
Ego autem et domus

mea serviemus Domino.

DEEP TIME SERIES
FORECASTING
With PYTHON

An Intuitive Introduction to Deep Learn-
ing for Applied Time Series Modeling

Dr. N.D Lewis

Copyright © 2016 by N.D. Lewis

All rights reserved. No part of this publication may be reproduced, dis-
tributed, or transmitted in any form or by any means, including photo-
copying, recording, or other electronic or mechanical methods, without
the prior written permission of the author, except in the case of brief quo-
tations embodied in critical reviews and certain other noncommercial uses
permitted by copyright law. For permission requests, contact the author
at: www.AusCov.com.

Disclaimer: Although the author and publisher have made every effort to
ensure that the information in this book was correct at press time, the
author and publisher do not assume and hereby disclaim any liability to
any party for any loss, damage, or disruption caused by errors or omissions,
whether such errors or omissions result from negligence, accident, or any
other cause.

Ordering Information: Quantity sales. Special discounts are available on
quantity purchases by corporations, associations, and others. For details,
email: info@NigelDLewis.com

Image photography by Deanna Lewis with helpful assistance
from Naomi Lewis.

ISBN-13: 978-1540809087
ISBN-10: 1540809080

Contents

Acknowledgements iii

Preface viii

How to Get the Absolute Most Possible Benefit from this Book 1
Getting Python . 3
Learning Python . 3
Using Packages . 4
Additional Resources to Check Out . 5

1 The Characteristics of Time Series Data Simplified 7
Understanding the Data Generating Mechanism 7
Generating a Simple Time Series using Python 9
Randomness and Reproducibility . 12
The Importance of Temporal Order . 13
The Ultimate Goal . 14
For Additional Exploration . 15

2 Deep Neural Networks Explained 17
What is a Neural Network? . 17
The Role of Neuron . 18
Deep Learning in a Nutshell . 19
Generating Data for use with a Deep Neural Network 21
Exploring the Sample Data . 22
Translating Sample Data into a Suitable Format 25
A Super Easy Deep Neural Network Tool . 26
Assessing Model Performance . 28
Additional Resources to Check Out . 30

3 Deep Neural Networks for Time Series Forecasting the Easy Way 31
Getting the Data from the Internet . 31
Cleaning up Downloaded Spreadsheet Files 33
Understanding Activation Functions . 36
How to Scale the Input attributes . 39
Assessing Partial Autocorrelation . 42
A Neural Network Architecture for Time Series Forecasting 45
Additional Resources to Check Out . 49

i

4 A Simple Way to Incorporate Additional Attributes in Your Model 51
Working with Additional Attributes . 51
The Working of the Neuron Simplified . 54
How a Neural Network Learns . 56
Gradient Descent Clarified . 58
How to Easily Specify a Model . 59
Choosing a Learning Rate . 60
The Efficient Way to Run Your Model . 62
Additional Resources to Check Out . 66

5 The Simple Recurrent Neural Network 67
Why Use Keras? . 67
What is a Recurrent Neural Network? . 68
Gain Clarity on the Role of the Delay Units 71
Follow this Approach to Create Your Train and Test Sets 72
Parameter Sharing Clarified . 73
Understand Backpropagation Through Time 73
A Complete Intuitive Guide to Momentum 76
How to Benefit from Mini Batching . 78
Additional Resources to Check Out . 81

6 Elman Neural Networks 83
Prepare You Data for Easy Use . 84
How to Model a Complex Mathematical Relationship with No Knowledge . . 85
Use this Python Library for Rapid Results . 88
Exploring the Error Surface . 89
A Super Simple Way to Fit the Model . 91
Additional Resources to Check Out . 93

7 Jordan Neural Networks 95
The Fastest Path to Data Preparation . 96
A Straightforward Module for Jordan Neural Networks 97
Assessing Model Fit and Performance . 98
Additional Resources to Check Out . 100

8 Nonlinear Auto-regressive Network with Exogenous Inputs 103
What is a NARX Network? . 103
Spreadsheet Files Made Easy with Pandas . 105
Working with Macroeconomic Variables . 107
Python and Pandas Data Types . 111
A Tool for Rapid NARX Model Construction 113
How to Run the Model . 115
Additional Resources to Check Out . 117

9 Long Short-Term Memory Recurrent Neural Network 119
Cyclical Patterns in Time Series Data . 119
What is an LSTM? . 122
Efficiently Explore and Quickly Understand Data 123
The LSTM Memory Block in a Nutshell . 127
Straightforward Data Transformation for the Train and Test Sets 128
Clarify the Role of Gates . 130
Understand the Constant Error Carousel . 131
Specifying a LSTM Model the Easy Way . 132
Shuffling Examples to Improve Generalization 136
A Note on Vanishing Gradients . 138

Follow these Steps to Build a Stateful LSTM 139
Additional Resources to Check Out . 144

10 Gated Recurrent Unit 145
The Gated Recurrent Unit in a Nutshell . 145
A Simple Approach to Gated Recurrent Unit Construction 148
A Quick Recap . 150
How to Use Multiple Time Steps . 151
Additional Resources to Check Out . 154

11 Forecasting Multiple Outputs 155
Working with Zipped Files . 156
How to Work with Multiple Targets . 159
Creation of Hand Crafted Features . 161
Model Specification and Fit . 163
Additional Resources to Check Out . 166

12 Strategies to Build Superior Models 169
Revisiting the UK Unemployment Rate Economic Data 169
Limitations of the Sigmoid Activation Function 171
One Activation Function You Need to Add to Your Deep Learning Toolkit . . 172
Try This Simple Idea to Enhance Success . 176
A Simple Plan for Early Stopping . 180
Additional Resources to Check Out . 184

Index 189

Dedicated to Angela, wife, friend and mother

extraordinaire.

Acknowledgments

A special thank you to:

My wife Angela, for her patience and constant encouragement.

My daughters Deanna and Naomi, for being helpful, taking
hundreds of photographs for this book and my website.

And the readers of my earlier books who contacted me with
questions and suggestions.

iii

Master Deep Time Series Forecasting
with Python!
Deep Time Series Forecasting with Python takes you on
a gentle, fun and unhurried practical journey to creating deep
neural network models for time series forecasting with Python.
It uses plain language rather than mathematics; And is de-
signed for working professionals, office workers, economists,
business analysts and computer users who want to try deep
learning on their own time series data using Python.

NO EXPERIENCE REQUIRED: I’m assuming you never did
like linear algebra, don’t want to see things derived, dislike
complicated computer code, and you’re here because you want
to try deep learning time series forecasting models for yourself.

THIS BOOK IS FOR YOU IF YOU WANT:

• Explanations rather than mathematical derivation.

• Practical illustrations that use real data.

• Worked examples in Python you can easily follow and
immediately implement.

• Ideas you can actually use and try out with your own
data.

QUICK AND EASY: Using plain language, this book offers a
simple, intuitive, practical, non-mathematical, easy to follow
guide to the most successful ideas, outstanding techniques and
usable solutions available using Python. Examples are clearly
described and can be typed directly into Python as printed on
the page.

TAKE THE SHORTCUT: Deep Time Series Forecasting
with Python was written for people who want to get up to
speed as soon as possible. In this book you will learn how to:

Deep Time Series Forecasting with Python

• Unleash the power of Long Short-Term Memory Neural
Networks

• Develop hands on skills using the Gated Recurrent Unit
Neural Network.

• Design successful applications with Recurrent Neural
Networks.

• Deploy Nonlinear Auto-regressive Network with Exoge-
nous Inputs

• Adapt Deep Neural Networks for Time Series Forecast-
ing.

• Master strategies to build superior Time Series Models.

PRACTICAL, HANDS ON: Deep learning models are finding
their way into regular use by practical forecasters. Through
a simple to follow process you will learn how to build deep
time series forecasting models using Python. Once you have
mastered the process, it will be easy for you to translate your
knowledge into your own powerful applications.

GET STARTED TODAY! Everything you need to get started is
contained within this book. Deep Time series Forecasting
with Python is your very own hands on practical, tactical,
easy to follow guide to mastery.

Buy this book today and accelerate your progress!

vi

Other Books by N.D Lewis

• Deep Learning for Business with Python

• Deep Learning for Business with R

• Deep Learning Step by Step with Python

• Deep Learning Made Easy with R:

– Volume I: A Gentle Introduction for Data
Science

– Volume II: Practical Tools for Data
Science

– Volume III: Breakthrough Techniques to
Transform Performance

• Build Your Own Neural Network TODAY!

• 92 Applied Predictive Modeling Techniques in R

• 100 Statistical Tests in R

• Visualizing Complex Data Using R

• Learning from Data Made Easy with R

For further detail’s visit www.AusCov.com

vii

www.AusCov.com

Deep Time Series Forecasting with Python

Preface

If you are anything like me, you hate long prefaces. I don’t
care about the author’s background. Nor do I need a
lengthy overview of the history of what I am about to

learn. Just tell me what I am going to learn, and then teach
me how to do it. You are about to learn how to use a set of
modern neural network tools to forecast time series data using
Python. Here are the tools:

• Deep Neural Networks.

• Long Short-Term Memory Neural Network.

• Gated Recurrent Unit Neural Network.

• Simple Recurrent Neural Network.

• Elman Neural Network.

• Jordan Neural Network.

• Nonlinear Auto-regressive Network with Exogenous In-
puts.

• Working with Multiple Outputs.

• Strategies to Build Superior models.

Caution!
If you are looking for detailed mathematical derivations, lem-
mas, proofs or implementation tips, please do not purchase this
book. It contains none of those things.

You don’t need to know complex mathematics, algorithms
or object-oriented programming to use this text. It skips all
that stuff and concentrates on sharing code, examples and il-
lustrations that gets practical stuff done.

viii

Before you buy this book, ask yourself the following tough
questions. Are you willing to invest the time, and then work
through the examples and illustrations required to take your
knowledge to the next level? If the answer is yes, then by
all means click that buy button so I can purchase my next
cappuccino.

A Promise
No matter who you are, no matter where you are from, no
matter your background or schooling, you have the ability to
master the ideas outlined in this book. With the appropriate
software tool, a little persistence and the right guide, I person-
ally believe deep learning methods can be successfully used in
the hands of anyone who has a real interest.

When you are done with this book, you will be able to im-
plement one or more of the ideas I’ve talked about in your own
particular area of interest. You will be amazed at how quick
and easy the techniques are to develop and test. With only a
few different uses you will soon become a skilled practitioner.

I invite you therefore to put what you read in these pages
into action. To help you do that, I’ve created “21 Tips For
Data Science Success with Python”, it is yours for FREE.
Simply go to http: // www. AusCov. com and download it now.
It is my gift to you. It shares with you some of the very best
resources you can use to boost your productivity in Python.

Now, it’s your turn!

ix

http://www.AusCov.com

How to Get the Absolute
Most Possible Benefit
from this Book

On its own, this book won’t turn you into a deep learning
time series guru any more than a few dance lessons will
turn you into the principal dancer with the Royal Bal-

let in London. But if you’re a working professional, economist,
business analyst or just interested in trying out new machine
learning ideas, you will learn the basics of deep learning for
time series forecasting, and get to play with some cool tools.
Once you have mastered the basics, you will be able to use your
own data to effortlessly (and one hopes accurately) forecast the
future.

It’s no accident that the words simple, easy and gentle ap-
pear so often in this text. I have shelves filled with books
about time series analysis, statistics, computer science and
econometrics. Some are excellent, others are good, or at least
useful enough to keep. But they range from very long to the
very mathematical. I believe many working professionals want
something short, simple with practical examples that are easy
to follow and straightforward to implement. In short, a very
gentle intuitive introduction to deep learning neural networks
for applied time series modeling.

1

Deep Time Series Forecasting with Python

Also, almost all advice on machine learning for time series
forecasting comes from academics; this comes from a practi-
tioner. I have been a practitioner for most of my working
life. I enjoy boiling down complex ideas and techniques into
applied, simple and easy to understand language that works.
Why spend five hours ploughing through technical equations,
proofs and lemmas when the core idea can be explained in ten
minutes and deployed in fifteen?

I wrote this book because I don’t want you to spend your
time struggling with the mechanics of implementation or the-
oretical details. That’s why we have Ivy league (in the US)
or Russell Group (in the UK) professors. Even if you’ve never
attempted to forecast anything, you can easily make your com-
puter do the grunt work. This book will teach you how to apply
the very best Python tools to solve basic time series problems.

I want you to get the absolute most possible benefit from
this book in the minimum amount of time. You can achieve
this by typing in the examples, reading the reference material
and most importantly experimenting. This book will deliver
the most value to you if you do this. Successfully applying
neural networks requires work, patience, diligence and most
importantly experimentation and testing. By working through
the numerous examples and reading the references, you will
broaden your knowledge, deepen you intuitive understanding
and strengthen your practical skill set.

As implied by the title, this book is about understanding
and then hands use of neural networks for time series forecast-
ing and analysis; more precisely, it is an attempt to give you the
tools you need to build deep neural networks easily and quickly
using Python. The objective is to provide you the reader with
the necessary tools to do the job, and provide sufficient illus-
trations to make you think about genuine applications in your
own field of interest. I hope the process is not only beneficial
but enjoyable.

2

Getting Python
To use this book you will need to download a copy of Python.
It comes in two major versions - Python 2 and Python 3. Al-
though Python 3 was introduced several years ago, Python 2
has been around longer and remains the most popular version
used for Data Science. The programs in this book are writ-
ten to run on Python 2 and may not run correctly, if at all,
on Python 3. You can download a copy of Python 2 (such as
version as 2.7.11) at https://www.python.org/.

Alternative Distributions of Python
There are a large number of distributions of Python, many
Data Scientists use the Anaconda Python distribution (https:
//www.continuum.io/downloads). It comes prepackaged with
many of the core software modules used in data analysis and
statistical modeling. The PyPy (http://pypy.org/) variant
uses just-in-time compilation to accelerate code and therefore
runs deep learning code pretty quickly. For Windows users, the
WinPython (https://winpython.github.io/) is one of the
easiest ways to run Python, without the installation burden.

Learning Python
Python is a powerful programming language which is easy for
beginners to use and learn. If you have experience in any pro-
gramming language you can pick up Python very quickly.

If you are new to the language, or have not used it in a
while, refresh your memory with these free resources:

• The Python Tutorial - https://docs.python.org/2/
tutorial/

• Python For Beginners - https://www.python.org/
about/gettingstarted/

3

https://www.python.org/
https://www.continuum.io/downloads
https://www.continuum.io/downloads
http://pypy.org/
https://winpython.github.io/
https://docs.python.org/2/tutorial/
https://docs.python.org/2/tutorial/
https://www.python.org/about/gettingstarted/
https://www.python.org/about/gettingstarted/

Deep Time Series Forecasting with Python

• A Beginner’s Python Tutorial - https://en.wikibooks.
org/wiki/A_Beginner%27s_Python_Tutorial

• A interactive Python tutorial - http://www.
learnpython.org/

This book is a guide for beginners, not a reference manual.
The coding style is designed to make the Python scripts easier
to understand and simple to learn, rather than to illustrate
Pythonic style, or software design best practices.

NOTE... �

Visit the Python Software Foundation community
section. You will find the latest news, tips and
tricks at https://www.python.org/community/.

Using Packages
The efficient use of Python requires the use of software modules
called packages or libraries. Throughout this text we will use a
number of packages. If a package mentioned in the text is not
installed on your machine you need to download and install it.

For details on specific packages look at the Python Package
Index - a repository of packages for Python at https://pypi.
python.org/pypi.

Deep learning has a reputation as being difficult to learn
and complicated to implement. Fortunately, there are a grow-
ing number of high level neural network libraries that enable
people interested in using deep learning to quickly build and
test models without worrying about the technical details sur-
rounding floating point operations and linear algebra. We make
use of many of these libraries throughout this text.

4

https://en.wikibooks.org/wiki/A_Beginner%27s_Python_Tutorial
https://en.wikibooks.org/wiki/A_Beginner%27s_Python_Tutorial
http://www.learnpython.org/
http://www.learnpython.org/
https://www.python.org/community/
https://pypi.python.org/pypi
https://pypi.python.org/pypi

Additional Resources to Check Out
Data Science focused Python user groups are popping up ev-
erywhere. Look for one in your local town or city. Join it! Here
are a few resources to get you started:

• A great place to start connecting with the Python com-
munity is the Python Software Foundation’s community
website:https://www.python.org/community/

• Get in contact with local Python coders. Many have
regular meetings. Here are great places to search:

– http://www.meetup.com/topics/python/
– https://wiki.python.org/moin/

LocalUserGroups

• A global directory is listed at: https://wiki.python.
org/moin/LocalUserGroups.

• Keep in touch and up to date with useful information
in my free newsletter. It is focused on news, articles,
software, events, tools and jobs related to data science.
Sign up at www.AusCov.Com.

Also look at the following articles:

• Dhar, Vasant. "Data science and prediction." Communi-
cations of the ACM 56.12 (2013): 64-73.

• Provost, Foster, and Tom Fawcett. Data Science for Busi-
ness: What you need to know about data mining and
data-analytic thinking. " O’Reilly Media, Inc.", 2013.

• Schutt, Rachel, and Cathy O’Neil. Doing data science:
Straight talk from the frontline. " O’Reilly Media, Inc.",
2013.

• Behnel, Stefan, et al. "Cython: The best of both worlds."
Computing in Science & Engineering 13.2 (2011): 31-39.

5

https://www.python.org/community/
http://www.meetup.com/topics/python/
https://wiki.python.org/moin/LocalUserGroups
https://wiki.python.org/moin/LocalUserGroups
https://wiki.python.org/moin/LocalUserGroups
https://wiki.python.org/moin/LocalUserGroups
www.AusCov.Com

Deep Time Series Forecasting with Python

• Millman, K. Jarrod, and Michael Aivazis. "Python for
scientists and engineers." Computing in Science & Engi-
neering 13.2 (2011): 9-12.

NOTE... �

As you use the ideas in this book successfully in
your own area of expertise, write and let me know.
I’d love to hear from you. Email or visit www.
AusCov.com.

6

mailto: info@NigelDLewis.com
www.AusCov.com
www.AusCov.com

Chapter 1

The Characteristics of
Time Series Data
Simplified

Atime series is a discrete or continuous sequence of obser-
vations that depends on time. Time is an important
feature in natural processes such as air temperature,

pulse of the heart or waves crashing on a sandy beach. It is
also important in many business processes such the total units
of a newly released books sold in the first 30 days, or the num-
ber of calls received by a customer service center over a holiday
weekend.

Time is a natural element that is always present when data
is collected. Time series analysis involves working with time
based data in order to make predictions about the future. The
time period may be measured in years, seasons, months, days,
hours, minutes, seconds or any other suitable unit of time.

The Data Generating Mechanism
Time series data are the output of a “data generating process”.
As illustrated in Figure 1.1, at each point in time a new obser-

7

Deep Time Series Forecasting with Python

vation is generated. So, for example, at time t we might observe
an observation say y. We denote this by yt. At the next time
step, say t+ 1, we observe a new observation, which we denote
yt+1. The time step t, might be measured in seconds, hours,
days, week, months, years and so on. For example, stock mar-
ket volatility is calculated daily, and the unemployment rate
reported monthly.

Data Generation Process

yt+1

yt+2

yt+3

y0,…,yt-3,yt-3,yt-2, yt-1, yt

?

Time

Figure 1.1: Data generating mechanism for time series data

8

CHAPTER 1. THE CHARACTERISTICS OF TIME . . .

Create a Simple Time Series using
Python
Consider the simple data generation process:

yt = α + βyt−1 + εt, (1.1)

which tells us the observation today (time t) is calculated as the
sum of a constant α, and a proportion yesterday’s observation
βyt−1, plus a random error εt.

What does this series look like? Well, it clearly depends
on the values of the initial observation y0, the parameters β, α
and the error εt. Suppose, y0 = 1,β = 0.95, and α = −0.25,
you can generate some sample observations with the following
code:
import pandas as pd
import numpy as np
seed =2016
np.random.seed(seed)
y_0 = 1
alpha = -0.25
beta =0.95
y=pd.Series(y_0)
num =10
for i in range(num):

y_t = alpha +(beta*y_0)+ np.random.
uniform(-1, 1)

y=y.set_value(i,y_t)
y_0=y_t

Here is how to read the above code:

• The first two lines import the pandas and numpy li-
braries. These two libraries are the twin workhorses of
data science.

• The initial value of the series (y0) is stored in the Python
variable y_0.

9

Deep Time Series Forecasting with Python

• Equation parameters α, β are captured by alpha and
beta respectively.

• Random errors (ε) are generated by calling the
random.uniform method, and are constrained to lie be-
tween the value of -1 and +1.

• The code generates ten observation by setting (num=10)
and using a simple for loop.

NOTE... �

The examples in this text were developed us-
ing Numpy 1.11.1rc1, Pandas 0.18.1 with Python
2.7.11.

View the Simulated Time Series
You can view the time series observations using the print
statement:
print "Values of y are: \n",y
Values of y are:
0 1.000000
1 1.629219
2 1.864309
3 2.004397
4 1.578358
5 1.534571
6 0.657570
7 0.791785
8 0.996448
9 0.946840

Figure 1.2 plots the value of y for each time step, and Figure 1.3
plots the first 1000 observations.

10

CHAPTER 1. THE CHARACTERISTICS OF TIME . . .

0 1 2 3 4 5 6 7 8 9
Time Step

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

V
a
lu

e
 o

f
y

Figure 1.2: Simulated time Series

0 200 400 600 800 1000
Time Step

12

10

8

6

4

2

0

2

4

V
a
lu

e
 o

f
y

Figure 1.3: 1000 simulated time series observations

11

Deep Time Series Forecasting with Python

Randomness and Reproducibility
The np.random.seedmethod is used to make the random error
εt repeatable. To see this try:
np.random.seed (2016)
print "Seed = 2016 ", np.random.rand (3)

np.random.seed (1990)
print "Seed = 1990 ", np.random.rand (3)

np.random.seed (2016)
print "Seed = 2016 ", np.random.rand (3)
print "not reset = ", np.random.rand (3)

You will see the output:
Seed = 2016 [0 .89670536 0.73023921 0 .78327576]
Seed = 1990 [0 .72197726 0.07755006 0 .09762252]
Seed = 2016 [0 .89670536 0.73023921 0 .78327576]
not r e s e t = [0 .74165167 0.4620905 0 .64256513]

If the seed is set to a specific value, the random sequence will
be repeated exactly. For example, notice that when the seed
is 2016 the first observation takes the value 0.89670536. This
happens provided the seed is set before calling the random.rand
method.

If the random seed is not reset, different numbers appear
with every invocation. For example, on the first invocation
using Seed= 2016, the second random value is 0.73023921. On
the second invocation (not reset), the second random value
is 0.4620905.

NOTE... �

Throughout this text we set the random generator
seed to help with reproducibility of the results.

12

CHAPTER 1. THE CHARACTERISTICS OF TIME . . .

The Importance of Temporal Order
If you change the order of the observations in a time series,
you lose the underlying dynamics of the data generating mecha-
nism. Take for example, the series we generated using equation
1.1, suppose we reorder the data from smallest to largest:

print y . sor t_va lues ()
6 0 .657570
7 0.791785
9 0.946840
8 0.996448
0 1.000000
5 1.534571
4 1.578358
1 1.629219
2 1.864309
3 2.004397

The first column reports the original time step for which the y
value was observed. The values are now sorted by size, however
the inherent structure captured by the time dynamics are lost,
look at Figure 1.4.

Whether you are modeling the Dow-Jones Industrial Aver-
age or monthly Sunspot activity, changing the order of time
series observations will result in the loss of the underlying dy-
namics you are most interested in capturing.

13

Deep Time Series Forecasting with Python

0 1 2 3 4 5 6 7 8 9
Time Step

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

V
a
lu

e
 o

f
y

Figure 1.4: Ordered observations

The Ultimate Goal
If we fully understood the data generating mechanism, we could
perfectly predict the sequence of future observations. Alas, in
most cases, the data generating mechanism is unknown and we
predict a new observation, say ŷt. Our goal is to develop fore-
casting models which minimize the error between our foretasted
value ŷt and the observed value yt.

NOTE... �

Time-series data consists of sampled data points
taken over time from a generally unknown process
(see Figure 1.1). It has been called one of the top
ten challenging problems in predictive analytics.

14

CHAPTER 1. THE CHARACTERISTICS OF TIME . . .

For Additional Exploration
The pandas and numpy packages are the workhorse of data
analysis and modeling. The pandas library makes data ma-
nipulation and analysis a breeze. The numpy library provides
numerous mathematical functions. It is worth spending time
getting to know each package well:

• Visit the official Pandas site at http://pandas.pydata.
org/

• Visit the official NumPy site at http://www.numpy.org/

To help you on your journey review the following articles:

• Shukla, Xitij U., and Dinesh J. Parmar. "Python–A com-
prehensive yet free programming language for statisti-
cians." Journal of Statistics and Management Systems
19.2 (2016): 277-284.

• McKinney, Wes. "pandas: a foundational Python library
for data analysis and statistics." Python for High Perfor-
mance and Scientific Computing (2011): 1-9.

• Van Der Walt, Stefan, S. Chris Colbert, and Gael Varo-
quaux. "The NumPy array: a structure for efficient nu-
merical computation." Computing in Science & Engineer-
ing 13.2 (2011): 22-30.

• McKinney, Wes. "Data structures for statistical comput-
ing in python." Proceedings of the 9th Python in Science
Conference. Vol. 445. 2010.

• Oliphant, Travis E. A guide to NumPy. Vol. 1. USA:
Trelgol Publishing, 2006.

15

http://pandas.pydata.org/
http://pandas.pydata.org/
http://www.numpy.org/

Deep Time Series Forecasting with Python

16

Chapter 2

Deep Neural Networks
Explained

Neural networks can be used to help solve a wide variety
of problems. This is because in principle, they can
calculate any computable function. In practice, they

are especially useful for problems which are tolerant of some
error, have lots of historical or example data available, but to
which hard and fast rules cannot easily be applied.

What is a Neural Network?
A Neural network is constructed from a number of intercon-
nected nodes known as neurons, see Figure 2.1. These are usu-
ally arranged into layers. A typical feedforward neural network
will have at a minimum an input layer, a hidden layer and an
output layer. The input layer nodes correspond to the number
of features or attributes you wish to feed into the neural net-
work. These are akin to the covariates (independent variables)
you would use in a linear regression model. The number of
output nodes correspond to the number of items you wish to
predict or classify. The hidden layer nodes are generally used
to perform non-linear transformation on the original input at-

17

Deep Time Series Forecasting with Python

tributes.
In their simplest form, feed-forward neural networks prop-

agate attribute information through the network to make a
prediction, whose output is either continuous for regression or
discrete for classification.

Figure 2.1 illustrates a typical feed forward neural network
topology used to predict the age of a child. It has 2 input nodes,
1 hidden layer with 3 nodes, and 1 output node. The input
nodes feed the attributes (Height, Weight) into the network.
There is one input node for each attribute. The information is
fed forward to the hidden layer. In each node a mathematical
computation is performed which is then fed to the output node.
The output nodes calculate a weighted sum on this data to
predict child age. It is called a feed forward neural network
because the information flows forward through the network.

Input Layer Hidden Layer Output Layer

Height

Weight

Child Age

∑

∑

∑

∑

Figure 2.1: A basic neural network

The Role of Neuron
At the heart of an artificial neural network is a mathematical
node, unit or neuron. It is the basic processing element. The

18

CHAPTER 2. DEEP NEURAL NETWORKS . . .

input layer neurons receive incoming information which they
process via a mathematical function and then distribute to the
hidden layer neurons. This information is processed by the
hidden layer neurons and passed onto the output layer neurons.

Figure 2.2 illustrates a biological and artificial neuron. The
key here is that information is processed via an activation func-
tion. Each activation function emulates brain neurons in that
they are fired or not depending on the strength of the input
signal. The result of this processing is then weighted and dis-
tributed to the neurons in the next layer. In essence, neu-
rons activate each other via weighted sums. This ensures the
strength of the connection between two neurons is sized accord-
ing to the weight of the processed information.

∑

f =

Inputs

Processing Unit

Outputs

Biological Artificial

Figure 2.2: Biological and artificial neuron

Deep Learning in a Nutshell
There numerous types of deep learning model. In this text
we focus on deep neural networks constructed from multiply
hidden layers often called backpropagation neural networks.
Historically, the foundation of deep learning is mostly a way
of using backpropagation with gradient descent and a large
number of nodes and hidden layers. Indeed, such back prop-
agation neural networks were the first deep learning approach

19

Deep Time Series Forecasting with Python

to demonstrate widespread generality.
A deep neural network (DNN) consists of an input layer, an

output layer, and a number of hidden layers sandwiched in be-
tween. As shown in Figure 2.3, the hidden layers are connected
to the input layers and they combine and weight the input val-
ues to produce a new real valued number, which is then passed
to the output layer. The output layer makes a classification
or prediction decision using the values computed in the hidden
layers.

Figure 2.3: Feed forward neural network with 2 hidden layers

Deep multi-layer neural networks contain many levels of
nonlinearities which allow them to compactly represent highly
non-linear and/ or highly-varying functions. They are good at
identifying complex patterns in data and have been set work
to improve things like computer vision and natural language
processing, and to solve unstructured data challenges.

As with a single layer neural network, during learning the
weights of the connections between the layers are updated in
order to make the output value as close as possible to the target
output.

20

CHAPTER 2. DEEP NEURAL NETWORKS . . .

Generating Data for use with a Deep
Neural Network
Let’s build a DNN to approximate a function right now using
Python. We will build a DNN to approximate y = x2. First,
let’s import some basic packages. This is achieved using the
import keyword:
import numpy as np
import pandas as pd
import random
Let’s look at the code.

• The import keyword is used to import three packages -
numpy, pandas and random.

• The NumPy (numpy) package is a core package used for
scientific computing with Python. We will use it fre-
quently throughout this text. Notice we import the pack-
age and use the shorthand np to access its elements later
in the code. We do the same thing for the pandas pack-
age, referring to it with the shorthand pd.

• The pandas package is a library providing high-
performance, easy-to-use data structures and data anal-
ysis tools for the Python programming language. It is
another core package used in data science.

• We will use the random module to generate random num-
bers.

Next, we generate 50 values of x randomly and then set y = x2:
random.seed (2016)
sample_size =50
sample = pd.Series(random.sample(range

(-10000 ,10000), sample_size))
x=sample /10000
y=x**2

21

Deep Time Series Forecasting with Python

One of the nice things about Python is that it is easy to read.
The above code is a good example of this. Let’s take a detailed
look:

• The random.seed function is used to ensure you can re-
produce the exact random sample used in the text. This
is achieved by specifying a seed value, in this case 2016.

• The random.sample function is used to generate a ran-
dom sample of 50 observations, with the result stored as
a data type known as a Series. This is achieved via the
argument pd.Series(). Notice we use the shorthand pd
in place of pandas. A Series is a one-dimensional labeled
array. It can contain any data type (integers, strings,
floating point numbers, Python objects, etc.).

• The random sample is then scaled to lie between ±1, and
stored in the Python object x. Finally, the y object is
used to store the squared values of x.

NOTE... �

You can see the “type” of a Python object by using
the type argument. For example, to see the type
of sample:
type(sample)
<class’pandas.core.series.Series ’>

It is a pandas core type known as Series.

Exploring the Sample Data
It is a good idea to look at your data now and then, so let’s
take a peek at the first ten observations in x:

22

CHAPTER 2. DEEP NEURAL NETWORKS . . .

print x.head (10)

0 0.4758
1 -0.1026
2 0.7847
3 0.7506
4 -0.4870
5 0.3657
6 0.8647
7 -0.8361
8 -0.4067
9 -0.8568
dtype: float64

The first observations take a value of 0.4758, and the tenth
observation a value of -0.8568. Notice the output also reports
the numpy dtype, in this case float64. A numpy array contains
elements described by a dtype object.

Now, look at y:
print y.head (10)

0 0.226386
1 0.010527
2 0.615754
3 0.563400
4 0.237169
5 0.133736
6 0.747706
7 0.699063
8 0.165405
9 0.734106

The first observation takes a value of 0.226386 and the tenth
observation a value of 0.734106. A quick spot check reveals
that for the first observation (0.4758)2 = 0.226386, and for the
tenth observation (−0.8568)2 = 0.734106; so the numbers are
as expected with y equal to the square of x. A visual plot of

23

Deep Time Series Forecasting with Python

the simulated data is shown in Figure 2.4.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

y

x

Random observations

Figure 2.4: Plot of y = x2 simulated data

You can also use the describe() method to provide a quick
summary of your data. Let’s use this to examine x:
print x.describe ()

count 50.000000
mean -0.100928
std 0.534392
min -0.937000
25% -0.562275
50% -0.098400
75% 0.359750
max 0.864700

The describe() method provides details on the maximum,
minimum, number of observations and the quartiles of the sam-
ple. As expected x lies between ±1, with a maximum value of
0.8647 and a minimum value of -0.937.

24

CHAPTER 2. DEEP NEURAL NETWORKS . . .

Translating Sample Data into a Suit-
able Format
For this example, will use the neuralpy package. It is a ma-
chine learning library specializing in neural networks. Its in-
tuitive interface makes it easy for you to quickly start training
data and testing deep learning models.

In order to use this package, we need to put the data in a
suitable format. To do this we will create a Python object called
dataSet which will contain a list of the x and y observations.
An easy way to do this is via a while loop:
count = 0
dataSet = [([x.ix[count]],[y.ix[count]])]
count=1
while (count < sample_size):

print "Working on data item: ",
count

dataSet = (dataSet +[([x.ix[count
,0]],

[y.ix[count]])])
count = count + 1

Here is a quick breakdown of the above code:

• The count object is used to step through the loop, and
is incremented after each new x,y example is added to
dataSet.

• The .ix argument is used for indexing purposes and al-
lows us to step through each observation in x and y and
add it to dataSet.

While the model is running you should see something like this:
Working on data item: 1
Working on data item: 2
Working on data item: 3
. . .

25

Deep Time Series Forecasting with Python

Working on data item: 47
Working on data item: 48
Working on data item: 49

NOTE... �

Notice that dataSet is a list object:
type(dataSet)
<type ’list’>

This is the required type for the neuralpy pack-
age.

A Super Easy Deep Neural Network
Python Tool
We will fit a DNN with two hidden layers. The first hidden
layer will contain three neurons and the second hidden layer
will have seven neurons, see Figure 2.5. This can be specified
using the neuralpy.Network function:

import neuralpy
fit = neuralpy.Network(1, 3,7,1)

The maximum number of times the model iterates through
the learning algorithm is controlled by the epochs parameter,
we set this value to 100. The learning rate controls the size of
the step in the gradient descent algorithm (see page 58), it is
set equal to 1:

epochs = 100
learning_rate = 1

26

CHAPTER 2. DEEP NEURAL NETWORKS . . .

Now we are ready to fit the model using the fit.train
function:
print "fitting model right now"
fit.train(dataSet , epochs , learning_rate)

Notice we pass fit.train the sample followed by the maxi-
mum number of iterations, then the learning rate. The model
will take a short while to converge to a solution.

1

1

2

3

1

2

3

4

5

6

7

1x ො𝑦
Input attribute Prediction

First hidden layer

Second hidden layer

Figure 2.5: Structure of neuralpy neural network model.

27

Deep Time Series Forecasting with Python

NOTE... �

The neuralpy package only works with Python
2.7. Check your version of Python via:
import sys
print(sys.version)

Assessing Model Performance
Let’s see how good this model is at approximating the values in
y. The predicted values can be obtained using the fit.forward
function. We will use a simple while loop to store the predic-
tions in the Python object out, and a print function to display
the results to the screen:
count = 0
pred =[]
while (count < sample_size):

out=fit.forward(x[count])
print ("Obs: ",count+1,

" y = ",round(y[count],4),
" prediction = ",
round(pd.Series(out) ,4))

pred.append(out)
count = count + 1

As the model is running it will print the results to the screen.
For the first five observations you should see something like the
following:

28

CHAPTER 2. DEEP NEURAL NETWORKS . . .

Of course, the numbers displayed to your screen will differ
from those shown above, why? Because neuralpy sets the
weights and biases at random. For each run of the model
these values are different. Nevertheless, your overall results,
will likely be close to the actual observations.

The reported numbers indicate the DNN provides a good,
although not exact, approximation of the actual function. The
predicted y and x values for all observations are shown in
Figure 2.6. Judge for yourself, what do you think of the DNN
models accuracy? How similar were your results to those
shown? How might you improve the overall performance?

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

P
r
e

d
i
c

t
e

d

v
a

l
u

e

x

Figure 2.6: Predicted values and x using neuralpy

29

Deep Time Series Forecasting with Python

Additional Resources to Check Out
There is no shortage of Python neural network libraries.
The neuralpy package has been around for a while. We
use it to start with because it is easy to use, and
allows you to create neural networks quickly and with
very little knowledge. Additional documentation can be
found at http://pythonhosted.org/neuralpy/ and https:
//jon--lee.github.io/neuralpy/.

Be sure to look at the following articles:

• Lin, Henry W., and Max Tegmark. "Why does deep
and cheap learning work so well?." arXiv preprint
arXiv:1608.08225 (2016).

• Schmidhuber, Jürgen. "Deep learning in neural networks:
An overview." Neural Networks 61 (2015): 85-117.

30

http://pythonhosted.org/neuralpy/
https://jon--lee.github.io/neuralpy/
https://jon--lee.github.io/neuralpy/

Chapter 3

Deep Neural Networks
for Time Series
Forecasting the Easy Way

Now that you have a basic understanding of what a deep
neural network is. Let’s build a model to predict a real
world time series. Through the process, we will dig a

little deeper into the workings of neural networks, gain practical
experience in their use, and develop a forecasting model that
has considerable value for the residents and government officials
of the Republic of Singapore.

Getting the Data from the Internet
If you have lived in Singapore, you will know that anyone who
wants to register a new vehicle must first obtain a Certificate
of Entitlement (COE). It gives the holder the right to vehicle
ownership and access to the very limited road space in the
tropical island city-state. The number of COEs issued is limited
and they can only be obtained through an open bidding system.
Figure 3.1 displays the historical time series of the COE price.

31

Deep Time Series Forecasting with Python

1992 1994 1996 1998 2000 2002 2004 2006
Date

0

20000

40000

60000

80000

100000

120000

S
in

g
a
p
o
re

a
n
 d

o
lla

rs
 (

$
)

Figure 3.1: Certificate of Entitlement Price

A historical sample of the COE data can be downloaded
from the internet:
import numpy as np
import pandas as pd
import urllib
url="https :// goo.gl/WymYzd"
loc= "C:\\ Data\\COE.xls"
urllib.urlretrieve(url , loc)

The first three lines import the required Python libraries. The
urllib module fetches data from the World Wide Web; and
the object url contains the location of the historical data (as
a Google URL Shortener address). You could also specify the
full website address using:
url="http :// ww2.amstat.org/publications/jse

/datasets/COE.xls"

32

CHAPTER 3. DEEP NEURAL NETWORKS FOR . . .

The object loc contains the location to store the downloaded
file. You will need to set this to your preferred location. The
downloaded file is called COE.XLS and is stored on the C: drive
in a directory called Data.

Cleaning up Downloaded Spreadsheet
Files
The downloaded file has the XLS extension signifying the Mi-
crosoft Excel file format. It can be processed using the pandas
ExcelFile method:
Excel_file = pd.ExcelFile(loc)

The code imports the excel file into the Python object
Excel_file.

NOTE... �

You may need to install the package xlrd. You
may be able to do this via pip i.e using something
like:
pip install xlrd

Worksheet Names
To process the data further we need to know the worksheet
names associated with the spreadsheet file:
print Excel_file.sheet_names
[u’COE data’]

The spreadsheet contains one sheet called COE data. Let’s load
the data into a Dataframe and view a summary of the infor-
mation it contains:

33

Deep Time Series Forecasting with Python

spreadsheet = Excel_file.parse(’COE data’)

print spreadsheet.info()

<class ’pandas.core.frame.DataFrame ’>
RangeIndex: 265 entries , 0 to 264
Data columns (total 6 columns):
DATE 265 non -null datetime64[ns]
COE$ 265 non -null float64
COE$_1 265 non -null float64
#Bids 265 non -null int64
Quota 265 non -null int64
Open? 265 non -null int64

We see the spreadsheet contains six columns with 265 rows
(entries). The first contains the date of the COE auction, and
the remaining columns the other five variables.

The variable COE$ contains the Certificate of Entitlement
historical price. We will use it as our target variable and store
it in an object called data:
data=spreadsheet[’COE$’]
print data.head()

View data Values
Look at the first few values of the object data using the head
method:
print data.head()

0 7400.0
1 11100.0
2 5002.0
3 3170.0
4 3410.0

34

CHAPTER 3. DEEP NEURAL NETWORKS FOR . . .

It appears that the first COE price (back in August 1990) was
$7,400 (row 0), and the second price considerably higher at
$11,100. The individuals who brought at this price got a rough
deal, because the price dropped to around $5,000 and then less
than $3,200 over the next few months. I’d be “kicking myself”
if I’d paid $11,000 for something that trades at more than a
50% discount a month later. My guess is those who brought at
$11,000 were probably too rich to care!

Adjusting Dates
Take another look at some of the dates in the spreadsheet:
print (spreadsheet[’DATE’][193:204])

193 2004 -02 -01
194 2002 -02 -15
195 2004 -03 -01
196 2004 -03 -15
197 2004 -04 -01
198 2002 -04 -15
199 2004 -05 -01
200 2004 -05 -15
201 2004 -06 -01
202 2002 -06 -15
203 2004 -07 -01

Did you notice the error for 15th February, 15th April and 15th
June? All are reported as the year 2002; they should say 2004.
This quite is a common type of coding error. It won’t directly
impact our immediate analysis, but let’s correct it anyway:
spreadshee t . set_value (194 , ’DATE’ , ’ 2004−02−15 ’)
spreadshee t . set_value (198 , ’DATE’ , ’ 2004−04−15 ’)
spreadshee t . set_value (202 , ’DATE’ , ’ 2004−06−15 ’)

As a check, print out the dates again:
print (spreadsheet[’DATE’][193:204])

35

Deep Time Series Forecasting with Python

193 2004 -02 -01
194 2004 -02 -15
195 2004 -03 -01
196 2004 -03 -15
197 2004 -04 -01
198 2004 -04 -15
199 2004 -05 -01
200 2004 -05 -15
201 2004 -06 -01
202 2004 -06 -15
203 2004 -07 -01
Name: DATE , dtype: datetime64[ns]

Saving Data
Let’s save the file for later use. In this case as a comma-
separated values (CSV) file. This is straightforward with the
to_csv method. First, determine where you want to store the
data. In this example, we use the object loc to store the loca-
tion - on the C drive in the directory called Data. Second, call
the to_csv method:
loc= "C:\\ Data\\COE.csv"
spreadsheet.to_csv(loc)

Understanding Activation Functions
Each neuron contains an activation function (see Figure 3.2)
and a threshold value. The threshold value is the minimum
value that an input must have to activate the neuron. The
activation function is applied and the output passed to the
next neuron(s) in the network.

An activation function is designed to limit the output of the
neuron, usually to values between 0 to 1, or -1 to +1. In most
cases the same activation function is used for every neuron in a

36

CHAPTER 3. DEEP NEURAL NETWORKS FOR . . .

network. Almost any nonlinear function does the job, although
for the stochastic gradient descent algorithm (see page 59) it
must be differentiable and it helps if the function is bounded.

(a) Sign (b) Semi-linear (c) Sigmoid

Figure 3.2: Three activation functions

NOTE... �

Activation functions for the hidden layer nodes are
needed to introduce non linearity into the network.

The Fundamental Task of the Neuron
The task of the neuron is to perform a weighted sum of input
signals and apply an activation function before passing the out-
put to the next layer. So, we see that the input layer passes the
data to the first hidden layer. The hidden layer neurons per-
form the summation on the information passed to them from

37

Deep Time Series Forecasting with Python

the input layer neurons; and the output layer neurons perform
the summation on the weighted information passed to them
from the hidden layer neurons.

Sigmoid Activation Function
The sigmoid (or logistic) function is a popular choice. It is
an “S” shaped differentiable activation function. It is shown
in Figure 3.3 where parameter c is a constant taking the value
1.5.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-6 -4 -2 0 2 4 6

f(u)

u

C = 1.5

Figure 3.3: The sigmoid function with c = 1.5

The sigmoid function takes a real-valued number and
“squashes” it into a range between 0 and 1. In particular,
large negative numbers become 0 and large positive numbers
become 1. It is given by:

f (u) = 1
1 + exp (−cu)

It gained popularity partly because the output of the function
can be interpreted as the probability of the artificial neuron
“firing”.

38

CHAPTER 3. DEEP NEURAL NETWORKS FOR . . .

Computational Cost
The sigmoid function is popular with basic neural networks
because it can be easily differentiated and therefore reduces
the computational cost during training. It turns out that:

∂f(u)
∂u

= f(u) (1 − f(u))

So we see that the derivative ∂f(u)
∂u

is simply the logistic function
f(u) multiplied by 1 minus f(u). This derivative is used to
learn the weight vectors via an algorithm known as stochastic
gradient descent. The key thing to know is that because of this
property the sigmoid function turns out to be very convenient
for calculation of the gradients used in neural network learning.

NOTE... �

In order to carry out gradient descent (see page 58)
the activation function needs to be differentiable.

How to Scale the Input attributes
Deep neural networks are sensitive to the scale of the input
data, especially when the sigmoid (see page 38) or tanh (see
page 44) activation functions are used. It is good practice to
re-scale the data to the range -1 to +1 or 0 to 1. This can be
achieved via the MinMaxScaler method in the sklearn mod-
ule:
x=data
from sklearn import preprocessing
scaler = preprocessing.MinMaxScaler(

feature_range =(0, 1))
The first line transfers the price data to our attribute variable
x, then the preprocessing module is loaded and MinMaxScaler

39

Deep Time Series Forecasting with Python

used with the feature_range set to scale the attributes to the
0 to 1 range. The object scaler, contains the instructions
required to scale the data. To see this type:
print scaler
MinMaxScaler(copy=True , feature_range =(0,

1))

This informs us that scaler will scale the data into the 0,1
range. Note that copy=True is the default setting. If the input
is already a numpy array you can set it to False to perform in
place row normalization and avoid a copy. However, we set it
to True because x (and data) are Pandas Series:
print type(x)
<class ’pandas.core.series.Series ’>

Pandas is great for data manipulation, but for our numerical
analysis we need to use a numpy array.

Here is how to transform x into a numpy array (format
accepted by the deep neural network model, see page 45):
x = np.array(x).reshape ((len(x),))

Now, check the type of x:
print type(x)
<type ’numpy.ndarray ’>

Whoopee! It is now a numpy ndarray.

Log Transform
When working with time series that always takes a positive
value, I usually like to log transform the data. I guess this
comes from my days building econometric models where ap-
plying a log transformation helps normalize the data. Anyway,
here is how to do that:
x=np.log(x)

40

CHAPTER 3. DEEP NEURAL NETWORKS FOR . . .

A Note on Data Shape
Sample data is stored as an array. The function shape returns
the shape of an array. For example, to see the shape of x:
print x.shape
(265,)

This informs us that x is a 1 dimensional array with 265 rows
(examples).

To scale x to lie in the [0,1] range, we pass it to the
fit_transform function with the instructions contained in
scaler. However, we need to pass it as a two dimensional
array. The reshape function is an easy way to achieve this:
x=x.reshape (-1,1)
print x.shape
(265, 1)

The shape is now described by a pair of integers where the
numbers denote the lengths of the corresponding array dimen-
sion.

Scale x

We are ready to scale the data in x. Here is how to do this in
one line:
x = scaler.fit_transform(x)

The function fit_transform scales the values to the 0-1 range.
Now, we convert the scaled value of x back to its original shape:
x=x.reshape (-1)
print x.shape
(265,)

We better check the data are scaled appropriately. A simple
way to do this is to look at the maximum and minimum values
of x:

41

Deep Time Series Forecasting with Python

print(round(x.min() ,2))
0.0

print(round(x.max() ,2))
1.0

Yep, all looks good.

Assessing Partial Autocorrelation
Now that the data is appropriately scaled, we need to deter-
mine how many past observations to include in our model. A
simple way to do this is to use partial autocorrelations. The
partial autocorrelation function (PACF) measures directly how
an observation is correlated with an observation n time steps
apart.

A partial autocorrelation is the amount of correlation be-
tween an observation xt and a lag of itself (say xt−k) that is not
explained by correlations of the observations in between. For
example, if xt is a time-series observation measured at time t,
then the partial correlation between xt and xt−3 is the amount
of correlation between xt and xt−3 that is not explained by their
common correlations with xt−1 and xt−2.

Working the statsmodels library
The statsmodels library contains the function pacf. Here
is how to use it to calculate the partial autocorrelations for 5
lags of x:
from s ta t smode l s . t sa . s t a t t o o l s import pacf
x_pacf=pacf (x , n lags=5, method=’ o l s ’)

The object x_pacf contains the actual partial autocorre-
lations. Just like regular correlations they range between -1
to +1. Where +1 indicates a strong positive association, -1

42

CHAPTER 3. DEEP NEURAL NETWORKS FOR . . .

indicates a strong negative association, and 0 signifies no asso-
ciation.

Use the print statement to look at the values:
print x_pacf

[1 . 0 .95969034 −0.27093837 0.22144024
−0.04729577 0 .07360662]

The first value is 1 because it represents the correlation of x_t
with itself. The second partial correlation takes the value of
approximately 0.96, and indicates that xt and xt−1 are highly
correlated. This might be expected, as it is reasonable to as-
sume there is some relationship between today’s COE price and
the price yesterday. However, the third partial autocorrelation
is moderately negative, and the remaining values are rather
small.

0 5 10 15 20 25 30 35 40
0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Figure 3.4: Partial autocorrelations

43

Deep Time Series Forecasting with Python

Figure 3.4 plots the partial autocorrelations for 40 lags
alongside an approximate 95% statistical confidence interval
(dotted gray line). It appears observations past one time lag
have little association with the current COE price.

NOTE... �

The PACF measures the correlation between xt

and xt−k by removing the intervening correlations.

Tanh Activation Function
The Tanh activation function is a popular alternative to the
sigmoid function. It takes the form:

f(u) = tanh (cu)

Like the sigmoid (logistic) activation function, the Tanh func-
tion is also sigmoidal (“s”-shaped), but produces output in the
range −1 to +1. Since it is essentially a scaled sigmoid func-
tion, the Tanh function shares many of the same properties.
However, because the output space is broader ([-1,+1] versus
sigmoid range of [0,+1]), it is sometimes more effective for mod-
eling complex nonlinear relations.

As shown in Figure 3.5, unlike the sigmoid function, the
Tanh is symmetric around zero - only zero-valued inputs are
mapped to near-zero outputs. In addition, strongly negative
inputs will map to negative outputs. These properties make
the network less likely to get “stuck” during training.

44

CHAPTER 3. DEEP NEURAL NETWORKS FOR . . .

u

C = 1.5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-6 -4 -2 0 2 4 6

f(u)

Figure 3.5: Hyperbolic Tangent Activation Function

Despite all the factors in favor of Tanh, in practice it is not
a forgone conclusion that it will be a better choice than the
sigmoid activation function. The best we can do is experiment.

A Neural Network Architecture for
Time Series Forecasting
The nnet-ts library provides a neural network architecture
designed explicitly for time series forecasting. The goal is to
develop a model that can forecast the next COE price to within
an accuracy of ±$1,500. We refer to this range as the prediction
comfort interval (CI).

The nnet-ts package relies heavily on numpy, scipy,
pandas, theano and keras libraries. Be sure to check their
repositories and install them first. Then fetch the package
from https://pypi.python.org/ using something along the
lines of:
pip install nnet -ts

45

https://pypi.python.org/

Deep Time Series Forecasting with Python

NOTE... �

The analysis in this section was carried out using
nnet-ts 1.0.

Import nnet_ts

The model predicts next months COE price given this months
COE price. This is called a one step ahead forecast. Let’s
calculate 12 one step ahead forecasts. A while loop will be
needed to achieve this. But first, load the required package
and set up the initial variables:
from nnet_ts import ∗
count = 0
ahead =12
pred =[]

The variable count will be used to iterate through the data.
Since 12 one step ahead forecasts are to be calculated, the
parameter ahead is set to equal 12. The variable pred will
store each of the 12 one step ahead predictions.

NOTE... �

Python coders generally discourages the use of
syntax such as “import *” because it can result
in namespace collisions. Limit use to ad-hoc tests
or situations where it is explicitly required by a
package.

The while Loop
Here is while loop:
while (count < ahead) :

46

CHAPTER 3. DEEP NEURAL NETWORKS FOR . . .

end =len (x)−ahead+count
np . random . seed (2016)

f i t 1 = TimeSeriesNnet (hidden_layers =
[7 , 3] ,

a c t i va t i on_ func t i on s = [" tanh " , " tanh "])

f i t 1 . f i t (x [0 : end] , l ag = 1 , epochs = 100)

out=f i t 1 . predict_ahead (n_ahead = 1)

print ("Obs : " , count+1, " x = " ,
round(x [count] , 4) , " p r ed i c t i o n = " ,
round(pd . S e r i e s (out) ,4))

pred . append (out)

count = count + 1
Let’s spend a few moments walking through this code.
• The model is called fit1 and contains two hidden layers.

The first hidden layer contains 7 nodes, and the second
hidden layer contains 3 nodes. Both layers use the tanh
activation function.

• On each iteration the model is fit to the data with a one
time step lag via the fit function.

• This is followed by the predict method used to calcu-
late the forecast. The parameter n_ahead is set to 1 to
generate a 1 time step ahead forecast.

• Finally, the forecast at each iteration, stored in the object
out, is appended to pred.

Realized and Predicted Values
As the code runs you will see the predicted values alongside the
realized (normalized) observations:

47

Deep Time Series Forecasting with Python

(’Obs : ’ , 1 , ’ x = ’ , 0 .4303 , ’ p r ed i c t i on = ’ , 0 . 5147)
(’Obs : ’ , 2 , ’ x = ’ , 0 .5174 , ’ p r ed i c t i on = ’ , 0 . 5266)
(’Obs : ’ , 3 , ’ x = ’ , 0 .3462 , ’ p r ed i c t i on = ’ , 0 . 547)
(’Obs : ’ , 4 , ’ x = ’ , 0 .2482 , ’ p r ed i c t i on = ’ , 0 . 562)
(’Obs : ’ , 5 , ’ x = ’ , 0 .2639 , ’ p r ed i c t i on = ’ , 0 . 5859)
(’Obs : ’ , 6 , ’ x = ’ , 0 .1979 , ’ p r ed i c t i on = ’ , 0 . 5613)
(’Obs : ’ , 7 , ’ x = ’ , 0 . 0 , ’ p r ed i c t i o n = ’ , 0 . 5462)
(’Obs : ’ , 8 , ’ x = ’ , 0 .1064 , ’ p r ed i c t i on = ’ , 0 . 5525)
(’Obs : ’ , 9 , ’ x = ’ , 0 .3875 , ’ p r ed i c t i on = ’ , 0 . 5579)
(’Obs : ’ , 10 , ’ x = ’ , 0 .4726 , ’ p r ed i c t i o n = ’ , 0 . 5832)
(’Obs : ’ , 11 , ’ x = ’ , 0 .5188 , ’ p r ed i c t i o n = ’ , 0 . 5691)
(’Obs : ’ , 12 , ’ x = ’ , 0 .5406 , ’ p r ed i c t i o n = ’ , 0 . 5575)

The predictions shown are the one time step ahead forecasts
of the normalized COE price series stored in the Python ob-
ject x. To convert them back to their original scale use the
inverse_transform function and then take the exponent:
pred1 = s c a l e r . inverse_trans form (pred)
pred1=np . exp (pred1)
print np . round(pred1 , 1)

[[10964 .]
[1 1585 . 5]
[1 2741 . 5]
[1 3661 . 9]
[15267 .]
[1 3617 . 9]
[1 2694 . 4]
[1 3073 . 2]
[1 3401 . 3]
[1 5080 . 6]
[1 4124 . 5]
[1 3 3 7 7 . 2]]
Figure 3.6 plots the observed and forecast values alongside

the tolerance range (dotted line). The actual observed values
lie within the required CI; and the dynamics of the predictions
capture some of the underlying dynamics of the original price
series.

However, the match is not an exact fit and could, with some
tweaking of the model, be improved. Nevertheless, you have
constructed in a matter of moments a deep neural network

48

CHAPTER 3. DEEP NEURAL NETWORKS FOR . . .

that adequately captures the dynamics of a rather complex
time series of prices. With a little experimentation and further
testing, you might even offer to sell the model to the COE
seekers of Singapore!

0 2 4 6 8 10 12
Prediction Period

9000

10000

11000

12000

13000

14000

15000

16000

17000

S
in

g
a
p
o
re

a
n
 d

o
ll
a
rs

 (
$

)

Original series
Prediction

Figure 3.6: Observed and predicted values for COE

Additional Resources to Check Out
• Join a deep learning meetup group, they are springing up

across the entire globe.

49

https://www.meetup.com/

Deep Time Series Forecasting with Python

• Milton Boyd’s article on designing neural networks for
time series forecasting is a classic. See Kaastra, Iebel-
ing, and Milton Boyd. "Designing a neural network for
forecasting financial and economic time series." Neuro-
computing 10.3 (1996): 215-236.

• Also, look at Frank, Ray J., Neil Davey, and Stephen
P. Hunt. "Time series prediction and neural networks."
Journal of intelligent and robotic systems 31.1-3 (2001):
91-103.

50

Chapter 4

A Simple Way to
Incorporate Additional
Attributes in Your Model

Tradditional time series analysis regresses the current
observation on past values of itself. However, in many
circumstances we may have additional explanatory at-

tributes that are measured simultaneously. For example, an
Economist might be interested in forecasting the rate of un-
employment. Many potentially explanatory measures of eco-
nomic activity are recorded at regular time intervals alongside
the unemployment rate. Examples include interest rates, con-
sumer price inflation, and measures of economic growth such as
Gross Domestic Product. In this chapter, we’ll look at how to
include additional attributes into a deep neural network time
series forecasting model.

Working with Additional Attributes
Let’s continue with the COE data introduced in chapter 3.
First, import the required libraries and open the saved csv file:
import numpy as np

51

Deep Time Series Forecasting with Python

import pandas as pd
l o c= "C:\\Data\\COE. csv "
temp = pd . read_csv (l o c)
The object temp contains the contents of the file. Let’s look at
the first few observations:
print temp . head ()

Unnamed : 0 DATE COE$ COE$_1 #Bids Quota Open?
0 0 1990−08−01 7 4 0 0 . 0 7 7 5 0 . 0 656 472 0
1 1 1990−09−01 11100.0 7 4 0 0 . 0 1462 468 0
2 2 1990−10−01 5 0 0 2 . 0 11100.0 633 472 0
3 3 1990−11−01 3 1 7 0 . 0 5 0 0 2 . 0 952 511 0
4 4 1990−12−01 3 4 1 0 . 0 3 1 7 0 . 0 919 471 0

The data has an extra index column which will need to be
removed. We don’t need the date column either, so let’s remove
that too:
data= temp . drop (temp . columns [[0 , 1]] , a x i s =1)
print data . head ()

COE$ COE$_1 #Bids Quota Open?
0 7400 .0 7750 .0 656 472 0
1 11100.0 7400 .0 1462 468 0
2 5002 .0 11100.0 633 472 0
3 3170 .0 5002 .0 952 511 0
4 3410 .0 3170 .0 919 471 0

The variable COE$_1 is the one month lagged COE price, #Bids
is the number of resident bids for a COE, Quota records the
available certificates. The variable Open? refers to whether an
open-bid or closed-bid format was used.

NOTE... �

From August 1990 to June 2001, the COE auction
used a closed-bid format. In this process bids were
taken in secret and only disclosed at the end of the
auction. From April 2003 onwards, the auction
exclusively followed an open-bid format.

52

CHAPTER 4. A SIMPLE WAY TO INCORPORATE . . .

Data Processing
The target variable is COE$ which we store in the object y. In
addition, we will use the variables COE$_1, #Bids, Quota and
Open? as our additional attribute set. These are stored in the
object x:
y=data [’COE$ ’]
x=data . drop (data . columns [[0 , 4]] , a x i s =1)
x=x . apply (np . l og)
x=pd . concat ([x , data [’Open? ’]] , a x i s=1)
The second line removes COE$ (column 0) and Open? (column
4) via the drop method; and stores COE$_1, #Bids and Quota
in x. Since Open? is binary, it is added back to x via the concat
method after the log transformation of the numerical variables.

Look at the transformed attributes:
print x . head ()

COE$_1 #Bids Quota Open?
0 8.955448 6.486161 6.156979 0
1 8.909235 7.287561 6.148468 0
2 9.314700 6.450470 6.156979 0
3 8.517593 6.858565 6.236370 0
4 8.061487 6.823286 6.154858 0

print x . t a i l ()
COE$_1 #Bids Quota Open?

260 9.441849 7.660114 7.215240 1
261 9.557894 7.591357 7.160069 1
262 9.581973 7.596392 7.156956 1
263 9.593492 7.443078 7.162397 1
264 9.510371 7.529943 7.173192 1

Scaling Attributes and Target
The next step is to scale the attributes into a suitable range
for input into the deep neural network model:

53

Deep Time Series Forecasting with Python

from s k l e a rn import pr ep ro c e s s i ng
sca ler_x = prep ro c e s s i ng . MinMaxScaler (

feature_range =(0 , 1))
x = np . array (x) . reshape ((len (x) ,4))
x = sca ler_x . f i t_t rans fo rm (x)
The attributes are scaled to lie in the 0 to 1 range. Notice that
x is reshaped by number of attributes into a numpy ndarray.
Hence the value “4” refers to the number of attributes.

A similar method is used to scale the target variable:
sca ler_y = prep ro c e s s i ng . MinMaxScaler (

feature_range =(0 , 1))
y = np . array (y) . reshape ((len (y) , 1))
y=np . l og (y)
y = sca ler_y . f i t_t rans fo rm (y)

The pyneurgen Module
The pyneurgenmodule provides libraries for use in Python pro-
grams to build neural networks and genetic algorithms and/or
genetic programming. We will use this package to build our
model. It requires the target and attributes be supplied as a
list:
y=y . t o l i s t ()
x=x . t o l i s t ()
We now have our target y, and attributes x, in an appropriate
format.

The Working of the Neuron Simplified
Figure 4.1 illustrate the workings of an individual neuron.
Given a sample of input attributes {x1,...,xn} a weight wij is
associated with each connection into the neuron; and the neu-
ron then sums all inputs according to:

54

CHAPTER 4. A SIMPLE WAY TO INCORPORATE . . .

f(u) =
n∑

i=1
wijxj + bj

The parameter bj is known as the bias and is similar to the
intercept in a linear regression model. It allows the network to
shift the activation function “upwards” or “downwards”. This
type of flexibility is important for successful machine learning.

f∑..
.

Summation Activation

In
p

u
ts Output

Figure 4.1: Artificial neuron

The size of a neural network is often measured by the num-
ber of parameters required to be estimated. The network in
Figure 2.1 has [2 × 3] + [3 × 1] = 9 weights and 3 + 1 = 4 bi-
ases, for a total of 13 learnable parameters. This is a lot of
parameters relative to a traditional statistical model.

NOTE... �

In general, the more parameters, the more data is
required to obtain reliable predictions.

55

Deep Time Series Forecasting with Python

How a Neural Network Learns
For any given set of input data and neural network weights,
there is an associated magnitude of error, which is measured
by the error function (also known as the cost function). This is
our measure of "how well" the neural network performed with
respect to its given training sample and the expected output.
The goal is to find a set of weights that minimizes the mismatch
between network outputs and actual target values.

The typical neural network learning algorithm applies error
propagation from outputs to inputs, and gradually fine tunes
the network weights to minimize the sum of error. The learn-
ing cycle is illustrated in Figure 4.2. Each cycle through this
learning process is called an epoch.

Forward propagation
(of information)

Back propagation
(of error)

Calculate prediction error
Update Weights and Biases

Figure 4.2: Neural network learning cycle

Backpropagation is the most widely used learning algo-
rithm. It takes the output of the neural network and compares
it to the desired value. Then it calculates how far the output
was from the desired value. This is a measure of error. Next it
calculates the error associated with each neuron from the pre-
ceding layer. This process is repeated until the input layer is

56

CHAPTER 4. A SIMPLE WAY TO INCORPORATE . . .

reached. Since the error is propagated backwards (from output
to input attributes) through the network to adjust the weights
and biases, the approach is known as backpropagation.

Step by Step Explanation
The basic neural network learning approach works by comput-
ing the error of the output of the neural network for a given
sample, propagating the error backwards through the network
while updating the weight vectors in an attempt to reduce the
error. The algorithm consists of the following steps.

• Step 1:- Initialization of the network: The initial
values of the weights need to be determined. A neural
network is generally initialized with random weights.

• Step 2:- Feed Forward: Information is passed for-
ward through the network from input to hidden and
output layer via node activation functions and weights.
The activation function is (usually) a sigmoidal (i.e.,
bounded above and below, but differentiable) function
of a weighted sum of the nodes inputs.

• Step 3:- Error assessment: Assess whether the error
is sufficiently small to satisfy requirements or whether the
number of iterations has reached a predetermined limit.
If either condition is met, then the training ends. Other-
wise, the iterative learning process continues.

• Step 4:- Propagate: The error at the output layer is
used to re-modify the weights. The algorithm propagates
the error backwards through the network and computes
the gradient of the change in error with respect to changes
in the weight values.

• Step 5:- Adjust: Make adjustments to the weights us-
ing the gradients of change with the goal of reducing the
error. The weights and biases of each neuron are adjusted

57

Deep Time Series Forecasting with Python

by a factor based on the derivative of the activation func-
tion, the differences between the network output and the
actual target outcome and the neuron outputs. Through
this process the network “learns”.

Gradient Descent Clarified
Gradient descent is one of the most popular algorithms to per-
form optimization in a neural network. In general, we want
to find the weights and biases with minimize the error func-
tion. Gradient descent updates the parameters iteratively to
minimize the overall network error.

Error

Weightw1j

Increase weight at next step
Error

Weightw1j

Decrease weight at next step

Figure 4.3: Basic idea of Stochastic Gradient minimization

It iteratively updates the weight parameters in the direction
of the gradient of the loss function until a minimum is reached.
In other words, we follow the direction of the slope of the loss
function downhill until we reach a valley. The basic idea is
roughly illustrated in Figure 4.3:

• If the partial derivative is negative, the weight is increased
(left part of the figure);

58

CHAPTER 4. A SIMPLE WAY TO INCORPORATE . . .

• if the partial derivative is positive, the weight is decreased
(right part of the figure). The parameter known as the
learning rate (discussed further on the following page)
determines the size of the steps taken to reach the mini-
mum.

Stochastic Gradient Descent

In traditional gradient descent, you use the entire dataset to
compute the gradient at each iteration. For large datasets, this
leads to redundant computations because gradients for very
similar examples are recomputed before each parameter up-
date.

Stochastic Gradient Descent (SGD) is an approximation of
the true gradient. At each iteration, it randomly selects a single
example to update the parameters and moves in the direction of
the gradient with respect to that example. It therefore follows
a noisy gradient path to the minimum. Due in part to the lack
of redundancy, it often converges to a solution much faster than
traditional gradient descent.

One rather nice theoretical property of stochastic gradient
descent is that it is guaranteed to find the global minimum if the
loss function is convex. Provided the learning rate is decreased
slowly during training, SGD has the same convergence behavior
as traditional gradient descent.

NOTE... �

In probabilistic language SGD is almost certainly
converges to a local or the global minimum for
both convex and non- convex optimizations.

How to Easily Specify a Model
Load the appropriate libraries:

59

Deep Time Series Forecasting with Python

from pyneurgen . neura lne t import NeuralNet
Here is how to specify the neural network structure:

import random
random . seed (2016)
f i t 1 = NeuralNet ()
f i t 1 . i n i t_ l a y e r s (4 , [7 , 3] , 1)
f i t 1 . randomize_network ()
After instantiating the main class NeuralNet in fit1, the
network layers are specified. The model contains 4 input at-
tributes, 2 hidden layers, and 1 output layer. The first hidden
layer contains 7 nodes, and the second hidden layer has 3 nodes.

NOTE... �

The randomize_network method randomizes the
weights and bias of each connection.

Choosing a Learning Rate
Our next task is to specify the learning rate. It determines the
size of the steps taken to reach the minimum by the gradient
descent algorithm. Figure 4.4 illustrates the general situation.
With a large learning rate, the network may learn very quickly,
a lower learning rates takes longer to find the optimum value.

You may wonder why not set the learning rate to a high
value? Well, as shown in Figure 4.5, if the learning rate is too
high the network may miss the global minimum and not learn
very well or even at all. Setting the learning rate involves an
iterative tuning procedure in which we manually set the highest
possible value.

60

CHAPTER 4. A SIMPLE WAY TO INCORPORATE . . .

Error

Weight

Figure 4.4: Optimization with small and large learning rates

fit3

Larger steps

Error

WeightGlobal Minimum

Figure 4.5: Error surface with small and large learning rate

61

Deep Time Series Forecasting with Python

Setting the Learning Rate
A high learning rate can cause the system to diverge in terms
of the objective function. Choosing this rate too low results
in slow learning. Let’s set the learning rate to a relatively low
level of 0.05 and set up the training and test sets to be used by
the model:
f i t 1 . s e t_ l ea rn ra t e (0 . 0 5)
f i t 1 . s e t_a l l_ inputs (x)
f i t 1 . s e t_a l l_ta rg e t s (y)
l ength = len (x)
learn_end_point = int (l ength ∗ 0 . 95)
f i t 1 . set_learn_range (0 , learn_end_point)
f i t 1 . set_test_range (learn_end_point + 1 ,

length −1)
In the above code, once the learning rate is specified, the at-
tributes and response are passed to fit1. We use 95% of the
observations for training the model, with the remainder used
for the test set.

NOTE... �

The optimal learning rate is usually data and net-
work architecture specific. However, you might ini-
tially try values in the range of 0.1 to 1e-6.

The Efficient Way to Run Your Model
pyneurgen allows you to specify activation functions for each
layer. The tanh function is chosen for both layers:
f i t 1 . l a y e r s [1] . se t_act ivat ion_type (’ tanh ’)
f i t 1 . l a y e r s [2] . se t_act ivat ion_type (’ tanh ’)

62

CHAPTER 4. A SIMPLE WAY TO INCORPORATE . . .

NOTE... �

Experiment with alternative activation functions.
In pyneurgen you can also use ’linear’ and
’sigmoid’.

Run the Model
Now, we are ready to run the model. This is achieved via the
learn function:
f i t 1 . l e a rn (epochs=200 ,

show_epoch_results=True ,
random_testing=False)

The parameter random_testing is set to False to maintain
the order of the examples. The model is run for 200 epochs,
and because show_epoch_results=True, you should see the
model performance for each epoch along the lines of:
epoch : 0 MSE: 0.00375778849486
epoch : 1 MSE: 0.00481815401934
epoch : 2 MSE: 0.00419000621781
epoch : 3 MSE: 0.00377844460056
epoch : 4 MSE: 0.00349184307804
epoch : 5 MSE: 0.00328394827976
epoch : 6 MSE: 0.00312792310141

NOTE... �

For this type of model you can also try
random_testing=True. This will present the ex-
ample pair (x,y) in random order to the model (see
page 136 for another example).

63

Deep Time Series Forecasting with Python

Assess Performance
Performance is measured using the Mean Square Error (MSE).
It is derived by summing the squared differences between the
observed target (y) and predicted value (ŷ), and dividing by
the number of test examples (n):

MSE = 1
n

n∑
i=1

(ŷi − yi)2

The smaller the MSE, the closer the predictions match the
observed target values. Ideally, we would like a MSE of zero
for a perfect prediction for every example. In practice, it will
nearly always be greater than zero.

Figure 4.6 shows for our model fit1, it declines rapidly for
the first 50 epochs, and then exhibits a more gradual decline
eventually leveling out by around 200 epochs.

0 50 100 150 200
epochs

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

0.0050

m
e
a
n
 s

q
u
a
re

d
 e

rr
o
r

Figure 4.6: Train set MSE by epoch

64

CHAPTER 4. A SIMPLE WAY TO INCORPORATE . . .

The test set performance is obtained using the test()
function:
mse = f i t 1 . t e s t ()
print " t e s t s e t MSE =" ,np . round(mse , 6)
t e s t set MSE = 0.000107
This value appears to be reasonably small, however, we should
check it against our original criteria of accuracy within a ±
$1,500 tolerance. Figure 4.7, plots the predicted and observed
values to confirm this.

0 2 4 6 8 10 12
Prediction Period

9000

10000

11000

12000

13000

14000

15000

16000

17000

18000

S
in

g
a
p
o
re

a
n
 d

o
ll
a
rs

 (
$

)

Original series
Prediction

Figure 4.7: Predicted and actual values for COE model with
attributes

65

Deep Time Series Forecasting with Python

NOTE... �

You can view the predictions and target value pairs
via test_targets_activations. For example,
try something along the lines of:
print np . round(f i t 1 .

t e s t_ta rge t s_ac t i va t i on s , 4)

Additional Resources to Check Out
• Be sure to check out the pyneurgen documentation

66

http://pyneurgen.sourceforge.net/recurrent.html

Chapter 5

The Simple Recurrent
Neural Network

Ever since I ran across my first Recurrent Neural Network
(RNN), I have been intrigued by their ability to learn
difficult problems that involve time series data. Unlike

the deep neural network discussed in chapter 3 and chapter 4,
RNNs contain hidden states which are distributed across time.
This allows them to efficiently store a lot of information about
the past. As with a regular deep neural network, the non-
linear dynamics allows them to update their hidden state in
complicated ways. They have been successfully used for many
problems including adaptive control, system identification, and
most famously in speech recognition. In this chapter, we use
the Keras library to build a simple recurrent neural network to
forecast COE price.

Why Use Keras?
Keras is a deep learning library for Theano and TensorFlow.
Theano allows you to define, optimize, and evaluate math-
ematical expressions involving multi-dimensional arrays effi-
ciently. TensorFlow is a library for numerical computation us-

67

Deep Time Series Forecasting with Python

ing graphs.
Theano and TensorFlow are two of the top numerical plat-

forms in Python used for Deep Learning research. Whilst they
are both very powerful libraries, they have a steep learning
curve. Keras is a high-level neural networks library, capable of
running on top of either TensorFlow or Theano. It allows easy
and fast prototyping, was specifically developed with a focus
on enabling fast experimentation, and runs on both a central
processing unit and graphics processing unit.

Keras is straightforward to install. You should be able to
use something along the lines of:
pip i n s t a l l ke ras

NOTE... �

You must have an installation of Theano or Ten-
sorFlow on your system before you install Keras.

What is a Recurrent Neural Network?
Neural networks can be classified into dynamic and static.
Static neural networks calculate output directly from the in-
put through feed forward connections. For example, in a basic
feedforward neural network, the information flows in a single
direction from input to output. Such neural networks have
no feedback elements. The neural networks we developed in
chapter 3 and chapter 4, are all examples of static neural net-
works.

In a dynamic neural network, the output depends on the
current input to the network, and the previous inputs, out-
puts, and/or hidden states of the network. Recurrent neural
networks are an example of a dynamic network.

68

https://github.com/tensorflow/tensorflow#download-and-setup
https://github.com/tensorflow/tensorflow#download-and-setup

CHAPTER 5. THE SIMPLE RECURRENT NEURAL . . .

Visual Representation
Two simple recurrent neural networks are illustrated in
Figure 5.1. The idea is that the recurrent connections allow
a memory of previous inputs to persist in the network’s inter-
nal state, and thereby influence the network’s output. At each
time step, the network processes the input vector (xt), updates
its hidden state via an activation functions (ht), and uses it to
make a prediction of its output (yt). Each node in the hidden
layer receives the inputs from the previous layer and the out-
puts of the current layer from the last time step. The value held
in the delay unit is fed back to the hidden units as additional
inputs.

Output

Hidden

Units

Inputs

Delay

Unit

y(t)h(t)

y(t-1)x(t)

y(t)

Outputs

Hidden

Units

Inputs

Delay

Units

h(t)h(t)

h(t-1)x(t)

y(t)

Figure 5.1: Two Simple Recurrent Neural Network Structures

69

Deep Time Series Forecasting with Python

It turns out that with enough neurons and time, RNNs can
compute anything that can be computed by your computer.
Computer Scientists refer to this as being Turing complete.
Turing complete roughly means that in theory an RNN can be
used to solve any computation problem. Alas, “in theory” often
translates poorly into practice because we don’t have infinite
memory or time.

NOTE... �

I suppose we should really say the RNN can ap-
proximate Turing-completeness up to the limits of
their available memory.

Prepare the Sample Data
Now that you have a broad overview, load the libraries and
prepare the data required for our COE price forecasting model:
import numpy as np
import pandas as pd
l o c= "C:\\Data\\COE. csv "
temp = pd . read_csv (l o c)
data= temp . drop (temp . columns [[0 , 1]] , a x i s

=1)
y=data ["COE$"]
x=data . drop (data . columns [[0 , 4]] , a x i s =1)
x=x . apply (np . l og)
x=pd . concat ([x , data ["Open? "]] , a x i s=1)
from s k l e a rn import pr ep ro c e s s i ng
sca ler_x = prep ro c e s s i ng . MinMaxScaler (

feature_range =(0 , 1))
x = np . array (x) . reshape ((len (x) ,4))
x = sca ler_x . f i t_t rans fo rm (x)

70

CHAPTER 5. THE SIMPLE RECURRENT NEURAL . . .

sca ler_y = prep ro c e s s i ng . MinMaxScaler (
feature_range =(0 , 1))

y = np . array (y) . reshape ((len (y) , 1))
y=np . l og (y)
y = sca ler_y . f i t_t rans fo rm (y)
The above code should be familiar to you by now (see
chapter 4), so we won’t discuss it in detail. However, here are
the highlights:

• Be sure to change the value in loc to point to the direc-
tory where you stored COE.csv.

• In terms of data processing, the attributes, stored in x,
are scaled to lie in the 0 to 1 range.

• The natural log of the target variable is stored in y, also
scaled to lie in the 0 to 1 range.

Gain Clarity on the Role of the Delay
Units
The delay unit enables the network to have short-term memory.
This is because it stores the hidden layer activation values (or
output) of the previous time step. It releases these values back
into the network at the subsequent time step. In other words,
the RNN has a “memory” which captures information about
what has been calculated by the hidden units at an earlier
time step.

Time-series data contain patterns ordered by time. Infor-
mation about the underlying data generating mechanism is con-
tained in these patterns. RNNs take advantage of this ordering
because the delay units exhibit persistence. It is this “short
term” memory feature that allows an RNN to learn and gener-
alize across sequences of inputs.

71

Deep Time Series Forecasting with Python

NOTE... �

An RNN basically takes the output of each hidden
or output layer, and feeds it back to itself (via the
delay node) as an additional input. The delay loop
allows information to be passed from one time step
of the network to the next.

Follow this Approach to Create Your
Train and Test Sets
For this illustration, the train set contains around 95% of the
observations, with the remaining allocated to the test set:
end=len (x)−1
learn_end = int (end ∗ 0 .954)
x_train=x [0 : learn_end −1 ,]
x_test=x [learn_end : end−1 ,]
y_train=y [1 : learn_end]
y_test=y [learn_end+1:end]
x_train=x_train . reshape (x_train . shape + (1 ,))
x_test=x_test . reshape (x_test . shape + (1 ,))
The final two lines of the above code reshape the training and
test set attributes into a suitable format for passing to the
Keras library. The shape is of the form (number of samples,
number of features,time_steps). For example, the train set
contains 250 examples on four features for each time step:
print " Shape o f x_train i s " , x_train . shape
Shape o f x_train i s (250 , 4 , 1)
And for the test set:
print " Shape o f x_test i s " , x_test . shape
Shape o f x_test i s (12 , 4 , 1)

72

CHAPTER 5. THE SIMPLE RECURRENT NEURAL . . .

As expected, there are 12 examples in the test set on 4 features
for each time step.

Parameter Sharing Clarified
From Figure 5.2 we see that a RNN is constructed of multi-
ple copies of the same network, each passing a message to a
successor. It therefore shares the same parameters across all
time steps because it performs the same task at each step, just
with different inputs. This greatly reduces the total number
of parameters required to learn relative to a traditional deep
neural network which uses a different set of weights and biases
for each layer.

NOTE... �

The deep neural network discussed in chapter 3
and chapter 4 had no sense of time or the ability
to retain memory of their previous state. This is
not the case for a RNN.

Understand Backpropagation
Through Time
It turns out that with a few tweaks, any feed-forward neural
networks can be trained using the backpropagation algorithm.
For an RNN, the tweaked algorithm is known as Backpropa-
gation Through Time. The basic idea is to unfold the RNN
through time. This sounds complicated, but the concept is
quite simple. Look at Figure 5.2. It illustrates an unfolded
version of Figure 5.1 (left network). By unfolding, we simply
mean that we write out the network for the complete time steps
under consideration.

73

Deep Time Series Forecasting with Python

Unfolding simple unrolls the recurrent loop over time to
reveal a feedforward neural network. The unfolded RNN is
essentially a deep neural network where each layer corresponds
to a time step in the original RNN.

The resultant feed-forward network can be trained using the
backpropagation algorithm. Computing the derivatives of error
with respect to weights is reduced to computing the derivatives
in each layer of a feed forward network. Once the network is
trained, the feed-forward network “folds” itself obtaining the
original RNN.

Outputs

Hidden

Units

Inputs

Delay

Units

h(0)

h(0)

x(0)

y(0)

Outputs

Hidden

Units

Inputs

Delay

Units

h(1)

h(1)

x(1)

y(1)

Outputs

Hidden

Units

Inputs

Delay

Units

h(2)

h(2)

x(2)

y(2)

Outputs

Hidden

Units

Inputs

h(t)

x(t)

y(t)

…

Outputs

Hidden

Units

Inputs

Delay

Units

h(t-1)

h(t-1)

x(t-1)

y(t-1)

…

Figure 5.2: Unfolding a RNN

NOTE... �

The delay (also called the recurrent or context)
weights in the RNN are the sum of the equivalent
connection weights on each fold.

Import Keras Modules
The Keras library modules can be loaded as follows:
from keras.models import Sequential

74

CHAPTER 5. THE SIMPLE RECURRENT NEURAL . . .

from keras.optimizers import SGD
from keras.layers.core import Dense ,

Activation
from keras.layers.recurrent import

SimpleRNN
Here is a quick overview:

• The first line imports the Keras Sequential model. It
allows the linear stacking of layers.

• Optimization for our illustration is carried out using
stochastic gradient decent (see page 59), therefore we im-
port SGD from keras.optimizers.

• The third line imports the activation functions and a
dense layer, this is a regular fully connected neural net-
work layer. We use it for the output layer.

• The final line imports a fully-connected RNN where the
output is to be fed back to input.

NOTE... �

The examples in this text were developed using
Keras 1.0.4 with Theano 0.8.2 as the backend.

Determine Model Structure
The next step is to set up the model structure:
seed =2016
np.random.seed(seed)
fit1 = Sequential ()
fit1.add(SimpleRNN(output_dim =8, activation

="tanh", input_shape =(4, 1)))
fit1.add(Dense(output_dim =1, activation=’

linear ’))

75

Deep Time Series Forecasting with Python

Let’s take a brief walk-through of this set up:

• The model is stored in fit1. Each layer is added via the
add function. It consists of a RNN with 8 delay nodes
with tanh activation functions.

• The input_shape argument takes the number of features
(in this case 4) and the number of time steps (in this case
1).

• The output layer is a fully connected layer with 1 output
(our COE forecast) via a linear activation function.

A Complete Intuitive Guide to Mo-
mentum
The iterative process of training a neural network continues
until the error reaches a suitable minimum. We saw on page 60,
that the size of steps taken at each iteration is controlled by the
learning rate. Larger steps reduce training time, but increase
the likelihood of getting trapped in local minima instead of the
global minima.

Another technique that can help the network out of local
minima is the use of a momentum term. It can take a value
between 0 and 1. It adds this fraction of the previous weight
update to the current one. As shown in Figure 5.3, a high value
for the momentum parameter, say 0.9, can reduce training time
and help the network avoid getting trapped in local minima.

However, setting the momentum parameter too high can
increase the risk of overshooting the global minimum. This is
further increased if you combine a high learning rate with a lot
of momentum. However, if you set the momentum coefficient
too low the model will lack sufficient energy to jump over local
minima.

76

CHAPTER 5. THE SIMPLE RECURRENT NEURAL . . .

Weight

Error

Figure 5.3: Benefit of momentum

Choosing the Momentum Value
So how do you set the optimum value of momentum? It is often
helpful to experiment with different values. One rule of thumb
is to reduce the learning rate when using a lot of momentum.
Using this idea we select a low learning rate of 0.0001 combined
with a relatively high momentum value of 0.95:

sgd = SGD(lr=0.0001 , momentum =0.95,
nesterov=True)

fit1.compile(loss=’mean_squared_error ’,
optimizer=sgd)

Notice we set nestrov = True to use Nesterov’s accelerated
gradient descent. This is a first-order optimization method
designed to improve stability and speed up convergence of gra-
dient descent.

77

Deep Time Series Forecasting with Python

NOTE... �

During regular gradient descent the gradient is
used to update the weights. Use of the nestrov
algorithm adds a momentum term to the gradient
updates to speed things up a little.

How to Benefit from Mini Batching
The traditional backpropagation algorithm calculates the
change in neuron weights, known as delta’s or gradients, for
every neuron in all the layers of a deep neural network, and for
every single epoch. The deltas are essentially calculus deriva-
tive adjustments designed to minimize the error between the
actual output and the deep neural network output.

A very large deep neural network might have millions of
weights for which the delta’s need to be calculated. Think
about this for a moment....Millions of weights require gradient
calculations.... As you might imagine, this entire process can
take a considerable amount of time. It is even possible, that
the time taken for a deep neural network to converge on an
acceptable solution using batch learning propagation makes its
use in-feasible for a particular application.

Mini batching is one common approach to speeding up neu-
ral network computation. It involves computing the gradient
on several training examples (batches) together, rather than for
each individual example as happens in the original stochastic
gradient descent algorithm.

A batch contains several training examples in one for-
ward/backward pass. To get a sense of the computational ef-
ficiency of min-batching, suppose you had a batch size of 500,

78

CHAPTER 5. THE SIMPLE RECURRENT NEURAL . . .

with 1000 training examples. It will take only 2 iterations to
complete 1 epoch.

NOTE... �

The larger the batch size, the more memory you
will need to run the model.

Fitting the Model
The model, with a batch size of 10, is fit over 700 epochs as
follows:
fit1.fit(x_train , y_train , batch_size =10,

nb_epoch =700)

Once the model has completed, you can evaluate the train
and test set MSE:
score_train = fit1.evaluate(x_train ,

y_train ,
batch_size =10)

score_test = fit1.evaluate(x_test ,
y_test ,
batch_size =10)

print "in train MSE = ", round(score_train
,6)

in train MSE = 0.003548

print "in test MSE = ", round(score_test ,6)
in test MSE = 0.000702

And to convert the predictions back to their original scale,
so we can view them individually:

79

Deep Time Series Forecasting with Python

pred1=fit1.predict(x_test)
pred1 = scaler_y.inverse_transform(np.array

(pred1).reshape ((len(pred1), 1)))

pred1=np.exp(pred1)

print np.rint(pred1)

[12658.]
[11512.]
[11353.]
[11699.]
[13374.]
[14311.]
[15937.]
[14842.]
[13155.]
[12533.]
[14358.]
[14718.]]

Figure 5.4 plots the actual and predicted values, alongside
the client comfort interval (CI). Several of the actual obser-
vations are outside of the CI. This might suggest tweaking
model parameters and/ or the further pre-processing of the
data. Of course, we could also select an alternative neural net-
work model. We pursue this option further in the next chapter.

80

CHAPTER 5. THE SIMPLE RECURRENT NEURAL . . .

0 2 4 6 8 10 12
Prediction Period

9000

10000

11000

12000

13000

14000

15000

16000

17000

18000
S
in

g
a
p
o
re

a
n
 d

o
ll
a
rs

 (
$

)

Original series
Prediction

Figure 5.4: Actual and forecast values for Simple RNN

Additional Resources to Check Out
• Look at the Keras documentation. Whilst you are at it,

also browse Theano and TensorFlow documentation.

• For an interesting application to weather forecasting see
Abbot, John, and Jennifer Marohasy. "Using lagged and
forecast climate indices with artificial intelligence to pre-
dict monthly rainfall in the Brisbane Catchment, Queens-
land, Australia." International Journal of Sustainable De-

81

https://keras.io/
http://deeplearning.net/software/theano/
https://www.tensorflow.org/

Deep Time Series Forecasting with Python

velopment and Planning 10.1 (2015): 29-41.

82

Chapter 6

Elman Neural Networks

Elman neural networks are a popular partially recurrent
neural network. They were initially designed to learn
sequential or time-varying patterns and have been suc-

cessfully used in pattern classification, control, optimization.
They are composed of an input layer, a context layer (also

called a recurrent or delay layer see Figure 6.1) , a hidden layer,
and an output layer. Each layer contains one or more neurons
which propagate information from one layer to another by com-
puting a nonlinear function of their weighted sum of inputs.

In an Elman neural network the number of neurons in the
context layer is equal to the number of neurons in the hidden
layer. In addition, the context layer neurons are fully connected
to all the neurons in the hidden layer.

Similar to a regular feedforward neural network, the
strength of all connections between neurons is determined by
a weight. Initially, all weight values are chosen randomly and
are optimized during training.

Memory occurs through the delay (context) units which are
fed by hidden layer neurons. The weights of the recurrent con-
nections from hidden layer to the delay units are fixed at 1.
This result in the delay units always maintaining a copy of the
previous values of the hidden units.

83

Deep Time Series Forecasting with Python

Outputs

Hidden

Units

Inputs

Delay

Units

h(t)h(t)

h(t-1)x(t)

y(t)

Figure 6.1: Elman Neural Network

Prepare You Data for Easy Use
To illustrative the construction of an Elman network, we con-
tinue with the COE price data. Load the saved csv file and
process the data into target and attributes:
import numpy as np
import pandas as pd
loc= "C:\\ Data\\COE.csv"
temp = pd.read_csv(loc)
data= temp.drop(temp.columns [[0 ,1]] ,

axis =1)
y=data[’COE$’]

84

CHAPTER 6. ELMAN NEURAL NETWORKS

x=data.drop(data.columns [[0 ,4]] , axis
=1)

x=x.apply(np.log)
x=pd.concat ([x,data[’Open?’]], axis =1)

The above will be familiar to you from page 51. The attributes
are stored in x, and the target (COE price) in y.

Scaling to [0,1] Range
Next, scale the attributes and target variable to lie in the range
0 to 1:
from sklearn import preprocessing
scaler_x = preprocessing.MinMaxScaler(

feature_range =(0, 1))
x = np.array(x).reshape ((len(x),4))
x = scaler_x.fit_transform(x)
scaler_y = preprocessing.MinMaxScaler(

feature_range =(0, 1))
y = np.array(y).reshape ((len(y), 1))
y=np.log(y)
y = scaler_y.fit_transform(y)
y=y.tolist ()
x=x.tolist ()

Much of the above will be familiar to you. However, we will
use the pyneurgen library to build our Elman neural network.
It requires both the attributes and target be passed to it as a
list. Hence, the last two lines call the tolist method.

How to Model a Complex Mathemat-
ical Relationship with No Knowledge
If you have read any traditional books on time series analysis
you will no doubt have been introduced to the importance of

85

Deep Time Series Forecasting with Python

estimating the seasonality of your data, gauging the trend, and
ensuring the data is stationary (constant mean and variance).

Unfortunately, the presence of trend and seasonal variation
can be hard to estimate and/or remove. The chief difficultly is
that the underlying dynamics generating the data are unknown.
Volumes have been written on how to “guesstimate” it, with
little overall agreement on the optimal method.

The Unspoken Reality
It is often very difficult to define trend and seasonality satisfac-
torily. Moreover, even if you can correctly identify the trend it
is important to ensure the right sort of trend (global or local)
is modeled. This is important because traditional statistical
approaches require the specification of an assumed time-series
model, such as auto-regressive models, Linear Dynamical Sys-
tems, or Hidden Markov Model.

In practice, traditional statistical tools require considerable
experience and skill to select the appropriate type of model for
a given data set. The great thing about neural networks is that
you do not need to specify the exact nature of the relationship
(linear, non-linear, seasonality,trend) that exists between the
input and output. The hidden layers of a deep neural network
(DNN) remove the need to prespecify the nature of the data
generating mechanism. This is because they can approximate
extremely complex decision functions.

Figure 6.2 illustrates the general situation. The hidden
layer(s) act as a generic function approximator. For a recurrent
neural network the hidden and delay units perform a similar
function, see Figure 6.3.

86

CHAPTER 6. ELMAN NEURAL NETWORKS

Complex Function Approximation

Input Layer Hidden Layers Output Layer

Figure 6.2: A DNN model

Output

Hidden

Units

Inputs

Delay

Unit

Complex Function Approximation

Figure 6.3: Complex function approximation in an Elman neu-
ral network

87

Deep Time Series Forecasting with Python

NOTE... �

In many real world time series problems the mech-
anism generating the data is either very complex
and/or completely unknown. Such data cannot
be adequately described by traditional analytical
equations.

Use this Python Library for Rapid Re-
sults
Next, load the pyneurgen modules and specify the model:
from pyneurgen.neuralnet import NeuralNet
from pyneurgen.recurrent import

ElmanSimpleRecurrent

Now, specify the model. It has 7 nodes in the hidden layer,
4 input nodes corresponding to each of the four attributes, and
a single output node which calculates the forecast:
import random
random.seed (2016)
fit1 = NeuralNet ()
input_nodes = 4
hidden_nodes = 7
output_nodes = 1
fit1.init_layers(input_nodes ,

[hidden_nodes],
output_nodes ,
ElmanSimpleRecurrent ())

fit1.randomize_network ()
fit1.layers [1]. set_activation_type(’sigmoid

’)
fit1.set_learnrate (0.05)

88

CHAPTER 6. ELMAN NEURAL NETWORKS

fit1.set_all_inputs(x)
fit1.set_all_targets(y)

In the above code the sigmoid activation function is used for
the hidden nodes with the learning rate set to 5%. That means
that 5% of the error between each instance of target and output
will be communicated back down the network during training.

Exploring the Error Surface
Neural network models have a lot of weights whose values must
be determined to produce an optimal solution. The output as
a function of the inputs is likely to be highly nonlinear which
makes the optimization process complex. Finding the globally
optimal solution that avoids local minima is a challenge because
the error function is in general neither convex nor concave. This
means that the matrix of all second partial derivatives (often
known as the Hessian) is neither positive semi definite, nor
negative semi definite. The practical consequence of this ob-
servation is that neural networks can get stuck in local minima,
depending on the shape of the error surface.

To make this analogous to one-variable functions notice that
sin(x) is in neither convex nor concave. It has infinitely many
maxima and minima, see Figure 6.4 (top panel). Whereas
x2 has only one minimum and -x2 only one maximum, see
Figure 6.4 (bottom panel). The practical consequence of this
observation is that, depending on the shape of the error surface,
neural networks can get stuck in local minima.

If you plotted the neural network error as a function of the
weights, you would likely see a very rough surface with many
local minima. As shown in Figure 6.5, it can have very many
peaks and valleys. It may be highly curved in some directions
while being flat in others. This makes the optimization process
very complex.

89

Deep Time Series Forecasting with Python

-1.5

-1

-0.5

0

0.5

1

1.5

- 30 -20 -10 0 10 20 30

SIN(X)

0

100

200

300

400

500

600

700

-30 -20 -10 0 10 20 30

+X2

-700

-600

-500

-400

-300

-200

-100

0

-30 -20 -10 0 10 20 30

-X2

Figure 6.4: One variable functions sin(x), +x2 and -x2

comfort interval

Figure 6.5: Complex error surface of a typical optimization
problem

90

CHAPTER 6. ELMAN NEURAL NETWORKS

A Super Simple Way to Fit the Model
The train and test samples are obtained as follows:
length = len(x)
learn_end_point = int(length * 0.95)
fit1.set_learn_range (0, learn_end_point)
fit1.set_test_range(learn_end_point + 1,

length -1)

The train set contains approximately 95% of the samples.

The learn function
The learn function fits the model to the data. For this illus-
tration we run the model for 100 epochs and view the results
by epoch:
fit1.learn(epochs =100, show_epoch_results=

True ,random_testing=False)

As the model runs you should see the train set MSE per epoch
printed to your screen:
epoch: 0 MSE: 0.00573194277476
epoch: 1 MSE: 0.00197294353497
epoch: 2 MSE: 0.00190746802167
epoch: 3 MSE: 0.00184641750107
epoch: 4 MSE: 0.00178925912178
epoch: 5 MSE: 0.00173554922549
epoch: 6 MSE: 0.00168491665439

NOTE... �

Figure 6.6 plots the MSE by epoch. It falls quite
quickly for the first few epochs, and then declines
at a gentle slope leveling off by the 100 epoch.

91

Deep Time Series Forecasting with Python

0 20 40 60 80 100
epochs

0.000

0.001

0.002

0.003

0.004

0.005

0.006

m
e
a
n
 s

q
u
a
re

d
 e

rr
o
r

Figure 6.6: MSE by epoch for the Elman Neural Network

Test Set MSE
The final test set MSE is obtained via the test function:
mse = fit1.test()
print "test set MSE =",np.round(mse ,6)
test set MSE = 0.000118

Transforming the predictions back to their original scale can
be achieved via the inverse_transform function:
pred = [item [1][0] for item in fit1.

test_targets_activations]
pred1 = scaler_y.inverse_transform(np.array

(pred).reshape ((len(pred), 1)))
pred1=np.exp(pred1)

Figure 6.7 plots the predictions and observed values. The
model appears to capture the underlying dynamics of the data.

92

CHAPTER 6. ELMAN NEURAL NETWORKS

Furthermore, most of the realized values are within the speci-
fied forecast tolerance.

0 2 4 6 8 10 12
Prediction Period

9000

10000

11000

12000

13000

14000

15000

16000

17000

S
in

g
a
p
o
re

a
n
 d

o
ll
a
rs

 (
$

)

Original series
Prediction

Figure 6.7: Observed and predicted values for COE using an
Elman neural network.

Additional Resources to Check Out
The following articles further explore the use of Elman neural
networks:

• Case Studies for Applications of Elman Recurrent Neu-
ral Networks. In the book. Recurrent Neural Networks,

93

http://www.intechopen.com/books/how-to-link/recurrent_neural_networks

Deep Time Series Forecasting with Python

Edited by Xiaolin Hu. 2008. InTech Press.

• Sundaram, N. Mohana, S. N. Sivanandam, and R. Subha.
"Elman Neural Network Mortality Predictor for Predic-
tion of Mortality Due to Pollution." International Journal
of Applied Engineering Research 11.3 (2016): 1835-1840.

• Wysocki, Antoni, and Maciej Ławryńczuk. "Elman neu-
ral network for modeling and predictive control of de-
layed dynamic systems." Archives of Control Sciences 26.1
(2016): 117-142.

• Tan, Chao, et al. "A pressure control method for emulsion
pump station based on elman neural network." Compu-
tational intelligence and neuroscience 2015 (2015): 29.

• Liu, Hongmei, Jing Wang, and Chen Lu. "Rolling bear-
ing fault detection based on the teager energy operator
and elman neural network." Mathematical problems in
engineering 2013 (2013).

94

Chapter 7

Jordan Neural Networks

A Jordan network is a single hidden layer feed forward
neural network. It is similar to the Elman neural net-
work. The only difference is that the context (delay)

neurons are fed from the output layer instead of the hidden
layer, see Figure 7.1. It therefore “remembers” the output from
the previous time-step. Like the Elman neural network, it is
useful for predicting time series observations which have a short
memory.

Output

Hidden

Units

Inputs

Delay

Unit

y(t)h(t)

y(t-1)x(t)

y(t)

Figure 7.1: Structure of the Jordan Neural Network

95

Deep Time Series Forecasting with Python

NOTE... �

In a Jordan network the context layer is directly
connected to the input of the hidden layer with a
single delay.

The Fastest Path to Data Preparation
We illustrate the construction of a Jordan neural network using
the COE price series. Import the data from the saved csv file
and create the target (y) and attribute sets (x):
import numpy as np
import pandas as pd
loc= "C:\\ Data\\COE.csv"
temp = pd.read_csv(loc)
data= temp.drop(temp.columns [[0 ,1]] ,

axis =1)
y=data[’COE$’]
x=data.drop(data.columns [[0 ,4]] , axis

=1)
x=x.apply(np.log)
x=pd.concat ([x,data[’Open?’]], axis =1)

The next step, which you are now familiar, is to scale the at-
tributes/ target variable. This is followed by use of the tolist
method to put the data into an input format suitable for the
pyneurgen library:
from sklearn import preprocessing
scaler_x = preprocessing.MinMaxScaler(

feature_range =(0, 1))
x = np.array(x).reshape ((len(x),4))
x = scaler_x.fit_transform(x)
scaler_y = preprocessing.MinMaxScaler(

feature_range =(0, 1))

96

CHAPTER 7. JORDAN NEURAL NETWORKS

y = np.array(y).reshape ((len(y), 1))
y=np.log(y)
y = scaler_y.fit_transform(y)
y=y.tolist ()
x=x.tolist ()

A Straightforward Module for Jordan
Neural Networks
Import the required modules, in this case NeuralNet and
JordanRecurrent, and specify the model parameters:
from pyneurgen.neuralnet import NeuralNet
from pyneurgen.recurrent import

JordanRecurrent
import random
random.seed (2016)
fit1 = NeuralNet ()
input_nodes = 4
hidden_nodes = 7
output_nodes = 1
existing_weight_factor = 0.9

The python object fit1 will contain the model. It has 7 nodes in
the hidden layer, one input node for each attribute and a single
output node The existing_weight_factor is set to 90%.

NOTE... �

The existing_weight_factor is associated with
the delay node. It controls the weight associated
with the previous output.

97

Deep Time Series Forecasting with Python

Specifying the Model
The model can be specified as follows:
f i t 1 . i n i t_ l a y e r s (input_nodes ,

[hidden_nodes] ,
output_nodes ,
JordanRecurrent (ex i s t ing_we ight_factor))

f i t 1 . randomize_network ()
f i t 1 . l a y e r s [1] . se t_act ivat ion_type (’ s igmoid ’)
f i t 1 . s e t_ l ea rn ra t e (0 . 0 5)
f i t 1 . s e t_a l l_ inputs (x)
f i t 1 . s e t_a l l_ta rg e t s (y)

The learning rate is set to 5%, with sigmoid activation functions
used in the hidden nodes.

As we did earlier, 95% of the sample is used for training.
The training and test samples are determined as follows:
l ength = len (x)
learn_end_point = int (l ength ∗ 0 . 95)
f i t 1 . set_learn_range (0 , learn_end_point)
f i t 1 . set_test_range (learn_end_point + 1 ,

length −1)

Assessing Model Fit and Performance
Now that the model has been fully specified it can be fit to the
data:
fit1.learn(epochs =100, show_epoch_results=

True ,random_testing=False)

As the model is running, you should see the MSE per epoch
along the lines of:
epoch: 0 MSE: 0.00392271180035
epoch: 1 MSE: 0.00148887861103
epoch: 2 MSE: 0.00148825922623
epoch: 3 MSE: 0.00148975092454

98

CHAPTER 7. JORDAN NEURAL NETWORKS

epoch: 4 MSE: 0.00149294789624
epoch: 5 MSE: 0.00149740333037
epoch: 6 MSE: 0.0015026753066
epoch: 7 MSE: 0.00150836654247

Figure 7.2 plots the train set MSE by epoch. It falls sharply
for the first few epochs; followed by a more moderate decline
to the 100th epoch.

0 20 40 60 80 100
epochs

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

m
e
a
n
 s

q
u
a
re

d
 e

rr
o
r

Figure 7.2: MSE by epoch for the Jordan neural network

The overall test set MSE can be calculated using:
mse = fit1.test()
print "test set MSE =",np.round(mse ,6)
test set MSE = 8.4e-05

Figure 7.3 plots the predicted and actual observations.
Overall, the observed values lie within the tolerance range, and
the model appears to adequately capture the dynamics of the
underlying time series.

99

Deep Time Series Forecasting with Python

0 2 4 6 8 10 12
Prediction Period

10000

11000

12000

13000

14000

15000

16000

17000

S
in

g
a
p
o
re

a
n
 d

o
ll
a
rs

 (
$

)

Original series
Prediction

Figure 7.3: Predicted and actual values for Jordan neural net-
work

Additional Resources to Check Out
The following articles further explore the use of Jordan neural
networks:

• Abdulkarim, S. A. "Time series prediction with simple
recurrent neural networks." Bayero Journal of Pure and
Applied Sciences 9.1 (2016): 19-24.

• Wysocki, Antoni, and Maciej Ławryńczuk. "Jordan neu-

100

CHAPTER 7. JORDAN NEURAL NETWORKS

ral network for modelling and predictive control of dy-
namic systems." Methods and Models in Automation and
Robotics (MMAR), 2015 20th International Conference
on. IEEE, 2015.

• Bilski, Jarosław, and Jacek Smoląg. "Parallel approach
to learning of the recurrent jordan neural network." In-
ternational Conference on Artificial Intelligence and Soft
Computing. Springer Berlin Heidelberg, 2013.

• Maraqa, Manar, et al. "Recognition of Arabic sign lan-
guage (ArSL) using recurrent neural networks." (2012).

101

Deep Time Series Forecasting with Python

102

Chapter 8

Nonlinear Auto-regressive
Network with Exogenous
Inputs

A nonlinear auto-regressive network with exogenous in-
puts neural network (NARX) is a type of recurrent
dynamic neural network. They have been used for

modeling nonlinear dynamic systems such as heat exchangers,
waste water treatment plants and petroleum refinery catalytic
reforming systems, movement in biological systems, and even
to predict solar radiation.

In this chapter, we illustrate the construction of a NARX
model to predict the United Kingdom annual Unemployment
rate. Our goal is to create a model that predicts the actual
level to within a comfort interval of 2 standard deviations of
the model prediction.

What is a NARX Network?
Figure 8.1 outlines a simple schematic of a NARX neural net-
work. The inputs are fed into delay units, which act as memory
of previous inputs. The output of the network is also stored in

103

Deep Time Series Forecasting with Python

delay units, which are fed directly into the hidden units.

Output

Hidden

Units

Inputs

Delay

Units

Delay

Units

Figure 8.1: Schematic of a NARX network

Further Explanation
In traditional time series modeling the nonlinear auto-
regressive exogenous model is defined by the nonlinear mapping
function f :

yt = f
[
yt−1, yt−2, ..., yt−dy , xt−1, xt−2, ..., xt−dx

]
where y (target) and x (attributes) are the past and present
inputs to the model; and dy ≥ 1, dx ≥ 1, dy ≥ dx are the
input memory and output memory orders (or delays).

104

CHAPTER 8. NONLINEAR AUTO-REGRESSIVE . . .

The nonlinear mapping f(·) is generally unknown and needs
to be approximated. The approximation can be carried in many
ways; when it is approximated by a multilayer perceptron, the
resulting neural network is called nonlinear auto-regressive net-
work with exogenous inputs neural network.

NARX neural networks are useful for modelling long term
dependencies in time series data because of the extended time
delays captured by dy and dx. They can remember the output
over longer time steps than a Jordan or Elman neural network.

Spreadsheet Files Made Easy with
Pandas
The data used for our analysis comes from the Bank
of England’s three centuries of macroeconomic data
research study. The data is hosted at url=http:
//www.bankofengland.co.uk/research/Documents/
onebank/threecenturies_v2.3.xlsx. Here is how to
download it:
import numpy as np
import pandas as pd
import urllib
url="https :// goo.gl/0 WVZDW"
loc= "C:\\ Data\\ UK_Economic.xls"
urllib.urlretrieve(url , loc)

In the above code the url address is shortened using the google
url shortener. The object loc contains the location you wish to
store the file UK_Economic.xls. You should adjust it to your
desired location.

The spreadsheet file is organized into two parts. The first
contains a broad set of annual data covering the UK national
accounts and other financial and macroeconomic data stretch-
ing back in some cases to the late 17th century.

105

url=http://www.bankofengland.co.uk/research/Documents/onebank/threecenturies_v2.3.xlsx
url=http://www.bankofengland.co.uk/research/Documents/onebank/threecenturies_v2.3.xlsx
url=http://www.bankofengland.co.uk/research/Documents/onebank/threecenturies_v2.3.xlsx

Deep Time Series Forecasting with Python

Using Pandas for Ease
Pandas is the best way to go with this type of file format. Here
is how to read it into python:
Excel_file = pd.ExcelFile(loc)

The spreadsheet contains a lot of worksheets. To view them
all use the print statement:
print Excel_file.sheet_names

[u’Disclaimer ’, u’Front page’, u"What’s new
in V2.3", u’A1. Headline series ’ ,..., u

’M14. Mthly Exchange rates 1963+ ’, u’M15
. Mthly $-\xa3 1791 -2015’]

The data we need is contained in the “A1. Headline
series” worksheet. To parse it into Python use:
spreadsheet = Excel_file.parse(’A1.

Headline series ’)

Data Dates
The first year used for the analysis is 1855, and the last year
is 2015. To see these dates extracted from the spreadsheet use
the print statement:
print spreadsheet.iloc [201 ,0]
1855

print spreadsheet.iloc [361 ,0]
2015

So we see that row 201 contains the first year (1855), and row
361 the last year used in our analysis (2015).

106

CHAPTER 8. NONLINEAR AUTO-REGRESSIVE . . .

Working with Macroeconomic Vari-
ables
The target variable is the annual unemployment rate. As shown
in Figure 8.2, it is subject to considerable variation tied to the
business cycle of economic boom followed by bust.

The unemployment rate is read from spreadsheet as fol-
lows:
unemployment = spreadsheet.iloc [201:362 ,15]

The first unemployment observation, stored in column 15 of
spreadsheet, is located in row 201. The last observation used
in our analysis is located in row 362.

1840 1860 1880 1900 1920 1940 1960 1980 2000 2020
Date

0

2

4

6

8

10

12

14

16

U
n
e
m

p
lo

y
m

e
n
t

R
a
te

 (
%

)

Figure 8.2: UK annual unemployment rate

107

Deep Time Series Forecasting with Python

Working with the Attributes
The attribute set consists of four macroeconomic variables:

1. The consumer price inflation rate;

2. the central bank rank;

3. National debt as percentage of nominal Gross Domestic
Product;

4. and the deviation of economic growth (GDP) from trend.

We are interested in predicting the unemployment rate next
year, given the value of each of the attributes this year. We
can do this by selecting our attribute data to match each year’s
unemployment rate with last year’s value of the attributes. In
other words by lagging the attributes by time step (in this case
year).

Let’s use lagged values of each of the above attributes. Here
is one way to do this:
inflation = spreadsheet.iloc [200:361 ,28]
bank_rate =spreadsheet.iloc [200:361 ,30]
debt= spreadsheet.iloc [200:361 ,57]
GDP_trend =spreadsheet.iloc [200:361 ,3]

Figure 8.3 plots each of these attributes. Although they all
have an impact on general economic conditions, did you notice
how each has a unique time dynamic? In fact, the relationship
between the annual unemployment rate and each of these vari-
ables is quite complex. Figure 8.4 illustrates this. It shows the
scatter plot of each attribute against the unemployment rate.
The relationships appear to be highly non-linear. A situation
for which neural networks are especially suited.

Before moving on to the next section, we need to group the
attributes together into the object x:
x= pd.concat ([GDP_trend ,debt ,bank_rate ,

inflation],axis =1)

108

CHAPTER 8. NONLINEAR AUTO-REGRESSIVE . . .

x.columns = ["GDP_trend","debt","bank_rate"
,"inflation"]

1840 1860 1880 1900 1920 1940 1960 1980 2000 2020
Date

0

50

100

150

200

250

300

P
e
r
c
e
n
t

(
%

)

National debt as percentage of nominal GDP

1840 1860 1880 1900 1920 1940 1960 1980 2000 2020
Date

0

2

4

6

8

10

12

14

16

18

P
e
r
c
e
n
t

(
%

)

Bank rate

1840 1860 1880 1900 1920 1940 1960 1980 2000 2020
Date

15

10

5

0

5

10

15

P
e
r
c
e
n
t

(
%

)

log real GDP percentage difference from trend

1840 1860 1880 1900 1920 1940 1960 1980 2000 2020
Date

15

10

5

0

5

10

15

20

25

30

P
e
r
c
e
n
t

(
%

)

Consumer price inflation

Figure 8.3: Macroeconomic attributes. National debt (top
left), Bank rate (top right), GDP trend (bottom left), Con-
sumer price inflation (bottom right)

109

Deep Time Series Forecasting with Python

5 0 5 10 15 20
Unemployment Rate at time t

0

50

100

150

200

250

300

N
a
t
i
o
n
a
l

d
e
b
t

a
t

t
i
m

e

t
-
1

5 0 5 10 15 20
Unemployment Rate at time t

5

0

5

10

15

20

B
a
n
k

r
a
t
e

a
t

t
i
m

e

t
-
1

5 0 5 10 15 20
Unemployment Rate at time t

20

15

10

5

0

5

10

15

l
o
g

r
e
a
l

G

D
P

d
i
f
f
e
r
e
n
c
e

f
r
o
m

t
r
e
n
d

a
t

t
i
m

e

t
-
1

5 0 5 10 15 20
Unemployment Rate at time t

20

10

0

10

20

30

C
o
n
s
u
m

e
r

p
r
i
c
e

i
n
f
l
a
t
i
o
n

a
t

t
i
m

e

t
-
1

Figure 8.4: Scatter plot of unemployment rate and Macroe-
conomic attributes. National debt (top left), Bank rate (top
right), GDP trend (bottom left), Consumer price inflation (bot-
tom right)

110

CHAPTER 8. NONLINEAR AUTO-REGRESSIVE . . .

Python and Pandas Data Types
There are three main types of data in Python:

• strings,

• int.

• floats.

How information is stored in a pandas DataFrame (strings,
int, float) affects what we can do with it. What type is our
attribute matrix x? To view the types use:
print x.dtypes

GDP_trend object
debt object
bank_rate object
inflation object
dtype: object

Each attribute in x is of data type Object. Object is a pandas
data type and corresponds to the native Python string. In
other words, the information in these attributes is stored as
text strings. They need to be converted into numerical values
to be used in a neural network. Here is how to convert them
into the numerical type float:
x [’ debt ’] = x [’ debt ’] . astype (’ f l o a t 6 4 ’)
x [’ bank_rate ’] = x [’ bank_rate ’] . astype (’ f l o a t 6 4 ’)
x [’GDP_trend ’] = x [’GDP_trend ’] . astype (’ f l o a t 6 4 ’)
x [’ i n f l a t i o n ’] = x [’ i n f l a t i o n ’] . astype (’ f l o a t 6 4 ’)

Pandas and base Python use slightly different names for data
types. The type float64 is actually a pandas data type and
corresponds to the native Python type float. Table 1 lists
basic Pandas and Python types.

111

Deep Time Series Forecasting with Python

Pandas Type Native Python Type Comment
object string Text strings
int64 int Numeric (integer)
float64 float Numeric (decimal)

Table 1: Pandas and Python types.

A Quick Check
Now check things converted as expected:
print x.dtypes
GDP_trend float64
debt float64
bank_rate float64
inflation float64
dtype: object

Great, the conversion was successful.
Create the target variable using a similar technique:

y=unemployment
print y.dtype
y=pd.to_numeric(y)

Finally, save x and y as separate csv files, we will use them
again in chapter 12:
loc= "C:\\ Data\\ economic_x.csv"
x.to_csv(loc)
loc= "C:\\ Data\\ economic_y.csv"
y.to_csv(loc)

Scaling Data
Let’s work with the data we just saved. First load it into
Python:

112

CHAPTER 8. NONLINEAR AUTO-REGRESSIVE . . .

loc= "C:\\ Data\\ economic_x.csv"
x = pd.read_csv(loc)
x= x.drop(x.columns [[0]] , axis =1)
loc= "C:\\ Data\\ economic_y.csv"
y = pd.read_csv(loc , header=None)
y= y.drop(y.columns [[0]] , axis =1)

The saved csv file for y did not include a header hence in read-
ing it into Python the argument header was set to None.

Both the attribute and target are scaled to lie in the range
0 to 1, and converted to a list type for use with the pyneurgen
library:
from sklearn import preprocessing
scaler_x = preprocessing.MinMaxScaler(

feature_range =(0, 1))
x = np.array(x).reshape ((len(x),4))
x = scaler_x.fit_transform(x)
scaler_y = preprocessing.MinMaxScaler(

feature_range =(0, 1))
y = np.array(y).reshape ((len(y), 1))
y = scaler_y.fit_transform(y)
y=y.tolist ()
x=x.tolist ()

A Tool for Rapid NARX Model Con-
struction
The pyneurgen library provides the tools we need. First load
the required modules:
from pyneurgen . neura lne t import NeuralNet
from pyneurgen . r e cu r r en t import NARXRecurrent

The model will have 10 hidden nodes with a delay of 3 time
steps on the input attributes, and a delay of 1 time step for the
output. In a NARX network you can also specify the incoming

113

Deep Time Series Forecasting with Python

weight from the output, and the income weight from the input.
We set these to 10% and 80% respectively.

Here are the initial model parameters:
import random
random.seed (2016)
input_nodes = 4
hidden_nodes = 10
output_nodes = 1
output_order = 1
input_order = 3
incoming_weight_from_output = 0.1
incoming_weight_from_input = 0.8

The model is specified as follows:
fit1 = NeuralNet ()
fit1.init_layers(input_nodes , [hidden_nodes

], output_nodes ,
NARXRecurrent(

output_order ,
incoming_weight_from_output ,
input_order ,
incoming_weight_from_input))

fit1.randomize_network ()
fit1.layers [1]. set_activation_type(’sigmoid

’)
fit1.set_learnrate (0.35)
fit1.set_all_inputs(x)
fit1.set_all_targets(y)

The above code follows the format we have seen previously.
The sigmoid is specified as the activation function, and the
learning rate is set to a moderate level of 35%.

114

CHAPTER 8. NONLINEAR AUTO-REGRESSIVE . . .

NOTE... �

NARX can be trained using backpropagation
through time.

The train set consists of 85% of the examples, with the
remaining observations used for the test set:
length = len(x)
learn_end_point = int(length * 0.85)
fit1.set_learn_range (0, learn_end_point)
fit1.set_test_range(learn_end_point + 1,

length -1)

How to Run the Model
The learn function runs the model given the sample data:
fit1.learn(epochs =12,

show_epoch_results=True ,
random_testing=False)

The model is run for 12 epochs. At each epoch you should see
the MSE reported along the lines of:
epoch: 0 MSE: 0.0124873980979
epoch: 1 MSE: 0.00642738416024
epoch: 2 MSE: 0.00603644943984
epoch: 3 MSE: 0.00575579771091
epoch: 4 MSE: 0.00554626175573
epoch: 5 MSE: 0.00538648176859
epoch: 6 MSE: 0.0052644996795
epoch: 7 MSE: 0.00517325931655
epoch: 8 MSE: 0.00510812675451
epoch: 9 MSE: 0.00506549744663
epoch: 10 MSE: 0.00504201592181

115

Deep Time Series Forecasting with Python

epoch: 11 MSE: 0.00503417011242

Figure 8.5 plots the MSE by epoch values. It falls sharply for
the first two epochs, then declines smoothly to the last epoch.

0 2 4 6 8 10 12
epochs

0.005

0.006

0.007

0.008

0.009

0.010

0.011

0.012

0.013

m
e
a
n
 s

q
u
a
re

d
 e

rr
o
r

Mean Squared Error by Epoch

Figure 8.5: MSE by epoch for NARX model

The MSE and fitted model predictions (re scaled) are given
by:
mse = fit1.test()
print "MSE for test set = ",round(mse ,6)
MSE for test set = 0.003061

pred = [item [1][0] for item in fit1.
test_targets_activations]

pred1 = scaler_y.inverse_transform(np.array
(pred).reshape ((len(pred), 1)))

116

CHAPTER 8. NONLINEAR AUTO-REGRESSIVE . . .

Figure 8.6 plots the actual and predicted values. Actual un-
employment is, for the most part, adequately contained within
the tolerance range.

0 5 10 15 20 25
Prediction Period

4

5

6

7

8

9

10

11

S
in

g
a
p
o
re

a
n
 d

o
ll
a
rs

 (
$

)

Unemployment rate
Prediction

Figure 8.6: Actual and predicted values for NARX model

Additional Resources to Check Out
The NARX model is growing in popularity. Take look at the
following articles:

• Caswell, Joseph M. "A Nonlinear Autoregressive Ap-
proach to Statistical Prediction of Disturbance Storm

117

Deep Time Series Forecasting with Python

Time Geomagnetic Fluctuations Using Solar Data." Jour-
nal of Signal and Information Processing 5.2 (2014): 42.

• William W. Guo and Heru Xue, “Crop Yield Forecasting
Using Artificial Neural Networks: A Comparison between
Spatial and Temporal Models,” Mathematical Problems
in Engineering, vol. 2014, Article ID 857865, 7 pages,
2014. doi:10.1155/2014/857865

• Diaconescu, Eugen. "The use of NARX neural networks
to predict chaotic time series." Wseas Transactions on
computer research 3.3 (2008): 182-191.

118

Chapter 9

Long Short-Term
Memory Recurrent
Neural Network

Long Short-Term Memory recurrent neural networks
(LSTM) have outperformed state-of-the-art deep neural
networks in numerous tasks such as speech and hand-

writing recognition. They were specifically designed for sequen-
tial data which exhibit patterns over many time steps. In time
series analysis, these patterns are called cyclical.

Cyclical Patterns in Time Series Data
Time series data often have cyclic patterns, where the obser-
vations rise and fall over long periods of time. For example,
Figure 9.1 shows the monthly sales of new one family houses
sold in the USA. The time series show a cyclic pattern. The
highs and lows over time are tied to the business cycle. Strong
demand associated with economic expansion pushes up the de-
mand for homes and hence sales. Whilst weak demand is as-
sociated with economic slow-down with a resultant decline in
sales.

119

Deep Time Series Forecasting with Python

Monthly sales of new one−family houses sold in the USA

Year

S
al

es
 (

$
m

ill
io

ns
)

1975 1980 1985 1990 1995

30
40

50
60

70
80

90

Figure 9.1: Monthly sales of new family homes

Cyclic components are also observed in the natural world.
Figure 9.2 shows the monthly number of Sunspots since the
18th century collected by the Royal Observatory of Belgium,
Brussels. The data follow an 11 year cycle with variation be-
tween 9 to 14 years. Sunspot activity is of interest to Telecom
companies because they affect ionospheric propagation of radio
waves. Scientists and telecom companies would like to have ad-
vanced warning of their level.

120

CHAPTER 9. LONG SHORT-TERM MEMORY . . .

1761 1801 1841 1881 1921 1961 2001
Time Period

0

50

100

150

200

250

300

350

400
M

o
n
th

ly
 a

v
e
ra

g
e
 t

o
ta

l
su

n
sp

o
t

n
u
m

b
e
r

Figure 9.2: Monthly Sunspot activity

In this chapter we develop a LSTM to predict the level of
Sunspot activity one month in advance using the data shown
in Figure 9.2. The goal is to create a forecasting model that is
accurate to a ±50 tolerance/Comfort Interval. The data can be
downloaded directly from the Royal Observatory of Belgium,
Brussels:
import numpy as np
import pandas as pd
import urllib
url ="https ://goo.gl/uWbihf"
data = pd.read_csv(url ,sep=";")
loc= "C:\\ Data\\ Monthly Sunspots.csv"
data.to_csv(loc ,index = False)
data_csv = pd.read_csv(loc ,header=None)
Remember to change loc to point to your preferred download
location. The final line reads the data back into Python via

121

Deep Time Series Forecasting with Python

the object data_csv. If you prefer to use the full url you can
set:
url="http :// www.sidc.be/silso/INFO/

snmtotcsv.php"
You can also download the data manually by visiting http:
//www.sidc.be/silso/datafiles.

What is an LSTM?
Figure 9.3 outlines a simple schematic of an LSTM. It is similar
to the simple recurrent network we saw in Figure 5.1. However,
it replaces the hidden units with memory blocks.

Output

Memory

Blocks

Inputs

h(t)

y(t-1)

x(t)

y(t)

Figure 9.3: Schematic of a LSTM

122

http://www.sidc.be/silso/datafiles
http://www.sidc.be/silso/datafiles

CHAPTER 9. LONG SHORT-TERM MEMORY . . .

Efficiently Explore and Quickly Un-
derstand Data
The data begin in January 1749 and end at the present day.
For our analysis, we use all the data up to June 2016:

yt= data_csv.iloc [0:3210 ,3]
print yt.head()
0 96.7
1 104.3
2 116.7
3 92.8
4 141.7

print yt.tail()
3205 56.4
3206 54.1
3207 37.9
3208 51.5
3209 20.5

Figure 9.4 plots the autocorrelation function for the data.
It declines over several months to low levels by month 7.

NOTE... �

Cyclic components in time series data are the re-
sult of a long run structural component in the
mechanism generating the data.

123

Deep Time Series Forecasting with Python

0 5 10 15 20 25 30
Months

0.2

0.0

0.2

0.4

0.6

0.8

1.0

P
a
rt

ia
l
A

u
to

c
o
rr

e
la

ti
o
n

Figure 9.4: Partial autocorrelation function for Monthly
Sunspots

Adding Time Lags to Data
For our model we use 5 time lags of the data. A quick way to
time lag data is to use the shift function:
yt_1=yt.shift (1)
yt_2=yt.shift (2)
yt_3=yt.shift (3)
yt_4=yt.shift (4)
yt_5=yt.shift (5)

124

CHAPTER 9. LONG SHORT-TERM MEMORY . . .

data=pd.concat ([yt,yt_1 , yt_2 ,yt_3 ,yt_4 ,
yt_5], axis =1)

data.columns = [’yt’, ’yt_1’, ’yt_2’,’yt_3’
,’yt_4’,’yt_5’]

Here is a quick summary of what we have done:

• The variable yt contains the current month’s number of
Sunspots;

• yt_1 contains the previous months number of Sunspots;

• and yt-5, the number of Sunspots five months ago.

To get a visual handle on this use the tail function:
print data . t a i l (6)

yt yt_1 yt_2 yt_3 yt_4 yt_5
3204 57 .0 58 .0 62 .2 63 .6 78 .6 64 .4
3205 56 .4 57 .0 58 .0 62 .2 63 .6 78 .6
3206 54 .1 56 .4 57 .0 58 .0 62 .2 63 .6
3207 37 .9 54 .1 56 .4 57 .0 58 .0 62 .2
3208 51 .5 37 .9 54 .1 56 .4 57 .0 58 .0
3209 20 .5 51 .5 37 .9 54 .1 56 .4 57 .0

You can see in June 2016 (the last observation - row 3209)
that yt had a value of 20.5, the previous months value was
51.5 which is also the current value of yt_1. The pattern is
repeated as expected for yt_2, yt_3, yt_4, and yt_5.

Missing Data as a result of Data Lag
Look at the first few observations of the data:
print data . head (6)

yt yt_1 yt_2 yt_3 yt_4 yt_5
0 96 .7 NaN NaN NaN NaN NaN
1 104 .3 96 .7 NaN NaN NaN NaN
2 116 .7 104 .3 96 .7 NaN NaN NaN
3 92 .8 116 .7 104 .3 96 .7 NaN NaN
4 141 .7 92 .8 116 .7 104 .3 96 .7 NaN
5 139 .2 141 .7 92 .8 116 .7 104 .3 96 .7

125

Deep Time Series Forecasting with Python

There are missing values as a consequence of the lagging pro-
cess. yt-1 has one missing value (as expected), and yt-5 has
five missing values (again as expected). Remove these missing
value with the dropna()method, and store the attributes in x
and the current number of Sunspots (our target variable) in y:

data = data.dropna ()
y=data[’yt’]
cols=[’yt_1’,’yt_2’,’yt_3’,’yt_4’,’yt_5’]
x=data[cols]

It is always a good idea to check to see if things are pro-
gressing as expected. First, look at the target variable:
print y.tail()
3205 56.4
3206 54.1
3207 37.9
3208 51.5
3209 20.5

print y.head()
5 139.2
6 158.0
7 110.5
8 126.5
9 125.8
10 264.3

All looks good. Now for x:
print x . t a i l ()

yt_1 yt_2 yt_3 yt_4 yt_5
3205 57 .0 58 .0 62 .2 63 .6 78 .6
3206 56 .4 57 .0 58 .0 62 .2 63 .6
3207 54 .1 56 .4 57 .0 58 .0 62 .2
3208 37 .9 54 .1 56 .4 57 .0 58 .0
3209 51 .5 37 .9 54 .1 56 .4 57 .0

print x . head ()

126

CHAPTER 9. LONG SHORT-TERM MEMORY . . .

yt_1 yt_2 yt_3 yt_4 yt_5
5 141 .7 92 .8 116 .7 104 .3 96 .7
6 139 .2 141 .7 92 .8 116 .7 104 .3
7 158 .0 139 .2 141 .7 92 .8 116 .7
8 110 .5 158 .0 139 .2 141 .7 92 .8
9 126 .5 110 .5 158 .0 139 .2 141 .7

Again the numbers are in line with expectations.

The LSTM Memory Block in a Nut-
shell
When I first came across the LSTM memory block, it was diffi-
cult to look past the complexity. Figure 9.5 illustrates a simple
LSTM memory block with only input, output, and forget gates.
In practice, memory blocks may have even more gates!

The key to an intuitive understanding is this:

1. It contains a memory cell and three multiplicative gate
units - the input gate, the output gate, and the forget
gate.

2. Input to the memory block is multiplied by the activation
of the input gate.

3. The output is multiplied by the output gate, and the
previous cell values are multiplied by the forget gate.

4. The gates control the information flow into and out of
the memory cell.

127

Deep Time Series Forecasting with Python

Memory Block Output Gate

Forget Gate

Input Gate

ot

ft

it

ct

Memory Cell

tanh
tanhxt

ht

Figure 9.5: Simple memory block

NOTE... �

The purpose of gates is to prevent the rest of
the network from changing the value of the mem-
ory cell over multiple time-steps. This allows the
model to preserve information for much longer
than in a RNN.

Straightforward Data Transformation
for the Train and Test Sets
The data are scaled to lie in the -1 to +1 range via
MinMaxScaler:
from sklearn import preprocessing

scaler_x = preprocessing.MinMaxScaler(
feature_range =(-1, 1))

128

CHAPTER 9. LONG SHORT-TERM MEMORY . . .

x = np.array(x).reshape ((len(x),5))
x = scaler_x.fit_transform(x)

scaler_y = preprocessing.MinMaxScaler(
feature_range =(-1, 1))

y = np.array(y).reshape ((len(y), 1))
y = scaler_y.fit_transform(y)

The variables x and y now contain the scaled attributes (lagged
target variable) and target variable.

The Train Set
The train set contains data from the start of the series to De-
cember 2014. We will use this data to calculate the one month
ahead monthly number of Sunspots from January 2015 to June
2016:
train_end = 3042
x_train=x[0: train_end ,]
x_test=x[train_end +1:3205 ,]
y_train=y[0: train_end]
y_test=y[train_end +1:3205]
x_train=x_train.reshape(x_train.shape +

(1,))
x_test=x_test.reshape(x_test.shape + (1,))

The Python variable train_end contains the row number of
the last month of training (December 2014). The attributes
were reshaped for passing to the Keras LSTM function. For
example, x_train has the shape:
print x_train.shape
(3042, 5, 1)

It consists of 3,042 examples, 5 lagged variables over 1 time
step.

129

Deep Time Series Forecasting with Python

Clarify the Role of Gates
The gating mechanism is what allows LSTMs to explicitly
model long-term dependencies. The input, forget, and out-
put gate learn what information to store in the memory, how
long to store it, and when to read it out. By acquiring this
information from the data, the network learns how its memory
should behave.

Input: The input gate learns to protect the cell from irrelevant
inputs. It controls the flow of input activations into the
memory cell. Information gets into the cell whenever its
“write” gate is on.

Forget: Information stays in the cell so long as its forget gate
is “off”. The forget gate allows the cell to reset itself to
zero when necessary.

Output: The output gate controls the output flow of cell ac-
tivations into the rest of the network. Information can
be read from the cell by turning on its output gate. The
LSTM learns to turn off a memory block that is generat-
ing irrelevant output.

NOTE... �

The input gate takes input from the cell at the
previous time-step, and the output gate from the
current time-step. A memory block can choose to
“forget” if necessary or retain their memory over
very long periods of time.

130

CHAPTER 9. LONG SHORT-TERM MEMORY . . .

Understand the Constant Error
Carousel
The memory cell can maintain its state over time. It is often
called the “Constant Error Carousel”. This is because at its
core it is a recurrently self-connected linear unit which recircu-
lates activation and error signals indefinitely. This allows it to
provide short-term memory storage for extended time periods.

The hard sigmoid function, see Figure 9.6, is often used
as the inner cell activation function. It is piece-wise linear
and faster to compute than the sigmoid function for which it
approximates. It can be calculated as:

f(u) = max
(

0,min
(

1, u+ 1
2

))
Different software libraries have slightly different implementa-
tions of the hard sigmoid function.

NOTE... �

Each memory block contains a constant error
carousel. This is a memory cell containing a self-
connected linear unit that enforces a constant local
error flow.

131

Deep Time Series Forecasting with Python

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-1.5 -1 -0.5 0 0.5 1 1.5

f(
u

)

u

Figure 9.6: Hard Sigmoid activation function

Specifying a LSTM Model the Easy
Way
The number of memory blocks is controlled by the output_dim
argument in the LSTM function. For illustration, four memory
blocks are specified. The activation function for the inner cell
is set to hard sigmoid:
from keras.models import Sequential

132

CHAPTER 9. LONG SHORT-TERM MEMORY . . .

from keras.layers.core import Dense ,
Activation

from keras.layers.recurrent import LSTM
seed =2016
np.random.seed(seed)
fit1 = Sequential ()
fit1.add(LSTM(output_dim =4,

activation=’tanh’,
inner_activation=’hard_sigmoid ’,
input_shape =(5, 1)))

fit1.add(Dense(output_dim =1, activation=’
linear ’))

As with all of the Keras models we have seen so far, the
Sequential() model is called first, followed by the model
specification. The output layer is called via the Dense function,
which results in a fully connected layer with a linear activation
function.

An alternative to Stochastic Gradient De-
scent
So far in this text we have used stochastic gradient descent
(optimizer=sgd). This involves a form of static tuning (global
learning rate set a specific value and forget it). During stochas-
tic gradient descent, the update vector components for the
weights will take various values. Some updates will be very
large, whilst others tiny. Whatever the size or direction a sin-
gle learning weight is applied across all updates. Whilst this
is certainly a very popular learning rule, success depends in a
large part on how the learning rate is tuned.

Setting the learning rate involves an iterative tuning pro-
cedure in which we manually set the highest possible value.
Choosing too high a value can cause the system to diverge,

133

Deep Time Series Forecasting with Python

and choosing this rate too low results in slow learning. Deter-
mining a good learning rate is more of an art than science for
many problems.

There is some evidence that automatic learning rate adjust-
ments during stochastic gradient descent can deliver enhanced
performance. The rmsprop algorithm uses a different learning
rate for each update vector component. It normalizes the gra-
dients using an exponential moving average of the magnitude of
the gradient for each parameter divided by the root of this aver-
age. To use the rmsprop algorithm set optimizer="rmsprop"
in the compile function:
fit1.compile(loss="mean_squared_error",

optimizer="rmsprop")

Now fit the model:
fit1.fit(x_train , y_train , batch_size =1,

nb_epoch =10, shuffle=False)

For this illustration the model is run for 10 epochs, with a batch
size of 1. We do not shuffle the training examples to preserve
the order in which they were created.

A nice feature of Keras models is the summary function,
which give a broad overview of a model:
print fit1.summary ()

It reports the model has a total of 101 parameters, with 96 as-
sociated with the LSTM layer and 5 associated with the output
(Dense) layer.

134

CHAPTER 9. LONG SHORT-TERM MEMORY . . .

Train and Test MSE
Look at the train and test set MSE:
score_train = fit1.evaluate(x_train ,

y_train ,batch_size =1)
score_test = fit1.evaluate(x_test , y_test ,

batch_size =1)

print "in train MSE = ", round(score_train
,4)

in train MSE = 0.0447

print "in test MSE = ", round(score_test ,4)
in test MSE = 0.0434

Predicted values can be obtained via the predict function and
converted to their original scale by inverse_transform:
pred1=fit1.predict(x_test)
pred1 = scaler_y.inverse_transform(np.array

(pred1).reshape ((len(pred1), 1)))

Figure 9.7 plots the actual and predicted values alongside the
comfort interval/ tolerance range. Overall, the model tends
to overestimate the number of Sunspots, although it captures
the general trend, and the majority of actual observations are
located within the comfort interval.

135

Deep Time Series Forecasting with Python

0 20 40 60 80 100 120 140 160 180
Prediction Period

0

50

100

150

200

250

M
o
n
th

ly
 a

v
e
ra

g
e
 t

o
ta

l
s
u
n
s
p
o
t

n
u
m

b
e
r

Monthly average total sunspot number
Prediction

Figure 9.7: Predicted and actual values with comfort interval

Shuffling Examples to Improve Generalization
How might you improve the model? You could tweak some
parameters, say by adding additional memory blocks. One hack
that occasionally works is to set shuffle=True. This means
that the training examples will be randomly shuffled at each
epoch.

Recall, we have set up the data so that each example con-
sists of the set yt and xt = [yt−1, yt−2, yt−3, yt−4, yt−5]. So,
example 1 contains E1 = [y1, x1] , and example 2 contains

136

CHAPTER 9. LONG SHORT-TERM MEMORY . . .

E2 = [y2, x2]. In general, we have a series of examples
E1, E2, E3, ...En, where n is the length of the training sample.

Just for illustration, suppose we only have five examples:
With shuffle=False the model uses them in order

E1, E2, E3, E4, E5. When shuffle=True, we might end up
training in the order E3, E1, E5, E4, E2. Provided you have cho-
sen an appropriate lag order for your data this approach can
improve generalization.

Figure 9.8 shows the predicted and actual values for
shuffle=True. The model more closely predicts the actual
observations.

0 20 40 60 80 100 120 140 160 180
Prediction Period

0

50

100

150

200

M
o
n
th

ly
 a

v
e
ra

g
e
 t

o
ta

l
s
u
n
s
p
o
t

n
u
m

b
e
r

Monthly average total sunspot number
Prediction

Figure 9.8: Predicted and actual values with comfort interval
for shuffle=True.

137

Deep Time Series Forecasting with Python

A Note on Vanishing Gradients
The LSTM is widely used because the architecture overcomes
the vanishing gradient problem that plagues recurrent neu-
ral networks. Errors in a backpropagation neural network are
used to drive weight changes. With conventional learning algo-
rithms, such as Back-Propagation Through Time or Real-Time
Recurrent Learning, the back-propagated error signals tend to
shrink or grow exponentially fast. This causes the error sig-
nals used for adapting network weights to become increasingly
difficult to propagate through the network.

Figure 9.9 illustrates the situation. The shading of the
nodes in the unfolded network indicates their sensitivity to the
original input at time 1. The darker the shade, the greater the
sensitivity. Over time this sensitivity decays.

It turns out that the evolution of the back-propagated er-
ror over time depends exponentially on the size of the weights.
This is because the gradient is essentially equal to the recur-
rent weight matrix raised to a high power. Essentially, the
hidden state is passed along for each iteration, so when back-
propagating, the same weight matrix is multiplied by itself mul-
tiple times. When raised to high powers (i.e. iterated over
time) it causes the gradient to shrink (or grow) at a rate that
is exponential in the number of time-steps. This is known as
the “vanishing gradient” if the gradients shrink, or “exploding
gradients” if the gradient grows. The practical implication is
that learning long term dependencies in the data via a simple
RNN can take a prohibitive amount of time, or may not happen
at all.

The LSTM avoids the vanishing gradient problem. This is
because the memory block has a cell that stores the previous
values and holds onto it unless a "forget gate" tells the cell to
forget those values. Only the cell keeps track of the model
error as it flows back in time. At each time step the cell state
can be altered or remain unchanged. The cell’s local error
remains constant in the absence of a new input or error signals.

138

CHAPTER 9. LONG SHORT-TERM MEMORY . . .

The cell state can also be fed into the current hidden state
calculations. In this way the value of hidden states occurring
early in a sequence can impact later observations.

Outputs

Hidden

Units

Inputs

Delay

Units

Time 1

Inputs

Time 2

Inputs

Time 3

Inputs

Time 4

Inputs

Time 5

Inputs

Time k

…

Very sensitive to

input at Time 1

Not very sensitive

to input at Time 1
Not sensitive to

input at Time 1

Figure 9.9: Vanishing Gradient’s in a RNN

NOTE... �

Exploding gradients can be solved by shrinking
gradients whose values exceed a specific threshold.
This is known as gradient clipping.

Follow these Steps to Build a Stateful
LSTM
The LSTM model has the facility to be stateful. This simply
means that the states for the samples of each batch are remem-
bered and reused as initial states for the samples in the next
batch. This is a useful feature because it allows the model to

139

Deep Time Series Forecasting with Python

carry states across sequence-batches, which can be useful for
experimenting with time series data.

Set Up for Statefulness
To use statefulness, you have to explicitly specify the batch size
you are using, by passing a batch_input_shape argument to
the first layer in your model; and set stateful=True in your
LSTM layer(s):
seed =2016
np.random.seed(seed)
fit2 = Sequential ()
fit2.add(LSTM(output_dim =4,

stateful=True ,
batch_input_shape =(1,5,1),
activation=’tanh’,
inner_activation=’hard_sigmoid ’))

fit2.add(Dense(output_dim =1, activation=’
linear ’))

fit2.compile(loss="mean_squared_error",
optimizer="rmsprop")

The batch_input_shape takes the batch size (1 in our exam-
ple), number of attributes (5 time lagged variables) and number
of time steps (1 month forecast).

NOTE... �

The batch size argument passed to predict or
evaluate should match the batch size specified in
your model setup.

140

CHAPTER 9. LONG SHORT-TERM MEMORY . . .

Forecasting One Time Step Ahead
The model we develop will continue to forecast the 1 month
ahead monthly number of Sunspots from January 2015 to June
2016. However, rather than using all the available data the
model will forecast the next month based on the last 500 rolling
months of data:
end_point =len(x_train)
start_point =end_point -500

The model has to be trained one epoch at a time with the
state reset after each epoch. Here is how to achieve this with
a for loop:
for i in range(len(x_train[start_point:

end_point])):
print "Fitting example ",i
fit2.fit(x_train[start_point:

end_point], y_train[start_point:
end_point], nb_epoch=1,
batch_size =1, verbose=2, shuffle
=False)

fit2.reset_states ()

The last line resets the states of all layers in the model.
The model will take longer to run than the previous model.

While, it is running you should see output along the lines of:
Fitting example 0
Epoch 1/1
3s - loss: 0.0327
Fitting example 1
Epoch 1/1
3s - loss: 0.0200
Fitting example 2
Epoch 1/1
3s - loss: 0.0184
Fitting example 3

141

Deep Time Series Forecasting with Python

Model Performance
As we have previously seen, the predictions using the test set
can be obtained via:
pred2=fit2.predict(x_test ,batch_size =1)
pred2 = scaler_y.inverse_transform(np.array

(pred2).reshape ((len(pred2), 1)))

Figure 9.10 plots the observed and predicted values. The
model appears to capture the underlying dynamics of the
monthly Sunspots series, and is very similar to Figure 9.8. The
vast majority of observations lie well within the comfort inter-
val, however the model tends to overestimate the actual fore-
cast. Figure 9.11 shows the performance of the model with
shuffle=True. It appears very similar to Figure 9.8.

0 20 40 60 80 100 120 140 160 180
Prediction Period

0

50

100

150

200

250

S
in

g
a
p
o
re

a
n
 d

o
ll
a
rs

 (
$

)

Monthly average total sunspot number
Prediction

Figure 9.10: Observed and predicted values for the stateful
LSTM

142

CHAPTER 9. LONG SHORT-TERM MEMORY . . .

0 20 40 60 80 100 120 140 160 180
Prediction Period

0

50

100

150

200

250
S
in

g
a
p
o
re

a
n
 d

o
ll
a
rs

 (
$

)

Monthly average total sunspot number
Prediction

Figure 9.11: Observed and predicted values for the stateful
LSTM with shuffle=True.

NOTE... �

You can stack multiple LSTM layers to make the
network structure deep. You can even combine two
separate LSTM networks that run in forward and
backward directions to implement a bidirectional
architecture.

143

Deep Time Series Forecasting with Python

Additional Resources to Check Out
• Be sure to explore Sepp Hochreiter’s well thought out ar-

ticle discussing LSTM - See Hochreiter, Sepp, and Jürgen
Schmidhuber. "Long short-term memory." Neural compu-
tation 9.8 (1997): 1735-1780.

• For additional details on the hard sigmoid function ac-
tivation function look at the article by Matthieu Cour-
bariaux. Courbariaux, Matthieu, et al. "Binarized Neu-
ral Networks: Training Neural Networks with Weights
and Activations Constrained to+ 1 or−."

144

https://arxiv.org/pdf/1602.02830v3.pdf
https://arxiv.org/pdf/1602.02830v3.pdf
https://arxiv.org/pdf/1602.02830v3.pdf

Chapter 10

Gated Recurrent Unit

Over the past few years, the Gated Recurrent Unit
(GRU) has emerged as an exciting new tool for model-
ing time-series data. They have fewer parameters than

LSTM but often deliver similar or superior performance. Just
like the LSTM the GRU controls the flow of information, but
without the use of a memory unit.

NOTE... �

Rather than a separate cell state, the GRU uses
the hidden state as memory. It also merges the
forget input gates into a single “update” gate.

The Gated Recurrent Unit in a Nut-
shell
Figure 10.1 illustrates the topology of a GRU memory block
(node). It contains an update gate (z) and reset gate (r).

• The reset gate determines how to combine the new input
with previous memory.

145

Deep Time Series Forecasting with Python

• The update gate defines how much of the previous mem-
ory to use in the present.

Together these gates give the model the ability to explicitly
save information over many time-steps.

xt

yt

New Memory ContentFinal Memory

Figure 10.1: Gated Recurrent Unit topology

NOTE... �

The GRU is designed to adaptively reset or update
its memory content.

The Reset Gate
The reset gate determines how to combine the new input xt

with the previous hidden state ht−1. It gives the model the
ability to block or pass information from the previous hidden
state. This allows a GRU to “reset” itself whenever a previous

146

CHAPTER 10. GATED RECURRENT UNIT

hidden state is no longer relevant. The reset gate is applied
directly to the previous hidden state.

NOTE... �

If the reset gate is set to 0, it ignores previous
memory. This behavior allows a GRU to drop in-
formation that is irrelevant.

The Update Gate
The update gate helps the GRU capture long-term dependen-
cies. It determines how much of the previous hidden state ht−1
to retain in the current hidden state ht. In other words, it con-
trols how much of the past hidden state is relevant at time t
by controlling how much of the previous memory content is to
be forgotten and how much of the new memory content is to
be added.

Whenever memory content is considered to be important for
later use, the update gate will be closed. This allows the GRU
to carry the current memory content across multiple time-steps
and thereby capture long term dependencies.

The final memory or activation ht is a weighted combination
of the current new memory content h̃t and previous memory
activation ht−1, where the weights are determined by the value
of the update gate zt.

Final Memory
In a GRU the hidden activation (final memory) is simply a lin-
ear interpolation of the previous hidden activation (new mem-
ory content), with weights determined by the update gate.

147

Deep Time Series Forecasting with Python

A Simple Approach to Gated Recur-
rent Unit Construction
Let’s continue with the Sunspots example, and use the data
transformations, train and test sets developed in chapter 9 (for
a quick refresh see page 128).

A GRU can be built using the Keras library. We build a
model with 4 units as follows:
from keras.models import Sequential
from keras.layers.core import Dense ,

Activation
from keras.layers.recurrent import GRU
seed =2016
np.random.seed(seed)
fit1 = Sequential ()
fit1.add(GRU(output_dim =4,

return_sequences=False ,
activation=’tanh’,
inner_activation=’hard_sigmoid ’,
input_shape =(5, 1)))

fit1.add(Dense(output_dim =1, activation=’
linear ’))

fit1.compile(loss="mean_squared_error",
optimizer="rmsprop")

The specification is similar to the LSTM. The argument
return_sequences is set to False. For multiple targets it
can be set to True.

Fit the Model
The model is fit in the usual way, but for illustration, over a
single epoch:
fit1.fit(x_train , y_train , batch_size =1,

nb_epoch =10)

148

CHAPTER 10. GATED RECURRENT UNIT

Since GRU has fewer parameters than the LSTM of chapter 9
it trains much faster:
print fit1.summary ()

Train and Test set MSE
The train set and test set MSE are given by:
score_train = fit1.evaluate(x_train ,

y_train ,batch_size =1)
score_test = fit1.evaluate(x_test , y_test ,

batch_size =1)

print "in train MSE = ", round(score_train
,5)

in train MSE = 0.01746

print "in test MSE = ", round(score_test ,5)
in test MSE = 0.00893

And the predictions can be easily calculated and converted to
their original scale via the predict and inverse_transform
methods:
pred1=fit1.predict(x_test)
pred1 = scaler_y.inverse_transform(np.array

(pred1).reshape ((len(pred1), 1)))

Figure 10.2 plots the predicted and actual values. The obser-
vations are well contained within the ±50 comfort interval.

149

Deep Time Series Forecasting with Python

0 20 40 60 80 100 120 140 160 180
Prediction Period

0

50

100

150

200

250

S
in

g
a
p
o
re

a
n
 d

o
ll
a
rs

 (
$

)

Monthly average total sunspot number
Prediction

Figure 10.2: Actual and predicted values for GRU Model

A Quick Recap
So far, our data has been in the form: [examples,
features,time steps=1] and we have framed the problem
as one time step for each sample. For each time step we passed
one example, so for x[1] we have:
print x[1]
[-0.30085384 -0.28829734 -0.53390256

-0.41386238 -0.47614264]

150

CHAPTER 10. GATED RECURRENT UNIT

The first value represents the scaled yt−1, the second value yt−2
and so on at time 1. For x[2] we have:
print x[2]
[-0.20642893 -0.30085384 -0.28829734

-0.53390256 -0.41386238]

where the first value again represents the lagged values of yt

at time 2. This corresponds to the traditional approach to
modelling time series data.

In order to put the data into this format we re-scaled the
input data using (see page 129):
x_train=x_train.reshape(x_train.shape +

(1,))
x_test=x_test.reshape(x_test.shape + (1,))

This reshaped the data into the format [examples, features,
time steps].

NOTE... �

By the way an alternative way to achieve the same
reshaped data would be to use:
x_train = np.reshape(x_train , (

x_train.shape[0], 1, x_train.
shape [1]))

x_test = np.reshape(x_test , (
x_test.shape[0], 1, x_test.
shape [1]))

How to Use Multiple Time Steps
We can also use multiple time steps to make the prediction for
the next time step. In this case, you would reshape the input
data so that it has the form [examples, features=1, time

151

Deep Time Series Forecasting with Python

steps=5]. Let’s look at what this looks like for the Sunspots
example:
x_train=x[0: train_end ,]
x_test=x[train_end +1:3205 ,]
y_train=y[0: train_end]
y_test=y[train_end +1:3205]
x_train = np.reshape(x_train , (x_train.

shape[0], 1, x_train.shape [1]))
x_test = np.reshape(x_test , (x_test.shape

[0], 1, x_test.shape [1]))

print "Shape of x_train is ",x_train.shape
Shape of x_train is (3042, 1, 5)

print "Shape of x_test is ",x_test.shape
Shape of x_test is (162, 1, 5)
You can see that we have reshaped the data to have 5 time
steps with 1 feature. Next, specify the model:
seed =2016
num_epochs =1
np.random.seed(seed)
fit1 = Sequential ()
fit1.add(GRU(output_dim =4,

activation=’tanh’,
inner_activation=’hard_sigmoid ’,
input_shape =(1, 5)))

fit1.add(Dense(output_dim =1, activation=’
linear ’))

fit1.compile(loss="mean_squared_error",
optimizer="rmsprop")

fit1.fit(x_train , y_train , batch_size =1,
nb_epoch=num_epochs)

The above will be familiar to you. The key difference is that
you have to pass the new input shape to input_shape in the
GRU function.

152

CHAPTER 10. GATED RECURRENT UNIT

Figure 10.3 plots the actual and predicted values. The
model captures the general dynamics of the actual observa-
tions. The actual predictions are well contained within the
tolerance range. However, the model appears to consistently
predict a higher number of Sunspots than actually observed.
Since the model has not been optimized, performance could be
improved with a little parameter tweaking.

0 20 40 60 80 100 120 140 160 180
Prediction Period

0

50

100

150

200

S
in

g
a
p
o
re

a
n
 d

o
ll
a
rs

 (
$

)

Monthly average total sunspot number
Prediction

Figure 10.3: Actual and predicted values for multi time step
GRU

153

Deep Time Series Forecasting with Python

Additional Resources to Check Out
• Junyoung Chung has put together a very nice compar-

ison of the GRU, LSTM and simple RNN using music,
and speech signal modeling. See Chung, Junyoung, et al.
"Empirical evaluation of gated recurrent neural networks
on sequence modeling."arXiv preprint arXiv:1412.3555
(2014).

154

https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1412.3555

Chapter 11

Forecasting Multiple
Outputs

So far, we have focused on building models where there
is one response variable. This is akin to the traditional
approach of univariate time series modelling. In many

circumstances observations are take simultaneously on two or
more time series. For example, in hydrology we might observe
precipitation, discharge, soil humidity and water temperature
at the same site for the same sequence of time points. In finan-
cial economics, we may be interested in modelling the opening
and closing price of IBM, Microsoft and Apple over a several
weeks or months. Multivariate data such as this can be easily
handled in a neural network.

In this chapter, we build a RNN to predict the historical
volatility of the FTSE100 stock market index and the Dow
Jones Industrial index. The FTSE is an index of the 100 com-
panies listed on the London Stock Exchange with the highest
market capitalization. The Dow Jones Industrial Average is the
average value of 30 large, industrial stocks traded on the New
York Stock Exchange and the NASDAQ.

Figure 11.1 shows the historical performance of both indices
from November 1995 to May 2001. Although the levels and
precise shape of the indices are different, they appear to have

155

Deep Time Series Forecasting with Python

similar underlying time series dynamics.

1996 1997 1998 1999 2000 2001
Time Period

3500

4000

4500

5000

5500

6000

6500

7000

In
d
e
x
 l
e
v
e
l

FTSE 100

1996 1997 1998 1999 2000 2001
Time Period

5000

6000

7000

8000

9000

10000

11000

12000

In
d
e
x
 l
e
v
e
l

Down Jones Industrial

Figure 11.1: Historical performance of stock market indices

Working with Zipped Files
For our analysis, we will use historical data stored in a zip file
on the internet. The zipfile module is used to manipulate
ZIP archive files. Here is how to download and unzip the data:
import numpy as np
import pandas as pd
import urllib
import zipfile
url="http :// www.economicswebinstitute.org/

data/stockindexes.zip"
loc="C:\\ Data\\ stockindexes.zip"
dest_location="C:\\ Data"

156

CHAPTER 11. FORECASTING MULTIPLE OUTPUTS

unzip = zipfile.ZipFile(loc , ’r’)
unzip.extractall(dest_location)
unzip.close ()

Extraction of Spreadsheet data
The extracted file is a xls spreadsheet which can be handled by
the pandas ExcelFile method. First, read stockindexes.xls
file into the object Excel_file:
loc= "C:\\ Datastockindexes.xls"
Excel_file = pd.ExcelFile(loc)
print Excel_file.sheet_names
[u’Description ’, u’Dow Jones Industrial ’,

u’S&P500’, u’NIKKEI 300’, u’Dax30’, u’
CAC40’, u’Swiss Market -Price Index ’, u’
Mib30’, u’IBEX 35I’, u’Bel20’, u’
FTSE100 ’]

The spreadsheet contains several worksheets with historical
data on various stock markets. We want the ’FTSE100’ and
’Dow Jones Industrial’ worksheets:
ftse_data = Excel_file.parse(’FTSE100 ’)
dj_data = Excel_file.parse(’Dow Jones

Industrial ’)
Now, look at the first few observations contained in

ftse100:
print f t se_data . head ()

Star t 1995−11−30 00 : 00 : 00
0 End 2000−02−18 00 : 00 : 00
1 Frequency D
2 Name FTSE 100 − PRICE INDEX
3 Code FTSE100
4 1995−11−30 00 : 00 : 00 3664 .3

The observations don’t start until the first date “1995−11−30 0
0 : 0 0 : 0 0” when the FTSE 1000 had the value 3664.3.

A similar pattern is found with the Dow Jones data:

157

Deep Time Series Forecasting with Python

print dj_data . head ()
Sta r t 1995−11−30

00 : 00 : 00
0 End 2000−02−18

00 : 00 : 00
1 Frequency

D
2 Name DOW JONES INDUSTRIALS − PRICE

INDEX
3 Code

DJINDUS
4 1995−11−30 00 : 00 : 00

5074.49

In this case the actual data we are interested in begins with a
value of 5074.49.

Let’s transfer the price index data into the Python objects
ftse100 and dj:
ftse100= ftse_data.iloc [4:1357 ,1]
dj= dj_data.iloc [4:1357 ,1]

Checking Data Values
Now, take a quick look at the data in both objects:
print ftse100.head()
4 3664.3
5 3680.4
6 3669.7
7 3664.2
8 3662.8

print ftse100.tail()
1352 6334.53
1353 6297.53
1354 6251.83
1355 6256.43
1356 6269.21

158

CHAPTER 11. FORECASTING MULTIPLE OUTPUTS

print dj.head()
4 5074.49
5 5087.13
6 5139.52
7 5177.45
8 5199.13

print dj.tail()
1352 10881.2
1353 10887.4
1354 10983.6
1355 10864.1
1356 10965.9

How to Work with Multiple Targets
The goal is to predict the 30 day historical volatility (standard
deviation) of the daily price change. Our first step is to create
the target variables. Let’s begin by concatenating the price
series into one Python object - yt:
yt=pd.concat ([ftse100 ,dj], axis =1)
print yt.head()

1995 -11 -30 1995 -11 -30
4 3664.3 5074.49
5 3680.4 5087.13
6 3669.7 5139.52
7 3664.2 5177.45
8 3662.8 5199.13

Notice that the column names are actually dates and the index
begins at 4. Let’s fix both issues:
yt = yt.reset_index(drop=True)
yt.columns = [’ftse100 ’, ’dj’]
print yt.head()

159

Deep Time Series Forecasting with Python

ftse100 dj
0 3664.3 5074.49
1 3680.4 5087.13
2 3669.7 5139.52
3 3664.2 5177.45
4 3662.8 5199.13
That looks much better.

The next step is to convert the price levels into daily price
percent changes and calculate the 30 day rolling standard de-
viation. Here is how to do that:
yt=yt.pct_change (1)
win =30
vol_t=yt.rolling(window=win ,center=True).

std()
Figure 11.2 shows the resultant time series for both stock mar-
kets.

0 200 400 600 800 1000 1200 1400
Time Period

0.000

0.005

0.010

0.015

0.020

0.025

V
o
la

ti
lit

y
 (

%
)

FTSE 100

0 200 400 600 800 1000 1200 1400
Time Period

0.000

0.005

0.010

0.015

0.020

0.025

V
o
la

ti
lit

y
 (

%
)

Down Jones Industrial

Figure 11.2: 30 day historical volatility

160

CHAPTER 11. FORECASTING MULTIPLE OUTPUTS

Creation of Hand Crafted Features
The design of a deep learning system is usually considered con-
sisting of two major steps. The first involves preprocessing, and
feature extraction; and the second step involves model building
and classification or prediction.

Hand crafting features is both art and science. To spice
things up a little, we add five hand crafted features. Each
constructed along the following lines:[

volt−1

volt−k

]
× volt−1, k = 1, 2, 3, 4, 5

In other words, at time t we use yesterday’s volatility adjusted
by the ratio of it to recent past values:
x1=np . l og ((vol_t . s h i f t (1) /vol_t . s h i f t (2)) ∗vol_t . s h i f t (1))

x2=np . l og ((vol_t . s h i f t (1) /vol_t . s h i f t (3)) ∗vol_t . s h i f t (1))

x3=np . l og ((vol_t . s h i f t (1) /vol_t . s h i f t (4)) ∗vol_t . s h i f t (1))

x4=np . l og ((vol_t . s h i f t (1) /vol_t . s h i f t (5)) ∗vol_t . s h i f t (1))

x5=np . l og ((vol_t . s h i f t (1) /vol_t . s h i f t (6)) ∗vol_t . s h i f t (1))

These five features are combined into the object data,
columns given a name/ header, and missing values (from the
calculation of the 30 day volatility) dropped:
data=pd.concat ([vol_t ,x1 ,x2 ,x3,x4,x5], axis

=1)
data.columns = [’ftse_t ’, ’dj_t’,

’ftse_t -1’,’dj_t -1’,
’ftse_t -2’,’dj_t -2’,
’ftse_t -3’,’dj_t -3’,
’ftse_t -4’,’dj_t -4’,
’ftse_t -5’,’dj_t -5’]

data = data.dropna ()

161

Deep Time Series Forecasting with Python

Target and Features in One Place
Finally, to be consistent with previous analysis, we can create
the target variable y and the feature data x:
cols_y =[’ftse_t ’, ’dj_t’]
y=data[cols_y]
cols=[’ftse_t -1’,’dj_t -1’,

’ftse_t -2’,’dj_t -2’,
’ftse_t -3’,’dj_t -3’,
’ftse_t -4’,’dj_t -4’,
’ftse_t -5’,’dj_t -5’
]

x=data[cols]

Scaling Data
The data is scaled to lie in the 0 to 1 range using MinMaxScaler:
from sklearn import preprocessing
num_attrib =10
scaler_x = preprocessing.MinMaxScaler(

feature_range =(-1, 1))

x = np.array(x).reshape ((len(x),num_attrib
))

x = scaler_x.fit_transform(x)

num_response =2

scaler_y = preprocessing.MinMaxScaler(
feature_range =(0, 1))

y = np.array(y).reshape ((len(y),
num_response))

y = scaler_y.fit_transform(y)

162

CHAPTER 11. FORECASTING MULTIPLE OUTPUTS

All the above is similar to that discussed in earlier chapters.
However, the number of attributes is equal to 10. This is be-
cause we have 5 hand crafted features ∗ 2 response variables.

Train and Test Sets
The train and test sets are created as follows:
train_end = 1131
data_end =len(y)
x_train=x[0: train_end ,]
x_test=x[train_end +1: data_end ,]
y_train=y[0: train_end]
y_test=y[train_end +1: data_end]
x_train = np.reshape(x_train , (x_train.

shape[0], 1, x_train.shape [1]))
x_test = np.reshape(x_test , (x_test.shape

[0], 1, x_test.shape [1]))

print "Shape of x_train is ",x_train.shape
Shape of x_train is (1131, 1, 10)

print "Shape of x_test is ",x_test.shape
Shape of x_test is (185, 1, 10)

For this example, we follow the approach outlined on page 151
and re-frame the problem using multiple time-steps (10 in this
case). Therefore, the test set has 1131 examples on 10 time
steps.

Model Specification and Fit
The difficult work has been done. Now the data is in an ap-
propriate format, specifying and fitting the model follows the
steps we have already worked through in the earlier chapters.
First, load the appropriate libraries:

163

Deep Time Series Forecasting with Python

from keras.models import Sequential
from keras.layers.core import Dense ,

Activation
from keras.layers.recurrent import

SimpleRNN
from keras.optimizers import SGD

The model is a simple RNN built using the Keras package.
We will specify 10 nodes in the hidden layer, use Stochastic
Gradient Descent with a learning rate of 0.01 and a momentum
of 0.90, with the model run over a single epoch:
seed =2016
num_epochs =20
np.random.seed(seed)
fit1 = Sequential ()
fit1.add(SimpleRNN(output_dim =10,

activation=’sigmoid ’,
input_shape =(1, num_attrib)))

fit1.add(Dense(output_dim=num_response ,
activation=’linear ’))

sgd = SGD(lr=0.01, momentum =0.90, nesterov
=True)

fit1.compile(loss=’mean_squared_error ’,
optimizer=sgd)

fit1.fit(x_train , y_train , batch_size =1,
nb_epoch=num_epochs)

The train and test set performance are:
score_train = fit1.evaluate(x_train ,

y_train ,batch_size =1)
score_test = fit1.evaluate(x_test , y_test ,

batch_size =1)

print "in train MSE = ", round(score_train
,5)

in train MSE = 0.00158

164

CHAPTER 11. FORECASTING MULTIPLE OUTPUTS

print "in test MSE = ", round(score_test ,5)
in test MSE = 0.00114

Now, to calculate the predictions and transform them back
to their original scale:
pred1=fit1.predict(x_test)0.00114387514427
pred1 = scaler_y.inverse_transform(np.array

(pred1).reshape ((len(pred1), 2)))

Figure 11.3 and Figure 11.4 plot the actual and predicted
values. For both time series, the model closely mirrors the
dynamics of the actual series.

0 50 100 150 200
Prediction Period

0.004

0.006

0.008

0.010

0.012

0.014

0.016

V
o
lit

ili
ty

 (
%

)

FTSE 100
FTSE 100 Prediction

Figure 11.3: FTSE 100 Volatility model actual and predicted
values

165

Deep Time Series Forecasting with Python

0 50 100 150 200
Prediction Period

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

V
o
lit

ili
ty

 (
%

)

Dow Jones
Dow Jones Prediction

Figure 11.4: Dow Jones Volatility model actual and predicted
values

Additional Resources to Check Out
• Tamal Datta Chaudhuri has written a nice easy to

read paper explaining how he used a neural network
to predict stock market volatility. See Chaudhuri,
Tamal Datta, and Indranil Ghosh. "Forecasting Volatil-
ity in Indian Stock Market using Artificial Neural Net-
work with Multiple Inputs and Outputs." arXiv preprint
arXiv:1604.05008 (2016).

• For a highly informative discussion of recurrent neural
networks for multivariate time series with missing values
look at the article by Zhengping Che. It is a little techni-
cal, but a thoroughly good read. Che, Zhengping, et al.
"Recurrent Neural Networks for Multivariate Time Series

166

https://arxiv.org/ftp/arxiv/papers/1604/1604.05008.pdf
https://arxiv.org/ftp/arxiv/papers/1604/1604.05008.pdf

CHAPTER 11. FORECASTING MULTIPLE OUTPUTS

with Missing Values." arXiv preprint arXiv:1606.01865
(2016).

167

https://arxiv.org/pdf/1606.01865.pdf

Deep Time Series Forecasting with Python

168

Chapter 12

Strategies to Build
Superior Models

Let’s face it, building neural networks for time series mod-
eling requires a large dose of patience. When I coded
my very first multi-layer neural network, I had to wait

around three and a half days per run! And by today’s standards
my dataset was tiny. In fact, every model we have developed
in this book runs in a matter of minutes rather than days.

As you continue to develop your applied skills in deep learn-
ing for time series modeling, you will need some tricks in your
back pocket to boost performance. In this chapter we outline
a number of the very best ideas that can help you out of a
sticky situation. But remember, paraphrasing the disclaimer I
often encountered in my days managing investment portfolios,
“Deep learning tricks come with substantial risk of failure, and
are not suitable for every situation!”

UK Unemployment Rate Data
Let’s load up on some data, in this case the economic data
we encountered in chapter 8. Recall, we saved two files
economic_x which contain the attributes, and economic_y

169

Deep Time Series Forecasting with Python

which contained the target variable - the annual unemployment
rate:
import numpy as np
import pandas as pd
loc= "C:\\ Users \\Data\\ economic_x.csv"
x = pd.read_csv(loc)
x= x.drop(x.columns [[0]] , axis =1)
loc= "C:\\ Data \\\\ economic_y.csv"
y = pd.read_csv(loc , header=None)
y= y.drop(y.columns [[0]] , axis =1)

Remember to replace loc with the location to which you pre-
viously saved economic_x , and economic_y.

A Quick Peek
To steady our nerves a little (and to refresh our memory), look
right now at both x and y:
print x . head ()
GDP_trend debt bank_rate i n f l a t i o n
0 0.079944 121.127584 5 .0 11.668484
1 −0.406113 120.856960 7 .0 0 .488281
2 2.193677 117.024347 6 .0 −0.485909
3 0.190602 117.183618 8 .0 −3.613281
4 −1.505673 120.018119 2 .5 −8.409321

print y . head ()
1

0 3.790930
1 3.572757
2 4.008832
3 5.309585
4 3.325983

Oh, we did not save y with a column name! Well, that is OK,
we know that it represents the unemployment rate.

170

CHAPTER 12. STRATEGIES TO BUILD SUPERIOR . . .

Adjust the Data Scale
Now, scale the attributes and target to lie in the range 0 to 1:
from s k l e a rn import pr ep ro c e s s i ng
sca ler_x = prep ro c e s s i ng . MinMaxScaler (

feature_range =(0 , 1))
x = np . array (x) . reshape ((len (x) ,4))
x = sca ler_x . f i t_t rans fo rm (x)

sca ler_y = prep ro c e s s i ng . MinMaxScaler (
feature_range =(0 , 1))

y = np . array (y) . reshape ((len (y) , 1))
y = sca ler_y . f i t_t rans fo rm (y)

Create Train and Test Set
Finally, let’s create the train and test sets for both attributes
and target variable:
x_train=x[0:136 ,]
x_test=x[137:161 ,]
y_train=y[0:136]
y_test=y[137:161]

Limitations of the Sigmoid Activation
Function
One of the limitations of the sigmoid function is its gradient
becomes increasingly smaller as x increases or decreases. This
is a problem if we are using gradient descent or similar methods
and is known as the vanishing gradient problem (also see page
138 where we discuss this in the context of a RNN); as the
gradient gets smaller a change in the parameter’s value results
in a very small change in the network’s output. This slows
down learning to a crawl.

171

Deep Time Series Forecasting with Python

The slow down is amplified as the number of layers increase
because the gradients of the network’s output with respect to
the parameters in the early layers can become extremely small.
This happens because the sigmoid function takes a real-valued
number and “squashes” it into values between zero and one; in
other words, it maps the real number line onto the relatively
small range of [0, 1].

In particular, large negative numbers become 0 and large
positive numbers become 1. This implies that large areas of
the input space are mapped into an extremely small range.
The problem is that in these regions of the input space, even a
very large change in the input will only produce a tiny change
in the output and hence the gradient is small.

NOTE... �

The problem in a nutshell is that when the sigmoid
activation function saturates at either 1 or 0, the
gradient at these regions is very shallow, almost
zero.

One Activation Function You Need to Add to
Your Deep Learning Toolkit
The vanishing gradient problem can be avoided by using ac-
tivation functions which do not squash the input space into
a narrow range. In fact, I have found that swapping out a
“squashing” activation function, such as the sigmoid, for an al-
ternative “non-squashing” function can often lead to a dramatic
improvement in performance of a deep neural network.

One of my favorites to try is the Rectified linear unit (relu).
It is defined as:

f(x) = max(0, x)

172

CHAPTER 12. STRATEGIES TO BUILD SUPERIOR . . .

where x is the input to a neuron. It performs a threshold
operation, where any input value less than zero is set to zero,
see Figure 12.1.

y

X0

1

Figure 12.1: ReLU activation function

This activation function has proved popular in deep learning
models because significant improvements of classification rates
have been reported for speech recognition and computer vision
tasks. It only permits activation if a neurons output is positive;
and allows the network to compute much faster than a network
with sigmoid activation functions because it is simply a max
operation. It also encourages sparsity of the neural network
because when initialized randomly approximately half of the
neurons in the entire network will be set to zero.

Relu with Keras
Let’s try out the relu activation function. We build the model
with Keras. It has two hidden layers, with 40 and 20 nodes in

173

Deep Time Series Forecasting with Python

the first and second hidden layers respectively:
from keras.models import Sequential
from keras.layers import Dense
seed = 2016
np.random.seed(seed)
fit1 = Sequential ()
fit1.add(Dense(40, input_dim=4, init=’

uniform ’, activation=’relu’))
fit1.add(Dense(20, init=’uniform ’,

activation=’relu’))
fit1.add(Dense(1, init=’normal ’))

Next, the model is run over 3,000 epochs with a batch size
of 10:
epochs =3000
fit1.compile(loss=’mean_squared_error ’,

optimizer=’adam’)
fit1.fit(x_train , y_train , nb_epoch=epochs

, batch_size =10)

We use the ’adam’ optimizer. Adam, is a fairly new algo-
rithm for first-order gradient-based optimization of stochastic
objective functions, based on adaptive estimates of lower-order
moments. It was introduced a few years ago, and often gives
very good results with empirical data.

NOTE... �

You can think of a neuron as being "active" (or
as "firing") if its output value is close to 1; and
"inactive" if its output value is close to 0. Spar-
sity constrains the neurons to be inactive most of
the time. It often leads to better generalization
performance (see page 176).

174

CHAPTER 12. STRATEGIES TO BUILD SUPERIOR . . .

Viewing Predictive Performance
Figure 12.1 plots the predicted and actual values, alongside the
comfort interval/ tolerance range. The model does a nice job
at capturing the underlying trend. Indeed, over the forecast
period, the majority of the actual observations are well within
the specified comfort interval. The predictiveness is impressive
for such a small model!

0 5 10 15 20 25
Prediction Period

2

0

2

4

6

8

10

12

14

U
n
e
m

p
lo

y
m

e
n
t

ra
te

 (
%

)

Observed
Prediction

Figure 12.2: Actual and predicted values using relu activation
function

175

Deep Time Series Forecasting with Python

Try This Simple Idea to Enhance Success
The image of the derelict who drops out of school, and wastes
her life away in the shady recesses of the big city is firmly
imprinted in our culture. Parents warn their children to con-
centrate on school lessons, pass the exams and get a good job.
Whatever they do, don’t drop out. If you do, you will find
yourself living in the dark recesses of the big city. When it
comes to going to school, we are advised against dropping out
because of the fear that it will have a deleterious impact on our
future.

The funny thing is, we also celebrate those celebrities and
business tycoons who dropped out. These individuals went
onto enormous success. Heights which would have been impos-
sible had they stayed in school! In fact, I cannot think of an
area in industry, education, science, politics or religion where
individuals who dropped out have not risen to amazing heights
of success. I’d hazard a guess the software or hardware you are
using right now is direct consequence of one such drop out.

The Power of the Drop Out
Whilst dropping out is both celebrated and derided by our
culture, it appears to also have some upside and downside in
relation to DNNs. Borrowing from the idea that dropping out
might boost DNN performance, suppose we ignore a random
number of neurons during each training round; the process of
randomly omitting a fraction of the hidden neurons is called
dropout, see Figure 12.3.

To state this idea a little more formally: for each training
case, each hidden neuron is randomly omitted from the net-
work with a probability of p. Since the neurons are selected at
random, different combinations of neurons will be selected for
each training instance.

The idea is very simple and results in a weak learning
model at each epoch. Weak models have low predictive power

176

CHAPTER 12. STRATEGIES TO BUILD SUPERIOR . . .

by themselves, however the predictions of many weak models
can be weighted and combined to produce models with much
’stronger’ predictive power.

Figure 12.3: DNN Dropout

Similarity
In fact, dropout is very similar to the idea behind the machine
learning technique of bagging. Bagging is a type of model aver-
aging approach where a majority vote is taken from classifiers
trained on bootstrapped samples of the training data. In fact,
you can view dropout as implicit bagging of several neural net-
work models.

Dropout can therefore be regarded as an efficient way to
perform model averaging across many neural networks.

177

Deep Time Series Forecasting with Python

Co-adapation
Much of the power of DNNs comes from the fact that each
neuron operates as an independent feature detector. However,
in actual practice it is common for two or more neurons to
begin to detect the same feature repeatedly. This is called co-
adaptation. It implies the DNN is not utilizing its full capacity
efficiently, in effect wasting computational resources calculating
the activation for redundant neurons that are all doing the same
thing.

In many ways co-adaptation, is similar to the idea of
collinearity in linear regression, where two or more covariates
are highly correlated. It implies the covariates contain simi-
lar information; in particular, that one covariate can be lin-
early predicted from the others with a very small error. In
essence, one or more of the covariates are statistically redun-
dant. Collinearity can be resolved by dropping one or more of
the covariates from the model.

Dropout discourages co-adaptations of hidden neurons by
dropping out a fixed fraction of the activation of the neurons
during the feed forward phase of training. Dropout can also be
applied to inputs. In this case, the algorithm randomly ignores
a fixed proportion of input attributes.

A Lesson
One of life’s lessons is that dropping out is not necessarily ru-
inous to future performance, but neither is it a guarantee of
future success. The same is true for dropout in DNNs; there is
no absolute guarantee that it will enhance performance, but it
is often worth a try.

Keep the following three points in mind as you develop your
own DNN models:

1. Dropout can reduce the likelihood of co-adaptation in
noisy samples by creating multiple paths to correct clas-
sification throughout the DNN.

178

CHAPTER 12. STRATEGIES TO BUILD SUPERIOR . . .

2. The larger the dropout fraction the more noise is intro-
duced during training; this slows down learning,

3. Dropout appears to offer the most benefit on very large
DNN models.

Adding Drop Out with Keras
Drop out can be added to our previous model via the Dropout
function. To illustrate how you might use it, we add 5% drop
out to each of the hidden layers:
from keras.layers import Dropout
dropout1 = 0.05
dropout2= 0.05
fit2 = Sequential ()
fit2.add(Dense(40, input_dim=4, init=’

uniform ’, activation=’relu’))
fit2.add(Dropout(dropout1))
fit2.add(Dense(20, init=’uniform ’,

activation=’relu’))
fit2.add(Dropout(dropout2))
fit2.add(Dense(1, init=’normal ’))
fit2.compile(loss=’mean_squared_error ’,

optimizer=’adam’)
fit2.fit(x_train , y_train , nb_epoch=epochs ,

batch_size =10)

Notice, to add drop out we simply add another line after the
layer specification.

Figure 12.3 plots the predicted and actual values. While a
few of the early and later observations lie above the upper com-
fort interval, the overall prediction dynamics, mirrors closely
that of the underlying target variable.

179

Deep Time Series Forecasting with Python

0 5 10 15 20 25
Prediction Period

2

0

2

4

6

8

10

12

14

U
n
e
m

p
lo

y
m

e
n
t

ra
te

 (
%

)

Observed
Prediction

Figure 12.4: Actual and predicted values with drop out.

A Simple Plan for Early Stopping
When I was in elementary school we had regular and frequent
outdoor playtime’s as part of our education. We usually had
playtime mid-morning to whip up our appetite prior to lunch,
after lunch to aid the digestive system, and on warm sunny
days, our teachers would unleash us outside for an afternoon
playtime - to burn up any unused energy before we were packed
off home. I loved school!

The only thing that would shorten our frequent outdoor

180

CHAPTER 12. STRATEGIES TO BUILD SUPERIOR . . .

adventures was the rain. If it rained (and it rains a lot in
England) the early stopping bell would ring, the fun would be
terminated and the lessons begin. The funny thing was, even
after a shortened play time my ability to focus and concentrate
on my school work was enhanced. I guess my teachers had an
intuitive understanding of the link between physical activity,
mental focus, mood and performance. To this day I go outside
for a brisk walk to jolt my mental faculties into action.

The analogy with school playtime’s is that we should be
willing to stop DNN training early if that makes it easier to
extract acceptable performance on the testing sample. This
is the idea behind early stopping where the sample is divided
into three sets. A training set, a validation set and a testing
set. The train set is used to train the DNN. The training
error is usually a monotonic function, that decreases with every
iteration. Figure 6.6 illustrates this situation. The error falls
rapidly during the first 5 epochs. It then declines at a much
shallower rate to one hundred epochs where it appears to level
off to a constant value.

A validation set is used to monitor the performance of a
model. The validation error usually falls sharply during the
early stages as the network rapidly learns the functional form,
but then increases, indicating the model is starting to over-
fit. In early stopping, training is stopped at the lowest error
achieved on the validation set. Early stopping has proven to
be highly effective in reducing over-fitting for a wide variety of
neural network applications. It is worth a try by you.

Using Early Stopping in Keras
The first step is to specify the model. Keras supports early
stopping through an EarlyStopping callback class:
from keras.callbacks import EarlyStopping
fit3 = Sequential ()
fit3.add(Dense(40, input_dim=4, init=’

uniform ’, activation=’relu’))

181

Deep Time Series Forecasting with Python

fit3.add(Dense(20, init=’uniform ’,
activation=’relu’))

fit3.add(Dense(1, init=’normal ’))
fit3.compile(loss=’mean_squared_error ’,

optimizer=’adam’)

NOTE... �

Callbacks are methods that are called after each
epoch of training upon supplying a callbacks pa-
rameter to the fit method of a model. They get a
“view” on internal states and statistics of a model
during training.

Validation Set
We use 24 examples for validation set:
y_valid=y_train [112:136]
x_valid=x_train [112:136]

And, now fit the model:
fit3.fit(x_train , y_train , nb_epoch=epochs ,

batch_size =10, validation_data =(x_valid ,
y_valid),

callbacks =[EarlyStopping(monitor=’
val_loss ’,patience =100, verbose
=2,mode=’auto’)])

In early stopping, you stop training once the validation loss
hasn’t decreased for a fixed number of epochs. The number of
epochs is specified in a parameter known as patience. In the
above code, we set it to the value 100.

Figure 12.5 shows the predicted and actual values. Again,
the model performs fairly well with the majority of actual ob-
servations contained within the comfort interval.

182

CHAPTER 12. STRATEGIES TO BUILD SUPERIOR . . .

0 5 10 15 20 25
Prediction Period

2

0

2

4

6

8

10

12

14

16
U

n
e
m

p
lo

y
m

e
n
t

ra
te

 (
%

)

Observed
Prediction using Early Stopping

Figure 12.5: Actual and predicted values with early stopping

NOTE... �

To see the actual fitted model weights use:
fit1.get_weights ()

183

Deep Time Series Forecasting with Python

Additional Resources to Check Out
• For more details on the adam optimizer, see the amaz-

ing paper by Diederik Kingma, Jimmy Ba - Kingma,
Diederik, and Jimmy Ba. "Adam: A method for stochas-
tic optimization." arXiv preprint arXiv:1412.6980 (2014).

• Lutz Prechelt has written a well thought out article on the
use and abuse of early stopping. Prechelt, Lutz. "Early
stopping—but when?." Neural Networks: Tricks of the
Trade. Springer Berlin Heidelberg, 2012. 53-67.

• Be sure to read the wonderful article Dropout: a sim-
ple way to prevent neural networks from overfitting. See
Srivastava, Nitish, et al. "Dropout: a simple way to pre-
vent neural networks from overfitting." Journal of Ma-
chine Learning Research 15.1 (2014): 1929-1958.

184

https://arxiv.org/pdf/1412.6980v8.pdf
http://ai2-s2-pdfs.s3.amazonaws.com/06cd/d6ccc1456ed3580430e73b5c4a2327b2e233.pdf
http://ai2-s2-pdfs.s3.amazonaws.com/06cd/d6ccc1456ed3580430e73b5c4a2327b2e233.pdf
http://www.jmlr.org/papers/volume15/srivastava14a.old/source/srivastava14a.pdf

CHAPTER 12. STRATEGIES TO BUILD SUPERIOR . . .

Congratulations!
You made it to the end. Here are three things you can do

next.

1. Pick up your FREE copy of 21 Tips For Data Science
Success with Python at http: // www. auscov. com

2. Gift a copy of this book to your friends, co-workers, team-
mates or your entire organization.

3. If you found this book useful and have a moment to spare,
I would really appreciate a short review. Your help in
spreading the word is gratefully received.

I’ve spoken to thousands of people over the past few years.
I’d love to hear your experiences using the ideas in this book.
Contact me with your stories, questions and suggestions at
Info@NigelDLewis.com.

Good luck!
P.S. Thanks for allowing me to partner with you on your

data science journey.

185

http://www.auscov.com

Index

B
Backpropagation Through

Time, 73
batch_input_shape, 140
Batching, 78
biases, 58

C
co-adaptation, 178
collinearity, 178
comfort interval, 149
complex, 86
Constant Error Carousel,

131
convert predictions, 79
crafting features, 161
cyclic, 119

D
data generating process, 7
Data Lag, 125
Dow Jones, 155
dropna, 126
Dropout, 179
dtype, 23
dynamic neural network, 68

E
EarlyStopping, 181
Economist, 51

epoch, 176
epochs, 26, 79
ExcelFile, 157
ExcelFile method, 33
exploding gradients, 138

F
feed forward, 18
Final Memory, 147
fit_transform, 41
float, 111
float64, 23
Forget, 130
forget gate, 127
forward, 28
FTSE100, 155

G
GRU memory block, 145

H
hard sigmoid, 131

I
import, 21
Input, 130
input gate, 127
int, 111
inverse_transform, 149

186

INDEX

J
JordanRecurrent, 97

K
Keras, 68
keras, 45
Keras Sequential model, 75

L
learn function, 63
learning

weak model, 176
learning rate, 60
likelihood, 76
logistic, 44

M
mean square error, 64
memory cell, 127
MinMaxScaler, 39
momentum parameter, 76
MSE, 64

N
neuralpy, 28
nnet-ts package, 45
nonlinearities, 20
NumPy, 15, 21
numpy ndarray, 54

O
optimization, 89
Output, 130
output gate, 127

P
PACF, 42
Packages

neuralpy, 25
numpy, 21
pandas, 21
random, 21

Pandas, 15
parameters, 55, 73
patience, 169
predict method, 47
pyneurgen, 85
pyneurgen module, 54
Python 2, 3
Python Package Index, 4
Python Tutorial, 3

R
random seed, 12
random_testing, 63
Rectified linear unit, 172
Relu, 173
relu, 172
Reset Gate, 146
reshape, 151
rmsprop algorithm, 134

S
saturates, 172
save a csv file, 36
scipy, 45
SGD, 59, 75
shuffle, 142
sigmoid, 44
sigmoid - limitations, 171
Singapore, 31
sklearn, 39
slow learning, 62
Sparsity, 174
stateful, 139, 140

187

Deep Time Series Forecasting with Python

statsmodels, 42
strings, 111
summary function, 134
Sunspot, 120

T
Tanh function, 44
TensorFlow, 67
Theano, 67
theano, 45
to_csv, 36
tolist, 85
train, 27
Turing-completeness, 70

U
unfold a RNN, 74
Update Gate, 147
urllib, 32

V
vanishing gradient, 138

W
weight matrix, 138
weights, 58
while, 25
worksheets, 106

Z
zipfile, 156

188

OTHER BOOKS YOU
WILL ALSO ENJOY

FINALLY... The Ultimate Cheat Sheet For Deep
Learning Mastery

If you want to join the ranks
of today’s top data scientists
take advantage of this valu-
able book. It will help you
get started. It reveals how
deep learning models work,
and takes you under the hood
with an easy to follow pro-
cess showing you how to build
them faster than you imag-
ined possible using the pow-
erful, free R predictive ana-
lytics package.

Buy the book today. Your
next big breakthrough using
deep learning is only a page
away!

ORDER YOUR COPY TODAY!

189

http://www.auscov.com

Deep Time Series Forecasting with Python

Over 100 Statistical Tests at Your Fingertips!

100 Statistical Tests in R is
designed to give you rapid ac-
cess to one hundred of the
most popular statistical tests.

It shows you, step by step,
how to carry out these tests in
the free and popular R statis-
tical package.

The book was created for
the applied researcher whose
primary focus is on their sub-
ject matter rather than math-
ematical lemmas or statistical
theory.

Step by step examples of each test are clearly described,
and can be typed directly into R as printed on the page.

To accelerate your research ideas, over three hundred appli-
cations of statistical tests across engineering, science, and the
social sciences are discussed.

100 Statistical Tests in R

ORDER YOUR COPY TODAY!

190

http://www.auscov.com

INDEX

AT LAST! Predictive analytic methods within easy
reach with R...

This jam-packed book takes
you under the hood with step
by step instructions using the
popular and free R predictive
analytic package.

It provides numerous ex-
amples, illustrations and ex-
clusive use of real data to help
you leverage the power of pre-
dictive analytics.

A book for every data an-
alyst, student and applied re-
searcher.

ORDER
YOUR COPY TODAY!

191

http://www.auscov.com
http://www.auscov.com

Deep Time Series Forecasting with Python

"They Laughed As They
Gave Me The Data To Analyze...But Then They Saw
My Charts!"

Wish you had fresh ways to
present data, explore rela-
tionships, visualize your data
and break free from mundane
charts and diagrams?

Visualizing complex rela-
tionships with ease using R
begins here.

In this book you will find
innovative ideas to unlock
the relationships in your own
data and create killer visuals
to help you transform your
next presentation from good

to great.

Visualizing Complex Data Using R

ORDER YOUR COPY TODAY!

192

http://www.auscov.com

INDEX

ANNOUNCING...The Fast & Easy Way to Master
Neural Networks

This rich, fascinating, acces-
sible hands on guide, puts
neural networks firmly into
the hands of the practitioner.
It reveals how they work, and
takes you under the hood
with an easy to follow pro-
cess showing you how to build
them faster than you imag-
ined possible using the pow-
erful, free R predictive ana-
lytics package.

Here are some of the neu-
ral network models you will
build:

• Multilayer Perceptrons

• Probabilistic Neural
Networks

• Generalized Regression
Neural Networks

• Recurrent Neural Net-
works

Buy the book today and master neural networks the fast &
easy way!

ORDER YOUR COPY TODAY!

193

http://www.auscov.com

Deep Time Series Forecasting with Python

Write your notes here:

194

	Contents
	Contents continued
	Contents continued
	Other Books You Will Also Enjoy
	Preface
	A Promise
	How to Get the Most from this Book
	A Special Message for YOU

		2017-01-11T22:32:04+0000
	Preflight Ticket Signature

