environment ready so that you can easily run the examples provided in the further chapters, which are related to programming and application development.

We will be covering the step-by-step method for each programming language, PHP, Node JS, and Python, in the upcoming chapters, by first creating the right environment on our machines to run the practical examples of the programming.

Conclusion

In this chapter, we have learned about the concepts related to client-side and server-side and how the interactions happen between them. We have also learned these concepts in relation to the databases like MongoDB and how the dynamic sites that use the databases like MongoDB work. In the last section of this chapter, we have covered the MongoDB drivers and the programming languages that are currently supported by MongoDB and also the MongoDB community drivers. In the upcoming chapter of this book, we will use MongoDB Compass to create a database and collection, and insert some dummy data using MongoDB Compass, which will help us to work with different programming languages, such as PHP, Node.js, React Native, and Python, used along with MongoDB in this book.

Questions

	What do you understand by client-side and server-side? Give some examples.

	Is the browser a client-side or server-side application?

	What do you think the websites which are dynamic in nature use to present the dynamic content?

	How does MongoDB fit in terms of client and server concepts, and how does the communication happen?

	What are database drivers?

	List some programming languages which have official MongoDB driver support.

CHAPTER 2

Data Addition Using MongoDB Compass

Before we start with the real programming and software-related part using MongoDB and programming languages, we need some data to start with. In this chapter, we will be doing some data entry using MongoDB Compass after creating the database and collection using MongoDB Compass so that we can have some real data to work with, in our upcoming chapters.

Structure

In this chapter, we will discuss the following topics:

	MongoDB Compass

	Launching MongoDB Compass and connecting to MongoDB server using MongoDB Compass

	Creating a MongoDB database and collection using MongoDB Compass

	Data addition using MongoDB Compass (creating some documents in our MongoDB collection)

Objectives

After studying this chapter, the reader will be able to enter some data in the MongoDB database, which we will require before we start with our upcoming chapters related to programming and software development. In this chapter, we will be using the MongoDB Official GUI, which is MongoDB Compass, to add some real data (adding some documents) in the MongoDB Collection.

About MongoDB Compass

MongoDB Compass is the Graphical User Interface (GUI) tool that helps us to connect with the MongoDB server very easily and do a lot of things using GUI that takes a lot of time if we do them via commands or queries. MongoDB Compass also provides many features that are helpful in visualizing the data, as well as manipulating the data in the collections. MongoDB Compass is more than a visual GUI client or data manipulation tool.

MongoDB Compass has been explained in a step-by-step manner starting from how to install it and how to use it in the BPB Publications book titled—“MongoDB Complete Guide” written by Manu Sharma. In case you want to understand MongoDB basics and MongoDB Compass basics, you can refer to the book mentioned.

Note

	This current book assumes that the reader has a basic knowledge of MongoDB and MongoDB Compass.

	It also assumes that MongoDB and MongoDB Compass has been already installed on the reader’s machine.

	As this is an advanced book, covering the basics is out of the scope of this book.

Launching MongoDB Compass and connecting to MongoDB server using MongoDB Compass

Let us now try to connect to MongoDB using MongoDB Compass from your Windows machine. To connect to MongoDB from your Windows machine, you can follow these steps:

	Click Search Area of your Task Bar and type “Compass”. You will see that the Compass app will appear along with the details. Click Open, or you can open it using the Run as Administrator. This will open MongoDB Compass with administrative privileges, as shown in figure 2.1.

[image:]

Figure 2.1: MongoDB Compass—open MongoDB Compass

	For a new connection, click the link in the MongoDB Compass GUI Interface under the New Connection link, which says Fill in connection fields individually, as shown in figure 2.2.

[image:]

Figure 2.2: MongoDB Compass GUI—New Connection—fill in connection fields individually

	Now, enter Hostname as “localhost”, Port as “27017” (Default Settings), and click the Connect button to connect to the MongoDB server, as shown in figure 2.3.

[image:]

Figure 2.3: MongoDB Compass GUI—connect to MongoDB Server using default settings

Creating a MongoDB database and collection using MongoDB Compass

Let us now try to create a MongoDB database and collection using MongoDB Compass so that we can add our data to the MongoDB collection (adding new documents). To create a MongoDB database and collection using MongoDB Compass, you can follow these steps:

	Once you are connected to the MongoDB server, you can see the button on the top section of the MongoDB Compass GUI, which says “CREATE DATABASE”. Click this button as shown in figure 2.4.

[image:]

Figure 2.4: MongoDB Compass GUI—create database

	Once you click the “CREATE DATABASE” button, it will open a new popup window to add the details. In the “Database Name” field, type “BPBOnlineBooksDB”, and in the “Collection Name” field, type “BPBOnlineBooksCollection”, and then click “Create Database”, as shown in figure 2.5.

[image:]

Figure 2.5: MongoDB Compass GUI—create database popup window

	Once you click the “Create Database” button with the required details as mentioned in the previous step, you will see that your MongoDB database, as well as collection, has been successfully created by MongoDB Compass, as shown in figure 2.6.

[image:]

Figure 2.6: MongoDB Compass GUI—MongoDB database and collection is created successfully

Data addition using MongoDB Compass (creating some documents in our MongoDB collection)

Let us now try to add our data to the MongoDB Collection (adding new documents). To add new data to the database, we need to create documents in our collection. Let us take an example of some books published by BPB Publications and add their details to the MongoDB database using the following table, which contains the list of books and their details:

	
Book Title

	
Book Author

	
Book ISBN

	
Book Pages

	
Book Brief Description

	
MongoDB Complete Guide

	
Manu Sharma

	
9789389898866

	
470

	
Master MongoDB—the widely used modern database in a step-by-step, practical, and easy-to-understand approach covering all major topics.

	
Redis® Deep Dive

	
Suyog Dilip Kale, Chinmay Kulkarni

	
9788194837763

	
228

	
This book begins with teaching you to set up your own Redis environment, followed by Redis data structures, their architecture, and use cases.

	
ITIL® 2011 The Story Continues

	
Dr. Pratul Sharma

	
9789388176736

	
82

	
This book describes the ITIL service lifecycle and standards for service design and development. An explanation is given in untraditional layman’s language, with easy-to-follow examples and Explores issues of creating and maintaining value for clients through monitoring.

	
Decoding JavaScript

	
Rushabh Mulraj Shah

	
9789390684816

	
370

	
Mastering advanced JavaScript to build modern next-generation Web applications.

	
Python In-Depth

	
Ahidjo Ayeva, Kamon Ayeva, Aiman Saed

	
9789389328424

	
364

	
“Python In-Depth” gives you a detailed presentation of the possibilities for solving everyday problems, even complex ones using Python.

	
Designing User Interfaces

	
Dario Calonaci

	
9789389898743

	
230

	
Think about UIs using design thinking principles from an award-winning graphic designer.

	
Advanced Web Development with React

	
Mehul Mohan

	
9789389423594

	
204

	
The book starts by introducing the reader to react, what it is, and why you need a library like react to work with medium to large scale applications.

Table 2.1: Sample data to be added into MongoDB database (data for creating the MongoDB documents in MongoDB collection)

Now, let us do some data entry using MongoDB Compass. MongoDB Compass gives us various ways to insert the data using JSON, CSV, or manual data entry.

	Click the link, and this shows the Collection Name to add the documents into this Collections as shown in figure 2.7.

[image:]

Figure 2.7: MongoDB Compass GUI—collection link

	Once you are into the collection, you will see the option to add new data. Click the drop-down button which says “Add Data”, and then select the “Insert Document” to add data manually in this step. We will check the JSON method too in our next steps, as shown in figure 2.8.

[image:]

Figure 2.8: MongoDB Compass GUI—Collection—Add data

	Once you click the drop-down button that says “Add Data” and then select the “Insert Document” to add data, it will open a popup window to add the data manually. We will select List View instead of Code View to add the Data and will keep Document ID Value “_id” as it is, which is generated by default by MongoDB. Just hover over the “_id” field and click the plus symbol “+” to add a new record, as shown in figure 2.9.

[image:]

Figure 2.9: MongoDB Compass GUI—Collection—Add Data

	We will be keeping the following structure of the document fields (key and values), and we will take the values from table 2.1 to add these values. Let us first define the keys of our document. Refer to the following table (Table 2.2).

	
Key using the Heading from Table 2.1 (Row 1 Example)

	
Value from the respective data using Table 2.1 (Row 1 Example)

	
Book-title

	
MongoDB Complete Guide

	
Book-author

	
Manu Sharma

	
Book-ISBN

	
9789389898866

	
Book-pages

	
470

	
Book-brief-description

	
Master MongoDB—the widely used modern database in a step-by-step, practical, and easy-to-understand approach covering all major topics

Table 2.2: Add sample data referring to Table 2.1 using MongoDB Compass

	Now, in this step, we will be referring to the key-value pairs from table 2.2 and will use the Plus symbol to add all the data. After you are done with all the fields (key-value pairs), you can click the “Insert” button to add the data to the MongoDB Collection. This will result in creating the new MongoDB document under the collection (as shown in figure 2.10).

[image:]

Figure 2.10: MongoDB Compass GUI—adding data and creating a document in a MongoDB collection

	After the data is entered as described in the previous step, we can see the whole document in the MongoDB collection. You can insert all seven documents in table 2.1 like we added the first record. But, in case you would like to try the JSON method, you can delete this document and use the JSON method explained in the next steps, as shown in figure 2.11.

[image:]

Figure 2.11: MongoDB Compass GUI—adding data and creating a document in a MongoDB collection

	You can use the below JSON to add all seven documents at once. Copy the following JSON code. From the collection area of MongoDB Compass, select Add Data. Now, instead of list view, we will use the code view to copy and paste the following data into the database:
[{

"_id": {

"$oid": "60fd3fcaaf407a0d6383cfe3"

},

"book-title": "MongoDB Complete Guide",

"book-author": "Manu Sharma",

"book-ISBN": "9789389898866",

"book-pages": "470",

"book-brief-description": "Master MongoDB - The widely used modern database in a step-by-step, practical, and easy-to-understand approach covering all major topics"

},{

"_id": {

"$oid": "60fd485daf407a0d6383cfe4"

},

"book-title": "Redis® Deep Dive",

"book-author": "Suyog Dilip Kale, Chinmay Kulkarni»,

"book-ISBN": "9788194837763",

"book-pages": "228",

"book-brief-description": "This book begins with teaching you to set up your own Redis environment, followed by Redis data structures, their architecture, and use cases"

},{

"_id": {

"$oid": "60fd4975af407a0d6383cfe6"

},

"book-title": "ITIL® 2011 The Story Continues",

"book-author": "Dr. Pratul Sharma»,

"book-ISBN": "9789388176736",

"book-pages": "82",

"book-brief-description": "Describes the ITIL service lifecycle and standards for service design and development An explanation is given in untraditional Layman’s language, with easy to follow examples Explores issues of creating and maintaining value for clients through monitoring"

},{

"_id": {

"$oid": "60fd49cdaf407a0d6383cfe7"

},

"book-title": "Decoding JavaScript",

"book-author": "Rushabh Mulraj Shah»,

"book-ISBN": "9789390684816",

"book-pages": "370",

"book-brief-description": "Mastering advanced JavaScript to build modern next-generation web applications."

},{

"_id": {

"$oid": "60fd4a12af407a0d6383cfe8"

},

"book-title": "Python In - Depth",

"book-author": "Ahidjo Ayeva, Kamon Ayeva, Aiman Saed",

"book-ISBN": "9789389328424",

"book-pages": "364",

"book-brief-description": "“Python In-Depth” gives you a detailed presentation of the possibilities for solving everyday problems, even complex ones using Python."

},{

"_id": {

"$oid": "60fd4a59af407a0d6383cfe9"

},

"book-title": "Designing User Interfaces",

"book-author": "Dario Calonaci",

"book-ISBN": "9789389898743",

"book-pages": "230",

"book-brief-description": "Think about UIs using design thinking principles from an award-winning graphic designer"

},{

"_id": {

"$oid": "60fd4ab8af407a0d6383cfea"

},

"book-title": "Advanced Web Development with React",

"book-author": "Mehul Mohan",

"book-ISBN": "9789389423594",

"book-pages": "204",

"book-brief-description": "The Book Starts By Introducing The Reader To React, What It Is And Why You Need A Library Like React To Work With Medium To Large Scale Applications."

}]

	Click the “Insert” button as shown in figure 2.12.

[image:]

Figure 2.12: MongoDB Compass GUI—adding data and creating multiple documents in a MongoDB collection using JSON method.

	After you click the “Insert” button in the previous step, you will see all the seven documents inserted in the collection using the JSON method, as shown in figure 2.13.

[image:]

Figure 2.13: MongoDB Compass GUI—collection—add data using JSON method—added multiple documents

Conclusion

In this chapter, we have entered some real data in the MongoDB database. We have used MongoDB Compass to add some data (adding some documents) in the MongoDB Collection using Manual and with JSON method. In the upcoming chapter, we will start with the basic programming with PHP and MongoDB, where we will be learning how we set up the necessary environment to use PHP with MongoDB and how we can use PHP programming language to connect with MongoDB.

Questions

	What is MongoDB Compass?

	Give an example to connect to MongoDB server using MongoDB Compass.

	Write the steps to create MongoDB collection.

	How can you create a MongoDB document in the collection using MongoDB Compass?

	Is it possible to add multiple documents using MongoDB Compass?

CHAPTER 3

Starting Up Programming with MongoDB and PHP

PHP is one of the widely used programming languages, many of the open sources are built with PHP, and it is one of the most popular languages used for Web development, so in this chapter, we will cover the introduction to PHP Programming with MongoDB. We are going to learn how we can use PHP with MongoDB. We will also learn how to set up MongoDB with PHP and WAMP server. As we move on to the last section of this chapter, we will be doing some coding and running practical examples to connect and work with MongoDB Server using PHP.

Structure

In this chapter, we will discuss the following topics:

	Using PHP with MongoDB

	Installing WAMP server and setting up the environment for PHP

	Setting Up Mongo DB with PHP and WAMP server

	Connecting and working with MongoDB Server using PHP

Objectives

After studying this chapter, the reader will be able to understand how to use PHP with MongoDB. This chapter will cover the installation of the WAMP server and set up the environment ready for PHP programming with MongoDB. Later in this chapter reader will also learn about how to connect and work with MongoDB Server using PHP programmatically.

Using PHP with MongoDB

PHP is a widely used and one of the most popular server-side programming languages, and it has been around 25 years now since its first version came. A lot of open-source software and projects are developed in PHP, which includes WordPress, Drupal, Joomla, Magento, and many more.

There are many different ways to run PHP with MongoDB on various operating systems such as Windows, Linux, and Mac OS. To cover them all is out of the scope of this chapter and book. But we are going to use some easiest methods by which we can have our environment ready to work with PHP and MongoDB. Let us start with some steps so that we are able to run our codes with PHP and MongoDB.

Installing WAMP server on Windows operating system

WAMP server is a software stack available for Windows operating system. It is one of the widely used software which is useful in installing PHP, Apache Web Server, and MySQL database. We are not using the MySQL database in this book, but we will be adding the MongoDB extension with the WAMP server and using it instead of MySQL. The only reason that we are using WAMP is that it is simple to install and use, and we do not have to install PHP and Apache Web servers separately as the WAMP server installs them both. Also, it is easier to manage this software using the WAMP server.

We will be using the default installation method to install the WAMP server on the machines that will run Windows operating system. For this chapter, we are using Windows operating system. If you want to use other operating systems such as Linux or Mac OS; in that case, you can set up your environment with the help of other stack software such as XAMPP (for Linux operating system) and MAMP (for Mac operating system).

The following are the links for various stacks available for different operating systems:

	For Windows OS: WAMP Stack: https://www.wampserver.com/

	For Linux OS: XAMPP Stack: https://www.apachefriends.org/

	For Mac OS: MAMP Stack: https://www.mamp.info/

We will show you how to install WAMP on Windows operating system.

Installation steps

Let us start with the installation of the WAMP stack on our machine. The following are the steps that are required to be performed to install the WAMP stack or WAMP server:

Step 1—Download WAMP server

	Open the WAMP server official website—https://www.wampserver.com/ in your favorite browser, click the download link. This will take you to the download screen where you have two options available, one is for 64 Bit operating system, and another one is for 32 Bit operating system. Click the one based on your machine architecture, as shown in figure 3.1.

[image:]

Figure 3.1: WAMP server official website home page

	Once the download starts, you can easily see the download process with the download icon and progress on your browser, as shown in figure 3.2. This progress shows differently in every browser. The screenshot is from Google:

[image:]

Figure 3.2: WAMP server download screen—download progress

	Once the download is 100% completed, you can follow the next steps. (As shown in figure 3.3.)
In Step 1, we have covered how to download the WAMP server from the official website, and the next steps are related to the Installation Process, so we have covered this separately in step 2 of the WAMP server Installation Process.

Step 2—install WAMP server on your Windows machine

Once the download is complete and the installer file is fully downloaded, it will show a download complete icon as shown in figure 3.3, and you can proceed further.

[image:]

Figure 3.3: WAMP server download screen—download 100% complete—next steps

	Now, open this installer file, and it will start the WAMP server setup wizard, which will guide you to complete the installation of the WAMP server in your machine, as shown in figure 3.4.

[image:]

Figure 3.4: WAMP server download screen—download 100% complete—open installer file

	Now, open this installer file, and it will start the WAMP server setup wizard, which will guide you to complete the installation of the WAMP server in your machine. We are not going to cover all steps here as it is out of scope for this chapter. Please follow the setup process, and it will install the WAMP server on your Windows machine, as shown in figure 3.5. Also, during the installation process, the setup will ask you to accept the license agreement. It is recommended to read the license agreement and other terms and conditions.

[image:]

Figure 3.5: WAMP server setup wizard

	The installer will ask you to select components that are different versions of the software, such as PHP, MySQL, MariaDB, and so on. If you wish, you can install any latest versions. But, it is recommended to go with the default installation, as shown in figure 3.6.

[image:]

Figure 3.6: WAMP server setup wizard—selecting components

	Once the installation is 100% complete, click the “Finish” button to exit the Setup Wizard, as shown in figure 3.7.

[image:]

Figure 3.7: WAMP server setup wizard—installation complete

Step 3—starting and using the WAMP server on your Windows machine

Once the installation is done, you should start the WAMP server by typing “wamp” on the search area of the taskbar and opening the WAMP server, which will launch the WAMP server on your Windows machine, as shown in figure 3.8.

[image:]

Figure 3.8: Launching WAMP server

	Once the WAMP server has been successfully started, you will see the WAMP server icon (in green) in the Task Bar tray. When you run the WAMP server, it usually takes a few seconds to start all the services such as Apache, MySQL, and so on, and the icon changes from red to orange and finally green. If the WAMP icon is green, it means that all the services have been successfully started, and now you can use the WAMP server, as shown in figure 3.9.

[image:]

Figure 3.9: WAMP server—all services have been started successfully

	You can click on the green icon, and it will open up a small menu that has a lot of options from where you can do many things like starting/stopping/restarting the WAMP server, changing the settings of PHP, Apache Server, and so on. We are not going to cover all these in this chapter as this is out of the scope of this chapter. If you wish, you can explore these settings from your machine, as shown in figure 3.10.

[image:]

Figure 3.10: WAMP server menu with a lot of options

Step 4—running localhost

Once the WAMP server has started on your machine, you can now start working with the local server, which has Apache and PHP installed. So, as we have the required environment ready, we can run localhost.

	To run localhost, just open your favorite browser like Google Chrome and type: http://localhost/ and press Enter. This will open up a new page, and you will be shown the WAMP server page default page on your localhost. Here, you will get all the information about the version of the WAMP server, server configurations that have a list of various software running in the background, along with their version details such as Apache Web Server and PHP, as shown in figure 3.11.

[image:]

Figure 3.11: WAMP server—localhost

If you are able to see this page, it means that most of the things which are required to start the application development with PHP are ready except MongoDB, which we will cover in our next step.

Step 5—setting up MongoDB extension with PHP

In this step, we are going to set up the MongoDB extension with PHP. There are different ways to do it. Some methods prefer doing this with “Composer”, which is the Dependency Manager for PHP, but we will do it the other way. Please follow the following steps to set up the MongoDB extension with PHP.

	Open PHP Extension Community Library (PECL) home page for MongoDB in your favorite browser by entering the URL: https://pecl.php.net/package/mongodb in your browser address bar. This will open up the PECL MongoDB home page. Browse the latest available stable version of the extension and click the DLL link just after the Windows icon, as shown in figure 3.12.

[image:]

Figure 3.12: PECL MongoDB home page

	This will open a new page that will have the DLL lists available for various PHP versions. As we are running PHP 7.3 with WAMP, we will be downloading that. The other option we should be checking here is the “Thread Safe” and “Machine Architecture”. Machine Architecture can be 32 Bit or 64 Bit which depends on your computer hardware. If you want to check if Thread Safety is enabled in your PHP version, you can open the command prompt and then navigate to your PHP folder, which is similar to “D:\wamp64\bin\php\php7.3.21\” and run the following command as shown in figure 3.13.
 php -i|findstr "Thread"

You may also check the same from the phpinfo() under the Tools section of your WAMP localhost home page, where you will get all the details related to PHP installed on your system.

[image:]

Figure 3.13: Checking thread safe

	After you click the right DLL file, the download will start, and after the download gets finished, you should open this ZIP file and extract the DLL from the ZIP file. After that, you should copy this DLL file in the extension directory of your PHP version (in our case, as we are running PHP version 7.3 on WAMP and WAMP is installed on D: drive), the location of the PHP extensions directory would be somewhat similar to: D:\wamp64\bin\php\php7.3.21\ext. You can see a lot of other DLL files present in this folder, as shown in figure 3.14.

[image:]

Figure 3.14: Copying PHP MongoDB extension DLL to PHP extensions directory on WAMP

	Once you are done with this step, go to the WAMP server manager by clicking the WAMP server green icon in your Windows taskbar tray and then navigate to the PHP menu and click php.ini. This will open the php.ini file in which we are going to add the following line under the PHP extensions section, as shown in figure 3.15.
extension=php_mongodb

[image:]

Figure 3.15: Opening php.ini file

	The previous step will open the php.ini file. Navigate to the PHP extension section of this file and add the line mentioned in the previous step. After that, save this file. You may enter this line towards the end or anywhere in the extension section of this file. In our example, we have just added this after the MySQL extension, as shown in figure 3.16.

[image:]

Figure 3.16: Adding MongoDB extension to php.ini file

	After you added the MongoDB extension code in the php.ini file and saved it, close this file and go to the WAMP server manager by clicking the green icon on the Windows taskbar tray and restart all the services. It will take a few seconds for WAMP to restart all the services, as shown in figure 3.17.

[image:]

Figure 3.17: WAMP—restarting all services

	After WAMP has finished restarting all the services, open the WAMP home page from your browser and scroll to the tools section which is at the end of the page. Click phpinfo(). This will open up a new page with the details of PHP. Scroll to the middle of the page, where you will see the details of the PHP extensions. You will see now that the MongoDB extension has been installed and set up for PHP, as shown in figure 3.18.

[image:]

Figure 3.18: phpinfo()—MongoDB extension

As we are done with the setup of our environment with MongoDB and PHP, we will now start the programming part.

Programming with PHP and MongoDB

In the previous section of this chapter, we have set up our environment to run PHP with MongoDB. Now, let us start our programming part. Before we start with the programming and coding part, let us do one more thing as you have been doing progress from the previous chapter. We always started MongoDB with the command prompt. Now, as you have understood the basic concepts, you can now automate a few things, including the MongoDB server starting. In Windows operating systems, whenever you install MongoDB, the installer creates MongoDB service automatically, and you can start or stop the MongoDB server using Windows service manager.

Let us start MongoDB using Windows service manager.

Starting MongoDB server from Windows service manager

To start MongoDB using Windows service manager, follow these steps:

	In the search section of your Task Bar, type “services” and open it, as shown in figure 3.19.

[image:]

Figure 3.19: Open services manager

	This will open Windows services manager. You will see all the services that are installed on your Windows machine. Navigate to MongoDB Server (MongoDB). Click this service and start it (in case it is not yet started), or you may leave this step if it is already started, as shown in figure 3.20.

[image:]

Figure 3.20: Starting MongoDB service from Windows service manager

Now comes the programming part. Let us now try to write a code in PHP that does the small task of connecting to the database. Here, we would be writing a small piece of code in PHP with the help of the PHP MongoDB extension, which we have installed and set up in our previous step.

Note that as we are using PHP and writing PHP code, it is recommended to use some code editor or Integrated Development Environment (IDE) like Microsoft Visual Studio Code. You can download and install Microsoft Visual Studio Code from this link: https://code.visualstudio.com.

Microsoft Visual Studio Code is open-source and free software and is available for almost all operating systems.

It is also recommended that you should create some folders under your WAMP www folder for this purpose and save your files under that folder. The path could be somewhat like this: D:\wamp64\www\mongodb-examples, as shown in figure 3.21.

[image:]

Figure 3.21: Creating a folder under the WAMP www folder

Example 1—connecting to MongoDB Server using PHP

In our example, we have used the “$mongoDBClientConnection” variable, which is assigned as an object for the “MongoClient()” class. We have saved this file as “mongodb-connection.php” under the path: D:\wamp64\www\mongodb-examples. The following figure 3.22 shows the code for the same.

Code 1

<?php

$mongoDBClientConnection = new MongoDB\Driver\Manager("mongodb://localhost:27017");

echo "We have Successfully Connected to MongoDB Server using PHP";

?>

The following is the screenshot for the same in Visual Studio Code:

[image:]

Figure 3.22: Working with PHP files using Microsoft Visual Studio Code

Now, let us run this example. Open your browser and type http://localhost/mongodb-examples/mongodb-connection.php. You will see we have connected successfully to the MongoDB server using PHP, as shown in figure 3.23.

[image:]

Figure 3.23: Localhost—connecting to MongoDB Server using PHP

Example 2—fetching MongoDB Documents using PHP

In our example, we have used the “$mongoDBClientConnection” variable, which is assigned as an object for the “MongoClient()” class, and then we have used the “$query” object, which is an instance of the MongoDB Query class. Then, we pass this object in the “executeQuery” method as a second parameter. The first parameter of this method is the <Database-Name>.<Collection-Name>. We have saved this file as “fetching-documents.php” under the path: D:\wamp64\www\mongodb-examples. The following is the code for the same:

Code 1

<?php

$mongoDBClientConnection = new MongoDB\Driver\Manager("mongodb://localhost:27017");

echo 'We have Sucessfully Connected to MongoDB Server using PHP';

echo '<hr />›;

$query = new MongoDB\Driver\Query([]);

$rows = $mongoDBClientConnection->executeQuery("BPBOnlineBooksDB.BPBOnlineBooksCollection", $query);

foreach ($rows as $row) {

echo $row->_id .' => '. $row->{'book-title'} . ' [By : ‹ . $row->{'book-author'} . ']';

echo '
›;

}

?>

Now, let us run this example. Open your browser and type: http://localhost/mongodb-examples/fetching-documents.php. You will see that we have connected successfully to the MongoDB server using PHP, and we have also got the documents from the collection, as shown in figure 3.24.

[image:]

Figure 3.24: Localhost—connecting to MongoDB Server and fetching the documents from collection using PHP

Conclusion

In this chapter, we have covered the introduction to PHP programming with MongoDB. We have also learned that in order to run PHP with MongoDB server, we should have the right environment in place. We have learned how we can set up the right environment to run PHP codes. Later in this chapter, we have also learned what a WAMP server is and how to install a WAMP server. In the last section of this chapter, we have done some coding and run some practical examples to connect and work with the MongoDB server using PHP. In the upcoming chapter of this book, we will learn about Node.js and how we can use Node.js with the MongoDB database.

Questions

	What is PHP?

	List two most popular open-source software which runs on PHP.

	What is WAMP?

	How can we install PHP MongoDB Extension? Explain the process.

	Give an example to connect to MongoDB server with PHP.

CHAPTER 4

Starting Up Programming with MongoDB and JavaScript (Node.js)

Node.js, which is based on JavaScript engine-based programming language, is the most happening programming language these days; many of the modern applications are running using Node.js. In this chapter, we will cover the introduction to JavaScript programming language, and then, we will learn Node.js programming with MongoDB and how we can use Node.js with MongoDB. This chapter covers how we can set up the right environment to run Node.js codes. Later in this chapter, we will be doing some coding and running some practical examples to connect and work with MongoDB Server using Node.js.

Structure

In this chapter, we will discuss the following topics:

	Using JavaScript (Node.js) with MongoDB

	Installing Node.js and setting up the environment for server-side JavaScript

	Installing and setting up the NPM MongoDB library

	Connecting and working with MongoDB server using Node.js

Objectives

After studying this chapter, the reader will be able to understand how to use Node.js with MongoDB. This chapter will also cover how to install Node.js and MongoDB driver for Node.js to set up the environment ready for development. Later in this chapter, we will be doing some coding and learning how to connect MongoDB using the Node.js official MongoDB Driver.

Using JavaScript (Node.js) with MongoDB

JavaScript is one of the most popular and widely used server-side as well as client-side programming languages, and its client-side variant has been around from the start of the internet. The server-side JavaScript has gained popularity among developers as well as software companies after the launch of Node.js in the year 2009. A lot of open-source software and projects are developed in Node.js, and it is the base framework or environment for many other frameworks like Express JS and as well as Full Stack frameworks like Meteor JS.

There are many different ways to run Node.js with MongoDB on various operating systems such as Windows, Linux, and Mac OS. To cover them all is out of the scope of this chapter and the book, but we are going to use some of the easiest and official methods by which we can have our environment ready to work with Node.js and MongoDB. Let us start with some steps so that we are able to run our codes with Node.js and MongoDB.

Installing Node.js on Windows operating system

Let us install Node.js on Windows operating system by following the step-by-step installation method.

Installation steps

Let us start with the installation of Node.js on our machine. Following are the steps that are required to be performed to install WAMP Stack or Node.js:

Step 1—download Node.js

	Open the Node.js official website—https://nodejs.org in your favorite browser, browse to the middle section of the home page and click the download link, where you have two options available, one is recommended version, and another one is the latest version. For this chapter and book, we will download and install the recommended version, as shown in figure 4.1:

[image:]

Figure 4.1: Node.js official website Home Page

	Once the download starts, you can easily see the download process with the download icon and progress on your browser (this progress shows differently in every browser, the screenshot is of Google Chrome browser, every browser shows this in a different manner). You should wait till it is 100% complete, as shown in figure 4.2:

[image:]

Figure 4.2: Node.js download screen—download progress

	Once the download is 100% completed, you can follow the next steps (as shown in figure 4.3).
In Step 1, we have covered how to download Node.js from the official website. The next steps are related to the installation process, so we have covered this separately in Step 2 of the Node.js installation process.

Step 2—install Node.js on your Windows machine.

Once the download is complete and the installer file is fully downloaded, it will show a download complete Icon (as shown in figure 4.3), and you can proceed further.

[image:]

Figure 4.3: Node.js download screen—download 100% Complete—next steps

	Now open this installer file, and it will start the Node.js setup wizard, with will guide you to complete the installation of Node.js in your machine, as shown in figure 4.4:

[image:]

Figure 4.4: Node.js download screen—download 100% Complete—open installer file

	Now open this installer file, and it will start the Node.js setup wizard, with will guide you to complete the installation of Node.js in your machine. We are not going to cover all steps here as it is out of the scope of this chapter. Please follow the setup process, and it will install Node.js on your Windows machine (as shown in figure 4.5). Also, during the installation process, the setup will ask you to accept the License Agreement. It is recommended to read the License Agreement and other Terms and Conditions.

[image:]

Figure 4.5: Node.js setup wizard

	The installer will ask you to select the installation location to install this software on your Windows machine and also give the list of other software like NPM package manager. If you want, you can change the installation location you can change it or else go with the default installation. But it is recommended to select all the other features by default. Also, it is recommended to install the tools for a native module that setup may ask you to install during the setup process, as shown in figure 4.6:

[image:]

Figure 4.6: Node.js setup wizard—selecting all the features

	You can optionally install the tools for a native module that setup may ask you to install during the setup process. You may install these tools later too by following the installation instructions from the URL: https://github.com/nodejs/node-gyp, as shown in figure 4.7:

[image:]

Figure 4.7: Node.js setup wizard—tools for native modules

	Once the installation is 100% complete, click the “Finish” button to exit the Setup Wizard, as shown in figure 4.8:

[image:]

Figure 4.8: Node.js setup wizard—installation complete

Step 3—post-installation steps and verifying Node.js on your Windows machine

Once the installation is done, you should first verify Node.js and NPM (Node package manager or package manager for JavaScript programming language). In order to verify this two software on your Windows machine, open Command Prompt by typing “cmd” from the Search Bar located in the Taskbar, as shown in figure 4.9:

[image:]

Figure 4.9: Post-installation verification steps for Node.js and NPM

	Type the following two commands one by one to verify Node.js and NPM installation in the command prompt, as shown in figure 4.10:
node --version

npm --version

[image:]

Figure 4.10: Command prompt—verifying Node.js and NPM version on Windows

As you can see, both Node.js and NPM have been correctly installed on your Windows machine. Now, we can start with the development part of this chapter and start to use MongoDB with Node.js. In the next section, we will cover how to use MongoDB with Node.js applications. But before that, there is one last step we have to follow before we code. It is covered in Step 4.

Step 4—installing the MongoDB driver for Node.js using NPM

Once Node.js and NPM have been correctly installed on your Windows machine; now, we can install the MongoDB Driver using Node Package Manager (NPM).

	To install the official driver for MongoDB just open your favorite browser like Google Chrome and type: https://www.npmjs.com/package/mongodb and then press Enter. This will open up the official page for MongoDB on the NPM website, and you will be shown a lot of information about this driver, including how to install it using NPM and how to use it, as shown in figure 4.11:

[image:]

Figure 4.11: NPM MongoDB official home page

	Now, as we know what is the right command to install the official MongoDB driver for Node.js, choose any location on your machine and create a new folder or directory named “mongodb-nodejs”, as shown in figure 4.12:

[image:]

Figure 4.12: Create a new directory named “mongodb-nodejs” on your Windows machine

	Now open up your command prompt and navigate to this directory “mongodb-nodejs”, as shown in figure 4.13:

[image:]

Figure 4.13: Navigating to “mongodb-nodejs” directory

	Now run any of the following commands that have been mentioned on the MongoDB Driver home page of the NPM website. This will install MongoDB Driver for Node.js to our directory, where we are now going to create our Node.js application along with MongoDB, as shown in figure 4.14:
npm i mongodb

OR

npm install mongodb

[image:]

Figure 4.14: Installing MongoDB driver for Node.js

If you open your “mongodb-nodejs” folder (or directory), you will find that a folder named “node_modules” has been created automatically by this process, along with a file named “package-lock.json”. Basically, whenever you install any node module in Node.js it will create a folder named “node_modules” where it will download and copy all the node modules which are required by a specific module (like here we are installing MongoDB Driver for Node.js), or we can say those Node.js modules on which this MongoDB Driver is dependent plus its own files, as shown in figure 4.15:

[image:]

Figure 4.15: “node_modules” Folder and “package-lock.json” File is automatically created by the MongoDB driver for Node.js installation process

You may also open the “node_modules” folder and could see the other modules which are downloaded by the installation process, as shown in figure 4.16:

[image:]

Figure 4.16: MongoDB driver has been installed along with the other dependencies

The “package-lock.json” is a file where the module and its dependencies are displayed in JSON tree format. For more information about “package-lock.json”, you can visit this URL: https://docs.npmjs.com/configuring-npm/package-lock-json.html

We would also be covering another JSON file, “package.json”, which is used in Node.js application in our upcoming chapters, where we would cover advanced application development using Node.js.

As we have completed the setup of our environment with MongoDB and Node.js, now we can start with the programming part.

Connecting and working with Node.js and MongoDB

In the previous section of this chapter, we have set up our environment to run Node.js with MongoDB. Now let us start our programming part.

Let us now try to write a code in Node.js that does the small task of connecting to the database. Here we would be writing a small piece of code in Node.js with the help of the Node.js MongoDB driver, which we have installed and set up in our previous step.

Note that as we are using Node.js and writing Node.js code, it is recommended to use some Code Editor or Integrated Development Environment (IDE) like Microsoft Visual Studio Code or any Code Editor of your choice. You can download and install Microsoft Visual Studio Code from this link: https://code.visualstudio.com. Microsoft Visual Studio Code is an Open Source and free software and is available for almost all operating systems.

Example 1—connecting to MongoDB server using Node.js

In our example, we have used the “MongoDBClient” constant that is assigned as an object for the “MongoClient” class. Then we have called the connect method using this object. We have saved this file as “mongodb-connection.js” under this path: D:\mongodb-nodejs and the following is the code for the same (as shown in figure 4.17).

Code 1

const MongoDBClient = require('mongodb').MongoClient;

// Connection URL String

const url = 'mongodb://localhost:27017';

// Connecting to MongoDB Server using connect Method

MongoDBClient.connect(url, { useUnifiedTopology: true }, function(err, client) {

if(err){

console.log("Some Error While Connecting to MongoDB Server" + err);

}else{

console.log("Connected Sucessfully to MongoDB Server using Node.js Driver for MongoDB");

}

// Close the Server Connection

client.close();

});

Following is the screenshot of Microsoft Visual Studio Code:

[image:]

Figure 4.17: Working with Node.js files using Microsoft Visual Studio Code

Now, let us run this example. Open the command prompt and navigate to the “mongodb-nodejs” folder where you have saved this file and type the following command to run this code:

node mongodb-connection.js

You will see that we have connected successfully to MongoDB Server using Node.js, as shown in figure 4.18:

[image:]

Figure 4.18: Command prompt—connecting to MongoDB server using Node.js

Example 2—fetching MongoDB documents using Node.js

In our example, we have used the “MongoDBClient” constant that is assigned as an object for the “MongoClient” class. Then we have called the connect method using this object. After that, we have selected a DB “BPBOnlineBooksDB”, and then we have selected the collection as “BPBOnlineBooksCollection”, and at last, we have used the “collection.find().toArray()” method to get all the documents from the collection and then printed them on console and closed the server connection. We have saved this file as “mongodb-list-documents.js” under this path: D:\mongodb-nodejs and the following is the code for the same:

Code 2

const MongoDBClient = require('mongodb').MongoClient;

// Connection URL String

const url = 'mongodb://localhost:27017';

// Connecting to MongoDB Server using connect Method

MongoDBClient.connect(url, { useUnifiedTopology: true }, function(err, client) {

if(err){

console.log("Some Error While Connecting to MongoDB Server" + err);

}else{

console.log("Connected Sucessfully to MongoDB Server using Node.js Driver for MongoDB");

}

// Select DB

const dbname = "BPBOnlineBooksDB";

const db = client.db(dbname);

// Get the "BPBOnlineBooksCollection" Collection

 const collection = db.collection('BPBOnlineBooksCollection');

// Find All Documents in "BPBOnlineBooksCollection" Collection

collection.find().toArray(function(err, docs) {

if(err){

console.log("Some Error While Executing the Script" + err);

}else{

console.log("Our Node.js Script Found All these records:");

console.log(docs);

}

// Close the Server Connection

client.close();

});

});

Now let us run this example. Open the command prompt and navigate to the “mongodb-nodejs” folder where you have saved this file and type the following command to run this code:

node mongodb-list-documents.js

You will see that we have connected successfully to the MongoDB server using Node.js, and then this script has also displayed all the documents in the MongoDB collection, as shown in figure 4.19:

[image:]

Figure 4.19: Command prompt—connecting to MongoDB Server and fetching the documents from the collection using Node.js

Conclusion

In this chapter, we have covered the introduction to JavaScript and Node.js programming and how we can use Node.js with MongoDB. We have also learned how to set up the right environment to run Node.js codes. In the last section of this chapter, we have done some coding and run some practical examples to connect and work with MongoDB Server using Node.js. In the upcoming chapter of this book, we will learn about React Native programming and setting up the right environment before starting with the real data-driven mobile app development using React Native and MongoDB using APIs developed using Node.js and Express.js in the later advanced chapter of this book.

Questions

	Can we use JavaScript for both server side as well as client-side?

	What is Node.js?

	Can you name any modern frameworks which use Node.js to build applications?

	What does NPM stand for?

	What is the command to install the official MongoDB driver for Node.js?

	Give an example to connect to MongoDB server with Node.js.

CHAPTER 5

Starting Up Programming with MongoDB and React Native

Mobile users are growing all over the world, and so that mobile app development, in this dynamic world, we are using many mobile apps on our mobile phones, and mobile app development is one of the interesting topics among developers. React Native is one of the most popular mobile app development frameworks today, and this chapter covers the introduction to React Native mobile framework. We should have the right environment in place. So, this chapter covers how we can set up the right environment to run React Native codes. We will also cover how we can view our App on various platforms such as mobile, Emulator, and browser. In the last section of this chapter, we will do some coding and running some practical examples to show how we can actually start with mobile app development.

Structure

In this chapter, we will discuss the following topics:

	Introduction to React Native

	Pre-development steps

	Check Node.js and NPM on your system

	Installing Android Studio

	Installing Android SDK

	Setting up the environment variables

	Installing Expo CLI using NPM

	About Expo and Expo CLI

	Creating our mobile App using Expo and Expo CLI

	Running our mobile App using Expo and Expo CLI

	Opening and viewing App in mobile device using Expo app

	Opening and viewing app in Android Emulator

	Programming with React Native

	Practical examples

	A brief introduction to programming with React Native and MongoDB

Objectives

After studying this chapter, the reader will be able to understand what React Native is. This chapter covers the introduction to various tools used during the development of the mobile App. Here, the reader will learn how to install Android Studio and Android SDK by setting up the environment ready for development and understanding what Expo and Expo CLI are. The reader will also learn how to set up Expo and Expo CLI. In the last section of this chapter, the reader will learn how to develop React Native mobile App with step by step practical examples, and the reader will also get a brief idea on how to use MongoDB with React Native and how we are going to develop our dynamic mobile App using MongoDB in the later advanced chapter of this book.

Introduction to React Native

React Native is a widely used and one of the most popular frameworks based on React.js used to create mobile applications for all the major platforms such as Android, iOS, Universal Windows Platform (UWP,) and even can be used for building Web apps.

Both React Native and its base Library React are created by Facebook Inc., and both are getting very popular these days due to their features, which include the rendering of the right components when the application data changes. React uses the component-based approach where the components manage their own state.

The main difference between React.js and React Native is that React.js uses the Virtual Document Object Model (DOM) to render the browser code but React Native uses the Native APIs to render components on mobile.

React Native allows us to build Cross-Platform native mobile apps, which gives these apps a native feel.

There are some differences in React Native related to the use of HTML and CSS. Unlike Web applications, React Native uses some different ways to use HTML and CSS that we will look at later in this chapter.

Pre-development steps

There are many different ways to create mobile apps with React Native and MongoDB. To cover them all is out of the scope of this chapter and book, but we are going to use some of the easiest and official methods by which we can have our environment ready to work with React Native and MongoDB. Let us start with some steps so that we are able to run our codes with React Native and MongoDB.

In our previous chapter, where we have given the introduction about getting started with MongoDB and JavaScript (Node.js), we have already covered how to install the Node.js and Node Package Manager (NPM). Follow the following steps before we start to code:

Step 1—check Node.js and NPM on your system

You should first verify that Node.js and NPM. In order to verify these two software on your Windows machine, open the command prompt by typing “cod” from the Search Bar located in the Taskbar, as shown in figure 5.1:

[image:]

Figure 5.1: Open command prompt

	Type the following two commands one by one to verify Node.js and NPM installation in the command prompt, as shown in figure 5.2:
 node --version

 npm --version

[image:]

Figure 5.2: Command prompt—verifying Node.js and NPM version on Windows

As you can see, both Node.js and NPM have been correctly installed on your Windows machine.

Step 2—creating a project folder in your system

Choose any location on your machine and create a new folder or directory named “bpb-catalog-mobile-app” the location could be similar to D:\ bpb-catalog-mobile-app, as shown in figure 5.3:

[image:]

Figure 5.3: Create a new directory named “bpb-catalog-mobile-app” on your Windows Machine

Step 3—installing Android Studio

	We need to have Android Emulator to run our React Native mobile app scripts on Windows. For this purpose, we need to download and install. Visit: https://developer.android.com/studio in your favorite browsers such as Google Chrome and click the Download button, as shown in figure 5.4:

[image:]

Figure 5.4: Android Studio Home Page

	After you click “Download Android Studio”, it will open a popup having “Terms and Conditions”, It is recommended to read terms and conditions before downloading the Android Studio. Click the “Download Android Studio For Windows” button; after you click this button, the download will start in your browser, and you can see the download progress, as shown in figure 5.5:

[image:]

Figure 5.5: Android Studio download screen

	After the download is 100% complete, you can open the installer file, and it will launch the Setup Wizard for Android Studio. Click the Next button to start the setup process, as shown in figure 5.6:

[image:]

Figure 5.6: Android Studio setup Wizard

	During the setup process, it will show you the screen in which you have the option to select “Android Virtual Device”. Please note that you need to select this option so that we are able to use “Android Virtual Device” or Android Emulator, as shown in figure 5.7:

[image:]

Figure 5.7: Android Studio Setup Wizard—choose components screen

	During the setup process, you can change the location of the software where you need this software to get installed on your machine, as shown in figure 5.8:

[image:]

Figure 5.8: Android Studio Setup Wizard—installation location

	You can see the setup installation progress, and once it is done, you can press the “Next” button, as shown in figure 5.9:

[image:]

Figure 5.9: Android Studio setup Wizard—installation progress

	After the setup is complete, you will see the last screen of the wizard, as we do not need to launch the Android Studio. We can uncheck the “Start Android Studio” checkbox and then click the “Finish” button to exit the setup wizard, as shown in figure 5.10:

[image:]

Figure 5.10: Android studio setup Wizard – installation complete

Step 4—installing Android SDK

	If you open your Android Studio first time (as we skipped to launch Android Studio in Step 3 purposely, to cover the “Installing Android SDK (Software Development Kit)”), in the Search Bar under the taskbar of Windows, type “android” and you will see the Android Studio will appear as we have installed it in our previous step, as shown in figure 5.11:

[image:]

Figure 5.11: Opening Android Studio

	This will launch the Android Studio as we have not Installed Android SDK yet. The message will appear once the Android Studio is launched the first time, which says something like this: “Your Android SDK is missing, out of date, or corrupted”, You need to click on the button that says: “Open SDK Manager”. You might leave this step if the Android SDK is already installed on your machine, as shown in figure 5.12:

[image:]

Figure 5.12: Android Studio—SDK problem Alert Box

	After you click the “Open SDK Manager” button, it will launch the SDK Manager window, and you will see that “Android SDK location” is empty. In order to resolve this, we need to install the Android SDK, which will be downloaded from the Internet. You might skip this step if the Android SDK is already installed on your machine, as shown in figure 5.13:

[image:]

Figure 5.13: Android Studio—SDK Manager

	To install the Android SDK, click the edit link under the Android SDK location. This will launch another window from where we can install the latest version of Android SDK. You might leave this step if the Android SDK is already installed on your machine, as shown in figure 5.14:

[image:]

Figure 5.14: Android Studio—SDK location—Click Edit Link

Step 5—setting up the environment variables

We need to set up the environment variables paths on our Windows Machine for Java Software Development Kit (SDK) and Android SDK. Both of these environment variables and their paths are required so that our application and Android Emulator will run properly on Windows. To set up these environment variables paths, follow the following points:

	In your Windows search menu under taskbar, type “environment variables” and when it shows the option “Edit the system environment variables”. Open it, as shown in figure 5.15:

[image:]

Figure 5.15: Opening Windows environment variables

	This will open the system properties window, and under this, you will see the “Environment Variables” button. Click this button, and it will open a new window where you can add new environment variables, as shown in figure 5.16:

[image:]

Figure 5.16: System properties screen

	This will open the System Properties window, and under this, you will see the “Environment Variables” button. Click this button, and it will open a new window where you can add new environment variables. You need to create “User Variables”. Click the “New” button under the User Variables section. This will open a new window where you can find new user environment variables, as shown in figure 5.17:

[image:]

Figure 5.17: Adding new user environment variable

	Once you click the “New” button, it will open another window where you need to add “Variable name” and “Variable value”. Please enter the following value for “JAVA_HOME”. Note that this path may vary according to the “Android Studio” installation path in your machine. In order to enter the correct details, you can use the “Browse Directory” option (as shown in figure 5.18).

	Variable Name: JAVA_HOME

	Variable Path: D:\Program Files\Android\Android Studio\jre\jre (this path varies according to your machine where you have installed your Android Studio).

[image:]

Figure 5.18: Adding new user environment variable—JAVA_HOME

	Repeat the last step to enter one more variable for “ANDROID_HOME”. Note that this path may vary according to the “Android SDK” installation path in your machine. So, in order to enter the correct details, you can use the “Browse Directory” option after you enter these details (as shown in figure 5.19).

	Variable Name: ANDROID_HOME

	Variable path: C:\Users\manus\AppData\Local\Android\Sdk (this path varies according to your machine, where you have installed your Android SDK).

[image:]

Figure 5.19: Adding new user environment variable—ANDROID_HOME

Step 6—installing Expo CLI using NPM

Expo is a framework to build React Native applications. It has inbuilt tools and libraries which are very helpful while we build our applications using React Native.

Expo CLI is the Expo’s Command Line Interface, which is used to create React Native Projects using Expo.

	Open up your command prompt and navigate to your project directory that is: “D:\bpb-catalog-mobile-app” in our case (as shown in figure 5.20):

[image:]

Figure 5.20: Navigating to “bpb-catalog-mobile-app” directory

	Open your favorite browser like Google Chrome, and in the address bar, type: https://expo.dev/ and press Enter. This will open the “Expo” home page. Here, you will see all the details about Expo and Expo CLI, including the command to install them in your project. Click the “Get Started” link on the top navigation bar of the home page. This will open up the “Quick Starter Guide” page, as shown in figure 5.21:

[image:]

Figure 5.21: Expo Home Page

	As we have already installed Node.js in our previous chapters, we can skip steps to install Node.js and simply move to Step 3 and install Expo CLI in our project, as shown in figure 5.22:

[image:]

Figure 5.22: Expo get started page

	Now run the following command that has been mentioned on the Expo “Quick Starter Guide” page. This will install Expo CLI using Node Package Manager (NPM) to our project directory, where we are now going to create our React Native application along with MongoDB, as shown in figure 5.23:
npm install --global expo-cli

Here “--global” means that Expo CLI will be installed globally in your computer so that you can use it anywhere when you might be working with Expo CLI again.

[image:]

Figure 5.23: Installing Expo CLI

As we have installed Expo using the “--global” parameter, it has been installed globally under the following locations:

C:\Users\manus\AppData\Roaming\npm\expo -> C:\Users\manus\AppData\Roaming\npm\node_modules\expo-cli\bin\expo.js

C:\Users\manus\AppData\Roaming\npm\expo-cli -> C:\Users\manus\AppData\Roaming\npm\node_modules\expo-cli\bin\expo.js

	We can verify this by navigating to the “npm” folder under “AppData”, as shown in figure 5.24:

[image:]

Figure 5.24: AppData global NPM installation

Step 7—creating our mobile App using Expo and Expo CLI

	Open the command prompt and navigate to your project directory, which is: “D:\bpb-catalog-mobile-app” in our case and type the following command, as shown in figure 5.25:
expo init bpb-mobile-app --npm

We have given --npm parameter here to open our App using NPM instead of Yarn (which is a default option).

[image:]

Figure 5.25: Creating our mobile App using Expo CLI—Expo “init” method

	After we run the command as mentioned previously. Expo CLI will prompt us to “Choose a Template”. For our example, we will choose the “blank” template and press Enter again. After you press Enter key, the Expo CLI will start creating our mobile application using NPM, as shown in figure 5.26:

[image:]

Figure 5.26: Creating our mobile App using Expo CLI—app structure created for development

	We can browse our project folder and can see a new folder with an app name that we have given during our EXPO CLI initialization Command in Point 1. The same folder has been created under our project folder with the Expo files and other Node Modules, as shown in figure 5.27:

[image:]

Figure 5.27: App folder and files created by Expo CLI

Step 8—running our mobile App using Expo and Expo CLI

	Open the command prompt and navigate to your project directory and then to our application directory, which is: “D:\bpb-catalog-mobile-app\bpb-mobile-app” in our case, and type the following command, as shown in figure 5.28:
npm start

When we run the above command, Expo CLI will start our application, and we can see that it will start after some time. Please remember that you should not close this command prompt window as doing this will stop our App. You should keep it running.

[image:]

Figure 5.28: Starting our mobile App with Expo Start Command—“expo start”

	Once the App gets ready, Expo will try to automatically launch this App in the default browser. If it does not happen, then you can now open your favorite browsers such as Google Chrome and type: http://localhost:19002/ in the URL bar and press Enter. This will Open Expo Developer tools in the browser where we can have work on app settings and options in the browser with the help of Node Metro Bundler, which is a JavaScript Bundler for React Native. We can also see many ways to view and run our App in browsers, emulators, or real devices (as shown in figure 5.29). For more details about React Native Bundler, you can visit:

	https://www.npmjs.com/package/metro-bundler

	https://github.com/facebook/metro

[image:]

Figure 5.29: Expo developer tools

	There are many other ways to open and view our application using the following methods:

	Using Web Browser

	Using the QR Code with the Expo app (Android)

	Using the QR Code with the Camera app (iOS)

	Using Android Emulator

Let us explore some of these methods. If we want to run our application in the browser, then we need to simply click the “Run in web browser”. Once you do this, it will try to create our App ready for the browser, and you can see the process in the background in the command prompt where your App was started using Expo CLI (as shown in figure 5.30).

[image:]

Figure 5.30: Expo logs in command prompt

	The previous step will automatically launch our App in the new tab of the browser. If it does not happen automatically, then you can now open a new tab in the browser and type: http://localhost:19006/ in the URL bar and press Enter. This will open our App where we can also see the changes as we develop our mobile App in the next steps, as shown in figure 5.31:

[image:]

Figure 5.31: Our App Home Screen in Browser

Step 9—opening and viewing an app in mobile device using Expo app

	Open Google Play Store on your Android Mobile and search for Expo App for React Native. Once you get the search results, click on the right App and install the Expo app on your mobile phone, as shown in figure 5.32:

[image:]

Figure 5.32: Installing Expo App in your mobile (Android Device)

	After you have installed this App open this App on your mobile phone. This App requires some permissions to “take pictures and record videos” because we need to scan the QR code on our mobile using this App. Allow this App to take pictures, as shown in figure 5.33:

[image:]

Figure 5.33: Allow permissions for Expo App in your device

	Now click the scan QR Code and point your mobile camera to the QR Code that you either see in your command prompt where you have started your App with Expo CLI or your Web browser under Node Metro Builder, as shown in figure 5.34:

[image:]

Figure 5.34: Scan the bar code shown in your browser or command prompt using the Expo App

	Once your QR code has been correctly scanned by your mobile, you will see that after some time, your App will be displayed under the Projects, and you can open this App from your mobile phone, as shown in figure 5.35:

[image:]

Figure 5.35: Expo launches our App in mobile device

	Once you click over your App in the Expo projects, it will open this App on your mobile, and we can see the default screen of our App in Android mobile, which is a real device, as shown in figure 5.36:

[image:]

Figure 5.36: Our App Home screen in real device

	You may also see the logs messages that will be shown both under your command prompt where you have started your App using Expo CLI as well as in your browser where Expo Dev Tools and Node Metro Builder is opened, as shown in figure 5.37:

[image:]

Figure 5.37: Expo Developer tools—logs

Step 10—opening and viewing app in Android Emulator

If you try to open your App using “Run on Android device/emulator” you might get an error message if your Android Emulator is not set up correctly in your Windows machine. To solve this issue, we need to first set up the Android Emulator with the help of Android Studio, as shown in figure 5.38:

[image:]

Figure 5.38: Error message—could not launch Emulator

	Open Android Studio and click ”More Actions”. It will show many options after clicking it, as shown in figure 5.39:

[image:]

Figure 5.39: Android Studio—Configure

	Now click Android Virtual Device (AVD) Manager to open the AVD Manager window, as shown in figure 5.40:

[image:]

Figure 5.40: Selecting AVD Manager from Android Studio Configure

	In your AVD Manager screen, click the “Create Virtual Device” button, as shown in figure 5.41:

[image:]

Figure 5.41: Android Studio—create virtual device

	In the Hardware screen, select any phone device (in our example, we have selected Pixel 2 mobile device with Play Store and click Next, as shown in figure 5.42:

[image:]

Figure 5.42: Creating virtual device—select hardware

	In the Select a system image section, choose any recommended image and download it (in our example, we have chosen 30 API version). You might need to accept the Terms and Conditions while downloading the new image and related software. It is recommended to read the Terms and Conditions before downloading, as shown in figure 5.43:

[image:]

Figure 5.43: Android virtual device configuration—selecting the image

	After we are done with all the above points, we can then choose the name of our Android Virtual Device and click the “Finish” button, as shown in figure 5.44:

[image:]

Figure 5.44: Android virtual device configuration—verify configuration

	This AVD will be shown in the virtual devices in the Android Studio. Click the “Play” button to launch this AVD, as shown in figure 5.45:

[image:]

Figure 5.45: Launching AVD in the Emulator

	Now click the “Run on Android device emulator”, and it will open our App in Android Emulator, as shown in figure 5.46:

[image:]

Figure 5.46: Expo Dev tools—launching our App in Android Emulator

Programming with React Native

In the previous section of this chapter, we have set up our environment to run React Native with MongoDB. Now, let us start our programming part.

Let us now try to write a code in React Native that does a small task of connecting to the database. Here, we would be writing a small piece of code in React Native, which will communicate with MongoDB with the help of API that we have created in our previous chapter, where we have learned to create APIs using Node.js and Express.js.

Note that as we are using React Native and writing React Native Code, it is recommended to use some code editor or Integrated Development Environment (IDE) like Microsoft Visual Studio Code or any code editor of your choice. You can download and install Microsoft Visual Studio Code from this link: https://code.visualstudio.com. Microsoft Visual Studio Code is open-source and free software and is available for almost all operating systems.

Example 1—changing the text in our mobile App

Following is the default “App.js” code, which is created by Expo CLI. This code includes some files from Expo, React, and React Native, and the components (or objects) such as “StatusBar”, “React”, “StyleSheet”, “Text”, and “Views” have been created. In React Native, we use CSS in a different manner using the “StyleSheet” component to create our styles, and here, we generally use Flexbox CSS properties for styling but it applies to <View> component only. <Text> component in React Native does not use Flex to organize its content. We can use “numberOfLines” prop, etc.

<View> component can have any number of child elements, and it can contain nested <Views>, <Text>, and <Image> components, and so on.

In our default code, there is a default function App(), which returns some “Text” and shows it to the screen, as shown in figure 5.47:

Code 1

import { StatusBar } from 'expo-status-bar';

import React from 'react';

import { StyleSheet, Text, View } from 'react-native';

export default function App() {

return (

 <View style={styles.container}>

<Text>Open up App.js to start working on your app!</Text>

<StatusBar style="auto" />

 </View>

);

}

const styles = StyleSheet.create({

container: {

 flex: 1,

 backgroundColor: '#fff',

 alignItems: 'center',

 justifyContent: 'center',

},

});

[image:]

Figure 5.47: Working with React Native files using Microsoft Visual Studio Code

Now let us change the text message of our App, and the code of the same is as follows:

Code 2

import { StatusBar } from 'expo-status-bar';

import React from 'react';

import { StyleSheet, Text, View } from 'react-native';

export default function App() {

return (

<View style={styles.container}>

<Text>Welcome to BPB Online Mobile App</Text>

<StatusBar style="auto" />

</View>

);

}

const styles = StyleSheet.create({

container: {

flex: 1,

backgroundColor: '#fff',

alignItems: 'center',

justifyContent: 'center',

},

});

After the code change, run this App again. In case you have closed your App you can again run this App by using the following command after navigating to the correct location which is: “D:\bpb-catalog-mobile-app\bpb-mobile-app” in our case, as shown in figure 5.48:

npm start

[image:]

Figure 5.48: Starting our App using Expo CLI

This will now start a “Metro Bundler” and open “Expo Developer Tools” in your browser. In case it is not launched automatically, open your browser and type: http://localhost:19002. You now need to click the option under “Expo Developer Tools”, which says “Run in Web Browser”, as shown in figure 5.49:

[image:]

Figure 5.49: Expo Dev tools—launching our App in browser

Once you click the option under “Expo Developer Tools”, which says “Run in Web Browser”, it will start the process of launching your App in a browser, and after some time, it will open the App in the browser. If this does not happen automatically, then first check the logs under “Metro Bundler”, and then you may try opening this URL: “http://localhost:19006/” in a new browser tab, as shown in figure 5.50:

[image:]

Figure 5.50: Our App Home Screen shown in the browser

We have seen how we can easily change the text of our mobile app. Now let us add some Logo images to our app in our next example.

Example 2—adding logo image in our mobile App

In our example, we have created a separate header section and included it in the default App() function. We have also imported the <Image> component from “React Native” and then we have used this <Image> component to display the logo image in our App. If you remember that in our previous example we have learned that <View> components can include <Image> components as well as <Text> components. We have done the same thing here; we just created a separate code for the header section of our App, and the following is the code for the same.

Code 1

import { StatusBar } from 'expo-status-bar';

import React from 'react';

import { StyleSheet, Text, View, Image } from 'react-native'; // Imported the Image Component

export default function App() {

return (

<View style={styles.container}>

{appHeaderSection}

</View>

);

}

//Style Sheet

const styles = StyleSheet.create({

container: {

flex: 1,

backgroundColor: '#fff',

alignItems: 'center',

justifyContent: 'flex-start', /* Flex Start */

marginTop: 10

},

});

// Header Section

const appHeaderSection = (

<View style={styles.container}>

<Image source={require('./images/bpb-logo.png')} style={{height: 100, width: 150}} />

<Text>Welcome to BPB Online Mobile App</Text>

<StatusBar style="auto" />

</View>

);

Also, note that once you do changes in your App, the Expo will automatically refresh your code and you can see the instant changes whatsoever you are doing in your code, as shown in figure 5.51:

[image:]

Figure 5.51: Our App with changed text and logo shown in the browser

We have seen how we can easily add the logo image to our mobile App. Now let us open the same in The Android Emulator. For this, you need to open the Android Studio and follow the points as explained in the previous section of this chapter which is Step 10 under the pre development part of this chapter. Open AVD Manager and start the virtual device and wait for it to start and after that from the Expo Developer Tool click “Run on Android device /emulator”. This will open our App in the Android Emulator (Virtual Device), as shown in figure 5.52:

[image:]

Figure 5.52: Command prompt—connecting to MongoDB server using Node.js

A brief introduction to programming with React Native and MongoDB

In this chapter, we have learned how we can create the right environment for mobile application development and have created a simple mobile app. Now, we need to create a dynamic app that uses MongoDB collection data for reading and updating. For all these operations we need some way so that our mobile App can communicate with the MongoDB database. For this purpose, we need Application Programming Interfaces (APIs), which would be helpful in the further development of our mobile application.

We will be covering more about API and API development in the next chapters of this book and will learn to create APIs using Node.js and Express.js (which is a framework for Node.js and it has a lot of features to create APIs along with MongoDB). A whole chapter is dedicated to this purpose, where you will learn how to create API and perform CRUD operations using API calls.

After we learn how to create APIs using Node.js and Express.js along with MongoDB, we will further resume our mobile application development in the advanced chapter, which is dedicated to creating the mobile application development for a publishing house where we will learn the following:

	How to connect MongoDB Server with the help of API using React Native

	How to show the list of books that we will add using the backend, which we will create in our upcoming chapter using PHP and MongoDB

	How to give a “Thumbs Up” and “Thumbs Down” rating to a book from a mobile application using API

Also, in this book, there will be a bonus chapter about “MongoDB Realm”, which will give step by step introduction to MongoDB Realm and how we can work with MongoDB Realm along with React Native for developing mobile apps.

The upcoming chapters would be very helpful in making you learn many new things, and they will add good learning toward the full-stack development, which we will cover step by step in the next chapters.

Conclusion

In this chapter, we have covered the introduction to React Native mobile framework. We have learned that in order to run React Native and create mobile apps, we should have the right environment in place. We have seen how we can view our App on various platforms like mobile, Emulator as well as in a browser. In the last section of this chapter, we have done some coding and run some practical examples, and learned how we can actually start with the mobile app development. In the upcoming chapter, we will be learning how we can use Python programming language with MongoDB and in the later advanced chapters of this book, we will be also covering how to use APIs built with Node.js and Express.js with React Native mobile app and connect to MongoDB these topics are covered in a detailed manner in the advanced chapters of this book in which we will finally learn how to create a dynamic mobile app with React Native and MongoDB.

Questions

	What is React Native?

	What are the pre-development steps that you need in order to develop an App in React Native?

	What is Expo and Expo CLI?

	How can you create mobile app using Expo CLI?

	What is the command used to launch our application with Expo CLI?

	Name two React Native components that you have learned in this chapter?

CHAPTER 6

Starting Up Programming with MongoDB and Python

If we think about Data Science, Machine Learning, and AI, then one language that comes to our mind is Python. Python is one of the most popular languages today, and it has been used for the development of various software applications, including Web-based. This chapter covers the introduction to Python programming language and Python programming with MongoDB and how we can use Python with MongoDB. This chapter covers how we can set up the right environment to run Python codes. In the last section of this chapter, we will be doing some coding and running some practical examples to connect and work with the MongoDB server using Python.

Structure

In this chapter, we will discuss the following topics:

	Using Python with MongoDB

	Installing Python and setting up the environment for running Python scripts

	Installing and setting up MongoDB driver with PIP

	Connecting and working with MongoDB server using Python

Objectives

After studying this chapter, the reader will be able to understand how to use Python with MongoDB and how to install Python and set up the environment ready for development. This chapter also covers the coding part, where the reader will learn how to set up the right environment to use MongoDB along with Python and also how to connect and work with the MongoDB database using Python.

Using Python with MongoDB

Python is an interpreted, high-level, object-oriented programming language and one of the widely used and most popular programming languages these days due to its use in many areas and artificial intelligence. Python is a general-purpose programming language. Besides Web development, it is used in back-end development, software development, data sciences, and also writing system scripts.

There are many ways to run Python with MongoDB on various operating systems such as Windows, Linux, and Mac OS. To cover them all is out of the scope of this chapter and book. But we are going to use some of the easiest and official methods by which we can have our environment ready to work with Python and MongoDB. Let us start with some steps so that we are able to run our codes with Python and MongoDB.

Installing Python on Windows operating system

Let us install Python on Windows operating system by following the step-by-step installation method.

Installation steps

Let us start with the installation of Python on our machine. Following are the steps that are required to be performed to install Python.

Step 1—download Python

	Open Python’s official website—https://www.python.org in your favorite browser, point your mouse to the “Downloads” link on the top section of the home page and click the download link in which you will see the latest version of Python with its version number. Click this link, as shown in figure 6.1:

[image:]

Figure 6.1: Python official website Home Page

	Once the download starts, you can easily see the download process with the download icon and progress on your browser (this progress shows differently in each browser. The screenshot is of Google Chrome browser. Every browser shows this in a different manner), you should wait till it is 100% complete, as shown in figure 6.2:

[image:]

Figure 6.2: Python download screen—download progress

	Once the download is 100% complete, you can follow the next steps (as shown in figure 6.3).

In Step 1, we have covered how to download Python from the official website. The next steps are related to the installation process, which we have covered separately in Step 2 of the Python installation process.

Step 2—install Python on your Windows Machine

Once the download is complete and the installer file is fully downloaded, it will show a download complete icon (as shown in figure 6.3), and you can proceed further.

[image:]

Figure 6.3: Python download screen—download 100% complete—next steps

	Now open this installer file, and it will start the Python setup wizard guiding you to complete the installation of Python in your machine, as shown in figure 6.4:

[image:]

Figure 6.4: Python download screen—download 100% complete—open Installer file

	Now open this installer file, and it will start the Python setup wizard guiding you to complete the installation of Python in your machine. It is recommended to check the checkbox that says “Add Python to PATH” so that it will add the path of the Python to the Windows environment variables, and we can run Python-related commands from everywhere. We are not going to cover all steps here as it is out of the scope of this chapter. Please follow the setup process, and it will install Python on your Windows machine (as shown in figure 6.5). Also, during the installation process, the setup may ask you to accept the License Agreement. It is recommended to read the License Agreement and other Terms and Conditions. Click “Install Now” to start the installation process.

[image:]

Figure 6.5: Python setup wizard

	The installer also allows you to customize the installation of this software on your Windows machine. If you want, you can change the installation location or else go with the default installation. But it is recommended to select the default method. Once the installation gets started, you will see the setup progress, as shown in figure 6.6:

[image:]

Figure 6.6: Python setup wizard—setup progress

	After the installation is 100% complete, you will see the last screen of this wizard. Click on the “Close” button to finish the setup process, as shown in figure 6.7:

[image:]

Figure 6.7: Python setup wizard—installation complete

Step 3—post-installation steps and verifying Python on your Windows Machine

Once the installation is done, you should first verify that Python and PIP (Python Package Installer that is a standard package manager for Python and is used to install and manage software packages written in Python Programming Language) is correctly installed on your machine. In order to verify these two software on your Windows machine, open the command prompt by typing “cmd” from the search bar located in the taskbar, as shown in figure 6.8)

[image:]

Figure 6.8: Post-installation verification steps for Python and PIP

	Type the following two commands one by one to verify Python and PIP installation in the command prompt, as shown in figure 6.9:
python --version

pip --version

[image:]

Figure 6.9: Command prompt—verifying Python and PIP version on Windows

As you can see, both Python and PIP have been correctly installed on your Windows machine. Now we can start with the development part of this chapter and start to use MongoDB with Python. In the next section, we will cover how to use MongoDB with Python applications. But before that, there is one last step we have to follow before we code. It is covered in Step 4.

Step 4—installing MongoDB driver for Python using Python Package Index (PyPI)

Once Python and PIP have been correctly installed on your Windows machine, we can install MongoDB driver using Python Package Index (PyPI), which is the repository for software and modules written in Python programming language).

	To install the official driver for MongoDB just open your favorite browser like Google Chrome and type: https://pypi.org/project/pymongo/ and then press Enter. This will open up the official page for MongoDB on the PIP website, and you will be shown a lot of information about this driver, including how to install it using PIP and how to use it. You can also see the latest release details of this driver, as shown in figure 6.10:

[image:]

Figure 6.10: PyPI MongoDB official Home Page

	Now, as we know what is the right command to install the official MongoDB driver for Python, choose any location on your machine and create a new folder or directory named “mongodb-python”, as shown in figure 6.11:

[image:]

Figure 6.11: Create a new directory named “mongodb-python” on your Windows Machine

	Now open up your command prompt and navigate to this directory “mongodb-python”, as shown in figure 6.12:

[image:]

Figure 6.12: Navigating to “mongodb-python” directory

	Now run any one of the following commands, which are mentioned on the MongoDB driver home page of the PyPI website. This will install MongoDB driver for Python to our directory where we are now going to create our Python application along with MongoDB, as shown in figure 6.13:
 pip install pymongo

[image:]

Figure 6.13: Installing MongoDB driver for Python

As we are finished with the setup of our environment with MongoDB and Python; now, we can start with the programming part.

Programming with Python and MongoDB

In the previous section of this chapter, we have set up our environment to run Python with MongoDB. Now let us start our programming part.

Let us now try to write a code in Python which do the small task of connecting to the database. Here, we will be writing a small piece of code in Python with the help of the Python MongoDB driver that we have installed and set up in our previous step.

Note that, as we are using Python and writing Python code, it is recommended to use some Code Editor or Integrated Development Environment (IDE) like Microsoft Visual Studio Code or any Code Editor of your choice. You can download and install Microsoft Visual Studio Code from this link: https://code.visualstudio.com. Microsoft Visual Studio Code is open-source and free software and is available for almost all operating systems.

Example 1—connecting to MongoDB server using Python

In our example, we have imported the “pymongo” which is a Python MongoDB driver module, used the “MongoDBClient” variable, which is assigned as an object for the “MongoClient” class, and passed the MongoDB connection string in the constructor. We have saved this file as “mongodb-connection.py” under this path: D:\mongodb-python and the following is the code for the same, as shown in figure 6.14:

Code 1

import pymongo

MongoDBClient = pymongo.MongoClient("mongodb://localhost:27017/")

if MongoDBClient:

print("Connected Sucessfully to MongoDB Server using Python Driver for MongoDB")

else:

 print("Some Error While Connecting to MongoDB Server")

The following is the screenshot of the same in Microsoft Visual Studio code:

[image:]

Figure 6.14: Working with Python files using Microsoft Visual Studio Code

Now let us run this example. Open up your command prompt and navigate to the “mongodb-python” folder where you have saved this file and type the following command to run this code:

python mongodb-connection.py

You will see that we have connected successfully to the MongoDB server using Python, as shown in figure 6.15:

[image:]

Figure 6.15: Command prompt—connecting to MongoDB server using Python

Example 2—fetching MongoDB documents using Python

In our example, we have imported the “pymongo”, which is a Python MongoDB driver module, used the “MongoDBClient” variable, which is assigned as an object for the “MongoClient” class, and passed the MongoDB connection string in the constructor. Then we have created a variable DB, which has assigned our database “BPBOnlineBooksDB”. After that, we have used the “db.BPBOnlineBooksCollection.find()” method in a for loop and printed all the documents in the “BPBOnlineBooksCollection” collection. We have saved this file as “mongodb-list-documents.py” under this path: D:\mongodb-python and the following is the code for the same:

Code 1

import pymongo

MongoDBClient = pymongo.MongoClient("mongodb://localhost:27017/")

if MongoDBClient:

print("Connected Sucessfully to MongoDB Server using Python Driver for MongoDB")

db = MongoDBClient.BPBOnlineBooksDB

if db:

print("Our Python Script Found All these records:")

for documents in db.BPBOnlineBooksCollection.find():

print(documents)

else:

print("Some Error While Connecting to Database")

else:

print("Some Error While Connecting to MongoDB Server")

Now let us run this example. Open up your command prompt and navigate to the “mongodb-python” folder where you have saved this file and type the following command to run this code:

python mongodb-list-documents.py

You will see that we have connected successfully to the MongoDB server using Python, and then this script has also displayed all the documents in the MongoDB collection, as shown in figure 6.16:

[image:]

Figure 6.16: Command prompt—connecting to MongoDB server and fetching the documents from collection using Python

Conclusion

In this chapter, we have covered the introduction to Python programming with MongoDB and how we can use Python with MongoDB. We have also learned that in order to run Python with MongoDB server, we should have the right environment in place. We have also learned how we can set up MongoDB with Python. In the last section of this chapter, we have done some coding and run some practical examples to connect and work with the MongoDB server using Python. Till now in this book, we have learned how to set up the right environments and how to connect with MongoDB using various programming languages such as PHP, Node.js, React Native, and Python; from the upcoming chapters, we will start with the full-stack development with a complete software ecosystem of various applications. The upcoming chapters will be very interesting as we will learn how these apps connect with each other in a software ecosystem.

Questions

	What is Python?

	What is PIP, and its purpose?

	What is PyPI?

	What is the command to install the official MongoDB driver for Python?

	Give an example to connect to MongoDB server with Python.

	Give an example to connect to the MongoDB server and list the documents with Python.

CHAPTER 7

Full-Stack Development Using MongoDB

Starting with the step-by-step practical Web and mobile application development using MongoDB, PHP, JavaScript (Node.js), React Native, and Python.

What comes to your mind when you encounter the word “Full Stack”? Many of us have been doing it or could be a part of this during our day-to-day jobs. This chapter covers the instruction to various terms, which are used in software development, including the full-stack. This chapter covers topics related to application and software development and terms such as frontend, backend and full-stack development and understanding various technologies, frameworks, and stacks which are used in these various types of applications.

In the later part of this chapter, we will cover applications that we are going to develop in our next chapters. We will also cover an overview of various technologies and tools that we would be using to develop our Web and mobile apps. This chapter is an interesting one to get an overall overview of the upcoming chapters, which are related to the step-by-step full-stack Web and mobile application development of this book.

Structure

In this chapter, we will discuss the following topics:

	Introduction to full-stack development

	Frontend technologies and stack

	Backend technologies and stack

	Full-stack development and technologies

	Overview of applications that we will develop in our upcoming chapters

	Overview of various technologies and tools that we will use to develop our Web and mobile apps

Objectives

After studying this chapter reader will understand the full stack development covering both frontend and backend technologies and various other stacks. While going through this chapter reader will get a brief understanding of full-stack development and technologies and the applications that we are further going to develop in our next advanced chapters of this book.

Introduction to full-stack development

Many of you might be wondering what exactly this term “full-stack” means? Let us understand this term and why full-stack development is a trending topic these days, and why we have chosen this to be included for application development for this book. Before we understand what exactly the term “full-stack” means, let us understand a few other terms.

Frontend

The front end is usually the visible part of any application by which the user interacts with the application. Generally, it is the interface that is responsible for user interaction. These application interfaces are presented to the user so that users can interact with the system. Every frontend interface could be unique in terms of which technology they use. Some of the interfaces, like desktop apps, have their frontend interfaces written in programming languages, which are different than what we use in Web and mobile development.

For websites and mobile applications, their frontend relies on a few software like Web browsers or mobile OS in the case of native apps. For example, a frontend for a website or web app renders with the help of Web browsers such as Google Chrome or Mac Safari.

Normally, whenever any frontend is presented to users, it has various elements such as forms, buttons, text boxes, and so on, and using these frontend elements, the user can easily interact with the application.

Frontend technologies and stack

Front-end also refers to the client-side of the application. So, anything we are developing on the frontend is mostly the client-side development.

Client-side development can be Web-based (browser-based) or can use some mobile frameworks to present the frontend to the users.

If the frontend application uses the browser to display the application, then technologies or stack that is used in the development is mostly as follows:

	HTML

	CSS

	JavaScript

	CSS Frameworks like Bootstrap

	JavaScript Libraries like jQuery

Mostly if the front-end application uses mobile to display applications, then the technologies or stack that is used mostly depend on the type of application. These applications can be classified into two types:

	Native apps

	Hybrid apps

Native mobile apps

Native mobile apps are developed for a specific platform like Android or iOS. They are native in nature which means they are developed using technologies or programming languages that are related to these platforms. For example, if we write a Native app for Android, then the app will use Java as a programming language, and thus app developers should develop and code their app in the Native language for the Android platform, which is Java. The same thing applies to iOS-based Native apps. In the case of iOS apps, we need to develop these apps in their native language, which is Objective C.

Native apps have advantages in terms of the user experience, and they are also fast than hybrid mobile apps. But these are more costly to develop as we need to develop these apps for all the platforms; for example, an app needs to be developed separately for Android as well as iOS, which also costs time.

The major programming languages that are used to develop Native apps are as follows:

	Java

	Objective C

Hybrid mobile apps

Hybrid mobile apps are developed using the combined features of both Web and native technologies. Mostly these apps use the elements and components from both Web and native platforms.

Usually, hybrid apps are faster to develop and are also cross-platform compatible, which means that if we are developing a hybrid app, then it can be supported by different mobile platforms like Android and iOS.

Mostly hybrid apps work great on multi-platforms, and many new frameworks are coming up that help develop them. Most of these use Web-based technologies plus some features of the devices, which are native. These hybrid apps work on a Web view. Basically, a hybrid app runs like a Web app on mobile platforms and uses additional native features of mobile platforms.

Hybrid apps work on multi-platforms due to the wrapper which they use, which helps run these hybrid apps on different mobile platforms.

The major programming languages and frameworks which are used to develop hybrid apps are as follows:

	HTML

	CSS

	JavaScript

	jQuery mobile

	Ionic framework

	Facebook’s React Native framework

	PhoneGap framework

	Google’s Flutter framework

	Python Kivy framework

	Python BeeWare framework

Backend

The backend also refers to the server-side of the application. Anything we are developing on the server end is mostly server-side development. It uses various server-side applications and components to render the results to the client. Right from the request that is sent to the server by clients, the server then processes them using various services and programs, which are running on the server end, and these are hidden from the client-side.

Back-end technologies and stack

Backend technologies and stack can include Web servers such as Apache HTTP Server, database servers like MongoDB or MySQL, and server-side programming languages, applications, frameworks, and server app stacks such as PHP, Node.js, Express.js, Python, WAMP, LAMP, or MAMP.

Backend application uses various server stacks, technologies, programming languages, and backend frameworks to render results to the client. These could vary widely from one backend application to another, and these could include the following:

	Web servers such as Apache HTTP Server and Nginx Server.

	Server stacks such as—WAMP, LAMP, and so on.

	Server-side programming languages, such as PHP, Java, Node.js, Python, Ruby on Rails, C#, ASP.Net, and so on.

	Server-side frameworks, such as Express.js, Sails.js, Laravel, CodeIgniter, Symphony, Zend Framework, Django, and so on.

	Database servers, such as MongoDB, Redis, Firebase, ElasticSearch, Neo4j, OrientDB, MSSQL, Mysql, Oracle, and so on.

	Application servers such as—Apache Tomcat, JBoss, and so on.

Full-stack

Full-stack is a term used to donate the technology development part of an application or computer program that uses technologies related to the frontend as well as the backend. Full-stack combines various technologies, programming languages, frameworks, software libraries, and other technology stacks such as Web stack, mobile stack, hybrid stack, and so on to develop the entire ecosystem of the application.

Full-stack development and technologies

Full-stack development refers to the use of the right mix of both frontend and backend technologies to develop applications across Web, mobile, and various other devices such as tabs, smart TV, IoT, and so on.

There are various technologies that are listed in our previous sections, which cover technologies used in the frontend and backend. During any full-stack development, we may pick and use these technologies according to our requirements.

There are various stacks available today that we can use based on our requirements; these are combinations of various technologies and programming languages, such as:

	MEAN stack: MongoDB, Express.js, Angular JS and Node.js

	MERN stack: MongoDB, Express.js, React.js, and Node.js

	MEVN stack: MongoDB, Express.js, VUE.js, and Node.js

	Meteor.js: a full-stack framework based on Node.js and supports Angular.js and React.js for frontend development and has inbuilt support for MongoDB

There are many other stacks available that have the combination of various technologies, and those can be used along with MongoDB, such as:

	WAMP and LAMP Stack where we can use MongoDB

	Python with MongoDB

Full-stack developer

By going through and reading the above sections, many of you might be thinking that why we have mentioned so many technologies as we are learning MongoDB in this book? This list could be more, but in order to make you understand the use of MongoDB with the current technologies in today’s modern applications, we have covered these technologies in this chapter.

We are not going to learn all of these technologies in this book as it is out of the scope of this book. The goal is to experience practical use of MongoDB with the help of the right mix of technologies that are trending and used by development companies widely across the globe. So you are able to understand that MongoDB is used widely and almost everywhere.

MongoDB is one of the first choices of developers and organizations today because of its availability and compatibility with most of the widely used programming languages, its developer friendliness, and flexibility.

A full-stack developer is a person who can develop an application in frontend as well as backend technologies by using the right mix of programming languages and frameworks.

The purpose of the next chapters in which we are going to create a “full-stack application” with a mix of various technologies is to make you understand how we can use MongoDB with various technologies and programming languages so that you can acquire a good knowledge of application development using MongoDB and you can use the same knowledge in your future development of various applications.

Our next chapters are related to the step-by-step application development using MongoDB and various client-side languages such as HTML, CSS, and JavaScript and server-side programming languages such as PHP, Node.js, and Python, which we are going to cover following by keeping MongoDB in the center of the whole ecosystem of various applications:

	Development of CRUD based backend Web application using PHP and MongoDB

	Development of RESTful APIs using Node.js and MongoDB

	Development of dynamic bookshop frontend using Node.js and MongoDB

	Development of mobile book review app using React Native and MongoDB

The whole ecosystem of Web and mobile applications, which we are going to create in our upcoming chapters, can be better understood by the following figure (figure 7.1):

[image:]

Figure 7.1: Full-stack development with MongoDB—eco system

Conclusion

In this chapter, we have covered topics related to application development and also learned about application and software development terms, such as frontend, backend, and full-stack development, and understood various technologies, frameworks, and stacks, which are used in these various types of applications. We have also learned about an overview of various technologies and tools that we would be using to develop our Web and mobile apps in our upcoming advanced chapters of this book.

In the upcoming chapter, we will cover the step-by-step method to develop a CRUD-based backend Web application using PHP and MongoDB, in which we will create a dynamic backend application.

Questions

	What is a frontend?

	Name some frontend programming languages.

	What is a backend?

	Can we use JavaScript for backend application development?

	What do you understand by the term “full-stack”?

	Name any full-stack framework.

CHAPTER 8

MongoDB Step by Step Practical Application Development Using PHP

Backend catalog of a publication house

Till now, in this book, we have been covered various programming languages, such as PHP, Node.js, React Native, and Python, and learned how to use these with MongoDB. In this chapter, we will cover the practical step-by-step development of CRUD-based backend application using PHP and MongoDB along with frontend languages such as HTML, CSS, and JavaScript. Later in this chapter, we will learn how we can create a dashboard for our application and various other related functionalities required for the overall development of the catalog management system for a publication house. All the sections have been explained in step-by-step practical manner so that by the end of this chapter you feel more confident in PHP and MongoDB application development.

Structure

In this chapter, we will discuss the following topics:

	Overview of our CRUD based Web application developed using PHP and MongoDB

	Requirements

	How our final application looks like

	Pre-development steps

	Backend catalog dashboard development

	Listing of catalog functionality

	Adding new book functionality

	Deleting functionality

Objectives

After studying this chapter, the reader will be able to understand how we can develop a CRUD-based Web application using PHP and MongoDB. Before we start with the coding and application development part, we will have a sneak preview of what our final application will look like and then understand and perform some pre-development steps. Later in this chapter, we will learn how to develop a backend catalog dashboard using PHP and MongoDB, including various other functionalities, such as the listing of catalog functionality, adding new book functionality, and deleting functionality, using PHP and MongoDB.

Overview of our Web application developed using PHP and MongoDB

In this chapter, we are going to develop a CRUD application using PHP, MongoDB, HTML, CSS, and JavaScript.

We are going to create an application in which we are able to create the backend catalog of a publication house such as BPB publications.

This backend application will have the following features:

	Ability to add (create) the book with its details

	Ability to list (read) all the books in the catalog

	Ability to modify (update) the details of existing book entry

	Ability to remove (delete) any existing book entry

In order to create this interface, we would be writing some codes using the following:

	PHP—to connect to MongoDB Server using the PHP driver and to do server-side CRUD operations and interacting with MongoDB.

	HTML—to present user interfaces such as forms and buttons so that users can interact with these pages to add, update, delete, or list the catalog.

	CSS—to add some nice styles to our forms and buttons so that they look a bit pretty.

	JavaScript—We would be using client-side JavaScript and jQuery (which is a very popular and widely used client-side JavaScript library) for form validations, modal windows, and performing some actions when some event occurs (event handling).

Requirements

The reader should have the basic knowledge and understanding of the following:

	PHP

	HTML

	CSS

	HTML Forms

	CSS Flexbox

	JavaScript

	jQuery (recommended, but optional for this chapter)

Final application

As we complete all the sections of this chapter, our final app will look something like this (as shown in figure 8.1 and figure 8.2):

Application Dashboard Page

[image:]

Figure 8.1: Application Dashboard page—preview

Add new book page

[image:]

Figure 8.2: Add new book page—preview

Let us divide our application into the following sections so that we can then combine all these sections having all the features of this backend catalog application. Following are the sections that we would be working on:

	Backend catalog dashboard

	Listing of catalogs

	Adding new book functionality

	Deleting functionality

	Editing and updating functionality (code yourself)

Let us start now with the actual development part. To start with, let us first get ready with the real environment so that what we will code will reflect on the system.

Pre-development steps

In our previous chapter, where we have given the introduction about getting started with MongoDB and PHP, we have used MongoDB Extension and written our codes accordingly. It is possible to follow the same way in this chapter, where we can use the PHP MongoDB extension and code. But there is another better way to do it by using the MongoDB PHP library instead of the PHP MongoDB extension. MongoDB PHP library provides a high-level abstraction for the low-level API which PHP extension provides. So, we are going to install and use the MongoDB PHP library in this chapter before we start coding. Follow these steps before we start to code.

Step 1—install composer

	Composer is the package and dependency manager for PHP, just like NPM for Node.js or PyPI for Python. So, in order to install the composer, visit: https://getcomposer.org and click the download link which will open the download page: https://getcomposer.org/download/, as shown in figure 8.3:

[image:]

Figure 8.3: Composer Home page

	You can download the composer installer and run it. Just follow the instructions given on the website and install the composer. The installation would be similar to the other software installers that you run on your Windows machine (in case you are using other operating systems such as Linux or Mac OS, please follow the related instructions for installing composer on these operating systems). Once you run the composer installer, the installation wizard will appear, and it will install composer on your Windows machine, as shown in figure 8.4:

[image:]

Figure 8.4: Composer installation wizard

	During the installation, the composer will ask you to provide the location of the PHP as we are running a WAMP server and using PHP version 7.3.21 (this version will vary in case of new releases. So, you should check the correct version from your WAMP server by clicking the WAMP green icon in your Windows system tray). Just click the Browse button, navigate to the WAMP PHP directory and select “php.exe” from there, which has a similar path like: D:\wamp64\bin\php\php7.3.21\php.exe. You should also check the checkbox that says “Add this PHP to your path?” and then click the “Next” button, as shown in figure 8.5:

[image:]

Figure 8.5: Composer installation—PHP path

	 Once the composer installation is completed by the installer wizard, read the important information provided by the installation wizard and then click the “Next” button to proceed to the finish screen, as shown in figure 8.6:

[image:]

Figure 8.6: Composer installation

	Click the Finish button, and we are done with the installation part, as shown in figure 8.7:

[image:]

Figure 8.7: Composer installation—completed

Step 2—adding MongoDB Extension to php.ini file

As we have given the command line PHP path to: D:\wamp64\bin\php\php7.3.21\php.exe while installing the composer, it will now take the reference of PHP using this path and use php.ini of this location. Make sure that you have enabled the MongoDB extension in this file if you have not done it yet (this step was explained in the previous chapter - Chapter 3 (Starting Up Programming with MongoDB and PHP) of this book, where we have given the basic introduction of PHP with MongoDB). To enable this extension for this location, just open the php.ini file in the location: D:\wamp64\bin\php\php7.3.21\ (make sure this file is related to your PHP version and located on the right path, which is “D:\wamp64\bin\php\php7.3.21\php.ini”, in our case. You can also navigate to this path and open this right “php.ini” using a text editor like Notepad). We will add the following line where you see other extensions like MySQL in this file, and after adding this line save this file and close it, as shown in figure 8.8:

extension=mongodb

[image:]

Figure 8.8: php.ini file—adding MongoDB extension

Step 3—start WAMP server

You should start the WAMP server by typing “wamp” on the search area of the taskbar. Opening the WAMP server will launch the WAMP server on your Windows machine, as shown in figure 8.9:

[image:]

Figure 8.9: Launching WAMP server

	Once the WAMP server has been successfully started, you will see the WAMP server icon (in green) in the Task Bar tray. When you run the WAMP server, it usually takes a few seconds to start all the services such as Apache, MySQL, and so on, and the icon changes from red to orange and finally to green. If the WAMP icon is green, it means that all the services have been successfully started, and now you can use the WAMP server, as shown in figure 8.10:

[image:]

Figure 8.10: WAMP server—all services have been started successfully

Step 4—check MongoDB server windows service

Whenever you install MongoDB on Windows Machine by using MongoDB installer, by default, MongoDB service is installed, and by using this, we are able to run MongoDB server without any commands. This service should be running on our Windows machine so that we are able to use MongoDB Server and connect using any MongoDB client or using some programming language like PHP. In order to check that the MongoDB service is running correctly on our Windows machine, please follow these steps:

	In the search section of your taskbar, type “services” and open it, as shown in figure 8.11:

[image:]

Figure 8.11: Open services manager

	This will open Windows services manager. You will see all the services that are installed on your Windows machine. Navigate to MongoDB. Navigate to MongoDB server (MongoDB). Click this service and start it, if in case it is not yet started (you may leave this step if it is already started), as shown in figure 8.12:

[image:]

Figure 8.12: Starting MongoDB service from Windows service manager

Step 5—running localhost

Once the WAMP server has started on your machine, you can start working with the local server, which has Apache and PHP installed. As we have the required environment ready, we can run localhost.

	To run localhost, just open your favorite browser like Google Chrome and type: http://localhost/ and then press Enter. This will open up a new page, and you will be shown the WAMP server default page on your localhost. Here, you will get all the information about the version of the WAMP server and server configurations, which have a list of various software running in the background along with their version details such as Apache Web Server and PHP, as shown in figure 8.13:

[image:]

Figure 8.13: WAMP server—localhost

If you are able to see this page, then this means that most of the things are ready to start the application development part of this chapter. Let us now start with the development before we start with the actual code. Let us do a few more steps.

Step 6—start creating a skeleton for your application

Follow these instructions to create the project folders:

It is also recommended that you should create a folder under your WAMP www folder for this purpose and save your files under that folder. The path could be somewhat like this: D:\wamp64\www\bpb-catalog-app-backend, as shown in figure 8.14:

[image:]

Figure 8.14: Start creating a skeleton for your application

	Now, under the following path: D:\wamp64\www\bpb-catalog-app-backend create three more sub-folders named as follows and as shown in figure 8.15:

	images

	css

	js

[image:]

Figure 8.15: Start creating a skeleton for your application—subfolders

Step 7—create a MongoDB database for your application

Follow these instructions to create the MongoDB database for this application:

	In the search section of your taskbar, type “Compass” and open it. This will open the MongoDB Compass client in your machine, as shown in figure 8.16:

[image:]

Figure 8.16: Create MongoDB database for your application—launch Compass

	After the MongoDB Compass is launched, we need to first connect to MongoDB Server. For this, you can either connect using MongoDB URL String or by filling the individual fields like we are using in our example. Type “localhost” for hostname and “27017” for the port. Keep all other settings as it is and then click the Connect button to connect to the MongoDB server, as shown in figure 8.17:

[image:]

Figure 8.17: Create MongoDB database for your application—connect to MongoDB server using Compass

	As we need to create a new database for our application, click the “CREATE DATABASE” button to create a new database, as shown in figure 8.18:

[image:]

Figure 8.18: Create MongoDB database for your application—create database using Compass

	This will open a new popup window in which you need to enter the name of the database and also the name of the collection. Enter “Database Name” as “BPBCatalogDB” and “Collection Name” as “BPBCatalogCollection” and then click the “CREATE DATABASE” button to create a new database along with the collection. Once this is done, we will have a new database as well as a new collection ready to be used in our application, as shown in figure 8.19:

[image:]

Figure 8.19: Create MongoDB database for your application—create database using Compass

Developing our application

As we are now ready with the right environment and skeleton of our application, along with the new database and collection that we are going to use in this application, let us start with the coding part.

Note that as we are using PHP and writing PHP code, it will be recommended to use some code editor or Integrated Development Environment (IDE) like Microsoft Visual Studio Code or any Code Editor of your choice. You can download and install Microsoft Visual Studio Code from this link: https://code.visualstudio.com. Microsoft Visual Studio Code is open-source and free software and is available for almost all operating systems.

Step 1—installing MongoDB PHP Library in our project folder using composer

As in the previous section of this chapter, we have installed composer; now let us install the MongoDB PHP library to our project folder so that we can use this library in our project and code.

	Open a command prompt and then navigate to your project folder, which is: “D:\wamp64\www\bpb-catalog-app-backend” in our case. In the command prompt, type the following command:
 composer require mongodb/mongodb

This will install the MongoDB PHP library into your project folder, as shown in figure 8.20:

[image:]

Figure 8.20: Installing MongoDB PHP library using composer

	Once the composer has installed the MongoDB PHP library into your project folder, you can see that it has installed the MongoDB PHP library code and has created a “vendor” folder and two other files, “composer.json” and “composer.lock” (as shown in figure 8.21). You may browse the “vendor” folder and check the contents.

[image:]

Figure 8.21: Installing MongoDB PHP library using composer —folder and files created by the composer during installation

Step 1—creating a MongoDB connection file

In our example, we have used the “$mongoDBClientConnection” variable, which is assigned as an object for the “MongoClient()” class. We have saved this file as “mongodb-connection.php” under this path: D:\wamp64\www\bpb-catalog-app-backend and the following is the code for the same, as shown in figure 8.22:

Code 1

<?php

require 'vendor/autoload.php';

// Composer Autoloader which will include MongoDB PHP Library Files in the Project

$mongoDBClientConnection = new MongoDB\Client("mongodb://localhost:27017");

//Connecting to MongoDB Server

?>

[image:]

Figure 8.22: Creating a MongoDB connection file – Microsoft Visual Studio Code

Step 2—creating an HTML structure and dividing it into parts

Before we can code the various sections, let us create a basic structure for our app. We will do it by writing some HTML and then dividing this HTML into a few parts and calling these parts of HTML with the help of PHP (including them using PHP). We will divide this code into two separate PHP files and name them as follows, as shown in figure 8.23:

	header.php

	footer.php

We are going to save these files in our project folder, which is: D:\wamp64\www\bpb-catalog-app-backend

Code 1—our basic HTML structure

<!doctype html>

<html lang="en">

<head>

<meta charset="utf-8">

<title>BPB - Backend Catalog Application in PHP and MongoDB</title>

<meta name="description" content="Backend Catalog of a Publication House">

<meta name="author" content="BPB Publications">

<link rel="stylesheet" href="css/styles.css">

</head>

<body>

<script src="js/scripts.js"></script>

</body>

</html>

[image:]

Figure 8.23: Working with PHP files using Microsoft Visual Studio Code

Code 2—our header.php file

<!doctype html>

<html lang="en">

<head>

<meta charset="utf-8">

<title>BPB - Backend Catalog Application in PHP and MongoDB</title>

<meta name="description" content="Backend Catalog of a Publication House">

<meta name="author" content="BPB Publications">

<link rel="stylesheet" href="css/styles.css">

</head>

<body>

Code 3—our footer.php file

<script src="js/scripts.js"></script>

</body>

</html>

Step 3—adding MongoDB connection and publishing house logo to our application

In this step, we are going to add Mongo DB connection (using PHP require method) and logo (using image using HTML tag) in header.php. For this, open your header.php file and add the new code at the end of this file (we already have a mongodb-connection.php file which we have already created in our previous steps, and we also have one logo image in our project “images” directory named as “bpb_logo.png” which we are going to use here). Following is the updated code for header.php:

Code 1—our header.php file (updated)

<?php

require("mongodb-connection.php");

?>

<!doctype html>

<html lang="en">

<head>

<meta charset="utf-8">

<title>BPB - Backend Catalog Application in PHP and MongoDB</title>

<meta name="description" content="Backend Catalog of a Publication House">

<meta name="author" content="BPB Publications">

<link rel="stylesheet" href="css/styles.css">

</head>

<body>

<div class="top-section">

<div class="logo"></div>

<div class="title-text"><h1>Backend Catalog of a Publication House</h1></div>

</div>

<hr />

Step 4—creating application main file (index.php)

In this step, we will create a new file named “index.php”, and which will be our main dashboard file (or template). We will include “header.php” and “footer.php” in this file, and we will save this file in the same location of our project folder, which is: D:\wamp64\www\bpb-catalog-app-backend

Code 1—our index.php file

<?php

include("header.php");

?>

<div class="content">

<h2>Application Dashboard</h2>

</div>

<?php

include("footer.php");

?>

Step 5—testing the application for first run

In this step, we are going to simply open the application using the browser. For this type, your project URL on the browser, which is: http://localhost/bpb-catalog-app-backend/ in our case. If everything is working fine till now and you have followed all the previous instructions, then a new page will open in the browser displaying all the code that we have done till now without any errors, as shown in figure 8.24:

[image:]

Figure 8.24: Testing the application for first run

Step 6—adding CSS and JavaScript to our project

In this step, we are going to add some CSS and JavaScript to our project. If you have noticed in the “header.php” and “footer.php” files of our project, we already have a reference of one CSS file named “styles.css” in the “header.php” file and “scripts.js” in the “footer.php” file. Now let us create these two files under their respective folders. We will create the following new files under our project directory:

	styles.css: Under the “css” directory of our project and the path would be something similar to this: D:\wamp64\www\bpb-catalog-app-backend\css

	scripts.js: Under the “js” directory of our project and the path would be something similar to this: D:\wamp64\www\bpb-catalog-app-backend\js

We would be writing some code for CSS, in which we would be using Flexbox, which is a modern and flexible (as the name suggests) layout model for CSS, and it is supported by all the modern browsers these days. We would be doing some alignments in the top section of the application where we would be aligning logo and top text in one line using CSS Flexbox, and the following is the code for the same:

Code 1—our styles.css file

.top-section{

display: flex;

flex-direction: row;

margin-left:20px;

margin-right:20px;

}

.title-text{

padding-left:50px;

}

.content{

margin-left:20px;

margin-right:20px;

}

Let us also add some JavaScript in the scripts.js file. Here we would only be testing if our JavaScript file is loading properly, and to verify this, we will print one message on the browser console. Following is the code for the same:

Code 2—our scripts.js file

console.log("*******BPB Publications*******");

console.log("If you can see this in your Console that means The JavaScript File has been loaded Properly");

After you have created these two files, go back to your browser and refresh your page. Also, now open the console of your browser (you can open the console by right-clicking anywhere in the browser page and clicking Inspect Element. This will open the Developer Tools, where you can find the Console option).

If everything is working fine, then, in this case, you will see the screen with the new changes done by CSS on the top section as well as the console message printed using JavaScript, as shown in figure 8.25:

[image:]

Figure 8.25: Application dashboard after adding CSS and JS code

As we are almost done with the initial setup and configuration of our application, let us now start creating the CRUD functionalities for our backend application. We have divided this application into the following parts and then will code each of them separately to develop a final application:

	Backend catalog dashboard

	Add new book functionality

	Listing of catalog

	Edit and update functionality

	Delete functionality

Backend catalog dashboard

In this part, we will be creating our catalog dashboard. We have already created an index file for this purpose in the previous section of this chapter. Now let us add some more functionalities in this section.

A typical application dashboard should be simple to use and should have all the functionalities which are user-friendly so that users can easily navigate and perform various operations. Let us keep this in mind and make it simple by following some steps.

Step 1 – Adding “Add New Book” button in our dashboard

We have added a few codes in “index.php”, and our CSS File “styles.css” (which is in the “css” folder of our Project Directory), and the following is the new code for these two files that we have added to it:

Code 1—our index.php file

<?php

include("header.php");

?>

<div class="content">

<h2>Application Dashboard</h2>

<div class="addnewbook-container"><button type="button" name="addnewbook" id="addnewbook" class="addnewbook-btn" onclick="location.href='add-new-book.php'">Add New Book</button></div>

</div>

<?php

include("footer.php");

?>

Code 2—our styles.css file

/* Top Section */

.top-section{

display: flex;

flex-direction: row;

margin-left:20px;

margin-right:20px;

}

.title-text{

padding-left:50px;

}

/* Content Section */

.content{

margin-left:20px;

margin-right:20px;

}

/* Dashboard */

.addnewbook-container{

text-align:right;

}

.addnewbook-btn{

display: inline-block;

padding: 15px 30px;

background-color:#002b80;

border: none;

color: white;

font-size: 14px;

font-weight: bold;

cursor:pointer;

text-align: center;

text-decoration: none;

}

After the new changes done in these two files, you will see that a new button will appear in your dashboard, as shown in figure 8.26:

[image:]

Figure 8.26: Application dashboard after adding “Add New Book” button

As a button has appeared in the dashboard, this button should now be used to perform some action. If some user clicks on this, there are two different ways to create this functionality:

	Clicking this button will take you to a new page where there would be an HTML form in which the user can add details of a book.

	Clicking this button will open up a popup dialog where there would be an HTML form in which the user can add details of a book.

In Case 2, we would stay on the same page without leaving this dashboard page, and it is a more user-friendly approach and better in terms of User Experience (UX).

But if we go with our second approach (which might seem to be a bit tricky for some readers), we need some libraries like jQuery and jQuery UI to achieve this, and we have to use AJAX too.

You might be familiar with jQuery, which is one of the most popular client-side JavaScript libraries. jQuery has many features such as Document Object Model (DOM) manipulations, event handling, CSS effects, animations, and much more. Many Web-based scripts and programs use jQuery as their base.

The second approach could be difficult for the readers who have less experience in jQuery. But if you want to try the second approach, you can do this with the help of jQuery. For this, you would be using jQuery and jQuery UI libraries and including them in your code. You would be using the jQuery UI Dialog Widget. If you want more details about this Widget, you can visit https://jqueryui.com/dialog/. Once you visit this link, you will get all the information from the official jQuery UI website, as shown in figure 8.27:

[image:]

Figure 8.27: jQuery UI widgets

But we are not going with the second approach for this chapter as it could be more complex for some users. We would go with our first approach, which is simpler than the second approach. Also, the main target of this chapter is to make you aware of using MongoDB with PHP. So we are going to keep it simple for now.

Adding new book functionality

In this part, we will be creating new functionality to add a book. For this functionality, we need to create a new PHP file that will have an HTML form presented to the users so that users can fill in the details of the book. After the user fills in all the details of the book, press the Submit button of the form, and these details are stored in our MongoDB collection.

Let us now develop this functionality by following some steps:

Step 1—creating add new book functionality file (add-new-book.php)

In this step, we will create a new file named “add-new-book.php”, which would be our main file (or template) to add new books. We will include “header.php” and “footer.php” in this file, and we will save this file in the same location of our project folder, which is: D:\wamp64\www\bpb-catalog-app-backend and following is the code for the same:

Code 1—our add-new-book.php file

<?php

include("header.php");

?>

<div class="content">

<h2>Add New Book</h2>

</div>

<?php

include("footer.php");

?>

Now add HTML form in this file so that the user can enter the book details, and the following is the code for the same:

Code 2—our add-new-book.php file (updated)

<?php

include("header.php");

?>

<div class="content">

<h2>Add New Book</h2>

<div class="addnewbook-form-container">

<form action="add-new-book.php" onsubmit="return addNewBookFormValidation()" method="post">

<label for="book-title">Book Title:</label>

<input type="text" id="book-title" name="book-title" placeholder="Please Enter Book Title">

<label for="book-author-name">Book Author:</label>

<input type="text" id="book-author-name" name="book-author-name" placeholder="Please Enter Book Author Name">

<label for="book-isbn-number">Book ISBN Number:</label>

<input type="text" id="book-isbn-number" name="book-isbn-number" placeholder="Please Enter Book ISBN Number">

<label for="book-publication-year">Book Publication Year:</label>

<input type="text" id="book-publication-year" name="book-publication-year" placeholder="Please Enter Book Publication Year">

<input type="submit" value="Submit">

</form>

</div>

</div>

<?php

include("footer.php");

?>

In this step, we are going to simply open the new application file that we have created just now using the browser. For this type, your project URL on the browser along with the file name, which is: http://localhost/bpb-catalog-app-backend/add-new-book.php in our case. If everything is working fine till now and you have followed all the previous instructions, then a new page will open in the browser displaying all the code that we have done till now without any errors, as shown in figure 8.28:

[image:]

Figure 8.28: Application Add New Book page

Step 2—adding CSS and JavaScript to our form

In this step, we are going to add some CSS and JavaScript to our form so that it will look better. We can also add some validations so that if the user submits the form with blank values, then it will show some alerts, and the following is the code for the same:

Code 1—our styles.css file (appended code)

/* Add New Book */

.addnewbook-form-container{

max-width:700px;

}

.addnewbook-form-container input[type=text] {

width: 100%;

display: inline-block;

padding: 10px 15px;

margin: 10px 0;

border: 1px solid #ff99ff;

border-radius: none;

box-sizing: border-box;

}

.addnewbook-form-container input[type=text]:hover {

border: 1px solid #ff99ff;

border-radius: none;

}

.addnewbook-form-container input[type=submit] {

width: 100%;

padding: 10px 15px;

margin: 10px 0;

background-color: #4d004d;

color: white;

border: none;

border-radius: none;

cursor: pointer;

}

.addnewbook-form-container input[type=submit]:hover {

background-color: #73264d;

cursor: pointer;

}

After applying this CSS, the add new book page will look better, as shown in figure 8.29:

[image:]

Figure 8.29: Application Add New Book Page—after applying CSS

Code 2—our scripts.js file (updated code)

console.log("*******BPB Publications*******");

console.log("If you can see this in your Console that means The JavaScript File has been loaded Properly");

function addNewBookFormValidation() {

var booktitle = document.getElementById("book-title").value;

var bookauthorname = document.getElementById("book-author-name").value;

var bookisbnnumber = document.getElementById("book-isbn-number").value;

var bookpublicationyear = document.getElementById("book-publication-year").value;

if (booktitle == "" || bookauthorname == "" || bookisbnnumber == "" || bookpublicationyear == "") {

alert("Please fill out all the Fields Correctly, Some Fields are left Blank");

return false;

}

}

After applying this JavaScript validation in the add new book page form, an alert box will start working as expected if the user tries to fill the form without entering the values in the form, as shown in figure 8.30:

[image:]

Figure 8.30: Application Add New Book Page—after applying JS

Let us now add two more fields in this form. The first one is for the “Book Price” and the second one is for the “Book Cover Image” and also update our styles.css and scripts.css file accordingly.

Step 3—Adding two more fields “Book Price” and “Book Cover Image”

As we are almost done with the form part, let us add two more fields in this form related to Book Price and Book Cover Image, and then we are ready for the next steps:

Code 1—our add-new-book.php file (updated code)

<form action="add-new-book.

php" onsubmit="return addNewBookFormValidation()" method="post" enctype="multipart/form-data">

<div class="form-content-container">

<div class="form-content-left">

<h3>Basic Info</h3>

<label for="book-title">Book Title:</label>

<input type="text" id="book-title" name="book-title" placeholder="Please Enter Book Title">

<label for="book-author-name">Book Author:</label>

<input type="text" id="book-author-name" name="book-author-name" placeholder="Please Enter Book Author Name">

<label for="book-isbn-number">Book ISBN Number:</label>

<input type="text" id="book-isbn-number" name="book-isbn-number" placeholder="Please Enter Book ISBN Number">

<label for="book-publication-year">Book Publication Year:</label>

<input type="text" id="book-publication-year" name="book-publication-year" placeholder="Please Enter Book Publication Year">

<input type="submit" value="Submit" name="submit-form-button">

</div>

<div class="form-content-right">

<h3>Additional Info</h3>

<label for="book-price">Book Price:</label>

<input type="text" id="book-price" name="book-price" placeholder="Please Enter Book Price">

<label for="book-cover-image">Book Cover Image (Optional):</label>

<input type="file" id="book-cover-image" name="book-cover-image">

</div>

</div>

</form>

Code 2—our styles.css file (appended code)

.addnewbook-form-container input[type=submit]:hover {

background-color: #73264d;

cursor: pointer;

}

.addnewbook-form-container .form-content-container{

display: flex;

flex-direction: row;

}

.addnewbook-form-container .form-content-container .form-content-left{

width:70%;

margin-right:10px;

}

.addnewbook-form-container .form-content-container .form-content-right{

width:30%;

margin-left:10px;

}

Code 3—our scripts.js file (updated code)

console.log("*******BPB Publications*******");

console.log("If you can see this in your Console that means The JavaScript File has been loaded Properly");

function addNewBookFormValidation() {

var booktitle = document.getElementById("book-title").value;

var bookauthorname = document.getElementById("book-author-name").value;

var bookisbnnumber = document.getElementById("book-isbn-number").value;

var bookpublicationyear = document.getElementById("book-publication-year").value;

var bookprice = document.getElementById("book-price").value;

if (booktitle == "" || bookauthorname == "" || bookisbnnumber == "" || bookpublicationyear == "" || bookprice == "") {

alert("Please fill out all the Fields Correctly, Some Fields are left Blank");

return false;

}

}

After applying updates in all three files, there would be a change in the look and feel of the form, as shown in figure 8.31:

[image:]

Figure 8.31: Application Add New Book page—adding new fields

As we are done with the form part, let us now start with the form submitting part and storing the values entered from the form in our MongoDB Collection:

Step 4—submitting the form values to MongoDB

In this step, we are going to write some HTML, CSS, and PHP code, which will take all the values submitted from the form and use MongoDB driver extension; it will then interact with the MongoDB server and submit these forms values to the MongoDB collection. We have also added one extra HTML text area field (optional) in our form and added the code in PHP so that if the user enters a book description, then it would be added to our MongoDB database. Also, we have added the code to upload the book cover image file to the “images” folder if the user selects any book cover image during the form submission.

Code 1—our add-new-book.php file (updated PHP code)

<?php

include("header.php");

// Form Submit and MongoDB Collection Related Code

if(isset($_POST['submit-form-button'])){ // If the Form is Submitted

// Collecting all the Data Submiited by the Form Post Method and Assigning it to PHP Variables

$booktitle = $_POST['book-title'];

$bookauthorname = $_POST['book-author-name'];

$bookisbnnumber = $_POST['book-isbn-number'];

$bookpublicationyear = $_POST['book-publication-year'];

$bookprice = $_POST['book-price'];

// If the User doen't Enter any Book Description then add this text "Book Description is Not Available" to Document

$bookdescription = ($_POST['book-description'] == '') ? 'Book Description is Not Available' : $_POST['book-description'];

// $mongoDBClientConnection is defined in our mongodb-connection.php File which we have included in our header.php

// $mongoDBClientConnection->BPBCatalogDB->BPBCatalogCollection = "Connection String"->"Database Name"->"Collection Name"

$mongoDBCollection = $mongoDBClientConnection->BPBCatalogDB->BPBCatalogCollection;

//Create a Array with the field-value Pairs

$documentArray = ['title' => $booktitle, 'authorname' => $bookauthorname, 'isbnnumber' => $bookisbnnumber, 'publicationyear' => $bookpublicationyear, 'price' => $bookprice, 'description' => $bookdescription];

// Using insertOne Method to insert the Document in a Collection based on key-value Pairs

$result = $mongoDBCollection->insertOne($documentArray);

// If the Book Cover Image File is Selected and Uploaded

if(isset($_FILES['book-cover-image'])){

// File Details

$upload_dir = 'images/';

$file_name = $_FILES['book-cover-image']['name'];

$file_ext_arr = explode('.', $file_name);

$file_ext = strtolower(end($file_ext_arr));

$file_tmp_name =$_FILES['book-cover-image']['tmp_name'];

$new_file_name = $result->getInsertedId().'.'.$file_ext;

$upload_file_with_path = $upload_dir.$new_file_name;

$book_cover_upload_status = false;

if(move_uploaded_file($file_tmp_name, $upload_file_with_path)) {

$book_cover_upload_status = true;

// Now Update the Current Document with the name of the Book Cover Image File

// $mongoDBCollection->updateOne - First Parameter is the Query String or Filter Criteria to Match the Document and Second Parameter are field-value pairs which has to be updated

$updateResult = $mongoDBCollection->updateOne(

['_id' => $result->getInsertedId()],

['$set' => ['coverimage' => $new_file_name]]

);

} else {

$book_cover_upload_status = false;

}

 }

?>

<div class="form-submitted">Form is Submitted!
Document is Successfully Inserted with ID = <?php echo $result->getInsertedId(); ?>

<?php

if($book_cover_upload_status == true) {

echo "Book Cover Image File has been successfully Uploaded
";

} else {

echo "Error While Uploading the Book Cover File
»;

}

?>

</div>

<div class="addnewbookagain-container"><button type="button" name="addnewbookagain" id="addnewbookagain" class="addnewbookagain-btn" onclick="location.href='add-new-book.php'">Add New Book Again</button></div>

<?php

}

?>

Code 2—our add-new-book.php file (updated HTML code)

<div class="content">

<h2>Add New Book</h2>

<div class="gotodashboard-container"><button type="button" name="gotodashboard" id="gotodashboard" class="gotodashboard-btn" onclick="location.href='index.php'">Go To Dashboard</button></div>

<?php

if(!isset($_POST['submit-form-button'])){ // If the Form is Not Submitted, Then Show the Form, else if the form is Submitted then Don't Show the Form

?>

<div class="addnewbook-form-container">

<form action="add-new-book.php" onsubmit="return addNewBookFormValidation()" method="post" enctype="multipart/form-data">

<div class="form-content-container">

<div class="form-content-left">

<h3>Basic Info</h3>

<label for="book-title">Book Title:</label>

<input type="text" id="book-title" name="book-title" placeholder="Please Enter Book Title">

<label for="book-author-name">Book Author:</label>

<input type="text" id="book-author-name" name="book-author-name" placeholder="Please Enter Book Author Name">

<label for="book-isbn-number">Book ISBN Number:</label>

<input type="text" id="book-isbn-number" name="book-isbn-number" placeholder="Please Enter Book ISBN Number">

<label for="book-publication-year">Book Publication Year:</label>

<input type="text" id="book-publication-year" name="book-publication-year" placeholder="Please Enter Book Publication Year">

<input type="submit" value="Submit" name="submit-form-button">

</div>

<div class="form-content-right">

<h3>Additional Info</h3>

<label for="book-price">Book Price:</label>

<input type="text" id="book-price" name="book-price" placeholder="Please Enter Book Price">

<label for="book-price">Book Description (Optional):</label>

<textarea id="book-description" name="book-description" placeholder="Please Enter Book Description"></textarea>

<label for="book-cover-image">Book Cover Image (Optional):</label>

<input type="file" id="book-cover-image" name="book-cover-image">

</div>

</div>

</form>

</div>

<?php

}

?>

</div>

<?php

include("footer.php");

?>

Code 2—our styles.css file (appended CSS code)

/* Add New Book Additional Styles */

.gotodashboard-container{

text-align:right;

}

.gotodashboard-btn{

display: inline-block;

padding: 15px 30px;

background-color:#002b80;

border: none;

color: white;

font-size: 14px;

font-weight: bold;

cursor:pointer;

text-align: center;

text-decoration: none;

}

.form-submitted{

display: inline-block;

padding: 15px 30px;

background-color:#00802b;

border: #004d1a;

color: white;

}

.addnewbookagain-container{

margin-top:20px;

}

.addnewbookagain-btn{

display: inline-block;

padding: 15px 30px;

background-color:#4d004d;

border: none;

color: white;

font-size: 14px;

font-weight: bold;

cursor:pointer;

text-align: center;

text-decoration: none;

}

.addnewbookagain-btn:hover{

background-color: #73264d;

cursor: pointer;

}

.addnewbook-form-container textarea {

width: 100%;

height:150px;

display: inline-block;

padding: 10px 15px;

margin: 10px 0;

border: 1px solid #ff99ff;

border-radius: none;

box-sizing: border-box;

}

Once we have added this code, we can now refresh the “Add New Book” page (add-new-book.php) using our browser and add some new records, as shown in figure 8.32:

[image:]

Figure 8.32: Application Add New Book page—submitting a form

After you add this record and the record will be entered successfully in the MongoDB database, it will show you the success message on your screen. You can also add new books by clicking the button “Add New Books Again”, as shown in figure 8.33:

[image:]

Figure 8.33: Application Add New Book page—form is successfully submitted

Now, after adding new books by submitting the book details by form, if we check the MongoDB collection with MongoDB Compass, we can easily see the new MongoDB documents in our MongoDB collection, as shown in figure 8.34:

[image:]

Figure 8.34: Application Add New Book page—verifying form submitted values from MongoDB Compass

Also, we can check that all the book cover images have been successfully uploaded to our Project “images” folder, as shown in figure 8.35:

[image:]

Figure 8.35: Application Add New Book page—book cover image files have been successfully uploaded

Listing of catalog functionality

In this part, we will be creating new functionality to list all the books that have been entered by the “Add New Book” functionality in our previous section. For this functionality, we need to use our existing “index.php” file in which we will have a simple HTML layout presented to the users so that users can view the details of the book, and there would be a delete button to delete any book along with the book details which are stored to our MongoDB Collection.

Let us now develop this functionality by following some steps.

Step 1—creating list books functionality in our dashboard with our index file (index.php)

The following are the code updates for index.php that is located in the “root”, as well as styles.css that is located in the “css” folder of our project.

Code 1—finding all the documents from MongoDB collection (updated index.php file)

<?php

include("header.php");

// List Book Functionality

// $mongoDBClientConnection is defined in our mongodb-connection.php File which we have included in our header.php

// $mongoDBClientConnection->BPBCatalogDB->BPBCatalogCollection = "Connection String"->"Database Name"->"Collection Name"

$mongoDBCollection = $mongoDBClientConnection->BPBCatalogDB->BPBCatalogCollection;

// Using $mongoDBCollection->find() Method to find all the Documents in the Collection

$documents = $mongoDBCollection->find();

?>

Code 2—displaying the list of all the documents from MongoDB collection by using PHP foreach() construct (updated index.php file—HTML part)

<div class="content">

<h2>Application Dashboard</h2>

<div class="addnewbook-container"><button type="button" name="addnewbook" id="addnewbook" class="addnewbook-btn" onclick="location.href='add-new-book.php'">Add New Book</button></div>

<div class="row-container">

<div class="row">

<div class="col-container headings">

<div class="col">

Book ID

</div>

<div class="col">

Book Title

</div>

<div class="col">

Delete

 </div>

</div>

</div>

<?php

// Fetch Documents from the Collection

// Iteration using PHP foreach() Construct

foreach ($documents as $document) {

?>

<div class="row">

<div class="col-container">

<div class="col">

<?php echo $document['_id']; ?>

</div>

<div class="col">

<?php echo $document['title']; ?>

</div>

<div class="col">

<a class="delete-book-link" onclick="return confirm('Please confirm deletion');" href="delete-book.php?id=<?php echo $document['_id']; ?>">Delete

</div>

</div>

</div>

<?php

}

?>

</div>

</div>

<?php

include("footer.php");

?>

Code 3—our updated styles.css file (appended code)

/* Dashboard – List Books */

.row-container{

max-width:1000px;

margin-bottom:40px;

}

.col-container{

display: flex;

}

.col-container.headings{

font-size:20px;

font-weight:bold;

}

.row{

margin-top:5px;

margin-bottom:5px;

border-bottom: 1px solid #ff99ff;

}

.col{

width:300px;

}

.delete-book-link{

display: inline-block;

padding: 15px 30px;

background-color:#4d004d;

border: none;

color: white;

font-size: 14px;

font-weight: bold;

cursor:pointer;

text-align: center;

text-decoration: none;

}

Once we have added this code, we can now refresh the dashboard page (index.php) using our browser. We can see that our project dashboard is now listing all the books, which we have entered into the MongoDB database using the “Add New Book” functionality in our previous section, as shown in figure 8.36:

[image:]

Figure 8.36: List books functionality in our dashboard

Deleting functionality

In this part, we will be creating new functionality to delete a book, which is shown by the “Listing of Catalog” functionality in our previous section. For this functionality, we need to create a new “delete-book.php” file in which we will only write PHP code that will delete the document from MongoDB collection based on the id which is passed from our “index.php” delete link. Have a look at the following code again, which we have already used in our dashboard catalog listing in “index.php”

Code 1—delete code (index.php—no change)

<a class="delete-book-link" onclick="return confirm('Please confirm deletion');" href="delete-book.php?id=<?php echo $document['_id']; ?>">Delete

Let us now develop the delete functionality by following some steps:

Step 1—creating delete book functionality file (delete-book.php)

In this step, we will create a new file named “delete-book.php”, which would be our main file (or template) to delete existing books. We will include “header.php” and “footer.php” in this file, and we will save this file in the same location of our project folder, which is: D:\wamp64\www\bpb-catalog-app-backend and following is the code for the same:

Code 1—delete book functionality (delete-book.php)

<?php

include("header.php");

// $mongoDBClientConnection is defined in our mongodb-connection.php File which we have included in our header.php

// $mongoDBClientConnection->BPBCatalogDB->BPBCatalogCollection = "Connection String"->"Database Name"->"Collection Name"

$mongoDBCollection = $mongoDBClientConnection->BPBCatalogDB->BPBCatalogCollection;

// Get Document ID from PHP $_GET Method

$documentid = new MongoDB\BSON\ObjectID($_GET['id']);

$deleteResult = $mongoDBCollection->deleteOne(['_id' => $documentid]);

//If Delete is Sucessful then Forwarded to the Dashboard (index.php)

if($deleteResult->getDeletedCount()==1){

header("Location: index.php?delete=true");

exit();

}

include("footer.php");

?>

Code 2—delete book functionality (index.php—small update for displaying an alert after the book is deleted successfully)

<div class="content">

<h2>Application Dashboard</h2>

<?php

// If the Book is Sucessfully Deleted then show the Alert Box

if(isset($_GET['delete'])){

?>

<script>

 alert("The Book Record is Deleted from the Database");

</script>

<?php

}

?>

<div class="addnewbook-container"><button type="button" name="addnewbook" id="addnewbook" class="addnewbook-btn" onclick="location.href='add-new-book.php'">Add New Book</button></div>

Once we have added this code, we can now refresh the dashboard page (index.php) using our browser, and then we can click on the “Delete” button to check the delete book functionality, as shown in figure 8.37:

[image:]

Figure 8.37: Delete book functionality in our dashboard

We have seen how we can create a backend with CRUD features using PHP and MongoDB along with frontend programming languages such as HTML, CSS, and JavaScript. You should feel free to make changes in the code and create various other functionalities.

Edit and update functionality

As this is a practical chapter and we have learned so many things in this chapter, try to code this edit and update functionality with the skills that you have learned from this chapter. You can take references from the MongoDB PHP library. The official URLs are listed as follows:

	MongoDB official home page for PHP library: https://docs.mongodb.com/php-library/current/

	PHP official home page for MongoDB PHP library: https://www.php.net/manual/en/mongodb.tutorial.library.php

Conclusion

In this chapter, we have covered the practical step-by-step development of CRUD-based backend applications using PHP and MongoDB along with frontend languages such as HTML, CSS, and JavaScript. Finally, we have learned how we can create a dashboard for our application and various other related functionalities required for the overall development of the catalog management system for a publication house. In the upcoming chapter, we will be covering new applications, which are related to APIs using Node.js and Express.js; we will learn how we can use MongoDB data with API calls; these APIs will further be used in our upcoming advanced chapter of mobile application development.

Questions

	What is Composer?

	What is the PHP MongoDB library?

	Explain the process of using the MongoDB PHP library with your PHP-based project.

CHAPTER 9

MongoDB Step by Step Practical Application Development Using JavaScript (Node.js with Express.js)

REST API development—creating RESTful Web services of a publication house

Many of you could be familiar with the term “API” some of you could have already been using them in your applications. What exactly is an API? and how we can develop and use these in our applications? This chapter covers the same, and in this chapter, we will learn how to practically develop REST-based APIs using Node.js, Express.js, and MongoDB. All the sections have been explained in a step-by-step practical manner so that by the end of this chapter, you will feel more confident in Node.js, Express.js, and MongoDB Web services and API development.

Structure

In this chapter, we will discuss the following topics:

	An overview of our RESTful web services developed using Node.js and MongoDB

	Requirements

	Brief introduction to API

	Brief introduction to RESTful APIs

	Pre-development steps

	Developing our APIs

	Using REST API to fetch data from MongoDB collection based on MongoDB document ID (REST GET method)

	Using REST API to insert data into MongoDB collection (REST POST method)

	Using REST API to update data into MongoDB document based on MongoDB document ID (REST PUT method) and giving thumbs up for a book

	Using REST API to update data into MongoDB document based on MongoDB document ID (REST PUT method) and giving thumbs down for a book

Objectives

After studying this chapter, the reader will be able to understand how we can develop RESTful Web services developed using Node.js and MongoDB and what are the basic requirements before one can start learning and coding them. In this chapter, the reader will learn about API and RESTful APIs and will also understand what are the pre-development steps required to set up the right environment for API development. This chapter covers how one can develop APIs and how one can use the REST method to fetch data from MongoDB collection based on MongoDB document ID (REST GET method), REST method to add data into MongoDB collection (REST POST method), and also understand how one can use REST method to update data into MongoDB document based on MongoDB document ID (REST PUT method).

RESTful Web services using Node.js and MongoDB—an overview

In this chapter, we are going to develop REST APIs using Node.js and MongoDB. We will be creating a RESTful web service in which we will be able to create a few APIs using some HTTP methods.

This API (RESTful Web services) will have the following features:

	Ability to list (read) all the books in the catalog

	Ability to add (insert) new book entry

	Ability to modify (update) the details of existing book entry

	Ability to delete the existing book-entry (code yourself)

In order to create this interface, we would be writing some codes using the following:

	Node.js: To connect to MongoDB server using the Node.js and do server-side operations and interact with MongoDB.

	Express.js: Express.js is the application framework for Node.js and is used widely for developing web applications and API.

Requirements

The reader should have the basic knowledge and understanding of the following:

	Node.js

	Express.js (recommended, installation, and a brief introduction is given in this chapter)

	JavaScript

	API (recommended and a brief introduction is given in this chapter)

	RESTful APIs (recommended and a brief introduction is given in this chapter)

Introduction to API

API is an acronym for Application Programming Interface, and it is used to communicate between different devices or applications running on these devices. It allows different applications to talk and communicate with each other. Every API call has a defined method and data format that we need to follow in order to implement these API calls.

There are two main API types:

	Simple Object Access Protocol (SOAP): This was originally developed by Microsoft, and it has been used for many years. It uses XML.

	Representational State Transfer (REST): This is more flexible, easy to implement, and popular than SOAP these days among developers worldwide.

In this chapter, we will be using REST-based APIs.

RESTful APIs

RESTful APIs are based on the REST protocols, and these API uses the REST methods to communicate between the devices and applications.

There are mainly four major parts of REST-based APIs as follows:

	Root endpoint and paths: These are basically the route to the API access. It is just like a URL, for example, https://api.bpbonline.com/getALLBPBBooks. Here, https://api.bpbonline.com is the API root endpoint, and getALLBPBBooks is the path to access the particular API

	Method: These are some methods like GET (to get the resource from the server), POST (to create a new resource on the server), PUT (to update an existing resource on the server), DELETE (to delete an existing resource on the server), and so on.

	Headers: They are used to provide information to both client and server and can be used in various scenarios.

	Body: It contains the data that needs to be sent to the server. It is useful whenever we want to use API to send some data which needs to be added. For example, in the case of adding some book with the API call, we need to send the details of the book like “Title” or “Year of Publication”.

What our final application will look like?

As we will complete all the sections of this chapter, our final App will look as shown in figure 9.1 and figure 9.2.

Application running from the command prompt

Following is the screenshot of the API app, which is serving the requests on localhost and port 3,000, waiting for the incoming requests from the other clients such as Postman.

[image:]

Figure 9.1: Application command line interface—preview

API calls using Postman application

Following is the screenshot of the Postman software client, which shows how the API calls are made.

[image:]

Figure 9.2: Calling APIs using Postman application—preview

Let us divide our application into the following sections so that we can then combine all these sections having all the features of this backend catalog application. The following are the sections that we would be working on:

	Adding REST API endpoint to fetch data from MongoDB collection based on MongoDB document ID (REST GET method)

	Adding REST API endpoint to add data into MongoDB Collection (REST POST method)

	Adding REST API endpoint to update data into MongoDB Document based on MongoDB Document ID (REST PUT method)—giving Thumbs Up for a book

	Adding REST API Endpoint to update data into MongoDB Document based on MongoDB Document ID (REST PUT method)—giving Thumbs Down for a book

Let us start now with the real development part. To start with, let us first get ready with the real environment so that what we will code will reflect on the system.

Pre-development steps

In our previous chapter [Chapter 4, Starting up Programming with MongoDB and JavaScript (Node.js)], where we have given the introduction about getting started with MongoDB and JavaScript (Node.js), we have already covered how to install the Node.js and NPM (Node Package Manager). Follow these steps before we start to code:

Step 1—check Node.js and NPM on your system

You should first verify that Node.js and Node Package Manager (NPM). In order to verify these two softwares on your Windows Machine, open the command prompt by typing “cmd” from the search bar located in the taskbar, as shown in figure 9.3:

[image:]

Figure 9.3: Open command prompt

	Type the following two commands one by one to verify Node.js and NPM installation in the command prompt, as shown in figure 9.4:
 node --version

npm --version

[image:]

Figure 9.4: Command prompt—verifying Node.js and NPM version on Windows

As you can see, both Node.js and NPM have been correctly installed on your Windows Machine.

Step 2—creating a project folder in your system

Choose any location on your machine and create a new folder or directory named as “bpb-catalog-app-api”. The location could be similar to D:\bpb-catalog-app-api, as shown in figure 9.5:

[image:]

Figure 9.5: Create a new directory named as “bpb-catalog-app-api” on your Windows Machine

Step 3—NPM init

NPM init is a command-based interface used to set up new or existing NPM based packages; when we type “npm init” command in our Project Directory, which is: D:\bpb-catalog-app-api and it will ask us a few details such as “Package Name”, “Package Version”, “Author”, and so on. After we enter all these details, it will create a “package.json” file automatically, as shown in figure 9.6:

[image:]

Figure 9.6: Command prompt—npm init

After “npm init” is executed, it will create a new file, “package.json” in case we are running it the first time under the folder where it was run. We can verify this by opening this file in some IDE like Visual Studio code, as shown in figure 9.7:

[image:]

Figure 9.7: Visual Studio code—npm init

Step 4—installing the Express.js using NPM

Before we learn how to install and use Express.js, let us understand what Express.js is.

About Express.js:

Express.js is a major backend framework for Node.js, and it is very widely used. Express.js is a modular-based framework, and it is very helpful in Web application development, as well as API development using Node.js.

Express.js provides an easy way to create routes, and based on these routes, the calls are diverted to the various sections of the application that are related to the particular calls. Thus, it is very easy to write the code related to the routes, and it is very developer-friendly.

As we have now learned about Express.js, let us now install it using NPM. To install Express.js with NPM, follow these steps:

	Open up your command prompt and navigate to this directory “bpb-catalog-app-api”, as shown in figure 9.8:

[image:]

Figure 9.8: Navigating to “bpb-catalog-app-api” directory

	Open your favorite browser, such as Google Chrome, and in the address bar, type: https://expressjs.com and press Enter. This will open the “Express.js” home page. Here you will see all the details about Express.js, including the command to install it in your project, as shown in figure 9.9:

[image:]

Figure 9.9: Express.js Home page

	Now run any one of the following commands mentioned. This will install Express.js for Node.js to our directory, where we are now going to create our Node.js application along with MongoDB (as shown in figure 9.10).
 npm install express

OR

 npm i express

[image:]

Figure 9.10: Installing Express.js

Step 4 –running Express.js using NPM

	Create a new file index.js in the project directory, which is: D:\bpb-catalog-app-api in our case. Following is the new code for this file that we have added in it:
Code 1—our index.js file

const express = require(‘express’); // Express Module

const app = express();

const port = 3000; // Port, You can Change this Port to anything you would like For example ٨٠٠٠, For this Book we will Keep this as ٣٠٠٠ for Node.js > Express.js Based API Examples

app.get(‘/’, (req, res) => {

res.send(‘Welcome to BPB Publications RESTful API’) // This is the Default API Message

});

app.listen(port, () => {

console.log(“API App Listening to: http://localhost:” + port); // Connection Listing to Port 3000

});

	Open package.json file in your project folder and add start script under scripts section. Following is the code for the same (as shown in figure 9.11).
Code 1—update package.json file

“scripts”: {

“start”: “node index.js”,

“test”: “echo \”Error: no test specified\” && exit ١”

 },

[image:]

Figure 9.11: Updating “package.json” file and adding the start script

	Open the command prompt and then navigate to your project folder and run the following command (as shown in figure 9.12).
npm start

The preceding command will check the “package.json” file for the start option under scripts, and as we have given the value as “node index.js”, here, Node.js will execute the index.js. So, this is the better way of running Node.js applications. As and when projects grow in size, we can have various options available under “scripts”, and we can use npm to execute them. This is also really helpful when we have various versions of the applications, such as the development version or production version.

[image:]

Figure 9.12: Running “npm start” in command prompt

	Now, open your favorite browser, such as Google Chrome, and type: http://localhost:3000/ and press Enter. This will open our API route or endpoint “/”, which is defined in index.js, and show us the message “Welcome to BPB Publications RESTful API”, as shown in figure 9.13:

[image:]

Figure 9.13: Opening default API route (endpoint) in browser

Step 5—installing the MongoDB Driver for Node.js using NPM

	If you are still on Step 4, then you need to stop the Node Script, which is already running. For this, press “Ctrl + C” to stop the Node Script, which is already running (the system may prompt you that if you want to “Terminate this Job”. Press “Y” to terminate it), and then you can continue to Point 3.

	If you have already done that and is returning back, then open up your command prompt and navigate to this directory “bpb-catalog-app-api”

	Now, run any one of the following commands that have been mentioned in the MongoDB driver home page of the NPM website at: https://www.npmjs.com/package/mongodb. This will install the MongoDB driver for Node.js to our directory, where we are now going to create our Node.js application along with MongoDB (as shown in figure 9.14).
npm i mongodb

OR

npm install mongodb

[image:]

Figure 9.14: Installing MongoDB driver for Node.js

If you open your “bpb-catalog-app-api” folder (or directory), you will find that a folder named as “node_modules” has been created automatically by the preceding steps while we have installed NPM modules, and along with this process, a file named as “package-lock.json” has also been created. Basically, whenever you install any node module in Node.js, it will create a folder named as “node_modules”, where it will download and copy all the node modules, which are required by a specific module (here, we have installed Express.js and MongoDB Driver for Node.js) or we can say those Node.js modules on which the NPM modules like Express.js or MongoDB driver is dependent plus its own files, as shown in figure 9.15:

[image:]

Figure 9.15: “node_modules” Folder and “package-lock.json” File is automatically created by the NPM installation process

You may also open the “node_modules” folder and could see the other modules, which are downloaded by the installation process, as shown in figure 9.16:

[image:]

Figure 9.16: Express.js and MongoDB driver has been installed along with the other dependencies

The “package-lock.json” is a file where the module and its dependencies are displayed in JSON tree format. For more information about “package-lock.json”, you can visit this URL: https://docs.npmjs.com/configuring-npm/package-lock-json.html

As we are done with the setup of our environment with Expess.js and MongoDB Driver, now we can start with the programming part.

Developing our APIs

As we are now ready with the right environment and the skeleton of our application, along with the new database and collection that we are going to use in this API development, let us start with the coding part.

Note that as we are using Node.js and writing Node.js code. It is recommended to use some Code Editor or Integrated Development Environment (IDE) like Microsoft Visual Studio Code or any code editor of your choice. You can download and install Microsoft Visual Studio Code from this link: https://code.visualstudio.com. Microsoft Visual Studio Code is open-source and free software and is available for almost all operating systems.

Step 1—connecting to MongoDB (updating index.js)

In our example, we have used “MongoDBClient” constant, which is assigned as an object for “MongoClient” class. Then, we have called the connect method using this object which will help to connect to MongoDB. We have done changes in our “index.js” under this path: D:\bpb-catalog-app-api, and the following is the code for the same (as shown in figure 9.17).

Code 1

const express = require('express'); // Express Module

const app = express();

const port = 3000; // Port, You can Change this Port to anything you would like For example ٨٠٠٠, For this Book we will Keep this as ٣٠٠٠ for Node.js > Express.js Based API Examples

const MongoDBClient = require('mongodb').MongoClient; // MongoDB Driver

const MongoDBObjectId = require("mongodb").ObjectId; // Create a new ObjectID instance, used for Converting String to MongoDB ObjectID Type and opposite

app.use(express.json());

app.use(express.urlencoded({ extended: true }));

app.get('/', (req, res) => {

res.send('Welcome to BPB Publications RESTful API') // This is the Default API Message

});

app.listen(port, () => { // Here Our Application will try to create a Host using Express.js and Listen to the requests on Port Specfied, In our Case it is "3000"

// MongoDB Connection URL String

const url = 'mongodb://localhost:27017';

// Connecting to MongoDB Server using connect Method

MongoDBClient.connect(url, { useUnifiedTopology: true }, function(err, client) {

if(err){

console.log("Some Error While Connecting to MongoDB Server" + err);

}else{

console.log("Connected Sucessfully to MongoDB Server using Node.js Driver for MongoDB");

// Select DB

dbname = "BPBCatalogDB";

db = client.db(dbname);

// Get the "BPBCatalogCollection" Collection

collection = db.collection('BPBCatalogCollection');

console.log("Connected to MongoDB DB:" + dbname)

}

 });

console.log("API App Listening to: http://localhost:" + port); // Connection Listing to Port 3000

});

Following is the screenshot for the same in Microsoft Visual Studio Code:

[image:]

Figure 9.17: Creating a MongoDB connection file—Microsoft Visual Studio Code

You can see that MongoDB connection related code is put inside the code block where the application is creating the host on a port 3,000, Also note that we are using the same MongoDB database and collection that we have used in the previous chapter [Chapter 8, MongoDB Step by Step Practical Application Development Using PHP] in which we have created a CRUD backend application using PHP and MongoDB.

Step 2—adding REST API endpoint to fetch data from MongoDB collection (REST GET method)

In our example, we have used Express.js “app.get()” method in which we have declared our route or API endpoint as “getAllBPBBooks”. We have done changes in our “index.js” under this path: D:\bpb-catalog-app-api, and the following is the code for the same.

Code 1 (index.js updated)

app.get('/', (req, res) => {

res.send('Welcome to BPB Publications RESTful API') // This is the Default API Message

});

// API Endpoint "getAllBPBBooks" using GET Request

app.get("/getAllBPBBooks", (request, response) => {

collection.find().toArray((error, result) => { // Featching the Collection Data using "toArray"

if(error) { // If any Error

return response.status(500).send(error);

}else{

response.send(result); // Send Response Back to the Client

}

});

});

Now, after updating the code, we need to restart our Node.js application if it has not been restarted yet. In order to do this, go to the command prompt where your Node.js App is currently running and then press “Ctrl + C” and then “Y” when you are prompted to terminate the task. After this, you should again type “npm start”, and press Enter to run this Node.js API application again on your machine, as shown in figure 9.18:

[image:]

Figure 9.18: Restarting our application

In our example, we have created an API that uses the GET method. We can use the browser to fetch this data, as shown in figure 9.19:

[image:]

Figure 9.19: Calling our API from browser

But as we can use any of the RESTful methods such as POST, PUT, or DELETE, in this case, we need some better way to perform API calls during our development. In this case, we can use some better applications, which will serve our purpose during the API development. There are many ways to do it, including “curl”, powerful command-line software to transfer the data to or from the server. Let us use some GUI-based apps. For this chapter, we would be using “Postman”.

Step 3—download and install Postman

	Postman is a software application that is helpful for API development, and it is one of the widely used applications among developers. Visit: https://www.postman.com/downloads/ and click the Download the App button, as shown in figure 9.20:

[image:]

Figure 9.20: Postman Home page

	You can download the Postman installer and run it. Just follow the instructions. The installation would be similar to the other software installers that you run on your Windows Machine (in case you are using other operating systems such as Linux or Mac OS, then please follow the related instructions for installing on these operating systems) After you have successfully installed Postman on your machine, open it and launch it. This will open the application on your machine.
After the Postman application is launched, choose the GET method. Enter the API Endpoint as http://localhost:3000/getAllBPBBooks under the “Enter Request URL” and then click “Send” button. After you click “Send” button, it will take a few seconds to call the API and get the records from the API, as shown in figure 9.21:

[image:]

Figure 9.21: Postman application—calling our API using GET method

Step 4—adding REST API endpoint to fetch data from MongoDB collection based on MongoDB Document ID (REST GET method)

In our example, we have used Express.js “app.get()” method in which we have declared our route or API endpoint as “getBPBBookById”. We have done changes in our “index.js” under this path: D:\bpb-catalog-app-api. We have added this code just after the previous code where we have created our API route or endpoint for “getAllBPBBooks”, and the following is the code for the same:

Code 1 (index.js updated)

// API Endpoint "getBPBBookById" using GET Request

app.get("/getBPBBookById/:bookid", (request, response) => {

collection.findOne({ "_id": new MongoDBObjectId(request.params.bookid)},(error, result) => { // Here we are not using "toArray" because it is a single document and also we are using MongoDB findOne() Method instaed of find()

if(error) { // If any Error

return response.status(500).send(error);

}else{

response.send(result); // Send Response Back to the Client

}

});

});

In our example, we have created an API that uses the GET method. We can use the browser to fetch this data based on Book ID. We can now use the Postman application to fetch this data using the GET method (as shown in figure 9.22).

Now, after updating the code, we need to restart our Node.js application. In order to do this, press “Ctrl + C” and then “Y” when you are prompted to terminate the task. After this, you should again type “npm start”, and press Enter to run this Node.js API application again on your machine.

[image:]

Figure 9.22: Postman application—calling our API using GET method and book ID

Step 5—adding REST API endpoint to add data into MongoDB collection (REST POST method)

In our example, we have used Express.js “app.post()” method in which we have declared our route or API endpoint as “addNewBPBBook”. We have done changes in our “index.js” under this path: D:\bpb-catalog-app-api. We have added this code just after the previous code where we have created our API route or endpoint for “getBPBBookByID”, and the following is the code for the same.

Code 1 (index.js updated)

// API Endpoint “addNewBPBBook” using POST Request

app.post(“/addNewBPBBook”, (request, response) => {

collection.insertOne(request.body, (error, result) => { // Here we are using “request.body” parameter which will take the values from the body of the POST request made by the CLient while this API is called

if(error) { // If any Error

return response.status(500).send(error);

}else{

response.send(result); // Send Response Back to the Client

}

});

});

In our example, we have created an API that uses the POST method. We can now use the Postman application to send this data using the POST method. We also need to provide the body to this API before we call this API. So, select “Body” under Postman params and then insert JSON with key and body. You can take the following example. (as shown in figure 9.23).

Now, after updating the code, we need to restart our Node.js application. In order to do this, go to the Command Prompt where your Node.js App is currently running and then press “Ctrl + C” and then “Y” when you are prompted to terminate the task. After this, you should again type “npm start”, and press Enter to run this Node.js API application again on your machine.

Code 2 (JSON body params to be used in Postman)

{

"title": "Practical Robotics in C++",

"authorname": "Lloyd Brombach",

"isbnnumber": "9789389423464",

"publicationyear": "2021",

"price": "1040",

"description": "Practical Robotics in C++ teaches the complete spectrum of Robotics, right from the setting up a computer for a robot controller to putting power to the wheel motors. The book brings you the workshop knowledge of the electronics, hardware, and software for building a mobile robot platform. You will learn how to use sensors to detect obstacles, how to train your robot to build itself a map and plan an obstacle-avoiding path, and how to structure your code for modularity and interchangeability with other robot projects. Throughout the book, you can experience the demonstrations of complete coding of robotics with the use of simple and clear C++ programming. In addition, you will explore how to leverage the Raspberry Pi GPIO hardware interface pins and existing libraries to make an incredibly capable machine on the most affordable computer platform ever."

}

[image:]

Figure 9.23: Postman application—calling our API using POST method and with body params

After we press “Send” button from the Postman application, the API request will be sent along with the body, and a new document is inserted into our MongoDB collection. We can also see in the Postman that we receive a response back with the status: “200 OK” along with the response body, as shown in figure 9.24:

[image:]

Figure 9.24: Postman application—response body

We can also verify this using any MongoDB client such as MongoDB Compass (official GUI-based client application for MongoDB). Just launch MongoDB Compass on your computer and then navigate to our Application MongoDB Collection, which is “BPBCatalogCollection” in our case. You can see that the new MongoDB document has been successfully inserted by our API, as shown in figure 9.25:

[image:]

Figure 9.25: MongoDB Compass—verifying the new document added by our API

Step 5—adding REST API Endpoint to update data into MongoDB document based on MongoDB Document ID (REST PUT method)—giving thumbs up for a book

In our example, we have used Express.js “app.put()” method in which we have declared our route or API Endpoint as “thumbsUPForBPBBook”. We have done changes in our “index.js” under this path: D:\bpb-catalog-app-api. We have added this code just after the previous code where we have created our API route or endpoint for “addNewBPBBook”, and the following is the code for the same.

Code 1 (index.js updated)

// API Endpoint “thumbsUPForBPBBook” using PUT Request

app.put(“/thumbsUPForBPBBook/:bookid”, (request, response) => {

collection.findOne({ “_id”: new MongoDBObjectId(request.params.bookid)},(error, result) => { // We are Fetching Book Record from our Collection

if(error) { // If any Error

return response.status(500).send(error);

}else{

if(isNaN(result.thumbsUPCounter)){ // If there is no existing value for “thumbsUPCounter” in the MongoDB Document

var thumbsUPCounterValue = 1; // Just assign a new Value to 1

}else{

var thumbsUPCounterValue = result.thumbsUPCounter + 1; // We are taking the existing “thumbsUPCounter” value from our Database and then Incrementing the Thums UP Counter value “thumbsUPCounterValue” to ١

}

collection.updateOne({ “_id”: new MongoDBObjectId(request.params.bookid)}, { $set: {thumbsUPCounter:thumbsUPCounterValue} }, (error, result) => { // We are using MongoDB updateOne() Method to Update the incremented “thumbsUPCounter” value back to the database

if(error) { // If any Error

return response.status(500).send(error);

}else{

response.send(result); // Send Response Back to the Client

}

});

}

});

});

In our example, we have created an API that uses the PUT method. We can now use the Postman application to update MongoDB documents using the PUT method.

Now, after updating the code, we need to restart our Node.js application. In order to do this, go to the Command Prompt where your Node.js App is currently running and then press “Ctrl + C” and then “Y” when you are prompted to terminate the task. After this, you should again type “npm start”, and press Enter to run this Node.js API application again on your machine.

After we press “Send” button from the Postman application, the API request will call the endpoint and will update the MongoDB document based on the document ID provided and increase the value of Thumbs Up counter “thumbsUPCounter” to 1 every time this API is called. We can also see in the Postman that we receive a response back with the status: “200 OK” along with the response body. In our example, we have made six calls to this API, which includes four calls using one book ID and two calls using another book ID, as shown in figure 9.26:

[image:]

Figure 9.26: Postman application—calling our API using PUT method

We can also verify this using the MongoDB Compass. Just launch MongoDB Compass on your computer and then navigate to our application MongoDB collection, which is “BPBCatalogCollection” in our case. You can see that MongoDB documents have been successfully updated by our API calls. In case MongoDB Compass has been already opened in your machine, then just click the refresh button on the top left corner to refresh the MongoDB collection documents data, as shown in figure 9.27:

[image:]

Figure 9.27: MongoDB Compass—verifying the documents updated by our API calls

Step 5—adding REST API Endpoint to update data into MongoDB document based on MongoDB Document ID (REST PUT method)—giving Thumbs Down for a book

Before we add this functionality to our API application, let us create a dummy book as we never want to give thumbs down to any good books that we have in our database. For this, we have to use our existing API “addNewBPBBook” and pass the JSON in the body params before calling this API using the POST method, as shown in figure 9.28:

[image:]

Figure 9.28: Adding dummy book with our API

In our example, we have used Express.js “app.put()” method in which we have declared our route or API endpoint as “thumbsDOWNForBPBBook”. We have done changes in our “index.js” under this path: D:\bpb-catalog-app-api. We have added this code just after the previous code where we have created our API route or endpoint for “thumbsUpForBPBBook”, and the following is the code for the same.

Code 1 (index.js updated)

// API Endpoint "thumbsDOWNForBPBBook" using PUT Request

app.put("/thumbsDOWNForBPBBook/:bookid", (request, response) => {

collection.findOne({ "_id": new MongoDBObjectId(request.params.bookid)},(error, result) => { // We are Fetching Book Record from our Collection

if(error) { // If any Error

return response.status(500).send(error);

}else{

if(isNaN(result.thumbsDOWNCounter)){ // If there is no existing value for "thumbsDOWNCounter" in the MongoDB Document

var thumbsDOWNCounterValue = 1; // Just assign a new Value to 1

}else{

var thumbsDOWNCounterValue = result.thumbsDOWNCounter + 1; // We are taking the existing "thumbsDOWNCounter" value from our Database and then Incrementing the Thums UP Counter value "thumbsDOWNCounterValue" to 1

}

collection.updateOne({ "_id": new MongoDBObjectId(request.params.bookid)}, { $set: {thumbsDOWNCounter:thumbsDOWNCounterValue} }, (error, result) => { // We are using MongoDB updateOne() Method to Update the incremented "thumbsDOWNCounter" value back to the database

if(error) { // If any Error

 return response.status(500).send(error);

}else{

response.send(result); // Send Response Back to the Client

}

});

}

});

});

In our example, we have created an API that uses the PUT method. We can now use the Postman application to update MongoDB documents using the PUT method.

Now, after updating the code, we need to restart our Node.js application. In order to do this, go to the Command Prompt where your Node.js App is currently running and then press “Ctrl + C” and then “Y” when you are prompted to terminate the task. After this, you should again type “npm start”, and press Enter to run this Node.js API application again on your machine.

After we press “Send” button from the Postman application, the API request will call the endpoint and will update the MongoDB document based on the Document ID provided and increase the value of Thumbs DOWN Counter “thumbsDOWNCounter” to 1 every time this API is called. We can also see in the Postman that we receive a response back with the status: “200 OK” along with the response body. In our example, we have made two calls to this API using our Dummy book ID that we created before, as shown in figure 9.29:

[image:]

Figure 9.29: Postman application—calling our API using PUT method

We can also verify this using the MongoDB Compass; just launch MongoDB Compass in your computer and then navigate to our Application MongoDB Collection, which is “BPBCatalogCollection” in our case. You can see that MongoDB documents have been successfully updated by our API Calls. In case MongoDB Compass has been already opened in your machine, then just click the refresh button on the top left corner to refresh the MongoDB Collection documents data, as shown in figure 9.30:

[image:]

Figure 9.30: MongoDB Compass—verifying the documents updated by our API calls

Adding REST API endpoint to delete MongoDB document based on MongoDB document ID (REST DELETE method)

As this is a practical chapter and we have learned so many things in this chapter, try to code this delete API functionality with the skills you have learned from this chapter. You can take references from the Node.js MongoDB driver and Express.js Official documentation home page as listed:

	Node.js MongoDB driver official repository home page at GitHub: https://github.com/mongodb/node-mongodb-native

	Express.js Official Guide: https://expressjs.com/en/guide/routing.html

Conclusion

In this chapter, we have learnt how to develop REST-based APIs using practical step-by-step development. We have also learnt how we can use Node.js, Express.js, and MongoDB driver to develop these APIs. Later, we have also learnt about the REST-based methods and various other related functionalities required for the overall development of APIs for a Publication House. In the upcoming chapter, we will cover the practical step-by-step development of a mobile app developed using React Native and MongoDB. We will learn how to create a mobile app for a publication house and will start with the overview of our mobile app development using React Native, Expo, Expo CLI, Node.js, Express.js, and MongoDB, along with the API’s, which we have created in this chapter.

Questions

	What is an API?

	What is REST-based API?

	What are the two main API types?

	What is Express.js?

	What are the different types of REST methods? Name a few of them.

	What is the Postman application, and why it is useful for API development?

CHAPTER 10

MongoDB Step by Step Practical Mobile App Development Using React Native

Have you ever thought about how dynamic mobile apps works? Some of you might have some questions in your mind about how these mobile applications render data from the database and show them to the mobile users in their apps? Interesting? Let us learn how to create a dynamic data-driven mobile app. This chapter covers the practical step-by-step development of a mobile app developed using React Native and MongoDB. We will learn how to create a mobile app for a publication house and will start with the overview of our mobile app development using React Native, Expo, Expo CLI, Node.js, Express.js, and MongoDB. We will learn how to add the “Thumbs Up” and “Thumbs Down” functionality and how to store their counts in the MongoDB Database using the API calls. In this chapter, all the sections have been covered step by step and detailed manner.

Structure

In this chapter, we will discuss the following topics:

	An overview of our mobile app developed using React Native and MongoDB

	Requirements

	Connecting to MongoDB via API

	Starting with React Native mobile app development

	API Fetch part—networking

	Working on book list section

	Introduction to CORS

	Installing and adding CORS Module in our Node.js (Express.js) API app

	Enabling CORS in Node.js (Express.js) app routes

	Adding book pictures in the book list section of our mobile app

	Adding “Thumbs Up” and “Thumbs Down” in the book list section of our mobile app

	Adding database functionality to “Thumbs Up” and “Thumbs Down” of our mobile app

	Running the React Native mobile app on an Android device/emulator

Objectives

After studying this chapter, the reader will be able to understand an overview of our mobile app developed using React Native and MongoDB. We will start with React Native mobile app development and learn about the API Fetch Part—networking in React Native, and we will also be working on the Book List section. We will understand what CORS is and learn about installing and adding CORS Module in our Node.js (Express.js) API app. We will also be enabling CORS in Node.js (Express.js) app Routes so that the CORS-related issues will get resolved during the API calls made by the React Native mobile app. We will work on adding Book Pictures in the Book List section of our mobile app, “Thumbs Up” and “Thumbs Down” in the Book List section of our mobile app, and in the last part of this book, we will add Database Functionality to “Thumbs Up” and “Thumbs Down” of our mobile app and then run the React Native mobile app on Android device/emulator.

An overview of our mobile app developed using React Native and MongoDB

In this chapter, we are going to develop a mobile app using React Native and MongoDB.

We will be using RESTful Web from our Node.js (Express.js) API app.

This React Native mobile app will have the following features:

	Ability to list (read) all the books in the catalog and show their information and book picture

	Ability to give (insert) new “thumbs up” and “thumbs down” to a book

So, in order to create this mobile app, we will be writing and modifying some codes using the following:

	React Native—to build the cross-platform mobile app

	Expo and Expo CLI—use expo and expo tools helpful in creating the mobile app

	Node.js—to connect to MongoDB server using the Node.js and to do server-side operations and interacting with MongoDB

	Express.js—Express.js is the application framework for Node.js and is used widely for developing Web applications and API

Requirements

Readers should have the basic knowledge and understanding of the following (recommended and brief introduction of all these is provided in the previous chapters of the book):

	React Native

	Expo and Expo CLI

	Android Studio

	Node.js

	JavaScript

	API
RESTful APIs

Example 1—connecting to MongoDB via API

Before we start connecting to MongoDB with the API. Let us make sure that the Node.js application that we have created in the previous chapter of this book is started [Chapter 9, MongoDB Step by Step Practical Application Development Using JavaScript (Node.js with Express.js)], so that we can use it.

In Chapter 9, MongoDB Step by Step Practical Application Development Using JavaScript (Node.js with Express.js), we have also discussed the Postman and created APIs to read and write to MongoDB collection. Let’s now first start the Node.js application.

We need to follow these steps:

	To start the Node.js API application, you need to open the command prompt and navigate to the correct directory that is related to the API development part using Node.js and Express.js, which is “D:\bpb-catalog-app-api” in our case, as shown in figure 10.1:

[image:]

Figure 10.1: Command prompt and navigate to the Node.js and Express.js API project folder

	The next step is to start this application using the “npm start” as we have learned earlier. Once this application is started, you will see the console messages that the application has been connected to the MongoDB database, and we can use this application and the APIs to be further used in our react native mobile app, which we are further enhancing in this chapter, as shown in the figure 10.2:

[image:]

Figure 10.2: Starting the API App using “npm start”

	The next step is to write a code in our React Native mobile app so that we can be able to connect our mobile app to MongoDB Server using the API call and then fetch some dynamic data into our mobile app. To achieve this, we need to further do some code in our React Native App that we have started in Chapter 5, Starting up Programming with MongoDB and React Native of this book).

For this, we need to open our React Native mobile app folder in some code editor like Microsoft Visual Studio Code or any editor of your choice, and then we need to open App.js in the code editor. In our case, the location of the React Native mobile app folder is as follows:

“D:\bpb-catalog-mobile-app”

Please refer to the following code; we have now used two React.js Hooks in the App.js file.

Note: Hooks are the latest introduction in React.js; they are helpful in writing the codes without the use of Class. You can think of these as special functions which are useful for doing some special things in React.js

Here, we have used the following two hooks:

	useEffect: This hook is used for some side effects tasks such as data fetching, manually changing the DOM in React.js Components, and so on.

	useState: This hook lets us use React State to the function components.

Code 1

The following code is the “import section” of our script where we are importing React and React Native libraries.

import { StatusBar } from 'expo-status-bar';

import React from 'react';

import { StyleSheet, Text, View, Image } from 'react-native'; // Imported the Image Component

import { useEffect, useState } from 'react'; // import the useEffect and useState React.js Hooks

We have a new code now in our default App() function where we have used the fetch() API, which is a React Native API for network-related stuff; we have used it to make API call. We have used the same API endpoint “http://localhost:3000/getAllBPBBooks” which we have created in our last chapter [Chapter 9, MongoDB Step by Step Practical Application Development Using JavaScript (Node.js with Express.js)] as well, it also contains all the other codes of this app (which are Stylesheet, Header Section, Book List Section and the Return Part of this App) and following is the code for the same:

Code 2

Our application is divided into sections for better readability, and comments in the code will make you better understand these sections.

export default function App() {

// API Fetch Part - Networking

// Style Sheets

// Header Section

// Books List Section

// Return Part of the App

}

The default function App() will contain all the sections of our mobile app.

Code 3—API fetch part—networking

The following code is the API Fetch Part of React Native; using the Fetch API; we can access the API endpoint and get the data from the MongoDB database.

// API Fetch Part - Networking

const [isLoading, setLoading] = useState(true);

const [data, setData] = useState([]); // setData Function and useState Hook is helpful in using the React State of the function Components

useEffect(() => {

fetch('http://localhost:3000/getAllBPBBooks') // Our API Call using Fetch API "API Developed in Node.js and Express.js Chapter of this Book"

.then((response) => response.json()) // Response from the API Server

.then((json) => setData(json)) // Using setData Function response is sent back and then it is stored in "data"

.catch((error) => console.error(error)) // Error if any is caught and logged

.finally(() => setLoading(false)); // Finally the task is done

}, []);

The other two sections of the code remain the same (with a few little updated codes for styling and layout) as of the previous chapter of this book, where we have started learning on how to create a mobile app using React Native. These are related to the Style Sheet, App Header section, and the code of the same is as follows:

Code 3—style sheets

Following are the style sheets that are used in our app to make it look nice. In React Native, we are using the StyleSheet.create() method to create the style sheets for our mobile application.

// Style Sheets

const styles = StyleSheet.create({

container: {

flex: 1,

backgroundColor: '#fff',

alignItems: 'center',

justifyContent: 'flex-start', /* Flex Start */

maxWidth:300,

marginLeft:'auto',

marginRight:'auto',

},

logo: {

flex: 1,

backgroundColor: '#fff',

alignItems: 'center',

justifyContent: 'center',

width:250,

height: 150,

marginTop:20,

marginBottom:20

},

heading: {

fontSize:15,

fontWeight:'bold'

},

booklistview: {

borderWidth:2,

borderColor:'blue',

marginTop:20

}

});

Code 4—header section

In the header section of our app, we are creating one variable which we will be going to use later in the return part of the app, and in this section, we are using a <View>, < image>, <Text>, and <StatusBar> components or React Native.

// Header Section

const appHeaderSection = (

<View>

<Image source={require('./images/bpb-logo.png')} style={styles.logo} />

<Text style={styles.heading} >Welcome to BPB Online Mobile App</Text>

<StatusBar style="auto" />

</View>

);

We have added one more section in which we will display the data of the books that we have in our MongoDB Server using the API call, and the following is the code for the same:

Code 5—book list section

In the following code, we are using the map() function to create a list from the Book Data, which we fetched from the Fetch API of react-native.

// Header Section

const appHeaderSection = (

<View>

<Image source={require('./images/bpb-logo.png')} style={styles.logo} />

<Text style={styles.heading} >Welcome to BPB Online Mobile App</Text>

<StatusBar style="auto" />

</View>

);

// Books List Section

// We are using the "data" which was fetched using the fetch API and then we are iterating the same with the help of "map" to present the list of books

const appBookdListSection = (

<View style={styles.booklistview}>

{data.map((book, index) =>

<Text key={book._id}>

<li style={{paddingRight:'10px'}}>{book.title} <i>[By: {book.authorname}]</i>

</Text>

)}

</View>

);

We have just added “appBookdListSection” in the “Return Part of the App”. This part of the default App() function will return the actual application to us after all the process is done.

Code 6—return part of the app

In the last part of the code, we are using a <View>, which will show the header section and the book list section of the app and following is the code for the same:

return (

<View style={styles.container}>

{appHeaderSection}

{appBookdListSection}

</View>

);

} // Default App Function Ends Here

Let us now run this code using Expo CLI (keeping in mind that our Node.js and Express.js API application is still running).

Now, navigate to your React Native app from the command prompt; the location of our React Native app in our case is: “D:\bpb-catalog-mobile-app\bpb-mobile-app” from the command prompt and run the following command:

npm start

After you enter this command, Expo CLI will try to run the React Native app, and after some time, it will try to open the Expo developer tools in the default browser of your machine automatically.

Once the Expo developer tool is loaded in your browser, click the link which says “Run in web browser”, as shown in figure 10.3:

[image:]

Figure 10.3: Starting the Metro Bundler (Expo Dev Tools) using the EXPO CLI—“expo start” Command

Once you click the link “Run in web browser”, the Metro Bundler will try to build our app, and when it finishes building our app, it will try to open our app in the default browser in a separate tab of the browser, as shown in figure 10.4:

[image:]

Figure 10.4: Expo Dev tools—open our app in Web browser

Now many of us would be thinking that why our book section, which we have coded in our example, is not shown in the app as it would have been called by the Fetch API and displayed as a list.

The reason for this could be found in the “Console” of our browser; let us open our “Console” to troubleshoot this issue. To open the console, first, click the browser menu (Google Chrome in our case), then click the “More tools” option. It will open another menu under which you will see the “Developer tools”. Click the Developer tools from where we can further navigate to console, as shown in figure 10.5:

[image:]

Figure 10.5: Open our app in Web browser—book section not showing—open developer tools

The console will be open along with the Developer tools, and you can see the console logs, as shown in figure 10.6:

[image:]

Figure 10.6: Developer tools—Console—CORS error

If we check in our console we get the following message:

Access to fetch at ‘http://localhost:3000/getAllBPBBooks’ from origin ‘http://localhost:19006’ has been blocked by CORS policy: No ‘Access-Control-Allow-Origin’ header is present on the requested resource. If an opaque response serves your needs, set the request’s mode to ‘no-cors’ to fetch the resource with CORS disabled.

So, we can see that something is blocked here, and because of this reason, our React Native app is unable to fetch the book’s data using the API call.

So, what exactly is happening here?

Let us understand this first before rectifying this issue. If you see, the following things are happening here:

	Our React Native API call is requested from http://localhost:19006

	Our React Native API request is blocked from http://localhost:3000/getAllBPBBooks

	The CORS policy: No 'Access-Control-Allow-Origin' is the reason for this blockage

CORS

CORS is the acronym for Cross-Origin Request Sharing, and it is a protocol or mechanism to restrict the access of resources that originates from other domains.

In our example, you can see that the React Native app, which is running on Port 19006, is requesting the “Book Data” from the Node.js and Express.js API App, which is running on a different domain (Port 3000). So, the CORS policy has been applied to this request, and the request is failed.

Resolving the issue

To resolve this issue, we can do any one of the following things:

	Add “Access-Control-Allow-Origin” header on the requested resource

	Use some Node.js modules, which will help to resolve this issue

	Set the request's mode to “no-cors” to fetch the resource with CORS disabled.

It is better to use some Node.js and Express.js official methods to resolve this issue. In Node.js, there is a package named “cors”, which is a middleware to enable CORS with Express.js routes. Let us install and enable this on our Node.js and Express.js application so that the API calls which are requested from our React Native App will be served without a CORS issue.

Please open your browser and open this link: https://www.npmjs.com/package/cors. You will see all the details related to the “cors” package for Node.js and how we can use it with Express.js, as shown in figure 10.7:

[image:]

Figure 10.7: NPM—“cors” Package for Node.js—Home Page

Now, we need to first install and use this “cors” package in our Node.js and Express.js-based application.

Remember this and it is important that the CORS related changes that we are going to do now, including the installation of the Node.js “cors” package, will be done in the following application directory (and not in our current React Native app directory):

D:\bpb-catalog-app-api

So, you need to navigate to the current directory and do the required changes.

Let us start doing changes now, but before we do any code change, we need to first stop our Node.js and Express.js app, which is already running. To do this, open your command prompt where your Node.js and Express.js-based applications are running, and then to stop these, press “Ctrl + C”. Once you press this key, you will be asked that would you like to “Terminate batch job”. Press “Y” and then enter. Doing this will stop your Node.js and Express.js application, as shown in figure 10.8:

[image:]

Figure 10.8: Command prompt—stopping our Node.js API app

Now, we can install our Node.js “cors” package using NPM to this remain in the same command prompt where you have just stopped your Node.js and Express.js-based application and then run the following command to install “cors” using NPM, as shown in figure 10.9:

npm install cors

OR

npm i cors

[image:]

Figure 10.9: Command prompt—Node.js and Express.js API project folder—installing “cors” package

Now, as the “cors” package is installed successfully, we can do some modifications in our “index.js” file of our Node.js and Express.js-based application, and the location for the same is: “

The following are the changes that we are going to do:

Change 1 in index.js—adding CORS module using require

var cors = require('cors') // CORS Module

We have added this single line of code after Express Module:

const express = require('express'); // Express Module

var cors = require('cors') // CORS Module

const app = express();

const port = 3000; // Port, You can Change this Port to anything you would like For example 8000, For this Book, we will Keep this as 3000 for Node.js > Express.js Based API Examples

const MongoDBClient = require('mongodb').MongoClient; // MongoDB Driver

const MongoDBObjectId = require("mongodb").ObjectId; // Create a new ObjectID instance, used for Converting String to MongoDB ObjectID Type and opposite

app.use(express.json());

app.use(express.urlencoded({ extended: true }));

Change 2 in index.js—enabling CORS in “getAllBPBBooks” route

// API Endpoint "getAllBPBBooks" using GET Request

app.get("/getAllBPBBooks", cors(), (request, response) => {

We have added cors() function in the get based method of our Express.js Route (getAllBPBBooks):

app.use(express.json());

app.use(express.urlencoded({ extended: true }));

app.get('/', (req, res) => {

res.send('Welcome to BPB Publications RESTful API') // This is the Default API Message

});

// API Endpoint "getAllBPBBooks" using GET Request

// Now CORS Enabled

app.get("/getAllBPBBooks", cors(), (request, response) => {

collection.find().toArray((error, result) => { // Fetching the Collection Data using "toArray"

if(error) { // If any Error

return response.status(500).send(error);

}else{

response.send(result); // Send Response Back to the Client

}

});

});

[image:]

Figure 10.10: Microsoft Visual Studio Code—opening “index.js” file

So, we have done only two lines of code changes or updates, and now you will see that our CORS issue will be resolved for this API call when fetch is called in our React Native app.

Before we can resume working on our react Native app, we have to start this Node.js and Express.js-based application. To do this, run the following command in the same command prompt where we recently installed the “cors” package for Node.js using NPM, as shown in figure 10.11:

[image:]

Figure 10.11: Command prompt—restarting the API app

After you make these updates in your Node.js and Express.js and start your application, you can refresh your browser where your React Native app is running. Once you refresh the browser window, you will see that the CORS issue is resolved, and you will be able to see the Book List section of your React Native App, as shown in figure 10.12:

[image:]

Figure 10.12: Refreshing the mobile app browser Window—book section appears

As we have seen how we can connect React Native mobile app with MongoDB and how we can show the MongoDB Data in mobile apps using React Native, let us add some more functionalities in our app with some more examples.

Example 2—adding book pictures in the book list section of our mobile app

We have done some updates to our code and added the following code for fetching images from the localhost.

Code 1 (updated App.js file) —CSS section (added some more CSS and changed the class names to “camelCase”)

// Style Sheets

const styles = StyleSheet.create({

bookContainer: {

flex: 1,

backgroundColor: '#fff',

alignItems: 'center',

justifyContent: 'center',

marginLeft:'auto',

marginRight:'auto',

borderWidth:2,

borderColor:'darkblue',

padding:10

},

logo: {

backgroundColor: '#fff',

alignItems: 'center',

justifyContent: 'center',

width:150,

height: 100,

marginTop:5,

marginBottom:5,

marginLeft:'auto',

marginRight:'auto'

},

heading: {

fontSize:17,

fontWeight:'bold',

marginTop:5,

marginBottom:5,

marginLeft:'auto',

marginRight:'auto',

marginBottom:20

},

appBookdListSection:{

marginBottom:400

},

bookCover: {

width:280,

height: 350,

marginTop:20,

marginBottom:20

},

bookListTitle: {

fontSize:25,

fontWeight:'bold',

maxWidth:280,

marginLeft:'auto',

marginRight:'auto'

},

bookListAuthor: {

fontSize:20,

fontWeight:'bold',

fontStyle:'italic',

maxWidth:280,

marginLeft:'auto',

marginRight:'auto'

},

/* Item Separator CSS */

itemSeparator:{

height: 0.5,

width: '100%',

backgroundColor:'darkblue',

borderWidth:2,

borderBottomColor:'darkmagenta',

marginTop:20,

marginBottom:20,

maxWidth:280,

marginLeft:'auto',

marginRight:'auto'

}

});

Code 2 (updated App.js File) —update in book list section and use of react native “FlatList” component instead of “.map” method

As we are expanding our application and want to show images of the book, we are going to use React Native’s FlatList component as it is useful in displaying the structured data in the scrollable list and also renders only that data to the screen, which is shown on the screen and will not render all the data. FlatList has many other features, such as separator support and scroll loading.

For more information about the React Native FlatList component, you can refer to the official documentation at: https://reactnative.dev/docs/flatlist

Following is the updated code for the App.js file:

Importing the React Native “FlatList” and “SafeAreaView”:

import { StatusBar } from 'expo-status-bar';

import { StyleSheet, Text, View, Image } from 'react-native'; // Imported the Image Component

//import React from 'react';

import React, { useEffect, useState } from 'react'; // Import the useEffect and useState React.js Hooks

import { SafeAreaView, FlatList } from 'react-native'; // Import React Native FlatList and SafeAreaView

Code change in header section—update in image path, calling logo image from app backend:

// Header Section

const appHeaderSection = (

<View>

<Image source={{uri:'http://localhost/bpb-catalog-app-backend/images/bpb-logo.png'}} style={styles.logo} />

<Text style={styles.heading} >Welcome to BPB Online Mobile App</Text>

<StatusBar style="auto" />

</View>

);

Code change in book list section:

// Books List Section

// We are using the "data" which was fetched using the fetch API and then we are using the React Native Flatlist Component to render the Book-related data.

const ItemView = ({item}) => {

return (

// Single Comes here which will be repetitive for the FlatListItems

<View style={styles.bookContainer}>

<Text style={styles.bookListTitle}>

{item.title}

</Text>

<Text style={styles.bookListAuthor}>

{item.authorname}

</Text>

<View><Image source={{uri:'http://localhost/bpb-catalog-app-backend/images/'+item.coverimage}} style={styles.bookCover}/>

</View>

</View>

);

};

const ItemSeparatorView = () => {

return (

//Item Separator

<View style={styles.itemSeparator} />

);

};

const appBookdListSection = (

<View style={styles.appBookdListSection}>

<FlatList

data={data}

//data defined in constructor

ItemSeparatorComponent={ItemSeparatorView}

//Item Separator View

renderItem={ItemView}

keyExtractor={(item, index) => index.toString()}

/>

</View>

);

In the preceding code, we have also used the image component and fetched all the book cover images dynamically using the data, which is fetched using the Fetch API call. Here, if you see, the source of the image is coming from our localhost PHP backend application.

Example: 'http://localhost/bpb-catalog-app-backend/images/'+book.coverimage

Where “book.coverimage” is the file name of the cover image for the book. These book data have been entered by us while we have created our backend application using PHP and MongoDB.

If you remember that in our previous chapter [Chapter 8, MongoDB Step by Step Practical Application Development Using PHP] of this book, we have created the “Backend for Publication House” using PHP, MongoDB, and WAMP Server.

We need to now run that backend application, too, before we can run and test our React Native app so that images can be fetched using our backend app URL, as discussed earlier.

Please start the WAMP server first and check if your backend application is working fine. For this, follow these steps:

	Type “WAMP” on the “Search Bar” in the Task Bar of your Windows and open it, as shown in figure 10.13:

[image:]

Figure 10.13: Starting the WAMP server

	Once the WAMP server has started all the services, you can see the WAMP server icon in green color under your “Windows System Tray”, as shown in figure 10.14:

[image:]

Figure 10.14: Windows system tray—WAMP started

	Now verify if our PHP and MongoDB Based application is running fine by typing: http://localhost/bpb-catalog-app-backend/ in your browser address bar, and you should see your PHP and MongoDB-based backend application running smoothly, as shown in figure 10.15:

[image:]

Figure 10.15: PHP and MongoDB based backend catalogue application

Now, we can refresh our browser to check our React Native mobile app. The interesting thing to note here is that once you do changes in your React Native app, the Expo will automatically refresh your code, and you can see the instant changes in the browser whatsoever you are doing it in your code. So the changes would be reflected automatically. But as we have started the WAMP server to serve the book images for this app, let us refresh our React Native app in the browser, and we can see the changes reflected as the result of our new code, as shown in figure 10.16:

[image:]

Figure 10.16: Refreshing the browser Window of our mobile app—display of book cover images

We can scroll and see that all the books have been listed correctly by our React Native-based mobile app, as shown in figure 10.17:

[image:]

Figure 10.17: Refreshing the browser Window of our mobile app —display of book cover images—scrolling to view more books

So, we have seen how we can add dynamic images to our mobile app, which are fetched from the PHP-based backend application that we have created earlier. Now, let us add some more functionality to our app with some more interesting examples.

Example 3—adding “Thumbs Up” and “Thumbs Down” in the book list section of our mobile app

In the last examples, we have added the books list and book image and have used the Fetch API to show the list of the books. Now, let us add some more functionality in this app so that we can give the “Thumbs Up” or “Thumbs Down” to a book.

We need some good icons for this purpose which can be clickable and for this reason, we have to add an NPM Package for this which is named “Expo Vector Icons”.

To install it first, visit the official NPM page of this package. Open this URL in your browser window: https://www.npmjs.com/package/@expo/vector-icons, as shown in figure 10.18:

[image:]

Figure 10.18: NPM—Expo Vector Icons— Home Page

Now, we need to install this package in our React Native mobile app. Before we can install this package, we need to first stop our app, which is running using the Expo CLI from the command prompt. To stop the app, go to the command prompt from where we have run our React Native app using Expo CLI and then type “Ctrl + C”. This will stop our app, as shown in figure 10.19:

[image:]

Figure 10.19: Stopping our mobile app

Now, we need to install the “Expo Vector Icons” package in our React Native app. To do this, type the following command (as shown in figure 10.20):

npm i @expo/vector-icons

OR

npm install @expo/vector-icons

We have done some updates to our code and added the following code for fetching images from the localhost.

[image:]

Figure 10.20: React Native mobile app folder —Installing “Expo Vector Icons” Package using npm install command

As we have now installed the required “Expo Vector Icons”, we can now use the same in our app. We can start our app again using the following command:

npm start

So, we have done the following updates in our code to implement the “Thumbs Up” and “Thumbs Down” functionality.

Code 1 (updated App.js file)—import FontAwesome from Vector Icons

import { StatusBar } from 'expo-status-bar';

import { StyleSheet, Text, View, Image } from 'react-native'; // Imported the Image Component

//import React from 'react';

import React, { useEffect, useState } from 'react'; // Import the useEffect and useState React.js Hooks

import { SafeAreaView, FlatList } from 'react-native'; // Import React Native FlatList and SafeAreaView

import { FontAwesome } from '@expo/vector-icons'; // Import Font Awesome

Code 2 (updated App.js File)—CSS section (added some more CSS for “Thumbs Up” and “Thumbs Down”)

/* Item Separator CSS */

itemSeparator:{

height: 0.5,

width: '100%',

backgroundColor:'darkblue',

borderWidth:2,

borderBottomColor:'darkmagenta',

marginTop:20,

marginBottom:20,

maxWidth:280,

marginLeft:'auto',

marginRight:'auto'

},

/* New CSS for "Thumbs Up" and "Thumbs Down" */

thumbsUP: {

width:200,

marginBottom:5,

},

thumbsDOWN: {

width:200,

marginTop:5,

marginBottom:5

}

});

Code 3 (updated App.js file)—added “Thumbs Up” and “Thumbs Down” button components and functions

// Header Section

const appHeaderSection = (

<View>

<Image source={{uri:'http://localhost/bpb-catalog-app-backend/images/bpb-logo.png'}} style={styles.logo} />

<Text style={styles.heading} >Welcome to BPB Online Mobile App</Text>

<StatusBar style="auto" />

</View>

);

// Thumbs Up Button

const thumbsUP = (

<FontAwesome.Button name="thumbs-up" onPress={() => doThumbsUP()}>

Thumbs Up

</FontAwesome.Button>

);

// Thumbs Down Button

const thumbsDOWN = (

<FontAwesome.Button name="thumbs-down" onPress={() => doThumbsDOWN()}>

Thumbs Down

</FontAwesome.Button>

);

const doThumbsUP = () => {

console.log('Thumbs Up Pressed');

}

const doThumbsDOWN = () => {

console.log('Thumbs Down Pressed');

}

Code 4 (updated App.js file)—book list section (added “Thumbs Up” and “Thumbs Down” button components)

Here, we have added the “Thumbs Up” and “Thumbs Down” buttons in all the books listed under the book section of the app.

// Books List Section

// We are using the "data" which was fetched using the fetch API and then we are using the React Native Flatlist Component to render the Book-related data.

const ItemView = ({item}) => {

return (

// Single Comes here which will be repetitive for the FlatListItems

<View style={styles.bookContainer}>

<Text style={styles.bookListTitle}>

{item.title}

</Text>

<Text style={styles.bookListAuthor}>

{item.authorname}

</Text>

<View><Image source={{uri:'http://localhost/bpb-catalog-app-backend/images/'+item.coverimage}} style={styles.bookCover}/>

</View>

<View style={styles.thumbsUP}>

{thumbsUP}

</View>

<View style={styles.thumbsDOWN}>

{thumbsDOWN}

</View>

</View>

);

};

So, if you see the button components, you will see that the event “onPress” is in both of the buttons that we have created. When the user presses these buttons, their respective functions will be called, and the logs will be shown in the console, as shown in figure 10.21:

[image:]

Figure 10.21: Dev Tools > Console > Console logs

Example 4—adding database functionality to “Thumbs Up” and “Thumbs Down” of our mobile app

In the last example, we have added functionality for “Thumbs Up” and “Thumbs Down” to a book. This functionality will be incomplete if we cannot store “Thumbs Up” and “Thumbs Down” counts to the MongoDB database. To have this functionality, we have to use two more APIs from our Node.js (Express.js) API app.

We already have two existing API methods for this purpose that we can use here. But, we need to first stop our Node.js API App as explained previously in this chapter and then enable “CORS” in these API methods.

We can now do some modifications in our “index.js” file of our Node.js, and Express.js-based application, and the location for the same is: “

The following are the changes that we are going to do:

Change 1 in index.js—enabling CORS in “thumbsUPForBPBBook” route

// API Endpoint "thumbsUPForBPBBook" using PUT Request

app.put("/thumbsUPForBPBBook/:bookid", cors(), (request, response) => {

We have added cors() function in the get based method of our Express.js Route (thumbsUPForBPBBook):

// API Endpoint "thumbsUPForBPBBook" using PUT Request

app.put("/thumbsUPForBPBBook/:bookid", cors(), (request, response) => {

collection.findOne({ "_id": new MongoDBObjectId(request.params.bookid)},(error, result) => { // We are Fetching Book Record from our Collection

if(error) { // If any Error

return response.status(500).send(error);

}else{

if(isNaN(result.thumbsUPCounter)){ // If there is no existing value for "thumbsUPCounter" in the MongoDB Document

var thumbsUPCounterValue = 1; // Just assign a new Value to 1

}else{

var thumbsUPCounterValue = result.thumbsUPCounter + 1; // We are taking the existing "thumbsUPCounter" value from our Database and then Incrementing the Thumbs UP Counter value "thumbsUPCounterValue" to 1

}

collection.updateOne({ "_id": new MongoDBObjectId(request.params.bookid)}, { $set: {thumbsUPCounter:thumbsUPCounterValue} }, (error, result) => { // We are using MongoDB updateOne() Method to Update the incremented "thumbsUPCounter" value back to the database

if(error) { // If any Error

return response.status(500).send(error);

}else{

response.send(result); // Send Response Back to the Client

}

});

}

});

});

Change 2 in index.js—enabling CORS in “thumbsDOWNForBPBBook” route

// API Endpoint "thumbsDOWNForBPBBook" using PUT Request

app.put("/thumbsDOWNForBPBBook/:bookid", cors(), (request, response) => {

We have added cors() function in the get based method of our Express.js route (thumbsDOWNForBPBBook):

// API Endpoint "thumbsDOWNForBPBBook" using PUT Request

app.put("/thumbsDOWNForBPBBook/:bookid", cors(), (request, response) => {

collection.findOne({ "_id": new MongoDBObjectId(request.params.bookid)},(error, result) => { // We are Fetching Book Record from our Collection

if(error) { // If any Error

return response.status(500).send(error);

}else{

if(isNaN(result.thumbsDOWNCounter)){ // If there is no existing value for "thumbsDOWNCounter" in the MongoDB Document

var thumbsDOWNCounterValue = 1; // Just assign a new Value to 1

}else{

var thumbsDOWNCounterValue = result.thumbsDOWNCounter + 1; // We are taking the existing "thumbsDOWNCounter" value from our Database and then Incrementing the Thumbs UP Counter value "thumbsDOWNCounterValue" to 1

}

collection.updateOne({ "_id": new MongoDBObjectId(request.params.bookid)}, { $set: {thumbsDOWNCounter:thumbsDOWNCounterValue} }, (error, result) => { // We are using MongoDB updateOne() Method to Update the incremented "thumbsDOWNCounter" value back to the database

if(error) { // If any Error

return response.status(500).send(error);

}else{

response.send(result); // Send Response Back to the Client

}

});

}

});

});

Sometimes, enabling “cors” on a particular route might still give you CORS related issues as follows:

Access to fetch at 'http://localhost:3000/thumbsUPForBPBBook/615974498124895ebe4bd836' from origin 'http://localhost:19006' has been blocked by CORS policy: Response to preflight request doesn't pass access control check: No 'Access-Control-Allow-Origin' header is present on the requested resource. If an opaque response serves your needs, set the request's mode to 'no-cors' to fetch the resource with CORS disabled.

It is generally recommended to enable CORS on a route that is required to serve the requests from other apps, but if you still face the issues as described previously, you may enable the whole app for CORS. For this, you need to put the following code in our Node.js App as shown:

app.use(cors()) // Enable Whole App for CORS

You can include the preceding code in the top section of your Node.js app as follows:

const express = require('express'); // Express Module

var cors = require('cors') // CORS Module

const app = express();

const port = 3000; // Port, You can Change this Port to anything you would like For example 8000, For this Book, we will Keep this as 3000 for Node.js > Express.js Based API Examples

const MongoDBClient = require('mongodb').MongoClient; // MongoDB Driver

const MongoDBObjectId = require("mongodb").ObjectId; // Create a new ObjectID instance, used for Converting String to MongoDB ObjectID Type and opposite

app.use(express.json());

app.use(express.urlencoded({ extended: true }));

app.use(cors()) // Enable Whole App for CORS

As we have now done these updates in our Node.js API app, we should stop and start our app again using “Ctrl + C” to stop and the “npm start” command to start our Node.js app from the command prompt as explained in the previous section of this chapter.

After our API app has been started successfully. Now, in our React Native app, we need to add these API calls inside the “doThumbsUP” and “doThumbsDOWN” methods, respectively, and below are the updated codes for the same.

Code 3 (updated App.js file)—updated “Thumbs Up” and “Thumbs Down” button components, functions, and book list section

Following is the major change in the code as we have now passed the book ID (item._id) in the book section while creating the buttons, and this is further passed to the other method for “onPress” event method calls.

// Thumbs Up Button

const thumbsUP = (id) => {

return (

<FontAwesome.Button name="thumbs-up" onPress={() => doThumbsUP(id)}>

Thumbs Up

</FontAwesome.Button>

)

};

// Thumbs Down Button

const thumbsDOWN = (id) => {

return (

<FontAwesome.Button name="thumbs-down" onPress={() => doThumbsDOWN(id)}>

Thumbs Down

</FontAwesome.Button>

)

};

const doThumbsUP = (id) => {

console.log('Thumbs Up Pressed');

console.log(id);

fetch('http://localhost:3000/thumbsUPForBPBBook/'+id, {

method: 'PUT'

}) // Our API Call using Fetch API "API Developed in Node.js and Express.js Chapter of this Book"

}

const doThumbsDOWN = (id) => {

console.log('Thumbs Down Pressed');

console.log(id);

fetch('http://localhost:3000/thumbsDOWNForBPBBook/'+id, {

method: 'PUT'

}) // Our API Call using Fetch API "API Developed in Node.js and Express.js Chapter of this Book"

}

// Books List Section

// We are using the "data" which was fetched using the fetch API and then we are using the React Native Flatlist Component to render the Book-related data.

const ItemView = ({item}) => {

return (

// Single Comes here which will be repetitive for the FlatListItems

<View style={styles.bookContainer}>

<Text style={styles.bookListTitle}>

{item.title}

</Text>

<Text style={styles.bookListAuthor}>

{item.authorname}

</Text>

<View><Image source={{uri:'http://localhost/bpb-catalog-app-backend/images/'+item.coverimage}} style={styles.bookCover}/>

</View>

<View style={styles.thumbsUP}>

{thumbsUP(item._id)}

</View>

<View style={styles.thumbsDOWN}>

{thumbsDOWN(item._id)}

</View>

</View>

);

};

We can verify this change and check if the “onPress” event method calls are now updating the values of the “thumbsUPCounter” as well as “thumbsUPCounter” of the book records (documents in the MongoDB database). For this, you need to open MongoDB Compass and check the status of these counters (“thumbsUPCounter” as well as “thumbsUPCounter” document fields in our collection “BPBCatalogCollection” which is under the database “BPBCatalogDB”), as shown in figure 10.22:

[image:]

Figure 10.22: MongoDB Compass—checking the “ThumbsUPCounter” and “ThumbsDOWNCounter”

As you can see, the “onPress” event method calls are now updating the values of the “thumbsUPCounter” as well as “thumbsUPCounter” of the book records (documents in the MongoDB database).

Now it is time to open this app in Android Emulator so that we are sure that it will work perfectly fine on mobile. But, before we can do that, we need to change all the references of “http://localhost” to the IP address of our machine.

Let us see how we can check the IP address of our Windows machine. To do this, follow these steps:

	On the system tray of your Windows Task Bar, select WiFi Network and then click on the Properties of the network to which you are connected, as shown in figure 10.23:

[image:]

Figure 10.23: Windows system tray > WiFi Network > Your Connected Network > Properties

	Once you click the Properties of your network, it will open up a new window. You need to scroll down and check for your Local IP Address. You should use “IPv4 address”, as shown in figure 10.24:

[image:]

Figure 10.24: Windows system tray > WiFi Network > Your Connected Network > Properties > IPv4 address

In our case, the IP Address is “192.168.1.10”.

Now, in order to view your application correctly under Android device/emulator, you need to change all the references of the “http://localhost” in App.js to “http://192.168.1.10”. Following are the code snippets that need to be changed in App.js.

Changes in App.js

// API Fetch Part - Networking

const [isLoading, setLoading] = useState(true);

const [data, setData] = useState([]); // setData Function and useState Hook is helpful in using the React State of the function Components

useEffect(() => {

fetch('http://192.168.1.10:3000/getAllBPBBooks') // Our API Call using Fetch API "API Developed in Node.js and Express.js Chapter of this Book"

.then((response) => response.json()) // Response from the API Server

.then((json) => setData(json)) // Using setData Function response is sent back and then it is stored in "data"

.catch((error) => console.error(error)) // Error if any is caught and logged

.finally(() => setLoading(false)); // Finally the task is done

}, []);

// Header Section

const appHeaderSection = (

<View>

<Image source={{uri:'http://192.168.1.10/bpb-catalog-app-backend/images/bpb-logo.png'}} style={styles.logo} />

<Text style={styles.heading} >Welcome to BPB Online Mobile App</Text>

<StatusBar style="auto" />

</View>

);

const doThumbsUP = (id) => {

console.log('Thumbs Up Pressed');

console.log(id);

fetch('http://192.168.1.10:3000/thumbsUPForBPBBook/'+id, {

method: 'PUT'

}) // Our API Call using Fetch API "API Developed in Node.js and Express.js Chapter of this Book"

}

const doThumbsDOWN = (id) => {

console.log('Thumbs Down Pressed');

console.log(id);

fetch('http://192.168.1.10:3000/thumbsDOWNForBPBBook/'+id, {

method: 'PUT'

}) // Our API Call using Fetch API "API Developed in Node.js and Express.js Chapter of this Book"

}

// Books List Section

// We are using the "data" which was fetched using the fetch API and then we are using the React Native Flatlist Component to render the Book-related data.

const ItemView = ({item}) => {

return (

// Single Comes here which will be repetitive for the FlatListItems

<View style={styles.bookContainer}>

<Text style={styles.bookListTitle}>

{item.title}

</Text>

<Text style={styles.bookListAuthor}>

{item.authorname}

</Text>

<View><Image source={{uri:'http://192.168.1.10/bpb-catalog-app-backend/images/'+item.coverimage}} style={styles.bookCover}/>

</View>

<View style={styles.thumbsUP}>

{thumbsUP(item._id)}

</View>

<View style={styles.thumbsDOWN}>

{thumbsDOWN(item._id)}

</View>

</View>

);

};

To open the app in Android Emulator, you can then go to the Expo Dev Tools page in your browser and click the link, which says “Run on Android device/emulator”. Once you click this link, the Expo Dev Tools will try to launch the app in the Emulator with the help of Metro Bundler. But in case it does not work, you can first open Android Studio and then open AVD Manager and then run the Android Virtual Device (AVD). This step has been explained in our previous chapter [Chapter 5, Starting up Programming with MongoDB and React Native], where we have started the App Development using React Native. You can follow the same instructions, as shown in figure 10.25:

[image:]

Figure 10.25: Expo dev tools > run on android device/emulator

After you click the “Launch this AVD in Emulator”, it will open the Android Virtual Device. After that, you can again click the link, which says “Run on Android device/emulator”. This will launch our app in Android Emulator, as shown in figure 10.26:

[image:]

Figure 10.26: App Running successfully on Android device/emulator

You can also press the “Thumbs Up” and “Thumbs Down” buttons and check the Books Records (MongoDB Documents) for the counter updates using MongoDB Compass, as explained in the previous step.

Conclusion

In this chapter, we have covered the practical step-by-step development of a mobile app developed using React Native and MongoDB, and we have learned how to create a mobile app for a publication house. This chapter explains all the sections in step by step practical manner, and after reading this chapter, you must have felt more confident in React Native and MongoDB mobile app development. In the upcoming chapter, we will cover the practical step-by-step development of a frontend application developed using Python and MongoDB. We will learn how to create a website for a publication house where we start with the overview of our frontend development using Python, Django, and MongoDB.

Questions

	What is CORS?

	How can we solve the issue of CORS for Node.js applications using the Express.js framework?

	Explain the React Native’s Fetch API?

	Write a few words on React Native FlatList component.

CHAPTER 11

MongoDB Step by Step Practical Frontend Development Using Python

Frontend development—creating a website of a publication house

This chapter covers the practical step-by-step development of the frontend application developed using Python and MongoDB. In this chapter, we will learn how to create a website for a publication house. This chapter starts with an overview of our frontend development using Python, Django, PyMongo, and MongoDB. We will start this chapter with basic requirements. Later in this chapter, we will learn how we can build the various functionalities of the frontend application like displaying the book catalog list and displaying the book cover images, a total number of “Thumbs Up” and “Thumbs Down” for that particular book using the Python and its Django framework with the help of Python’s official MongoDB driver. In this chapter, all the sections have been explained in a step-by-step practical manner so that by the end of this chapter, you feel more confident in dynamic Python application development with MongoDB.

Structure

In this chapter, we will discuss the following topics:

	An overview of our frontend application developed using Python and MongoDB

	Installing Python’s Django framework on Windows operating system

	Building our frontend application

	Step 1—Install Django using PIP

	Step 2—Creating a default Django project

	Step 3—Creating a new Django app

	Step 4—Updating the Django app and Django project files

	Step 5—Using PyMongo in Django to connect to MongoDB

	Step 6—Adding CSS and static files in our Django app

	Step 7—Designing our frontend with CSS Flex (Flexible Box Layout)

	Step 8—Adding book pictures to our frontend app

	Step 8.1—Start WAMP server

	Step 8.2—Running localhost

	Step 8.3—Coding part

	Step 9—Adding more details functionality to our frontend app

	Step 10—Fixing underscore attribute issue for Django using the Django template tags

	Step 11—Creating the More Details page

	Step 12—Designing the More Details page

	Step 13—Making “Thumbs Up” and “Thumbs Down” looks nicer

Objectives

After studying this chapter, you will learn how to develop the frontend application using Python, Django, PyMongo, and MongoDB. This chapter starts with the basic requirements, and then in the latter part of this chapter, readers will learn how they can build the various functionalities of the frontend application like displaying the book catalog list and displaying the book cover images, total number of “Thumbs Up” and “Thumbs Down” for that particular book using the Python and its Django framework with the help of Python’s official MongoDB driver.

An overview of our frontend application developed using Python and MongoDB

In this chapter, we are going to develop a frontend application using Python and MongoDB.

We are going to use Python’s Django framework and Python’s official MongoDB driver, “PyMongo” which we have already worked on in Chapter 6, Starting up Programming with MongoDB and Python.

This Python frontend application will have the following features:

	Ability to list (read) all the books in the catalog and show their information and book picture

	Ability to show the total number of “Thumbs Up” and “Thumbs Down” counts related to the particular book

So, in order to create this frontend application, we would be writing and modifying some codes using the following:

	Python and Python’s Django framework—to build the frontend application

	PyMongo driver for MongoDB—to connect with Mongo DB

Requirements

The reader should have the basic knowledge and understanding of the following:

	Python (recommended; a brief introduction is given in Chapter 6, Starting up Programming with MongoDB and Python of this book).

Installing Python’s Django framework on Windows operating system

Let us install the Django framework on Windows operating system by following the step-by-step installation method.

Installation steps

Let us start with the installation of Python on our machine; the following are the steps that are required to be performed to install Django.

Step 1—Install Django using PIP

	Open the Django official website download page—https://www.djangoproject.com/download/ in your favorite browser, as shown in figure 11.1:

[image:]

Figure 11.1: Django official website download page

	In order to install the Django framework, we need to first create our project folder that is “bpb-catalog-app-frontend” in our case, the location of this folder is “D:\bpb-catalog-app-frontend”, as shown in figure 11.2:

[image:]

Figure 11.2: Creating a project folder: “bpb-catalog-app-frontend”

	Now first, open the Command Prompt and navigate to the project folder, the path of which is “D:\bpb-catalog-app-frontend” in our case, as shown in figure 11.3:

[image:]

Figure 11.3: Command prompt—navigating to our Project Folder: “bpb-catalog-app-frontend”

	Now in the Command Prompt, then navigate to the project directory, which is “D:\bpb-catalog-app-frontend” in our case and type the following command and press Enter to install the Django framework for Python (as shown in figure 11.4):
pip install Django

[image:]

Figure 11.4: Installing Django

	Now in the same Command Prompt, type the following command to verify if Django has been installed successfully (as shown in figure 11.5):
 python -m django --version

[image:]

Figure 11.5: Installing Django

Step 2—Creating a default Django project

	Open the Command Prompt, then navigate to the project directory that is “D:\bpb-catalog-app-frontend” in our case and type the following command and press Enter to create the new Django project (as shown in figure 11.6):
 jango-admin startproject BPBOnlineBookShop

[image:]

Figure 11.6: Creating a new Django project using Django admin command

	If you look into your main project folder, which is “D:\bpb-catalog-app-frontend”, you will now see that there is a new Django project folder created by the command given in point 1 of this step with the name same as the Django project name ”BPBOnlineBookShop” given as the parameter to the command. You will see that under the folder “BPBOnlineBookShop”, there is one subfolder with the same name plus one file, “manage.py” that is a command-line utility to communicate with the Django project, all these have been automatically created by the Django Admin command “django-admin”. So this is the starting point of creating our Django application, as shown in figure 11.7:

[image:]

Figure 11.7: New folder and files are created by the Django admin command

	Now go to the command prompt and navigate to the Django project, the location of which is “D:\bpb-catalog-app-frontend\BPBOnlineBookShop” and then run the following command (as shown in figure 11.8):
 python manage.py runserver

[image:]

Figure 11.8: Starting our app with Django—run server command

	Once you run the command mentioned in the above point, you will get the message that Python has started the development server in the local URL such as http://127.0.0.1:8000 in our case, as shown in figure 11.9:

[image:]

Figure 11.9: Starting our app with Django—run server command—development server started

	Open your favorite browser, such as Google Chrome, and type the abovementioned URL: http://127.0.0.1:8000 in the Address Bar and press Enter. Once you do this, you will see the Django demo app loaded in your browser window, as shown in figure 11.10:

[image:]

Figure 11.10: Django demo app loaded in the browser

Step 3—Creating a New Django app

In the previous step, we have created a default demo project in Django. Note that the Django project can have many apps; now it is time to create a new Django app so that we can connect it to MongoDB.

	Open the Command Prompt, then navigate to the Django Project Directory, which is “D:\bpb-catalog-app-frontend\BPBOnlineBookShop” in our case and type the following command and press Enter to create the new Django app under the current Django project (as shown in figure 11.11):
 python manage.py startapp BPBOnlineBookShopMongoDBApp

[image:]

Figure 11.11: Django—creating a new app

	If you look into your Django project folder, which is “D:\bpb-catalog-app-frontend\BPBOnlineBookShop” in our case, you will now see that there is a new Django app folder created by the command given in point 1 of this step with the name same as the Django app name” BPBOnlineBookShopMongoDBApp” given as the parameter to the command. You will see that under the folder “BPBOnlineBookShopMongoDBApp”, there is one subfolder with the name “migrations”, plus other python app-related files which has been created automatically by Django, as shown in figure 11.12:

[image:]

Figure 11.12: Django—creating a new app —new app related files and folders created by Django command

The important thing that is related to Django app files in this scenario is that Django created the necessary files for our app, and the only thing now we need to do is to modify these files or add new files according to our requirements. Before we make our app dynamic with MongoDB, we have to do some adjustments to the existing files and create some new files. With the help of the next step, we will do some modifications in the current Django app, as well as Django project files, so that it would render us the HTML output as required to display by the app.

Step 4—Updating the Django app and Django project files

Let us first create a template that we would like to render on the home page of the Django project; as in the previous step of this chapter, we have seen that when we start our project and browse it using the browser, it opens up the default Django Home Page. As we are working on our custom app now, we want to show the app-specific page. So in order to achieve this, we will do some modifications and additions to the current Django app folder as well as the Django project folder. Following are the points for this step:

	Open the current Django Project in any Code Editor or Integrated Development Environment (IDE) like Visual Studio Code, as shown in figure 11.13:

[image:]

Figure 11.13: Opening a Django project in a Code Editor like Visual Studio Code

	Now create a new folder named “templates” under the app folder, which is “BPBOnlineBookShopMongoDBApp” in our case, as shown in figure 11.14:

[image:]

Figure 11.14: Creating a “templates” folder in our Django app

	Now create a new folder named as same as our Django app name “BPBOnlineBookShopMongoDBApp” under the “templates” folder. This structure will be according to the Django naming convention, as shown in figure 11.15:

[image:]

Figure 11.15: Creating a “BPBOnlineBookShopMongoDBApp” subfolder under the “templates” folder in our Django App

	Now create a new HTML Template file named “bpbAppIndex.html” under the current path, which is “D:\bpb-catalog-app-frontend\BPBOnlineBookShop\BPBOnlineBookShopMongoDBApp\templates\BPBOnlineBookShopMongoDBApp” in our case, as shown in figure 11.16:

[image:]

Figure 11.16: Creating a “bpbAppIndex.html” file under the “BPBOnlineBookShopMongoDBApp” folder in our Django app

	Now add the following HTML in the “bpbAppIndex.html” file, as shown in figure 11.17:
<!DOCTYPE html>

<html lang="en">

<head>

<title>Welcome to BPB Online Bookshop</title>

</head>

<body>

<h1>BPB Online Bookshop<h1>

</body>

</html>

[image:]

Figure 11.17: Adding HTML code in “bpbAppIndex.html” file

	Modify the “views.py” file in our app and create a new function related to the rendering of the view, as shown in figure 11.18:
from django.shortcuts import render

Create your views here.

def bpbAppIndex(request):

return render(request, 'BPBOnlineBookShopMongoDBApp/bpbAppIndex.html')

[image:]

Figure 11.18: Modifying “views.py” file in our Django app

	We need to create a new file named urls.py in our app and connect this file to the existing urls.py file of the project folder. The newly created urls.py is similar to the urls.py which is located in our project folder. If we look into the default “urls.py” file located in our project directory, we can code some code from there to be pasted in the newly created “urls.py” file in our app. Following is the code that we will use in our app’s urls.py file with a few changes. We have copied the following lines from the existing urls.py file in our project directory.
from django.urls import path

urlpatterns = [

path('',),

]

	Basically, the “import” statement and “urlpatterns” list, and we will do some changes in this file. The first thing is to include the views to be used in this file so that we can use the views that we created in our app, as shown in figure 11.19:
from django.urls import path

from . import views

urlpatterns = [

path('', views.bpbAppIndex, name='BPB-Book-Shop-Home-Page'),

]

[image:]

Figure 11.19: Creating a new “urls.py” file in our Django app

	We have to finally map this “urls.py” file which is our app’s directory, to the urls.py file of our project’s directory. For this purpose, we need to open the urls.py file located in our project’s directory and map both urls.py files using the “urlpatterns” list of the project’s directory urls.py; the code is shown as follows:
First, we have to add the include function in the import sections of the “django.urls”

from django.urls import path,include

And then add the following line to the “urlpatterns”:

path('', include('BPBOnlineBookShopMongoDBApp.urls'))

The final code in our project’s “urls.py” file will look like this, as shown in figure 11.20:

from django.contrib import admin

from django.urls import path, include

urlpatterns = [

path('admin/', admin.site.urls),

path('', include('BPBOnlineBookShopMongoDBApp.urls'))

]

[image:]

Figure 11.20: Updating the “urls.py” file in our Django project —including the “urls.py” file from our Django app

	The next step is the register our app in the “settings.py” file located in the project’s directory. Open the “settings.py” file in the project’s directory and register the app in the “Application definition” section under the “INSTALLED_APPS” list as follows:
“BPBOnlineBookShopMongoDBApp.apps.BpbonlinebookshopmongodbappConfig”,

The above code contains the <Name of our App>.apps.<Name of the Class defined in the apps.py file Located in the App’s Folder>

The name of the class file of our app is located under the “apps.py” file in our app directory, as shown in figure 11.21:

[image:]

Figure 11.21: “apps.py” file under our app folder—taking reference to the app class file

	We need to copy the class name from the “apps.py” file located in the app’s folder to use while registering our app in the list of installed apps, as shown in figure 11.22:
The final code will look like the following:

Application definition

INSTALLED_APPS = [

'django.contrib.admin',

'django.contrib.auth',

'django.contrib.contenttypes',

'django.contrib.sessions',

'django.contrib.messages',

'django.contrib.staticfiles',

'BPBOnlineBookShopMongoDBApp.apps.BpbonlinebookshopmongodbappConfig',

]

[image:]

Figure 11.22: Updating “settings.py” file in our Django project and registering our new app under the list of installed apps

	Now we have actually created our app, and it is now ready to be run. To do this, we need to open the Command Prompt and navigate to our project folder, which is located at “D:\bpb-catalog-app-frontend\BPBOnlineBookShop”, as shown in figure 11.23:

[image:]

Figure 11.23: Command Prompt—navigating to our project folder

	We can run the server using the following command, as shown in figure 11.24:
 python manage.py runserver

[image:]

Figure 11.24: Command Prompt—Django run server command—starting our app

	If we open http://127.0.0.1:8000 in our browser, we will see our app will show the HTML which is rendered from the template view file for the home page path, as shown in figure 11.25:

[image:]

Figure 11.25: App home page is opened in browser—with new updates

Step 5—Using PyMongo in Django to connect to MongoDB

Now we will use PyMongo in Django to connect our Django app with MongoDB.

	The first step is to open the Django project’s “settings.py” file and do the following modifications:
Comment the existing database-related settings, and add a new database connection string.

DATABASES = {

'default': {

'ENGINE': 'django.db.backends.sqlite3',

'NAME': BASE_DIR / 'db.sqlite3',

}

}

DB_CONNECTION_STRING = 'mongodb://localhost:27017/'

Here, we are using the default localhost settings for MongoDB with the default port number to connect Django with MongoDB using PyMongo.

Note:

	We are not using Django features fully in this chapter. This chapter gives you an overview of creating a Python app with MongoDB. You can integrate Django apps with MongoDB in many other ways, like using Django and other drivers with some more features.

	More information can be found at: https://docs.djangoproject.com/en/3.2/ref/settings/#databases https://pypi.org/project/djongo/

	In this chapter, we are using PyMongo, which we have already installed and used in Chapter 6, Starting up Programming with MongoDB and Python of this book. Please go through the instructions on how to install and use PyMongo with Python from Chapter 6, Starting up Programming with MongoDB and Python if you want to refresh the basics related to PyMongo.

	Open the “views.py” file and add the following code:
import pymongo # Import PyMongo

from django.conf import settings # Import the Settings (We will use DB_CONNECTION_STRING from the settings file)

The code and the comments above are self-explanatory.

	Then in our existing view function “bpbAppIndex”. We will add the code to fetch the data from the existing database “BPBCatalogDB” and collection “BPBCatalogCollection” using the following code:
Create your views here.

def bpbAppIndex(request):

Connect to MongoDB Database from the Connection String Defined in Django Project "settings.py"

PyMongoclient = pymongo.MongoClient(settings.DB_CONNECTION_STRING)

Define the Database

dbname = PyMongoclient['BPBCatalogDB']

Use Collection

collection_name = dbname["BPBCatalogCollection"]

Then, the next step is to fetch the data from the collection.

Fetch All the Documents from Collection

BPBBooks = collection_name.find({})

The last step is to pass the MongoDB data object variable “BPBBooks” to the related template’s output file “BPBOnlineBookShopMongoDBApp/bpbAppIndex.html” using the JSON Style “Key”: “Value” as an additional parameter to the “render” function.

Pass the Data Object to the Template Output by passing as a parameter using "Key" : "Value" Style

return render(request, 'BPBOnlineBookShopMongoDBApp/bpbAppIndex.html', {'BPBBooks' : BPBBooks})

The above data object will be used in the template file to show the values fetched from the database.

The overall “views.py” file will look like this, as shown in figure 11.26:

from django.shortcuts import render

import pymongo # Import PyMongo

from django.conf import settings # Import the Settings (We will use DB_CONNECTION_STRING from the settings file)

Create your views here.

def bpbAppIndex(request):

Connect to MongoDB Database from the Connection String Defined in Django Project "settings.py"

PyMongoclient = pymongo.MongoClient(settings.DB_CONNECTION_STRING)

Define the Database

dbname = PyMongoclient['BPBCatalogDB']

Use Collection

collection_name = dbname["BPBCatalogCollection"]

Fetch All the Documents from Collection

BPBBooks = collection_name.find({})

Pass the Data Object to the Template Output by passing as a parameter using "Key" : "Value" Style

return render(request, 'BPBOnlineBookShopMongoDBApp/bpbAppIndex.html', {'BPBBooks' : BPBBooks})

[image:]

Figure 11.26: Our app’s “views.py” updated file

	In the related template output file “BPBOnlineBookShopMongoDBApp/bpbAppIndex.html”, we will iterate the data object passed as a parameter from the “render” function in the “views.py” file to show the list of books title using the following code (as shown in figure 11.27):
<!DOCTYPE html>

<html lang="en">

<head>

<title>Welcome to BPB Online Bookshop</title>

</head>

<body>

<h1>BPB Online Bookshop</h1>

<hr />

{٪ for BPBBook in BPBBooks %}

{{BPBBook.title}}

{٪ endfor %}

</body>

</html>

[image:]

Figure 11.27: Our app’s template view file—“bpbAppIndex.html” updated

	We can now run the server using the following command (as shown in figure 11.28):
python manage.py runserver

[image:]

Figure 11.28: Django run server command—running our app

	If we open our browser, we will see our app will show the HTML and the title of the books fetched from the MongoDB collection documents, as shown in figure 11.29:

[image:]

Figure 11.29: Opening our app in the browser —new updates are loaded—list of books fetched from MongoDB collection

Step 6—Adding CSS and static files in our Django app

Now, we can add some CSS to our template and make it look nicer.

To do this, we need to create a new folder with the name “static” to hold CSS and other static files like static images and JavaScript files so that we can call them in our template.

This “STATIC_URL” is already defined in the “settings.py” file under the main project directory (as shown in figure 11.30).

For more details, you can refer to this URL: https://docs.djangoproject.com/en/3.2/howto/static-files/

[image:]

Figure 11.30: Django project—“settings.py” file—STATIC_URL path

You may change this to any other name. But for our case, we will keep it as it is and will create a new folder with the name “static” in our Django app.

We will be following the Django specific path for our static files, which is:

my_app/static/my_app/example.jpg

This is in our case:

BPBOnlineBookShopMongoDBApp/static/ BPBOnlineBookShopMongoDBApp/example.jpg

	So first, we will create a “static” folder under our app directory, which is “BPBOnlineBookShopMongoDBApp” (as shown in figure 11.31)..

[image:]

Figure 11.31: Our app—creating a new Folder named “static”

	Then we will create another sub-directory with the same name as our app, which is “BPBOnlineBookShopMongoDBApp” under the newly created “static” directory, as shown in figure 11.32:

[image:]

Figure 11.32: Our app—creating a new subfolder named “BPBOnlineBookShopMongoDBApp” under the “static” folder

	We will now test this by copying the “BPB Publications” logo file into this location or path, as shown in figure 11.33:

[image:]

Figure 11.33: Copying static files such as logos to a newly created folder under our “static” folder

	For this, we will add the following code in our template file “bpbAppIndex.html”:
First, we will add the following code on the top of our file, which allows us to load the static files in our template.

{% load static %}

Then we will add some HTML and call the related file using the Django template helpers (as shown in figure 11.34).

<div class="logo"></div>

[image:]

Figure 11.34: Updating our template view file “bpbAppIndex.html”

The whole template file code looks like the following:

{% load static %}

<!DOCTYPE html>

<html lang="en">

<head>

<title>Welcome to BPB Online Bookshop</title>

</head>

<body>

<div class="logo"></div>

<h1>BPB Online Bookshop</h1>

<hr />

{٪ for BPBBook in BPBBooks %}

{{BPBBook.title}}

{٪ endfor %}

</body>

</html>

	We can now run the server using the following command (as shown in figure 11.35):
python manage.py runserver

[image:]

Figure 11.35: Django run server command—starting our app

	If we open our browser, we will see our app will show the HTML and the title of the books fetched from the MongoDB collection documents along with the BPB publication logo, as shown in figure 11.36:

[image:]

Figure 11.36: Our app running in browser—with logo

Step 7 – Designing our frontend with CSS Flex (Flexible Box Layout)

Let us follow this layout to create our frontend design, as shown in figure 11.37:

[image:]

Figure 11.37: Frontend app layout to follow

As we follow this design, we need to add the HTML accordingly and also write the CSS.

We will use <div> and use CSS Flex (Flexible Box Layout) to create our front end, as shown in the figure above.

	Now, we can create a new CSS File with the name “style.css” under the Static folder of our app. The location in our case would be: “static\BPBOnlineBookShopMongoDBApp\style.css”. This is the same location where we have copied our logo file, as shown in figure 11.38:

[image:]

Figure 11.38: Creating a new CSS file

	Let us write some CSS code in this newly created style.css file. Here, we will use CSS Flexbox (Flexible Box Layout) to style our frontend.
But even before adding CSS code, we have to do some modifications to our template HTML file.

	Include the CSS file in the template

	Replace and with <div> with class names

The following is a modified code of the HTML template file “bpbAppIndex.html”, which includes the required preceding two changes:

{% load static %}

<!DOCTYPE html>

<html lang="en">

<head>

<title>Welcome to BPB Online Bookshop</title>

<link rel="stylesheet" href="{% static 'BPBOnlineBookShopMongoDBApp/style.css' %}">

</head>

<body>

<div class="main-container">

<div class="header-container">

<div class="logo"><img src="{% static 'BPBOnlineBookShopMongoDBApp/bpb-logo.png' %}"

alt="BPB Publications Logo" /></div>

<h1>BPB Online Bookshop</h1>

<hr />

</div>

<div class="body-container">

<div class="items">

{٪ for BPBBook in BPBBooks %}

<div class="item">

<div class="book-image-container"></div>

<div class="book-title">{{BPBBook.title}}</div>

<div class="more-details-button"></div>

</div>

{٪ endfor %}

</div>

</div>

</div>

</body>

</html>

The following is the CSS, which we write in our style.css:

.main-container {

margin: 0 auto;

max-width: 1200px;

}

.header-container {

background: #ffffff;

height: 200px;

}

.body-container {

width: 1200px;

background: #fafafa;

margin: 20px;

}

.items {

display: flex;

flex-wrap: wrap;

justify-content: center;

}

.item {

width: 300px;

height: 250px;

border: 1px;

border-style: solid;

border-color: blueviolet;

margin: 15px;

text-align: center;

padding: 10px;

}

.book-image {

display: inline-block;

width: 150px;

height: 150px;

}

.book-title {

margin-top: 5px;

font-family: Georgia, 'Times New Roman', Times, serif;

font-weight: bold;

font-size: 14px;

}

	We can now run the server using the following command if it is not running:
 python manage.py runserver

If your server is already started, then if you refresh the browser page, the layout will look as follows (figure 11.39):

[image:]

Figure 11.39: Refreshing the page—new frontend layout

Step 8—Adding book pictures to our frontend app

Now, we will add the book cover pictures above the book title inside the <div> with a class “book-image-container”.

In order to do so, we need to first run our backend application which we had created with PHP and MongoDB earlier in Chapter 8, MongoDB Step by Step Practical Application Development Using PHP of this book. To do that, we just need to be sure that our WAMP server is running and our backend application is accessible using the browser URL:

If you have not started the WAMP server, please start the WAMP server first.

Step 8.1—Start WAMP server

You should start the WAMP server by typing “wamp” on the search area of the taskbar. Opening the WAMP server will launch the WAMP server on your Windows machine, as shown in figure 11.40:

[image:]

Figure 11.40: Launching WAMP server

Once the WAMP server has been successfully started, you will see the WAMP server icon (in green) in the taskbar tray. When you run the WAMP server, it usually takes a few seconds to start all the services such as Apache, MySQL, and so on, and the icon changes from red to orange and finally to green. If the WAMP icon is green, it means that all the services have been successfully started, and now you can use the WAMP server, as shown in figure 11.41:

[image:]

Figure 11.41: WAMP server—all services have been started successfully

Step 8.2—running localhost

Once the WAMP server has started on your machine, you can start working with the local server, which has Apache and PHP installed. As we have the required environment ready, we can run localhost.

To run localhost, just open your favorite browser like Google Chrome and type: http://localhost/ and then press Enter. This will open up a new page, and you will be shown the WAMP server default page on your localhost. Here, you will get all the information about the version of the WAMP server, server configurations, which has a list of various software running in the background along with their version details such as Apache web server and PHP, as shown in figure 11.42:

[image:]

Figure 11.42: WAMP server—localhost

If you are able to see this page, then this means that your WAMP server has been successfully started.

Now try to open the PHP-based backend application using the URL: http://localhost/bpb-catalog-app-backend/.

You should see the backend dashboard while you browse this URL, as shown in figure 11.43:

[image:]

Figure 11.43: Backend application in PHP—running using the WAMP server

Once we are able to open our backend application, it means we can now use the backend application URL to display the book cover images.

Step 8.3—Coding part

Now, we need to update our HTML Code in “bpbAppIndex.html” as follows:

{% load static %}

<!DOCTYPE html>

<html lang="en">

<head>

<title>Welcome to BPB Online Bookshop</title>

<link rel="stylesheet" href="{% static 'BPBOnlineBookShopMongoDBApp/style.css' %}">

</head>

<body>

<div class="main-container">

<div class="header-container">

<div class="logo"><img src="{% static 'BPBOnlineBookShopMongoDBApp/bpb-logo.png' %}"

alt="BPB Publications Logo" /></div>

<h1>BPB Online Bookshop</h1>

<hr />

</div>

<div class="body-container">

<div class="items">

{٪ for BPBBook in BPBBooks %}

<div class="item">

<div class="book-image-container"><img class="book-image"

src="http://localhost/bpb-catalog-app-backend/images/{{BPBBook.coverimage}}" /></div>

<div class="book-title">{{BPBBook.title}}</div>

<div class="more-details-button"></div>

</div>

{٪ endfor %}

</div>

</div>

</div>

</body>

</html>

If we see carefully in the above HTML code (template), we will find the under the image src attribute the value is as follows:

http://localhost/bpb-catalog-app-backend/images/{{BPBBook.coverimage}}

In which the {{BPBBook.coverimage}} will be appended to the URL from the database according to the book cover page.

Let us now refresh the browser, and we will see the book cover images appear in the frontend application. This will show the book’s images, and these book images are rendered from our backend application which we created earlier in this book using PHP, as shown in figure 11.44:

[image:]

Figure 11.44: Our frontend application in Django—showing books images—these book images are rendered from our backend application which we created earlier in this book using PHP

Now our next step is to create a link (or button) that will take us to the book details page on click.

To do so, let us update our HTML and CSS.

HTML

{% load static %}

<!DOCTYPE html>

<html lang="en">

<head>

<title>Welcome to BPB Online Bookshop</title>

<link rel="stylesheet" href="{% static 'BPBOnlineBookShopMongoDBApp/style.css' %}">

</head>

<body>

<div class="main-container">

<div class="header-container">

<div class="logo"><img src="{% static 'BPBOnlineBookShopMongoDBApp/bpb-logo.png' %}"

alt="BPB Publications Logo" /></div>

<h1>BPB Online Bookshop</h1>

<hr />

</div>

<div class="body-container">

<div class="items">

{٪ for BPBBook in BPBBooks %}

<div class="item">

<div class="book-image-container"><img class="book-image"

src="http://localhost/bpb-catalog-app-backend/images/{{BPBBook.coverimage}}" /></div>

<div class="book-title">{{BPBBook.title}}</div>

<div class="more-details-button">More Details</div>

</div>

{٪ endfor %}

</div>

</div>

</div>

</body>

</html>

CSS

.main-container {

margin: 0 auto;

max-width: 1200px;

}

.header-container {

background: #ffffff;

height: 200px;

}

.body-container {

width: 1200px;

background: #fafafa;

margin: 20px;

}

.items {

display: flex;

flex-wrap: wrap;

justify-content: center;

}

.item {

width: 300px;

height: 250px;

border: 1px;

border-style: solid;

border-color: blueviolet;

margin: 15px;

text-align: center;

padding: 10px;

}

.book-image {

display: inline-block;

width: 150px;

height: 150px;

}

.book-title {

margin-top: 5px;

font-family: Georgia, 'Times New Roman', Times, serif;

font-weight: bold;

font-size: 14px;

}

.more-details-button {

margin-top: 20px;

}

.more-details-button>a {

background-color: darkorchid;

color: white;

padding: 10px 15px;

text-decoration: none;

}

.more-details-button>a:hover {

background-color: blueviolet;

color: white;

padding: 10px 15px;

text-decoration: none;

}

If we refresh our browser, we will see that our changes are reflected, and we can see the “More Details” button below the book title, as shown in figure 11.45:

[image:]

Figure 11.45: Our frontend app—showing the “More Details” button

Our frontend application main page is almost complete, but now the next step is to link the “More Details” button to the book details page. For this step, we need to first append the “Book ID” to the button link so that we can refer to the Book ID while we are navigating to the book details page.

Step 9—Adding more details functionality to our frontend app

In this step, we will add the “More Details” functionality to our app. In this, once the More Details button is clicked, then it will open the details page related to the specific book.

Let us try to append the following in the link:

/{{BPBBook._id}}

With this change the HTML of the button <div> gets updated as follows:

<div class="more-details-button">More Details</div>

Now, if you will refresh the browser, it will give you the error, and our application will break, as shown in figure 11.46:

[image:]

Figure 11.46: Our frontend app breaks due to the updated link code of the “More Details” button

We can even see the same error in the command prompt or console from where we are running our frontend application, as shown in figure 11.47:

[image:]

Figure 11.47: Command Prompt—app console showing the errors

This means that we cannot move ahead before fixing this issue. So, we need to fix this issue before we move ahead in the frontend app development.

Step 10—Fixing underscore attribute issue for Django using the Django template tags

As you can see that, the above issue arises because we are trying to get the MongoDB document ID (_id) by referencing the MongoDB object (BPBBook).

So in our case, BPBBook._id will not work as this is Django-specific nomenclature that we need to follow.

To fix this issue, we need to use the Django template tags so that we can get the MongoDB document ID in our template.

	For this, we need to create a directory in our Django app with the name “templatetags”. So in our case, the path would be: BPBOnlineBookShopMongoDBApp/templatetags/, as shown in figure 11.48:

[image:]

Figure 11.48: Creating a new directory named “templatetags” inside our app folder

	The next step is to create a blank __init__.py into the “templatetags” directory. The purpose of this file is to make the Django framework know that this “templatetags” is a Module, and Django will automatically treat this as a Module. So in our case, the path would be: BPBOnlineBookShopMongoDBApp/templatetags/__init__.py, as shown in figure 11.49:

[image:]

Figure 11.49: Creating a new file named “__init__.py” inside the “templatetags” folder of our app

	After we finish creating our blank __init__.py file next step is to create a new file that will contain the Template Tag code; for this purpose, we will create a new file in the “templatetags” directory with the name “custom-mongodb-tags.py”. So in our case, the path would be: BPBOnlineBookShopMongoDBApp/templatetags/ custom-mongodb-tags.py, as shown in figure 11.50:

[image:]

Figure 11.50: Creating a new file named “custom-mongodb-tags.py” inside the “templatetags” folder of our app

	Now, we will add the Template Tag related code in this file which is as follows:
from django import template

register = template.Library()

@register.filter(name='bpbfrontendapp')

def bpbfrontendapp(obj, attribute):

return obj[attribute]

The purpose of this code is to use the template library and register a new filter with the name “bpbfrontendapp”. The function will have the same name in this code, “bpbfrontendapp”, this function will take the two arguments one is an “Object”, and the second one is the “attribute”, which is a key. So this function will fetch the key’s value, or you can simply say attribute’s value and return to the template from where it is called.

	We have to use this Template Tag filter functionality in our Home Page template, So for this, we need to open our template file, which is: “bpbAppIndex.html”
So first step is to add the following code:

 {% load custom-mongodb-tags %}

This code will load this Template Tag module in our Template View file, and using this; we can then refer to this custom Template Tag module function and filter.

	We can use the Template Tag filter in our link, and the following is the code for that:
<div class="more-details-button">More Details</div>

So basically, we are referring to the “bpbfrontendapp” filter, which will filter this value using the template Tag function and pass it back to the template. So, in this case, the real value of MongoDB Document ID will be returned, and the error will go.

The following is the full HTML code for “bpbAppIndex.html”:

{% load static %}

{% load custom-mongodb-tags %}

<!DOCTYPE html>

<html lang="en">

<head>

<title>Welcome to BPB Online Bookshop</title>

<link rel="stylesheet" href="{% static 'BPBOnlineBookShopMongoDBApp/style.css' %}">

</head>

<body>

<div class="main-container">

<div class="header-container">

<div class="logo"><img src="{% static 'BPBOnlineBookShopMongoDBApp/bpb-logo.png' %}"

alt="BPB Publications Logo" /></div>

<h1>BPB Online Bookshop</h1>

<hr />

</div>

<div class="body-container">

<div class="items">

{٪ for BPBBook in BPBBooks %}

<div class="item">

<div class="book-image-container"><img class="book-image"

src="http://localhost/bpb-catalog-app-backend/images/{{BPBBook.coverimage}}" /></div>

<div class="book-title">{{BPBBook.title}}</div>

<div class="more-details-button">More Details</div>

</div>

{٪ endfor %}

</div>

</div>

</div>

</body>

</html>

Now to verify if this functionality has worked and we are not getting the previous error, we need to start our app from the command prompt if it is not running, using the following command:

python manage.py runserver

If your server is already started, then if you refresh the browser page, the layout will look as follows (figure 11.51):

[image:]

Figure 11.51: Our frontend app—the error is gone, and we can now see the MongoDB Document object ID appended to the URL

If you see the above image, you will see that once hovering the mouse to the “More Details” button. You can now see that the MongoDB Document ID is appended to the URL, and the error that we were getting earlier has also gone.

Now, we have to create the “More Details” page for a specific book. In our next step, we will learn how to create this new page.

Step 1—Creating the more details page

To create a More Details page, we need to perform the few similar tasks that we did for the main page.

So the first thing is to create a route for this new More Details page; for this, we need to open the “urls.py” file in our app and then add one new URL, which will take care of routing it to the correct URL and load a related view.

	In the “urlpatters” list we need to add the following code:
path('book-details/<str:bookId>', views.bpbAppBookDetailsIndex, name='BPB-Book-Shop-Book-Details-Page'),

This code has been already explained in the previous section, and we are just adding our URL path, which is “book-details/<str:bookId>” in which the “bookId” is the additional parameter that is actually a dynamic MongoDB Document ID related to the particular book and is of string type.

We have also specified the related view function (method) “bpbAppBookDetailsIndex”, which we have to create next in our “view.py” file in our app.

The following is the updated code for “urls.py” for our app, as shown in figure 11.52:

from django.urls import path

from . import views

urlpatterns = [

path('', views.bpbAppIndex, name='BPB-Book-Shop-Home-Page'),

path('book-details/<str:bookId>', views.bpbAppBookDetailsIndex, name='BPB-Book-Shop-Book-Details-Page'),

]

[image:]

Figure 11.52: Updated “urls.py” file in our app

Before we create a template view file for this path or URL, Let us do some adjustments to our existing “view.py” and add the new method related to the new URL accordingly.

	The first thing is to shift all the PyMongo related code from the existing home page view “bpbAppIndex” to the use between all the views now. As we are adding one new view related to the “More Details” page, the following code has to be shifted in the global scope.
Connect to MongoDB Database from the Connection String Defined in Django Project "settings.py"

PyMongoclient = pymongo.MongoClient(settings.DB_CONNECTION_STRING)

Define the Database

dbname = PyMongoclient['BPBCatalogDB']

Use Collection

collection_name = dbname["BPBCatalogCollection"]

Create your views here.

	The next update is to add the following line at the top of the file where we are importing a few modules and libraries.
from bson.objectid import ObjectId # For MongoDB Document Object reference in the PyMongo Functions

This will be required during the PyMongo find function call, where we would be now referring to the MongoDB document with respect to MongoDB document object ID.

	Next, we will be defining our new view function, which will be as follows:
def bpbAppBookDetailsIndex(request, bookId):

Fetch Specific Document from Collection with respect to Document or Book ID

BPBBookFromId = collection_name.find_one({"_id" : ObjectId(bookId)})

return render(request, 'BPBOnlineBookShopMongoDBApp/bpbAppBookDetailsIndex.html', {'BPBBookFromId' : BPBBookFromId})

This function will take a “bookId” as a second parameter from the URL and pass it to the function. Our function will then fetch the relevant document from the database with respect to this ID, and the whole document object is then passed to the template view for further display or process.

In our case, the template for this view would be “BPBOnlineBookShopMongoDBApp/bpbAppBookDetailsIndex.htm”, which we have to create next.

The following is the updated code for the “views.py” file for our app (as shown in figure 11.53):

from django.shortcuts import render

import pymongo # Import PyMongo

from django.conf import settings # Import the Settings (We will use DB_CONNECTION_STRING from the settings file)

from bson.objectid import ObjectId # For MongoDB Document Object reference in the PyMongo Functions

Connect to MongoDB Database from the Connection String Defined in Django Project "settings.py"

PyMongoclient = pymongo.MongoClient(settings.DB_CONNECTION_STRING)

Define the Database

dbname = PyMongoclient['BPBCatalogDB']

Use Collection

collection_name = dbname["BPBCatalogCollection"]

Create your views here.

def bpbAppIndex(request):

Fetch All the Documents from Collection

BPBBooks = collection_name.find({})

Pass the Data Object to the Template Output by passing as a parameter using "Key" : "Value" Style

return render(request, 'BPBOnlineBookShopMongoDBApp/bpbAppIndex.html', {'BPBBooks' : BPBBooks})

def bpbAppBookDetailsIndex(request, bookId):

Fetch Specific Document from Collection with respect to Document or Book ID

BPBBookFromId = collection_name.find_one({"_id" : ObjectId(bookId)})

return render(request, 'BPBOnlineBookShopMongoDBApp/bpbAppBookDetailsIndex.html', {'BPBBookFromId' : BPBBookFromId})

[image:]

Figure 11.53: Updated “views.py” file in our app

After we are done with the above parts, now we have to create the HTML template file to render this new view.

	For this, we have to create a new HTML template file under our existing app templates folder, which would be: “BPBOnlineBookShopMongoDBApp/bpbAppBookDetailsIndex.html” in our case:
The following is the code for the newly created template file (as shown in figure 11.54):

{% load static %}

<!DOCTYPE html>

<html lang="en">

<head>

<title>Book Details Page - BPB Online Bookshop</title>

<link rel="stylesheet" href="{% static 'BPBOnlineBookShopMongoDBApp/style.css' %}">

</head>

<body>

<div class="main-container">

<div class="header-container">

<div class="logo"><img src="{% static 'BPBOnlineBookShopMongoDBApp/bpb-logo.png' %}"

alt="BPB Publications Logo" /></div>

<h1>BPB Online Bookshop</h1>

<hr />

</div>

<div class="body-container">

{{BPBBookFromId}}

</div>

</div>

</body>

</html>

[image:]

Figure 11.54: New template file “bpbAppBookDetailsIndex.html” File in our App for More Details Page

Before we do some fancy stuff with this template file using some new CSS. Let us run it to check if everything is working fine with this page till now.

To do this, we need to run our Django app if it is not running and then first run the app server and then open our frontend application in the browser; these steps have been explained many times in previous sections. Please follow them if you have any confusion in this.

Make also sure that your WAMP server is running and you are able to access the backend application, which is required to serve the images to the frontend application. If it is not running, please start your WAMP server.

After your app has been started and you have opened your frontend application in the browser, you will see the home page of our frontend application.

	Now to check if everything is working for the new “More Details” page, you need to now click on any of the book’s “More Details” button (as shown in figure 11.55), and this will load the new page that we have created.

[image:]

Figure 11.55: Our app’s—home page – clicking More Details button

Once your new page is loaded, you can see the new page content as similar to shown in the following screenshot (figure 11.56):

[image:]

Figure 11.56: Our frontend app—more details page

As we can now see that we have all the data present to be displayed in our frontend “More Details” page, we can now do some modifications in the HTML and CSS to display this data beautifully.

Step 12—Designing the More Details page

So let us have a very simple layout for the More Details page, as shown in figure 11.57:

[image:]

Figure 11.57: More Details page template layout

	We now follow the above layout for More Details page, and the following is the updated HTML for the “bpbAppBookDetailsIndex.html” file (as shown in figure 11.58):
{% load static %}

<!DOCTYPE html>

<html lang="en">

<head>

<title>Book Details Page - BPB Online Bookshop</title>

<link rel="stylesheet" href="{% static 'BPBOnlineBookShopMongoDBApp/style.css' %}">

</head>

<body>

<div class="main-container">

<div class="header-container">

<div class="logo"><img src="{% static 'BPBOnlineBookShopMongoDBApp/bpb-logo.png' %}"

alt="BPB Publications Logo" /></div>

<h1>BPB Online Bookshop</h1>

<hr />

</div>

<div class="book-details-body-container">

<div class="book-details-book-image-container"><img class="book-details-book-image"

src="http://localhost/bpb-catalog-app-backend/images/{{BPBBookFromId.coverimage}}" /></div>

<div class="book-details-book-title">{{BPBBookFromId.title}}</div>

<div class="book-details-book-other-details">Description :

{{BPBBookFromId.description}}
Price : {{BPBBookFromId.price}}</div>

<div class="more-details-book-thumbs-up-down-container">Thumbs Up Count :

{{BPBBookFromId.thumbsUPCounter}} Thumbs Down Count : {{BPBBookFromId.thumbsDOWNCounter}}</div>

</div>

</div>

</body>

</html>

[image:]

Figure 11.58: More Details page—updated HTML view file—bpbAppBookDetailsIndex.html

	We have also updated the CSS according to this new layout. So following is the updated code at the end of our existing CSS file, which is located under the “static” folder of our app (as shown in figure 11.59):
/* More Details Page CSS Starts Here */

.book-details-body-container {

text-align: center;

}

.book-details-book-image {

display: inline-block;

width: 200px;

height: 200px;

margin-bottom: 20px;

}

.book-details-book-title {

font-family: Georgia, 'Times New Roman', Times, serif;

font-size: 20px;

font-weight: bold;

margin-bottom: 20px;

}

.book-details-book-other-details {

font-family: Georgia, 'Times New Roman', Times, serif;

font-size: 12px;

max-width: 1000px;

margin-left: auto;

margin-right: auto;

text-align: left;

margin-bottom: 20px;

}

[image:]

Figure 11.59: Updated CSS file—style.css

Let us run it to check if everything is working fine with this page till now.

To do this, we need to run our Django app. If it is not running and then first run the app server and then open our frontend application in the browser, these steps have been explained many times in previous sections. Please follow them if you have any confusion in this.

Make also sure that your WAMP server is running and you are able to access the backend application, which is required to serve the images to the frontend application. If it is not running, please start your WAMP server.

	After your app has been started and you have opened your frontend application in the browser, you will see the home page of our frontend application. Please navigate to the More Details page by clicking the “More Details” button of any of the listed books. Once you do this, you will be able to see the More Details page with the new layout, as shown in figure 11.60:

[image:]

Figure 11.60: More Details page—updated changes are shown in the browser

We need to do a few of the changes in this layout to make it perfect:

	If there is no count for “Thumbs Up” or “Thumbs Down”, then show “0” instead of blank.

	Use some Icons to show the “Thumbs Up” or “Thumbs Down”

In the last step of this application, we will make our “Thumbs Up” and “Thumbs Down” looks nicer.

Step 13—Making “Thumbs Up” and “Thumbs Down” looks nicer

There are now two things that we need to do in this step that we mentioned in the last step.

	To make our “Thumbs Up” and “Thumbs Down” looks nicer. In this step, we will use Google Font “Material Icons”. For more information, you can refer to this URL: https://fonts.google.com/icons

	To add Google font “Material Icons” we just need to include the following line inside the <head> tag of our Template HTML file:
<link rel="stylesheet" href="https://fonts.googleapis.com/icon?family=Material+Icons">

Adding this line will call the external CSS file, which will help us to use the CSS classes related to Google icons to be used in our template.

	Now, we need to do some more modifications in the HTML file where we are showing the “Thumbs Up” and “Thumbs Down” text in a container <div> with class “more-details-book-thumbs-up-down-container” inside this <div> we will modify the existing code and use Google icons. The following is the updated code for the same:
<div class="more-details-book-thumbs-up-down-container">

<div class="more-details-book-thumbs-up"><i class="material-icons">thumb_up</i>

{{BPBBookFromId.thumbsUPCounter}}</div>

<div class="more-details-book-thumbs-down"><i class="material-icons">thumb_down</i>

{{BPBBookFromId.thumbsDOWNCounter}}</div>

</div>

	As we have added the new <div>, we have to add a few CSS to make it perfect, and the following is the updated CSS for this part:
/* Thumbs Up and Thumbs Down */

.more-details-book-thumbs-up-down-container {

display: flex;

flex-direction: row;

align-content: center;

justify-content: center;

flex-wrap: nowrap;

}

.more-details-book-thumbs-up, .more-details-book-thumbs-down {

margin-right: 20px;

margin-left: 20px;

font-size: 30px;

}

	As you will refresh your browser screen now, you will be able to see that instead of “Thumbs Up” and “Thumbs Down” text. Now, the Google Icons are appearing, which is making it look very nice, as shown in figure 11.61:

[image:]

Figure 11.61: More Details page—updated screen showing icons

The only thing which is not looking nice is the “Thumbs Down” icon that is not showing anything; as for this book, there is no entry of thumbs down in our database, so there would be many cases where either the “Thumbs Up” or “Thumbs Down” will have no values in the MongoDB document.

Like there is no “Thumbs Up” value for a “Dummy Book” in our MongoDB collection, as shown in figure 11.62:

[image:]

Figure 11.62: More Details page-icons showing blank counter values

To tackle this scenario, we need to work on our last part, which is as follows:

If there is no count for “Thumbs Up” or “Thumbs Down” then show “0” instead of blank.

For this, we need to add a simple “if” condition to our template HTML file in the <div>, which consists of these icons.

Let us do some modifications, and we will be using Django template helpers to perform this.

	We will just use the simple if condition to check if the value of “Thumbs Up” or “Thumbs Down” exists in the collection then only display the values else display the 0 value for this and following is the updated template HTML code for the same:
<div class="more-details-book-thumbs-up-down-container">

<div class="more-details-book-thumbs-up"><i class="material-icons">thumb_up</i>

{٪ if BPBBookFromId.thumbsUPCounter %} {{BPBBookFromId.thumbsUPCounter}} {% else %} 0 {% endif %}

</div>

<div class="more-details-book-thumbs-down"><i class="material-icons">thumb_down</i>

{٪ if BPBBookFromId.thumbsDOWNCounter %} {{BPBBookFromId.thumbsDOWNCounter}} {% else %} 0 {% endif %}

</div>

</div>

	If you now refresh the browser and see the “Book Details” page, then it will show value as “0” whenever there is no count for the “Thumbs Up” or “Thumbs Down” in the MongoDB collection, as shown in figure 11.63:

[image:]

Figure 11.63: More Details page—icons showing “0” values instead of blank

The same will be now shown for the “Thumbs Up” in the “Dummy Book” as it has no value for “Thumbs Up”, as shown in figure 11.64:

[image:]

Figure 11.64: More Details page—icons showing “0” values instead of blank

Following is the updated final code for template HTML and CSS.

HTML—for file “bpbAppBookDetailsIndex.html”

{% load static %}

<!DOCTYPE html>

<html lang="en">

<head>

<title>Book Details Page - BPB Online Bookshop</title>

<link rel="stylesheet" href="{% static 'BPBOnlineBookShopMongoDBApp/style.css' %}">

<link rel="stylesheet" href="https://fonts.googleapis.com/icon?family=Material+Icons">

</head>

<body>

<div class="main-container">

<div class="header-container">

<div class="logo"><img src="{% static 'BPBOnlineBookShopMongoDBApp/bpb-logo.png' %}"

alt="BPB Publications Logo" /></div>

<h1>BPB Online Bookshop</h1>

<hr />

</div>

<div class="book-details-body-container">

<div class="book-details-book-image-container"><img class="book-details-book-image"

src="http://localhost/bpb-catalog-app-backend/images/{{BPBBookFromId.coverimage}}" /></div>

<div class="book-details-book-title">{{BPBBookFromId.title}}</div>

<div class="book-details-book-other-details">Description :

{{BPBBookFromId.description}}
Price : {{BPBBookFromId.price}}</div>

<div class="more-details-book-thumbs-up-down-container">

<div class="more-details-book-thumbs-up"><i class="material-icons">thumb_up</i>

{٪ if BPBBookFromId.thumbsUPCounter %} {{BPBBookFromId.thumbsUPCounter}} {% else %} 0 {% endif %}

</div>

<div class="more-details-book-thumbs-down"><i class="material-icons">thumb_down</i>

{٪ if BPBBookFromId.thumbsDOWNCounter %} {{BPBBookFromId.thumbsDOWNCounter}} {% else %} 0 {% endif

٪}

</div>

</div>

</div>

</div>

</body>

</html>

CSS—for file “style.css”

.main-container {

margin: 0 auto;

max-width: 1200px;

}

.header-container {

background: #ffffff;

height: 200px;

}

.body-container {

width: 1200px;

background: #fafafa;

margin: 20px;

}

.items {

display: flex;

flex-wrap: wrap;

justify-content: center;

}

.item {

width: 300px;

height: 250px;

border: 1px;

border-style: solid;

border-color: blueviolet;

margin: 15px;

text-align: center;

padding: 10px;

}

.book-image {

display: inline-block;

width: 150px;

height: 150px;

}

.book-title {

margin-top: 5px;

font-family: Georgia, 'Times New Roman', Times, serif;

font-weight: bold;

font-size: 14px;

}

.more-details-button {

margin-top: 20px;

}

.more-details-button>a {

background-color: darkorchid;

color: white;

padding: 10px 15px;

text-decoration: none;

}

.more-details-button>a:hover {

background-color: blueviolet;

color: white;

padding: 10px 15px;

text-decoration: none;

}

/* More Details Page CSS Starts Here */

.book-details-body-container {

text-align: center;

}

.book-details-book-image {

display: inline-block;

width: 200px;

height: 200px;

margin-bottom: 20px;

}

.book-details-book-title {

font-family: Georgia, 'Times New Roman', Times, serif;

font-size: 20px;

font-weight: bold;

margin-bottom: 20px;

}

.book-details-book-other-details {

font-family: Georgia, 'Times New Roman', Times, serif;

font-size: 12px;

max-width: 1000px;

margin-left: auto;

margin-right: auto;

text-align: left;

margin-bottom: 20px;

}

/* Thumbs Up and Thumbs Down */

.more-details-book-thumbs-up-down-container {

display: flex;

flex-direction: row;

align-content: center;

justify-content: center;

flex-wrap: nowrap;

}

.more-details-book-thumbs-up, .more-details-book-thumbs-down {

margin-right: 20px;

margin-left: 20px;

font-size: 30px;

}

Conclusion

In this chapter, we have learned the practical step-by-step development of a frontend application developed using Python and MongoDB. We started this chapter with an overview of our frontend development using Python, Django, PyMongo, and MongoDB and basic requirements. Later in this chapter have learned how we can build the various functionalities of the frontend application like displaying the book catalog list and displaying the book cover images, total number of “Thumbs Up” and “Thumbs Down” for that particular book using the Python and its Django framework with the help of Python’s official MongoDB driver. In this chapter, all the sections have been explained in a step-by-step practical manner so that by the end of this chapter, you feel more confident in dynamic python application development with MongoDB.

Questions

	What is a frontend application?

	What is the Django framework?

	How you can install Django?

	What is PyMongo?

Index

A

Application Programming Interfaces (APIs)

about 100, 179

developing 191

index.js updated 192-207

JSON body params, using in Postman 199-201

Representational State Transfer (REST) 179

Simple Object Access Protocol (SOAP) 179

B

backend 121

backend catalog dashboard 148

index.php file 149

styles.css file 149-151

book functionality

add-new-book.php file 152

add-new-book.php file (updated) 154

add-new-book.php file (updated code) 157

add-new-book.php file (updated PHP code) 161

creating 152

scripts.js file (updated code) 156, 160

styles.css file (appended code) 154, 156

styles.css file (appended CSS code) 167, 168

C

catalog functionality

listing 169

updated index.php file 169

updated styles.css file (appended code) 173

client-side concept 2, 3

client-side DB concept 3, 4

Cross-Origin Request Sharing (CORS)

about 220

book list section, updating 230-235

book pictures, adding in book list section 227

database functionality, adding to Thumbs Down button 241-253

database functionality, adding to Thumbs Up button 241-253

enabling, in get method 224-227

FlatList component, using 230-235

issue, resolving 220-222

module, adding with require() function 224

Thumbs Down button, adding 235-241

Thumbs Up button, adding 235-241

CRUD application

backend features 128

developing 141, 142

developing, with MongoDB 128

developing, with PHP 128

footer.php file 144

header.php file 144, 145

HTML structure 143

index.php file 146, 147

overview 129, 130

pre-development steps 130-140

requisites 129

scripts.js file 148

CSS 129

D

data addition

with MongoDB Compass 14-22

delete functionality

about 173

delete book functionality (delete-book.php) 174

delete book functionality (index.php) 175

delete code (index.php) 174

Document Object Model (DOM) 62, 151

E

edit functionality 176

Express.js

about 185

index.js file 187

pre-development steps 185-191

update package.json file 187, 188

F

frontend 119

front-end application

CSS file, updating 294

developing, with MongoDB 256

developing, with Python 256

HTML file, updating 291

Hybrid mobile apps 120

more details functionality, adding 295, 296

more details page, creating 301-312

Native mobile apps 119

Thumbs Down button 313-317

Thumbs Up button 313-317

underscore attribute issue, fixing for Django with Django template tags 296-301

full-stack 121

full-stack developer 122-124

full-stack development

about 118, 122

backend 121

backend technologies and stack 121

frontend 118

frontend technologies and stack 119

full-stack technologies 122

G

Graphical User Interface (GUI) 10

H

HTML 128

Hybrid mobile apps

about 120

programming languages and frameworks 120

I

Integrated Development Environment (IDE) 38, 55, 93

J

JavaScript 44, 129

M

MEAN stack 122

MERN stack 122

Meteor.js 122

MEVN stack 122

Microsoft Visual Studio Code

reference link 38

mobile app

API Fetch Part 214

book list section 216, 217

connecting to, MongoDb via API 211, 212

developing, with MongoDB 210

developing, with React Native 210

header section 216

requisites 211

return() function 217-220

style sheets 214

MongoDB

about 3

connecting with 54

Node.js, using 44, 45

PHP, using 24

programming with 37, 100, 101, 113

Python, using 104

used, for developing CRUD application 128

used, for developing frontend application 256

used, for developing mobile app 210

using, in RESTful Web services 178

MongoDB Compass

about 10

data addition 14-22

launching 10-12

used, for connecting to MongoDB server 10-12

used, for MongoDB database collection 12, 13

MongoDB database

collection, with MongoDB Compass 12, 13

creating 12, 13

MongoDB documents

fetching, with Node.js 56-58

fetching, with PHP 40

fetching, with Python 114, 115

MongoDB driver for Node.js

installing, with NPM 51-54

MongoDB drivers

about 4-6

for programming languages 7

reference link 6

MongoDB PHP library

reference link 176

MongoDB server

connecting to, with MongoDB Compass 10-12

connecting to, with Node.js 55, 56

connecting to, with PHP 39

connecting to, with Python 113, 114

starting, with Windows service manager 37, 38

N

Native mobile apps 119

Node.js

connecting with 54

installing, on Windows machine 46-49

installing, on Windows operating system 44

post-installation, on Windows machine 50, 51

pre-development steps 181-184

URL 44

used, for connecting to MongoDB server 55, 56

used, for fetching MongoDB documents 56-58

using, in RESTful Web services 178

using, with MongoDB 44, 45

verifying, on Windows machine 50, 51

Node Package Manager (NPM)

about 51, 63

used, for installing MongoDB driver for Node.js 51-54

P

PHP

about 128

programming with 37

used, for connecting to MongoDB server 39

used, for developing CRUD application 128

used, for fetching MongoDB documents 40

using, with MongoDB 24

PHP Extension Community Library (PECL)

URL 32

Python

downloading 104, 105

installing, on Windows machine 106-109

installing, on Windows operating system 104

MongoDB driver for Python, installing with Python Package Index (PyPI) 111, 112

programming with 113

used, for connecting MongoDB server 113, 114

used, for developing frontend application 256

used, for fetching MongoDB documents 114, 115

using, with MongoDB 104

verifying, on Windows machine 109, 110

Python frontend application

features 257

Python Package Index (PyPI) 111

Python’s Django framework

installing, on Windows operating system 257-291

R

React Native

about 62

logo image, adding in mobile app 98, 99

programming with 93, 100, 101

text, modifying in mobile app 94-97

used, for developing mobile app 210

React Native Bundler

reference link 80

React Native, pre-development steps

about 63

Android SDK, installing 68-70

Android Studio, installing 64-68

environment variables, setting up 71-73

Expo CLI, installing with NPM 74-77

mobile App, creating with Expo 77, 78

mobile App, creating with Expo CLI 77, 78

mobile App, opening in Android Emulator 88-92

mobile App, opening with Expo 82-88

mobile App, running with Expo 79-82

mobile App, running with Expo CLI 79-82

mobile App, viewing in Android Emulator 88-92

mobile App, viewing with Expo 82-88

Node.js, verifying 63, 64

NPM, verifying 63, 64

project folder, creating in system 64

REST-based APIs

body 180

headers 180

method 180

root endpoint and paths 180

REST DELETE method

about 208

reference link 208

RESTful APIs 179-181

RESTful Web services

features 178

MongoDB, using 178

Node.js, using 178

requisites 179

Ruby on Rails (RoR) 3

S

server-side concept 2, 3

server-side DB concept 3, 4

Software Development Kit (SDK) 71

U

Universal Windows Platform (UWP) 62

update functionality 176

User Experience (UX) 151

W

WAMP server

installing, on Windows operating system 24-36

URL 25

Windows machine

used, for installing Node.js 46-49

used, for installing Python 106-109

used, for Node.js post-installation 50, 51

used, for verifying Node.js 50, 51

used, for verifying Python 109, 110

Windows operating system

used, for installing Python 104

used, for installing Python’s Django framework 257-291

used, for installing WAMP server 24-35, 36

Windows service manager

used, for starting MongoDB server 37, 38

OEBPS/images/Figure-11.56.jpg
Ll L)
 [O s o] O cwera:

BPB Online Bookshop °

500160, i o s, et s s, et PSS byt 21, st 1.
e G e B, im0t e ey o i SO
e e R o ke e oS B e o e Moo e e o e
o ettt £ e e e o U s g, Ao i e e Moo
e e e ks e e T o S g e o S o g
O e e . g oo NP, 0 . B . bt e oo

i o S

OEBPS/images/Figure-3.3.jpg
C & wampsenercom/en

‘u\ WampServer

Apache, PHP, MySOL sous Windows START TRAINNG FORU

DOWNLOADS

WampServer s availabe for free (under GPML license) in two distinct versions : 3
ot compatible with Windows XP. nefther with SP3, nor Windows Server 2003, Ok
— e

WAMPSERVER

Vs 32064 b4 Aotn 4.1 FH5640,131.7 40 Wrceaner 42022 - A
N6 104 1110320 ProdAdmn 492 Adneer 415 FroSysiio 33 Mork31041010320 - rosnacn
Enceton: PP 10 011 3225 Lo 24100 Enceton: 10311337275

OEBPS/images/Figure-8.33.jpg
[e ——— = ena

_.

AT New Book

OEBPS/images/Figure-11.55.jpg
bpb

BPB Online Bookshop

OEBPS/images/Figure-3.24.jpg
@ locahostimongod-examplesrc X |

€ > C| @ localhosymongodb-examples/fetching-documents.php | @

‘We have Sucessfully Connected to MongoDB Server using PHP

(60fd3fcaaf407a0d6383cfe3 > MongoDB Complete Guide [By : Manu Sharma]
(60f4854af407a0d638 3cfed ~> Redis® Deep Dive [By : Suyog Dilip Kale, Chinmay Kulkari]
(601d49750f4070d6383cfe6 ~> [TIL® 2011 The Story Continues [By : Dr. Pratul Sharma]
(60fd49cdaf40720d6383cfe7 > Decoding JavaScript [By : Rushabh Mulraj Shah]

60fd4a1 2407200638 3cfes ~> Python In - Depth [By : Ahidjo Ayeva, Kamon Ayeva, Aiman Saed]
(60fd4a39af4072006383cfe9 > Designing User Interfaces [By : Dario Calonaci]
(60fd4ab8af407a0d6383cfea ~> Advanced Web Development with React [By : Mehul Mohan]

OEBPS/images/Figure-8.32.jpg
@ 09 g s (5
D e ——

Backend Catalog of a Publicati

Add N Bank

i @

e ek mpom O
e el |

OEBPS/images/Figure-11.58.jpg
R0 NG W S W T - Moy SN SR P i e A O

OEBPS/images/Figure-3.23.jpg
@ Iocahost/mongodb-examples/ X | ok

¢ > €| © locathost/mongodb-examples/mongodb-connection php o

We have Sucessfully Connected to MongaDB Server using PHP %

OEBPS/images/Figure-8.31.jpg
@ 698 - backend Cotaog Appicat. X |

¢ 3 C[[© lcabontoptcataog-spp-backenddnen sk | @

Backend Catalog of a Publication House

‘Add New Book
Basic Info Additional Tnfo
Book Tile: Book Price
Preasa Entor Book Tt Ploaso Ente Book Price
Book Autor Book Cover Image (Optional:
[Choosa fla | No f chosan
Proaso Entar Book Autnor Name °

Book ISBN Number:
Ploase Entar Book ISBN Nurrber
Book Publicaion Year:

Plaasa EntarBook Publicaton Yeer

OEBPS/images/Figure-11.57.jpg
e,

OEBPS/images/Figure-3.22.jpg
Y O oaineL X 9 S e e onyA s e e sl -\ i LO0%)

ySSo————
(ISP ——

A

OEBPS/images/Figure-8.30.jpg
e

€ 3 O @ bocamosipb catwog ap backend/addnenbock o @)

8 - Sackend Cosog doplcr X | o

localhost says

Backend Catal pese s o s fes corecy, ome s are e ok o

Add New Book
ook Tt

Plsso o Bk T
Book Authr:

Ploseo Eno BookAurr Narra
Book ISBN Nusber

Plsse Ene BookISBN Numser
Book Publcation ear

Plsso Erin Bk Pubicaion Yo

OEBPS/images/Figure-11.6.jpg
B C\Windows\System32\cmd.exe

bpb-catalog-app-frontend>django-admin startproject BPEOnlineBookshop ()

\bpb-catalog-app-frontend>.,

OEBPS/images/Figure-3.21.jpg
B RE-

DM ore o

mongodb-examples

view
€ o v [sC > Work(D) > wompst > i > mongods-eramples
Name Date modiied
Quickscces
Wosior #

& Downlosds #

5 Pictures

2 Masic

»

0

OEBPS/images/Figure-8.3.jpg
x *

Q

COMPOSER
ADependency Manager for PHP

Latest 248 changeiog)

Geing Started Download

Documentation Browss Packages

OEBPS/images/Figure-11.59.jpg
VAT S Sevions: Ve O ey il o SNt belimalog ol - Yol el Vol

pbkOmsbie it W
oo 0500 s | e i B
pronarieey

sy) T—

b | s

OEBPS/images/Figure-3.20.jpg
gy
e A vou i

esmEasEn|

OEBPS/images/Figure-8.29.jpg
@ 9% - Backond Catalog Aoplicas X |

« > [[O loalnosybpb catlog app backend/add new-sookoto | @

Backend Catalog of a Publication House

Add New Book
Book Tile:
Ploasa Entor Book Tt
Book Autbor:
Ploaso Entor Book Author Namo
Book ISBN Nuber: °
Plaasa Entr Book ISEN Number
Book Publicaion Yer:

Ploaso Entor Book Publication Yoar

OEBPS/images/Figure-3.2.jpg
‘w\ WampServer

‘Apache, PHP, MySQL sous Windows START TRANNG ~ FORUM

DOWNLOADS

WampServer i avalabl for free (under GPML Iense) in two distinctversions - 32 and 64 b
ot compatiie wih Windows XF, it with S3, nor Windows Server 2003, Oder WampS
avalabie on

WAMPSERVER

OEBPS/images/Figure-8.28.jpg
@ 598 - Backend Cataog Applicati X |

¢ 5 ¢ [[© wcnosutpt-caiog app bockentaa e vookpre | @

Backend Catalog of a Publication House

‘Add New Book

Bonk Tt
s e Bk Tl
Bonk At

Pt i S Ftbor
Book ISBN Number: °
Peaso Ei Bk 55NN
Book Pulcstion Yeu
Peas i Bok P

e

OEBPS/images/Figure-11.60.jpg
“erna

BPB Online Bookshop

OEBPS/images/Figure-3.19.jpg
Apps

Services.
* Component Services > App.
Search the web
B services - see web resits > o open (5)

- [
Settings 1) 3 Runas adminstrator

T openfileocation

Pintostat

5 pinto wskbar

= —— " x———08———|}

OEBPS/images/Figure-8.27.jpg
Ll ~ 11

2.0 s
= i amon B e

shm s i

LN

OEBPS/images/Figure-8.26.jpg
Application Dashboard

Backend Catalog of a Publication House

OEBPS/images/Figure-3.5.jpg
Warpsarer s oo SN
ot comparti i o KO

———

& DOWNLQADS

WAMPSERVER

OEBPS/images/Figure-3.4.jpg
Apache, PHP, MySQL sous Windows ~ START TRAINING FORUM

@ WampServer

DOWNLOADS

WampServer s avallabe fo fee (under GPML license) i two distinc versions - 32.
ot compatidle with Windows XP, neiher with SP3, nor Windows Server 2003. Ode
5 v

WAMPSERVER

OEBPS/images/Figure-8.34.jpg
BPBCatalogDB.BPBCatalogCollection| @ sosuwers 1

BPBCasiecds
BPBCaisqColecion

> BPEONnsBeck08

OEBPS/images/Figure-3.15.jpg
Wade In France by Otomatic
@ Localhost

10.0

£5 phpMyAdmin
£5 Adminer 477
£ Your VirtualHosts
B
%

www directory
[View Statist| Avece

PHP 7.3.21
£ Version

) PHP settings
8/ PHP extensions

Default DBMS: mysal
£ MysaL 5731

E5 MariaDB 10413

@ Help -> MariaD8 - MySQL
323 “6abit. Services
Start All Services

Stop All Services
Restart All Services

ovided by: pair Networks

WAMPSERVER 3.2.3

) ENG os12Pm]

OEBPS/images/Figure-8.23.jpg

OEBPS/images/Figure-3.14.jpg
SLES » |
= e

e e B e Wk et s g s 315t | @

ot = -
pro.

o pameein W

o 04062000 0223 M Apslcanon eaension e

e pobotrirastir

Moo Gmmann am— 48

Loty e S

- e e

Domene e i S0

o 04-06-2020 0223 M Apslcanon exension £l

B i 040620200223 W Apslcation exersion e

jeton kel e

[vt oo

v U e o0

e G e 70

it

- U metin 50w

4 200D Apsteneevion e

OEBPS/images/Figure-8.22.jpg
3P B Safection: View G0 Wim:, oo elp i oo St e S ek

orons P a——Y
X gt cacionghy| 1 69

o st 1@ L Comsous hetosar sbic 1 Incote ongcs P ey Flles i Sh Profect
> i 5 Snontoocrtentcomection e HonONCI e mongod:/16KaTRORE 01T
s & Vcomacting to vangeot Surver

1) coneraioc
g commctinhy

OEBPS/images/Figure-3.13.jpg
@8 Command Prompt

\wamp64\bin\php\php7.3.21>php -i|findstr "Thread"
read Safety => enabled o
read AP => Windows Threads

\wamp64\bin\php\php7.3.21>,

OEBPS/images/Figure-8.21.jpg
Bi 2B = | bpbcaslogapp-becnd

5 o 2 TR WokD) 5 bt 5 w5 brbcog pcond > | @

v ki
Woan ¢
& Domioots #
P —
> @ouons

prT—

e et o =
B s el
s oo AP T
By 19000t 2P rie it
T e m Feiadr
) composeon wmaioom sOuTE 1a
) composalod Hmamionm ockr o

OEBPS/images/Figure-3.12.jpg
‘ot Daabae : mongoct

Summary {sonoss s for

Faiainers | ey ol (e0d) (4]

CLatest)
(o Soc)

(Quanaein) [
[rvr) [Ersm—

[(3 31 0 T

OEBPS/images/Figure-8.20.jpg
&Y Command Prompt
Microsoft Windows [Version 10.6.19042.1257]
(c) Microsoft Corporation. ALL rights reserved.

\Users\manus>d:

:\>ed wanp\wa\bpb-catalog-app-backend @)

\wamp64\ ww\bpb~catalog-app-backend>composer. require mongodb/mongodb @)
Using version ~1.9 for mongods/mongodd
./composer. json has been created
Running composer update mongodb/mongodd
Loading composer repositories with package information
Updating dependencies
Lock File operations: 3 installs, @ updates, @ removals
- Locking jean3s/pretty-package-versions (2.6.4)
- Locking mongodb/mongodb (1.9.6)
- Locking symfony/polyfill-php8e (v1.23.1)
riting lock File o
Installing dependencies from lock file (including require-dev)
Package operations: 3 installs, 0 updates, © removals
- Installing symfony/polyfill-phpse (v1.23.1): Extracting archive
- Installing jean8s/pretty-package-versions (2.0.4): Extracting archive
- Installing mongodb/mongodb (1.9.9): Extracting archive
Generating autoload files
1 package you are using is looking for funding.
Use the "composer fund comand to find out more!

\wamp64\wiwi\bpb- catalog-app-backend>

OEBPS/images/Figure-3.11.jpg
@ e o % [

o

© s, |@

@ Wampserver

Ioetn 2 - SRS - Hae0 - 9587

£

‘Server Configuration
fovcnirins 245, - Docamatsion
Sorversfwares 245 W 91321 Pt et e A 0

Loned ot + syt .,
- F e
=4 - =
B >y b=}
e © ot b=t
b e e

S0 Vet 731 et o M 0 -k DS oot S

s [@
Segon

e
s

OEBPS/images/Figure-8.2.jpg
@ 09 g s (5
D e ——

Backend Catalog of a Publicati

Add N Bank

i @

e ek mpom O
e el |

OEBPS/images/Figure-3.10.jpg
& = Locahost
£ phpMyAdmin
E Adminer
Your VirtualHosts

www directory

Apache 2446

il PHP 7321
PhpSysinf

MysQL 57.31
MariaDB 10413
Help -> MariaDB - MySQL

Start All Services
Stop All Services
Restart All Services

OEBPS/images/Figure-8.19.jpg
Capped Collecion &

o

OEBPS/images/Figure-3.1.jpg
Apache, PHE, MySOL sous Windows START

o
w WampServer Ll

DOWNLOADS

WiampServer s avadabl o e (under GPMLicense)in two dstctversions 32 and 4 bis. Wammpservr 25
ot compatble wih Windows XP, nfhe wih S5, o Windows Server 2003 Okdr WampServer versions are

avadabi oo

WAMPSERVER

OEBPS/images/Figure-8.18.jpg
Detabase Hame =

BP8OnineBooksDB

Standaons
aden
MongeDD 442 Commity

Storage i

n20e

0@

20

Collectons

OEBPS/images/Figure-8.17.jpg
¥ New Comnection

* Favorites

D Recents

New Connection s
Paste comecton sting

o

OEBPS/images/Figure-3.18.jpg
@renn-pei = B °
€ 5 c[Orammmme |@

mysqil

OEBPS/images/Figure-3.17.jpg
@ Localhost
£ phpMyAdmin 502

2 Adminer 477

Your VirtualHosts ’
[View Statist| & Al

7 Apache 2446 »

[View Documen

PHP 7321

MysQL 5.7.31
MariaDB 10413
Help -> MariaDB - MySQL

Start Al Services
Stop All Services

OEBPS/images/Figure-8.25.jpg
@ 598 - sackend Catalog Agplan X |

€ 3 C O kcahostpb-catabog-app-backend/

Backend Catalog of a Publication House

Application Dashboard

5)| G _Cowols Sowces Newok Fecrmae Nemoy Applkaion Searty Ughove EatTCooke

BO wve -

OEBPS/images/Figure-3.16.jpg
| (8 phoind - Noteped
i et parst v b

sexcensionmencrant
Extensionfileinto
Sextension fts
extensiongds

tansioninep
Cextensionsinterbase

Extensioneiden

Cxtensionmbstring

tinslonocdt | Must be after sostring 33 4t depends on bt

Crtensionmyeait

extensionmoctc
extansionmapanssl

Sextensionepde, firesird
extensionpdopysql

Sextension.pds oct

Jextension-ocii iz Use vith Oracle O
fexcensionepao_sine

Jextensionepdo pesar
Extensionpeo.zaiike

e 136 Tnstant Client

it o0 Vi G UTES

PHP Version: PHP version 8.59.99 or cder
PHP Varsion: PHP 7.1.0 or newer
PEAR Package: PEAR 1.4.8 o never

e e L2 pcatas Hon

OEBPS/images/Figure-8.24.jpg
@ 898 - Backend Catalog Applicati X |

<« C | ® localhost/bpb-catalog-app-backend/ | @)

Backend Catalog of a Publication House

Application Dashboard

OEBPS/images/Figure-4.6.jpg
nede

Custom Satup. nede

Skt he vy you vt s o bt >
L E—T——
Node, fine.
o v Rm——
S e e ==
51 o ot
New SJ o 2 Add o PATH 12.x
o s e s 540 0 vour
o ks
oo ot et e
oo b e

(-]
R Dskoe B et || Gl
i —

OtherDownlosds | Changelog | APIDocs Other Downloads | Changelog | APIDocs

Or have a look at the Long Term Support (LTS) schedule.

OEBPS/images/Figure-4.5.jpg

OEBPS/images/Figure-9.19.jpg
© batecmpuerns « [=N
<+ o [Oramammp |@

e R e AR T S

R g

OEBPS/images/Figure-4.4.jpg
Nodej#is3 JvaSaitrntimebutton

New security releases now available for 16.x, 14, and 12.x
release lines

Download for Windows (x64)

OEBPS/images/Figure-9.18.jpg
& npm

:\bpb-catalog-app-api>npn start @)
bpb-catalog-app-api61.0.0 start D:\bpb-catalog-app-api
node index.js

PI App Listening to: http://localhost:3000
onnected Sucessfull to HongoDd Server. using Node.js Driver. for Hongods @)
onnected to HongoDB DB:BPECatalogB

OEBPS/images/Figure-4.3.jpg
Nodej#is3 JvaSaitrntimebutton scrpteni

New security releases now available for 16.x, 14, and 12.x
release lines

Download for Windows (x64)

OEBPS/images/Figure-9.17.jpg

OEBPS/images/Figure-4.2.jpg
Nodej#is3 JvaSaitrntimebutton & sascrpteng

New security releases now available for 16.x, 14, and 12.x
release lines

Download for Windows (x64)

s rrent

OEBPS/images/Figure-9.16.jpg
fred Expross s and MongoDB.
e |DwerTor Nodas Modeles hes
o sucosstuly mtaled by
sowm Bl siong wih ther
e opendoncien

OEBPS/images/Figure-4.19.jpg
p

OEBPS/images/Figure-9.15.jpg
€ e W) » g

pr—
@oone

e
-
Woctiop

= | bptr-catalog-epp-opi

Nme [e sue
3 et e [T,

(8 o o020 2sem ascprl ™
1 packogopen oo soure n
) pekagriceon oo sour s

OEBPS/images/Figure-4.18.jpg
B Command Prompt

o:\>cd mongodb-nodeds @)

“\mongodb-node3s>node mongodb-connection
Fonnected Sucessfully to MongoDB Server using Node.js Driver for MongoDB

0: \nongodo-nodes>..

OEBPS/images/Figure-9.14.jpg
B Command Prompt
Microsoft iindows [Version 10.9.1942.1237)
(c) Microsoft Corporation. ALl rights reserved.

\Users\manus>d:

erminate batch job (Y/N)? y °

P e e s et @
norf bpb-catalog-app-api@1.0.0 No repository field.

+ mongodb@4.1.2.
added 17 packages from 57 contributors, removed 50 packages and audited 17 packages in 4.459

3 packages are looking for funding
Tun “npm fund' for details (-]

found © vulnerabilities

O: \bpb-catalog-app-api>.

OEBPS/images/Figure-4.17.jpg
et s an cheeaC gt) g

Moncars. crmaeturs, { vsnie e 3, snesiontar, ctien) ¢

o

%

OEBPS/images/Figure-9.13.jpg
@ localhost:3000 x +

& > C| O locakhost3000 (@

Welcome to BPB Publications RESTful API e

OEBPS/images/Figure-4.16.jpg
B2 B v nodemodies

e« 2[Es merc s Wk 1 s mmedo rodes » roderaite s | @
[o

Pre
Tom T
@ oo B bt WA DO el
e po inbotst eyt
o e poastimptivind
Wowey = iainan e
1 Soomert: B odmh 14082021 0303 M. i i
L [puee oesmmme et
B Musc 3 mongods. MBI CIOIPM e foider
S 1 o o
W vdeos B punycode (sae 2 143 o303 PM. P foidr
g el NS o
ML = P VT
ao i
P fpeom— o ki
[ey oz m ki

OEBPS/images/Figure-9.12.jpg
& npm
Microsoft Windows [Version 10.0.19042.1237]

() Microsoft Corporation. ALl rights reserved.
C:\Users\manus>d:

:\>cd bpb-catalog-app-api @)

\bpb-catalog-app-api>npm start

> bpb-catalog-app-api@1.0.0 start D:\bpb-catalog-app-api
> node index.js

APT App Listening to: http://localhost:3000

OEBPS/images/Figure-4.15.jpg
€ 5 v 2[R > Nkt et s @
P oot o -

o 3 et @ P —

@omoim £ e iokion @ smonm o @
smrc

S

o

e 1) “mongodb-nodeje” Foldor
rrs 2) oo modules® Sub Folder
e) “package-tock json File
Hvoon

& oo

Y

@ Network

OEBPS/images/Figure-9.11.jpg
) File Edt Selecton View Go Run Terwinal Help i Sl e e N e o,

0 pacsesen x| @

il ot “raner: “bgb-catalog:

0 pactageockten ¥ o
0 padageison)
. scifien” 1 exie 1°
s | [Heseset,
6| dicomens crscr,
| oependenciasts {

OEBPS/images/Figure-9.10.jpg
B Command Prompt

:\bob-catalog-app-apisnpm install express
created a lockfile as package-lock.json. You should commit this file.
bpb-catalog-app-api61.6.0 No repository field.

express@4.17.1
dded 5 packages from 37 contributors and audited 50 packages in 2.069s
und © vulnerabilities

:\bpb-catalog-app-api>

OEBPS/images/cover.jpg
Full Stack
Development

with

MongoDB

Covers Backend, Frontend, APIs, and Mobile App Devel
using PHP, NodeJs, ExpressJs, Python and React Native

“[MANU SHARMA

OEBPS/images/Figure-4.13.jpg
8 Command Prompt

Microsoft Windows [Version 10.0.19042.1165]
(c) Microsoft Corporation. ALl rights reserved.

\Usersymanus>d: @)
\>cd mongodo-nodejs @
\nongodo-rodeds> @

Navigate to "mongodb-nodejs” directory

OEBPS/images/Figure-9.1.jpg
& npm

:\bpb-catalog-app-apionpn start @)
bpb-catalog-app-api61.0.0 start D:\bpb-catalog-app-api
node index.js

PT App Listening to: http://localhost:3000
onnected Sucessfully to HongoDd Server. using Node.js Driver for Mongods @)
nnected to MongoDB DB:BPECatalogdd

OEBPS/images/Figure-4.12.jpg
T v wear s | @)
Name.) Date modiied Trpe Sae.

[SY— —

OEBPS/images/Figure-8.9.jpg
st match
Search thewab
Wampserver64
£ Wampserver - Sofvare > oo
Apps
@ Uninstall Wempserversa > | IES
pserver Open L9
‘Websites (1) 5 Run as administrator
T Open e ocation
5 Pinto Start ‘
5 pinto akbar
B unintat

ol | @

OEBPS/images/Figure-4.11.jpg
[P ———

B e B e Fyyem— FYr— ® i

MongoDB NodeJs Driver °

A o) >
— "

T T o %=

OEBPS/images/Figure-8.8.jpg
@ phpini - Notepad
File Edit Format View Help
move to the new ('extension=cext>) syntax.

; Notes for Windows environments :
- Many DLL files are located in the extensions/ (PHP 4) or ext/ (PHP 5+)

extension folders as well as the separate PECL DLL download (PHP 5+).
Be sure to appropriately set the extension_dir directive.

extension=bz2
extension=curl
;extension=dba

jextension=enchant
extension=fileinfo
jextension=ftp
extension=gd2
extension=gettext
extension=gnp
extension=intl
extension=imap
sextension=interbase
extension=1dap
extension=mbstring
extensionzexif 5 Must be after mbstring as it depends on it
extension=nysqli
mongodb)
sextension=odbc
extension=openssl
;extension=pdo_firebird
extension=pdo_mysql

OEBPS/images/Figure-4.10.jpg
¥ Command Prompt

Microsoft Windows [Version 10.0.19042.1165]
(c) Microsoft Corporation. ALL rights reserved.

W)
¥henH

Users \manuesrpn =-version @)
e

C:\Users\manus>

1) Checking Node.js Version
2) Checking NPM Version

OEBPS/images/Figure-8.7.jpg
=

PR —

£ Home Gettige——r

Download C

Windows Ins

The insialer - whih e

prp -+ ~copy(heey
P -r “if (hazh_
e composer-setu

‘Completing Composer Setup

et stabd Composr o o et
e

-

br

orp -+ “unlink(" comp

OEBPS/images/Figure-4.1.jpg
Node s* s a Javascript runtime built on Chrome's s Javascript engine.

New security releases now available for 16.x, 14.x, and 12.x
release lines

Download for Windows (x64)

© 14.17.5LTS

Recommended or

Orhave ook at the Long Term Support (LTS} schedule.

OEBPS/images/Figure-8.6.jpg
Download

Windows Ins!

The instater - i
varabe so you can i

Dowioad and
Command-lin

To qukly nstah
Insaling Composer

B -+ "cony("hitg
B -1 "4F (hash_
P composer-setup
P -+ "unlink("c

Yot g o connand o o s s or e s tne,Secase o
e i g G s 1y 14 s i

i s ot ek, you il v 26 e o el

(o i s widow, thn g e comsnd ko, O
Lo Logn 5, o o 3 e cond o,

s s s, you iy e st s compiter

o

s

OEBPS/images/Figure-3.9.jpg
3
Jal
e : ®

A @ ®m) ENG 0425PM []

OEBPS/images/Figure-8.5.jpg
Compons *

C & grcomposrorytonniont

£ Home | Gettirg=-—"™ =

e

poumons d “EE b s)
STt

sty e @ B [

L — b
sy s @ °

- copy(et
- "4F (hash_4 o
B conposer-setu <ma [es | ol
By -r "unlink("c

pesa

OEBPS/images/Figure-3.8.jpg
Searchtheweb.
P wamp - Ses web et

WampServer Softuae

v o

wampserver downioad

o

wamp server downioad for vindows
0

o

wamp download

o

‘wampserver for windows 10

o

womp64

i

Uninsall Wampserversd

Websites

© Wompservers on the Web

o

Wampserver64

open o
[——

Open e ocaton

= Aintosun

= pinto tkbar

OEBPS/images/Figure-8.4.jpg
«

> ¢

x [

P ——

£ Home | Getii 5=

Iatn ptons
Download oot G

Windows Inst] 538 oot oo T s Gt

o e
Rt boposttomiy [

el o oo e s Conper Al il b e
[

To iy nsa use e
instaing Composer e
o9 v “cony(het
Bhp v “5f (hash
B1p composer-set
oo - “unlik e
. CEEE—————

OEBPS/images/Figure-3.7.jpg
—
|| @ setp - wompsenvrs 323

o)
=

Wampserver

PHP TRAINING

Completing the Wampserver64 Setup
Wizard

Setup s iished installng Wommpsenvers on your computer. The
application may be launched by selecting the nstaled shortuts.

Clck inish to it Setup

OEBPS/images/Figure-8.37.jpg
8w sy rovion- % 8
« @ [0 lohostot-catbog app tackendindespho] @
oo A0 o
Bk ook i =
e s

OEBPS/images/Figure-3.6.jpg
|| @ sewn - wompserers 323

x
Select Components @

Which components should b installed?

Selectthe components you wank o nstal;cea the components you do not wat 1 Istll. lckNest when
Youare readyto contiue.

e that you have the possibily, afer tis installaion, o add "addons’, . other versions of Apache, PHP,
MYSQLand MariaDB.

Defaut nstalaion
Wampmanager
Apache 2,446
P 5640 56115
e 7033 59318
Cewe 733 58718
Clewe 7233 es1mB
P 732 soms
P 714 67418
Maria0B 2048
@arooB 104.13 20418
OMaraDB 10323 3u75me

(]
=

Corrent scleton reqires at least 1.94 GB of cisk space

HP TRAINING

OEBPS/images/Figure-8.36.jpg
°
wippw

Application Dashbaard

Backend Catalog of a Publication House

OEBPS/images/Figure-8.35.jpg

OEBPS/images/Figure-4.14.jpg
B Command Prompt
Microsoft Windows [Version 10.0.19842.1165]
(<) Microsoft Corporation. ALL rights reserved.

C:\Users\nanus>d:

:\>¢d mongodb-nodes.

:\nongod-nodes>npm i mongodd.
<aveError ENGENT: no such file or directory, open 'D:\mongodb-nodejs\package. json"
created a lockfile as package-lock.json. You should comit this file.

encent. ENOENT: no such file or directory, open D:\nongodb-nodejs\package. son’

mongodb-nodejs No description

mongodb-node]s No repository Field.

mongodb-nodejs No READHE data
ield.

mongodb-nodejs No license

mongodes. 1.
bdded 18 packages From 61 contributors and audited 18 packages in 1.388s

packsges are looking for funding
run “npm fund” for details

Found © vulnerabilities

\mongods-nodeds>

OEBPS/images/Figure-5.24.jpg
e [mar s vk 1 s e s 7 | @

Snarc
D300t
Hosn
B Doumens
+ Douckonss
B
o

¥ rote odves Bwm e et

Dor oo e .
e ST T — a
s oworst R v —Y
o 15002020101 M Wik Comrend

3 w0 ot 15002010101 s P

5 g 061 A Wk Comend

Dt

OEBPS/images/Figure-5.23.jpg
[y e L SO
precies el Sdatong. 5 3 his rary 1s o Longer mvorted
e R el el)

e e e e

ot e b e O TG A D
S ST R e R s RS

RS——

OEBPS/images/line.jpg

OEBPS/images/Figure-5.22.jpg
Gewpo cmsures

Introduction to Expo

Quick start

OEBPS/images/Figure-9.9.jpg

OEBPS/images/Figure-5.21.jpg
Make any app.

w Run it everywhere. J

OEBPS/images/Figure-9.8.jpg
B Command Prompt

Microsoft Windows [Version 10.0.19642.1237]
() Microsoft Corporation. ALl rights reserved.

\Users\nanus>d: @)

\>cd bpb-catalog-app-api @

\bpb-catalog-app-api>e @

Navigate to "bpb-catalog-app-api* Directory

OEBPS/images/Figure-5.20.jpg
B Command Prompt
Microsoft Windows [Version 16.0.13642.1165]
(c) Microsoft Corporation. ALl rights reserved.

co\Users\manussds @)

et scatalon e el @) Navigate to *bpb-catalog-mobile-app*
directory

o:\opb-catalog-nobile-appo @

OEBPS/images/Figure-9.7.jpg
3 Fle Gk Sdection View Go Run Terminal Help.

==

) pokagejson

R

‘peckagejaon - bpt-catalog-app-ack - Vieus! Studio Code

“index.3e%,

OEBPS/images/Figure-5.2.jpg
&Y Command Prompt
Microsoft Windows [Version 16.0.19642.1165]
(c) Microsoft Corporation. ALL rights reserved.

e i © 1) Checking Node.js Version

\Users\manusonpn --version @ |2) Checking NPM Version
6.14.14

C:\Users\manus>

OEBPS/images/Figure-9.6.jpg
@ Command Prompt
p:\bpb-catalog-app-apisnpm init @)

This utility will walk you through creating a package.json file.

It only covers the most common items, and tries to guess sensible defaults.

See “npm help init’ for definitive documentation on these fields
and exactly what they do.

Use “npm install <pkg>’ afterwards to install a package and
save it as a dependency in the package.json file.

Press AC at any time to quit.
ckage name: (bpb-catalog-app-api)
ersion: (1.0.)
jescription: BPB Catalog APP RESTFul API using Node.js and MongoDB
ry point: (index.js)
o

{

‘name’
"version”

'bpb- catalog-app-api'

"scripts": {
“test": "echo \"Error: no test specified\" && exit 1"
by
"keywords": [
“Node.js" ,
"RESTFUL"
"aPT"

1

“author”: "BPB Publications",
‘license": "ISC"

Is this Ok? (ves) @

OEBPS/images/Figure-5.19.jpg
i) Fvoont Pl e i s

Yot b g 1 At e

o
Ve e e sy o | Orcoe bt O
e

OEBPS/images/Figure-9.5.jpg
% | & ¥ = | bpb-catalog-app-api

B e s ver

« v > ThisPC > Work (D) > bpb-catalog-app- 0

Name Date modifie
Quick access

@ OneDrive

OEBPS/images/Figure-5.18.jpg
ot it M Sy Pt

Yot don et | 20 @ ssc.

OEBPS/images/Figure-9.4.jpg
@ Command Prompt

Microsoft Windows [Version 10.0.19042.1237]
(c) Microsoft Corporation. ALl rights reserved.

C:\Users\manus>node --version @)
vi4.17.5

C:\Users\manus>npm --version @)
6.14.14

C:\Users\manus>

1) Checking Node.js Version

2) Checking NPM Version

OEBPS/images/Figure-5.17.jpg

OEBPS/images/Figure-9.30.jpg
rrm——
Ouaimerts
[BPB CatalogDB.BPBCatalogCollection| @ —
Docur . ~ . :

OEBPS/images/aut.jpg

OEBPS/images/Figure-5.16.jpg
System Properties x
Computer Name _ Hardware | Advanced | System Protection | Remoe.

Youmust be logged on as an Administrator to make most o these changes.
Pefomance.

Visual ffects. processor scheding, memory usage. and vitual memory.

Sefings

User Profes
Desktop settings related to your signn

Startup and Recovery
System sartup,system faiure, and debugging nformation

OEBPS/images/Figure-9.3.jpg
st match
b Command Prompt
B Nodejs command prompt > P
186,164 Cross Tools Command 5
Promptfor Vs 2019
o L@
W nstll Addiional Tools forNodejs >
Sy Ry—
Saech the veo O Open il location
. cnd-Seeweb rests > = s
2 pintoskhar

fomd

OEBPS/images/Figure-0.1.jpg

OEBPS/images/Figure-9.29.jpg
o0 v =
s o mo—
= O e ameoon.

@ e im——
&~ oo

R ————
2 oo
5

ot 2T AP ol b
s

Qs

P e e e 3 oo

OEBPS/images/Figure-0.10.jpg
BPB Online Bookshop

T

OEBPS/images/Figure-0.2.jpg
Add New Book

© ontss o spbdrgat o

Backend Catalog of a Publicatic

PReS———

OEBPS/images/Figure-0.3.jpg
s] [0 - [
L e [
T 64 Cat bbnan | 1en B
B | R |
— e

OEBPS/images/Figure-0.4.jpg

OEBPS/images/Figure-0.5.jpg

OEBPS/images/Figure-0.6.jpg
“enrs

'MongoDB
Complete
Guide

OEBPS/images/Figure-0.7.jpg

OEBPS/images/Figure-5.15.jpg
]

Edit the system environment variables

P
=2 meam:imnmnnariuhlshrymv > Conkmipmst
Cory Som @

2 environment vriables s et R

£ environment variables windows 10 >

P environment variables in linux >

1 environment vribles python >

P environment varizbles java >

5 envicnment varices in windows >

O environment variebes path >

0 envronment varisles powsrshell >

5 [ervironment varebied | @

OEBPS/images/Figure-5.14.jpg
Aopeaince & ek Sy Seogs . Aodkid X

Fre———

- R e

OEBPS/images/Figure-9.28.jpg
o e -

LTI T L

T

1

s (28

OEBPS/images/Figure-5.13.jpg
oy
e —

OEBPS/images/Figure-9.27.jpg
a

MergaDB 4.2 Communiy

BPROnIneBockaDB
conty
-

R o~ Gl ent=ERTEI Syl O8N Mg it

BPECaogDBEPEG.

[BPBCatalogDB.BPBCatalogCollection]@

Dccuments .

OEBPS/images/Figure-5.12.jpg
@ Fisuie

Welcome to Android Studio

o Code Sample

OEBPS/images/Figure-9.26.jpg
s e Ren—
L e e -]
A e P
i - [
Lo

I, [
= B) () o

OEBPS/images/Figure-5.11.jpg
® android-studio-20203.1.22-
windowsexe

B Your Phone
Setings

@ Link your phone
Searchthe e

P android - see web results

® ¢t 2dll

Android Studio

wn L@

Pato

Pinto takbor

5 [android] @

o

OEBPS/images/Figure-9.25.jpg
[BPBCatalogDB. EPBCataIuchHewun -] oecuven

ocuments — Scher

Standione

MongoB 442 Commry

> BPBONneBocksDB

OEBPS/images/Figure-5.10.jpg
ndroid Studioand S X | 4

& developerandroid comystudio

rs an Platform Android Studio Google Play
SIubic. | Andiroid Studio Setup
G e
Androids 10!
An|

ba

Jotpack More + Q searc

Completing Android Studio Setup

o S b et onyour ot
okt e s

s @)

OEBPS/images/Figure-9.24.jpg

OEBPS/images/Figure-5.1.jpg
Bestmatch

Aops

Command Prompt

B Nodejs command prompt > o
I 86 ¥64 Cross Tools Command)
Prompt for V5 2019
£ open o
W install Additiona] Tools for Nodejs > rrTE—
sechue st D Openfilelocation
P cmd-see webresits >

= pintostnt

= Pintotakon

OEBPS/images/Figure-9.23.jpg

OEBPS/images/Figure-4.9.jpg
sors
Command Prompt
B Nodejs command prompt > o
<86 164 Cross Tools Command N B
Promptfor V5 2019
Som @
W install Additional Tools for Nodejs > Y X,
ESRES B cpen e ocaion
£ and- seewebresits ;| -
o
bt
T
ldul

OEBPS/images/Figure-9.22.jpg
S—
P —— —lc
e Zm

PR —

e a

OEBPS/images/Figure-4.8.jpg
Completed the Node js Setup Wizard

Node, e bton ot he e W fine.

nede

| Node s has been succesflly instalied.
New s| e sty s 12.x

o
]

Other Downloads | Changelog | APIDocs Other Downloads | Changelog | API Docs

Or have a look at the Long Term Support (LTS) schedule.

OEBPS/images/Figure-9.21.jpg
R —

LT

B rme——

OEBPS/images/Figure-4.7.jpg
nede

‘Tools for Native Modules n.fs\dc

pgonal nstall he o necesryt comple e s,

Some o modhles et b compe fom C/C++ when nstling. 1 o wont o beale o {
N | i S0k mode, same ok (ehon o Vel Socko Bl oo e s b soed ine.

oty et ey 00 ot kvl 3 st iy, Th
INEW S| | 0ioop o1 new window s thetlon comptes, 12.x

‘et ol the nstracions o s ol o e e 2 onindens o
It he depndendes yourse

Other Downloads | Changelog | APIDocs Other Downloads | Changelog | API Docs

Or have a look at the Long Term Support (LTS) schedule.

OEBPS/images/Figure-9.20.jpg
@ Download Postman | Getstarted X | o

€ > e a postmancomyiouniossss | @

@ Poowct- Picng Eveprise~ Resourcesandsupport v Explore

Download Postman

Download the app to quickly get started using the Postman AP Pl
browser experience, you can try the new web versior

@ voms Workspxces v Rogors |

@ rwerspscwnssa New bgrt

Bl - = = |
The Postman app T - rwmeran e re

- & v Biwatow
The ever-improving Postman app (a new release every two

PEp—
D200 sucens - R

weeks) gives you a full-featured Postman experience.

00 s -
200 suces - R
[P —

OEBPS/images/Figure-9.2.jpg
s e Ren—
L e e -]
A e P
i - [
Lo

I, [
= B) () o

OEBPS/images/Figure-5.42.jpg
Q Select Hardware

Choose a device definition

o

o Preiz

OEBPS/images/Figure-5.41.jpg
Your Virtual Devices

).

fnod Catbois

OEBPS/images/Figure-5.40.jpg
Welcome to Android Studio .

OEBPS/images/Figure-5.4.jpg
o studo et X |

dovelopers a iwfom Andsude Goostastay

More = Q searcn

ANDROID STUDIO

android
studio

‘Android Studio provides the fastest tools for building apps on every type of Android
davice.

Dounlosd Android studio | @

2om3.1 w013)

OEBPS/images/Figure-5.39.jpg
Android Studio

OEBPS/images/Figure-5.38.jpg

OEBPS/images/Figure-5.37.jpg
Metro Bundier
@ srocess (1)

8 omsa

Running spplication on Nokia 5.4
Run on Andrid device/muistor

Runon 08 smstor

Sendink it e,

Publsn or republis pojet.

—

[=]

OEBPS/images/Figure-5.36.jpg
13:52 ® @ LUNCR & Vills]

Open up App.js to start working on your app!

OEBPS/images/Figure-5.35.jpg
Projects

@@ Scan QR Code
&) you u y

bpb-mobile-app

Projects

OEBPS/images/Figure-5.34.jpg
Scan an Expo QR code

Metro Bundler

Nokia 5.4

\ oid device/emulator

Scan This QR
Code from your
Mobile

OEBPS/images/Figure-5.33.jpg
13:44 ® & R O9wdd0

Allow Expo Go to take pictures
and record video?

OEBPS/images/Figure-5.32.jpg
1337 ® @

¢ Q i
Expo
] p 5 °
Expo Project
38% B3] 34 10L+
ST reviews 85 MB Rated for 3+ ® Downloads

Install

About this app >

Expo is a free & open source platform to build apps using
JavaScript and React.

Productivity

Rate this app

Tell others what you think

W W W W W

Write a review

OEBPS/images/Figure-5.31.jpg
Openup Appis o start working on your app!

B

OEBPS/images/Figure-5.30.jpg

OEBPS/images/Figure-5.3.jpg
I Desitop
& Downlosds

Tpe

OEBPS/images/Figure-5.29.jpg

OEBPS/images/Figure-5.28.jpg
B¥ Windows PowerShell
D: \bpb-catalog-mobile-app>cd bpb-mobile-app)
D: \bpb-catalog-mobile-app\bpb-mobile-app>npm start @)

> @ start D:\bpb-catalog-mobile-app\bpb-mobile-app
> expo start

Starting project at D:\bpb-catalog-mobile-app\bpb-mobile-app
9002

Developer tools running on http://localhos
Opening developer tools in the browser...
Starting Metro Bundler

O} a0

OEBPS/images/Figure-5.27.jpg
Toe e oo o s
5 oot T fae o
o NI Fielohe

NI Fielkhe

NI Fielohe

B nesciptrie "o

OEBPS/images/Figure-5.26.jpg
Il Command Prompt
ticrosoft kindos [Version 16.6.15642.1165]

(¢) icroscft Corparation. ALL rights reserved.
C:\Usars \manus>d

o:\>cd by-catalop-robile-app

opb-catalog-nobile-apprerpo it bpb-acbile-apo —-1om
Chooss a template: » blanc ' nininal 3pp 25 clean a5 an ety canvas
Downlosded and extracted projact filss.

Uring npm <o install packoges.

Inscalies Javascript dependencies.

b Vour project 1 readyl
o run your project, navigate to the directory and run one of the follawing npn comands.

<4 bpo-mcbile-app
g Starc # you can open £05, Androdd, or web from here, or run then directly with the comands below.
Ppm o anrod

i o # requires an 105 devica or macos for access to an 05 similator

o= o vt

T p—r—

OEBPS/images/Figure-5.25.jpg
B Command Prompt - expo it bpb-mobile-app --npm
icrosoft Windows [Version 10.0.19842.1165]
(c) Microsoft Corporation. ALL rights reserved.

\usersmanissd: @)

o1\5cd b-cotatog-mbile-opp @)

\op-catalog-nobile-appoexpo init bpb-mobile-app ~-rom @)
7 Croose 8 tamplste: » 1 Uae arvov-heys. Retirn oo sibute
Mg workrion

> blank op
blank (Typescript) same as blank but with Typescript configuration

tabs (Typescript) several example screens and tabs using react-navigation and Typescript
Bare workflow

mininal bare and mininal, just the essentials to get you started

OEBPS/images/Figure-0.8.jpg
~ MongoDB
Complete

Guide
™

OEBPS/images/Figure-1.1.jpg
https://bpbonline.com

Send Request

=
-

Client - Web Browser

Receive Request

OEBPS/images/Figure-0.9.jpg
BPB Online Bookshop

Mengoon

Redis"
eSS Dive.

P

"l
=
-1

“enra

OEBPS/images/Figure-1.3.jpg
hitps://bpbonline.com

$6 - Checkout Process.

Send Request

—
p—

Receive Request

Database
Communication

OEBPS/images/Figure-1.2.jpg
> db.collectionfind(); Send Request

<document 1>
<document 2>

<document N>

Client - MongoDB shell Prompt

Receive Request \—/

OEBPS/images/Figure-1.5.jpg
+

« > ¢ o oamogomcmenencommuty spponed divers | @

OunaagoDB. | Documertaion

A T —

Community Libraries |@

Uivars o hers are ot dvelped, raiiand, o suppored by MorgeDS in ay way They re
ety reted nd superted b hecommunty

o seeyoun sy o i page? Subenitt e .

o VoD e MongoDB iver
o monge,_ e 0.406F

e Asinos TaLMengoClen .
Dango Ongort

s P

OEBPS/images/Figure-1.4.jpg
Start Developing with MongoDB

Connact your sppicatonto o ctsbse weh e of v il lrass.

e ol s ffclyspered by MongaD. The ar cvey marisioad,uppot ek ooge0B.
PRt w————————

e & o
- £
° e & roun
® ru B scun

@ o
- osis
PR

O s

OEBPS/images/Figure-10.10.jpg

OEBPS/images/Figure-10.1.jpg
B¥ Command Prompt
Microsoft Windows [Version 10.0.19042.1237]
(c) Microsoft Corporation. All rights reserved.

C:\Users\manus>d: o
D:\>cd bpb-catalog-app-api e

D:\bpb-catalog-app-api>, e

OEBPS/images/Figure-10.11.jpg
& npm
Microsoft Windows [Version 10..19642.1237]
(c) Microsoft Corporation. ALL rights reserved.

: \Users\manus>d:

\>cd bpb-catalog-app-api
D1 \bpb-catalog-app-api>npm start

> bpb-catalog-app-api€1.6.0 start D:\bpb-catalog-app-api
> node index.js

APT App Listening to: http://localhost:3000

Connected Sucessfully to MongoDe Server using Node.js Driver for MongoDB
Connected to MongoDB DB:BPBCatalogds

Terminate batch job (Y/N)? y

\bpb-catalog-app-api>npm install cors
bpb-catalog-app-api€1.0.0 No repository field.

+ cors@.8.5
added 2 packages from 2 contributors and audited 69 packages in 1.939s

3 packages are looking for funding
run “npm fund' for details

found © vulnerabilities

:\bpb-catalog-app-api>npm start

bpb-catalog-app-api61.6.0 start D:\bpb-catalog-app-api
node index.js

App Listening to: http://localhost:3608
onnected Sucessfully to MongoDB Server using Node.js Driver for MongoDB
onnected to MongoDB DB:BPBCatalogds

OEBPS/nav.xhtml

Table of Contents

		Cover Page

		Title Page

		Copyright Page

		Dedication Page

		About the Author

		About the Reviewers

		Acknowledgement

		Preface

		The four applications covered in this book

		Errata

		Table of Contents

		1. Client and Server-Side Concepts and Introduction to MongoDB Drivers

		Structure

		Objectives

		Client and server-side concepts

		Client and server-side DB concepts

		Introduction to MongoDB drivers

		MongoDB drivers for programming languages (PHP, JavaScript, and Python)

		Conclusion

		Questions

		2. Data Addition Using MongoDB Compass

		Structure

		Objectives

		About MongoDB Compass

		Launching MongoDB Compass and connecting to MongoDB server using MongoDB Compass

		Creating a MongoDB database and collection using MongoDB Compass

		Data addition using MongoDB Compass (creating some documents in our MongoDB collection)

		Conclusion

		Questions

		3. Starting Up Programming with MongoDB and PHP

		Structure

		Objectives

		Using PHP with MongoDB

		Installing WAMP server on Windows operating system

		Installation steps

		Programming with PHP and MongoDB

		Starting MongoDB server from Windows service manager

		Example 1—connecting to MongoDB Server using PHP

		Code 1

		Example 2—fetching MongoDB Documents using PHP

		Code 1

		Conclusion

		Questions

		4. Starting Up Programming with MongoDB and JavaScript (Node.js)

		Structure

		Objectives

		Using JavaScript (Node.js) with MongoDB

		Installing Node.js on Windows operating system

		Installation steps

		Step 2—install Node.js on your Windows machine.

		Step 3—post-installation steps and verifying Node.js on your Windows machine

		Step 4—installing the MongoDB driver for Node.js using NPM

		Connecting and working with Node.js and MongoDB

		Example 1—connecting to MongoDB server using Node.js

		Code 1

		Example 2—fetching MongoDB documents using Node.js

		Code 2

		Conclusion

		Questions

		5. Starting Up Programming with MongoDB and React Native

		Structure

		Objectives

		Introduction to React Native

		Pre-development steps

		Step 1—check Node.js and NPM on your system

		Step 2—creating a project folder in your system

		Step 3—installing Android Studio

		Step 4—installing Android SDK

		Step 5—setting up the environment variables

		Step 6—installing Expo CLI using NPM

		Step 7—creating our mobile App using Expo and Expo CLI

		Step 8—running our mobile App using Expo and Expo CLI

		Step 9—opening and viewing an app in mobile device using Expo app

		Step 10—opening and viewing app in Android Emulator

		Programming with React Native

		Example 1—changing the text in our mobile App

		Code 1

		Code 2

		Example 2—adding logo image in our mobile App

		Code 1

		A brief introduction to programming with React Native and MongoDB

		Conclusion

		Questions

		6. Starting Up Programming with MongoDB and Python

		Structure

		Objectives

		Using Python with MongoDB

		Installing Python on Windows operating system

		Installation steps

		Step 1—download Python

		Step 2—install Python on your Windows Machine

		Step 3—post-installation steps and verifying Python on your Windows Machine

		Step 4—installing MongoDB driver for Python using Python Package Index (PyPI)

		Programming with Python and MongoDB

		Example 1—connecting to MongoDB server using Python

		Code 1

		Example 2—fetching MongoDB documents using Python

		Code 1

		Conclusion

		Questions

		7. Full-Stack Development Using MongoDB

		Structure

		Objectives

		Introduction to full-stack development

		Frontend

		Frontend technologies and stack

		Native mobile apps

		Hybrid mobile apps

		Backend

		Back-end technologies and stack

		Full-stack

		Full-stack development and technologies

		Full-stack developer

		Conclusion

		Questions

		8. MongoDB Step by Step Practical Application Development Using PHP

		Structure

		Objectives

		Overview of our Web application developed using PHP and MongoDB

		Requirements

		Final application

		Pre-development steps

		Developing our application

		Code 1

		Code 1—our basic HTML structure

		Code 2—our header.php file

		Code 3—our footer.php file

		Code 1—our header.php file (updated)

		Code 1—our index.php file

		Code 1—our styles.css file

		Code 2—our scripts.js file

		Backend catalog dashboard

		Code 1—our index.php file

		Code 2—our styles.css file

		Adding new book functionality

		Code 1—our add-new-book.php file

		Code 2—our add-new-book.php file (updated)

		Code 1—our styles.css file (appended code)

		Code 2—our scripts.js file (updated code)

		Code 1—our add-new-book.php file (updated code)

		Code 2—our styles.css file (appended code)

		Code 3—our scripts.js file (updated code)

		Code 1—our add-new-book.php file (updated PHP code)

		Code 2—our add-new-book.php file (updated HTML code)

		Code 2—our styles.css file (appended CSS code)

		Listing of catalog functionality

		Code 1—finding all the documents from MongoDB collection (updated index.php file)

		Code 2—displaying the list of all the documents from MongoDB collection by using PHP foreach() construct (updated index.php file—HTML part)

		Code 3—our updated styles.css file (appended code)

		Deleting functionality

		Code 1—delete code (index.php—no change)

		Code 1—delete book functionality (delete-book.php)

		Code 2—delete book functionality (index.php—small update for displaying an alert after the book is deleted successfully)

		Edit and update functionality

		Conclusion

		Questions

		9. MongoDB Step by Step Practical Application Development Using JavaScript (Node.js with Express.js)

		Structure

		Objectives

		RESTful Web services using Node.js and MongoDB—an overview

		Requirements

		Introduction to API

		RESTful APIs

		Pre-development steps

		Code 1—our index.js file

		Code 1—update package.json file

		Developing our APIs

		Code 1

		Code 1 (index.js updated)

		Code 1 (index.js updated)

		Code 1 (index.js updated)

		Code 2 (JSON body params to be used in Postman)

		Code 1 (index.js updated)

		Code 1 (index.js updated)

		Adding REST API endpoint to delete MongoDB document based on MongoDB document ID (REST DELETE method)

		Conclusion

		Questions

		10. MongoDB Step by Step Practical Mobile App Development Using React Native

		Structure

		Objectives

		An overview of our mobile app developed using React Native and MongoDB

		Requirements

		Example 1—connecting to MongoDB via API

		Code 1

		Code 2

		Code 3—API fetch part—networking

		Code 3—style sheets

		Code 4—header section

		Code 5—book list section

		Code 6—return part of the app

		CORS

		Resolving the issue

		Change 1 in index.js—adding CORS module using require

		Change 2 in index.js—enabling CORS in “getAllBPBBooks” route

		Example 2—adding book pictures in the book list section of our mobile app

		Code 1 (updated App.js file) —CSS section (added some more CSS and changed the class names to “camelCase”)

		Code 2 (updated App.js File) —update in book list section and use of react native “FlatList” component instead of “.map” method

		Example 3—adding “Thumbs Up” and “Thumbs Down” in the book list section of our mobile app

		Code 1 (updated App.js file)—import FontAwesome from Vector Icons

		Code 2 (updated App.js File)—CSS section (added some more CSS for “Thumbs Up” and “Thumbs Down”)

		Code 3 (updated App.js file)—added “Thumbs Up” and “Thumbs Down” button components and functions

		Code 4 (updated App.js file)—book list section (added “Thumbs Up” and “Thumbs Down” button components)

		Example 4—adding database functionality to “Thumbs Up” and “Thumbs Down” of our mobile app

		Change 1 in index.js—enabling CORS in “thumbsUPForBPBBook” route

		Change 2 in index.js—enabling CORS in “thumbsDOWNForBPBBook” route

		Code 3 (updated App.js file)—updated “Thumbs Up” and “Thumbs Down” button components, functions, and book list section

		Conclusion

		Questions

		11. MongoDB Step by Step Practical Frontend Development Using Python

		Structure

		Objectives

		An overview of our frontend application developed using Python and MongoDB

		Requirements

		Installing Python’s Django framework on Windows operating system

		Installation steps

		HTML

		CSS

		HTML—for file “bpbAppBookDetailsIndex.html”

		CSS—for file “style.css”

		Conclusion

		Questions

		Index

Guide

		Title Page

		Copyright Page

		Table of Contents

		1. Client and Server-Side Concepts and Introduction to MongoDB Drivers

OEBPS/images/Figure-10.13.jpg
Best match
Search thewels
Wampserver64
£ Wampserver - softuare > sop
Apps.
© Uninstall Wampserversa > Open N
Webstes (1) [Rpep—

Open filelocation
Pintostat

Pinto taskbar

® ¢ 240

Urinstal

OEBPS/images/Figure-10.12.jpg
O Pbmabteapsntnale, X, G tormbioson =
« > [B] O mabunine
°

OEBPS/images/Figure-10.15.jpg
ena

Application Dashboard

Boak D

OEBPS/images/Figure-10.14.jpg
- € n
local server - All services running

OEBPS/images/Figure-10.17.jpg
@ O)bpbmoblespponfmoDe X | by mobik o X @ 898 - Backend Coabog Apkcas X |+

€ 5 C O oot

Kotlin

In-Depth
n-DeRen

Biomedical Sensors

Anshuman Prakash, Dr. Lovi
Raj Gupta ,Dr. Rajesh Singh,
Dr. Anita Gehlot, Rydhm Beri

OEBPS/images/Figure-10.16.jpg
% [bobmoble appanipoe X F by mooe X @ 69D Backend Covon Aoshat X | 4

« © fecaost 19006

Welcome to BPB Online Mobile App

MongoDB Complete
e
Manu Sharma

MongoDB
Complete
Guide

OEBPS/images/Figure-10.19.jpg
&8 Command Prompt

> Waiting on exp://192.168.1.10:19000
> Scan the QR code above with Expo Go (Android) or the Camera app (i0S)

> Press a | open Android
> Press w | open web

Press r | reload app

Press m | toggle menu

Press d | show developer tools

shift+d | toggle auto opening developer tools on startup (enabled)

> Press ? | show all commands

ogs for your project will appear below. Press Ctrl+C to exit.
b Stopped server

\bpb-catalog-mobile-app\bpb-mobile-app>

OEBPS/images/Figure-10.18.jpg
DM Q s Bl - -
@expojvectoricons
B e B o @ ot T s
@expo/vector-icons @ e
[e —————T e t————— I IR o
1 sty e s et ot st 0y e e iy -

crtyon o maybe checkoutExe)

01 s vy does ntprvide access o et e sectr-con's
Tcon.getmageSource() ncton o geneatingmages fom konsat e o
contexton why,se this). Hyou i sl neecingankonintheformof an mage

© gtbcomfexpfuectorcons

& expogiubioecoricons

OEBPS/images/Figure-10.20.jpg

OEBPS/images/Figure-10.2.jpg
& npm

D: \bpb-catalog-app-api>npm start)

> bpb-catalog-app-api@1.9.9 start D:\bpb-catalog-app-api
> node index.js

API App Listening to: http://localhost:3000
Connected Sucessfully to MongoDB Server using Node.js Driver for MongoDB @)
Connected to MongoDB DB:BPBCatalogdB

OEBPS/images/Figure-10.21.jpg
'Mongons
Complete
Guide

OEBPS/images/Figure-10.23.jpg
Redis® Deep Dive
Suyog Dilip Kale, Chinmay
Kulkarni

"Redis®
Deep Div

wobie

OEBPS/images/Figure-10.22.jpg
BPBCatalogDB.BPBCatalogCollection 1,|@ soimss |

e °
— S

SPaCuoqclecion i

OEBPS/images/Figure-10.25.jpg

OEBPS/images/Figure-10.24.jpg

OEBPS/images/Figure-10.3.jpg

OEBPS/images/Figure-10.26.jpg
petiog i e a0t

” MongoDB
Complete

Guide

OEBPS/images/Figure-10.5.jpg
@ hmgpentgntunt X § ot it ve

o

© amonrons

OEBPS/images/Figure-10.4.jpg
 bobmobiea0p onfxpa Devic X

«

c

@ bov-moniespp

© tocalhost 19006

‘Welcome to BPE Oniine Mobilo App.

[

OEBPS/images/Figure-10.6.jpg
DN O] & veo w0 *

€ 5 C 0 matetims

«ona

OEBPS/images/logo1.jpg
To View Complete
898 Publcations Catslogue

Scan the QR Code:

OEBPS/images/Figure-10.8.jpg
& Command Prompt
Microsoft Windows [Version 10.6.19642.1237]
(c) Microsoft Corporation. All rights reserved.

\Users\manus>d:

>cd bpb-catalog-app-api

:\bpb-catalog-app-api>npm start

> bpb-catalog-app-api@1.8.8 start D:\bpb-catalog-app-api
> node index.Jjs

AP App Listening to: http://localhost:3060
Connected Sucessfully o MongoD8 Server using Node.Js Driver for HongoDs

Node.js Application was
: \bpb-catalog-app-apide stopped using "Control + C*

OEBPS/images/logo.jpg

OEBPS/images/Figure-10.7.jpg
LT I —

B e B ton & © s0mpniencies

cors ©
e e e e

O 1 e pcage o proviling onnecapress it tht o b s

Follow me (@topgoode o Tt

Py ——

@ ik i

OEBPS/images/Figure-11.1.jpg
ownload Djargo Djange X |

@ |(a_ntps/iwwwangoproject com/donnioad | @

overview E DOCUMENTATION

How to get Django

Django is available open-source under the BSD license. We recommend using the latest
version of Python 3. The last version to support Python 27 is Django 1.11 LTS, See the

FAQ for the Python versions supported by each version of Django. Here's how to get it

Option 1: Get the latest official version

The latest official version is 3.2.8 (L1S). Read the 32.8 release notes, then install it with
PR

pip install Django-=3.2.5 | @

OEBPS/images/Figure-10.9.jpg
& Command Prompt
Microsoft Windows [Version 10.6.19642.1237]
(c) Microsoft Corporation. All rights reserved.

C:\Users\manus>d:
D:\>cd bpb-catalog-app-api
D: \bpb-catalog-app-api>npm start

> bpb-catalog-app-api@1..0 start D:\bpb-catalog-app-api
> node index.js

AP App Listening to: http://localhost:3008
Connected Sucessfully to MongoDB Server using Node.js Driver for MongoDB
Connected to MongoDB DB:BPBCatalogDB

Terminate batch job (Y/N)? y

b-catalog-app-api>npm install cors
bpb-catalog-app-api@1.8.8 No repository field.

cors@2.8.5
dded 2 packages from 2 contributors and audited 69 packages in 1.939s

packages are looking for funding o
run “npm fund’ for details

und © vulnerabilities

:\bpb-catalog-app-api>

OEBPS/images/Figure-11.11.jpg
B C\Windows\System32\amd.exe.

\ep-catLog-app-rontend\ 950 insBookShoppython mansge.py startapp 8720l inasookshopnenge0sizo @)

\bpb-catalog-app-frontend\8PBonLineBookshop..

OEBPS/images/Figure-11.10.jpg
| @ Tt obed ey X

€5

© wrooram

django

View reea

[N 4 °
The install worked successfully! Congratulations!

You e seeing ths page because DERUG=Tuc 5 1nyour
settings file and you have not configured any URLS.

OEBPS/images/Figure-11.13.jpg
3 File Edit Selection View Go Run Terminal Help BPBOniineBookShop - Visusl Studio Code:
omonen

[ssonuncsoorsnor 1% £3 O 5
> 8PBOniinegoolShop

> sPROinegookshopengodsace | @)
dosgites

@ managepy

OEBPS/images/Figure-11.12.jpg
| 8#00rnetiookShophkangaOBApe

D T ———————]

o) & -
¥ e T
A | B 30102021 1233 P Fython fie
sy B Pl
- B pedstoietivig g
pirel s
e |t magan e
Brmry et
& o

OEBPS/images/Figure-11.15.jpg
X File Edit Selection View Go Run Terminal Help BPBOnlineBookShop - Visual Studio Code:

 openeorons ()
 svsonuncsoorsior CBRoOB
> BpBoniineBookshop &
+ 8PROnlineBookShopongoDBAPR
> migratons

@ _init_py
@ admingy
appspy
@ modetspy
@ testspy
@ viewspy

dbsqlte3

@ managepy

OEBPS/images/Figure-11.14.jpg
) File Edit Selection View Go Run Terminal

 open eorons o
< srmonunesooKsHor [% 8o
> BPBOnineBookShop
+ BPBONineBookShopMongoDBApD

> migrations

@ _init_py
@ adminpy
@ appspy
@ modetspy
@ testspy
@ viewspy
dbsqite3
% managepy

Help

8PBOnlineBookShop - Visual Studio Code

OEBPS/images/Figure-11.16.jpg

OEBPS/images/Figure-5.9.jpg
doid Studioand & X |

& developerandroid com/studio

Jetpack

Q searct

sam Platform Android Studio Google Play
upio | Andioid Studio Setup
Whatsnew Userguide
Androids YO
An|

ba

OEBPS/images/Figure-5.8.jpg
o Suudioand 51 X |
& developerandroid com/stucio

-

Platform

uio

What's new User guide

Yo
An
ba

Android §

Android Studio

GooglePlay Jetpack More v

Q searc

= Ao S Seup

[E e r——

helocaton secfed st have at s 08 of e spce.
it ey

e —

OEBPS/images/Figure-11.18.jpg
e B Seetion Visw o = Tl telp oy e i

o P—_——

e e —— 3 from ejano.snorceuts iport renir
srsourisooair nEoe 1

—

S ——

> migators PeRuT rndarreauait, HPHor vtk Oga bt L")

o e
 samingy
Svempr o @

* mgery

OEBPS/images/Figure-5.7.jpg
dod Sudioand ' X |

& developerandroid comstudio

S Plavorm AndroidSwdio Google Play

Jetpack

Q searc

rubio

[Ao Sudo Setup

What's new User gui

S requet: 25
Yo

An|
ba

Android §

OEBPS/images/Figure-11.17.jpg
o bpropdmtint & sy

OEBPS/images/Figure-5.6.jpg
& developerandoid com/studio

rsah Plaorm AndrodSwdio Google Play

TUDIO

What's new User guide

Android §

Jetpack More +

Q searc

[o oo et

Welcome to Android Studio Setup

Seto vl e you tvush he st of Ankd
A

18 ecommended ot you o f ohrsckcaters
before sringSe. T vl ke s o st
et e e b et s
P

OEBPS/images/Figure-11.2.jpg
Date modified

OEBPS/images/Figure-5.52.jpg

OEBPS/images/Figure-11.19.jpg
3] Fle Edt Selection View Go Run Temiral Help it py - 87ROnNneBookShop - Visual Studko Code.

S p—
e erad g —
Lemhrgd 5 | path("", views.bobiopTndex, names’BPB-Book- Shop-Home-Page’),
e i

G
e
~ BB ORTeR

> ot
i ———
© bpbsgpindechind

& rmarssesy

OEBPS/images/Figure-11.21.jpg
 vispy WOkt

sty Stk
Srineoson

PP

sl

oty
ey
> gt

* sincpy

)

* mater

sy

s

* magery

iase spboniin e erapmengedbpcon A psCer i)

Tt FIVTE = TaTunae- B rede T FTORASF AL

OEBPS/images/Figure-11.20.jpg
S

 rasesy

s o, i pareiect.con/ s S/t e o]

p——

ey et

Jre—

OEBPS/images/Figure-11.23.jpg
¥ Command Prompt

Microsoft Windows [Version 16.0.19042.1348]

(c) Microsoft Corporation. All rights reserved.
C:\Users\manus>d:

D:\>cd bpb-catalog-app-frontend o
D:\bpb-catalog-app-frontend>cd BPBOnlineBookShop e

D: \bpb-catalog-app-frontend\BPBOnlineBookShop>,

OEBPS/images/Figure-11.22.jpg
G SO VI 0 T Yl 1 ety y_P80uknalloskSiop - Vi Shodlo G
ST ¢ -~ -
ER e ep—— PR B
S 7 oo -y
o oy 5 s - §
e @ Bty s,
S ol R epeerae

e, BBOntockSoshenO8i
e
o moapy

“nas contri. mesaget’s

eianto.conrip.sesvions metemars Sopsiomigdiora’,
“Ginas mideiouire. cmcan Conmormistine
P e P

3

OEBPS/images/Figure-11.24.jpg

OEBPS/images/Figure-6.13.jpg
@ Command Prompt
Microsoft Windows [Version 10..19642.1165]
(c) Microsoft Corporation. All rights reserved.

C:\Users\manus>d:

\>cd mongodb-python

: \mongodb-python>pip install pymongo

1lecting pymongo

Downloadin ngo-3.12..0-cp39-cp39-win_amdéd.whl (397 kB)
|| | 397 kB 3.2 MB/s

nstalling collected packages: pymongo

uccessfully installed pymongo-3.12.8

OEBPS/images/Figure-6.12.jpg
B Command Prompt

icrosoft Windows [Version 16.0.19842.1165]
(c) Microsoft Corporation. ALl rights reserved.

:\Users\nanus>d: @)
0:\>cd mongodb-python @)
o: \nongods-python> @)

Navigate to “mongodb-python* Directory

OEBPS/images/Figure-6.11.jpg
frranitd

OEBPS/images/Figure-6.10.jpg
pymongo 3.12.0

pip tnstall pymonge @ -
.

OEBPS/images/Figure-6.1.jpg
About Downlosds Documentation Community SuccessStories News

Downloadfor Windows

pyrnisi @
T ot het Python .9+ canro e usec on Windows T o
oo itoms ting e and e

Aemate mplmertatons

Python is a programming language that lets you work quickl
and integrate systems more effectively.
ey M

OEBPS/images/Figure-11.26.jpg

OEBPS/images/Figure-5.46.jpg

OEBPS/images/Figure-11.25.jpg
@ [Welcome to BPB Online Bookshe X |~ +

>0 o
BPB Online Bookshop |@

OEBPS/images/Figure-5.45.jpg

OEBPS/images/Figure-11.28.jpg
B C:\Windows\System32\cmd.exe - python manage.py runserver

\bpb-catalog-app-frontend\BPBONL ineBookshop>python manage.py runserver ()
Watching for file changes with StatReloader
Performing system checks. ..

System check identified no issues (@ silenced).
November 28, 2021 - 14:€9:40

Django version 3.2.8, using settings 'BPBOnlineBookShop.settings'
Starting development server at http://127.0.0.1:8000/ @)

Quit the server with CTRL-BREAK.

OEBPS/images/Figure-5.44.jpg
o Android Virtual Device (AVD)

Veviy Confparaion

o AVD Name.

OEBPS/images/Figure-11.27.jpg

OEBPS/images/Figure-5.43.jpg
@ sreninee

Selectasystom image

T s

»
= 5
o] Google ne.
I
8 e

2 rniom o

OEBPS/images/Figure-11.3.jpg
B Command Prompt
Microsoft Windows [Version 10.0.19642.1288]
(c) Microsoft Corporation. All rights reserved.

:\Users\manus>d: (@)
D:\>cd bpb-catalog-app-frontend @)

\bpb-catalog-app-frontend>_ o

OEBPS/images/Figure-11.29.jpg
@ Welcome to BPB Online Bookshc X =

¢ > [owmm o

BPB Online Bookshop

MongoDB Complete Guide

Redis® Deep Dive

Basics of Python Programming

Designing Microservices using Django

JavaScript for Gurus

Kotlin In-depth [Vol-11]

Biomedical Sensors Data Acquisition with LabVIEW
Learning Salesforce Development with Apex
Practical Robotics in C++

Dummy Test Book

“ s s s s s s s s

OEBPS/images/Figure-11.31.jpg
Ve G Selecton View Qo [IUs ewinel thep. O M O Y E e S i e

o seate les (e55, sovaseripe, Tesges)

2 ey i Sl

OEBPS/images/Figure-11.30.jpg
ML B Selectiony Vol 1 oM = sl Help PR S A U S S Rl

. rovcrrons Ionistanishop) rocinssooop > & wingoy

o —

> winr @

o

o b °
© st frir————

@ Betpoce efungoeoiecs con/an3. ras sotingu/esaras- e o

P

OEBPS/images/Figure-11.33.jpg

OEBPS/images/Figure-11.32.jpg

OEBPS/images/Figure-5.51.jpg
%)bpbmobie-3pp 0 o De. X

«

c

© ocalhost 19006

bodmonie-wp.

Welcome t2 898 Oniin Mobie App.

OEBPS/images/Figure-5.50.jpg
>

‘Welcome 0 878 Oniine Mobile A0p

OEBPS/images/Figure-5.5.jpg
ity X [
€ 5 C b demopmaniotcomindo

developers M rlstom AndiodSudio GooslePley Jepeck M - Q seaen

ANDROID sTUDIO

android g,

You earned the

Android Studio User .
Androids badge! Android
F——,

OEBPS/images/Figure-5.49.jpg

OEBPS/images/Figure-11.34.jpg

OEBPS/images/Figure-5.48.jpg
B Windows PowerShell

\bpb-catalog-mobile-app\bpb-mobile-app>npm start @)

> @ start D:\bpb-catalog-mobile-app\bpb-mobile-app
> expo start

Starting project at D:\bpb-catalog-mobile-app\bpb-mobile-app
Developer tools running on http://localhost:19002

Opening developer tools in the browser...

Starting Metro Bundler

Ot a0

> Waiting on exp://192.168.1.18:19660
> Scan the QR code above with Expo Go (Android) or the Camera app (i0S)

OEBPS/images/Figure-5.47.jpg
W Fie E

X 5 bops bobmaio spp

© bpb movieanp

> g0 shues

& gitgore
s agpis

0 appison

2 babe confgje

) pactagedcckjson
1 packagelson

Selection View Go Run Terminal Help.

Apojz - bpb cotalog-mobile-app - Visual Studio Code

o X
oo mobie > 7 opis>] @

T Toport { Statushar) fron expo-statussbar’;

2 ioport Resce fron “resct

5 iaport { Stylashest, Text, View) from ‘resct-native’;

S export defautt function app0) {

6 retun ¢

7 ovte stytesatytes.cortatner)s

1 CText>apan up App. 33 o sEart working on your appl/Texts

5 cseaturhar stylenastor />

0 vieo

2o}

1 const styles = Stylesheet.craste((

5 container: (

1t s,

7 wackgrandcolor: “eesf,

o sligeieen Ceonert,

I Sustifcentert: canters

®

FEY

OEBPS/images/Figure-11.36.jpg
@ Welcome to BPB Online Bookshe X |+

BPB Online Bookshop

MongoDB Complete Guide

Redis® Deep Dive

Basics of Python Programming

Designing Microservices using Django

JavaScript for Gurus

Kotlin In-depth [Vol-II]

Biomedical Sensors Data Acquisition with LabVIEW
Learning Salesforce Development with Apex
Practical Robotics in C++

Dummy Test Book

OEBPS/images/Figure-2.5.jpg
Create Database

0 s Cunam cotuton

O Tine s

OEBPS/images/Figure-8.13.jpg
@ wwsRemene X [

¢ > ¢ [orem |0

@ e e

1S Versm 5731 o 06 NS Dacmentoion WSO

OEBPS/images/Figure-11.35.jpg
B C:\Windows\System32\cmd.exe - python manage.py runserver

: \bpb-catalog-app-frontend\BPBOn1ineBookShop>python manage.py runserver ()
watching for file changes with StatReloader
Performing system checks. ..

System check identified no issues (@ silenced).
November 28, 2021 - 14:09:40

Django version 3.2.8, using settings 'BPBOnlineBookshop.settings'
Starting development server at http://127.0.0.1:5000/ @)

Quit the server with CTRL-BREAK.

OEBPS/images/Figure-2.4.jpg
Databases

Pecdormance

OEBPS/images/Figure-8.12.jpg
Q services.
e e Vs (2]
es @ Eek Eals

st | RS

MongeDO Serue Oongeds) Nore Decpion S ST LopOnss
& G Tandton Conurstion.. Cntigurs... M . Loca St
s e ol At e M (. Mook
i (o Dttt Y. Coorbte. Ml (. Ntk
Gtomgsge apance S Provdert Mo ot

Decrpier. LinLayrooloyDacrn.. reo . ol oot Snice
e QU e Jroor Mt
= Glocseontamger CoeWinde. Roing Adomat | Loc e
[— M (.. Locl e

Mo) Dot .. Digrntcs . o toatSpe

Mot Ao S Ensls . M . oSt

[A —— Diables oyt

€M Dt Anivis.. s g Mol oS

[(s —— o oot

€Ml SCS oS Morags . Ml oo

Mot st Prosderpe Ruming Mamal(ig.. Loyt

Mo Pspr Cortiner Marsgesl.. Ruring Monal (.. LoclSevice

€M o Shdon.. Manags . prass et oy

[———— Mol Mook,

Mot Sttt S Provder_ Roning Mol Lol Syt

ettt Maat Vi (Mg Locsiye.

OEBPS/images/Figure-11.38.jpg
3 i T i Vo Ve e el e

X 4 sl PRk

OEBPS/images/Figure-2.3.jpg
New Connection i

ozm

OEBPS/images/Figure-8.11.jpg
)

ops
. Component Services
Search the web>
P services - see web results
Documents (4+)

Settings @)

]

Services
App

o [@
[Ep—
Open e locaton

Pintostat

2480

Pinto taskbar

5 [reniced] @

OEBPS/images/Figure-11.37.jpg
1e0px

200px

xdoz

4 20px

20px

xdoz 3

OEBPS/images/Figure-2.2.jpg
A IG——

* Fevoes New Connection e o
Pty L —— Moo com

OEBPS/images/Figure-8.10.jpg

OEBPS/images/Figure-11.4.jpg
B Cindioar e
ot i rson .. 15042 128)
S et Copartion, i s roaied

oo . s it e

collucting Django. O
o S

o
e

i S 213 ey 380 1)
el o1 e potop Ao e et O

e e T T e 042 @

T e P e

- ctalg -t

OEBPS/images/Figure-2.13.jpg
BPBOnlineBooksDB.BPBONIineBooksCollection pum—— }

Documents Aqgregations Schema Explan Plan Indeses Valdaton

OEBPS/images/Figure-8.1.jpg
°
wippw

Application Dashbaard

Backend Catalog of a Publication House

OEBPS/images/Figure-11.39.jpg
© Wk ar oo et x [

c[Cwms o e% era
BPB Online Bookshop
[re—— prRr— [er——
[e———— [rere— [———

OEBPS/images/Figure-2.12.jpg
ion BPBOnineBookeDBBPBOnlneBooks

OEBPS/images/Figure-7.1.jpg
FULL STACK DEVELOPMENT USING MONGODB

BPB Online Full Stack Web and Mobile App

|4

DYNAMIC BOOKSHOP
FRONTEND USING
PYTHON AND MONGODB.

OEBPS/images/Figure-11.41.jpg

OEBPS/images/Figure-6.9.jpg
I Command Prompt
ticrosoft Windows [Version 10.0.19042.1165]
() Microsoft Corporation. ALl rights reserved.

1) Checking Python Version

Db A () 2) Checking PIP Version

A e
i 124 foam C:\ukar\mani\pData\Local\ Prograns Py thoython 9\ Lo\t packagen i (5hon 3.9) @)

\Users nanus>o

OEBPS/images/Figure-11.40.jpg
st match
Search thewab
Wampserver64
£ Wampserver - Sofvare > oo
Apps
@ Uninstall Wempserversa > | IES
pserver Open L9
‘Websites (1) 5 Run as administrator
T Open e ocation
5 Pinto Start ‘
5 pinto akbar
B unintat

ol | @

OEBPS/images/Figure-11.42.jpg
@ wwsRemene X [

¢ > ¢ [orem |0

@ e e

1S Versm 5731 o 06 NS Dacmentoion WSO

OEBPS/images/Figure-2.9.jpg
Insent 1 Collcton BPBOninsfookeDB BPAC

OEBPS/images/Figure-2.8.jpg
BPBOnlineBooksDB.BPBONlineBooksCollection cocmenrs O

Documents Aggregetons | Schoma ExplanPlan Indexes Valdaton

S ——= o

OEBPS/images/Figure-8.16.jpg
a

Best match

(]

MongoDB Compass
a0

Search the web

P compass - See web results >

o @

Runss scminstrtor
Open e ocation

Pintostan

+ b 288

Pinto taskbar

®

Uninsal

OEBPS/images/Figure-11.44.jpg
cw ers

OEBPS/images/Figure-2.7.jpg
* Cotectons

OEBPS/images/Figure-8.15.jpg
[1 | (4 [1 = | bpb-catalog-app-backend

T oo e vew (1)

€ 5 v 4[> TSPC > Work(D) > wompbt > winw 1| bpb-catalog-opp-backend »
Name « Date modified e
F e
- wvameaM Fietode
vetop
- [imges @) [r———— File folder

oy
& Dopalen, #| (g
(&) Pictures *

8/9/2020 621 PM Filefoder

OEBPS/images/Figure-11.43.jpg
o FDess

Application Dashboard

Book 1D

e

OEBPS/images/Figure-2.6.jpg
[¢_MongoDB Compass - locathost2017/B9B0nkneBooks08 |

* Collections.

BPBOninsBockaCliscton
Standaon

oo 103 oty (-]

BPBONnBoo08 | @ B
B BPBOnnaBookeCoL.

Documants

Ave Documen: Size

Tota Dosument Size

008

OEBPS/images/Figure-8.14.jpg
iR l | bpb- (ililvg awmuna

€ 5 v 1[I THPC » Work[D) > warph > wen » bpbrcatalogapp-backend [}

Name Date modified

* Quickaccess
B Desktop. £ 4
i T—

OEBPS/images/Figure-11.46.jpg
© vietraimass = i v - 8 x

< c[Cmmms]|e

TemplateSyntaxError at/
[Vorobies and ftiutos may ot begi win underscores- BPBBo0k] @

o T
e wgeooviy
e 351
Bt st
i, o it et s
. oy s T

Errorduring templaterendering
a1 s oy ot s i e, 98Bk

OEBPS/images/Figure-11.7.jpg
B LB | 6MOnketookShop

e a5 mercs Wk » bovbop e » Ietciscn > | @

- uick s - a =
D ek

@00 Biaw b n

M

OEBPS/images/Figure-6.4.jpg
e python o B

About Downloads Documentation ~ Community Success Storie

Lists (known as arraysin oth
compound data types that
indexed,siced and manipul

funtions.
['BANANA", “APPLE", "LIME']

2, ‘Line')]

2 programming language that lets you wor

OEBPS/images/Figure-11.45.jpg

OEBPS/images/Figure-11.64.jpg
Book Detais Page - B%8 Onlie £ X | o

<

> C | © 127001:8000/book-detaly/6159TaceebScdbb914601250

BPB Online Bookshop

‘Description Ths s a Dummy st Book for Testin P
Price 000,

NO COVER
AVAILABLE

Dummy Test Book

s

OEBPS/images/Figure-6.3.jpg
& puthon o B

bout Downloads Documentation Community Success Storie

. Al the Flow You'd Ex
Python knows the usual cont
languages speak —

ofts own twists, of course.
Python3

The product is: 38

Python is a programming language that lets you work

OEBPS/images/Figure-11.48.jpg
%) File Edit Selection View Go Run Terminal Help

@ EXPLORER

v OPEN EDITORS

\/ BPB-CATALOG-APP-FRONTEND GEBEOLVE
= _ini_py

@ asgipy
@ settings.py
2 urls.py
2 wsgi.py
v BPBOnlineBookShopMongoDBApp
> _pycache__
> migrations
v static\ BPBOnlineBookShopMongoDBApp
2 bpb-logo.png
stylecss
v templates\ BPBOnlineBookShopMongoDBApp
< bpbAppBookDetailsindexhtml
<> bpbAppIndex.html
V- templatetags 1
@ _init_py «
@ admin.py
@ apps.py
2 models.py
@ tests.py
@ urlspy
2 views.py
db.sqlite3
@ manage.py

> OUTLINE

OEBPS/images/Figure-11.63.jpg
feitiiall - 4

> ¢ [0 man oo semmsrsomasmononwion | @ B o

BPB Online Bookshop

OEBPS/images/Figure-6.2.jpg
o B

About Downloads Documentation Community Success Stori

. Functions Defined
e —
Python allows mandatory a

arguments, and even arbi
defining functions in Pythan

911235813213 55 89 144 233 377 610 987

Python is a programming language that lets you wor

OEBPS/images/Figure-11.47.jpg
._.ku,:‘.:rmmmw,m._ 1 i, e st

et g o 3, . s
e g et 7, o 9, 1 it
et o, o 1, i it

e

T T L i ki e (@

OEBPS/images/Figure-11.62.jpg
"I;b ”

BPB Online Bookshop

Dummy Test Book

OEBPS/images/Figure-6.16.jpg
S §
T T T e e @

ey e e e Ly e e St Ty S P, 24 s o) e TR
O O S A R S

S ’“":.‘%:I’,I“*;*.:?:E»’r.:r..:«:':wc“;;é-'.;m o e e

OEBPS/images/Figure-11.5.jpg
B ChdomSystomdomdam
croort irios rsion 1081902 28]
e

- coatog rp-rencncoip st oioes
Cltecing e
g Sl B3 8-s-rne-sy 01918)
olincing spiretch s 33
e S gt 343y e 8 5 1)
cotiacing sipasare 2
i e gt 5201
e S ye2421.3-mr. oy e o (83 12)
rotaing ellenssucages el P, Mg, Ofines
e o D 8 g 341 T e 043
o 1 or e GG i Sh € AR Voo regt o yhr\ Iy, 5 - 51 ta -5 i comnd

e cosios sp st yten - e st @)

o oot e,

OEBPS/images/Figure-11.61.jpg
BPB Online Bookshop

wi)0

OEBPS/images/Figure-6.15.jpg
¥ Command Prompt

\>cd mongodb-python)

mongodb-python>python mongodb- connection.py.
nnected Sucessfully to MongoD Server using Python Driver for Mongoos | @

D: \mongodb-python>

OEBPS/images/Figure-11.49.jpg
s

Go R Teminel Help.

-0 = bob-comion-see-omend - Vinesl Sl Code

X & _int_py wioiebnshopootoas | 1

Cmiomecsmom &S
 setingeoy

- oy

ey

A ———

pR———
= brblogosng

et 8BOmimeB0kSHapongEDAT
© pbAgpackDnatindecint

© bpbagpindechn

o

P

® ey
S

OEBPS/images/Figure-6.14.jpg
) File Edt Selecton View Go Run Terminal Help - mengodb-conmection gy - mongodt-python - Visual Studio Code.
o e

prooitd i s toca

OEBPS/images/Figure-11.51.jpg
bpb

BPB Online Bookshop

OEBPS/images/Figure-11.50.jpg

OEBPS/images/Figure-2.11.jpg

OEBPS/images/Figure-11.52.jpg

OEBPS/images/Figure-2.10.jpg
lecton BPBONIneBooksDB BPBOnlneBooksColect

OEBPS/images/Figure-6.8.jpg
e
Command Prompt
M Nodejs command prompt > S
B il Acona Toos orNodess >
S :
oy @
P cmd - see web results > Run as administrator

Openilelocation

Pinto tart

& 240

Pinto taskbar

OEBPS/images/Figure-2.1.jpg
AN Apps Documents Wb More v &

St
0 [
e et
= s N MongoDB Compass
P ——— pi
1 CompassGroup - o ompay >
2 o > IEEITEO
) emacionsia BT
0 compassionate mearing S| T oreetocicn
= patosan
0 compasson meaning i indi >
= ot
P compass online > ——
P compass ce >
P compass png. >

po o @ wmmO€EE

OEBPS/images/Figure-6.7.jpg
5 pyihon 397 (4.6 Setup

} Setup was successful

New to Python? Start with the onfne tutorial and
documentation. At your terminal,type "py” to launch Python,
or search for Python in your Start menu.

See what's new i this release or find more info about using
Python on Windows.

python

windows

OEBPS/images/Figure-11.54.jpg
N0 PO LN SN N Uy TR i Y I e B 8 -

OEBPS/images/Figure-11.9.jpg
st <ot sp-francnscs rmioaiisiop @)

oot b farens it epoen gy e @
ting o 1 rrgs o e
g e

ysem o o Soses (8 st
o i 1 e i, Yo s s ok ey o iy 9 o £) i, i, o, s

S e

IR S i

OEBPS/images/Figure-6.6.jpg
2 pyhon 397 (64 Setp.

Setup Progress

Instaling: o
Python 3,97 Ta/Tk Support (64-bi1)

] python

) windows

OEBPS/images/Figure-11.53.jpg
[T 8]

e ———

OEBPS/images/Figure-11.8.jpg
C\Windows\System32\cmd.exe - python manage py runserver

D: \bpb-catalog-app-frontend>cd BPBONLineBookshop ()

\bpb-catalog-app-frontend\BPBONLineBookShop>python manage.py runserver @)
atching for file changes with StatReloader
Performing system checks. ..

System check identified no issues (@ silenced).

OEBPS/images/Figure-6.5.jpg
Install Python 3.9.7 (64-bit)
Seect st Now 0 nstllPython with dfaut setings o choose
Cutomie to sl o dscl esturs.

® fstall Now
Clkerimans ppossiocansragamasyoen?y

python

T ——
windows ~ @aarmenzswmm @

thon is a programming language thatle

and integrate systems more effectively. »

