

Explainable AI Recipes: Implement Solutions to Model Explainability and

Interpretability with Python

ISBN-13 (pbk): 978-1-4842-9028-6 ISBN-13 (electronic): 978-1-4842-9029-3
https://doi.org/10.1007/978-1-4842-9029-3

Copyright © 2023 by Pradeepta Mishra

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: James Markham
Coordinating Editor: Mark Powers
Copy Editor: Kim Wimpsett

Cover designed by eStudioCalamar

Cover image by Marek Piwinicki on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY
10004, U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance
Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub (https://github.com/Apress). For more detailed information,
please visit www.apress.com/source-code.

Printed on acid-free paper

Pradeepta Mishra
Bangalore, Karnataka, India

https://doi.org/10.1007/978-1-4842-9029-3

I dedicate this book to my late father; my mother; my lovely
wife, Prajna; and my daughters, Priyanshi (Aarya) and

Adyanshi (Aadya). This work would not have been possible
without their inspiration, support, and encouragement.

v

Chapter 1: Introducing Explainability and Setting Up
Your Development Environment ���1

Recipe 1-1. SHAP Installation ...3

Problem ...3

Solution ...3

How It Works ...4

Recipe 1-2. LIME Installation ..6

Problem ...6

Solution ...6

How It Works ...6

Recipe 1-3. SHAPASH Installation ...8

Problem ...8

Solution ...8

How It Works ...9

Recipe 1-4. ELI5 Installation ...9

Problem ...9

Solution ...9

How It Works ...9

About the Author ��xvii

About the Technical Reviewer ���xix

Acknowledgments ���xxi

Introduction ���xxiii

Table of Contents

https://doi.org/10.1007/978-1-4842-9029-3_1
https://doi.org/10.1007/978-1-4842-9029-3_1
https://doi.org/10.1007/978-1-4842-9029-3_1#Sec1
https://doi.org/10.1007/978-1-4842-9029-3_1#Sec2
https://doi.org/10.1007/978-1-4842-9029-3_1#Sec3
https://doi.org/10.1007/978-1-4842-9029-3_1#Sec4
https://doi.org/10.1007/978-1-4842-9029-3_1#Sec5
https://doi.org/10.1007/978-1-4842-9029-3_1#Sec6
https://doi.org/10.1007/978-1-4842-9029-3_1#Sec7
https://doi.org/10.1007/978-1-4842-9029-3_1#Sec8
https://doi.org/10.1007/978-1-4842-9029-3_1#Sec9
https://doi.org/10.1007/978-1-4842-9029-3_1#Sec10
https://doi.org/10.1007/978-1-4842-9029-3_1#Sec11
https://doi.org/10.1007/978-1-4842-9029-3_1#Sec12
https://doi.org/10.1007/978-1-4842-9029-3_1#Sec13
https://doi.org/10.1007/978-1-4842-9029-3_1#Sec14
https://doi.org/10.1007/978-1-4842-9029-3_1#Sec15
https://doi.org/10.1007/978-1-4842-9029-3_1#Sec16

vi

Recipe 1-5. Skater Installation ..11

Problem ...11

Solution ...11

How It Works ...11

Recipe 1-6. Skope-rules Installation ...12

Problem ...12

Solution ...12

How It Works ...12

Recipe 1-7. Methods of Model Explainability ..13

Problem ...13

Solution ...13

How It Works ...14

Conclusion ..15

Chapter 2: Explainability for Linear Supervised Models ���������������������17

Recipe 2-1. SHAP Values for a Regression Model on All Numerical
Input Variables ..18

Problem ...18

Solution ...18

How It Works ...18

Recipe 2-2. SHAP Partial Dependency Plot for a Regression Model25

Problem ...25

Solution ...25

How It Works ...25

Recipe 2-3. SHAP Feature Importance for Regression Model with
All Numerical Input Variables ..29

Problem ...29

Solution ...29

How It Works ...29

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-9029-3_1#Sec17
https://doi.org/10.1007/978-1-4842-9029-3_1#Sec18
https://doi.org/10.1007/978-1-4842-9029-3_1#Sec19
https://doi.org/10.1007/978-1-4842-9029-3_1#Sec20
https://doi.org/10.1007/978-1-4842-9029-3_1#Sec21
https://doi.org/10.1007/978-1-4842-9029-3_1#Sec22
https://doi.org/10.1007/978-1-4842-9029-3_1#Sec23
https://doi.org/10.1007/978-1-4842-9029-3_1#Sec24
https://doi.org/10.1007/978-1-4842-9029-3_1#Sec25
https://doi.org/10.1007/978-1-4842-9029-3_1#Sec26
https://doi.org/10.1007/978-1-4842-9029-3_1#Sec27
https://doi.org/10.1007/978-1-4842-9029-3_1#Sec28
https://doi.org/10.1007/978-1-4842-9029-3_1#Sec29
https://doi.org/10.1007/978-1-4842-9029-3_2
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec1
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec1
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec2
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec3
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec4
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec5
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec6
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec7
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec8
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec9
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec9
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec10
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec11
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec12

vii

Recipe 2-4. SHAP Values for a Regression Model on All Mixed
Input Variables ..31

Problem ...31

Solution ...32

How It Works ...32

Recipe 2-5. SHAP Partial Dependency Plot for Regression Model
for Mixed Input ..35

Problem ...35

Solution ...36

How It Works ...36

Recipe 2-6. SHAP Feature Importance for a Regression Model with
All Mixed Input Variables ...41

Problem ...41

Solution ...41

How It Works ...41

Recipe 2-7. SHAP Strength for Mixed Features on the Predicted Output
for Regression Models ..43

Problem ...43

Solution ...43

How It Works ...43

Recipe 2-8. SHAP Values for a Regression Model on Scaled Data......................44

Problem ...44

Solution ...44

How It Works ...45

Recipe 2-9. LIME Explainer for Tabular Data ...48

Problem ...48

Solution ...49

How It Works ...49

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-9029-3_2#Sec13
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec13
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec14
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec15
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec16
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec17
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec17
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec18
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec19
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec20
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec21
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec21
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec22
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec23
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec24
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec25
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec25
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec26
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec27
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec28
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec29
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec30
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec31
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec32
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec33
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec34
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec35
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec36

viii

Recipe 2-10. ELI5 Explainer for Tabular Data ..51

Problem ...51

Solution ...51

How It Works ...51

Recipe 2-11. How the Permutation Model in ELI5 Works53

Problem ...53

Solution ...53

How It Works ...54

Recipe 2-12. Global Explanation for Logistic Regression Models54

Problem ...54

Solution ...54

How It Works ...55

Recipe 2-13. Partial Dependency Plot for a Classifier ..58

Problem ...58

Solution ...58

How It Works ...58

Recipe 2-14. Global Feature Importance from the Classifier61

Problem ...61

Solution ...61

How It Works ...61

Recipe 2-15. Local Explanations Using LIME ..63

Problem ...63

Solution ...63

How It Works ...63

Recipe 2-16. Model Explanations Using ELI5 ..67

Problem ...67

Solution ...67

How It Works ...67

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-9029-3_2#Sec37
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec38
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec39
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec40
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec41
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec42
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec43
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec44
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec45
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec46
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec47
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec48
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec49
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec50
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec51
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec52
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec53
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec54
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec55
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec56
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec57
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec58
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec59
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec60
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec61
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec62
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec63
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec64

ix

Conclusion ..71

References ..72

Chapter 3: Explainability for Nonlinear Supervised Models ���������������73

Recipe 3-1. SHAP Values for Tree Models on All Numerical Input Variables74

Problem ...74

Solution ...74

How It Works ...74

Recipe 3-2. Partial Dependency Plot for Tree Regression Model81

Problem ...81

Solution ...81

How It Works ...81

Recipe 3-3. SHAP Feature Importance for Regression Models with
All Numerical Input Variables ..82

Problem ...82

Solution ...83

How It Works ...83

Recipe 3-4. SHAP Values for Tree Regression Models with All Mixed
Input Variables ..85

Problem ...85

Solution ...85

How It Works ...85

Recipe 3-5. SHAP Partial Dependency Plot for Regression Models with
Mixed Input ...87

Problem ...87

Solution ...87

How It Works ...88

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-9029-3_2#Sec65
https://doi.org/10.1007/978-1-4842-9029-3_2#Sec66
https://doi.org/10.1007/978-1-4842-9029-3_3
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec1
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec2
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec3
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec4
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec5
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec6
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec7
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec8
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec9
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec9
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec10
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec11
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec12
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec13
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec13
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec14
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec15
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec16
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec17
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec17
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec18
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec19
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec20

x

Recipe 3-6. SHAP Feature Importance for Tree Regression Models with
All Mixed Input Variables ...90

Problem ...90

Solution ...91

How It Works ...91

Recipe 3-7. LIME Explainer for Tabular Data ...93

Problem ...93

Solution ...93

How It Works ...93

Recipe 3-8. ELI5 Explainer for Tabular Data ..96

Problem ...96

Solution ...96

How It Works ...96

Recipe 3-9. How the Permutation Model in ELI5 Works100

Problem ...100

Solution ...101

How It Works ...101

Recipe 3-10. Global Explanation for Decision Tree Models101

Problem ...101

Solution ...101

How It Works ...102

Recipe 3-11. Partial Dependency Plot for a Nonlinear Classifier104

Problem ...104

Solution ...104

How It Works ...104

Recipe 3-12. Global Feature Importance from the Nonlinear Classifier107

Problem ...107

Solution ...107

How It Works ...107

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-9029-3_3#Sec21
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec21
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec22
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec23
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec24
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec25
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec26
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec27
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec28
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec29
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec30
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec31
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec32
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec33
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec34
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec35
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec36
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec37
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec38
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec39
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec40
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec41
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec42
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec43
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec44
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec45
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec46
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec47
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec48

xi

Recipe 3-13. Local Explanations Using LIME ..108

Problem ...108

Solution ...109

How It Works ...109

Recipe 3-14. Model Explanations Using ELI5 ..113

Problem ...113

Solution ...113

How It Works ...114

Conclusion ..117

Chapter 4: Explainability for Ensemble Supervised Models �������������119

Recipe 4-1. Explainable Boosting Machine Interpretation120

Problem ...120

Solution ...120

How It Works ...121

Recipe 4-2. Partial Dependency Plot for Tree Regression Models125

Problem ...125

Solution ...125

How It Works ...125

Recipe 4-3. Explain a Extreme Gradient Boosting Model with
All Numerical Input Variables ..131

Problem ...131

Solution ...131

How It Works ...131

Recipe 4-4. Explain a Random Forest Regressor with Global and
Local Interpretations ...136

Problem ...136

Solution ...136

How It Works ...136

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-9029-3_3#Sec49
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec50
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec51
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec52
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec53
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec54
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec55
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec56
https://doi.org/10.1007/978-1-4842-9029-3_3#Sec57
https://doi.org/10.1007/978-1-4842-9029-3_4
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec1
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec2
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec3
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec4
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec5
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec6
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec7
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec8
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec9
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec9
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec10
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec11
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec12
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec13
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec13
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec14
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec15
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec16

xii

Recipe 4-5. Explain the Catboost Regressor with Global and Local
Interpretations...139

Problem ...139

Solution ...139

How It Works ...140

Recipe 4-6. Explain the EBM Classifier with Global and
Local Interpretations ...142

Problem ...142

Solution ...142

How It Works ...143

Recipe 4-7. SHAP Partial Dependency Plot for Regression Models with
Mixed Input ...145

Problem ...145

Solution ...145

How It Works ...145

Recipe 4-8. SHAP Feature Importance for Tree Regression Models with
Mixed Input Variables ..149

Problem ...149

Solution ...149

How It Works ...150

Recipe 4-9. Explaining the XGBoost Model ...154

Problem ...154

Solution ...154

How It Works ...154

Recipe 4-10. Random Forest Regressor for Mixed Data Types159

Problem ...159

Solution ...159

How It Works ...159

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-9029-3_4#Sec17
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec17
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec18
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec19
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec20
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec21
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec21
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec22
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec23
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec24
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec25
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec25
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec26
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec27
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec28
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec29
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec29
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec30
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec31
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec32
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec33
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec34
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec35
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec36
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec37
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec38
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec39
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec40

xiii

Recipe 4-11. Explaining the Catboost Model ..162

Problem ...162

Solution ...162

How It Works ...162

Recipe 4-12. LIME Explainer for the Catboost Model and Tabular Data165

Problem ...165

Solution ...165

How It Works ...166

Recipe 4-13. ELI5 Explainer for Tabular Data ..168

Problem ...168

Solution ...168

How It Works ...168

Recipe 4-14. How the Permutation Model in ELI5 Works172

Problem ...172

Solution ...172

How It Works ...172

Recipe 4-15. Global Explanation for Ensemble Classification Models173

Problem ...173

Solution ...173

How It Works ...173

Recipe 4-16. Partial Dependency Plot for a Nonlinear Classifier176

Problem ...176

Solution ...176

How It Works ...176

Recipe 4-17. Global Feature Importance from the Nonlinear Classifier178

Problem ...178

Solution ...178

How It Works ...178

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-9029-3_4#Sec41
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec42
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec43
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec44
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec45
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec46
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec47
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec48
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec49
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec50
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec51
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec52
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec53
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec54
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec55
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec56
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec57
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec58
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec59
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec60
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec61
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec62
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec63
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec64
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec65
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec66
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec67
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec68

xiv

Recipe 4-18. XGBoost Model Explanation ...181

Problem ...181

Solution ...181

How It Works ...181

Recipe 4-19. Explain a Random Forest Classifier ...189

Problem ...189

Solution ...189

How It Works ...190

Recipe 4-20. Catboost Model Interpretation for Classification Scenario192

Problem ...192

Solution ...193

How It Works ...193

Recipe 4-21. Local Explanations Using LIME ..194

Problem ...194

Solution ...195

How It Works ...195

Recipe 4-22. Model Explanations Using ELI5 ..198

Problem ...198

Solution ...198

How It Works ...198

Recipe 4-23. Multiclass Classification Model Explanation201

Problem ...201

Solution ...201

How It Works ...202

Conclusion ..205

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-9029-3_4#Sec69
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec70
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec71
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec72
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec73
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec74
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec75
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec76
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec77
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec78
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec79
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec80
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec81
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec82
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec83
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec84
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec85
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec86
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec87
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec88
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec89
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec90
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec91
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec92
https://doi.org/10.1007/978-1-4842-9029-3_4#Sec93

xv

Chapter 5: Explainability for Natural Language Processing �������������207

Recipe 5-1. Explain Sentiment Analysis Text Classification Using SHAP208

Problem ...208

Solution ...208

How It Works ...208

Recipe 5-2. Explain Sentiment Analysis Text Classification Using ELI5213

Problem ...213

Solution ...213

How It Works ...213

Recipe 5-3. Local Explanation Using ELI5 ...216

Problem ...216

Solution ...216

How It Works ...216

Conclusion ..218

Chapter 6: Explainability for Time-Series Models ����������������������������219

Recipe 6-1. Explain Time-Series Models Using LIME ..220

Problem ...220

Solution ...220

How It Works ...220

Recipe 6-2. Explain Time-Series Models Using SHAP228

Problem ...228

Solution ...228

How It Works ...228

Conclusion ..231

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-9029-3_5
https://doi.org/10.1007/978-1-4842-9029-3_5#Sec1
https://doi.org/10.1007/978-1-4842-9029-3_5#Sec2
https://doi.org/10.1007/978-1-4842-9029-3_5#Sec3
https://doi.org/10.1007/978-1-4842-9029-3_5#Sec4
https://doi.org/10.1007/978-1-4842-9029-3_5#Sec5
https://doi.org/10.1007/978-1-4842-9029-3_5#Sec6
https://doi.org/10.1007/978-1-4842-9029-3_5#Sec7
https://doi.org/10.1007/978-1-4842-9029-3_5#Sec8
https://doi.org/10.1007/978-1-4842-9029-3_5#Sec9
https://doi.org/10.1007/978-1-4842-9029-3_5#Sec10
https://doi.org/10.1007/978-1-4842-9029-3_5#Sec11
https://doi.org/10.1007/978-1-4842-9029-3_5#Sec12
https://doi.org/10.1007/978-1-4842-9029-3_5#Sec13
https://doi.org/10.1007/978-1-4842-9029-3_6
https://doi.org/10.1007/978-1-4842-9029-3_6#Sec1
https://doi.org/10.1007/978-1-4842-9029-3_6#Sec2
https://doi.org/10.1007/978-1-4842-9029-3_6#Sec3
https://doi.org/10.1007/978-1-4842-9029-3_6#Sec4
https://doi.org/10.1007/978-1-4842-9029-3_6#Sec5
https://doi.org/10.1007/978-1-4842-9029-3_6#Sec6
https://doi.org/10.1007/978-1-4842-9029-3_6#Sec7
https://doi.org/10.1007/978-1-4842-9029-3_6#Sec8
https://doi.org/10.1007/978-1-4842-9029-3_6#Sec9

xvi

Chapter 7: Explainability for Deep Learning Models�������������������������233

Recipe 7-1. Explain MNIST Images Using a Gradient Explainer Based
on Keras ..234

Problem ...234

Solution ...234

How It Works ...234

Recipe 7-2. Use Kernel Explainer–Based SHAP Values from a Keras Model239

Problem ...239

Solution ...239

How It Works ...240

Recipe 7-3. Explain a PyTorch-Based Deep Learning Model243

Problem ...243

Solution ...243

How It Works ...243

Conclusion ..249

Index ���251

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-9029-3_7
https://doi.org/10.1007/978-1-4842-9029-3_7#Sec1
https://doi.org/10.1007/978-1-4842-9029-3_7#Sec1
https://doi.org/10.1007/978-1-4842-9029-3_7#Sec2
https://doi.org/10.1007/978-1-4842-9029-3_7#Sec3
https://doi.org/10.1007/978-1-4842-9029-3_7#Sec4
https://doi.org/10.1007/978-1-4842-9029-3_7#Sec5
https://doi.org/10.1007/978-1-4842-9029-3_7#Sec6
https://doi.org/10.1007/978-1-4842-9029-3_7#Sec7
https://doi.org/10.1007/978-1-4842-9029-3_7#Sec8
https://doi.org/10.1007/978-1-4842-9029-3_7#Sec9
https://doi.org/10.1007/978-1-4842-9029-3_7#Sec10
https://doi.org/10.1007/978-1-4842-9029-3_7#Sec11
https://doi.org/10.1007/978-1-4842-9029-3_7#Sec12
https://doi.org/10.1007/978-1-4842-9029-3_7#Sec13

xvii

About the Author

Pradeepta Mishra is an AI/ML leader,

experienced data scientist, and artificial

intelligence architect. He currently heads

NLP, ML, and AI initiatives for five products at

FOSFOR by LTI, a leading-edge innovator in AI

and machine learning based out of Bangalore,

India. He has expertise in designing artificial

intelligence systems for performing tasks such

as understanding natural language and making

recommendations based on natural language

processing. He has filed 12 patents as an inventor and has authored

and coauthored five books, including R Data Mining Blueprints (Packt

Publishing, 2016), R: Mining Spatial, Text, Web, and Social Media Data

(Packt Publishing, 2017), PyTorch Recipes (Apress, 2019), and Practical

Explainable AI Using Python (Apress, 2023). There are two courses

available on Udemy based on these books.

Pradeepta presented a keynote talk on the application of bidirectional

LSTM for time-series forecasting at the 2018 Global Data Science

Conference. He delivered the TEDx talk “Can Machines Think?” on the

power of artificial intelligence in transforming industries and job roles

across industries. He has also delivered more than 150 tech talks on data

science, machine learning, and artificial intelligence at various meetups,

technical institutions, universities, and community forums. He is on

LinkedIn (www.linkedin.com/in/pradeepta/) and Twitter

(@pradmishra1).

http://www.linkedin.com/in/pradeepta/

xix

About the Technical Reviewer

Bharath Kumar Bolla has more than ten years

of experience and is currently working as a

senior data science engineer consultant at

Verizon, Bengaluru. He has a PG diploma in

data science from Praxis Business School and

an MS in life sciences from Mississippi State

University. He previously worked as a data

scientist at the University of Georgia, Emory

University, and Eurofins LLC & Happiest

Minds. At Happiest Minds, he worked on

AI-based digital marketing products and

NLP-based solutions in the education domain. Along with his day-to-day

responsibilities, Bharath is a mentor and an active researcher. To date, he

has published ten articles in journals and peer-reviewed conferences. He is

particularly interested in unsupervised and semisupervised learning and

efficient deep learning architectures in NLP and computer vision.

xxi

Acknowledgments

I would like to thank my wife, Prajna, for her continuous inspiration and

support and for sacrificing her weekends to help me complete this book;

and my daughters, Aarya and Aadya, for being patient throughout the

writing process.

A big thank-you to Celestin Suresh John and Mark Powers for fast-

tracking the whole process and guiding me in the right direction.

I would like to thank the authors of the Appliances Energy Prediction

dataset (http://archive.ics.uci.edu/ml) for making it available: D. Dua

and C. Graff. I use this dataset in the book to show how to develop a model

and explain the predictions generated by a regression model for the

purpose of model explainability using various explainable libraries.

http://archive.ics.uci.edu/ml

xxiii

Introduction

Artificial intelligence plays a crucial role determining the decisions

businesses make. In these cases, when a machine makes a decision,

humans usually want to understand whether the decision is authentic

or whether it was generated in error. If business stakeholders are not

convinced by the decision, they will not trust the machine learning system,

and hence artificial intelligence adoption will gradually reduce within that

organization. To make the decision process more transparent, developers

must be able to document the explainability of AI decisions or ML model

decisions. This book provides a series of solutions to problems that require

explainability and interpretability. Adopting an AI model and developing a

responsible AI system requires explainability as a component.

This book covers model interpretation for supervised learning linear

models, including important features for regression and classification

models, partial dependency analysis for regression and classification

models, and influential data point analysis for both classification and

regression models. Supervised learning models using nonlinear models is

explored using state-of-the-art frameworks such as SHAP values/scores,

including global explanation, and how to use LIME for local interpretation.

This book will also give you an understanding of bagging, boosting-

based ensemble models for supervised learning such as regression and

classification, as well as explainability for time-series models using LIME

and SHAP, natural language processing tasks such as text classification,

and sentiment analysis using ELI5, ALIBI. The most complex models for

classification and regression, such as neural network models and deep

learning models, are explained using the CAPTUM framework, which

shows feature attribution, neuron attribution, and activation attribution.

xxiv

This book attempts to make AI models explainable to help developers

increase the adoption of AI-based models within their organizations and

bring more transparency to decision-making. After reading this book,

you will be able to use Python libraries such as Alibi, SHAP, LIME, Skater,

ELI5, and CAPTUM. Explainable AI Recipes provides a problem-solution

approach to demonstrate each machine learning model, and shows how to

use Python’s XAI libraries to answer questions of explainability and build

trust with AI models and machine learning models. All source code can be

downloaded from github.com/apress/explainable-ai-recipes.

InTroduCTIon

1

CHAPTER 1

Introducing
Explainability and
Setting Up Your
Development
Environment
Industries in which artificial intelligence has been applied include

banking, financial services, insurance, healthcare, manufacturing, retail,

and pharmaceutical. There are regulatory requirements in some of these

industries where model explainability is required. Artificial intelligence

involves classifying objects, recognizing objects to detect fraud, and so forth.

Every learning system requires three things: input data, processing, and an

output. If the performance of any learning system improves over time by

learning from new examples or data, it is called a machine learning system.

When the number of features for a machine learning task increases or the

volume of data increases, it takes a lot of time to apply machine learning

techniques. That’s when deep learning techniques are used.

Figure 1-1 represents the relationships between artificial intelligence,

machine learning, and deep learning.

© Pradeepta Mishra 2023
P. Mishra, Explainable AI Recipes, https://doi.org/10.1007/978-1-4842-9029-3_1

https://doi.org/10.1007/978-1-4842-9029-3_1#DOI

2

Figure 1-1. Relationships among ML, DL, and AI

After preprocessing and feature creation, you can observe hundreds

of thousands of features that need to be computed to produce output. If

we train a machine learning supervised model, it will take significant time

to produce the model object. To achieve scalability in this task, we need

deep learning algorithms, such as a recurrent neural network. This is how

artificial intelligence is connected to deep learning and machine learning.

In the classical predictive modeling scenario, a function is identified,

and the input data is usually fit to the function to produce the output,

where the function is usually predetermined. In a modern predictive

modeling scenario, the input data and output are both shown to a group of

functions, and the machine identifies the best function that approximates

well to the output given a particular set of input. There is a need to explain

the output of a machine learning and deep learning model in performing

regression- and classification-related tasks. These are the reasons why

explainability is required:

• Trust: To gain users’ trust on the predicted output

• Reliability: To make the user rely on the

predicted output

• Regulatory: To meet regulatory and compliance

requirements

Chapter 1 INtrODUCING eXpLaINaBILItY aND SettING Up YOUr DeVeLOpMeNt
 eNVIrONMeNt

3

• Adoption: To increase AI adoption among the users

• Fairness: To remove any kind of discrimination in

prediction

• Accountability: To establish ownership of the

predictions

There are various ways that explainability can be achieved using

statistical properties, probabilistic properties and associations, and

causality among the features. Broadly, the explanations of the models

can be classified into two categories, global explanations and local

explanations. The objective of local explanation is to understand the

inference generated for one sample at a time by comparing the nearest

possible data point; global explanation provides an idea about the overall

model behavior.

The goal of this chapter is to introduce how to install various

explainability libraries and interpret the results generated by those

explainability libraries.

 Recipe 1-1. SHAP Installation
 Problem
You want to install the SHAP (shapely additive explanations) library.

 Solution
The solution to this problem is to use the simple pip or conda option.

Chapter 1 INtrODUCING eXpLaINaBILItY aND SettING Up YOUr DeVeLOpMeNt
 eNVIrONMeNt

4

 How It Works
Let’s take a look at the following script examples. The SHAP Python library

is based on a game theoretic approach that attempts to explain local and

as well as global explanations.

pip install shap

or

conda install -c conda-forge shap

Looking in indexes: https://pypi.org/simple, https://us-python.

pkg.dev/colab-wheels/public/simple/

Collecting shap

 Downloading shap-0.41.0-cp37-cp37m-manylinux_2_12_x86_64.

manylinux2010_x86_64.whl (569 kB)

 |█████████████████████
███████████| 569 kB 8.0 MB/s

Requirement already satisfied: tqdm>4.25.0 in /usr/local/lib/

python3.7/dist-packages (from shap) (4.64.1)

Requirement already satisfied: pandas in /usr/local/lib/

python3.7/dist-packages (from shap) (1.3.5)

Collecting slicer==0.0.7

 Downloading slicer-0.0.7-py3-none-any.whl (14 kB)

Requirement already satisfied: cloudpickle in /usr/local/lib/

python3.7/dist-packages (from shap) (1.5.0)

Requirement already satisfied: scipy in /usr/local/lib/

python3.7/dist-packages (from shap) (1.7.3)

Requirement already satisfied: scikit-learn in /usr/local/lib/

python3.7/dist-packages (from shap) (1.0.2)

Requirement already satisfied: numpy in /usr/local/lib/

python3.7/dist-packages (from shap) (1.21.6)

Requirement already satisfied: numba in /usr/local/lib/

python3.7/dist-packages (from shap) (0.56.2)

Chapter 1 INtrODUCING eXpLaINaBILItY aND SettING Up YOUr DeVeLOpMeNt
 eNVIrONMeNt

5

Requirement already satisfied: packaging>20.9 in /usr/local/

lib/python3.7/dist-packages (from shap) (21.3)

Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /

usr/local/lib/python3.7/dist-packages (from packaging>20.9->

shap) (3.0.9)

Requirement already satisfied: llvmlite<0.40,>=0.39.0dev0 in

/usr/local/lib/python3.7/dist-packages (from numba->shap)

(0.39.1)

Requirement already satisfied: setuptools<60 in /usr/local/lib/

python3.7/dist-packages (from numba->shap) (57.4.0)

Requirement already satisfied: importlib-metadata in /usr/

local/lib/python3.7/dist-packages (from numba->shap) (4.12.0)

Requirement already satisfied: typing-extensions>=3.6.4 in /

usr/local/lib/python3.7/dist-packages (from importlib-metadata->

numba->shap) (4.1.1)

Requirement already satisfied: zipp>=0.5 in /usr/local/lib/

python3.7/dist-packages (from importlib-metadata->numba->

shap) (3.8.1)

Requirement already satisfied: python-dateutil>=2.7.3 in /usr/

local/lib/python3.7/dist-packages (from pandas->shap) (2.8.2)

Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/

python3.7/dist-packages (from pandas->shap) (2022.2.1)

Requirement already satisfied: six>=1.5 in /usr/local/lib/

python3.7/dist-packages (from python-dateutil>=2.7.3->pandas->

shap) (1.15.0)

Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/

local/lib/python3.7/dist-packages (from scikit-learn->

shap) (3.1.0)

Requirement already satisfied: joblib>=0.11 in /usr/local/lib/

python3.7/dist-packages (from scikit-learn->shap) (1.1.0)

Installing collected packages: slicer, shap

Successfully installed shap-0.41.0 slicer-0.0.7

Chapter 1 INtrODUCING eXpLaINaBILItY aND SettING Up YOUr DeVeLOpMeNt
 eNVIrONMeNt

6

 Recipe 1-2. LIME Installation
 Problem
You want to install the LIME Python library.

 Solution
You can install the LIME library using pip or conda.

 How It Works
Let’s take a look at the following example script:

pip install lime

or

conda install -c conda-forge lime

Looking in indexes: https://pypi.org/simple, https://us-python.

pkg.dev/colab-wheels/public/simple/

Collecting lime

 Downloading lime-0.2.0.1.tar.gz (275 kB)

 |████████████████████
████████████| 275 kB 7.5 MB/s

Requirement already satisfied: matplotlib in /usr/local/lib/

python3.7/dist-packages (from lime) (3.2.2)

Requirement already satisfied: numpy in /usr/local/lib/

python3.7/dist-packages (from lime) (1.21.6)

Requirement already satisfied: scipy in /usr/local/lib/

python3.7/dist-packages (from lime) (1.7.3)

Requirement already satisfied: tqdm in /usr/local/lib/

python3.7/dist-packages (from lime) (4.64.1)

Chapter 1 INtrODUCING eXpLaINaBILItY aND SettING Up YOUr DeVeLOpMeNt
 eNVIrONMeNt

7

Requirement already satisfied: scikit-learn>=0.18 in /usr/

local/lib/python3.7/dist-packages (from lime) (1.0.2)

Requirement already satisfied: scikit-image>=0.12 in /usr/

local/lib/python3.7/dist-packages (from lime) (0.18.3)

Requirement already satisfied: networkx>=2.0 in /usr/local/lib/

python3.7/dist-packages (from scikit-image>=0.12->lime) (2.6.3)

Requirement already satisfied: PyWavelets>=1.1.1 in /usr/local/

lib/python3.7/dist-packages (from scikit-image>=0.12->

lime) (1.3.0)

Requirement already satisfied: pillow!=7.1.0,!=7.1.1,>=4.3.0 in

/usr/local/lib/python3.7/dist-packages (from scikit-

image>=0.12->lime) (7.1.2)

Requirement already satisfied: imageio>=2.3.0 in /usr/local/

lib/python3.7/dist-packages (from scikit-image>=0.12->

lime) (2.9.0)

Requirement already satisfied: tifffile>=2019.7.26 in /usr/

local/lib/python3.7/dist-packages (from scikit-image>=0.12->

lime) (2021.11.2)

Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/

lib/python3.7/dist-packages (from matplotlib->lime) (1.4.4)

Requirement already satisfied: cycler>=0.10 in /usr/local/lib/

python3.7/dist-packages (from matplotlib->lime) (0.11.0)

Requirement already satisfied: python-dateutil>=2.1 in /usr/

local/lib/python3.7/dist-packages (from matplotlib->

lime) (2.8.2)

Requirement already satisfied:

pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/

python3.7/dist-packages (from matplotlib->lime) (3.0.9)

Requirement already satisfied: typing-extensions in /usr/local/

lib/python3.7/dist-packages (from kiwisolver>=1.0.1->

matplotlib->lime) (4.1.1)

Chapter 1 INtrODUCING eXpLaINaBILItY aND SettING Up YOUr DeVeLOpMeNt
 eNVIrONMeNt

8

Requirement already satisfied: six>=1.5 in /usr/local/lib/

python3.7/dist-packages (from python-dateutil>=2.1->matplotlib->

lime) (1.15.0)

Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/

local/lib/python3.7/dist-packages (from scikit-learn>=0.18->

lime) (3.1.0)

Requirement already satisfied: joblib>=0.11 in /usr/local/lib/

python3.7/dist-packages (from scikit-learn>=0.18->lime) (1.1.0)

Building wheels for collected packages: lime

 Building wheel for lime (setup.py) ... done

 Created wheel for lime: filename=lime-0.2.0.1-py3-none-any.

whl size=283857 sha256=674ceb94cdcb54588f66c5d5bef5f6ae0326c7

6e645c40190408791cbe4311d5

 Stored in directory: /root/.cache/pip/wheels/ca/cb/e5/

ac701e12d365a08917bf4c6171c0961bc880a8181359c66aa7

Successfully built lime

Installing collected packages: lime

Successfully installed lime-0.2.0.1

 Recipe 1-3. SHAPASH Installation
 Problem
You want to install SHAPASH.

 Solution
If you want to use a combination of functions from both the LIME library

and the SHAP library, then you can use the SHAPASH library. You just have

to install it, which is simple.

Chapter 1 INtrODUCING eXpLaINaBILItY aND SettING Up YOUr DeVeLOpMeNt
 eNVIrONMeNt

9

 How It Works
Let’s take a look at the following code to install SHAPASH. This is not

available on the Anaconda distribution; the only way to install it is by

using pip.

pip install shapash

 Recipe 1-4. ELI5 Installation
 Problem
You want to install ELI5.

 Solution
Since this is a Python library, you can use pip.

 How It Works
Let’s take a look at the following script:

pip install eli5

Looking in indexes: https://pypi.org/simple, https://us-python.

pkg.dev/colab-wheels/public/simple/

Collecting eli5

 Downloading eli5-0.13.0.tar.gz (216 kB)

 |████████████████████
████████████| 216 kB 6.9 MB/s

Requirement already satisfied: attrs>17.1.0 in /usr/local/lib/

python3.7/dist-packages (from eli5) (22.1.0)

Collecting jinja2>=3.0.0

Chapter 1 INtrODUCING eXpLaINaBILItY aND SettING Up YOUr DeVeLOpMeNt
 eNVIrONMeNt

10

 Downloading Jinja2-3.1.2-py3-none-any.whl (133 kB)

 |████████████████████
████████████| 133 kB 42.7 MB/s

Requirement already satisfied: numpy>=1.9.0 in /usr/local/lib/

python3.7/dist-packages (from eli5) (1.21.6)

Requirement already satisfied: scipy in /usr/local/lib/

python3.7/dist-packages (from eli5) (1.7.3)

Requirement already satisfied: six in /usr/local/lib/python3.7/

dist-packages (from eli5) (1.15.0)

Requirement already satisfied: scikit-learn>=0.20 in /usr/

local/lib/python3.7/dist-packages (from eli5) (1.0.2)

Requirement already satisfied: graphviz in /usr/local/lib/

python3.7/dist-packages (from eli5) (0.10.1)

Requirement already satisfied: tabulate>=0.7.7 in /usr/local/

lib/python3.7/dist-packages (from eli5) (0.8.10)

Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/

lib/python3.7/dist-packages (from jinja2>=3.0.0->eli5) (2.0.1)

Requirement already satisfied: joblib>=0.11 in /usr/local/lib/

python3.7/dist-packages (from scikit-learn>=0.20->eli5) (1.1.0)

Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/

local/lib/python3.7/dist-packages (from scikit-learn>=0.20->

eli5) (3.1.0)

Building wheels for collected packages: eli5

 Building wheel for eli5 (setup.py) ... done

 Created wheel for eli5: filename=eli5-0.13.0-py2.py3-none-

any.whl size=107748 sha256=3e02d416bd1cc21aebce60420712991

9a096a92128d7d27c50be1f3a97d3b1de

 Stored in directory: /root/.cache/pip/wheels/cc/3c/96/3ead31a

8e6c20fc0f1a707fde2e05d49a80b1b4b30096573be

Successfully built eli5

Installing collected packages: jinja2, eli5

Chapter 1 INtrODUCING eXpLaINaBILItY aND SettING Up YOUr DeVeLOpMeNt
 eNVIrONMeNt

11

 Attempting uninstall: jinja2

 Found existing installation: Jinja2 2.11.3

 Uninstalling Jinja2-2.11.3:

 Successfully uninstalled Jinja2-2.11.3

ERROR: pip's dependency resolver does not currently take into

account all the packages that are installed. This behavior is

the source of the following dependency conflicts.

flask 1.1.4 requires Jinja2<3.0,>=2.10.1, but you have jinja2

3.1.2 which is incompatible.

Successfully installed eli5-0.13.0 jinja2-3.1.2

 Recipe 1-5. Skater Installation
 Problem
You want to install Skater.

 Solution
Skater is an open-source framework to enable model interpretation for

various kinds of machine learning models. The Python-based Skater

library provides both global and local interpretations and can be installed

using pip.

 How It Works
Let’s take a look at the following script:

pip install skater

Chapter 1 INtrODUCING eXpLaINaBILItY aND SettING Up YOUr DeVeLOpMeNt
 eNVIrONMeNt

12

 Recipe 1-6. Skope-rules Installation
 Problem
You want to install Skopes-rule.

 Solution
Skope-rules offers a trade-off between the interpretability of a decision tree

and the modeling power of a random forest model. The solution is simple;

you use the pip command.

 How It Works
Let’s take a look at the following code:

pip install skope-rules

Looking in indexes: https://pypi.org/simple, https://us-python.

pkg.dev/colab-wheels/public/simple/

Collecting skope-rules

 Downloading skope_rules-1.0.1-py3-none-any.whl (14 kB)

Requirement already satisfied: numpy>=1.10.4 in /usr/local/lib/

python3.7/dist-packages (from skope-rules) (1.21.6)

Requirement already satisfied: scikit-learn>=0.17.1 in /usr/

local/lib/python3.7/dist-packages (from skope-rules) (1.0.2)

Requirement already satisfied: pandas>=0.18.1 in /usr/local/

lib/python3.7/dist-packages (from skope-rules) (1.3.5)

Requirement already satisfied: scipy>=0.17.0 in /usr/local/lib/

python3.7/dist-packages (from skope-rules) (1.7.3)

Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/

python3.7/dist-packages (from pandas>=0.18.1->skope-rules)

(2022.2.1)

Chapter 1 INtrODUCING eXpLaINaBILItY aND SettING Up YOUr DeVeLOpMeNt
 eNVIrONMeNt

13

Requirement already satisfied: python-dateutil>=2.7.3 in /usr/

local/lib/python3.7/dist-packages (from pandas>=0.18.1->skope-

rules) (2.8.2)

Requirement already satisfied: six>=1.5 in /usr/local/lib/

python3.7/dist-packages (from python-dateutil>=2.7.3->

pandas>=0.18.1->skope-rules) (1.15.0)

Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/

local/lib/python3.7/dist-packages (from scikit-learn>=0.17.1->

skope-rules) (3.1.0)

Requirement already satisfied: joblib>=0.11 in /usr/local/lib/

python3.7/dist-packages (from scikit-learn>=0.17.1->skope-

rules) (0.11)

Installing collected packages: skope-rules

Successfully installed skope-rules-1.0.1

 Recipe 1-7. Methods of Model Explainability
 Problem
There are various libraries and many explanations for how to identify the

right method for model explainability.

 Solution
The explainability method depends on who is the consumer of the model

output, if it is the business or senior management then the explainability

should be very simple and plain English without any mathematical

formula and if the consumer of explainability is data scientists and

machine learning engineers then the explanations may include the

mathematical formulas.

Chapter 1 INtrODUCING eXpLaINaBILItY aND SettING Up YOUr DeVeLOpMeNt
 eNVIrONMeNt

14

 How It Works
The levels of transparency of the machine learning models can be

categorized into three buckets, as shown in Figure 1-2.

Figure 1-2. Methods of model explainability

Textual explanations require explaining the mathematical formula in

plain English, which can help business users or senior management. The

interpretations can be designed based on model type and model variant

and can draw inferences from the model outcome. A template to draw

inferences can be designed and mapped to the model types, and then

the templates can be filled in using some natural language processing

methods.

A visual explainability method can be used to generate charts, graphs

such as dendrograms, or any other types of graphs that best explain the

relationships. The tree-based methods use if-else conditions on the back

end; hence, it is simple to show the causality and the relationship.

Using common examples and business scenarios from day-to-day

operations and drawing parallels between them can also be useful.

Which method you should choose depends on the problem that needs

to be solved and the consumer of the solution where the machine learning

model is being used.

Chapter 1 INtrODUCING eXpLaINaBILItY aND SettING Up YOUr DeVeLOpMeNt
 eNVIrONMeNt

15

 Conclusion
In various AI projects and initiatives, the machine learning models

generate predictions. Usually, to trust the outcomes of a model, a detailed

explanation is required. Since many people are not comfortable explaining

the machine learning model outcomes, they cannot reason out the

decisions of a model, and thereby AI adoption is restricted. Explainability

is required from regulatory stand point as well as auditing and compliance

point of view. In high-risk use cases such as medical imaging and object

detection or pattern recognition, financial prediction and fraud detection,

etc., explainability is required to explain the decisions of the machine

learning model.

In this chapter, we set up the environment by installing various

explainable AI libraries. Machine learning model interpretability and

explainability are the key focuses of this book. We are going to use Python-

based libraries, frameworks, methods, classes, and functions to explain

the models.

In the next chapter, we are going to look at the linear models.

Chapter 1 INtrODUCING eXpLaINaBILItY aND SettING Up YOUr DeVeLOpMeNt
 eNVIrONMeNt

17

CHAPTER 2

Explainability for
Linear Supervised
Models
A supervised learning model is a model that is used to train an algorithm

to map input data to output data. A supervised learning model can be of

two types: regression or classification. In a regression scenario, the output

variable is numerical, whereas with classification, the output variable is

binary or multinomial. A binary output variable has two outcomes, such as

true and false, accept and reject, yes and no, etc. In the case of multinomial

output variables, the outcome can be more than two, such as high,

medium, and low. In this chapter, we are going to use explainable libraries

to explain a regression model and a classification model, while training a

linear model.

In the classical predictive modeling scenario, a function has been

identified, and the input data is usually fit to the function to produce

the output, where the function is usually predetermined. In a modern

predictive modeling scenario, the input data and output are both shown

to a group of functions, and the machine identifies the best function that

approximates well to the output given a particular set of input. There is a

need to explain the output of machine learning and deep learning models

when performing regression and classification tasks. Linear regression and

linear classification models are simpler to explain.

© Pradeepta Mishra 2023
P. Mishra, Explainable AI Recipes, https://doi.org/10.1007/978-1-4842-9029-3_2

https://doi.org/10.1007/978-1-4842-9029-3_2#DOI

18

The goal of this chapter is to introduce various explainability libraries

for linear models such as feature importance, partial dependency plot, and

local interpretation.

 Recipe 2-1. SHAP Values for a Regression
Model on All Numerical Input Variables
 Problem
You want to explain a regression model built on all the numeric features

of a dataset.

 Solution
A regression model on all the numeric features is trained, and then

the trained model will be passed through SHAP to generate global

explanations and local explanations.

 How It Works
Let’s take a look at the following script. The Shapely value can be called

the SHAP value. It is used to explain the model. It uses the impartial

distribution of predictions from a cooperative game theory to attribute

a feature to the model’s predictions. Input features from the dataset are

considered as players in the game. The models function is considered the

rules of the game. The Shapely value of a feature is computed based on the

following steps:

 1. SHAP requires model retraining on all feature

subsets; hence, usually it takes time if the

explanation has to be generated for larger datasets.

Chapter 2 explainability for linear SuperviSed ModelS

19

 2. Identify a feature set from a list of features (let’s say

there are 15 features, and we can select a subset with

5 features).

 3. For any particular feature, two models using the

subset of features will be created, one with the

feature and another without the feature.

 4. Then the prediction differences will be computed.

 5. The differences in prediction are computed for all

possible subsets of features.

 6. The weighted average value of all possible

differences is used to populate the feature

importance.

If the weight of the feature is 0.000, then we can conclude that the

feature is not important and has not joined the model. If it is not equal

to 0.000, then we can conclude that the feature has a role to play in the

prediction process.

We are going to use a dataset from the UCI machine learning

repository. The URL to access the dataset is as follows:

https://archive.ics.uci.edu/ml/datasets/Appliances+energy+

prediction

The objective is to predict the appliances’ energy use in Wh, using the

features from sensors. There are 27 features in the dataset, and here we are

trying to understand what features are important in predicting the energy

usage. See Table 2-1.

Chapter 2 explainability for linear SuperviSed ModelS

https://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction
https://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction

20

Table 2-1. Feature Description from the Energy Prediction Dataset

Feature Name Description Unit

appliances energy use in Wh

lights energy use of light fixtures in

the house

in Wh

t1 temperature in kitchen area in Celsius

rh_1 humidity in kitchen area in %

t2 temperature in living room area in Celsius

rh_2 humidity in living room area in %

t3 temperature in laundry room area

rh_3 humidity in laundry room area in %

t4 temperature in office room in Celsius

rh_4 humidity in office room in %

t5 temperature in bathroom in Celsius

rh_5 humidity in bathroom in %

t6 temperature outside the building

(north side)

in Celsius

rh_6 humidity outside the building (north

side)

in %

t7 temperature in ironing room in Celsius

rh_7 humidity in ironing room in %

t8 temperature in teenager room 2 in Celsius

rh_8 humidity in teenager room 2 in %

t9 temperature in parents room in Celsius

rh_9 humidity in parents room in %

(continued)

Chapter 2 explainability for linear SuperviSed ModelS

21

Table 2-1. (continued)

Feature Name Description Unit

to temperature outside (from the

Chievres weather station)

in Celsius

pressure (from Chievres

weather station)

in mm hg

arh_out humidity outside (from the Chievres

weather station)

in %

Wind speed (from Chievres

weather station)

in m/s

visibility (from Chievres

weather station)

in km

tdewpoint (from Chievres

weather station)

Â°C

rv1 random variable 1 nondimensional

rv2 random variable 2 nondimensional

import pandas as pd

df_lin_reg = pd.read_csv('https://archive.ics.uci.edu/ml/

machine- learning-databases/00374/energydata_complete.csv')

del df_lin_reg['date']

df_lin_reg.info()

df_lin_reg.columns

Index(['Appliances', 'lights', 'T1', 'RH_1', 'T2', 'RH_2',

'T3', 'RH_3', 'T4', 'RH_4', 'T5', 'RH_5', 'T6', 'RH_6', 'T7',

'RH_7', 'T8', 'RH_8', 'T9', 'RH_9', 'T_out', 'Press_mm_hg',

'RH_out', 'Windspeed', 'Visibility', 'Tdewpoint', 'rv1',

'rv2'], dtype='object')

Chapter 2 explainability for linear SuperviSed ModelS

22

#y is the dependent variable, that we need to predict

y = df_lin_reg.pop('Appliances')

X is the set of input features

X = df_lin_reg

import pandas as pd

import shap

import sklearn

a simple linear model initialized

model = sklearn.linear_model.LinearRegression()

linear regression model trained

model.fit(X, y)

print("Model coefficients:\n")

for i in range(X.shape[1]):

 print(X.columns[i], "=", model.coef_[i].round(5))

Model coefficients:

lights = 1.98971

T1 = -0.60374

RH_1 = 15.15362

T2 = -17.70602

RH_2 = -13.48062

T3 = 25.4064

RH_3 = 4.92457

T4 = -3.46525

RH_4 = -0.17891

T5 = -0.02784

RH_5 = 0.14096

T6 = 7.12616

RH_6 = 0.28795

Chapter 2 explainability for linear SuperviSed ModelS

23

T7 = 1.79463

RH_7 = -1.54968

T8 = 8.14656

RH_8 = -4.66968

T9 = -15.87243

RH_9 = -0.90102

T_out = -10.22819

Press_mm_hg = 0.13986

RH_out = -1.06375

Windspeed = 1.70364

Visibility = 0.15368

Tdewpoint = 5.0488

rv1 = -0.02078

rv2 = -0.02078

compute the SHAP values for the linear model

explainer = shap.Explainer(model.predict, X)

SHAP value calculation

shap_values = explainer(X)

Permutation explainer: 19736it [16:15, 20.08it/s]

This part of the script takes time as it is a computationally intensive

process. The explainer function calculates permutations, which means

taking a feature set and generating the prediction difference. This

difference is the presence of one feature and the absence of the same

feature. For faster calculation, we can reduce the sample size to a smaller

set, let’s say 1,000 or 2,000. In the previous script, we are using the entire

population of 19,735 records to calculate the SHAP values. This part of

the script can be improved by applying Python multiprocessing, which is

beyond the scope of this chapter.

Chapter 2 explainability for linear SuperviSed ModelS

24

The SHAP value for a specific feature 𝑖 is just the difference between

the expected model output and the partial dependence plot at the feature’s

value 𝑥𝑖. One of the fundamental properties of Shapley values is that they

always sum up to the difference between the game outcome when all

players are present and the game outcome when no players are present.

For machine learning models, this means that SHAP values of all the

input features will always sum up to the difference between the baseline

(expected) model output and the current model output for the prediction

being explained.

SHAP values have three objects: (a) the SHAP value for each feature,

(b) the base value, and (c) the original training data. As there are 27

features, we can expect 27 shap values.

pd.DataFrame(np.round(shap_values.values,3)).head(3)

average prediction value is called as the base value

pd.DataFrame(np.round(shap_values.base_values,3)).head(3)

pd.DataFrame(np.round(shap_values.data,3)).head(3)

Chapter 2 explainability for linear SuperviSed ModelS

25

 Recipe 2-2. SHAP Partial Dependency Plot
for a Regression Model
 Problem
You want to get a partial dependency plot from SHAP.

 Solution
The solution to this problem is to use the partial dependency method

(partial_dependence_plot) from the model.

 How It Works
Let’s take a look at the following example. There are two ways to get the

partial dependency plot, one with a particular data point superimposed

and the other without any reference to the data point. See Figure 2-1.

make a standard partial dependence plot for lights on

predicted output for row number 20 from the training dataset.

sample_ind = 20

shap.partial_dependence_plot(

 "lights", model.predict, X, model_expected_value=True,

 feature_expected_value=True, ice=False,

 shap_values=shap_values[sample_ind:sample_ind+1,:]

)

Chapter 2 explainability for linear SuperviSed ModelS

26

Figure 2-1. Correlation between feature light and predicted output of
the model

The partial dependency plot is a way to explain the individual

predictions and generate local interpretations for the sample selected from

the dataset; in this case, the sample 20th record is selected from the training

dataset. Figure 2-1 shows the partial dependency superimposed with the

20th record in red.

shap.partial_dependence_plot(

 "lights", model.predict, X, ice=False,

 model_expected_value=True, feature_expected_value=True

)

Chapter 2 explainability for linear SuperviSed ModelS

27

Figure 2-2. Partial dependency plot between lights and predicted
outcome from the model

the waterfall_plot shows how we get from shap_values.base_

values to model.predict(X)[sample_ind]

shap.plots.waterfall(shap_values[sample_ind], max_display=14)

Chapter 2 explainability for linear SuperviSed ModelS

28

Figure 2-3. Local interpretation for record number 20

The local interpretation for record number 20 from the training dataset

is displayed in Figure 2-3. The predicted output for the 20th record is 140

Wh. The most influential feature impacting the 20th record is RH_1, which

is the humidity in the kitchen area in percentage, and RH_2, which is the

humidity in the living room area. On the bottom of Figure 2-3, there are 14

features that are not very important for the 20th record’s predicted value.

X[20:21]

model.predict(X[20:21])

array([140.26911466])

Chapter 2 explainability for linear SuperviSed ModelS

29

 Recipe 2-3. SHAP Feature Importance
for Regression Model with All Numerical
Input Variables
 Problem
You want to calculate the feature importance using the SHAP values.

 Solution
The solution to this problem is to use SHAP absolute values from

the model.

 How It Works
Let’s take a look at the following example. SHAP values can be used to

show the global importance of features. Importance features means

features that have a larger importance in predicting the output.

#computing shap importance values for the linear model

import numpy as np

feature_names = shap_values.feature_names

shap_df = pd.DataFrame(shap_values.values,

columns=feature_names)

vals = np.abs(shap_df.values).mean(0)

shap_importance = pd.DataFrame(list(zip(feature_names, vals)),

columns=['col_name', 'feature_importance_vals'])

shap_importance.sort_values(by=['feature_importance_vals'],

ascending=False, inplace=True)

Chapter 2 explainability for linear SuperviSed ModelS

30

print(shap_importance)

 col_name feature_importance_vals

2 RH_1 49.530061

19 T_out 43.828847

4 RH_2 42.911069

5 T3 41.671587

11 T6 34.653893

3 T2 31.097282

17 T9 26.607721

16 RH_8 19.920029

24 Tdewpoint 17.443688

21 RH_out 13.044643

6 RH_3 13.042064

15 T8 12.803450

0 lights 11.907603

12 RH_6 7.806188

14 RH_7 6.578015

7 T4 5.866801

22 Windspeed 3.361895

13 T7 3.182072

18 RH_9 3.041144

23 Visibility 1.385616

10 RH_5 0.855398

20 Press_mm_hg 0.823456

1 T1 0.765753

8 RH_4 0.642723

25 rv1 0.260885

26 rv2 0.260885

9 T5 0.041905

All the feature importance values are not scaled; hence, sum of values

from all features will not be totaling 100.

Chapter 2 explainability for linear SuperviSed ModelS

31

The beeswarm chart in Figure 2-4 shows the impact of SHAP values on

model output. The blue dot shows a low feature value, and a red dot shows

a high feature value. Each dot indicates one data point from the dataset.

The beeswarm plot shows the distribution of feature values against the

SHAP values.

shap.plots.beeswarm(shap_values)

Figure 2-4. Impact on model output

 Recipe 2-4. SHAP Values for a Regression
Model on All Mixed Input Variables
 Problem
How do you estimate SHAP values when you introduce the categorical

variables along with the numerical variables, which is a mixed set of input

features.

Chapter 2 explainability for linear SuperviSed ModelS

32

 Solution
The solution is that the mixed input variables that have numeric features

as well as categorical or binary features can be modeled together. As the

number of features increases, the time to compute all the permutations

will also increase.

 How It Works
We are going to use an automobile public dataset with some modifications.

The objective is to predict the price of a vehicle given the features such

as make, location, age, etc. It is a regression problem that we are going to

solve using a mix of numeric and categorical features.

df = pd.read_csv('https://raw.githubusercontent.com/

pradmishra1/PublicDatasets/main/automobile.csv')

df.head(3)

df.columns

Index(['Price', 'Make', 'Location', 'Age', 'Odometer',

'FuelType', 'Transmission', 'OwnerType', 'Mileage', 'EngineCC',

'PowerBhp'], dtype='object')

We cannot use string-based features or categorical features in the

model directly as matrix multiplication is not possible on string features;

hence, the string-based features need to be transformed into dummy

variables or binary features with 0 and 1 flags. The transformation step

is skipped here because many data scientists already know how to do

this data transformation. We are importing another transformed dataset

directly.

df_t = pd.read_csv('https://raw.githubusercontent.com/

pradmishra1/PublicDatasets/main/Automobile_transformed.csv')

del df_t['Unnamed: 0']

Chapter 2 explainability for linear SuperviSed ModelS

33

df_t.head(3)

df_t.columns

Index(['Price', 'Age', 'Odometer', 'mileage', 'engineCC',

'powerBhp', 'Location_Bangalore', 'Location_Chennai',

'Location_Coimbatore', 'Location_Delhi', 'Location_Hyderabad',

'Location_Jaipur', 'Location_Kochi', 'Location_Kolkata',

'Location_Mumbai', 'Location_Pune', 'FuelType_Diesel',

 'FuelType_Electric', 'FuelType_LPG', 'FuelType_Petrol',

'Transmission_Manual', 'OwnerType_Fourth +ACY- Above',

'OwnerType_Second', 'OwnerType_Third'], dtype='object')

#y is the dependent variable, that we need to predict

y = df_t.pop('Price')

X is the set of input features

X = df_t

import pandas as pd

import shap

import sklearn

a simple linear model initialized

model = sklearn.linear_model.LinearRegression()

linear regression model trained

model.fit(X, y)

print("Model coefficients:\n")

for i in range(X.shape[1]):

 print(X.columns[i], "=", model.coef_[i].round(5))

Model coefficients:

Age = -0.92281

Odometer = 0.0

mileage = -0.07923

engineCC = -4e-05

Chapter 2 explainability for linear SuperviSed ModelS

34

powerBhp = 0.1356

Location_Bangalore = 2.00658

Location_Chennai = 0.94944

Location_Coimbatore = 2.23592

Location_Delhi = -0.29837

Location_Hyderabad = 1.8771

Location_Jaipur = 0.8738

Location_Kochi = 0.03311

Location_Kolkata = -0.86024

Location_Mumbai = -0.81593

Location_Pune = 0.33843

FuelType_Diesel = -1.2545

FuelType_Electric = 7.03139

FuelType_LPG = 0.79077

FuelType_Petrol = -2.8691

Transmission_Manual = -2.92415

OwnerType_Fourth +ACY- Above = 1.7104

OwnerType_Second = -0.55923

OwnerType_Third = 0.76687

To compute the SHAP values, we can use the explainer function

with the training dataset X and model predict function. The SHAP value

calculation happens using a permutation approach; it took 5 minutes.

compute the SHAP values for the linear model

explainer = shap.Explainer(model.predict, X)

SHAP value calculation

shap_values = explainer(X)

Permutation explainer: 6020it [05:14, 18.59it/s]

Chapter 2 explainability for linear SuperviSed ModelS

35

import numpy as np

pd.DataFrame(np.round(shap_values.values,3)).head(3)

average prediction value is called as the base value

pd.DataFrame(np.round(shap_values.base_values,3)).head(3)

0

0 11.933

1 11.933

2 11.933

pd.DataFrame(np.round(shap_values.data,3)).head(3)

 Recipe 2-5. SHAP Partial Dependency Plot
for Regression Model for Mixed Input
 Problem
You want to plot the partial dependency plot and interpret the graph for

numeric and categorical dummy variables.

Chapter 2 explainability for linear SuperviSed ModelS

36

 Solution
The partial dependency plot shows the correlation between the feature

and the predicted output of the target variables. There are two ways we

can showcase the results, one with a feature and expected value of the

prediction function and the other with superimposing a data point on the

partial dependency plot.

 How It Works
Let’s take a look at the following example (see Figure 2-5):

shap.partial_dependence_plot(

 "powerBhp", model.predict, X, ice=False,

 model_expected_value=True, feature_expected_value=True

)

Figure 2-5. Partial dependency plot for powerBhp and predicted
price of the vehicle

Chapter 2 explainability for linear SuperviSed ModelS

37

The linear blue line shows the positive correlation between the price

and the powerBhp. The powerBhp is a strong feature. The higher the bhp,

the higher the price of the car. This is a continuous or numeric feature; let’s

look at the binary or dummy features. There are two dummy features if the

car is registered in a Bangalore location or in a Kolkata location as dummy

variables. See Figure 2-6.

shap.partial_dependence_plot(

 "Location_Bangalore", model.predict, X, ice=False,

 model_expected_value=True, feature_expected_value=True

)

Figure 2-6. Dummy variable Bangalore location versus SHAP value

If the location of the car is Bangalore, then the price would be higher,

and vice versa. See Figure 2-7.

shap.partial_dependence_plot(

 "Location_Kolkata", model.predict, X, ice=False,

 model_expected_value=True, feature_expected_value=True

)

Chapter 2 explainability for linear SuperviSed ModelS

38

Figure 2-7. Dummy variable Location_Kolkata versus SHAP value

If the location is Kolkata, then the price is expected to be lower. The

reason for the difference between the two locations is in the data that is

being used to train the model. The previous three figures show the global

importance of a feature versus the prediction function. As an example,

only two features are taken into consideration; we can use all features one

by one and display many graphs to get more understanding about the

predictions.

Now let’s look at a sample data point superimposed on a partial

dependence plot to display local explanations. See Figure 2-8.

make a standard partial dependence plot for lights on

predicted output

sample_ind = 20 #20th record from the dataset

shap.partial_dependence_plot(

 "powerBhp", model.predict, X, model_expected_value=True,

 feature_expected_value=True, ice=False,

 shap_values=shap_values[sample_ind:sample_ind+1,:]

)

Chapter 2 explainability for linear SuperviSed ModelS

39

Figure 2-8. Power bhp versus prediction function

The vertical dotted line shows the average powerBhp, and the

horizontal dotted line shows the average predicted value by the model.

The small blue bar dropping from the black dot reflects the placement

of record number 20 from the dataset. Local interpretation means that

for any sample record from the dataset, we should be able to explain the

predictions. Figure 2-9 shows the importance of features corresponding to

each record in the dataset.

the waterfall_plot shows how we get from shap_values.base_

values to model.predict(X)[sample_ind]

shap.plots.waterfall(shap_values[sample_ind], max_display=14)

Chapter 2 explainability for linear SuperviSed ModelS

40

Figure 2-9. Local interpretation of the 20th record and corresponding
feature importance

For the 20th record, the predicted price is 22.542, the powerBhp stands

out to be most important feature, and manual transmission is the second

most important feature.

X[20:21]

model.predict(X[20:21])

array([22.54213017])

Chapter 2 explainability for linear SuperviSed ModelS

41

 Recipe 2-6. SHAP Feature Importance
for a Regression Model with All Mixed
Input Variables
 Problem
You want to get the global feature importance from SHAP values using

mixed-input feature data.

 Solution
The solution to this problem is to use absolute values and sort them in

descending order.

 How It Works
Let’s take a look at the following example:

#computing shap importance values for the linear model

import numpy as np

feature names from the training data

feature_names = shap_values.feature_names

#combining the shap values with feature names

shap_df = pd.DataFrame(shap_values.values,

columns=feature_names)

#taking the absolute shap values

vals = np.abs(shap_df.values).mean(0)

#creating a dataframe view

shap_importance = pd.DataFrame(list(zip(feature_names, vals)),

columns=['col_name', 'feature_importance_vals'])

#sorting the importance values

Chapter 2 explainability for linear SuperviSed ModelS

42

shap_importance.sort_values(by=['feature_importance_vals'],

ascending=False, inplace=True)

print(shap_importance)

col_name feature_importance_vals

4 powerBhp 6.057831

0 Age 2.338342

18 FuelType_Petrol 1.406920

19 Transmission_Manual 1.249077

15 FuelType_Diesel 0.618288

7 Location_Coimbatore 0.430233

9 Location_Hyderabad 0.401118

2 mileage 0.270872

13 Location_Mumbai 0.227442

5 Location_Bangalore 0.154706

21 OwnerType_Second 0.154429

6 Location_Chennai 0.133476

10 Location_Jaipur 0.127807

12 Location_Kolkata 0.111829

14 Location_Pune 0.051082

8 Location_Delhi 0.049372

22 OwnerType_Third 0.021778

3 engineCC 0.020145

1 Odometer 0.009602

11 Location_Kochi 0.007474

20 OwnerType_Fourth +ACY- Above 0.002557

16 FuelType_Electric 0.002336

17 FuelType_LPG 0.001314

At a high level, for the linear model that is used to predict the price

of the automobiles, the previous features are important, with the highest

being the powerBhp, age of the car, petrol type, manual transmission type,

etc. The previous tabular output shows global feature importance.

Chapter 2 explainability for linear SuperviSed ModelS

43

 Recipe 2-7. SHAP Strength for Mixed
Features on the Predicted Output
for Regression Models
 Problem
You want to know the impact of a feature on the model function.

 Solution
The solution to this problem is to use a beeswarm plot that displays the

blue and red points.

 How It Works
Let’s take a look at the following example (see Figure 2-10). From the

beeswarm plot there is a positive relationship between powerBhp and

positive SHAP value; however, there is a negative correlation between

the age of a car and the price of the car. As the feature value increases

from a lower powerBhp value to a higher powerBhp value, the shap value

increases and vice versa. However, there is an opposite trend for the age

feature.

shap.plots.beeswarm(shap_values)

Chapter 2 explainability for linear SuperviSed ModelS

44

Figure 2-10. The SHAP value impact on the model output

 Recipe 2-8. SHAP Values for a Regression
Model on Scaled Data
 Problem
You don’t know whether getting SHAP values on scaled data is better than

the unscaled numerical data.

 Solution
The solution to this problem is to use a numerical dataset and generate

local and global explanations after applying the standard scaler to the data.

Chapter 2 explainability for linear SuperviSed ModelS

45

 How It Works
Let’s take a look at the following script:

import pandas as pd

df_lin_reg = pd.read_csv('https://archive.ics.uci.edu/ml/

machine- learning-databases/00374/energydata_complete.csv')

del df_lin_reg['date']

#y is the dependent variable, that we need to predict

y = df_lin_reg.pop('Appliances')

X is the set of input features

X = df_lin_reg

import pandas as pd

import shap

import sklearn

#create standardized features

scaler = sklearn.preprocessing.StandardScaler()

scaler.fit(X)

#transform the dataset

X_std = scaler.transform(X)

a simple linear model initialized

model = sklearn.linear_model.LinearRegression()

linear regression model trained

model.fit(X_std, y)

print("Model coefficients:\n")

for i in range(X.shape[1]):

 print(X.columns[i], "=", model.coef_[i].round(5))

Model coefficients:

lights = 15.7899

T1 = -0.96962

RH_1 = 60.29926

T2 = -38.82785

Chapter 2 explainability for linear SuperviSed ModelS

46

RH_2 = -54.8622

T3 = 50.96675

RH_3 = 16.02699

T4 = -7.07893

RH_4 = -0.77668

T5 = -0.05136

RH_5 = 1.27172

T6 = 43.3997

RH_6 = 8.96929

T7 = 3.78656

RH_7 = -7.92521

T8 = 15.93559

RH_8 = -24.39546

T9 = -31.97757

RH_9 = -3.74049

T_out = -54.38609

Press_mm_hg = 1.03483

RH_out = -15.85058

Windspeed = 4.17588

Visibility = 1.81258

Tdewpoint = 21.17741

rv1 = -0.30118

rv2 = -0.30118

CodeText

compute the SHAP values for the linear model

explainer = shap.Explainer(model.predict, X_std)

SHAP value calculation

shap_values = explainer(X_std)

Permutation explainer: 19736it [08:53, 36.22it/s]

Chapter 2 explainability for linear SuperviSed ModelS

47

It is faster to get results from the SHAP explainer because we are using

the standardized data. The SHAP values also changed a bit, but there are

no major changes to the shap values.

Permutation explainer Time

unscaled data 19736it 15:22, 21.23it/s

Scaled data 19736it 08:53, 36.22it/s

#computing shap importance values for the linear model

import numpy as np

feature names from the training data

feature_names = X.columns

#combining the shap values with feature names

shap_df = pd.DataFrame(shap_values.values,

columns=feature_names)

#taking the absolute shap values

vals = np.abs(shap_df.values).mean(0)

#creating a dataframe view

shap_importance = pd.DataFrame(list(zip(feature_names, vals)),

columns=['col_name', 'feature_importance_vals'])

#sorting the importance values

shap_importance.sort_values(by=['feature_importance_vals'],

ascending=False, inplace=True)

print(shap_importance)

 col_name feature_importance_vals

2 RH_1 49.530061

19 T_out 43.828847

4 RH_2 42.911069

5 T3 41.671587

11 T6 34.653893

Chapter 2 explainability for linear SuperviSed ModelS

48

3 T2 31.097282

17 T9 26.607721

16 RH_8 19.920029

24 Tdewpoint 17.443688

21 RH_out 13.044643

6 RH_3 13.042064

15 T8 12.803450

0 lights 11.907603

12 RH_6 7.806188

14 RH_7 6.578015

7 T4 5.866801

22 Windspeed 3.361895

13 T7 3.182072

18 RH_9 3.041144

23 Visibility 1.385616

10 RH_5 0.855398

20 Press_mm_hg 0.823456

1 T1 0.765753

8 RH_4 0.642723

25 rv1 0.260885

26 rv2 0.260885

9 T5 0.041905

 Recipe 2-9. LIME Explainer for Tabular Data
 Problem
You want to know how to generate explainability at a local level in a

focused manner rather than at a global level.

Chapter 2 explainability for linear SuperviSed ModelS

49

 Solution
The solution to this problem is to use the LIME library. LIME is a model-

agnostic technique; it retrains the ML model while running the explainer.

LIME localizes a problem and explains the model at a local level.

 How It Works
Let’s take a look at the following example. LIME requires a numpy array as

an input to the tabular explainer; hence, the Pandas dataframe needs to be

transformed into an array.

!pip install lime

Looking in indexes: https://pypi.org/simple, https://us-python.

pkg.dev/colab-wheels/public/simple/

Collecting lime

 Downloading lime-0.2.0.1.tar.gz (275 kB)

 |████████████████| 275 kB 3.9 MB/s

Requirement already satisfied: matplotlib in /usr/local/lib/

python3.7/dist-packages (from lime) (3.2.2)

Requirement already satisfied: numpy in /usr/local/lib/

python3.7/dist-packages (from lime) (1.21.6)

Requirement already satisfied: scipy in /usr/local/lib/

python3.7/dist-packages (from lime) (1.7.3)

Require

................

import lime

import lime.lime_tabular

explainer = lime.lime_tabular.LimeTabularExplainer(np.array(X),

 mode='regression',

 feature_names=

X.columns,

Chapter 2 explainability for linear SuperviSed ModelS

50

 class_names=

['price'],

 verbose=True)

We are using the energy prediction data from this chapter only.

Explainer.feature_selection

asking for explanation for LIME model

I = 60

exp = explainer.explain_instance(np.array(X)[i],

 model.predict,

 num_features=14

)

model.predict(X)[60]

X[60:61]

Intercept -142.75931081140854

Prediction_local [-492.87528974]

Right: -585.148657732673

exp.show_in_notebook(show_table=True)

Figure 2-11. Local explanation for the 60th record from the dataset

Chapter 2 explainability for linear SuperviSed ModelS

51

exp.as_list()

[('RH_6 > 83.23', 464.95860873125986), ('RH_1 > 43.07',

444.5520820612734), ('RH_2 > 43.26', -373.10130212185885), ('RH_out >

91.67', -318.85242557316906), ('RH_8 > 46.54', -268.93915670002696),

('lights <= 0.00', -250.2220287090558), ('T3 <= 20.79',

-167.06955734678837), ('3.67 < T_out <= 6.92', 131.73980385122888),

('3.63 < T6 <= 7.30', -103.65788170866274), ('T9 <= 18.00',

93.3237211878042), ('RH_7 > 39.00', -79.9838215229673), ('RH_3 >

41.76', 78.2163751694391), ('T8 <= 20.79', -45.00198774806178),

('18.79 < T2 <= 20.00', 43.92159150217912)]

 Recipe 2-10. ELI5 Explainer for Tabular Data
 Problem
You want to use the ELI5 library for generating explanations of a linear

regression model.

 Solution
ELI5 is a Python package that helps to debug a machine learning model

and explain the predictions. It provides support for all machine learning

models supported by the scikit-learn library.

 How It Works
Let’s take a look at the following script:

pip install eli5

import eli5

eli5.show_weights(model,

 feature_names=list(X.columns))

Chapter 2 explainability for linear SuperviSed ModelS

52

y top features

Weight? Feature

+97.695 <biaS>

+60.299 rh_1

+50.967 t3

+43.400 t6

+21.177 tdewpoint

+16.027 rh_3

+15.936 t8

+15.790 lights

+8.969 rh_6

+4.176 Windspeed

+3.787 t7

… 3 more positive …

… 5 more negative …

-3.740 rh_9

-7.079 t4

-7.925 rh_7

-15.851 rh_out

-24.395 rh_8

-31.978 t9

-38.828 t2

-54.386 t_out

-54.862 rh_2

Chapter 2 explainability for linear SuperviSed ModelS

53

eli5.explain_weights(model, feature_names=list(X.columns))

eli5.explain_prediction(model,X.iloc[60])

from eli5.sklearn import PermutationImportance

a simple linear model initialized

model = sklearn.linear_model.LinearRegression()

linear regression model trained

model.fit(X, y)

perm = PermutationImportance(model)

perm.fit(X, y)

eli5.show_weights(perm,feature_names=list(X.columns))

The results table has a BIAS value as a feature. This can be interpreted

as an intercept term for a linear regression model. Other features are listed

based on the descending order of importance based on their weight. The

show weights function provides a global interpretation of the model, and

the show prediction function provides a local interpretation by taking into

account a record from the training set.

 Recipe 2-11. How the Permutation Model
in ELI5 Works
 Problem
You want to make sense of the ELI5 permutation library.

 Solution
The solution to this problem is to use a dataset and a trained model.

Chapter 2 explainability for linear SuperviSed ModelS

54

 How It Works
The permutation model in the ELI5 library works only for global

interpretation. First, it takes a base line linear regression model from the

training dataset and computes the error of the model. Then it shuffles

the values of a feature and retrains the model and computes the error.

It compares the decrease in error after shuffling and before shuffling. A

feature can be considered as important if post shuffling the error delta

is high and unimportant if the error delta is low. The result displays the

average importance of features and the standard deviation of features with

multiple shuffle steps.

 Recipe 2-12. Global Explanation for Logistic
Regression Models
 Problem
You want to explain the predictions generated from a logistic

regression model.

 Solution
The logistic regression model is also known as a classification model as we

model the probabilities from either a binary classification or a multinomial

classification variable. In this particular recipe, we are using a churn

classification dataset that has two outcomes: whether the customer is

likely to churn or not.

Chapter 2 explainability for linear SuperviSed ModelS

55

 How It Works
Let’s take a look at the following example. The key is to get the SHAP

values, which will return base values, SHAP values, and data. Using the

SHAP values, we can create various explanations using graphs and figures.

The SHAP values are always at a global level.

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

from sklearn.linear_model import LogisticRegression,

LogisticRegressionCV

from sklearn.metrics import confusion_matrix,

classification_report

df_train = pd.read_csv('https://raw.githubusercontent.com/

pradmishra1/PublicDatasets/main/ChurnData_test.csv')

from sklearn.preprocessing import LabelEncoder

tras = LabelEncoder()

df_train['area_code_tr'] = tras.fit_transform(df_

train['area_code'])

df_train.columns

del df_train['area_code']

df_train.columns

df_train['target_churn_dum'] = pd.get_dummies(df_train.

churn,prefix='churn',drop_first=True)

df_train.columns

del df_train['international_plan']

del df_train['voice_mail_plan']

del df_train['churn']

df_train.info()

Chapter 2 explainability for linear SuperviSed ModelS

56

del df_train['Unnamed: 0']

df_train.columns

from sklearn.model_selection import train_test_split

df_train.columns

X = df_train[['account_length', 'number_vmail_messages',

'total_day_minutes',

 'total_day_calls', 'total_day_charge', 'total_eve_

minutes',

 'total_eve_calls', 'total_eve_charge', 'total_night_

minutes',

 'total_night_calls', 'total_night_charge', 'total_intl_

minutes',

 'total_intl_calls', 'total_intl_charge',

 'number_customer_service_calls', 'area_code_tr']]

Y = df_train['target_churn_dum']

xtrain,xtest,ytrain,ytest=train_test_split(X,Y,test_

size=0.20,stratify=Y)

log_model = LogisticRegression()

log_model.fit(xtrain,ytrain)

print("training accuracy:", log_model.score(xtrain,ytrain))

#training accuracy

print("test accuracy:",log_model.score(xtest,ytest)) # test

accuracy

Provide Probability as Output

def model_churn_proba(x):

 return log_model.predict_proba(x)[:,1]

Chapter 2 explainability for linear SuperviSed ModelS

57

Provide Log Odds as Output

def model_churn_log_odds(x):

 p = log_model.predict_log_proba(x)

 return p[:,1] - p[:,0]

compute the SHAP values for the linear model

background_churn = shap.maskers.Independent(X, max_

samples=2000)

explainer = shap.Explainer(log_model, background_churn,feature_

names=list(X.columns))

shap_values_churn = explainer(X)

shap_values_churn

.values = array([[-5.68387743e-03, 2.59884057e-01,

-1.12707664e+00, ..., 1.70015539e-04, 6.35113804e-01,

-5.98927431e-03], [-9.26328584e-02, 2.59884057e-01,

4.31613190e-01, ..., -4.82342680e-04, -7.11876922e-01,

-5.98927431e-03], [-1.05143764e-02, -8.06452301e-01,

1.15736857e+00, ..., 2.05960486e-03, -2.62880014e-01,

5.88245015e-03], ..., [9.09261014e-02, 2.59884057e-01,

-4.15611799e-01, ..., 1.99211953e-03, -2.62880014e-01,

-5.34120777e-05], [-2.50058732e-02, 2.59884057e-01,

7.63911460e-02, ..., -1.08971068e-03, -7.11876922e-01,

-5.98927431e-03], [3.05448646e-02, -9.90303397e-01,

-5.29936135e-01, ..., -6.17313346e-04, -7.11876922e-01,

-5.34120777e-05]]) .base_values = array([-2.18079251,

-2.18079251, -2.18079251, ..., -2.18079251, -2.18079251,

-2.18079251]) .data = array([[101. , 0. , 70.9 , ..., 2.86, 3.

, 2.], [137. , 0. , 223.6 , ..., 2.57, 0. , 2.], [103. , 29.

, 294.7 , ..., 3.7 , 1. , 0.], ..., [61. , 0. , 140.6 , ...,

3.67, 1. , 1.], [109. , 0. , 188.8 , ..., 2.3 , 0. , 2.], [

86. , 34. , 129.4 , ..., 2.51, 0. , 1.]])

shap_values = pd.DataFrame(shap_values_churn.values)

Chapter 2 explainability for linear SuperviSed ModelS

58

shap_values.columns = list(X.columns)

shap_values

compute the SHAP values for the linear model

explainer_log_odds = shap.Explainer(log_model, background_

churn,feature_names=list(X.columns))

shap_values_churn_log_odds = explainer_log_odds(X)

shap_values_churn_log_odds

 Recipe 2-13. Partial Dependency Plot
for a Classifier
 Problem
You want to show feature associations with the class probabilities.

 Solution
The class probabilities in this example are related to predicting the

probability of churn. The SHAP value for a feature can be plotted against

the feature value to show a scatter chart that displays the correlation

(positive or negative) and strength of associations.

 How It Works
Let’s take a look at the following script:

shap.plots.scatter(shap_values_churn[:,'account_length'])

Chapter 2 explainability for linear SuperviSed ModelS

59

The Figure 2-12 shows the relationship between account length

variable and the SHAP values of the account length variable.

make a standard partial dependence plot

sample_ind = 25

fig,ax = shap.partial_dependence_plot(

 "number_vmail_messages", model_churn_proba, X, model_

expected_value=True,

 feature_expected_value=True, show=False,ice=False)

The Figure 2-13 shows the relationship between feature number

of voice mail messages and the SHAP value of number of voice mail

messages.

Figure 2-12. Account length and SHAP value of account length

Chapter 2 explainability for linear SuperviSed ModelS

60

Figure 2-13. Number of voicemail messages and their shap values

shap.plots.bar(shap_values_churn_log_odds)

Figure 2-14. Mean absolute shap values of all features

Chapter 2 explainability for linear SuperviSed ModelS

61

 Recipe 2-14. Global Feature Importance
from the Classifier
 Problem
You want to get the global feature importance for the logistic

regression model.

 Solution
The solution to this problem is to use a bar plot and beeswarm plot and

heat map.

 How It Works
Let’s take a look at the following script (see Figure 2-15 and Figure 2-16):

shap.plots.beeswarm(shap_values_churn_log_odds)

Figure 2-15. SHAP value impact on the model output

Chapter 2 explainability for linear SuperviSed ModelS

62

shap.plots.heatmap(shap_values_churn_log_odds[:1000])

temp_df = pd.DataFrame()

temp_df['Feature Name'] = pd.Series(X.columns)

temp_df['Coefficients'] = pd.Series(log_model.coef_.flatten())

temp_df.sort_values(by='Coefficients',ascending=False)

The interpretation goes like this: when we change the value of a feature

by 1 unit, the model equation will produce two odds; one is the base, and

the other is the incremental value of the feature. We are looking at the ratio

of odds changing with every increase or decrease in the value of a feature.

From the global feature importance, there are three important features:

the number of customer service calls, the total minutes for the day, and the

number of voicemail messages.

Figure 2-16. Heat map for SHAP value and positive and negative
feature contributions

Chapter 2 explainability for linear SuperviSed ModelS

63

 Recipe 2-15. Local Explanations Using LIME
 Problem
You want to get faster explanations from both global and local explainable

libraries.

 Solution
The model explanation can be done using SHAP; however, one of the

limitations of SHAP is we cannot use the full data to create global and local

explanations. Even if we decide to use the full data, it usually takes more

time. Hence, LIME is very useful to speed up the process of generating

local and global explanations in a scenario when millions of records are

being used to train a model.

 How It Works
Let’s take a look at the following script:

import lime

import lime.lime_tabular

explainer = lime.lime_tabular.LimeTabularExplainer(np.

array(xtrain),

 feature_names=list(xtrain.columns),

 class_names=['target_churn_dum'],

 verbose=True, mode='classification')

this record is a no churn scenario

exp = explainer.explain_instance(xtest.iloc[0], log_model.

predict_proba, num_features=16)

exp.as_list()

Intercept -0.005325152786766457

Chapter 2 explainability for linear SuperviSed ModelS

64

Prediction_local [0.38147987]

Right: 0.32177492114146566

X does not have valid feature names, but LogisticRegression was

fitted with feature names

[('number_customer_service_calls > 2.00', 0.1530891322197175),

 ('total_day_minutes > 213.80', 0.11114575899827552),

 ('number_vmail_messages <= 0.00', 0.09610037835765535),

 ('total_intl_calls <= 3.00', 0.03177016778340472),

 ('total_day_calls <= 86.00', 0.029375047698073507),

 ('99.00 < total_night_calls <= 113.00',

 -0.023964881054121437),

 ('account_length > 126.00', -0.015756474385902122),

 ('88.00 < total_eve_calls <= 101.00', 0.008756083756550214),

 ('total_intl_minutes <= 8.60', -0.007205495334049559),

 ('200.00 < total_eve_minutes <= 232.00',

0.004122691218360631),

 ('total_intl_charge <= 2.32', -0.0013747713519713068),

 ('total_day_charge > 36.35', 0.0010811737941700244),

 ('200.20 < total_night_minutes <= 234.80',

 -0.00013400510199346275),

 ('0.00 < area_code_tr <= 1.00', -8.127174069198377e-05),

 ('9.01 < total_night_charge <= 10.57',

 -6.668417986225894e-05),

 ('17.00 < total_eve_charge <= 19.72', -5.18320207196282e-05)]

pd.DataFrame(exp.as_list())

Chapter 2 explainability for linear SuperviSed ModelS

65

0 1

0 number_customer_service_calls > 2.00 0.153089

1 total_day_minutes > 213.80 0.111146

2 number_vmail_messages <= 0.00 0.096100

3 total_intl_calls <= 3.00 0.031770

4 total_day_calls <= 86.00 0.029375

5 99.00 < total_night_calls <= 113.00 -0.023965

6 account_length > 126.00 -0.015756

7 88.00 < total_eve_calls <= 101.00 0.008756

8 total_intl_minutes <= 8.60 -0.007205

9 200.00 < total_eve_minutes <= 232.00 0.004123

10 total_intl_charge <= 2.32 -0.001375

11 total_day_charge > 36.35 0.001081

12 200.20 < total_night_minutes <= 234.80 -0.000134

13 0.00 < area_code_tr <= 1.00 -0.000081

14 9.01 < total_night_charge <= 10.57 -0.000067

exp.show_in_notebook(show_table=True)

Chapter 2 explainability for linear SuperviSed ModelS

66

Figure 2-17. Local explanation for record number 1

This is s churn scenario

exp = explainer.explain_instance(xtest.iloc[20], log_model.

predict_proba, num_features=16)

exp.as_list()

ntercept -0.02171544428872446

Prediction_local [0.44363396]

Right: 0.4309152994720991

X does not have valid feature names, but LogisticRegression was

fitted with feature names

[('number_customer_service_calls > 2.00', 0.15255665525554568),

 ('total_day_minutes > 213.80', 0.11572355524257688),

 ('number_vmail_messages <= 0.00', 0.09656802173637159),

 ('total_night_calls <= 86.00', 0.07347814323553245),

 ('total_day_calls <= 86.00', 0.03143722302975322),

 ('total_eve_minutes <= 166.20', -0.016279347282555784),

 ('88.00 < total_eve_calls <= 101.00', 0.01202796623602075),

 ('4.00 < total_intl_calls <= 5.00', -0.008862308197327355),

 ('72.00 < account_length <= 98.00', 0.008095316213066618),

 ('total_intl_minutes > 12.00', 0.004036225959225672),

Chapter 2 explainability for linear SuperviSed ModelS

67

 ('200.20 < total_night_minutes <= 234.80',

0.0031930707578459207),

 ('total_intl_charge > 3.24', -0.0025561403383019586),

 ('total_day_charge > 36.35', -0.0021799602467677667),

 ('9.01 < total_night_charge <= 10.57', -0.001598247181850764),

 ('total_eve_charge <= 14.13', -0.001066803177182677),

 ('area_code_tr > 1.00', 0.0007760299764712853)]

In a similar fashion, the graphs can be generated for different data

points from the training sample as well as the test sample.

 Recipe 2-16. Model Explanations Using ELI5
 Problem
You want to get model explanations using the ELI5 library.

 Solution
ELI5 provides two functions to show weights and make predictions to

generate model explanations.

 How It Works
Let’s take a look at the following script:

eli5.show_weights(log_model,

 feature_names=list(xtrain.columns))

y=1 top features

Chapter 2 explainability for linear SuperviSed ModelS

68

Weight? Feature

+0.449 number_customer_service_calls

+0.010 total_day_minutes

+0.009 total_intl_minutes

+0.002 total_intl_charge

+0.002 total_eve_minutes

+0.001 total_day_charge

+0.000 total_eve_charge

-0.000 total_night_charge

-0.001 total_night_minutes

-0.002 account_length

-0.006 area_code_tr

-0.008 total_day_calls

-0.017 total_eve_calls

-0.017 total_night_calls

-0.034 <biaS>

-0.037 number_vmail_messages

-0.087 total_intl_calls

eli5.explain_weights(log_model, feature_names=list(xtrain.

columns))

Chapter 2 explainability for linear SuperviSed ModelS

69

y=1 top features

Weight? Feature

+0.449 number_customer_service_calls

+0.010 total_day_minutes

+0.009 total_intl_minutes

+0.002 total_intl_charge

+0.002 total_eve_minutes

+0.001 total_day_charge

+0.000 total_eve_charge

-0.000 total_night_charge

-0.001 total_night_minutes

-0.002 account_length

-0.006 area_code_tr

-0.008 total_day_calls

-0.017 total_eve_calls

-0.017 total_night_calls

-0.034 <biaS>

-0.037 number_vmail_messages

-0.087 total_intl_calls

eli5.explain_prediction(log_model,xtrain.iloc[60])

Chapter 2 explainability for linear SuperviSed ModelS

70

y=0 (probability 0.788, score -1.310) top features

Contribution? Feature

+2.458 total_night_calls

+1.289 total_eve_calls

+0.698 total_day_calls

+0.304 account_length

+0.174 total_intl_calls

+0.127 total_night_minutes

+0.034 <biaS>

+0.006 area_code_tr

+0.002 total_night_charge

-0.004 total_intl_charge

-0.005 total_eve_charge

-0.057 total_intl_minutes

-0.064 total_day_charge

-0.304 total_eve_minutes

-0.449 number_customer_service_calls

-2.899 total_day_minutes

from eli5.sklearn import PermutationImportance

perm = PermutationImportance(log_model)

perm.fit(xtest, ytest)

eli5.show_weights(perm,feature_names=list(xtrain.columns))

Chapter 2 explainability for linear SuperviSed ModelS

71

Weight Feature

0.0066 ± 0.0139 number_customer_service_calls

0.0066 ± 0.0024 number_vmail_messages

0.0030 ± 0.0085 total_eve_calls

0.0030 ± 0.0085 total_day_minutes

0.0006 ± 0.0088 total_day_calls

0 ± 0.0000 area_code_tr

0 ± 0.0000 total_intl_charge

0 ± 0.0000 total_night_charge

0 ± 0.0000 total_eve_charge

-0.0012 ± 0.0048 total_intl_calls

-0.0012 ± 0.0029 total_intl_minutes

-0.0024 ± 0.0096 account_length

-0.0024 ± 0.0024 total_day_charge

-0.0036 ± 0.0045 total_night_minutes

-0.0042 ± 0.0061 total_eve_minutes

-0.0048 ± 0.0072 total_night_calls

 Conclusion
In this chapter, we covered how to interpret linear supervised models

such as regression and classification. The linear models are simpler to

interpret at a global level, meaning at a feature importance level, but hard

to explain at a local interpretation level. In this chapter, we looked at local

interpretation for samples using the SHAP, ELI5, and LIME libraries.

Chapter 2 explainability for linear SuperviSed ModelS

72

In the next chapter, we will cover the local and global interpretations

for nonlinear models. The nonlinear models cover nonlinearity existing

in data and thereby can be complex to interpret. Hence, we need a set of

frameworks to explain the nonlinearity in a model.

 References

 1. Dua, D. and Graff, C. (2019). UCI Machine Learning

Repository [http://archive.ics.uci.edu/ml].

Irvine, CA: University of California, School of

Information and Computer Science.

Chapter 2 explainability for linear SuperviSed ModelS

http://archive.ics.uci.edu/ml

73

CHAPTER 3

Explainability
for Nonlinear
Supervised Models
In this chapter, we are going to use explainable libraries to explain a

regression model and a classification model, while training a nonlinear

model. A nonlinear model is something where either the input variables

are transformed using nonlinear transformations or the function to model

the input and output is nonlinear.

In the pursuit of achieving higher accuracy, input features are modified

either by including polynomial features or by including interaction

features, such as additive features and multiplicative features. The benefit

of adding nonlinear features is to capture more complexity in the data and

catch more complex patterns existing in the data. If we are going to use

nonlinear features, the explainability can be followed as per the recipes

provided in Chapter 2. If we have a few features, we can create handcrafted

© Pradeepta Mishra 2023
P. Mishra, Explainable AI Recipes, https://doi.org/10.1007/978-1-4842-9029-3_3

https://doi.org/10.1007/978-1-4842-9029-3_2
https://doi.org/10.1007/978-1-4842-9029-3_3#DOI

74

polynomial features; however, if we have many features, creating all

combinations of nonlinear features is not only difficult but also very

complex to interpret. Hence, selecting a nonlinear function or a learning

algorithm makes life easier. So, we are going to use the ID3 algorithm that

powers the decision tree to capture nonlinearity existing in data.

The goal of this chapter is to introduce various explainability libraries

for decision tree models such as feature importance, partial dependency

plot, and local interpretation.

 Recipe 3-1. SHAP Values for Tree Models
on All Numerical Input Variables
 Problem
You want to explain a decision tree–based regression model built on all

numeric features.

 Solution
The decision tree–based regression model on all numeric features is

trained, and then the trained model will be passed through SHAP to

generate global explanations and local explanations.

 How It Works
Let’s take a look at the following example. The Shapely value can be

called the SHAP value. It is used to explain the model and is used for the

impartial distribution of predictions from a cooperative game theory to

attribute a feature to the model’s predictions. Model input features are

Chapter 3 explainability for nonlinear SuperviSed ModelS

75

considered as players in the game. The model function is considered as the

rules of the game. The Shapely value of a feature is computed based on the

following steps:

 1. SHAP requires model retraining on all feature

subsets; hence, usually it takes time if the

explanation has to be generated for larger datasets.

 2. Identify a feature set from a list of features (let’s say

there are 15 features; we can select a subset with 5

features).

 3. For any particular feature, two models using the

subset of features will be created, one with the

feature and another without the feature.

 4. The prediction differences will be computed.

 5. The differences in prediction are computed for all

possible subsets of features.

 6. The weighted average value of all possible

differences is used to populate the feature

importance.

If the weight of the feature is 0.000, then we can conclude that the

feature is not important and has not joined the model. If it is not equal

to 0.000, then we can conclude that the feature has a role to play in the

prediction process.

We are going to use a dataset from the UCI machine learning

repository. The URL to access the dataset is as follows:

https://archive.ics.uci.edu/ml/datasets/Appliances+energy+

prediction

Chapter 3 explainability for nonlinear SuperviSed ModelS

https://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction
https://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction

76

The objective is to predict the appliances’ energy use in Wh, using the

features from sensors. There are 27 features in the dataset, and here we are

trying to understand what features are important in predicting the energy

usage. See Table 3-1.

Table 3-1. Feature Description from the Energy Prediction Dataset

Feature Name Description Unit

appliances energy use in Wh

lights energy use of light fixtures in

the house

in Wh

t1 temperature in kitchen area in Celsius

rh_1 humidity in kitchen area in %

t2 temperature in living room area in Celsius

rh_2 humidity in living room area in %

t3 temperature in laundry room area

rh_3 humidity in laundry room area in %

t4 temperature in office room in Celsius

rh_4 humidity in office room in %

t5 temperature in bathroom in Celsius

rh_5 humidity in bathroom in %

t6 temperature outside the building

(north side)

in Celsius

rh_6 humidity outside the building (north

side)

in %

t7 temperature in ironing room in Celsius

rh_7 humidity in ironing room in %

(continued)

Chapter 3 explainability for nonlinear SuperviSed ModelS

77

Table 3-1. (continued)

Feature Name Description Unit

t8 temperature in teenager room 2 in Celsius

rh_8 humidity in teenager room 2 in %

t9 temperature in parents room in Celsius

rh_9 humidity in parents room in %

to temperature outside (from the Chievres

weather station)

in Celsius

pressure (from Chievres

weather station)

in mm hg

arh_out humidity outside (from the Chievres

weather station)

in %

Wind speed (from

Chievres weather station)

in m/s

visibility (from Chievres

weather station)

in km

tdewpoint (from Chievres

weather station)

Â°C

rv1 random variable 1 nondimensional

rv2 random variable 2 nondimensional

pip install shap

import pandas as pd

df_lin_reg = pd.read_csv('https://archive.ics.uci.edu/ml/

machine- learning-databases/00374/energydata_complete.csv')

del df_lin_reg['date']

df_lin_reg.info()

df_lin_reg.columns

Chapter 3 explainability for nonlinear SuperviSed ModelS

78

Index(['Appliances', 'lights', 'T1', 'RH_1', 'T2', 'RH_2',

'T3', 'RH_3', 'T4', 'RH_4', 'T5', 'RH_5', 'T6', 'RH_6', 'T7',

'RH_7', 'T8', 'RH_8', 'T9', 'RH_9', 'T_out', 'Press_mm_hg',

'RH_out', 'Windspeed', 'Visibility', 'Tdewpoint', 'rv1',

'rv2'], dtype='object')

#y is the dependent variable, that we need to predict

y = df_lin_reg.pop('Appliances')

X is the set of input features

X = df_lin_reg

import pandas as pd

import shap

import sklearn

from sklearn import tree, metrics, model_selection,

preprocessing

from IPython.display import Image, display

from sklearn.metrics import confusion_matrix,

classification_report

a simple non linear model initialized

model = tree. DecisionTreeRegressor() # plain tree model

nonlinear regression model trained

model.fit(X, y)

tree.plot_tree(model)

This produces a complex and messy graph that is difficult to interpret.

See Figure 3-1.

Chapter 3 explainability for nonlinear SuperviSed ModelS

79

Figure 3-1. Decision tree model representation

To explain the decision tree in simple format, the following code can

be used:

from sklearn.tree import export_text

r = export_text(model,feature_names=list(X.columns))

print(r)

|--- lights <= 5.00

| |--- RH_out <= 70.92

| | |--- T3 <= 26.94

| | | |--- T3 <= 23.25

| | | | |--- RH_7 <= 27.48

| | | | | |--- T5 <= 17.50

| | | | | | |--- RH_5 <= 48.86

| | | | | | | |--- RH_6 <= 23.91

| | | | | | | | |--- RH_1 <= 34.60

| | | | | | | | | |--- value: [610.00]

Chapter 3 explainability for nonlinear SuperviSed ModelS

80

| | | | | | | | |--- RH_1 > 34.60

| | | | | | | | | |--- value: [580.00]

| | | | | | | |--- RH_6 > 23.91

| | | | | | | | |--- T3 <= 21.81

.................

list(zip(model.feature_importances_,X.columns))

[(0.04755691132990445, 'lights'), (0.02729240744739512,

'T1'), (0.050990867453263464, 'RH_1'), (0.029613682425136578,

'T2'), (0.05287817171439917, 'RH_2'), (0.03809698118314153,

'T3'), (0.04702017020903361, 'RH_3'), (0.03833652568783967,

'T4'), (0.029168659250593493, 'RH_4'), (0.023818050212012467,

'T5'), (0.053380938919333785, 'RH_5'), (0.03242898742121811,

'T6'), (0.036442867206438946, 'RH_6'), (0.03272087870063947,

'T7'), (0.0459966882745736, 'RH_7'), (0.03786926541394416,

'T8'), (0.05569343410157808, 'RH_8'), (0.03888560547088362,

'T9'), (0.03205551180175258, 'RH_9'), (0.018209440939872642,

'T_out'), (0.04401669364414831, 'Press_mm_hg'),

(0.06483375260268251, 'RH_out'), (0.0343793163965324,

'Windspeed'), (0.022764397449413956, 'Visibility'),

(0.02962771107600761, 'Tdewpoint'), (0.023354544387479956,

'rv1'), (0.012567539280780866, 'rv2')]

compute the SHAP values for the nonlinear model

explainer = shap.TreeExplainer(model)

SHAP value calculation

shap_values = explainer.shap_values(X)

Chapter 3 explainability for nonlinear SuperviSed ModelS

81

 Recipe 3-2. Partial Dependency Plot for Tree
Regression Model
 Problem
You want to get a partial dependency plot from a decision tree

regression model.

 Solution
The solution to this problem is to use a partial dependency plot from the

model using a tree explainer. The correlation between the feature and it’s

SHAP values graphically displayed in Figure 3-2.

 How It Works
Let’s take a look at the following example:

shap.partial_dependence_plot(

 "lights", model.predict, X, ice=False,

 model_expected_value=True, feature_expected_value=True

)

Chapter 3 explainability for nonlinear SuperviSed ModelS

82

Figure 3-2. Correlation between feature light and predicted output of
the model

The correlation between the feature lights and the predicted value of

the model energy usage is shown, and the steps show a nonlinear pattern.

The partial dependency plot is a way to explain the individual

predictions and generate local interpretations for the sample selected from

the dataset.

 Recipe 3-3. SHAP Feature Importance
for Regression Models with All Numerical
Input Variables
 Problem
You want to calculate the feature importance using the SHAP values from a

decision tree–based model.

Chapter 3 explainability for nonlinear SuperviSed ModelS

83

 Solution
The solution to this problem is to use SHAP absolute values from

the model.

 How It Works
Let’s take a look at the following example (see Figure 3-3):

import shap

compute the SHAP values for the linear model

explainer = shap.TreeExplainer(model)

SHAP value calculation

shap_values = explainer.shap_values(X)

explain all the predictions in the dataset

shap.summary_plot(shap_values, X)

Chapter 3 explainability for nonlinear SuperviSed ModelS

84

Figure 3-3. SHAP value–based feature importance plot taken from
summary plot

The decision tree regressor–based model provides the summary plot

that contains the SHAP value impact on the model output. if we need to

explain the global importance of the features using the SHAP values, which

shows not for any individual data point but for all data points what features

are important, we can use the summary plot.

Chapter 3 explainability for nonlinear SuperviSed ModelS

85

 Recipe 3-4. SHAP Values for Tree
Regression Models with All Mixed
Input Variables
 Problem
You want to get SHAP values when you have mixed input features such as

numerical and categorical.

 Solution
Mixed input variables that have numeric features as well as categorical

or binary features can be modeled together. As the number of features

increases, the time to compute all the permutations will also increase.

 How It Works
Let’s take a look at the following example. We are going to use a public

automobile data dataset with some modifications. The objective is to

predict the price of a vehicle given the features such as make, location,

age, etc. It is a regression problem that we are going to solve using a mix of

numeric and categorical features.

df = pd.read_csv('https://raw.githubusercontent.com/

pradmishra1/PublicDatasets/main/automobile.csv')

df.head(3)

df.columns

Index(['Price', 'Make', 'Location', 'Age', 'Odometer',

'FuelType', 'Transmission', 'OwnerType', 'Mileage', 'EngineCC',

'PowerBhp'], dtype='object')

Chapter 3 explainability for nonlinear SuperviSed ModelS

86

We cannot use the string-based features or categorical features in

the model directly as matrix multiplication is not possible on string

features; hence, the string-based features need to be transformed into

dummy variables or binary features with 0 and 1 flags. We are skipping the

transformation step here as many data scientists already know how to do

data transformation. We are importing another transformed dataset directly.

df_t = pd.read_csv('https://raw.githubusercontent.com/

pradmishra1/PublicDatasets/main/Automobile_transformed.csv')

del df_t['Unnamed: 0']

df_t.head(3)

df_t.columns

Index(['Price', 'Age', 'Odometer', 'mileage', 'engineCC',

'powerBhp', 'Location_Bangalore', 'Location_Chennai',

'Location_Coimbatore', 'Location_Delhi', 'Location_Hyderabad',

'Location_Jaipur', 'Location_Kochi', 'Location_Kolkata',

'Location_Mumbai', 'Location_Pune', 'FuelType_Diesel',

'FuelType_Electric', 'FuelType_LPG', 'FuelType_Petrol',

'Transmission_Manual', 'OwnerType_Fourth +ACY- Above',

'OwnerType_Second', 'OwnerType_Third'], dtype='object')

#y is the dependent variable, that we need to predict

y = df_t.pop('Price')

X is the set of input features

X = df_t

import pandas as pd

import shap

import sklearn

a simple non linear model initialized

model = sklearn.tree.DecisionTreeRegressor()

decision tree regression model trained

model.fit(X, y)

Chapter 3 explainability for nonlinear SuperviSed ModelS

87

To compute the SHAP values, we can use the explainer function

using the training dataset X and model predict function. The SHAP value

calculation happens using a permutation approach that takes 5 minutes.

compute the SHAP values for the linear model

explainer = shap.Explainer(model)

SHAP value calculation

shap_values = explainer.shap_values(X)

 Recipe 3-5. SHAP Partial Dependency Plot
for Regression Models with Mixed Input
 Problem
You want to plot a partial dependency plot and interpret the graph for

numeric and categorical dummy variables.

 Solution
A partial dependency plot shows the correlation between the feature

and the predicted output of the target variables. There are two ways we

can showcase the results, one with a feature and expected value of the

prediction function and another by superimposing a data point on the

partial dependency plot. The nonlinear relationship is shown in Figure 3-4

which is different from a straight line that we have seen in Chapter 2, here

it shows a zigzag pattern.

Chapter 3 explainability for nonlinear SuperviSed ModelS

https://doi.org/10.1007/978-1-4842-9029-3_2

88

 How It Works
Let’s take a look at the following example:

shap.partial_dependence_plot(

 "powerBhp", model.predict, X, ice=False,

 model_expected_value=True, feature_expected_value=True

)

The nonlinear blue line shows the positive correlation between the

price and powerBhp. The powerBhp is a strong feature. The higher the

bhp, the higher the price of the car. This is a continuous or numeric

feature; let’s look at the binary or dummy features. There are two dummy

features for if the car registered in a Bangalore location or a Kolkata

location. Figure 3-5 shows the nonlinear relationship between a dummy

variable and it’s SHAP value.

Figure 3-4. Nonlinear relationship between the powerBhp and the
predicted output from the model

Chapter 3 explainability for nonlinear SuperviSed ModelS

89

shap.partial_dependence_plot(

 "Location_Bangalore", model.predict, X, ice=False,

 model_expected_value=True, feature_expected_value=True

)

If the location of the car is Bangalore, then the price will be higher, and

vice versa.

shap.partial_dependence_plot(

 "Location_Kolkata", model.predict, X, ice=False,

 model_expected_value=True, feature_expected_value=True

)

The Figure 3-6 shows the relationship like Figure 3-5 but for a different

location.

Figure 3-5. Dummy variable Bangalore location versus SHAP value

Chapter 3 explainability for nonlinear SuperviSed ModelS

90

Figure 3-6. Dummy variable Location_Kolkata versus SHAP value

If the location is Kolkata, then the price is expected to be lower. The

reason for the difference between the two locations is the data that is

being used to train the model. The previous three figures show the global

importance of a feature versus the prediction function. As an example,

only two features are taken into consideration. We can use all features one

by one and display many graphs to understand the predictions more.

 Recipe 3-6. SHAP Feature Importance
for Tree Regression Models with All Mixed
Input Variables
 Problem
You want to get the global feature importance from SHAP values using

mixed input feature data.

Chapter 3 explainability for nonlinear SuperviSed ModelS

91

 Solution
The solution to this problem is to use absolute values and sort them in

descending order. The global feature importance for all the features are

displayed in Figure 3-7 below.

 How It Works
Let’s take a look at the following example:

list(zip(model.feature_importances_,X.columns))

[(0.169576524767871, 'Age'), (0.046585658464360816,

'Odometer'), (0.04576869739225194, 'mileage'),

(0.059163321062728785, 'engineCC'), (0.6384264191473127,

'powerBhp'), (0.002522314313269304, 'Location_

Bangalore'), (0.0008970034245261699, 'Location_

Chennai'), (0.003791617161795056, 'Location_

Coimbatore'), (0.0010761093313731759, 'Location_Delhi'),

(0.011285026407948304, 'Location_Hyderabad'),

(0.00020112882138512196, 'Location_Jaipur'),

(0.0008616198710522111, 'Location_Kochi'),

(0.0008846931798977568, 'Location_Kolkata'),

(0.0021470912577561748, 'Location_Mumbai'),

(0.0007076796376248901, 'Location_Pune'),

(0.0013274593267184971, 'FuelType_Diesel'), (0.0,

'FuelType_Electric'), (3.4571613363343374e-07,

'FuelType_LPG'), (0.002242358883910862, 'FuelType_

Petrol'), (0.010550931985109665, 'Transmission_Manual'),

(8.131243463060016e-07, 'OwnerType_Fourth +ACY-

Above'), (0.0016721486214358624, 'OwnerType_Second'),

(0.0003110381011919031, 'OwnerType_Third')]

explain all the predictions in the dataset

shap.summary_plot(shap_values, X)

Chapter 3 explainability for nonlinear SuperviSed ModelS

92

Figure 3-7. Explaining all predictions with feature importance

At a high level for the tree-based nonlinear model that is used to predict

the price of the automobiles, the previous features are important. The most

important are the powerBhp, age of the car, petrol type, manual transmission

type, etc. The previous tabular output shows the global feature importance.

Chapter 3 explainability for nonlinear SuperviSed ModelS

93

 Recipe 3-7. LIME Explainer for Tabular Data
 Problem
You want to generate the explainability at a local level in a focused manner

rather than at a global level.

 Solution
The solution to this problem is to use the LIME library. LIME is a model-

agnostic technique; it retrains the ML model while running the explainer.

LIME localizes a problem and explains the model at a local level.

 How It Works
Let’s take a look at the following example. LIME requires a numpy array as

an input to the tabular explainer; hence, the Pandas dataframe needs to be

transformed into an array.

!pip install lime

Looking in indexes: https://pypi.org/simple, https://us-python.

pkg.dev/colab-wheels/public/simple/

Collecting lime

 Downloading lime-0.2.0.1.tar.gz (275 kB)

 |█████████████████████
███████████| 275 kB 3.9 MB/s

Requirement already satisfied: matplotlib in /usr/local/lib/

python3.7/dist-packages (from lime) (3.2.2)

Requirement already satisfied: numpy in /usr/local/lib/

python3.7/dist-packages (from lime) (1.21.6)

Requirement already satisfied: scipy in /usr/local/lib/

python3.7/dist-packages (from lime) (1.7.3)

Chapter 3 explainability for nonlinear SuperviSed ModelS

94

Require

................

import lime

import lime.lime_tabular

explainer = lime.lime_tabular.LimeTabularExplainer(np.array(X),

 mode=

'regression',

 feature_names=

X.columns,

 class_

names=['price'],

 verbose=True)

We are using the energy prediction data from this chapter only.

explainer.feature_selection

asking for explanation for LIME model

i = 60

exp = explainer.explain_instance(np.array(X)[i],

 model.predict,

 num_features=14

)

We do not have to retrain the decision tree model. We can pass the

model object obtained from training a decision tree model and reuse it

with the LIME explainer. Figure 3-8 shows the location explanation for the

60th record from the training dataset.

model.predict(X)[60]

X[60:61]

Intercept -6.9881095432071465

Prediction_local [33.29071077]

Right: 16.5

Chapter 3 explainability for nonlinear SuperviSed ModelS

95

exp.show_in_notebook(show_table=True)

exp.as_list()

[('powerBhp > 138.10', 19.961371959849174), ('FuelType_

Electric <= 0.00', 6.836722688525879), ('Age <= 4.00',

5.249921722968705), ('OwnerType_Fourth +ACY- Above <=

0.00', 3.4582886724264483), ('0.00 < Transmission_

Manual <= 1.00', -2.9145492368305157), ('engineCC >

1984.00', 2.432167151933345), ('Odometer <= 34000.00',

1.8038639987179637), ('FuelType_LPG <= 0.00',

1.4135278408858953), ('OwnerType_Third <= 0.00',

1.3547839120439655), ('mileage <= 15.30', 0.8239170366232045),

('Location_Kochi <= 0.00', -0.6740434016444569), ('Location_

Hyderabad <= 0.00', -0.6190270673151664), ('Location_Delhi

<= 0.00', 0.6091569397933114), ('FuelType_Petrol <= 0.00',

0.5427180987401807)]

Figure 3-8. Local explanation for the 60th record from the dataset

Chapter 3 explainability for nonlinear SuperviSed ModelS

96

 Recipe 3-8. ELI5 Explainer for Tabular Data
 Problem
You want to use the ELI5 library to generate explanations of a linear

regression model.

 Solution
ELI5 is a Python package that helps to debug a machine learning model

and explain the predictions. It provides support for all machine learning

models supported by the scikit-learn library.

 How It Works
Let’s take a look at the following example:

pip install eli5

import eli5

eli5.show_weights(model,

 feature_names=list(X.columns))

Weight Feature

0.6384 powerbhp

0.1696 age

0.0592 engineCC

0.0466 odometer

0.0458 Mileage

0.0113 location_hyderabad

0.0106 transmission_Manual

(continued)

Chapter 3 explainability for nonlinear SuperviSed ModelS

97

Weight Feature

0.0038 location_Coimbatore

0.0025 location_bangalore

0.0022 fueltype_petrol

0.0021 location_Mumbai

0.0017 ownertype_Second

0.0013 fueltype_diesel

0.0011 location_delhi

0.0009 location_Chennai

0.0009 location_Kolkata

0.0009 location_Kochi

0.0007 location_pune

0.0003 ownertype_third

0.0002 location_Jaipu

eli5.explain_weights(model, feature_names=list(X.columns))

Weight Feature

0.6384 powerbhp

0.1696 age

0.0592 engineCC

0.0466 odometer

0.0458 Mileage

0.0113 location_hyderabad

0.0106 transmission_Manual

(continued)

Chapter 3 explainability for nonlinear SuperviSed ModelS

98

(continued)

Weight Feature

0.0038 location_Coimbatore

0.0025 location_bangalore

0.0022 fueltype_petrol

0.0021 location_Mumbai

0.0017 ownertype_Second

0.0013 fueltype_diesel

0.0011 location_delhi

0.0009 location_Chennai

0.0009 location_Kolkata

0.0009 location_Kochi

0.0007 location_pune

0.0003 ownertype_third

0.0002 location_Jaipur

eli5.explain_prediction(model,X.iloc[60])

y (score 16.500) top features

Contribution? Feature

+9.479 <biaS>

+4.710 engineCC

+4.190 age

+1.467 mileage

+0.713 fueltype_petrol

+0.667 powerbhp

Chapter 3 explainability for nonlinear SuperviSed ModelS

99

(continued)

Contribution? Feature

+0.071 odometer

-1.313 location_Mumbai

-3.485 transmission_Manual

from eli5.sklearn import PermutationImportance

a simple linear model initialized

model = sklearn.tree.DecisionTreeRegressor()

linear regression model trained

model.fit(X, y)

perm = PermutationImportance(model)

perm.fit(X, y)

eli5.show_weights(perm,feature_names=list(X.columns))

Weight Feature

1.3784 ± 0.0884 powerbhp

0.4245 ± 0.0049 age

0.2587 ± 0.0120 engineCC

0.1968 ± 0.0333 odometer

0.1557 ± 0.0103 mileage

0.0709 ± 0.0425 location_hyderabad

0.0550 ± 0.0076 transmission_Manual

0.0120 ± 0.0037 fueltype_petrol

0.0095 ± 0.0011 location_Coimbatore

0.0086 ± 0.0015 fueltype_diesel

Chapter 3 explainability for nonlinear SuperviSed ModelS

100

Weight Feature

0.0071 ± 0.0013 location_Mumbai

0.0058 ± 0.0016 location_bangalore

0.0054 ± 0.0011 ownertype_Second

0.0030 ± 0.0005 location_Kolkata

0.0030 ± 0.0012 location_Kochi

0.0030 ± 0.0003 location_delhi

0.0027 ± 0.0011 location_Chennai

0.0017 ± 0.0003 location_pune

0.0004 ± 0.0001 location_Jaipur

0.0002 ± 0.0001 ownertype_thir

The results table has a BIAS value as a feature. This can be interpreted

as an intercept term for a linear regression model. Other features are listed

based on the descending order of importance based on their weight. The

show weights function provides a global interpretation of the model, and

the show prediction function provides a local interpretation by taking into

account a record from the training set.

 Recipe 3-9. How the Permutation Model
in ELI5 Works
 Problem
You want to make sense of the ELI5 permutation library.

Chapter 3 explainability for nonlinear SuperviSed ModelS

101

 Solution
The solution to this problem is to use a dataset and a trained model.

 How It Works
The permutation model in the ELI5 library works only for global

interpretation. First it takes a base line linear regression model from the

training dataset and computes the error of the model. Then it shuffles the

values of a feature, retrains the model, and computes the error. It compares

the decrease in error after shuffling and before shuffling. A feature can

be considered as important if post shuffling the error delta is high and

unimportant if the error delta is low, and vice versa. The result displays the

average importance of features and the standard deviation of features with

multiple shuffle steps.

 Recipe 3-10. Global Explanation
for Decision Tree Models
 Problem
You want to explain the predictions generated from a decision tree

classifier.

 Solution
The decision tree model can be used as we model the probabilities from

either a binary classification or a multinomial classification variable. In

this particular recipe, we are using a churn classification dataset that has

two outcomes: whether the customer is likely to churn or not.

Chapter 3 explainability for nonlinear SuperviSed ModelS

102

 How It Works
Let’s take a look at the following example. The key is to get the SHAP

values, which will return base values, SHAP values, and data. Using the

SHAP values, we can create various explanations using graphs and figures.

The SHAP values are always at a global level.

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

from sklearn import tree, metrics, model_selection,

preprocessing

from sklearn.metrics import confusion_matrix,

classification_report

df_train = pd.read_csv('https://raw.githubusercontent.com/

pradmishra1/PublicDatasets/main/ChurnData_test.csv')

from sklearn.preprocessing import LabelEncoder

tras = LabelEncoder()

df_train['area_code_tr'] = tras.fit_transform(df_

train['area_code'])

df_train.columns

del df_train['area_code']

df_train.columns

df_train['target_churn_dum'] = pd.get_dummies(df_train.

churn,prefix='churn',drop_first=True)

df_train.columns

del df_train['international_plan']

del df_train['voice_mail_plan']

del df_train['churn']

df_train.info()

Chapter 3 explainability for nonlinear SuperviSed ModelS

103

del df_train['Unnamed: 0']

df_train.columns

from sklearn.model_selection import train_test_split

df_train.columns

X = df_train[['account_length', 'number_vmail_messages',

'total_day_minutes',

 'total_day_calls', 'total_day_charge', 'total_eve_

minutes',

 'total_eve_calls', 'total_eve_charge', 'total_night_

minutes',

 'total_night_calls', 'total_night_charge', 'total_intl_

minutes',

 'total_intl_calls', 'total_intl_charge',

 'number_customer_service_calls', 'area_code_tr']]

Y = df_train['target_churn_dum']

xtrain,xtest,ytrain,ytest=train_test_split(X,Y,test_

size=0.20,stratify=Y)

tree_model = tree.DecisionTreeClassifier()

tree_model.fit(xtrain,ytrain)

print("training accuracy:", tree_model.score(xtrain,ytrain))

#training accuracy

print("test accuracy:",tree_model.score(xtest,ytest)) # test

accuracy

training accuracy: 1.0

test accuracy: 0.8562874251497006

Provide Probability as Output

def model_churn_proba(x):

 return tree_model.predict_proba(x)[:,1]

Chapter 3 explainability for nonlinear SuperviSed ModelS

104

Provide Log Odds as Output

def model_churn_log_odds(x):

 p = tree_model.predict_log_proba(x)

 return p[:,1] - p[:,0]

compute the SHAP values for the linear model

background_churn = shap.maskers.Independent(X, max_samples=500)

explainer = shap.Explainer(tree_model, background_

churn,feature_names=list(X.columns))

shap_values_churn = explainer(X)

 Recipe 3-11. Partial Dependency Plot
for a Nonlinear Classifier
 Problem
You want to show feature associations with the class probabilities using a

nonlinear classifier.

 Solution
The class probabilities in this example are related to predicting the probability

of churn. The SHAP value for a feature can be plotted against the feature value

to show a scatter chart that displays the correlation positive or negative and

strength of associations. The relationship visually shown in Figure 3-9 below.

 How It Works
Let’s take a look at the following example:

make a standard partial dependence plot

sample_ind = 25

Chapter 3 explainability for nonlinear SuperviSed ModelS

105

fig,ax = shap.partial_dependence_plot(

 "total_day_minutes", model_churn_proba, X, model_expected_

value=True,

 feature_expected_value=True, show=False, ice=False

)

make a standard partial dependence plot

sample_ind = 25

fig,ax = shap.partial_dependence_plot(

 "number_vmail_messages", model_churn_proba, X, model_

expected_value=True,

 feature_expected_value=True, show=False,ice=False)

Figure 3-9. Account length and SHAP value of account length

Chapter 3 explainability for nonlinear SuperviSed ModelS

106

Figure 3-10. Number of voicemail messages and the SHAP value

Figure 3-11 compares this with the linear classifier from Chapter 2.

Figure 3-11. Linear classifier from Chapter 2

Chapter 3 explainability for nonlinear SuperviSed ModelS

https://doi.org/10.1007/978-1-4842-9029-3_2
https://doi.org/10.1007/978-1-4842-9029-3_2

107

The difference between the two plots is clear. A linear classifier is a

downward sloping line, whereas a decision tree classifier has a nonlinear

stepwise line.

 Recipe 3-12. Global Feature Importance
from the Nonlinear Classifier
 Problem
You want to get the global feature importance for the decision tree

classification model.

 Solution
The solution to this problem is to use explainer log odds.

 How It Works
Let’s take a look at the following example:

compute the SHAP values for the linear model

explainer_log_odds = shap.Explainer(tree_model, background_

churn,feature_names=list(X.columns))

shap_values_churn_log_odds = explainer_log_odds(X)

shap_values_churn_log_odds

temp_df = pd.DataFrame()

temp_df['Feature Name'] = pd.Series(X.columns)

temp_df['Importance'] = pd.Series(tree_model.feature_

importances_)

temp_df.sort_values(by='Importance',ascending=False)

Chapter 3 explainability for nonlinear SuperviSed ModelS

108

Feature Name Importance

2 total_day_minutes 0.219502

14 number_customer_service_calls 0.120392

4 total_day_charge 0.097044

7 total_eve_charge 0.095221

1 number_vmail_messages 0.062609

10 total_night_charge 0.061233

8 total_night_minutes 0.057162

9 total_night_calls 0.055642

11 total_intl_minutes 0.046794

3 total_day_calls 0.043435

12 total_intl_calls 0.040072

0 account_length 0.032119

6 total_eve_calls 0.029836

13 total_intl_charge 0.020441

5 total_eve_minutes 0.013121

15 area_code_tr 0.005378

 Recipe 3-13. Local Explanations Using LIME
 Problem
You want to get faster explanations from explainable both global and local

libraries.

Chapter 3 explainability for nonlinear SuperviSed ModelS

109

 Solution
The model explanation can be done using SHAP; however, one of the

limitations of SHAP is that we cannot use the full data to create global and

local explanations. Even if we decide to use the full data, it usually takes

more time. Hence, speeding up the process of generating local and global

explanations in a scenario when millions of records are being used to

train a model LIME is very useful. The local explanations for 1st record is

displayed in Figure 3-12 and 20th record is shown in Figure 3-13.

 How It Works
Let’s take a look at the following example:

import lime

import lime.lime_tabular

explainer = lime.lime_tabular.LimeTabularExplainer(np.

array(xtrain),

 feature_names=list(xtrain.columns),

 class_names=['target_churn_dum'],

 verbose=True, mode='classification')

this record is a no churn scenario

exp = explainer.explain_instance(xtest.iloc[0], tree_model.

predict_proba, num_features=16)

exp.as_list()

Intercept 0.17857751096606778

Prediction_local [0.16068057]

Right: 1.0

X does not have valid feature names, but DecisionTreeClassifier

was fitted with feature names

[('total_day_minutes > 215.90', 0.1362643566581409),

 ('number_vmail_messages <= 0.00', 0.0929673100640601),

 ('3.00 < total_intl_calls <= 4.00', -0.05389996557257846),

Chapter 3 explainability for nonlinear SuperviSed ModelS

110

 ('total_day_calls <= 86.00', -0.051572104790178076),

 ('99.00 < total_night_calls <= 112.00',

-0.046773114913399146),

 ('1.00 < number_customer_service_calls <= 2.00',

-0.04441521857295649),

 ('total_intl_charge <= 2.32', -0.02367171273632465),

 ('200.40 < total_eve_minutes <= 232.60',

-0.01768355201942605),

 ('8.95 < total_night_charge <= 10.40', -0.016767719469372562),

 ('88.00 < total_eve_calls <= 101.00', -0.015113160995228619),

 ('total_day_charge > 36.70', 0.01338384802674405),

 ('area_code_tr > 1.00', 0.006774852953278585),

 ('total_intl_minutes <= 8.60', 0.005598720978761775),

 ('17.03 < total_eve_charge <= 19.77', -0.0036223084182909603),

 ('98.00 < account_length <= 126.00', 0.0006345376072269405),

 ('198.80 < total_night_minutes <= 231.20',

-1.7083964912392244e-06)]

pd.DataFrame(exp.as_list())

0 1

0 total_day_minutes > 215.90 0.136264

1 number_vmail_messages <= 0.00 0.092967

2 3.00 < total_intl_calls <= 4.00 -0.053900

3 total_day_calls <= 86.00 -0.051572

4 99.00 < total_night_calls <= 112.00 -0.046773

5 1.00 < number_customer_service_calls <=

2.00

-0.044415

6 total_intl_charge <= 2.32 -0.023672

(continued)

Chapter 3 explainability for nonlinear SuperviSed ModelS

111

Figure 3-12. Local explanation for record number 1 from test set

0 1

7 200.40 < total_eve_minutes <= 232.60 -0.017684

8 8.95 < total_night_charge <= 10.40 -0.016768

9 88.00 < total_eve_calls <= 101.00 -0.015113

10 total_day_charge > 36.70 0.013384

11 area_code_tr > 1.00 0.006775

12 total_intl_minutes <= 8.60 0.005599

13 17.03 < total_eve_charge <= 19.77 -0.003622

14 98.00 < account_length <= 126.00 0.000635

15 198.80 < total_night_minutes <= 231.20 -0.000002

exp.show_in_notebook(show_table=True)

This is s churn scenario

exp = explainer.explain_instance(xtest.iloc[20], tree_model.

predict_proba, num_features=16)

exp.as_list()

Chapter 3 explainability for nonlinear SuperviSed ModelS

112

Intercept 0.10256094438264549

Prediction_local [0.42951224]

Right: 1.0

X does not have valid feature names, but DecisionTreeClassifier

was fitted with feature names

[('number_vmail_messages <= 0.00', 0.1251461520949672),

 ('number_customer_service_calls <= 1.00',

-0.11471932451025148),

 ('total_day_minutes > 215.90', 0.11335292810078498),

 ('total_intl_calls <= 3.00', 0.0833975606666818),

 ('total_eve_charge > 19.77', 0.07087970621129276),

 ('total_day_charge > 36.70', 0.044322021446899056),

 ('total_night_calls <= 86.00', 0.03835204203269277),

 ('10.40 < total_intl_minutes <= 12.00',

-0.028762467921123958),

 ('total_eve_calls <= 88.00', 0.027744744266104262),

 ('198.80 < total_night_minutes <= 231.20',

-0.014434614677050405),

 ('8.95 < total_night_charge <= 10.40', -0.01246344270348464),

 ('86.00 < total_day_calls <= 99.00', 0.012186288614633462),

 ('73.00 < account_length <= 98.00', -0.011046720698750234),

 ('0.00 < area_code_tr <= 1.00', -0.010595644578095056),

 ('2.81 < total_intl_charge <= 3.24', 0.0033945972331523373),

 ('total_eve_minutes > 232.60', 0.0001974706449185791)]

exp.show_in_notebook(show_table=True)

Chapter 3 explainability for nonlinear SuperviSed ModelS

113

Figure 3-13. Local explanations from the 20th record from the test set

In a similar fashion, the graphs can be generated for different records

from the training set and test set, which are from the training sample as

well as the test sample.

 Recipe 3-14. Model Explanations Using ELI5
 Problem
You want to get model explanations using the ELI5 library.

 Solution
ELI5 provides two functions, show weights and show predictions, to

generate model explanations.

Chapter 3 explainability for nonlinear SuperviSed ModelS

114

 How It Works
Let’s take a look at the following example:

Pip install eli5

eli5.show_weights(tree_model,

 feature_names=list(xtrain.columns))

Weight Feature

0.2195 total_day_minutes

0.1204 number_customer_service_calls

0.0970 total_day_charge

0.0952 total_eve_charge

0.0626 number_vmail_messages

0.0612 total_night_charge

0.0572 total_night_minutes

0.0556 total_night_calls

0.0468 total_intl_minutes

0.0434 total_day_calls

0.0401 total_intl_calls

0.0321 account_length

0.0298 total_eve_calls

0.0204 total_intl_charge

0.0131 total_eve_minutes

0.0054 area_code_tr

eli5.explain_weights(tree_model, feature_names=list(xtrain.

columns))

Chapter 3 explainability for nonlinear SuperviSed ModelS

115

Weight Feature

0.2195 total_day_minutes

0.1204 number_customer_service_calls

0.0970 total_day_charge

0.0952 total_eve_charge

0.0626 number_vmail_messages

0.0612 total_night_charge

0.0572 total_night_minutes

0.0556 total_night_calls

0.0468 total_intl_minutes

0.0434 total_day_calls

0.0401 total_intl_calls

0.0321 account_length

0.0298 total_eve_calls

0.0204 total_intl_charge

0.0131 total_eve_minutes

0.0054 area_code_tr

eli5.explain_prediction(tree_model,xtrain.iloc[60])

y=0 (probability 1.000) top features

Contribution? Feature

+0.866 <biaS>

+0.126 total_eve_charge

+0.118 total_night_charge

(continued)

Chapter 3 explainability for nonlinear SuperviSed ModelS

116

Contribution? Feature

+0.076 total_night_calls

+0.038 total_day_minutes

+0.032 number_customer_service_calls

+0.010 total_intl_calls

-0.084 total_eve_calls

-0.088 total_day_calls

-0.093 total_intl_minutes

from eli5.sklearn import PermutationImportance

perm = PermutationImportance(tree_model)

perm.fit(xtest, ytest)

eli5.show_weights(perm,feature_names=list(xtrain.columns))

Weight Feature

0.0814 ± 0.0272 total_day_minutes

0.0407 ± 0.0188 number_customer_service_calls

0.0359 ± 0.0085 total_eve_charge

0.0299 ± 0.0147 total_night_minutes

0.0263 ± 0.0198 total_night_charge

0.0210 ± 0.0126 number_vmail_messages

0.0174 ± 0.0088 total_day_charge

0.0042 ± 0.0061 total_intl_charge

0.0036 ± 0.0167 total_intl_minutes

0.0006 ± 0.0024 area_code_tr

(continued)

Chapter 3 explainability for nonlinear SuperviSed ModelS

117

Weight Feature

-0.0006 ± 0.0122 total_eve_calls

-0.0012 ± 0.0145 total_eve_minutes

-0.0024 ± 0.0024 account_length

-0.0030 ± 0.0076 total_night_calls

-0.0054 ± 0.0079 total_day_calls

-0.0114 ± 0.0088 total_intl_calls

 Conclusion
In this chapter, we covered how to interpret nonlinear supervised models

based on decision trees for regression and classification. However, the

nonlinear models are simpler to interpret at a global level, meaning at the

feature importance level, but hard to explain at the local interpretation

level as all the features will not be part of the decision tree construction

process. In this chapter, we looked at local interpretation for samples

using the SHAP, ELI5, and LIME libraries. In the next chapter, we are going

to cover the local and global interpretations for ensemble models. The

nonlinear models cover nonlinearity existing in data and therefore can

be complex to interpret. However, one of the limitations of a tree-based

model is that it only considers a few powerful features to construct the

tree and does not give equal importance to all the features. Therefore, the

explainability is not complete for local interpretations. This problem can

be addressed by ensemble models, which is a combination of many trees

working together to make it happen.

Chapter 3 explainability for nonlinear SuperviSed ModelS

119

CHAPTER 4

Explainability
for Ensemble
Supervised Models
Ensemble models are considered to be effective when individual

models are failing to balance bias and variance for a training dataset.

The predictions are aggregated in ensemble models to generate the

final models. In the case of supervised regression models, many models

are generated, and the averages of all the predictions are taken into

consideration to generate the final prediction. Similarly, for supervised

classification problems, multiple models are being trained, and each

model generates a classification. The final model takes into account the

majority voting rule criteria to decide the final prediction. Because of the

nature of ensemble models, these are harder to explain to end users. That

is why we need frameworks that can explain the ensemble models.

Ensemble means a grouping of the model predictions. There are three

types of ensemble models: bagging, boosting, and stacking. Bagging

means bootstrap aggregation, which means bootstrapping the available

features, making a subset selection, generating predictions, continuing the

same process a few times, and averaging the predictions to generate the

final prediction. Random forest is one of the most important and popular

bagging models.

© Pradeepta Mishra 2023
P. Mishra, Explainable AI Recipes, https://doi.org/10.1007/978-1-4842-9029-3_4

https://doi.org/10.1007/978-1-4842-9029-3_4#DOI

120

Boosting is a sequential method of boosting the predictive power of

the model. It starts with a base classifier being trained on data to predict

and classify the output. In the next step, the correctly predicted cases are

separated in an automatic fashion, and the rest of the cases are used for

retraining the model. This process will continue until there is a scope to

improve and boost the accuracy to a higher level. If it is not possible to

boost the accuracy further, then the iteration should stop, and the final

accuracy is reported.

Stacking is a process of generating predictions from different sets of

models and averaging their predictions.

The goal of this chapter is to introduce various explainability libraries

for ensemble models such as feature importance, partial dependency plot,

and local interpretation and global interpretation of the models.

 Recipe 4-1. Explainable Boosting
Machine Interpretation
 Problem
You want to explain the explainable boosting machine (EBM) as an

ensemble model and interpret the global and local interpretations.

 Solution
EBMs are a tree-based, cyclic, gradient descent–based boosting model

known as a generalized additive model (GAM), which has automatic

interaction detection. EBMs are interpretable though they are black box by

nature. We need an additional library known as interpret core.

Chapter 4 explainability for ensemble supervised models

121

 How It Works
Let’s take a look at the following example. The Shapely value can be called

the SHAP value. SHAP value is used to explain the model and is used for

the impartial distribution of predictions from a cooperative game theory to

attribute a feature to the model’s predictions. The model input features are

considered as players in the game. The model function is considered as the

rules of the game. The Shapely value of a feature is computed based on the

following steps:

 1. SHAP requires model retraining on all feature

subsets; hence, usually it takes time if the

explanation has to be generated for larger datasets.

 2. Identify a feature set from a list of features (let’s say

there are 15 features; we can select a subset with 5

features).

 3. For any particular feature, two models using the

subset of features will be created, one with the

feature and another without the feature.

 4. The prediction differences will be computed.

 5. The differences in prediction are computed for all

possible subsets of features.

 6. The weighted average value of all possible

differences is used to populate the feature

importance.

If the weight of the feature is 0.000, then we can conclude that the

feature is not important and has not joined the model. If it is not equal

to 0.000, then we can conclude that the feature has a role to play in the

prediction process.

Chapter 4 explainability for ensemble supervised models

122

We are going to use a dataset from the UCI machine learning

repository. The URL to access the dataset is as follows:

https://archive.ics.uci.edu/ml/datasets/Appliances+energy+

prediction

The objective is to predict the appliances’ energy use in Wh, using the

features from sensors. There are 27 features in the dataset, and here we are

trying to understand what features are important in predicting the energy

usage. See Table 4-1.

Table 4-1. Feature Description from the Energy Prediction Dataset

Feature Name Description Unit

appliances energy use in Wh

lights energy use of light fixtures in

the house

in Wh

t1 temperature in kitchen area in Celsius

rh_1 humidity in kitchen area in %

t2 temperature in living room area in Celsius

rh_2 humidity in living room area in %

t3 temperature in laundry room area

rh_3 humidity in laundry room area in %

t4 temperature in office room in Celsius

rh_4 humidity in office room in %

t5 temperature in bathroom in Celsius

rh_5 humidity in bathroom in %

t6 temperature outside the

building (north side)

in Celsius

(continued)

Chapter 4 explainability for ensemble supervised models

https://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction
https://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction

123

Feature Name Description Unit

rh_6 humidity outside the building

(north side)

in %

t7 temperature in ironing room in Celsius

rh_7 humidity in ironing room in %

t8 temperature in teenager

room 2

in Celsius

rh_8 humidity in teenager room 2 in %

t9 temperature in parents room in Celsius

rh_9 humidity in parents room in %

to temperature outside (from the

Chievres weather station)

in Celsius

pressure (from Chievres

weather station)

in mm hg

arh_out humidity outside (from the

Chievres weather station)

in %

Wind speed (from

Chievres weather

station)

in m/s

visibility (from Chievres

weather station)

in km

tdewpoint (from

Chievres weather

station)

Â°C

rv1 random variable 1 nondimensional

rv2 random variable 2 nondimensional

Table 4-1. (continued)

Chapter 4 explainability for ensemble supervised models

124

pip install shap

!pip install interpret-core #this installation is without any

dependency library

Looking in indexes: https://pypi.org/simple, https://us-python.

pkg.dev/colab-wheels/public/simple/

Requirement already satisfied: interpret-core in /usr/local/

lib/python3.7/dist-packages (0.2.7)

import pandas as pd

df_lin_reg = pd.read_csv('https://archive.ics.uci.edu/ml/

machine-learning-databases/00374/energydata_complete.csv')

del df_lin_reg['date']

df_lin_reg.info()

df_lin_reg.columns

Index(['Appliances', 'lights', 'T1', 'RH_1', 'T2', 'RH_2',

'T3', 'RH_3', 'T4', 'RH_4', 'T5', 'RH_5', 'T6', 'RH_6', 'T7',

'RH_7', 'T8', 'RH_8', 'T9', 'RH_9', 'T_out', 'Press_mm_hg',

'RH_out', 'Windspeed', 'Visibility', 'Tdewpoint', 'rv1',

'rv2'], dtype='object')

#y is the dependent variable, that we need to predict

y = df_lin_reg.pop('Appliances')

X is the set of input features

X = df_lin_reg

fit a GAM model to the data

import interpret.glassbox

import shap

model_ebm = interpret.glassbox.ExplainableBoostingRegressor()

model_ebm.fit(X, y)

X100 = X[:100]

explain the GAM model with SHAP

Chapter 4 explainability for ensemble supervised models

125

explainer_ebm = shap.Explainer(model_ebm.predict, X100)

shap_values_ebm = explainer_ebm(X100)

import numpy as np

pd.DataFrame(np.round(shap_values_ebm.values,2)).head(2)

pd.DataFrame(np.round(shap_values_ebm.base_values,2)).head(2)

00103.741103.74

 Recipe 4-2. Partial Dependency Plot for Tree
Regression Models
 Problem
You want to get a partial dependency plot from a boosting model.

 Solution
The solution to this problem is to use a partial dependency plot from the

model using SHAP.

 How It Works
Let’s take a look at the following example (see Figure 4-1):

make a standard partial dependence plot with a single SHAP

value overlaid

sample_ind = 20

Chapter 4 explainability for ensemble supervised models

126

fig,ax = shap.partial_dependence_plot(

 "lights", model_ebm.predict, X100, model_expected_

value=True,

 feature_expected_value=True, show=False, ice=False,

 shap_values=shap_values_ebm[sample_ind:sample_ind+1,:]

)

Figure 4-1. Correlation between feature light and predicted output of
the model

The correlation between the feature lights and the predicted value of

the model energy usage is shown, and the steps show a nonlinear pattern.

The partial dependency plot is a way to explain the individual predictions

and generate local interpretations for the sample selected from the dataset.

See Figure 4-2.

shap.plots.scatter(shap_values_ebm[:,"lights"])

Chapter 4 explainability for ensemble supervised models

127

Figure 4-2. Correlation between the feature lights and the
SHAP values

the waterfall_plot shows how we get from explainer.expected_

value to model.predict(X)[sample_ind]

shap.plots.waterfall(shap_values_ebm[sample_ind], max_

display=14)

Chapter 4 explainability for ensemble supervised models

128

Figure 4-3. Feature importance for a specific sample record, local
interpretation

the waterfall_plot shows how we get from explainer.expected_

value to model.predict(X)[sample_ind]

shap.plots.beeswarm(shap_values_ebm, max_display=14)

Chapter 4 explainability for ensemble supervised models

129

Figure 4-4. SHAP values’ impact on the model output, global
exxplanation

To generate the global explainer, we need to install another

visualization library.

!pip install dash_cytoscape

from interpret import set_visualize_provider

from interpret.provider import InlineProvider

set_visualize_provider(InlineProvider())

from interpret import show

ebm_global = model_ebm.explain_global()

show(ebm_global)

Chapter 4 explainability for ensemble supervised models

130

Figure 4-5. Selecting features from the drop-down to see its
contribution

Figure 4-6. Score of feature RH_1 and its distribution, global
interpretation

ebm_local = model_ebm.explain_local(X[:5], y[:5])

show(ebm_local)

ebm_local

import numpy as np

pd.DataFrame(np.round(shap_values_ebm.values,2)).head(2)

pd.DataFrame(np.round(shap_values_ebm.base_values,2)).head(2)

Chapter 4 explainability for ensemble supervised models

131

 Recipe 4-3. Explain a Extreme Gradient
Boosting Model with All Numerical
Input Variables
 Problem
You want to explain the extreme gradient boosting–based regressor.

 Solution
The XGB regressor can be explained using the SHAP library; we can

populate the global and local interpretations.

 How It Works
Let’s take a look at the following example:

train XGBoost model

import xgboost

model_xgb = xgboost.XGBRegressor(n_estimators=100, max_

depth=2).fit(X, y)

explain the GAM model with SHAP

explainer_xgb = shap.Explainer(model_xgb, X)

shap_values_xgb = explainer_xgb(X)

make a standard partial dependence plot with a single SHAP

value overlaid

sample_ind = 18

fig,ax = shap.partial_dependence_plot(

 "lights", model_xgb.predict, X, model_expected_value=True,

 feature_expected_value=True, show=False, ice=False,

 shap_values=shap_values_xgb[sample_ind:sample_ind+1,:]

)

Chapter 4 explainability for ensemble supervised models

132

Figure 4-7. SHAP value–based feature importance plot taken from
the summary plot

The XGB regressor–based model provides the summary plot that

contains the SHAP value impact on the model output. If we need to

explain the global importance of the features using the SHAP values, which

shows what features are important for all data points, we can use the

summary plot.

shap.plots.scatter(shap_values_xgb[:,"lights"])

Chapter 4 explainability for ensemble supervised models

133

Figure 4-8. SHAP values of the lights feature plotted against the
lights feature

shap.plots.scatter(shap_values_xgb[:,"lights"], color=shap_

values_xgb)

Chapter 4 explainability for ensemble supervised models

134

Figure 4-9. Scatter plot of two features, T8 and lights, against the
SHAP values of light

shap.summary_plot(shap_values_xgb, X)

Chapter 4 explainability for ensemble supervised models

135

Figure 4-10. Global feature importance based on the SHAP value

Chapter 4 explainability for ensemble supervised models

136

 Recipe 4-4. Explain a Random
Forest Regressor with Global
and Local Interpretations
 Problem
Random forest (RF) is a bagging approach to create ensemble models; it

is also difficult to interpret which tree generated the final prediction and

interpret the global and local interpretations.

 Solution
We are going to use the tree explainer from the SHAP library.

 How It Works
Let’s take a look at the following example:

import shap

from sklearn.ensemble import RandomForestRegressor

rforest = RandomForestRegressor(n_estimators=100, max_depth=3,

min_samples_split=20, random_state=0)

rforest.fit(X, y)

explain all the predictions in the test set

explainer = shap.TreeExplainer(rforest)

shap_values = explainer.shap_values(X)

shap.summary_plot(shap_values, X)

Chapter 4 explainability for ensemble supervised models

137

Figure 4-11. SHAP value impact on model prediction

shap.dependence_plot("lights", shap_values, X)

Chapter 4 explainability for ensemble supervised models

138

Figure 4-12. SHAP value of lights plotted against T8 and lights

explain all the predictions in the dataset

shap.force_plot(explainer.expected_value, shap_values, X)

shap.partial_dependence_plot(

 "lights", rforest.predict, X, ice=False,

 model_expected_value=True, feature_expected_value=True

)

Chapter 4 explainability for ensemble supervised models

139

Figure 4-13. Partial dependency plot of lights

 Recipe 4-5. Explain the Catboost Regressor
with Global and Local Interpretations
 Problem
Catboost is another model that fasten the model training process by

explicitly declaring the categorical features. If there is no categorical

feature, then the model is trained on all numeric features as well. You

want to explain the global and local interpretations from the catboost

regression model.

 Solution
We are going to use the tree explainer from the SHAP library and the

catboost library.

Chapter 4 explainability for ensemble supervised models

140

 How It Works
Let’s take a look at the following example:

!pip install catboost

import catboost

from catboost import *

import shap

shap.initjs()

model = CatBoostRegressor(iterations=100, learning_rate=0.1,

random_seed=123)

model.fit(X, y, verbose=False, plot=False)

explainer = shap.TreeExplainer(model)

shap_values = explainer.shap_values(X)

summarize the effects of all the features

shap.summary_plot(shap_values, X)

Chapter 4 explainability for ensemble supervised models

141

Figure 4-14. SHAP value impact on model predictions

create a SHAP dependence plot to show the effect of a single

feature across the whole dataset

shap.dependence_plot("lights", shap_values, X)

Chapter 4 explainability for ensemble supervised models

142

Figure 4-15. SHAP value of lights dependence plot

 Recipe 4-6. Explain the EBM Classifier
with Global and Local Interpretations
 Problem
EBM is an explainable boosting machine for a classifier. You want to

explain the global and local interpretations from the EBM classifier model.

 Solution
We are going to use the tree explainer from the SHAP library.

Chapter 4 explainability for ensemble supervised models

143

 How It Works
Let’s take a look at the following example. We are going to use a public

automobile dataset with some modifications. The objective is to predict

the price of a vehicle given the features such as make, location, age, etc. It

is a regression problem that we are going to solve using a mix of numeric

and categorical features.

df = pd.read_csv('https://raw.githubusercontent.com/

pradmishra1/PublicDatasets/main/automobile.csv')

df.head(3)

df.columns

Index(['Price', 'Make', 'Location', 'Age', 'Odometer',

'FuelType', 'Transmission', 'OwnerType', 'Mileage', 'EngineCC',

'PowerBhp'], dtype='object')

We cannot use the string-based features or categorical features in the

model directly because matrix multiplication is not possible on string

features; hence, the string-based features need to be transformed into

dummy variables or binary features with 0 and 1 flags. The transformation

step is skipped here as many data scientists already know how to do data

transformation. We are importing another transformed dataset directly.

df_t = pd.read_csv('https://raw.githubusercontent.com/

pradmishra1/PublicDatasets/main/Automobile_transformed.csv')

del df_t['Unnamed: 0']

df_t.head(3)

df_t.columns

Index(['Price', 'Age', 'Odometer', 'mileage', 'engineCC',

'powerBhp', 'Location_Bangalore', 'Location_Chennai',

'Location_Coimbatore', 'Location_Delhi', 'Location_Hyderabad',

'Location_Jaipur', 'Location_Kochi', 'Location_Kolkata',

'Location_Mumbai', 'Location_Pune', 'FuelType_Diesel',

'FuelType_Electric', 'FuelType_LPG', 'FuelType_Petrol',

Chapter 4 explainability for ensemble supervised models

144

'Transmission_Manual', 'OwnerType_Fourth +ACY- Above',

'OwnerType_Second', 'OwnerType_Third'], dtype='object')

#y is the dependent variable, that we need to predict

y = df_t.pop('Price')

X is the set of input features

X = df_t

from interpret import set_visualize_provider

from interpret.provider import InlineProvider

set_visualize_provider(InlineProvider())

import pandas as pd

from sklearn.model_selection import train_test_split

from interpret.glassbox import ExplainableBoostingClassifier

from interpret import show

import shap

import sklearn

To compute the SHAP values, we can use the explainer function with

the training dataset X and the model predict function. The SHAP value

calculation takes place using a permutation approach; it took 5 minutes.

fit a GAM model to the data

import interpret.glassbox

import shap

model_ebm = interpret.glassbox.ExplainableBoostingRegressor()

model_ebm.fit(X, y)

X100 = X[:100]

explain the GAM model with SHAP

explainer_ebm = shap.Explainer(model_ebm.predict, X100)

shap_values_ebm = explainer_ebm(X100)

Chapter 4 explainability for ensemble supervised models

145

import numpy as np

pd.DataFrame(np.round(shap_values_ebm.values,2)).head(2)

pd.DataFrame(np.round(shap_values_ebm.base_values,2)).head(2)

 Recipe 4-7. SHAP Partial Dependency Plot
for Regression Models with Mixed Input
 Problem
You want to plot the partial dependency plot and interpret the graph for

numeric and categorical dummy variables.

 Solution
The partial dependency plot shows the correlation between a feature

and the predicted output of the target variables. There are two ways we

can showcase the results, one with a feature and expected value of the

prediction function and the other by superimposing a data point on the

partial dependency plot.

 How It Works
Let’s take a look at the following example:

from interpret import set_visualize_provider

from interpret.provider import InlineProvider

set_visualize_provider(InlineProvider())

from interpret import show

ebm_global = model_ebm.explain_global()

show(ebm_global)

Chapter 4 explainability for ensemble supervised models

146

ebm_local = model_ebm.explain_local(X[:5], y[:5])

show(ebm_local)

make a standard partial dependence plot with a single SHAP

value overlaid

sample_ind = 20

fig,ax = shap.partial_dependence_plot(

 "powerBhp", model_ebm.predict, X100, model_expected_

value=True,

 feature_expected_value=True, show=False, ice=False,

 shap_values=shap_values_ebm[sample_ind:sample_ind+1,:]

)

The nonlinear blue line shows the positive correlation between the

price and the powerBhp. The powerBhp is a strong feature; the higher the

bhp, the higher the price of the car.

Figure 4-16. Nonlinear relationship between the powerBhp and the
predicted output from the model

Chapter 4 explainability for ensemble supervised models

147

shap.partial_dependence_plot(

 "powerBhp", model_ebm.predict, X, ice=False,

 model_expected_value=True, feature_expected_value=True

)

This is a continuous or numeric feature. Let’s look at the binary or

dummy features. There are two dummy features for if the car is registered

in Bangalore or in Kolkata.

shap.partial_dependence_plot(

 "Location_Bangalore", model_ebm.predict, X, ice=False,

 model_expected_value=True, feature_expected_value=True

)

Figure 4-17. Partial dependence plot of powerBhp

Chapter 4 explainability for ensemble supervised models

148

Figure 4-18. Dummy variable Bangalore versus SHAP value

If the location of the car is Bangalore, then the price will be 9.5, and it

remains constant.

shap.partial_dependence_plot(

 "Location_Kolkata", model_ebm.predict, X, ice=False,

 model_expected_value=True, feature_expected_value=True

)

Chapter 4 explainability for ensemble supervised models

149

Figure 4-19. Dummy variable Location_Kolkata versus SHAP value

If the location is Kolkata, then the price is expected to be the same.

There is no impact of the dummy variable on the price.

 Recipe 4-8. SHAP Feature Importance
for Tree Regression Models with Mixed
Input Variables
 Problem
You want to get the global feature importance from SHAP values using

mixed input feature data.

 Solution
The solution to this problem is to use absolute values, sort them in

descending order, and populate them in waterfall chart, beeswarm chart,

scatter plot, etc.

Chapter 4 explainability for ensemble supervised models

150

 How It Works
Let’s take a look at the following example:

shap.plots.scatter(shap_values_ebm[:,"powerBhp"])

the waterfall_plot shows how we get from explainer.expected_

value to model.predict(X)[sample_ind]

shap.plots.waterfall(shap_values_ebm[sample_ind],

max_display=14)

Figure 4-20. Scatter plot of powerBhp and its SHAP values

Chapter 4 explainability for ensemble supervised models

151

Figure 4-21. Feature importance for a specific example

the waterfall_plot shows how we get from explainer.expected_

value to model.predict(X)[sample_ind]

shap.plots.beeswarm(shap_values_ebm, max_display=14)

Chapter 4 explainability for ensemble supervised models

152

Figure 4-22. Importance of SHAP values on model prediction

explain all the predictions in the dataset

shap.summary_plot(shap_values_ebm, X100)

Chapter 4 explainability for ensemble supervised models

153

Figure 4-23. Explaining all predictions with feature importance

At a high level, for the tree-based nonlinear model that is used to

predict the price of the automobiles, the previous features are important.

The highest is the powerBhp, age of the car, petrol type, manual

transmission type, etc. The previous tabular output shows the global

feature importance.

Chapter 4 explainability for ensemble supervised models

154

 Recipe 4-9. Explaining the XGBoost Model
 Problem
You want to generate explainability for an XGBoost model for regression.

 Solution
The XGBoost regressor trained on 100 trees and with a max depth

parameter of 3 using a dataset that contains both numerical and categorial

features. The total number of features are 23; an ideal dataset for XGBoost

would be where we have more than 50 features. However, that requires

more computation time.

 How It Works
Let’s take a look at the following example:

train XGBoost model

import xgboost

model_xgb = xgboost.XGBRegressor(n_estimators=100, max_

depth=2).fit(X, y)

explain the GAM model with SHAP

explainer_xgb = shap.Explainer(model_xgb, X)

shap_values_xgb = explainer_xgb(X)

make a standard partial dependence plot with a single SHAP

value overlaid

sample_ind = 18

fig,ax = shap.partial_dependence_plot(

 "powerBhp", model_xgb.predict, X, model_expected_

value=True,

Chapter 4 explainability for ensemble supervised models

155

 feature_expected_value=True, show=False, ice=False,

 shap_values=shap_values_xgb[sample_ind:sample_ind+1,:]

)

shap.plots.scatter(shap_values_xgb[:,"mileage"])

Figure 4-24. Partial dependency plot with a sample

Chapter 4 explainability for ensemble supervised models

156

Figure 4-25. Mileage feature and its SHAP values

shap.plots.scatter(shap_values_xgb[:,"powerBhp"], color=shap_

values_xgb)

Chapter 4 explainability for ensemble supervised models

157

Figure 4-26. Scatter plot of powerBhp, age, and SHAP value of
powerBhp

shap.summary_plot(shap_values_xgb, X)

Chapter 4 explainability for ensemble supervised models

158

Figure 4-27. SHAP value impact on model predictions

Chapter 4 explainability for ensemble supervised models

159

 Recipe 4-10. Random Forest Regressor
for Mixed Data Types
 Problem
You want to generate explainability for a random forest model using

numeric as well as categorical features.

 Solution
Random forest is useful when we have more features, say, more than 50;

however, for this recipe, it is applied on 23 features. We could pick up a

large dataset, but that would require more computations and may take

more time to train. So, be cognizant about the model configurations when

the model is being trained on a smaller machine.

 How It Works
Let’s take a look at the following example:

import shap

from sklearn.ensemble import RandomForestRegressor

rforest = RandomForestRegressor(n_estimators=100, max_depth=3,

min_samples_split=20, random_state=0)

rforest.fit(X, y)

explain all the predictions in the test set

explainer = shap.TreeExplainer(rforest)

shap_values = explainer.shap_values(X)

shap.summary_plot(shap_values, X)

Chapter 4 explainability for ensemble supervised models

160

Figure 4-28. SHAP value impact on model output

shap.dependence_plot("powerBhp", shap_values, X)

Chapter 4 explainability for ensemble supervised models

161

Figure 4-29. SHAP dependence plot

shap.partial_dependence_plot(

 "mileage", rforest.predict, X, ice=False,

 model_expected_value=True, feature_expected_value=True

)

Chapter 4 explainability for ensemble supervised models

162

Figure 4-30. Partial dependency plot of mileage

 Recipe 4-11. Explaining the Catboost Model
 Problem
You want to generate explainability for a dataset where most of the features

are categorical. We can use a boosting model where a lot of variables are

categorical.

 Solution
The catboost model is known to work when we have more categorical

variables compared to numeric variables. Hence, we can use the catboost

regressor.

 How It Works
Let’s take a look at the following example:

Chapter 4 explainability for ensemble supervised models

163

!pip install catboost

import catboost

from catboost import *

import shap

model = CatBoostRegressor(iterations=100, learning_rate=0.1,

random_seed=123)

model.fit(X, y, verbose=False, plot=False)

explainer = shap.TreeExplainer(model)

shap_values = explainer.shap_values(X)

summarize the effects of all the features

shap.summary_plot(shap_values, X)

Chapter 4 explainability for ensemble supervised models

164

Figure 4-31. SHAP value impact on model predictions

create a SHAP dependence plot to show the effect of a single

feature across the whole dataset

shap.dependence_plot("powerBhp", shap_values, X)

Chapter 4 explainability for ensemble supervised models

165

Figure 4-32. SHAP dependence plot

 Recipe 4-12. LIME Explainer
for the Catboost Model and Tabular Data
 Problem
You want to generate explainability at a local level in a focused manner

rather than at a global level.

 Solution
The solution to this problem is to use the LIME library. LIME is a model-

agnostic technique; it retrains the ML model while running the explainer.

LIME localizes a problem and explains the model at a local level.

Chapter 4 explainability for ensemble supervised models

166

 How It Works
Let’s take a look at the following example. LIME requires a numpy array as

an input to the tabular explainer; hence, the Pandas dataframe needs to be

transformed into an array.

!pip install lime

Looking in indexes: https://pypi.org/simple, https://us-python.

pkg.dev/colab-wheels/public/simple/

Collecting lime

 Downloading lime-0.2.0.1.tar.gz (275 kB)

 |██████████████████████
██████████| 275 kB 3.9 MB/s

Requirement already satisfied: matplotlib in /usr/local/lib/

python3.7/dist-packages (from lime) (3.2.2)

Requirement already satisfied: numpy in /usr/local/lib/

python3.7/dist-packages (from lime) (1.21.6)

Requirement already satisfied: scipy in /usr/local/lib/

python3.7/dist-packages (from lime) (1.7.3)

Require

................

import lime

import lime.lime_tabular

explainer = lime.lime_tabular.LimeTabularExplainer(np.array(X),

 mode=

'regression',

 feature_names=X.

columns,

 class_

names=['price'],

 verbose=True)

We are using the energy prediction data from this chapter only.

Chapter 4 explainability for ensemble supervised models

167

explainer.feature_selection

asking for explanation for LIME model

i = 60

exp = explainer.explain_instance(np.array(X)[i],

 model.predict,

 num_features=14

)

model.predict(X)[60]

X[60:61]

Intercept 2.412781377314505

Prediction_local [26.44019841]

Right: 18.91681746836109

exp.show_in_notebook(show_table=True)

[('powerBhp > 138.10', 11.685972887206468), ('Age <=

4.00', 5.069171125183003), ('engineCC > 1984.00',

3.2307037317922287), ('0.00 < Transmission_Manual <=

1.00', -2.175314285519644), ('Odometer <= 34000.00',

Figure 4-33. Local explanation for the 60th record from the dataset

Chapter 4 explainability for ensemble supervised models

168

2.0903883419638976), ('OwnerType_Fourth +ACY- Above <=

0.00', 1.99286243362804), ('Location_Hyderabad <= 0.00',

-1.4395857770864107), ('mileage <= 15.30', 1.016369130009493),

('0.00 < FuelType_Diesel <= 1.00', 0.8477072936504322),

('Location_Kolkata <= 0.00', 0.6908993069146472), ('FuelType_

Petrol <= 0.00', 0.654629068871846), ('Location_Bangalore

<= 0.00', -0.47395963805113284), ('FuelType_Electric <=

0.00', 0.4285429019735695), ('Location_Delhi <= 0.00',

0.40903051200940277)]

 Recipe 4-13. ELI5 Explainer for Tabular Data
 Problem
You want to use the ELI5 library for generating explanations of a linear

regression model.

 Solution
ELI5 is a Python package that helps to debug a machine learning model

and explain the predictions. It provides support for all machine learning

models supported by the scikit-learn library.

 How It Works
Let’s take a look at the following example:

pip install eli5

import eli5

eli5.show_weights(model,

 feature_names=list(X.columns))

Chapter 4 explainability for ensemble supervised models

169

Weight Feature

0.4385 powerbhp

0.2572 age

0.0976 engineCC

0.0556 odometer

0.0489 mileage

0.0396 transmission_manual

0.0167 fueltype_petrol

0.0165 fueltype_diesel

0.0104 location_hyderabad

0.0043 location_Coimbatore

0.0043 location_Kolkata

0.0035 location_Kochi

0.0025 location_bangalore

0.0021 location_mumbai

0.0014 location_delhi

0.0006 ownertype_third

0.0003 ownertype_second

0.0000 fueltype_electric

0 ownertype_fourth +aCy- above

0 location_pune

eli5.explain_weights(model, feature_names=list(X.columns))

Chapter 4 explainability for ensemble supervised models

170

Weight Feature

0.4385 powerbhp

0.2572 age

0.0976 engineCC

0.0556 odometer

0.0489 mileage

0.0396 transmission_manual

0.0167 fueltype_petrol

0.0165 fueltype_diesel

0.0104 location_hyderabad

0.0043 location_Coimbatore

0.0043 location_Kolkata

0.0035 location_Kochi

0.0025 location_bangalore

0.0021 location_mumbai

0.0014 location_delhi

0.0006 ownertype_third

0.0003 ownertype_second

0.0000 fueltype_electric

0 ownertype_fourth +aCy- above

0 location_pune

from eli5.sklearn import PermutationImportance

perm = PermutationImportance(model)

perm.fit(X, y)

eli5.show_weights(perm,feature_names=list(X.columns))

Chapter 4 explainability for ensemble supervised models

171

Weight Feature

0.6743 ± 0.0242 powerbhp

0.2880 ± 0.0230 age

0.1188 ± 0.0068 engineCC

0.0577 ± 0.0028 transmission_manual

0.0457 ± 0.0048 odometer

0.0354 ± 0.0053 mileage

0.0134 ± 0.0018 location_hyderabad

0.0082 ± 0.0022 fueltype_petrol

0.0066 ± 0.0013 fueltype_diesel

0.0042 ± 0.0010 location_Kochi

0.0029 ± 0.0006 location_Kolkata

0.0023 ± 0.0010 location_Coimbatore

0.0017 ± 0.0002 location_bangalore

0.0014 ± 0.0005 location_mumbai

0.0014 ± 0.0006 location_delhi

0.0007 ± 0.0001 ownertype_third

0.0002 ± 0.0000 ownertype_second

0.0000 ± 0.0000 fueltype_electric

0 ± 0.0000 location_Chennai

0 ± 0.0000 fueltype_lpG

The results table has a BIAS value as a feature. This can be interpreted

as an intercept term for a linear regression model. Other features are listed

based on their descending order of importance based on their weight. The

Chapter 4 explainability for ensemble supervised models

172

show weights function provides a global interpretation of the model, and

the show prediction function provides local interpretation by taking into

account a record from the training set.

 Recipe 4-14. How the Permutation Model
in ELI5 Works
 Problem
You want to make sense of the ELI5 permutation library.

 Solution
The solution to this problem is to use a dataset and a trained model.

 How It Works
The permutation model in the ELI5 library works only for global

interpretation. First it takes a baseline model from the training dataset and

computes the error of the model. Then it shuffles the values of a feature,

retrains the model, and computes the error. It compares the decrease in

error after shuffling and before shuffling. A feature can be considered as

important if after shuffling the error delta is high, and unimportant if the

error delta is low. The result displays the average importance of features

and the standard deviation of features with multiple shuffle steps.

Chapter 4 explainability for ensemble supervised models

173

 Recipe 4-15. Global Explanation
for Ensemble Classification Models
 Problem
You want to explain the predictions generated from a classification model

using ensemble models.

 Solution
The logistic regression model is also known as a classification model

as we model the probabilities from either a binary classification or a

multinomial classification variable. In this particular recipe, we are using a

churn classification dataset that has two outcomes: whether the customer

is likely to churn or not. Let’s use the ensemble models such as the

explainable boosting machine for the classifier, extreme gradient boosting

classifier, random forest classifier, and catboost classifier.

 How It Works
Let’s take a look at the following example. The key is to get the SHAP

values, which will return base values, SHAP values, and data. Using the

SHAP values we can create various explanations using graphs and figures.

The SHAP values are always at a global level.

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

from sklearn import tree, metrics, model_selection,

preprocessing

Chapter 4 explainability for ensemble supervised models

174

from sklearn.metrics import confusion_matrix,

classification_report

df_train = pd.read_csv('https://raw.githubusercontent.com/

pradmishra1/PublicDatasets/main/ChurnData_test.csv')

from sklearn.preprocessing import LabelEncoder

tras = LabelEncoder()

df_train['area_code_tr'] = tras.fit_transform(df_

train['area_code'])

df_train.columns

del df_train['area_code']

df_train.columns

df_train['target_churn_dum'] = pd.get_dummies(df_train.

churn,prefix='churn',drop_first=True)

df_train.columns

del df_train['international_plan']

del df_train['voice_mail_plan']

del df_train['churn']

df_train.info()

del df_train['Unnamed: 0']

df_train.columns

from sklearn.model_selection import train_test_split

X = df_train[['account_length', 'number_vmail_messages',

'total_day_minutes',

 'total_day_calls', 'total_day_charge', 'total_eve_

minutes',

 'total_eve_calls', 'total_eve_charge', 'total_night_

minutes',

 'total_night_calls', 'total_night_charge', 'total_intl_

minutes',

 'total_intl_calls', 'total_intl_charge',

Chapter 4 explainability for ensemble supervised models

175

 'number_customer_service_calls', 'area_code_tr']]

Y = df_train['target_churn_dum']

import pandas as pd

from sklearn.model_selection import train_test_split

from interpret.glassbox import ExplainableBoostingClassifier

from interpret import show

xtrain,xtest,ytrain,ytest=train_test_split(X,Y,test_

size=0.20,stratify=Y)

ebm = ExplainableBoostingClassifier(random_state=12)

ebm.fit(xtrain, ytrain)

ebm_global = ebm.explain_global()

show(ebm_global)

ebm_local = ebm.explain_local(xtest[:5], ytest[:5])

show(ebm_local)

print("training accuracy:", ebm.score(xtrain,ytrain)) #training

accuracy

print("test accuracy:",ebm.score(xtest,ytest)) # test accuracy

show(ebm_global)

from interpret import set_visualize_provider

from interpret.provider import InlineProvider

set_visualize_provider(InlineProvider())

from interpret import show

X100 = X[:100]

explain the GAM model with SHAP

explainer_ebm = shap.Explainer(ebm.predict, X100)

shap_values_ebm = explainer_ebm(X100)

Chapter 4 explainability for ensemble supervised models

176

ebm_global = ebm.explain_global()

show(ebm_global)

import numpy as np

pd.DataFrame(np.round(shap_values_ebm.values,2)).head(2)

 Recipe 4-16. Partial Dependency Plot
for a Nonlinear Classifier
 Problem
You want to show feature associations with the class probabilities using a

nonlinear classifier.

 Solution
The class probabilities in this example are related to predicting the

probability of churn. The SHAP value for a feature can be plotted against

the feature value to show a scatter chart that displays the correlation,

positive or negative, and the strength of associations.

 How It Works
Let’s take a look at the following example:

make a standard partial dependence plot with a single SHAP

value overlaid

sample_ind = 20

fig,ax = shap.partial_dependence_plot(

 "number_customer_service_calls", ebm.predict, X100, model_

expected_value=True,

 feature_expected_value=True, show=False, ice=False,

Chapter 4 explainability for ensemble supervised models

177

 shap_values=shap_values_ebm[sample_ind:sample_ind+1,:]

)

make a standard partial dependence plot with a single SHAP

value overlaid

sample_ind = 20

fig,ax = shap.partial_dependence_plot(

 "number_vmail_messages", ebm.predict, X100, model_expected_

value=True,

 feature_expected_value=True, show=False, ice=False,

 shap_values=shap_values_ebm[sample_ind:sample_ind+1,:]

)

Figure 4-34. Account length and SHAP value of account length

Chapter 4 explainability for ensemble supervised models

178

Figure 4-35. Number of voicemail messages and SHAP values

 Recipe 4-17. Global Feature Importance
from the Nonlinear Classifier
 Problem
You want to get the global feature importance for the decision tree

classification model.

 Solution
The solution to this problem is to use the explainer log odds.

 How It Works
Let’s take a look at the following example:

shap.plots.scatter(shap_values_ebm)

Chapter 4 explainability for ensemble supervised models

179

Figure 4-36. All features SHAP values plotted together

Figure 4-37. Local explanation for record 20

the waterfall_plot shows how we get from explainer.expected_

value to model.predict(X)[sample_ind]

shap.plots.waterfall(shap_values_ebm[sample_ind], max_

display=14)

Chapter 4 explainability for ensemble supervised models

180

The interpretation goes like this: when we change the value of a feature

by 1 unit, the model equation will produce two odds; one is the base, and

the other is the incremental value of the feature. We are looking at the ratio

of odds changes with every increase or decrease in the value of a feature.

From the global feature importance, there are three important features: the

number of customer service calls, the total day minutes, and the number of

voicemail messages.

the waterfall_plot shows how we get from explainer.expected_

value to model.predict(X)[sample_ind]

shap.plots.beeswarm(shap_values_ebm, max_display=14)

Figure 4-38. SHAP values from EBM model on model predictions

Chapter 4 explainability for ensemble supervised models

181

 Recipe 4-18. XGBoost Model Explanation
 Problem
You want to explain an extreme gradient boosting model, which is a

sequential boosting model.

 Solution
The model explanation can be done using SHAP; however, one of the

limitations of SHAP is we cannot use the full data to create global and local

explanations. We will take a subset if the smaller machine is allocated and

a full dataset if the machine configuration supports it.

 How It Works
Let’s take a look at the following example:

train XGBoost model

import xgboost

model = xgboost.XGBClassifier(n_estimators=100, max_depth=2).

fit(X, Y)

compute SHAP values

explainer = shap.Explainer(model, X)

shap_values = explainer(X)

make a standard partial dependence plot with a single SHAP

value overlaid

sample_ind = 18

fig,ax = shap.partial_dependence_plot(

 "account_length", model.predict, X, model_expected_

value=True,

Chapter 4 explainability for ensemble supervised models

182

 feature_expected_value=True, show=False, ice=False,

 shap_values=shap_values_xgb[sample_ind:sample_ind+1,:]

)

import numpy as np

pd.DataFrame(np.round(shap_values.values,2)).head(2)

the waterfall_plot shows how we get from explainer.expected_

value to model.predict(X)[sample_ind]

shap.plots.waterfall(shap_values[sample_ind], max_display=14)

Figure 4-39. Partial dependency plot for 18th record from
training dataset

Chapter 4 explainability for ensemble supervised models

183

Figure 4-40. Local explanation for 18th record

the waterfall_plot shows how we get from explainer.expected_

value to model.predict(X)[sample_ind]

shap.plots.scatter(shap_values[:,"account_length"])

Chapter 4 explainability for ensemble supervised models

184

Figure 4-41. Distribution of account length versus SHAP values

the waterfall_plot shows how we get from explainer.expected_

value to model.predict(X)[sample_ind]

shap.plots.scatter(shap_values[:,"number_vmail_messages"])

Chapter 4 explainability for ensemble supervised models

185

Figure 4-42. Distribution of number of voicemail messages versus its
SHAP values

the waterfall_plot shows how we get from explainer.expected_

value to model.predict(X)[sample_ind]

shap.plots.beeswarm(shap_values, max_display=14)

Chapter 4 explainability for ensemble supervised models

186

Figure 4-43. SHAP value impact on model output

Figure 4-44. Absolute average SHAP values shows importance of
features

shap.plots.bar(shap_values)

Chapter 4 explainability for ensemble supervised models

187

shap.plots.heatmap(shap_values[:5000])

shap.plots.scatter(shap_values[:,"total_day_minutes"])

Figure 4-45. Distribution of density of all features with their
SHAP values

Chapter 4 explainability for ensemble supervised models

188

Figure 4-46. Distribution of feature total day minutes with
SHAP values

shap.plots.scatter(shap_values[:,"total_day_minutes"],

color=shap_values[:,"account_length"])

Chapter 4 explainability for ensemble supervised models

189

Figure 4-47. Three-dimensional view of SHAP values

 Recipe 4-19. Explain a Random
Forest Classifier
 Problem
You want to get faster explanations from global and local explainable

libraries using a random forest classifier. A random forest creates a family

of trees as estimators and averages the predictions using the majority

voting rule.

 Solution
The model explanation can be done using SHAP; however, one of the

limitations of SHAP is we cannot use the full data to create global and local

explanations.

Chapter 4 explainability for ensemble supervised models

190

 How It Works
Let’s take a look at the following example:

import shap

from sklearn.ensemble import RandomForestClassifier

rforest = RandomForestClassifier(n_estimators=100, max_depth=3,

min_samples_split=20, random_state=0)

rforest.fit(X, Y)

explain all the predictions in the test set

explainer = shap.TreeExplainer(rforest)

shap_values = explainer.shap_values(X)

shap.dependence_plot("account_length", shap_values[0], X)

shap.partial_dependence_plot(

 "total_day_minutes", rforest.predict, X, ice=False,

 model_expected_value=True, feature_expected_value=True

)

Figure 4-48. Dependence plot from SHAP

Chapter 4 explainability for ensemble supervised models

191

Figure 4-49. Partial dependence plot of total day minutes

shap.summary_plot(shap_values, X)

Chapter 4 explainability for ensemble supervised models

192

Figure 4-50. Feature importance for two classes separately based on
absolute average SHAP value

 Recipe 4-20. Catboost Model Interpretation
for Classification Scenario
 Problem
You want to get an explanation for the catboost model–based binary

classification problem.

Chapter 4 explainability for ensemble supervised models

193

 Solution
The model explanation can be done using SHAP; however, one of the

limitations of SHAP is we cannot use the full data to create global and

local explanations. Even if we decide to use the full data, it usually takes

more time. Hence, to speed up the process of generating local and global

explanations in a scenario when millions of records are being used to train

a model, LIME is very useful. Catboost needs iterations to be defined.

 How It Works
Let’s take a look at the following example:

model = CatBoostClassifier(iterations=10, learning_rate=0.1,

random_seed=12)

model.fit(X, Y, verbose=True, plot=False)

0: learn: 0.6381393 total: 10.2ms remaining: 91.9ms

1: learn: 0.5900921 total: 20.1ms remaining: 80.2ms

2: learn: 0.5517727 total: 29.9ms remaining: 69.8ms

3: learn: 0.5166202 total: 39.9ms remaining: 59.9ms

4: learn: 0.4872410 total: 49.9ms remaining: 49.9ms

5: learn: 0.4632012 total: 60.1ms remaining: 40ms

6: learn: 0.4414588 total: 69.8ms remaining: 29.9ms

7: learn: 0.4222780 total: 79.6ms remaining: 19.9ms

8: learn: 0.4073681 total: 89.5ms remaining: 9.95ms

9: learn: 0.3915051 total: 99.5ms remaining: 0us

explainer = shap.TreeExplainer(model)

shap_values = explainer.shap_values(Pool(X, Y))

shap.force_plot(explainer.expected_value, shap_values[0,:],

X.iloc[0,:])

shap.force_plot(explainer.expected_value, shap_values[91,:],

X.iloc[91,:])

shap.summary_plot(shap_values, X)

Chapter 4 explainability for ensemble supervised models

194

Figure 4-51. SHAP value impact on model output

 Recipe 4-21. Local Explanations Using LIME
 Problem
You want to get faster explanations from global and local explainable

libraries.

Chapter 4 explainability for ensemble supervised models

195

 Solution
The model explanation can be done using SHAP; however, one of the

limitations of SHAP is we cannot use the full data to create global and

local explanations. Even if we decide to use the full data, it usually takes

more time. Hence, to speed up the process of generating local and global

explanations in a scenario when millions of records are being used to train

a model, LIME is very useful.

 How It Works
Let’s take a look at the following example:

import lime

import lime.lime_tabular

explainer = lime.lime_tabular.LimeTabularExplainer(np.

array(xtrain),

 feature_names=list(xtrain.columns),

 class_names=['target_churn_dum'],

 verbose=True, mode='classification')

this record is a no churn scenario

exp = explainer.explain_instance(X.iloc[0], model.predict_

proba, num_features=16)

exp.as_list()

Intercept 0.2758028503306529

Prediction_local [0.34562036]

Right: 0.23860629814459952

[('number_customer_service_calls > 2.00', 0.06944779279619419),

 ('total_day_minutes <= 144.10', -0.026032556397868205),

 ('area_code_tr > 1.00', 0.012192087473855579),

 ('total_day_charge <= 24.50', -0.01049348495191592),

Chapter 4 explainability for ensemble supervised models

196

 ('total_night_charge > 10.57', 0.009208937152255816),

 ('total_eve_calls <= 88.00', 0.007763649795450518),

 ('17.12 < total_eve_charge <= 19.74', 0.006648493070415344),

 ('number_vmail_messages <= 0.00', 0.0054214568436186375),

 ('98.00 < account_length <= 126.00', 0.004192090777110732),

 ('2.81 < total_intl_charge <= 3.21', -0.004030006982470514),

 ('201.40 < total_eve_minutes <= 232.20',

-0.0039743556975642405),

 ('total_night_minutes > 234.80', 0.0035628982403953778),

 ('total_night_calls <= 86.00', 0.0029612465055136334),

 ('total_day_calls > 112.00', -0.0028523783898236925),

 ('total_intl_calls <= 3.00', -0.002506612124522332),

 ('10.40 < total_intl_minutes <= 11.90',

-0.0016917444417898933)]

exp.show_in_notebook(show_table=True)

This is s churn scenario

exp = explainer.explain_instance(X.iloc[20], model.predict_

proba, num_features=16)

Figure 4-52. Local explanation for record number 1 from test set

Chapter 4 explainability for ensemble supervised models

197

exp.as_list()

Intercept 0.32979383442829424

Prediction_local [0.22940692]

Right: 0.25256892775050466

[('number_customer_service_calls <= 1.00',

-0.03195279452926141),

 ('144.10 < total_day_minutes <= 181.00',

-0.03105192670898253),

 ('total_intl_charge > 3.21', 0.010519683979779627),

 ('101.00 < total_eve_calls <= 114.00', -0.008871850152517477),

 ('0.00 < area_code_tr <= 1.00', -0.008355187259945206),

 ('total_intl_minutes > 11.90', 0.007391379556830906),

 ('24.50 < total_day_charge <= 30.77', -0.006975112181235882),

 ('total_night_charge <= 7.56', -0.006500647887830215),

 ('total_eve_charge <= 14.14', -0.006278552413626889),

 ('number_vmail_messages > 0.00', -0.0062185929677679875),

 ('total_night_minutes <= 167.90', -0.003079244107811434),

 ('4.00 < total_intl_calls <= 5.00', -0.0026984920221149998),

 ('total_day_calls > 112.00', -0.0024708590253414045),

 ('total_eve_minutes <= 166.40', -0.002156339757484174),

 ('98.00 < account_length <= 126.00', -0.0013292154399683106),

 ('86.00 < total_night_calls <= 99.00', -0.00035916152353229)]

exp.show_in_notebook(show_table=True)

Chapter 4 explainability for ensemble supervised models

198

Figure 4-53. Local explanations from 20th record from the test set

In a similar fashion, the graphs can be generated for different records

from the training set and test set, which are from the training sample as

well as test sample.

 Recipe 4-22. Model Explanations Using ELI5
 Problem
You want to get model explanations using the ELI5 library.

 Solution
ELI5 provides two functions, show weights and show predictions, to

generate model explanations.

 How It Works
Let’s take a look at the following example:

eli5.show_weights(model,

 feature_names=list(X.columns))

Chapter 4 explainability for ensemble supervised models

199

Weight Feature

0.3703 total_day_minutes

0.2426 number_customer_service_calls

0.1181 total_day_charge

0.0466 total_eve_charge

0.0427 number_vmail_messages

0.0305 total_eve_minutes

0.0264 total_eve_calls

0.0258 total_intl_minutes

0.0190 total_night_minutes

0.0180 total_night_charge

0.0139 total_intl_charge

0.0133 area_code_tr

0.0121 total_day_calls

0.0110 total_intl_calls

0.0077 total_night_calls

0.0019 account_length

eli5.explain_weights(model, feature_names=list(X.columns))

Weight Feature

0.3703 total_day_minutes

0.2426 number_customer_service_calls

0.1181 total_day_charge

(continued)

Chapter 4 explainability for ensemble supervised models

200

Weight Feature

0.0466 total_eve_charge

0.0427 number_vmail_messages

0.0305 total_eve_minutes

0.0264 total_eve_calls

0.0258 total_intl_minutes

0.0190 total_night_minutes

0.0180 total_night_charge

0.0139 total_intl_charge

0.0133 area_code_tr

0.0121 total_day_calls

0.0110 total_intl_calls

0.0077 total_night_calls

0.0019 account_length

from eli5.sklearn import PermutationImportance

perm = PermutationImportance(model)

perm.fit(X,Y)

eli5.show_weights(perm,feature_names=list(X.columns))

Weight Feature

0.0352 ± 0.0051 total_day_minutes

0.0250 ± 0.0006 total_day_charge

0.0121 ± 0.0024 number_vmail_messages

0.0110 ± 0.0051 total_eve_charge

(continued)

Chapter 4 explainability for ensemble supervised models

201

Weight Feature

0.0052 ± 0.0048 total_night_minutes

0.0028 ± 0.0025 total_night_charge

0.0023 ± 0.0009 total_eve_calls

0.0022 ± 0.0012 number_customer_service_calls

0.0022 ± 0.0018 total_eve_minutes

0.0019 ± 0.0012 total_night_calls

0.0018 ± 0.0015 total_day_calls

0.0017 ± 0.0019 total_intl_minutes

0.0011 ± 0.0016 area_code_tr

0.0008 ± 0.0012 total_intl_charge

0.0005 ± 0.0018 total_intl_calls

-0.0010 ± 0.0018 account_length

 Recipe 4-23. Multiclass Classification
Model Explanation
 Problem
You want to get model explanations for multiclass classification problems.

 Solution
The expectation for multiclass classification is to first build a robust model

with categorical features, if any, and explain the predictions. In a binary

class classification problem, we can get the probabilities, and sometimes

Chapter 4 explainability for ensemble supervised models

202

we can get the feature importance corresponding to each class from all

kinds of ensemble models. Here is an example of a catboost model that

can be used to generate the feature importance corresponding to each

class in the multiclass classification problem.

 How It Works
Let’s take a look at the following example. We are going to use a dataset

from the UCI ML repository. The URL to access the dataset is given in the

following script:

import pandas as pd

df_red = pd.read_csv('https://archive.ics.uci.edu/ml/machine-

learning-databases/wine-quality/winequality-red.csv',sep=';')

df_white = pd.read_csv('https://archive.ics.uci.edu/ml/machine-

learning-databases/wine-quality/winequality- white.csv',sep=';')

features = ['fixed_acidity','volatile_acidity','citric_

acid','residual_sugar',

 'chlorides','free_sulfur_dioxide','total_sulfur_

dioxide','density',

 'pH','sulphates','alcohol','quality']

df = pd.concat([df_red,df_white],axis=0)

df.columns = features

df.quality = pd.Categorical(df.quality)

df.head()

y = df.pop('quality')

X = df

import catboost

from catboost import *

import shap

shap.initjs()

Chapter 4 explainability for ensemble supervised models

203

model = CatBoostClassifier(loss_function = 'MultiClass',

 iterations=300,

 learning_rate=0.1,

 random_seed=123)

model.fit(X, y, verbose=False, plot=False)

explainer = shap.TreeExplainer(model)

shap_values = explainer.shap_values(Pool(X, y))

set(y)

{3, 4, 5, 6, 7, 8, 9}

shap.summary_plot(shap_values[0], X)

shap.summary_plot(shap_values[1], X)

Figure 4-54. SHAP value impact with respect to class 0 from the
target variable

Chapter 4 explainability for ensemble supervised models

204

Figure 4-55. SHAP summary plot for class 2 from the target variable

shap.summary_plot(shap_values[2], X)

Chapter 4 explainability for ensemble supervised models

205

Figure 4-56. SHAP summary plot for class 3 from the target variable

 Conclusion
In this chapter, we discussed the ensemble model explanations. The

models we covered were explainable boosting regressor, explainable

boosting classifier, extreme gradient boosting regressor and classifier,

random forest regressor and classifier, and catboost classifier and

regressor. The graphs and charts sometimes may look similar, but they

are different, because of two reasons. First, the data points from SHAP

that are available for plotting depend on the sample size selected to

generate explanations. Second, the sample models are being trained with

fewer iterations and with basic hyperparameters; hence, with a higher

configuration machine, the full hyperparameter tuning can happen, and

better SHAP values can be produced.

Chapter 4 explainability for ensemble supervised models

206

In the next chapter, we will cover the explainability for natural

language–based tasks such as text classification and sentiment analysis

and explain the predictions.

Chapter 4 explainability for ensemble supervised models

207

CHAPTER 5

Explainability for
Natural Language
Processing
Natural language processing tasks such as text classification and

sentiment analysis can be explained using explainable AI libraries such

as SHAP and ELI5. The objective of explaining the text classification

tasks or sentiment analysis tasks is to let the user know how a decision

was made. The predictions are generated using a supervised learning

model for unstructured text data. The input is a text sentence or many

sentences or phrases, and we train a machine learning model to perform

text classification such as customer review classification, feedback

classification, newsgroup classification, etc. In this chapter, we will be

using explainable libraries to explain the predictions or classifications.

There are three common problems where explainability is required in

natural language processing.

• Document classification, where the input is a series of

sentences extracted from a document, and the output

is the label attached to the document. If a document

is misclassified or someone wants to know why a

document is being classified by the algorithm in a

certain way, we need to explain why.

© Pradeepta Mishra 2023
P. Mishra, Explainable AI Recipes, https://doi.org/10.1007/978-1-4842-9029-3_5

https://doi.org/10.1007/978-1-4842-9029-3_5#DOI

208

• For named entity recognition tasks, we need to predict

the entity to which a name belongs. If it is assigned to

another entity, we need to explain why.

• For sentiment analysis, if a sentiment category is

wrongly assigned to another category, then we need to

explain why.

 Recipe 5-1. Explain Sentiment Analysis Text
Classification Using SHAP
 Problem
You want to explain sentiment analysis prediction using SHAP.

 Solution
The solution takes into account the most common dataset available, which

is the IMDB sentiment classification dataset from the SHAP library. It can

be accessed using the SHAP dataset. We will be using the SHAP library to

explain the predictions.

 How It Works
Let’s take a look at the following example (see Figure 5-1 and Figure 5-2):

!pip install shap

import warnings

warnings.filterwarnings("ignore")

import sklearn

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.model_selection import train_test_split

Chapter 5 explainability for natural language proCessing

209

import numpy as np

import shap

import pandas as pd

from keras.datasets import imdb

corpus,y = shap.datasets.imdb()

corpus_train, corpus_test, y_train, y_test = train_test_

split(corpus, y, test_size=0.2, random_state=7)

vectorizer = TfidfVectorizer(min_df=10)

X_train = vectorizer.fit_transform(corpus_train).toarray() #

sparse also works but Explanation slicing is not yet supported

X_test = vectorizer.transform(corpus_test).toarray()

corpus_train[20]

Well how was I suppose to know this was......................

..........

y

array([False, False, False, ..., True, True, True])

model = sklearn.linear_model.LogisticRegression(penalty=

"l2", C=0.1)

model.fit(X_train, y_train)

explainer = shap.Explainer(model, X_train, feature_

names=vectorizer.get_feature_names())

shap_values = explainer(X_test)

shap.summary_plot(shap_values, X_test)

Chapter 5 explainability for natural language proCessing

210

Figure 5-1. Summary plot from sentiment classification

Chapter 5 explainability for natural language proCessing

211

shap.plots.beeswarm(shap_values)

names = vectorizer.get_feature_names()

names[0:20]

pd.DataFrame(X_train,columns=names)

Figure 5-2. SHAP values showing very sparse features

Chapter 5 explainability for natural language proCessing

212

00
00

0
00

7
01

02
05

06
10

10
0

10
00

...
zo

m
bi

zo
m

bi
e

zo
m

bi
es

zo
ne

zo
o

zo
om

zo
om

s
zo

rr
o

zu
zu

ck
er

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

00
00

00
0.

0
0.

0
...

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

1
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

00
00

00
0.

0
0.

0
...

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

2
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

00
00

00
0.

0
0.

0
...

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

3
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

00
00

00
0.

0
0.

0
...

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

4
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

0
0.

07
89

69
0.

0
0.

0
...

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

Chapter 5 explainability for natural language proCessing

213

ind = 10

shap.plots.force(shap_values[ind])

print("Positive" if y_test[ind] else "Negative", "Review:")

print(corpus_test[ind])

Positive Review:

"Twelve Monkeys" is odd and disturbing,

.................

 Recipe 5-2. Explain Sentiment Analysis Text
Classification Using ELI5
 Problem
You want to explain sentiment analysis prediction using ELI5.

 Solution
The solution takes into account the most common dataset available, which

is the IMDB sentiment classification. We will be using the ELI5 library to

explain the predictions.

 How It Works
Let’s take a look at the following example:

!pip install eli5

import eli5

eli5.show_weights(model, top=10) #this result is not

meaningful, as weight and feature names are not there

y=True top features

Chapter 5 explainability for natural language proCessing

214

Weight? Feature

+3.069 x6530

+2.195 x748

+1.838 x1575

+1.788 x5270

+1.743 x8807

… 8173 more positive …

… 8234 more negative …

-1.907 x15924

-1.911 x1239

-2.027 x9976

-2.798 x16255

-3.643 x1283

The ELI5 results are not meaningful as they provide only the weights

and features, and the feature names are not meaningful. To make the

results interpretable, we need to pass the feature names.

eli5.show_weights(model,feature_names=vectorizer.get_feature_

names(),target_names=['Negative','Positive'])

#make sense

y=Positive top features

Chapter 5 explainability for natural language proCessing

215

Weight? Feature

+3.069 great

+2.195 and

+1.838 best

+1.788 excellent

+1.743 love

+1.501 well

+1.477 wonderful

+1.394 very

… 8170 more positive …

… 8227 more negative …

-1.391 just

-1.407 plot

-1.481 poor

-1.570 even

-1.589 terrible

-1.612 nothing

-1.723 boring

-1.907 waste

-1.911 awful

-2.027 no

-2.798 worst

-3.643 bad

Chapter 5 explainability for natural language proCessing

216

 Recipe 5-3. Local Explanation Using ELI5
 Problem
You want to explain an individual review in the sentiment analysis

prediction using ELI5.

 Solution
The solution is takes into account the most common dataset available,

which is the IMDB sentiment classification dataset. We will be using the

ELI5 library to explain the predictions.

 How It Works
Let’s take a look at the following example. Here we are taking into account

three reviews, record numbers 1, 20, and 100, to explain the predicted

class and relative importance of each word contributing positively and

negatively to the predicted class.

Eli5.show_prediction(model, corpus_train[3], vec=vectorizer,

 target_names=['Negative','Positive'])

explain local prediction

y=Positive (probability 0.739, score 1.042) top features

Contribution? Feature

+0.869 highlighted in text (sum)

+0.174 <bias>

as a matter of fact, this is one of those movies you would have to give

7.5 to. The fact is; as already stated, it’s a great deal of fun. Wonderfully

atmospheric. Askey does indeed come across as over the top, but it’s a

Chapter 5 explainability for natural language proCessing

217

great vehicle for him, just as oh, mr porter is for will hay. If you like old

dark house movies and trains, then this is definitely for you.

strangely enough it’s the kind of film that you’ll want to see again and a

........................

eli5.show_prediction(model, corpus_train[4], vec=vectorizer,

 target_names=['Negative','Positive'])

explain local prediction

y=Negative (probability 0.682, score -0.761) top features

Contribution? Feature

+0.935 highlighted in text (sum)

-0.174 <bias>

how could 4 out of 16 prior voters give this movie a 10? How could

more than half the prior voters give it a 7 or higher? Who is voting here?

I can only assume it is primarily kids -- very young kids. the fact is that this

is a bad movie in every way. the story is stupid; the acting is hard to even

think of …….

eli5.show_prediction(model, corpus_train[100], vec=vectorizer,

 target_names=''Nagativ''''Positiv'']) #

explain local prediction

y=Negative (probability 0.757, score -1.139) top features

Contribution? Feature

+1.313 highlighted in text (sum)

-0.174 <bias>

Chapter 5 explainability for natural language proCessing

218

this movie was so poorly written and directed i fell asleep 30 minutes

through the movie……………….

The green patches show positive features for the target class

positive, and the red parts are negative features that correspond to

the negative class. The feature value and the weight value indicate the

relative importance of words as features in classifying sentiments. It is

observed that many stop words or unwanted words are present in the

tokenization process; hence, they are appearing as features in the feature

importance. The way to clean it up is to use preprocessing steps such as

applying stemming, removing stop words, performing lemmatization,

removing numbers, etc. Once the text cleanup is completed, then the

previous recipes can be used again to create a better model to predict the

sentiments.

 Conclusion
In this chapter, we covered how to interpret the text classification use cases

such as sentiment analysis. However, for all such kinds of use cases, the

process will remain same, and the same recipes can be used. The modeling

technique selection may change as the features increase, and we can use

complex models such as ensemble modeling techniques like random

forest, gradient boosting techniques, and catboost techniques. Also, the

preprocessing methods can change. For example, the count vectorizer,

TF-IDF vectorizer, hashing vectorizer, etc., can be applied with stop word

removal to clean the text to get better features. The recipes to run different

variants of ensemble models were covered in the previous chapter. In the

next chapter, we are going to cover times-series model explainability.

Chapter 5 explainability for natural language proCessing

219

CHAPTER 6

Explainability
for Time-Series
Models
A time series, as the name implies, has a time stamp and a variable that

we are observing over time, such as stock prices, sales, revenue, profit over

time, etc. Time-series modeling is a set of techniques that can be used to

generate multistep predictions for a future time period, which will help a

business to plan better and will help decision-makers to plan according

to the future estimations. There are machine learning–based techniques

that can be applied to generate future forecasting; also, there is a need to

explain the predictions about the future.

The most commonly used techniques for time-series forecasting are

autoregressive methods, moving average methods, autoregressive and

moving average methods, and deep learning–based techniques such

as LSTM, etc. The time-series model requires the data to be at frequent

time intervals. If there is any gap in recording, it requires a different

process to address the gap in the time series. The time-series model can

be looked at from two ways: univariate, which is completely dependent

on time, and multivariate, which takes into account various factors.

Those factors are called causal factors, which impact the predictions.

In the time-series model, the time is an independent variable, so

© Pradeepta Mishra 2023
P. Mishra, Explainable AI Recipes, https://doi.org/10.1007/978-1-4842-9029-3_6

https://doi.org/10.1007/978-1-4842-9029-3_6#DOI

220

we can compute various features from the time as an independent

feature. Time-series modeling has various components such as trend,

seasonality, and cyclicity.

 Recipe 6-1. Explain Time-Series Models
Using LIME
 Problem
You want to explain a time-series model using LIME.

 Solution
We are taking into consideration a sample dataset that has dates and

prices, and we are going to consider only the univariate analysis. We will

be using the LIME library to explain the predictions.

 How It Works
Let’s take a look at the following example (see Figure 6-1):

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

df = pd.read_csv('https://raw.githubusercontent.com/

pradmishra1/PublicDatasets/main/monthly_csv.csv',index_col=0)

seasonal difference

differenced = df.diff(12)

trim off the first year of empty data

differenced = differenced[12:]

Chapter 6 explainability for time-SerieS modelS

221

save differenced dataset to file

differenced.to_csv('seasonally_adjusted.csv', index=False)

plot differenced dataset

differenced.plot()

plt.show()

Figure 6-1. Seasonally adjusted difference plot

reframe as supervised learning

dataframe = pd.DataFrame()

for i in range(12,0,-1):

 dataframe['t-'+str(i)] = df.shift(i).values[:,0]

dataframe['t'] = df.values[:,0]

print(dataframe.head(13))

dataframe = dataframe[13:]

save to new file

dataframe.to_csv('lags_12months_features.csv', index=False)

For the last 12 months, lagged features will be used as training features

to forecast the future time-series sales values.

Chapter 6 explainability for time-SerieS modelS

222

split into input and output

df = pd.read_csv('lags_12months_features.csv')

data = df.values

X = data[:,0:-1]

y = data[:,-1]

from sklearn.ensemble import RandomForestRegressor

fit random forest model

model = RandomForestRegressor(n_estimators=500, random_state=1)

model.fit(X, y)

We are using a random forest regressor to consider the importance of

each feature in a subset scenario. See Figure 6-2.

show importance scores

print(model.feature_importances_)

plot importance scores

names = dataframe.columns.values[0:-1]

ticks = [i for i in range(len(names))]

plt.bar(ticks, model.feature_importances_)

plt.xticks(ticks, names)

plt.show()

Chapter 6 explainability for time-SerieS modelS

223

Figure 6-2. Feature importance for lagged features from the 12
lagged features

from sklearn.feature_selection import RFE

Recursive feature elimination is a technique usually used to fine-tune

relevant features from the available list of features so that only important

features can go into the inference generation process.

perform feature selection

rfe = RFE(RandomForestRegressor(n_estimators=500, random_

state=1), n_features_to_select=4)

fit = rfe.fit(X, y)

report selected features

print('Selected Features:')

names = dataframe.columns.values[0:-1]

for i in range(len(fit.support_)):

 if fit.support_[i]:

 print(names[i])

Chapter 6 explainability for time-SerieS modelS

224

Selected Features:

t-7

t-3

t-2

t-1

We can rank the time-aware important features, which are lags. See

Figure 6-3 and Figure 6-4.

plot feature rank

names = dataframe.columns.values[0:-1]

ticks = [i for i in range(len(names))]

plt.bar(ticks, fit.ranking_)

plt.xticks(ticks, names)

plt.show()

Figure 6-3. Feature ranking from all available lags

Chapter 6 explainability for time-SerieS modelS

225

!pip install Lime

import lime

import lime.lime_tabular

explainer = lime.lime_tabular.LimeTabularExplainer(np.array(X),

 mode='regression',

 feature_names=X.columns,

 class_names=['t'],

 verbose=True)

explainer.feature_frequencies

{0: array([0.25659472, 0.24340528, 0.24940048, 0.25059952]),

1: array([0.25539568, 0.24460432, 0.24940048, 0.25059952]),

2: array([0.25419664, 0.24580336, 0.24940048, 0.25059952]),

3: array([0.2529976 , 0.2470024 , 0.24940048, 0.25059952]), 4:

array([0.25179856, 0.24820144, 0.24940048, 0.25059952]), 5:

array([0.25059952, 0.24940048, 0.24940048, 0.25059952]), 6:

array([0.2529976 , 0.2470024 , 0.24940048, 0.25059952]), 7:

array([0.25179856, 0.24820144, 0.24940048, 0.25059952]), 8:

array([0.25059952, 0.24940048, 0.24940048, 0.25059952]), 9:

array([0.25059952, 0.24940048, 0.24940048, 0.25059952]), 10:

array([0.25059952, 0.24940048, 0.24940048, 0.25059952]), 11:

array([0.25059952, 0.24940048, 0.24940048, 0.25059952])}

asking for explanation for LIME model

i = 60

exp = explainer.explain_instance(np.array(X)[i],

 new_model.predict,

 num_features=12

)

Chapter 6 explainability for time-SerieS modelS

226

Intercept 524.1907857658252

Prediction_local [76.53408383]

Right: 35.77034850521053

X does not have valid feature names, but LinearRegression was

fitted with feature names

exp.show_in_notebook(show_table=True)

For the 60th record from the dataset, the predicted value is 35.77, for

which lag 1 is the most important feature.

exp.as_list()

[('t-1 <= 35.39', -635.1332339969734), ('t-2 <= 35.34',

210.66614528187935), ('t-5 <= 35.20', -139.067880800616),

('t-6 <= 35.20', 116.37720395001742), ('t-12 <= 35.19',

90.11939668085971), ('t-11 <= 35.19', -78.09554990821964),

('t-3 <= 35.25', -74.75587075373902), ('t-8 <= 35.19',

63.86565747018194), ('t-4 <= 35.20', 49.45398090327778),

('t-9 <= 35.19', -49.24830755303888), ('t-7 <= 35.19',

-41.51328966914635), ('t-10 <= 35.19', 39.67504645890767)]

Code for SP-LIME

import warnings

from lime import submodular_pick

Figure 6-4. Local interpretation for time series

Chapter 6 explainability for time-SerieS modelS

227

Remember to convert the dataframe to matrix values

SP-LIME returns exaplanations on a sample set to provide a

non redundant global decision boundary of original model

sp_obj = submodular_pick.SubmodularPick(explainer, np.array(X),

 new_model.predict,

 num_features=12,

 num_exps_desired=10)

The SP-LIME module from the LIME library provides explanations on

a sample set to provide a global decision boundary about the prediction.

In the previous script, we are considering the time-series model as a

supervised learning model and using 12 lags as features. From the LIME

library, we are using the LIME tabular explainer. The following script

shows the explanation of record number 60. The predicted value is 35.77,

and the lower threshold value and upper threshold value reflect the

confidence band of the predicted outcome. Figure 6-5 shows the positive

factors and negative factors contributing toward the prediction.

Figure 6-5. The local explanation shows positive features in green
and negative in red

Chapter 6 explainability for time-SerieS modelS

228

 Recipe 6-2. Explain Time-Series Models
Using SHAP
 Problem
You want to explain the time-series model using SHAP.

 Solution
We are taking into consideration a sample dataset that has dates and

prices, and we are going to consider only the univariate analysis. We will

be using the SHAP library to explain the predictions.

 How It Works
Let’s take a look at the following example (Figure 6-6):

import shap

from sklearn.ensemble import RandomForestRegressor

rforest = RandomForestRegressor(n_estimators=100, random_

state=0)

rforest.fit(X, y)

explain all the predictions in the test set

explainer = shap.TreeExplainer(rforest)

shap_values = explainer.shap_values(X)

shap.summary_plot(shap_values, X)

Chapter 6 explainability for time-SerieS modelS

229

Figure 6-6. Summary plot of SHAP feature values

t-1, t-2, and t-7 are the three important features that impact the

predictions. t-1 means a lag of the last time period, t-2 means a lag of the

past two time periods, and t-7 means a lag of the seventh time period. Let’s

say data is available at a monthly level, so t-1 means last month, t-2 means

the second month in the past, and t-7 means the seventh month in the

past. These values impact the predictions. See Figure 6-7 and Figure 6-8.

shap.dependence_plot("t-1", shap_values, X)

Chapter 6 explainability for time-SerieS modelS

230

Figure 6-7. SHAP dependence plot

Figure 6-8. Partial dependence plot for feature t-1

shap.partial_dependence_plot(

 "t-1", rforest.predict, X, ice=False,

 model_expected_value=True, feature_expected_value=True

)

Chapter 6 explainability for time-SerieS modelS

231

 Conclusion
In this chapter, we covered how to interpret a time-series model to

generate a forecast. To interpret a univariate time-series model, we

considered it as a supervised learning problem by taking the lags as

trainable features. These features are then trained using a linear regressor,

and the regression model is used to generate explanations at a global level

as well as at a local level using both the SHAP and LIME libraries. A similar

explanation can be generated using more complex algorithms such as the

nonlinear and ensemble techniques, and finally similar kinds of graphs

and charts can be generated using SHAP and LIME as in the previous

chapters. The next chapter contains recipes to explain deep neural

network models.

Chapter 6 explainability for time-SerieS modelS

233

CHAPTER 7

Explainability
for Deep Learning
Models
Deep learning models are becoming the backbone of artificial intelligence

implementations. At the same time, it is super important to build the

explainability layers to explain the predictions and output of the deep

learning model. To build trust for the deep learning model outcome, we

need to explain the results or output. At a high level, a deep learning layer

involves more than one hidden layer, whereas a neural network layer has

three layers: the input layer, the hidden layer, and the output layer. There

are different variants of neural network models such as single hidden

layer neural network model, multiple hidden layer neural networks,

feedforward neural networks, and backpropagation neural networks.

Depending upon the structure of the neural network model, there are

three popular structures: recurrent neural networks, which are mostly

used for sequential information processing, such as audio processing,

text classification, etc.; deep neural networks, which are used for building

extremely deep networks; and finally, convolutional neural network

models, which are used for image classification.

Deep SHAP is a framework to derive the SHAP values from a deep

learning model developed using TensorFlow, Keras, or PyTorch. If we

compare the machine learning models with deep learning models,

© Pradeepta Mishra 2023
P. Mishra, Explainable AI Recipes, https://doi.org/10.1007/978-1-4842-9029-3_7

https://doi.org/10.1007/978-1-4842-9029-3_7#DOI

234

the deep learning models are too difficult to explain to anyone. In this

chapter, we will provide recipes for explaining the components of a deep

learning model.

 Recipe 7-1. Explain MNIST Images Using
a Gradient Explainer Based on Keras
 Problem
You want to explain a Keras-based deep learning model using SHAP.

 Solution
We are using a sample image dataset called MNIST. We can first train a

convolutional neural network using Keras from the TensorFlow pipeline.

Then we can use the gradient explainer module from the SHAP library

to build the explainer object. The explainer object can be used to create

SHAP values, and further, using SHAP values, we can get more visibility

into image classification tasks and individual class prediction and

corresponding probability values.

 How It Works
Let’s take a look at the following example:

import TensorFlow as tf

from TensorFlow.keras import Input

from TensorFlow.keras.layers import Flatten, Dense,

Dropout, Conv2D

import warnings

warnings.filterwarnings("ignore")

Chapter 7 explainability for Deep learning MoDels

235

load the MNIST data

(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.

load_data()

x_train, x_test = x_train / 255.0, x_test / 255.0

x_train = x_train.astype('float32')

x_test = x_test.astype('float32')

x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)

x_test = x_test.reshape(x_test.shape[0], 28, 28, 1)

There are two inputs: one for generating explanations using a

feedforward neural network layer and another using the convolutional

neural network layer. This is to compare the two inputs that can be

explained by the SHAP library in different ways.

define our model

input1 = Input(shape=(28,28,1))

input2 = Input(shape=(28,28,1))

input2c = Conv2D(32, kernel_size=(3, 3), activation='relu')

(input2)

joint = tf.keras.layers.concatenate([Flatten()(input1),

Flatten()(input2c)])

out = Dense(10, activation='softmax')(Dropout(0.2)(Dense(128,

activation='relu')(joint)))

model = tf.keras.models.Model(inputs = [input1, input2],

outputs=out)

model.summary()

Chapter 7 explainability for Deep learning MoDels

236

Compile the model using the Adam optimizer, with sparse categorical

cross entropy and accuracy. We can choose different types of optimizers to

achieve the best accuracy.

model.compile(optimizer='adam',

 loss='sparse_categorical_crossentropy',

 metrics=['accuracy'])

As the next step, we can train the model. An epoch of 3 has been

selected due to processing constraints, but the epoch size can be increased

based on the time availability and the computational power of the

machines.

fit the model

model.fit([x_train, x_train], y_train, epochs=3)

Once the model is created, in the next step we can install the SHAP

library and create a gradient explainer object either using the same

training dataset or using the test dataset.

Chapter 7 explainability for Deep learning MoDels

237

pip install shap

import shap

since we have two inputs we pass a list of inputs to the

explainer

explainer = shap.GradientExplainer(model, [x_train, x_train])

we explain the model's predictions on the first three samples

of the test set

shap_values = explainer.shap_values([x_test[:3], x_test[:3]])

since the model has 10 outputs we get a list of 10

explanations (one for each output)

print(len(shap_values))

The two inputs were explained previously. There are two set of SHAP

values, one corresponding to the feedforward layer and another relating to

the convolutional neural network layer. See Figure 7-1 and Figure 7-2.

since the model has 2 inputs we get a list of 2 explanations

(one for each input) for each output

print(len(shap_values[0]))

here we plot the explanations for all classes for the first

input (this is the feed forward input)

shap.image_plot([shap_values[i][0] for i in range(10)],

x_test[:3])

Chapter 7 explainability for Deep learning MoDels

238

Figure 7-2. SHAP value for the second input versus all classes

Figure 7-1. SHAP value for three samples with positive and
negative weights

here we plot the explanations for all classes for the second

input (this is the conv-net input)

shap.image_plot([shap_values[i][1] for i in range(10)],

x_test[:3])

get the variance of our estimates

shap_values, shap_values_var = explainer.shap_values

([x_test[:3], x_test[:3]], return_variances=True)

To explain the feedforward way of weight distribution and attribution

of classes, we need to estimate the variances; hence, we need to get the

SHAP values of variances. See Figure 7-3.

Chapter 7 explainability for Deep learning MoDels

239

here we plot the explanations for all classes for the first

input (this is the feed forward input)

shap.image_plot([shap_values_var[i][0] for i in range(10)],

x_test[:3])

Figure 7-3. Feedforward input explanations for all classes

 Recipe 7-2. Use Kernel Explainer–Based
SHAP Values from a Keras Model
 Problem
You want to explain the kernel-based explainer for a structured data

problem for binary classification, while training with a deep learning

model from Keras.

 Solution
We will use the census income dataset, which is available in the SHAP

library; develop a neural network model; and then use the trained model

object to apply the kernel explainer. The kernel SHAP method is defined

as a special weighted linear regression to compute the importance of each

feature in a deep learning model.

Chapter 7 explainability for Deep learning MoDels

240

 How It Works
Let’s take a look at the following example:

from sklearn.model_selection import train_test_split

from keras.layers import Input, Dense, Flatten, Concatenate,

concatenate, Dropout, Lambda

from keras.models import Model

from keras.layers.embeddings import Embedding

from tqdm import tqdm

import shap

print the JS visualization code to the notebook

#shap.initjs()

If the machine supports JS visualization, then please remove the

comment and run the previous script. See Figure 7-4.

X,y = shap.datasets.adult()

X_display,y_display = shap.datasets.adult(display=True)

normalize data (this is important for model convergence)

dtypes = list(zip(X.dtypes.index, map(str, X.dtypes)))

for k,dtype in dtypes:

 if dtype == "float32":

 X[k] -= X[k].mean()

 X[k] /= X[k].std()

X_train, X_valid, y_train, y_valid = train_test_split(X, y,

test_size=0.2, random_state=7)

build model

input_els = []

encoded_els = []

for k,dtype in dtypes:

Chapter 7 explainability for Deep learning MoDels

241

 input_els.append(Input(shape=(1,)))

 if dtype == "int8":

 e = Flatten()(Embedding(X_train[k].max()+1, 1)

(input_els[-1]))

 else:

 e = input_els[-1]

 encoded_els.append(e)

encoded_els = concatenate(encoded_els)

layer1 = Dropout(0.5)(Dense(100, activation="relu")

(encoded_els))

out = Dense(1)(layer1)

train model

clf = Model(inputs=input_els, outputs=[out])

clf.compile(optimizer="adam", loss='binary_crossentropy')

clf.fit(

 [X_train[k].values for k,t in dtypes],

 y_train,

 epochs=5,

 batch_size=512,

 shuffle=True,

 validation_data=([X_valid[k].values for k,t in dtypes],

y_valid)

)

def f(X):

 return clf.predict([X[:,i] for i in range(X.shape[1])]).

flatten()

print the JS visualization code to the notebook

shap.initjs()

explainer = shap.KernelExplainer(f, X.iloc[:50,:])

Chapter 7 explainability for Deep learning MoDels

242

shap_values = explainer.shap_values(X.iloc[299,:],

nsamples=500)

To generate the SHAP values, we need to use the kernel explainer

function from the SHAP library.

shap_values50 = explainer.shap_values(X.iloc[280:285,:],

nsamples=500)

shap_values

import warnings

warnings.filterwarnings("ignore")

summarize the effects of all the features

shap_values50 = explainer.shap_values(X.iloc[280:781,:],

nsamples=500)

shap.summary_plot(shap_values50)

Figure 7-4. SHAP values feature importance

Chapter 7 explainability for Deep learning MoDels

243

 Recipe 7-3. Explain a PyTorch-Based Deep
Learning Model
 Problem
You want to explain a deep learning model developed using PyTorch.

 Solution
We are using a tool called Captum, which acts as a platform. Different

kinds of explainability methods are embedded into Captum that help

to further elaborate on how a decision has been made. A typical neural

network model interpretation can be done to understand the feature

importance, dominant layer identification, and dominant neuron

identification. Captum provides three attribution algorithms that help in

achieving three things: primary attribution, layer attribution, and neuron

attribution.

 How It Works
The following syntax explains how to install the library:

conda install captum -c pytorch

or

pip install captum

The primary attribution layer provides integrated gradients, gradient

shapely additive explanations (SHAP), saliency, etc., to interpret the

model in a more effective way. We can use sample data as titanic survival

prediction dataset, which is a common dataset that is used for machine

learning examples or tutorials every developer can quickly relate to it

without much introduction.

Chapter 7 explainability for Deep learning MoDels

244

Initial imports

import numpy as np

import torch

from captum.attr import IntegratedGradients

from captum.attr import LayerConductance

from captum.attr import NeuronConductance

import matplotlib

import matplotlib.pyplot as plt

%matplotlib inline

from scipy import stats

import pandas as pd

dataset_path = "https://raw.githubusercontent.com/pradmishra1/

PublicDatasets/main/titanic.csv"

titanic_data = pd.read_csv(dataset_path)

del titanic_data['Unnamed: 0']

del titanic_data['PassengerId']

titanic_data = pd.concat([titanic_data,

 pd.get_dummies(titanic_data['Sex']),

 pd.get_dummies(titanic_data['Embarked

'],prefix="embark"),

 pd.get_dummies(titanic_data['Pclass'],

prefix="class")], axis=1)

titanic_data["Age"] = titanic_data["Age"].fillna(titanic_

data["Age"].mean())

titanic_data["Fare"] = titanic_data["Fare"].fillna(titanic_

data["Fare"].mean())

titanic_data = titanic_data.drop(['Name','Ticket','Cabin','Sex',

'Embarked','Pclass'], axis=1)

Chapter 7 explainability for Deep learning MoDels

245

Set random seed for reproducibility.

np.random.seed(707)

Convert features and labels to numpy arrays.

labels = titanic_data["Survived"].to_numpy()

titanic_data = titanic_data.drop(['Survived'], axis=1)

feature_names = list(titanic_data.columns)

data = titanic_data.to_numpy()

Separate training and test sets using

train_indices = np.random.choice(len(labels),

int(0.7*len(labels)), replace=False)

test_indices = list(set(range(len(labels))) - set(train_

indices))

train_features = data[train_indices]

train_labels = labels[train_indices]

test_features = data[test_indices]

test_labels = labels[test_indices]

train_features.shape

(623, 12)

Now that the train and test datasets are ready, we can start writing the

code for the model development using PyTorch.

Import torch

import torch.nn as nn

torch.manual_seed(1) # Set seed for reproducibility.

Class TitanicSimpleNNModel(nn.Module):

 def __init__(self):

 super().__init__()

 self.linear1 = nn.Linear(12, 12)

 self.sigmoid1 = nn.Sigmoid()

 self.linear2 = nn.Linear(12, 8)

Chapter 7 explainability for Deep learning MoDels

246

 self.sigmoid2 = nn.Sigmoid()

 self.linear3 = nn.Linear(8, 2)

 self.softmax = nn.Softmax(dim=1)

 def forward(self, x):

 lin1_out = self.linear1(x)

 sigmoid_out1 = self.sigmoid1(lin1_out)

 sigmoid_out2 = self.sigmoid2(self.

linear2(sigmoid_out1))

 return self.softmax(self.linear3(sigmoid_out2))

net = TitanicSimpleNNModel()

criterion = nn.CrossEntropyLoss()

num_epochs = 200

optimizer = torch.optim.Adam(net.parameters(), lr=0.1)

input_tensor = torch.from_numpy(train_features).type(torch.

FloatTensor)

label_tensor = torch.from_numpy(train_labels)

The deep learning model configuration is done, so we can proceed

with running epochs or iterations to reduce the errors.

For epoch in range(num_epochs):

 output = net(input_tensor)

 loss = criterion(output, label_tensor)

 optimizer.zero_grad()

 loss.backward()

 optimizer.step()

 if epoch % 20 == 0:

 print ('Epoch {}/{} => Loss: {:.2f}'.format(epoch+1,

num_epochs, loss.item()))

torch.save(net.state_dict(), '/model.pt')

Chapter 7 explainability for Deep learning MoDels

247

Epoch 1/200 => Loss: 0.70

Epoch 21/200 => Loss: 0.55

Epoch 41/200 => Loss: 0.50

Epoch 61/200 => Loss: 0.49

Epoch 81/200 => Loss: 0.48

Epoch 101/200 => Loss: 0.49

Epoch 121/200 => Loss: 0.47

Epoch 141/200 => Loss: 0.47

Epoch 161/200 => Loss: 0.47

Epoch 181/200 => Loss: 0.47

out_probs = net(input_tensor).detach().numpy()

out_classes = np.argmax(out_probs, axis=1)

print("Train Accuracy:", sum(out_classes == train_labels) /

len(train_labels))

Train Accuracy: 0.8523274478330658

test_input_tensor = torch.from_numpy(test_features).type(torch.

FloatTensor)

out_probs = net(test_input_tensor).detach().numpy()

out_classes = np.argmax(out_probs, axis=1)

print("Test Accuracy:", sum(out_classes == test_labels) /

len(test_labels))

Test Accuracy: 0.832089552238806

The integrated gradient is extracted from the neural network model;

this can be done using the attribute function.

ig = IntegratedGradients(net)

test_input_tensor.requires_grad_()

attr, delta = ig.attribute(test_input_tensor,target=1,

return_convergence_delta=True)

attr = attr.detach().numpy()

Chapter 7 explainability for Deep learning MoDels

248

np.round(attr,2)

array([[-0.7 , 0.09, -0. , ..., 0. , 0. , -0.33], [-2.78, -0. ,

-0. , ..., 0. , 0. , -1.82], [-0.65, 0. , -0. , ..., 0. , 0. ,

-0.31], ..., [-0.47, -0. , -0. , ..., 0.71, 0. , -0.], [-0.1 ,

-0. , -0. , ..., 0. , 0. , -0.1], [-0.7 , 0. , -0. , ..., 0. ,

0. , -0.28]])

The attr object contains the feature importance of the input features

from the model.

importances = np.mean(attr, axis=0)

for i in range(len(feature_names)):

 print(feature_names[i], ": ", '%.3f'%(importances[i]))

Age : -0.574

SibSp : -0.010

Parch : -0.026

Fare : 0.278

female : 0.101

male : -0.460

embark_C : 0.042

embark_Q : 0.005

embark_S : -0.021

class_1 : 0.067

class_2 : 0.090

class_3 : -0.144

The LayerConductance helps us compute the neuron importance

and combines the neuron activation by taking the partial derivative of the

neuron with respect to the input and output. The conductance layer builds

on the integrated gradients by looking at the flow of IG attribution.

cond = LayerConductance(net, net.sigmoid1)

Chapter 7 explainability for Deep learning MoDels

249

cond_vals = cond.attribute(test_input_tensor,target=1)

cond_vals = cond_vals.detach().numpy()

Average_Neuron_Importances = np.mean(cond_vals, axis=0)

Average_Neuron_Importances

array([0.03051018, -0.23244175, 0.04743345, 0.02102091,

-0.08071412, -0.09040915, -0.13398956, -0.04666219, 0.03577907,

-0.07206058, -0.15658873, 0.03491106], dtype=float32)

neuron_cond = NeuronConductance(net, net.sigmoid1)

neuron_cond_vals_10 = neuron_cond.attribute(test_input_tensor,

neuron_selector=10, target=1)

neuron_cond_vals_0 = neuron_cond.attribute(test_input_tensor,

neuron_selector=0, target=1)

Average Feature Importances for Neuron 0

nn0 = neuron_cond_vals_0.mean(dim=0).detach().numpy()

np.round(nn0,3)

array([0.008, 0. , 0. , 0.028, 0. , -0.004, -0. , 0. , -0.001,

-0. , 0. , -0.], dtype=float32)

The average feature importance for neuron 0 can be replicated to any

number of neurons by using a threshold. If the weight threshold exceeds a

certain level, then the neuron attribution and average feature importance

for that neuron can be derived.

 Conclusion
In this chapter, we looked two frameworks, SHAP and Captum, to explain

a deep learning model developed either using Keras or using PyTorch. The

more we parse the information using these libraries and take a smaller

chunk of data, the more visibility we will get into how the model works,

how the model makes prediction, and how the model makes an attribution

to a local instance.

Chapter 7 explainability for Deep learning MoDels

250

To review, this book started with explaining linear supervised models

for both regression and classification tasks, then explained nonlinear

decision tree–based models, and then covered the ensemble models

such as bagging, boosting, and stacking. Finally, we ended the book with

explaining the times-series model, natural language processing–based text

classification, and deep neural network–based models.

Chapter 7 explainability for Deep learning MoDels

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introducing Explainability and Setting Up Your Development Environment
	Recipe 1-1. SHAP Installation
	Problem
	Solution
	How It Works

	Recipe 1-2. LIME Installation
	Problem
	Solution
	How It Works

	Recipe 1-3. SHAPASH Installation
	Problem
	Solution
	How It Works

	Recipe 1-4. ELI5 Installation
	Problem
	Solution
	How It Works

	Recipe 1-5. Skater Installation
	Problem
	Solution
	How It Works

	Recipe 1-6. Skope-rules Installation
	Problem
	Solution
	How It Works

	Recipe 1-7. Methods of Model Explainability
	Problem
	Solution
	How It Works

	Conclusion

	Chapter 2: Explainability for Linear Supervised Models
	Recipe 2-1. SHAP Values for a Regression Model on All Numerical Input Variables
	Problem
	Solution
	How It Works

	Recipe 2-2. SHAP Partial Dependency Plot for a Regression Model
	Problem
	Solution
	How It Works

	Recipe 2-3. SHAP Feature Importance for Regression Model with All Numerical Input Variables
	Problem
	Solution
	How It Works

	Recipe 2-4. SHAP Values for a Regression Model on All Mixed Input Variables
	Problem
	Solution
	How It Works

	Recipe 2-5. SHAP Partial Dependency Plot for Regression Model for Mixed Input
	Problem
	Solution
	How It Works

	Recipe 2-6. SHAP Feature Importance for a Regression Model with All Mixed Input Variables
	Problem
	Solution
	How It Works

	Recipe 2-7. SHAP Strength for Mixed Features on the Predicted Output for Regression Models
	Problem
	Solution
	How It Works

	Recipe 2-8. SHAP Values for a Regression Model on Scaled Data
	Problem
	Solution
	How It Works

	Recipe 2-9. LIME Explainer for Tabular Data
	Problem
	Solution
	How It Works

	Recipe 2-10. ELI5 Explainer for Tabular Data
	Problem
	Solution
	How It Works

	Recipe 2-11. How the Permutation Model in ELI5 Works
	Problem
	Solution
	How It Works

	Recipe 2-12. Global Explanation for Logistic Regression Models
	Problem
	Solution
	How It Works

	Recipe 2-13. Partial Dependency Plot for a Classifier
	Problem
	Solution
	How It Works

	Recipe 2-14. Global Feature Importance from the Classifier
	Problem
	Solution
	How It Works

	Recipe 2-15. Local Explanations Using LIME
	Problem
	Solution
	How It Works

	Recipe 2-16. Model Explanations Using ELI5
	Problem
	Solution
	How It Works

	Conclusion
	References

	Chapter 3: Explainability for Nonlinear Supervised Models
	Recipe 3-1. SHAP Values for Tree Models on All Numerical Input Variables
	Problem
	Solution
	How It Works

	Recipe 3-2. Partial Dependency Plot for Tree Regression Model
	Problem
	Solution
	How It Works

	Recipe 3-3. SHAP Feature Importance for Regression Models with All Numerical Input Variables
	Problem
	Solution
	How It Works

	Recipe 3-4. SHAP Values for Tree Regression Models with All Mixed Input Variables
	Problem
	Solution
	How It Works

	Recipe 3-5. SHAP Partial Dependency Plot for Regression Models with Mixed Input
	Problem
	Solution
	How It Works

	Recipe 3-6. SHAP Feature Importance for Tree Regression Models with All Mixed Input Variables
	Problem
	Solution
	How It Works

	Recipe 3-7. LIME Explainer for Tabular Data
	Problem
	Solution
	How It Works

	Recipe 3-8. ELI5 Explainer for Tabular Data
	Problem
	Solution
	How It Works

	Recipe 3-9. How the Permutation Model in ELI5 Works
	Problem
	Solution
	How It Works

	Recipe 3-10. Global Explanation for Decision Tree Models
	Problem
	Solution
	How It Works

	Recipe 3-11. Partial Dependency Plot for a Nonlinear Classifier
	Problem
	Solution
	How It Works

	Recipe 3-12. Global Feature Importance from the Nonlinear Classifier
	Problem
	Solution
	How It Works

	Recipe 3-13. Local Explanations Using LIME
	Problem
	Solution
	How It Works

	Recipe 3-14. Model Explanations Using ELI5
	Problem
	Solution
	How It Works

	Conclusion

	Chapter 4: Explainability for Ensemble Supervised Models
	Recipe 4-1. Explainable Boosting Machine Interpretation
	Problem
	Solution
	How It Works

	Recipe 4-2. Partial Dependency Plot for Tree Regression Models
	Problem
	Solution
	How It Works

	Recipe 4-3. Explain a Extreme Gradient Boosting Model with All Numerical Input Variables
	Problem
	Solution
	How It Works

	Recipe 4-4. Explain a Random Forest Regressor with Global and Local Interpretations
	Problem
	Solution
	How It Works

	Recipe 4-5. Explain the Catboost Regressor with Global and Local Interpretations
	Problem
	Solution
	How It Works

	Recipe 4-6. Explain the EBM Classifier with Global and Local Interpretations
	Problem
	Solution
	How It Works

	Recipe 4-7. SHAP Partial Dependency Plot for Regression Models with Mixed Input
	Problem
	Solution
	How It Works

	Recipe 4-8. SHAP Feature Importance for Tree Regression Models with Mixed Input Variables
	Problem
	Solution
	How It Works

	Recipe 4-9. Explaining the XGBoost Model
	Problem
	Solution
	How It Works

	Recipe 4-10. Random Forest Regressor for Mixed Data Types
	Problem
	Solution
	How It Works

	Recipe 4-11. Explaining the Catboost Model
	Problem
	Solution
	How It Works

	Recipe 4-12. LIME Explainer for the Catboost Model and Tabular Data
	Problem
	Solution
	How It Works

	Recipe 4-13. ELI5 Explainer for Tabular Data
	Problem
	Solution
	How It Works

	Recipe 4-14. How the Permutation Model in ELI5 Works
	Problem
	Solution
	How It Works

	Recipe 4-15. Global Explanation for Ensemble Classification Models
	Problem
	Solution
	How It Works

	Recipe 4-16. Partial Dependency Plot for a Nonlinear Classifier
	Problem
	Solution
	How It Works

	Recipe 4-17. Global Feature Importance from the Nonlinear Classifier
	Problem
	Solution
	How It Works

	Recipe 4-18. XGBoost Model Explanation
	Problem
	Solution
	How It Works

	Recipe 4-19. Explain a Random Forest Classifier
	Problem
	Solution
	How It Works

	Recipe 4-20. Catboost Model Interpretation for Classification Scenario
	Problem
	Solution
	How It Works

	Recipe 4-21. Local Explanations Using LIME
	Problem
	Solution
	How It Works

	Recipe 4-22. Model Explanations Using ELI5
	Problem
	Solution
	How It Works

	Recipe 4-23. Multiclass Classification Model Explanation
	Problem
	Solution
	How It Works

	Conclusion

	Chapter 5: Explainability for Natural Language Processing
	Recipe 5-1. Explain Sentiment Analysis Text Classification Using SHAP
	Problem
	Solution
	How It Works

	Recipe 5-2. Explain Sentiment Analysis Text Classification Using ELI5
	Problem
	Solution
	How It Works

	Recipe 5-3. Local Explanation Using ELI5
	Problem
	Solution
	How It Works

	Conclusion

	Chapter 6: Explainability for Time-Series Models
	Recipe 6-1. Explain Time-Series Models Using LIME
	Problem
	Solution
	How It Works

	Recipe 6-2. Explain Time-Series Models Using SHAP
	Problem
	Solution
	How It Works

	Conclusion

	Chapter 7: Explainability for Deep Learning Models
	Recipe 7-1. Explain MNIST Images Using a Gradient Explainer Based on Keras
	Problem
	Solution
	How It Works

	Recipe 7-2. Use Kernel Explainer–Based SHAP Values from a Keras Model
	Problem
	Solution
	How It Works

	Recipe 7-3. Explain a PyTorch-Based Deep Learning Model
	Problem
	Solution
	How It Works

	Conclusion

