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Introduction

Artificial intelligence plays a crucial role determining the decisions 

businesses make. In these cases, when a machine makes a decision, 

humans usually want to understand whether the decision is authentic 

or whether it was generated in error. If business stakeholders are not 

convinced by the decision, they will not trust the machine learning system, 

and hence artificial intelligence adoption will gradually reduce within that 

organization. To make the decision process more transparent, developers 

must be able to document the explainability of AI decisions or ML model 

decisions. This book provides a series of solutions to problems that require 

explainability and interpretability. Adopting an AI model and developing a 

responsible AI system requires explainability as a component.

This book covers model interpretation for supervised learning linear 

models, including important features for regression and classification 

models, partial dependency analysis for regression and classification 

models, and influential data point analysis for both classification and 

regression models. Supervised learning models using nonlinear models is 

explored using state-of-the-art frameworks such as SHAP values/scores, 

including global explanation, and how to use LIME for local interpretation. 

This book will also give you an understanding of bagging, boosting-

based ensemble models for supervised learning such as regression and 

classification, as well as explainability for time-series models using LIME 

and SHAP, natural language processing tasks such as text classification, 

and sentiment analysis using ELI5, ALIBI. The most complex models for 

classification and regression, such as neural network models and deep 

learning models, are explained using the CAPTUM framework, which 

shows feature attribution, neuron attribution, and activation attribution.
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This book attempts to make AI models explainable to help developers 

increase the adoption of AI-based models within their organizations and 

bring more transparency to decision-making. After reading this book, 

you will be able to use Python libraries such as Alibi, SHAP, LIME, Skater, 

ELI5, and CAPTUM. Explainable AI Recipes provides a problem-solution 

approach to demonstrate each machine learning model, and shows how to 

use Python’s XAI libraries to answer questions of explainability and build 

trust with AI models and machine learning models. All source code can be 

downloaded from  github.com/apress/explainable-ai-recipes.

InTroduCTIon
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CHAPTER 1

Introducing 
Explainability and  
Setting Up Your 
Development 
Environment
Industries in which artificial intelligence has been applied include 

banking, financial services, insurance, healthcare, manufacturing, retail, 

and pharmaceutical. There are regulatory requirements in some of these 

industries where model explainability is required. Artificial intelligence 

involves classifying objects, recognizing objects to detect fraud, and so forth. 

Every learning system requires three things: input data, processing, and an 

output. If the performance of any learning system improves over time by 

learning from new examples or data, it is called a machine learning system. 

When the number of features for a machine learning task increases or the 

volume of data increases, it takes a lot of time to apply machine learning 

techniques. That’s when deep learning techniques are used.

Figure 1-1 represents the relationships between artificial intelligence, 

machine learning, and deep learning.

© Pradeepta Mishra 2023 
P. Mishra, Explainable AI Recipes, https://doi.org/10.1007/978-1-4842-9029-3_1
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Figure 1-1. Relationships among ML, DL, and AI

After preprocessing and feature creation, you can observe hundreds 

of thousands of features that need to be computed to produce output. If 

we train a machine learning supervised model, it will take significant time 

to produce the model object. To achieve scalability in this task, we need 

deep learning algorithms, such as a recurrent neural network. This is how 

artificial intelligence is connected to deep learning and machine learning.

In the classical predictive modeling scenario, a function is identified, 

and the input data is usually fit to the function to produce the output, 

where the function is usually predetermined. In a modern predictive 

modeling scenario, the input data and output are both shown to a group of 

functions, and the machine identifies the best function that approximates 

well to the output given a particular set of input. There is a need to explain 

the output of a machine learning and deep learning model in performing 

regression- and classification-related tasks. These are the reasons why 

explainability is required:

• Trust: To gain users’ trust on the predicted output

• Reliability: To make the user rely on the 

predicted output

• Regulatory: To meet regulatory and compliance 

requirements

Chapter 1   INtrODUCING eXpLaINaBILItY aND SettING Up YOUr DeVeLOpMeNt 
       eNVIrONMeNt
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• Adoption: To increase AI adoption among the users

• Fairness: To remove any kind of discrimination in 

prediction

• Accountability: To establish ownership of the 

predictions

There are various ways that explainability can be achieved using 

statistical properties, probabilistic properties and associations, and 

causality among the features. Broadly, the explanations of the models 

can be classified into two categories, global explanations and local 

explanations. The objective of local explanation is to understand the 

inference generated for one sample at a time by comparing the nearest 

possible data point; global explanation provides an idea about the overall 

model behavior.

The goal of this chapter is to introduce how to install various 

explainability libraries and interpret the results generated by those 

explainability libraries.

 Recipe 1-1. SHAP Installation
 Problem
You want to install the SHAP (shapely additive explanations) library.

 Solution
The solution to this problem is to use the simple pip or conda option.

Chapter 1  INtrODUCING eXpLaINaBILItY aND SettING Up YOUr DeVeLOpMeNt
                                     eNVIrONMeNt
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 How It Works
Let’s take a look at the following script examples. The SHAP Python library 

is based on a game theoretic approach that attempts to explain local and 

as well as global explanations.

pip install shap

or

conda install -c conda-forge shap

Looking in indexes: https://pypi.org/simple, https://us-python.

pkg.dev/colab-wheels/public/simple/

Collecting shap

   Downloading shap-0.41.0-cp37-cp37m-manylinux_2_12_x86_64.

manylinux2010_x86_64.whl (569 kB)

     |█████████████████████ 
███████████| 569 kB 8.0 MB/s

Requirement already satisfied: tqdm>4.25.0 in /usr/local/lib/

python3.7/dist-packages (from shap) (4.64.1)

Requirement already satisfied: pandas in /usr/local/lib/

python3.7/dist-packages (from shap) (1.3.5)

Collecting slicer==0.0.7

  Downloading slicer-0.0.7-py3-none-any.whl (14 kB)

Requirement already satisfied: cloudpickle in /usr/local/lib/

python3.7/dist-packages (from shap) (1.5.0)

Requirement already satisfied: scipy in /usr/local/lib/

python3.7/dist-packages (from shap) (1.7.3)

Requirement already satisfied: scikit-learn in /usr/local/lib/

python3.7/dist-packages (from shap) (1.0.2)

Requirement already satisfied: numpy in /usr/local/lib/

python3.7/dist-packages (from shap) (1.21.6)

Requirement already satisfied: numba in /usr/local/lib/

python3.7/dist-packages (from shap) (0.56.2)
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Requirement already satisfied: packaging>20.9 in /usr/local/

lib/python3.7/dist-packages (from shap) (21.3)

Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /

usr/local/lib/python3.7/dist-packages (from packaging>20.9-> 

shap) (3.0.9)

Requirement already satisfied: llvmlite<0.40,>=0.39.0dev0 in 

/usr/local/lib/python3.7/dist-packages (from numba->shap) 

(0.39.1)

Requirement already satisfied: setuptools<60 in /usr/local/lib/

python3.7/dist-packages (from numba->shap) (57.4.0)

Requirement already satisfied: importlib-metadata in /usr/

local/lib/python3.7/dist-packages (from numba->shap) (4.12.0)

Requirement already satisfied: typing-extensions>=3.6.4 in /

usr/local/lib/python3.7/dist-packages (from importlib-metadata-> 

numba->shap) (4.1.1)

Requirement already satisfied: zipp>=0.5 in /usr/local/lib/

python3.7/dist-packages (from importlib-metadata->numba-> 

shap) (3.8.1)

Requirement already satisfied: python-dateutil>=2.7.3 in /usr/

local/lib/python3.7/dist-packages (from pandas->shap) (2.8.2)

Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/

python3.7/dist-packages (from pandas->shap) (2022.2.1)

Requirement already satisfied: six>=1.5 in /usr/local/lib/

python3.7/dist-packages (from python-dateutil>=2.7.3->pandas-> 

shap) (1.15.0)

Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/

local/lib/python3.7/dist-packages (from scikit-learn-> 

shap) (3.1.0)

Requirement already satisfied: joblib>=0.11 in /usr/local/lib/

python3.7/dist-packages (from scikit-learn->shap) (1.1.0)

Installing collected packages: slicer, shap

Successfully installed shap-0.41.0 slicer-0.0.7
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 Recipe 1-2. LIME Installation
 Problem
You want to install the LIME Python library.

 Solution
You can install the LIME library using pip or conda.

 How It Works
Let’s take a look at the following example script:

pip install lime

or

conda install -c conda-forge lime

Looking in indexes: https://pypi.org/simple, https://us-python.

pkg.dev/colab-wheels/public/simple/

Collecting lime

  Downloading lime-0.2.0.1.tar.gz (275 kB)

     |████████████████████ 
████████████| 275 kB 7.5 MB/s

Requirement already satisfied: matplotlib in /usr/local/lib/

python3.7/dist-packages (from lime) (3.2.2)

Requirement already satisfied: numpy in /usr/local/lib/

python3.7/dist-packages (from lime) (1.21.6)

Requirement already satisfied: scipy in /usr/local/lib/

python3.7/dist-packages (from lime) (1.7.3)

Requirement already satisfied: tqdm in /usr/local/lib/

python3.7/dist-packages (from lime) (4.64.1)
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Requirement already satisfied: scikit-learn>=0.18 in /usr/

local/lib/python3.7/dist-packages (from lime) (1.0.2)

Requirement already satisfied: scikit-image>=0.12 in /usr/

local/lib/python3.7/dist-packages (from lime) (0.18.3)

Requirement already satisfied: networkx>=2.0 in /usr/local/lib/

python3.7/dist-packages (from scikit-image>=0.12->lime) (2.6.3)

Requirement already satisfied: PyWavelets>=1.1.1 in /usr/local/

lib/python3.7/dist-packages (from scikit-image>=0.12-> 

lime) (1.3.0)

Requirement already satisfied: pillow!=7.1.0,!=7.1.1,>=4.3.0 in 

/usr/local/lib/python3.7/dist-packages (from scikit- 

image>=0.12->lime) (7.1.2)

Requirement already satisfied: imageio>=2.3.0 in /usr/local/

lib/python3.7/dist-packages (from scikit-image>=0.12-> 

lime) (2.9.0)

Requirement already satisfied: tifffile>=2019.7.26 in /usr/

local/lib/python3.7/dist-packages (from scikit-image>=0.12-> 

lime) (2021.11.2)

Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/

lib/python3.7/dist-packages (from matplotlib->lime) (1.4.4)

Requirement already satisfied: cycler>=0.10 in /usr/local/lib/

python3.7/dist-packages (from matplotlib->lime) (0.11.0)

Requirement already satisfied: python-dateutil>=2.1 in /usr/

local/lib/python3.7/dist-packages (from matplotlib-> 

lime) (2.8.2)

Requirement already satisfied: 

pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/

python3.7/dist-packages (from matplotlib->lime) (3.0.9)

Requirement already satisfied: typing-extensions in /usr/local/

lib/python3.7/dist-packages (from kiwisolver>=1.0.1-> 

matplotlib->lime) (4.1.1)
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Requirement already satisfied: six>=1.5 in /usr/local/lib/

python3.7/dist-packages (from python-dateutil>=2.1->matplotlib-> 

lime) (1.15.0)

Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/

local/lib/python3.7/dist-packages (from scikit-learn>=0.18-> 

lime) (3.1.0)

Requirement already satisfied: joblib>=0.11 in /usr/local/lib/

python3.7/dist-packages (from scikit-learn>=0.18->lime) (1.1.0)

Building wheels for collected packages: lime

  Building wheel for lime (setup.py) ... done

   Created wheel for lime: filename=lime-0.2.0.1-py3-none-any.

whl size=283857 sha256=674ceb94cdcb54588f66c5d5bef5f6ae0326c7

6e645c40190408791cbe4311d5

   Stored in directory: /root/.cache/pip/wheels/ca/cb/e5/

ac701e12d365a08917bf4c6171c0961bc880a8181359c66aa7

Successfully built lime

Installing collected packages: lime

Successfully installed lime-0.2.0.1

 Recipe 1-3. SHAPASH Installation
 Problem
You want to install SHAPASH.

 Solution
If you want to use a combination of functions from both the LIME library 

and the SHAP library, then you can use the SHAPASH library. You just have 

to install it, which is simple.
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 How It Works
Let’s take a look at the following code to install SHAPASH. This is not 

available on the Anaconda distribution; the only way to install it is by 

using pip.

pip install shapash

 Recipe 1-4. ELI5 Installation
 Problem
You want to install ELI5.

 Solution
Since this is a Python library, you can use pip.

 How It Works
Let’s take a look at the following script:

pip install eli5

Looking in indexes: https://pypi.org/simple, https://us-python.

pkg.dev/colab-wheels/public/simple/

Collecting eli5

  Downloading eli5-0.13.0.tar.gz (216 kB)

     |████████████████████ 
████████████| 216 kB 6.9 MB/s

Requirement already satisfied: attrs>17.1.0 in /usr/local/lib/

python3.7/dist-packages (from eli5) (22.1.0)

Collecting jinja2>=3.0.0
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  Downloading Jinja2-3.1.2-py3-none-any.whl (133 kB)

     |████████████████████ 
████████████| 133 kB 42.7 MB/s

Requirement already satisfied: numpy>=1.9.0 in /usr/local/lib/

python3.7/dist-packages (from eli5) (1.21.6)

Requirement already satisfied: scipy in /usr/local/lib/

python3.7/dist-packages (from eli5) (1.7.3)

Requirement already satisfied: six in /usr/local/lib/python3.7/

dist-packages (from eli5) (1.15.0)

Requirement already satisfied: scikit-learn>=0.20 in /usr/

local/lib/python3.7/dist-packages (from eli5) (1.0.2)

Requirement already satisfied: graphviz in /usr/local/lib/

python3.7/dist-packages (from eli5) (0.10.1)

Requirement already satisfied: tabulate>=0.7.7 in /usr/local/

lib/python3.7/dist-packages (from eli5) (0.8.10)

Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/

lib/python3.7/dist-packages (from jinja2>=3.0.0->eli5) (2.0.1)

Requirement already satisfied: joblib>=0.11 in /usr/local/lib/

python3.7/dist-packages (from scikit-learn>=0.20->eli5) (1.1.0)

Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/

local/lib/python3.7/dist-packages (from scikit-learn>=0.20-> 

eli5) (3.1.0)

Building wheels for collected packages: eli5

  Building wheel for eli5 (setup.py) ... done

   Created wheel for eli5: filename=eli5-0.13.0-py2.py3-none- 

any.whl size=107748 sha256=3e02d416bd1cc21aebce60420712991

9a096a92128d7d27c50be1f3a97d3b1de

   Stored in directory: /root/.cache/pip/wheels/cc/3c/96/3ead31a

8e6c20fc0f1a707fde2e05d49a80b1b4b30096573be

Successfully built eli5

Installing collected packages: jinja2, eli5
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  Attempting uninstall: jinja2

    Found existing installation: Jinja2 2.11.3

    Uninstalling Jinja2-2.11.3:

      Successfully uninstalled Jinja2-2.11.3

ERROR: pip's dependency resolver does not currently take into 

account all the packages that are installed. This behavior is 

the source of the following dependency conflicts.

flask 1.1.4 requires Jinja2<3.0,>=2.10.1, but you have jinja2 

3.1.2 which is incompatible.

Successfully installed eli5-0.13.0 jinja2-3.1.2

 Recipe 1-5. Skater Installation
 Problem
You want to install Skater.

 Solution
Skater is an open-source framework to enable model interpretation for 

various kinds of machine learning models. The Python-based Skater 

library provides both global and local interpretations and can be installed 

using pip.

 How It Works
Let’s take a look at the following script:

pip install skater
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 Recipe 1-6. Skope-rules Installation
 Problem
You want to install Skopes-rule.

 Solution
Skope-rules offers a trade-off between the interpretability of a decision tree 

and the modeling power of a random forest model. The solution is simple; 

you use the pip command.

 How It Works
Let’s take a look at the following code:

pip install skope-rules

Looking in indexes: https://pypi.org/simple, https://us-python.

pkg.dev/colab-wheels/public/simple/

Collecting skope-rules

  Downloading skope_rules-1.0.1-py3-none-any.whl (14 kB)

Requirement already satisfied: numpy>=1.10.4 in /usr/local/lib/

python3.7/dist-packages (from skope-rules) (1.21.6)

Requirement already satisfied: scikit-learn>=0.17.1 in /usr/

local/lib/python3.7/dist-packages (from skope-rules) (1.0.2)

Requirement already satisfied: pandas>=0.18.1 in /usr/local/

lib/python3.7/dist-packages (from skope-rules) (1.3.5)

Requirement already satisfied: scipy>=0.17.0 in /usr/local/lib/

python3.7/dist-packages (from skope-rules) (1.7.3)

Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/

python3.7/dist-packages (from pandas>=0.18.1->skope-rules) 

(2022.2.1)
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Requirement already satisfied: python-dateutil>=2.7.3 in /usr/

local/lib/python3.7/dist-packages (from pandas>=0.18.1->skope- 

rules) (2.8.2)

Requirement already satisfied: six>=1.5 in /usr/local/lib/

python3.7/dist-packages (from python-dateutil>=2.7.3-> 

pandas>=0.18.1->skope-rules) (1.15.0)

Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/

local/lib/python3.7/dist-packages (from scikit-learn>=0.17.1-> 

skope-rules) (3.1.0)

Requirement already satisfied: joblib>=0.11 in /usr/local/lib/

python3.7/dist-packages (from scikit-learn>=0.17.1->skope- 

rules) (0.11)

Installing collected packages: skope-rules

Successfully installed skope-rules-1.0.1

 Recipe 1-7. Methods of Model Explainability
 Problem
There are various libraries and many explanations for how to identify the 

right method for model explainability.

 Solution
The explainability method depends on who is the consumer of the model 

output, if it is the business or senior management then the explainability 

should be very simple and plain English without any mathematical 

formula and if the consumer of explainability is data scientists and 

machine learning engineers then the explanations may include the 

mathematical formulas.
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 How It Works
The levels of transparency of the machine learning models can be 

categorized into three buckets, as shown in Figure 1-2.

Figure 1-2. Methods of model explainability

Textual explanations require explaining the mathematical formula in 

plain English, which can help business users or senior management. The 

interpretations can be designed based on model type and model variant 

and can draw inferences from the model outcome. A template to draw 

inferences can be designed and mapped to the model types, and then 

the templates can be filled in using some natural language processing 

methods.

A visual explainability method can be used to generate charts, graphs 

such as dendrograms, or any other types of graphs that best explain the 

relationships. The tree-based methods use if-else conditions on the back 

end; hence, it is simple to show the causality and the relationship.

Using common examples and business scenarios from day-to-day 

operations and drawing parallels between them can also be useful.

Which method you should choose depends on the problem that needs 

to be solved and the consumer of the solution where the machine learning 

model is being used.
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 Conclusion
In various AI projects and initiatives, the machine learning models 

generate predictions. Usually, to trust the outcomes of a model, a detailed 

explanation is required. Since many people are not comfortable explaining 

the machine learning model outcomes, they cannot reason out the 

decisions of a model, and thereby AI adoption is restricted. Explainability 

is required from regulatory stand point as well as auditing and compliance 

point of view. In high-risk use cases such as medical imaging and object 

detection or pattern recognition, financial prediction and fraud detection, 

etc., explainability is required to explain the decisions of the machine 

learning model.

In this chapter, we set up the environment by installing various 

explainable AI libraries. Machine learning model interpretability and 

explainability are the key focuses of this book. We are going to use Python- 

based libraries, frameworks, methods, classes, and functions to explain 

the models.

In the next chapter, we are going to look at the linear models.
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CHAPTER 2

Explainability for 
Linear Supervised 
Models
A supervised learning model is a model that is used to train an algorithm 

to map input data to output data. A supervised learning model can be of 

two types: regression or classification. In a regression scenario, the output 

variable is numerical, whereas with classification, the output variable is 

binary or multinomial. A binary output variable has two outcomes, such as 

true and false, accept and reject, yes and no, etc. In the case of multinomial 

output variables, the outcome can be more than two, such as high, 

medium, and low. In this chapter, we are going to use explainable libraries 

to explain a regression model and a classification model, while training a 

linear model.

In the classical predictive modeling scenario, a function has been 

identified, and the input data is usually fit to the function to produce 

the output, where the function is usually predetermined. In a modern 

predictive modeling scenario, the input data and output are both shown 

to a group of functions, and the machine identifies the best function that 

approximates well to the output given a particular set of input. There is a 

need to explain the output of machine learning and deep learning models 

when performing regression and classification tasks. Linear regression and 

linear classification models are simpler to explain.

© Pradeepta Mishra 2023 
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The goal of this chapter is to introduce various explainability libraries 

for linear models such as feature importance, partial dependency plot, and 

local interpretation.

 Recipe 2-1. SHAP Values for a Regression 
Model on All Numerical Input Variables
 Problem
You want to explain a regression model built on all the numeric features 

of a dataset.

 Solution
A regression model on all the numeric features is trained, and then 

the trained model will be passed through SHAP to generate global 

explanations and local explanations.

 How It Works
Let’s take a look at the following script. The Shapely value can be called 

the SHAP value. It is used to explain the model. It uses the impartial 

distribution of predictions from a cooperative game theory to attribute 

a feature to the model’s predictions. Input features from the dataset are 

considered as players in the game. The models function is considered the 

rules of the game. The Shapely value of a feature is computed based on the 

following steps:

 1. SHAP requires model retraining on all feature 

subsets; hence, usually it takes time if the 

explanation has to be generated for larger datasets.
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 2. Identify a feature set from a list of features (let’s say 

there are 15 features, and we can select a subset with 

5 features).

 3. For any particular feature, two models using the 

subset of features will be created, one with the 

feature and another without the feature.

 4. Then the prediction differences will be computed.

 5. The differences in prediction are computed for all 

possible subsets of features.

 6. The weighted average value of all possible 

differences is used to populate the feature 

importance.

If the weight of the feature is 0.000, then we can conclude that the 

feature is not important and has not joined the model. If it is not equal 

to 0.000, then we can conclude that the feature has a role to play in the 

prediction process.

We are going to use a dataset from the UCI machine learning 

repository. The URL to access the dataset is as follows:

https://archive.ics.uci.edu/ml/datasets/Appliances+energy+

prediction

The objective is to predict the appliances’ energy use in Wh, using the 

features from sensors. There are 27 features in the dataset, and here we are 

trying to understand what features are important in predicting the energy 

usage. See Table 2-1.
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Table 2-1. Feature Description from the Energy Prediction Dataset

Feature Name Description Unit

appliances energy use in Wh

lights energy use of light fixtures in  

the house

in Wh

t1 temperature in kitchen area in Celsius

rh_1 humidity in kitchen area in %

t2 temperature in living room area in Celsius

rh_2 humidity in living room area in %

t3 temperature in laundry room area

rh_3 humidity in laundry room area in %

t4 temperature in office room in Celsius

rh_4 humidity in office room in %

t5 temperature in bathroom in Celsius

rh_5 humidity in bathroom in %

t6 temperature outside the building 

(north side)

in Celsius

rh_6 humidity outside the building (north 

side)

in %

t7 temperature in ironing room in Celsius

rh_7 humidity in ironing room in %

t8 temperature in teenager room 2 in Celsius

rh_8 humidity in teenager room 2 in %

t9 temperature in parents room in Celsius

rh_9 humidity in parents room in %

(continued)
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Table 2-1. (continued)

Feature Name Description Unit

to temperature outside (from the 

Chievres weather station)

in Celsius

pressure (from Chievres 

weather station)

in mm hg

arh_out humidity outside (from the Chievres 

weather station)

in %

Wind speed (from Chievres 

weather station)

in m/s

visibility (from Chievres 

weather station)

in km

tdewpoint (from Chievres 

weather station)

Â°C

rv1 random variable 1 nondimensional

rv2 random variable 2 nondimensional

import pandas as pd

df_lin_reg = pd.read_csv('https://archive.ics.uci.edu/ml/

machine- learning-databases/00374/energydata_complete.csv')

del df_lin_reg['date']

df_lin_reg.info()

df_lin_reg.columns

Index(['Appliances', 'lights', 'T1', 'RH_1', 'T2', 'RH_2', 

'T3', 'RH_3', 'T4', 'RH_4', 'T5', 'RH_5', 'T6', 'RH_6', 'T7', 

'RH_7', 'T8', 'RH_8', 'T9', 'RH_9', 'T_out', 'Press_mm_hg', 

'RH_out', 'Windspeed', 'Visibility', 'Tdewpoint', 'rv1', 

'rv2'], dtype='object')
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#y is the dependent variable, that we need to predict

y = df_lin_reg.pop('Appliances')

# X is the set of input features

X = df_lin_reg

import pandas as pd

import shap

import sklearn

# a simple linear model initialized

model = sklearn.linear_model.LinearRegression()

# linear regression model trained

model.fit(X, y)

print("Model coefficients:\n")

for i in range(X.shape[1]):

    print(X.columns[i], "=", model.coef_[i].round(5))

Model coefficients:

lights = 1.98971

T1 = -0.60374

RH_1 = 15.15362

T2 = -17.70602

RH_2 = -13.48062

T3 = 25.4064

RH_3 = 4.92457

T4 = -3.46525

RH_4 = -0.17891

T5 = -0.02784

RH_5 = 0.14096

T6 = 7.12616

RH_6 = 0.28795

Chapter 2  explainability for linear SuperviSed ModelS



23

T7 = 1.79463

RH_7 = -1.54968

T8 = 8.14656

RH_8 = -4.66968

T9 = -15.87243

RH_9 = -0.90102

T_out = -10.22819

Press_mm_hg = 0.13986

RH_out = -1.06375

Windspeed = 1.70364

Visibility = 0.15368

Tdewpoint = 5.0488

rv1 = -0.02078

rv2 = -0.02078

# compute the SHAP values for the linear model

explainer = shap.Explainer(model.predict, X)

# SHAP value calculation

shap_values = explainer(X)

Permutation explainer: 19736it [16:15, 20.08it/s]

This part of the script takes time as it is a computationally intensive 

process. The explainer function calculates permutations, which means 

taking a feature set and generating the prediction difference. This 

difference is the presence of one feature and the absence of the same 

feature. For faster calculation, we can reduce the sample size to a smaller 

set, let’s say 1,000 or 2,000. In the previous script, we are using the entire 

population of 19,735 records to calculate the SHAP values. This part of 

the script can be improved by applying Python multiprocessing, which is 

beyond the scope of this chapter.
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The SHAP value for a specific feature 𝑖 is just the difference between 

the expected model output and the partial dependence plot at the feature’s 

value 𝑥𝑖. One of the fundamental properties of Shapley values is that they 

always sum up to the difference between the game outcome when all 

players are present and the game outcome when no players are present. 

For machine learning models, this means that SHAP values of all the 

input features will always sum up to the difference between the baseline 

(expected) model output and the current model output for the prediction 

being explained.

SHAP values have three objects: (a) the SHAP value for each feature, 

(b) the base value, and (c) the original training data. As there are 27 

features, we can expect 27 shap values.

pd.DataFrame(np.round(shap_values.values,3)).head(3)

 

# average prediction value is called as the base value

pd.DataFrame(np.round(shap_values.base_values,3)).head(3)

 

pd.DataFrame(np.round(shap_values.data,3)).head(3)
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 Recipe 2-2. SHAP Partial Dependency Plot 
for a Regression Model
 Problem
You want to get a partial dependency plot from SHAP.

 Solution
The solution to this problem is to use the partial dependency method 

(partial_dependence_plot) from the model.

 How It Works
Let’s take a look at the following example. There are two ways to get the 

partial dependency plot, one with a particular data point superimposed 

and the other without any reference to the data point. See Figure 2-1.

# make a standard partial dependence plot for lights on 

predicted output for row number 20 from the training dataset.

sample_ind = 20

shap.partial_dependence_plot(

    "lights", model.predict, X, model_expected_value=True,

    feature_expected_value=True, ice=False,

    shap_values=shap_values[sample_ind:sample_ind+1,:]

)

Chapter 2  explainability for linear SuperviSed ModelS



26

Figure 2-1. Correlation between feature light and predicted output of 
the model

The partial dependency plot is a way to explain the individual 

predictions and generate local interpretations for the sample selected from 

the dataset; in this case, the sample 20th record is selected from the training 

dataset. Figure 2-1 shows the partial dependency superimposed with the 

20th record in red.

shap.partial_dependence_plot(

    "lights", model.predict, X, ice=False,

    model_expected_value=True, feature_expected_value=True

)
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Figure 2-2. Partial dependency plot between lights and predicted 
outcome from the model

# the waterfall_plot shows how we get from shap_values.base_

values to model.predict(X)[sample_ind]

shap.plots.waterfall(shap_values[sample_ind], max_display=14)
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Figure 2-3. Local interpretation for record number 20

The local interpretation for record number 20 from the training dataset 

is displayed in Figure 2-3. The predicted output for the 20th record is 140 

Wh. The most influential feature impacting the 20th record is RH_1, which 

is the humidity in the kitchen area in percentage, and RH_2, which is the 

humidity in the living room area. On the bottom of Figure 2-3, there are 14 

features that are not very important for the 20th record’s predicted value.

X[20:21]

model.predict(X[20:21])

array([140.26911466])
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 Recipe 2-3. SHAP Feature Importance 
for Regression Model with All Numerical 
Input Variables
 Problem
You want to calculate the feature importance using the SHAP values.

 Solution
The solution to this problem is to use SHAP absolute values from 

the model.

 How It Works
Let’s take a look at the following example. SHAP values can be used to 

show the global importance of features. Importance features means 

features that have a larger importance in predicting the output.

#computing shap importance values for the linear model

import numpy as np

feature_names = shap_values.feature_names

shap_df = pd.DataFrame(shap_values.values, 

columns=feature_names)

vals = np.abs(shap_df.values).mean(0)

shap_importance = pd.DataFrame(list(zip(feature_names, vals)), 

columns=['col_name', 'feature_importance_vals'])

shap_importance.sort_values(by=['feature_importance_vals'], 

ascending=False, inplace=True)
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print(shap_importance)

       col_name  feature_importance_vals

2          RH_1                49.530061

19        T_out                43.828847

4          RH_2                42.911069

5            T3                41.671587

11           T6                34.653893

3            T2                31.097282

17           T9                26.607721

16         RH_8                19.920029

24    Tdewpoint                17.443688

21       RH_out                13.044643

6          RH_3                13.042064

15           T8                12.803450

0        lights                11.907603

12         RH_6                 7.806188

14         RH_7                 6.578015

7            T4                 5.866801

22    Windspeed                 3.361895

13           T7                 3.182072

18         RH_9                 3.041144

23   Visibility                 1.385616

10         RH_5                 0.855398

20  Press_mm_hg                 0.823456

1            T1                 0.765753

8          RH_4                 0.642723

25          rv1                 0.260885

26          rv2                 0.260885

9            T5                 0.041905

All the feature importance values are not scaled; hence, sum of values 

from all features will not be totaling 100.
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The beeswarm chart in Figure 2-4 shows the impact of SHAP values on 

model output. The blue dot shows a low feature value, and a red dot shows 

a high feature value. Each dot indicates one data point from the dataset. 

The beeswarm plot shows the distribution of feature values against the 

SHAP values.

shap.plots.beeswarm(shap_values)

Figure 2-4. Impact on model output

 Recipe 2-4. SHAP Values for a Regression 
Model on All Mixed Input Variables
 Problem
How do you estimate SHAP values when you introduce the categorical 

variables along with the numerical variables, which is a mixed set of input 

features.
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 Solution
The solution is that the mixed input variables that have numeric features 

as well as categorical or binary features can be modeled together. As the 

number of features increases, the time to compute all the permutations 

will also increase.

 How It Works
We are going to use an automobile public dataset with some modifications. 

The objective is to predict the price of a vehicle given the features such 

as make, location, age, etc. It is a regression problem that we are going to 

solve using a mix of numeric and categorical features.

df = pd.read_csv('https://raw.githubusercontent.com/

pradmishra1/PublicDatasets/main/automobile.csv')

df.head(3)

df.columns

Index(['Price', 'Make', 'Location', 'Age', 'Odometer', 

'FuelType', 'Transmission', 'OwnerType', 'Mileage', 'EngineCC', 

'PowerBhp'], dtype='object')

We cannot use string-based features or categorical features in the 

model directly as matrix multiplication is not possible on string features; 

hence, the string-based features need to be transformed into dummy 

variables or binary features with 0 and 1 flags. The transformation step 

is skipped here because many data scientists already know how to do 

this data transformation. We are importing another transformed dataset 

directly.

df_t = pd.read_csv('https://raw.githubusercontent.com/

pradmishra1/PublicDatasets/main/Automobile_transformed.csv')

del df_t['Unnamed: 0']
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df_t.head(3)

df_t.columns

Index(['Price', 'Age', 'Odometer', 'mileage', 'engineCC', 

'powerBhp', 'Location_Bangalore', 'Location_Chennai', 

'Location_Coimbatore', 'Location_Delhi', 'Location_Hyderabad', 

'Location_Jaipur', 'Location_Kochi', 'Location_Kolkata', 

'Location_Mumbai', 'Location_Pune', 'FuelType_Diesel', 

 'FuelType_Electric', 'FuelType_LPG', 'FuelType_Petrol', 

'Transmission_Manual', 'OwnerType_Fourth +ACY- Above', 

'OwnerType_Second', 'OwnerType_Third'], dtype='object')

#y is the dependent variable, that we need to predict

y = df_t.pop('Price')

# X is the set of input features

X = df_t

import pandas as pd

import shap

import sklearn

# a simple linear model initialized

model = sklearn.linear_model.LinearRegression()

# linear regression model trained

model.fit(X, y)

print("Model coefficients:\n")

for i in range(X.shape[1]):

    print(X.columns[i], "=", model.coef_[i].round(5))

Model coefficients:

Age = -0.92281

Odometer = 0.0

mileage = -0.07923

engineCC = -4e-05
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powerBhp = 0.1356

Location_Bangalore = 2.00658

Location_Chennai = 0.94944

Location_Coimbatore = 2.23592

Location_Delhi = -0.29837

Location_Hyderabad = 1.8771

Location_Jaipur = 0.8738

Location_Kochi = 0.03311

Location_Kolkata = -0.86024

Location_Mumbai = -0.81593

Location_Pune = 0.33843

FuelType_Diesel = -1.2545

FuelType_Electric = 7.03139

FuelType_LPG = 0.79077

FuelType_Petrol = -2.8691

Transmission_Manual = -2.92415

OwnerType_Fourth +ACY- Above = 1.7104

OwnerType_Second = -0.55923

OwnerType_Third = 0.76687

To compute the SHAP values, we can use the explainer function 

with the training dataset X and model predict function. The SHAP value 

calculation happens using a permutation approach; it took 5 minutes.

# compute the SHAP values for the linear model

explainer = shap.Explainer(model.predict, X)

# SHAP value calculation

shap_values = explainer(X)

Permutation explainer: 6020it [05:14, 18.59it/s]
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import numpy as np

pd.DataFrame(np.round(shap_values.values,3)).head(3)

 

# average prediction value is called as the base value

pd.DataFrame(np.round(shap_values.base_values,3)).head(3)

0

0 11.933

1 11.933

2 11.933

pd.DataFrame(np.round(shap_values.data,3)).head(3)

 

 Recipe 2-5. SHAP Partial Dependency Plot 
for Regression Model for Mixed Input
 Problem
You want to plot the partial dependency plot and interpret the graph for 

numeric and categorical dummy variables.
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 Solution
The partial dependency plot shows the correlation between the feature 

and the predicted output of the target variables. There are two ways we 

can showcase the results, one with a feature and expected value of the 

prediction function and the other with superimposing a data point on the 

partial dependency plot.

 How It Works
Let’s take a look at the following example (see Figure 2-5):

shap.partial_dependence_plot(

    "powerBhp", model.predict, X, ice=False,

    model_expected_value=True, feature_expected_value=True

)

Figure 2-5. Partial dependency plot for powerBhp and predicted 
price of the vehicle
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The linear blue line shows the positive correlation between the price 

and the powerBhp. The powerBhp is a strong feature. The higher the bhp, 

the higher the price of the car. This is a continuous or numeric feature; let’s 

look at the binary or dummy features. There are two dummy features if the 

car is registered in a Bangalore location or in a Kolkata location as dummy 

variables. See Figure 2-6.

shap.partial_dependence_plot(

    "Location_Bangalore", model.predict, X, ice=False,

    model_expected_value=True, feature_expected_value=True

)

Figure 2-6. Dummy variable Bangalore location versus SHAP value

If the location of the car is Bangalore, then the price would be higher, 

and vice versa. See Figure 2-7.

shap.partial_dependence_plot(

    "Location_Kolkata", model.predict, X, ice=False,

    model_expected_value=True, feature_expected_value=True

)
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Figure 2-7. Dummy variable Location_Kolkata versus SHAP value

If the location is Kolkata, then the price is expected to be lower. The 

reason for the difference between the two locations is in the data that is 

being used to train the model. The previous three figures show the global 

importance of a feature versus the prediction function. As an example, 

only two features are taken into consideration; we can use all features one 

by one and display many graphs to get more understanding about the 

predictions.

Now let’s look at a sample data point superimposed on a partial 

dependence plot to display local explanations. See Figure 2-8.

# make a standard partial dependence plot for lights on 

predicted output

sample_ind = 20 #20th record from the dataset

shap.partial_dependence_plot(

    "powerBhp", model.predict, X, model_expected_value=True,

    feature_expected_value=True, ice=False,

    shap_values=shap_values[sample_ind:sample_ind+1,:]

)
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Figure 2-8. Power bhp versus prediction function

The vertical dotted line shows the average powerBhp, and the 

horizontal dotted line shows the average predicted value by the model. 

The small blue bar dropping from the black dot reflects the placement 

of record number 20 from the dataset. Local interpretation means that 

for any sample record from the dataset, we should be able to explain the 

predictions. Figure 2-9 shows the importance of features corresponding to 

each record in the dataset.

# the waterfall_plot shows how we get from shap_values.base_

values to model.predict(X)[sample_ind]

shap.plots.waterfall(shap_values[sample_ind], max_display=14)
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Figure 2-9. Local interpretation of the 20th record and corresponding 
feature importance

For the 20th record, the predicted price is 22.542, the powerBhp stands 

out to be most important feature, and manual transmission is the second 

most important feature.

X[20:21]

model.predict(X[20:21])

array([22.54213017])
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 Recipe 2-6. SHAP Feature Importance 
for a Regression Model with All Mixed 
Input Variables
 Problem
You want to get the global feature importance from SHAP values using 

mixed-input feature data.

 Solution
The solution to this problem is to use absolute values and sort them in 

descending order.

 How It Works
Let’s take a look at the following example:

#computing shap importance values for the linear model

import numpy as np

# feature names from the training data

feature_names = shap_values.feature_names

#combining the shap values with feature names

shap_df = pd.DataFrame(shap_values.values, 

columns=feature_names)

#taking the absolute shap values

vals = np.abs(shap_df.values).mean(0)

#creating a dataframe view

shap_importance = pd.DataFrame(list(zip(feature_names, vals)), 

columns=['col_name', 'feature_importance_vals'])

#sorting the importance values
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shap_importance.sort_values(by=['feature_importance_vals'], 

ascending=False, inplace=True)

print(shap_importance)

col_name  feature_importance_vals

4                       powerBhp                 6.057831

0                            Age                 2.338342

18               FuelType_Petrol                 1.406920

19           Transmission_Manual                 1.249077

15               FuelType_Diesel                 0.618288

7            Location_Coimbatore                 0.430233

9             Location_Hyderabad                 0.401118

2                        mileage                 0.270872

13               Location_Mumbai                 0.227442

5             Location_Bangalore                 0.154706

21              OwnerType_Second                 0.154429

6               Location_Chennai                 0.133476

10               Location_Jaipur                 0.127807

12              Location_Kolkata                 0.111829

14                 Location_Pune                 0.051082

8                 Location_Delhi                 0.049372

22               OwnerType_Third                 0.021778

3                       engineCC                 0.020145

1                       Odometer                 0.009602

11                Location_Kochi                 0.007474

20  OwnerType_Fourth +ACY- Above                 0.002557

16             FuelType_Electric                 0.002336

17                  FuelType_LPG                 0.001314

At a high level, for the linear model that is used to predict the price 

of the automobiles, the previous features are important, with the highest 

being the powerBhp, age of the car, petrol type, manual transmission type, 

etc. The previous tabular output shows global feature importance.
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 Recipe 2-7. SHAP Strength for Mixed 
Features on the Predicted Output 
for Regression Models
 Problem
You want to know the impact of a feature on the model function.

 Solution
The solution to this problem is to use a beeswarm plot that displays the 

blue and red points.

 How It Works
Let’s take a look at the following example (see Figure 2-10). From the 

beeswarm plot there is a positive relationship between powerBhp and 

positive SHAP value; however, there is a negative correlation between 

the age of a car and the price of the car. As the feature value increases 

from a lower powerBhp value to a higher powerBhp value, the shap value 

increases and vice versa. However, there is an opposite trend for the age 

feature.

shap.plots.beeswarm(shap_values)
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Figure 2-10. The SHAP value impact on the model output

 Recipe 2-8. SHAP Values for a Regression 
Model on Scaled Data
 Problem
You don’t know whether getting SHAP values on scaled data is better than 

the unscaled numerical data.

 Solution
The solution to this problem is to use a numerical dataset and generate 

local and global explanations after applying the standard scaler to the data.
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 How It Works
Let’s take a look at the following script:

import pandas as pd

df_lin_reg = pd.read_csv('https://archive.ics.uci.edu/ml/

machine- learning-databases/00374/energydata_complete.csv')

del df_lin_reg['date']

#y is the dependent variable, that we need to predict

y = df_lin_reg.pop('Appliances')

# X is the set of input features

X = df_lin_reg

import pandas as pd

import shap

import sklearn

#create standardized features

scaler = sklearn.preprocessing.StandardScaler()

scaler.fit(X)

#transform the dataset

X_std = scaler.transform(X)

# a simple linear model initialized

model = sklearn.linear_model.LinearRegression()

# linear regression model trained

model.fit(X_std, y)

print("Model coefficients:\n")

for i in range(X.shape[1]):

    print(X.columns[i], "=", model.coef_[i].round(5))

Model coefficients:

lights = 15.7899

T1 = -0.96962

RH_1 = 60.29926

T2 = -38.82785
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RH_2 = -54.8622

T3 = 50.96675

RH_3 = 16.02699

T4 = -7.07893

RH_4 = -0.77668

T5 = -0.05136

RH_5 = 1.27172

T6 = 43.3997

RH_6 = 8.96929

T7 = 3.78656

RH_7 = -7.92521

T8 = 15.93559

RH_8 = -24.39546

T9 = -31.97757

RH_9 = -3.74049

T_out = -54.38609

Press_mm_hg = 1.03483

RH_out = -15.85058

Windspeed = 4.17588

Visibility = 1.81258

Tdewpoint = 21.17741

rv1 = -0.30118

rv2 = -0.30118

CodeText

# compute the SHAP values for the linear model

explainer = shap.Explainer(model.predict, X_std)

# SHAP value calculation

shap_values = explainer(X_std)

Permutation explainer: 19736it [08:53, 36.22it/s]
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It is faster to get results from the SHAP explainer because we are using 

the standardized data. The SHAP values also changed a bit, but there are 

no major changes to the shap values.

Permutation explainer Time

unscaled data 19736it 15:22, 21.23it/s

Scaled data 19736it 08:53, 36.22it/s

#computing shap importance values for the linear model

import numpy as np

# feature names from the training data

feature_names = X.columns

#combining the shap values with feature names

shap_df = pd.DataFrame(shap_values.values, 

columns=feature_names)

#taking the absolute shap values

vals = np.abs(shap_df.values).mean(0)

#creating a dataframe view

shap_importance = pd.DataFrame(list(zip(feature_names, vals)), 

columns=['col_name', 'feature_importance_vals'])

#sorting the importance values

shap_importance.sort_values(by=['feature_importance_vals'], 

ascending=False, inplace=True)

print(shap_importance)

       col_name  feature_importance_vals

2          RH_1                49.530061

19        T_out                43.828847

4          RH_2                42.911069

5            T3                41.671587

11           T6                34.653893
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3            T2                31.097282

17           T9                26.607721

16         RH_8                19.920029

24    Tdewpoint                17.443688

21       RH_out                13.044643

6          RH_3                13.042064

15           T8                12.803450

0        lights                11.907603

12         RH_6                 7.806188

14         RH_7                 6.578015

7            T4                 5.866801

22    Windspeed                 3.361895

13           T7                 3.182072

18         RH_9                 3.041144

23   Visibility                 1.385616

10         RH_5                 0.855398

20  Press_mm_hg                 0.823456

1            T1                 0.765753

8          RH_4                 0.642723

25          rv1                 0.260885

26          rv2                 0.260885

9            T5                 0.041905

 Recipe 2-9. LIME Explainer for Tabular Data
 Problem
You want to know how to generate explainability at a local level in a 

focused manner rather than at a global level.
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 Solution
The solution to this problem is to use the LIME library. LIME is a model- 

agnostic technique; it retrains the ML model while running the explainer. 

LIME localizes a problem and explains the model at a local level.

 How It Works
Let’s take a look at the following example. LIME requires a numpy array as 

an input to the tabular explainer; hence, the Pandas dataframe needs to be 

transformed into an array.

!pip install lime

Looking in indexes: https://pypi.org/simple, https://us-python.

pkg.dev/colab-wheels/public/simple/

Collecting lime

  Downloading lime-0.2.0.1.tar.gz (275 kB)

     |████████████████| 275 kB 3.9 MB/s

Requirement already satisfied: matplotlib in /usr/local/lib/

python3.7/dist-packages (from lime) (3.2.2)

Requirement already satisfied: numpy in /usr/local/lib/

python3.7/dist-packages (from lime) (1.21.6)

Requirement already satisfied: scipy in /usr/local/lib/

python3.7/dist-packages (from lime) (1.7.3)

Require

................

import lime

import lime.lime_tabular

explainer = lime.lime_tabular.LimeTabularExplainer(np.array(X),

                                             mode='regression',

                                             feature_names= 

X.columns,
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                                             class_names= 

['price'],

                                             verbose=True)

We are using the energy prediction data from this chapter only.

Explainer.feature_selection

# asking for explanation for LIME model

I = 60

exp = explainer.explain_instance(np.array(X)[i],

                                 model.predict,

                                 num_features=14

                                )

model.predict(X)[60]

X[60:61]

Intercept -142.75931081140854

Prediction_local [-492.87528974]

Right: -585.148657732673

exp.show_in_notebook(show_table=True)

Figure 2-11. Local explanation for the 60th record from the dataset
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exp.as_list()

[('RH_6 > 83.23', 464.95860873125986), ('RH_1 > 43.07', 

444.5520820612734), ('RH_2 > 43.26', -373.10130212185885), ('RH_out > 

91.67', -318.85242557316906), ('RH_8 > 46.54', -268.93915670002696), 

('lights <= 0.00', -250.2220287090558), ('T3 <= 20.79', 

-167.06955734678837), ('3.67 < T_out <= 6.92', 131.73980385122888), 

('3.63 < T6 <= 7.30', -103.65788170866274), ('T9 <= 18.00', 

93.3237211878042), ('RH_7 > 39.00', -79.9838215229673), ('RH_3 > 

41.76', 78.2163751694391), ('T8 <= 20.79', -45.00198774806178), 

('18.79 < T2 <= 20.00', 43.92159150217912)]

 Recipe 2-10. ELI5 Explainer for Tabular Data
 Problem
You want to use the ELI5 library for generating explanations of a linear 

regression model.

 Solution
ELI5 is a Python package that helps to debug a machine learning model 

and explain the predictions. It provides support for all machine learning 

models supported by the scikit-learn library.

 How It Works
Let’s take a look at the following script:

pip install eli5

import eli5

eli5.show_weights(model,

                 feature_names=list(X.columns))
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y top features

Weight? Feature

+97.695 <biaS>

+60.299 rh_1

+50.967 t3

+43.400 t6

+21.177 tdewpoint

+16.027 rh_3

+15.936 t8

+15.790 lights

+8.969 rh_6

+4.176 Windspeed

+3.787 t7

… 3 more positive …

… 5 more negative …

-3.740 rh_9

-7.079 t4

-7.925 rh_7

-15.851 rh_out

-24.395 rh_8

-31.978 t9

-38.828 t2

-54.386 t_out

-54.862 rh_2
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eli5.explain_weights(model, feature_names=list(X.columns))

eli5.explain_prediction(model,X.iloc[60])

from eli5.sklearn import PermutationImportance

# a simple linear model initialized

model = sklearn.linear_model.LinearRegression()

# linear regression model trained

model.fit(X, y)

perm = PermutationImportance(model)

perm.fit(X, y)

eli5.show_weights(perm,feature_names=list(X.columns))

The results table has a BIAS value as a feature. This can be interpreted 

as an intercept term for a linear regression model. Other features are listed 

based on the descending order of importance based on their weight. The 

show weights function provides a global interpretation of the model, and 

the show prediction function provides a local interpretation by taking into 

account a record from the training set.

 Recipe 2-11. How the Permutation Model 
in ELI5 Works
 Problem
You want to make sense of the ELI5 permutation library.

 Solution
The solution to this problem is to use a dataset and a trained model.
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 How It Works
The permutation model in the ELI5 library works only for global 

interpretation. First, it takes a base line linear regression model from the 

training dataset and computes the error of the model. Then it shuffles 

the values of a feature and retrains the model and computes the error. 

It compares the decrease in error after shuffling and before shuffling. A 

feature can be considered as important if post shuffling the error delta 

is high and unimportant if the error delta is low. The result displays the 

average importance of features and the standard deviation of features with 

multiple shuffle steps.

 Recipe 2-12. Global Explanation for Logistic 
Regression Models
 Problem
You want to explain the predictions generated from a logistic 

regression model.

 Solution
The logistic regression model is also known as a classification model as we 

model the probabilities from either a binary classification or a multinomial 

classification variable. In this particular recipe, we are using a churn 

classification dataset that has two outcomes: whether the customer is 

likely to churn or not.
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 How It Works
Let’s take a look at the following example. The key is to get the SHAP 

values, which will return base values, SHAP values, and data. Using the 

SHAP values, we can create various explanations using graphs and figures. 

The SHAP values are always at a global level.

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

from sklearn.linear_model import LogisticRegression, 

LogisticRegressionCV

from sklearn.metrics import confusion_matrix, 

classification_report

df_train = pd.read_csv('https://raw.githubusercontent.com/

pradmishra1/PublicDatasets/main/ChurnData_test.csv')

from sklearn.preprocessing import LabelEncoder

tras = LabelEncoder()

df_train['area_code_tr'] = tras.fit_transform(df_

train['area_code'])

df_train.columns

del df_train['area_code']

df_train.columns

df_train['target_churn_dum'] = pd.get_dummies(df_train.

churn,prefix='churn',drop_first=True)

df_train.columns

del df_train['international_plan']

del df_train['voice_mail_plan']

del df_train['churn']

df_train.info()
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del df_train['Unnamed: 0']

df_train.columns

from sklearn.model_selection import train_test_split

df_train.columns

X = df_train[['account_length', 'number_vmail_messages', 

'total_day_minutes',

        'total_day_calls', 'total_day_charge', 'total_eve_

minutes',

        'total_eve_calls', 'total_eve_charge', 'total_night_

minutes',

        'total_night_calls', 'total_night_charge', 'total_intl_

minutes',

       'total_intl_calls', 'total_intl_charge',

       'number_customer_service_calls', 'area_code_tr']]

Y = df_train['target_churn_dum']

xtrain,xtest,ytrain,ytest=train_test_split(X,Y,test_

size=0.20,stratify=Y)

log_model = LogisticRegression()

log_model.fit(xtrain,ytrain)

print("training accuracy:", log_model.score(xtrain,ytrain)) 

#training accuracy

print("test accuracy:",log_model.score(xtest,ytest)) # test 

accuracy

# Provide Probability as Output

def model_churn_proba(x):

    return log_model.predict_proba(x)[:,1]
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# Provide Log Odds as Output

def model_churn_log_odds(x):

    p = log_model.predict_log_proba(x)

    return p[:,1] - p[:,0]

# compute the SHAP values for the linear model

background_churn = shap.maskers.Independent(X, max_

samples=2000)

explainer = shap.Explainer(log_model, background_churn,feature_

names=list(X.columns))

shap_values_churn = explainer(X)

shap_values_churn

.values = array([[-5.68387743e-03, 2.59884057e-01, 

-1.12707664e+00, ..., 1.70015539e-04, 6.35113804e-01, 

-5.98927431e-03], [-9.26328584e-02, 2.59884057e-01, 

4.31613190e-01, ..., -4.82342680e-04, -7.11876922e-01, 

-5.98927431e-03], [-1.05143764e-02, -8.06452301e-01, 

1.15736857e+00, ..., 2.05960486e-03, -2.62880014e-01, 

5.88245015e-03], ..., [ 9.09261014e-02, 2.59884057e-01, 

-4.15611799e-01, ..., 1.99211953e-03, -2.62880014e-01, 

-5.34120777e-05], [-2.50058732e-02, 2.59884057e-01, 

7.63911460e-02, ..., -1.08971068e-03, -7.11876922e-01, 

-5.98927431e-03], [ 3.05448646e-02, -9.90303397e-01, 

-5.29936135e-01, ..., -6.17313346e-04, -7.11876922e-01, 

-5.34120777e-05]]) .base_values = array([-2.18079251, 

-2.18079251, -2.18079251, ..., -2.18079251, -2.18079251, 

-2.18079251]) .data = array([[101. , 0. , 70.9 , ..., 2.86, 3. 

, 2. ], [137. , 0. , 223.6 , ..., 2.57, 0. , 2. ], [103. , 29. 

, 294.7 , ..., 3.7 , 1. , 0. ], ..., [ 61. , 0. , 140.6 , ..., 

3.67, 1. , 1. ], [109. , 0. , 188.8 , ..., 2.3 , 0. , 2. ], [ 

86. , 34. , 129.4 , ..., 2.51, 0. , 1. ]])

shap_values = pd.DataFrame(shap_values_churn.values)
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shap_values.columns = list(X.columns)

shap_values

 

# compute the SHAP values for the linear model

explainer_log_odds = shap.Explainer(log_model, background_

churn,feature_names=list(X.columns))

shap_values_churn_log_odds = explainer_log_odds(X)

shap_values_churn_log_odds

 Recipe 2-13. Partial Dependency Plot 
for a Classifier
 Problem
You want to show feature associations with the class probabilities.

 Solution
The class probabilities in this example are related to predicting the 

probability of churn. The SHAP value for a feature can be plotted against 

the feature value to show a scatter chart that displays the correlation 

(positive or negative) and strength of associations.

 How It Works
Let’s take a look at the following script:

shap.plots.scatter(shap_values_churn[:,'account_length'])
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The Figure 2-12 shows the relationship between account length 

variable and the SHAP values of the account length variable.

# make a standard partial dependence plot

sample_ind = 25

fig,ax = shap.partial_dependence_plot(

     "number_vmail_messages", model_churn_proba, X, model_

expected_value=True,

    feature_expected_value=True, show=False,ice=False)

The Figure 2-13 shows the relationship between feature number 

of voice mail messages and the SHAP value of number of voice mail 

messages.

Figure 2-12. Account length and SHAP value of account length
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Figure 2-13. Number of voicemail messages and their shap values

shap.plots.bar(shap_values_churn_log_odds)

Figure 2-14. Mean absolute shap values of all features
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 Recipe 2-14. Global Feature Importance 
from the Classifier
 Problem
You want to get the global feature importance for the logistic 

regression model.

 Solution
The solution to this problem is to use a bar plot and beeswarm plot and 

heat map.

 How It Works
Let’s take a look at the following script (see Figure 2-15 and Figure 2-16):

shap.plots.beeswarm(shap_values_churn_log_odds)

Figure 2-15. SHAP value impact on the model output
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shap.plots.heatmap(shap_values_churn_log_odds[:1000])

temp_df = pd.DataFrame()

temp_df['Feature Name'] = pd.Series(X.columns)

temp_df['Coefficients'] = pd.Series(log_model.coef_.flatten())

temp_df.sort_values(by='Coefficients',ascending=False)

The interpretation goes like this: when we change the value of a feature 

by 1 unit, the model equation will produce two odds; one is the base, and 

the other is the incremental value of the feature. We are looking at the ratio 

of odds changing with every increase or decrease in the value of a feature. 

From the global feature importance, there are three important features: 

the number of customer service calls, the total minutes for the day, and the 

number of voicemail messages.

Figure 2-16. Heat map for SHAP value and positive and negative 
feature contributions
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 Recipe 2-15. Local Explanations Using LIME
 Problem
You want to get faster explanations from both global and local explainable 

libraries.

 Solution
The model explanation can be done using SHAP; however, one of the 

limitations of SHAP is we cannot use the full data to create global and local 

explanations. Even if we decide to use the full data, it usually takes more 

time. Hence, LIME is very useful to speed up the process of generating 

local and global explanations in a scenario when millions of records are 

being used to train a model.

 How It Works
Let’s take a look at the following script:

import lime

import lime.lime_tabular

explainer =  lime.lime_tabular.LimeTabularExplainer(np.

array(xtrain),

                    feature_names=list(xtrain.columns),

                    class_names=['target_churn_dum'],

                    verbose=True, mode='classification')

# this record is a no churn scenario

exp = explainer.explain_instance(xtest.iloc[0], log_model.

predict_proba, num_features=16)

exp.as_list()

Intercept -0.005325152786766457
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Prediction_local [0.38147987]

Right: 0.32177492114146566

X does not have valid feature names, but LogisticRegression was 

fitted with feature names

[('number_customer_service_calls > 2.00', 0.1530891322197175),

 ('total_day_minutes > 213.80', 0.11114575899827552),

 ('number_vmail_messages <= 0.00', 0.09610037835765535),

 ('total_intl_calls <= 3.00', 0.03177016778340472),

 ('total_day_calls <= 86.00', 0.029375047698073507),

  ('99.00 < total_night_calls <= 113.00',  

 -0.023964881054121437),

 ('account_length > 126.00', -0.015756474385902122),

 ('88.00 < total_eve_calls <= 101.00', 0.008756083756550214),

 ('total_intl_minutes <= 8.60', -0.007205495334049559),

  ('200.00 < total_eve_minutes <= 232.00', 

0.004122691218360631),

 ('total_intl_charge <= 2.32', -0.0013747713519713068),

 ('total_day_charge > 36.35', 0.0010811737941700244),

  ('200.20 < total_night_minutes <= 234.80',  

 -0.00013400510199346275),

 ('0.00 < area_code_tr <= 1.00', -8.127174069198377e-05),

  ('9.01 < total_night_charge <= 10.57',  

 -6.668417986225894e-05),

  ('17.00 < total_eve_charge <= 19.72', -5.18320207196282e-05)]

pd.DataFrame(exp.as_list())
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0 1

0 number_customer_service_calls > 2.00 0.153089

1 total_day_minutes > 213.80 0.111146

2 number_vmail_messages <= 0.00 0.096100

3 total_intl_calls <= 3.00 0.031770

4 total_day_calls <= 86.00 0.029375

5 99.00 < total_night_calls <= 113.00 -0.023965

6 account_length > 126.00 -0.015756

7 88.00 < total_eve_calls <= 101.00 0.008756

8 total_intl_minutes <= 8.60 -0.007205

9 200.00 < total_eve_minutes <= 232.00 0.004123

10 total_intl_charge <= 2.32 -0.001375

11 total_day_charge > 36.35 0.001081

12 200.20 < total_night_minutes <= 234.80 -0.000134

13 0.00 < area_code_tr <= 1.00 -0.000081

14 9.01 < total_night_charge <= 10.57 -0.000067

exp.show_in_notebook(show_table=True)
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Figure 2-17. Local explanation for record number 1

# This is s churn scenario

exp = explainer.explain_instance(xtest.iloc[20], log_model.

predict_proba, num_features=16)

exp.as_list()

ntercept -0.02171544428872446

Prediction_local [0.44363396]

Right: 0.4309152994720991

X does not have valid feature names, but LogisticRegression was 

fitted with feature names

[('number_customer_service_calls > 2.00', 0.15255665525554568),

 ('total_day_minutes > 213.80', 0.11572355524257688),

 ('number_vmail_messages <= 0.00', 0.09656802173637159),

 ('total_night_calls <= 86.00', 0.07347814323553245),

 ('total_day_calls <= 86.00', 0.03143722302975322),

 ('total_eve_minutes <= 166.20', -0.016279347282555784),

 ('88.00 < total_eve_calls <= 101.00', 0.01202796623602075),

 ('4.00 < total_intl_calls <= 5.00', -0.008862308197327355),

 ('72.00 < account_length <= 98.00', 0.008095316213066618),

 ('total_intl_minutes > 12.00', 0.004036225959225672),
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  ('200.20 < total_night_minutes <= 234.80', 

0.0031930707578459207),

 ('total_intl_charge > 3.24', -0.0025561403383019586),

 ('total_day_charge > 36.35', -0.0021799602467677667),

 ('9.01 < total_night_charge <= 10.57', -0.001598247181850764),

 ('total_eve_charge <= 14.13', -0.001066803177182677),

 ('area_code_tr > 1.00', 0.0007760299764712853)]

In a similar fashion, the graphs can be generated for different data 

points from the training sample as well as the test sample.

 Recipe 2-16. Model Explanations Using ELI5
 Problem
You want to get model explanations using the ELI5 library.

 Solution
ELI5 provides two functions to show weights and make predictions to 

generate model explanations.

 How It Works
Let’s take a look at the following script:

eli5.show_weights(log_model,

                  feature_names=list(xtrain.columns))

y=1 top features
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Weight? Feature

+0.449 number_customer_service_calls

+0.010 total_day_minutes

+0.009 total_intl_minutes

+0.002 total_intl_charge

+0.002 total_eve_minutes

+0.001 total_day_charge

+0.000 total_eve_charge

-0.000 total_night_charge

-0.001 total_night_minutes

-0.002 account_length

-0.006 area_code_tr

-0.008 total_day_calls

-0.017 total_eve_calls

-0.017 total_night_calls

-0.034 <biaS>

-0.037 number_vmail_messages

-0.087 total_intl_calls

eli5.explain_weights(log_model, feature_names=list(xtrain.

columns))
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y=1 top features

Weight? Feature

+0.449 number_customer_service_calls

+0.010 total_day_minutes

+0.009 total_intl_minutes

+0.002 total_intl_charge

+0.002 total_eve_minutes

+0.001 total_day_charge

+0.000 total_eve_charge

-0.000 total_night_charge

-0.001 total_night_minutes

-0.002 account_length

-0.006 area_code_tr

-0.008 total_day_calls

-0.017 total_eve_calls

-0.017 total_night_calls

-0.034 <biaS>

-0.037 number_vmail_messages

-0.087 total_intl_calls

eli5.explain_prediction(log_model,xtrain.iloc[60])
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y=0 (probability 0.788, score -1.310) top features

Contribution? Feature

+2.458 total_night_calls

+1.289 total_eve_calls

+0.698 total_day_calls

+0.304 account_length

+0.174 total_intl_calls

+0.127 total_night_minutes

+0.034 <biaS>

+0.006 area_code_tr

+0.002 total_night_charge

-0.004 total_intl_charge

-0.005 total_eve_charge

-0.057 total_intl_minutes

-0.064 total_day_charge

-0.304 total_eve_minutes

-0.449 number_customer_service_calls

-2.899 total_day_minutes

from eli5.sklearn import PermutationImportance

perm = PermutationImportance(log_model)

perm.fit(xtest, ytest)

eli5.show_weights(perm,feature_names=list(xtrain.columns))
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Weight Feature

0.0066 ± 0.0139 number_customer_service_calls

0.0066 ± 0.0024 number_vmail_messages

0.0030 ± 0.0085 total_eve_calls

0.0030 ± 0.0085 total_day_minutes

0.0006 ± 0.0088 total_day_calls

0 ± 0.0000 area_code_tr

0 ± 0.0000 total_intl_charge

0 ± 0.0000 total_night_charge

0 ± 0.0000 total_eve_charge

-0.0012 ± 0.0048 total_intl_calls

-0.0012 ± 0.0029 total_intl_minutes

-0.0024 ± 0.0096 account_length

-0.0024 ± 0.0024 total_day_charge

-0.0036 ± 0.0045 total_night_minutes

-0.0042 ± 0.0061 total_eve_minutes

-0.0048 ± 0.0072 total_night_calls

 Conclusion
In this chapter, we covered how to interpret linear supervised models 

such as regression and classification. The linear models are simpler to 

interpret at a global level, meaning at a feature importance level, but hard 

to explain at a local interpretation level. In this chapter, we looked at local 

interpretation for samples using the SHAP, ELI5, and LIME libraries.
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In the next chapter, we will cover the local and global interpretations 

for nonlinear models. The nonlinear models cover nonlinearity existing 

in data and thereby can be complex to interpret. Hence, we need a set of 

frameworks to explain the nonlinearity in a model.
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CHAPTER 3

Explainability 
for Nonlinear 
Supervised Models
In this chapter, we are going to use explainable libraries to explain a 

regression model and a classification model, while training a nonlinear 

model. A nonlinear model is something where either the input variables 

are transformed using nonlinear transformations or the function to model 

the input and output is nonlinear.

In the pursuit of achieving higher accuracy, input features are modified 

either by including polynomial features or by including interaction 

features, such as additive features and multiplicative features. The benefit 

of adding nonlinear features is to capture more complexity in the data and 

catch more complex patterns existing in the data. If we are going to use 

nonlinear features, the explainability can be followed as per the recipes 

provided in Chapter 2. If we have a few features, we can create handcrafted 
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polynomial features; however, if we have many features, creating all 

combinations of nonlinear features is not only difficult but also very 

complex to interpret. Hence, selecting a nonlinear function or a learning 

algorithm makes life easier. So, we are going to use the ID3 algorithm that 

powers the decision tree to capture nonlinearity existing in data.

The goal of this chapter is to introduce various explainability libraries 

for decision tree models such as feature importance, partial dependency 

plot, and local interpretation.

 Recipe 3-1. SHAP Values for Tree Models 
on All Numerical Input Variables
 Problem
You want to explain a decision tree–based regression model built on all 

numeric features.

 Solution
The decision tree–based regression model on all numeric features is 

trained, and then the trained model will be passed through SHAP to 

generate global explanations and local explanations.

 How It Works
Let’s take a look at the following example. The Shapely value can be 

called the SHAP value. It is used to explain the model and is used for the 

impartial distribution of predictions from a cooperative game theory to 

attribute a feature to the model’s predictions. Model input features are 
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considered as players in the game. The model function is considered as the 

rules of the game. The Shapely value of a feature is computed based on the 

following steps:

 1. SHAP requires model retraining on all feature 

subsets; hence, usually it takes time if the 

explanation has to be generated for larger datasets.

 2. Identify a feature set from a list of features (let’s say 

there are 15 features; we can select a subset with 5 

features).

 3. For any particular feature, two models using the 

subset of features will be created, one with the 

feature and another without the feature.

 4. The prediction differences will be computed.

 5. The differences in prediction are computed for all 

possible subsets of features.

 6. The weighted average value of all possible 

differences is used to populate the feature 

importance.

If the weight of the feature is 0.000, then we can conclude that the 

feature is not important and has not joined the model. If it is not equal 

to 0.000, then we can conclude that the feature has a role to play in the 

prediction process.

We are going to use a dataset from the UCI machine learning 

repository. The URL to access the dataset is as follows:

https://archive.ics.uci.edu/ml/datasets/Appliances+energy+

prediction
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The objective is to predict the appliances’ energy use in Wh, using the 

features from sensors. There are 27 features in the dataset, and here we are 

trying to understand what features are important in predicting the energy 

usage. See Table 3-1.

Table 3-1. Feature Description from the Energy Prediction Dataset

Feature Name Description Unit

appliances energy use in Wh

lights energy use of light fixtures in  

the house

in Wh

t1 temperature in kitchen area in Celsius

rh_1 humidity in kitchen area in %

t2 temperature in living room area in Celsius

rh_2 humidity in living room area in %

t3 temperature in laundry room area

rh_3 humidity in laundry room area in %

t4 temperature in office room in Celsius

rh_4 humidity in office room in %

t5 temperature in bathroom in Celsius

rh_5 humidity in bathroom in %

t6 temperature outside the building  

(north side)

in Celsius

rh_6 humidity outside the building (north 

side)

in %

t7 temperature in ironing room in Celsius

rh_7 humidity in ironing room in %

(continued)
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Table 3-1. (continued)

Feature Name Description Unit

t8 temperature in teenager room 2 in Celsius

rh_8 humidity in teenager room 2 in %

t9 temperature in parents room in Celsius

rh_9 humidity in parents room in %

to temperature outside (from the Chievres 

weather station)

in Celsius

pressure (from Chievres 

weather station)

in mm hg

arh_out humidity outside (from the Chievres 

weather station)

in %

Wind speed (from 

Chievres weather station)

in m/s

visibility (from Chievres 

weather station)

in km

tdewpoint (from Chievres 

weather station)

Â°C

rv1 random variable 1 nondimensional

rv2 random variable 2 nondimensional

pip install shap

import pandas as pd

df_lin_reg = pd.read_csv('https://archive.ics.uci.edu/ml/

machine- learning-databases/00374/energydata_complete.csv')

del df_lin_reg['date']

df_lin_reg.info()

df_lin_reg.columns
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Index(['Appliances', 'lights', 'T1', 'RH_1', 'T2', 'RH_2', 

'T3', 'RH_3', 'T4', 'RH_4', 'T5', 'RH_5', 'T6', 'RH_6', 'T7', 

'RH_7', 'T8', 'RH_8', 'T9', 'RH_9', 'T_out', 'Press_mm_hg', 

'RH_out', 'Windspeed', 'Visibility', 'Tdewpoint', 'rv1', 

'rv2'], dtype='object')

#y is the dependent variable, that we need to predict

y = df_lin_reg.pop('Appliances')

# X is the set of input features

X = df_lin_reg

import pandas as pd

import shap

import sklearn

from sklearn import tree, metrics, model_selection, 

preprocessing

from IPython.display import Image, display

from sklearn.metrics import confusion_matrix, 

classification_report

# a simple non linear model initialized

model = tree. DecisionTreeRegressor() # plain tree model

# nonlinear regression model trained

model.fit(X, y)

tree.plot_tree(model)

This produces a complex and messy graph that is difficult to interpret. 

See Figure 3-1.
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Figure 3-1. Decision tree model representation

To explain the decision tree in simple format, the following code can 

be used:

from sklearn.tree import export_text

r = export_text(model,feature_names=list(X.columns))

print(r)

|--- lights <= 5.00

|   |--- RH_out <= 70.92

|   |   |--- T3 <= 26.94

|   |   |   |--- T3 <= 23.25

|   |   |   |   |--- RH_7 <= 27.48

|   |   |   |   |   |--- T5 <= 17.50

|   |   |   |   |   |   |--- RH_5 <= 48.86

|   |   |   |   |   |   |   |--- RH_6 <= 23.91

|   |   |   |   |   |   |   |   |--- RH_1 <= 34.60

|   |   |   |   |   |   |   |   |   |--- value: [610.00]
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|   |   |   |   |   |   |   |   |--- RH_1 >  34.60

|   |   |   |   |   |   |   |   |   |--- value: [580.00]

|   |   |   |   |   |   |   |--- RH_6 >  23.91

|   |   |   |   |   |   |   |   |--- T3 <= 21.81

.................

list(zip(model.feature_importances_,X.columns))

[(0.04755691132990445, 'lights'), (0.02729240744739512, 

'T1'), (0.050990867453263464, 'RH_1'), (0.029613682425136578, 

'T2'), (0.05287817171439917, 'RH_2'), (0.03809698118314153, 

'T3'), (0.04702017020903361, 'RH_3'), (0.03833652568783967, 

'T4'), (0.029168659250593493, 'RH_4'), (0.023818050212012467, 

'T5'), (0.053380938919333785, 'RH_5'), (0.03242898742121811, 

'T6'), (0.036442867206438946, 'RH_6'), (0.03272087870063947, 

'T7'), (0.0459966882745736, 'RH_7'), (0.03786926541394416, 

'T8'), (0.05569343410157808, 'RH_8'), (0.03888560547088362, 

'T9'), (0.03205551180175258, 'RH_9'), (0.018209440939872642, 

'T_out'), (0.04401669364414831, 'Press_mm_hg'), 

(0.06483375260268251, 'RH_out'), (0.0343793163965324, 

'Windspeed'), (0.022764397449413956, 'Visibility'), 

(0.02962771107600761, 'Tdewpoint'), (0.023354544387479956, 

'rv1'), (0.012567539280780866, 'rv2')]

# compute the SHAP values for the nonlinear model

explainer = shap.TreeExplainer(model)

# SHAP value calculation

shap_values = explainer.shap_values(X)
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 Recipe 3-2. Partial Dependency Plot for Tree 
Regression Model
 Problem
You want to get a partial dependency plot from a decision tree 

regression model.

 Solution
The solution to this problem is to use a partial dependency plot from the 

model using a tree explainer. The correlation between the feature and it’s 

SHAP values graphically displayed in Figure 3-2.

 How It Works
Let’s take a look at the following example:

shap.partial_dependence_plot(

    "lights", model.predict, X, ice=False,

    model_expected_value=True, feature_expected_value=True

)
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Figure 3-2. Correlation between feature light and predicted output of 
the model

The correlation between the feature lights and the predicted value of 

the model energy usage is shown, and the steps show a nonlinear pattern.

The partial dependency plot is a way to explain the individual 

predictions and generate local interpretations for the sample selected from 

the dataset.

 Recipe 3-3. SHAP Feature Importance 
for Regression Models with All Numerical 
Input Variables
 Problem
You want to calculate the feature importance using the SHAP values from a 

decision tree–based model.
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 Solution
The solution to this problem is to use SHAP absolute values from 

the model.

 How It Works
Let’s take a look at the following example (see Figure 3-3):

import shap

# compute the SHAP values for the linear model

explainer = shap.TreeExplainer(model)

# SHAP value calculation

shap_values = explainer.shap_values(X)

# explain all the predictions in the dataset

shap.summary_plot(shap_values, X)
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Figure 3-3. SHAP value–based feature importance plot taken from 
summary plot

The decision tree regressor–based model provides the summary plot 

that contains the SHAP value impact on the model output. if we need to 

explain the global importance of the features using the SHAP values, which 

shows not for any individual data point but for all data points what features 

are important, we can use the summary plot.
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 Recipe 3-4. SHAP Values for Tree 
Regression Models with All Mixed 
Input Variables
 Problem
You want to get SHAP values when you have mixed input features such as 

numerical and categorical.

 Solution
Mixed input variables that have numeric features as well as categorical 

or binary features can be modeled together. As the number of features 

increases, the time to compute all the permutations will also increase.

 How It Works
Let’s take a look at the following example. We are going to use a public 

automobile data dataset with some modifications. The objective is to 

predict the price of a vehicle given the features such as make, location, 

age, etc. It is a regression problem that we are going to solve using a mix of 

numeric and categorical features.

df = pd.read_csv('https://raw.githubusercontent.com/

pradmishra1/PublicDatasets/main/automobile.csv')

df.head(3)

df.columns

Index(['Price', 'Make', 'Location', 'Age', 'Odometer', 

'FuelType', 'Transmission', 'OwnerType', 'Mileage', 'EngineCC', 

'PowerBhp'], dtype='object')
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We cannot use the string-based features or categorical features in 

the model directly as matrix multiplication is not possible on string 

features; hence, the string-based features need to be transformed into 

dummy variables or binary features with 0 and 1 flags. We are skipping the 

transformation step here as many data scientists already know how to do 

data transformation. We are importing another transformed dataset directly.

df_t = pd.read_csv('https://raw.githubusercontent.com/

pradmishra1/PublicDatasets/main/Automobile_transformed.csv')

del df_t['Unnamed: 0']

df_t.head(3)

df_t.columns

Index(['Price', 'Age', 'Odometer', 'mileage', 'engineCC', 

'powerBhp', 'Location_Bangalore', 'Location_Chennai', 

'Location_Coimbatore', 'Location_Delhi', 'Location_Hyderabad', 

'Location_Jaipur', 'Location_Kochi', 'Location_Kolkata', 

'Location_Mumbai', 'Location_Pune', 'FuelType_Diesel', 

'FuelType_Electric', 'FuelType_LPG', 'FuelType_Petrol', 

'Transmission_Manual', 'OwnerType_Fourth +ACY- Above', 

'OwnerType_Second', 'OwnerType_Third'], dtype='object')

#y is the dependent variable, that we need to predict

y = df_t.pop('Price')

# X is the set of input features

X = df_t

import pandas as pd

import shap

import sklearn

# a simple non linear model initialized

model = sklearn.tree.DecisionTreeRegressor()

# decision tree regression model trained

model.fit(X, y)
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To compute the SHAP values, we can use the explainer function 

using the training dataset X and model predict function. The SHAP value 

calculation happens using a permutation approach that takes 5 minutes.

# compute the SHAP values for the linear model

explainer = shap.Explainer(model)

# SHAP value calculation

shap_values = explainer.shap_values(X)

 Recipe 3-5. SHAP Partial Dependency Plot 
for Regression Models with Mixed Input
 Problem
You want to plot a partial dependency plot and interpret the graph for 

numeric and categorical dummy variables.

 Solution
A partial dependency plot shows the correlation between the feature 

and the predicted output of the target variables. There are two ways we 

can showcase the results, one with a feature and expected value of the 

prediction function and another by superimposing a data point on the 

partial dependency plot. The nonlinear relationship is shown in Figure 3-4 

which is different from a straight line that we have seen in Chapter 2, here 

it shows a zigzag pattern.
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 How It Works
Let’s take a look at the following example:

shap.partial_dependence_plot(

    "powerBhp", model.predict, X, ice=False,

    model_expected_value=True, feature_expected_value=True

)

The nonlinear blue line shows the positive correlation between the 

price and powerBhp. The powerBhp is a strong feature. The higher the 

bhp, the higher the price of the car. This is a continuous or numeric 

feature; let’s look at the binary or dummy features. There are two dummy 

features for if the car registered in a Bangalore location or a Kolkata 

location. Figure 3-5 shows the nonlinear relationship between a dummy 

variable and it’s SHAP value.

Figure 3-4. Nonlinear relationship between the powerBhp and the 
predicted output from the model
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shap.partial_dependence_plot(

    "Location_Bangalore", model.predict, X, ice=False,

    model_expected_value=True, feature_expected_value=True

)

If the location of the car is Bangalore, then the price will be higher, and 

vice versa.

shap.partial_dependence_plot(

    "Location_Kolkata", model.predict, X, ice=False,

    model_expected_value=True, feature_expected_value=True

)

The Figure 3-6 shows the relationship like Figure 3-5 but for a different 

location.

Figure 3-5. Dummy variable Bangalore location versus SHAP value
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Figure 3-6. Dummy variable Location_Kolkata versus SHAP value

If the location is Kolkata, then the price is expected to be lower. The 

reason for the difference between the two locations is the data that is 

being used to train the model. The previous three figures show the global 

importance of a feature versus the prediction function. As an example, 

only two features are taken into consideration. We can use all features one 

by one and display many graphs to understand the predictions more.

 Recipe 3-6. SHAP Feature Importance 
for Tree Regression Models with All Mixed 
Input Variables
 Problem
You want to get the global feature importance from SHAP values using 

mixed input feature data.
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 Solution
The solution to this problem is to use absolute values and sort them in 

descending order. The global feature importance for all the features are 

displayed in Figure 3-7 below.

 How It Works
Let’s take a look at the following example:

list(zip(model.feature_importances_,X.columns))

[(0.169576524767871, 'Age'), (0.046585658464360816, 

'Odometer'), (0.04576869739225194, 'mileage'), 

(0.059163321062728785, 'engineCC'), (0.6384264191473127, 

'powerBhp'), (0.002522314313269304, 'Location_

Bangalore'), (0.0008970034245261699, 'Location_

Chennai'), (0.003791617161795056, 'Location_

Coimbatore'), (0.0010761093313731759, 'Location_Delhi'), 

(0.011285026407948304, 'Location_Hyderabad'), 

(0.00020112882138512196, 'Location_Jaipur'), 

(0.0008616198710522111, 'Location_Kochi'), 

(0.0008846931798977568, 'Location_Kolkata'), 

(0.0021470912577561748, 'Location_Mumbai'), 

(0.0007076796376248901, 'Location_Pune'), 

(0.0013274593267184971, 'FuelType_Diesel'), (0.0, 

'FuelType_Electric'), (3.4571613363343374e-07, 

'FuelType_LPG'), (0.002242358883910862, 'FuelType_

Petrol'), (0.010550931985109665, 'Transmission_Manual'), 

(8.131243463060016e-07, 'OwnerType_Fourth +ACY- 

Above'), (0.0016721486214358624, 'OwnerType_Second'), 

(0.0003110381011919031, 'OwnerType_Third')]

# explain all the predictions in the dataset

shap.summary_plot(shap_values, X)
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Figure 3-7. Explaining all predictions with feature importance

At a high level for the tree-based nonlinear model that is used to predict 

the price of the automobiles, the previous features are important. The most 

important are the powerBhp, age of the car, petrol type, manual transmission 

type, etc. The previous tabular output shows the global feature importance.
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 Recipe 3-7. LIME Explainer for Tabular Data
 Problem
You want to generate the explainability at a local level in a focused manner 

rather than at a global level.

 Solution
The solution to this problem is to use the LIME library. LIME is a model- 

agnostic technique; it retrains the ML model while running the explainer. 

LIME localizes a problem and explains the model at a local level.

 How It Works
Let’s take a look at the following example. LIME requires a numpy array as 

an input to the tabular explainer; hence, the Pandas dataframe needs to be 

transformed into an array.

!pip install lime

Looking in indexes: https://pypi.org/simple, https://us-python.

pkg.dev/colab-wheels/public/simple/

Collecting lime

  Downloading lime-0.2.0.1.tar.gz (275 kB)

     |█████████████████████ 
███████████| 275 kB 3.9 MB/s

Requirement already satisfied: matplotlib in /usr/local/lib/

python3.7/dist-packages (from lime) (3.2.2)

Requirement already satisfied: numpy in /usr/local/lib/

python3.7/dist-packages (from lime) (1.21.6)

Requirement already satisfied: scipy in /usr/local/lib/

python3.7/dist-packages (from lime) (1.7.3)
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Require

................

import lime

import lime.lime_tabular

explainer = lime.lime_tabular.LimeTabularExplainer(np.array(X),

                                                    mode= 

'regression',

                                                   feature_names= 

X.columns,

                                                   class_

names=['price'],

                                                  verbose=True)

We are using the energy prediction data from this chapter only.

explainer.feature_selection

# asking for explanation for LIME model

i = 60

exp = explainer.explain_instance(np.array(X)[i],

                                 model.predict,

                                 num_features=14

                                )

We do not have to retrain the decision tree model. We can pass the 

model object obtained from training a decision tree model and reuse it 

with the LIME explainer. Figure 3-8 shows the location explanation for the 

60th record from the training dataset.

model.predict(X)[60]

X[60:61]

Intercept -6.9881095432071465

Prediction_local [33.29071077]

Right: 16.5
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exp.show_in_notebook(show_table=True)

exp.as_list()

[('powerBhp > 138.10', 19.961371959849174), ('FuelType_

Electric <= 0.00', 6.836722688525879), ('Age <= 4.00', 

5.249921722968705), ('OwnerType_Fourth +ACY- Above <= 

0.00', 3.4582886724264483), ('0.00 < Transmission_

Manual <= 1.00', -2.9145492368305157), ('engineCC > 

1984.00', 2.432167151933345), ('Odometer <= 34000.00', 

1.8038639987179637), ('FuelType_LPG <= 0.00', 

1.4135278408858953), ('OwnerType_Third <= 0.00', 

1.3547839120439655), ('mileage <= 15.30', 0.8239170366232045), 

('Location_Kochi <= 0.00', -0.6740434016444569), ('Location_

Hyderabad <= 0.00', -0.6190270673151664), ('Location_Delhi 

<= 0.00', 0.6091569397933114), ('FuelType_Petrol <= 0.00', 

0.5427180987401807)]

Figure 3-8. Local explanation for the 60th record from the dataset
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 Recipe 3-8. ELI5 Explainer for Tabular Data
 Problem
You want to use the ELI5 library to generate explanations of a linear 

regression model.

 Solution
ELI5 is a Python package that helps to debug a machine learning model 

and explain the predictions. It provides support for all machine learning 

models supported by the scikit-learn library.

 How It Works
Let’s take a look at the following example:

pip install eli5

import eli5

eli5.show_weights(model,

                 feature_names=list(X.columns))

Weight Feature

0.6384 powerbhp

0.1696 age

0.0592 engineCC

0.0466 odometer

0.0458 Mileage

0.0113 location_hyderabad

0.0106 transmission_Manual

(continued)
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Weight Feature

0.0038 location_Coimbatore

0.0025 location_bangalore

0.0022 fueltype_petrol

0.0021 location_Mumbai

0.0017 ownertype_Second

0.0013 fueltype_diesel

0.0011 location_delhi

0.0009 location_Chennai

0.0009 location_Kolkata

0.0009 location_Kochi

0.0007 location_pune

0.0003 ownertype_third

0.0002 location_Jaipu

eli5.explain_weights(model, feature_names=list(X.columns))

Weight Feature

0.6384 powerbhp

0.1696 age

0.0592 engineCC

0.0466 odometer

0.0458 Mileage

0.0113 location_hyderabad

0.0106 transmission_Manual

(continued)

Chapter 3  explainability for nonlinear SuperviSed ModelS



98

(continued)

Weight Feature

0.0038 location_Coimbatore

0.0025 location_bangalore

0.0022 fueltype_petrol

0.0021 location_Mumbai

0.0017 ownertype_Second

0.0013 fueltype_diesel

0.0011 location_delhi

0.0009 location_Chennai

0.0009 location_Kolkata

0.0009 location_Kochi

0.0007 location_pune

0.0003 ownertype_third

0.0002 location_Jaipur

eli5.explain_prediction(model,X.iloc[60])

y (score 16.500) top features

Contribution? Feature

+9.479 <biaS>

+4.710 engineCC

+4.190 age

+1.467 mileage

+0.713 fueltype_petrol

+0.667 powerbhp
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(continued)

Contribution? Feature

+0.071 odometer

-1.313 location_Mumbai

-3.485 transmission_Manual

from eli5.sklearn import PermutationImportance

# a simple linear model initialized

model = sklearn.tree.DecisionTreeRegressor()

# linear regression model trained

model.fit(X, y)

perm = PermutationImportance(model)

perm.fit(X, y)

eli5.show_weights(perm,feature_names=list(X.columns))

Weight Feature

1.3784 ± 0.0884 powerbhp

0.4245 ± 0.0049 age

0.2587 ± 0.0120 engineCC

0.1968 ± 0.0333 odometer

0.1557 ± 0.0103 mileage

0.0709 ± 0.0425 location_hyderabad

0.0550 ± 0.0076 transmission_Manual

0.0120 ± 0.0037 fueltype_petrol

0.0095 ± 0.0011 location_Coimbatore

0.0086 ± 0.0015 fueltype_diesel
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Weight Feature

0.0071 ± 0.0013 location_Mumbai

0.0058 ± 0.0016 location_bangalore

0.0054 ± 0.0011 ownertype_Second

0.0030 ± 0.0005 location_Kolkata

0.0030 ± 0.0012 location_Kochi

0.0030 ± 0.0003 location_delhi

0.0027 ± 0.0011 location_Chennai

0.0017 ± 0.0003 location_pune

0.0004 ± 0.0001 location_Jaipur

0.0002 ± 0.0001 ownertype_thir

The results table has a BIAS value as a feature. This can be interpreted 

as an intercept term for a linear regression model. Other features are listed 

based on the descending order of importance based on their weight. The 

show weights function provides a global interpretation of the model, and 

the show prediction function provides a local interpretation by taking into 

account a record from the training set.

 Recipe 3-9. How the Permutation Model 
in ELI5 Works
 Problem
You want to make sense of the ELI5 permutation library.
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 Solution
The solution to this problem is to use a dataset and a trained model.

 How It Works
The permutation model in the ELI5 library works only for global 

interpretation. First it takes a base line linear regression model from the 

training dataset and computes the error of the model. Then it shuffles the 

values of a feature, retrains the model, and computes the error. It compares 

the decrease in error after shuffling and before shuffling. A feature can 

be considered as important if post shuffling the error delta is high and 

unimportant if the error delta is low, and vice versa. The result displays the 

average importance of features and the standard deviation of features with 

multiple shuffle steps.

 Recipe 3-10. Global Explanation 
for Decision Tree Models
 Problem
You want to explain the predictions generated from a decision tree 

classifier.

 Solution
The decision tree model can be used as we model the probabilities from 

either a binary classification or a multinomial classification variable. In 

this particular recipe, we are using a churn classification dataset that has 

two outcomes: whether the customer is likely to churn or not.
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 How It Works
Let’s take a look at the following example. The key is to get the SHAP 

values, which will return base values, SHAP values, and data. Using the 

SHAP values, we can create various explanations using graphs and figures. 

The SHAP values are always at a global level.

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

from sklearn import tree, metrics, model_selection, 

preprocessing

from sklearn.metrics import confusion_matrix, 

classification_report

df_train = pd.read_csv('https://raw.githubusercontent.com/

pradmishra1/PublicDatasets/main/ChurnData_test.csv')

from sklearn.preprocessing import LabelEncoder

tras = LabelEncoder()

df_train['area_code_tr'] = tras.fit_transform(df_

train['area_code'])

df_train.columns

del df_train['area_code']

df_train.columns

df_train['target_churn_dum'] = pd.get_dummies(df_train.

churn,prefix='churn',drop_first=True)

df_train.columns

del df_train['international_plan']

del df_train['voice_mail_plan']

del df_train['churn']

df_train.info()
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del df_train['Unnamed: 0']

df_train.columns

from sklearn.model_selection import train_test_split

df_train.columns

X = df_train[['account_length', 'number_vmail_messages', 

'total_day_minutes',

        'total_day_calls', 'total_day_charge', 'total_eve_

minutes',

        'total_eve_calls', 'total_eve_charge', 'total_night_

minutes',

        'total_night_calls', 'total_night_charge', 'total_intl_

minutes',

       'total_intl_calls', 'total_intl_charge',

       'number_customer_service_calls', 'area_code_tr']]

Y = df_train['target_churn_dum']

xtrain,xtest,ytrain,ytest=train_test_split(X,Y,test_

size=0.20,stratify=Y)

tree_model = tree.DecisionTreeClassifier()

tree_model.fit(xtrain,ytrain)

print("training accuracy:", tree_model.score(xtrain,ytrain)) 

#training accuracy

print("test accuracy:",tree_model.score(xtest,ytest)) # test 

accuracy

training accuracy: 1.0

test accuracy: 0.8562874251497006

# Provide Probability as Output

def model_churn_proba(x):

    return tree_model.predict_proba(x)[:,1]
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# Provide Log Odds as Output

def model_churn_log_odds(x):

    p = tree_model.predict_log_proba(x)

    return p[:,1] - p[:,0]

# compute the SHAP values for the linear model

background_churn = shap.maskers.Independent(X, max_samples=500)

explainer = shap.Explainer(tree_model, background_

churn,feature_names=list(X.columns))

shap_values_churn = explainer(X)

 Recipe 3-11. Partial Dependency Plot 
for a Nonlinear Classifier
 Problem
You want to show feature associations with the class probabilities using a 

nonlinear classifier.

 Solution
The class probabilities in this example are related to predicting the probability 

of churn. The SHAP value for a feature can be plotted against the feature value 

to show a scatter chart that displays the correlation positive or negative and 

strength of associations. The relationship visually shown in Figure 3-9 below.

 How It Works
Let’s take a look at the following example:

# make a standard partial dependence plot

sample_ind = 25
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fig,ax = shap.partial_dependence_plot(

     "total_day_minutes", model_churn_proba, X, model_expected_

value=True,

    feature_expected_value=True, show=False, ice=False

)

# make a standard partial dependence plot

sample_ind = 25

fig,ax = shap.partial_dependence_plot(

     "number_vmail_messages", model_churn_proba, X, model_

expected_value=True,

    feature_expected_value=True, show=False,ice=False)

Figure 3-9. Account length and SHAP value of account length

Chapter 3  explainability for nonlinear SuperviSed ModelS



106

Figure 3-10. Number of voicemail messages and the SHAP value

Figure 3-11 compares this with the linear classifier from Chapter 2.

Figure 3-11. Linear classifier from Chapter 2
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The difference between the two plots is clear. A linear classifier is a 

downward sloping line, whereas a decision tree classifier has a nonlinear 

stepwise line.

 Recipe 3-12. Global Feature Importance 
from the Nonlinear Classifier
 Problem
You want to get the global feature importance for the decision tree 

classification model.

 Solution
The solution to this problem is to use explainer log odds.

 How It Works
Let’s take a look at the following example:

# compute the SHAP values for the linear model

explainer_log_odds = shap.Explainer(tree_model, background_

churn,feature_names=list(X.columns))

shap_values_churn_log_odds = explainer_log_odds(X)

shap_values_churn_log_odds

temp_df = pd.DataFrame()

temp_df['Feature Name'] = pd.Series(X.columns)

temp_df['Importance'] = pd.Series(tree_model.feature_

importances_)

temp_df.sort_values(by='Importance',ascending=False)
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Feature Name Importance

2 total_day_minutes 0.219502

14 number_customer_service_calls 0.120392

4 total_day_charge 0.097044

7 total_eve_charge 0.095221

1 number_vmail_messages 0.062609

10 total_night_charge 0.061233

8 total_night_minutes 0.057162

9 total_night_calls 0.055642

11 total_intl_minutes 0.046794

3 total_day_calls 0.043435

12 total_intl_calls 0.040072

0 account_length 0.032119

6 total_eve_calls 0.029836

13 total_intl_charge 0.020441

5 total_eve_minutes 0.013121

15 area_code_tr 0.005378

 Recipe 3-13. Local Explanations Using LIME
 Problem
You want to get faster explanations from explainable both global and local 

libraries.
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 Solution
The model explanation can be done using SHAP; however, one of the 

limitations of SHAP is that we cannot use the full data to create global and 

local explanations. Even if we decide to use the full data, it usually takes 

more time. Hence, speeding up the process of generating local and global 

explanations in a scenario when millions of records are being used to 

train a model LIME is very useful. The local explanations for 1st record is 

displayed in Figure 3-12 and 20th record is shown in Figure 3-13.

 How It Works
Let’s take a look at the following example:

import lime

import lime.lime_tabular

explainer = lime.lime_tabular.LimeTabularExplainer(np.

array(xtrain),

                    feature_names=list(xtrain.columns),

                    class_names=['target_churn_dum'],

                    verbose=True, mode='classification')

# this record is a no churn scenario

exp = explainer.explain_instance(xtest.iloc[0], tree_model.

predict_proba, num_features=16)

exp.as_list()

Intercept 0.17857751096606778

Prediction_local [0.16068057]

Right: 1.0

X does not have valid feature names, but DecisionTreeClassifier 

was fitted with feature names

[('total_day_minutes > 215.90', 0.1362643566581409),

 ('number_vmail_messages <= 0.00', 0.0929673100640601),

 ('3.00 < total_intl_calls <= 4.00', -0.05389996557257846),
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 ('total_day_calls <= 86.00', -0.051572104790178076),

  ('99.00 < total_night_calls <= 112.00', 

-0.046773114913399146),

  ('1.00 < number_customer_service_calls <= 2.00', 

-0.04441521857295649),

 ('total_intl_charge <= 2.32', -0.02367171273632465),

  ('200.40 < total_eve_minutes <= 232.60', 

-0.01768355201942605),

 ('8.95 < total_night_charge <= 10.40', -0.016767719469372562),

 ('88.00 < total_eve_calls <= 101.00', -0.015113160995228619),

 ('total_day_charge > 36.70', 0.01338384802674405),

 ('area_code_tr > 1.00', 0.006774852953278585),

 ('total_intl_minutes <= 8.60', 0.005598720978761775),

 ('17.03 < total_eve_charge <= 19.77', -0.0036223084182909603),

 ('98.00 < account_length <= 126.00', 0.0006345376072269405),

  ('198.80 < total_night_minutes <= 231.20', 

-1.7083964912392244e-06)]

pd.DataFrame(exp.as_list())

0 1

0 total_day_minutes > 215.90 0.136264

1 number_vmail_messages <= 0.00 0.092967

2 3.00 < total_intl_calls <= 4.00 -0.053900

3 total_day_calls <= 86.00 -0.051572

4 99.00 < total_night_calls <= 112.00 -0.046773

5 1.00 < number_customer_service_calls <= 

2.00

-0.044415

6 total_intl_charge <= 2.32 -0.023672

(continued)
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Figure 3-12. Local explanation for record number 1 from test set

0 1

7 200.40 < total_eve_minutes <= 232.60 -0.017684

8 8.95 < total_night_charge <= 10.40 -0.016768

9 88.00 < total_eve_calls <= 101.00 -0.015113

10 total_day_charge > 36.70 0.013384

11 area_code_tr > 1.00 0.006775

12 total_intl_minutes <= 8.60 0.005599

13 17.03 < total_eve_charge <= 19.77 -0.003622

14 98.00 < account_length <= 126.00 0.000635

15 198.80 < total_night_minutes <= 231.20 -0.000002

exp.show_in_notebook(show_table=True)

# This is s churn scenario

exp = explainer.explain_instance(xtest.iloc[20], tree_model.

predict_proba, num_features=16)

exp.as_list()
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Intercept 0.10256094438264549

Prediction_local [0.42951224]

Right: 1.0

X does not have valid feature names, but DecisionTreeClassifier 

was fitted with feature names

[('number_vmail_messages <= 0.00', 0.1251461520949672),

  ('number_customer_service_calls <= 1.00', 

-0.11471932451025148),

 ('total_day_minutes > 215.90', 0.11335292810078498),

 ('total_intl_calls <= 3.00', 0.0833975606666818),

 ('total_eve_charge > 19.77', 0.07087970621129276),

 ('total_day_charge > 36.70', 0.044322021446899056),

 ('total_night_calls <= 86.00', 0.03835204203269277),

  ('10.40 < total_intl_minutes <= 12.00', 

-0.028762467921123958),

 ('total_eve_calls <= 88.00', 0.027744744266104262),

  ('198.80 < total_night_minutes <= 231.20', 

-0.014434614677050405),

 ('8.95 < total_night_charge <= 10.40', -0.01246344270348464),

 ('86.00 < total_day_calls <= 99.00', 0.012186288614633462),

 ('73.00 < account_length <= 98.00', -0.011046720698750234),

 ('0.00 < area_code_tr <= 1.00', -0.010595644578095056),

 ('2.81 < total_intl_charge <= 3.24', 0.0033945972331523373),

 ('total_eve_minutes > 232.60', 0.0001974706449185791)]

exp.show_in_notebook(show_table=True)
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Figure 3-13. Local explanations from the 20th record from the test set

In a similar fashion, the graphs can be generated for different records 

from the training set and test set, which are from the training sample as 

well as the test sample.

 Recipe 3-14. Model Explanations Using ELI5
 Problem
You want to get model explanations using the ELI5 library.

 Solution
ELI5 provides two functions, show weights and show predictions, to 

generate model explanations.
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 How It Works
Let’s take a look at the following example:

Pip install eli5

eli5.show_weights(tree_model,

                 feature_names=list(xtrain.columns))

Weight Feature

0.2195 total_day_minutes

0.1204 number_customer_service_calls

0.0970 total_day_charge

0.0952 total_eve_charge

0.0626 number_vmail_messages

0.0612 total_night_charge

0.0572 total_night_minutes

0.0556 total_night_calls

0.0468 total_intl_minutes

0.0434 total_day_calls

0.0401 total_intl_calls

0.0321 account_length

0.0298 total_eve_calls

0.0204 total_intl_charge

0.0131 total_eve_minutes

0.0054 area_code_tr

eli5.explain_weights(tree_model, feature_names=list(xtrain.

columns))
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Weight Feature

0.2195 total_day_minutes

0.1204 number_customer_service_calls

0.0970 total_day_charge

0.0952 total_eve_charge

0.0626 number_vmail_messages

0.0612 total_night_charge

0.0572 total_night_minutes

0.0556 total_night_calls

0.0468 total_intl_minutes

0.0434 total_day_calls

0.0401 total_intl_calls

0.0321 account_length

0.0298 total_eve_calls

0.0204 total_intl_charge

0.0131 total_eve_minutes

0.0054 area_code_tr

eli5.explain_prediction(tree_model,xtrain.iloc[60])

y=0 (probability 1.000) top features

Contribution? Feature

+0.866 <biaS>

+0.126 total_eve_charge

+0.118 total_night_charge

(continued)
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Contribution? Feature

+0.076 total_night_calls

+0.038 total_day_minutes

+0.032 number_customer_service_calls

+0.010 total_intl_calls

-0.084 total_eve_calls

-0.088 total_day_calls

-0.093 total_intl_minutes

from eli5.sklearn import PermutationImportance

perm = PermutationImportance(tree_model)

perm.fit(xtest, ytest)

eli5.show_weights(perm,feature_names=list(xtrain.columns))

Weight Feature

0.0814 ± 0.0272 total_day_minutes

0.0407 ± 0.0188 number_customer_service_calls

0.0359 ± 0.0085 total_eve_charge

0.0299 ± 0.0147 total_night_minutes

0.0263 ± 0.0198 total_night_charge

0.0210 ± 0.0126 number_vmail_messages

0.0174 ± 0.0088 total_day_charge

0.0042 ± 0.0061 total_intl_charge

0.0036 ± 0.0167 total_intl_minutes

0.0006 ± 0.0024 area_code_tr

(continued)

Chapter 3  explainability for nonlinear SuperviSed ModelS



117

Weight Feature

-0.0006 ± 0.0122 total_eve_calls

-0.0012 ± 0.0145 total_eve_minutes

-0.0024 ± 0.0024 account_length

-0.0030 ± 0.0076 total_night_calls

-0.0054 ± 0.0079 total_day_calls

-0.0114 ± 0.0088 total_intl_calls

 Conclusion
In this chapter, we covered how to interpret nonlinear supervised models 

based on decision trees for regression and classification. However, the 

nonlinear models are simpler to interpret at a global level, meaning at the 

feature importance level, but hard to explain at the local interpretation 

level as all the features will not be part of the decision tree construction 

process. In this chapter, we looked at local interpretation for samples 

using the SHAP, ELI5, and LIME libraries. In the next chapter, we are going 

to cover the local and global interpretations for ensemble models. The 

nonlinear models cover nonlinearity existing in data and therefore can 

be complex to interpret. However, one of the limitations of a tree-based 

model is that it only considers a few powerful features to construct the 

tree and does not give equal importance to all the features. Therefore, the 

explainability is not complete for local interpretations. This problem can 

be addressed by ensemble models, which is a combination of many trees 

working together to make it happen.

Chapter 3  explainability for nonlinear SuperviSed ModelS



119

CHAPTER 4

Explainability 
for Ensemble 
Supervised Models
Ensemble models are considered to be effective when individual 

models are failing to balance bias and variance for a training dataset. 

The predictions are aggregated in ensemble models to generate the 

final models. In the case of supervised regression models, many models 

are generated, and the averages of all the predictions are taken into 

consideration to generate the final prediction. Similarly, for supervised 

classification problems, multiple models are being trained, and each 

model generates a classification. The final model takes into account the 

majority voting rule criteria to decide the final prediction. Because of the 

nature of ensemble models, these are harder to explain to end users. That 

is why we need frameworks that can explain the ensemble models.

Ensemble means a grouping of the model predictions. There are three 

types of ensemble models: bagging, boosting, and stacking. Bagging 

means bootstrap aggregation, which means bootstrapping the available 

features, making a subset selection, generating predictions, continuing the 

same process a few times, and averaging the predictions to generate the 

final prediction. Random forest is one of the most important and popular 

bagging models.

© Pradeepta Mishra 2023 
P. Mishra, Explainable AI Recipes, https://doi.org/10.1007/978-1-4842-9029-3_4

https://doi.org/10.1007/978-1-4842-9029-3_4#DOI


120

Boosting is a sequential method of boosting the predictive power of 

the model. It starts with a base classifier being trained on data to predict 

and classify the output. In the next step, the correctly predicted cases are 

separated in an automatic fashion, and the rest of the cases are used for 

retraining the model. This process will continue until there is a scope to 

improve and boost the accuracy to a higher level. If it is not possible to 

boost the accuracy further, then the iteration should stop, and the final 

accuracy is reported.

Stacking is a process of generating predictions from different sets of 

models and averaging their predictions.

The goal of this chapter is to introduce various explainability libraries 

for ensemble models such as feature importance, partial dependency plot, 

and local interpretation and global interpretation of the models.

 Recipe 4-1. Explainable Boosting 
Machine Interpretation
 Problem
You want to explain the explainable boosting machine (EBM) as an 

ensemble model and interpret the global and local interpretations.

 Solution
EBMs are a tree-based, cyclic, gradient descent–based boosting model 

known as a generalized additive model (GAM), which has automatic 

interaction detection. EBMs are interpretable though they are black box by 

nature. We need an additional library known as interpret core.
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 How It Works
Let’s take a look at the following example. The Shapely value can be called 

the SHAP value. SHAP value is used to explain the model and is used for 

the impartial distribution of predictions from a cooperative game theory to 

attribute a feature to the model’s predictions. The model input features are 

considered as players in the game. The model function is considered as the 

rules of the game. The Shapely value of a feature is computed based on the 

following steps:

 1. SHAP requires model retraining on all feature 

subsets; hence, usually it takes time if the 

explanation has to be generated for larger datasets.

 2. Identify a feature set from a list of features (let’s say 

there are 15 features; we can select a subset with 5 

features).

 3. For any particular feature, two models using the 

subset of features will be created, one with the 

feature and another without the feature.

 4. The prediction differences will be computed.

 5. The differences in prediction are computed for all 

possible subsets of features.

 6. The weighted average value of all possible 

differences is used to populate the feature 

importance.

If the weight of the feature is 0.000, then we can conclude that the 

feature is not important and has not joined the model. If it is not equal 

to 0.000, then we can conclude that the feature has a role to play in the 

prediction process.
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We are going to use a dataset from the UCI machine learning 

repository. The URL to access the dataset is as follows:

https://archive.ics.uci.edu/ml/datasets/Appliances+energy+

prediction

The objective is to predict the appliances’ energy use in Wh, using the 

features from sensors. There are 27 features in the dataset, and here we are 

trying to understand what features are important in predicting the energy 

usage. See Table 4-1.

Table 4-1. Feature Description from the Energy Prediction Dataset

Feature Name Description Unit

appliances energy use in Wh

lights energy use of light fixtures in 

the house

in Wh

t1 temperature in kitchen area in Celsius

rh_1 humidity in kitchen area in %

t2 temperature in living room area in Celsius

rh_2 humidity in living room area in %

t3 temperature in laundry room area

rh_3 humidity in laundry room area in %

t4 temperature in office room in Celsius

rh_4 humidity in office room in %

t5 temperature in bathroom in Celsius

rh_5 humidity in bathroom in %

t6 temperature outside the 

building (north side)

in Celsius

(continued)
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Feature Name Description Unit

rh_6 humidity outside the building 

(north side)

in %

t7 temperature in ironing room in Celsius

rh_7 humidity in ironing room in %

t8 temperature in teenager 

room 2

in Celsius

rh_8 humidity in teenager room 2 in %

t9 temperature in parents room in Celsius

rh_9 humidity in parents room in %

to temperature outside (from the 

Chievres weather station)

in Celsius

pressure (from Chievres 

weather station)

in mm hg

arh_out humidity outside (from the 

Chievres weather station)

in %

Wind speed (from 

Chievres weather 

station)

in m/s

visibility (from Chievres 

weather station)

in km

tdewpoint (from 

Chievres weather 

station)

Â°C

rv1 random variable 1 nondimensional

rv2 random variable 2 nondimensional

Table 4-1. (continued)
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pip install shap

!pip install interpret-core #this installation is without any 

dependency library

Looking in indexes: https://pypi.org/simple, https://us-python.

pkg.dev/colab-wheels/public/simple/

Requirement already satisfied: interpret-core in /usr/local/

lib/python3.7/dist-packages (0.2.7)

import pandas as pd

df_lin_reg = pd.read_csv('https://archive.ics.uci.edu/ml/

machine-learning-databases/00374/energydata_complete.csv')

del df_lin_reg['date']

df_lin_reg.info()

df_lin_reg.columns

Index(['Appliances', 'lights', 'T1', 'RH_1', 'T2', 'RH_2', 

'T3', 'RH_3', 'T4', 'RH_4', 'T5', 'RH_5', 'T6', 'RH_6', 'T7', 

'RH_7', 'T8', 'RH_8', 'T9', 'RH_9', 'T_out', 'Press_mm_hg', 

'RH_out', 'Windspeed', 'Visibility', 'Tdewpoint', 'rv1', 

'rv2'], dtype='object')

#y is the dependent variable, that we need to predict

y = df_lin_reg.pop('Appliances')

# X is the set of input features

X = df_lin_reg

# fit a GAM model to the data

import interpret.glassbox

import shap

model_ebm = interpret.glassbox.ExplainableBoostingRegressor()

model_ebm.fit(X, y)

X100 = X[:100]

# explain the GAM model with SHAP
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explainer_ebm = shap.Explainer(model_ebm.predict, X100)

shap_values_ebm = explainer_ebm(X100)

import numpy as np

pd.DataFrame(np.round(shap_values_ebm.values,2)).head(2)

 

pd.DataFrame(np.round(shap_values_ebm.base_values,2)).head(2)

00103.741103.74

 Recipe 4-2. Partial Dependency Plot for Tree 
Regression Models
 Problem
You want to get a partial dependency plot from a boosting model.

 Solution
The solution to this problem is to use a partial dependency plot from the 

model using SHAP.

 How It Works
Let’s take a look at the following example (see Figure 4-1):

# make a standard partial dependence plot with a single SHAP 

value overlaid

sample_ind = 20
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fig,ax = shap.partial_dependence_plot(

     "lights", model_ebm.predict, X100, model_expected_

value=True,

    feature_expected_value=True, show=False, ice=False,

    shap_values=shap_values_ebm[sample_ind:sample_ind+1,:]

)

Figure 4-1. Correlation between feature light and predicted output of 
the model

The correlation between the feature lights and the predicted value of 

the model energy usage is shown, and the steps show a nonlinear pattern. 

The partial dependency plot is a way to explain the individual predictions 

and generate local interpretations for the sample selected from the dataset. 

See Figure 4-2.

shap.plots.scatter(shap_values_ebm[:,"lights"])
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Figure 4-2. Correlation between the feature lights and the 
SHAP values

# the waterfall_plot shows how we get from explainer.expected_

value to model.predict(X)[sample_ind]

shap.plots.waterfall(shap_values_ebm[sample_ind], max_

display=14)
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Figure 4-3. Feature importance for a specific sample record, local 
interpretation

# the waterfall_plot shows how we get from explainer.expected_

value to model.predict(X)[sample_ind]

shap.plots.beeswarm(shap_values_ebm, max_display=14)

Chapter 4  explainability for ensemble supervised models



129

Figure 4-4. SHAP values’ impact on the model output, global 
exxplanation

To generate the global explainer, we need to install another 

visualization library.

!pip install dash_cytoscape

from interpret import set_visualize_provider

from interpret.provider import InlineProvider

set_visualize_provider(InlineProvider())

from interpret import show

ebm_global = model_ebm.explain_global()

show(ebm_global)
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Figure 4-5. Selecting features from the drop-down to see its 
contribution

Figure 4-6. Score of feature RH_1 and its distribution, global 
interpretation

ebm_local = model_ebm.explain_local(X[:5], y[:5])

show(ebm_local)

ebm_local

import numpy as np

pd.DataFrame(np.round(shap_values_ebm.values,2)).head(2)

pd.DataFrame(np.round(shap_values_ebm.base_values,2)).head(2)
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 Recipe 4-3. Explain a Extreme Gradient 
Boosting Model with All Numerical 
Input Variables
 Problem
You want to explain the extreme gradient boosting–based regressor.

 Solution
The XGB regressor can be explained using the SHAP library; we can 

populate the global and local interpretations.

 How It Works
Let’s take a look at the following example:

# train XGBoost model

import xgboost

model_xgb = xgboost.XGBRegressor(n_estimators=100, max_

depth=2).fit(X, y)

# explain the GAM model with SHAP

explainer_xgb = shap.Explainer(model_xgb, X)

shap_values_xgb = explainer_xgb(X)

# make a standard partial dependence plot with a single SHAP 

value overlaid

sample_ind = 18

fig,ax = shap.partial_dependence_plot(

    "lights", model_xgb.predict, X, model_expected_value=True,

    feature_expected_value=True, show=False, ice=False,

    shap_values=shap_values_xgb[sample_ind:sample_ind+1,:]

)
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Figure 4-7. SHAP value–based feature importance plot taken from 
the summary plot

The XGB regressor–based model provides the summary plot that 

contains the SHAP value impact on the model output. If we need to 

explain the global importance of the features using the SHAP values, which 

shows what features are important for all data points, we can use the 

summary plot.

shap.plots.scatter(shap_values_xgb[:,"lights"])
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Figure 4-8. SHAP values of the lights feature plotted against the 
lights feature

shap.plots.scatter(shap_values_xgb[:,"lights"], color=shap_

values_xgb)
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Figure 4-9. Scatter plot of two features, T8 and lights, against the 
SHAP values of light

shap.summary_plot(shap_values_xgb, X)
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Figure 4-10. Global feature importance based on the SHAP value
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 Recipe 4-4. Explain a Random 
Forest Regressor with Global 
and Local Interpretations
 Problem
Random forest (RF) is a bagging approach to create ensemble models; it 

is also difficult to interpret which tree generated the final prediction and 

interpret the global and local interpretations.

 Solution
We are going to use the tree explainer from the SHAP library.

 How It Works
Let’s take a look at the following example:

import shap

from sklearn.ensemble import RandomForestRegressor

rforest = RandomForestRegressor(n_estimators=100, max_depth=3, 

min_samples_split=20, random_state=0)

rforest.fit(X, y)

# explain all the predictions in the test set

explainer = shap.TreeExplainer(rforest)

shap_values = explainer.shap_values(X)

shap.summary_plot(shap_values, X)
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Figure 4-11. SHAP value impact on model prediction

shap.dependence_plot("lights", shap_values, X)
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Figure 4-12. SHAP value of lights plotted against T8 and lights

# explain all the predictions in the dataset

shap.force_plot(explainer.expected_value, shap_values, X)

shap.partial_dependence_plot(

    "lights", rforest.predict, X, ice=False,

    model_expected_value=True, feature_expected_value=True

)
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Figure 4-13. Partial dependency plot of lights

 Recipe 4-5. Explain the Catboost Regressor 
with Global and Local Interpretations
 Problem
Catboost is another model that fasten the model training process by 

explicitly declaring the categorical features. If there is no categorical 

feature, then the model is trained on all numeric features as well. You 

want to explain the global and local interpretations from the catboost 

regression model.

 Solution
We are going to use the tree explainer from the SHAP library and the 

catboost library.
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 How It Works
Let’s take a look at the following example:

!pip install catboost

import catboost

from catboost import *

import shap

shap.initjs()

model = CatBoostRegressor(iterations=100, learning_rate=0.1, 

random_seed=123)

model.fit(X, y, verbose=False, plot=False)

explainer = shap.TreeExplainer(model)

shap_values = explainer.shap_values(X)

# summarize the effects of all the features

shap.summary_plot(shap_values, X)
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Figure 4-14. SHAP value impact on model predictions

# create a SHAP dependence plot to show the effect of a single 

feature across the whole dataset

shap.dependence_plot("lights", shap_values, X)
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Figure 4-15. SHAP value of lights dependence plot

 Recipe 4-6. Explain the EBM Classifier 
with Global and Local Interpretations
 Problem
EBM is an explainable boosting machine for a classifier. You want to 

explain the global and local interpretations from the EBM classifier model.

 Solution
We are going to use the tree explainer from the SHAP library.
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 How It Works
Let’s take a look at the following example. We are going to use a public 

automobile dataset with some modifications. The objective is to predict 

the price of a vehicle given the features such as make, location, age, etc. It 

is a regression problem that we are going to solve using a mix of numeric 

and categorical features.

df = pd.read_csv('https://raw.githubusercontent.com/

pradmishra1/PublicDatasets/main/automobile.csv')

df.head(3)

df.columns

Index(['Price', 'Make', 'Location', 'Age', 'Odometer', 

'FuelType', 'Transmission', 'OwnerType', 'Mileage', 'EngineCC', 

'PowerBhp'], dtype='object')

We cannot use the string-based features or categorical features in the 

model directly because matrix multiplication is not possible on string 

features; hence, the string-based features need to be transformed into 

dummy variables or binary features with 0 and 1 flags. The transformation 

step is skipped here as many data scientists already know how to do data 

transformation. We are importing another transformed dataset directly.

df_t = pd.read_csv('https://raw.githubusercontent.com/

pradmishra1/PublicDatasets/main/Automobile_transformed.csv')

del df_t['Unnamed: 0']

df_t.head(3)

df_t.columns

Index(['Price', 'Age', 'Odometer', 'mileage', 'engineCC', 

'powerBhp', 'Location_Bangalore', 'Location_Chennai', 

'Location_Coimbatore', 'Location_Delhi', 'Location_Hyderabad', 

'Location_Jaipur', 'Location_Kochi', 'Location_Kolkata', 

'Location_Mumbai', 'Location_Pune', 'FuelType_Diesel', 

'FuelType_Electric', 'FuelType_LPG', 'FuelType_Petrol', 
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'Transmission_Manual', 'OwnerType_Fourth +ACY- Above', 

'OwnerType_Second', 'OwnerType_Third'], dtype='object')

#y is the dependent variable, that we need to predict

y = df_t.pop('Price')

# X is the set of input features

X = df_t

from interpret import set_visualize_provider

from interpret.provider import InlineProvider

set_visualize_provider(InlineProvider())

import pandas as pd

from sklearn.model_selection import train_test_split

from interpret.glassbox import ExplainableBoostingClassifier

from interpret import show

import shap

import sklearn

To compute the SHAP values, we can use the explainer function with 

the training dataset X and the model predict function. The SHAP value 

calculation takes place using a permutation approach; it took 5 minutes.

# fit a GAM model to the data

import interpret.glassbox

import shap

model_ebm = interpret.glassbox.ExplainableBoostingRegressor()

model_ebm.fit(X, y)

X100 = X[:100]

# explain the GAM model with SHAP

explainer_ebm = shap.Explainer(model_ebm.predict, X100)

shap_values_ebm = explainer_ebm(X100)
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import numpy as np

pd.DataFrame(np.round(shap_values_ebm.values,2)).head(2)

pd.DataFrame(np.round(shap_values_ebm.base_values,2)).head(2)

 Recipe 4-7. SHAP Partial Dependency Plot 
for Regression Models with Mixed Input
 Problem
You want to plot the partial dependency plot and interpret the graph for 

numeric and categorical dummy variables.

 Solution
The partial dependency plot shows the correlation between a feature 

and the predicted output of the target variables. There are two ways we 

can showcase the results, one with a feature and expected value of the 

prediction function and the other by superimposing a data point on the 

partial dependency plot.

 How It Works
Let’s take a look at the following example:

from interpret import set_visualize_provider

from interpret.provider import InlineProvider

set_visualize_provider(InlineProvider())

from interpret import show

ebm_global = model_ebm.explain_global()

show(ebm_global)
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ebm_local = model_ebm.explain_local(X[:5], y[:5])

show(ebm_local)

# make a standard partial dependence plot with a single SHAP 

value overlaid

sample_ind = 20

fig,ax = shap.partial_dependence_plot(

     "powerBhp", model_ebm.predict, X100, model_expected_

value=True,

    feature_expected_value=True, show=False, ice=False,

    shap_values=shap_values_ebm[sample_ind:sample_ind+1,:]

)

The nonlinear blue line shows the positive correlation between the 

price and the powerBhp. The powerBhp is a strong feature; the higher the 

bhp, the higher the price of the car.

Figure 4-16. Nonlinear relationship between the powerBhp and the 
predicted output from the model
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shap.partial_dependence_plot(

    "powerBhp", model_ebm.predict, X, ice=False,

    model_expected_value=True, feature_expected_value=True

)

This is a continuous or numeric feature. Let’s look at the binary or 

dummy features. There are two dummy features for if the car is registered 

in Bangalore or in Kolkata.

shap.partial_dependence_plot(

    "Location_Bangalore", model_ebm.predict, X, ice=False,

    model_expected_value=True, feature_expected_value=True

)

Figure 4-17. Partial dependence plot of powerBhp
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Figure 4-18. Dummy variable Bangalore versus SHAP value

If the location of the car is Bangalore, then the price will be 9.5, and it 

remains constant.

shap.partial_dependence_plot(

    "Location_Kolkata", model_ebm.predict, X, ice=False,

    model_expected_value=True, feature_expected_value=True

)
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Figure 4-19. Dummy variable Location_Kolkata versus SHAP value

If the location is Kolkata, then the price is expected to be the same. 

There is no impact of the dummy variable on the price.

 Recipe 4-8. SHAP Feature Importance 
for Tree Regression Models with Mixed 
Input Variables
 Problem
You want to get the global feature importance from SHAP values using 

mixed input feature data.

 Solution
The solution to this problem is to use absolute values, sort them in 

descending order, and populate them in waterfall chart, beeswarm chart, 

scatter plot, etc.
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 How It Works
Let’s take a look at the following example:

shap.plots.scatter(shap_values_ebm[:,"powerBhp"])

# the waterfall_plot shows how we get from explainer.expected_

value to model.predict(X)[sample_ind]

shap.plots.waterfall(shap_values_ebm[sample_ind],  

max_display=14)

Figure 4-20. Scatter plot of powerBhp and its SHAP values
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Figure 4-21. Feature importance for a specific example

# the waterfall_plot shows how we get from explainer.expected_

value to model.predict(X)[sample_ind]

shap.plots.beeswarm(shap_values_ebm, max_display=14)
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Figure 4-22. Importance of SHAP values on model prediction

# explain all the predictions in the dataset

shap.summary_plot(shap_values_ebm, X100)
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Figure 4-23. Explaining all predictions with feature importance

At a high level, for the tree-based nonlinear model that is used to 

predict the price of the automobiles, the previous features are important. 

The highest is the powerBhp, age of the car, petrol type, manual 

transmission type, etc. The previous tabular output shows the global 

feature importance.
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 Recipe 4-9. Explaining the XGBoost Model
 Problem
You want to generate explainability for an XGBoost model for regression.

 Solution
The XGBoost regressor trained on 100 trees and with a max depth 

parameter of 3 using a dataset that contains both numerical and categorial 

features. The total number of features are 23; an ideal dataset for XGBoost 

would be where we have more than 50 features. However, that requires 

more computation time.

 How It Works
Let’s take a look at the following example:

# train XGBoost model

import xgboost

model_xgb = xgboost.XGBRegressor(n_estimators=100, max_

depth=2).fit(X, y)

# explain the GAM model with SHAP

explainer_xgb = shap.Explainer(model_xgb, X)

shap_values_xgb = explainer_xgb(X)

# make a standard partial dependence plot with a single SHAP 

value overlaid

sample_ind = 18

fig,ax = shap.partial_dependence_plot(

     "powerBhp", model_xgb.predict, X, model_expected_

value=True,
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    feature_expected_value=True, show=False, ice=False,

    shap_values=shap_values_xgb[sample_ind:sample_ind+1,:]

)

shap.plots.scatter(shap_values_xgb[:,"mileage"])

Figure 4-24. Partial dependency plot with a sample
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Figure 4-25. Mileage feature and its SHAP values

shap.plots.scatter(shap_values_xgb[:,"powerBhp"], color=shap_

values_xgb)
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Figure 4-26. Scatter plot of powerBhp, age, and SHAP value of 
powerBhp

shap.summary_plot(shap_values_xgb, X)
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Figure 4-27. SHAP value impact on model predictions
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 Recipe 4-10. Random Forest Regressor 
for Mixed Data Types
 Problem
You want to generate explainability for a random forest model using 

numeric as well as categorical features.

 Solution
Random forest is useful when we have more features, say, more than 50; 

however, for this recipe, it is applied on 23 features. We could pick up a 

large dataset, but that would require more computations and may take 

more time to train. So, be cognizant about the model configurations when 

the model is being trained on a smaller machine.

 How It Works
Let’s take a look at the following example:

import shap

from sklearn.ensemble import RandomForestRegressor

rforest = RandomForestRegressor(n_estimators=100, max_depth=3, 

min_samples_split=20, random_state=0)

rforest.fit(X, y)

# explain all the predictions in the test set

explainer = shap.TreeExplainer(rforest)

shap_values = explainer.shap_values(X)

shap.summary_plot(shap_values, X)
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Figure 4-28. SHAP value impact on model output

shap.dependence_plot("powerBhp", shap_values, X)
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Figure 4-29. SHAP dependence plot

shap.partial_dependence_plot(

    "mileage", rforest.predict, X, ice=False,

    model_expected_value=True, feature_expected_value=True

)
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Figure 4-30. Partial dependency plot of mileage

 Recipe 4-11. Explaining the Catboost Model
 Problem
You want to generate explainability for a dataset where most of the features 

are categorical. We can use a boosting model where a lot of variables are 

categorical.

 Solution
The catboost model is known to work when we have more categorical 

variables compared to numeric variables. Hence, we can use the catboost 

regressor.

 How It Works
Let’s take a look at the following example:
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!pip install catboost

import catboost

from catboost import *

import shap

model = CatBoostRegressor(iterations=100, learning_rate=0.1, 

random_seed=123)

model.fit(X, y, verbose=False, plot=False)

explainer = shap.TreeExplainer(model)

shap_values = explainer.shap_values(X)

# summarize the effects of all the features

shap.summary_plot(shap_values, X)
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Figure 4-31. SHAP value impact on model predictions

# create a SHAP dependence plot to show the effect of a single 

feature across the whole dataset

shap.dependence_plot("powerBhp", shap_values, X)
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Figure 4-32. SHAP dependence plot

 Recipe 4-12. LIME Explainer 
for the Catboost Model and Tabular Data
 Problem
You want to generate explainability at a local level in a focused manner 

rather than at a global level.

 Solution
The solution to this problem is to use the LIME library. LIME is a model-

agnostic technique; it retrains the ML model while running the explainer. 

LIME localizes a problem and explains the model at a local level.
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 How It Works
Let’s take a look at the following example. LIME requires a numpy array as 

an input to the tabular explainer; hence, the Pandas dataframe needs to be 

transformed into an array.

!pip install lime

Looking in indexes: https://pypi.org/simple, https://us-python.

pkg.dev/colab-wheels/public/simple/

Collecting lime

  Downloading lime-0.2.0.1.tar.gz (275 kB)

     |██████████████████████ 
██████████| 275 kB 3.9 MB/s

Requirement already satisfied: matplotlib in /usr/local/lib/

python3.7/dist-packages (from lime) (3.2.2)

Requirement already satisfied: numpy in /usr/local/lib/

python3.7/dist-packages (from lime) (1.21.6)

Requirement already satisfied: scipy in /usr/local/lib/

python3.7/dist-packages (from lime) (1.7.3)

Require

................

import lime

import lime.lime_tabular

explainer = lime.lime_tabular.LimeTabularExplainer(np.array(X),

                                                    mode= 

'regression',

                                                   feature_names=X.

columns,

                                                   class_

names=['price'],

                                                  verbose=True)

We are using the energy prediction data from this chapter only.
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explainer.feature_selection

# asking for explanation for LIME model

i = 60

exp = explainer.explain_instance(np.array(X)[i],

                                 model.predict,

                                 num_features=14

                                )

model.predict(X)[60]

X[60:61]

Intercept 2.412781377314505

Prediction_local [26.44019841]

Right: 18.91681746836109

exp.show_in_notebook(show_table=True)

[('powerBhp > 138.10', 11.685972887206468), ('Age <= 

4.00', 5.069171125183003), ('engineCC > 1984.00', 

3.2307037317922287), ('0.00 < Transmission_Manual <= 

1.00', -2.175314285519644), ('Odometer <= 34000.00', 

Figure 4-33. Local explanation for the 60th record from the dataset
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2.0903883419638976), ('OwnerType_Fourth +ACY- Above <= 

0.00', 1.99286243362804), ('Location_Hyderabad <= 0.00', 

-1.4395857770864107), ('mileage <= 15.30', 1.016369130009493), 

('0.00 < FuelType_Diesel <= 1.00', 0.8477072936504322), 

('Location_Kolkata <= 0.00', 0.6908993069146472), ('FuelType_

Petrol <= 0.00', 0.654629068871846), ('Location_Bangalore 

<= 0.00', -0.47395963805113284), ('FuelType_Electric <= 

0.00', 0.4285429019735695), ('Location_Delhi <= 0.00', 

0.40903051200940277)]

 Recipe 4-13. ELI5 Explainer for Tabular Data
 Problem
You want to use the ELI5 library for generating explanations of a linear 

regression model.

 Solution
ELI5 is a Python package that helps to debug a machine learning model 

and explain the predictions. It provides support for all machine learning 

models supported by the scikit-learn library.

 How It Works
Let’s take a look at the following example:

pip install eli5

import eli5

eli5.show_weights(model,

                 feature_names=list(X.columns))
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Weight Feature

0.4385 powerbhp

0.2572 age

0.0976 engineCC

0.0556 odometer

0.0489 mileage

0.0396 transmission_manual

0.0167 fueltype_petrol

0.0165 fueltype_diesel

0.0104 location_hyderabad

0.0043 location_Coimbatore

0.0043 location_Kolkata

0.0035 location_Kochi

0.0025 location_bangalore

0.0021 location_mumbai

0.0014 location_delhi

0.0006 ownertype_third

0.0003 ownertype_second

0.0000 fueltype_electric

0 ownertype_fourth +aCy- above

0 location_pune

eli5.explain_weights(model, feature_names=list(X.columns))
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Weight Feature

0.4385 powerbhp

0.2572 age

0.0976 engineCC

0.0556 odometer

0.0489 mileage

0.0396 transmission_manual

0.0167 fueltype_petrol

0.0165 fueltype_diesel

0.0104 location_hyderabad

0.0043 location_Coimbatore

0.0043 location_Kolkata

0.0035 location_Kochi

0.0025 location_bangalore

0.0021 location_mumbai

0.0014 location_delhi

0.0006 ownertype_third

0.0003 ownertype_second

0.0000 fueltype_electric

0 ownertype_fourth +aCy- above

0 location_pune

from eli5.sklearn import PermutationImportance

perm = PermutationImportance(model)

perm.fit(X, y)

eli5.show_weights(perm,feature_names=list(X.columns))
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Weight Feature

0.6743 ± 0.0242 powerbhp

0.2880 ± 0.0230 age

0.1188 ± 0.0068 engineCC

0.0577 ± 0.0028 transmission_manual

0.0457 ± 0.0048 odometer

0.0354 ± 0.0053 mileage

0.0134 ± 0.0018 location_hyderabad

0.0082 ± 0.0022 fueltype_petrol

0.0066 ± 0.0013 fueltype_diesel

0.0042 ± 0.0010 location_Kochi

0.0029 ± 0.0006 location_Kolkata

0.0023 ± 0.0010 location_Coimbatore

0.0017 ± 0.0002 location_bangalore

0.0014 ± 0.0005 location_mumbai

0.0014 ± 0.0006 location_delhi

0.0007 ± 0.0001 ownertype_third

0.0002 ± 0.0000 ownertype_second

0.0000 ± 0.0000 fueltype_electric

0 ± 0.0000 location_Chennai

0 ± 0.0000 fueltype_lpG

The results table has a BIAS value as a feature. This can be interpreted 

as an intercept term for a linear regression model. Other features are listed 

based on their descending order of importance based on their weight. The 
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show weights function provides a global interpretation of the model, and 

the show prediction function provides local interpretation by taking into 

account a record from the training set.

 Recipe 4-14. How the Permutation Model 
in ELI5 Works
 Problem
You want to make sense of the ELI5 permutation library.

 Solution
The solution to this problem is to use a dataset and a trained model.

 How It Works
The permutation model in the ELI5 library works only for global 

interpretation. First it takes a baseline model from the training dataset and 

computes the error of the model. Then it shuffles the values of a feature, 

retrains the model, and computes the error. It compares the decrease in 

error after shuffling and before shuffling. A feature can be considered as 

important if after shuffling the error delta is high, and unimportant if the 

error delta is low. The result displays the average importance of features 

and the standard deviation of features with multiple shuffle steps.
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 Recipe 4-15. Global Explanation 
for Ensemble Classification Models
 Problem
You want to explain the predictions generated from a classification model 

using ensemble models.

 Solution
The logistic regression model is also known as a classification model 

as we model the probabilities from either a binary classification or a 

multinomial classification variable. In this particular recipe, we are using a 

churn classification dataset that has two outcomes: whether the customer 

is likely to churn or not. Let’s use the ensemble models such as the 

explainable boosting machine for the classifier, extreme gradient boosting 

classifier, random forest classifier, and catboost classifier.

 How It Works
Let’s take a look at the following example. The key is to get the SHAP 

values, which will return base values, SHAP values, and data. Using the 

SHAP values we can create various explanations using graphs and figures. 

The SHAP values are always at a global level.

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

from sklearn import tree, metrics, model_selection, 

preprocessing
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from sklearn.metrics import confusion_matrix, 

classification_report

df_train = pd.read_csv('https://raw.githubusercontent.com/

pradmishra1/PublicDatasets/main/ChurnData_test.csv')

from sklearn.preprocessing import LabelEncoder

tras = LabelEncoder()

df_train['area_code_tr'] = tras.fit_transform(df_

train['area_code'])

df_train.columns

del df_train['area_code']

df_train.columns

df_train['target_churn_dum'] = pd.get_dummies(df_train.

churn,prefix='churn',drop_first=True)

df_train.columns

del df_train['international_plan']

del df_train['voice_mail_plan']

del df_train['churn']

df_train.info()

del df_train['Unnamed: 0']

df_train.columns

from sklearn.model_selection import train_test_split

X = df_train[['account_length', 'number_vmail_messages', 

'total_day_minutes',

        'total_day_calls', 'total_day_charge', 'total_eve_

minutes',

        'total_eve_calls', 'total_eve_charge', 'total_night_

minutes',

        'total_night_calls', 'total_night_charge', 'total_intl_

minutes',

       'total_intl_calls', 'total_intl_charge',
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       'number_customer_service_calls', 'area_code_tr']]

Y = df_train['target_churn_dum']

import pandas as pd

from sklearn.model_selection import train_test_split

from interpret.glassbox import ExplainableBoostingClassifier

from interpret import show

xtrain,xtest,ytrain,ytest=train_test_split(X,Y,test_

size=0.20,stratify=Y)

ebm = ExplainableBoostingClassifier(random_state=12)

ebm.fit(xtrain, ytrain)

ebm_global = ebm.explain_global()

show(ebm_global)

ebm_local = ebm.explain_local(xtest[:5], ytest[:5])

show(ebm_local)

print("training accuracy:", ebm.score(xtrain,ytrain)) #training 

accuracy

print("test accuracy:",ebm.score(xtest,ytest)) # test accuracy

show(ebm_global)

from interpret import set_visualize_provider

from interpret.provider import InlineProvider

set_visualize_provider(InlineProvider())

from interpret import show

X100 = X[:100]

# explain the GAM model with SHAP

explainer_ebm = shap.Explainer(ebm.predict, X100)

shap_values_ebm = explainer_ebm(X100)
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ebm_global = ebm.explain_global()

show(ebm_global)

import numpy as np

pd.DataFrame(np.round(shap_values_ebm.values,2)).head(2)

 Recipe 4-16. Partial Dependency Plot 
for a Nonlinear Classifier
 Problem
You want to show feature associations with the class probabilities using a 

nonlinear classifier.

 Solution
The class probabilities in this example are related to predicting the 

probability of churn. The SHAP value for a feature can be plotted against 

the feature value to show a scatter chart that displays the correlation, 

positive or negative, and the strength of associations.

 How It Works
Let’s take a look at the following example:

# make a standard partial dependence plot with a single SHAP 

value overlaid

sample_ind = 20

fig,ax = shap.partial_dependence_plot(

     "number_customer_service_calls", ebm.predict, X100, model_

expected_value=True,

    feature_expected_value=True, show=False, ice=False,
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    shap_values=shap_values_ebm[sample_ind:sample_ind+1,:]

)

# make a standard partial dependence plot with a single SHAP 

value overlaid

sample_ind = 20

fig,ax = shap.partial_dependence_plot(

     "number_vmail_messages", ebm.predict, X100, model_expected_

value=True,

    feature_expected_value=True, show=False, ice=False,

    shap_values=shap_values_ebm[sample_ind:sample_ind+1,:]

)

Figure 4-34. Account length and SHAP value of account length
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Figure 4-35. Number of voicemail messages and SHAP values

 Recipe 4-17. Global Feature Importance 
from the Nonlinear Classifier
 Problem
You want to get the global feature importance for the decision tree 

classification model.

 Solution
The solution to this problem is to use the explainer log odds.

 How It Works
Let’s take a look at the following example:

shap.plots.scatter(shap_values_ebm)
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Figure 4-36. All features SHAP values plotted together

Figure 4-37. Local explanation for record 20

# the waterfall_plot shows how we get from explainer.expected_

value to model.predict(X)[sample_ind]

shap.plots.waterfall(shap_values_ebm[sample_ind], max_

display=14)
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The interpretation goes like this: when we change the value of a feature 

by 1 unit, the model equation will produce two odds; one is the base, and 

the other is the incremental value of the feature. We are looking at the ratio 

of odds changes with every increase or decrease in the value of a feature. 

From the global feature importance, there are three important features: the 

number of customer service calls, the total day minutes, and the number of 

voicemail messages.

# the waterfall_plot shows how we get from explainer.expected_

value to model.predict(X)[sample_ind]

shap.plots.beeswarm(shap_values_ebm, max_display=14)

Figure 4-38. SHAP values from EBM model on model predictions
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 Recipe 4-18. XGBoost Model Explanation
 Problem
You want to explain an extreme gradient boosting model, which is a 

sequential boosting model.

 Solution
The model explanation can be done using SHAP; however, one of the 

limitations of SHAP is we cannot use the full data to create global and local 

explanations. We will take a subset if the smaller machine is allocated and 

a full dataset if the machine configuration supports it.

 How It Works
Let’s take a look at the following example:

# train XGBoost model

import xgboost

model = xgboost.XGBClassifier(n_estimators=100, max_depth=2).

fit(X, Y)

# compute SHAP values

explainer = shap.Explainer(model, X)

shap_values = explainer(X)

# make a standard partial dependence plot with a single SHAP 

value overlaid

sample_ind = 18

fig,ax = shap.partial_dependence_plot(

     "account_length", model.predict, X, model_expected_

value=True,

Chapter 4  explainability for ensemble supervised models



182

    feature_expected_value=True, show=False, ice=False,

    shap_values=shap_values_xgb[sample_ind:sample_ind+1,:]

)

import numpy as np

pd.DataFrame(np.round(shap_values.values,2)).head(2)

# the waterfall_plot shows how we get from explainer.expected_

value to model.predict(X)[sample_ind]

shap.plots.waterfall(shap_values[sample_ind], max_display=14)

Figure 4-39. Partial dependency plot for 18th record from 
training dataset
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Figure 4-40. Local explanation for 18th record

# the waterfall_plot shows how we get from explainer.expected_

value to model.predict(X)[sample_ind]

shap.plots.scatter(shap_values[:,"account_length"])
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Figure 4-41. Distribution of account length versus SHAP values

# the waterfall_plot shows how we get from explainer.expected_

value to model.predict(X)[sample_ind]

shap.plots.scatter(shap_values[:,"number_vmail_messages"])
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Figure 4-42. Distribution of number of voicemail messages versus its 
SHAP values

# the waterfall_plot shows how we get from explainer.expected_

value to model.predict(X)[sample_ind]

shap.plots.beeswarm(shap_values, max_display=14)
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Figure 4-43. SHAP value impact on model output

Figure 4-44. Absolute average SHAP values shows importance of 
features

shap.plots.bar(shap_values)
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shap.plots.heatmap(shap_values[:5000])

shap.plots.scatter(shap_values[:,"total_day_minutes"])

Figure 4-45. Distribution of density of all features with their 
SHAP values
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Figure 4-46. Distribution of feature total day minutes with 
SHAP values

shap.plots.scatter(shap_values[:,"total_day_minutes"], 

color=shap_values[:,"account_length"])
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Figure 4-47. Three-dimensional view of SHAP values

 Recipe 4-19. Explain a Random 
Forest Classifier
 Problem
You want to get faster explanations from global and local explainable 

libraries using a random forest classifier. A random forest creates a family 

of trees as estimators and averages the predictions using the majority 

voting rule.

 Solution
The model explanation can be done using SHAP; however, one of the 

limitations of SHAP is we cannot use the full data to create global and local 

explanations.
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 How It Works
Let’s take a look at the following example:

import shap

from sklearn.ensemble import RandomForestClassifier

rforest = RandomForestClassifier(n_estimators=100, max_depth=3, 

min_samples_split=20, random_state=0)

rforest.fit(X, Y)

# explain all the predictions in the test set

explainer = shap.TreeExplainer(rforest)

shap_values = explainer.shap_values(X)

shap.dependence_plot("account_length", shap_values[0], X)

shap.partial_dependence_plot(

    "total_day_minutes", rforest.predict, X, ice=False,

    model_expected_value=True, feature_expected_value=True

)

Figure 4-48. Dependence plot from SHAP
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Figure 4-49. Partial dependence plot of total day minutes

shap.summary_plot(shap_values, X)
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Figure 4-50. Feature importance for two classes separately based on 
absolute average SHAP value

 Recipe 4-20. Catboost Model Interpretation 
for Classification Scenario
 Problem
You want to get an explanation for the catboost model–based binary 

classification problem.
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 Solution
The model explanation can be done using SHAP; however, one of the 

limitations of SHAP is we cannot use the full data to create global and 

local explanations. Even if we decide to use the full data, it usually takes 

more time. Hence, to speed up the process of generating local and global 

explanations in a scenario when millions of records are being used to train 

a model, LIME is very useful. Catboost needs iterations to be defined.

 How It Works
Let’s take a look at the following example:

model = CatBoostClassifier(iterations=10, learning_rate=0.1, 

random_seed=12)

model.fit(X, Y, verbose=True, plot=False)

0: learn: 0.6381393    total: 10.2ms    remaining: 91.9ms

1: learn: 0.5900921    total: 20.1ms    remaining: 80.2ms

2: learn: 0.5517727    total: 29.9ms    remaining: 69.8ms

3: learn: 0.5166202    total: 39.9ms    remaining: 59.9ms

4: learn: 0.4872410    total: 49.9ms    remaining: 49.9ms

5: learn: 0.4632012    total: 60.1ms    remaining: 40ms

6: learn: 0.4414588    total: 69.8ms    remaining: 29.9ms

7: learn: 0.4222780    total: 79.6ms    remaining: 19.9ms

8: learn: 0.4073681    total: 89.5ms    remaining: 9.95ms

9: learn: 0.3915051    total: 99.5ms    remaining: 0us

explainer = shap.TreeExplainer(model)

shap_values = explainer.shap_values(Pool(X, Y))

shap.force_plot(explainer.expected_value, shap_values[0,:], 

X.iloc[0,:])

shap.force_plot(explainer.expected_value, shap_values[91,:], 

X.iloc[91,:])

shap.summary_plot(shap_values, X)

Chapter 4  explainability for ensemble supervised models



194

Figure 4-51. SHAP value impact on model output

 Recipe 4-21. Local Explanations Using LIME
 Problem
You want to get faster explanations from global and local explainable 

libraries.
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 Solution
The model explanation can be done using SHAP; however, one of the 

limitations of SHAP is we cannot use the full data to create global and 

local explanations. Even if we decide to use the full data, it usually takes 

more time. Hence, to speed up the process of generating local and global 

explanations in a scenario when millions of records are being used to train 

a model, LIME is very useful.

 How It Works
Let’s take a look at the following example:

import lime

import lime.lime_tabular

explainer = lime.lime_tabular.LimeTabularExplainer(np.

array(xtrain),

                    feature_names=list(xtrain.columns),

                    class_names=['target_churn_dum'],

                    verbose=True, mode='classification')

# this record is a no churn scenario

exp = explainer.explain_instance(X.iloc[0], model.predict_

proba, num_features=16)

exp.as_list()

Intercept 0.2758028503306529

Prediction_local [0.34562036]

Right: 0.23860629814459952

[('number_customer_service_calls > 2.00', 0.06944779279619419),

 ('total_day_minutes <= 144.10', -0.026032556397868205),

 ('area_code_tr > 1.00', 0.012192087473855579),

 ('total_day_charge <= 24.50', -0.01049348495191592),
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 ('total_night_charge > 10.57', 0.009208937152255816),

 ('total_eve_calls <= 88.00', 0.007763649795450518),

 ('17.12 < total_eve_charge <= 19.74', 0.006648493070415344),

 ('number_vmail_messages <= 0.00', 0.0054214568436186375),

 ('98.00 < account_length <= 126.00', 0.004192090777110732),

 ('2.81 < total_intl_charge <= 3.21', -0.004030006982470514),

  ('201.40 < total_eve_minutes <= 232.20', 

-0.0039743556975642405),

 ('total_night_minutes > 234.80', 0.0035628982403953778),

 ('total_night_calls <= 86.00', 0.0029612465055136334),

 ('total_day_calls > 112.00', -0.0028523783898236925),

 ('total_intl_calls <= 3.00', -0.002506612124522332),

  ('10.40 < total_intl_minutes <= 11.90', 

-0.0016917444417898933)]

exp.show_in_notebook(show_table=True)

# This is s churn scenario

exp = explainer.explain_instance(X.iloc[20], model.predict_

proba, num_features=16)

Figure 4-52. Local explanation for record number 1 from test set
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exp.as_list()

Intercept 0.32979383442829424

Prediction_local [0.22940692]

Right: 0.25256892775050466

[('number_customer_service_calls <= 1.00', 

-0.03195279452926141),

  ('144.10 < total_day_minutes <= 181.00', 

-0.03105192670898253),

 ('total_intl_charge > 3.21', 0.010519683979779627),

 ('101.00 < total_eve_calls <= 114.00', -0.008871850152517477),

 ('0.00 < area_code_tr <= 1.00', -0.008355187259945206),

 ('total_intl_minutes > 11.90', 0.007391379556830906),

 ('24.50 < total_day_charge <= 30.77', -0.006975112181235882),

 ('total_night_charge <= 7.56', -0.006500647887830215),

 ('total_eve_charge <= 14.14', -0.006278552413626889),

 ('number_vmail_messages > 0.00', -0.0062185929677679875),

 ('total_night_minutes <= 167.90', -0.003079244107811434),

 ('4.00 < total_intl_calls <= 5.00', -0.0026984920221149998),

 ('total_day_calls > 112.00', -0.0024708590253414045),

 ('total_eve_minutes <= 166.40', -0.002156339757484174),

 ('98.00 < account_length <= 126.00', -0.0013292154399683106),

 ('86.00 < total_night_calls <= 99.00', -0.00035916152353229)]

exp.show_in_notebook(show_table=True)
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Figure 4-53. Local explanations from 20th record from the test set

In a similar fashion, the graphs can be generated for different records 

from the training set and test set, which are from the training sample as 

well as test sample.

 Recipe 4-22. Model Explanations Using ELI5
 Problem
You want to get model explanations using the ELI5 library.

 Solution
ELI5 provides two functions, show weights and show predictions, to 

generate model explanations.

 How It Works
Let’s take a look at the following example:

eli5.show_weights(model,

                 feature_names=list(X.columns))

Chapter 4  explainability for ensemble supervised models



199

Weight Feature

0.3703 total_day_minutes

0.2426 number_customer_service_calls

0.1181 total_day_charge

0.0466 total_eve_charge

0.0427 number_vmail_messages

0.0305 total_eve_minutes

0.0264 total_eve_calls

0.0258 total_intl_minutes

0.0190 total_night_minutes

0.0180 total_night_charge

0.0139 total_intl_charge

0.0133 area_code_tr

0.0121 total_day_calls

0.0110 total_intl_calls

0.0077 total_night_calls

0.0019 account_length

eli5.explain_weights(model, feature_names=list(X.columns))

Weight Feature

0.3703 total_day_minutes

0.2426 number_customer_service_calls

0.1181 total_day_charge

(continued)
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Weight Feature

0.0466 total_eve_charge

0.0427 number_vmail_messages

0.0305 total_eve_minutes

0.0264 total_eve_calls

0.0258 total_intl_minutes

0.0190 total_night_minutes

0.0180 total_night_charge

0.0139 total_intl_charge

0.0133 area_code_tr

0.0121 total_day_calls

0.0110 total_intl_calls

0.0077 total_night_calls

0.0019 account_length

from eli5.sklearn import PermutationImportance

perm = PermutationImportance(model)

perm.fit(X,Y)

eli5.show_weights(perm,feature_names=list(X.columns))

Weight Feature

0.0352 ± 0.0051 total_day_minutes

0.0250 ± 0.0006 total_day_charge

0.0121 ± 0.0024 number_vmail_messages

0.0110 ± 0.0051 total_eve_charge

(continued)
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Weight Feature

0.0052 ± 0.0048 total_night_minutes

0.0028 ± 0.0025 total_night_charge

0.0023 ± 0.0009 total_eve_calls

0.0022 ± 0.0012 number_customer_service_calls

0.0022 ± 0.0018 total_eve_minutes

0.0019 ± 0.0012 total_night_calls

0.0018 ± 0.0015 total_day_calls

0.0017 ± 0.0019 total_intl_minutes

0.0011 ± 0.0016 area_code_tr

0.0008 ± 0.0012 total_intl_charge

0.0005 ± 0.0018 total_intl_calls

-0.0010 ± 0.0018 account_length

 Recipe 4-23. Multiclass Classification 
Model Explanation
 Problem
You want to get model explanations for multiclass classification problems.

 Solution
The expectation for multiclass classification is to first build a robust model 

with categorical features, if any, and explain the predictions. In a binary 

class classification problem, we can get the probabilities, and sometimes 
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we can get the feature importance corresponding to each class from all 

kinds of ensemble models. Here is an example of a catboost model that 

can be used to generate the feature importance corresponding to each 

class in the multiclass classification problem.

 How It Works
Let’s take a look at the following example. We are going to use a dataset 

from the UCI ML repository. The URL to access the dataset is given in the 

following script:

import pandas as pd

df_red = pd.read_csv('https://archive.ics.uci.edu/ml/machine-

learning-databases/wine-quality/winequality-red.csv',sep=';')

df_white = pd.read_csv('https://archive.ics.uci.edu/ml/machine-

learning-databases/wine-quality/winequality- white.csv',sep=';')

features = ['fixed_acidity','volatile_acidity','citric_

acid','residual_sugar',

             'chlorides','free_sulfur_dioxide','total_sulfur_

dioxide','density',

            'pH','sulphates','alcohol','quality']

df = pd.concat([df_red,df_white],axis=0)

df.columns = features

df.quality = pd.Categorical(df.quality)

df.head()

y = df.pop('quality')

X = df

import catboost

from catboost import *

import shap

shap.initjs()
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model = CatBoostClassifier(loss_function = 'MultiClass',

                           iterations=300,

                           learning_rate=0.1,

                           random_seed=123)

model.fit(X, y, verbose=False, plot=False)

explainer = shap.TreeExplainer(model)

shap_values = explainer.shap_values(Pool(X, y))

set(y)

{3, 4, 5, 6, 7, 8, 9}

shap.summary_plot(shap_values[0], X)

shap.summary_plot(shap_values[1], X)

Figure 4-54. SHAP value impact with respect to class 0 from the 
target variable
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Figure 4-55. SHAP summary plot for class 2 from the target variable

shap.summary_plot(shap_values[2], X)
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Figure 4-56. SHAP summary plot for class 3 from the target variable

 Conclusion
In this chapter, we discussed the ensemble model explanations. The 

models we covered were explainable boosting regressor, explainable 

boosting classifier, extreme gradient boosting regressor and classifier, 

random forest regressor and classifier, and catboost classifier and 

regressor. The graphs and charts sometimes may look similar, but they 

are different, because of two reasons. First, the data points from SHAP 

that are available for plotting depend on the sample size selected to 

generate explanations. Second, the sample models are being trained with 

fewer iterations and with basic hyperparameters; hence, with a higher 

configuration machine, the full hyperparameter tuning can happen, and 

better SHAP values can be produced.
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In the next chapter, we will cover the explainability for natural 

language–based tasks such as text classification and sentiment analysis 

and explain the predictions.
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CHAPTER 5

Explainability for 
Natural Language 
Processing
Natural language processing tasks such as text classification and 

sentiment analysis can be explained using explainable AI libraries such 

as SHAP and ELI5. The objective of explaining the text classification 

tasks or sentiment analysis tasks is to let the user know how a decision 

was made. The predictions are generated using a supervised learning 

model for unstructured text data. The input is a text sentence or many 

sentences or phrases, and we train a machine learning model to perform 

text classification such as customer review classification, feedback 

classification, newsgroup classification, etc. In this chapter, we will be 

using explainable libraries to explain the predictions or classifications.

There are three common problems where explainability is required in 

natural language processing.

• Document classification, where the input is a series of 

sentences extracted from a document, and the output 

is the label attached to the document. If a document 

is misclassified or someone wants to know why a 

document is being classified by the algorithm in a 

certain way, we need to explain why.

© Pradeepta Mishra 2023 
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• For named entity recognition tasks, we need to predict 

the entity to which a name belongs. If it is assigned to 

another entity, we need to explain why.

• For sentiment analysis, if a sentiment category is 

wrongly assigned to another category, then we need to 

explain why.

 Recipe 5-1. Explain Sentiment Analysis Text 
Classification Using SHAP
 Problem
You want to explain sentiment analysis prediction using SHAP.

 Solution
The solution takes into account the most common dataset available, which 

is the IMDB sentiment classification dataset from the SHAP library. It can 

be accessed using the SHAP dataset. We will be using the SHAP library to 

explain the predictions.

 How It Works
Let’s take a look at the following example (see Figure 5-1 and Figure 5-2):

!pip install shap

import warnings

warnings.filterwarnings("ignore")

import sklearn

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.model_selection import train_test_split
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import numpy as np

import shap

import pandas as pd

from keras.datasets import imdb

corpus,y = shap.datasets.imdb()

corpus_train, corpus_test, y_train, y_test = train_test_

split(corpus, y, test_size=0.2, random_state=7)

vectorizer = TfidfVectorizer(min_df=10)

X_train = vectorizer.fit_transform(corpus_train).toarray() # 

sparse also works but Explanation slicing is not yet supported

X_test = vectorizer.transform(corpus_test).toarray()

corpus_train[20]

Well how was I suppose to know this was......................

..........

y

array([False, False, False, ..., True, True, True])

model = sklearn.linear_model.LogisticRegression(penalty=

"l2", C=0.1)

model.fit(X_train, y_train)

explainer = shap.Explainer(model, X_train, feature_

names=vectorizer.get_feature_names())

shap_values = explainer(X_test)

shap.summary_plot(shap_values, X_test)
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Figure 5-1. Summary plot from sentiment classification
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shap.plots.beeswarm(shap_values)

names = vectorizer.get_feature_names()

names[0:20]

pd.DataFrame(X_train,columns=names)

Figure 5-2. SHAP values showing very sparse features
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ind = 10

shap.plots.force(shap_values[ind])

print("Positive" if y_test[ind] else "Negative", "Review:")

print(corpus_test[ind])

Positive Review:

"Twelve Monkeys" is odd and disturbing, .......................

.................

 Recipe 5-2. Explain Sentiment Analysis Text 
Classification Using ELI5
 Problem
You want to explain sentiment analysis prediction using ELI5.

 Solution
The solution takes into account the most common dataset available, which 

is the IMDB sentiment classification. We will be using the ELI5 library to 

explain the predictions.

 How It Works
Let’s take a look at the following example:

!pip install eli5

import eli5

eli5.show_weights(model, top=10) #this result is not 

meaningful, as weight and feature names are not there

y=True top features
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Weight? Feature

+3.069 x6530

+2.195 x748

+1.838 x1575

+1.788 x5270

+1.743 x8807

… 8173 more positive …

… 8234 more negative …

-1.907 x15924

-1.911 x1239

-2.027 x9976

-2.798 x16255

-3.643 x1283

The ELI5 results are not meaningful as they provide only the weights 

and features, and the feature names are not meaningful. To make the 

results interpretable, we need to pass the feature names.

eli5.show_weights(model,feature_names=vectorizer.get_feature_

names(),target_names=['Negative','Positive'])

#make sense

y=Positive top features
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Weight? Feature

+3.069 great

+2.195 and

+1.838 best

+1.788 excellent

+1.743 love

+1.501 well

+1.477 wonderful

+1.394 very

… 8170 more positive …

… 8227 more negative …

-1.391 just

-1.407 plot

-1.481 poor

-1.570 even

-1.589 terrible

-1.612 nothing

-1.723 boring

-1.907 waste

-1.911 awful

-2.027 no

-2.798 worst

-3.643 bad
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 Recipe 5-3. Local Explanation Using ELI5
 Problem
You want to explain an individual review in the sentiment analysis 

prediction using ELI5.

 Solution
The solution is takes into account the most common dataset available, 

which is the IMDB sentiment classification dataset. We will be using the 

ELI5 library to explain the predictions.

 How It Works
Let’s take a look at the following example. Here we are taking into account 

three reviews, record numbers 1, 20, and 100, to explain the predicted 

class and relative importance of each word contributing positively and 

negatively to the predicted class.

Eli5.show_prediction(model, corpus_train[3], vec=vectorizer,

                     target_names=['Negative','Positive'])

# explain local prediction

y=Positive (probability 0.739, score 1.042) top features

Contribution? Feature

+0.869 highlighted in text (sum)

+0.174 <bias>

as a matter of fact, this is one of those movies you would have to give 

7.5 to. The fact is; as already stated, it’s a great deal of fun. Wonderfully 

atmospheric. Askey does indeed come across as over the top, but it’s a 

Chapter 5  explainability for natural language proCessing



217

great vehicle for him, just as oh, mr porter is for will hay. If you like old 

dark house movies and trains, then this is definitely for you.<br /><br 

/>strangely enough it’s the kind of film that you’ll want to see again and a

........................

eli5.show_prediction(model, corpus_train[4], vec=vectorizer,

                     target_names=['Negative','Positive'])

# explain local prediction

y=Negative (probability 0.682, score -0.761) top features

Contribution? Feature

+0.935 highlighted in text (sum)

-0.174 <bias>

how could 4 out of 16 prior voters give this movie a 10? How could 

more than half the prior voters give it a 7 or higher? Who is voting here?  

I can only assume it is primarily kids -- very young kids. the fact is that this 

is a bad movie in every way. the story is stupid; the acting is hard to even 

think of …….

eli5.show_prediction(model, corpus_train[100], vec=vectorizer,

                     target_names=''Nagativ''''Positiv'']) # 

explain local prediction

y=Negative (probability 0.757, score -1.139) top features

Contribution? Feature

+1.313 highlighted in text (sum)

-0.174 <bias>
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this movie was so poorly written and directed i fell asleep 30 minutes 

through the movie……………….

The green patches show positive features for the target class 

positive, and the red parts are negative features that correspond to 

the negative class. The feature value and the weight value indicate the 

relative importance of words as features in classifying sentiments. It is 

observed that many stop words or unwanted words are present in the 

tokenization process; hence, they are appearing as features in the feature 

importance. The way to clean it up is to use preprocessing steps such as 

applying stemming, removing stop words, performing lemmatization, 

removing numbers, etc. Once the text cleanup is completed, then the 

previous recipes can be used again to create a better model to predict the 

sentiments.

 Conclusion
In this chapter, we covered how to interpret the text classification use cases 

such as sentiment analysis. However, for all such kinds of use cases, the 

process will remain same, and the same recipes can be used. The modeling 

technique selection may change as the features increase, and we can use 

complex models such as ensemble modeling techniques like random 

forest, gradient boosting techniques, and catboost techniques. Also, the 

preprocessing methods can change. For example, the count vectorizer, 

TF-IDF vectorizer, hashing vectorizer, etc., can be applied with stop word 

removal to clean the text to get better features. The recipes to run different 

variants of ensemble models were covered in the previous chapter. In the 

next chapter, we are going to cover times-series model explainability.
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CHAPTER 6

Explainability 
for Time-Series 
Models
A time series, as the name implies, has a time stamp and a variable that 

we are observing over time, such as stock prices, sales, revenue, profit over 

time, etc. Time-series modeling is a set of techniques that can be used to 

generate multistep predictions for a future time period, which will help a 

business to plan better and will help decision-makers to plan according 

to the future estimations. There are machine learning–based techniques 

that can be applied to generate future forecasting; also, there is a need to 

explain the predictions about the future.

The most commonly used techniques for time-series forecasting are 

autoregressive methods, moving average methods, autoregressive and 

moving average methods, and deep learning–based techniques such 

as LSTM, etc. The time-series model requires the data to be at frequent 

time intervals. If there is any gap in recording, it requires a different 

process to address the gap in the time series. The time-series model can 

be looked at from two ways: univariate, which is completely dependent 

on time, and multivariate, which takes into account various factors. 

Those factors are called causal factors, which impact the predictions. 

In the time-series model, the time is an independent variable, so 
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we can compute various features from the time as an independent 

feature. Time-series modeling has various components such as trend, 

seasonality, and cyclicity.

 Recipe 6-1. Explain Time-Series Models 
Using LIME
 Problem
You want to explain a time-series model using LIME.

 Solution
We are taking into consideration a sample dataset that has dates and 

prices, and we are going to consider only the univariate analysis. We will 

be using the LIME library to explain the predictions.

 How It Works
Let’s take a look at the following example (see Figure 6-1):

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

df = pd.read_csv('https://raw.githubusercontent.com/

pradmishra1/PublicDatasets/main/monthly_csv.csv',index_col=0)

# seasonal difference

differenced = df.diff(12)

# trim off the first year of empty data

differenced = differenced[12:]
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# save differenced dataset to file

differenced.to_csv('seasonally_adjusted.csv', index=False)

# plot differenced dataset

differenced.plot()

plt.show()

Figure 6-1. Seasonally adjusted difference plot

# reframe as supervised learning

dataframe = pd.DataFrame()

for i in range(12,0,-1):

    dataframe['t-'+str(i)] = df.shift(i).values[:,0]

dataframe['t'] = df.values[:,0]

print(dataframe.head(13))

dataframe = dataframe[13:]

# save to new file

dataframe.to_csv('lags_12months_features.csv', index=False)

For the last 12 months, lagged features will be used as training features 

to forecast the future time-series sales values.
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# split into input and output

df = pd.read_csv('lags_12months_features.csv')

data = df.values

X = data[:,0:-1]

y = data[:,-1]

from sklearn.ensemble import RandomForestRegressor

# fit random forest model

model = RandomForestRegressor(n_estimators=500, random_state=1)

model.fit(X, y)

We are using a random forest regressor to consider the importance of 

each feature in a subset scenario. See Figure 6-2.

# show importance scores

print(model.feature_importances_)

# plot importance scores

names = dataframe.columns.values[0:-1]

ticks = [i for i in range(len(names))]

plt.bar(ticks, model.feature_importances_)

plt.xticks(ticks, names)

plt.show()
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Figure 6-2. Feature importance for lagged features from the 12 
lagged features

from sklearn.feature_selection import RFE

Recursive feature elimination is a technique usually used to fine-tune 

relevant features from the available list of features so that only important 

features can go into the inference generation process.

# perform feature selection

rfe = RFE(RandomForestRegressor(n_estimators=500, random_

state=1), n_features_to_select=4)

fit = rfe.fit(X, y)

# report selected features

print('Selected Features:')

names = dataframe.columns.values[0:-1]

for i in range(len(fit.support_)):

    if fit.support_[i]:

        print(names[i])
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Selected Features:

t-7

t-3

t-2

t-1

We can rank the time-aware important features, which are lags. See 

Figure 6-3 and Figure 6-4.

# plot feature rank

names = dataframe.columns.values[0:-1]

ticks = [i for i in range(len(names))]

plt.bar(ticks, fit.ranking_)

plt.xticks(ticks, names)

plt.show()

Figure 6-3. Feature ranking from all available lags
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!pip install Lime

import lime

import lime.lime_tabular

explainer = lime.lime_tabular.LimeTabularExplainer(np.array(X),

                                            mode='regression',

                                           feature_names=X.columns,

                                           class_names=['t'],

                                          verbose=True)

explainer.feature_frequencies

{0: array([0.25659472, 0.24340528, 0.24940048, 0.25059952]), 

1: array([0.25539568, 0.24460432, 0.24940048, 0.25059952]), 

2: array([0.25419664, 0.24580336, 0.24940048, 0.25059952]), 

3: array([0.2529976 , 0.2470024 , 0.24940048, 0.25059952]), 4: 

array([0.25179856, 0.24820144, 0.24940048, 0.25059952]), 5: 

array([0.25059952, 0.24940048, 0.24940048, 0.25059952]), 6: 

array([0.2529976 , 0.2470024 , 0.24940048, 0.25059952]), 7: 

array([0.25179856, 0.24820144, 0.24940048, 0.25059952]), 8: 

array([0.25059952, 0.24940048, 0.24940048, 0.25059952]), 9: 

array([0.25059952, 0.24940048, 0.24940048, 0.25059952]), 10: 

array([0.25059952, 0.24940048, 0.24940048, 0.25059952]), 11: 

array([0.25059952, 0.24940048, 0.24940048, 0.25059952])}

# asking for explanation for LIME model

i = 60

exp = explainer.explain_instance(np.array(X)[i],

                                 new_model.predict,

                                 num_features=12

                                )
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Intercept 524.1907857658252

Prediction_local [76.53408383]

Right: 35.77034850521053

X does not have valid feature names, but LinearRegression was 

fitted with feature names

exp.show_in_notebook(show_table=True)

For the 60th record from the dataset, the predicted value is 35.77, for 

which lag 1 is the most important feature.

exp.as_list()

[('t-1 <= 35.39', -635.1332339969734), ('t-2 <= 35.34', 

210.66614528187935), ('t-5 <= 35.20', -139.067880800616), 

('t-6 <= 35.20', 116.37720395001742), ('t-12 <= 35.19', 

90.11939668085971), ('t-11 <= 35.19', -78.09554990821964), 

('t-3 <= 35.25', -74.75587075373902), ('t-8 <= 35.19', 

63.86565747018194), ('t-4 <= 35.20', 49.45398090327778), 

('t-9 <= 35.19', -49.24830755303888), ('t-7 <= 35.19', 

-41.51328966914635), ('t-10 <= 35.19', 39.67504645890767)]

# Code for SP-LIME

import warnings

from lime import submodular_pick

Figure 6-4. Local interpretation for time series
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# Remember to convert the dataframe to matrix values

# SP-LIME returns exaplanations on a sample set to provide a 

non redundant global decision boundary of original model

sp_obj = submodular_pick.SubmodularPick(explainer, np.array(X),

                                        new_model.predict,

                                        num_features=12,

                                        num_exps_desired=10)

The SP-LIME module from the LIME library provides explanations on 

a sample set to provide a global decision boundary about the prediction. 

In the previous script, we are considering the time-series model as a 

supervised learning model and using 12 lags as features. From the LIME 

library, we are using the LIME tabular explainer. The following script 

shows the explanation of record number 60. The predicted value is 35.77, 

and the lower threshold value and upper threshold value reflect the 

confidence band of the predicted outcome. Figure 6-5 shows the positive 

factors and negative factors contributing toward the prediction.

Figure 6-5. The local explanation shows positive features in green 
and negative in red
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 Recipe 6-2. Explain Time-Series Models 
Using SHAP
 Problem
You want to explain the time-series model using SHAP.

 Solution
We are taking into consideration a sample dataset that has dates and 

prices, and we are going to consider only the univariate analysis. We will 

be using the SHAP library to explain the predictions.

 How It Works
Let’s take a look at the following example (Figure 6-6):

import shap

from sklearn.ensemble import RandomForestRegressor

rforest = RandomForestRegressor(n_estimators=100, random_

state=0)

rforest.fit(X, y)

# explain all the predictions in the test set

explainer = shap.TreeExplainer(rforest)

shap_values = explainer.shap_values(X)

shap.summary_plot(shap_values, X)

Chapter 6  explainability for time-SerieS modelS



229

Figure 6-6. Summary plot of SHAP feature values

t-1, t-2, and t-7 are the three important features that impact the 

predictions. t-1 means a lag of the last time period, t-2 means a lag of the 

past two time periods, and t-7 means a lag of the seventh time period. Let’s 

say data is available at a monthly level, so t-1 means last month, t-2 means 

the second month in the past, and t-7 means the seventh month in the 

past. These values impact the predictions. See Figure 6-7 and Figure 6-8.

shap.dependence_plot("t-1", shap_values, X)
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Figure 6-7. SHAP dependence plot

Figure 6-8. Partial dependence plot for feature t-1

shap.partial_dependence_plot(

    "t-1", rforest.predict, X, ice=False,

    model_expected_value=True, feature_expected_value=True

)
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 Conclusion
In this chapter, we covered how to interpret a time-series model to 

generate a forecast. To interpret a univariate time-series model, we 

considered it as a supervised learning problem by taking the lags as 

trainable features. These features are then trained using a linear regressor, 

and the regression model is used to generate explanations at a global level 

as well as at a local level using both the SHAP and LIME libraries. A similar 

explanation can be generated using more complex algorithms such as the 

nonlinear and ensemble techniques, and finally similar kinds of graphs 

and charts can be generated using SHAP and LIME as in the previous 

chapters. The next chapter contains recipes to explain deep neural 

network models.

Chapter 6  explainability for time-SerieS modelS



233

CHAPTER 7

Explainability 
for Deep Learning 
Models
Deep learning models are becoming the backbone of artificial intelligence 

implementations. At the same time, it is super important to build the 

explainability layers to explain the predictions and output of the deep 

learning model. To build trust for the deep learning model outcome, we 

need to explain the results or output. At a high level, a deep learning layer 

involves more than one hidden layer, whereas a neural network layer has 

three layers: the input layer, the hidden layer, and the output layer. There 

are different variants of neural network models such as single hidden 

layer neural network model, multiple hidden layer neural networks, 

feedforward neural networks, and backpropagation neural networks. 

Depending upon the structure of the neural network model, there are 

three popular structures: recurrent neural networks, which are mostly 

used for sequential information processing, such as audio processing, 

text classification, etc.; deep neural networks, which are used for building 

extremely deep networks; and finally, convolutional neural network 

models, which are used for image classification.

Deep SHAP is a framework to derive the SHAP values from a deep 

learning model developed using TensorFlow, Keras, or PyTorch. If we 

compare the machine learning models with deep learning models, 
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the deep learning models are too difficult to explain to anyone. In this 

chapter, we will provide recipes for explaining the components of a deep 

learning model.

 Recipe 7-1. Explain MNIST Images Using 
a Gradient Explainer Based on Keras
 Problem
You want to explain a Keras-based deep learning model using SHAP.

 Solution
We are using a sample image dataset called MNIST. We can first train a 

convolutional neural network using Keras from the TensorFlow pipeline. 

Then we can use the gradient explainer module from the SHAP library 

to build the explainer object. The explainer object can be used to create 

SHAP values, and further, using SHAP values, we can get more visibility 

into image classification tasks and individual class prediction and 

corresponding probability values.

 How It Works
Let’s take a look at the following example:

import TensorFlow as tf

from TensorFlow.keras import Input

from TensorFlow.keras.layers import Flatten, Dense, 

Dropout, Conv2D

import warnings

warnings.filterwarnings("ignore")
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# load the MNIST data

(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.

load_data()

x_train, x_test = x_train / 255.0, x_test / 255.0

x_train = x_train.astype('float32')

x_test = x_test.astype('float32')

x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)

x_test = x_test.reshape(x_test.shape[0], 28, 28, 1)

There are two inputs: one for generating explanations using a 

feedforward neural network layer and another using the convolutional 

neural network layer. This is to compare the two inputs that can be 

explained by the SHAP library in different ways.

# define our model

input1 = Input(shape=(28,28,1))

input2 = Input(shape=(28,28,1))

input2c = Conv2D(32, kernel_size=(3, 3), activation='relu')

(input2)

joint = tf.keras.layers.concatenate([Flatten()(input1), 

Flatten()(input2c)])

out = Dense(10, activation='softmax')(Dropout(0.2)(Dense(128, 

activation='relu')(joint)))

model = tf.keras.models.Model(inputs = [input1, input2], 

outputs=out)

model.summary()
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Compile the model using the Adam optimizer, with sparse categorical 

cross entropy and accuracy. We can choose different types of optimizers to 

achieve the best accuracy.

model.compile(optimizer='adam',

              loss='sparse_categorical_crossentropy',

              metrics=['accuracy'])

As the next step, we can train the model. An epoch of 3 has been 

selected due to processing constraints, but the epoch size can be increased 

based on the time availability and the computational power of the 

machines.

# fit the model

model.fit([x_train, x_train], y_train, epochs=3)

Once the model is created, in the next step we can install the SHAP 

library and create a gradient explainer object either using the same 

training dataset or using the test dataset.
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pip install shap

import shap

# since we have two inputs we pass a list of inputs to the 

explainer

explainer = shap.GradientExplainer(model, [x_train, x_train])

# we explain the model's predictions on the first three samples 

of the test set

shap_values = explainer.shap_values([x_test[:3], x_test[:3]])

# since the model has 10 outputs we get a list of 10 

explanations (one for each output)

print(len(shap_values))

The two inputs were explained previously. There are two set of SHAP 

values, one corresponding to the feedforward layer and another relating to 

the convolutional neural network layer. See Figure 7-1 and Figure 7-2.

# since the model has 2 inputs we get a list of 2 explanations 

(one for each input) for each output

print(len(shap_values[0]))

# here we plot the explanations for all classes for the first 

input (this is the feed forward input)

shap.image_plot([shap_values[i][0] for i in range(10)],  

x_test[:3])
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Figure 7-2. SHAP value for the second input versus all classes

Figure 7-1. SHAP value for three samples with positive and 
negative weights

# here we plot the explanations for all classes for the second 

input (this is the conv-net input)

shap.image_plot([shap_values[i][1] for i in range(10)],  

x_test[:3])

# get the variance of our estimates

shap_values, shap_values_var = explainer.shap_values 

([x_test[:3], x_test[:3]], return_variances=True)

To explain the feedforward way of weight distribution and attribution 

of classes, we need to estimate the variances; hence, we need to get the 

SHAP values of variances. See Figure 7-3.

Chapter 7  explainability for Deep learning MoDels



239

# here we plot the explanations for all classes for the first 

input (this is the feed forward input)

shap.image_plot([shap_values_var[i][0] for i in range(10)], 

x_test[:3])

Figure 7-3. Feedforward input explanations for all classes

 Recipe 7-2. Use Kernel Explainer–Based 
SHAP Values from a Keras Model
 Problem
You want to explain the kernel-based explainer for a structured data 

problem for binary classification, while training with a deep learning 

model from Keras.

 Solution
We will use the census income dataset, which is available in the SHAP 

library; develop a neural network model; and then use the trained model 

object to apply the kernel explainer. The kernel SHAP method is defined 

as a special weighted linear regression to compute the importance of each 

feature in a deep learning model.
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 How It Works
Let’s take a look at the following example:

from sklearn.model_selection import train_test_split

from keras.layers import Input, Dense, Flatten, Concatenate, 

concatenate, Dropout, Lambda

from keras.models import Model

from keras.layers.embeddings import Embedding

from tqdm import tqdm

import shap

# print the JS visualization code to the notebook

#shap.initjs()

If the machine supports JS visualization, then please remove the 

comment and run the previous script. See Figure 7-4.

X,y = shap.datasets.adult()

X_display,y_display = shap.datasets.adult(display=True)

# normalize data (this is important for model convergence)

dtypes = list(zip(X.dtypes.index, map(str, X.dtypes)))

for k,dtype in dtypes:

    if dtype == "float32":

        X[k] -= X[k].mean()

        X[k] /= X[k].std()

X_train, X_valid, y_train, y_valid = train_test_split(X, y, 

test_size=0.2, random_state=7)

# build model

input_els = []

encoded_els = []

for k,dtype in dtypes:
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    input_els.append(Input(shape=(1,)))

    if dtype == "int8":

         e = Flatten()(Embedding(X_train[k].max()+1, 1) 

(input_els[-1]))

    else:

        e = input_els[-1]

    encoded_els.append(e)

encoded_els = concatenate(encoded_els)

layer1 = Dropout(0.5)(Dense(100, activation="relu")

(encoded_els))

out = Dense(1)(layer1)

# train model

clf = Model(inputs=input_els, outputs=[out])

clf.compile(optimizer="adam", loss='binary_crossentropy')

clf.fit(

    [X_train[k].values for k,t in dtypes],

    y_train,

    epochs=5,

    batch_size=512,

    shuffle=True,

     validation_data=([X_valid[k].values for k,t in dtypes], 

y_valid)

)

def f(X):

     return clf.predict([X[:,i] for i in range(X.shape[1])]).

flatten()

# print the JS visualization code to the notebook

shap.initjs()

explainer = shap.KernelExplainer(f, X.iloc[:50,:])
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shap_values = explainer.shap_values(X.iloc[299,:], 

nsamples=500)

To generate the SHAP values, we need to use the kernel explainer 

function from the SHAP library.

shap_values50 = explainer.shap_values(X.iloc[280:285,:], 

nsamples=500)

shap_values

import warnings

warnings.filterwarnings("ignore")

# summarize the effects of all the features

shap_values50 = explainer.shap_values(X.iloc[280:781,:], 

nsamples=500)

shap.summary_plot(shap_values50)

Figure 7-4. SHAP values feature importance
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 Recipe 7-3. Explain a PyTorch-Based Deep 
Learning Model
 Problem
You want to explain a deep learning model developed using PyTorch.

 Solution
We are using a tool called Captum, which acts as a platform. Different 

kinds of explainability methods are embedded into Captum that help 

to further elaborate on how a decision has been made. A typical neural 

network model interpretation can be done to understand the feature 

importance, dominant layer identification, and dominant neuron 

identification. Captum provides three attribution algorithms that help in 

achieving three things: primary attribution, layer attribution, and neuron 

attribution.

 How It Works
The following syntax explains how to install the library:

conda install captum -c pytorch

or

pip install captum

The primary attribution layer provides integrated gradients, gradient 

shapely additive explanations (SHAP), saliency, etc., to interpret the 

model in a more effective way. We can use sample data as titanic survival 

prediction dataset, which is a common dataset that is used for machine 

learning examples or tutorials every developer can quickly relate to it 

without much introduction.
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# Initial imports

import numpy as np

import torch

from captum.attr import IntegratedGradients

from captum.attr import LayerConductance

from captum.attr import NeuronConductance

import matplotlib

import matplotlib.pyplot as plt

%matplotlib inline

from scipy import stats

import pandas as pd

dataset_path = "https://raw.githubusercontent.com/pradmishra1/

PublicDatasets/main/titanic.csv"

titanic_data = pd.read_csv(dataset_path)

del titanic_data['Unnamed: 0']

del titanic_data['PassengerId']

titanic_data = pd.concat([titanic_data,

                          pd.get_dummies(titanic_data['Sex']),

                           pd.get_dummies(titanic_data['Embarked

'],prefix="embark"),

                           pd.get_dummies(titanic_data['Pclass'],

prefix="class")], axis=1)

titanic_data["Age"] = titanic_data["Age"].fillna(titanic_

data["Age"].mean())

titanic_data["Fare"] =  titanic_data["Fare"].fillna(titanic_

data["Fare"].mean())

titanic_data = titanic_data.drop(['Name','Ticket','Cabin','Sex',

'Embarked','Pclass'], axis=1)
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# Set random seed for reproducibility.

np.random.seed(707)

# Convert features and labels to numpy arrays.

labels = titanic_data["Survived"].to_numpy()

titanic_data = titanic_data.drop(['Survived'], axis=1)

feature_names = list(titanic_data.columns)

data = titanic_data.to_numpy()

# Separate training and test sets using

train_indices = np.random.choice(len(labels), 

int(0.7*len(labels)), replace=False)

test_indices = list(set(range(len(labels))) - set(train_

indices))

train_features = data[train_indices]

train_labels = labels[train_indices]

test_features = data[test_indices]

test_labels = labels[test_indices]

train_features.shape

(623, 12)

Now that the train and test datasets are ready, we can start writing the 

code for the model development using PyTorch.

Import torch

import torch.nn as nn

torch.manual_seed(1)  # Set seed for reproducibility.

Class TitanicSimpleNNModel(nn.Module):

    def __init__(self):

        super().__init__()

        self.linear1 = nn.Linear(12, 12)

        self.sigmoid1 = nn.Sigmoid()

        self.linear2 = nn.Linear(12, 8)
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        self.sigmoid2 = nn.Sigmoid()

        self.linear3 = nn.Linear(8, 2)

        self.softmax = nn.Softmax(dim=1)

    def forward(self, x):

        lin1_out = self.linear1(x)

        sigmoid_out1 = self.sigmoid1(lin1_out)

         sigmoid_out2 = self.sigmoid2(self.

linear2(sigmoid_out1))

        return self.softmax(self.linear3(sigmoid_out2))

net = TitanicSimpleNNModel()

criterion = nn.CrossEntropyLoss()

num_epochs = 200

optimizer = torch.optim.Adam(net.parameters(), lr=0.1)

input_tensor = torch.from_numpy(train_features).type(torch.

FloatTensor)

label_tensor = torch.from_numpy(train_labels)

The deep learning model configuration is done, so we can proceed 

with running epochs or iterations to reduce the errors.

For epoch in range(num_epochs):

  output = net(input_tensor)

  loss = criterion(output, label_tensor)

  optimizer.zero_grad()

  loss.backward()

  optimizer.step()

  if epoch % 20 == 0:

         print ('Epoch {}/{} => Loss: {:.2f}'.format(epoch+1, 

num_epochs, loss.item()))

torch.save(net.state_dict(), '/model.pt')
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Epoch 1/200 => Loss: 0.70

Epoch 21/200 => Loss: 0.55

Epoch 41/200 => Loss: 0.50

Epoch 61/200 => Loss: 0.49

Epoch 81/200 => Loss: 0.48

Epoch 101/200 => Loss: 0.49

Epoch 121/200 => Loss: 0.47

Epoch 141/200 => Loss: 0.47

Epoch 161/200 => Loss: 0.47

Epoch 181/200 => Loss: 0.47

out_probs = net(input_tensor).detach().numpy()

out_classes = np.argmax(out_probs, axis=1)

print("Train Accuracy:", sum(out_classes == train_labels) / 

len(train_labels))

Train Accuracy: 0.8523274478330658

test_input_tensor = torch.from_numpy(test_features).type(torch.

FloatTensor)

out_probs = net(test_input_tensor).detach().numpy()

out_classes = np.argmax(out_probs, axis=1)

print("Test Accuracy:", sum(out_classes == test_labels) / 

len(test_labels))

Test Accuracy: 0.832089552238806

The integrated gradient is extracted from the neural network model; 

this can be done using the attribute function.

ig = IntegratedGradients(net)

test_input_tensor.requires_grad_()

attr, delta = ig.attribute(test_input_tensor,target=1,  

return_convergence_delta=True)

attr = attr.detach().numpy()
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np.round(attr,2)

array([[-0.7 , 0.09, -0. , ..., 0. , 0. , -0.33], [-2.78, -0. , 

-0. , ..., 0. , 0. , -1.82], [-0.65, 0. , -0. , ..., 0. , 0. , 

-0.31], ..., [-0.47, -0. , -0. , ..., 0.71, 0. , -0. ], [-0.1 , 

-0. , -0. , ..., 0. , 0. , -0.1 ], [-0.7 , 0. , -0. , ..., 0. , 

0. , -0.28]])

The attr object contains the feature importance of the input features 

from the model.

importances = np.mean(attr, axis=0)

for i in range(len(feature_names)):

        print(feature_names[i], ": ", '%.3f'%(importances[i]))

Age :  -0.574

SibSp :  -0.010

Parch :  -0.026

Fare :  0.278

female :  0.101

male :  -0.460

embark_C :  0.042

embark_Q :  0.005

embark_S :  -0.021

class_1 :  0.067

class_2 :  0.090

class_3 :  -0.144

The LayerConductance helps us compute the neuron importance 

and combines the neuron activation by taking the partial derivative of the 

neuron with respect to the input and output. The conductance layer builds 

on the integrated gradients by looking at the flow of IG attribution.

cond = LayerConductance(net, net.sigmoid1)
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cond_vals = cond.attribute(test_input_tensor,target=1)

cond_vals = cond_vals.detach().numpy()

Average_Neuron_Importances = np.mean(cond_vals, axis=0)

Average_Neuron_Importances

array([ 0.03051018, -0.23244175, 0.04743345, 0.02102091, 

-0.08071412, -0.09040915, -0.13398956, -0.04666219, 0.03577907, 

-0.07206058, -0.15658873, 0.03491106], dtype=float32)

neuron_cond = NeuronConductance(net, net.sigmoid1)

neuron_cond_vals_10 = neuron_cond.attribute(test_input_tensor, 

neuron_selector=10, target=1)

neuron_cond_vals_0 = neuron_cond.attribute(test_input_tensor, 

neuron_selector=0, target=1)

# Average Feature Importances for Neuron 0

nn0 = neuron_cond_vals_0.mean(dim=0).detach().numpy()

np.round(nn0,3)

array([ 0.008, 0. , 0. , 0.028, 0. , -0.004, -0. , 0. , -0.001, 

-0. , 0. , -0. ], dtype=float32)

The average feature importance for neuron 0 can be replicated to any 

number of neurons by using a threshold. If the weight threshold exceeds a 

certain level, then the neuron attribution and average feature importance 

for that neuron can be derived.

 Conclusion
In this chapter, we looked two frameworks, SHAP and Captum, to explain 

a deep learning model developed either using Keras or using PyTorch. The 

more we parse the information using these libraries and take a smaller 

chunk of data, the more visibility we will get into how the model works, 

how the model makes prediction, and how the model makes an attribution 

to a local instance.
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To review, this book started with explaining linear supervised models 

for both regression and classification tasks, then explained nonlinear 

decision tree–based models, and then covered the ensemble models 

such as bagging, boosting, and stacking. Finally, we ended the book with 

explaining the times-series model, natural language processing–based text 

classification, and deep neural network–based models.
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