

CI/CD Pipeline
with

Docker and Jenkins

Learn How to Build and Manage Your
CI/CD Pipelines Effectively

Sandeep Rawat

www.bpbonline.com

http://www.bpbonline.com

Copyright © 2023 BPB Online

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor BPB Online or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

BPB Online has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, BPB Online cannot guarantee the
accuracy of this information.

First published: 2023

Published by BPB Online
WeWork
119 Marylebone Road
London NW1 5PU

UK | UAE | INDIA | SINGAPORE

ISBN 978-93-55513-502

www.bpbonline.com

http://www.bpbonline.com

Dedicated to
To the late Mr. Dalbir Singh Rawat, my uncle (Chacha)

Remembering a life well led and all the joy it brought to so many.
In memory of a truly amazing person

About the Author
Sandeep has 18+ years of extensive experience in application development
and creating a DevOps ecosystem with end-to-end automation. He is a firm
believer in the evangelism of technology, and also, he believes in giving back
to society. He makes a lot of open-source contributions to different problems
in the technology world.
He likes to share his knowledge through well-read blogs, well-attended
training, and public workshops. He has streamlined DevOps discipline and
practices for different organizations.
Currently, Sandeep is running 3 organizations under TechPrimo Solutions.
Opstree Solutions is a highly specialized Cloud and DevSecOps engineering
company. The Technology Transformation Partner that specializes in making
the application delivery lean, nimble and highly productive through the best
in breed Cloud (Public, Private/Hybrid) and DevOpSecOps platform
implementations, that enable getting to market faster, more securely, and with
the ability to maintain the platform much more efficiently. OpsTree Labs the
product arm, BuildPiper, a product of OpsTree Solutions, is an end-to-end
Kubernetes and Microservices Application Delivery Platform that enables
production-grade Microservices management for seamless Day 0, 1 and 2
operations and makes Kubernetes Microservices Application ready!
MyGurukulam is a tech - centric upskilling platform aiming to bridge the
skill set gap.

About the Reviewer
Kumar Gejara is a cloud architect living in Austin Texas, US, working for
Apex Systems and managing the DevOps Centre of Excellence. He has 23
years of IT experience building integration and cloud solutions and delivering
CI/CD platforms. His expertise includes cloud migration, monitoring,
governance, automation, Infrastructure as Code (IaC), Kubernetes, machine
learning operations (MLOps), DevOps, DevSecOps, DataOps, and cloud cost
optimization.
He worked with a few start-ups such as Aalyance (acquired by HCL) and
Tescra early in his career. Later, he also worked for companies such as
Wipro, Perficient Inc, Insight Global and Apex Systems, and has had the
opportunity to serve over 20 end clients since 2000. Kumar completed his
Master Of Computer Applications (MCA, 1999) and Bachelor of
Science(BSc, 1996) at Sri Venkateswara University, India.
You can contact him on his LinkedIn Profile:
https://www.linkedin.com/in/kumar-gejara-b621285/

Acknowledgement
I have to start by thanking my family.
DS Rawat, my father, for always being an ideal near-perfect personality. I
can only dream of being like him and inheriting his conscientiousness.
Kanta Rawat, my mother, for being a silent force and ensuring that we get all
the support and freedom to become what we are in our family.
Sonal, my wife, for always being a rock-solid supporter of all of my
endeavors, whether running a company (24x7) or writing a book. I never felt
the pressure of de-prioritizing these endeavors for my family.
Jai and Yami, the two invaluable god gifts of my life, for keeping me
recharged with a single word "Papa," and rejuvenating me with their hugs
and smiles.
Next comes Abhishek, Adeel, and Sajal. I can't imagine the quality or
completion of this book without the involvement of these three souls, Adeel
being the creative writer and Abhishek and Sajal being the tech brain behind
the book. I can only say that they are vital contributors to defining their role.
Now, the gratitude goes to OpsTree and BuildPiper, companies I founded,
and my friend/mentor/guiding light, Shankar Jha. Through these companies,
we came across a plethora of problems and solutions, a lot of which
contributed to the contents of this book. Especially BuildPiper, which
focused exclusively on solving CI-CD problems for our clients, allowing us
to dig toward great depths of understanding. Since our agenda was to
streamline CI-CD for any or all possibilities, we went through countless
iterations of problem-solving and identified the best approaches to do the job.
Without further ado, I’d like to thank my second family, the people of
Opstree. Meeting and engaging with hundreds of them daily regarding their
projects, problems, and views made it possible for me to gather enough
information to write a book. Their contributions cannot be overstated.
Many thanks also go to our clients, who contributed vastly to the sample
space of our scenarios. They presented us with unique challenges enabling us
to think in various directions. Even the repeated cases continuously improved

our processes and made them robust.
I’d like to thank the excellent team of BPB as well for always being
available, reviewing, suggesting changes, and ensuring the book's quality
remains impeccable.
One last name on the list of thanks is my favorite book, the Phoenix Project.
When the offer to write this book came, I spent a lot of time thinking about
what my book's writing style should be. What will get the complex concepts
across and yet be engaging to read? I had to choose between the way of
writing “The Phoenix Project” or HeadFirst. Ultimately, I decided to go
ahead with the writing style of The Phoenix Project.

Preface
This book covers many aspects of Continuous Integration, Continuous
Deployments, and their various roles and integration. This book also talks
about the limitation of the SDLC world and how Docker and Continuous
Integration can collaboratively solve those problems. It shows how we can
create an ideal Continuous Integration pipeline with different integration
checks like managing quality, testing, and security of the application
codebase. Also, this book gives the importance of making the system more
stable and resilient.
This book takes a practical approach where we use an actual application to
show the journey of Continuous Integration. Also, this book covers
information such as how to containerize an application with an effective way
of writing a Dockerfile. This book also gives importance to Continuous
Integration steps like- Continuous Deployment. You can use this book to
understand the different technical environments and deployment strategies
and what are the parameters to identify a deployment strategy for your
environment.
This book is divided into eight chapters. They will cover the basics of SDLC,
Continuous Integration, Docker and its essential concepts, and Continuous
Deployment. So, learners will understand the complete journey of the modern
SDLC implementation.
Chapter one, explains the book's methodology and the characters. The
characters will discuss the problems in their SDLC and how continuous
integration can solve them. Also, the project details and description will be
part of it.
Chapter two, focuses on the issues and gaps between the Development and
DevOps team. Also, in this chapter, the concept, and importance of
Continuous Integration will be introduced. We will also discuss the
integration checks of Continuous Integration.
Chapter three, explains the tooling landscape in which different Continuous
Integration tools will be compared, and finally, Jenkins gets decided as the
automation tool. Also, this chapter will talk about Jenkins and its essential

features, along with other integration tools.
Chapter four, shows the implementation of integration checks manually and
automating them with Jenkins. Also, we will explain the concept of the
Jenkins pipeline and how we can create the stages of integration checks in the
pipeline.
Chapter five, discusses the common problem of the DevOps world,
"Environment inconsistency." Also, we will discuss the possible solution to
overcome the environmental inconsistency issues and how Docker and
containerization can solve all these issues. Also, we will discuss Docker and
its components.
Chapter six, shows how the existing Continuous Integration pipeline will be
modified to cover the integration checks related to Docker and its stages.
Also, we will explain the advantages and benefits of introducing Docker into
the existing system.
Chapter seven, explains the role of Continuous Deployment, Continuous
Delivery, and their importance after a successful Continuous Integration
setup. Also, we will discuss and compare the different deployment strategies
and how to choose an ideal design for your environment.
Chapter eight, shows the implementation of Continuous Deployment with
different deployment strategies in different environments. Also, we will
discuss the organization's technical environments and their purpose.

Code Bundle and Coloured Images
Please follow the link to download the

Code Bundle and the Coloured Images of the book:

https://rebrand.ly/xj6ofj1
The code bundle for the book is also hosted on GitHub at
https://github.com/bpbpublications/CI-CD-Pipeline-with-Docker-and-
Jenkins. In case there's an update to the code, it will be updated on the
existing GitHub repository.
We have code bundles from our rich catalogue of books and videos available
at https://github.com/bpbpublications. Check them out!

Errata
We take immense pride in our work at BPB Publications and follow best
practices to ensure the accuracy of our content to provide with an indulging
reading experience to our subscribers. Our readers are our mirrors, and we
use their inputs to reflect and improve upon human errors, if any, that may
have occurred during the publishing processes involved. To let us maintain
the quality and help us reach out to any readers who might be having
difficulties due to any unforeseen errors, please write to us at :
errata@bpbonline.com
Your support, suggestions and feedbacks are highly appreciated by the BPB
Publications’ Family.

Did you know that BPB offers eBook versions of every book
published, with PDF and ePub files available? You can upgrade to the

https://rebrand.ly/xj6ofj1
https://github.com/bpbpublications/CI-CD-Pipeline-with-Docker-and-Jenkins
https://github.com/bpbpublications
mailto:errata@bpbonline.com

eBook version at www.bpbonline.com and as a print book customer,
you are entitled to a discount on the eBook copy. Get in touch with us
at: business@bpbonline.com for more details.
At www.bpbonline.com, you can also read a collection of free
technical articles, sign up for a range of free newsletters, and receive
exclusive discounts and offers on BPB books and eBooks.

http://www.bpbonline.com
mailto:business@bpbonline.com
http://www.bpbonline.com

Piracy
If you come across any illegal copies of our works in any form on the
internet, we would be grateful if you would provide us with the
location address or website name. Please contact us at
business@bpbonline.com with a link to the material.

If you are interested in becoming an
author

If there is a topic that you have expertise in, and you are interested in
either writing or contributing to a book, please visit
www.bpbonline.com. We have worked with thousands of developers
and tech professionals, just like you, to help them share their insights
with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

Reviews
Please leave a review. Once you have read and used this book, why not
leave a review on the site that you purchased it from? Potential readers
can then see and use your unbiased opinion to make purchase
decisions. We at BPB can understand what you think about our
products, and our authors can see your feedback on their book. Thank
you!
For more information about BPB, please visit www.bpbonline.com.

mailto:business@bpbonline.com
http://www.bpbonline.com/
http://www.bpbonline.com/

Table of Contents
1. Introduction

Structure
Objectives

Character Introduction
Sprint-1 Retrospection
Light of Hope
Conclusion
Questions

2. Continuous Integration
Introduction
Structure
Objectives
Set up
Pre-deployment Checks

Code stability
Code Quality
Testing, Code Coverage, and Security Testing

Intermediate operations
Artifact management
DB Versioning

Post-deployment integrations
Smoke testing
Regression testing
API testing
Notifications

Branching strategy
Conclusion
Points to Remember
Multiple Choice Questions

Answers
Questions

Key Terms

3. Introduction to Jenkins
Structure
Objectives
Tooling landscape

Available toolset
VCS Integrated Pipelines
Software as a Service
Self-Hosted CI/CD Tools

Why Jenkins?
Jenkins installation

Installation on Linux (Debian)
Installation on Windows
Ansible

Plugins
Installation

Web UI
Jenkins-CLI
HPI Files (Without internet)

Simple Plugins
Source code management (Git)
User Interface
Administration
Build Management
Notification

Authentication and authorization
Authentication
Authorization
Recommendation

Jenkins Pipeline
Scripted vs Declarative Pipeline
Terms

Pipeline
Node
Stage

Steps

Parallel
Shared Library

Examples
CI/CD
Workflow Management
Infrastructure Management

What If the Server Gets Deleted?
Backup Configuration
Restoration
Second line of safety (Data Directory Backup and Restore)
Third line of safety (Jenkins Server Image)

Master/Slave architecture
JNLP Slaves
SSH Slaves
Dynamic Slaves
Scenarios

Global tool configuration
Conclusion
Points to Remember
Multiple choice questions

Answers
Questions
Key terms

4. CI with Jenkins
Structure
Objectives
CI Pipeline with Pre-Deployment Integration Checks

Code Checkout
Code Stability
Code Quality
Unit Testing
Security Testing
Sonarqube Integration

Converting Multibranch Pipeline
CI Pipeline update with Intermediate steps

Generating Artifacts

Uploading Artifacts to Nexus
Deployment to Dev Environment
DB Update

CI Pipeline with Notification Integration
Conclusion
Questions

5. Introduction to Docker
Structure
Objectives
Need for containerization
What and why containers?

Virtualization
What is a Container?
Why Container?

Container Engines
Docker Basics
Docker architecture
Docker Images
Dockerfile
Multistage Dockerfile
Docker Registry
Docker CLI

Docker Installation (Debian System)
Conclusion

6. CI with Jenkins and Docker
Structure
Objectives
Containerization of application
CI Pipeline with Pre-Deployment Integration Checks

Code Stability
Code Quality
Unit Testing
Code Coverage
Security Testing

Conclusion

7. Continuous Deployment
Structure
Objectives
Different Kinds of Environments

QA environment
Security testing environment
Performance Testing Environment
Business Testing Environment

CD Testing Elements
Regression Testing
Behavior Driven Development testing
Security Testing
OWASP ZAP
API Testing
Performance Testing
Jmeter

Deployment Strategies
Normal Deployment
Rolling/Ramped Deployment
Blue Green deployment
Canary Deployment

Conclusion

8. Continuous Deployment Using Jenkins
Structure
Objectives
Deployment strategy discussion
Continuous Deployment for QA Environment (Normal Deployment)
Continuous Deployment for Security Environment (Rolling Deployment)
Continuous Deployment for Performance Environment (Blue/Green

Deployment)
Continuous Deployment for UAT Environment (Canary Deployment)
Continuous Deployment for Production Environment (Canary

Deployment)
Reflection
Conclusion

Index

T

CHAPTER 1
Introduction

he major issue for any project is how to easily and safely release the
new version of code. We have seen people struggling and getting

frustrated working for hours to deal with deployment issues. The more they
stray from standardized methodologies, the messier their release cycle
becomes. Seeing the same problem project after the project moved us to write
this book. The idea behind writing this book is simple: make releases as
smooth as possible. This book aims to be the go-to solution for the
implementation of CI/CD for every form of technology by focusing on why
to opt for CI and how to apply it the modern way. In other words, we want
our readers to need nothing beyond this book when seeking help related to
any CI/CD topic.
The first step toward these goals, we thought, would be the flow, i.e., how we
introduce topics and how we transition from one to another. This is the
reason we chose to go with a writing style that is easiest to follow: a narrative
style. We are inspired by ‘The Phoenix Project by Gene Kim, Kevin Behr,
and George Spafford. Reading it is like reading a story, with its own twists
and turns. At the end, you have not only understood complex concepts but
also read a good story. It’s effortless and apt for what we have in mind. It is
very different from typical informative books that are not everyone’s cup of
tea. For those who haven’t read ‘The Phoenix Project, we recommend you
do.
Similarly, we would like to take our readers on a journey where the challenge
would be improving the efficiency of the project by applying the principles of
CI/CD with the help of Docker and Jenkins as the preferred technologies.

Structure
In this chapter, we will discuss the following topics:

Character Introduction

Sprint 1 - Retrospection
Light of Hope

Objectives
The main objective of this chapter is to provide a detailed understanding of
the concepts necessary for software development and how releasing a new
version of software can become a pain for many organizations. You will be
introduced to many characters, who are going to be important in the overall
development and journey of applications.
There are a few additional things that you will learn from this chapter, like
the concepts of sprint and sprint planning. This chapter will give an overall
idea of the concepts and principles of continuous integration.

Character Introduction
A new day and a fresh morning. As I looked outside my window, I saw the
world moving just like last week, unchanged, unlike me. The reason being
interruption; I can’t wait for a whole week to finish my ongoing thriller web
series that grasped me till quite late last night. The problem with binge-
watching is that it doesn’t stop time. Sooner or later, you are forced to let go
and worry about the next day. But today is not so bad; in fact, the last few
days have been a little exciting as I am in the middle of my first month at the
office, a new start with my current organization. Therefore, I am hurtling
through my stuff right now, with the goal of reaching office in time. During
my interview here, I had a good chat with my now reporting manager,
Sandeep, about the goals and requirements of the company. That
conversation was one of the major role players in my decision to join. These
people are doing some good work, which makes way for ample opportunities
for career growth. I can contribute in many ways. Even while discussing, I
was full of ideas. Now that I am slowly nearing the end of all the onboarding
formalities and KT sessions, I can’t help but get excited. In an hour, as I
geared myself up to beat the Monday blues, I kept thinking of the hint that
Sandeep had given about a new assignment I would be working on. Minutes
ago, I got an invite for a meeting to be held first thing in the next morning.
“Today’s a sunny day.”, I thought to myself as the car switched from the
under-bridge to the over-bridge. “It’s a nice day to face some new

challenges.” Since I am new to this company, I can’t help feeling an urge to
prove my worth. I wonder if it’s only me. I bet people hired higher up in the
hierarchy don’t care as much. Experience amounts to a lot. My thoughts
continued as I neared the office building. After a pleasant trip on a sunny
morning, I reached the office with endless thoughts revolving in my mind,
about the exposure and challenges this new assignment would bring my way.
After having a cup of coffee and sharing last weekend’s experiences with my
new colleagues and friends, I walked up to the conference room 10 minutes
prior to the scheduled time. At this point, I was hoping to get comfortable
with the other new faces. In my experience, a formal introduction goes much
better if you’ve had an informal one before. I feel more at ease and can crack
better jokes. Hail Chandler! No one entered the room for the next 5 minutes. I
was getting anxious as the butterflies started a brawl in my stomach. I kept
looking at my phone, and just to be sure I hadn’t missed anything important, I
quickly rolled down the notification dropdown which, I know, would go
untouched, at least for the next hour. In the next 2-3 minutes, I was joined by
two more brains. Thinking this to be my moment to shine, I got up and shook
their hands enquiring, rather nonchalantly, about them. I didn’t want to give
away my “not so calm” demeanor. But before they could say anything,
Sandeep, who is not only my reporting manager but also the Project Owner
and the organizer of this meeting, joined us.
The meeting started with an induction, which mostly focused on introducing
me to the team. This team would be working on a fresh assignment. The
others looked familiar with each other. I am sure they might have worked
together recently or even multiple times. As I was the only unfamiliar face
among the four people sitting in the room, I went on to introduce myself.
“Hello everyone, I am Abhishek, your friendly neighborhood DevOps. I have
experience of around 1 years in the industry, I've just started my DevOps
journey, looking forward to become a better DevOps engineer by the end of
this project. I am a skinny man who aims to be a fat cat without having to let
go of my interests. My interests are a long story for some other time.” It was
a sort of mixed feeling of accomplishment and pride to be the person who
accounts for bridging the gap between development and operations. Keeping
it short and precise, I handed it over to Sandeep to cruise the meeting further.
Before the sprouted seed of my curiosity could have grown a little and asked
about by the young personalities sitting in the room, Sandeep took over and
did it for me. The first guy is Scrum master, Sajal, confident and visionary,

who previously facilitated Scrum methodology among multiple development
teams and projects, leading them to successful deliveries. Yes, this is what I
concluded while listening and interpreting him, imagining myself to be a part
of the next successful delivery in his ongoing streak. Sajal seemed like a guy
fit for the job. I say so for two reasons: observation and experience. He talked
like he knew his stuff. He was confident and funny, and his working history
spoke for itself. I’ve known guys in the past who, to say the least, weren’t
exactly cut out for their job roles.
Well, for the second guy, I somehow guessed his job even before he
introduced himself as the development lead. I am kidding, he was the only
guy left in the room not yet introduced. His name was Adeel, and his
background was impressive. Graduated from a prestigious NIT, and he had
been into developing from the beginning of his career. He’s the one with
whom I would often be aligned in the coming weeks. With this, we knew
each other, at least by our names and roles, but I wished to share a good
professional bond with these intelligent guys.
After introductions took around half of the scheduled time, I noticed Sandeep
quickly wrapped it up to get on with the real agenda. In his introduction, he
didn’t say much that didn’t matter, as I had known Sandeep for quite a while,
not only from the interview we had, but also from before. I had heard about
his leadership and technical skills from ample people in the industry even
before joining the company. He was the one I as most excited to work with.
As Sandeep connected his laptop to the projector, I took out my notebook
like a school kid waiting for the action to begin. He then started his
presentation, explaining the project from the technical as well as business
perspectives.
“So, guys let’s kick it off”, he said, “I had a meeting with the client regarding
a product he wants us to build: a video consultation app that will help
patients to interact with doctors over video conferencing. This application
will not only have crucial personal information but also the medical history
of all the patients. Also, the system should have the capability to search for
and filter the consultant doctor and schedule appointments. Now, the first
thing that comes to my mind while talking about personal data and medical
history is to have a secure and robust code and system. For this, we need to
take some additional measures in terms of security while developing this
product. Does anyone have any questions or ideas regarding the product until

now?”
“Yes, we are clear on the big picture of the product”, Sajal acknowledged.
The rest of us nodded in agreement, implying that Sandeep could continue.
“That’s great”, said Sandeep. He sounded a bit excited to me as he continued
while looking at me and Adeel, “So, the next thing I want you both to do is
collaboratively identify the technology stack we will be using to develop this
product and come up with a proposal. Meanwhile, Sajal and I will continue to
discuss the high-level timeline and team build-up activity. Adeel, you must
also create a proposed list of available developers for this project, and
Abhishek, you can collaborate with Adeel on the tech stack. You should also
get acquainted with the processes we follow and come with your queries
along the way.” Why wouldn’t he be excited, this was the time for action! He
concluded the meeting with an ending note, “There are two things I am sure
about: first, the project is not too complex, and second, we have a strict
timeline of 6 months. We have to make sure that delivery is within the agreed
time period.”
“Aye Aye, Sir!”, I said in my head. The excitement caused me to say it but
anxiousness didn’t let it come out. Having received our tasks, Adeel and I
stepped outside. Adeel asked me to meet him post-lunch as he was working
on a prior task. “Meanwhile,”, he said, “you should go see Vishant. He will
be working with us on this project. I’ve already informed him that you’ll be
coming. He will introduce you to our processes. You both should also decide
on what tech stack we should go with. Then, we’ll finalize the proposal post
lunch.” As I walked to my seat, my thoughts were overriding my
consciousness. I couldn’t help but think about what we were going to use:
Java, Golang, React, Nodejs, Python, MySQL, Mongo, so many options to
consider. I was curious about the team processes Sandeep mentioned as well.
“Maybe, I’ll write it in my notebook or print it.”, I thought.
Vishant’s cubicle was right opposite mine, so finding him wasn’t a challenge.
I went on to introduce myself, shared the formalities, and got on with the
task. Later, we met with Adeel to draft a formal proposal.
It was just like the aura of Day One of a new project, back-to-back meetings,
thoughts running, introduction with new faces, aspirations, expectations, and
so on. In between all this, we all were finally prepared with our assigned
responsibilities and gathered to continue where we had left off a day before.
“Welcome back team!”, Sandeep greeted, “Sajal and I analyzed the project

and the approximate number of man-hours required to timely deliver the
project. Did you guys do some groundwork in terms of the technology stack
we will be going forward with?”
“Yes, Sandeep”, replied Adeel. “I went through the requirements in detail and
totally agree with you that it isn’t too complex. We prepared a high-level
architecture where the approach is to divide the application into three major
parts, that is, front end, back end, and database. Front end, the user-facing
end of the application, can be developed on ReactJS. For the back end, user
abstract logic, I opted for GoLang. And as it’s a microservice approach for
the back end as well, there will be two services: one will handle the employee
details and the other will be a scheduler that will transfer salary to the
employees’ account. Finally, for the database requirements, we’ll be using
MySQL.”, he added.
“Okay, sounds good. Just out of curiosity, why did you choose to go with
GoLang for the back end?”, inquired Sandeep.
Adeel smiled and said, “Well, GoLang is fast. It is compiled into machine
code and doesn’t require any virtual runtime. Not only this, since we are
going with distributed architecture, its concurrency feature will help us a lot
in scaling. Also, we have a team available who are good at GoLang
programming.”
“I am all good with this if Sajal is okay. I assume you guys have already
discussed and planned the resource alignment. Sajal, do you want to add
anything here before we start?”, Sandeep asked.
“Yes, Adeel’s architecture looks good to me as well. I just want to introduce
the team that will be aligned with this project. Starting from the development
team, we will have four developers working under Adeel, one QA, and one
DevOps. Abhishek will handle all our DevOps requirements, which will
involve infrastructure, build and release, monitoring and automation required
from the product development to production release”, Sajal said.
The following figure is an illustration of the project stakeholders:

Figure 1.1: Project Stakeholders

With not enough to speak in the meeting and clarity around the tasks, I was
mostly listening. Finally, the meeting ended with Sandeep’s boosters as he
roared, “Bang-bang”.

Sprint-1 Retrospection
As the high-level planning meeting ended, Sajal started sharing the real
ground-level planning that he outlined for the project, which was estimated to
be completed in 6 months. He ballparked the development in a 12-sprint plan
of 2 weeks each, and we were currently focusing on Sprint 1 to get started.
On the sprint planning day, I was trying to catch up informally with the rest
of the team members.
I have to admit, with the people involved in the project and planning sessions
at the beginning, I thought this was going to be a smooth task. But who was I
kidding? After 2 weeks, when the sprint was completed, the retrospective
board looked something like this:

Figure 1.2: Project Restrospective Board

The two things that we noticed after entering the room were the whiteboard
with three columns and the silence. Everyone present in the room, including
me, knew the reason for the latter. Sajal finally broke the awkward silence,
“With Sprint 1 coming to an end, I would like to brief the output that we
delivered.”. He sounded disappointed as he further added, “We had targeted
to deliver their features successfully by the end of Sprint 1, but we were able
to complete only 1 feature successfully. The second feature is breaking
during QA, and we haven’t started development on the third feature yet.
Sandeep was also unsatisfied with the output we generated in the last sprint.
So, the agenda of this meeting is to retrospect the last sprint. I want everyone
to express their opinions on the same so that we can overcome the flaws and
come up with better output with improved quality. Adeel, would you like to
start?”
Before we go into the meeting dialogue, I’d like to add that I am the first
DevOps hire of this company. Like me, Sandeep is new here as well; he
joined a month before me. The last sprint was more of a noun to us than a
verb as we were getting acquainted with the way things are done here. As I
expected after a glance at the retrospective board, Sandeep wasn’t too happy

about it as well. In the meeting, apart from me, are Sajal; Adeel; Sonia, who
is aligned as QA; and the development team, including Vishant and Harsh,
both of whom I know.
Adeel: “One of the prime obstacles we are facing is increased build time
because of parallel feature development. We need to create continuous
features, and every compilation phase of the application takes some time;
also, we need to compile code after each change, which is affecting the
development cycle. This usually becomes a drag for developers. Due to this,
we faced issues when a developer commits an unstable code without properly
verifying, and it takes a lot of effort and time to fix the problem if they are
not around.”
Sajal: “Hmm, it seems you guys are facing problems with code stability.
Anyhow, let’s talk about the solution later. Let’s hear out all issues first.”
Sonia: “We’ve had to invest a lot of time addressing basic problems like
insecure dependencies. If we don’t consider this check, we will have a big
risk of a security breach in our application. So, we have to ensure that our
code does not have any vulnerabilities.”
Adeel: “Our coding standard is not assured because there is no method and
variable naming convention that makes it difficult for developers to
understand code. We do have to spend a huge amount of time doing simple
application checks, such as code smells and redundant code.”
Sajal: “Seems like we don’t have good-quality code. Let’s bring it into
action items as well. What about testing, do we face any problems while
testing code?”
Adeel: “Yes, I was about to come to this one. Well, it’s not too much, but we
face problems while integrating code as well because it takes a lot of effort to
find bugs and most of the time, defects are in other dependent modules.”
Harsh: “I would like to add a comment as well. We have to put a lot of work
into code review to find integration problems. As a result, our development
time gets affected.”
Sonia: “Conditional scenarios were also not covered properly, which resulted
in a lot of bugs, and in some cases, business units were also not covered.
There were many places where certain vulnerable dependencies were used,
and other parts of the code were subject to potential threats. So, it would be
easy for anyone to break into the system.”

Sajal: “Okay, any other issues in the testing part?”
Sonia: “Well, since you have asked, we have to execute Regression, Smoke,
and Browser testing manually for each snapshot release of the code, and it
takes a lot of time.”
Sajal: “Well, seems like there is a lot of scope for improvement in code
testing. So, any other issues that need to be discussed before we start the
discussion over these problems?”
Adeel: “I think we need to define a better branching strategy as well because
right now we have only one development branch. This creates issues for one
developer because another developer’s code is still in the development phase,
and since they are using the same branch, developers have to wait for one
another to complete their code.”
Sajal: “Well that’s a good point! Does anyone want to add anything we
haven’t discussed yet?”
Everyone: “Nothing from our side.”
Sajal: “Okay, anyone wants to talk about why we’re struggling with these
problems and share some ideas for addressing them?”

Light of Hope
Finally, the moment that I had dreamed about had arrived, landing like Iron
Man at the Stark expo event. All the problems discussed can be handled quite
efficiently using a CI/CD pipeline. By now, it was clear that these folks had
not been introduced to such a system of releases. Well, now is as good a time
as any to get started.
Me: “As you said earlier, we don’t get good quality and consistency in code.
I completely agree with that. I also think that we have issues with unit testing,
code coverage, security scanning, and even functional testing.”
Sajal: “Exactly, do you have anything on your mind to fix this, or anybody
else would like to share their thoughts?”
Me: “I think we can incorporate CI into the microservice we are developing,
from which the development team will receive continuous feedback that will
improve the efficiency and quality of development. We can also include
testing in our CI pipeline where the pipeline itself can conduct basic testing,
which would allow the QA team to concentrate on more pressing business

requirement testing. I have a good understanding of CI and can guide you.”
Sajal: “Sounds good. Does anyone have any questions or views on this
strategy?”
Adeel: “I like the idea of incorporating CI. It will surely increase our
development and testing efficiency. I think this is a good time to pick this up.
I have been reading and found that it increases the SDLC process efficiency
by a huge amount. I had this discussion with Harsh some time ago. We were
only waiting for somebody with expertise in it.”
Sonia: “The plan sounds good to me.”
Sajal: “Great! So, Abhishek, do you have any plan in your mind as to how
we can implement this process?”
Me: “Yes, I do have some points in my mind, but I would like some time to
evaluate them further so that we can implement them with the best practices.”
Sajal: “Sure, so you can draw a detailed plan, and we can discuss it in the
next meeting. I will share the next meeting invite.”
“Great, I will try to come up with a plan of action.”, I affirmed as my team
saw a light of hope.
And here, the real challenge started for me as I had to draft a proposal.
Thankfully, I had already been involved in the sprint, which made it easy.
Sometimes I feel so grateful to our open-source community, especially the
pioneers like Eric Raymond, Linus Torvalds, and Martin Fowler who laid the
foundation. Where would we have been without them? Our whole career
exists because of the decisions we made and the actions we took. The
DevOps movement is just another fruit of their humongous tree.
We are planning to include bits of trivia at different places in the book. The
following links are part of that.

CI Trivia
https://dzone.com/articles/continuous-integration-and-its-
whereabouts
https://en.wikipedia.org/wiki/Continuous_integration

It was worth spending the rest of the day, till late at night, to draft a proposal
to streamline the application build process by introducing CI. In fact, I

https://dzone.com/articles/continuous-integration-and-its-whereabouts
https://en.wikipedia.org/wiki/Continuous_integration

wanted to take it one step ahead by including best practice suggestions. Now
it was time to showcase my proposal in the next spring planning, which I was
sure the team was ambitiously waiting for. As expected, Sajal asked for the
same as the first thing in the Spring-2 planning meeting.
Me: “Yeah, I’ve put together a few points and strategies for that. Since we
have all the components in ReactJS and Golang, we need to build two forms
of CI pipeline, one each for applications in ReactJS and Golang. The
approach and tests will be the same, but the tools to build and test would
differ depending on the type of application.”
Adeel: “Okay, but what CI checks are we going to inculcate?”
Me: “We will include the standard CI checks for the application, like code
stability, code quality, code coverage, unit testing, security testing, and
functional testing. We will also use SonarQube for software review.”
Adeel: “This sounds pretty good. Would you help the team as well in
gathering up all the thoughts we are getting about the CI checks? Also, it
would be great if we dedicate 1 hour every day to the current sprint. It seems
as if we are going to carry out almost all the checks that we mentioned in the
previous meeting.”
Me: “Yes, except SonarQube, which is a new addition to the list. Well,
among the multiple CI automation tools available, I have chosen Jenkins. I
know we all are curious to know about this, but I will be discussing it as I go
ahead with the phases of exploration, planning and implementing them one
by one.”
Sajal: “Great. This seems interesting, but how are we going to implement
this in all applications? Also, any specific reason for choosing Jenkins?”
Me: “It is a common automation tool that is not only limited to CI/CD but
can also be used for other tasks. It has a plugin-based architecture that will
help us implement CI for various types of applications. In other words, the
CI/CD tool is like a butler, and we are his employer who can ask him to work
on any task. Also, I have prepared a comparison between the available
options to choose the best one.”
The following image shows the popularity of various automation tools:

Figure 1.3: CI Tools Market Share

Sajal: “Great, I don’t have further questions. Does anyone have any other
questions?”
Adeel: “No, the plan looks good to me.”
Sajal: “Okay. Adeel, do you have something in mind for branching strategy
since this is also one of the blockers we are facing?”
Adeel: “Yes, so I was thinking about this. There are a few branching
strategies I am familiar with and had to choose one that would fit here. This
is what I’ve come up with. We can have a common development branch from
which developers can create their own feature branches. As soon as they are
done with the features, they can raise a PR(Pull Request) for the main
development branch. Since we will have CI in place, no buggy code will be
merged in the development branch. After the testing of features, we can raise
the PR for the production branch from the development branch.”
Me: “Great, I think this is a good approach.”
Sajal: “Awesome! Now we have a strategy for branching and CI, so let’s
implement it. Then we will evaluate the progress in our next retrospective
meeting. This sprint, we will be fighting our failures. And after seeing your
passion, I am confident that the current sprint will be a success.”
While riding back home, I was overwhelmed. There was so much to do. I was

restless, nervous, curious, and at the same time, puzzled. In fact, I’d go as far
as to say that I was excited. You see, this is no joke. To get an opportunity to
design the CI/CD pipeline from scratch for a project, on one’s own is a rare
opportunity. I was surely going to make complete use of it. I kept thinking
about where to begin. Then I thought, let’s keep it simple and not overthink.
This is what my mentor taught me. I know what we are trying to accomplish,
I know the problems we are facing. Let’s break it down.
We’ll divide the whole pipeline into three steps: pre-deployment integration
checks, intermediate actions, and post-deployment integration checks. In the
first part, we’ll cover basic code sanity, like code quality, code stability, and
code coverage. In the second part, we’ll take care of the artifact. It will focus
on actions surrounding the actual build, that is maintaining dependencies,
publishing the artifacts, handling versions, implementing rollback strategy,
and so on. The third part will include integration tests like smoke and
regression tests. Notifications and alerts will be configured at each step to
give an overview of the pipeline. Wow! That eased my burden. Having
thought this out this much during a metro journey, I was pretty much content.
Now, the actual planning was to begin.

Conclusion
In this chapter, we discussed the general problem people face while starting a
new software development project, like sprint planning, application
development, application testing, and release planning. We also looked at
how CI helps us to solve such problems in an organized and efficient way.
The next chapter will explore the concept of CI. We will break it down into
multiple steps and discuss them individually, making the idea clearer.

Questions
1. What are the different challenges while starting a software development

project?
2. What are the different types of CI tools available in the market, and on

what factors do we choose a CI tool?
3. What is continuous integration, and how does it help us?
4. What is sprint and sprint planning?

CHAPTER 2
Continuous Integration

Introduction
“I need some sticky notes, a marker, and a whiteboard with magnetic pins,” I
thought as a big gulp of espresso slid down my throat, “I’m going to nail this
CSI style.” This is the morning I have to start working on the CI plan. The
gears in my brain were already turning. “Pre-deployment checks, huh.” Well,
I do remember what Adeel said. If I have to break it down, I’d say there were
two major problems: code compilation was taking a huge amount of time as
they were doing it manually after each feature change, and bug fixing was a
painful process as multiple developers were involved. Also, there was no
automated check-in place for recurring, annoying bugs. Since I am early
today, I should scurry to my bay and get a consolidated plan in place for pre-
deployment checks. Also, I’ll send a calendar invite to Adeel for a discussion
later in the day.

Structure
In this chapter, we will discuss the following topics:

Pre-Deployment checks

Code Stability
Code Quality
Unit Testing, Code Coverage, Security Testing

Intermediate Operations

Artifact Management in Continuous Integration.
DB versioning while making database-related changes

Post Deployment checks

Smoke Testing

Regression Testing
API Testing

Notifications
Branching Strategy

Objectives
After studying this chapter, you should be able to understand the concept and
importance of code quality, code stability, unit testing, code coverage, and
artifact versioning as well as management using Continuous Integration. You
should also be able to test strategies and their implementation. You should be
able to know the importance of branching strategy and how to implement it.

Set up
“What is the most important aspect of testing?” I asked a Quality Assurance
(QA) once, who was my colleague and friend. He said, “What is the most
important aspect of eating? To make optimal use of food, provide necessary
backing to human functioning and flush away waste. It applies to
everything.” I know it is corny, but there is some truth to it. Now, automated
testing can’t replace QA (yet), but it can make both the QA’s and developer’s
jobs easier. In my checks/tests, I’ll cover these problems: code stability, code
quality, Unit testing, code coverage, and basic security testing. If I had to
explain these checks, it’d go something like this:
Code stability testing is different from stability testing, which aims at testing
end-product endurance over a period of time. Code stability protects the
codebase from rogue changes that might hurt more than they will help. It
aims to keep the build job stable.
Similarly, code quality check involves keeping the code standard high. We
need to make sure that Linting is proper, documentation is in place,
complexity is as per standard, reusability is easy to follow, known bugs are
identified and handled, and so on.
Unit testing, as the name suggests, focuses on individual features to make
sure they are stable. Making this a part of CI is essential in ensuring a reliable
codebase.

The idea behind code coverage is simple; this metric shows how many lines
of code are covered by the test cases. Having this strengthens one’s
confidence in code quality. It is a sort of double-checking that raises the
standard of code.
Basic security testing will ensure that code is not susceptible to commonly
known threats. This test involves checking things like ensuring that no key is
committed in the codebase, code cannot be exploited with query
manipulation, and that the exceptions are handled as per security policies.
I was convinced that these checks would not only cover Adeel’s issues but
Sonia’s as well. I thought I should sit and draft this into a proposal. Adeel had
also accepted the invite. The meeting was on.
The following figure illustrates the common checks in CI:

Figure 2.1: Common checks in CI

About 10 minutes before the meeting, Adeel pinged me to come to a
conference room where he had just finished a meeting. I had my proposal
ready and thought that Sonia should be a part of this meeting as well. Though
it was short notice, thankfully, she joined us.

Pre-deployment Checks
Me: “Hey Adeel, how are you?”

Adeel: “I am good, how about you?”
Me: “I am doing good. Just wanted to discuss something about the CI
pipeline we are going to implement. Just to inform you, Sonia will also be
joining us. I think it is imperative that she does.”
Adeel: “Alright, please have a seat. I’ll step outside for a minute to pick up
this call; will be right back.”
Me: “Sure”
Adeel left the room.
While waiting for them, let me quickly verify that the order is correct. Today,
we will be discussing pre-deployment checks. It includes code stability, code
quality, unit testing, code coverage, and security testing. It should be enough
for today.
Adeel and Sonia enter the room.
Me: “Hey guys!”
Sonia: “Good afternoon to both of you. Abhishek, you seem to have some
interesting things to discuss. Let us begin as I may have another meeting
later.”

Code stability
Me: “Agreed. So, as I was saying before, this is about the CI pipeline I am
working on. I will start with code stability checks because it is affecting the
majority of development productivity. Adeel also pointed it out specifically
during the last scrum meeting.”
Adeel: “Yes, that is true; we are facing lots of challenges due to uncontrolled
changes. So, whenever a developer commits unstable code, the job of the
whole development team gets affected. Sometimes it takes a lot of time to
figure out the issue that could have been avoided with a proper workflow.”
Me: “Yes, I understand your pain. That is why I wanted to start with code
stability. So, I have some ideas on which I want your suggestions as well.”
Adeel: “I will be happy to help you. But before that, I would like to ask what
exactly is it we are going to do in code stability.”
Me: “Since the stability of code check means checking whether code is in a
compliable state or if new changes are breaking already compliable code in

any way. So, in code stability, we will compile the application code to check
whether it is breaking the application. Does that make sense?”
Adeel: “It does, so how can I help you with this?”
Me: “I would like to know what the frequency of code stability checks
should be, i.e., when exactly we should check code stability.”
Adeel: “I think it could be nightly or in the evening, so the developer can
check the stability in the evening before leaving for home while changes are
fresh in his memory. It would save a lot of time as well.”
Me: “Hmm, I have a different proposal though; hear me out. According to
me, it should be on every commit so the developer can fix the previous code
before starting to work on the new feature. Also, if the developer will check
the stability report in the evening, they may have to make a lot of changes in
the code that was developed during the entire day. It will hold them back late
in the office. We should avoid that. Instead, we can follow the golden
principle of continuous integration, which is continuous feedback. Any
thoughts?”
Adeel: “I haven’t thought in this direction, but I must say I agree with you
completely.”
Me: “Great! So we have decided on the frequency. Now, the other question is
whether it should be a pull-based or push-based mechanism.”
Adeel: “Sorry, you will need to explain that.”
Me: “Sure. You might have read that there are two types of mechanisms, that
is, pull-based and push-based. In the pull-based mechanism, our CI server
will continuously poll the git repository of the application to see if there are
any new changes. But in the push-based mechanism, we will configure a
webhook in our git repository that will send an event to our CI server for
every commit or action in the repository.”
Adeel: “By listening to the solutions, I think the push-based mechanism will
be better. In the pull-based method, there would be unnecessary load on our
CI server for continuously polling the repository at certain times. Moreover,
the change is happening at the repository end, so it would only be logical for
the repository to trigger an event instead of the other way. What do you think,
Sonia?”
Sonia: “I agree. But is it always possible to configure a webhook? I have

heard it could be tricky when there are firewalls in place.”
Me: “Well, Sonia. There are ways around it. It is all in the plan. Good point
though. Before moving forward, let us discuss notifications. This must be
configured at each level, so we might as well decide how to approach it now.
In case a check fails, whom should we notify?
Adeel: “I think we should notify the developer who is committing the code.”
Me: “Yes, you are right, but you should also get notified as you are the
development lead. So, in case of such an event, you know whom to contact.”
Adeel: “Right, you can add me in the notification as well, no problem.”
Me: “One last thing. It’s not a question or suggestion. I just wanted to share
one idea with you. I am thinking about making a leaderboard for code
stability in which people will have a ranking as per their stable commits. I
think this would motivate developers to test their code thoroughly before
committing it. Do you think that it is a good idea?”
Adeel: “Yeah, it’s a great idea. It will encourage healthy competition
between developers. I would like to know how you are planning to make it,
but let us do that in a separate meeting.”
Me: “Sure, I have something in mind; we will discuss it at length. For now,
let us move on to code quality checks.”

Note: In today’s software-driven climate, the best tech companies —
Facebook, Amazon, Netflix, and Google — are releasing software updates
thousands of times a day. Take Amazon, for example. In 2013, the company
was doing a production deployment every 11.6 seconds. By 2015, this had
jumped to 7, so there is no telling what cadence could be reached in 2021.

Code Quality
Adeel: “For code quality, I have a few points too. You should continue with
your proposal; I will speak after.”
Me: “Okay. Most of our requirements from here on will be covered by
SonarQube. It’s just a tool at first look, but its features make it worth a lot
more.”
Adeel: “I have heard of it. Could you explain how it fits our requirements
specifically?”

Me: “Well, let us take an example of Java. One can find many static code
analysis tools to put checks on all aspects of programming, like checksum,
find bugs, PMD, and so on. They all give their focus areas with separate
reports, which are continuous to say the most. The thing is, it is neither
detailed nor regulated. By detailed, I don’t mean the reports aren’t detailed
enough, as they are. Allow me to explain both detailed and regulated.
SonarQube is installed on a server and has its database as well. Every time a
developer commits or wants to analyze the code, they can just do it, and the
code passes through a multitude of tests like duplicate code, potential bugs,
architecture, and design checks, code complexity, and code smells. All these
different tools can be added as plugins to SonarQube. These test results are
stored in the database and are displayed with proper visualization on the
dashboard. You can see the changes in code, track bugs, view activity over
time, and do much more. So, we not only have tests but investigation tools as
well at our disposal. Let me remind you that Java is just one language.
SonarQube does this for a lot of them, including Golang and ReactJS.
Continuous inspection cannot get better than this. Additionally, we have
regulations. There is a quality gate, which is a set of standards a code must
adhere to for it to be approved for production. It can be configured based on
projects. Multiple projects can run at a time.”
Adeel: “It is impressive, no doubt. Just one question: Is SonarQube the only
choice we have?”
Me: “Well, no alternative provides all these features, that too for free, yet.
We have got an amalgamation of various test plugins, activity tracking, and
regulation imposition as well as an overview of all of this.”
Sonia: “This will help me a lot as well.”
Me: “Yes, which is why I invited you; please share your views”
Sonia: “As I said in the scrum as well, a lot of my time goes into finding
issues that were caused by basic coding errors like unhandled conditionals
and insecure dependencies. I am assuming SonarQube can take care of those
as well. This will allow us to focus on other important areas and save a ton of
our time. I sure do wish now that it is as you say it is.”
Adeel: “Yeah, me too. The points that I was trying to put earlier are already
covered now. One question: how many code quality checks can we expect in
the case of Golang and ReactJS?”

Me: “SonarQube goes deep. There are several rules for bug detection,
vulnerability detection, and code smells, which refers to smelling something
fishy based on certain factors. And of course, there is linting for both Golang
and ReactJS. Code smells, though, can help lead to deeper problems that
might end up wasting a lot of time at a later stage. For example, it is a
common occurrence for a developer who has worked on a different language
in the past to just start using libraries and modules for the tasks that can be
done without external help in Golang. They will end up writing more
complex code than required. SonarQube can help in such cases as well.”
Adeel: “This looks good, Abhishek. I must say. I am excited to see this in
implementation.”
Me: “We still have a few things to discuss.”
Sonia: “Yeah, sure. How about we keep the rest of the discussion for
tomorrow? I have got another meeting in 10 minutes.”
Adeel: “Well, in that case, I think we have to conclude. What else is left on
your agenda, Abhishek?”
Me: “Well, there is unit testing, code coverage, and a little bit about
development-side security testing.”
Sonia: “Well, I would like to be a part of these as well. I will be here
tomorrow.”
Me: “I will include you in the invite.”
Adeel: “Alright. Thanks guys, see you tomorrow.”
“Well, it went exactly as I expected. How often does that happen?,” I
thought. “In all its entirety, we are bringing DevOps to a no-DevOps project.
What else could I have expected?” As I strolled down the hallway, I saw
Vishant sipping that afternoon cappuccino by the coffee machine. “Hey,
buddy! What’s going on?,” I inquired. “You see that gardener watering the
plants, Abhishek?”, he asked. “I do, yes,” I replied, intrigued. He continued,
“Such a simple job, isn’t it? Just water them once or twice daily, and they
grow all by themselves with little to no effort.” I thought that was the
understatement of the year. Gardening is not an easy job at all. We have to
consider the location, soil quality, nutrients, plant type, and so on. Even
watering is done through different techniques. It requires a lot of patience and
care to grow a plant. But I wanted to hear what he would say next, so I
nodded and let him continue, “Imagine if he was asked to go through all the

plants that he planted in this garden and kill all the bugs individually that are
living in each of them, eating them from inside. What would he do?” “I think
they have pesticides for that,” I grinned. Vishant turned to me and paused for
a second, which felt like minutes, and then we both broke into laughter. “I
have been fixing bugs all day.” he finally got to the point. “I understand your
frustration. It’s part of the job, what can we do, huh,” I consoled. “Hey, how
is that CI/CD plan coming along? I have great hopes for that, man,” he
exclaimed. “Well, that might help the whole team a lot in bug hunting. I was
discussing it with Adeel in the meeting just a few minutes ago. Once it is
implemented, we will be able to tell more.” I explained. He bumped my
shoulder and said, “Cannot wait man. Looking forward to it.”
People were waiting, expectations were building. Everything was exactly
where I wanted. My past experience had given me some leeway. The thing
was that once SonarQube is set up, most of the issues with pre-deployment
checks would disappear. I knew this, and that people would find it quite
convenient. Please refer to the following figure:

Figure 2.2: Pie Chart: Developer time distribution

Note: Developers spend 45% of their time fixing bugs or addressing
technical debt vs building new features.

Testing, Code Coverage, and Security Testing
Next morning in the meeting room:
Me: “Hey everyone.”
Sonia and Adeel: “Hey Abhishek.”
Me: “Okay, let us keep this meeting brief. For unit testing, our developers
will have to write the test cases, yes?”
Adeel: “Yes.”
Me: “Well, in that case, all we need to do is provide the details of the source
code and tests in a SonarQube properties file and let it run. We might need to
run some tests separately and provide Sonarscanner with the report to publish
in some cases as well. Either way, the reports will be available to view on a
dashboard, and we will be able to track changes as well as the progress that
our code base makes over time. Isn’t that something?”
Sonia: “There are a few terms I am not familiar with per se. Would you mind
explaining? Let us begin with code coverage. What exactly does it mean?”
Me: “Hmm, you know better than me that the whole purpose of testing is to
reduce unhandled exceptions, right, unintended behavior of our code, if you
will. No matter how good our tests are, they won’t be able to analyze the
areas of the code that are not covered in the test cases. Code coverage
precisely shows that: how much of the code is covered in the test cases. This
way, we’d know what areas are in the dark and can write test cases for them.
With time, we can also see these reports being visualized in the SonarQube
dashboards with time.”
Sonia: “Adeel, don’t we already have a lot of tests in our fleet already. It
should cover most of the codebase. Why do we still get so many bugs?”
Adeel: “That is a good question. Sometimes there is a method use case or a
conditional branch that is left out of the tests. Usually, those are the bugs we
find the hardest to tackle.”
Me: “I might know why that is. Adeel is right, but not completely. It is not as
rare as one might think, which is why there are multiple code coverage
methods. It can quite often be a possibility that line coverage for a particular
feature is 90% but condition coverage is just 50% as it fails half of the time.
We must take these things into account before moving forward.”
Adeel: “That makes a lot of sense.”

Sonia: “Agreed. My next question is about Sonarscanner. What is that? Is it
different from SonarQube?”
Me: “Oh yes, it is a client-based application. We can configure it to run
project analysis by putting appropriate values in the configuration file. Once
complete, it sends a report to the SonarQube server for processing. It will
become a lot clearer once I implement it and give a demo.”
Adeel: “So, we need Sonarscaner every time we have to run tests?”
Me: “Well, Sonarscanner is one of the scanners used for project analysis.
There are others as well, like maven for java, that you may use as per your
need. But the SonarQube server does require a scanner for project analysis.”
Adeel: “And all of this is dictated and managed by the SonarQube server?”
Me: “Yes, that is correct.”
Adeel: “Okay, so that is two down, one to go.”
Me: “Now, let’s move on to security testing. To be honest, there is not much
to talk about here either. SonarQube can take care of this as well. The plugins
for respective languages do come with vulnerability rules, which are created
based on threats and vulnerabilities defined by standards like CVE and
OWASP. Of course, there are others as well, but an important thing to note is
that if there is vulnerable practice being followed in code, it will appear in the
analysis report.”
Adeel: “Could you, maybe, give an example?”
Me: “Suppose a developer has mistakenly committed a password in the code
or an access key. It can also detect areas in the code that may be prone to
attacks, like SQL injection or cross-site scripting. We must also encourage
our developers to follow secure coding practices but, to be honest, that is
another topic.”
Adeel: “I do not have any more questions. I must say Abhishek, all this looks
pretty good. Let us implement it as efficiently as it sounds.”
Sonia: “There’s the manager we all know Adeel to be!”
Please refer to the following figure:

Figure 2.3: An interesting or rather compelling comparison

Fact: In 2016, software failures cost the worldwide economy $1.1 trillion.
These failures were found at 363 companies, affected 4.4 billion customers,
and caused more than 315 years of time lost. Most of these incidents were
avoidable, but the software was simply pushed to production without proper
tests.

Intermediate operations
With all the thoughts running through my head regarding the CI checks and
believing it to be a positive omen that I was getting the answers to all the
issues that were discussed in the scrum meeting, I was feeling relaxed, but
my mind got hijacked by the thought of managing the growing artifacts. I
was thinking of the challenges that were about to arrive with frequent builds
and the management of dependencies. Lost in my thoughts, I did not realize
that Adeel was standing right beside me.

Artifact management
Adeel: “You look puzzled, is there something important going on in your
head?”

Me: “Well, yes, there is. What is the timing? Just the guy I wanted to talk to.
Post CI implementation, we will be having more frequent continuous builds
running around; I am thinking about managing the dependencies.”
Adeel: “If I am right, you are talking about dependency libraries and our
application artifacts.”
Me: “Yes, I am talking about both and in fact more. I have created a list of
queries around it. Let me share it with you.
It will require a good amount of bandwidth, data to be transferred and time to
trigger builds repeatedly. This will increase the overall cost of triggering the
builds as the dependencies will be downloaded from remote repositories.
Duplicate copies of dependencies will be common across different
environments.
The stability and reliability of remote systems from where we are
downloading our dependencies also need consideration. And most
importantly, what if we need to roll back to the previous version? Do we need
to roll back the changes in our code and trigger the build again?”
Adeel: “Hmm, looks like you have some genuine concerns about artifact
management. I would definitely recommend that you look more into this
area. If we manage the dependencies and artifacts right, we will surely be
able to build a redundant build process that would be faster too.”
As it was gratifying to listen to Adeel, it also meant that I needed to do some
research. With a mutual agreement, I planned to spend time exploring
possible options that are specifically available to solve the preceding
requirements and may provide more features that were still unknown to us.
After spending a good amount of time in exploration, including reading blogs
and holding discussions, I figured that multiple options are available to
manage application artifacts and dependencies. Among those options are
JFrog Artifactory, Sonatype Nexus, Pulp, and Archiva Cloudsmith Package.
It was just like what they say, “The more options we have, the more difficult
it is for us to choose.” Now, to deal with this problem, I followed the golden
approach: sorting and elimination. I narrowed down my primary requirement
to a tool that is primarily open source and supports most of the programming
language to be future-ready.
It took a good couple of hours to narrow down my search and arrive at the
final two most feasible tools based on the factors like age of the tool,

stability, technology support, requirement fulfillment, and of course, the
community followers and support. Refer to the following figure:

Figure 2.4: A chart comparing nexus and Jfrog adoption over time

With all my initial research and findings, I was ready to present both the
solutions in the next scrum discussion, but before that, I discussed it with
Adeel to get his views and ensure that it can serve our purpose.
“Yes, this will serve our purpose; in fact, I have heard about these tools from
my previous colleagues, and I am sure we can pick and use any one of these
as our artifacts management solution.”, Adeel replied satisfactorily, which
boosted my morale of proposing the solution.
In short, the artifact solution will be capable of handling the following
requirements:

Reduce network traffic and optimize builds
Reliable and consistent access to remote artifacts
Integration with build ecosystem
Security and access control
Ability to scale and handle failover
Open source licensed

DB Versioning
I can still recall the moment when I was attending a seminar, the speaker used
a phrase, “You just can’t restrict yourself to what you are exactly searching
for.” And yes, it was true, this was happening to me. While exploring artifact
management, I stumbled upon a query, “How to handle Database Updates”.
Although I was searching for the former, the latter was also revolving in my
mind. I decided to book my next day searching how updates are handled at
the data level, be it Data Definition Language (DDL) or Data
Manipulation Language (DML), and what if we need to rollback any
database change along with the application rollback, or what if any database
update fails.
Here again, on the same desk with the same spirit as yesterday, I continued
where I left off. One thing I was very clear about was that keeping track of
database updates for an application is not an easy task. It may tend to have
differences among multiple environments. And the situation may become
worse when it is caught in the production environment.
I called up a meeting with the development team to discuss it further and
introduced the team to the concept of Database as Code. Upon further
discussion with the team, I explained how we will treat database changes just
like application code. This will require scripting of every change required in
the database and have its version controlled along with the application
release.” With the team nodding, I further added, “It will not only help us
update the database in a managed way, but it will also version the changes
and state of changes applied. So, in case we need to roll back to the previous
changes, we can undo the changes to the last stable state.”
I listed down other merits of following this approach:

No problems with the database schema mismatch in multiple
environments
Increased visibility to database updates
Possible to set up new database instances from the scripts

I explored how the structure of database scripts is generally maintained. An
example can be seen in the following figure:

Figure 2.5: An example structure of a project

There are few players in the industry to manage DB updates with Flyway and
Liquibase, both going neck to neck in open-source distribution. The adoption
chart for Flyway and Liquibase is shown in figure 2.6:

Figure 2.6: A chart comparing Flyway and Liquibase adoption over time

Fact: In the 2020 State of Database DevOps Report, 64% of respondents
said the speed of database changes, the developer’s bandwidth, and
reducing the risk of losing data during deployments were the top drivers for
automating the delivery of database changes.

Post-deployment integrations
I was quite relaxed when the CI implementation plan was almost finished.
So, I ran through the checklist and started to check the boxes for the tasks
that were covered. Suddenly, I realized that we haven’t covered the post-
deployment checks. I had kept it aside earlier during the planning stage as I
needed some advice from QA regarding it. Little did I know that it would
completely skip my mind.

Smoke testing
The next day, I went to meet Sonia after reaching the office.
Me: “Hey Sonia, how are you doing?”

Sonia: “All well, how about you?”
Me: “I am good as well, thanks for asking. I came to talk to you about the
post-deployment checks in our CI pipeline. Since our pre-deployment CI
checks and intermediate operations like the artifact versioning and DB
updates have been finalized, the next big thing is post-deployment checks. I
am thinking of including smoke testing, regression testing, and API testing. I
would like to discuss each part in detail with you. Let us start with smoke
testing. Let me start with my understanding of smoke testing, and you can
correct me if I am missing something.”
Sonia: “Sure, go ahead.”
Me: “The term smoke testing originated from hardware development, where
if you power on a circuit board for the first time and if you see any smoke
rising, you’ll know it’s broken.
Sonia: “Right. The same philosophy applies for software development as
well.”
Me: “Yes, I agree. In software development, if the application comes up and
does not die immediately, then it means that the application passed the smoke
testing.”
Sonia: “I am afraid you are not completely right. Let me explain it to you
with a simple example. Whenever there is a pipe fitting, there are multiple
tests done just to verify that the pipe is not leaking anywhere. If we correlate
this with software development, when an application gets started, multiple
user flows are executed on it to validate its basic functionality. So, smoke
testing includes many benefits, like testing of basic application functionality
and ease of deciding whether further testing is needed.”
Me: “Great, this is something interesting. Would you please explain what we
mean when we say basic functionality?”
Sonia: “That is a very good question. The basic functionality varies from
organization to organization. Also, it is not limited to organizations; it also
includes application business logic because every application will have
different logic and workflows.”
Me: “Alright, what would be the basic functionality test in our case?”
Sonia: “Since we are building a video consultation application, the basic
functionality testing would be that the user can log in/sign up for the

application. Also, the video functionality should work fine. Only then can we
say that it has cleared the smoke test.”
The smoke test can be seen in the following figure:

Figure 2.7: Diagram representing smoke testing

Me: “Nice! Any plans on how we are going to do this?”
Sonia: “Yes, so we will use selenium for automated smoke testing. It is a
decent tool and has been used in industry for a long time. Also, it is reliable
in terms of community support.”
Me: “Okay, got it. So, in our CI pipeline after the deployment, I have to
execute selenium scripts for smoke testing?”
Sonia: “Correct. But make sure your CI server has the browser installed in
headless mode.”
Me: “Sorry, I did not get the headless browser thing. Why do we need it?”
Sonia: “In simple terms, the headless browser is a web browser without any
GUI. We need it because our application will open on different browsers, and
we have to ensure that it runs perfectly on every browser. The reason behind
keeping it headless is that we are doing automated testing, and GUI will
become a hindrance in that.”
Me: “Well, you have planned everything. That is awesome! Thanks a lot for
all the information. Okay, now I have to do some work, but I will sync with

you again for regression testing.”

Note: Some Functionize customers report that they can uncover and fix as
many as 80% of the bugs they discover simply by configuring and
executing a solid smoke testing suite. This corresponds well with the Pareto
principle of 80/20. For many teams, smoke tests might be covering only
20% or less of all test cases and yet catch 80% or more of the bugs. This
alone makes smoke testing efforts worth the time investment.

Regression testing
That day, I got busy as I had quite a few tasks pending, and it took an entire
day to resolve those. While I was riding back home, I was thinking about the
discussion I needed to have with Sonia regarding regression testing. I was
still guilty about forgetting post-deployment checks in my plan. Deciding to
do something about task management, I planned to talk to Sonia the next
morning.
Sonia: “Good morning!”
Me: “Hey, Good morning. I was about to come to you regarding regression
testing. I would have come yesterday but got pulled away in some high-
priority tasks.”
Sonia: “Yes, I also got busy yesterday, but let us go to a conference room for
that now. I can see that Room 3 is available.”
Me: “Sure, lead the way. So, in regression testing, we verify that new code
changes are not breaking anything in the existing codebase. The new changes
should not influence the existing features of the product. Am I right?”
Sonia: “Right, in regression testing, we run the automated tests again to
check the previously working functionality as well as the new functionalities.
Typically, we do regression testing when new feature is introduced, when
some of the bugs are fixed, during performance improvements, and during
configuration level changes.”
Me: “I have a question. Why do we need regression testing when we already
have functional testing? I think functional testing also tests the functionality
of each module.”
Sonia: “Functional tests only inspect the behavior of new changes or features
and do not check how much they are compatible with existing ones.

Therefore, without regression testing, it would be very difficult and time-
consuming to identify the root cause of product failure.”
Me: “Oh, I get it. Also, I have seen people include performance testing as a
part of regression testing.”
Sonia: “Yes, the rationale behind it is that there would be some changes that
will impact the application performance, and no one wants a slow responsive
application. So performance testing is required whenever a configuration or
architecture level change is done, but I think that can be done manually.”
Me: “I think we should do automated regression testing because it will save a
lot of time. I mean looking at the facts, sometimes it can take around 6-7
hours for manual regression and performance testing. With automation, you
and your team can use your time and energy at a better place, and the
machines can handle this thing.”
Sonia: “This makes sense to me because no one wants to stare at a screen,
pushing buttons and waiting for the result. I would rather get the test results
as a notification.”
Regression testing is illustrated in the following figure:

Figure 2.8: Diagram representing regression testing

Me: “That’s the spirit! So, what tool are you going to use for regression

testing?”
Sonia: “I think Selenium would be sufficient, as our application is browser
based and Selenium provides cross-browser regression testing. We should
leverage it completely. Also, it’s not like we always have to run the
regression test; it would be needed as per the release cycle.”
Me: “Okay, great. I have also thought about the performance testing part.
Would you like to hear about it?”
Sonia: “Well, enlighten me.”
Me: “I am thinking of using JMeter for load testing. There are multiple tools
available, like k6 and locust. The reason why I am opting for JMeter is that it
is quite a mature tool and has great community support. Also, we can record
our test results and compare those at every release cycle.”
Sonia: “Sounds good. But when are you planning to run all these?”
Me: “I will integrate it with our CI server so that it can be run with the
regression suite itself.”
Sonia: “Well, if you do not mind, I’d suggest running regression and
performance tests separate from the CI pipeline, maybe a nightly activity.”
Me: “Uhm, why is that?”
Sonia: “Well, you have smoke testing in your CI pipeline; that should be
enough. Putting regression and performance tests as well will only increase
the time and cost of the build. You see, these tests usually take a long time to
run. If developers have to wait that long at each build, don’t you think it will
defeat the purpose of CI?”
Me: “Hm, if you put it that way, I’d have to agree. We should consider that
multiple developers may contribute their features and run builds multiple
times a day.”
Sonia: “Glad I could help! This will reduce a lot of manual effort for me.”
Me: “Yes, it will.”

Fact: Facebook is known to be a pioneer in continuous deployments and
had already achieved a cadence of 60,000 releases per day just for its
Android app way back in 2017. That number is sure to have multiplied by
now. The challenge with releasing continuously and at a frantic pace is to
ensure that things don’t break because of releases. To this end, Facebook

gives careful thought to regression testing. It equips developers with tools to
better gauge the impact of the code they write before it is released into
production.

API testing
A few days later, I was having one of my quarterly fillings of water in the
break room when Adeel and Sonia walked in. We greeted each other, and
they started pushing the buttons on the coffee machine. I thought that was
odd considering it was midafternoon. Also, I had never seen Adeel having
coffee before. But most of all, they of them looked exhausted.
Me: “How’s everything going?”
Adeel: “Good, but Sonia and I had a rough night yesterday looking at a
production issue.”
Me: “Oh, what happened?”
Sonia: “Our application had stopped the user registration. We debugged for
hours in the front-end application, but in the end, we found out that the issue
was in the back-end application.
Me: “So our back-end application is not tested properly?”
Sonia: “It is tested functionally, but there wasn’t validation for the API
response. This is why we didn’t know when it was giving an empty response
in cases where our front-end application needed a valid JSON structured
response.”
Me: “Hmm, well if you all don’t mind, can I suggest something?”
Adeel: “Sure, go ahead.”
Me: “I think you should do API testing of your back-end code.”
Adeel: “You know that was in the plan; but if we do it, we will miss the
delivery deadline.”
Me: “Maybe I can help you guys here. We are implementing the CI/CD
pipeline, so we can add API testing as a part of the post-deployment check.”
Sonia: “Sounds nice, but again, it would be tedious for us.”
Me: “Yes, but I think it should be a one-time effort in which we will define
the automated API test cases and execute them post-deployment. This way,
your back-end API response will be thoroughly tested.”

Adeel: “Well if you both agree, I can talk to other team members regarding
API testing.”
Me: “Yes, you should talk to them. Let me tell you some benefits to help
convince them:

We can find out the ways an end user may mess up by sending wrong
data
We can check the average response time of API to know if it is not too
slow
Request type validation, like request is POST, GET, or PUT can be
passed while making a request
We can check whether the request is authorized to make API call
Also, we can do status code validation
We can prevent SQL injection as well using these tests

The architecture of API testing looks as shown in the following figure:

Figure 2.9: Diagram representing API Testing

Adeel: “Whoa! You have great knowledge of API testing.”
Me: “Yes, I had implemented this in my previous organization.”
Adeel: “That is great! You must know the tools for API testing as well then; I
have heard about SOAP.”
Me: “Ahh, I was going to recommend the same. It is a good tool for API

testing and provides a headless interface as well.”
Sonia: “Thanks a lot Abhishek! If we do this in time, I’ll give everyone a
treat.”

Fact: According to Google Trends, the interest in API/web services testing
has been growing steadily over the last couple of years. According to
research by SmartBear, over 3,372 software professionals were part of API
testing job profiles in 2019, and 91% of respondents have or plan to have a
formal API testing process soon. About 45% of API testers reported that
their organization automated more than 50% of test projects. Besides, API
quality is a top priority for more than 75% of industry organizations.

Notifications
I had been doing satisfactory research for the past few days involving what to
implement in the CI process to streamline the development as well as testing
cycle, enhance productivity, and ensure better quality. While exploring these
concepts, I made sure I utilized them to the best of my capabilities. Be it
maintaining a code repository, including pre-build checks, or ensuring code
quality, security enhancements, versioning artifacts, or database updates, I
had a defined action plan. The layout was ready to be proposed in the next
scrum meeting.
No sooner did I think to wrap up for the day than some concerns shown by
Adeel crept into my mind. I remembered him asking, “It will be really great
to have all the CI stages you mentioned in our application build process, but
how can we make sure everything goes smoothly; if, say, there is an error at a
stage, how would we get to know about that?”. I repeated what Adeel said
once again in my mind and thought that it was of vital importance to use
notification systems to apprise the involved team members. While thinking of
notifying, sending an e-mail notification came to my mind as the first thing
that I could integrate with the CI process.
Although email notifications may get very detailed information, if we are
already getting lots of emails, important alerts may get lost. So, I was
exploring one more solution that would notify users instantly via text
message, push notification, or an update on instant messenger. While
exploring the other options, I discovered, to my surprise, that there could be
dozens of options available just to serve the notification, which I can now

shortlist depending on what channel we are currently using.
During this research, I came across the term intelligent notification, which is
crucial in terms of organizing when, how, and who should be notified. I
landed upon the following options with me in the order of feasibility:

Email
Slack
Pagerduty
Skype
Jabber
HipChat

Branching strategy
Once all the CI checks were in place, the only remaining piece was the
branching strategy that helps developers develop features rapidly. Bug fixing
should also be easy in it. Again, I went to Adeel for a discussion.
Me: “Hi Adeel, our CI implementation is almost final, and I think it is pretty
much streamlined. But I wanted to discuss a point that you had raised in
earlier scrum meetings, regarding branching strategy.”
Adeel: “Yes, I had something in mind regarding this too, so we can discuss
it.”
Me: “So Adeel, first of all, I would like to know what challenges you guys
are facing right now.”
Adeel: “Well, that is a long list. But let me try to cover it in short. Right now,
all developers are doing the development in a single branch, which is being
used for all environments. So, we mostly spend a lot of time fixing merge
conflicts. These are for all the development components.”
Me: “So how do you guys fix bugs?”
Adeel: “Sheesh, I am not very proud to tell you this, but we fix the bug in the
same branch and then deploy the code from that branch.”
Me: “Wow, that is a mountain of problems right there.”
Adeel: “Tell me about it. We often cannot test new features because some
other feature is still in progress. The release is a headache as well. And don’t

even get me started on rollbacks. It is almost impossible. I mean sure, we can
cherry-pick and roll back certain commits, but it is not possible to do that on
a regular basis.”
Me: “Hmm, I think we need to have a proper branching strategy in place for
this, otherwise it will keep affecting the development productivity.”
Adeel: “Yes, I thought about implementing this many times but could not get
the time to do it. But yes, if we can do this, it will reduce a lot of pain for
developers.”
Me: “So I have thought of a branching strategy. Let me share it with you, and
then you can tell me if this is the right way to do it. I think there should be a
development branch, and developers can create a feature branch from it.
Once the code is reviewed and tested with the CI pipeline, we can merge that
branch in the development branch, and from that development branch, we can
create release branches to deploy code across different environments.”
Adeel: “Okay, what will be the strategy for bugs?”
Me: “In case of bugs, a new hotfix branch will be created. From that, the
release branch and fixes can be deployed from there.”
Adeel: “According to me, we really don’t need a complex branching strategy.
Our projects are quite straightforward and don’t have such complexities, so I
think a simple approach would be much better. I think the branching strategy
should be defined according to the project. We need a complex or nested
branching structure if the requirements are complex, but I think our scenario
is not that complex.”
Me: “Do you have any strategy in mind?”
Adeel: “I will not change your idea completely because some of the parts are
useful. We can have a development branch, and developers can create a
feature branch from it once they are done with the feature. They will raise a
Pull Request for the development branch, and then I can merge the code after
review. Once the code is merged, the CI job will be executed to create and
deploy the artifact. After the testing, a new Pull Request will be raised for the
master branch, and once the Pull Request is merged, the code will be
deployed in the production environment.
The developing branching strategy can be seen in the following figure:

Figure 2.10: Develop Branching Strategy

Me: “Well, this sounds like a much simpler approach! But how will we fix
bugs?”
Adeel: “So if there is a bug, a new hotfix branch will be created from the
master branch, and it will be merged with the master after testing. The
development branch and features branches will take a pull from it for the
latest code.”
Me: “Awesome! I think this will not create unnecessary confusion in terms
of branching. We can follow this approach, for sure.”
Adeel: “Yes, but if you have any feedback, you can tell me.”
Me: “As far as I can think, this strategy looks fine to me.”

Fact: Linus Torvalds strongly advocates for branching and merging as key
practices that will greatly benefit software development.

Conclusion
As we still have the memories of the first sprint retrospective meeting alive in
our minds, we were hoping for the best while walking to the meeting room
for a mid-sprint sync-up with Sajal. There was a bit of nervousness,
especially for me, as I need to present the concepts and feasibility around the
fancy terms I talked about a week ago. But, to my surprise, the excitement
was rushing ahead of anxiety as I started presenting quite a lot of CI concepts
in front of him. With the development team and QA already satisfied after my

regular sync-up and discussion with them around the explored concepts and
tools, convincing the rest became rather easily, maybe because the Developer
and QA were mostly nodding throughout my session, giving me a boost of
confidence.
During the discussion, we walked through everyone with the findings which
revolved around:

Pre-deployment checks, including code stability, code quality, unit tests,
and code coverage and security tests
Intermediate operations like artefact management and database
versioning
Post-deployment integrations with Smoke, Regression, and API tests
Intelligent notification management
Branching strategy overview

And finally, a week’s worth of effort paid off after seeing an acknowledging
response from Sajal as well. It ended on a positive note, as the team was
discussing while returning to their desks.
In the next chapter, we will look at tools that the can be used for CI
implementation, particularly Jenkins. We will also look at the comparison of
different tools and dive a little deeper into the implementation of Jenkins.

Points to Remember
Generally, people divide continuous integration into two parts: pre-
deployment checks and post-deployment checks.
DB versioning is an important aspect of Continuous Integration if we
want to achieve a complete automated CI pipeline.
Code coverage depends on the application test cases.

Multiple Choice Questions
1. SonarQube is used to ensure the quality of code in the CI pipeline.

a. True
b. False

2. What type of testing do we perform to validate the web applications
method?

a. Smoke testing
b. Regression testing
c. API testing
d. None of the above

Answers
1. a
2. c

Questions
1. What is the branching strategy, and what is its importance?
2. What are the post-deployment integrations inside continuous

integration?
3. What are the pre-deployment integrations inside continuous integration?
4. What are artifact management and DB versioning?

Key Terms
Code quality
Code stability
Code coverage
Unit testing
Smoke testing
Regression testing
API testing
Branching

T

CHAPTER 3
Introduction to Jenkins

he understanding of Continuous Integration was successful, and we
have compared many tools. Different tools are available in the market

with different types of functionalities and licensing. In this chapter, we will
understand how we landed on Jenkins as the Continuous Integration tool and
the different functionalities that Jenkins provides. Also, we will make a
detailed comparison of the different CI tools.

Structure
The following topics will be discussed in this chapter:

Tooling landscape for Continuous Integration
Why Jenkins
Jenkins installation on different platforms
What are plugins, and why do we need them?
Authentication and Authorization inside Jenkins
Jenkins Pipeline
Shared library
What if the Server gets deleted
Master-Slave Architecture
Global tool configuration

Objectives
After studying this chapter, you should be able to decide whether to choose
Jenkins as a CI/CD tool. You should also be able to configure different
components of Jenkins and customize it to fit your needs, leverage the plugin
model to add features enhancing productivity, write and maintain pipeline as
code, take proper backup of the server, and scale server using Master-Slave

architecture.

Tooling landscape
“So, Monday, we meet again. We will never be friends, but maybe we can
move past our mutual hostility towards a more-positive partnership.” And
yes, why not, when it seems like a never-ending affair that revisits every 7th
day? Like this, many stray thoughts were running through my mind during
my not-so-comfortable travel to the office today. I couldn’t resist having
some alternate means of commuting, as the current one is not worth my time
and effort. Finally, I gave a sigh of relief as I stepped inside the office and
took a couple of minutes to settle myself.
As usual, I took my morning dose of caffeine, self-prescribed, and while
traveling back to my workstation, I almost drew a rough draft of the tasks in
my mind, not noticing that my walking steps were getting longer and faster to
preserve the latest volatile thoughts till I transferred them on paper.
Indeed, Continuous Integration doesn’t get rid of bugs, but it does make them
easier to find and remove. To implement the CI, I need to look for a platform
that will serve every aspect of our needs. In fact, as per my initial research, it
should be very close to fitting the following needs:

Minimum Setup Complexity
Opensource
Available Integrations
Platform Agnostic
Faster and Stable Build
Build-As-Code

I can closely relate it to my daily commute problem where I was thinking of
choosing an alternate option that could save my time and would be more
comfortable than the current one. It’s learning from my life that I want to
implement in my professional work to smoothen things and avoid future
efforts to explore alternate technologies. So, the first thing to do today would
be to list down all available options and choose the one that closely fulfills
the requirements.
While summarizing my last week’s explorations, I was able to prepare a

high-level flow of multiple stages that will be required to implement the
application build process using Continuous Integration:

Developers check out code into their branches
When done, the code will be merged to the deploy branch for that
respective environment
The CI tool would have a bunch of tasks:

Monitor the repository and check out changes when they occur
Build the application and run unit and integration tests
Release the deployable artifacts for testing
Assign a build label to the version of the code it just built
Inform the team of the successful build or failure at any of the
previous stage

The team will perform the fix, if needed
Commit the changes to their branch and merge it to deploy branch

This way, the CI process will be running till we attain the success status for
the component.

Available toolset
Throughout my research on the Continuous Integration process, I found that
it adopts a more advanced programming practice to help developers prevent
serious integration pitfalls.
As the journey continues to build the project, there are more things to
integrate over time. To resolve the same, CI Tools automate many tedious
tasks and make it easier to quickly identify potential issues before we end up
releasing a disaster. There is a vast scope of tools primarily categorized as
follows:

Version Control System Integrated Pipelines
Software as a Service
Self-hosted and Managed

Let’s list some of the top CI Tools in each of the preceding categories. Of
course, finally, we’d discuss the chosen one, comparing and listing the

reasons for selecting the “Swiss Knife.”

VCS Integrated Pipelines

Gitlab CI/CD
GitLab CI/CD is a tool built into GitLab for software development through
the following:

Continuous Integration (CI)
Continuous Delivery (CD)
Continuous Deployment (CD)

GitLab CI/CD is configured by a file called .gitlab-ci.yml, placed at the
repository’s root. This file creates a pipeline, which runs for changes to the
code in the repository. Pipelines consist of one or more stages that run in a
particular order and can each contain one or more jobs that run in parallel.
These jobs (or scripts) get executed by the GitLab Runner agent.

GitHub Actions
GitHub Actions automates Software Development Life Cycle (SDLC)
workflows directly in the GitHub repository, where it stores code and
collaborates via pull requests and issues.
We can write individual tasks, called actions, and combine them to create a
custom workflow. Workflows are custom automated processes that are set up
in the repository to do the following:

Build
Test
Package
Release, or deploy any code project on GitHub

With GitHub Actions, you can build end-to-end continuous integration (CI)
and continuous deployment (CD) capabilities directly in the repository.
GitHub Actions powers GitHub’s built-in continuous integration service.
Workflows run in Linux, macOS, Windows, and containers on GitHub-
hosted machines called ‘runners.’ Alternatively, we can host our runners to

run workflows on machines we own or manage.

Bitbucket CI
Bitbucket Pipelines is CI/CD for Bitbucket Cloud, which is integrated with
the UI and sits alongside the code repositories, making it easy to get the
building, testing, and deploying code up and running based on a
configuration file in the repository.
To set up Pipelines, we need to create and configure the bitbucket-
pipelines.yml file in the root directory of the code repository. This file
contains the build configuration. Using configuration-as-code means it is
versioned and always in sync with the rest of the code.

Software as a Service
With the overflowing number of Software as A Service (SaaS) based CI/CD
tools available in the market. I am listing out some most popular, which are
used extensively among the teams:

TravisCI
CircleCI
CodeFresh
Codeship
Shippable
Wercker
Azure DevOps
AWS DevOps

Like most SaaS products, some of the most significant benefits of opting for
SaaS-based CI/CD toolset are as follows:

There is no hardware or software infrastructure to maintain.
We need not worry about server maintenance or applying software
updates/patches.
They tend to be easy to set up.

But these points are only the advantages of using this toolset. In parallel, I’d

also mention the downsides to leveling the playing field:

The cost of usage for a SaaS CI/CD solution may increase as the team
gets larger.
With the increasing scale in terms of services and frequency of usage,
the cost of your CI/CD system could inflate dramatically.
Furthermore, not all SaaS support all platforms, tools, and
environments.

Self-Hosted CI/CD Tools
Until this point, I was convinced there are many attractive points in favor of a
VCS and SaaS CI/CD service. Comparing it with a self-hosted solution, I
couldn’t help but notice one potential benefit of a self-hosted solution. It is
the extensibility that others don’t provide to the same extent.
In addition to extensibility, self-hosted solutions typically have fewer
limitations on building configurations and concurrent build jobs. Moreover,
the self-hosted services can be customized with plugins/extensions to enable
functionalities that are not included “out of the box.” Even without plugins,
self-hosted CI/CD tools often support development platforms, languages, and
testing frameworks more than many SaaS solutions.
Conversely, there are some potential downsides to a self-hosted system.
Perhaps the biggest would be that we would require to manage the
infrastructure, which includes applying software updates/patches. Also,
unlike a SaaS solution, self-hosted systems may require a time-intensive
process.
After spending some time exploring, I could build a comparison of available
CI tools with a good ecosystem.
The following image shows a comparison of the available CI tools:

Figure 3.1: A comparison of available CI tools

Jenkins is an open-source project written in Java that runs on Windows,
macOS, and other Unix-like operating systems. The first point of attraction in
Jenkins is that it is open source. Apart from that, it is community-supported
and primarily deployed on-premises, but it can also run-on cloud servers. Its
integrations with Docker and Kubernetes take advantage of containers to roll
out even more frequent releases.

Why Jenkins?
Like everything, there are pros and cons to all solutions, and with the vast
amount of CI/CD tools available in the market, there’s no such thing as “one
size fits all.” What matters is the flexibility and extensibility that will help in
the customized formation of workflow that will meet the requirements. To
reinforce my choice of Jenkins, I am listing the possibilities and features:

Easy Installation: Jenkins is a platform-agnostic, self-contained Java-
based program ready to run with packages for Windows, Mac OS, and
Unix-like operating systems.
Easy Configuration: It is easily set up and configured using its web
interface, featuring error checks and a built-in help function.
Available Plugins: There are over a thousand plugins available in the
Update Center, integrating with every tool in the CI and CD toolchain.
Extensible: It can be extended utilizing its plugin architecture,
providing nearly endless possibilities for what it can do.
Easy Distribution: Jenkins can efficiently distribute work across
multiple machines for faster builds, tests, and deployments across
multiple platforms.
Notification Support: Integrations available to notify the build status
on various communication channels.
Active community. The Jenkins community provides a guided tour
introducing the basics and advanced tutorials for more sophisticated use
of the tool. They also hold an annual conference DevOps World |
Jenkins World.
No expenses required: Jenkins is an open-source resource backed by
heavy community support.

Figure 3.2 explains the architecture of Jenkins plugins and integrations:

Figure 3.2: A view of Jenkins plugins and integrations

Jenkins installation
Jenkins is an open-source tool that is backed by a strong community, so it
supports almost every kind of OS architecture, like macOS, Windows, and
Linux.
In Linux OS, Jenkins packages are available for families like Debian,
RedHat, and Arch. For the Debian and RedHat families, we can simply use
their package manager, and for other Linux distributions, we can use the jar
package.
The only dependency for installation is Java.

Installation on Linux (Debian)
Installation of Jenkins in Linux is straightforward, but for sake of simplicity,
we have categorized the process into steps.
Assuming that Java is already installed on the system, we will first add the
repository key of Jenkins to our system:
$ wget -q -O - http://pkg.jenkins-ci.org/debian/jenkins-

ci.org.key | sudo apt-key add -

When the key is added, we can add the repository to the system:
$ sudo sh -c ‘echo deb http://pkg.jenkins-ci.org/debian-stable

binary/ > /etc/apt/sources.list.d/jenkins.list’

Update the packages repository of the Debian system:

$ sudo apt-get update

Install the Jenkins package using apt-get command:
$ sudo apt-get install Jenkins

Let us start and enable the Jenkins service on the system:
$ sudo systemctl start jenkins

$ sudo systemctl enable jenkins

In case firewall is being used, we may need to enable the Jenkins port 8080
in the firewall:
$ sudo ufw allow 8080

Now we can access Jenkins at http://server_ip:8080.

Note: In this installation process, the latest stable version of Jenkins will be
installed. If you want to install a different version of Jenkins, you may have
to download that version manually from the Jenkins repo.

Installation on Windows
For installing Jenkins on the Windows system, we have to download the
“.exe” package from Jenkins. The package can be downloaded from here.
Follow the given steps to move forward:

1. Unzip the downloaded file as shown in the following figure:

Figure 3.3: Downloaded exe file

2. Click on the Next button, as shown in the following figure:

Figure 3.4: Jenkins installation wizard

Note: If you are installing on a Windows server, it might ask how you
want to run this program: as a local process or as a service. Some may
prefer running this as a service in Windows, but you can also run this
as an individual process.

3. Click on the install button, as shown in the following figure:

Figure 3.5: Install Jenkins on Windows

4. Once the installation is complete, you can open the Jenkins UI on the
browser, as shown in the following figure:

Figure 3.6: Unlocking Jenkins

Note: In this installation process on Windows, we are using the 2.130
version of Jenkins; download the latest version for use. Also, if you are
unable to find the path of the secret file, you can directly paste it into
notepad explorer.

Ansible
If we don’t want to follow these steps every time and want to install Jenkins
in one go, we can use the ansible provisioner to install Jenkins.
There are multiple ansible roles available on the galaxy marketplace; here, we
are providing a role for stable installation of the Jenkins.
$ ansible-galaxy install opstree_devops.jenkins

Create a “hosts” file in the directory where you have cloned this ansible role.
Define the server connection details where Jenkins should be installed and
configured.
[jenkins]

10.1.1.100 ansible_ssh_user=ubuntu ansible_ssh_private_key_file=

<file_path>

Create a file named site.yml:

- hosts: jenkins

become: yes

roles:

-opstree_devops.jenkins

Once these two files are created, we can run the ansible by using this
command:
$ ansible-playbook -i hosts site.yml

This ansible role is not limited to the installation part; it also helps in
configuring Jenkins. Some features supported by this role are as follows:

Plugin installation while installing Jenkins
Credentials management
Global tool configuration
Default package installation

Plugins
One of the great advantages of Jenkins is that it is backed by a very strong
open-source community, which develops thousands of useful plugins to
enhance productivity. We can say that it follows the plug ‘n play architecture;
if we want to add some functionality to our Jenkins server, we can simply add
it by installing the plugin for that requirement.
Now the question arises: what is a Jenkins plugin and why do we need it?
Well, let’s find out.
A plugin is an open-source tool that provides an extension to the feature pool
of Jenkins. It enhances functionality and enables Jenkins to adapt to
requirements.
Now that we are done with the “what” part, let’s talk about the “why” part.
Suppose you have to integrate your current VCS system with Jenkins which
builds a ‘Job’ every time a new commit is pushed to the repository. If we
want to achieve this, we have to integrate the Jenkins server with our VCS
system. For the integration part, we must write a custom library that will do
this for us, but there are plugins already available to support this kind of
scenario. Moreover, if the required plugin is not available at the Jenkins
plugin center, we can create our plugin as well. The plugin development will
be in Java.

Installation
Jenkins provides different methods to install plugins to the system:

Using Web UI
Using Jenkins-CLI (Command Line Interface)
Using .hpi files (without internet connection)

In the first two approaches, Jenkins should be able to download the meta-
information of the plugins from Update Center. Before discussing more about
plugins, let’s understand what exactly Update Center is. It is a central
repository where all Jenkins plugin information is stored and Jenkins
connects to the Update center for downloading and installing the plugins.
The plugins get extracted from the .hpi file, which has all the required
resources like code, dependencies, et. al.

Let us see how we can install the plugin using each method.

Web UI
This is the simplest and most used method to install plugins in the Jenkins
Server. For installing the plugin from Web UI, go to Manage Jenkins >
Manage Plugins.

Figure 3.7: Plugin installation from Available tab

Here, you will see there are multiple tabs available inside Manage Plugins:

Updates: This lists all plugins that are already installed in the system
but can be upgraded to the latest version. This meta-information is
fetched from the Update center.
Available: This lists all plugins that are not installed in the Jenkins
Server but can be installed, for example, we have searched the “golang”
plugin for installation.
Installed: This lists all plugins that are currently installed in Jenkins.
Advanced: The advanced option is available to use a custom repository
like Update Center. Also, we can install plugins by uploading the .hpi
file in this option.

At the bottom, we have three more options:

Install without restart: This option installs the selected plugins but
does not restart the Jenkins service.
Download now and install after the restart: This option
downloads the plugin but does not install it until the Jenkins service is

restarted.
Check now: This option updates the version meta-information from the
Update Center.

As per the best practice and our recommendations, you should always restart
the Jenkins service after the plugin installation because sometimes, plugins
don’t work properly unless the service is restarted.

Jenkins-CLI
Jenkins also provides the flexibility to install and manage plugins using CLI
because most DevOps or Sys Engineers like command-line interface for
scripting and automation. For installing plugins from CLI, first, we need to
download the ‘jenkins-cli.jar’ file.
https://jenkins_url/jnlpJars/jenkins-cli.jar

Note: Replace the dummy URL <jenkins_url> with the actual Jenkins
server URL. It could be an IP or domain.

$ java -jar jenkins-cli.jar -s http://<your_jenkins_server -auth

<user:password> install-plugin golang

So, this is an example command to install a “golang” plugin in the Jenkins
system using CLI.
The installation behavior can also be controlled by CLI, for example, if we
want to install the plugins without restarting Jenkins service, we can use the
“-deploy” flag; if we want to install with restart, we can use the “-restart”
flag.
More options can be explored by the “-help” flag.

HPI Files (Without internet)
One more advanced way to install the Jenkins plugin is by downloading the
plugin “.hpi” file and then installing it using the advanced Manage Plugins
option. Generally, in gaming platforms, the game engine uses this format to
store compressed data. This format is known as the Hemera Technologies
Proprietary Image format. Jenkins also uses the same extension name for
plugins.
https://updates.jenkins-ci.org/download/plugins

https://updates.jenkins-ci.org/download/plugins

The “.hpi” files can be downloaded from the preceding link. Once the file is
downloaded, go to Manage Jenkins > Manage Plugins. In there, click on the
Advanced tab and upload the downloaded file. Refer to the following figure:

Figure 3.8: Plugin installation from the Advanced tab

You can also copy the .hpi file to the Jenkins plugins directory to install it.

Fact: Jenkins has 1500+ community-contributed plugins to support Jenkins
build and automation. Jenkins was founded on 2nd February 2011 by its
original author Kohsuke Kawaguchi.

Simple Plugins
Since we cannot list the thousands of plugins contributed by a strong
community to the Jenkins Plugin pool, we will cover some of the commonly
used plugins that are very useful as well.

Source code management (Git)
This plugin is kind of a backbone of the Jenkins server because it helps to
integrate it with different VCS providers like GitHub and Gitlab.
The plugin URL is https://plugins.jenkins.io/git/.
Git plugins provide git functions for Jenkins projects. In addition, it provides
some other features like poll-scm, and Pull Requests reviewer, as shown in
the following figure:

https://plugins.jenkins.io/git/

Figure 3.9: Git plugin

In the git plugin, we can define the repository URL whether ssh and HTTPS.
If the repository is protected, we can provide the credentials for the same.
Also, we can select specific branches as parameters and execute ‘Jobs’ from
them.

User Interface
User interface plugins help make Jenkins management cleaner and more
convenient. These are a few plugins that can be used under the user interface:

Folders
BlueOcean

Folders
Folder plugin allows us to manage different Jenkins jobs in a hierarchical
manner. You can co-relate this with the directory structure you use to manage
files in your system.
https://plugins.jenkins.io/cloudbees-folder/
Let’s suppose there are multiple teams or environments in an infrastructure. If
we have all the ‘Jobs’ in a single view, it is not practical as it would be quite
difficult to search and identify them. To overcome issues like this, we can
have a separate folder structure in which we can move the job corresponding

https://plugins.jenkins.io/cloudbees-folder/

to an environment or a team. If we need further refactoring, we can create
nested folders as well.
You can create the Folder by clicking on New Item and then selecting the
Folder option, as shown in the following figure:

Figure 3.10: Jenkins project resources

Here, we have a project folder named “Obvis”, and we have managed all the
jobs related to it inside that folder:

Figure 3.11: Jenkins folder

BlueOcean
BlueOcean is a plugin that provides a beautiful and elegant UI to Jenkins. It
removes the clutter and provides clarity to each step of the Job.
https://plugins.jenkins.io/blueocean/
Some of the key features of the BlueOcean plugin are as follows:

Advance Pipeline visualization: In simple pipeline UI, we have to
scroll thousands of lines to see the output of a particular command, but
that is not the case with BlueOcean because it provides a modular view
for every step of the pipeline.
Branch and Pull Request Trigger Status: If the VCS is integrated
with Jenkins, then it can let you know the status of the branch or pull
request as in how stable it is.
Precision: This plugin can tell exactly what steps the pipeline broke.

The view of the BlueOcean stage is shown in the following figure:

Figure 3.12: Blue Ocean pipeline view

Administration
Administration plugins are used to manage Jenkins’s functionality. Similar to
User Interface, there are multiple plugins to administer Jenkins:

Agents
AuditTrail

Agents
Agents is not exactly a single plugin. There’s a group of plugins that we call
agents. They are used to manage and connect to different types of agents like

https://plugins.jenkins.io/blueocean/

Linux and Windows.

https://plugins.jenkins.io/ssh-slaves/
https://plugins.jenkins.io/windows-slaves/

So, the ssh-slaves plugin allows you to manage Linux machines over SSH.
The ssh-slave plugin connects to the machine over ssh and then uses the
remoting.jar file to manage that machine as a Jenkins slave, as shown in the
following figure:

Figure 3.13: Jenkins agents - Linux

Similar to ssh-slaves, the windows-slaves plugin is used to manage Windows
machines over the Remote Communication Service. Once the connection is
established, it uses the remoting.jar to register the machine as a Windows
slave, as shown in the following figure:

https://plugins.jenkins.io/ssh-slaves/
https://plugins.jenkins.io/windows-slaves/

Figure 3.14: Jenkins agent - Windows

Note: We will discuss Jenkins slaves in depth under the Master/Agent
topic.

Audit Trails
Audit Trails plugin keeps track of user actions, so it keeps the logs and events
for every user who performed any Jenkins-related activities or operations.
The log file location is configurable and will be written in the filesystem. The
audit trail plugin is shown in the following figure:

Figure 3.15: Audit trail plugin

Build Management
The Build Management plugins help us to enhance the functionality of the
Jenkins job by providing features like reporting and quality gates.
Some build-management plugins are listed here:

Warnings Next Generation
HTML Publisher
SonarScanner

Warnings Next Generation
Warnings next-generation plugins collect the warnings and issues from
different compiler projects like C, and Java, and visualize them as results.
We can also say that this is a Static Analysis Suite for Jenkins that provides
reporting for tools Android Lint, Checkstyle, PMD, Findbugs, and such.
In this plugin, we can also configure the rules for our Projects, and if one of
the rules is failed, it will mark the build status as unstable or failed as per our
choice.
The report view of the warnings next generation plugin is shown in the
following figure:

Figure 3.16: Warnings Next Generation plugin charts

HTML Publisher
The HTML publisher plugin helps us to publish the HTML reports that are

generated by our build or Jobs.
https://plugins.jenkins.io/htmlpublisher/
A sample HTML report published by the HTML publisher plugin is shown as
follows:

Figure 3.17: Report by HTML Publisher plugin

SonarScanner
The SonarScanner plugin allows us to centrally manage the Sonarqube
connection details in Jenkins.
https://plugins.jenkins.io/sonar/
In addition to the connection with Sonarqube, it provides functionalities like
integration with different build tools, i.e., Maven, Gradle, and MSBuild. With
the help of this plugin, we can manage the sonar configuration of the project,
which also means we do not need to change our Maven and Gradle-based
projects at all. Refer to the following figure:

https://plugins.jenkins.io/htmlpublisher/
https://plugins.jenkins.io/sonar/

Figure 3.18: SonarScanner plugin report

Notification
The notification-related plugins are used to manage notifications with tools
like Slack, Email, Hipchat, Pagerduty, and so on.
Since there are multiple clients of notifications, we will talk about the most
popular ones:

Slack
Email
Microsoft Teams

Slack
The slack plugin provides the flexibility to send notifications to different
slack channels, and a similar plugin can be used for Mattermost and
RocketChat.
https://plugins.jenkins.io/slack/
With the help of this plugin, you can send notifications to slack channels for
events like job failure or new version release alerts.
A sample notification alert on slack is shown in the following figure:

https://plugins.jenkins.io/slack/

Figure 3.19: An example slack notification

Email
The Email plugin is for sending email notifications; it also allows us to
customize the behavior of emails: who should receive and what would be the
email content. We can also add our custom email template.
https://plugins.jenkins.io/email-ext/
We can configure it on the global project level as well as individual project
level. Through this plugin, we can notify the stakeholders or developers of
their project events.
A sample notification alert on email is shown in the following figure:

Figure 3.20: An example mail notification

Authentication and authorization
Much like the security in the physical world, we need to consider it for our
Jenkins server as well. Jenkins is a crucial part of our SDLC and, if careless,
can become a gaping vulnerability for potential security attacks. It sits right
in between our infrastructure from where one can have access to our
codebase, registries, artifactories, application servers, and whatnot. Not only

https://plugins.jenkins.io/email-ext/

that, but it is also a storehouse for passwords, access tokens, keys, and
everything you know to be private.
Securing Jenkins has two domains: authentication and authorization. One
means locking the main gate to your house, and the other means locking the
rooms, wardrobes, drawers, and so on. Makes sense, doesn’t it? You do want
everybody involved in build and release to be able to log in to Jenkins, which
is authentication, but you don’t want them to go all Superman in there, so you
want to restrict what they can do as per their role. It is not only valid for
people. It goes the same for everything capable of executing commands.
We’ll explore this later.

Authentication
First, let us look at what types of authentication mechanisms is supported by
Jenkins. Yes, it supports multiple authentication mechanisms, in case you
were not aware. We call it the Security Realm. By we, I mean the Jenkins
community. In the security realm, we have Basic Auth to start with, and then
there are third-party integrations like LDAP, Active Directory (AD), Github
Auth, SSO, and so on:

1. Basic Security Setup is the method where Jenkins maintains its own
user database. It can be enabled from Manage Jenkins > Configure
Global Security.
Under Security Realm, click on Jenkins’s own user database. Usually,
the admin would control all user signups, so don’t click on ‘Allow users
to sign up’.
This method is simple and efficient but is not recommended for large
infrastructures

2. Delegate to Servlet container is an authentication method where, as
the name suggests, authentication is delegated to an external servlet,
like Tomcat Server, that is hosting Jenkins server. In this case, we can
configure users present in tomcat-user.xml to be allowed to log in to
Jenkins. Refer to the following figure:

Figure 3.21: Jenkins own user database

3. LDAP requires us to configure an external LDAP authentication server.
All users and groups will be authenticated through that server. Of
course, we’d need to install and configure the LDAP plugin first. LDAP
configuration settings are available in the same place, Manage Jenkins
> Configure Global Security, after the plugin is installed. We can
test connections to validate configuration by clicking on the ‘Test LDAP
settings’ button.

4. Unix user/group database in Linux OS can also be used as one of the
authentication methods. It is easily configurable and can be used where
one does not want to manage multiple user databases.

5. Other Identity Provider Plugins are also available apart from the
authentication methods already discussed. There are several ways to
manage Jenkins users through various identity provider plugins like
Active directory, Google Login, and GitHub Authentication. They all
have their own user databases. All we need to do is install their plugins,
provide configuration details in Manage Jenkins > Configure Global
Security, and use their database to authenticate users. This is also
known as Single Sign On (SSO). SSO is widely used in many large
organizations. It has many benefits. For starters, you don’t need to
manage user information at any level. That’s one less thing on your

plate when managing large infrastructures. Other benefits include the
following:

a. Users don’t need to juggle multiple credentials
b. It’s highly secure across devices
c. It reduces complexity in various aspects, like troubleshooting,

information retention, and so on.

In figure 3.22, SSO example with Google authentication is shown:

Figure 3.22: Using SSO for Authentication

Authorization
Just like authentication, Jenkins supports various authorization methods as
well. The first two, “Anyone can do anything” and “Legacy mode,” are not
recommended for use in any setup but test servers. The first one is self-
explanatory. In the second one, though, users with the “admin” role have all
access, and barring those, all others have read-only access.
Apart from the preceding two, we have these methods of authorization:

Logged-in users can do anything is useful for forcing users to log in
before taking any action. This way, we can monitor their activity.
However, we would not be able to restrict unnecessary access. It is
configurable in the “Manage Jenkins > Configure Global Security”
Authorization section.
Matrix-based security/Project-based Matrix authorization is one of
the most promising authorization strategies as it provides granular
control over user access. After we have added users and roles in our
Jenkins server, we can enable this authorization strategy and provide
access to specific users on the tasks relevant to their job roles only. It is
imperative to mention here that Matrix and Project-based Matrix

authorization are not the same. The latter is an extension of the former
with some additional ACLs providing separate access control for
different projects rather than for all projects at once. Both are available
with the Matrix Authorization Strategy plugin. Refer to the following
figure:

Figure 3.23: Matrix-based Authorization

Role-based Authorization is a different plugin that provides
everything that matrix-based authorization provides, with the exception
of managing roles. With the help of this plugin, we can create and
assign roles to users depending on their job description and then allow
access in a matrix-based fashion to those roles rather than users. Of
course, one role can have multiple users, and one user can be associated
with multiple roles, in which case permissions from all roles will be
added for the said user. You can manage roles from Manage Jenkins >
Manage and Assign roles.
The view of the panel where “Manage and Assign Roles” is available is
shown in the following figure:

Figure 3.24: Manage and assign roles

Different types of available authorization modes are shown in the following
figure:

Figure 3.25: Role base strategy

Recommendation
Having gone through all the information mentioned earlier, it is not difficult
to choose the most appropriate set of authentication and authorization
strategies for a production setup. It is, of course, SSO+Role-based
authorization. Even if we put aside all the other facts, we cannot ignore that
we like cleanliness. Even those who don’t mind being cluttered would accept
that they prefer things organized. When we have a large enough
infrastructure, there is a lot of information going around, and we need to
manage and organize everything to stay competitive and ensure productivity.
SSO will give us one stop to manage authentication for all users. We don’t
need extra resources to manage user login information and security. And with
a role-based strategy, we can create roles, both globally and project-wise, and

assign them to appropriate users. Then, assign access based on those groups
rather than each user individually, forming an organized, stacked structure.

Jenkins Pipeline
Jenkins pipeline is not different than a normal pipeline installed in our houses
and localities. Just like a normal pipeline, it also has a flow.
So, if we talk about the “pipeline” term in tech definition, it is a series of data
processing or execution where the output of the next step depends on the
input of the previous step.
Although pipelines are sequential in practice, the Jenkins pipeline concept
supports the parallel execution of steps as well.
Let us see why we need Jenkins pipeline:

Jenkins pipeline provides the functionality to write your
pipeline/workflow in the form of code, which can be executed from any
VCS.
Since the job code is maintained over VCS, multiple users can perform
development without affecting the running pipeline. In case of failure,
we can revert to the previous pipeline easily.
We can pause the pipeline in between for steps like approval.
Jenkins pipeline can also integrate with blue-ocean automatically, which
provides a great visualization of pipeline jobs.

In simple words, we can say that the Jenkins pipeline is a set of steps that get
executed to achieve a common workflow. This workflow could be a
continuous integration, continuous delivery/deployment, or any other task
you want to automate.
The code or definition of the pipeline generally gets written in a file called
“Jenkinsfile”. The language in which we write the Jenkinsfile is “Groovy”. It
supports Groovy because it is a scripting language based on Java, and Jenkins
is built on Java as well.
A few advantages of using Jenkinsfile are as follows:

Jenkins pipeline can be automatically created from the Jenkinsfile in
VCS, which means we can create a pipeline for all branches and Pull
Requests.

Jenkinsfile is a single source of truth for all the changes and execution
so that you can track the changes of your pipeline workflow as well.
It is extensible as well, which means if there is a requirement for your
pipeline, you can write the custom libraries for it.

Note: Although we can write the pipeline in Jenkins UI as well, it is
considered a best practice to write pipeline code inside the Jenkinsfile and
then commit it to the Version control system.

For writing the Jenkins pipeline, we have to install two plugins in the Jenkins
server:
https://plugins.jenkins.io/workflow-aggregator/
https://plugins.jenkins.io/pipeline-utility-steps/

Scripted vs Declarative Pipeline
A pipeline can be written in two types of syntax or method: scripted and
declarative.
Scripted Pipeline: This is a traditional way of writing code for Jenkinsfile or
Jenkins pipeline. It uses strictly groovy-based syntax. In this way of writing
the pipeline, we have a lot of control over the pipeline script, and we can
mutate it as per our use. This pipeline helps to develop complex features in
pipeline code.
Here’s an example:
node {

stage(“Hello World Stage”) {

echo “Hello World”

}

}

Declarative Pipeline: Declarative pipeline is a new feature of Jenkins that
provides user-friendly syntax to develop Jenkins pipeline. Writing and
reading pipeline code in this syntax is easier than in the scripted pipeline.
The following is an example:
pipeline {

agent any

stages {

stage (“Hello World Stage”) {

steps {

https://plugins.jenkins.io/workflow-aggregator/
https://plugins.jenkins.io/pipeline-utility-steps/

echo “Hello World”

}

}

}

}

For writing pipelines, we can use the Pipeline Syntax Generator option
provided by Jenkins, as shown in the following figure:

Figure 3.26: Pipeline Syntax generator

Once we click on this “Pipeline Syntax” button, it will redirect us to a page
where we can generate the pipeline syntaxes. Consider this example:

Figure 3.27: Snippet generator drop-down

Terms
We have multiple terms in the pipeline of Jenkins. While we cannot cover
them all, we can cover the interesting and important ones. So here are a few
important terms that are commonly used in the pipeline:

Pipeline
Node
Stage
Steps
Parallel

Pipeline
Pipeline is a block in which we define the complete execution process, which
typically includes information like the following:

Which node to use for workflow/pipeline execution
Different stages’ information

Note: Pipeline term is a part of Declarative syntax only; we cannot use this
in the scripted pipeline.

Here’s an example:
pipeline {

agent any

}

Node
Node block is used to define the host where Jenkins pipeline/workflow will
be executed. By default, it is “master” but can be set to any other host as well.

Note: Node term is supported in the scripted pipeline only.

Consider this example:
node {

echo “Hello World”

}

Stage
A stage is a sequence of steps in a pipeline. It helps in visualizing the pipeline
in a better way. An example could be as follows:

Figure 3.28: Pipeline stages

A simple example of pipeline stage in scripted pipeline:
stage(“Dummy Execution”) {

echo “I am a dummy execution”

}

Steps
In steps, we define a particular single task that needs to be executed at a
particular time. For example, we can execute the shell “sh” and “echo”
commands inside the steps.

Note: Steps are supported in the declarative pipeline only.

Consider this example:
steps {

sh “make world”

echo “Hello World”

}

Parallel
Parallel is an in-built function of a pipeline that we use to run nested stages
parallelly. As we know, Jenkins stages get executed sequentially, and they
are dependent on each other. But in some cases, you may need to run the
stages parallel to reduce the execution time of Jenkins ‘Job’. In such cases,

we can use similar functions, for example: in continuous integration, we can
use parallel execution for unit testing and code coverage stages.
The parallel block is supported in both types of the pipeline, i.e., scripted and
declarative:
parallel {

stage (“Unit testing”) {

echo “Unit Testing Execution”

}

stage(“Code Coverage”) {

echo “Code Coverage Execution”

}

}

Shared Library
When we write software or an application, we usually end up writing fewer
lines of code ourselves compared to the lines written in pre-existing libraries
and dependencies that we use as per our use case. It is possible because
someone wrote reusable code before us, which we took advantage of. Let’s
take an example; suppose we have to create an application that connects to a
MySQL database. Here, we have two approaches: one would be to write a
piece of logical code that can connect to MySQL, and another would be to
use an existing library for connecting to MySQL.
Now it’s a simple example, but in a real scenario, we cannot write every logic
by ourselves, and that will not be good practice.
That’s why we have a library concept that provides us with the functionality
of reusable code. The same concept is also present in Jenkins, through which
we can develop our own libraries, called “Shared libraries.”
Let’s take a real-world example: suppose we have five Java-based
applications, and the CI process for all these applications is similar. Now, if a
new service is getting added, we have to duplicate the pipeline again for the
sixth application.
Now we can create a common “Shared Library” for Java CI. We can update
and modify the shared library for future changes, and the changes will be
applied to all the pipelines.
Also, the line of code will get decreased in “Jenkinsfile”:
@Library (‘opstree-library@master’) _

opstreePipeline()

The structure of shared library is as follows:
opstree-library

├── resources #Static files which can be used by shared

library

│ └── input.yaml

├── src # Sources file for groovy classpath

│ └── org

│ └── opstree

│ └── JavaCIPipeline.groovy

└── vars # Vars file for src libraries

└── JavaCIPipelineVars.groovy

Examples
There are multiple examples and places where Jenkins pipeline can be used;
some of them are given here:

CI/CD
Workflow management
Infrastructure management

CI/CD
CI/CD is one of the major consumers of Jenkins pipeline. We can have
detailed visualization of each CI step using the pipeline. Also, we can control
what steps need to be run sequentially and what steps need to run parallelly.
In CI/CD, we can leverage the pause functionality of the pipeline as well. For
example, we can put a manual approval step before the application
deployment. We can also change the slave’s node for stages if there is any
special requirement.
In brief, we will have great control over our CI/CD pipeline:

Figure 3.29: CI/CD pipeline

Workflow Management
Jenkins pipelines are not restricted to CI/CD; they can be used to manage
different types of workflows as well. It means we can integrate a number of
tools with pipelines. Suppose we have to design a system that will configure
software and packages on remote systems. We can use different tools like
ansible or salt-stack. The only issue is that they don’t provide the
observability and reporting, so we cannot track the changes through them.
However, using Jenkins, we can have the observability around the process.
Also, we can create a proper visualization of the flow using pipeline:

Figure 3.30: Workflow management pipeline view

Infrastructure Management
Jenkins pipelines are widely used for managing the workflow for
infrastructure automation as well. Just like we discussed, we like to keep
everything in the form of code. The same thing applies to infrastructure as
well. We can use Jenkins to keep track of changes in the infrastructure. This
doesn’t mean that Jenkins will provide the infrastructure for you, but it can be
integrated with the tool that is doing the infrastructure provisioning.
Also, infrastructure is an important part of the architecture, and we don’t
want to mess it up. So, we can have a group of authorized people who can
make the infrastructure changes. And the infrastructure creation visualization
will be the cherry on the cake.
The flow of infrastructure creation using Jenkins is shown in the following
figure:

Figure 3.31: Infrastructure Management pipeline view

Fact: There are 1000+ open-source shared libraries present on GitHub.

What If the Server Gets Deleted?

The joy of working on the terminal is out of this world, but this delight can
turn into misery just by execution of a deletion command. Human beings are
prone to make errors, and no one is foolproof. In my opinion, there are two
ways of handling it. The first would be to try to make fewer mistakes by
being meticulous, but it’ll cost us time. The second, which is my preferred
way, would be to create a system that can handle our mistakes.
As our infrastructure grows in terms of applications, integrations, users, and
pipelines, the Jenkins server will continue to evolve as the backbone of our
automation system that we just can’t afford to lose.

Backup Plugin Installation
Follow these steps to get started:

1. Install the plugin.
2. Go to Manage Jenkins | Manage Plugins.
3. Click on the Available tab and search for Thin backup, as shown in

the following figure:

Figure 3.32: ThinBackup plugin

4. Install the plugin and restart Jenkins.

Backup Configuration
Once installed, follow these steps for configuring backup settings.

1. Go to Manage Jenkins | ThinBackup
2. Click on the settings option.
3. The ThinBackup overview is shown in the following figure:

Figure 3.33: ThinBackup overview

4. Enter the backup options as shown in the following figure and save
them. The backup directory specified should be writable by the user
running the Jenkins service. The Jenkins backup will be saved to the
backup specified directory, as shown in the following figure:

Figure 3.34: ThisBackup Configuration

5. Now, click on the Backup Now option. It will create a backup of
Jenkins data in the specified backup directory in the settings. It is
illustrated in the following figure:

Figure 3.35: Backup Now

Restoration
The restoration of the backup is even simpler as it lists down the available
backups. All we need to do is select and proceed. This will restore the
Jenkins configuration to the time when the respective backup was created.
Refer to the following figure:

Figure 3.36: Restore

Second line of safety (Data Directory Backup and
Restore)
During the Jenkins implementation, the best thing I found was that all the
settings, build logs, artifact archives, and so on are stored under the
JENKINS_HOME directory. We can simply archive this directory to make a
backup. Similarly, restoring the data is just replacing the contents of the
JENKINS_HOME directory from a backup.

Figure 3.37: JENKINS_HOME directory

Third line of safety (Jenkins Server Image)
I still remember the days when I created images of the whole system on a
disk and called it a Clone Disk. That had been a lifesaver for me several
times. I am not surprised to say that we can use the same strategy to back up
and restore the Jenkins server as well.
Be it a self-hosted infrastructure or cloud managed, both provisioners use the
capability of creating an image of the server and restoring it whenever
needed.

Fact: Jenkins crash without backup costs us a complete day and night to
make it live again.

Master/Slave architecture
If you have watched the “Batman” trilogy, you would remember Batman
having a butler or Jenkins named “Alfred”. But Alfred didn’t do all the work
himself; he had the support of other butlers who were working under him.
The similarities between Alfred and Jenkins servers are noteworthy, they can
do a lot of operations, but they both need helping hands when they have to do
parallel processing.
In Jenkins, we have a concept of slave that helps Jenkins perform many tasks
parallelly.
Now, the question is, ‘If we can scale Jenkins hardware or configurations as
well, then why do we need the slave’s concept?’. We agree that we can scale
its hardware or configurations, but there could be some drawbacks to that,
like Jenkins downtime, Single OS support, and OS corruption. To overcome
such issues, Jenkins uses a master-slave architecture to manage distributed
builds. The main role of the Jenkins master is to schedule and dispatch builds
for execution on slave or master depending upon the job configuration. On
the other hand, a Jenkins slave is a system that takes orders from the master
and executes tasks according to them.
Configuring master-slave in Jenkins is no rocket science. We can set up this
distributed architecture easily. Also, Jenkins supports different types of slaves
that we can leverage as per our requirements:

JNLP slave

Dynamic slaves
SSH-based slaves

JNLP Slaves
The JNLP slaves are commonly used with dynamic slaves, but it doesn’t
mean that we cannot use them with static servers. JNLP stands for Java
Network Launch Protocol) and is used to connect remote systems to Java.
In order to add a JNLP slave, we have to enable the JNLP port inside Jenkins.
We can enable the JNLP port in Manage Jenkins | Configure Global

Security | (Agents Section).
This is illustrated in the following figure:

Figure 3.38: JNLP Slaves - agent config

Once the JNLP port is enabled, we have to configure the slave. First, we have
to configure the master to use the JNLP slave.
Manage Jenkins > Nodes

Refer to the following figure:

Figure 3.39: JNLP Slaves – Node config

Once the slave information is added to the master, we have to download the
JNLP jar file from the master.

Figure 3.40: Download the JNLP jar file from the master

On the slave system, we must execute this command:
$ java -jar ~/bin/agent.jar

After this, the slave will be added successfully and can be used in any job.

SSH Slaves
SSH slaves also use the JNLP behind the scenes. The only difference is that
we don’t have to configure the JNLP slave by ourselves and simply have to
provide the SSH connection details of the slave.
We can simply add the SSH-based slave by going to Manage Jenkins |
Nodes. Then, we must provide the connection details of the slave server.
Consider this example:

Figure 3.41: SSH slave configs

Once we save the configuration, we can check the logs for validation for
whether the slave is successfully added.

Figure 3.42: Verify agent(slave) connectivity

Dynamic Slaves
Some organizations worship cost-cutting methods, and the dynamic slaves
method can be handy in those scenarios. Let’s assume that we have to
execute a few sets of tasks daily around 03:00 PM and have created a slave
with decent resources to execute these tasks. However, the resource of that
slave will only be used at 03:00 PM. Apart from that, the resource will be a
waste to us.
For handling scenarios like this, we can use the dynamic slave’s concept of
Jenkins in which our slave will be spawned on-demand and after the
execution, it will be automatically terminated.

The dynamic slaves could be of any type like- Docker container, Kubernetes
pods, or Cloud instances like AWS EC2.
We can configure the dynamic slave from Manage Jenkins | Nodes | Cloud |
Add Cloud.
Refer to the following figure:

Figure 3.43: Dynamic Slaves

Scenarios
There are multiple scenarios where Jenkins slaves can be a great helping hand
for us. For example, suppose we are building an application that supports
multiple OS platforms; in that case, we can add different types of OS like
Windows, and macOS as Jenkins slaves and compile the application on them.
Also, it will reduce the package installation burden from the master node
because if any package got broken or corrupted, it can corrupt the complete
Jenkins server, and we might have to redo everything from scratch.
We can use slaves with the integration of emulators as well to build different
application projects like Android or IOS apps. Since mobile application
testing requires a decent amount of resources, we cannot do the complete
testing on the master itself as we need to over-provision it. But if we use
Jenkins slave in this type of testing, we will have control over bringing slaves

online and offline as per our need. This will help us in saving the
infrastructure cost as well.

Fact: There are 20+ plugins in Jenkins to manage slaves in Cloud like
AWS, GCP, Openstack, and Kubernetes.

Global tool configuration
During the course of the Jenkins Server setup there are multiple
configurations came across. One of them is the Global Tool Configuration
that will come in handy while creating the Jenkins Job. It contains
configurations related to JDK, Maven, Ant, Gradle, Docker, Sonarqube, and
others.

Figure 3.44: Global tool configuration

Jenkins provides support for working with multiple JDK versions. The
simplest way to declare a JDK installation is to simply supply an appropriate
name along with the path to the Java installation directory. Refer to the
following figure:

Figure 3.45: Configure JDK

The project will be following a standard, well-defined build life cycle of
compile, test, package, deploy. Each life cycle phase is associated with a
Maven plugin. Jenkins provides excellent support for Maven and has a good
understanding of Maven project structures and dependencies.
We can either get Jenkins to install a specific version of Maven automatically
or provide a path to a local Maven installation. The cherry on top is its
capability to support different versions of Maven for different projects.
In figure 3.46, the Maven installation using Jenkins is shown:

Figure 3.46: Configure Maven

We can have other tools installed the same way as JDK and Maven:
SonarQube Scanner installation:

Figure 3.47: Configure SonarQube Scanner

Synk installation is shown in the following figure:

Figure 3.48: Configure Synk

Docker installation is shown in the following figure:

Figure 3.49: Configure Docker

Conclusion

With all this information, convincing everyone was easy. In the latest CI
walkthrough meeting, I went all out with my presentation of various topics.
There were a few questions regarding the nuances of the process.
Considering the number of people involved, I expected at least this much. It
wasn’t anything I didn’t prepare for. Thankfully, everyone was positive about
this change in the infrastructure, and I got a green ticket to implement CI.
What more could one ask for? I pulled up my socks as now was the time for
action.
In the next chapter, we will focus on CI pipelines. We will learn to create
them and add multiple stages using declarative syntax to perform complete
CI.

Points to Remember
Jenkins is not only a CI tool; it’s an automation tool that can work as a
Swiss knife.
Jenkins is not restricted by functionality; we can easily extend the
Jenkins functionalities by adding or creating plugins.
Jenkins has a scalable nature; we can add slave nodes to Jenkins to
manage multiple jobs.

Multiple choice questions
1. How can we add slaves to the Jenkins server?

a. JNLP Slaves
b. SSH Slaves
c. Dynamic Slave (Docker/Kubernetes)
d. All of the above

2. Which is not a pipeline terminology?

a. Node
b. Steps
c. Stage
d. Slave

3. Can Jenkins jobs be maintained as pipeline as code?

a. True
b. False

Answers
1. d
2. d
3. a

Questions
a. How can we take backup in Jenkins, and what’s the efficient way to

take Jenkins backup?
b. What is the configuration change we have to make to restrict Jenkins’s

concurrent process?
c. What’s the difference between authentication and authorization?
d. What is pipeline as code inside Jenkins?

Key terms
Pipelines
Plugins
Global Tool Configuration
JNLP Slave
Dynamic Slave

I

CHAPTER 4
CI with Jenkins

t was time for action. Since all the CI points were clear in my head and the
tool was finalized, the next thing was to start implementing the CI for this

project. The rule for implementation is to test everything on a dummy project
and perform a detailed POC before stepping into production. This is why we
have multiple environments to test every aspect of our new project.

Structure
The following topics will be discussed in the chapter:

CI Pipeline with Pre-Deployment Steps integration with Jenkins

Code Stability
Code Quality
Unit Testing
Security Testing
Sonarqube Integration

CI Pipeline with Intermediate Steps integration with Jenkins

Artifacts Management
Dev Environment Deployment
DB Update

Notifications with Jenkins

Objectives
After going through this chapter, you should understand how different tools
can be used to execute Continuous Integration (CI) checks. Also, you
should be able to integrate different CI steps like Code Quality, Stability, and

Unit Testing in the Jenkins pipeline. This chapter will also discuss the
importance of notification strategy in real-life scenarios and how we can
integrate notifications into our Continuous Integration pipelines.

CI Pipeline with Pre-Deployment Integration
Checks
Before jumping to Jenkins, I performed all the steps on a development (dev)
machine. Hence, I quickly found a project available on VCS and started my
experiments.
The project is called “Spring3Hibernate,” and is written in Java. It is
available at the preceding location. I went through the project README,
found prerequisites and quickly resolved those:

Maven 3.X
Jdk 8.

Once it was done, I started compiling the project to check the stability of the
code. Since I was using Maven as a build tool, I had to execute goals for my
tasks. For code stability, the command is as follows:
$ mvn clean package

Once the order successfully is executed, we get this as output:

Figure 4.1: Maven command output for compilation

Like code stability, I was using the “Checkstyle” plugin for code quality as
well. Checkstyle is a plugin used by maven to maintain code best practices
and quality in Java-based projects, which we discussed earlier. The goal
execution is as follows:
$ mvn checkstyle:checkstyle

The output of the “Checkstyle” command is shown in the following figure:

Figure 4.2: Maven command output for checkstyle

For more information about the check style, refer to their official website at
the following link:
https://checkstyle.sourceforge.io/
Well, the developers of the project have written some test cases for the
application, so it doesn’t take a lot of effort to execute the unit testing on the
application. Next, we simply need to run the following command:
$ mvn test

All the unit tests are available inside the src/test/java/com directory:
https://github.com/bpbpublications/CI-CD-
Simplified/tree/main/src/test/java/com/sample
Figure 4.3 illustrates the console output of unit test case:

Figure 4.3: Maven command output for unit test execution

Having completed Code Stability, Code Quality, and Unit Testing easily, it’s
time for Code Coverage. Coverage metrics require using another maven
plugin called “Cobertura.” We will execute the goal as follows:
$ mvn cobertura:cobertura

https://checkstyle.sourceforge.io/
https://github.com/bpbpublications/CI-CD-Simplified/tree/main/src/test/java/com/sample

For more information about the Cobertura, go through the official
documentation at the following link:
https://cobertura.github.io/cobertura/
The output of the Cobertura command is shown here:

Figure 4.4: Maven command output for Cobertura

As for security testing, one needs to scan the dependencies of the project for
vulnerabilities. To achieve this, let’s use a popular “OWASP” dependency
vulnerability scanning and add a goal in the maven configuration for the
same:
$ mvn org.owasp:dependency-check-maven:check

For more information about the OWASP project, go through the official
documentation at the following link:
https://owasp.org/
Last but not least, we need to publish all the different reports to a single
platform, where it would be convenient to analyze the trend and take the
necessary action. It was time to integrate the famous SonarQube with our
maven setup. To publish the report on sonar, we simply have to run the
following command:
$ mvn sonar:sonar -Dsonar.host.url=${SONAR_URL} -

Dsonar.login=${SONAR_USER} -Dsonar.password=${SONAR_PASSWORD} -

Dsonar.java.binaries=.

In the preceding command, Sonarqube will start analyzing the project for
different parameters, like the code’s quality, security threats, and
maintainability of code. Once the analysis is complete, it will upload the
report on Sonarqube, and it can be accessed on its URL.
http://<sonar_qube_url>:<sonarqube_port>/

https://cobertura.github.io/cobertura/
https://owasp.org/

Once we execute these steps in dev, it is time to automate them using dev
Jenkins. So, let’s log in to the Jenkins server, and create a Folder named “CI”
and a pipeline project named “Spring3Hibernate”, as shown in the following
figure:

Figure 4.5: Jenkins job creation options

Note: Many important plugins need to be installed in Jenkins to make the
CI pipeline effective. Maven and jdk8 should be installed on the system as
packages. Also, warnings-ng, workflow-scm-setup, pipeline, slack, and
email plugins should be installed on the system.

Code Checkout
We have already discussed a Jenkins pipeline and its sequential or parallel
workflows in detail. Keeping that as the base, the first step we need to take is
that of cloning the repository. There is already a plugin installed in Jenkins
with the name workflow-scm-setup for this purpose.
For generating the code, we will use “Pipeline Syntax Generator” and fill out
the details as shown here:

Figure 4.6: SCM Configuration of Jenkins

Once the syntax is generated, we just need to copy-paste the code inside the
Pipeline Script Section of the Job. The code should look like this:
node(“master”) {

stage(“Cloning Spring3Hibernate Project”) {

git url: ‘https://github.com/bpbpublications/CI-CD-
Simplified’

}

}

And the Pipeline Script Section will be as shown here:

Figure 4.7: Pipeline script for Code Checkout

Now, merely by saving the job and executing it with the “Build Now” button,
we could see stage execution in the “Stage View” of the pipeline:

Figure 4.8: Stage view of code checkout

Also, if we click on the build number, we will be able to see the console logs
of the job.

Code Stability
Once the repository is cloned, we will write the second stage for checking the
code stability, as follows:
node(“master”) {

stage(“Cloning Spring3Hibernate Project”) {

git url: ‘https://github.com/bpbpublications/CI-CD-

Simplified’

}

stage(“Code Stability”) {

sh “mvn clean install”

}

}

Following is the “Stage View” with the second stage:

Figure 4.9: Stage view with code stability

Code Quality
Now is the time to add our third stage for “Code Quality.” Here, we will look
out for a report as well. Therefore, we will use the Jenkins warnings-ng
plugin for report publishing:
node(“master”) {

stage(“Cloning Spring3Hibernate Project”) {

git url: ‘https://github.com/bpbpublications/CI-CD-
Simplified’

}

stage(“Code Stability”) {

sh “mvn clean install”

}

stage(“Code Quality”) {

sh “mvn checkstyle:checkstyle”

recordIssues(tools: [checkStyle(pattern: ‘**/checkstyle-
result.xml’)])

}

}

Post execution, we get the following output:

Figure 4.10: Stage view with code quality

To access the checkstyle report, go to the Jenkins job console and click on the
“Checkstyle” report. Figure 4.11 illustrates the Checkstyle report:

Figure 4.11: Checkstyle report

Unit Testing
Since the test cases are already written, we simply need to execute the test
cases and publish the report for “Unit Testing.” Again, we will use the
warnings-ng plugin with the JUnit reporting feature to publish the

information:
node(“master”) {

stage(“Cloning Spring3Hibernate Project”) {

git url: ‘https://github.com/bpbpublications/CI-CD-
Simplified’

}

stage(“Code Stability”) {

sh “mvn clean install”

}

stage(“Code Quality”) {

sh “mvn checkstyle:checkstyle”

recordIssues(tools: [checkStyle(pattern: ‘**/checkstyle-
result.xml’)])

}

stage(“Unit Testing”) {

sh “mvn test”

recordIssues(tools: [junitParser(pattern: ‘target/surefire-
reports/*.xml’)])

}

}

Once the code is updated, triggering the “Build Now” button again will give
us this “Stage View” with Unit testing and a “JUnit Warnings” result, as
shown in the following image:

Figure 4.12: Stage view with Unit Testing

To access the unit testing report, go to the Jenkins job console and click on
“JUnit report”. Figure 4.13 shows the Junit report:

Figure 4.13: Junit report

Security Testing
It requires adding another stage to the pipeline and another plugin in Jenkins,
called the HTML publisher plugin, for its HTML report. The code for this is
as follows:
node(“master”) {

stage(“Cloning Spring3Hibernate Project”) {

git url: ‘https://github.com/bpbpublications/CI-CD-

Simplified’

}

stage(“Code Stability”) {

sh “mvn clean install”

}

stage(“Code Quality”) {

sh “mvn checkstyle:checkstyle”

recordIssues(tools: [checkStyle(pattern: ‘**/checkstyle-
result.xml’)])

}

stage(“Unit Testing”) {

sh “mvn test”

recordIssues(tools: [junitParser(pattern: ‘target/surefire-
reports/*.xml’)])

}

stage(“Security Testing”) {

sh “mvn org.owasp:dependency-check-maven:check”

publishHTML([allowMissing: false, alwaysLinkToLastBuild:

false, keepAll: false, reportDir: ‘target’, reportFiles:
‘dependency-check-report.html’, reportName: ‘Dependency
Check Report’, reportTitles: ‘’])

}

}

After the build is completed with the updated code, we will have a stage view
as shown in the following figure:

Figure 4.14: Stage view with Security Testing

To access the OWASP report, go to the Jenkins job console and click on
“Dependency Check Report”. Figure 4.15 illustrates the OWASP
dependency check report:

Figure 4.15: OWASP Dependency check report

Sonarqube Integration

For integration with Sonarqube, we need to make some changes in the
Jenkins Global Configuration so that every project can leverage it.
Sonarqube can be installed independently on a Linux or Windows system.
Also, if you don’t want to manage Sonarqube to reduce operations, it also
provides a cloud offering as well.
For more information about installation and configuration, check out the
official documentation at the following link:
https://docs.sonarqube.org/latest/setup/install-server/
Go to Manage Jenkins > Configure System and add environment variables,
as shown in the following figure:

Figure 4.16: Sonarqube Environment Variables

Then, we will go ahead to update the pipeline code for Sonarqube integration,
as follows:
node(“master”) {

stage(“Cloning Spring3Hibernate Project”) {

git url: ‘https://github.com/bpbpublications/CI-CD-
Simplified’

}

stage(“Code Stability”) {

sh “mvn clean install”

}

stage(“Code Quality”) {

sh “mvn checkstyle:checkstyle”

recordIssues(tools: [checkStyle(pattern: ‘**/checkstyle-

https://docs.sonarqube.org/latest/setup/install-server/

result.xml’)])

}

stage(“Unit Testing”) {

sh “mvn test”

recordIssues(tools: [junitParser(pattern: ‘target/surefire-
reports/*.xml’)])

}

stage(“Security Testing”) {

sh “mvn org.owasp:dependency-check-maven:check”

publishHTML([allowMissing: false, alwaysLinkToLastBuild:
false, keepAll: false, reportDir: ‘target’, reportFiles:
‘dependency-check-report.html’, reportName: ‘Dependency
Check Report’, reportTitles: ‘’])

}

stage(“Sonarqube Analysis”) {

sh “mvn sonar:sonar -Dsonar.host.url=${SONAR_URL} -

Dsonar.login=${SONAR_USER} -

Dsonar.password=${SONAR_PASSWORD} -Dsonar.java.binaries=.”

}

}

And the output with SonarQube analysis is shown here:

Figure 4.17: Stage view with Sonarqube Analysis

Figure 4.18 shows the Sonarqube report:

Figure 4.18: Sonarqube report

Converting Multibranch Pipeline
The Multibranch pipeline is a Jenkins plugin that helps in creating different
pipeline jobs corresponding to the branch in which a Jenkins file is located.
So, we will create a Jenkins file in the master branch of the repository and
add the pipeline code to it, as shown in the following figure:

Figure 4.19: Repository structure

In Jenkins, we need to create a new job named “Spring3hibernate-

Multibranch-CI”, as shown in the following screenshot:

Figure 4.20: Multibranch pipeline creation

Provide the git repository information like this:

Figure 4.21: SCM Configuration for Multibranch

Save the pipeline and click on “Scan Multibranch Pipeline Now”, as
shown here:

Figure 4.22: Multibranch Pipeline options

After the scan is complete, we will have a multi-branch pipeline like this:

Figure 4.23: Multibranch Pipeline

CI Pipeline update with Intermediate steps
After successfully creating the CI pipeline, I gave some internal demo to

Adeel, Sajal, and other colleagues. They liked the pipeline quite a lot.
Although the general flow of the pipeline is complete, certain relevant
intermediate steps are still missing. The steps that need to be added are listed
here. They provide a segue between the CI and CD:

Artifact Generation
Artifact Upload to Nexus
Deployment to Dev Environment
DB Update

Now is the time to update our pipeline to accommodate these changes. But
before executing these steps in Jenkins, we must do it manually in the dev
environment. As mentioned earlier, the purpose of doing everything manually
first is to perform a comprehensive study (POC) and have a detailed
understanding of the topic. This will help in automating optimally.
It’s quite straightforward. First, we need to generate the artifact on the local
system before uploading it to the nexus repository, which we have already
covered. We can generate the package(artifact) by executing the following
code:
$ mvn clean package

Now, we have to upload this file to nexus. So, we have to create/update the
~/.m2/settings.xml file with the following content:
<settings

xsi:schemaLocation=”http://maven.apache.org/SETTINGS/1.1.0

http://maven.apache.org/xsd/settings-1.1.0.xsd”

xmlns=”http://maven.apache.org/SETTINGS/1.1.0”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>

<servers>

<server>

<id>spring3hibernate</id>

<username>${env.MAVEN_REPO_USER}</username>

<password>${env.MAVEN_REPO_PASS}</password>

</server>

<server>

<id>snapshots</id>

<username>${env.MAVEN_REPO_USER}</username>

<password>${env.MAVEN_REPO_PASS}</password>

</server>

</servers>

</settings>

Next, we can try uploading the artifact using maven cli, as follows:

$ export NEXUS_URL=http://<nexus_url>:8081

$ export MAVEN_REPO_USER=<nexus_user>

$ export MAVEN_REPO_PASS=<nexus_password>

$ mvn deploy

After the artifact is uploaded to nexus successfully, it’s time to deploy the
uploaded artifact on the dev environment. We already have an ansible
playbook written for it in the repository and simply have to execute the
ansible command line. The overview page of Nexus is shown in the
following figure:

Figure 4.24: Nexus Repository view

Create a file named “hosts” and put this entry into the file with the following
code:
[devservers]

devserver1 ansible_ssh_host=<dev_server_ip>

[devservers:vars]

ansible_ssh_user=<ssh_user>

ansible_ssh_pass=<ssh_password>

ansible_become_pass=<ssh_password>

Execute the playbook using the following command:
$ ansible-playbook -i hosts playbook.yaml -e

nexus_artifact_url=”<package_url>”

Note: We are assuming that tomcat9 is already installed on the target dev
environment server.

And in the last stage, we have to perform the DB update using flyway; since

flyway comes as an easy way to integrate the maven plugin, we simply have
to execute it as follows:
$ mvn flyway:migrate

Figure 4.25 shows the flyway command output with the maven:

Figure 4.25: Maven command output for flyway

Now that we have executed all the steps on the dev system, it is time to
integrate it with Jenkins.

Generating Artifacts
In the “Code Stability” stage of the pipeline, we are compiling the code that is
actually generating an artifact that will be deployed to different
environments. So, in this case, we do not have to repeat the same step.

Uploading Artifacts to Nexus
In the POC, we used maven to upload the war file on the nexus server, but
with Jenkins, we will do it using the Jenkins nexus plugin. So, in any case, if
there is a change in the nexus URL, we don’t have to change the pom.xml
file. Instead, we will make the changes in the Jenkins configuration.
First of all, we need to install the “nexus-artifact-uploader” plugin into
the Jenkins system, as shown in the following figure:

Figure 4.26: Nexus Artifact plugin installation

After that, we will add a credential called “nexus-creds” and provide a
username and password for Nexus, as shown here:

Figure 4.27: Nexus credentials in Jenkins

Once we are done with all these changes, we have to add a new stage in our
pipeline called “Uploading artifact”:
node(“master”) {

stage(“Checking out Code”) {

checkout scm

}

stage(“Code Stability”) {

sh “mvn clean install”

}

stage(“Code Quality”) {

sh “mvn checkstyle:checkstyle”

recordIssues(tools: [checkStyle(pattern: ‘**/checkstyle-

result.xml’)])

}

stage(“Unit Testing”) {

sh “mvn test”

recordIssues(tools: [junitParser(pattern: ‘target/surefire-

reports/*.xml’)])

}

stage(“Security Testing”) {

sh “mvn org.owasp:dependency-check-maven:check”

publishHTML([allowMissing: false, alwaysLinkToLastBuild:

false, keepAll: false, reportDir: ‘target’, reportFiles:

‘dependency-check-report.html’, reportName: ‘Dependency

Check Report’, reportTitles: ‘’])

}

stage(“Sonarqube Analysis”) {

sh “mvn sonar:sonar -Dsonar.host.url=${SONAR_URL} -

Dsonar.login=${SONAR_USER} -

Dsonar.password=${SONAR_PASSWORD} -Dsonar.java.binaries=.”

}

stage(“Uploading artifact”) {

nexusArtifactUploader artifacts: [[artifactId:

‘spring3hibernate’, classifier: ‘’, file:

‘target/Spring3HibernateApp.war’, type: ‘war’]],

credentialsId: ‘nexus-creds’, groupId: ‘org’, nexusUrl:

‘<nexus_url>:8081/’, nexusVersion: ‘nexus3’, protocol:

‘http’, repository: ‘spring3hibernate’, version: ‘v0.1’

}

}

Note: Change the <nexus_url> with the IP or domain name of your nexus
server.

Then, simply add a snippet into Jenkinsfile and execute the job. As a result,
we will have a stage like this:

Figure 4.28: Stage view with uploading artifact

Deployment to Dev Environment
As the ansible-playbook is ready for the deployment, the only change we
have to make at the Jenkins side is to add a stage to deploy the code on the
dev environment. The code for this is as follows:
node(“master”) {

stage(“Checking out Code”) {

checkout scm

}

stage(“Code Stability”) {

sh “mvn clean install”

}

stage(“Code Quality”) {

sh “mvn checkstyle:checkstyle”

recordIssues(tools: [checkStyle(pattern: ‘**/checkstyle-

result.xml’)])

}

stage(“Unit Testing”) {

sh “mvn test”

recordIssues(tools: [junitParser(pattern: ‘target/surefire-

reports/*.xml’)])

}

stage(“Security Testing”) {

sh “mvn org.owasp:dependency-check-maven:check”

publishHTML([allowMissing: false, alwaysLinkToLastBuild:

false, keepAll: false, reportDir: ‘target’, reportFiles:

‘dependency-check-report.html’, reportName: ‘Dependency

Check Report’, reportTitles: ‘’])

}

stage(“Sonarqube Analysis”) {

sh “mvn sonar:sonar -Dsonar.host.url=${SONAR_URL} -

Dsonar.login=${SONAR_USER} -

Dsonar.password=${SONAR_PASSWORD} -Dsonar.java.binaries=.”

}

stage(“Uploading artifact”) {

nexusArtifactUploader artifacts: [[artifactId:

‘spring3hibernate’, classifier: ‘’, file:

‘target/Spring3HibernateApp.war’, type: ‘war’]],

credentialsId: ‘nexus-creds’, groupId: ‘org’, nexusUrl:

‘<nexus_url>:8081/’, nexusVersion: ‘nexus3’, protocol:

‘http’, repository: ‘spring3hibernate’, version: ‘v0.1’

}

stage(“Deploying to Dev Environment”) {

sh “ansible-playbook -i hosts playbook.yaml -e

nexus_artifact_url=<artifact_url>”

}

}

Note: Change the <artifact_url> with the actual artifact URL.

The stage view with deployment on the dev environment is shown in the
following figure:

Figure 4.29: Stage view with Dev environment deployment

DB Update
DB update is an important step to manage schema changes inside the
database so that the new version of the application does not crash or fail
because of the unfamiliar database schema.
Finally, the last intermediate step is “DB Update,” which can be done using
maven, as follows:
node(“master”) {

stage(“Checking out Code”) {

checkout scm

}

stage(“Code Stability”) {

sh “mvn clean install”

}

stage(“Code Quality”) {

sh “mvn checkstyle:checkstyle”

recordIssues(tools: [checkStyle(pattern: ‘**/checkstyle-

result.xml’)])

}

stage(“Unit Testing”) {

sh “mvn test”

recordIssues(tools: [junitParser(pattern: ‘target/surefire-

reports/*.xml’)])

}

stage(“Security Testing”) {

sh “mvn org.owasp:dependency-check-maven:check”

publishHTML([allowMissing: false, alwaysLinkToLastBuild:

false, keepAll: false, reportDir: ‘target’, reportFiles:

‘dependency-check-report.html’, reportName: ‘Dependency

Check Report’, reportTitles: ‘’])

}

stage(“Sonarqube Analysis”) {

sh “mvn sonar:sonar -Dsonar.host.url=${SONAR_URL} -

Dsonar.login=${SONAR_USER} -

Dsonar.password=${SONAR_PASSWORD} -Dsonar.java.binaries=.”

}

stage(“Uploading artifact”) {

nexusArtifactUploader artifacts: [[artifactId:

‘spring3hibernate’, classifier: ‘’, file:

‘target/Spring3HibernateApp.war’, type: ‘war’]],

credentialsId: ‘nexus-creds’, groupId: ‘org’, nexusUrl:

‘<nexus_url_or_ip>:8081/’, nexusVersion: ‘nexus3’, protocol:

‘http’, repository: ‘spring3hibernate’, version: ‘v0.1’

}

stage(“Deploying to Dev Environment”) {

sh “ansible-playbook -i hosts playbook.yaml -e

nexus_artifact_url=http://<nexus_url_or_ip>:8081/repository/spring3hibernate/org/spring3hibernate/v0.1/spring3hibernate-

v0.1.war”

}

stage(“DB Update”) {

sh “mvn flyway:migrate”

}

}

Note: Replace the nexus_url_or_ip with the valid nexus URL.

After adding all the intermediate stages successfully, we will have a resultant
stage view like this:

Figure 4.30: Stage view with DB update

CI Pipeline with Notification Integration
Now, this is more of a convenience than an actual step in the CI/CD pipeline.
We might need notifications at various stages, that is, at the start of the build,
at successful execution, at failed execution, when the job is aborted, and so
on. It could be through email or various platforms that can be integrated with
Jenkins, like slack, hipchat, and so on. Here, we will go with both email and
slack as they are the ones most commonly used. Assuming that slack and
email configurations are already done on the Jenkins server, the following
code is the example of notification stage along with other CI steps:
Running the pipeline will produce the following stage view:

Figure 4.31: Stage view with Slack Notification

For more information about configuring email and slack in the Jenkins
system, go through the following reference documentation:
https://plugins.jenkins.io/slack/
https://plugins.jenkins.io/email-ext/

Conclusion
Everything worked as I had hoped it would. I know it’s a dream in most cases
to be an IT professional. Then again, it wasn’t my first time. The difficult part
is always planning and research. Post that, what’s left is to follow the links,
one step after the other; play around and see what possibilities we have; and
explore them to find out what works together and what doesn’t. This is how
we can come close to designing automation with “Good Taste” in it. If you
are wondering what I mean by “Good Taste”, google “Linus Torvalds Good
Taste” and find out. After this successful implementation, I did the same with
Adeel’s team on different company projects. We hit some bumps on the way,
but nothing tenacious. It worked well. I was looking forward to getting a
chance to solve more issues as they always open up new opportunities.

https://plugins.jenkins.io/slack/
https://plugins.jenkins.io/email-ext/

In the next chapter, we will discuss an interesting pattern of problems
emerging post-CI implementation.

Questions
1. What is a multi-branch pipeline?
2. How was the HTML report of security testing useful?
3. How can we configure artifact upload?
4. What are the stages in a pipeline?

T

CHAPTER 5
Introduction to Docker

he implementation of CI was successful, and we could fix almost every
issue people faced in delivering the software. However, after some

time, the operations and development teams raised new issues. The biggest
challenge was a conflict between the teams, “It is working on my system.”
Sometimes, the application deployment in the production environment was a
failure. Still, when the operations team checked with the development team,
they saw the application working fine on their system and considered it an
infrastructure issue. The operations team returned with the point that we had
not changed anything on the infrastructure, so this must be a code issue. After
endless hours of discussions and debugging, the teams identified many
discrepancies between the development and production environments. In this
chapter, let us see how these issues got resolved.

Structure
In this chapter, we will discuss the following topics:

Need for containerization
What and why containers?
Container engines
Docker installation

Objectives
After going through this chapter, you should understand the problem of
platform dependency. We will also talk about the need for containers and
related concepts. We will understand how Docker works as a modern
container engine and what its architecture and components are.

Need for containerization

Sajal: “Guys, it seems like we have faced a lot of production downtimes in
recent days. Does anyone know what the cause could be and how we can
prevent such downtimes in the future?”
Adeel: “We have done thorough testing while developing and verified
whether each service/component is working correctly.”
Sonia: “All the tests have been passed in the QA testing, and we have
historical data available regarding the report.”
Me: “We have not changed anything on the infrastructure side, so I do not
think it is an infrastructure issue.”
Sandeep: “Still, we faced the issues while releasing the code, right? Also,
despite the code being released, we were getting bugs and issues reported
from everywhere. There has to be a valid explanation for this.”
Me: “I have one theory about this. I think it could be an
infrastructure/platform discrepancy issue because we all use different
mechanisms to build, test and deploy code. Right now, the development team
is using Windows OS for development. Similarly, in the QA environment,
there is a mix of people using the Windows OS and Ubuntu (Linux) OS.
While releasing the code, we are releasing it on a CentOS-based OS.”
Sajal: “This is a very valid point. We had not noticed that we are using
different OS and platforms in each environment.”
Sandeep: “So what do you suggest? Shall we keep the same OS for all
environments?”
Me: “I do not think that will be a good idea because then, people have to
learn other OS for their work, which will impact efficiency and comfort. I
would suggest that we take a new approach, called ‘containerization’.”
Sajal: “But how is this going to help us?”
Sandeep: “Before answering Sajal’s question, I would like to know what
exactly containerization means?”
Me: “Containerization is a way to encapsulate or isolate our application and
its dependencies so that it can be run on any infrastructure. For example, you
must have seen that in the shipping industry, they encapsulate the same kind
of material in a container and then use the same container to ship it
everywhere. In that case, it doesn’t matter if the container is on a ship/truck
or a cargo plane.

Now coming to Sajal’s question, we will use the container philosophy to
isolate our CI stages so that they can become OS-independent. For each step,
we will use the containers so that there will be no discrepancies between the
build, test, and deployment stages.”
Sajal: “So, you mean all the CI steps will be performed inside a container so
that we will use the same library and dependencies everywhere?”
Me: “Exactly! We will do the same thing using the container technology.
This will not only help us in removing the discrepancy but will also help in
the prevention of OS failure of the Jenkins server.”
Adeel: “Whoa! This seems interesting. How will the container help us in
such scenarios?”
Me: “Everything will happen on individual containers and software. So, if
anything wrong happens, it will occur on the container only. The OS and the
Jenkins server will not have any impact.”
Sandeep: “This sounds promising; I think we should use this approach. Have
you finalized a container solution for the same?”
Me: “Let me study and compare the available solutions of containers before
choosing from them.”
Sajal: “Sounds like a plan!”

What and why containers?
Before jumping into the discussion of what containers are, we need to
understand the need for container technology in the modern world. Before
that, we need to understand the concept of virtualization.

Virtualization
Virtualization refers to running multiple virtual systems or resources on a
physical machine. It allows us to create a virtual machine in a layer abstracted
from the actual hardware. There are a few essential things in a virtual
machine:

Hypervisor: A hypervisor is a program or OS used for creating,
running, and managing virtual machines. Our modern cloud uses the
concept of Hypervisor.

Virtual Machines: A virtual machine is the emulated equivalent
computer system running on top of another computer. Virtual machines
may have minimal access to the host system’s resources.

Here is the virtualization architecture:

Figure 5.1: Virtualization Architecture

Virtualization takes away a lot of pains in infrastructure management.
However, there are a few limitations of infrastructure management using
virtualization:

The server cost is high because we need to set up each application on a
different server to ensure the isolation of the process.
If we are setting up a single application on the physical machine, the
resources will not be utilized properly.
Disaster recovery is difficult when hardware fails because all the data
will be lost.
The process of getting any software up and running is time-consuming.

What is a Container?

Containerization is an OS-level virtualization method used to deploy and run
distributed applications without launching an entire Virtual Machine (VM)
for each application.
It is a kind of OS virtualization where we run our applications in a separate
user space called containers. Here are a few properties of containers:

They have everything that is necessary to run an application, like OS
library, binaries, dependencies, and configuration files, except the
kernel.
We can also say that a container is a lightweight virtual machine with
limited access to the host OS.
We can run containerized applications anywhere, without depending on
the infrastructure, i.e., it can be run on a private data center machine or
on a VM in the cloud.

An architecture diagram of a container looks as follows:

Figure 5.2: Container Architecture

Why Container?
Containerization solves a lot of problems that people face with virtualization.
The key highlights are mentioned here:

OS Dependency: While working the containers, we are not at all
dependent on the OS and the architecture of the base OS.
Resource Optimization: Virtual machines are heavier than containers
because of their kernel and all bootup files. Since containers only have
binaries, libs, and configurations, they are more beneficial in resource
management.

Deployment: Deployment time is high on virtual machines because of
their process bootup and configuration time; on the other hand,
container deployment is quick.
Environment Consistency: Deploying applications in different
environments is consistent because containers are not affected by the
underlying infrastructure and OS.

Container Engines
When we talk about containers, people generally think “Docker” and assume
that Docker is the container, but it’s not like that. Containerization is a
technology, and Docker is a provider of containerization, just like Linux is an
OS architecture and Debian and RedHat are providers.
The following image shows multiple container engine (runtime) providers
available:

Figure 5.3: Container Engines

The preceding figure shows the following:

CRI-O
ContainerD
Kata
Firecracker

Docker is also a container provider based on container D runtime, which is
CNCF graduated project. It has excellent community support, with more than
60k+ GitHub stars and 18k+ developers. Many famous companies have
adopted Docker as their container engine and are running their production
workload on it.

Docker Basics
Docker containers wrap up a piece of software in a complete filesystem that
contains everything it needs to run:

Code
Runtime
System tools
System libraries

The Docker is an open platform to build, ship, and run distributed
applications. It will always run the same, regardless of the environment it is
running in. Also, it is a subset project of moby
(https://github.com/moby/moby). The architecture of Docker is described
as follow:

Figure 5.4: Docker Architecture Diagram

Docker architecture
The Docker architecture is client-server-based architecture. The Docker client
communicates with the Docker daemon, which builds, runs, and distributes
Docker containers. You can run a Docker client on the same system as the

https://github.com/moby/moby

Docker daemon, or you can connect a Docker client to a Docker daemon
running remotely. Refer to the following figure:

Figure 5.5: Docker Engine Architecture

Docker Images
Docker image is a definition from which containers can be created. Images
are inherited from base images and can be many levels deep. They are
immutable in nature, which means they cannot be changed; if we want to
change a docker image, we have to create a new one.
Docker images work in layer mode; every step of execution will create a new
layer inside an image. Once the image is created, we can store it on the
remote repository for further processing. When pushing/pulling an image
to/from a repository (more to come), only the changed layers are
pushed/pulled to save bandwidth.
There are two ways of creating images inside Docker:

Docker commits
Dockerfile

You can see the differences illustrated in the following table:

Docker Commit Dockerfile

Docker commit takes a snapshot of a running
container.

Dockerfile is a set of instructions through which
a docker image can be created.

It does not compare and detect the changes, i.e., a
new image will be created every time.

Every time we build an image using a docker
file, the changes will be compared.

Image size will not be consistent when using this
method. The size will reduce if we delete
something inside the container and vice versa.

Image size will be consistent because there are
fewer chances of manual changes.

It cannot be stored in the form of code. It will be stored in the form of a file that can be
versioned on VCS.

Table 5.1: Comparison between commit and Dockerfile

Command reference for “Docker commit”:
$ docker commit <container-id>

Code 5.1

Command reference for building a Dockerfile:
$ docker build -t <image_name>:<image_tag> -f Dockerfile.

Code 5.2

Dockerfile
A Dockerfile contains all the commands a user can run on the command line
to assemble an image. Docker build allows users to automate the execution of
several commands at once using multiple command-line instructions. In
figure 5.6, a sample Dockerfile is shown:

Figure 5.6: Sample Dockerfile

FROM is to call a base image from the registry; it should be a valid image
name.
COPY is a step that is used to copy content from the local filesystem to an
image.
WORKDIR is used to set the working directory in which other Dockerfile steps
will be performed.
RUN is to execute any command inside the docker image.
ENTRYPOINT allows us to run executable files or commands, like Java and
node. It is the main command that allows a Docker container to run a
process.
CMD is an instruction that can be executed once after the Dockerfile is built,
generally, people use CMD to pass arguments to ENTRYPOINT.

There are some other important instructions available in the Dockerfile,
which can be used in different scenarios:

USER is an important instruction in a Dockerfile that can be used to
change the user of the docker image; whenever a container is started, it
will be started with the defined user. If this parameter is not defined, the

default root user will be used.
VOLUME is a filesystem mounted on Docker containers to preserve data
generated by the running container.

For more information, refer to the official documentation of Dockerfile at the
following link:
https://docs.docker.com/engine/reference/builder/

Multistage Dockerfile
A Dockerfile multi-stage build is a separate build as compared to the runtime
environment to reduce the image size and dependencies. It allows a slight
variation of changes in Docker images.
By using this method, images can be built platform-specific with minimal
software and dependencies. It also helps in linearizing the dependencies for
the application.
A simple example could be this: for compiling a Java-based application, we
need Maven, but for running the application, we don’t need JDK and maven.
Refer to the following figure:

Figure 5.7: Multistage Dockerfile

https://docs.docker.com/engine/reference/builder/

In the preceding example, we can compile the application in the first stage for
generating the artifacts; then, we can copy the generated artifacts to the
runtime image, which will have minimal packages and dependencies.
So, in a multistage Dockerfile, each stage starts “FROM,” where it pulls a
new base image and copies the binaries from the other image’s stage to this
new base image.
Also, while copying the package and binaries, we ensure that we only include
the essential packages that are needed to run the application.

Docker Registry
Docker registries store and distribute named Docker images. There may be
multiple versions of the same image, identified by their tags. By default, all
images are pushed and pulled from the official docker registry called
“DockerHub”.
To push the images to a different location or repository, we may have to
append the URL before the name and tag of the Docker image. This tells us
from where we have to pull and push images. Consider the following
example:
quay.io/opstree/spring3hibernate:v1
If a registry is secured, we may have to log in to it using the docker login
command.
The architecture of Docker registry is shown as follow:

Figure 5.8: Multistage Dockerfile

Docker CLI
Using Docker’s command-line interface, we can build, interact, inspect, and
run containers and images. Many of the commands are similar to Linux
commands. All the commands will be started using “docker”.
For every command, we have a help page available inside the terminal;
consider the following example:
$ docker run --help

Code 5.3

In the following table, different Docker command arguments are explained:

Command Description

ps To list running containers (include –a to see stopped containers)

rm To remove containers from the system

inspect To return information about the docker objects, like images and
containers

start/ stop/ restart To start, stop or restart a container, respectively

cp To copy files/folders between a container and the local filesystem and
vice versa

build To build an image from a Dockerfile

images To list images

rmi To remove one or more images from the system

push/pull To pull and push Docker images from the remote repository

tag To tag the images

Table 5.2: Docker commands and their descriptions

Docker Installation (Debian System)
To install Docker Engine for the first time on a new host machine, you must
first set up the Docker repository. Docker can then be installed and updated
from the repository.
Install packages to allow apt to use HTTPS repositories in the apt package
index:
$ sudo apt-get update

$ sudo apt-get install \

ca-certificates \

curl \

gnupg \

lsb-release

Code 5.4

Add the docker GPG key in the system:
$ sudo mkdir -p /etc/apt/keyrings

$ curl -fsSL https://download.docker.com/linux/debian/gpg | sudo

gpg --dearmor -o /etc/apt/keyrings/docker.gpg

Code 5.5

We will use this command to set up the Debian repository:
$ echo \

“deb [arch=$(dpkg --print-architecture) signed-

by=/etc/apt/keyrings/docker.gpg]

https://download.docker.com/linux/debian \

$(lsb_release -cs) stable” | sudo tee

/etc/apt/sources.list.d/docker.list > /dev/null

Code 5.6

Next, we need to update the apt package repository and install the Docker
engine:
$ sudo apt-get update

$ sudo apt-get install docker-ce docker-ce-cli containerd.io

docker-compose-plugin

Code 5.7

The final step would be verifying the docker installation using the docker
command:
$ sudo docker run hello-world

Code 5.8

Conclusion
I am hopeful that we’ll be able to solve the conflict between the teams. Once
the learnings from this study are compiled into the proposal, I’ll present it to
the others and gather their feedback. After everyone is onboard, we can
quickly start working together to nip this in the bud. I might be getting ahead
of myself, but it is hard not to imagine a favorable outcome. Stories of the
past tell us how crucial and beneficial it has been for teams to move to
containers. The development team gets freedom, and the operations team can
focus on a planned infrastructure enhancement instead of having to play
catch-up and extinguish fires.
In the next chapter, we will focus on CI with both Jenkins and Docker. We
will use Docker to containerize our microservice with the best standardization
and security practices.

A

CHAPTER 6
CI with Jenkins and Docker

fter the explanation by Abhishek, all the team members evaluated the
container technologies by reading books, journals, and white papers

about them. Since the problem was evident in the heads of all team members,
they mutually agreed to use Docker for continuous integration. Also, the
development team decided that they would containerize their applications in
the next phase. But again, before implementing this pipeline and process,
they need a POC with Docker’s CI steps. That’s why the team started to build
the Docker process to take their Continuous Integration process to the next
level.

Structure
In this chapter, we will discuss the following topics:

Containerization of application
CI pipeline with pre-deployment

Code stability
Code quality
Unit testing
Code coverage
Security testing

Objectives
After going through this chapter, you should be able to understand the
concept of Jenkins with the Docker engine. You should also be able to
understand all CI steps as a part of a different Docker container. Pipeline
creation of Jenkins with Docker and docker working as a slave with Jenkins
will also be discussed in this chapter.

Containerization of application
As an initial stage of containerization, we need to write a Dockerfile for our
application. Once the Dockerfile is ready, we can build the image from it, and
the image can be transported to any environment or system.
The Dockerfile for our application will look like this:
FROM maven:3.3-jdk-8 as builder

COPY pom.xml /usr/src/spring3hibernate/

COPY ./src /usr/src/spring3hibernate/

WORKDIR /usr/src/spring3hibernate/

RUN mvn clean install && \

mvn package

FROM tomcat:7-jre7-alpine

MAINTAINER “opstree <opstree@gmail.com>”

RUN rm -rf /usr/local/tomcat/webapps/*

COPY --from=builder

/usr/src/spring3hibernate/target/Spring3HibernateApp.war

/usr/local/tomcat/webapps/ROOT.war

WORKDIR /usr/local/tomcat/webapps/

EXPOSE 8080

Code 6.1

Now, we can quickly build the application image from the Dockerfile using
the docker plugin inside Jenkins, as shown in the following figure:

Figure 6.1: Docker Plugin

CI Pipeline with Pre-Deployment Integration
Checks
Before executing all the pre-deployment steps, checks using Jenkins and
Dockerfile local validation are essential. So, let’s compile this project over
Docker to see if containerization is working correctly:
$ docker build -f Dockerfile -t

quay.io/opstree/spring3hibernate:v1 .

Code 6.2

Figure 6.2 shows the complete output of the docker build command:

Figure 6.2: Docker Image

Code Stability
After successfully validating the Dockerfile for the application, we can start
integrating the CI pipeline with Jenkins and Docker. The steps for code
stability will be similar to prior implementations. Still, since our application
is running as a container, we need to check whether the Docker image is
getting built successfully at this stage.
The pipeline snippet for Code Stability will look like this:
pipeline {

agent any

stages {

stage(“Code Checkout”) {

steps {

git credentialsId: ‘git-creds’, url:

‘https://gitlab.com/ot-book/spring3hibernate.git’

}

}

stage(“Code Stability | Build Image”) {

steps {

script {

docker.build(“cloud.canister.io:5000/opstree/spring3hibernate:${env.BUILD_ID}”)

}

}

}

}

}

Code 6.3

The stage view will look like this:

Figure 6.3: Code Stability

Code Quality
Once we have passed the stage for code stability, the next step is to check the
quality of the code. Just like the previous legacy pipeline, we will use
“Checkstyle” with Maven to check the quality of the code.

However, checking the code quality is insufficient since our application is
now containerized using the Dockerfile. So, matching the quality of the
Dockerfile also becomes very important from a standardization point of view.
Now, when we say checking the quality of Dockerfile, it means that we are
going to look at whether we are following the best practices for writing the
Dockerfiles. For instance, some of the best practices for Dockerfiles are
discussed here.

Ordering
It matters while writing a Dockerfile. If you see in the following example,
removing COPY before RUN instructions will improve the image build time
because of caching:

Figure 6.4: Ordering

Specific Files
Instead of copying the entire content of the directory, always copy the
specific files because there could be some extra content, like- .git folder,
README, and CHANGELOG, as shown in the following figure:

Figure 6.5: Specific Files

Multiline Instructions
As a best practice, we should always create a logical grouping on instruction,
as shown in the following screenshot. We made a single RUN instruction to
minimize the image layering here:

Figure 6.6: Multiline Instructions

Unnecessary packages
We should never install unnecessary packages inside our Docker image. For

debugging purposes, we can always install packages after the image is
deployed but should never do it while building the images, as shown in the
following figure we should not define packages before COPY statement:

Figure 6.7: Unnecessary Packages

Package Manager Cache
Once all the requirements are installed, we should remove the package
manager cache like apt-cache or yum cache, as shown in Figure 6.8:

Figure 6.8: Package Manager Cache

Logical Grouping
mvn clean install needs to be executed when we are making a change in a
pom.xml file so that only the upper layer will get changed if we are making
changes in pom.xml. The codebase will get compiled without installing the
dependencies again and again. This can be seen in the following figure:

Figure 6.9: Package Manager Cache

Some other Dockerfile-related best practices are as follows:

Using official images with specific tags instead of the latest tag
Logical grouping of commands to minimize the layers
Trying to use alpine flavor-based images to reduce the image size
Using .dockerignore to ignore all irrelevant files in Docker build
process
Trying to use “Least Privileges User” in the Dockerfile to improve
image security

We have listed a few best practices for Dockerfile, but other best practices are
also available that we haven’t shown in the examples above. There are many
other checks and practices as well. But how can we ensure that we are always
following the best practices?
Similar to Checkstyle, we have a tool named “hadolint” that can be used to
test Dockerfiles for bugs and best practices. It has already been supporting
the reporting and auditing format in Jenkins.
We only have to install hadolint on our Jenkins system, and it will be
integrated into our pipeline.
$ wget

https://github.com/hadolint/hadolint/releases/download/v2.10.0/hadolint-

Linux-x86_64

$ chmod +x hadolint-Linux-x86_64

$ sudo mv hadolint-Linux-x86_64 /usr/local/bin/hadolint

Code 6.4

The pipeline code for checking the “Code Quality” is as follows:
pipeline {

agent any

stages {

stage(“Code Checkout”) {

steps {

git credentialsId: ‘git-creds’, url: ‘https://gitlab.com/

ot-book/spring3hibernate.git’

}

}

}

stage(“Code Quality | Checkstyle | Hadolint”) {

parallel {

stage(“Checkstyle”) {

agent {

docker {

args “-v ${HOME}/.m2:/root/.m2”

image ‘opstreedevops/maven:java8’

}

}

steps {

git credentialsId: ‘git-creds’, url: ‘https://

gitlab.com/ot-book/spring3hibernate.git’

sh “mvn checkstyle:checkstyle”

recordIssues(tools: [checkStyle(pattern: ‘**/

checkstyle-result.xml’)])

}

}

stage(“Hadolint”) {

steps {

sh “hadolint Dockerfile --no-fail -f json | tee -a

hadolint.json”

recordIssues(tools: [hadoLint(pattern: ‘hadolint.

json’)])

}

}

}

}

}

}

Code 6.5

Post execution, the stage view will look like this:

Figure 6.10: Code Quality

Hadolint and Checkstyle reports will be part of the Jenkins report publishing.
We can view the reports from the Jenkins portal itself. The Checkstyle report
will look like this:

Figure 6.11: Checkstyle Report

The Hadolint report will look like the following:

Figure 6.12: Hadolint Report

Unit Testing
As we know, “Test Cases” are already part of the system, and we have
executed them in our legacy pipelines. Similarly, we will perform “Unit
Testing” in this pipeline, but with a minor change, that is, the step will be
executed inside a Docker container.
The pipeline view will look like this:

Figure 6.13: Stage View | Unit Testing

The pipeline code will be updated with Junit steps:
pipeline {

agent any

stages {

stage(“Code Checkout”) {

steps {

git credentialsId: ‘git-creds’, url: ‘https://gitlab.com/
ot-book/spring3hibernate.git’

}

}

stage(“Code Stability | Build Image”) {

steps {

script {

docker.build(“cloud.canister.io:5000/opstree/

spring3hibernate:${env.BUILD_ID}”)

}

}

}

stage(“Code Quality | Checkstyle | Hadolint”) {

parallel {

stage(“Checkstyle”) {

agent {

docker {

args “-v ${HOME}/.m2:/root/.m2”

image ‘opstreedevops/maven:java8’

}

}

steps {

git credentialsId: ‘git-creds’, url: ‘https://
gitlab.com/ot-book/spring3hibernate.git’

sh “mvn checkstyle:checkstyle”

recordIssues(tools: [checkStyle(pattern: ‘**/
checkstyle-result.xml’)])

}

}

stage(“Hadolint”) {

steps {

sh “hadolint Dockerfile --no-fail -f json | tee -a

hadolint.json”

recordIssues(tools: [hadoLint(pattern: ‘hadolint.
json’)])

}

}

}

}

stage(“Unit Testing”) {

agent {

docker {

args “-v ${HOME}/.m2:/root/.m2”

image ‘opstreedevops/maven:java8’

}

}

steps {

git credentialsId: ‘git-creds’, url: ‘https://gitlab.com/
ot-book/spring3hibernate.git’

sh “mvn test”

recordIssues(tools: [junitParser(pattern: ‘target/
surefire-reports/*.xml’)])

}

}

}

}

Code 6.6

The Junit report of the pipeline will be updated to the following after adding
unit testing:

Figure 6.14: Junit Report

Code Coverage
Similar to Unit Testing, Code Coverage is also a very important aspect of
application testing. We will be using the Cobertura for coverage testing.
Again, this will be a part of a separate container step to avoid cluttering the
main system.

Once we add the coverage testing inside the pipeline, the view will be
updated like this:

Figure 6.15: Stage View | Code Coverage

The stage changes will be done by the changes inside the pipeline code, and
the updated pipeline code will look like this:
pipeline {

agent any

stages {

stage(“Code Checkout”) {

steps {

git credentialsId: ‘git-creds’, url: ‘https://gitlab.com/

ot-book/spring3hibernate.git’

}

}

stage(“Code Stability | Build Image”) {

steps {

script {

docker.build(“cloud.canister.io:5000/opstree/

spring3hibernate:${env.BUILD_ID}”)

}

}

}

stage(“Code Quality | Checkstyle | Hadolint”) {

parallel {

stage(“Checkstyle”) {

agent {

docker {

args “-v ${HOME}/.m2:/root/.m2”

image ‘opstreedevops/maven:java8’

}

}

steps {

git credentialsId: ‘git-creds’, url: ‘https://

gitlab.com/ot-book/spring3hibernate.git’

sh “mvn checkstyle:checkstyle”

recordIssues(tools: [checkStyle(pattern: ‘**/

checkstyle-result.xml’)])

}

}

stage(“Hadolint”) {

steps {

sh “hadolint Dockerfile --no-fail -f json | tee -a

hadolint.json”

recordIssues(tools: [hadoLint(pattern: ‘hadolint.

json’)])

}

}

}

}

stage(“Unit Testing”) {

agent {

docker {

args “-v ${HOME}/.m2:/root/.m2”

image ‘opstreedevops/maven:java8’

}

}

steps {

git credentialsId: ‘git-creds’, url: ‘https://gitlab.com/

ot-book/spring3hibernate.git’

sh “mvn test”

recordIssues(tools: [junitParser(pattern: ‘target/

surefire-reports/*.xml’)])

}

}

stage(“Code Coverage”) {

agent {

docker {

args “-v ${HOME}/.m2:/root/.m2”

image ‘opstreedevops/maven:java8’

}

}

steps {

git credentialsId: ‘git-creds’, url: ‘https://gitlab.com/

ot-book/spring3hibernate.git’

sh “mvn cobertura:cobertura”

cobertura autoUpdateHealth: false, autoUpdateStability:

false,

coberturaReportFile: ‘**/target/site/cobertura/

coverage.xml’,

conditionalCoverageTargets: ‘70, 0, 0’,

failUnhealthy: false,

failUnstable: false, lineCoverageTargets: ‘80, 0, 0’,

maxNumberOfBuilds: 0, methodCoverageTargets: ‘80, 0, 0’,

onlyStable: false, sourceEncoding: ‘ASCII’,

zoomCoverageChart: false

}

}

}

}

Code 6.7

After adding Code Coverage, the report can be visualized over Jenkins:

Figure 6.16: Cobertura Report

Security Testing
In our legacy pipeline, we added the “Security Testing” stage. At that stage,
we scanned the bugs and vulnerabilities in our application using a popular
Static Application Security Testing (SAST) tool, OWASP.
OWASP dependency check is a capable and very powerful tool in terms of
application vulnerability testing. But since we are packaging our application
in container form, there might be some issues/bugs/vulnerabilities inside the
container as well that can increase the potential attack surface for our
application. In such scenarios, we must assess our container images as well
for low, moderate, and high-risk issues/vulnerabilities.
Another important reason behind performing this assessment is that we

mostly inherit public images to build our application images, and there might
be some misconfiguration and vulnerabilities inside public images; so, we
must take care to scan and analyze dependencies and packages inside a
container image.
For the checklist, the Center for Internet Security (CIS) publishes the
dependencies and packages that have vulnerabilities and explains how we can
resolve such vulnerabilities. However, the tough part is automating these
checks and scanning the pipeline so that we do not miss any big security
risks. For these kinds of scenarios, the open-source and enterprise
marketplace released different software under the category named “Image
Scanning Tools”.
These image-scanning tools can extract the container images layer by layer
and scan every dependency or package available in the system. Based on the
analysis, they provide reports with low, moderate, and high risks. Some of
the most popular image scanning tools are listed here:

Trivy: https://github.com/aquasecurity/trivy
Anchor: https://anchore.com/
Clair: https://github.com/quay/clair
AquaScanner: https://www.aquasec.com/
Snyk: https://snyk.io/

All these tools use the Common Vulnerabilities and Exposures (CVE)
databases and CIS benchmarks to compare vulnerabilities, but the
implementation and reporting mechanism is different for each. After some
investigation, we finalized that we would go ahead with Snyk as a security
testing tool for the container. One of the primary reasons for using Snyk is
that it can scan like OWASP so that a single tool can serve the purpose for us.
Here’s a little bit about Snyk:
“It is a tool that can scan and analyze application codebase like Java,
Python, Golang, and so on. Other than application scanning, it can be used
for identification of open-source dependencies, container image
vulnerabilities, and Infrastructure as Code (IaC) tools like terraform.”
To integrate Snyk with Jenkins, we simply must install the Snyk plugin inside
it, as shown in the following figure:

https://github.com/aquasecurity/trivy
https://anchore.com/
https://github.com/quay/clair
https://www.aquasec.com/
https://snyk.io/

Figure 6.17: Snyk Plugin

Once the plugin is installed, we have to do the following configurations
inside the “Global Tool Configuration”:

Figure 6.18: Snyk Tool

As the last part of Snyk integration, we need to create a Jenkins credential for
the Snyk token, as shown in the following figure:

Figure 6.19: Snyk Token

Once these changes have been made to the Jenkins system, we can start
security testing in our pipeline. The code snippet will be like this after adding
the security testing:
pipeline {

agent any

stages {

stage(“Code Checkout”) {

steps {

git credentialsId: ‘git-creds’, url: ‘https://gitlab.com/

ot-book/spring3hibernate.git’

}

}

stage(“Code Stability | Build Image”) {

steps {

script {

docker.build(“cloud.canister.io:5000/opstree/

spring3hibernate:${env.BUILD_ID}”)

}

}

}

stage(“Code Quality | Checkstyle | Hadolint”) {

parallel {

stage(“Checkstyle”) {

agent {

docker {

args “-v ${HOME}/.m2:/root/.m2”

image ‘opstreedevops/maven:java8’

}

}

steps {

git credentialsId: ‘git-creds’, url: ‘https://

gitlab.com/ot-book/spring3hibernate.git’

sh “mvn checkstyle:checkstyle”

recordIssues(tools: [checkStyle(pattern: ‘**/

checkstyle-result.xml’)])

}

}

stage(“Hadolint”) {

steps {

sh “hadolint Dockerfile --no-fail -f json | tee -a

hadolint.json”

recordIssues(tools: [hadoLint(pattern: ‘hadolint.

json’)])

}

}

}

}

stage(“Unit Testing”) {

agent {

docker {

args “-v ${HOME}/.m2:/root/.m2”

image ‘opstreedevops/maven:java8’

}

}

steps {

git credentialsId: ‘git-creds’, url: ‘https://gitlab.com/

ot-book/spring3hibernate.git’

sh “mvn test”

recordIssues(tools: [junitParser(pattern: ‘target/

surefire-reports/*.xml’)])

}

}

stage(“Code Coverage”) {

agent {

docker {

args “-v ${HOME}/.m2:/root/.m2”

image ‘opstreedevops/maven:java8’

}

}

steps {

git credentialsId: ‘git-creds’, url: ‘https://gitlab.com/

ot-book/spring3hibernate.git’

sh “mvn cobertura:cobertura”

cobertura autoUpdateHealth: false, autoUpdateStability:

false,

coberturaReportFile: ‘**/target/site/cobertura/

coverage.xml’,

conditionalCoverageTargets: ‘70, 0, 0’,

failUnhealthy: false,

failUnstable: false, lineCoverageTargets: ‘80, 0, 0’,

maxNumberOfBuilds: 0, methodCoverageTargets: ‘80, 0, 0’,

onlyStable: false, sourceEncoding: ‘ASCII’,

zoomCoverageChart: false

}

}

stage(“Security Testing | OWASP | Snyk”) {

parallel {

stage(“Dependency Scan”) {

agent {

docker {

args “-v ${HOME}/.m2:/root/.m2”

image ‘opstreedevops/maven:java8’

}

}

steps {

git credentialsId: ‘git-creds’, url: ‘https://

gitlab.com/ot-book/spring3hibernate.git’

sh “mvn org.owasp:dependency-check-maven:check”

publishHTML([allowMissing: false, alwaysLinkToLastBuild:

true, keepAll: true, reportDir: ‘target’, reportFiles:

‘dependency-check-report.html’, reportName: ‘Dependency

Check’, reportTitles: ‘Spring3hibernate’])

}

}

stage(“Container Scan”) {

steps {

snykSecurity snykInstallation: ‘snyk’, snykTokenId:

‘snyk’, additionalArguments: “--docker

cloud.canister.io:5000/opstree/spring3hibernate:${env.BUILD_ID}”,

failOnError: false

}

}

}

}

}

}

Code 6.8

After adding the stages for security testing, the view of pipeline would be
modified like this:

Figure 6.20: Stage View | Security Testing

In figure 6.21, report for OWASP Dependency check is shown:

Figure 6.21: Dependency check report

In figure 6.22, report for Container Security Scan is shown:

Figure 6.22: Container Report

Another example of Container report can be seen in the following figure:

Figure 6.23: Container Report

Conclusion
Not so complicated, huh? Anything can be made easy when broken down
into steps. This is not to say that all this is foolproof or that implementation is
often quite simple. Things change at the drop of a hat: new requirements
come in, manual errors are made, tool versions are updated, services are
onboarded with different prerequisites, and so on. The important thing to
remember is that we need to cover the basic steps in our CI pipeline to ensure
proper standardization and hit security benchmarks. We need to be especially
sure of the latter because we do not want to fall into the already identified
vulnerabilities trap. It will not only look bad but can also compromise our
services/data and cause serious damage. All the other case-specific problems
can be dealt with through good old engineering work: planning, designing,
implementation, and troubleshooting.
In the next chapter, we will discuss CD. Technically, it comes after CI, and
we’re going to stay on that path. We’ll be talking about what problems CD
solves, CD testing elements, deployment strategies, and much more.

A

CHAPTER 7
Continuous Deployment

fter completing the sprint, the team was very happy and full of positive
energy because they had achieved a massive milestone of running a

smooth Continuous Integration pipeline to increase development
productivity. There was a significantly lower number of bugs and issues in
the production environment, causing downtime. In addition to Continuous
Integration, Docker is \introduced to the system to help maintain code sanity
across the environments. The application was successfully dockerized, and
the CI steps were integrated with Docker. Now, the difference can be easily
seen in the form of a bugs/issues graph, as shown in the following figure:

Figure 7.1: Production issues graph form

As humans, we have a nature of thinking about the future, so now the team is
concerned about the deployment of different environments like QA, security,

performance, and business. Since, as of now, the deployment of code is
happening manually in different environments, sometimes issues are being
created like steps missing, deployment steps inconsistency, and rollback
challenges.
Abhishek was responsible for exploring all Continuous Deployment testing
and deployment strategies.

Structure
In this chapter, we will discuss the following topics:

Different kinds of environments
CD Testing elements
Deployment strategies

Objectives
This chapter will help you understand the concepts of different environments
in the software development cycle. Also, this chapter talks about the purpose
and importance of each environment. It will also discuss different
deployment strategies like Normal, Rolling Update, Blue Green, and Canary.
The pros and cons of each deployment strategy will be discussed, and we will
look at how we can choose the ideal deployment strategy for different
scenarios.

Different Kinds of Environments
Abhishek thought that deployment in the development environment was
successful, but it will be an excellent decision to deploy the application in a
Production environment because the deployment was successful in the
Development environment. Also, if there are going to be different
environments, what types of environments will they be?
After reading many blogs, journals, and documentation, he was amazed at
how people utilize multiple environments for different purposes.

QA environment

Quality Assurance (QA) environment is an environment that mimics the
production environment. A QA environment is generally used by QA
engineers, analysts, or other testing professionals to perform functional and
non-functional testing of services.
It is a kind of safety net to catch all the unwanted bugs and issues before
release. Ideally, the QA environment is a different environment in which QA
engineers perform testing from the QA and the user’s perspective. The QA
environment aims to ensure reliability and confidence in the application
codebase.
QA environment plays a vital role in software development and releases
because, in this environment, rigorous system testing is done to identify any
leaks or bugs that can cause harm to the software and the company’s
reputation. Generally, QA engineers perform different types of testing:

Regression testing
BDD testing
Security testing
API testing
Performance testing

Security testing environment
In the QA environment, testing is primarily focused on the functional and
non-functional parts of the application. But when we talk about software
testing and release, security becomes a priority because ignorance of security
can lead to complete system hacks and shutdowns.
To identify all types of security issues and gaps, we set up a separate
environment called the “Security Testing Environment.” Just like our soldiers
prepare for any kind of war coming their way, the intent of the security
testing environment is to simulate security attacks on the software and
application to identify security-related bugs and issues.
As we already know, Static analysis security testing (SAST) gets performed
in the CI pipeline. There are some security measures that we cover after
application deployment. Those testing methods are generally called Dynamic
analysis security testing (DAST). Some good DAST analysis tools are listed
below:

Zed Attack Proxy: https://www.zaproxy.org/
Nikto: https://github.com/sullo/nikto
Accunetix: https://www.acunetix.com/
AppScan: https://cloud.appscan.com/

For security testing, organizations generally set up a separate environment so
that the security testing would not mess up the existing QA testing
environment.

Performance Testing Environment
A performance testing environment is an evaluation environment where the
performance of applications and infrastructure is evaluated. It’s a process of
assessing the quality and its functioning when the software is released.
Performance testing gets conducted to check system stability and
responsiveness.
Load/stress testing is one of the simplest performance testing methods on
applications. There are various performance testing tools available. Some of
those are mentioned here:

Load ninja: https://loadninja.com/
Apache Jmeter: https://jmeter.apache.org/
Loadrunner: https://en.wikipedia.org/wiki/LoadRunner
Locust: https://locust.io/

Performance testing environment is generally dynamic, which means it is not
up 24*7. The teams create the performance testing environment separately to
test the application and infrastructure performance, and once testing is
completed, they switch off the environment. This is the primary reason for
keeping the performance testing environment separate from the other testing
environments. Another reason is that performance testing can hamper the
existing testing environment, so it always makes sense to have a separate
environment for performance testing.

Business Testing Environment
User Acceptance Testing (UAT) environment is a testing environment in
which the software is tested from an end-user perspective in the real world by

https://www.zaproxy.org/
https://github.com/sullo/nikto
https://www.acunetix.com/
https://cloud.appscan.com/
https://loadninja.com/
https://jmeter.apache.org/
https://en.wikipedia.org/wiki/LoadRunner
https://locust.io/

the intended consumers. This is the last software testing phase before
releasing a software/application.
UAT effectively ensures quality in terms of cost while increasing
transparency for consumers. It helps the developers work with real issues and
data. The software is released into the production environment if this testing
phase is completed successfully.
There are multiple testing phases inside the UAT environment:

Alpha testing
Beta testing

UAT environment is always set up as a separate environment and is most
close to the production environment. Even the infrastructure would be
identical to the production environment so that there are zero discrepancies
while testing applications with real users or consumers.

CD Testing Elements
Abhishek was happy with his analysis of different environments, but there
were a few more things that needed to be cleared out; a major thing was the
CD testing elements. So, Abhishek approached Sonia because she has a good
understanding of and experience with the QA testing environment.
He asked Sonia what testing and tools needed to be part of the continuous
testing environment. She helped him by providing the details about testing
phases in continuous deployment:

Regression testing
BDD testing
Security testing
API testing
Performance testing

But she wasn’t sure about the tools that can be used for testing in these
phases. She asked Abhishek to evaluate the tools related to the phases. And
as we know, Abhishek is a seeker of knowledge; he started reading about
these phases and the related tools.

Regression Testing
In regression testing, we rerun the automated tests to check the previously
working and new functionalities. Typically, we do regression testing in these
circumstances:

A new feature is introduced
Some of the bugs are fixed
Performance improvements
Configuration-level changes

While functional tests inspect the behavior of new changes or features, they
don’t check how much they are compatible with existing ones. Therefore, it
would be challenging and time-consuming to identify the root cause of
product failure without regression testing.

Figure 7.2: Regression testing

There are multiple tools available in the market to perform regression testing:

Selenium: https://www.selenium.dev/
AppSurify: https://appsurify.com/
Webking: https://www.embeddedtechnology.com/doc/webking-0001

https://www.selenium.dev/
https://appsurify.com/
https://www.embeddedtechnology.com/doc/webking-0001

Test drive: https://origsoft.com/browser-based-automated-testing-
tools/

After a comparison between a lot of commercial and open-source software
for regression testing, Abhishek and QA team finalized Selenium as the tool
for regression testing after the deployment because of its reliability, ease, and
excellent community support.

Selenium
Selenium is one of the foremost renowned open-source test automation
frameworks. It allows test automation of web applications or websites across
different browsers and operating systems. It offers compatibility with
multiple programming languages like Java, JavaScript, Python, C#, and
more, allowing testers to automate their website testing in any programming
language they’re comfortable with.
Selenium works with different browsers in headless or non-headless mode. A
non-headless browser has a GUI portal available, for example, Chrome,
Firefox, Internet Explorer, and so on. A headless browser is a web browser
without any GUI. We need it because our application will open on different
browsers, and we must ensure that it runs perfectly on every browser. The
reason behind keeping it headless is that we are doing automated testing, and
GUI will become a hindrance in that. The Selenium architecture can be seen
in the following figure:

Figure 7.3: Selenium Architecture

https://origsoft.com/browser-based-automated-testing-tools/

Behavior Driven Development testing
Behavior Driven Development (BDD) testing is a technique of testing that
validates the application behavior. It is an extension of Test Driven
Development (TDD). Generally, behavior-driven test cases are written in
everyday language (mostly English) so that a non-technical person can also
understand them.
BDD test cases get written in the Given-When-Then condition:

Given (some context)
When (something happens)
Then (outcome/results)

A simple example could be as follows:

Given: I am signing up for a free trial
When: I provide correct information
Then: My account is created, and I received the link to download

The BDD Architecture can be seen in the following figure:

Figure 7.4: BDD Architecture

After some investigation, Abhishek stuck to the BDD testing tool and asked
Sajal for help regarding this. Sajal had contacts from his previous
organization and asked them for suggestions related to the BDD tool. One of
Sajal’s colleagues from the old organization asked him to evaluate
Cucumber, which was suggested to Abhishek.
Abhishek evaluated Cucumber and found it a perfect match for the use case
because it provides the capability of writing the BDD test cases without in-
depth knowledge of programming languages. Also, it has excellent
community support.

Cucumber
Cucumber is an automation framework for BDD testing. It executes the
acceptance test cases using the Gherkin language (Given-When-The).
In the following figure, we can see an example of a Cucumber file:

Figure 7.5: Cucumber File

Cucumber architecture looks like this:

Figure 7.6: Cucumber Architecture

A feature file is a simple text file in which we write our test conditions in the
Gherkin language, but it requires a test case framework as well to integrate
with. To create these test case files, minimal coding will be required. The last
part of the architecture is the Test runner, where these will be executed.

Security Testing
Security testing is a testing type used to identify security-related issues,
vulnerabilities, and risks in the software. The aim of security testing is to
prevent any malicious attack on the application because it can put the

application at full risk.
It focuses on identifying the software’s vulnerabilities and loopholes before
the attacker finds out and steals the valuable information.
Security testing can be divided into two categories:

SAST: Static Application Security Testing (SAST) is a way of
scanning the application code for any kind of vulnerabilities and
possible loopholes. The code is checked extensively for any vulnerable
dependencies and logic that can cause security breaches like XSS
attacks and SQL injection.
DAST: Dynamic Application Security Testing (DAST) is a BlackBox
testing in which the attacks are simulated on running applications
without knowing anything about the source code. This testing is
generally performed with a hacker’s mindset, to identify any kind of
vulnerabilities that a real hacker can exploit.

In the deployment cycle, the security testing team performs DAST analysis
on the applications. Abhishek had a friend who worked in government
security and asked what tool could be used for DAST analysis. He
recommended OWASP Zed Attack Proxy (ZAP) to be used for this testing.
It’s open source, easy to set up, and offers good documentation.

OWASP ZAP
OWASP ZAP is an open-source tool to analyze security issues and
vulnerabilities while the application is deployed and running. ZAP has
multiple modes according to a person’s capability. For example, it can be
used by beginners as well as experts.
It also supports different types of scanning mechanisms, like Active and
Passive scans. One thing that sets ZAP apart from other web application
security testing tools is its ability to be automated. However, it is still
frequently used by penetration testers or individuals running manual security
tests.
Figure 7.7 shows the ZAP architecture:

Figure 7.7: ZAP Architecture

The following figure shows a ZAP Scan result:

Figure 7.8: ZAP Scan result

API Testing
It’s only sometimes the case that only the frontend application is failing, the
frontend application can display the error, but it might be coming from the
back-end application (generally, the API). The team needs to test the API for
its functionality and responsiveness in such scenarios.
API testing includes its testing in terms of responsiveness, security,
functionality, and reliability. It validates the logic of different endpoints
exposed by the API.

A few things that are covered in API testing are as follows:

JSON validation
Header validation
Request method validation
Authentication and authorization validation

Figure 7.9: API testing Architecture

Abhishek did complete research on his own to identify how they can
integrate API testing in their CD pipeline and came up with a solution of
using SOAP UI with their automation. It is an industry standard for doing
API testing on different platforms. Also, it can be integrated with multiple
automation tools, like Jenkins and Gitlab CI.

Simple Object Access Protocol UI
Simple Object Access Protocol (SOAP) is an open-source tool to test the
standard and measures of different APIs. It works with all kinds of APIs and
their messaging protocols. For example, it supports JSON, XML, Javascript,
and Text payload that can be sent to API.
It provides a simple interface for testing that can be used by both technical
and non-technical people. Additionally, it can be used for security testing
where headers and CORS policy can be validated. Many technical people use
the SOAP tool to perform load testing on their APIs to check their reliability
and performance, as shown in the following figure:

Figure 7.10: SOAP UI Architecture

Performance Testing
Performance testing is a method for testing software’s responsiveness,
scalability, reliability, stability, and resource consumption under high loads.
Performance testing is mainly used to identify and fix software application
performance issues. It falls under performance engineering and is referred to
as “Perf Testing.”
This testing generally gets performed whenever a significant change happens
in the application and its codebase. Otherwise, those changes can hamper the
application’s performance, and a slow application is always bad for business.
So, before every major release, the organization conducts performance testing
on the new version of the software, and it goes to production only if they feel
confident about it.
But performance testing is not only about the application. It is also about the
infrastructure that we have provisioned. It checks the performance, reliability,
and scaling nature of the infrastructure. The performance testing architecture
is shown in the following figure:

Figure 7.11: Performance testing architecture

Abhishek thought of using JMeter for load testing. Multiple tools are
available for this, like k6, locust, and so on. He opted for JMeter because it is
quite a mature tool with excellent community support. Also, he could record
the test results and compare them at every release cycle.

Jmeter
JMeter, commonly referred to as “Apache JMeter,” is a graphical, open-
source application built entirely on the Java programming language. It is
made to evaluate and assess the functional behavior of web applications and a
wide range of services during load.
Although JMeter is currently valid in functional testing and in testing JDBC
database connections, web services, generic TCP connections, and OS native
processes, it is primarily used for testing web applications or FTP
applications. To obtain precise performance data for your web server, you
can perform various testing activities, such as performance, load, stress,
regression, and functional testing. This can be seen in the following figure:

Figure 7.12: JMETER Architecture

Figure 7.13 shows a console UI of JMETER:

Figure 7.13: JMETER Console

Deployment Strategies
Abhishek and the team figured out all the things related to the deployment,

like how many environments are available and how many they need to create,
what are the different continuous deployment testing elements, and how to
include them.
However, there were still pieces left to complete this deployment jigsaw
puzzle, and the major piece was “Deployment strategies.”
Deployment strategies are different ways of deploying applications according
to various use cases. Abhishek knew about the strategies and their names, but
he had to evaluate them to perfectly understand and place them into the
continuous deployment pipeline.
Some examples of deployment strategies are as follows:

Normal
Rolling/Ramped
Blue Green
Canary

Normal Deployment
Normal deployment is a dummy deployment that does not do anything
specific to transition traffic from version A to version B. In this deployment
strategy, we simply remove and deploy version A on the application server.
It is the basic deployment strategy that does not require complex logic for
deployment but comes with the cost of downtime. The time fraction between
the replacement of version A with version B will cause downtime to the
application software, and customers will face issues in this time. This
technique implies downtime of the service depending on the shutdown of
version A and the bootup time of version B.
Figures 7.13 and 7.14 show that there is a single load balancer serving the
traffic. To deploy version 2 of the application, we need to stop the service
running on the server and replace the version 1 artifact with that of version 2.
After that, we can start the service with the newer code version. Refer to the
following figure:

Figure 7.14: Normal Deployment - v1

Refer to the following figure:

Figure 7.15: Normal Deployment - v2

Rolling/Ramped Deployment
The ramped/rolling deployment gradually rolls out the version of the
application by replacing instances one after another until all instances are
rolled out. In this process, the version A instances will be running behind the
load balancer, and one instance of version B will also be deployed. When the
instance of version B is ready to serve the traffic, it will start receiving the
traffic, and one instance from version A will be removed from the load
balancer and shut down. This process will continue until all instances of
version B are rolled out.
Rolling deployment generally depends on two factors:

Max Surge: This is the number of instances of the new versions that are
to be added in the current capacity.
Max Unavailable: This is the number of unavailable instances of the
older version in the rolling update procedure, and the number of
instances of the older version that need to be removed from the current
capacity.

Please refer to the following figures:

Figure 7.16: Rolling Deployment - v1

Figure 7.17: Rolling Deployment - v1 to v2

Figure 7.18: Rolling Deployment - v1 to v2

Figure 7.19: Rolling Deployment - v2

In the images, we can see how version 2 is being rolled out, and version 1 is
getting shut down. One of the major benefits of using this approach is that
there will be zero downtime. This is because at any given time, there is at
least one server available to serve the requests. The drawback of this strategy
is a rollback will be a time-consuming process because it will also use a
rolling deployment strategy.

Blue Green deployment
The Blue Green (Red Black) deployment strategy is different from the rolling
deployment strategy because in this deployment strategy, the new version of
code will be deployed alongside the old version, with the exact number of
instances and resources. Once the testing of a newer version of the instance is
completed successfully, the traffic is switched from version A to version B on
the load-balancer level.
In figure 7.20 and 7.21, the flow architecture of Blue Green deployment is
shown:

Figure 7.20: Blue Green Deployment – v1

Figure 7.21: Blue Green Deployment – v2

The significant advantage of this deployment strategy is that it is quick in
traffic switching, so the rollout and rollback of code are much faster than any
other deployment strategy, also this strategy does not have downtime. The
only drawback is that creating a similar infrastructure with the same
resources will cost more because two identical infrastructures will be running
in parallel.

Canary Deployment
The Canary Deployment generally shifts the production traffic from version
A to version B with live users. In this strategy, we generally use the split
based method with weightage. For example, 90 percent of the traffic will be
served from version A and 10 percent will be served from version B.

Figure 7.22: Canary Deployment

Canary Deployment allows us to capture the performance monitoring insights
between versions A and B. This helps us decide whether we want to roll out
the newer version. It provides a great capability of a rollback if version B
fails, but it is slow in rolling out the newer version. This is illustrated in the
following figure:

Figure 7.23: Deployment Strategy comparison

Conclusion
It is time for the final piece of the puzzle. With this study, Abhishek had
everything he needed for an end-to-end automated CD pipeline. He had an

understanding of different environments, tests, and deployment strategies.
After a successful run of CI pipeline and initial dev/review deployments, the
first promotion of CI artifact is to the QA environment. From there on, it is
promoted to different environments that were created to suit the specific
needs of the project before finally landing in production, where it can impact
revenue. Therefore, while creating CD pipelines, things like secrets,
environment-specific configuration, artifact promotion, and deployment
strategies are considered.
In the next chapter, we will plan and implement environment-specific CD
pipelines while going through the technical details. It will provide a clearer
picture of CD in action and will be easy to follow for creating your own
pipeline.

N

CHAPTER 8
Continuous Deployment Using Jenkins

ow that the planning of Continuous Deployment (CD) and research
has been completed successfully, the electrifying part of

implementation begins. Since we have multiple environments with lots of
moving parts, some doubts and concerns must be discussed with all the
stakeholders. The next sprint meeting would be the perfect time to lay all
those thoughts on the table. In the morning, I made sure to go to the standard
break room and let everyone casually know about the progress we had made.
After we finish, the entire CI/CD will become a piece of cake. In the past,
without automation, they have been through some painful experiences. I
enjoyed their lit-up faces, and they piqued my interest.

Structure
In this chapter, we will discuss the following topics:

Deployment strategy discussion
Continuous Deployment for QA Environment (Normal Deployment)
Continuous Deployment for Security Environment (Rolling
Deployment)
Continuous Deployment for Performance Environment (Blue/Green
Deployment)
Continuous Deployment for UAT Environment (Canary Deployment)
Continuous Deployment for Production Environment (Canary
Deployment)
Reflection

Objectives
After going through this chapter, you should be able to use different kinds of

deployments in your CD and decide on the right kind of deployment based on
the use case. This chapter will also help you understand the different
organizational environments’ importance. As an outcome, you should be able
to implement end-to-end CD pipeline using Jenkins with automation.

Deployment strategy discussion
Once the meeting started, everyone grabbed their coffee and was seated in
their respective seats. I began to explain the things I had learned while
studying continuous deployment.
Sajal: “Abhishek, what do you think, how many environments will be
needed in our scenario?”
Me: “Well, considering all things, there should be at least five
environments.”
Sajal: “Whoa! Five environments! That’s quite a significant number, don’t
you think?”
Me: “Yeah, but every environment has its importance, and I don’t think we
can neglect any of them.”
Adeel: “Hmm, interesting. What are the environments that we are
including?”
Me: “We will include QA, security, performance testing, UAT, and
production.”
Adeel: “I know the QA and production environments are important, but since
you’re advocating for others, I am interested to know what they’re about.”
Me: “Okay, so here’s what I know. We need to have these environments
because in the QA environment, we will only be validating the functionality
of our services, but we must have a dedicated environment to target security
precisely. Here, we will do rigorous testing, like Dynamic Application
Security Testing (DAST), exposing all the vulnerabilities before going live.
This will also give us time to fix them.”
Sajal: “I agree that security can’t be neglected, and we must treat it as a
priority.”
Me: “Yes, the performance testing environment is needed to check the
application performance after any significant release. While adding features,
we cannot compromise on the application’s integrity, so we need an

environment where we can test the application in terms of responsiveness.”
Adeel: “I didn’t think about it. Good point. What about the UAT
environment?”
Me: “Yeah, that is also important because most of our tests will be from an
application developer’s perspective on a minimal infrastructure. We need to
replicate and set up an environment close to production where the application
can also be tested from the users’ perspectives. So, when we release the code,
people will not face issues, and our reputation will not be trampled.”
Sajal: “That’s right. It looks like you have given a lot of thought to it. By the
way, have you given any thought to the deployment strategies? What type of
deployment strategy we are going to use?”
Me: “To be honest, it will be a mix of several deployment strategies in
different environments. Since each deployment strategy has its purpose, we
must select the environment and deployment strategy, respectively.”
Adeel: “Knowing you, I think you have already thought it through. Lay it on
us.”
Me: “Well, you know me very well, I guess! I have given some thought to it.
In my opinion, we can go with standard deployment in a QA environment.”
Sajal: “Why normal deployment in QA? Is there any rationale behind it?”
Me: “Yes, there is a rationale; so in normal deployment, there will be
downtime, and I don’t think that will impact the QA environment in any way
since it’s in an internal environment, and no one is going to access it from
outside. I think normal deployment should be fine for the this environment.”
Adeel: “Well, it makes sense to me. A little downtime is not going to harm
the QA environment.”
Me: “Correct. For the security testing environment, I think rolling
deployment should be good. The need for keeping rolling deployment here is
that most security testing will be automated, and it will run for an extended
period. Therefore, we cannot risk downtime in the security testing
environment; otherwise, the tests will be disrupted.”
Sajal: “Yeah, that sounds perfect. We don’t want our security testing to get
hampered.”
Me: “The only drawback is that the rollback will be a little slow in rolling
deployment, but I think we can manage that. In the performance testing

environment, we should use the Blue/Green deployment strategy to cut over
the traffic easily and quickly on the newly released version and then perform
rigorous testing for performance. If anything looks bad, we will cut back to
the older versions. The rollback is quite fast in this deployment strategy.”
Adeel: “Hmm. It sounds nice, but I think we need to pay a few extra dollars
for this deployment strategy.”
Sajal: “Yes, Adeel, but we cannot compromise our client user experience and
performance. So, let us go ahead with it.”
Adeel: “Abhishek, what about UAT and production? Since they are close,
will they follow the same deployment strategy?”
Me: “That is a great question, and the answer is “Yes”. We will follow the
canary deployment approach for UAT and the production environments.”
Sajal: “Abhishek, why canary? Do we want to test the actual user experience
there?”
Me: “Yes, sir, you are right. We will shift some percentage of traffic on the
new release and then compare the graph, metrics, and user experience. If
everything looks good, we will gradually shift the traffic to the new version,
and the old version will have 0% traffic eventually.
Sajal: Looks like we got everything covered. I like the canary idea. Let’s try
it out. So, Abhishek, please start working on the solutions you have
explained, and we will see how everything works. Please let me know if you
need anything from my side.”
Me: “I will surely let you know.”
Adeel: “I can also help if you need anything from my side or any specific
development practice changes from the development team.”
Me: “I appreciate that, Adeel. Although I doubt it will be required, I will
surely let you know in case.”
The following figure shows the documentation of all the flows for better
understanding:

Figure 8.1: Flow for the complete CD with environments

The preceding figure shows the complete flow of CD across different
environments. The first deployment will happen on the Development
environment, and the development team will be the owner in terms of
validation. After the development team approves the code and merges it with
the master branch, the code will be deployed to the QA environment, and the
quality team will validate it.
After QA signoff, the code will move to the security environment, where the
security team will perform all the security-related testing. If there are no
vulnerabilities, the code will move to the performance testing environment,
where the performance testing team will test the application’s performance
and responsiveness.
At the end of the phase, the code will be deployed in the UAT environment
and validated by the business team for user perspective testing. If everything
looks fine, the code will be deployed in the production environment.

Continuous Deployment for QA Environment
(Normal Deployment)
Figure 8.2 shows the flow diagram of the QA environment:

Figure 8.2: Flow for QA Environment

Figure 8.3 is the graphical representation of QA environment deployment:

Figure 8.3: Recreate strategy for QA Environment

As discussed in sprint planning, the QA environment will use
Recreate/Normal rolling deployment strategy, in which the old code will be
removed. New code will be deployed under the same load-balanacer.
To set up the environment, we need to create a load-balancer that will serve
the traffic on the application. For load-balancer, we will use Traefik, which
is a modern advanced load balancer and can be integrated with Docker very
easily. To create this load balancer, we can execute the docker command or
the docker-compose command:
version: “3.3”

services:

traefik:

image: “traefik:v2.8”

container_name: “traefik”

command:

#- “--log.level=DEBUG”

- “--api.insecure=true”

- “--providers.docker=true”

- “--providers.docker.exposedbydefault=false”

- “--entrypoints.web.address=:80”

ports:

- “80:80”

- “8080:8080”

volumes:

- “/var/run/docker.sock:/var/run/docker.sock:ro”

network_mode: bridge

Code: 8.1

After that, we can simply execute the docker-compose command to bring it
up:
$ docker compose up -d

Code 8.2

The stage view pipeline for deployment in the QA environment will look like
this:

Figure 8.4: Pipeline view for QA environment

The Jenkinsfile will be the orchestrator for creating this stage view. The
Jenkinsfile code will look like this:
node(“deployment”) {

properties([parameters([string(defaultValue: ‘latest’, name:

‘VERSION’, trim: true)])])

stage(“Cloning codebase for QA Deployment”) {

checkout scm

}

stage(“Deploying the ${VERSION} on QA Environment”) {

sh “””

if ! sudo docker inspect spring3hibernate > /dev/null 2>&1

then

sudo docker run -itd --name spring3hibernate --label

traefik.

enable=true \

--label

‘traefik.http.routers.spring3hibernate.rule=Host(`qa-

spring.opstree.com`)’ \

--label “traefik.port=8080” opstree/

spring3hibernate:${VERSION}

else

sudo docker rm -f spring3hibernate

sudo docker run -itd --name spring3hibernate --label

traefik.

enable=true \

--label

‘traefik.http.routers.spring3hibernate.rule=Host(`qa-

spring.opstree.com`)’ \

--label “traefik.port=8080” opstree/

spring3hibernate:${VERSION}

fi

“””

}

}

Code 8.3

In the code example, we are using the concept of labels for docker containers
to use Traefik service discovery model. More information is available at the
following link:
[https://doc.traefik.io/traefik/routing/providers/docker/]
The architecture diagram of Traefik with a docker container looks like this:

https://doc.traefik.io/traefik/routing/providers/docker/

Figure 8.5: Traefik docker architecture

Continuous Deployment for Security Environment
(Rolling Deployment)
In the following figure, you can see the flow diagram of the security
environment:

Figure 8.6: Flow diagram of Security Environment

Figure 8.7 is the graphical representation of security environment

deployment:

Figure 8.7: Rolling Deployment for Security Environment

To make sure we are not disrupting the security testing by giving some
application downtime, we are going to use rolling deployment strategy. In
this strategy, the v2 version of the code will be deployed alongside the v1
version, and once the health check is passed for the v2 version, we will
remove the v1 version from the load balancer and delete it.
The stage view of the security environment with rolling deployment will look
like this:

Figure 8.8: Stage view for Security Environment

The Jenkinsfile code for a rolling deployment will look like this:
node(“deployment”) {

properties([parameters([string(defaultValue: ‘latest’, name:

‘OLDER_VERSION’, trim: true),

string(defaultValue: ‘latest’, name: ‘NEW_VERSION’, trim:

true)])])

stage(“Cloning codebase for Security Environment Deployment”) {

checkout scm

}

stage(“Deploying the ${NEW_VERSION} on Security Environment”) {

sh “””

sudo docker run -itd --name spring3hibernate-${NEW_VERSION}

opstree/spring3hibernate:${NEW_VERSION}

“””

}

stage(“Validating the ${NEW_VERSION}”) {

sh “””

sleep 10s

NEW_IP=\$(sudo docker inspect -f

‘{{range.NetworkSettings.Networks}}{{.IPAddress}}{{end}}’

spring3hibernate-${NEW_VERSION})

response=\$(curl --write-out ‘%{http_code}’ --silent --

output /dev/null http://\${NEW_IP}:8080)

if [[“\${response}” != 200]; then

echo “Application is not working fine”

exit 1

fi

“””

}

stage(“Add the new version to load balancer”) {

sh “””

sudo docker rm -f spring3hibernate-${NEW_VERSION}

sudo docker run -itd --name spring3hibernate-${NEW_VERSION}

--label traefik.enable=true \

--label

‘traefik.http.routers.spring3hibernate.rule=Host(`qa-

spring.opstree.com`)’ \

--label “traefik.port=8080”

opstree/spring3hibernate:${NEW_VERSION}

“””

}

stage(“Removing old version”) {

sh “””

sudo docker rm -f spring3hibernate-${OLDER_VERSION}

“””

}

}

Code 8.4

In this pipeline, we are deploying a new Docker container with a new version
of application image; once the container is deployed, there is another stage to

validate if the new version is healthy and working fine. Once the validation is
complete, we will add the new version to the load balancer, and after that, the
older version will be removed from the load balancer and the server.

Continuous Deployment for Performance
Environment (Blue/Green Deployment)
In the following figure, you will see the flow diagram of the performance
environment:

Figure 8.9: Flow diagram of the Performance Environment

Figure 8.10 is a graphical representation of the performance environment’s
deployment:

Figure 8.10: Blue Green Deployment of the Performance Environment

In the performance testing environment, we will do the blue-green
deployment so that cutover will be quick to the new environment. If anything
doesn’t work, rollback will also be quick.
Verion 2 of the code will be deployed along with version 1, and after testing
and validation, the traffic will be cut over to version 2. After traffic
validation, version 1 can be stopped, and if anything doesn’t go well with
version 2, we can perform the rollback action.

The stage view of the pipeline for rollback look like this:

Figure 8.11: Blue Green Deployment Stage View - Rollback

The stage view of the pipeline for making the traffic live will look like this:

Figure 8.12: Blue Green Deployment Stage View - Proceed

The pipeline code for Blue Green deployment will look like this:
node(“deployment”) {

properties([parameters([

string(defaultValue: ‘latest’, name: ‘GREEN_VERSION’, trim:

true, description: ‘Green is newer version’),

string(defaultValue: ‘latest’, name: ‘BLUE_VERSION’, trim:

true, description: ‘Blue is older version’)])])

stage(“Cloning codebase for Security Environment Deployment”) {

checkout scm

}

stage(“Deploying the Green version on PT Environment”) {

sh “””

sudo docker run -itd --name spring3hibernate-green --label

traefik.enable=true \

--label

‘traefik.http.routers.spring3hibernate.rule=Host(`green-pt-

spring.opstree.com`)’ \

--label “traefik.port=8080”

opstree/spring3hibernate:${GREEN_VERSION}

“””

}

stage(“Pause pipeline for Green version validation”) {

input ‘Do you want to proceed further?’

}

stage(“Cut-over of traffic on Green version from Blue version”)

{

sh “””

aws route53 change-resource-record-sets --hosted-zone-id

Z10166071X5VNARP9PUCV --change-batch \

file://blue-green-performance/green-update.json

“””

}

stage(“Validation of Performance Testing Environment”) {

returnValue = input message: ‘Do you want to proceed

further?’,

parameters: [choice(choices: [‘Rollback’, ‘Proceed’], name:

‘action’)]

}

if (“${returnValue}” == “Rollback”) {

stage(“Rollback in case of failure”) {

sh “””

aws route53 change-resource-record-sets --hosted-zone-id

Z10166071X5VNARP9PUCV --change-batch \

file://blue-green-performance/blue-update.json

“””

}

} else if (“${returnValue}” == “Proceed”) {

stage(“Live the traffic”) {

sh “””

sudo docker rm -f spring3hibernate-green

sudo docker run -itd --name spring3hibernate-blue --label

traefik.enable=true \

--label

‘traefik.http.routers.spring3hibernate.rule=Host(`blue-pt-

spring.opstree.com`)’ \

--label “traefik.port=8080”

opstree/spring3hibernate:${GREEN_VERSION}

“””

}

}

}

Code 8.5

Continuous Deployment for UAT Environment
(Canary Deployment)
Figure 8.13 shows the flow diagram of the UAT environment:

Figure 8.13: Flow diagram of the UAT Environment

Figure 8.14 shows the graphical representation of UAT environment
deployment:

Figure 8.14: Canary Deployment for UAT Environment

In the UAT environment, the application will be deployed using the canary
deployment strategy as described in sprint planning. Version 2 will be
deployed alongside version 1, and the traffic will be shifted in percentage to
version 2. 90% of traffic will be served from version 1, and the remaining
traffic will be served from version 2. If all goes well, the traffic will
completely go to version 2, and version 1 will be torn down. In case of

failure, 10% of the traffic will again be shifted to version 1.
The stage view of the UAT canary deployment pipeline for making traffic
live will look like this:

Figure 8.15: Canary Deployment Stage View – Live

The stage view of the UAT canary deployment pipeline for rollback will look
like this:

Figure 8.16: Canary Deployment Stage View - Rollback

The pipeline code for canary deployment will look like this:
node(“deployment”) {

properties([parameters([

string(defaultValue: ‘latest’, name: ‘BASELINE_VERSION’,

trim: true, description: ‘Older version’),

string(defaultValue: ‘latest’, name: ‘CANARY_VERSION’, trim:

true, description: ‘Newer version’)])])

stage(“Cloning codebase for UAT Environment Deployment”) {

checkout scm

}

stage(“Deploy the Canary version on UAT Environment”) {

sh “””

sudo docker run -itd --name spring3hibernate-canary --label

traefik.enable=true \

--label ‘traefik.http.routers.spring3hibernate-

canary.rule=Host(`uat-spring.opstree.com`)’ \

--label “traefik.port=8080” --label “traefik.weight=10” --

label “traefik.backend=app_weighted” \

opstree/spring3hibernate:${CANARY_VERSION}

sudo docker run -itd --name spring3hibernate-baseline --

label traefik.enable=true \

--label ‘traefik.http.routers.spring3hibernate-

baseline.rule=Host(`uat-spring.opstree.com`)’ \

--label “traefik.port=8080” --label “traefik.weight=90” --

label “traefik.backend=app_weighted” \

opstree/spring3hibernate:${BASELINE_VERSION}

“””

}

stage(“Validation for Application”) {

returnValue = input message: ‘Do you want to proceed

further?’,

parameters: [choice(choices: [‘Rollback’, ‘Proceed’], name:

‘action’)]

}

if (“${returnValue}” == “Rollback”) {

stage(“Rollback complete traffic to Baseline”) {

sh “””

sudo docker rm -f spring3hibernate-baseline

sudo docker run -itd --name spring3hibernate-baseline --

label traefik.enable=true \

--label ‘traefik.http.routers.spring3hibernate-

baseline.rule=Host(`uat-spring.opstree.com`)’ \

--label “traefik.port=8080” --label “traefik.weight=100” --

label “traefik.backend=app_weighted” \

opstree/spring3hibernate:${BASELINE_VERSION}

sudo docker rm -f spring3hibernate-canary

“””

}

} else if (“${returnValue}” == “Proceed”) {

stage(“Shifting all traffic to canary”) {

sh “””

sudo docker rm -f spring3hibernate-canary

sudo docker run -itd --name spring3hibernate-canary --label

traefik.enable=true \

--label ‘traefik.http.routers.spring3hibernate-

baseline.rule=Host(`uat-spring.opstree.com`)’ \

--label “traefik.port=8080” --label “traefik.weight=100” --

label “traefik.backend=app_weighted” \

opstree/spring3hibernate:${CANARY_VERSION}

“””

}

}

}

Code 8.6

Continuous Deployment for Production
Environment (Canary Deployment)
Figure 8.17 shows the architecture diagram of Canary deployment for
production environment:

Figure 8.17: Flow diagram for Production Deployment

The production environment is similar to the UAT environment, so the
deployment strategy will also be the same for this environment. As discussed
in Sprint planning, the production environment will also use the Canary
deployment for the application release. So, all the pipeline and flow will be
the same for it.

Reflection
A few months after the implementation, everybody met in the break room for
their start-of-the-day refreshments and casually talked about their experiences
with the new setup. Sajal recalled, “The other day, I was speaking to Vishant.
He was talking about the vacation he has been planning and stuff. But I found

it interesting that he mentioned in the passing that it had been quite a
productive month, and that he deserves a break.” “Haha,” chuckled Adeel,
“Yes, he has been working quite hard, but that does not sound like something
he would say.” I agreed, saying, “Yeah, I remember talking to him in the
initial days. He was one sad soul, envious of gardeners and whatnot.”
Everyone burst into laughter with that recollection, which surprised me as I
was unaware that he did it often. When the laughter died, Sonia added, “My
team has a similar experience. With the CI/CD pipeline setup, everything is
smoother. Vishant has been meeting our timelines. We have ample time to try
out new things, and with a couple of new hires, we can focus on setting up
our new automated testing frameworks.” “Hey, Sonia, I’d like to come by
later to inquire about that, if you don’t mind,” said Abhishek. “Sure thing, no
problem, boss,” she replied.
Adeel followed up on Sonia’s thought, “I have to agree with Sonia there. This
gradual adoption of DevOps has been quite fruitful. I remember how a lot of
time was wasted on issues that had nothing to do with the actual service we
were trying to roll out. Development, QA, and production were mixed, and
there were no clear boundaries. It took time even to trace the point of origin
of the issue. Now, it is easier to trace the origin, but we also do not need to do
that, as most issues get caught in their respective environments.” Sandeep
added, “For me, the best part has been deployments since CI/CD was set up. I
remember how Adeel, Sonia, and their teams would band their heads, trying
to figure out what was breaking. Now, the releases are on time, and the
respective teams can also focus on improving the quality of our services.” I
remember feeling a sense of comfort about this conversation and said, “Well,
guys, there’s still a lot of room to improve. Now that one part is completed
and running smoothly, I am excited about the next steps.”

Conclusion
Going through this story was quite a ride, especially when the end is not as
one expected. But when adopting something new, we cannot just rely on one
level and its outcome. It is only natural to seek out additional levels. Even if
the original story is believable, reading more will only strengthen our
decision and bring more confidence. Before it starts to sound too vague, let
me clear up that in the next chapter, where we’ll use case studies. It will
involve an understanding and demonstration of the CI process for different

types of languages. In the end, there’s also a surprise: a peak into our very
own CI/CD product.

Index

A
Accunetix 157
Active scan 164
administration plugins 60

agents 60-62
audit trail 62

Anchor 147
Ansible 53, 54
Apache JMeter 158
API testing 165

architecture 36
AppScan 157
AquaScanner 147
audit trail plugin 62
authentication, Jenkins 66

basic security setup 66, 67
Delegate to Servlet container 67
Identity Provider Plugins 67, 68
LDAP 67
Unix user/group database 67

authorization, Jenkins 68
Matrix-based security 68
methods 68
Project-based Matrix authorization 68
role-based authorization 69

B
Behavior Driven Development (BDD) testing 161

architecture 162
test cases 161

Bitbucket CI 47
Blue Green deployment 173, 174
BlueOcean plugin 60

features 60
branching strategy 37-39
build-management plugins

HTML publisher plugin 63
SonarScanner plugin 64
warnings next-generation plugins 63

business testing environment 158

C
Canary Deployment 174
CD testing elements 159

API testing 165
Behavior Driven Development (BDD) testing 161, 162
JMeter 167, 168
OWASP ZAP 164
performance testing 166, 167
regression testing 159, 160
security testing 163, 164

Center for Internet Security (CIS) 147
CI Pipeline update, with intermediate steps 107-110

artifacts, generating 110
artifacts, uploading to Nexus 110-112
DB update 114, 115
deployment, to Dev environment 112, 113

CI Pipeline, with notification integration 115, 116
CI Pipeline, with pre-deployment integration checks 92-95, 133, 134

code checkout 95-97
code coverage 144, 146
code quality 98, 99, 135
code stability 97, 98, 134, 135
security testing 101, 102, 147-153
Sonarqube integration 103, 104
unit testing 100, 141-143

CI tools 11
CI Trivia 10
Clair 147
code coverage 17
code quality check 16
code stability testing 16
Common Vulnerabilities and Exposures (CVE) 147
container engines 121, 122
containerization 119, 120

deployment 121
environment consistency 121
need for 118, 119
of application 132, 133
OS dependency 121
resource optimization 121

containers 119
architecture 121
properties 120

Continuous Deployment
Blue Green deployment 187-190
Canary deployment 190, 194
for performance environment 187-189
for production environment 194
for QA environment 181-184

for security environment 184-187
for UAT environment 191, 192
normal deployment 181
rolling deployment 184, 185

continuous integration (CI) 15
checks 92
common checks 17

Cucumber 162
architecture 163

D
DAST analysis tools 157
Data Definition Language (DDL) 28
Data Manipulation Language (DML) 28
deployment strategies 169

Blue Green deployment 173, 174
Canary Deployment 174
discussion 178-181
normal 169, 170
ramped/rolling deployment 171-173

development environments 156
business testing environment 158
performance testing environment 158
QA environment 156, 157
security testing environment 157

Docker 121, 122
architecture 123
basics 122, 123
images 124
installation 128, 129
registry 126, 127

Docker CLI 127
Dockerfile 125
Dockerfile, best practices

logical grouping 138-141
multiline instructions 136
ordering 136
package manager cache 137
specific files 136
unnecessary packages 137

Dynamic Application Security Testing (DAST) 157, 163

E
Email plugin 65
example, Jenkins pipeline

CI/CD 76, 77
infrastructure management 77, 78
workflow management 77

G
GitHub Actions 46
GitLab CI/CD 46
Global Tool Configuration 86-88

H
HPI files 57
HTML publisher plugin 63, 64
hypervisor 119

I
installation methods, Jenkins plugin

HPI Files 57
Jenkins-CLI 56
WebUI 55, 56

intermediate operations 25
artifact management 25-27
DB versioning 27-29

J
Jenkins 43, 49

Ansible 53, 54
architecture 50
authentication 66
authorization 66
features 49
installation 50
installation on Linux (Debian) 50, 51
installation on Windows 51-53
Master/Slave architecture 82
plugins 54

Jenkins-CLI 56
Jenkins pipeline 70, 71

advantages 71
declarative pipeline 72, 73
examples 76
features 70, 71
scripted pipeline 71
Shared Library 75, 76
terms 73

Jenkins pipeline, terms
node block 74
parallel 75
pipeline 73
stage 74

steps 75
JMeter 167

console UI 168
Junit report 143

L
Load ninja 158
Loadrunner 158
Locust 158

M
Master/Slave architecture, Jenkins 82

dynamic slaves 85, 86
JNLP slaves 83, 84
scenarios 86
SSH slaves 84, 85

Matrix Authorization Strategy plugin 69
Multibranch pipeline

converting 105-107
multistage Dockerfile 126

N
Nikto 157
normal deployment 169, 170
notification-related plugins 65

Email plugin 65, 66
slack plugin 65

O
OWASP 147
OWASP ZAP 164

P
Passive scan 164
performance testing 166

architecture 167
performance testing environment 158
Phoenix Project 1
plugins, Jenkins 54

administration plugins 60-62
build-management plugins 63
installation 55
notification-related plugins 65
source code management (Git) 57, 58

user interface plugins 58, 59
post-deployment integrations 30

API testing 34-36
notifications 36, 37
regression testing 32-34
smoke testing 30-32

pre-deployment checks 17, 18
code coverage 23, 24
code quality 20-22
code stability 18-20
security testing 23, 24
testing 23, 24

Q
Quality Assurance (QA) 16

environment 156, 157

R
ramped/rolling deployment 171-173

max surge 171
max unavailable 171

regression testing 159

S
Security Realm 66
security testing 17, 163

DAST 163
SAST 163

security testing environment 157
Selenium 160, 161
Self-Hosted CI/CD tools 48
server deletion, handling 78

backup configuration 79, 80
backup plugin installation 78
Data Directory Backup and Restore 81
Jenkins Server Image 82
restoration 81

Simple Object Access Protocol (SOAP) UI 165
architecture 166

slack plugin 65
Snyk 147
Software as a Service (SaaS) 47
Software Development Life Cycle (SDLC) 46
software development project 2-6

application testing 9, 10
sprint planning 6-9
stakeholders 6

SonarQube 11
integration 103, 104

SonarScanner plugin 64
source code management (Git) 57, 58
Static Application Security Testing (SAST) 147, 157, 163

T
Test Driven Development (TDD) 161
testing 16
tooling landscape 44, 45

available toolset 45, 46
toolset

Self-Hosted CI/CD tools 48
Software as A Service (SaaS) 47
VCS integrated pipelines 46

Traefik 182
Traefik docker architecture 184
Trivy 147

U
unit testing 17
User Acceptance Testing (UAT) environment 158
user interface plugins 58

BlueOcean 60
folders 58, 59

V
VCS integrated pipelines

Bitbucket CI 47
GitHub Actions 46
Gitlab CI/CD 46

video consultation app 4
virtualization 119

architecture 120
virtual machine 120

W
warnings next-generation plugins 63
Web UI 55, 56

Z
Zed Attack Proxy 157

	Cover Page
	Title Page
	Copyright Page
	Dedication Page
	About the Author
	About the Reviewer
	Acknowledgement
	Preface
	Errata
	Table of Contents
	1. Introduction
	Structure
	Objectives
	Character Introduction

	Sprint-1 Retrospection
	Light of Hope
	Conclusion
	Questions

	2. Continuous Integration
	Introduction
	Structure
	Objectives
	Set up
	Pre-deployment Checks
	Code stability
	Code Quality
	Testing, Code Coverage, and Security Testing

	Intermediate operations
	Artifact management
	DB Versioning

	Post-deployment integrations
	Smoke testing
	Regression testing
	API testing
	Notifications

	Branching strategy
	Conclusion
	Points to Remember
	Multiple Choice Questions
	Answers

	Questions
	Key Terms

	3. Introduction to Jenkins
	Structure
	Objectives
	Tooling landscape
	Available toolset
	VCS Integrated Pipelines
	Software as a Service
	Self-Hosted CI/CD Tools

	Why Jenkins?
	Jenkins installation
	Installation on Linux (Debian)
	Installation on Windows
	Ansible

	Plugins
	Installation
	Web UI
	Jenkins-CLI
	HPI Files (Without internet)
	Simple Plugins
	Source code management (Git)
	User Interface
	Administration
	Build Management
	Notification

	Authentication and authorization
	Authentication
	Authorization
	Recommendation

	Jenkins Pipeline
	Scripted vs Declarative Pipeline
	Terms
	Pipeline
	Node
	Stage
	Steps
	Parallel

	Shared Library
	Examples
	CI/CD
	Workflow Management
	Infrastructure Management

	What If the Server Gets Deleted?
	Backup Configuration
	Restoration
	Second line of safety (Data Directory Backup and Restore)
	Third line of safety (Jenkins Server Image)

	Master/Slave architecture
	JNLP Slaves
	SSH Slaves
	Dynamic Slaves
	Scenarios

	Global tool configuration
	Conclusion
	Points to Remember
	Multiple choice questions
	Answers

	Questions
	Key terms

	4. CI with Jenkins
	Structure
	Objectives
	CI Pipeline with Pre-Deployment Integration Checks
	Code Checkout
	Code Stability
	Code Quality
	Unit Testing
	Security Testing
	Sonarqube Integration

	Converting Multibranch Pipeline
	CI Pipeline update with Intermediate steps
	Generating Artifacts
	Uploading Artifacts to Nexus
	Deployment to Dev Environment
	DB Update

	CI Pipeline with Notification Integration
	Conclusion
	Questions

	5. Introduction to Docker
	Structure
	Objectives
	Need for containerization
	What and why containers?
	Virtualization
	What is a Container?
	Why Container?

	Container Engines
	Docker Basics
	Docker architecture
	Docker Images
	Dockerfile
	Multistage Dockerfile
	Docker Registry
	Docker CLI

	Docker Installation (Debian System)
	Conclusion

	6. CI with Jenkins and Docker
	Structure
	Objectives
	Containerization of application
	CI Pipeline with Pre-Deployment Integration Checks
	Code Stability
	Code Quality
	Unit Testing
	Code Coverage
	Security Testing

	Conclusion

	7. Continuous Deployment
	Structure
	Objectives
	Different Kinds of Environments
	QA environment
	Security testing environment
	Performance Testing Environment
	Business Testing Environment

	CD Testing Elements
	Regression Testing
	Behavior Driven Development testing
	Security Testing
	OWASP ZAP
	API Testing
	Performance Testing
	Jmeter

	Deployment Strategies
	Normal Deployment
	Rolling/Ramped Deployment
	Blue Green deployment
	Canary Deployment

	Conclusion

	8. Continuous Deployment Using Jenkins
	Structure
	Objectives
	Deployment strategy discussion
	Continuous Deployment for QA Environment (Normal Deployment)
	Continuous Deployment for Security Environment (Rolling Deployment)
	Continuous Deployment for Performance Environment (Blue/Green Deployment)
	Continuous Deployment for UAT Environment (Canary Deployment)
	Continuous Deployment for Production Environment (Canary Deployment)
	Reflection
	Conclusion

	Index

