

Implementing
DevSecOps

with Docker and
Kubernetes

An Experiential Guide to Operate in the
DevOps

Environment for Securing and Monitoring
Container Applications

José Manuel Ortega Candel

www.bpbonline.com

http://www.bpbonline.com

FIRST EDITION 2022
Copyright © BPB Publications, India
ISBN: 978-93-5551-118-8

All Rights Reserved. No part of this publication may be reproduced, distributed or transmitted in any
form or by any means or stored in a database or retrieval system, without the prior written permission
of the publisher with the exception to the program listings which may be entered, stored and executed
in a computer system, but they can not be reproduced by the means of publication, photocopy,
recording, or by any electronic and mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY
The information contained in this book is true to correct and the best of author’s and publisher’s
knowledge. The author has made every effort to ensure the accuracy of these publications, but
publisher cannot be held responsible for any loss or damage arising from any information in this book.
All trademarks referred to in the book are acknowledged as properties of their respective owners but
BPB Publications cannot guarantee the accuracy of this information.

www.bpbonline.com

http://www.bpbonline.com/

Dedicated to
My parents and brothers

About the Author
José Manuel Ortega has been working as a software engineer and security
researcher, focusing on new technologies, open source, security, and testing.
His aim has been to specialize in Python and DevOps security projects with
Docker. He is currently working as a security tester engineer, analyzing and
testing the security of applications. He has collaborated with universities and
the official college of computer engineers, presenting articles and holding
conferences. He has also been a speaker at national and international
conferences. You can find his conferences and talks related to Python,
Security, and Docker on his personal site - http://jmortega.github.io

http://jmortega.github.io

About the Reviewers
Ajay Bhaskar, a DevOps enthusiast, is always eager to learn new
technologies related to automating application lifecycle management. He has
also reviewed Cloud Analytics using Microsoft Azure Stack. He loves R&D
and has a keen interest in inventing or optimizing and implementing
solutions.
Prajeesh Prathap is an experienced technologist who specializes in building
web scale, cloud native applications with special interest in event-driven,
distributed systems. Prajeesh currently works as the platform and operations
teams’ manager for IT&Care in the Netherlands, specializing in setting up the
containerized environments, CI/CD using Azure DevOps, observability
platforms etc. He is a regular speaker at numerous technology conferences
and has authored courses on Reactive Microservices in .NET Core and
Continuous Delivery with VSTS & PowerShell DSC.

Acknowledgements
First and foremost, I would like to thank everyone at BPB Publications for
giving me the opportunity to publish this book, which tries to cover some of
the technologies that we can find within the DevSecOps ecosystem.
I would also like to thank my teachers and friends at the University for giving
me the ability to continuously learn in a world that becomes increasingly
complex. Lastly, I would like to thank the editors, reviewers, and publishers
for carrying out this project successfully.

Preface
In the last few years, the knowledge of DevSecOps tools in IT companies has
increased due to the growth of specific technologies based on containers like
Docker and Kubernetes. Docker is an open source containerization tool that
makes it easier to streamline product delivery, and Kubernetes is a portable
and extensible open source platform for managing workloads and services.
The primary goal of this book is to create a theory and practice mix that
emphasizes on the core concepts of DevSecOps, Docker containers and
Kubernetes clustering from a security, monitoring, and administration
perspective.
This book is helpful for learning the basic and advanced concepts of Docker
containers from a security point of view. The book is divided into 14 chapters
and provides a detailed description of the core concepts of DevSecOps tools:
Docker containers and Kubernetes platforms.
Chapter 1 introduces DevSecOps challenges, methodologies, and tools as a
new movement that tries to improve the security of applications. The idea of
DevSecOps is to take security as a requirement in the application design,
development, and delivery process.
Chapter 2 introduces main container platforms, like Docker and Kubernetes,
that provide infrastructure for both the development and operations teams.
The idea of this chapter is to introduce the main technologies that will be
used throughout the book and other alternatives for containers, like Podman.
Chapter 3 covers topics like how Docker manages images and containers,
the main commands used for generating our images from Dockerfile, and
how we can optimize our docker images by minimizing their size and, in
turn, reducing the attack surface.
Chapter 4 explores security best practices and other aspects like Docker
capabilities, which containers leverage in order to provide more features,
such as the privileged container. We will also review Docker Content Trust
and Docker Registry in this chapter; they provide a secure way to upload our
images in Docker Hub Platform and private registry. Finally, we will review
other registries like Harbor and Quay.

Chapter 5 walks us through Docker daemon, AppArmor, and seccomp
profiles, which provide kernel-enhancement features to limit system calls.
We will also review tools like Docker Bench Security and Lynis, which
follow security best practices in the Docker environment, and take a look at
some of the important recommendations that can be followed during auditing
and Docker deployment in a production environment.
Chapter 6 discusses best practices for building container images securely. In
addition to ensuring that your container is properly configured, you must
ensure that all image layers in a container are free from known
vulnerabilities. This is done through tools that perform a static scan of images
in the Docker repositories. We will also review some open source tools, like
Clair and Anchore, in this chapter to discover vulnerabilities in container
images.
Chapter 7 explores attack vectors that can affect container deployments with
Docker and covers topics like Docker Container threats and system attacks
that can impact Docker applications. We will review examples of attacks and
exploits that could target running containers. Additionally, we will review
specific CVE in Docker images and understand how we can get details about
specific vulnerabilities with the Vulners API.
Chapter 8 teaches us about Docker secrets and the essential components of
Docker networking, including how we can communicate with and link
Docker containers. We will also review other concepts that Docker uses for
exposing the TCP ports that provide services from the container to the host so
that users accessing the host can access the services of a container, like port
mapping.
Chapter 9 covers Docker container monitoring as an important part of the
maintenance of applications for getting metrics about application behavior.
This chapter introduces some of the open source tools available for Docker
container monitoring, such as cadvisor, dive, and sysdig falco.
Chapter 10 introduces some of the open source tools available for Docker
container administration, like Portainer, Rancher, and Openshift.
Chapter 11 looks at Kubernetes architecture, components, objects,
networking model, and different tools for working with Kubernetes,
explaining minikube as the main tool for deploying a cluster.
Chapter 12 discusses Kubernetes security patterns and best practices for

securing components and pods, applying the principle of the least privilege in
Kubernetes.
Chapter 13 talks about Kubernetes security and Kubernetes Bench for
Security project as an application that checks whether Kubernetes is
implemented securely by executing the controls documented in CIS
Kubernetes Benchmark guide. We will also review main security projects for
analyzing security in Kubernetes components and critical vulnerabilities
discovered in Kubernetes in the last few years.
Chapter 14 covers capabilities, which are recommended to be implemented
when running Kubernetes in production. We will first analyze observability
and monitoring in the context of Kubernetes, and then we will review
Kubernetes dashboard for getting metrics in your cluster. Finally, we will
look at the Kubernetes stack for observability and monitoring with
Prometheus and Grafana.

Code Bundle and Coloured Images
Please follow the link to download the

Code Bundle and the Coloured Images of the book:

https://rebrand.ly/43164f
The code bundle for the book is also hosted on GitHub at
https://github.com/bpbpublications/Implementing-DevSecOps-with-
Docker-and-Kubernetes. In case there's an update to the code, it will be
updated on the existing GitHub repository.
We have code bundles from our rich catalogue of books and videos available
at https://github.com/bpbpublications. Check them out!

Errata
We take immense pride in our work at BPB Publications and follow best
practices to ensure the accuracy of our content to provide with an indulging
reading experience to our subscribers. Our readers are our mirrors, and we
use their inputs to reflect and improve upon human errors, if any, that may
have occurred during the publishing processes involved. To let us maintain
the quality and help us reach out to any readers who might be having
difficulties due to any unforeseen errors, please write to us at :
errata@bpbonline.com
Your support, suggestions and feedbacks are highly appreciated by the BPB
Publications’ Family.

Did you know that BPB offers eBook versions of every book
published, with PDF and ePub files available? You can upgrade to the

https://rebrand.ly/43164f
https://github.com/bpbpublications/Implementing-DevSecOps-with-Docker-and-Kubernetes
https://github.com/bpbpublications
mailto:errata@bpbonline.com

eBook version at www.bpbonline.com and as a print book customer,
you are entitled to a discount on the eBook copy. Get in touch with us
at: business@bpbonline.com for more details.
At www.bpbonline.com, you can also read a collection of free
technical articles, sign up for a range of free newsletters, and receive
exclusive discounts and offers on BPB books and eBooks.

http://www.bpbonline.com
mailto:business@bpbonline.com
http://www.bpbonline.com

Piracy
If you come across any illegal copies of our works in any form on the
internet, we would be grateful if you would provide us with the
location address or website name. Please contact us at
business@bpbonline.com with a link to the material.

If you are interested in becoming an
author

If there is a topic that you have expertise in, and you are interested in
either writing or contributing to a book, please visit
www.bpbonline.com. We have worked with thousands of developers
and tech professionals, just like you, to help them share their insights
with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

Reviews
Please leave a review. Once you have read and used this book, why not
leave a review on the site that you purchased it from? Potential readers
can then see and use your unbiased opinion to make purchase
decisions. We at BPB can understand what you think about our
products, and our authors can see your feedback on their book. Thank
you!
For more information about BPB, please visit www.bpbonline.com.

mailto:business@bpbonline.com
http://www.bpbonline.com/
http://www.bpbonline.com/

Table of Contents
1. Getting Started with DevSecOps

Structure
Objectives
From DevOps to DevSecOps
Getting started with DevSecOps

Advantages of implementing DevSecOps
DevSecOps lifecycle

ShiftLeft security
DevSecOps methodologies

Applying the DevSecOps methodology
Security testing
Security code review

Continuous integration and continuous delivery
Continuous Integration (CI)
Orchestrating CI
Selection of continuous integration tools
Continuous delivery (CD) - Pipelines in software development
Advantages of continuous delivery
Continuous Integration (CI) versus Continuous Delivery (CD)

DevSecOps tools
Static Analysis Security Testing (SAST)
Dynamic Analysis Security Testing (DAST)
Dependency analysis
Infrastructure as Code security
Secrets management
Vulnerability management
Vulnerability assessment
Alerts and monitoring

Conclusion
Points to remember
Multiple choice questions

Answers

Questions
Key terms

2. Container Platforms
Structure
Objective
Docker containers

What is Docker?
Containers versus virtual machines
Docker features for container management
Docker architecture
Docker engine
Docker client
Containerd

Podman
Podman design and main functions

Podman commands
Container orchestration

Docker compose
Kubernetes

Kubernetes architecture
Kubernetes key terms
Kubernetes cloud provider solutions

Kubernetes alternatives
Docker Swarm
Nomad
Rancher - Kubernetes as a service

Conclusion
Points to remember
Multiple choice questions

Answers
Questions
Key terms

3. Managing Containers and Docker Images
Introduction
Structure

Objectives
Managing Docker images

Introducing Docker images
Docker layers

Image tags
Design considerations for Docker Images

Dockerfile commands
What is a Dockerfile?
Building images from Dockerfile
Best practices writing DockerFiles

Managing Docker containers
Searching and executing a Docker image

Executing a container in background mode
Inspecting Docker containers

Optimizing Docker images
Docker’s cache
Building an application with NodeJS
Reducing image size with multistage
Reducing image size with alpine Linux
Distroless Docker images

Conclusion
Points to remember
Multiple choice questions

Answers
Questions
Key terms

4. Getting Started with Docker Security
Introduction
Structure
Objectives
Docker security principles and best practices

Docker daemon attack surface
Security best practices
Execution with non-root user
Start containers in read-only mode
Disable the setuid and setgid permissions

Verifying images with Docker Content Trust
Resource limitation

Docker capabilities
Listing all capabilities
Add and drop capabilities
Disabling ping command in a container
Adding capability for managing network
Execution of privileged containers

Docker Content Trust
Notary as a tool for managing images

Docker Registry
What is a registry?
Public Docker registries
Creating Docker registry
Quay.io image repository
Harbor repository

Conclusion
Points to remember
Multiple choice questions

Answers
Questions
Key terms

5. Docker Host Security
Structure
Objectives
Docker daemon security

Auditing files and directories
Kernel Linux security and SELinux

Apparmor and Seccomp profiles
Installing AppArmor on Ubuntu distributions
AppArmor Docker-default profile
Run container without AppArmor profile
Run container with Seccomp profile
Deny all syscalls
Run a container with no seccomp profile
Write a seccomp profile

Security in-depth
Reducing the container attack surface

Docker bench security
Docker bench security execution

Auditing Docker host with Lynis
Conclusion
Points to remember
Multiple choice questions

Answers
Questions
Key terms

6. Docker Images Security
Structure
Objectives
Docker Hub repository and security scanning process

Docker security scanning
Docker security scanning process

Open source tools for vulnerability analysis
Clair security scanning
Dagda
OWASP dependency check
Trivy

Scanning Docker images with Clair and Quay
Quay.io image repository

Analyzing Docker images with Anchore
Deploying Anchore engine
Policies for image evaluation

Conclusion
Points to remember
Multiple choice questions

Answers
Questions
Key terms

7. Auditing and Analyzing Vulnerabilities in Docker Containers
Structure

Objectives
Docker containers threats and attacks

Dirty Cow Exploit (CVE-2016-5195)
Preventing DirtyCow exploit with apparmor
Vulnerability jack in the box (CVE-2018-8115)
Most vulnerable packages
Analyzing vulnerabilities in Docker images
Security vulnerability classification
Alpine image vulnerability (CVE-2019-5021)

CVE in Docker images
Getting CVE details with Vulners API
Conclusion
Points to remember
Multiple choice questions

Answers
Questions
Key terms

8. Managing Docker Secrets and Networking
Structure
Objectives
Introducing container secrets

What is a secret?
Managing secrets in Docker

Docker secrets with Docker swarm scenario
Introducing container networking

Bridge mode
Host mode

Network managing in Docker
Docker networking

Containers communication and port mapping
Configuring port forwarding between containers and Docker host

Creating and managing Docker networks
Docker network commands
Creating a network
Connecting a container to a network
Linking containers

Conclusion
Points to remember
Multiple choice questions

Answers
Questions
Key terms

9. Docker Container Monitoring
Structure
Objectives
Container statistics, metrics, and events

Log management
Containers stats
Obtain metrics using docker inspect
Events in Docker containers
Other Docker container monitoring tools

Performance monitoring with cAdvisor
Performance monitoring with Dive
Container monitoring with Falco
Launching Falco container

Falco rules
Nginx container monitoring

Conclusion
Points to remember
Multiple choice questions

Answers
Questions
Key terms

10. Docker Container Administration
Structure
Objectives
Introducing container administration
Container administration with Portainer

Deploying Portainer in Docker Swarm Cluster
Docker Swarm Administration with Portainer

Container administration with Rancher

Deploying Kubernetes using Rancher
Container administration with OpenShift
Conclusion
Points to remember
Multiple choice questions

Answers
Questions
Key terms

11. Kubernetes Architecture
Structure
Objectives
Kubernetes architecture

Components of a Kubernetes cluster
Kubernetes objects

Pods
Volumes
Deployment
ReplicaSet
Services
StatefulSets

Kubernetes networking model
Container to container communication within Pods
Pod to Pod communication through cluster nodes
External communication from the Pod

Tools for deploying Kubernetes
Cluster election
Working with Kubernetes using Minikube
Interacting with the cluster using kubectl

Conclusion
Points to remember
Multiple choice questions

Answers
Questions
Key terms

12. Kubernetes Security

Structure
Objectives
Introducing Kubernetes security

Configuring Kubernetes
Kubernetes security best practices

Using secrets
Firewall ports
Restrict the Docker pull <image> command
API authorization and anonymous authentication
Management of resources and limits
Security features built into k8s
Managing secrets
Kubernetes secrets
Other projects for managing Kubernetes secrets

Handle security risks in Kubernetes
Analyzing Kubernetes components security

Pod security policies
Static analysis with kube-score
Auditing the state of the cluster
Using livenessProbe and readinessProbe
Setting limits and resource requests
Applying affinity rules between nodes and pods

Conclusion
Points to remember
Multiple choice questions

Answers
Questions
Key terms

13. Auditing and Analyzing Vulnerabilities in Kubernetes
Structure
Objectives
KubeBench security

CIS benchmarks for Kubernetes with KubeBench
Kubernetes security projects

Kube-hunter
Kubesec

Kubectl plugins for managing Kubernetes
kubectl-trace
Kubectl-debug
Ksniff
kubectl-dig
Rakkess
Kubestriker
Other tools

Analyzing Kubernetes vulnerabilities and CVEs
Kubernetes vulnerabilities
Vulnerability with PodSecurityPolicy
Vulnerability in the use of certificates

Conclusion
Points to remember
Multiple choice questions

Answers
Questions
Key terms

14. Observability and Monitoring in Kubernetes
Structure
Objectives
Introducing observability and monitoring
Observability in a Kubernetes cluster

Cluster monitoring
Kubernetes dashboard

Other Kubernetes Dashboards
Enhancing observability and monitoring with Prometheus and Grafana

Prometheus
Prometheus architecture
Prometheus installation
Collecting metrics
Exploring metrics with Grafana
Other tools

Conclusion
Points to remember
Multiple choice questions

Answers
Questions
Key terms

Index

I

CHAPTER 1
Getting Started with DevSecOps

n this chapter, we will review DevSecOps challenges, methodologies, and
tools as a new movement that tries to improve the security of applications.

The idea of DevSecOps is to take security as a requirement in the application
design, development, and delivery processes.

Structure
We will cover the following topics in this chapter:

From DevOps to DevSecOps
Getting started with DevSecOps
DevSecOps methodologies
Continuous integration and continuous delivery
DevSecOps tools

Objectives
After studying this chapter, you will be able to understand the concepts of
DevOps and DevSecOps. You will also understand DevSecOps
methodologies, grasp the concepts of continuous integration and continuous
delivery, and learn about DevSecOps tools.

From DevOps to DevSecOps
Today, DevOps allows organizations to deploy changes to production
environments at faster speeds without comparing them to classic
methodologies. Basically, it’s a set of practices that combines the
development and IT operations teams with the aim of shortening software
development life cycle with CI/CD practices. A DevOps process would have
the following phases:

A developer writes the code using the development environment of their
choice and uploads it to a centralized code repository like Git or
Bitbucket.
The Continuous Integration (CI) server downloads the source code
from the central repository and packages the built artifacts and binaries.
For example, Docker images are created and pushed to the Docker
registry for containerized applications.
These artifacts and binaries are downloaded from the repository to be
deployed in different pre-production and production environments,
where they are built using container technologies like Docker and
Kubernetes.
Containers are built from the Docker images. If the environment is not a
containerized one (like VMs), sometimes the process is just copying the
binaries to a drop location.

From a security point of view, DevOps could include a number of best
practices that can be applied to increase the security of applications. These
best practices include the following:

Add automated security testing techniques, such as fuzz test and
software penetration testing, to the software development lifecycle or
system integration cycle
Standardization of the integration cycle to reduce the introduction of
errors
Introduction of security issues and limitations to software and systems
development teams at startup of the projects

At this point, we can introduce DevSecOps as a methodology that aims to
integrate security tools into the DevOps process in an automated way.
This necessarily leads to a cultural change in the normal operation of
DevOps, and teams must be trained so that they understand what tools they
have at their disposal, what they can achieve, and how they work, which
allows efficient collaboration between teams, creating a robust security
culture in the organization and development teams.
As a result, this multicultural and multidisciplinary automated security
environment makes security an issue that affects everyone and not just a
single team. This is one of the main engines of DevSecOps.

The following image shows how we are introducing security in DevOps:

Figure 1.1: DevOps vs DevSecOps

Getting started with DevSecOps
The speed at which organizations want to launch software products,
especially with DevOps, needs you to have the right tools and processes in
the right place. It is in those cases that DevSecOps brings greater value to
organizations by incorporating privacy and security into DevOps practices,
while allowing you to continue operating with an enhanced level of
cybersecurity.
DevSecOps is an initiative that aims to adopt security practices to include
them in the DevOps process. Gartner provides a more precise definition:
”DevSecOps is the integration of security in DevOps development in the most
fluid and transparent way possible. Ideally, this is done without reducing the
agility or speed of developers or without requiring developers to change their
tools in the development environment.”
These are the practices of how DevSecOps is implemented:

Integrate security tools in the development integration process

Prioritize security requirements as part of the product’s backlog
Collaborate with the security and development teams on the threat
model
Review infrastructure-related security policies prior to deployment

In those circumstances, applying a DevSecOps methodology is the best
option for organizations as it incorporates best practices into the core of the
software product development cycle. It does this by integrating security
practices into all areas of software development, from infrastructure and
continuous integration to deployments and continuous delivery of
applications.
In addition, applications should follow information security best practices,
including issues like data integrity, availability, and confidentiality, helping
developers become aware of how to code in a secure way and the need to
understand security best practices.

Advantages of implementing DevSecOps
The DevSecOps philosophy makes all team members, regardless of whether a
security is their specialty, aware of the need to apply best practices in this
matter.
All this will contribute to adding value to the projects carried out. They are
not only intended to be functional and easy to use, but security is taken into
account as an element of the development process to create secure code. This
will allow vulnerabilities to be detected faster and improve responsiveness
and patching to any security threat.
Here are some of the benefits of implementing DevSecOps:

Early identification of potential vulnerabilities in the code is
encouraged.
Greater speed and agility in applying security in all phases of
development.
Throughout the development process, tools and mechanisms are
provided to quickly and efficiently respond to changes and new
requirements.
Better collaboration and communication between teams involved in

development, as in DevOps.

In this way, tasks related to application security can be subject to automation
and monitoring mechanisms if security elements are integrated from the early
stages of development.
In addition, the different teams in charge of development and operations
become familiar with the security factors and apply them from the beginning,
preventing possible security breaches. So, secure and stable versions of
software are created in a short time, and these can be made directly available
to customers. This means both customers and organizations benefit from the
new possibilities.

DevSecOps lifecycle
Just like DevOps proposes the integration of tools to ensure the correctness of
the code throughout the development cycle, DevSecOps suggests the
integration of security tools as part of the continuous integration and
deployment processes.
The integration of these tools make up pipelines known as application
security pipelines, which can be abbreviated as app sec pipelines. These
pipelines may include phases like code review automation, security testing,
security scans, monitoring, and automated report generation.
This is the lifecycle and the flow of different phases in the DevSecOps
ecosystem where the security process will be part of the entire life cycle:

Figure 1.2: DevSecOps life cycle

With the final result of this pipeline, the requirements specification phase,

and the implementation, configuration, and deployment of all the tools
involved, we can execute the complete DevSecOps cycle, securing each of
the phases with specific tools and integrating the entire process with
continuous feedback in each phase.
The main benefits of this new culture of operations, development, and
security are:

More automation up front reduces the chances of mismanagement and
lowers errors.
According to Gartner, “DevSecOps can lead to security functions such
as Identity and Access Management (IAM), firewall, and vulnerability
scanning being programmatically enabled throughout the DevOps
lifecycle, leaving security teams free to establish policies.”
Security incidents are reduced and security is improved through shared
responsibility between all teams.
Vulnerability remediation costs are reduced.

When we integrate security into the development process instead of a layer
that’s added later, we allow the power of agile methodologies to be harnessed
by DevOps and security professionals with the aim of avoiding blocks to
generate secure code.

ShiftLeft security
DevSecOps practice consists of including security in DevOps to adopt the
good practices and benefits that the latter offers in development processes. To
do this, it proposes to carry out a security shift left, incorporating security
practices from the earliest stages of the development cycle.
These practices begin with the training and awareness of developers, as well
as the involvement of stakeholders, being essential to the commitment of all
parties regarding the security of the software.
Security must be considered from the design phase to avoid delay in project
delivery. To reconcile agility and security, the solution lies in implementing
security from the beginning of the project and not after it is completed.
Integrating security into an agile development cycle should start as early as
possible, that is, in the requirements definition phase. This approach, called

Security Shift Left, includes an orientation toward the principle of the
security approach, allowing the software development process to have a
totally secure workflow at each stage of the project development cycle.
For this, it is necessary to include the integration of security in the
operational and development processes through the implementation of
automatic systems and processes that are not only capable of detecting and
alerting of security problems but also of reacting in case they detect a
vulnerability.

DevSecOps methodologies
With a DevSecOps methodology, the objective is to integrate application
security within the development cycle working with agile development
methods linked to continuous delivery and continuous integration tools.
Security requirements, which are often high, must be part of the process from
the development phase to achieve this.
In this sense, efficient communication is necessary between the teams in
charge of security, development, and IT operations. So, the interdisciplinary
nature of the process is key to achieving a good implementation.
With the DevSecOps methodology, security mechanisms are already
integrated in the early stages of development. This way, the time to launch
can be dramatically shortened without having to compromise on security.
In fact, the security level tends to increase by incorporating the corresponding
measures from the early stages instead of applying them as a security kit on
the already closed product.

Applying the DevSecOps methodology
There are six important components in the DevSecOps methodology:

Code analysis: Deliver the code incrementally, with the aim of being
able to detect vulnerabilities quickly.
Change management: Increase speed and efficiency by allowing
changes to come from any source, and then determine if these changes
are beneficial through a review process.
Compliance monitoring: Be ready for an audit at any time (RGPD).

Threat research: Identify potential emerging threats with every code
update and respond quickly.
Vulnerability analysis: Identify new vulnerabilities with code analysis,
pentesting, and architecture analysis, and then analyze the response and
patching times.

Security training: Train systems and development teams in good security
practices.
It is important to note that the aforementioned falls mainly on the security
team, but one of the greatest principles of DevSecOps is to decentralize
security so that it becomes one more requirement in the development and
delivery flow.

Tip: Why adopt DevSecOps?
Mainly because this approach decentralizes security, making it one more
element of the workflow instead of something exclusive to the security
department. This way, secure projects are developed, and security ends up
being one more element of the organization culture through the DevSecOps
methodology.
According to a survey carried out by GitLab, 30% of users claim to be part
of a team focused on the security of the applications they develop, but 45%
of developers still consider that security tests are carried out in a phase too
late in the life cycle.

Security testing
Security testing in code is an essential element of a DevSecOps tool because
it helps determine application security flaws at the code level, before they can
be exploited by an attacker. So, it is important to analyze all the dependencies
that are being used in the application and check them for vulnerabilities that
arise from the lack of security patches.
Security testing is often called intrusion testing or penetration testing. This
testing can be carried out in two modes: white box or black box. It is aimed at
breaking the security measures of a system.

White box testing allows static analysis, checking the internal
functioning of the applications, and having all the necessary knowledge

through source code and architecture.
Black box testing focuses on examining the functionality of the
application without the knowledge of its internal structure using
dynamic analysis. The test cases of this approach focus on exploiting
the interaction with the application from the outside (APIs, databases,
files, protocols, input data, and so on) to break the application’s security
measures.

Specific teams of attackers or adversaries called Red Team and teams of
defenders called Blue Team are often employed to organize and optimize
security tests on an ongoing basis. Red team members explicitly put
themselves in the role of an adversary or attacker and operate independently
and continuously. Members of the blue team focus on monitoring and
defending a system against these attacks.
The main advantage of using white box testing is that it saves development
time and costs by identifying vulnerabilities during development. This way,
developers can spend time developing and innovating, rather than correcting
bugs in applications deployed in production.
You can scan your source code for known vulnerabilities if you are using
GitLab as your CI/CD continuous deployment and integration application.
GitLab performs a comparison between the source and target branches and
displays the information directly when merging between the two branches.

Tip: Security testing with GitLab
If you are working with GitLab, this tool supports both static and dynamic
analysis and automatically includes extensive security analysis every time a
commit or pull request is performed. This includes static and dynamic
security testing, along with dependency and container analysis.

GitLab secure: https://docs.gitlab.com/ee/user/application_security/
Static analysis:
https://docs.gitlab.com/ee/user/application_security/sast/
Dynamic analysis:
https://docs.gitlab.com/ee/user/application_security/dast/
Dependency analysis:
https://docs.gitlab.com/ee/user/application_security/dependency_scanning/

https://docs.gitlab.com/ee/user/application_security/
https://docs.gitlab.com/ee/user/application_security/sast/
https://docs.gitlab.com/ee/user/application_security/dast/
https://docs.gitlab.com/ee/user/application_security/dependency_scanning/

Container analysis:
https://docs.gitlab.com/ee/user/application_security/container_scanning/

Security code review
A security code review is an activity that consists of analyzing the software’s
source code to find errors and security problems. This activity can be carried
out both in traditional and agile development processes. It allows us to
identify problems like common programming errors, incorrect use of security
tools provided by frameworks, insecure use of cryptography primitives, and
incomplete development of a requirement, among others.
In agile methodologies, it is usually convenient to perform a code review
every time a change is made. These reviews can be carried out by the
developer who made the change as well as by another person. At the same
time, it improves the code quality by verifying that it complies with guides
and good coding practices, whether they are specific to each language or to
the organization.
Various types of reviews can be performed on the code in order to detect
security problems like peer reviews, code audits, and automated code
reviews.

Continuous integration and continuous delivery
DevOps manages principles that are part of the collaborative structure and are
used throughout the development and deployment of applications. The
following are the principles in which DevOps operates:

Continuous integration
Continuous delivery
Continuous deployment

Software integration raises problems that are known to those involved in
software development—new code is written that implements a new feature
and integrates with the rest of the project by performing unit and integration
tests.
In order to avoid errors at the end of the development phase, many teams are

https://docs.gitlab.com/ee/user/application_security/container_scanning/

committed to applying continuous integration, with which we can implement
changes directly in the project every day, and if possible, several times a day.
Like continuous delivery, continuous integration is a common practice,
especially in the field of agile software development. The goal of this
approach is to work in small steps to achieve a more effective development
process and to be able to react more flexibly to changes.
Since they work with small functionalities that can be developed in hours or a
few days, integration is done quickly and the developer can make their work
available to the rest of the team in just a few minutes. Any errors discovered
in this process can be quickly located and fixed.

Continuous Integration (CI)
Continuous integration is the way in which the software development team
integrates its partial or total work, in a certain time established by the work
team. It requires automation tools that are unique to the entire team of
developers. These tools help integrate in continuous form parts of code that
are validated by automatic tests, which makes the development team’s work
more efficient by allowing them to detect failures in the early stages of the
development cycle.
Continuous integration originated under the extreme programming
methodology and is a software development practice that requires the
periodic integration of code changes into a shared repository. Several useful
steps can be followed to have a continuous integration process:

Have a code repository in which the development is centralized. Each
developer works on small tasks, and the changes to the central line of
the repository are included when each task is finished.
Start a process of compilation and testing in an automated way, which
proves that the changes and additions are correct and have not altered
any part of the software. For this to work properly, there must be a good
set of tests that can be trusted.
Execute this process several times a day, paying attention to the
reported errors, which become a priority until they disappear. With this,
we can have the latest functional version of the project status on the
main line, a version that is updated several times a day.

The following image shows the continuous integration pipeline where
developers integrate their code in the repository. Every time a commit occurs,
a build tool and CI integration server are in charge of executing the
construction process automatically, in addition to executing the tests to verify
that the uploaded code is correct from functional the point of view:

Figure 1.3: Continuous integration pipeline

The continuous integration tools (CI tools) help in repository creation,
execution of tests, compilation, and version control, sometimes autonomously
and sometimes in combination with other applications.

Orchestrating CI
One of the things necessary to achieve the objectives set by the DevSecOps
methodology is the coordination of the work done by the team of developers.
This is when the concept of continuous integration comes into play. Its main
objective is to coordinate and integrate the work of the entire software
development team in a main line frequently and deliver the product with
these new changes as soon as possible. Jenkins is one of the leading engines
for monitoring continuous integration.
Jenkins https://jenkins.io is probably one of the best-known continuous
integration tools in the market. This software written in Java has been in
constant development since 2005 and has numerous functions that assist in

https://jenkins.io

continuous integration, deployment, and continuous delivery. This tool can
be used mainly to orchestrate processes in software development. Let’s
highlight its main capabilities:

Open source and written in Java programming language
Great support for plugins that add new functionalities
Complements on delivery tasks and continuous deployment
Compatible with many version control systems
Controls via GUI (web-based), REST API and command line
Execute manual or automatic tasks
Distributed execution in agents

Jenkins acts by orchestrating each process and the main function is to
download sources from version control, compile them, run tests, and generate
reports.

Selection of continuous integration tools
In principle, continuous integration can be applied without the need for
specific tools as all phases can be carried out manually, but this would
require a lot of time and discipline. The appropriate tools can help facilitate
work since they usually provide a server and help in the compilation of the
project and version control.
Today, we can find a wide variety of tools for Continuous Integration (CI).
They all aim to help the developer implement this methodology, and they do
it in different ways. These tools not only differ from each other in terms of
their features, but there is also a great variety when it comes to licensing.
While many of them are open source and freely available, other vendors offer
commercial tools. The most used tools in the market whose objective is
continuous integration are:
Travis CI https://travis-ci.org. It is a continuous integration tool that works
in conjunction with GitHub repositories and can be configured with a YAML
file saved in the root directory of the project. This way, GitHub informs
Travis CI of all the changes made in the repository and keeps the project
updated every time there is a change in this file. The main features are as
follows:

https://travis-ci.org

Multiplatform and developed in Ruby
Works with GitHub repository
It is configured with a YAML file
Free for open source projects
Open source (MIT license)

Bamboo https://www.atlassian.com/software/bamboo is a solution
developed by the Atlassian company, which also manages the Bitbucket file
hosting service and allows the execution of continuous integration tasks,
deployment, and release management functions. The main features are as
follows:

Multiplatform and developed in Java
Provides a web interface and REST API
Free for open source projects

GitLab CI is part of the popular GitLab version control system and is
compatible with GitLab CI Docker. In addition to continuous integration,
GitLab offers continuous deployment and delivery. As with Travis CI, the
GitLab CI configuration is done with a YAML file, and pipelines can be
configured and adapted to the requirements of each project.
You can get more information about this tool in the GitLab documentation at
https://about.gitlab.com/stages-devops-lifecycle/continuous-integration/.
CircleCI (https://circleci.com) is a continuous integration tool that works
with both GitHub and Bitbucket repositories. One of the main advantages
offered by CircleCI is its ability to automatically run compatible builds in
different environments, thanks to the use of Docker containers. The main
features are as follows:

Configuration with a YAML file
Supports also continuous deployment
You can deploy it on-premise or using hosting with a cloud provider
The free tier allows deployment in a container

CruiseControl (http://cruisecontrol.sourceforge.net/) has probably been the
oldest continuous integration tool since its launch in 2001. It has been
developed ever since, by Martin Fowler, a pioneer in the field of continuous

https://www.atlassian.com/software/bamboo
https://about.gitlab.com/stages-devops-lifecycle/continuous-integration/
https://circleci.com
http://cruisecontrol.sourceforge.net/

integration, among others. Along with a clear dashboard, developers have
numerous plugins at their disposal to make their work easier. CruiseControl
offers developers a control panel where they can check the build status, and
its main features are:

Cross-platform and written in Java
Web-based dashboard
Versions for Ruby (CruiseControl.rb) and .NET (CruiseControl.NET)
Open source (BSD license)

Codeship (https://www.cloudbees.com/products/codeship) is a continuous
integration tool developed by CloudBees with support for GitHub, BitBucket,
and GitLab repositories. The tool is available in two versions: the basic
version with a simple web interface, and the professional version that offers
support for working with Docker containers. It offers a pre-defined CI
environment and CI/CD workflows in its free version, which allow for
simultaneous build testing on shared and pre-configured containers. The main
features are as follows:

Web interface in the basic version
Configuration files in the repository in the professional version
Support for Docker containers in the professional version
Free tier for 100 builds per month in a test pipeline

TeamCity (https://www.jetbrains.com/teamcity) is a software that has
“gated commits” as its main functionality, allowing the tool to verify changes
in the code before integrating them into the main branch. So, only when the
code is free of errors and the tests have been run correctly does it become part
of the code base for the whole team. The tool automatically runs tests in the
background so that the developer team can continue working on the code.
This tool emphasizes interoperability with other tools, and thanks to the pre-
tested commits feature, it has the ability to check the new code before
integrating it into the main line and inform in case it detects any errors. The
main features are as follows:

Cross-platform and written in Java
Gated commits

https://www.cloudbees.com/products/codeship
https://www.jetbrains.com/teamcity

Free tier for 100 builds with 3 build agents
Offers 50% discount for startups and free for open source projects

Continuous delivery (CD) - Pipelines in software
development
Continuous delivery is an innovative concept of software development that is
being heard more and more frequently. Thanks to this practice, the
production phases that include development, quality control, and delivery are
automatically repeated throughout the development process through a
continuous delivery pipeline.
The main advantage is that with this methodology, software can be built
under quality controls every so often in each of its development phases,
allowing deliveries to be made even if the team continues to work on the
development of the final product.

Figure 1.4: Software delivery pipeline

In Continuous Delivery (CD), the integrated code (IC) is automatically
tested through many environments throughout the process to reach the
preproduction phase, where it is ready to be implemented definitively. The
interaction between CI and CD is called CI/CD. Additionally, the pipeline
provides continuous feedback, which allows us to improve the software
immediately after each modification to the source code.

Advantages of continuous delivery

Software development worked differently earlier—the final product was only
delivered if all functionalities were fully developed, worked perfectly, and no
major flaws were detected when quality tests were performed. So, the
developer had to release patches or updates every so often. Thanks to
continuous delivery, the customer receives the product at an earlier stage of
development, wherein it has not yet been completed.
This pre-delivery usually includes the structural functionality of the software
so that the customer can test it in a real environment. This way, the client
themselves (or the software tester) play an important role in the quality
control process.
Thanks to the feedback received, the developer can improve the
functionalities of the product in the development phase. Additionally, they
receive valuable information that gives them a clear idea about what
functionality they should develop next.
In this way, the three areas that include development, quality control, and
production are not replaced by a single process but are constantly
interconnected. When working with multiple clients, it is impossible to
achieve something like this if we do not have automated processes. This is
where continuous delivery intervenes as it is responsible for automating the
entire process.
Thanks to continuous delivery, we can check the processes and
improvements implemented on the software in real time to get feedback. If a
change generates unwanted side effects, we can detect them quickly and take
the necessary actions early in development. This point is an important
improvement because it facilitates, for example, the detection of bugs within
the code.

Continuous Integration (CI) versus Continuous
Delivery (CD)
The term continuous integration often appears in the same context as that of
continuous delivery. However, an important difference affects the scope of
both terms. We are referring to the automation of the testing process when we
talk about continuous integration, so the pipeline is a shared component with
continuous delivery. Continuous delivery is a broader term as it encompasses
the software delivery process as an automated process.

This way, continuous delivery complements the continuous integration model
and involves the end user as they deliver the product and simultaneously run
the relevant tests. The following table compares the two concepts:

Continuous Integration (CI) Continuous Delivery (CD)

Automated testing process that thoroughly
reviews each modification made to the source
code.

It covers more than the testing process and
includes the delivery process. New features and
modifications made to the code automatically
reach the end user.

The team has to run automated tests each time a
new feature is added or an enhancement or code
change occurs.

The tests have to be really effective on CD
because the results are delivered directly to the
end user.

It requires a dedicated and continuous integration
server to monitor and run automated tests.

Installation on the target system must also be as
automated as possible, which places greater
demands on the server.

Developers have to merge code modifications
frequently and continuously.

Developers have to maintain good
communication with the customer and be able to
clearly explain how the software works.

It requires a relatively high use of resources if the
quality of the product is to be guaranteed at the
time of delivery.

The effort is even greater in the case of CD, but
the product can be delivered much earlier after
having undergone “real” tests.

The development is more efficient, but it needs to
be paused more often due to manual releases.

It enables continuous development because the
release process is highly automated.

Table 1.1: Comparison between CI and CD

Next, we will review the main DevSecOps tools and resources that can help
an organization evolve to a security-based methodology, helping develop its
own security program in DevOps.

DevSecOps tools
When implementing DevSecOps, it is important to emphasize the principles
and values rather than the use of tools. The people involved in the
development process, and the people in charge of the product must
understand the risks and vulnerabilities to which they are exposed if measures
are not taken to avoid them.
This collection of tools is useful for establishing a DevSecOps platform. We
have divided the tools into several categories that will help you with the
different DevSecOps tasks and processes:

Static Analysis Security Testing (SAST)
Dynamic Analysis Security Testing (DAST)
Dependency analysis
Infrastructure as code security
Secrets management
Vulnerability management
Vulnerability assessment

This list of DevSecOps tools and resources is dynamic and will likely change
as the DevSecOps ecosystem matures and the community learns and
improves how DevSecOps is implemented and adopted. In this list, we will
only find initiatives that provide free or open source capabilities that help
with the mission of creating a good DevSecOps environment.

Tip: Periodic Table of DevOps Tools
A good reference for knowing all the available tools is this periodic table of
DevOps tools made by digital.ai (https://digital.ai/periodic-table-of-devops-
tools), which has become a guide of reference tools or a source of
information to discover new ones.

Figure 1.5: Periodic table of DevOps tools

Static Analysis Security Testing (SAST)
Tools in the SAST category are known as white box testing tools, where

https://digital.ai/periodic-table-of-devops-tools

information about the system being tested is known, including the
architecture and access to the source code. These tools allow you to examine
the source code in a static way with the aim of detecting and reporting
weaknesses that could become security vulnerabilities.
Using automated tools to perform security code controls can help us detect
the main vulnerabilities we can find in applications like SQL injection and
Cross-site scripting. The purpose of these tools is to verify OWASP top 10
compliance, dynamically scan the running application for vulnerabilities, and
promote software security culture among developers.
For example, we can use the Bandit tool, which performs an in-depth analysis
of the code and provides a comprehensive report for all the vulnerabilities
identified in the code, for Python-based applications. From there, the
decision is made to continue or stop the pipeline, depending on the number
and severity of the vulnerabilities, with the aim of fixing them before
continuing.
Other tools like SonarQube can be used for continuous quality inspection of
software with support for multiple languages and checkmarx as a complete
set of software security solutions providing security testing for static and
dynamic applications.
These tools are flexible and easily integrated into the development cycle,
providing feedback even while the code is being written. Since they do not
require the code to be executed to identify security problems, we can
integrate them into the development environments of each developer. This is
also known as Integrated Development Environment (IDE).
Bugs can be caught quickly this way, and development teams can work on
mitigations early. This leads to improvements in code integrity and enables
developers to write more secure code.
For example, SonarQube incorporates within its quality rules more than 600
expressions for the analysis of vulnerabilities like XSS, SQL Injection, and
CSFR, which include the ability to identify vulnerabilities from the OWASP
Top 10, SANS Top 25, and the CWE list.
Here’s a list of open source tools that can be used for SAST:

Bandit https://github.com/PyCQA/bandit
FindSecBugs https://find-sec-bugs.github.io

https://github.com/PyCQA/bandit
https://find-sec-bugs.github.io

LGTM https://lgtm.com
SonarQube https://www.sonarqube.org
Flawfinder https://dwheeler.com/flawfinder
Checkmarx https://www.checkmarx.com

SAST solutions analyze the code of a developed application, following a
series of rules that look for patterns and flows in the source code without the
need to compile it, according to standards like Common Weakness
Enumeration (CWE).
This type of solutions can be easily integrated into continuous integration
systems, allowing you to monitor the code and detect the vulnerabilities
related to input validation, race conditions, or the incorrect use of pointers
and references that could cause a buffer overflow.
For example, LGTM is a tool that allows us to analyze the GitHub public
repositories for the execution of static code analysis and vulnerability
analysis. Here are some of its main features:

Supports many programming languages like Java,
TypeScript/JavaScript, Python, C/C ++ and C #
Analyzes the content of projects whose source code is stored in public
repositories hosted on BitBucket, GitHub, and GitLab
Analyzes each revision of a certain project that contains vulnerabilities

We could do a search for the security rules defined by language. For
example, we can use the search string “language: Python security” if we are
interested in searching for security rules in Python.

https://lgtm.com
https://www.sonarqube.org
https://dwheeler.com/flawfinder
https://www.checkmarx.com

Figure 1.6: LGTM Python security rules

At this point, projects are evaluated based on code quality and provide
information on the impact of each commit. When a commit is performed, it is
analyzed against a set of rules depending on the language, each of which
corresponds to a particular aspect of the best programming practices for that
language. The result is data that shows trends in productivity and quality for a
given project.
Finding problems with the code and fixing them in the branch we are
working on is useful before the code merges with the main repository. If you
own or manage a repository parsed by LGTM, you can enable automated
code review every time a branch is merged. We can activate the code review
mode every time we make a pull request to do this.

Tip: Source code analysis tools
In the following links, you can check many tools for source code
analysis categorized by programming language:

https://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html
https://owasp.org/www-community/Source_Code_Analysis_Tools

Software quality control aims to identify security problems in the source
code. This control can be performed both in the pre-commit phase by
integrating it into the IDE, and in the continuous integration phase by
integrating it into the pipeline. This control is carried out through the Static

https://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html
https://owasp.org/www-community/Source_Code_Analysis_Tools

Analysis Security Testing (SAST) and Dynamic Analysis Security Testing
(DAST) testing tools, whose objective is to examine the source code to find
possible vulnerabilities.

Dynamic Analysis Security Testing (DAST)
In the development of web applications, each time a new version or update is
created, the security team’s support is necessary to execute on-demand and
manual security evaluations with DAST tools to identify vulnerabilities. This
ensures the deployment of applications in accordance with the organization’s
secure software development methodology.
DAST, unlike static tests (SAST), focuses on finding vulnerabilities in real-
time, that is, while the application is running. The objective of DAST testing
is to detect vulnerabilities not detected in the previous phases.
Web application scanners are an important part of vulnerability assessment
and security testing. Most of them have access via API or CLI, which can be
used to initiate analysis in the target applications. Here are some of the main
open source tools for dynamic analysis security testing:

OWASP ZAP - https://owasp.org/www-project-zap/
Arachni Scanner - http://www.arachni-scanner.com/
Nikto - https://cirt.net/Nikto2

OWASP Zed Proxy Attack - ZAP is one of the most widely used security
scanners by security professionals to identify vulnerabilities in code and
server configuration. Automatic vulnerability analysis is performed on the
web application, based on the OWASP Top 10 list, through OWASP’s Zed
Attack Proxy tool.
With this tool you can perform a security scan in the QA/staging environment
and solve the most critical configurations at the security level, such as the
revelation of sensitive information or the use of HTTP headers in an insecure
way.

Dependency analysis
In general, libraries and dependencies developed by third parties provide us
essential functionalities for our application. In the majority of developments,

https://owasp.org/www-project-zap/
http://www.arachni-scanner.com/
https://cirt.net/Nikto2

an application can base half of the development on third-party libraries.
In today’s software development environment, much of the work is done
collaboratively, and in open source communities it is normal to run into
security issues and the risks associated with these issues.
So, we can find vulnerabilities that do not originate in our development but in
an imported library that we did not know was vulnerable if a static analysis of
the complete code is carried out.
For this reason, it is important to use a dependency analysis tool, which, as a
general rule, analyzes the dependency managers used by our software for
compilation, such as a pom.xml in Maven and requirements.txt in Python.
These tools have the capacity to query vulnerability databases like NIST in
search of known vulnerabilities for a specific version of a library.
Tools like OWASP Dependency Check could be used for applications
developed in Java and .NET. These tools can be run before creating the
builds to detect if any vulnerable software is being used in the application.
Other tools include npm-check that allows you to check npm update
packages, hakiri that monitors Ruby apps for dependency and code security
vulnerabilities, and FBInfer that detects bugs in Java and C/C++/Objective-C
code. All these tools can detect vulnerable code and identify outdated library
dependencies.

Dependency Check- https://owasp.org/www-project-dependency-
check
SonaType (Free for Open Source projects)-
https://ossindex.sonatype.org/
Snyk (Free for Open Source) - https://snyk.io/
Bunder Audit - https://github.com/rubysec/bundler-audit
Rubysec - https://rubysec.com/
Retire JS - https://github.com/RetireJS/retire.js
NPM check - https://www.npmjs.com/package/npm-check
Hakiri- https://hakiri.io
FBInfer- https://fbinfer.com

Tip: Learn with vulnerable applications

https://owasp.org/www-project-dependency-check
https://ossindex.sonatype.org/
https://snyk.io/
https://github.com/rubysec/bundler-audit
https://rubysec.com/
https://github.com/RetireJS/retire.js
https://www.npmjs.com/package/npm-check
https://hakiri.io
https://fbinfer.com

Here’s a list of vulnerable applications that can be implemented to know the
main security risks that we can find in the applications. These same
applications can be protected by fixing the vulnerabilities to learn how to
prevent attackers from exploiting some of the vulnerabilities.

https://github.com/owasp/nodegoat
https://github.com/OWASP/OWASPWebGoatPHP
https://github.com/WebGoat/WebGoat
https://github.com/OWASP/WebGoat.NET

The purpose of dependency control is to control and minimize vulnerabilities
from third-party frameworks or libraries. To do this, we could integrate the
OWASP Dependency-Check plugin into the pipeline, the purpose of which is
to identify the dependencies of the projects and check for any known
vulnerability.
Dependency Check currently supports the Java and .NET languages, along
with providing experimental support for Ruby, Node.js, and Python and
limited support for C/C ++.

Infrastructure as Code security
Infrastructure as Code (IaC) implies that your server configuration is
stored in a source code repository with the application source. In this way,
automation tools like Ansible, Chef, or Puppet will take the configuration
artifact (usually written in a simple or scripting language like YAML or
Ruby) and apply each task to the system where we have to automate the
configuration process.
Container solutions like Docker are very popular even though they build the
infrastructure using just a few lines of code. For example, “Docker Hub” is a
public repository of Docker images from where you can download the images
to generate the containers.
However, these Docker images can be exposed as they contain different
vulnerabilities. At this point, it is important to run specific tools to analyze
container images before deploying them in the infrastructure.
Within the Docker ecosystem, we find solutions that offer the possibility of

https://github.com/owasp/nodegoat
https://github.com/OWASP/OWASPWebGoatPHP
https://github.com/WebGoat/WebGoat
https://github.com/OWASP/WebGoat.NET

scanning the images. For example, Clair scans the base Docker images and
offers a report with the main vulnerabilities of an image, performing a
preliminary analysis of the dependencies and packages that this image
downloads.
Anchore Engine is another interesting tool. It is an open source policy-based
compliance that provides a centralized service to inspect, analyze, and certify
container images and allows developers to obtain detailed analysis on Docker
images and define security policies to be applied during image analysis.
Here are some of the main open source tools for security in Infrastructure as
Code:

Clair - https://github.com/coreos/clair
Anchore Engine - https://github.com/anchore/anchore-engine
Dagda - https://github.com/eliasgranderubio/dagda
Open-Scap - https://www.open-scap.org/getting-started
Dockscan - https://github.com/kost/dockscan
Inspec - https://community.chef.io/tools/chef-inspec/

Secrets management
Due to automation processes, storing credentials in configuration files and
environment variables to access services is a common practice used by
developers and administrators. However, storing credentials in files or
settings can expose credentials with sensitive information.
This can be avoided by using different tools that aim to search files for
sensitive information before committing or pushing it to the repository.
To support the security of the code at the level of credentials, secret keys, and
confidential data, it would be important to be able to use tools that automate
the process of managing these keys.
The following tools allow us to store these credentials in separate
environments, where we can store and retrieve the credentials from a specific
environment and use them programmatically from our code. Here are a few
open source tools available for secrets management:

Hashicorp Vault - https://www.vaultproject.io/

https://github.com/coreos/clair
https://github.com/anchore/anchore-engine
https://github.com/eliasgranderubio/dagda
https://www.open-scap.org/getting-started
https://github.com/kost/dockscan
https://community.chef.io/tools/chef-inspec/
https://www.vaultproject.io/

Torus - https://tor.us/
Keywhiz - https://square.github.io/keywhiz/
EnvKey - https://www.envkey.com/
Confidant - https://github.com/lyft/confidant
AWS Secrets Manager - https://aws.amazon.com/secrets-manager/
Transcrypt -https://github.com/elasticdog/transcrypt
BlackBoxr -https://github.com/StackExchange/blackbox
Git Secrets -https://github.com/awslabs/git-secrets
Git leaks -https://github.com/zricethezav/gitleaks
BlueBracket-https://blubracket.com

These tools allow you to check sensitive information (such as AWS keys,
access tokens, and SSH keys) leaked through public source code repositories
due to accidental commits.

Vulnerability management
In addition to performing the security validations of the code itself, we must
detect the vulnerabilities in dependencies used by the application. The tools
that create the DevSecOps pipeline can generate many vulnerabilities, and
each has its own format.
This makes it difficult to manage all the data, let alone monitor and fix
vulnerabilities. So, vulnerability management solutions are essential in the
DevSecOps process, enabling all the data to be managed, examined, and
monitored and the vulnerabilities fixed. The following are some of the main
open source tools available for vulnerability management:

ArcherySec - https://github.com/archerysec/archerysec
DefectDojo - https://www.defectdojo.org/
JackHammer - https://github.com/olacabs/jackhammer

Tip: Discovering Vulnerabilities
It is recommended to query the list of existing CVE vulnerabilities in third-
party libraries and applications for more details about the vulnerabilities
that we find in the applications. The list and description of the

https://tor.us/
https://square.github.io/keywhiz/
https://www.envkey.com/
https://github.com/lyft/confidant
https://github.com/elasticdog/transcrypt
https://github.com/StackExchange/blackbox
https://github.com/awslabs/git-secrets
https://github.com/zricethezav/gitleaks
https://blubracket.com
https://github.com/archerysec/archerysec
https://www.defectdojo.org/
https://github.com/olacabs/jackhammer

vulnerabilities can be found at https://www.cvedetails.com, and a detailed
description is available at https://nvd.nist.gov.

Vulnerability assessment
A common practice is to perform vulnerability assessments on production
systems to identify running services and the associated vulnerabilities.
For example, if we execute a vulnerability assessment tool in the machine
where Docker is installed and then run the scan, it will give us a good
overview of the services that are actually running.
This can be done with various solutions, such as OpenVas, that can be
integrated into the CI/CD pipeline. Here are a few open source tools for
vulnerability assessment:

OpenVAS - http://openvas.org/
Docker Bench - https://github.com/docker/docker-bench-security

Alerts and monitoring
It is convenient to monitor the applications once they are deployed in
production in a secure and automated way. This allows us to ensure that the
systems are working correctly and that their performance is adequate.
This process can be automated, and is known as continuous monitoring. It
consists of configuring and deploying monitoring tools in an automated way
that ensure that the systems behave as expected. This allows you to quickly
detect and respond to potential security issues.
These tools can also detect performance or code problems, exceptions, and
Denial of Service (DoS) attacks or brute force attacks. For this, it is
necessary to have tools that provide traceability about the system’s events
and activities. In turn, they can store information that is useful in the face of a
potential security or regulatory compliance incident.
Production applications always face new threats from unforeseen and
unknown agents. Having an intrusion prevention and monitoring solution
active can mitigate them. “ModSecurity WAF (Web Application Firewall)” is
an open source solution of this type. It detects when one of the 10 main
OWASP vulnerabilities, such as SQL injection or cross-site scripting, is

https://www.cvedetails.com
https://nvd.nist.gov
http://openvas.org/
https://github.com/docker/docker-bench-security

attacked.

ModSecurity WAF - https://github.com/SpiderLabs/ModSecurity

Regarding monitoring, there must be something transversal to all
development teams with the target for getting feedback about the results of
developments. In this category, we can highlight applications like Nagios
https://www.nagios.com/ and Zabbix https://www.zabbix.com/, which are
classic monitoring tools that have evolved while adapting to the philosophy
of DevOps work teams, competing to become the standard for infrastructure
monitoring. Both are free and open source and written mainly in C.
From the open source point of view, solutions like Prometheus
https://prometheus.io/ are becoming more relevant. Additionally, it allows
the visualization of metrics stored in its database as time series with Grafana
https://grafana.com/. They are open source solutions and written in Golang.

Tip: DevSecOps Labs
These labs are hands-on learning opportunities to develop skills in
DevSecOps:

https://pentesterlab.com/exercises/
https://www.vulnhub.com/
https://github.com/devsecops/bootcamp
https://github.com/devsecops/awesome-devsecops
https://www.katacoda.com/hackingtechnology/scenarios/snyk-scan

Conclusion
In this chapter, we focused on how DevSecOps can operate in an
environment. That said, only the tools and techniques are not always enough
since the DevSecOps methodology requires a cultural change that promotes a
“default security” way of working to minimize risks.
In a world where we need to develop quickly to adapt the business to changes
and customer demands, organizations that have adopted DevOps within the
development cycle must also implement appropriate security measures to
detect and correct vulnerabilities in a more agile way.

https://github.com/SpiderLabs/ModSecurity
https://www.nagios.com/
https://www.zabbix.com/
https://prometheus.io/
https://grafana.com/
https://pentesterlab.com/exercises/
https://www.vulnhub.com/
https://github.com/devsecops/bootcamp
https://github.com/devsecops/awesome-devsecops
https://www.katacoda.com/hackingtechnology/scenarios/snyk-scan

Finally, it is important to note that DevSecOps represents the evolution of the
existing DevOps practices. Ultimately, it should help improve quality and
reduce risk in relation to the product and the organization.
There is no point in being the first to come out with a new product if it is
discovered to have security flaws later. This is the reason why DevSecOps
can be the key and the best way to manage security in automated processes,
with the aim of creating security experts in each area and increasing the
collaboration with the security team.
In the next chapter, we will review the main container platforms that provide
infrastructure for both development and operations teams.

Points to remember
DevSecOps is a philosophy that integrates the DevOps security process,
generating a natural response to the bottlenecks that originate in the
traditional security patterns that exist in continuous delivery
developments. This philosophy focuses on the cooperation between
development, operations, and security. It seeks to integrate the work of
all teams in each part of the process, creating a synchronized and
automated progress in activities.
Security testing is usually the most widespread security measure and
involves carrying out specific security tests in addition to software
quality assurance tests (unit, integration, functional, performance, and
so on).

Multiple choice questions
1. Which tools have the capacity to perform an in-depth analysis of the

code and provide a comprehensive report for all the vulnerabilities that
have been identified in the code?

a. Bandit and SonarQube
b. SonarQube and OWASP ZAP
c. Snyk and Anchore engine
d. Clair and NPM check

2. Which tools have the capacity to identify vulnerabilities using dynamic
analysis to ensure the deployment of applications in accordance with the
organization’s secure software development methodology?

a. Snyk and SonarQube
b. SonarQube and OWASP ZAP
c. Clair and NPM check
d. Nikto and OWASP ZAP

Answers
1. a
2. d

Questions
1. What is the difference between continuous integration and continuous

delivery?
2. What are the main components used by DevSecOps methodology?
3. What are the main techniques for security testing?

Key terms
DevSecOps: Acronym that defines the unification of development,
security, and operations
Pipeline: It is a concept that allows automating the software
development process
Continuous integration: Consists of making automatic integrations of
a project as often as possible to detect errors when compiling and
executing the tests of an entire project
Continuous delivery: Continuous delivery is an extension of
continuous integration, wherein the software delivery process is
automated to allow easy and reliable deployments at any time
SAST - Static Application Security Testing: Also known as “white
box test”, it allows developers to find security vulnerabilities in the

application source code
DAST - Dynamic Application Security Testing: Also known as a
“black box” test, it allows you to find vulnerabilities and weaknesses in
the security of a running application, typically web applications
IAST - Interactive Application Security Testing: It is a combination
of static and dynamic analysis techniques (SAST + DAST) generating a
global analysis of the entire system

I

CHAPTER 2
Container Platforms

n this chapter, we will review main containers platforms that provide
infrastructure for both the development and operations teams, like Docker

and Kubernetes. We will also review other alternatives like Podman for
containers. This chapter will introduce you to the main technologies that will
be used throughout the book.
Containers have helped streamline the process of moving applications
through development, testing, and production, while Docker and Kubernetes
have helped reinvent the way applications are built and deployed—as
collections of microservices rather than with monolithic approaches.

Structure
We will cover the following topics in this chapter:

Docker containers
Podman
Container Orchestration
Kubernetes
Kubernetes alternatives

Objective
After studying this chapter, you should be able to understand the concept of
Docker containers, learn about other container platforms like Podman, and
get familiar with container orchestration and container orchestration
platforms like Kubernetes and alternatives.

Docker containers
DevOps aims to improve the quality of the new software versions and

accelerate the development, delivery, and implementation, thanks to the
effective cooperation of all those involved and continued automation.
Automated DevOps tasks include automated build processes, static and
dynamic code analysis, and module, integration, system, and performance
testing.
The core spine of DevOps is still the reflections on Continuous Integration
(CI) and Continuous Delivery (CD), two central fields of automatic
deployment of applications.
Docker offers integration options for consolidated CI/CD tools like Jenkins
or Travis and allows you to automatically load your images from the Docker
Hub repository or version control repositories like GitHub, GitLab or
Bitbucket. This is how the container platform represents a base for DevOps
workflows, in which developers can create new components for applications
in common and run them in any testing environment.
With containerized platforms, developers can own the applications and their
dependencies to frameworks and components, enabling them to reduce the
dependency on IT operations teams.

What is Docker?
Docker is a container platform to quickly develop, deploy, and manage
applications, and it packages software into standardized units called
containers that include everything necessary for the software to run,
including libraries, system tools, and code.
With Docker, you can deploy and quickly adjust the scale of applications in
any environment with the certainty of knowing that your code will run the
same, from the development to the production environment and both in the
cloud and on-premise.
A remarkable feature of this container is the Docker Hub
http://hub.docker.com, a repository where Docker users can share the
images they have created with other users. For Linux users, installing one of
these containers is as easy as downloading an application from the package
manager. The download from the Docker Hub is done through commands
and runs on the system itself.
Docker uses the LibContainer module to manage the Linux Kernel functions
and a group of isolation technologies like Namespaces, Control Groups,

http://hub.docker.com

AppArmor, security profiles, network interfaces and rules for the firewall
necessary for the operation of the containers.

Containers versus virtual machines
To contextualize this new paradigm defined by Docker in which applications
run inside completely independent containers, we must compare it with other
virtualization paradigms, such as virtual machines.
Containers are a multi-level abstraction above the hardware abstraction of
virtual machines and abstract the application layer by packing code and
dependencies in one container.
Virtual machines allow the abstraction of physical hardware, while the
hypervisor allows multiple virtual machines to run on a single computer.
Each virtual machine includes a full copy of an operating system, application,
binaries, and the required libraries.

Figure 2.1: Containers vs virtual machines

Docker features for container management
With the use of containers, resources can be isolated and services restricted.
Additionally, processes are given the ability to have an almost completely
private vision of the operating system with its own process space identifier,
the structure of the file system, and the network interfaces.
Multiple containers share the same core, but each container can be restricted
to using a defined amount of resources such as CPU, memory, and I/O. These

are some of the main features that Docker offers:

It takes better advantage of the hardware and only needs the minimum
file system for the services to work
The containers are self-managed (although they can depend on other
containers), so they don’t need anything more than the image of the
container for the services offered to work
A Docker image can be understood as an operating system with
dependencies for supporting installed applications; the container is
created from an image
Docker images are portable between different platforms, with the only
requirement being that Docker is installed and the service is running in
the host system
The project offers us a repository of images like GitHub code
repository; this service is called Docker Hub Registry and allows you
to create, share, and use the images created by us or other providers

Virtualizing with Docker offers us a series of advantages, including the
following:

Portability: All containers are portable, so we can take them to any
other Docker device without having to reconfigure anything. Docker
allows you to run your application locally on any operating system, on
any on-premise server, or even in a cloud provider like Google Cloud or
Amazon Web Services.
Performance: Containers have better performance than traditional
virtualization, since they are based on Linux Containers (LXC), which
runs directly on the kernel of the host machine, avoiding the traditional
virtualization layer based on a hypervisor that penalizes performance.
Self-management: Docker is responsible for everything, so the
containers should only have what is necessary for the application to
work; for example, the libraries, files, and configurations necessary for
executing the application in a specific environment.

Docker architecture
Docker uses a client-server architecture where the client part communicates

with the daemon so that it is in charge of building, executing, and distributing
the containers. Client and server are able to run both on the same host and on
different platforms since communication between them is done using a REST
API over UNIX sockets or a network interface.
The following screenshot shows the different elements of the Docker
architecture:

Figure 2.2: Docker architecture

A Docker container system consists mainly of the following elements:

Docker engine (Daemon): It is a process that runs on any Linux
distribution and exposes an external API for the management of images
and containers. This process is responsible for creating images,
uploading and downloading from a Docker Registry, and executing and
managing containers.
Docker Client: The Docker Client allows us to manage the Docker
Engine and can be configured to work with a local or remote Docker
Engine, allowing us to manage both our local development environment
and our production environment.

Docker Image: Template used to create the container for the
application that we want to deploy.
Docker registry: It has the repositories where the images are stored,
both public and private access. The purpose of this component is to
store the images generated by the Docker Engine and distribute our
applications.
Docker Containers: These have the folders where everything necessary
(libraries, dependencies, binaries, and so on) is stored so that the
application can be executed. The Docker tool offers the ability to
package and run an application in an isolated environment called a
container.

The logic of operation is that the command line interface, depending on the
requests it receives from the client, uses the REST API to communicate with
the daemon. The Docker daemon process is responsible for creating and
managing objects like images, containers, network, and volumes.

Docker engine
The heart of any Docker project is the Docker engine, which is an open
source client-server application available to all users in the current version on
all established platforms.
The components that make up the basic architecture of this engine are: a
daemon with server functions, application programming interface (API)
based on Representational State Transfer (REST), and the terminal of the
operating system Command-Line Interface (CLI) as an interface of the user
(client). Docker bases its operation on a client-server architecture with the
main components defined by:

Docker daemon: Docker engine uses a daemon process as a server that
works in the background of the host system and allows central control
of the Docker engine. It is also responsible for creating and managing
all images, containers, or networks.
REST API: Specifies a series of interfaces that allows other
applications to interact with the Docker daemon.
CLI: Docker uses the terminal of the operating system as a client
program, which interacts with the daemon through the REST API and

allows users to control it through scripts or commands.

Docker allows you to execute and manage software containers directly from
the terminal. The docker command and instructions like build (create), pull
(download) or run (execute) can be used to communicate with the daemon,
enabling both client and server to be in the same system.
Depending on the type of connection to be established, communication
between client and server occurs either through the REST API, UNIX socket,
or a network interface.
The docker run command starts the Docker daemon to search the image in
your host and starts a container with the name hello-world. If Docker has
been installed correctly, you should receive an output like the one shown in
the following image:

Figure 2.3: Docker hello-world execution

The container is started after downloading the image successfully and
receiving the “Downloaded newer image for hello-world: latest” message. It
includes a simple hello-world script. You can share images, automate
workflows, and do a lot more with a free Docker ID subscription in
https://hub.docker.com.

https://hub.docker.com

You can refer to the Docker user guide at https://docs.docker.com/get-
started/overview for more examples.

Docker client
The Docker client uses the remote API of the Docker Engine and can be
configured to talk with a local or remote Docker Engine, allowing us to
manage both our local development environment and our production servers.
The following are the most common Docker commands:

docker info: Gives information about the number of containers and
images that the current machine is managing as well as the plugins
currently installed.
docker images: Lists information of the images that are available on
the machine (name, ID, space it occupies, and the time elapsed since it
was created).
docker build: Creates an image from the Docker file of the current
directory.
docker pull <image>: <version>: Downloads the indicated image
version to the current machine. If the download version is not indicated,
all available versions are downloaded.
docker push <image>: <version>: Uploads the version of the
indicated image to a Docker Registry, allowing its distribution to other
machines.
docker rmi <image>: <version>: Deletes an image on the current
machine.
docker run <image>: <version>: Creates a container from an image.
This command allows a multitude of parameters, which are updated for
each version of the Docker Engine. So, it is best to refer to the official
page for its documentation.
docker ps: Shows the containers that are running on the machine. With
the -a flag, it also shows the containers that are stopped.
docker inspect container: Shows detailed information of a container
in JSON format. You can access a particular field with the docker
inspect -f ‘{{.Name}}’ container command.

https://docs.docker.com/get-started/overview

docker stop <container>: For the execution of a container.
docker start <container>: Resumes the execution of a container.
docker rm <container>: Deletes a container. You can execute the
docker rm -fv $ (docker ps -aq) command to delete all the
containers of a machine.
docker logs <container>: Shows the logs of a container.
docker stats <container>: Shows the execution statistics of a
container, such as the memory used, the CPU, and the disk.
docker exec <container> <command>: Executes a command in a
container. It is useful to debug containers in execution with the
command docker exec -it container bash.
docker volume ls: Lists the existing volumes on the machine. Run
docker volume –help for a complete list of commands related to
volumes.
docker network ls: Lists the existing networks on the machine. Run
the docker network –help command for a complete list of commands
related to networks.
docker cp: Copies files between the host and a container.

The Docker command line will connect to this daemon, which will keep the
Docker status and so on. Each of the commands will also be executed as
superuser, by having to contact this daemon using a protected socket. From
there, we can create a container by downloading it from the official
repository.
$ docker pull nginx

Figure 2.4: Executing the docker pull command

The pull command downloads a basic Nginx container and installs it. Many
images are created and can be shared on the Docker website, in the style of
Python libraries or Debian packages. You can search all the images of a
certain type, like Ubuntu, or search for the most popular images.
You can start executing the commands once downloaded. We are executing a
nginx container using the following command, with the -t option indicating
that a terminal is being created and the -i option that allows the execution of
the command interactively.
$ docker run -i -t nginx /bin/bash

Figure 2.5: Executing nginx container with docker

In the previous instruction, we are executing the /bin/bash command for
getting a terminal shell inside the container.

Tip: Testing and training Docker in the cloud
In the https://labs.play-with-docker.com URL, we have a service that allows
you to run Docker containers in the cloud.
Play with Docker http://training.play-with-docker.com is an online
environment that allows you to run Docker commands without having a
Docker installed on your machine.
This environment gives the experience of having an Alpine Linux virtual
machine in the browser, where you can build and run Docker containers and
even create clusters in the Docker Swarm mode. Play with Docker also
includes a training site composed of a set of laboratories with practices from
basic to advanced levels.

https://labs.play-with-docker.com
http://training.play-with-docker.com

Containerd
In recent years, the adoption of Docker in projects has led it to become the
standard platform for building, shipping, and running distributed applications,
covering functional areas from infrastructure to orchestration.
In this way, Docker offers developers with tools to be more productive and
containerd is the core container runtime that provides the primitives to use
container-based solutions like Linux containers, Docker, or Podman.
Containerd https://containerd.io/ aims to offer the primitives and core
functions that will allow you to manage containers on Linux and Windows
operating systems. Furthermore, the main advantage is that Docker and AWS
ECS, Microsoft AKS, or Kubernetes will be able to use containerd. These are
some of the main characteristics:

Execution and supervision of containers
Image distribution
Network interface management
Local storage
Native plumbing API

The goal of containerd is to divide the Docker platform into a modular
architecture of decoupled components. We can see the containerd architecture
in the GitHub repository:

https://github.com/docker-
archive/containerd/blob/master/design/architecture.md

Tip: Open Container Initiative

The Open Container Initiative https://opencontainers.org aims to
create industry standards around container formats and execution
environments. This initiative comes from Docker and other industry
leaders and is coordinated by the Linux Foundation. It currently has
two specifications: the Runtime Specification and the Image
Specification.
It’s basically about all this container stuff being completely
transparent to you, regardless of whether you’re using Docker,

https://containerd.io/
https://github.com/docker-archive/containerd/blob/master/design/architecture.md
https://opencontainers.org

Podman, or any other container-based system. This means the
instructions have to be basically the same.

Podman
Podman https://podman.io is a native, open source tool for Linux that does
not use any daemons or background processes. It has been thought and
designed to facilitate the search, execution, construction, sharing, and
deployment of applications using the Open Containers Initiative (OCI)
container and image technology.
The key innovation that Podman brings with it is that it doesn’t need a
daemon process for controlling the instances for each of the containers. This
provides the opportunity to access the various virtualized applications
without root privileges.
Podman is the container engine that allows us to lift these containers in a
similar way to Docker but with some fundamental differences:

Root-less: It allows us to lift containers without having root privileges.
Thanks to Podman’s modular architecture, it is not necessary to execute
our containers as root, which is an advantage as we can execute our
containers with different users who have different privileges. This
happens without the risk of someone who has access to the container
service executing containers as root user.
Daemon-less: Podman does not need to raise a single daemon of many
services to work. Rather, it is something similar to the microservices
architecture and executes the necessary services for each container.
Pods: Podman coined the term pod as we know it with Kubernetes so
that we could lift pods from one or more containers and isolate them
from other pods.
Command line: The commands are equivalent to those of Docker, and
there are no differences.

Tip: Podman security

From the security point of view, what Podman does when running as a
non-root user is create a directory in the user’s home directory and

https://podman.io

store all the information about the images and containers that this user
has there. For example, if we execute the Podman images command
with our non-root user, it will show only the images that this user has
created or downloaded.

Podman design and main functions
In addition to giving up a central daemon, a prominent feature of Podman is
the so-called pods. Inspired by the concept of Kubernetes pods, these pods
are the fusion of multiple containers in a common Linux namespace that
share specific resources. A wide variety of virtualized applications can be
combined this way.
As we have already mentioned, we can run the containers on the main
computer as a regular user without root privileges, although the processes are
run by root within a container. Podman does this by resorting to the Linux
kernel user namespaces, which assign special privileges and a user ID to
processes. The fact that the containers actually run as an administrator gives
the Podman virtualized environment a high standard of security.
Podman is capable of running containers in exactly the same way as Docker,
but it is also capable of running Pods. The fundamental difference is that a
Pod can contain more than one container. The idea is to have a main
container accompanied by one or more “sidecars containers” running in the
same Pod as the main container. This way, the containers within the same
Pod cooperate with each other to execute a service.
Podman has some characteristics that make it really interesting:

It has a syntax equivalent to Docker, so you don’t need to learn a new
set of instructions to manage your images and containers with Podman.
Containers can be run as root or as a user without administrator rights.
Podman manages the entire container ecosystem, including pods,
containers, images, volumes, and all using the libpod library.
Podman only works on Linux platforms, although it supports different
image formats, including OCI and Docker.
You don’t need a daemon or background application running
permanently.

Unlike Docker where containers are run as root users, containers under
Podman’s control can be run by root or by an unprivileged user.
You can mount a podman-compose, and we can use it as docker-
compose https://github.com/containers/podman-compose.
It also allows us to generate a Kubernetes manifest through the running
Pod, that is, we can automatically generate the YAML file that we can
use in Kubernetes using the $ podman generate kube pod_name >
file.yaml command.

Tip: Integration with Python

A series of Python libraries have been developed to be able to
implement integrations and communicate with the remote Podman
API.
For example, there is an application called Pypodman
https://github.com/containers/python-pypodman developed in Python,
which is capable of running everything that Podman runs locally and
remotely and has the ability to communicate with the Podman API.

Podman commands
This container software is similar to Docker in many ways and uses the same
command line interpreter, making it easy to use the same Docker commands
in Podman. You can get the commands you can use in the following URL:

Podman commands:
http://docs.podman.io/en/latest/Commands.html

For example, we can use the following command to run a container based on
the NGINX server:
$ podman run -d -p 80:80 --name nginx nginx:latest

https://github.com/containers/podman-compose
https://github.com/containers/python-pypodman
http://docs.podman.io/en/latest/Commands.html

Figure 2.6: Executing nginx container with Podman

With the following command, we can see the containers we have running:
$ podman ps

CONTAINER ID

IMAGE COMMAND CREATED

AT STATUS

PORTS NAMES

186b83ed9bb4 docker.io/nginx:latest /docker-entrypoint.sh

nginx -g daemon off; 2021-02-20 22:49:02 +0000 UTC Up 2

minutes ago 0.0.0.0:80->80/udp, 0.0.0.0:80->80/tcp nginx

The configuration of a container can be outputted via inspect, and the output
is compatible with the Docker API. We can use the inspect command to see
details about the container:
$ podman inspect <container_id or container name>

Figure 2.7: Inspecting nginx container with Podman

In addition to being able to download an image from both public and private
repositories, Podman allows you to search for the image you need (the
package that contains your application), download it to your computer or the
infrastructure where you work, and install it.
$ podman search python

Figure 2.8: Searching Python images with Podman

If you want to run any of the previous images, you just have to execute the
following command to launch a Python container based shell.

$ podman run -it docker.io/library/python sh

Once you have a shell, the security of the container can be tested with the
fool using amicontained—https://github.com/jessfraz/amicontained.
$ wget -O amicontained

https://github.com/jessfraz/amicontained/releases/download/v0.3.0/amicontained-

linux-amd64; chmod +x amicontained; ./amicontained

Figure 2.9: Testing security of Python container with Podman

In addition, we access it through sh, and we can check the operating system
version inside the Python container with the following command when
entering the container:
cat /etc/os-release

PRETTY_NAME=”Debian GNU/Linux 10 (buster)”

NAME=”Debian GNU/Linux”

VERSION_ID=”10”

VERSION=”10 (buster)”

VERSION_CODENAME=buster

ID=debian

HOME_URL=”https://www.debian.org/”

SUPPORT_URL=”https://www.debian.org/support”

BUG_REPORT_URL=”https://bugs.debian.org/”

Tip: Testing Podman

You can get the instructions to install podman in your operating
system at https://podman.io/getting-started/installation.
As we’re running a compatible service, we can just set an alias to
replace the Docker CLI and have the same experience. If you know

https://github.com/jessfraz/amicontained
https://podman.io/getting-started/installation

Docker, you can use Podman just by making an alias, that is, by
executing this instruction on Linux: $ alias docker=podman.
Podman provides the ability to run containers via the LibPod project.
LibPod provides a library for applications looking to use the Container
Pod concept popularized by Kubernetes. With Podman, we can use the
same runtime for running containers locally.
In the following lab we can launch containers using Podman and
Libpod: https://www.katacoda.com/courses/containers-without-
docker/running-containers-with-podman.

Container orchestration
Working with containers has completely changed the way people think
about software development, deployment, and maintenance. Containers
are so light and flexible that they have given rise to new architectures of
applications. This new approach consists of packaging the different
services that are part of an application into separate containers, and then
deploying those containers through a cluster of physical or virtual
machines.

When development is simple, its administration does not require large
resources. That said, the need for container orchestration appears as our
project grows. Container orchestration is a tool that automates the
implementation, administration, scaling, creation of networks, and the
availability of applications based on this technology.
But nowadays, applications are complex and the trend with new architectures
oriented toward microservices is to have at least one container for the front-
end, one or more for the service interface, and another for the database.
All this gives rise to the need for container orchestration, that is, having a tool
or system that automates the deployment, management, scaling,
interconnection, and availability of our container-based applications. A
container orchestrator is responsible for the following tasks:

Deployment and raised automatic container-based services
Self-scaling and load balancing
Control of the “health” of each container

https://www.katacoda.com/courses/containers-without-docker/running-containers-with-podman

Secrets management in parameters and configurations

Docker compose
Docker compose https://docs.docker.com/compose/gettingstarted/ allows
you to connect several containers and execute them with a single command.
Implemented in the Python scripting language, its fundamental component is
a central control file based on the YAML markup language. This file’s syntax
is similar to open source software Vagrant files used in the creation and
provisioning of virtual machines.
Docker compose allows you to define a series of containers and the
relationships between them at the level of a YML file with a very intuitive
format. Given this YML file, it is responsible for orchestrating the creation of
the containers in the correct order. It is also capable of detecting the
definitions that have changed from one YML file to another and relaunching
only the services that have changed.
You can define as many software containers as you want in the docker-
compose.yml file, including all the dependencies and their interrelationships.
The scheme followed to manage the multi-container applications does not
differ from the one needed to manage simple containers. With the docker-
compose command, the corresponding subcommand manages the entire life
cycle of the application.
Here’s an example using docker-compose.yml where we are starting an
nginx container configuring path volumes, ports, and some environment
variables:
web:

image: nginx

volumes:

- ./templates:/etc/nginx/templates

ports:

- “8080:80”

environment:

- NGINX_HOST=domain.com

- NGINX_PORT=80

Another characteristic of Docker compose is that it provides an integrated
scaling mechanism through the definition of how many containers are to be
started for a given service.

https://docs.docker.com/compose/gettingstarted/

Kubernetes
Kubernetes https://kubernetes.io, also known as K8S, is the most popular
container orchestration engine on the market. It is an open source orchestrator
for applications executing in software containers, automating the deployment,
scalability, and management of distributed applications.
The reception of Kubernetes was so great that the project was adopted by the
community at the head of the Cloud Native Computing Foundation
(CNCF) https://www.cncf.io, an organization created as part of the Linux
Foundation. With this foundation, the project is developed with the support of
many organizations and thousands of members of the open source
community.
Kubernetes groups the containers in logical fragments called “Pods”, which
represent the basic units of the manager that can be distributed in the cluster
by the scheduler Kubernetes process. A pod represents a set of containers that
share storage and a single IP address.

Kubernetes architecture
Kubernetes follows a master-slave architecture where each role has different
tasks. The master controls and schedules all the activities of the cluster,
while the workers are nodes where the containers are executed. The ease of
having multiple orchestrated containers makes Kubernetes a perfect
complement for microservices-based applications.
The master acts as a central control level (control plane) in the cluster and is
composed of four basic elements that allow coordination within the cluster
and distribute tasks:

API server: In a Kubernetes cluster, all automations are launched in an
API server by means of a REST API. This server acts as the central
management point in the cluster.
etcd: It’s an open source key value store and can be considered a
Kubernetes cluster’s memory. It has been developed especially for
distributed systems and storing configuration data.
Scheduler: The role of the scheduler is to distribute the pods in the
cluster, for which it finds out how many resources a Pod needs and
adjusts them with the resources available to each node in the cluster.

https://kubernetes.io
https://www.cncf.io

Controller Manager: This is a service of the Kubernetes master that
manages the status of the cluster and executes routine tasks, directing
the orchestration. The main function is to ensure that the cluster state
corresponds to the state that was previously defined as the objective.

Figure 2.10: Kubernetes architecture

While the master is responsible for the orchestration, the distributed pods in
the cluster are run on different nodes called workers. To do this, each node
needs to run a container engine compatible with Containerd like Docker or
Podman. In addition to the container engine, the Kubernetes nodes include
these components:

kubelet: An agent is designated with this name; running in each node,
it directs and manages it. This process maintains the communication and
ensures that the information is sent to the worker nodes. The agent
receives the requests and supervises their execution in each node.
kube-proxy: This proxy service is executed in each Kubernetes node to
serve the requests that come from the worker nodes and provide
services to the users of containerized applications.

Kubernetes key terms
The advantages of using containers to run and group software applications
have already been mentioned. However, in a production environment,
managing running containers is important to minimize the downtime of a
service. This is where Kubernetes kicks in to automatically start a new one if
a container fails. Here are some of the capabilities that Kubernetes can
provide:

Service discovery and load balancing: Kubernetes can expose a
container using its own domain name or IP address. It is also capable of
balancing the workload and distributing the traffic in a way that the
deployment is stable.
Storage orchestration: Kubernetes allows you to automatically mount
a storage system of your choice, such as local storages and public cloud
computing providers.
Automatic deployments and rollbacks: You can describe the desired
state for your deployed containers using Kubernetes, and you can
change the current state to the desired state. For example, you can
automate Kubernetes to create new containers for deployment, remove
existing containers, and adopt all of its resources into the new container.
In addition, Kubernetes restarts the containers that fail and replaces the
ones not responding within the cluster.
Resource management: Kubernetes allows you to specify how much
CPU and memory (RAM) each container needs. Kubernetes can make
better decisions to manage container resources when containers have
specified resource requests.
Secret and configuration management: Kubernetes allows you to
store and manage information related to the configuration of the
containers as well as the most sensitive information, like passwords,
keys, and tokens. This sensitive information and the configuration
parameters can be updated without the need to reconstruct the container
images and without the need to open the sensitive information.

These are some terms that we should understand when we dive deeper into
Kubernetes:

Cluster: These are physical or virtual resources and storage resources

used by Kubernetes where the pods are deployed, managed, and
replicated.
Pod https://kubernetes.io/docs/concepts/workloads/pods/pod : Pods
are the smallest unit that can include one or more containers. In many
cases, a Pod is composed of a single container, but its ability to
accommodate several containers very close to each other is a powerful
feature of Kubernetes.
Replication controller: A replication controller is a Kubernetes
mechanism that ensures that a Pod has raised a certain number of
replicas. For example, the replication controller raises more replicas if
we need more, kills them if we need less, and raises new replicas to
keep the number defined if any of them fails and dies.
Services: Services define how to access a group of Pods and allow
access to containers with a unique Domain Name Server (DNS) and IP
address.
Labels: Labels are used to organize and select a group of objects in
pairs of type key: value.

A Pod can contain one or more containers running, and it is the unit that
Kubernetes manages. There are several advantages that Kubernetes brings to
the management of containers as Pods:

Multiple nodes: Kubernetes can implement a set of pods on multiple
nodes instead of simply deploying a container on a single host.
Essentially, a node provides the environment where a container is
executing.
Replication: Kubernetes can act as a replication driver for a pod. This
means you can set the number of replicas you need for a specific pod.
Services: A service in the Kubernetes context implies that you can
assign a service name (ID) to a specific IP address and port and then
assign a pod to provide that service. Kubernetes internally tracks the
location of that service using the IP address to redirect requests to
another pod that is executing another service.

You must understand the following concepts before you begin configuring
Kubernetes:

https://kubernetes.io/docs/concepts/workloads/pods/pod

Kubernetes driver: A Kubernetes controller acts as a node from which
pods, replication controllers, and services of a Kubernetes environment
are deployed and managed. To create a Kubernetes driver, you must
configure and run the systemd, kube-api-server, kube-controller-
manager and kube-scheduler services.
Kubernetes nodes: A Kubernetes node provides the environment in
which containers are executed. To run a machine as a Kubernetes node,
it must be configured to run a container engine, kube-proxy and
kubelet services. These services must be executed on each node of the
Kubernetes cluster.
Kubectl command: Kubernetes management is done on the master
node using the kubectl command. With kubectl, we can create, obtain,
describe, or eliminate any resources that Kubernetes manages, like
pods, replication controllers, and services.
Resource files (YAML or JSON): These are the formats that
Kubernetes can manage to create a pod, a replication controller, a
service, or another resource.

Tip: Installing and testing Kubernetes

You can use minikube https://github.com/kubernetes/minikube if you
want to install Kubernetes in your local machine.
We can also install and deploy a Kubernetes cluster with kubeadm
https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm.

Kubernetes cloud provider solutions
Kubernetes is currently open-source and is used as the basis for the majority
of container orchestration services. If we want to have all the advantages of
Kubernetes, we have all these alternatives with a cloud provider:

Google Kubernetes engine https://cloud.google.com/kubernetes-
engine is a service managed and offered by Google. It is responsible for
managing the instances, monitoring, logging, and updating Kubernetes
to the latest available version.
Amazon Elastic Kubernetes Service https://aws.amazon.com/eks is

https://github.com/kubernetes/minikube
https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm

a service offered by Amazon as a managed Kubernetes service. Amazon
also provides its own container orchestration system called Amazon
Elastic Container Service https://aws.amazon.com/ecs/.
Azure Kubernetes Service has its own service based on Kubernetes,
which it has called AKS https://azure.microsoft.com/en-
us/services/kubernetes-service/.
IBM also offers a managed Kubernetes service called IBM Cloud
Kubernetes Service https://www.ibm.com/cloud/kubernetes-service
in its cloud.
Red Hat OpenShift https://www.openshift.com proposes a complete
platform of containers integrating Docker, Kubernetes as native
technologies of execution and container orchestration with a series of
special functions to manage permissions, storage, application life cycle,
and other functions of the enterprise base in Red Hat Enterprise Linux.
CloudFoundry https://www.cloudfoundry.org/ offers Kubernetes in
its container runtime.
Kops https://github.com/kubernetes/kops is used to create and
manage Kubernetes clusters in production and with high availability.
k0s https://github.com/k0sproject/k0s is a Kubernetes distribution
with many options preconfigured to make building a Kubernetes cluster
a matter of just copying an executable to every host and running it.

Kubernetes offers solutions to most problems of a distributed deployment,
such as horizontal scaling, auto scaling, monitoring the status of the cluster
and each service, discovery and balancing of services, secret and
configuration management, network level abstractions, deployments and
automated rollbacks, and storage volume management.
In addition to using a newer version of Kubernetes, these tools provide a new
container runtime called CRI-O as the default runtime container. CRI-O
https://cri-o.io is the new container runtime designed for Kubernetes, which
allows executing any container image that follows the Open Container
Initiative (OCI) standard and is compatible with container images like
Docker and Podman.
Kubernetes makes it easy to deploy pre-configured applications with Helm
charts. Helm https://helm.sh is essentially a package manager for

https://www.ibm.com/cloud/kubernetes-service
https://www.openshift.com
https://www.cloudfoundry.org/
https://github.com/kubernetes/kops
https://github.com/k0sproject/k0s
https://cri-o.io
https://helm.sh

Kubernetes, and its function is to save time in the installation and
configuration of packages. For example, many software applications must run
on Kubernetes as a group of interdependent containers, and this is where
helm provides a mechanism that describes how an application or service can
run as a group of containers within Kubernetes.

Tip: Kubernetes learning scenarios
You can find interactive learning scenarios that provide you with a pre-
configured Kubernetes instance accessible from your browser without any
downloads or configuration at
https://www.katacoda.com/courses/kubernetes. You can use this service to
experiment, learn, and see how we can help solve real-world problems.

Figure 2.11: Kubernetes learning scenarios

Kubernetes alternatives
We can find other alternatives in the market with similar characteristics for
all types of applications, from small environments to large infrastructures
through various levels of complexity. For example, Nomad is a solution that
has a much simpler architecture that requires other external pieces to add load
balancing, service, or service discovery functionalities.

Docker Swarm

https://www.katacoda.com/courses/kubernetes

Swarm https://docs.docker.com/engine/swarm is the solution proposed by
Docker to solve tasks related to orchestrating and planning containers
through many servers. Swarm comes bundled with the Docker engine from
version 1.12.0 and offers many advanced integrated features, like service
discovery, load balancing, scaling, and security.
Swarm follows Docker’s philosophy of focusing on the simplicity and
experience of the developer, and we could say that it’s easier to use than
other solutions like Kubernetes. This solution it’s not as powerful and not
adopted by many companies, cloud providers, or by the community.
The main elements of the Swarm architecture are as follows:

Swarm master: Is responsible for the entire cluster and manages the
resources of several Docker hosts. In this model, services are
orchestrated instead of running container commands.
Swarm worker nodes: Each node of the cluster must be accessible by
the master. Each node executes an agent so that it registers the Docker
daemon referenced, monitors, and updates the backend with the node
state. Nodes can be distributed on premises or in a public cloud
provider.
Swarm discovery: By default, Swarm uses a discovery service based
on Docker Hub, using a token to discover the nodes that are part of a
cluster. It also supports other discovery services like etcd
https://etcd.io, Consul https://www.consul.io, and Zookeeper
https://zookeeper.apache.org.
Swarm strategy: Swarm has multiple strategies for the classification of
nodes. When a new container is executed, the Swarm decides to locate
it in the node with the highest-ranking calculated for its chosen strategy.
Swarm networking: It is fully compatible with the new overlay
network model of Docker.

At the base of this software is a master-slave architecture: When tasks need to
be distributed in the Swarm, users transfer a so-called service to the manager
node that acts as a master node in the cluster. The master node is responsible
for planning the containers in the cluster and acts as the primary interface
when accessing Swarm resources.
Each Docker cluster consists of at least one master node (also called

https://docs.docker.com/engine/swarm
https://etcd.io
https://www.consul.io
https://zookeeper.apache.org

administrator or manager) and as many slave nodes (called work or workers)
as necessary. While the Swarm master is responsible for managing the cluster
and delegating tasks, a slave is responsible for executing the units of work
(tasks or tasks). In addition, container applications are distributed in services
in the selected Docker accounts.
Thanks to its flexibility, it allows us to easily add new nodes, making
scalability simple and fast. In addition, it provides high availability since the
services can be easily replicated.

Tip: Swarm in practice
Docker Swarm is still used in development, while Kubernetes is used more
often for production environments by large providers.
In the following labs, you will deploy a simple application to a single host
and learn how that works. Then, you will configure a Docker Swarm mode
and learn to deploy the same simple application across multiple hosts. You
will then see how to scale the application and move the workload across
different hosts.

In the https://training.play-with-docker.com/swarm-stack-intro lab,
you can create a Docker Swarm cluster with two nodes running an
application.
In the https://training.play-with-docker.com/ops-s1-swarm-intro lab,
you will begin to explore running multiple services as a single stack
with Docker Swarm.
In the https://training.play-with-docker.com/orchestration-hol lab, you
will play around with the container orchestration features of Docker.

In this section, we have analyzed Docker Swarm as a Docker native clusters
management tool. For its original design, it is more a scheduler than a tool
that manages the life cycle of our applications. From the point of view of
filtering, tags, and the scheduler, we have seen that it offers many options and
is very flexible.

Nomad
Nomad https://www.nomadproject.io is a workload orchestrator to handle

https://training.play-with-docker.com/swarm-stack-intro
https://training.play-with-docker.com/ops-s1-swarm-intro
https://training.play-with-docker.com/orchestration-hol
https://www.nomadproject.io

different types of applications, including containers and microservices-based
applications. This solution is compatible with Docker containers and other
technologies, and it can also be used on various operating systems, such as
Linux, Windows, BSD, and MacOSX.
Nomad is handled with two types of modes—the client and the server—
similar to what we have in Docker Swarm. The client is in charge of
performing the tasks, while the server is in charge of managing the nodes.
The recommendation is to install between 3 and 5 servers, which will be in
charge of managing the deployments and monitoring, and as many clients as
required to host these deployments in the cluster.
Nomad does not include discovery functionality to resolve the locations
where each application has been deployed, but it integrates easily with consul
https://www.consul.io for this function. Neither offers load balancing
functions to send requests to the nodes where the application is deployed but
it integrates very well with Nginx or HAProxy with automatic configuration
based on consul.

Rancher - Kubernetes as a service
Rancher https://rancher.com/, more than an alternative to Kubernetes, is a
different and easier way to use it.
It allows adding extra value in the areas of operations and cluster
administration, intuitive workload management, and business support. It
defines itself as a full Kubernetes distribution and supports other Kubernetes
distributions, including RKE https://rancher.com/products/rke/ and K3s
https://k3s.io/.

Conclusion
In the next chapter, we will review how to manage containers and Docker
images. Nowadays, container technologies in general and Docker in
particular are becoming an indispensable technology. They are being used not
only to deploy applications in production but also to create replicable
development environments among all members of a team and ensure that the
applications are going to execute the same in all environments (development,
testing, and production).

https://www.consul.io
https://rancher.com/
https://rancher.com/products/rke/
https://k3s.io/

By understanding how the building blocks fit together, with Kubernetes, you
can design systems that take full advantage of the platform’s capabilities to
run and manage your workloads at scale.
For example, if the architecture is to be mounted on a public cloud like AWS,
Google Cloud, or Azure, usually it’s recommended using Kubernetes as it is
a complete solution and is fully managed.
In this way, you can have a complete container orchestration system with
auto-discovery, load balancing, volume management, network abstraction,
secret and configuration management, and so on without difficult
administration.
On the other hand, when the architecture is to be mounted on the client’s own
servers, it may not be worth the installation, configuration, and maintenance
of a Kubernetes cluster. A simpler solution based on Docker Swarm or
Nomad could be enough.

Points to remember
Today, we can find multiple container technologies like Docker, Linux
Containers (LXC), and Podman, with Docker being the most used.
Docker is an open source project, which has provided the community
with a new approach to the concept of virtualization at a technological
level. It allows you to deploy and run applications within software
containers, making use of a single host operating system. To do this,
Docker uses the resource isolation features provided by the Linux
kernel, such as namespaces and cgroups.
Kubernetes is an open-source container orchestrator with which we can
scale our applications, make automated deployments, and achieve a
cluster with N nodes capable of deploying our distributed application.
A Kubernetes cluster is made up of different nodes, which, in turn, are
made up of pods that offer services. A node corresponds to a real or
virtual machine that contains all the services necessary to run the pods
that it contains.
A pod represents a process that is running within the cluster and can be
made up of one or more running containers.
Although Kubernetes continues to be the main container orchestrator

and has been adopted by Google cloud services, AWS, Azure, and other
technologies built on Kubernetes with different technological add-ons
and platform maintenance support services have been emerging. An
example would be Red Hat’s Openshift, which stands out over
Kubernetes for its ease of use, reduced user security responsibilities,
and its own networking system.

Multiple choice questions
1. What are the main components of a Kubernetes worker node?

a. Controller Manager, Scheduler, and etcd
b. Kubelet and Kube-proxy
c. Replication Controller, Controller Manager, and Scheduler
d. Pod, Kubelet and Replication Controller

2. What are the main components of a Kubernetes master node?

a. Kubelet and Kube-proxy
b. Replication Controller, Controller Manager, and Scheduler
c. Controller Manager, Scheduler, and etcd
d. Pod, Kubelet and Replication Controller

Answers
1. b
2. c

Questions
1. What is the difference between Docker and Podman?
2. Which are the main features of a Kubernetes master node for

maintaining high availability in the cluster?
3. What are the main advantages of using Kubernetes over other

orchestrator tools like Docker Swarm or Podman?

Key terms
Docker containers allow the software to run in self-contained mini-
environments that are isolated from the rest of the system.
Podman is Red Hat’s alternative to Docker containers. The strength of
this technology is based on the optimization of resources since each
container that Podman executes corresponds to a single service on the
host machine.
Kubernetes is a solution focused more on Docker containers and
offering a complete system of orchestration with auto-discovery, load
balancing, volume management, networking, secret management,
configuration, etc.

CHAPTER 3
Managing Containers and Docker

Images

Introduction
This chapter covers how Docker manages images and containers, explores
the main commands used for generating our images from Dockerfile, and
walks us through how we can optimize our Docker images, minimizing their
size and, in turn, reducing the attack surface.
A container is considered a running image, and Docker adds a layer on the
image in a read/write mode when the image is in execution. Docker
automatically removes the read/write layer when the container stops or is
deleted, leaving the image in its original state. This allows you to reuse the
same image in several environments.

Structure
We will cover the following topics in this chapter:

Managing Docker images
Dockerfile commands
Managing Docker containers
Inspecting Docker containers
Optimizing Docker images

Objectives
After studying this unit, you will understand the concept of managing Docker
containers and images. You will also learn about Dockerfile commands and
best practices for optimizing and get a hang of inspecting Docker containers
and optimizing Docker images.

Managing Docker images
Docker images are read-only templates that we can use as a basis for
launching containers. This means what we do in the container only persists in
that container, and we do not make these modifications in the image. We
must create a custom image for our future containers if we want to have one.

Introducing Docker images
If we download an image using the docker pull command and then save it,
we can see that an image is a set of directories and files with a specific
structure, where each folder refers to one of the layers in the image. Within
each layer, there are some files to reference the said layer and a compressed
file with the file system that will form the image.
We can make backup copies of images. The process is carried out using the ‘
save’ option, which will pack the content and generate a file with a “ tar”
extension.
The following command can be used to download Ubuntu image and save it
in a tar file as a backup:
$ docker pull ubuntu

$ docker save ubuntu -o ubuntu.tar

$ docker save ubuntu > backup_ubuntu.tar

Figure 3.1: Executing pull and save commands

When an image is extracted and constructed so that it can be usable, we are
unzipping the content of each layer in order from the last one, which
corresponds to the base image. This generates a file system whose content is
built or modified incrementally with each layer.

The last layer of a Docker image is mounted in read/write mode and
differentiates one container from another or any container from its base
image. All the structures made on a container add new data or modify the
existing data in the last layer. The writing layer is also deleted when a
container is removed, but the base image remains unchanged.
An image is a permanently stored instance of a container. The docker
images command shows you the images on your system. You can assign
multiple aliases (including names and tags) to the same image whenever it is
useful.
$ docker images

Figure 3.2: Executing the docker images command

Here are some of the main commands we can perform on a container:

docker ps: Allows you to see containers in execution
docker ps –a: Allows you to see saved containers that are no longer in
execution
docker [start|stop] <id_container>: Let you start and stop the
container execution

Docker layers
Docker layers are like Git confirmations and store the difference between the
previous and current version of the image. And like Git commits, they are
useful if you share them with other repositories.
Layers use space, and the more layers you have, the thicker the final image
will be. Git repositories are similar in this regard. Git stores all changes
between commits, so the size of your repository increases with the number of
layers.
When you request an image from a repository, it downloads only the layers
that you don’t have downloaded to your machine locally. It is much more

efficient to share images this way.
We can see the layers of an image with the following command. In this
example, we are getting layers from Ubuntu image:
$ docker image history <image_name>: <version>

$ docker image history ubuntu:latest

Figure 3.3: Docker layers in Ubuntu image

Tip: Obtaining Docker images information using microbadger service
Another way to get the layers of an image is through the microbadger online
service that shows the contents of Docker’s public images, including
metadata and information about the layers that make up the images.
https://github.com/microscaling/microbadger

The following image shows the information of Ubuntu image using
microbadger service: https://microbadger.com/images/ubuntu

https://github.com/microscaling/microbadger
https://microbadger.com/images/ubuntu

Figure 3.4: Metadata from Ubuntu image using the microbadger service

Image tags
Image tags allow you to identify the versions of the images; images are listed
with their associated tags. We can see the tags available for Ubuntu operating
system on the Ubuntu Docker hub page at
https://hub.docker.com/_/ubuntu:

18.04, bionic-20210222, bionic
20.04, focal-20210217, focal, latest
20.10, groovy-20210225, groovy, rolling
21.04, hirsute-20210119, hirsute, devel
14.04, trusty-20191217, trusty
16.04, xenial-20210114, xenial

We can download a specific tag image with the docker pull command. We
are downloading a specific version for Ubuntu operating system with the
following command:
$ docker image pull ubuntu:18.04

https://hub.docker.com/_/ubuntu

$ docker image pull ubuntu:21.04

Figure 3.5: Tags when pulling Ubuntu image from docker hub

Design considerations for Docker Images
An image is made up of layers mounted one on top of the other. All layers in
the image are read-only when a new container is created from an image, and
a read-write layer is added above them.
The original layered organization and copy-on-write strategy promote some
of the best practices for creating and sharing Docker images:

Minimalist images: Docker images get benefits from the point of view
of stability, security, and loading time while smaller. You can always
install tools in a container if you need to solve problems related to
development.
Choosing a base image: The base image can contain many layers and
add many capacities. Official images for many distributions,
programming languages, databases, and runtime environments are
available in the Docker Hub repository at https://hub.docker.com/.

Dockerfile commands
One of the nice things about containers built using the automated build
approach is that Docker Hub will show you the Dockerfile used to build the
container, which provides some level of transparency over what you’re

https://hub.docker.com/

downloading.
We can see the Dockerfile that is using the Ubuntu base image at
https://github.com/tianon/docker-brew-ubuntu-
core/blob/d8b441737e0291a5c1c99f817ff1ba9ab6ccac11/focal/Dockerfile.
Images are created using a series of commands called instructions. The
instructions are placed in the Dockerfile file, which is basically a text file that
contains a collection of changes in the root file system and the corresponding
execution parameters for use within a container.
The result will be the final image. Each instruction creates a new layer in the
image, which then becomes the parent of the layer created by the next
instruction.

What is a Dockerfile?
A DockerFile is a text document that contains all the commands we want to
execute on the command line to build an image. This image will be created
using the docker build command that will follow the instructions.
The Docker engine executes the instructions one by one independently during
the construction of the image. A layer is created for each instruction that
allows them to be reused if they are cached, significantly speeding up the
construction process.
For example, an instruction that requires an image of the registry in the cloud
would suppose a great workload if we need to download it in each execution.
Cached data is used for this, so the image will be used directly if it has been
downloaded in a previous run. Every time the cached data is used, a text is
displayed in the console so that the user is aware of it.

Building images from Dockerfile
The docker build command builds an image following the instructions of a
Dockerfile that can be found in the current directory or a repository.

https://github.com/tianon/docker-brew-ubuntu-core/blob/d8b441737e0291a5c1c99f817ff1ba9ab6ccac11/focal/Dockerfile

Figure 3.6: Building process from a Dockerfile

It is important to note that docker build sends the entire context of the
current directory to the daemon, so it is a good practice to put the Dockerfile
in a clean directory and add the necessary files to that directory if necessary.
The syntax for the command is:
$ docker build [options] [Dockerfile_path]

Figure 3.7: Docker build options command

The most commonly used options are as follows:

-t, name [: tag]: Creates an image with the specified name and label
from the instructions in the file.
-no-cache: Allows us to generate a new image by omitting the cache
we will use. By default, Docker caches recently executed instructions. If
we run a docker build several times, Docker will check if the file

contains the same instructions and will not generate a new image if so.
-pull: Docker will only download the image specified in the FROM
expression. We can use this option to force you to download the new
version of the image.

The build command can be run from the same directory where the Dockerfile
is located or from another as long as the build file is referenced using the -f
(--file) command, followed by the path to the file. We can also assign
labels to the images to have them located with the -t (--tag) command,
leaving the final syntax of the form:
$ docker build --file <Dockerfile_path> --tag <repository>:<tag>

The preceding command means that the image created in the Dockerfile will
be built in the indicated path, and it will add a specific name given by the
repository and the tag.
Dockerfiles always start with the definition of a base image using the FROM
instruction. The main instructions that can be used in a Dockerfile are as
follows:

FROM <image>: Allows us to establish the base image of our container
and initializes the construction of a new image based on the specified
image.
RUN <command>: Allows you to execute a command in the context of the
image.
CMD <command>: Allows establishing the command that the container
executes on startup.
EXPOSE <port>: Allows you to define ports where the container is
listening to connections at runtime.
ENV: Used to define environment variables with the key = value format.
COPY <source destination>: Allows you to copy files and directories
to the file system of the container.
ADD: This instruction copies new files, directories, and remote files from
URLs and adds them to the container’s file system.
WORKDIR: Establishes the working directory.
VOLUME <path>: Allows you to use the location of our Docker host in
the container to store data permanently. Container volumes are always

accessible on the Docker host at /var/lib/docker/volumes/.
USER: Allows configuring the user with which the instructions will be
executed.
MAINTAINER: Establishes the author of the Dockerfile.
ENTRYPOINT: Allows you to configure a container as executable, usually
with the process that we want it to expose.

For a complete list of available instructions, you can check the official
documentation at https://docs.docker.com/engine/reference/builder/.
The COPY, ADD, and RUN instructions add a new layer to your image. The
following Dockerfile example creates two layers, where each layer executes
the RUN command.
FROM ubuntu

RUN apt-get update

RUN apt-get install vim

Combining several RUN instructions in a single line so that we only have one
layer is a good practice.
FROM ubuntu

RUN apt-get update && apt-get install vim

Here are some of the instructions found in this file:

FROM instruction: The FROM instruction sets the base image for the
following instructions. The image can be any local or public image. If
the image is not found locally, the Docker compilation command will
try to download the image from the public record. The tag or tag
command is optional, so the latest tag is assumed by default if it is not
specified.

FROM <image>: <tag | label>

RUN instruction: The RUN instruction will execute any command in a
new layer at the top of the current image and confirm this image. The
generated image will be used for the next instruction in the Docker file.
The RUN instruction has two forms:

RUN <command>
RUN [“executable”, “arg1”, “arg2” …]

https://docs.docker.com/engine/reference/builder/

The RUN instruction is only interpreted and used when the docker build
command is used for creating an image. The purpose of the RUN instructions
is to execute commands that modify the image in some way.
For example, you can install software packages or create a configuration file
that becomes part of the image. In this example, a file is created at the time of
compilation and viewed with the RUN command:
FROM ubuntu:latest

MAINTAINER maintainer

RUN echo “This container was built on $(date).” > /tmp/built.txt

ENTRYPOINT [“cat”,”/tmp/built.txt”]

The command reads the current date and time and sends it to the
/tmp/build.txt file when the Docker compilation is executed. The
command was executed at compile time, so the exact same date is displayed
each time you use a docker run command:
$ docker build -t ubuntu_image .

$ docker run ubuntu_image

Figure 3.8: Executing docker build and docker run with Ubuntu image

In the following example, we are creating a Docker image for the redis server
using the latest version of Ubuntu 18.04 as the base image. This can be the
content of our Dockerfile:
FROM ubuntu:18.04

RUN apt-get update && \

apt-get install -y redis-server && \

apt-get clean

EXPOSE 6379

CMD [“redis-server”, “--protected-mode no”]

The RUN instruction updates the apt index, installs the “ redis-server”
package, and clears the apt cache. The commands used in the
instructions are the same as what you would use to install redis on the
Ubuntu server.
The EXPOSE statement defines the port on which the redis server is
listening.
The CMD instruction allows you to set the default command that will be
executed when the container is executed.

The next step is to build the image. Run the following command from the
directory where the Dockerfile is located:
$ docker build -t myredis.

Figure 3.9: Executing docker build with redis image

Now that the image has been created, we can run a container by executing the
following command:
$ docker run -d -p 6379:6379 --name redis myredis

The -d option tells Docker to run the container in detached mode, the option
-p 6379: 6379 will post the image to port 6379 on the docker host, and the -

-name redis option specifies the name of the container. The last parameter is
the name of the image used to run the container:
$ docker ps

CONTAINER ID IMAGE

COMMAND CREATED

STATUS PORTS NAMES

617f62174be8 myredis “redis-server ‘--pro…”

23 minutes ago Up 23 minutes 0.0.0.0:6379->6379/tcp

redis

Once we have created the container and have it running in the background
with -d option, we can connect using the exec command, which executes a
process inside the container:
$ docker exec -it redis /bin/bash

root@617f62174be8:/# redis-cli

127.0.0.1:6379> ping

PONG

127.0.0.1:6379> set mykey value

OK

127.0.0.1:6379> get mykey

“value”

In the preceding output, we can see how we are accessing the redis container
and executing the redis-cli command to verify that we have the redis
service running on port 6379.
We will continue explaining some of the most important guidelines that must
be followed to optimize the time it takes to create the image, its security, and
its size as much as possible.

Best practices writing DockerFiles
Docker exposes a section of good practices for writing Dockerfiles. Here are
some best practices to create optimized Docker images:

Command order matters: Due to the way the cache works when
building an image, Docker is able to detect if the command we want to
execute has been executed before and reuse the result from the cache to
make it faster. So, it is recommended to order the commands according
to how frequently they have to be changed.
Run only one process per container: Following the practice of a single

process per container allows us to make decoupled applications and
reuse containers more easily. Plus, they are easier to scale and result in
more decoupled systems. This also allows us to use container links or
other container networking techniques.
Reduce the size of your images: A Docker image should only contain
what is strictly necessary to run your application. You should avoid
installing packages just because they can be useful for debugging a
container in order to reduce complexity, dependencies, image size, and
build time of an image. As an example, do not include text editors in
your images. Another practical option is the use of small base images,
for example, using alpine.
Build the images in multiple stages: Using multistage builds will
make our final image less heavy and probably more secure. When we
create an image, we can generate intermediate images that we use for a
specific purpose (such as generating an artifact) and that end up being
eliminated and are not part of the final image.
Minimize the number of layers of our images using the image cache:
Docker uses Union Filesystems to store images. This means each image
is made from a base image plus a collection of differences that add the
required changes. Each difference represents an additional layer in an
image, which has a direct impact on how we write our Dockerfile and
the directives we use.
Group the commands by layers: In a Dockerfile, each command
represents a layer of the final image. So, it is important to bring together
the layers that share the same logic to improve the use of the cache and
make the Dockerfile more maintainable.
FROM ubuntu

RUN apt update && apt install openjdk-8-jdk vim –y

User without privileges: It is good practice to modify the image’s end
user in a Dockerfile to someone with just the right privileges to fulfil the
image’s purpose. This will make our image more secure and prevent an
admin user in the container from gaining access to the host. To do this,
it is best to add a new user and a group and give it the permissions you
need.

FROM ubuntu

RUN groupadd -r usergroup && useradd -r -g user usergroup

ENTRYPOINT [“sh”, “myScript.sh”]

COPY ./myScript.sh /myScript.sh

RUN chown user /myScript.sh

USER

We should avoid executing commands as root inside the container. This is a
vital security measure, and it prevents a hypothetical attacker, for example,
from using apt-get to install new packages. In this case, a user is being
created to perform the operations that must build the image.

Tip: Dockerfile best practices in Docker documentation
Writing a Dockerfile may seem like something simple, but it is important to
follow certain recommendations that will make our building process run
faster and ensure that the resulting image is smaller and more secure. You
can find more tips and best practices in the Docker documentation:

https://docs.docker.com/develop/develop-images/dockerfile_best-
practices
https://docs.docker.com/engine/reference/builder

Managing Docker containers
The Docker Hub at https://hub.docker.com provides you and your
organization with a place to host and deliver images. You can configure the
Docker Hub repositories in two ways: Repositories, which allow us to upload
and update the images whenever we want from the Docker daemon and
automatic images that allow us to configure a GitHub, and BitBucket account
that triggers the reconstruction of an image when any changes are made to the
repository.

Searching and executing a Docker image
Docker images can be an easy way to experiment without installing and
configuring anything on your host machine if you want to try out a new
software application or are looking for a new one that serves a particular
purpose.
We can perform a search with the following command if you are interested in

https://docs.docker.com/develop/develop-images/dockerfile_best-practices
https://docs.docker.com/engine/reference/builder
https://hub.docker.com

trying Python:
$ docker search python

Figure 3.10: Executing docker search Python command

Another way we can search for an image is through the DockerHub interface:

Figure 3.11: Searching Python application in DockerHub

Once we have downloaded the Python image, we will launch a container
based on that image and interact with the command line of that container with
the docker run command.
$ docker run [options] [image] [commands] [arguments]

We must specify an image that we will use as a base while launching the
container when executing the docker run command. Another point is that the
options can replace almost all the default values configured in the execution.
We have several configuration parameters when starting a container:

-i allows you to establish a connection with the “standard input”
-t manages a “pseudo TTY”
-d runs the container in “background” mode
-a associates standard input or output to the open session
-cpus is the number of CPUs assigned
-ip assigns an IP address
-mac-address assigns a special mac address to the container
-m sets a memory limit for that container (usually a few megabytes)
-name assigns a name to the container
-p publishes container ports in the assigned network
-rm stopping the container will be automatically deleted
–tmpfs mounts a directory in tmpfs mode (temporary to be deleted, no
persistence)
-v mounts a directory in the container with persistence; it can be a real
computer folder or a Docker volume

We can execute the run command using the -t and -i flags for executing the
image. The -t flag creates a terminal device, and the -i flag specifies that
terminal session is interactive:
$ docker run -t -i python /bin/bash

Figure 3.12: Executing Python container

With the previous command, we are interacting with the container for
checking the Python version.

Executing a container in background mode
You can use the --detach or -d option to execute a container in background
mode. The -d option allows you to indicate that it runs in the background
(usually as a service daemon process).
$ docker container run --detach -ti --name mypython

python:latest /bin/bash

Figure 3.13: Executing Python container in detached mode

Inspecting Docker containers
Docker commands give you access to information about images and
containers, but you want to get more information about the metadata of these
objects sometimes.
The docker inspect command gives access to the metadata of a Docker
image in JSON format. The syntax of the command is as follows:
$ docker inspect [OPTIONS] CONTAINER|IMAGE|TASK [CONTAINER

|IMAGE|TASK…]

You can run the docker inspect command in any container or Docker
image.

Figure 3.14: Inspecting Python image

Tip: Inspect command options
Docker inspect command provides a series of options that allow you to
identify specific attributes with the --format option. For example, you can
verify the IP address configured for your container.
https://docs.docker.com/engine/reference/commandline/inspect

You can inspect images and containers by name or ID. We are using the
docker inspect command to obtain environment variables in the python
container in the following command.
$ docker inspect --format ‘{{.ContainerConfig.Env}}’

<container_id|container_name>

$ docker inspect --format ‘{{.ContainerConfig.Env}}’ python

[PATH=/usr/local/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

LANG=C.UTF-8 GPG_KEY=E3FF2839C048B25C084DEBE9B26995E310250568

PYTHON_VERSION=3.9.2 PYTHON_PIP_VERSION=21.0.1

PYTHON_GET_PIP_URL=https://github.com/pypa/get-

pip/raw/b60e2320d9e8d02348525bd74e871e466afdf77c/get-pip.py

PYTHON_GET_PIP_SHA256=c3b81e5d06371e135fb3156dc7d8fd6270735088428c4a9a5ec1

f342e2024565]

We can check the packages installed in a Docker container. For example, we
can use the dpkg -l command to check the packages installed in a Docker
container. We first need to find the ID of the container that is running.
$ docker exec <container_id | container_name> dpkg -l

$ docker exec mypython dpkg -l

https://docs.docker.com/engine/reference/commandline/inspect

Figure 3.15: Inspecting packages in docker container

Optimizing Docker images
Optimizing space and reducing container size is essential to create efficient
container environments. If we think that Docker is designed to be able to
mount a big number of containers, both space and speed are key factors in a
development environment and production.
One way to optimize images is to use as few layers as possible. For example,
the following set of instructions generates four layers, one for each RUN
instruction.
RUN apt-get update -y

RUN apt-get install -y curl

RUN apt-get install -y postgresql

RUN apt-get install -y postgresql-client

During construction, Docker tends to reuse the layers of an image of a
previous construction whenever possible, ignoring a step that could be costly.
We can consider these use cases:

Place the Dockerfile instructions that could change in the final part
of the file
Docker can reuse the previous layers this way.
Group instructions in the same layer
We can group similar instructions, for example, the apt-get command,
which usually requires an update of repositories and previous packages.
The same command with one RUN instruction only generates one layer in
the following example:

RUN apt-get update -y && \

apt-get install -y curl postgresql postgresql-client

Docker’s cache
The construction of a Docker image from a Dockerfile can be an expensive
process since it can involve the installation of a large number of libraries. At
the same time, it is a repetitive process because successive builds of the same
Dockerfile are similar to each other. This is why Docker introduces the
concept of cache to optimize the image building process.
Each time an image is reconstructed from a Dockerfile, Docker checks if the
current instruction has been executed correctly and so, has the results of the
instruction available in cache. If the results are correct and are cached,
Docker uses the instruction’s cached data by default and reuses it with the
new compilation.
Starting with the base image that is already cached, the following instruction
is compared to all the derived images from that base image to see if one of
them was created using the exact same instructions; the cache is invalidated if
not.
For the ADD and COPY instructions, the contents of the files in the image are
examined and a checksum is calculated for each file. During the cache search,
the checksum is compared against the checksums of the images already
created. The cache is invalidated if something changes.
The following statements in the Dockerfile will generate new images and will
not use the cache once it is invalidated. Note the following aspects about the
Docker cache:

The Docker cache is local, that is, all Dockerfile instructions will be
executed if you’re building a Dockerfile for the first time on a given
machine, even if the image has already been built in a Docker Registry.
The cache is invalidated if an instruction has changed and you cannot
use the cache, and the following Dockerfile instructions will be
executed without using the cache.
The behavior of the ADD and COPY instructions is different in terms of the
behavior of the cache. Although these instructions do not change, they
invalidate the cache if the content of the files being copied has been
modified.

Finally, you can use the --no-cache = true flag if, for some reason,
you want to build without using the cache.

When creating our image from the Dockerfile, there is an interesting feature
that we can use to reconstruct the image using the Docker cache so that a
certain layer associated with a command is only rebuilt if the command has
changed. The cache will be invalidated in these situations:

When the docker build command is executed with the --no cache
flag
When a command that can be cached is provided, such as the apt-get
update
When the first ADD instruction invalidates the cache for all the following
instructions in the Docker file if the context content has changed
For example, we can use the --no-cache flag to force a complete
reconstruction of the image without using the cache.

Building an application with NodeJS
In this example, we will develop an application with NodeJS that will be
served by a web server that will run in a Docker container. In Docker, we
also have the option of joining multiple layers in a structure called multi-
stage. In this example, we will build a Node.js container with an express-
based application https://www.npmjs.com/package/express.

index.js
const express = require(‘express’)

const app = express()

app.get(‘/’, (req, res) => res.send(‘Hello World!’))

app.listen(3000, () => {

console.log(`Example app listening on port 3000!`)

})

package.json
{“name”: “hello-world-nodejs”,

“main”: “index.js”,

“dependencies”: {

“express”: “^4.17.1”

},

https://www.npmjs.com/package/express

“scripts”: {

“start”: “node index.js”

}}

We are using a node base image in this example, and we will package this
application with the following Dockerfile, where we will execute the npm
install command from the package.json and index.js files:
FROM node:latest

EXPOSE 3000

WORKDIR /app

COPY package.json index.js./

RUN npm install

CMD [“npm”, “start”]

Next, we will create our image from the directory where we have saved the
Dockerfile. We can build the image with the following docker build

command:
$ docker build -t node-app.

After creating the image, we can execute the following command for creating
the container with the application running on port 3000:
$ docker ps

CONTAINER ID IMAGE

COMMAND CREATED

STATUS PORTS NAMES

9147096a3e66 node-app “docker-entrypoint.s…”

22 seconds ago Up 20 seconds 0.0.0.0:3000->3000/tcp

angry_keller

$ docker exec -it 9147096a3e66 bash

root@9147096a3e66:/app# ls

index.js node_modules package-lock.json package.json

root@9147096a3e66:/app# node index.js

Example app listening on port 3000!

In the previous command, we are interacting with the node-app container
using the container ID. Finally, we will execute index.js with the node server
command. Additionally, this container has an IP address with which we can
interact with the container.

Tip: Docker history command
In the previous Dockerfile, we can find COPY and RUN commands that
generate two additional layers for the base image. The resulting image has

five new layers, one for each statement in its Dockerfile file. We can see the
different layers with the docker history command.

https://docs.docker.com/engine/reference/commandline/history/
$ docker history node-app

Figure 3.16: Layers from node-app using the docker history command

Reducing image size with multistage
Now, let’s test the construction of the Dockerfile through multiple stages. We
will use the same DockerFile, but now we will rewrite it with multi-stage
mode. The main difference is that we are using the FROM node:latest
instruction twice in this case:
FROM node:latest as build

WORKDIR /app

COPY package.json index.js./

RUN npm install

FROM node:latest

COPY --from=build /app /

EXPOSE 3000

CMD [“index.js”]

The first section of the Dockerfile creates three layers. The layers are fused
and copied in the second and last stage. Two more layers are added above the
image for a total of three layers. When executing the build and history
commands, we can see how the image generated with multi-stage is smaller.

https://docs.docker.com/engine/reference/commandline/history/

Tip: Multi Stage build
You can refer to the Docker documentation about multistage-build at
https://docs.docker.com/develop/develop-images/multistage-build for more
information.

When using multistage build, we are using the image generated in the
previous step to optimize the construction of the second one. For this task we
can use the from = build instruction.
$ docker build -t node-multi-stage

We can verify the size of the image using node-multi-stage with the
following command:
$ docker images | grep node-

node-multi-stage latest eebccd4812cf 54

seconds ago 938MB

node-app latest c3d715290cb2 19

minutes ago 941MB

Reducing image size with alpine Linux
Image size plays an essential role in creating a good Dockerfile. Using
smaller images will result in faster deployments and less attack surface, so a
best practice when creating images in Docker is to make them as small as
possible.
Alpine Linux-based images https://hub.docker.com/_/alpine have the
capacity to produce the smallest images to run applications with minimal
resources at the memory and disk space level. At this point, images based on
this distribution are much faster to download and configure.
In our Node application, the distribution of alpine-Linux lets us reduce the
size of the image using the following Dockerfile:
FROM node:15 as build

WORKDIR /app

COPY package.json index.js./

RUN npm install

FROM node:15-alpine

COPY --from=build /app /

EXPOSE 3000

https://docs.docker.com/develop/develop-images/multistage-build
https://hub.docker.com/_/alpine

CMD [“npm”, “start”]

In the construction of the second image, we are using the alpine version for
the node image:
$ docker build -t node-alpine.

We can use the following command to verify the size of the image using
node-alpine:
$ docker images | grep node-

node-alpine latest 0b166f9aba49 6

seconds ago 114MB

node-multi-stage latest eebccd4812cf 33

minutes ago 938MB

node-app latest c3d715290cb2 About

an hour ago 941MB

In the previous output, we can see that the image size has been reduced from
938MB with multistage to 114MB with alpine Linux.

Distroless Docker images
Distroless images contain only the application and its dependencies at
runtime. They do not contain package management applications or programs
that we normally find in a standard Linux distribution.
We can execute the following commands to see the size differences between
these images and the official images of each platform based on Alpine:
$ docker pull gcr.io/distroless/python3

$ docker pull python

This will let us see the size difference between the Python official image
(885MB) and another based in Python distroless image (49.6MB).
$ docker images

REPOSITORY TAG IMAGE

ID CREATED SIZE

python latest 2c31ca135cf9 3

days ago 885MB

gcr.io/distroless/python3 latest c2596fdf7d32 51

years ago 49.6MB

As you can see, there is a significant difference in size between the two
images. This saves us disk space and network traffic, and it also improves

security. Not having libraries or services that we do not need reduces security
risks and unnecessary alerts from image scanners for obsolete or vulnerable
versions.

Tip: Distroless images from Google Container Tools project
The Google Container Tools project hosts a series of Docker images
oriented to specific programming languages without an operating system.
So, they do not contain any distribution, and all the images contain the files
needed to run the application.
We can find the source code of the project in the GitHub repository at
https://github.com/GoogleCloudPlatform/distroless. Here are some of the
images currently available:

gcr.io/distroless/python2.7

gcr.io/distroless/python3

gcr.io/distroless/nodejs

gcr.io/distroless/java

In the following URL, you can see an example of the construction of our
Dockerfile for an application based on Python 3 using a distroless approach:
https://github.com/GoogleContainerTools/distroless/tree/master/examples/python3

Figure 3.17: Dockerfile example using Python 3 distroless image

Distroless is a simplified version of the original operating system, so there are
no additional binaries and we can’t run a bash or sh to get a shell.
The fact that these images do not contain a shell is not of great importance,
unless we need to jump into the container to debug or inspect something.

There are the same images with the debug tag, including busybox, for this.
For example, we can use the gcr.io/distroless/python3:debug image if
we need to debug a container based on a Python application, and we can enter
by writing the entry point once we have created the container. Consider this
example:
$ docker run -it --rm --entrypoint sh

gcr.io/distroless/python3:debug

Figure 3.18: Executing Python interpreter with distroless image

This way, we have improved both the size of the image and its security. An
attacker will not be able to access a shell to execute commands even if it
manages to exploit the application and gains access to the container. It will
only have access to the binaries that have the image installed. Now, we can
conclude that less binaries mean smaller image sizes and greater security.

Conclusion
Docker images are based on a layered file system that offers many
advantages for use cases that containers are designed for, like being
lightweight and sharing common parts that many containers can deploy and
run on the same machine economically.
From the security point of view, attack vectors and network traffic are
reduced if we get smaller and specialized images focusing on only one
function or application. This, in turn, lowers the risk.
This also drastically reduces system updates and so, the complete

maintenance of all mounted architecture. And this is where images without a
system or “Distroless Images” play an important role from the security point
of view.
In the next chapter, we will review the main points for starting with Docker
security, analyzing topics like Docker Content Trust and Docker Registry.

Points to remember
A Docker image represents the state of an operating system, including
its dependencies, where each layer is mounted on top of another. All
layers are mounted in read-only mode, except the last layer, which is
mounted in read/write mode.
Dockerfiles are scripts containing successively declared commands and
instructions that will be executed in the order given by Docker to
automatically create a Docker image.
The docker build command will follow the instructions in the
Dockerfile for building the image.
Google Distroless Docker Images are base images that only contain the
dependencies necessary to run your application and eliminate all the
other elements, reducing the attack surface of our containers.

Multiple choice questions
1. Which Dockerfile instruction allows us to establish the base image of

our container?

a. FROM <image>
b. CMD <image>
c. RUN <image>
d. COPY <image>

2. Which Dockerfile instruction allows us to establish the command that
the container executes on startup?

a. FROM <command>
b. COPY <command>

c. RUN <command>
d. CMD <command>

Answers
1. a
2. d

Questions
1. What are the best practices for creating and sharing Docker images?
2. Which command allows you to see the different layers inside a Docker

image?
3. What are the main advantages of using Distroless images?

Key terms
A Docker image corresponds to the information needed to start a
container, and it basically consists of a file system and other metadata,
like the commands to be executed, the environment variables, the
container volumes, and the ports used by our container.
The Dockerfile allows you to build an image, and this image can be
uploaded to a registry so that it can be downloaded to the servers you
use to deploy your application.
Docker has a feature called multi-stage, which is useful for reducing the
size of images as it allows you to use different images at each stage.

CHAPTER 4
Getting Started with Docker Security

Introduction
This chapter covers topics like security best practices and other aspects like
Docker capabilities, which containers leverage in order to provide more
features, such as the privileged container.
While Docker provides a central registry to store public images, you may not
want your images to be accessible to the world. You must use a private
registry in this case. Now, we will review Docker Content Trust and
Docker Registry, which provide a secure way to upload our images in
Docker Hub platform and other registries like Quay and Harbor.

Structure
We will cover the following topics in this chapter:

Docker security principles and best practices
Docker capabilities
Docker Content Trust
Docker Registry

Objectives
After studying this unit, you should understand Docker security principles
and security best practices, Docker capabilities and Docker Content Trust,
and Docker Registry and other registries like Quay and Harbor.

Docker security principles and best practices
From the security point of view, Docker containers use the resources of the
host machine but have their own runtime environment.

This means a container cannot access other containers or the underlying
operating system (except the storage volumes to which you give access), and
it will communicate with other networks and containers with the specific
network configuration that you want to grant.
The most significant advantage of container-based virtualization is that
applications with different requirements can run isolated from each other
without having to assume the overhead of a separate guest system. At this
point, container technology takes advantage of two basic functions of the
Linux kernel: the control groups (Cgroups) and the kernel namespaces.

Namespaces provide isolation for processes and mount points, so
processes that run in a container cannot interact with or see processes
that run in another container. The isolation of the mounting points
implies that they cannot interact with the mounting points in another
container.
Control groups (Cgroups) are a feature of the Linux kernel that
facilitates the limitation of the use of resources at the level of CPU and
memory that a container can use. This ensures that each container gets
only the resources it really needs.

The development team behind Docker is also aware of security problems,
considering them an obstacle to the consolidation of this technology in
production systems.
Along with the fundamental isolation techniques of the Linux kernel, the
latest versions of the Docker engine support technologies like AppArmor,
SELinux and Seccomp:

AppArmor allows you to regulate permissions and access of the
containers in the filesystem
SELinux provides a system of rules that allows you to implement
access controls to the kernel resources
Secure Computing Mode (Seccomp) monitors kernel system calls

Docker also uses the so-called “Linux capabilities” that limits the capabilities
the container can use.

Docker daemon attack surface

While Docker facilitates virtualization work, we may forget the security
implications of the execution of Docker containers sometimes. From a
security point of view, we must keep in mind that Docker requires root
privileges for working in normal conditions.
The Docker daemon is responsible for creating and managing containers,
which includes creating filesystems, assigning IP addresses, routing packets,
process management, and tasks that require administrator privileges. So, it is
essential to start the daemon as a user administrator.

Tip: Securing Docker daemon
Docker Daemon is the main process that manages the life cycle of
containers and needs root privileges to run. Unfortunately, Docker daemon
executes with root privileges, so it also presents an attack vector.
You can refer to the official documentation at
https://docs.docker.com/engine/security for more information.
It is recommended to ensure that only trusted clients have access if you
want to expose the Docker daemon to the outside of your network and use
the remote API. A simple way is to secure Docker with SSL and certificates
using HTTPS. You can find ways to configure this at
https://docs.docker.com/articles/https.

Starting new containers, stopping, and reconfiguring on running containers
are some of the main actions we can perform on the containers.
One of Docker’s ultimate goals is to be able to run even the Daemon as a
non-root user, without affecting its functionality, and delegate operations that
require root privileges to a dedicated thread with elevated privileges.

Security best practices
The following list summarizes the best security practices when executing
Docker containers:

It is advisable to run the daemon Docker process on a dedicated server
isolated from other virtual machines
Special care must be taken to link certain Docker host directories as
volumes because a container can gain full read and write access and

https://docs.docker.com/engine/security
https://docs.docker.com/articles/https

perform critical operations on these directories
From the point of view of security in communications, the best option is
to use SSL-based authentication
Avoid running processes with root privileges inside the containers
We can study the option of enabling specific security profiles, such as
AppArmor and SELinux, on the Docker host
All containers share the host Docker Kernel, so it is important to have
the kernel updated with the latest security patches

The following best practices can help create services improving container
security:

One application per container using a microservice-oriented approach.
Do not run containers as root, and disable SETUID permissions.
Use the -cap-drop and - cap-add flags to remove and add capabilities
in the container.
It is advisable not to use environment variables or run containers in
privileged mode if you are going to share secrets.
You must have Docker updated to the latest version to ensure that all
security issues have been solved and also to provide the latest features
that Docker is incorporating in the core.
Kernel is one of the most vulnerable components in container
management as it is shared among all containers. So, special care should
be taken to keep the Linux Kernel with the latest update.

We will analyze some best practices in further detail in the following points.
First, we will check the default user within a container.

Execution with non-root user
By default, containers run with root privileges. We see that root is the default
user if we execute the following commands. We are executing Ubuntu
container for checking root user in the following command:
$ docker run -v /bin:/host/bin -it --rm ubuntu sh

#whoami

#id

With the execution of the previous commands, we can check the user that the
container is using by default:

Figure 4.1: Executing Docker container with default root user

The containers are executed by default with the root user, so root privileges
are available within the container. From a security point of view, it is
important to configure the namespaces to limit access to the container at this
point. While the container engine must be run with the root user, it is not a
good practice for the containers to do so, and it is necessary to create a user
for each running container.
The security solution is to indicate the user who wants to be able to execute
the creation of the image in the Dockerfile. You can add the user inside the
Dockerfile with the following commands:
RUN useradd <options>

USER <user>

We can include the information about the user in the Dockerfile with the
following commands:
FROM python:latest

RUN useradd -s /bin/bash unix_user

USER unix_user

ENTRYPOINT [“bin/bash”]

We can build the image with the following command:
$ docker image build -t python_image.

When executing the container with the (-i) interactive option, we see how the
user corresponds to the one we have declared in the Dockerfile:
$ docker run -ti python_image

In the following output, we can see the content from the /etc/passwd file

after executing the preceding command:
unix_user:x:1000:1000::/home/unix_user:/bin/bash

unix_user@5f4833b156fb:/$

unix_user@5f4833b156fb:/$ whoami

unix_user

unix_user@5f4833b156fb:/$ id

uid=1000(unix_user) gid=1000(unix_user) groups=1000(unix_user)

In this way, the whoami command returns the user created with the
Dockerfile, and we see how the user is added inside the container when
inspecting the file etc/passwd.

Start containers in read-only mode
Best practice recommendations for Linux systems administrations include the
application of the principle of minimum privilege. For this, flags like read-
only can be applied when executing a container.
Limiting the use of the filesystem can prevent a potential attacker writing and
executing scripts inside the container. We can use the docker run command
with the read-only flag to do this:
$ docker run -it --read-only python sh

touch file

touch: cannot touch ‘file’: Read-only filesystem

In the preceding output, we can see that we get the “cannot touch file: Read-
only filesystem” message if we try to create a file when executing the
container with this flag.
The main disadvantage of using the read-only option is that most applications
need to write files in directories such as / tmp and will not work in a read-
only environment. In these cases, we can use folders and files in which the
application needs write access and use volumes to mount only those files.
A volume can be provided to make persistent changes if the container needs
to write to the filesystem. It is recommended to use Docker volumes in the
case of temporary files.
A volume is a directory that is separate from the root filesystem of the
container, is managed directly by the daemon docker process, and can be
shared between containers.
In the following example, we are running a mysql container and

configuring it as read-only, with exception of the /var/lib/mysql and /tmp
directories.
It means that these directories are the only location where data can be written
into the container. You won’t be allowed to write anything in any other
location inside the container. We can run the mysql container in
combination with other parameters like MYSQL_ROOT_PASSWORD and define a
volume with the -v flag to do this:
$ docker run --name mysql --read-only -v /var/lib/mysql -v /tmp

-d -e MYSQL_ROOT_PASSWORD=password mysql

The following output shows that we get an error when trying to create a file
inside the mysql container with read-only mode:
$ docker ps

CONTAINER ID IMAGE

COMMAND CREATED

STATUS PORTS NAMES

aea913f35c28 mysql “docker-entrypoint.s…” 9

seconds ago Up 7 seconds 3306/tcp, 33060/tcp

mysql

$ docker exec mysql touch /opt/file

touch: cannot touch ‘/opt/file’: Read-only filesystem

We get the “Read-only filesystem” error message when executing the
container and trying to write a file outside the /tmp directory. We can use the:
ro flag, indicating that the volume is read-only, when working with volumes
with Docker containers:
$ docker run -v $(pwd):/pwd:ro debian touch /pwd/x

Unable to find image ‘debian:latest’ locally

latest: Pulling from library/debian

e22122b926a1: Already exists

Digest:

sha256:9d4ab94af82b2567c272c7f47fa1204cd9b40914704213f1c257c44042f82aac

Status: Downloaded newer image for debian:latest

touch: cannot touch ‘/pwd/x’: Read-only filesystem

At this point, we have reviewed how to start a container and mount a volume
in read-only mode.

Disable the setuid and setgid permissions
The Set User ID (setuid) and Set Group ID (setgid) bits are special

permissions that are used to access directories and files in the operating
system by users who do not have root permissions.
The main problem with these bits is that they can be exploited by attackers.
At this point, the best practice is to disable the SETUID permissions in the
Dockerfile.
The setuid and setgid permissions are deleted during the image construction
phase using the Dockerfile with the following command:
RUN find / -perm +6000 -type f -exec chmod a-s {} ; || true

The preceding command performs a search for executables and withdraws
any setuid and setgid permission from any user.
We can also disable the setuid and setgid bits when you start a Docker
container with the following command:
$ docker run -d --cap-drop SETGID --cap-drop SETUID

<container_name>

With the previous command, you have disabled the setuid and setgid
capabilities when running a specific Docker container.

Verifying images with Docker Content Trust
The DOCKER_CONTENT_TRUST environment variable allows you to verify that
the images you download from a Docker registry like Docker Hub are trusted
and signed. You need to export this variable with the following command to
enable this feature:
$ export DOCKER_CONTENT_TRUST=1

Use the following command to download an image from the DockerHub
repository and verify the image hash:
$ docker pull

someimage@sha256:a25306f3850e1bd44541976aa7b5fd0a29be

The preceding command checks the SHA256 hash of the filesystem manifest,
where a manifest is a metadata file that describes the content of a Docker
image.
The manifest file contains a list of all the image layers identified by the hash,
so you can securely download and trust all layers, even over untrusted

channels like HTTP, if you can verify that the manifest has not been
modified.

Resource limitation
By default, all containers share host machine resources equitably. This means
that there is no preference between containers when it comes to consuming
resources like CPU and memory from the Docker host.
One of the problems that may arise is determining which containers in the
system may be affecting the stability of the entire infrastructure, preventing
its normal operation. A possible solution to resource problems that may arise
is to limit the use of CPU and memory for each of the containers.
The docker run command has different configuration parameters that allow
both to limit the use of resources:
$ docker run [OPTIONS] [IMAGE] [COMMAND] [ARG]

The following command shows information about the options available
related with CPU, devices, and memory:
$ docker run --help | grep ‘cpu\|device\|memory’

The following screenshot shows the options available for limiting the use of
CPU, devices, and memory when running a container:

Figure 4.2: Command options for limiting resources in containers

At this point, we have reviewed the different options available for adjusting
performance needs, such as CPU, devices, and memory.
Just like different privileges can be added, by default, the ideal in terms of
security is to apply as less as possible. In other words, do not provide
permissions until it is shown that they are necessary to execute the different
functionalities required.

Docker capabilities
Docker capabilities allow us to manage the permissions that a process can use
to access the kernel and segregate root user privileges to limit actions that can
be accessed with privileges.

Tip: Linux capabilities
Linux capabilities provide a tool to design a more advanced security
strategy with different privilege levels.
You can check the man pages for Linux capabilities at
http://man7.org/linux/man-pages/man7/capabilities.7.html.

We already know that, by default, when we execute a Docker container, it
runs as root. We all know that this practice is not a good idea, especially
services that receive requests either from users or from other sources.
It is also important to note that a container does not have the same privileges
as the root user of the Docker host even if it is run as root. This is because
Docker containers run with a limited number of capabilities by default. These
include the following:

CAP_SYSLOG: For modifying the behavior of the Kernel log
CAP_NET_ADMIN: For modifying the network configuration
CAP_SYS_MODULE: For managing Kernel modules
CAP_SYS_RAWIO: For modifying the Kernel memory
CAP_SYS_NICE: For modifying the priority of the processes
CAP_SYS_TIME: For modifying the system clock
CAP_SYS_TTY_CONFIG: For configuring tty devices

http://man7.org/linux/man-pages/man7/capabilities.7.html

CAP_AUDIT_CONTROL: For configuring the audit subsystem

Thanks to this granularity, capabilities are a useful method to execute
privileged tasks with minimal permissions. This way, the capabilities are
used in virtualization environments like Linux or Docker containers, where
they play a fundamental role in the management of security contexts.
The main advantage is to avoid granting a process elevated privileges when
you actually need only certain permissions for a specific operation. This table
lists some Linux capabilities with a description:

Capability Key Capability Description

CAP_AUDIT_CONTROL Enable and disable kernel auditing; change auditing filter
rules; retrieve auditing status and filtering rules.

CAP_AUDIT_WRITE Write records to the kernel auditing log.

CAP_NET_RAW Use RAW and PACKET sockets;
bind to any address for transparent proxying.

CAP_CHOWN Make arbitrary changes to file UIDs and GIDs.

CAP_MAC_ADMIN Allow MAC configuration or state changes. Implemented
for the Smack Linux Security Module (LSM).

CAP_NET_ADMIN Perform various network-related operations.

CAP_NET_BIND_SERVICE Bind a socket to Internet domain privileged ports (port
numbers less than 1024).

Table 4.1: Linux capabilities

The Linux kernel prefixes all capability constants with the “ CAP_” prefix. For
example, CAP_CHOWN makes changes in bits UIDs and GIDs to change the
owner of a file.

Listing all capabilities
The Linux libcap packages incorporate commands and binaries for listing
and managing capabilities:

getcap: Allows listing the capabilities of a file
setcap: Allows assigning and deleting the capabilities of a file
getpcaps: Allows listing the capabilities of a process

capsh: Provides a command line interface for testing and exploring
capabilities

We can check the capabilities by starting a container, connecting to a shell,
and listing the capabilities. The following commands will deploy an Ubuntu
image and install the libcap2-bin package, which contains utilities to check
capabilities:
$ docker run -it ubuntu

root@e1773474e22c:/# apt update

Get:1 http://security.ubuntu.com/ubuntu bionic-security

InRelease [88.7 kB]

Get:2 http://archive.ubuntu.com/ubuntu bionic InRelease [242 kB]

Get:3 http://archive.ubuntu.com/ubuntu bionic-updates InRelease

[88.7 kB]

Get:4 http://archive.ubuntu.com/ubuntu bionic-backports

InRelease [74.6 kB]

Get:5 http://security.ubuntu.com/ubuntu bionic-security/universe

Sources [346 kB]

Get:6 http://security.ubuntu.com/ubuntu bionic-security/universe

amd64 Packages [1398 kB]

…

root@e1773474e22c:/# apt install -y libcap2-bin

Reading package lists… Done

Building dependency tree

Reading state information… Done

The following additional packages will be installed:

libcap2 libpam-cap

The following NEW packages will be installed:

libcap2 libcap2-bin libpam-cap

….

Setting up libcap2-bin (1:2.25-1.2) …

root@e1773474e22c:/# grep Cap /proc/$BASHPID/status

CapInh: 00000000a80425fb

CapPrm: 00000000a80425fb

CapEff: 00000000a80425fb

CapBnd: 00000000a80425fb

CapAmb: 0000000000000000

root@e1773474e22c:/# capsh --decode=00000000a80425fb

0x00000000a80425fb=cap_chown,cap_dac_override,cap_fowner,cap_fsetid,cap_kill,cap_setgid,cap_setuid,cap_setpcap,cap_net_bind_service,cap_net_raw,cap_sys_chroot,cap_mknod,cap_audit_write,cap_setfcap

At this point, we have reviewed the different capabilities activated by default
in a Docker container.

Add and drop capabilities

Docker provides the following commands to provide or remove Linux
permissions to different containers. Here, we can apply add or remove
privileges through cap-add and cap-drop flags:
$ docker run --cap-add = {capability}

$ docker run --cap-drop = {capability}

We can add a specific capability with the following command:
$ docker run --rm -it --cap-add $CAP ubuntu sh

We can use the following command to drop capabilities from the root
account of a container:
$ docker run --rm -it --cap-drop $CAP ubuntu sh

We can use the following command to drop all capabilities and then
explicitly add individual capabilities to the root account of a container:
$ docker run --rm -it --cap-drop ALL --cap-add $CAP ubuntu sh

For example, we can delete the chown capability inside a container and then
try to add a user. The action of adding a user will fail because this operation
needs the CAP_CHOWN capability. In the following command, we can see the
action of changing the ownership of a file or directory inside an Ubuntu
container:
$ docker run --cap-add=ALL --cap-drop=CHOWN -ti ubuntu sh

useradd test

useradd: failure while writing changes to /etc/shadow

chown test /usr/share

chown: changing ownership of ‘/usr/share’: Operation not

permitted

id

uid=0(root) gid=0(root) groups=0(root)

When executing the preceding command, we can see that the action of
changing the ownership of a file or directory will fail, and it will show a
“Operation not permitted” message. As we can see, we do not have the
permission to change the owner of a file even as a root user as we have
disabled the capability corresponding to the change of the owner.
Docker containers start with a reduced capacity set. Docker enables these
capabilities by default: chown, dac_override, fowner, kill, setgid,

setuid, setpcap, net_bind_service, net_raw, sys_chroot, mknod,

setfcap, and audit_write.
We can also remove all the capabilities that are enabled in Docker by default
and check that the container stops working. With the following command, we
are starting a bash shell without the capabilities that are enabled by default:
$ docker run -ti --cap-drop=CHOWN --cap-drop=DAC_OVERRIDE

--cap-drop=FSETID --cap-drop=FOWNER --cap-drop=KILL --cap-

drop=MKNOD

--cap-drop=NET_RAW --cap-drop=SETGID --cap-drop=SETUID

--cap-drop=SETFCAP --cap-drop=SETPCAP --cap-

drop=NET_BIND_SERVICE

--cap-drop=SYS_CHROOT --cap-drop=AUDIT_WRITE ubuntu /bin/bash

It is also recommended to drop the setuid and setgid capabilities from
containers that will be running on your hosts. The Linux kernel is responsible
for managing the uid and gid space, and kernel-level syscalls are used to
determine if the requested privileges should be granted.
In the following command, we are dropping the setuid and setgid capabilities
when you are executing a Docker container:
$ docker run -it --cap-drop SETGID --cap-drop SETUID python sh

cat /proc/self/status

Name: cat

Umask: 0022

State: R (running)

Tgid: 6

Ngid: 0

Pid: 6

PPid: 1

TracerPid: 0

Uid: 0 0 0 0

Gid: 0 0 0 0

…

If we try to get the capabilities inside the container, we can see that uid and
gid bits are equal to 0. For example, a possible attacker who finds a
vulnerability within the container cannot not obtain a shell with root
privileges if uid and gid bits are eliminated.
The best practice at this point is to eliminate all capacities and add only those
we need in our container with the cap-drop and --cap-add flags.

Disabling ping command in a container

We can use the following command that disables the NET_RAW capability in
the Python container for disabling ping in a container:
$ docker run -it --cap-drop NET_RAW python sh

In the following example, we are removing the NET_RAW capability of the
container, so we cannot execute the ping command:

Figure 4.3: Disabling ping in Python container

In the preceding command, we have disabled the use of RAW and PACKET
sockets. If we try to execute the ping command inside the container, it will
return the “ping:Lacking privilege for raw socket” message.
We can eliminate all the capacities of a container as a good security practice.
Docker provides the ALL option to refer to all the capacities. The following
command shows the result for dropping all capabilities in the Python
container:
$ docker run -it --cap-drop=all python sh

ping 8.8.8.8

ping: socket: Operation not permitted

apt update

E: setgroups 65534 failed - setgroups (1: Operation not

permitted)

E: setegid 65534 failed - setegid (1: Operation not permitted)

E: seteuid 100 failed - seteuid (1: Operation not permitted)

E: setgroups 0 failed - setgroups (1: Operation not permitted)

…

Ideally, you would run the container as a user without any capabilities, and if
necessary, add only the capabilities needed to run the container. If we use
docker-compose, we can indicate it as follows:
version: “1.0”

services:

my_service:

…

cap_drop:

- ALL

cap_add:

- NET_ADMIN

- SYS_ADMIN

…

If we are using Kubernetes, it can be defined within the security context
when we define the pod:
apiVersion: v1

kind: Pod

metadata:

name: capabilities_k8s

spec:

containers:

- name: capabilities_k8s

image: my_image

securityContext:

capabilities:

drop:

- ALL

add:

- NET_ADMIN

- SYS_TIME

Adding capability for managing network
Sometimes we need to add capabilities for managing and configuring the
network. We can use the --cap-add=NET_ADMIN flag for this task. The
following command is used to add the net_admin capability inside Python
container:
$ docker run -ti --cap-add=NET_ADMIN python sh -c “ip link set

eth0 down”

We can disable the network interface executing the link set eth0 down

command by adding this capability. The following screenshot depicts the
result of executing the preceding command:

Figure 4.4: Enabling capability for managing network

CAP_NET_RAW is another capability related to the network. From the security
point of view, this capability has several implications related to the sending
of packages. This is because it allows any package to be generated, and
impersonation attacks can be made to perform MITM attacks from a
container.

Execution of privileged containers
Sometimes you need your container to have special Kernel capabilities that
would normally be denied. This can include mounting a USB drive,
modifying network settings, or creating a new Unix device.
The following command can be used to change the container’s MAC address
in the eth0 interface:
$ docker run --rm -ti ubuntu /bin/bash

root@b328e3449da8:/# ip link ls

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state …

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

9: eth0: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state …

link/ether 02:42:0a:00:00:04 brd ff:ff:ff:ff:ff:ff

root@b328e3449da8:/# ip link set eth0 address 02:0a:03:0b:04:0c

RTNETLINK answers: Operation not permitted

We can see that this operation is not allowed since the Linux Kernel blocks it
in the container. However, if we need this functionality for executing our
container, we can do it with the --privileged = true option.

The following command is used to execute Ubuntu container with full
privileges:
$ docker run -ti --rm --privileged=true ubuntu /bin/bash

We can see how the MAC address has been modified correctly with this
option:
root@88d9d17dc13c:/# ip link ls

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state …

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

9: eth0: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state …

link/ether 02:42:0a:00:00:04 brd ff:ff:ff:ff:ff:ff

root@88d9d17dc13c:/# ip link set eth0 address 02:0a:03:0b:04:0c

root@88d9d17dc13c:/# ip link ls

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state …

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

9: eth0: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state …

link/ether 02:0a:03:0b:04:0c brd ff:ff:ff:ff:ff:ff

With privileged access within the container, we will provide more
capabilities to perform operations normally performed by root. As we can
see, the privileged container can access much more hardware than the
container that is not privileged.
The problem with using the --privileged=true flag is that it gives your
container a lot of privileges, and in most cases, you probably only need one
or two Kernel capabilities to perform the necessary operations.

Docker Content Trust
Docker Content Trust (DCT) is a mechanism that allows developers to sign
their content, completing the reliable distribution mechanism.
When a user downloads an image from a repository, this mechanism allows
you to check the image signature, receiving a certificate that includes the
public key that lets you verify the image origin.
This option is disabled by default, and we need to define the
DOCKER_CONTENT_TRUST environment variable or run Docker Engine with the
--disable-content-trust = false option to enable it.
$ export DOCKER_CONTENT_TRUST=1

The following screenshot shows the result of pulling Python Docker image

with Docker content trust enabled:

Figure 4.5: Downloading Python image with Docker Content Trust

Docker Content Trust can protect against certain attack scenarios, including
the following:

Protection of malicious code in images: For example, this mechanism
protects you if a possible attacker wants to make a modification in an
official image to introduce malicious code.
Protection against repeated attacks: The security mechanism of
Docker Content Trust allows you to maintain the integrity of the image
through the use of timestamps.
Protection against key commitments: This mechanism creates a new
key if a key is compromised, and we can create a new version of the
image with this new key.

We can verify a Docker image using the Docker trust command. For
example, we can verify images signatures from the python image with the
following command:
$ docker trust inspect --pretty python:latest

Signatures for python:latest

SIGNED

TAG DIGEST SIGNERS

latest 797aee 34488c660ebaf

5b88e622fdd458e65bb3c2500d48f9fbb3711e8688a1e (Repo Admin)

Administrative keys for python:latest

Repository Key: abdd8255df05a14ddc919bc43ee

34692725ece7f57769381b964587f3e4decac

Root Key: a1bbec

595228fa5fbab2016f6918bbf16a572df61457c9580355002096bb58e1

When an image is downloaded, the Docker client will return a string
representing the image’s hash. This hash is the one with which the image will
be validated when performing a pull.
We’ll get the following error message if the hash with which we are
downloading the image does not match the original:
$ docker pull

python@sha256:111

invalid checksum digest length

Docker will verify that the hash matches with the original image each time an
image is attempted to be downloaded like this. Any update of the image will
result in the generation of a new hash.
When enabling Docker Content Trust, the Docker engine will only download
the images that have been signed and will deny the execution of the images
whose signatures do not match.

Notary as a tool for managing images
Docker Notary https://docs.docker.com/notary/ is a tool that allows you to
securely publish and manage images. Some of Notary’s objectives are to
improve confidence in the images we download, either from a public or
private repository, delegate trust between users, and securely distribute over
different repositories.
Notary consists of server and client parts. The client part is installed on the
local machine and handles the storage of the keys locally, and it also handles
communication with the Notary server. You can check the GitHub repository
at https://github.com/docker/notary for more information on how to
compile and configure the Notary server.
From the server point of view, you can find official precompiled binaries for
many operating systems in the GitHub repository at
https://github.com/theupdateframework/notary/releases.

https://docs.docker.com/notary/
https://github.com/docker/notary
https://github.com/theupdateframework/notary/releases

These are the steps we can follow to deploy your notary server:

Use the docker-compose file that we find inside the repository at
https://github.com/theupdateframework/notary.git
docker-compose build

docker-compose up -d

Run the following commands to connect the notary server to the Docker
client:
export DOCKER_CONTENT_TRUST = 1

export DOCKER_CONTENT_TRUST_SERVER =

https://notary_server:4443

The first environment variable allows you to enable and disable Docker
Content Trust verification. If enabled, the integrity of the image will be
verified, relying on this verification on the Docker Notary server indicated in
the second environment variable that allows you to define the URL where the
Notary server is located.

Docker Registry
Docker provides a software distribution mechanism, also known as
“Registry”, which facilitates the discovery and distribution of Docker images.
The concept of registry is fundamental as it provides a set of utilities to
package, send, store, and discover new images. The best known Docker
Registry is the Docker Hub.

What is a registry?
A registry is one of the key pieces when creating our Docker environments as
soon as we start creating our own images. Having a registry in our own
infrastructure saves us bandwidth and gives us better access/download time.
The idea behind Docker Registry is that developers can extract the image
from the registry to create other containers and deploy them either in the
public cloud or in an organization’s private servers.
The Docker registry works almost like Git. Each image, also known as a
repository, is a succession of layers. Every time we build our image locally,
the Docker Registry only stores the difference from the previous version,

https://github.com/theupdateframework/notary.git

making the image creation and distribution process much more efficient.

Public Docker registries
Docker Hub https://hub.docker.com/ is the main image registry service that
is offered as a Software as a Service platform with several usage plans.
The main problem with the official Docker Hub image repository is that it
has quite a few limitations regarding the number of images that we can
upload and download, which means the number of pushes and pulls is limited
to a certain number during a period of time.
An option to avoid being aware of this limitation is to set up our own internal
Docker Registry in our organization. This option is viable, especially since
our users are doing builds continuously and have a CI/CD system that
depends on a registry for downloading the images.
We have other options for using public registries like Quay https://quay.io/
and Harbor https://goharbor.io/. These registries allow you to open an
account, authenticate, and bring images from this registry simply by
registering a user.
The Gitlab registry
https://docs.gitlab.com/ee/user/packages/package_registry is also an
excellent option to host our images, especially if we manage our projects
directly on this platform.
If you are familiar with Amazon web services, you can use services like
Amazon Elastic Container Registry https://aws.amazon.com/ecr as a
managed container registry that makes it easy to store, manage, share, and
deploy your container images and artifacts anywhere.

Creating Docker registry
Docker Registry is an open source project that can be installed on any server
to create your own registry and upload your images privately. This project
aims to have an alternative to the Docker Hub to track the images hosted on
your own server.
You can run and deploy a Docker registry on your own server in several
ways to store and distribute your own Docker images. For Linux distributions
that include a Docker registration package (such as Fedora and Red Hat

https://hub.docker.com/
https://quay.io/
https://goharbor.io/
https://docs.gitlab.com/ee/user/packages/package_registry

Enterprise Linux), you can install the package and start the service.
You can also use the following image available in the Docker hub at
http://hub.docker.com/_/registry, which contains an implementation of the
Docker Registry HTTP API V2. Here are the steps to set up a private Docker
registry on your own server:

1. We are executing a registry container in detached mode with port 5000
exposed with the following command:
$ docker run -d -p 5000:5000 --restart=always --name

registry registry:2

The following screenshot illustrates the result of executing the previous
command:

Figure 4.6: Downloading docker image for creating local registry

The preceding command starts a registry container in TCP port 5000.
You can upload and download images in the private repository for
testing this container. For example, you can download the hello world
image available in the Docker Hub Registry.
$ docker run --name myhello hello-world

2. We must now tag the hello world Docker image. We can use the docker
tag command to name the Docker image:
$ docker tag hello-world localhost:5000/hello-me:latest

$ docker images

REPOSITORY TAG IMAGE

ID CREATED SIZE

hello-world

latest d1165f221234 2 weeks ago

13.3kB

localhost:5000/hello-me

http://hub.docker.com/_/registry

latest d1165f221234 2 weeks ago

13.3kB

registry 2 5c4008a25e05 3

weeks ago 26.2MB

3. The next step is to push the image in the registry. We can execute the
following command to save the hello-world image in the local Docker
registry:
$ docker push localhost:5000/hello-me:latest

The push refers to repository [localhost:5000/hello-me]

f22b99068db9: Pushed

latest: digest: sha256:1b26826f602946860c

279fce658f31050cff2c596583af237d971f4629b57792 size: 525

4. Then, we have to ensure that you can obtain the image from the registry.
We must first delete the current image with the Docker rm command
and then retrieve it from your local registry:
$ sudo docker rm myhello

$ sudo docker rmi hello-world localhost:5000/hello-

me:latest

$ sudo docker pull localhost:5000/hello-me:latest

The following screenshot depicts the result of executing the above-
mentioned commands:

Figure 4.7: Deleting hello world docker image and pulling from local registry

5. Finally, we can verify that the image has been downloaded to our host
Docker, and we can execute the image:
$ docker images

$ docker run -it localhost:5000/hello-me

The following screenshot shows the result of executing the preceding
commands:

Figure 4.8: Checking docker images and running docker image from localhost

In summary, setting up a private Docker registry offers developers the
capacity to send and extract images without using the public Docker registry.

Quay.io image repository
Quay.io image repository https://docs.quay.io is a container registry with
features similar to those of the Docker Hub repository.
This registry is compatible with most container environments and
orchestration platforms, and it is also available as a hosted or local service.
Additionally, it supports the last version of the Docker Registry HTTP API
protocol used to distribute container images.
We can use the quay registry to download an image just like when using
Docker hub:
$ docker pull quay.io/bitnami/elasticsearch

Using default tag: latest

latest: Pulling from bitnami/elasticsearch

133717132a92: Pull complete

dbd9fadba36e: Pull complete

6b44c2d792e7: Pull complete

2f1d15f1de50: Pull complete

d9caf900187c: Pull complete

b444f54a2494: Pull complete

7410684254f7: Pull complete

f5de5c0b3731: Pull complete

6ff0318ae752: Pull complete

6f51a6553225: Pull complete

Digest: sha256:533ac49a17131fa9e14edbccd77

cc8fca36ce11566808885a1c307d2ccee3bd4

https://docs.quay.io

Status: Downloaded newer image for

quay.io/bitnami/elasticsearch:latest

quay.io/bitnami/elasticsearch:latest

Execute the following command to log in to Quay.io:
$ docker login quay.io

Username: myusername

Password: mypassword

Quay provides a visual interface for creating a repository. Click on the + icon
in the upper-right corner and select ‘ New repository’. The following
screenshot shows the quay.io page for creating a new repository:

Figure 4.9: Quay.io page for creating a new repository

We can use many options for create a repository:

Figure 4.10: Quay.io options for creating a new repository

Quay also provides an interface to assign several labels to the same image. A
new tag can be added to a tagged image by clicking on the icon next to the
tag and selecting Add New Tag. Quay.io will confirm the action of adding a
new label to the image. The following screenshot shows actions related to
tags:

Figure 4.11: Actions related to tags

One of the interesting features of this repository is that we can enable the
Docker Content Trust.

Figure 4.12: Enable Docker Content Trust in Quay

Repository tags and Docker Content Trust can make a signed tag point to a
different image than the actual tag. So, it is important to have a separation
between tags that are signed and tags that are not.

Harbor repository
Harbor https://goharbor.io is an image repository for Docker and
Kubernetes that applies features like vulnerability analysis, content signing
and validation, multi-tenant, and access through API and web interface.

Tip: Testing Harbor repository
Harbor allows us to create secure repositories for our organization, with the
possibility of managing access and integrating it with Kubernetes securely
and efficiently.
Visit https://www.katacoda.com/courses/harbor for an example for
deploying a harbor registry.

Harbor is released as an installer that includes default configuration and
installation scripts. You can download and extract the installer with the
following command:
$ curl -LO https://storage.googleapis.com/harbor-

releases/harbor-online-installer-v1.5.2.tgz; tar -xvf harbor-

online-installer-v1.5.2.tgz; cd harbor

https://goharbor.io
https://www.katacoda.com/courses/harbor

Figure 4.13: Extracting harbor installer

The IP address or URL for the registry needs to be configured in the
harbor.cfg file to configure Harbor:

Figure 4.14: Harbor configuration file

Run the installation script with the following command to deploy:
$./install.sh

Figure 4.15: Harbor installation process

Once installed, we can access the admin portal using the IP address
configured in the harbor.cfg config file. The admin portal provides a web
interface for creating a project:

Figure 4.16: Creating a project with Harbor web interface

Once we have created a project, images can be pushed into the registry with
the following commands:

Figure 4.17: Commands for uploading an image into repository

The following command tags the existing Ubuntu docker image with the IP
address of the registry and the project name:
$ docker tag ubuntu <ip_address>/project/Ubuntu

This image can now be pushed to the registry with the following command:
$ docker push <ip_address>/project/ubuntu

The push refers to repository [ip_address/project-a/ubuntu]

cc9d18e90faa: Pushed

0c2689e3f920: Pushed

47dde53750b4: Pushed

latest: digest: sha256:1d7b639619bdca2d008eca2d

5293e3c43ff84cbee597ff76de3b7a7de3e84956 size: 943

Now, we have the image available within the Harbor registry:

Figure 4.18: Ubuntu image inside Harbor registry

At this point, we have seen how we can deploy our own registry using the
official Docker registry or the registry provided by Harbor.
The use of a registry helps us improve the security and integrity of our
images, but we do not depend on public repositories like Docker hub, where
images are not always completely secure.

Conclusion
Docker containers present unique security challenges, so you must keep some
Docker security concerns in mind. First, running containers and applications
with Docker means running the Docker daemon, which requires root
privileges. Other concerns include container flexibility, which makes it easy

to run multiple instances of containers. These containers can be in different
levels of security patches.
Like any other technology, Docker is not exempt from possible security
problems. So, it is best to apply good practices and audit our infrastructure
frequently for vulnerabilities to minimize these issues.
In the next chapter, we will review the security state in the Docker host and
tools for testing the security.

Points to remember
Namespaces is a kernel feature that provides isolation at different levels
between processes. This allows each container to have its own Process
Identifiers (PIDs), its own private IP address, or its own user space.
Control groups is a feature that provides control over the sharing of
resources such as CPU and memory, and it is used as a mechanism to
manage these resources, limiting their use.
It is a good practice to start the container in read-only mode. If the
container needs to write to the filesystem, a volume can be provided to
further make the changes persistent after the container is stopped. Use
the docker run command with the read-only docker run -d --read-
only python flag to do this.
We can use the Docker trust command to check who has signed the
images: docker trust inspect --pretty <image>:<tag>. In this way,
we can avoid impersonation of images and ensure secure image
downloading.
Quay and Harbor projects provide tools for compiling, storing, and
distributing container and application images as well as a web-based
interface for managing the registry.

Multiple choice questions
1. Which environment variable allows the verification of images you

download from Docker Hub of a Docker registry?

a. DOCKER_CONTENT_TRUST_SERVER=1
b. DOCKER_TRUST_CONTENT=1

c. DOCKER_TRUST_SERVER=1
d. DOCKER_CONTENT_TRUST=1

2. Which Linux capability allows us to manage and configure the
network?

a. NET_RAW
b. NET_ADMIN
c. NET_CONFIGURE
d. NET_MANAGE

Answers
1. d
2. b

Questions
1. What is responsible for creating and managing containers, including

creating filesystems, assigning IP addresses, routing packets, process
management, and other tasks that require administrator privileges?

2. Which directory is separate from the root filesystem of the container, is
managed directly by the daemon Docker process, and can be shared
between containers?

3. Which bits are special permissions that are used to access directories
and files in the operating system by users who do not have root
permissions?

Key terms
Docker containers offer a degree of isolation that cannot be achieved
with virtual machines. From a security point of view, containers provide
encapsulated instances of a common Linux kernel.
Docker uses a series of isolation techniques to protect applications from
each other. The most important are the central functions of the Linux
kernel, such as cgroups and namespaces.

The distribution of system resources (memory, CPU, and bandwidth)
takes place by means of a cgroup mechanism, which guarantees that
each container can only consume the quota reserved for it.
Docker Capabilities allow us to manage permissions to access the Linux
kernel features and segregate root user privileges to limit actions that
can be accessed with privileges.
Docker Content Trust offers the ability to sign images sent and received
to and from remote Docker registries like the Docker hub repository or
our private registry.
When pulling a tagged image when Docker Content Trust is enabled,
the Docker client contacts the trusted server to obtain the latest signed
version of the image it requested, verifying the content signature and
then downloading the signed image.
Notary allows secure image downloading by making it easier for people
to publish and verify Docker images.
Quay and Harbor are Docker registries that can be used to store, build,
and deploy container images, which comprise the system libraries,
system tools, and other platform configurations that applications need to
run on a containerized platform.

A

CHAPTER 5
Docker Host Security

nalyzing the security of the Docker host is important since most attacks
take advantage of a kernel vulnerability or occur because some package

has not been updated. At this point, we will review some tools for auditing
the security of the Docker Host.
This chapter covers topics like Docker daemon and AppArmor and Seccomp
profiles, which provide kernel-enhancement features to limit system calls.
Also, we will review tools like Docker bench security and Lynis, which
follow security best practices in the Docker environment, and some of the
important recommendations that can be followed during auditing and Docker
deployment in a production environment.

Structure
We will cover the following topics in this chapter:

Docker daemon security
Apparmor and Seccomp profiles
Docker bench security
Auditing Docker host with Lynis

Objectives
After studying this chapter, you will understand Docker daemon security, the
Apparmor and Seccomp profiles, and Docker bench security. You will also
learn about auditing Docker hosts with Lynis.

Docker daemon security
The most important element of the Docker architecture is the Docker daemon
process that guarantees communication between containers, and the traffic is

protected by HTTPS protocol.
Docker works primarily as a client that communicates with a daemon process
called dockerd. This process with root privileges is a socket located in the
path /var/run/docker.sock. At this point, it is important to note that Docker
socket exposure can result in privilege escalation.
You must check the access permissions by the users when using the
/var/run/docker.sock socket. In particular, only the root user has to write
permissions, and the Docker group does not contain users who can
compromise the container.
We are creating a new container inside another container on the Docker host
with the following command. We are using the /var/run/docker.sock
process that must be mounted as a volume:
$ docker run -it -v /var/run/docker.sock:/var/run/docker.sock

debian /bin/bash

We can mount root user from the Docker host with the following commands:
$ docker run -it -v /:/host debian /bin/bash

$ chroot /host

$ /bin/bash

This way, we see how the Docker container starts a new mount point in the
/host container. The second container connects to /host, and you can check
how effectively it is using the root user. This way, we have checked that we
have root access in the host from any process.
The following screenshot shows the output of the preceding commands:

Figure 5.1: Mounting root inside Docker

As we have seen, the Docker daemon runs with root permissions, so it is
important to limit users who have control over the Docker daemon. We can
give a series of recommendations on how we should configure access to the
directories and files to the Docker daemon.
The following table lists the default permissions of each file that is part of the
Docker daemon:

File/folder User:group Permissions

docker.service root:root 644(rw-r--r--)

/etc/docker root:root 755(rwxr-xr-x)

/etc/default/docker root:root 644(rw-r--r--)

Docker registration certificate root:root 444(r--r--r--)

Table 5.1: Docker permissions by file/folder

At this point, we have reviewed the Docker daemon security and the default
permissions for each service this process is using at low level.

Auditing files and directories
The Docker daemon runs with root privileges, so all directories and files
should be constantly audited to know all the activities and operations that are
running. We can use the Linux audit daemon framework to audit all events
that take place on the host Docker. It has the following features:

Audit processes and file modification
Monitor system calls
Detecting intrusions
Register commands by users

The Linux Audit daemon is a framework that allows auditing events on
Linux systems and is configured using two files: one for the daemon itself
(auditd.conf) and one for the rules used by the auditctl tool (audit.rules):

auditd.conf: This file configures the Linux audit daemon (auditd) and
focuses on where and how events should be traced. It also defines how
to behave when the disk is full, the rotation of the log file, and the
number of logs to keep. The default settings will be appropriate for most

systems.
audit.rules: This file configures which events should be audited.

For example, we can monitor the file located in the path /etc/passwd. We
use the following command to indicate to the audit framework which
directory or file we want to observe using the path option:
$ auditctl -a exit,always -F path=/etc/passwd -F perm=wa

We have to add new rules in the /etc/audit/rules.d/audit.rules file to
correctly configure the audit daemon. Next, we will add the necessary rules to
be able to audit the directories:
-w /usr/bin/docker -k docker

-w /var/lib/docker -k docker

-w /etc/docker -k docker

-w /usr/lib/systemd/system/docker.service -k docker

-w /usr/lib/systemd/system/docker.socket -k docker

-w /etc/default/docker -k docker

-w /etc/docker/daemon.js -k docker

-w /usr/bin/docker-containerd -k docker

-w /usr/bin/docker.runc -k docker

We need to restart the audit daemon using the following command once the
rules have been added:
$ sudo service auditd restart

The logs generated during the audit can be found in the path
/var/log/audit/audit.log if you want to review them.
Next, we will introduce SELinux, which enables an additional layer of
isolation.

Kernel Linux security and SELinux
Security-Enhanced Linux (SELinux) is a Linux kernel security module that
provides different security controls like access controls, integrity controls,
and Role-Based Access Control (RBAC). In addition, it provides privacy
policies between the Docker host and containerized applications.
On Red Hat Enterprise Linux, SELinux is enabled by default and in enforcing
mode. You can confirm this by inspecting the output of sestatus on the
system:

$ sestatus

SELinux status: enabled

SELinuxfs mount: /sys/fs/selinux

SELinux root directory: /etc/selinux

Loaded policy name: targeted

Current mode: enforcing

Mode from config file: enforcing

Policy MLS status: enabled

Policy deny_unknown status: allowed

Memory protection checking: actual (secure)

Max kernel policy version: 32

We can install it in Debian-based distributions using the following command:
$ sudo apt-get install selinux

You can also install the relevant SELinux policy creation tools to use
SELinux. For example, you can run the following command to install
SELinux policies if you have a distribution with the yum package manager:
$ yum -y install selinux-policy-devel

These tools are Mandatory Access Control (MAC) tools that impose
security rules in Linux to ensure that apart from the normal read-write-
execute rules that apply to files and processes, more precise rules can be
applied to them at the kernel level.
For example, a MySQL process can only afford to write files under specific
directories, such as /var/lib/mysql. The equivalent standard for Debian-
based systems is AppArmor.

Apparmor and Seccomp profiles
AppArmor enables the administrator to assign each running process a secure
profile and define filesystem access, network capacities, and execution rules.
Basically, it provides protection for external and internal threats, enabling
system administrators to associate a secure profile with each application,
which restricts that application’s capabilities.
You can find more information in the AppArmor official documentation at
https://gitlab.com/apparmor/apparmor/-/wikis/home.
AppArmor is enabled by default in Debian-based distributions. You can
check this property using the following command:

https://gitlab.com/apparmor/apparmor/-/wikis/home

$ docker info

The following screenshot shows the output of the preceding command:

Figure 5.2: Execution of docker info

Tip: Docker info command
With the docker info command, we can obtain information about the use of
CPU, memory and other information related to the kernel, operating system,
and the directory where Docker is installed.

In the security options, we can see that AppArmor is enabled by default. We
can simplify the checking process with the following command:
$ docker info | grep apparmor

Security Options: apparmor seccomp

We can also use docker inspect to check if the property is enabled on our
containers:
$ docker ps -q | xargs docker inspect --format ‘{{.Id}}:

AppArmorProfile={{.AppArmorProfile}}’

b4949a7cce2024e7efada0d2a2001a8037b0474ac7e9d94e55bbb225c64ad5a2:

AppArmorProfile=docker-default

By default, Docker uses the AppArmor Docker-default profile that is located
in the /etc/apparmor.d/docker/ path.

You can find more information about it in the AppArmor documentation at
https://docs.docker.com/engine/security/apparmor/#understand-the-
policies.

Installing AppArmor on Ubuntu distributions
We can find the AppAmor-profiles package within the repository of the
different versions of Ubuntu:

https://packages.ubuntu.com/bionic/apparmor-profiles

We can execute the following command on Ubuntu terminal for execution:
$ sudo apt-get install apparmor-profiles

Some directories are common once you have installed AppArmor:

/etc/apparmor/: This folder contains the files that configure the
daemon
/etc/apparmor.d/: This folder contains the ruleset files that limit an
application’s access to the rest of the system

Applications commonly used to configure and customize AppArmor include:

/usr/sbin/aa-enforce: This enables a profile or set of rules
/usr/sbin/aa-logprof: This enables registration for a profile, and you
must enable the profile with the aa-enforce command to use this
command
/usr/sbin/aa-complain: This enables the profile for registration
/usr/sbin/aa-genprof: This generates custom profiles
/usr/sbin/aa-notify: This returns users and processes that have been
denied access to an application
usr/sbin/aa-status: This informs you about active profiles;
AppArmor considers each profile active to create a policy for the
system, also available as /usr/sbin/apparmor_status

At this point, we have reviewed the installation of AppArmor and the folder
structure to check the default configuration.

https://docs.docker.com/engine/security/apparmor/#understand-the-policies
https://packages.ubuntu.com/bionic/apparmor-profiles

AppArmor Docker-default profile
From the security point of view, AppArmor proactively protects the operating
system and applications against external or internal threats and even zero-day
attacks by applying a specific set of rules for each application.
Docker automatically generates and loads a default profile for containers
called docker-default. In Docker versions 1.13.0 and later, the Docker binary
generates this profile and then loads it into the kernel.
In Docker versions prior to 1.13.0, this profile is generated in
/etc/apparmor.d/docker instead. Security policies fully define what system
resources individual applications can access and with what privileges.
The docker-default profile is the default for running containers and provides
broad application compatibility. The profile is generated using the following
template available in this repository:

https://github.com/moby/moby/blob/master/profiles/apparmor/template.go

When you run a container, it uses the docker-default policy unless you
override it with the security-opt option. For example, the following
instruction explicitly indicates the default policy:
$ docker run --rm -it --security-opt apparmor=docker-default

hello-world

We can check the status of AppArmor in the Docker host and determine
whether the Docker containers are running with an AppArmor profile. We
can execute the apparmor_status command to do this.
$ apparmor_status

apparmor module is loaded.

49 profiles are loaded.

12 profiles are in enforce mode.

/sbin/dhclient

/usr/lib/NetworkManager/nm-dhcp-client.action

/usr/lib/NetworkManager/nm-dhcp-helper

/usr/lib/chromium-browser/chromium-browser//browser_java

/usr/lib/chromium-browser/chromium-browser//browser_openjdk

/usr/lib/snapd/snap-confine

/usr/lib/snapd/snap-confine//mount-namespace-capture-helper

/usr/sbin/ntpd

/usr/sbin/tcpdump

docker-default

37 profiles are in complain mode.

https://github.com/moby/moby/blob/master/profiles/apparmor/template.go

/usr/lib/chromium-browser/chromium-browser

/usr/lib/chromium-browser/chromium-

browser//chromium_browser_sandbox

/usr/lib/chromium-browser/chromium-browser//lsb_release

/usr/lib/chromium-browser/chromium-browser//xdgsettings

/usr/lib/dovecot/anvil

/usr/lib/dovecot/auth

/usr/lib/dovecot/config

/usr/lib/dovecot/deliver

/usr/lib/dovecot/dict

/usr/lib/dovecot/dovecot-auth

/usr/lib/dovecot/dovecot-lda

/usr/lib/dovecot/dovecot-lda///usr/sbin/sendmail

/usr/lib/dovecot/imap

/usr/lib/dovecot/imap-login

/usr/lib/dovecot/lmtp

/usr/lib/dovecot/log

/usr/lib/dovecot/managesieve

/usr/lib/dovecot/managesieve-login

/usr/lib/dovecot/pop3

/usr/lib/dovecot/pop3-login

/usr/lib/dovecot/ssl-params

/usr/sbin/avahi-daemon

/usr/sbin/dnsmasq

/usr/sbin/dnsmasq//libvirt_leaseshelper

/usr/sbin/dovecot

/usr/sbin/identd

/usr/sbin/mdnsd

/usr/sbin/nmbd

/usr/sbin/nscd

/usr/sbin/smbd

/usr/sbin/smbldap-useradd

/usr/sbin/smbldap-useradd///etc/init.d/nscd

/usr/{sbin/traceroute,bin/traceroute.db}

/{usr/,}bin/ping

klogd

syslog-ng

syslogd

4 processes have profiles defined.

4 processes are in enforce mode.

/sbin/dhclient (757)

/usr/sbin/ntpd (819)

docker-default (6112)

docker-default (6168)

0 processes are in complain mode.

0 processes are unconfined but have a profile defined

Keep in mind that Docker-default is now displayed in application mode

procedures as well. The values in parentheses are the container process’s
PID, available in the Docker host’s PID namespace.

Tip: Executing apparmor with new profiles
We can use the following command to load a new profile in AppArmor for
using with containers:
$ apparmor_parser -r -W /path/to/your_profile

Later, we can execute the custom profile with the --security-opt option, as
follows:
$ docker run --rm -it --security-opt apparmor=your_profile

hello-world

We can find documentation on how to create these profiles in the project
repository -
https://gitlab.com/apparmor/apparmor/wikis/QuickProfileLanguage.

Run container without AppArmor profile
We have some options to run the container by disabling the AppArmor
profile or enable Docker using the default profile:

We can use the --security-opt apparmor = docker-default option
to execute a container with an AppArmor profile.
We can use the --security-opt apparmor = unconfined option to
execute a container without AppArmor profile.
We can execute the apparmor_status command to verify that the new
container is not running with an AppArmor profile.

$ apparmor_status

apparmor module is loaded.

<SNIP>

1 processes are in enforce mode.

/sbin/dhclient (610)

0 processes are in complain mode.

0 processes are unconfined but have a profile defined.

When executing the preceding command, we can see that there are no
instances of the docker-default profile in the processes that appear in the
enforce section.

https://gitlab.com/apparmor/apparmor/wikis/QuickProfileLanguage

Run container with Seccomp profile
Each of the processes that we execute on the operating system have the
option of interacting with the kernel through system calls. The processes can
ask the kernel to perform some task, such as modifying a file, creating a new
process, changing the permissions to a directory, or using an Application
Programming Interface (API), by which the kernel gives access to its
services.
Many of the system calls are accessible to every process in the user area, but
a large part are not used for the entire life of the process. At this point,
Seccomp is a tool that allows you to limit the exposure of the kernel to
system calls by an application. Combined with other tools that the system
offers us, like capabilities and namespaces among others, we have a set
designed to secure applications.
You can find more information about Seccomp in the Linux man-pages
documentation:

https://man7.org/linux/man-pages/man2/seccomp.2.html

Seccomp is a sandboxing facility in the Linux kernel that acts like a firewall
for system calls (syscalls). It uses Berkeley Packet Filter (BPF) rules to
filter syscalls and control how they are handled.
These filters can significantly limit container access to the Docker Host’s
Linux kernel, especially for simple containers/applications. The following
commands show you how to check if seccomp is enabled in your system’s
kernel:
$ docker info | grep seccomp

Security Options: apparmor seccomp

We can also check from the Linux command line:
$ grep SECCOMP /boot/config-$(uname -r)

CONFIG_HAVE_ARCH_SECCOMP_FILTER=y

CONFIG_SECCOMP_FILTER=y

CONFIG_SECCOMP=y

Docker uses seccomp in filter mode and has its own JSON-based DSL that
allows you to define profiles that compile down to seccomp filters. A
container gets the default seccomp profile when you run it, unless you
override this by passing the --security-opt flag to the docker run

https://man7.org/linux/man-pages/man2/seccomp.2.html

command.
We can create the following file that allows us to define the system calls that
we want to block. We are blocking the chmod and chown syscalls in this
example.
$ touch profile_policy.json

{

“defaultAction”: “SCMP_ACT_ALLOW”,

“syscalls”: [

{

“name”: “chmod”,

“action”: “SCMP_ACT_ERRNO”

},

{

“name”: “chown”,

“action”: “SCMP_ACT_ERRNO”

}

]

}

Then, we can execute the container based on the alpine distribution, passing
the profile_policy.json policy file as a parameter.
The following example command starts an interactive container based on the
Alpine image and starts a shell process. It also applies the seccomp profile
described by profile_policy.json to it.
$ docker run --rm -it --security-opt seccomp:profile_policy.json

alpine sh

We can verify that the chmod and chown commands cannot be used inside the
container, and we get the Operation not permitted error when executing
them:
/ # chown root:root bin

chown: bin: Operation not permitted

/ # chmod +x /etc/resolv.conf

chmod: /etc/resolv.conf: Operation not permitted

Our container attempted to execute chmod, so the call failed and threw the
Operation not permitted error. This is because our seccomp profile
blocked it.
We can extend our seccomp profile to list all the calls we want to allow or
disallow. This lets us block potential attack vectors or close vulnerabilities

without changing our application.

Deny all syscalls
Docker seccomp profiles operate using a whitelist approach that specifies
allowed syscalls. Only syscalls on the whitelist are permitted.
The following profile has an empty syscall whitelist, meaning all syscalls will
be blocked.
$ touch deny_sys_calls.json

{

“defaultAction”: “SCMP_ACT_ALLOW”,

“architectures”: [

“SCMP_ARCH_X86_64”,

“SCMP_ARCH_X86”,

“SCMP_ARCH_X32”

],

“syscalls”: [

]

}

Note that there are no syscalls in the whitelist, which means no syscalls will
be allowed from containers started with this profile.
Docker supports many security-related technologies. Other security-related
technologies may interfere with your testing of seccomp profiles, so the best
way to test the effect of seccomp profiles is to add all capabilities and disable
AppArmor. In this way, we can trust the behavior observed in the following
step is only due to changes in the seccomp configuration.
We will add all capabilities and effectively disable AppArmor in the
following command so that you know that only your seccomp profile is
preventing the syscalls:
$ docker run --rm -it --cap-add ALL --security-opt

apparmor=unconfined --security-opt seccomp=deny_sys_calls.json

alpine sh

docker: Error response from daemon: cannot start a stopped

process: unknown.

ERRO[0001] error waiting for container: context canceled

In this scenario, Docker doesn’t actually have enough syscalls to start the
container, and it returns an error because it can’t start the Docker daemon
process.

At this point, we have removed capabilities and AppArmor from interfering
and started a new container with a seccomp profile that had no syscalls in its
whitelist. You saw how this prevented all syscalls from within the container.

Run a container with no seccomp profile
Unless you specify a different profile, Docker will apply the default seccomp
profile to all new containers. In this section, you will see how to force a new
container to run without a seccomp profile. You can use the unconfined value
to run a container without the default seccomp profile.
For this task, you can start a new container with the --security-opt
seccomp= unconfined flag so that no seccomp profile is applied to it:
$ docker run --rm -it --cap-add SYS_PTRACE --security-opt

seccomp=unconfined benhall/strace-ubuntu

Unable to find image ‘benhall/strace-ubuntu:latest’ locally

latest: Pulling from benhall/strace-ubuntu

Image docker.io/benhall/strace-ubuntu:latest uses outdated

schema1 manifest format. Please upgrade to a schema2 image for

better future compatibility. More information at

https://docs.docker.com/registry/spec/deprecated-schema-v1/

6d28225f8d96: Pull complete

166102ec41af: Pull complete

d09bfba2bd6a: Pull complete

c80dad39a6c0: Pull complete

a3ed95caeb02: Pull complete

b668194b0fb4: Pull complete

Digest: sha256:edbf5bff42c0858def0393e69b9e1538bb3433f0793e4c

74501f3590a4aad454

Status: Downloaded newer image for benhall/strace-ubuntu:latest

You can execute the following strace command from your Docker Host to
see a list of the syscalls used by the whoami command:
root@b5250d6addad:/# strace -c -f -S name whoami 2>&1

1>/dev/null | tail -n +3 | head -n -2 | awk ‘{print $(NF)}’

access

arch_prctl

brk

close

connect

execve

fstat

geteuid

ioctl

lseek

mmap

mprotect

munmap

open

read

socket

write

Here, we are using strace to get a list of all system calls made by the whoami
program.
The preceding output shows the syscalls that will need to be enabled for a
container running the whoami command to work, in addition to the syscalls
required to start a container.

Write a seccomp profile
We can write Docker seccomp profiles from scratch, and you can also edit
the existing profiles. In this section, you will learn about the syntax and
behavior of Docker seccomp profiles.
The layout of a Docker seccomp profile looks like this:
{

“defaultAction”: “SCMP_ACT_ERRNO”,

“architectures”: [

“SCMP_ARCH_X86_64”,

“SCMP_ARCH_X86”,

“SCMP_ARCH_X32”

],

“syscalls”: [

{

“name”: “accept”,

“action”: “SCMP_ACT_ALLOW”,

“args”: []

},

{

“name”: “accept4”,

“action”: “SCMP_ACT_ALLOW”,

“args”: []

},

…

]

}

The following table lists the possible actions in order of precedence. Higher
actions overrule lower actions.

Action Description

SCMP_ACT_KILL Kill with an exit status of 0x80 + 31 (SIGSYS) = 159

SCMP_ACT_TRAP Send a SIGSYS signal without executing the system
call

SCMP_ACT_ERRNO Set errno without executing the system call

SCMP_ACT_TRACE Invoke a ptracer to make a decision or set errno to -
ENOSYS

SCMP_ACT_ALLOW Allow

Table 5.2: Seccomp actions

The most important actions for Docker users are SCMP_ACT_ERRNO and
SCMP_ACT_ALLOW. Profiles can contain more granular filters based on the
value of the arguments to the system call.
{

…

“syscalls”: [

{

“name”: “accept”,

“action”: “SCMP_ACT_ALLOW”,

“args”: [

{

“index”: 0,

“op”: “SCMP_CMP_MASKED_EQ”,

“value”: 2080505856,

“valueTwo”: 0

}

]

}

]

}

index is the index of the system call argument
op is the operation to perform on the argument. It can be one of the
following:

SCMP_CMP_NE - not equal
SCMP_CMP_LT - less than

SCMP_CMP_LE - less than or equal to
SCMP_CMP_EQ - equal to
SCMP_CMP_GE - greater than
SCMP_CMP_GT - greater or equal to
SCMP_CMP_MASKED_EQ - masked equal: true if (value & arg ==
valueTwo)

value is a parameter for the operation
valueTwo is used only for SCMP_CMP_MASKED_EQ

In this section, you learned the format and syntax of Docker seccomp
profiles. You also learned the order of preference for actions and how to
determine the syscalls needed by an individual program.

Tip: Default Seccomp profile
The default seccomp profile can be found at
https://github.com/moby/moby/blob/master/profiles/seccomp/default.json.
This profile is a whitelist that blocks access to system calls by default and
then to specific system calls. The profile works by defining a defaultAction
SCMP_ACT_ERRNO, overriding that action only for specific system calls.
The profile also defines a specific list of system calls that are allowed.

Security in-depth
Security in-depth allows multiple lines of security to work together to provide
improved overall capabilities from the security point of view. With the
following command, we can start an Ubuntu container with Seccomp
disabled by default:
$ docker container run --rm -it --cap-add SYS_ADMIN --security-

opt seccomp=unconfined ubuntu sh

To verify that AppArmor is working, we can try to create two directories and
group them with the mount command and the bind option:
mkdir mydir1; mkdir mydir2; mount --bind mydir1 mydir2

mount: /mydir2: bind /mydir1 failed

The operation returns permission denied because the AppArmor profile

https://github.com/moby/moby/blob/master/profiles/seccomp/default.json

denied the operation. We can start a new container without an AppArmor
profile and retry the same operation to confirm that the default AppArmor
profile is the one that denied the operation:
$ docker container run --rm -it --cap-add SYS_ADMIN --security-

opt seccomp=unconfined --security-opt apparmor=unconfined ubuntu

sh

mkdir dir1; mkdir dir2; mount --bind dir1 dir2

ls -l

total 56

lrwxrwxrwx 1 root 7 Apr 1 01:23 bin -> usr/bin

drwxr-xr-x 2 root 4096 Apr 15 2020 boot

drwxr-xr-x 5 root 360 Apr 5 18:58 dev

drwxr-xr-x 2 root 4096 Apr 5 18:58 dir1

drwxr-xr-x 2 root 4096 Apr 5 18:58 dir2

drwxr-xr-x 1 root 4096 Apr 5 18:58 etc

drwxr-xr-x 2 root 4096 Apr 15 2020 home

This shows that the procedure in the first scenario was denied by the default
AppArmor profile.

Tip: Apparmor & Seccomp practice labs
You can use the following labs to practice the concepts we reviewed in this
section:

https://dockerlabs.collabnix.com/advanced/security/apparmor/
https://dockerlabs.collabnix.com/advanced/security/seccomp/
https://training.play-with-docker.com/security-seccomp
https://www.katacoda.com/courses/docker-security/intro-to-seccomp

Reducing the container attack surface
Reducing the attack surface is a fundamental principle of security. For
example, container security depends on the Kernel and Docker daemon that
is accessed through system calls. At this point, Docker has made significant
improvements in the ability to call Seccomp profiles. These profiles only
disable certain calls by default, but there are others that are available, leaving
a large number of syscalls that can be invoked without any restriction.
Another example is the ability to link the Docker daemon process with the

https://dockerlabs.collabnix.com/advanced/security/apparmor/
https://dockerlabs.collabnix.com/advanced/security/seccomp/
https://training.play-with-docker.com/security-seccomp
https://www.katacoda.com/courses/docker-security/intro-to-seccomp

Unix Docker access group or the TCP port that allows containers to
communicate with each other.
The ultimate goal in security is to obtain a balance between the container’s
isolation and the communication needs between them. This implies taking
measures to limit the number of containers that are accessible to groups and
to control the degree to which the containers interact with each other.

Docker bench security
Docker bench security is a useful tool to test the security of your Docker
containers. The objective is to perform the Docker CIS checks against a
container, and a report is generated that tells you if that container is
potentially insecure at the level of permissions and access to resources.
The tool mainly focuses on best practices in areas like file permissions and
registry settings. The following links are the Docker CIS benchmark guides:

https://www.cisecurity.org/cis-benchmarks/
https://www.cisecurity.org/benchmark/docker/

Docker bench security is a shell script that looks for common best practice
patterns around the implementation of Docker containers in production. It is a
set of bash scripts, which must be run as a root user on any machine with
Docker installed, and the tool will produce a report with all the checks.
From the Docker host and Docker daemon settings point of view, this is the
best tool you can use to check these best practices. The source code is
available in the GitHub repository at https://github.com/docker/docker-
bench-security.
The tool will inspect the following components:

Host configuration
The Daemon Docker configuration
Docker daemon configuration files
Image container and compilation files
Runtime container
Docker security operations

We can execute the tool through an image that we can find in the Docker

https://www.cisecurity.org/cis-benchmarks/
https://www.cisecurity.org/benchmark/docker/
https://github.com/docker/docker-bench-security

Hub, copying the following command in our Docker host:
https://hub.docker.com/r/docker/docker-bench-security

We can execute the following command to start the Docker bench security
for analyzing the Docker host with a default configuration:
$ docker run -it --net host --pid host --cap-add audit_control \

-v /var/lib:/var/lib \

-v /var/run/docker.sock:/var/run/docker.sock \

-v /usr/lib/systemd:/usr/lib/systemd \

-v /etc:/etc --label docker_bench_security \

docker/docker-bench-security

The following screenshot shows the output of the preceding command:

Figure 5.3: Executing Docker bench security

Docker bench security execution
Docker bench executes in a container with high privileges and runs a set of
tests against all the containers in the Docker host. Here are some of the
configuration checks executed by Docker bench:

Host configuration: This section checks the security over the host
Docker configuration.
Daemon Docker configuration: This section offers recommendations
about the security of the Docker daemon. Everything in this section
affects the configuration of the Docker Daemon as well as each running

container.
Docker daemon configuration files: This section shows information
about the configuration files used by the daemon Docker. This ranges
from permissions to properties. Sometimes, these areas may contain
information that you do not want others to know, which could be in a
plain text format.
Daemon Docker configuration: This section shows information about
the Docker daemon configuration and can detect containers that are
running on the same Docker host and checking the access to each
other’s network traffic. By default, all containers that run on the same
Docker host have access to each other’s network traffic.

The following screenshot shows the output of Docker bench security in the
Host configuration section:

Figure 5.4: Checking host configuration with Docker bench security

Here, we can see that checks marked with a warning must be reviewed at the
host configuration level:
[WARN] 1.5 - Ensure auditing is configured for the Docker daemon

[WARN] 1.6 - Ensure auditing is configured for Docker files and

directories

/var/lib/docker

[WARN] 1.7 - Ensure auditing is configured for Docker files and

directories

/etc/docker

[WARN] 1.11 - Ensure auditing is configured for Docker files and

directories /etc/docker/daemon.json

The following screenshot shows the output of Docker bench security in the
Docker daemon configuration section:

Figure 5.5: Checking Docker daemon configuration with Docker bench security

Docker daemon configuration checks the file permissions related to the
Docker daemon, such as docker.service and docker.socket. Basically, it
verifies that these files can only be run with root permissions.
The following screenshot illustrates the output of Docker bench security in
the Container Images and Build Files section:

Figure 5.6: Checking Container Images and Build Files

The preceding section checks whether Docker Content Trust is enabled in the
Docker host. Execute the following command to solve this warning:
$ export DOCKER_CONTENT_TRUST=1

The following screenshot depicts the output of Docker bench security in the
Container Runtime section:

Figure 5.7: Checking Container Runtime

To solve the most critical warnings, we can execute the container limiting
resources at the memory and CPU levels, add read-only permissions, and use
a non-root user for this container.
The following command executes a Python container using the --read-only
flag, limiting memory and CPU resources:
$ docker container run --detach -ti -u 1000 --read-only -m 256mb

--security-opt=no-new-privileges --cpu-shares=500 --pids-limit=1

python /bin/bash

If we execute docker bench with the new runtime configuration, we can see
how it passes configuration checking in the cases related with privileges, read
only, and CPU and memory usage.

Figure 5.8: Checking Container Runtime with read-only flag

Thanks to this tool and the generated report, we have access to almost 100
security recommendations to always keep in mind before using Docker in
production.
At this point, we have reviewed the execution of the Docker bench security
tool for checking the security configuration in the Docker host, showing the
output of the report in specific sections.

Auditing Docker host with Lynis
Lynis is an open-source security audit tool for evaluating the security of
Linux and UNIX-based systems. Lynis executes directly on the Docker host
so that it has access to the Linux kernel. We can find the source code and the
installation in the following repositories:

https://cisofy.com/lynis/
https://github.com/CISOfy/Lynis
https://cisofy.com/documentation/lynis/get-
started/#installation%20manual

Once installed, the audit system command performs the following checks:

Check the operating system
Perform a search for available tools and utilities
Check for any Lynis update
Perform tests with the enabled add-ons
Perform safety tests by category
Security scanning status report

Here are some of the main options it offers for auditing:
Usage: lynis command [options]

Command:

audit

audit system : Perform local security scan

audit system remote <host> : Remote security scan

audit dockerfile <file> : Analyze Dockerfile

The following command checks the configuration and security of your
Docker host:
$ lynis audit system

1. In the first phase, it checks configurations related with boot, services,
and kernel:

https://cisofy.com/lynis/
https://github.com/CISOfy/Lynis
https://cisofy.com/documentation/lynis/get-started/#installation%20manual

Figure 5.9: Checking boot, services, and kernel in Docker host

2. Next, it checks configurations related to users, groups, and
authentication:

Figure 5.10: Checking users, groups, and authentication

3. Third, it checks configurations related to shells and filesystems:

Figure 5.11: Checking configurations related to shells and filesystems

4. Finally, it checks configurations related to Docker containers and
security frameworks like AppArmor and SELinux:

Figure 5.12: Checking configurations related to Docker containers and security frameworks

At this point, we have reviewed the execution of the Lynis security tool for
checking the security configuration in the Docker host.

Tip: Auditing a Dockerfile
We can use Lynis for testing and auditing content related to DockerFile
security.
$ lynis audit dockerfile <file>

We can find the script used to analyze the Dockerfile in the GitHub
repository at
https://github.com/CISOfy/lynis/blob/master/include/helper_audit_dockerfile

Conclusion
The host machine can be defined as the most important part of the Docker
environment. The ultimate goal is to minimize the attack vectors that can be
produced on the Docker host. All the containers that run on the same Docker
host share the same execution kernel, so it makes sense to spend time
securing the core.
For this task, we can find tools like Docker bench security and Lynis that
define a series of guidelines and configuration best practices. This way, the
audit and internal security teams will be aware of these guidelines in order to
perform the corresponding compliance and security testing.
In the next chapter, we will review some open source tools, like Clair with
quay.io repository and Anchore, for scanning and discovering vulnerabilities
in Docker images.

Points to remember
SELinux is a tool created by the National Security Agency (NSA) of
the United States to protect systems in general and is integrated into the
Linux Kernel.
AppArmor is a Linux security module that allows you to implement
security at the process level. Security profiles developed specifically
through AppArmor can allow functions like folder access, network
access, and permissions to read, write, or execute files.
SecComp defines which system calls should and should not be allowed
to be executed by a container. These system calls are defined in a JSON

https://github.com/CISOfy/lynis/blob/master/include/helper_audit_dockerfile

file that is applied when a container starts.

Multiple choice questions
1. Which Linux kernel security module provides security controls among

which we can highlight access controls, integrity controls, and RBAC?

a. Security-Enhanced Linux (SELinux)
b. Apparmor
c. Seccomp
d. SecLinux

2. Which tool provides protection for external and internal threats,
enabling system administrators to associate a secure profile with each
application that restricts that application’s capabilities?

a. SecLinux
b. Security-Enhanced Linux (SELinux)
c. Apparmor
d. Seccomp

Answers
1. a
2. c

Questions
1. What are the best practices for reducing the container attack surface

from a security point of view?
2. Which tool allows us to test the security of our Docker containers and

focuses on best practices in areas like file permissions and registry
settings?

3. Which open source security audit tool is used to evaluate the security of
Linux- and Unix-based systems?

Key terms
AppArmor allows you to limit what an application can do through a set
of rules.
Seccomp is an isolated space installation in the Linux Kernel that acts
as a firewall that allows you to limit system calls (syscalls).
Docker Bench for Security is a script that performs different tests,
checking best security practices in a productive environment where we
deploy our containers either on our own servers or in the cloud. This
script can help with testing for Docker content trust features and access
control issues.

I

CHAPTER 6
Docker Images Security

n addition to ensuring that your container is properly configured from a
security point of view, you must ensure that all image layers in a container

are free from known vulnerabilities. This is done through tools that perform a
static scan of images in the Docker repositories. In this chapter, you will learn
best practices for building container images securely.
We will review some open source tools, such as Clair and Anchore, to
discover vulnerabilities in container images by learning static analysis tools
that analyze the different layers that compose an image. As a result,
developers will be able to detect vulnerabilities in container applications
before uploading them to production.

Structure
We will cover the following topics in this chapter:

Docker Hub repository and security scanning process
Open source tools for vulnerability analysis
Scanning Docker images with Clair and Quay
Scanning Docker images with Anchore Engine

Objectives
After studying this chapter, you will learn about Docker hub repository and
security scanning process. You will also explore open source tools for
vulnerability analysis, learn about Clair scanner and Quay repository, and
understand Anchore engine and Anchor CLIP for vulnerability analysis.

Docker Hub repository and security scanning
process

Docker Hub https://hub.docker.com/ is a repository of Docker images in
which any user can create an image and upload it in the repository to share it
with the community.
There are two types of images within this repository, depending on their
origin. First of all, we have official images that are maintained by the main
suppliers, such as Apache, Ngnix, MongoDB, Ubuntu, and Alpine.
On the other hand, we can find images created by users that have been
customized and adapted according to their needs for the project.

Docker security scanning
Docker security scanning is a service available in Docker Hub for private
repositories that compares a container’s contents layer by layer by inspecting
the binary packages in that container against the Common Vulnerabilities
and Exposures (CVE) database. This scanning tool’s effectiveness depends
on:

Static analysis depth and integrity: The scanner discovers the image’s
inner layers and the nature of those layers.
Vulnerability feeds quality: It indicates coverage and how much the
vulnerability lists need to be updated.

We will continue with the Docker security scanning process that allows you
to start a review process of images in Docker Hub repositories.

Docker security scanning process
Docker security scanning is the tool that integrates directly with the official
Docker Hub repository and allows you to automatically review images found
in public and private repositories.
This service is available for Docker Hub public and private repositories, in
Docker cloud and on-premise versions, being a paid service in all cases.
When a new image is uploaded to the Docker Hub or Docker cloud, it
launches a process that extracts that image and sends it to the scanning
service that scans composite layers by analyzing each of the binaries with the
CVE database.
Periodically, Docker analyzes the images uploaded in the Docker hub and

https://hub.docker.com/

provides us with a result of the different found vulnerabilities as well as the
level of criticality for each vulnerability.
The level of criticality depends on the score assigned to the CVE code by the
Common Vulnerability Score System (CVSS). They may be classified as
follows, based on the score given to the vulnerability:

High: Vulnerability has a score within the range [8-10]
Medium: Vulnerability has a score within the range [4-7.9]
Low: Vulnerability has a score within the range [0.0-3.9]

The scan process can be easily integrated into continuous integration and
continuous delivery workflows so that scanning can be started automatically
every time a developer completes a new container.
Today, most DevOps teams generally only discover a new vulnerability with
high criticality level by consulting the CVE database. At this point, the main
problem is that lower criticality vulnerabilities may not even be discovered
but could be exploited by potential attackers.
Within the Docker ecosystem, the Dockerfile file describes dependencies and
what will be installed in the container so that the application can run on it.
When running within a continuous integration environment, it will
automatically generate and publish in the Docker registry, including that
container’s software dependencies.
In conclusion, it is a good tool that Docker provides to know a little about the
state of health in terms of security for public and private images.

Open source tools for vulnerability analysis
In recent times, threat actors have devised complex techniques for exploiting
vulnerabilities in Docker containers and images. While hackers try to find
more sophisticated attack methods, cybersecurity analysts and researchers are
working to prevent these attacks, looking for a way to protect these resources
from potential risks.
The software unification process (DevOps) requires the establishment of
functional image scanning and validation mechanisms, comprehensively
protecting these processes.
The following is a list of recommendations to guarantee the control of the

source code and the deployment in different environments. We can include
tools that allow you to automate and organize the source code, like these:

Source code control: Source code control should be a common practice
in DevOps security and operations to ensure quality while contributing
to unit and integration testing. The main tools for source code control
are GitHub https://github.com/, GitLab https://about.gitlab.com/, and
Bitbucket https://bitbucket.org/.
CI/CD tools: Development teams use construction tools that are an
essential part of their automated compilation processes through CI/CD
tools like Bamboo https://www.atlassian.com/software/bamboo and
Jenkins https://www.jenkins.io/.
JFrog Xray https://jfrog.com/xray: This is a security tool for container
and image analysis. This solution allows you to scan any dependencies
for security vulnerabilities and policy compliance issues. JFrog XRay
proactively identifies security vulnerabilities that could impact our
environment, and it integrates natively with JFrog Artifactory.

Next, we will review the different open source tools or solutions that can be
used to perform static vulnerability analysis in Docker images. Tools like
Clair, Dagda, and Anchore can automatically check for image vulnerabilities
and send notifications via email and look for security fixes when a
vulnerability is detected.

Clair security scanning
Clair https://github.com/quay/clair is an open-source project for static
vulnerability analysis in container-based applications. Layers can be shared
among many containers, so introspection is important to create a package
inventory and compare it with known CVEs.
This tool provides a container vulnerability analysis service, which works
through an API that analyzes each container layer looking for existing
vulnerabilities. This tool can report the list of known vulnerabilities that
affect each container and notify users.
The methodology for using this tool is by command line. Clair is the security
engine that uses Quay registry https://quay.io/repository/ internally. It
basically extracts all the layers of the image and notifies the vulnerabilities

https://github.com/
https://about.gitlab.com/
https://bitbucket.org/
https://www.atlassian.com/software/bamboo
https://www.jenkins.io/
https://jfrog.com/xray
https://github.com/quay/clair
https://quay.io/repository/

found, storing the information in a database.

Dagda
Dagda is an open source tool developed in Python to perform the static
analysis of known vulnerabilities in Docker images/containers. It also helps
you monitor running Docker containers for detecting anomalous activities.
Dagda retrieves information about the software installed in your Docker
image, such as operating system packages, library dependencies, and
modules and matches it against a vulnerability database.
This database is created by collating vulnerability data from sources like
NVD, SecurityFocus BID & Exploit-DB into a MongoDB database that
stores static analysis scans performed on the Docker images. The project can
be found in the GitHub repository at
https://github.com/eliasgranderubio/dagda.
Dagda supports multiple Docker base Linux images, including:

Red Hat/CentOS/Fedora
Debian/Ubuntu
OpenSUSE
Alpine Linux

Dagda internally uses OWASP dependency check and Retire.js to analyze
packages and dependencies in many languages, such as Java, Python,
NodeJS, JS, Ruby, and PHP, identifying known vulnerabilities in Docker
images.
The following image illustrates the Dagda architecture:

https://github.com/eliasgranderubio/dagda

Figure 6.1: Dagda architecture

Dagda executes ClamAV to search for malware or detect Trojanized images,
and it integrates with Sysdig Falco as a tool to detect runtime anomalies and
monitor containers on Unix environments at the level of image monitoring.
Sysdig Falco https://falco.org/ is a tool that can be installed as an agent on
each Docker host. It operates internally, analyzing system calls and kernel
filters against the rules stored in a database for identifying attacks or
anomalous calls inside the containers and in the Docker host.
The following screenshot shows the options of the Dagda Python script:

https://falco.org/

Figure 6.2: Dagda Python script options

We can initialize the vulnerability database and indicate if we want to filter
by a specific CVE code with the vuln option. The following screenshot
shows the options for checking vulnerabilities in a Docker image:

Figure 6.3: Dagda options for checking vulnerabilities in an image

The first thing that should be done is to run the script with the --init option

to initialize the database with updated information about database
vulnerabilities like CVE, exploit database, and Red Hat security advisories.

OWASP dependency check
OWASP dependency check https://owasp.org/www-project-dependency-
check/ is an analysis tool that lets you scan Docker images layer by layer,
allowing you to analyze several languages such as Java, Python, Node.js,
JavaScript, Ruby, and PHP.
Internally, it performs a scan about the pom.xml and manifest files in the case
of Java projects and JAR files. In the case of JavaScript projects, the target is
to analyze the package.json file and the NPM dependencies. This
information is compared with the NVD and CVE database.
This project can be found within the OWASP project and can be installed as
a command-line tool or as a maven plugin to integrate it into projects like
another library. We can generate a report with the vulnerabilities detected if
we analyze a project. We can see an example report at
https://jeremylong.github.io/DependencyCheck/general/SampleReport.html
The tool is also available as a Docker image in the public Docker hub
repository at https://hub.docker.com/r/deepfenceio/deepfence_depcheck.
$ docker pull deepfenceio/deepfence_depcheck

We can see the options and commands offered if we check the Docker image
with the -h parameter:
$ docker run -ti -v /var/run/docker.sock:/var/run/docker.sock -v

/var/lib/docker/:/fenced/mnt/host/var/lib/docker/:rw -v

/:/fenced/mnt/host/:ro -v /home/sandman/db:/tmp:rw

deepfenceio/deepfence_depcheck -h

usage: /usr/local/bin/start_services.sh options

OPTIONS:

-h Show this message

-i Container image name accessible locally [Must,

default host]

-p Proxy ip:port if localhost is not connected to

internet (http://proxy.server.com:8080) [Optional, default

none]

-t Scan type {java|nodejs|js|python|ruby|php|all}

[Must, default all]

-u Only database Update {true|false} [Optional,

default false]

https://owasp.org/www-project-dependency-check/
https://jeremylong.github.io/DependencyCheck/general/SampleReport.html
https://hub.docker.com/r/deepfenceio/deepfence_depcheck

-j JSON pretty print {true|false} [Optional, default

false]

We can also see execution examples for the Deepfence Docker image:

Examples:
Build initial database:
$ docker run -ti -v /var/run/docker.sock:/var/run/docker.sock -v
/var/lib/docker/:/fenced/mnt/host/var/lib/docker/:rw
-v /:/fenced/mnt/host/:ro -v /home/user/db:/tmp:rw
deepfenceio/deepfence_depcheck -u true
Subsequent runs without updating db for every run.
With proxy:
$ docker run -ti -v /var/run/docker.sock:/var/run/docker.sock -v

/var/lib/docker/:/fenced/mnt/host/var/lib/docker/:rw

-v /:/fenced/mnt/host/:ro -v /home/user/db:/tmp:rw

deepfenceio/deepfence_depcheck -i deepfence_java -t all -p

http://205.147.101.100:8003

Without proxy, assuming localhost can talk to the world:
$ docker run -ti -v /var/run/docker.sock:/var/run/docker.sock -v

/var/lib/docker/:/fenced/mnt/host/var/lib/docker/:rw

-v /:/fenced/mnt/host/:ro -v /home/user/db:/tmp:rw

deepfenceio/deepfence_depcheck -i deepfence_java -t java

Update the db first and then perform scan:

$ docker run -ti -v /var/run/docker.sock:/var/run/docker.sock -v

/var/lib/docker/:/fenced/mnt/host/var/lib/docker/:rw

-v /:/fenced/mnt/host/:ro -v /home/user/db:/tmp:rw

deepfenceio/deepfence_depcheck -i deepfence_java -t java -u true

The first step before analyzing our images is to build the initial vulnerability
database. The following command will initialize the database with data
recovered from public database vulnerability:
$ docker run -ti -v /var/run/docker.sock:/var/run/docker.sock -v

/var/lib/docker/:/fenced/mnt/host/var/lib/docker/:rw -v

/:/fenced/mnt/host/:ro -v /home/user/db:/tmp:rw

deepfenceio/deepfence_depcheck -u true

To analyze a specific image, for example, we can download the
deepfenceio/fis-java-openshift image from the Docker hub repository at

https://hub.docker.com/r/deepfenceio/fis-java-openshift.
$ docker pull deepfenceio/fis-java-openshift

We can pass the -t all parameter to analyze a specific image:
$ docker run -ti -v /var/run/docker.sock:/var/run/docker.sock -v

/var/lib/docker/:/fenced/mnt/host/var/lib/docker/:rw -v

/:/fenced/mnt/host/:ro -v /home/sandman/db:/tmp:rw

deepfenceio/deepfence_depcheck -t all -j true

[INFO] OWASP Dependency Check is building initial database

[INFO] Retirejs is building initial database

{

“cve_id”: “CVE-2012-6708”,

“cve_type”: “js”,

“cve_container_image”: “f1b590cfaa8a”,

“cve_severity”: “medium”,

“cve_caused_by_package”: “jquery-1.7.1”,

“cve_container_layer”: “analyze-local-host-f1b590cfaa8a-eth0-

172.18.0.2”,

“cve_fixed_in”: “Unknown”,

“cve_link”: “[http://bugs.jquery.com/ticket/11290

https://nvd.nist.gov/vuln/detail/CVE-2012-6708

http://research.insecurelabs.org/jquery/test/]”,

“cve_description”: “Selector interpreted as HTML”,

“cve_cvss_score”: “0.00”,

“cve_attack_vector”: “Unknown”

}

{

“cve_id”: “CVE-2015-9251”,

“cve_type”: “js”,

“cve_container_image”: “f1b590cfaa8a”,

“cve_severity”: “medium”,

“cve_caused_by_package”: “jquery-1.7.1”,

“cve_container_layer”: “analyze-local-host-f1b590cfaa8a-eth0-

172.18.0.2”,

“cve_fixed_in”: “Unknown”,

“cve_link”: “[https://github.com/jquery/jquery/issues/2432

http://blog.jquery.com/2016/01/08/jquery-2-2-and-1-12-released/

https://nvd.nist.gov/vuln/detail/CVE-2015-9251

http://research.insecurelabs.org/jquery/test/]”,

“cve_description”: “3rd party CORS request may execute”,

“cve_cvss_score”: “0.00”,

“cve_attack_vector”: “Unknown”

}

{

“cve_id”: “CVE-2019-11358”,

https://hub.docker.com/r/deepfenceio/fis-java-openshift

“cve_type”: “js”,

“cve_container_image”: “f1b590cfaa8a”,

“cve_severity”: “medium”,

“cve_caused_by_package”: “jquery-1.7.1”,

“cve_container_layer”: “analyze-local-host-f1b590cfaa8a-eth0-

172.18.0.2”,

“cve_fixed_in”: “Unknown”,

“cve_link”: “[https://blog.jquery.com/2019/04/10/jquery-3-4-0-

released/ https://nvd.nist.gov/vuln/detail/CVE-2019-11358

https://github.com/jquery/jquery/commit/753d591aea698e57d6db58c9f722cd0808619b1b]”,

“cve_description”: “jQuery before 3.4.0, as used in Drupal,

Backdrop CMS, and other products, mishandles

jQuery.extend(true, {}, …) because of Object.prototype

pollution”,

“cve_cvss_score”: “0.00”,

“cve_attack_vector”: “Unknown”

}

The output of the preceding command shows how it has detected some
vulnerabilities for the image that we are analyzing, along with the
corresponding CVE codes and the packages and versions that are vulnerable.
At this point, we have reviewed the OWASP dependency check script for
checking vulnerabilities in Docker images.

Trivy
Trivy https://github.com/aquasecurity/trivy is an open source tool that
focuses on detecting vulnerabilities in packages at the operating system level
and dependency files of different languages.
Trivy provides installers for most Linux and macOS systems. We can use the
following commands to install Trivy in a Debian based distribution:
$ sudo apt-get -y install wget apt-transport-https gnupg lsb-

release

$ wget -qO - https://aquasecurity.github.io/trivy-

repo/deb/public.key | sudo apt-key add

$ echo deb https://aquasecurity.github.io/trivy-repo/deb

$(lsb_release -sc) main | sudo tee -a

/etc/apt/sources.list.d/trivy.list

$ sudo apt-get update

$ sudo apt-get -y install trivy

Once installed, we can see the options it offers with the -h option:
$ trivy -h

https://github.com/aquasecurity/trivy

NAME:

trivy - A simple and comprehensive vulnerability scanner for

containers

USAGE:

trivy [global options] command [command options] target

VERSION:

0.16.0

COMMANDS:

image, i scan an image

filesystem, fs scan local filesystem

repository, repo scan remote repository

client, c client mode

server, s server mode

help, h Shows a list of commands or help for one

command

GLOBAL OPTIONS:

--quiet, -q suppress progress bar and log output

(default: false) [$TRIVY_QUIET]

--debug, -d debug mode (default: false) [$TRIVY_DEBUG]

--cache-dir value cache directory (default:

“/root/.cache/trivy”) [$TRIVY_CACHE_DIR]

--help, -h show help (default: false)

--version, -v print the version (default: fal

We can analyze both local and remote images with the following command:
$ trivy image ubuntu:18.04

When analyzing the image, we see the vulnerabilities that have been detected
and the information related to the vulnerable packages and libraries,
organized by level of criticality:

Figure 6.4: Analyzing Ubuntu image with Trivy

We obtain more information for each vulnerability in the form of metadata:

Library: Package where the vulnerability has been identified
Vulnerability ID: Vulnerability identifier according to the CVE
standard
Severity: There is a classification with five severity levels, depending
on the score assigned by the Common Vulnerability Scoring System
(CVSS):

Critical (score 9.0-10.0): Bug that an unauthenticated attacker
could easily exploit and compromise the system without user
interaction
High (score 7.0-8.9): Bugs that could easily compromise the
confidentiality, integrity, or availability of resources
Medium (score 4.0-6.9): Bugs that, although are more difficult to
exploit, may continue to compromise the confidentiality, integrity,
or availability of resources in certain circumstances
Low (score 0.1-3.9): Vulnerabilities that are considered to be
exploited in unlikely circumstances or would have minimal
consequences

Installed version: Version installed on the analyzed image
Fixed version: Version in which the issue is solved; it is pending
resolution if the fixed version is not reported.
Title: Vulnerability description

Tip: Executing Trivy from Docker container
We can also use the following Docker image from aquasec repository in
Docker Hub:
https://hub.docker.com/r/aquasec/trivy
We can analyze Ubuntu image with this image using the following
command:
$ docker run --rm -v /var/run/docker.sock:/var/run/docker.sock

-v /tmp/trivycache:/root/.cache/ aquasec/trivy ubuntu:18.04

The vulnerability database is hosted on GitHub, so we can avoid

https://hub.docker.com/r/aquasec/trivy

downloading this database in each analysis operation using the --cache-dir
parameter:
$ trivy --cache-dir .cache/trivy image ubuntu:18.04

At this point, we have reviewed Trivy for checking vulnerabilities in Docker
images.

Scanning Docker images with Clair and Quay
Clair provides a JSON API that extracts all layers of the image and can be
executed to inspect container images, for example, as part of continuous
integration and continuous delivery process.
We can install Clair through the Docker Compose tool and the repository
https://github.com/quay/clair#docker-compose. These are the commands
for installing it in your local machine:
$

https://raw.githubusercontent.com/coreos/clair/05cbf328aa6b00a167124dbdbec229e348d97c04/contrib/compose/docker-

compose.yml

This is the content of docker-compose.yml, where we can see the services of
Postgres and Clair:
version: ‘2’

services:

postgres:

container_name: clair_postgres

image: postgres:latest

restart: unless-stopped

environment:

POSTGRES_PASSWORD: password

clair:

container_name: clair_clair

image: quay.io/coreos/clair-git:latest

restart: unless-stopped

depends_on:

- postgres

ports:

- “6060-6061:6060-6061”

links:

- postgres

volumes:

- /tmp:/tmp

https://github.com/quay/clair#docker-compose

- ./clair_config:/config

command: [-config, /config/config.yaml]

The Clair configuration defines how images should be scanned. You can
download it with the following command:
$ mkdir clair_config && curl -L

https://raw.githubusercontent.com/coreos/clair/master/config.yaml.sample

-o clair_config/config.yaml

Next, we need to update the Clair configuration, setting the version of Clair
to the last stable release and the default database password:
$ sed ‘s/clair-git:latest/clair:v2.0.1/’ -i docker-compose.yml

&& \

sed ‘s/host=localhost/host=postgres password=password/’ -i

clair_config/config.yaml

Clair requires a Postgres instance to store the CVE data and its service that
will scan Docker images for vulnerabilities:
$ docker-compose up -d postgres

Next, we can download and load the CVE details for Clair to use:
curl -LO

https://gist.githubusercontent.com/BenHall/34ae4e6129d81f871e353c63b6a869a7/raw/5818fba954b0b00352d07771fabab6b9daba5510/clair.sql

docker run -it \

-v $(pwd):/sql/ \

--network “${USER}_default” \

--link clair_postgres:clair_postgres \

postgres:latest \

bash -c “PGPASSWORD=password psql -h clair_postgres -U

postgres < /sql/clair.sql”

Finally, we can use the following command to start the clair container
service:
$ docker-compose up -d clair

We have two containers running when executing the previous docker-
compose commands: one corresponding to the Postgres database listening on
port 5432 and another corresponding to the image analyzer listening on port
6061:
$ docker ps

CONTAINER ID IMAGE

COMMAND CREATED

STATUS PORTS NAMES

fd827a709f1e quay.io/coreos/clair:v2.0.1 “/clair -

config /con…” 8 minutes ago Restarting (1) 37 seconds

ago clair_clair

01779e11a91e postgres:latest “docker-

entrypoint.s…” 21 minutes ago Up 21

minutes 5432/tcp clair_postgres

We can now send Docker Images to scan and return which vulnerabilities it
contains. To scan all the layers from a Docker image we can use tools like
Klar https://github.com/optiopay/klar. This tool allows analyzing images
stored in a private or public Docker registry for security vulnerabilities using
Clair container service.
We can use the following command to download the latest release from
GitHub:
$ curl -L

https://github.com/optiopay/klar/releases/download/v1.5/klar-

1.5-linux-amd64 -o /usr/local/bin/klar && chmod +x $_

We can use the following command to analyze vulnerabilities in a Docker
image, where CLAIR_ADDR is the server address where Clair has been hosted:
$ CLAIR_ADDR=<clair_server> klar <Docker_image>

At this point, we have reviewed the execution of Clair using Docker compose
and how we can detect vulnerabilities in a specific Docker image. Next, we
will review the Quay.io image repository for static image analysis.

Quay.io image repository
Quay registry https://quay.io/repository/ provides static image analysis with
the objective of finding obsolete and vulnerable packages in binaries.
With this service we can see information related to the image scan, including
packages with vulnerabilities that have been detected in each of the layers.
The following screenshot shows the packages with vulnerabilities:

https://github.com/optiopay/klar
https://quay.io/repository/

Figure 6.5: Packages with vulnerabilities detected by Quay security scanner

The following screenshot depicts the CVE vulnerabilities detected by Quay
security scanner in a specific Docker image:

Figure 6.6: CVE vulnerabilities detected by Quay security scanner

For each vulnerability, it shows the CVE number, the level of criticality, the
package with vulnerability, a version that contains the vulnerability, and the
version that could fix the security issue.
If we go into the details, we can see the metrics for calculating the final score

and the criticality level:

Figure 6.7: Metrics for specific vulnerability

Here, we can see that each vulnerability defines a series of metrics that will
give the final score and the level of criticality. The increase in the impact of
integrity increases the vulnerability score. Here are some of the main metrics:

Access complexity: This metric measures the complexity of the attack
required to exploit the vulnerability once an attacker has accessed the
target system.
Authentication: This metric measures the strength or complexity of the
authentication process; for example, whether an attacker is required to
provide credentials before they can execute an exploit. The fewer
authentication instances required, the higher the vulnerability score.
Confidentiality impact: Confidentiality refers to limiting access and
disclosure of information to authorized users as well as preventing
access or disclosure to unauthorized persons. Increasing the impact of
confidentiality increases the vulnerability score.
Integrity impact: This metric measures the impact on the integrity of a
successfully exploited vulnerability. The increase in the impact of
integrity increases the vulnerability score.

Analyzing Docker images with Anchore
Anchore is an open source tool that inspects, analyzes, and certifies Docker
images. This analysis is done against a proprietary database (Postgres)
formed by the collection of information on vulnerabilities and security
problems (CVE) from operating system distributions. It also collects the same
information from the logs of popular packages like Node.JS, NPM, and

Ruby.
Anchore can download any image from a registry compatible with Docker
V2. And with the result of the analysis, it generates a report with the details
of the image, a list of artifacts (npm, gem, Python, and Java), a list of
operating system packages, the list of image files, and a list of vulnerabilities.
The following table lists the different origins of the data source that Anchore
uses internally for identifying vulnerabilities:

Driver Feed Type External Data Source

alpine Vulnerabilities https://github.com/alpinelinux/alpine-

secdb/archive/master.tar.gz

CentOS Vulnerabilities https://www.redhat.com/security/data/oval/com.redhat.rhsa-

all.xml.bz2

Debian Vulnerabilities https://security-tracker.debian.org/tracker/data/json

https://salsa.debian.org/security-tracker-team/security-

tracker/raw/master/data/DSA/list

Oracle Vulnerabilities https://linux.oracle.com/security/oval/com.oracle.elsa-

all.xml.bz2

Ubuntu Vulnerabilities https://launchpad.net/ubuntu-cve-tracker

Gem Packages https://s3-us-west-2.amazonaws.com/rubygems-dumps

Npm Packages https://replicate.npmjs.com

NVD nvd https://nvd.nist.gov/vuln/data-feeds

Table 6.1: Data sources for identifying vulnerabilities

Anchore engine architecture consists of five components that can be
implemented in a single container or in a Kubernetes cluster:

Anchore Engine CLI: It is the main command line interface provided
by the Anchore suite to be able to rule the solution. It is mainly
responsible for interpreting and sending the commands passed to the
Anchore Engine API.
Anchore Engine API: This service allows you to orchestrate the entire
solution. It is also used to analyze images and obtain policy evaluations
and govern the solution completely.
Anchore Policy Engine: The policy engine is responsible for scanning
for vulnerabilities in the artifacts found in the image and providing a
quick assessment of the policies on that data.

Anchore Engine Analyzer: This component is responsible for the
downloading of images and their analysis.
Anchore Engine Database: Anchore is built around a PostgreSQL
database that contains tables for all the necessary services that are
communicated through API calls.

Basically, Anchore Engine allows developers to perform a detailed analysis
of images, executing queries, generating reports, and defining policies that
can be used in the CI/CD cycle.
The open source version is highly customizable and reusable for different
jobs, from CD/CI tasks to inspection and debugging tasks. Here are some of
the things it allows:

Extract packages and components from Docker images
Scan images for known vulnerabilities

Anchore engine is provided as a Docker image that can be with other
orchestration platforms like Kubernetes, Docker Swarm, or Rancher. We will
continue with Anchore engine installation using Docker compose.

Deploying Anchore engine
The easiest way to deploy Anchore engine is through the docker-

compose.yaml file we can find in the scripts/docker-compose folder in the
GitHub project.

https://github.com/anchore/anchore-engine/blob/master/docker-
compose-dev.yaml

You can use the following command to download the latest version of
anchore-engine:
$ git clone https://github.com/anchore/anchore-engine

$ cd anchore-engine

The first step is to download the configuration files (docker-compose.yaml
and config.yaml) from the GitHub project.
$ curl https://raw.githubusercontent.com/anchore/anchore-

engine/master/docker-compose-dev.yaml > docker-compose.yaml

$ curl https://raw.githubusercontent.com/anchore/anchore-

https://github.com/anchore/anchore-engine/blob/master/docker-compose-dev.yaml

engine/master/conf/default_config.yaml > config.yaml

The config.yaml file is a configuration file with the basic configuration the
Anchore Engine requires to run. It has several parameters, including defaults,
log level, listening port, username, and password, that you can adjust to meet
specific requirements.
We can execute the following docker-compose command using the same
path where we have downloaded the docker-compose.yaml file to start
Anchore Engine:
$ docker-compose up –d

The preceding command will extract the Anchore image and automatically
create the Anchore engine and database. Once completed, the command will
start the Anchore engine.
The following screenshot shows the output of the previous command:

Figure 6.8: Starting Anchore engine containers

In the preceding output, we can see different Anchore engine containers and
services related with database, catalog, API, and policies. The following
output shows us Anchore engine containers in execution:
$ docker ps

CONTAINER ID IMAGE

COMMAND CREATED

STATUS

PORTS NAMES

b53cdc41207b anchore/anchore-engine-dev:latest

“/docker-entrypoint.…” 29 seconds ago Up 26 seconds

(health: starting) 8228/tcp root_queue_1

dd1dd2205777 anchore/anchore-engine-dev:latest

“/docker-entrypoint.…” 29 seconds ago Up 26 seconds

(health: starting) 8228/tcp root_policy-

engine_1

829970e315e6 anchore/anchore-engine-dev:latest

“/docker-entrypoint.…” 29 seconds ago Up 27 seconds

(health: starting) 8228/tcp root_analyzer_1

c90621d6c9b9 anchore/anchore-engine-dev:latest

“/docker-entrypoint.…” 29 seconds ago Up 27 seconds

(health: starting) 0.0.0.0:8228->8228/tcp root_api_1

b6e925075210 anchore/anchore-engine-dev:latest

“/docker-entrypoint.…” 30 seconds ago Up 29 seconds

(health: starting) 8228/tcp root_catalog_1

23b7f4ee8f55 postgres:9 “docker-

entrypoint.s…” 31 seconds ago Up 30

seconds 5432/tcp root_db_1

We can also verify that the containers are running with the docker-compose
command:
$ docker-compose ps

Name Command

State Ports

--

-

root_analyzer_1 /docker- Up (healthy)

8228/tcp

entrypoint.sh anch

…

root_api_1 /docker- Up (healthy)

0.0.0.0:8228->8228/t

entrypoint.sh anch cp

…

root_catalog_1 /docker- Up (healthy)

8228/tcp

entrypoint.sh anch

…

root_db_1 docker-entrypoint.sh Up

5432/tcp

postgres

root_policy-engine_1 /docker- Up (healthy)

8228/tcp

entrypoint.sh anch

…

root_queue_1 /docker- Up (healthy)

8228/tcp

entrypoint.sh anch

After installing and starting Anchore engine, you can scan the images using
the AnchoreCLI tool. However, you must first install the AnchoreCLI

command line utility, as shown here.
The installation of AnchoreCLI can be done in several ways. The most direct
way is through the pip install command or through the source code:
$ pip install anchorecli

$ git clone https://github.com/anchore/anchore-cli

$ cd anchore-cli

$ pip install --user –upgrade.

$ python setup.py install

AnchoreCLI can communicate with Anchore engine to analyze the images
that we have locally on the Docker host. It provides a command-line interface
at the top of the REST API of the Anchore engine for this task.
$ docker-compose exec api anchore-cli

The following screenshot shows the options of the anchore-cli command:

Figure 6.9: Anchore cli command options

The following output shows the commands supported by anchore-cli:
Commands:

account Account operations

analysis-archive Archive operations

enterprise Enterprise Anchore operations

evaluate Policy evaluation operations

event Event operations

help

image Image operations

policy Policy operations

query Query operations

registry Registry operations

repo Repository operations

subscription Subscription operations

system System operations

For example, you can run the following command to get the status of the
Anchore Engine services:
$ docker-compose exec api anchore-cli system status

Service catalog (anchore-quickstart, http://catalog:8228): up

Service apiext (anchore-quickstart, http://api:8228): up

Service simplequeue (anchore-quickstart, http://queue:8228): up

Service analyzer (anchore-quickstart, http://analyzer:8228): up

Service policy_engine (anchore-quickstart, http://policy-

engine:8228): up

Engine DB Version: 0.0.14

Engine Code Version: 0.9.3

The first time you execute Anchore Engine, it will take some time for the
vulnerability data to get synced into the engine. You can check the status of
your feed sync with the following command:
$ docker-compose exec api anchore-cli system feeds list

The preceding command allows you to check the status of the Anchore
database, where the solution stores the latest vulnerabilities depending on the
type of image.
For the best experience, wait until the core vulnerability data feeds have
completed before proceeding. We can use the following command to check
the options available for analyzing a Docker image:
$ docker-compose exec api anchore-cli image

Usage: anchore-cli image [OPTIONS] COMMAND [ARGS]…

Options:

-h, --help Show this message and exit.

Commands:

add Add an image
content Get contents of image
del Delete an image
get Get an image
import Import an image from anchore scanner export

list List all images
metadata Get metadata about an image
vuln Get image vulnerabilities
wait Wait for an image to analyze

These are the commands that can be most useful for analyzing Docker
images:
Add an image to Anchore to analyze

$ anchore-cli image add <image_name>

Display image content

$ anchore-cli image content <image_name> os

Analyze image content

$ anchore-cli image content <image_name> files

Evaluate based on policy compliance

$ anchore-cli evaluate check <image_name> os

To start analyzing images, we must first add the images to the engine. We are
adding the latest Debian docker image with the following command:
$ docker-compose exec api anchore-cli image add

docker.io/library/debian:latest

Image Digest:

sha256:fa335fed387465ccc369958d7908e1975e7d65677f7f3050d862161754ebcf90

Parent Digest:

sha256:ba4a437377a0c450ac9bb634c3754a17b1f814ce6fa3157c0dc9eef431b29d1f

Analysis Status: not_analyzed

Image Type: docker

Analyzed At: None

Image ID:

0d587dfbc4f4800bfe9ab08662e8396ffc37060c493f8ef24b2823fef3320df6

Dockerfile Mode: None

Distro: None

Distro Version: None

Size: None

Architecture: None

Layer Count: None

Full Tag: docker.io/library/debian:latest

The analysis begins automatically after adding these images to the Anchore
engine, without user intervention. You can check the progress and view the
list of uploaded images, along with their analysis status.
$ docker-compose exec api anchore-cli image list

Full Tag Image Digest Analysis

Status

docker.io/library/debian:latest

sha256:fa335fed387465ccc369958 d7908e1975e7d65677

f7f 3050d862161754ebcf90 analyzed

docker.io/library/openjdk:14-jdk-alpine3.10 sha256:7c29ddf86e7

fc5ea5fe01e1ad3e3439422fc50dc2c568b00d6bd79bdb026bfdf analyzed

Depending on the number of images that we are analyzing, they will be
analyzed according to their size and those that have completed their analysis,
those that are in process and the images that are in the queue pending analysis
will be shown in the output.
We can check the results of vulnerability scans, policy checks, and other
issues that the Anchore engine has identified after the scan is complete.
The following command will return the packages installed inside the debian
image:
$ docker-compose exec api anchore-cli image content

docker.io/library/debian:latest os

We can execute the following command to check the results of the
vulnerability analysis in the debian:latest image:
$ docker-compose exec api anchore-cli image vuln

docker.io/library/debian:latest all

Figure 6.10: Checking vulnerabilities in the debian image

The report shows the CVE identifier, the vulnerable package, the severity,
and whether or not there is a fix.
The following command will get metadata from the Docker image:

$ docker-compose exec api anchore-cli image metadata

docker.io/library/debian:latest manifest

Image Digest:

sha256:fa335fed387465ccc369958d7908e1975e7d65677f7f3050d862161754ebcf90

Metadata: {“schemaVersion”: 2, “mediaType”:

“application/vnd.docker.distribution.manifest.v2+json”,

“config”: {“mediaType”:

“application/vnd.docker.container.image.v1+json”, “size”: 1463,

“digest”:

“sha256:0d587dfbc4f4800bfe9ab08662e8396ffc37060c493f8ef24

b2823fef3320df6”}, “layers”: [{“mediaType”:

“application/vnd.docker.image. rootfs.diff.tar.gzip”, “size”:

50432971, “digest”: “sha256:bd8f6a7501ccbe80b95c82519

ed6fd4f7236a41e0ae59ba4a8df76af24629efc”}]}

Metadata Type: manifest

We can also check the policies for the debian: latest image with the following
command:
$ docker-compose exec api anchore-cli evaluate

check docker.io/library/debian:latest --detail

Image Digest: sha256:fa335fed387465ccc

369958d7908e1975e7d65677f7f3050d862161754ebcf90

Full Tag: docker.io/library/debian:latest

Image ID: 0d587dfbc4f4800bfe9ab08662e8396

ffc37060c493f8ef24b2823fef3320df6

Status: pass

Last Eval: 2021-04-24T18:27:41Z

Policy ID: 2c53a13c-1765-11e8-82ef-23527761d060

Final Action: warn

Final Action Reason: policy_evaluation

Gate

Trigger Detail Status

dockerfile instruction Dockerfile directive

‘HEALTHCHECK’ not found, matching condition ‘not_exists’

check warn

vulnerabilities package MEDIUM Vulnerability

found in os package type (dpkg) - libgnutls30 (CVE-2011-3389 -

https://security-tracker.debian.org/tracker/CVE-2011-

3389) warn

The evaluation shows general information about the image and the result,
which is successful in this case by having the status pass. This implies that
the image has passed the evaluation against Anchore’s default policy.
In addition to the status, it shows that there are things to improve. It includes
a warning in the final action, indicating that the warning was launched by the

evaluated policy, and it also shows where the problem is so that it can be
solved for the next time.

Policies for image evaluation
In addition to providing information about an image, Anchore can perform an
image evaluation based on user-defined policies.
A policy is made up of a set of rules used to evaluate a container image.
These rules may include checks for security vulnerabilities, image black and
white lists, configuration file content, presence of credentials in the image,
exposed ports, or other user-defined checks. These policies can be applied
globally or customized for specific images or categories of applications.
Bundles (packages) are the unit of definition and evaluation of policies in
Anchore. A user can have several bundles of policies, but only one is used for
the evaluation of an image. This can be the one that is active in the Anchore
engine when performing the analysis or the one indicated in the inline scan.
A bundle contains zero or more policies. The policies of a package define the
checks to be performed against an image and the actions to be recommended
if the checks find a match.
A policy bundle is a JSON document composed of the following:

Policies: Rules and actions
Whitelisting: Rule exclusions to unmatch some policy
Mappings: Determine which policies and whitelists should be applied
to a specific image at the time of evaluation so that we can apply more
or less rules according to the image
Image Whitelist: Images that will automatically pass the assessment,
regardless of whether they comply with policies
Image Blacklist: Replace specific images to statically set the end result
to a bug, regardless of the outcome of the policy evaluation

Anchore has a policy activated by default to be able to run the image analysis
without having to do any extra configuration. This policy checks that there
are no high or critical vulnerabilities. If there are any, it marks them in the
logs and causes the continuous integration to fail if the analysis is running in
one phase. Medium or low vulnerabilities are flagged with a warning, but

these will not cause the continuous integration to fail.
The following command allows you to list the policies that Anchore has
downloaded and which of them can be applied. Note that only one of them
can be active at a time at the engine level.
$ docker-compose exec api anchore-cli policy list

Policy ID

Active Created Updated

2c53a13c-1765-11e8-82ef-23527761d060 True 2021-

04-24T19:21:58Z

The ‘ 2c53a13c-1765-11e8-82ef-23527761d060’ policy corresponds to the
default policy used by Anchore. We can get more information about a policy
using the following command:
$ docker-compose exec api anchore-cli policy get 2c53a13c-1765-

11e8-82ef-23527761d060

Policy ID: 2c53a13c-1765-11e8-82ef-23527761d060

Active: True

Source: true

Created: 2021-04-24T19:21:58Z

Updated: 2021-04-24T19:21:58Z

With the aim of maintaining order within a policy, Anchore separates each of
the sections in which it can perform analysis by categories. You can use the
following command to show the different categories or gates allowed within
a policy:
$ docker-compose exec api anchore-cli policy describe

Figure 6.11: Checking categories within a policy

There are different triggers within each policy gate, and they are the
evaluations that will capture the result of the analysis of a rule. The following
command shows the triggers that exist within the vulnerability gate:
$ docker-compose exec api anchore-cli policy describe --

gate=vulnerabilities

In this section, we have reviewed Anchore engine for analyzing each Docker
image based on data and policy enforcement, following these phases for each
analysis:

a. Gets and extracts the content of the image, without executing it
b. Analyzes the content, extracting and classifying as much metadata as

possible
c. Saves the result of the previous analysis in the database
d. Evaluates policies against the scan result, including vulnerability

matches in artifacts discovered in the image
e. Updates the data used for the vulnerability and policy assessment and

updates the results of the image analysis by applying the new data if
there is any change to the data

Conclusion
In this chapter, we reviewed some open source tools to discover
vulnerabilities in Docker images. It is important to analyze possible
vulnerabilities layer by layer to minimize the exposure of our images before
deploying in a productive environment. This is because these vulnerabilities
could cause an attacker to take control of the application.
In the next chapter, we will review topics like Docker container threats and
system attacks that can impact Docker applications, and we will discuss the
main vulnerabilities we can find in Docker images.

Points to remember
Trivy is a vulnerability scanner for detecting errors in packages of
multiple operating systems and application dependencies.

Clair is an open source project for Docker application and container
vulnerability scanning. It can be considered an analysis engine powered
by an API that performs layer-by-layer checking to detect security
issues in containers. It also automatically monitors all containers for
exploitable vulnerabilities, sending notifications in real-time.
Anchore Image Scanner is an image analysis tool that identifies a wide
range of vulnerabilities and policy issues in Docker images. After
testing it with docker-compose, Anchore’s greatest utility is to use it as
part of a continuous integration phase that runs with every change to a
Docker image to check for new vulnerabilities or fixes that already
exist.
Policies can be described as a set of rules and checks that allow
Anchore to obtain an assessment of a Docker image with regard to the
compliance of the image with respect to the policy.

Multiple choice questions
1. Which Anchore command allows you to check the status of the Anchore

database, where the solution stores the latest vulnerabilities depending
on the type of image?

a. $ anchore-cli system feeds status
b. $ anchore-cli system images list
c. $ anchore-cli system feeds list
d. $ anchore-cli system images status

2. Which Anchore command allows you to start analyzing images?

a. $ anchore-cli image <Docker image>
b. $ anchore-cli image analyze <Docker image>
c. $ anchore-cli system add <Docker image>
d. $ anchore-cli image add <Docker image>

Answers
1. c

2. d

Questions
1. What enables Clair to analyze each layer of the container and look for

existing vulnerabilities in Debian, Ubuntu, and CentOS databases?
2. Which Docker registry provides static image analysis with the objective

of finding obsolete and vulnerable libraries in binaries?
3. Which are the main components of Anchore engine architecture?

Key terms
Scanning for vulnerabilities in Docker containers and images is a
practice that strengthens application security, establishing the necessary
mechanisms to prevent cyberattacks.
Anchore is available as a Docker image that can be run independently
with docker-compose on your local machine, with orchestration
platforms like Kubernetes or as part of continuous integration on Gitlab
CI, Jenkins, Travis CI, etc.
The vulnerability database allows scanners such as Anchore to make a
comparison in the analysis phase between the different packages that
make up the Docker image, with their respective versions, and the
existing vulnerabilities for that versions.

F

CHAPTER 7
Auditing and Analyzing Vulnerabilities

in Docker Containers
rom a security point of view, it is important to have knowledge about
Docker container threats and system attacks, which can impact Docker

applications. These threats and attacks are also applicable to specific Docker
container versions of the applications.
In this chapter, you will learn about the main Docker container threats, the
main vulnerabilities we can find in Docker images, and some services and
tools for getting information about these vulnerabilities. As a result,
developers will have the capacity to obtain details about vulnerabilities in
container applications.
We will review examples of attacks and exploits that could target running
containers. We will also look at specific CVE in Docker images and how we
can get details about specific vulnerabilities with Vulners API.

Structure
We will discuss the following topics in this chapter:

Understanding Docker containers threats and attacks
Analyzing vulnerabilities in Docker images
CVE in Docker images
Getting CVE details with Vulners API

Objectives
After studying this chapter, you will learn about Docker containers threats
and attacks, analyzing vulnerabilities in Docker images, and CVE in Docker
images. You will also learn about obtaining CVE details with Vulners API.

Docker containers threats and attacks
Nowadays, it is critical to ensure that the images you are running are up-to-
date and do not contain software versions with known vulnerabilities. Here
are some of the common attacks and threats that containers might suffer:

Direct attacks on the kernel taking advantage of a vulnerability that
has not been patched.
Denial of Service (DoS) attacks: The main problem is that the
container may monopolize the access to certain resources, such as CPU
and memory, resulting in a denial of service.
Use of trojanized images: If an attacker gets someone to execute a
trojanized image with malicious code, both the Docker host and the data
exposed by it are at risk.

We can see the main vulnerabilities and container attacks related to Docker,
organized by category, at:

https://www.cvedetails.com/vendor/13534/Docker.html

The following screenshot shows the main Docker vulnerabilities organized
by category:

Figure 7.1: Docker vulnerabilities organized by category

The following image depicts the main Docker attacks organized by year and
type:

https://www.cvedetails.com/vendor/13534/Docker.html

Figure 7.2: Common attacks in Docker containers

The containers will always share the kernel in the Docker host, so the
container can exploit any vulnerability in the kernel interface to compromise
the Docker host, unless it uses seccomp or apparmor to limit calls between
the container and the host. Here are some of the threats inside the containers:

Denial of Service (DoS) and Distributed Denial of Service (DDoS)
attacks
Containers that attempt to download additional malware or scan internal
systems for vulnerabilities or confidential data
A container that is forced to use system resources in an attempt to block
other containers
The Dirty Cow exploits in the Linux kernel allows root privilege
escalation on a host or container
Ransomware attacks on insecure server containers by MongoDB and
ElasticSearch containers
Buffer overflow vulnerability in specific programming language
libraries that allow the execution of malicious code; for example,
vulnerabilities such as buffer overflow based on the glibc stack can give
control to hackers through man-in-the-middle attacks
SQL injection attacks allow you to take control of a database container
in order to steal data

For example, this type of CVE related to a vulnerability in the glibc library
is common in some Docker images.

Figure 7.3: CVE related to a vulnerability in the glibc library

We can also check if there is an exploit available for this CVE:

Figure 7.4: Details for CVE-2017-8804 vulnerability

You can find more information about this vulnerability at
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-8804.
Most vulnerabilities associated with CVE are associated with one or more
vulnerabilities. For example, CVE-2015-1781, which is a vulnerability
related to a buffer overflow that can be abused in DNS servers and leads to
denial of service or arbitrary code execution, may fall into three categories:
denial of service, execution code, and buffer overflow.
Buffer overflow is a common vulnerability in web servers that occurs when
an application tries to place more data in a buffer that was designed to store.
In the case of a buffer overflow, a programmer creates a buffer in the code

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-8804

but does not place restrictions on it. The data must go somewhere, which
means adjacent buffers in this case. When data overflows in buffers, the
result may be corrupt or overwritten data.
One of the most critical CVEs in Docker discovered in 2019 is CVE-2019-
5736. This CVE allows attackers to overwrite the host runc binary and,
consequently, obtain host root access.

Figure 7.5: CVE-2019-5736 details

This vulnerability was discovered in runc, the utility to run containers of the
open container’s initiative by which it is possible to obtain root permissions
on the host machine.
Only one malicious container that will overwrite the binary runc of the host
machine is necessary for the exploitation of this vulnerability. The attack is
not blocked by AppArmor’s default policy, just like SELinux on systems like
Fedora. However, the attack is blocked using the enforcing mode with a
correct configuration of namespaces. You can find more information about
this vulnerability at https://www.cvedetails.com/cve/CVE-2019-5736/.
In this case, the Common Vulnerability Scoring System (CVSS) is being
used to measure and compare threats. The common vulnerability scoring
system is based on factors like the attack vector, complexity of the attack,
privileges, user interaction, scope, integrity, and the availability of the data at

https://www.cvedetails.com/cve/CVE-2019-5736/

the time of the attack.
For obtaining the level of criticality of vulnerabilities, we can also use
metrics like the access vector, the access complexity, authentication, the
confidentiality, and the integrity impact. Next, we will look at these metrics
in detail:

Access vector: This metric reflects how the vulnerability is exploited. A
vulnerability exploitable with network access means the vulnerable
software is bound to the network stack, and the attacker does not require
local network access. Such vulnerability is often called exploitable
remotely. An example of a network attack is an RPC buffer overflow.
Access complexity: This metric measures the complexity of the attack
required to exploit the vulnerability once an attacker gains access to the
target system. For example, consider a buffer overflow in internet
service. The attacker could initiate an exploitation process once the
target system is located.
Authentication: This metric analyzes the number of times an attacker
must authenticate on a target to exploit a vulnerability. It measures that
an attacker is required to provide credentials before the vulnerability
occurs. The fewer authentication instances required, the higher the
vulnerability score.
Confidentiality impact: This metric measures the impact of the
confidentiality of a successfully exploited vulnerability. Confidentiality
refers to limiting access and disclosure of information to authorized
users as well as preventing access by unauthorized persons. The greater
the impact of confidentiality, the higher the vulnerability score.
Integrity impact: This metric measures the impact on the integrity of a
successfully exploited vulnerability. The greater the impact on integrity,
the higher the vulnerability score. For example, if an attacker can
modify any file in the target system, at this point, we have a very high
score.

Dirty Cow Exploit (CVE-2016-5195)
DirtyCow (CVE-2016-5195) is a privilege escalation vulnerability in the
Linux kernel, and it allows any existing user without privileges to perform an

elevation of administration privileges.
Change on Write (COW) is a technique used to reduce objects duplication
in memory in UNIX systems. When using the race condition, the user with
minimal privileges will modify the read-only objects, which should not occur
in ideal cases.
The vulnerability used in Dirty Cow is one that exploits the contents of the
memory while the kernel is executing system calls to perform actions in the
same memory address space.
The vulnerability opens a file that only the root user with read-only
permissions has access to and tries to write some content to the file. This is
usually denied by the privilege hierarchy, but the exploit allows opening the
file in a read-only segment in memory.
The following screenshot shows the versions that are vulnerable, along with
the version that would solve the bug:

Figure 7.6: Linux versions affected by DirtyCow

You can find more information at https://security-
tracker.debian.org/tracker/CVE-2016-5195.
You can find some proofs of concept that allow simulating the behavior of
this exploit in the following GitHub repositories:

https://github.com/scumjr/dirtycow-vdso
https://github.com/gebl/dirtycow-docker-vdso
https://github.com/dirtycow/dirtycow.github.io/wiki/PoCs

https://security-tracker.debian.org/tracker/CVE-2016-5195
https://github.com/scumjr/dirtycow-vdso
https://github.com/gebl/dirtycow-docker-vdso
https://github.com/dirtycow/dirtycow.github.io/wiki/PoCs

Figure 7.7: Exploit files for DirtyCow

The following repository contains the Dockerfile and the scripts to run it:

https://github.com/Alpha-Cybersecurity/dirtyc0w-docker

This is the content of the Dockerfile we can find in the repository mentioned
earlier:
FROM ubuntu:12.04

RUN apt-get update

RUN apt-get install -y build-essential

RUN mkdir /dirtycow

COPY dirtyc0w.c /dirtycow/dirtyc0w.c

RUN groupadd -r dcow && useradd --no-log-init -r -g dcow

RUN echo ‘dcow:pass’ | chpasswd

RUN chown -R dcow:dcow /dirtycow

USER dcow

WORKDIR /dirtycow

RUN gcc -pthread dirtyc0w.c -o dirtyc0w

In the previous Dockerfile, we can see that the Dirty COW environment is
based on the Ubuntu image. GCC compiler and build-essential packages are
prerequisites for the compilation of Dirty COW exploit.
These are the commands we can use for building and executing the Dirty

https://github.com/Alpha-Cybersecurity/dirtyc0w-docker

COW container with root privileges:
$ docker build -t dirtycow.

$ docker run --privileged --security-opt seccomp=unconfined --

security-opt apparmor=unconfined -it dirtycow bash

The following screenshot shows the execution of Dirty COW exploit:

Figure 7.8: Executing DirtyCow proof of concept

The Dirty COW exploit demonstrates how to write in files as a root user. In
this output, we can see that a file is created in read only mode, and we try to
write in the file using the Dirty COW binary or exploit.
The vulnerability occurs when opening a file that the root user only has read-
only permissions to and writing some content to the file. This is usually
rejected by the privilege hierarchy, but the exploit has the capacity to open
the file in a read-only memory segment and override the information.

Preventing DirtyCow exploit with apparmor
AppArmor is a security feature that is part of the Linux kernel and is a tool to
restrict the capabilities of an application during runtime. If we execute the
DirtyCow container with AppArmor enabled, we can cause the exploit to
have no effect by establishing restrictions on which applications within the

container have permission to read, write, and execute.
$ docker run --security-opt apparmor:docker-default -it dcow

bash

The following screenshot shows the execution of Dirty COW exploit with
apparmor enabled:

Figure 7.9: Executing DirtyCow with apparmor enabled

Here, we can see that the Dirty COW exploit was stopped using the default
apparmor profile. Another possibility is to run containers in read-only mode
since the execution of the containers as read-only can prevent an attacker
from making changes in the system.

Vulnerability jack in the box (CVE-2018-8115)
This is a remote code execution vulnerability that affects Docker for
Windows. This vulnerability is related to the compatibility of Windows
Compute Service Shim published and maintained by Microsoft. This service
uses a file path as input that would allow an attacker to delete and replace
files on the host’s file system, which can be the origin of remote code
execution.
The vulnerability is due to the fact that the file path in that function is not
validated correctly and the destination file can be written to an arbitrary
location on the victim’s host. The good news is that Docker patched this

vulnerability in the Docker CE 18.03.1 and Docker CE 17.05.0-rc1 versions.
Additionally, we can find open source tools that allow you to check images to
see if they contain this vulnerability. To do this, the tool downloads an image
from the registry, obtains the image layers, and performs a verification of the
.tar file for each layer. The script can be found in the following repository:

https://github.com/aquasecurity/scan-cve-2018-8115

Basically, it is a Python script that will connect to the Docker Hub Registry
https://registry.hub.docker.com and verify that an image, in any of its
layers, has any access level path related to the filesystem that may exploit this
vulnerability.

Most vulnerable packages
We will conclude this section by analyzing packages that contain
vulnerabilities more frequently in Docker images. The following table shows
10 packages that contain most of the vulnerabilities in the images:

Figure 7.10: Most vulnerable packages

Here, we can see that the glibc library contains the most vulnerabilities in
the different versions of the images.
In this section, we reviewed some topics like Docker container threats and
examples of container attacks like Dirty COW.

Analyzing vulnerabilities in Docker images
An audit process ensures that all containers are based on updated containers
and both hosts and containers are configured securely. Here are some of the

https://github.com/aquasecurity/scan-cve-2018-8115
https://registry.hub.docker.com

main features we can validate in an audit process:

Isolation and minimum privilege: The containers are executed with
the minimum resources and privileges for their execution. For this, it is
important to limit both the memory and the use of CPU and network
functions.
Limiting memory and CPU: Limiting the amount of memory available
to a container will prevent attackers from consuming all the memory on
the host and killing other services. Limiting the use of CPU and the
network can prevent attackers from executing denial of service attacks.
Access controls: Linux security modules, such as AppArmor or
SELinux, can be used to enforce access controls and limit system calls.

Specific considerations in an audit process:

Checking that images and packages are updated with the last version.
Using base file systems in read-only mode will make it easy to find
problems.
Our images should take up as little space as possible. The larger the
images, the more difficult the audit will be.
The kernel of the machine where th e Docker server is running should
always be updated since it is the shared point between all the containers
running on the same server.

The NVD database, which is managed by the U.S. government, contains the
latest vulnerabilities discovered related to the Docker ecosystem.
https://nvd.nist.gov/vuln/search/results?
form_type=Basic&results_type=overview&query=docker&search_type=all

Figure 7.11: National vulnerability database

We can obtain the details of each vulnerability, along with information on
how to reproduce and fix this vulnerability.

Figure 7.12: Vulnerability details in NVD

Security vulnerability classification
MITRE https://www.mitre.org/ is an agency that provides and maintains a
Common Vulnerabilities and Exposures (CVE) list of vulnerabilities
contained in operating systems and servers. The NVD database, managed by

https://www.mitre.org/

the U.S. government, details the effects for each vulnerability, including its
affected code and possible solutions.
NVD assigns a score of 0 to 10 to each vulnerability. Scores of 7-10 are
graded as highly critical vulnerability, scores of 4-6 scores as moderate
vulnerability, and 0-4 as low vulnerability.

Figure 7.13: Scoring in NVD vulnerabilities

This classification considers several factors, including the complexity needed
to exploit a system and vulnerability impact. Lower complexity implies a
higher score, and greater impact implies a higher score.
Some examples of vulnerabilities classified by level criticality that we can
find in Docker images are as follows:

High criticality vulnerabilities:

ShellShock
This vulnerability allows an attacker to remotely connect a
malicious executable to a variable that is executed when the Bash
interpreter is invoked.
Heartbleed http://heartbleed.com
This is a critical vulnerability in the OpenSSL cryptographic
software library and allows an attacker to protect information that
is normally sent in encrypted form using the SSL/TLS protocol.

Medium criticality vulnerabilities:

Poodle (OpenSSL) https://www.acunetix.com/blog/web-
security-zone/what-is-poodle-attack/

http://heartbleed.com
https://www.acunetix.com/blog/web-security-zone/what-is-poodle-attack/

Low criticality vulnerabilities:

Buffer Overflow: GCC memory allocations can cause a buffer
overflow when accessing memory areas that have not been
assigned.

To obtain the latest known vulnerabilities of NVD, a script developed in
Python is available in the following GitHub repository:

https://github.com/linxack/nvdparser

The classification of a vulnerability is often subjective, and organizations
usually classify them depending on specific configurations or the score given
by certain Linux distributions. For example, we can take a reference to the
score assigned by a given distribution. For example, we can find the
following list for Ubuntu distribution:

https://ubuntu.com/security/cve

Red hat organization also manages its own CVE database available at
https://access.redhat.com/security/security-updates/#/cve.

Figure 7.14: Red Hat CVE database

Next, we will review a vulnerability that we can find in Alpine Docker
images.

https://github.com/linxack/nvdparser
https://ubuntu.com/security/cve
https://access.redhat.com/security/security-updates/#/cve

Alpine image vulnerability (CVE-2019-5021)
This vulnerability was discovered in the alpine Linux image for versions 3.3,
3.4, 3.5. These versions contain an empty password for the root user. In
addition to exploiting the vulnerability, you need to have the Linux-pam
authentication package or the shadow package installed on Linux.

https://launchpad.net/ubuntu/+source/shadow
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-5021

The following screenshot shows the details of this vulnerability:

Figure 7.15: Alpine image vulnerability

The following GitHub repository has the script affected for this vulnerability:
https://git.alpinelinux.org/aports/commit/?id=7a2566ec8260ceacae

81088ebe2ffe6526c3809e

We can use the following command to check if version 3.4 is vulnerable
since the root user is enabled:
$ docker run docker.io/alpine:3.4 cat /etc/shadow | head -n1

The following screenshot shows the output of the preceding command:

https://launchpad.net/ubuntu/+source/shadow
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-5021

Figure 7.16: Docker container running version vulnerable

The solution to this problem is to disable root login with the following
instruction:
RUN sed -i -e ‘s / ^ root::/ root:!: /’ / etc/shadow

Here, the character! means the root user cannot log in. We can use the
following command to check whether the latest version is vulnerable since
the root user is disabled:
$ docker run docker.io/alpine:latest cat /etc/shadow | head -n1

The following screenshot shows the output of the preceding command:

Figure 7.17: Docker container running version not vulnerable

In this section, we reviewed a specific vulnerability in alpine Docker images
and the mitigation for this vulnerability.

CVE in Docker images
We can find CVEs that are directly related to Docker security incidents or
issues. Visit https://www.saucs.com/cve?vendor=docker to learn more
about Docker CVEs or see a list of current Docker CVEs.

https://www.saucs.com/cve?vendor=docker

We can find CVE vulnerabilities that are directly related to incidents or
security issues in Docker in the mentioned URL:

Figure 7.18: Docker CVE database

We can see the details for a specific CVE:

Figure 7.19: CVE details (1)

This list will be updated every time a CVE is detected for a specific version
of Docker. As an entity handling and publishing CVEs, MITRE correlates
every CVE with the program that is affected by this vulnerability.
When a new vulnerability is discovered, creating a fresh CVE is a way to
make it accessible to the public. This CVE includes all the information about

the vulnerability as well as an identifier unique for each security vulnerability
identified.
Some of the CVEs that we can find within a Docker image are:

CVE-2014-6271 https://www.saucs.com/cve/CVE-2014-6271 :
Shellshock is a family of security issues in the bash on Unix systems.
Many web server implementations use bash to process requests,
allowing an attacker to execute arbitrary commands and gain
unauthorized access to a computer system.
CVE-2014-5282 https://www.saucs.com/cve/CVE-2014-5282 :
Docker prior to version 1.3 does not correctly validate image identifiers,
allowing remote attackers to redirect to another image by loading
untrusted images via ‘docker load’.
CVE-2014-5280 https://www.saucs.com/cve/CVE-2014-5280 :
Boot2docker 1.2 and earlier allows attackers to conduct Cross-Site
Request Forgery (CSRF) attacks by leveraging Docker daemons
enabling TCP connections without TLS authentication.
CVE-2014-5279 https://www.saucs.com/cve/CVE-2014-5279 : The
Docker daemon managed by boot2docker 1.2 and earlier improperly
enables unauthenticated TCP connections by default, which makes it
easier for remote attackers to gain privileges or execute arbitrary code
from children containers.
CVE-2016-6515 https://www.saucs.com/cve/CVE-2016-6515 :
Versions prior to 7.3 of OpenSSH do not limit the length of passwords
for authentication on SSH servers, which allows a remote attacker to
cause a denial of service over a long chain. This error resides in the
source code of the auth-passwd.c file in the auth_password function.
An attacker can take advantage of this problem to make the application
go into an infinite loop and consume CPU resources until it causes a
denial of service.
CVE-2014-0160 https://www.saucs.com/cve/CVE-2014-0160 : The
Heartbleed error is a vulnerability in the OpenSSL cryptographic
software library. This vulnerability compromises the secret keys used to
identify service providers and encrypt user traffic, names, and
passwords. It is thought that about 17% (half a million) of secure
internet web servers certified by trusted authorities are vulnerable to

https://www.saucs.com/cve/CVE-2014-6271
https://www.saucs.com/cve/CVE-2014-5282
https://www.saucs.com/cve/CVE-2014-5280
https://www.saucs.com/cve/CVE-2014-5279
https://www.saucs.com/cve/CVE-2016-6515
https://www.saucs.com/cve/CVE-2014-0160

attack, allowing theft of private keys, session passwords, and cookies
from servers.

The vulnerability details show the score for each of the metrics that allow us
to measure the level of criticality of the vulnerability:

Figure 7.20: CVE details (2)

Tip: Vulnerable containers
We can find containers with latest updates about vulnerabilities at:

https://vulnerablecontainers.org/
https://vulnerablecontainers.org/official

In this section, we have reviewed specific CVE in Docker images. The next
section covers how we can get more information about specific vulnerability
and CVE details using Vulners API.

Getting CVE details with Vulners API
Vulners database (https://vulners.com/products) provides searches, data
recovery, archiving, and vulnerability scanning API for integration purposes.
It provides an API developed in Python to obtain information about the CVE
by identifier, search for available public vulnerabilities, and obtain
vulnerabilities by name and software version.

https://github.com/vulnersCom/api/blob/master/README.md

https://vulnerablecontainers.org/
https://vulnerablecontainers.org/official
https://vulners.com/products
https://github.com/vulnersCom/api/blob/master/README.md

Just run the pip install command to install the library:
$ pip install -U vulners

In addition, we must register on the Vulners website to obtain the “API KEY”
that allows you to make requests.
The following Python script allows you to search in the Vulners database by
specific search criteria; for example, we can search for the Shellshock
vulnerability using the search() method.
import vulners

vulners_api = vulners.Vulners(api_key=”API_KEY”)

Shellshock = vulners_api.search(“Shellshock”, limit=10)

for i, val in enumerate(Shellshock):

for key,value in val.items():

print(key,”:”,value)

The output of the previous script shows the information about vulnerabilities
related with ShellShock:
bulletinFamily : scanner

cvelist : [‘CVE-2014-6271’]

description : The remote host is running a version of Bash that

is vulnerable to command injection via environment variable

manipulation. Depending on the configuration of the system, an

attacker could remotely execute arbitrary code.

modified : 2021-05-02T00:00:00

id : BASH_REMOTE_CODE_EXECUTION.NASL

href : https://www.tenable.com/plugins/nessus/77823

published : 2014-09-24T00:00:00

title : Bash Remote Code Execution (Shellshock)

…..

cvss : {‘score’: 10.0, ‘vector’: ‘AV:N/AC:L/Au:N/C:C/I:C/A:C’}

vhref : https://vulners.com/nessus/SHELLSHOCK_QMAIL.NASL

lastseen : 2021-05-01T03:16:58

bulletinFamily : scanner

cvelist : [‘CVE-2014-6271’]

description : The remote host appears to be running SIP. SIP

itself is not

vulnerable to Shellshock; however, any Bash script that SIP runs

for

filtering or other routing tasks could potentially be affected

if the

script exports an environmental variable from the content or

headers

of a SIP message.

A negative result from this plugin does not prove conclusively

that

the remote system is not affected by Shellshock, only that any

scripts

the SIP proxy may be running do not create the conditions that

are

exploitable via the Shellshock flaw.

modified : 2021-05-02T00:00:00

id : SHELLSHOCK_SIP_INVITE.NASL

href : https://www.tenable.com/plugins/nessus/78822

published : 2014-11-03T00:00:00

title : SIP Script Remote Command Execution via Shellshock

…

We can also obtain more information about a specific CVE. In the following
code we are using the document method from the Vulners API to search for a
specific CVE identifier:
import vulners

vulners_api = vulners.Vulners(api_key=”API_KEY”)

CVE_2016_6515 = vulners_api.document(“CVE-2016-6515”)

print(type(CVE_2016_6515))

for key,value in CVE_2016_6515.items():

print(key,”:”,value)

In the output of the previous script, we can see information about
vulnerability with CVE-2016-6515:
id : CVE-2016-6515

bulletinFamily : NVD

title : CVE-2016-6515

description : The auth_password function in auth-passwd.c in

sshd in OpenSSH before 7.3 does not limit password lengths for

password authentication, which allows remote attackers to cause

a denial of service (crypt CPU consumption) via a long string.

published : 2016-08-07T21:59:00

modified : 2018-09-11T10:29:00

cvss : {‘score’: 7.8, ‘vector’: ‘AV:N/AC:L/Au:N/C:N/I:N/A:C’}

href : https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-

2016-6515

reporter : cve@mitre.org

references : [‘http://www.securitytracker.com/id/1036487’,

‘https://lists.fedoraproject.org/archives/list/package-

announce@lists.fedoraproject.org/message/X2L6RW34VFNXYNVVN2CN73YAGJ5VMTFU/’,

‘https://access.redhat.com/errata/RHSA-2017:2029’,

‘https://lists.debian.org/debian-lts-

announce/2018/09/msg00010.html’,

‘https://security.FreeBSD.org/advisories/FreeBSD-SA-

17:06.openssh.asc’,

‘https://support.hpe.com/hpsc/doc/public/display?

docLocale=en_US&docId=emr_na-hpesbhf03779en_us’,

‘http://www.securityfocus.com/bid/92212’,

‘https://github.com/openssh/openssh-

portable/commit/fcd135c9df440bcd2d5870405ad3311743d78d97’,

‘https://www.exploit-db.com/exploits/40888/’,

‘http://www.oracle.com/technetwork/security-advisory/cpuoct2017-

3236626.html’, ‘http://openwall.com/lists/oss-

security/2016/08/01/2’,

‘http://packetstormsecurity.com/files/140070/OpenSSH-7.2-Denial-

Of-Service.html’, ‘https://security.netapp.com/advisory/ntap-

20171130-0003/’]

The Vulners API also allows you to get the references for a specific CVE
vulnerability code:
import vulners

vulners_api = vulners.Vulners(api_key=”API_KEY”)

references = vulners_api.references(“CVE-2016-6515”)

for key,value in references.items():

for key,val in enumerate(value):

for key,value in val.items():

print(key,”:”,value)

You can get further information about the API and more examples in the
GitHub repository https://github.com/vulnersCom/api.
In this section, we reviewed Vulner API to get more information about
vulnerabilities and CVE that are common in Docker images.

Conclusion
This chapter walked the reader through the main vulnerabilities and Docker
threats in Docker images and containers. As a result, developers will have the
capacity to obtain details about specific CVEs in container applications.
In the next chapter we will review Docker secrets and the essential
components of Docker networking, including how we can communicate with
and link Docker containers.

Points to remember

https://github.com/vulnersCom/api

ShellShock is related to how Bash processes environment variables
dictated by the operating system or by a program that calls a script. If
Bash has been configured as the default shell, it can be used by hackers
against servers and other Unix and Linux devices via web, SSH, telnet,
or any other program that executes Bash scripts.
It is important to keep an eye on the images we are deploying for each
environment and practice defense in depth. Recommendations could be:

a. To use containers in production, it should be verified that the
application does not currently use vulnerable libraries, and
vulnerability exploit does not affect the nature of the application to
ensure that future updates of the application do not expose critical
information.

b. The same recommendation can be applied to Docker when using
any third-party software; we should only use containers from
trusted sources.

Multiple choice questions
1. Which vulnerability exploits the contents of the memory while the

kernel is executing system calls to perform actions in the same memory
address space?

a. ShellShock
b. DirtyCow
c. Buffer overflow
d. Heartbleed

2. Which common vulnerability in web servers occurs when an application
tries to place more data in a buffer that was designed to store?

a. ShellShock
b. DirtyCow
c. Buffer overflow
d. Heartbleed

Answers

1. b
2. c

Questions
1. Which metric is used to measure and compare threats and

vulnerabilities?
2. Which vulnerability affects Docker containers with root permissions

discovered in a utility to run containers of the open containers initiative?
3. Which package is the most frequently used in Docker images and is one

of the most vulnerable libraries?

Key terms
CVE is a list of information maintained by the MITRE Corporation
https://www.mitre.org/, whose objective is to centralize the registry of
known security vulnerabilities in which each reference has a CVE-ID
identification number. This number provides a standard nomenclature to
uniquely identify a vulnerability, description of the vulnerability,
possible solution to the security issue, or how to configure to mitigate
the vulnerability and references to publications where the vulnerability
has been made public.

https://www.mitre.org/

T

CHAPTER 8
Managing Docker Secrets and

Networking
his chapter introduces Docker secrets and the essential components of
Docker networking, including how we can communicate with and link

Docker containers. We will also review other concepts like port mapping,
which Docker uses for exposing the TCP ports that provide services from the
container to the host so that users accessing the host can access a container’s
services.
When creating applications with containers connected to each other, we must
use Docker networks to be able to communicate with the containers. For
example, you can create two containers with communication between them
through a Docker network if you want to create a blog and need a database
and an application server like nginx.

Structure
We will cover the following topics in this chapter:

Introducing container secrets
Managing secrets in Docker
Introducing container networking
Network managing in Docker
Containers communication and port mapping
Creating and managing Docker networks

Objectives
After studying this chapter, you will understand secrets in Docker and learn
about container network types, network management in Docker, and

container communication and port mapping. You will also learn about
creating and managing Docker networks.

Introducing container secrets
Secrets management enables organizations to consistently enforce security
policies within applications and ensures that only authenticated and
authorized entities can access resources in applications, platforms, and cloud
environments.
The following steps are typically included in a secrets management initiative.
Many of these approaches and techniques are also used to protect access for
those users who have the assigned privileges:

Authenticate all access requests that use credentials and authentication
tokens
Implement the principle of least privilege
Enforce Role-Based Access Control (RBAC) and regularly rotate
secrets and credentials
Automate the management of secrets and apply access policies to them
Remove code secrets, configuration files, and other unprotected areas

Effective secrets management enables organizations to remove these secrets
that we can sometimes see in configuration files and are used by CI/CD tools,
while offering full audit trails, policy-based RBAC, and secrets rotation.
Docker containers need to access security sensitive data, such as usernames
and passwords, SSL certificates, SSH private keys, or any other access-
restricted information.
In Docker, some of this data is provided through environment variables when
launching the containers. This is not a good practice because when making a
list of the processes with their invocation parameters, those related to Docker
will show this information, which is a possible security issue.

What is a secret?
A secret is a piece of information required for authentication, authorization,
and encryption. You can use secrets to manage any sensitive information that
a container needs at runtime, but you don’t want to store it directly in the

image.
With Docker Secrets, you can manage this information that is needed at
runtime but does not want to be stored in the Docker image or in the source
code repository. Some examples of sensitive information are as follows:

Usernames and passwords
TLS certificates and keys
SSH keys
The name of a database or internal server

Another use case for using secrets is to provide an abstraction layer between
the container and a set of credentials. Consider a scenario where you have
separate development, test, and production environments for your
application.
Each of these environments can have different credentials, stored in the
development, test, and production environments with the same secret name.
This way, containers only need to know the name of the secret for working in
all three environments.

Managing secrets in Docker
Docker secrets are provided to the containers that need them and transmitted
in encrypted form to the node on which they run. Secrets are mounted on the
filesystem at the /run/secrets/<secret_name> path in a decrypted way and
can be accessed by the container service.
Until now, creating a service on swarm means having its configuration within
the image, available on all hosts locally or mounted via network storage. That
said, secrets can contain files, so we can use them to easily manage the
configurations of the services since the information will be available on all
the hosts that execute some service task.
It is common that in an image we need to use credentials and access tokens or
files with information that we do not want to share. If we pass these elements
to the image using commands like COPY or ADD, they will be visible in the
image and anyone who has access to it will be able to see them.
So, it is important to mention that Docker secrets are only available to swarm
services, not to standalone containers. That means the secrets can be pushed

to containers only when containers are running as a swarm service.
At this point, we can add this information to our containers using the docker
secret command. The main options that we can use to manage the secrets
are:
Usage: docker secret COMMAND

Manage Docker secrets

Commands:

create Create a secret from a file or STDIN as content

inspect Display detailed information on one or more secrets

ls List secrets

rm Remove one or more secrets

Before we start using secrets in Docker, let’s look at the downsides of not
using it. Here’s a docker-compose file with the definition of a Postgres
service:
version: ‘3.1’

services:

db:

image: postgres

environment:

POSTGRES_USER: myuser

POSTGRES_PASSWORD: mysupersecretpassword

POSTGRES_DB: mydatabase

In the previous file, we provided the username, password, and database name
for the Postgres service when setting the POSTGRES_USER,

POSTGRES_PASSWORD, and POSTGRES_DB environment variables.
The docker secret create command allows you to read standard input
where the last argument represents the file from which the secret is read.
We can use this command to create a secret for the username, password, and
database by typing the following commands:
$ echo “myuser” | docker secret create pg_user -

$ echo “mysupersecretpassword” | docker secret create

pg_password -

$ echo “mydatabase” | docker secret create pg_database -

Here, we used the docker secret create command to create secrets called
pg_user, pg_password, and pg_database. The dash “-” at the end of the
command lets Docker know that the secret data is being taken from standard

input.
Now, we need to modify the file to use the secrets we have created. In the
following docker-compose, secrets are stored in files in the container’s
/run/secrets path:
version: ‘3.1’

services:

db:

image: postgres

restart: always

environment:

POSTGRES_USER_FILE: /run/secrets/pg_user

POSTGRES_PASSWORD_FILE: /run/secrets/pg_password

POSTGRES_DB_FILE: /run/secrets/pg_database

secrets:

- pg_password

- pg_user

- pg_database

secrets:

pg_user:

external: true

pg_password:

external: true

pg_database:

external: true

We can use the secrets section to define the names of the secrets using a
service stack with a Docker Compose file.
This way, we have to specify new environment variables to read the secrets
stored in these files. At the end of the file, we indicate that the secrets are
external using external: true.
Setting the secret’s external field to true instructs docker-compose to source
its value from your existing Docker secrets. If external is set to true but
secrets are not created, then the stack will return an error, indicating that the
secret has not been created.

Docker secrets with Docker swarm scenario
In the following scenario, you will learn how to use the Docker Secrets
functionality in Swarm Mode to securely manage sensitive information like
certificates or passwords.

By default, Docker works as an isolated single-node. All containers are only
deployed onto the engine. Swarm Mode turns it into a multi-host cluster-
aware engine.
Docker has to be in “Swarm Mode” to use the secrets functionality. This is
enabled using the following command:
$ docker swarm init

Swarm initialized: current node (wygyxcaiagrnlci2v8emp0uef) is

now a manager.

Run the following command to add a worker to this swarm manager node:

$ docker swarm join --token SWMTKN-1-

2wy41kpais6lw57lvjqszc6zwx5546qytrd6bse1cr49n4ur0g-

0t6ygj0celx7p5ouauph097e8 172.17.0.29:2377

Run ‘ docker swarm join-token manager’ on Swarm Manager Node and
follow the instructions to add a manager to this swarm node. The next step is
create a secret using stdin with the following command:
$ echo “my_secret” | docker secret create mysecret -

06rvgu3vv6evla9nt8ln6gm5e

You can view all secret names using the following command:
$ docker secret ls

ID NAME DRIVER CREATED UPDATED

06rvgu3vv6evla9nt8ln6gm5e

mysecret 47 seconds ago 47

seconds ago

We can create a redis service and grant access to the secret. By default, the
container can access the secret at the /run/secrets /<secret_name> path,
and you can customize the name of the file in the container using the
destination option.
$ docker service create --name=”redis” --secret=”mysecret” redis

vvophxn8cjcz0pt59lffd5v2k

overall progress: 1 out of 1 tasks

1/1: running

verify: Service converged

The secret appears as a file within the secrets directory:
$ docker exec $(docker ps --filter name=redis -q) ls -l

/run/secrets

total 4

-r--r--r-- 1 root root 10 May 8 15:44 mysecret

We can use the following command to read the secret as a regular file from
the memory disk:
$ docker exec $(docker ps --filter name=redis -q) cat

/run/secrets/mysecret my_secret

The secrets functionality is also available using Docker Compose Stacks. The
viewer service has access to our Swarm Secret in the following example:
version: ‘3.1’

services:

viewer:

image: ‘alpine’

command: ‘cat /run/secrets/mysecret’

secrets:

- mysecret

secrets:

mysecret:

external: true

Docker Compose Stacks are deployed using the Docker CLI. As part of the
deployment, the stack will be configured with access to the secret. We can
deploy the task and access the secret using the following commands:
$ docker stack deploy -c docker-compose.yml secrets1

Creating service secrets1_viewer

$ docker logs $(docker ps -aqn1 -f status=exited)

my_secret

An alternate way of creating secrets is via files. In this case, we have a
secret.crt file that needs to be accessed from the container. First, create the
secret.txt file, as follows:
$ echo “my-secret-file” > secret.txt

Secondly, update the docker-compose Stack to use the file based secret, as
shown here:
version: ‘3.1’

services:

test:

image: ‘alpine’

command: ‘cat /run/secrets/secret_file’

secrets:

- secret_file

secrets:

secret_file:

file: ./secret.txt

Just like earlier, we can deploy the Docker Compose Stack with the following
command:
$ docker stack deploy -c docker-compose.yml secrets2

Creating network secrets2_default

Creating secret secrets2_secret_file

Creating service secrets2_test

The following command will get the log file of the last container to have
exited for the newly created service:
$ docker logs $(docker ps -aqn1 -f name=secrets2 -f

status=exited)

my-secret-file

Tip: Other secrets solutions
Vault is a tool for securely accessing secrets. A secret is anything that you
want to tightly control access to, such as API keys, passwords, and
certificates. Vault provides a unified interface to any secret while providing
tight access control and recording a detailed audit log. You can find further
details at https://github.com/hashicorp/vault and
https://www.katacoda.com/courses/docker-production/vault-secrets.

Introducing container networking
Docker networking is based on Linux’s network namespaces, which allows
you to generate a complete communications stack for each image running
within the Docker host.
When we execute a container or set of containers that form a distributed
service, we can use the --net option to choose between these network
modes.
You can use the default bridge, a different bridge, or not provide access to the
network at all with this parameter. Here are examples of ways to use the --
net option:

https://github.com/hashicorp/vault
https://www.katacoda.com/courses/docker-production/vault-secrets

--net = bridge is the default behavior and creates a new network
stack for the container in the Docker bridge called docker0
--net = none allows you to execute the container without any network
connection
--net = host means the container uses the host network stack directly
from inside the container
--net = mycontainer informs Docker to start the container with the
capacity for using the container’s network stack

You can execute the following command to see the options Docker provides
for managing networks:
$ docker network

Usage: docker network COMMAND

Manage networks

Options:

Commands:

connect Connect a container to a network

create Create a network

disconnect Disconnect a container from a network

inspect Display detailed information on one or more

networks

ls List networks

prune Remove all unused networks

rm Remove one or more networks

Run ‘docker network COMMAND --help’ for more information on a

command.

You can use the following command to see the networks available in the
Docker host:
$ docker network ls

NETWORK

ID NAME DRIVER SCOPE

27969551e219 bridge

bridge local

fa054a9af353 host host

local

f50397115ef2 none null

local

The container does not have any communication with the –none network
mode, and it is used when the container is not required to have access to the
external or internal network. The only IP address you have enabled is
loopback or localhost.
$ docker run --net=none -it --rm debian

Unable to find image ‘debian:latest’ locally

latest: Pulling from library/debian

bd8f6a7501cc: Pull complete

Digest:

sha256:ba4a437377a0c450ac9bb634c3754a17b1f814ce6fa3157c0dc9eef431b29d1f

Status: Downloaded newer image for debian:latest

root@6f11ae04ecf2:/# ping 127.0.0.1

PING 127.0.0.1 (127.0.0.1) 56(84) bytes of data.

64 bytes from 127.0.0.1: icmp_seq=1 ttl=64 time=0.039 ms

64 bytes from 127.0.0.1: icmp_seq=2 ttl=64 time=0.054 ms

--- 127.0.0.1 ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 7ms

rtt min/avg/max/mdev = 0.039/0.046/0.054/0.010 ms

root@6f11ae04ecf2:/# ping google.com

ping: google.com: Temporary failure in name resolution

root@6f11ae04ecf2:/# ping -w3 google.com

ping: google.com: Temporary failure in name resolution

In the preceding output, you can see that your container does not have access
to the external network. Docker will add the container to a networking group
but without a network interface.
The following command executes a bash shell for checking network
configuration:
$ docker run --net=none -it --rm debian:latest /bin/bash

root@abb4ed18cd14:/# ifconfig

bash: ifconfig: command not found

root@abb4ed18cd14:/# ip a

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state

UNKNOWN group default qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever

When performing a Docker inspection of a container with this network mode,
we can see that we have not assigned an IP address:
$ docker inspect <container_id> | grep -i addr

“LinkLocalIPv6Address”: “”,

“SecondaryIPAddresses”: null,

“SecondaryIPv6Addresses”: null,

“GlobalIPv6Address”: “”,

“IPAddress”: “”,

“MacAddress”: “”,

“IPAddress”: “”,

“GlobalIPv6Address”: “”,

“MacAddress”: “”,

Bridge mode
The bridge mode is the default Docker network mode that allows
connectivity with other interfaces in the Docker host and between the
containers. When the Docker service daemon starts, it configures a virtual
Ethernet device called docker0.
If we start a container based on Debian with this network mode, we can see
how we have connectivity with the other containers in the Docker host and
external internet connection:
$ docker run -it --network=bridge debian:latest /bin/bash

root@565bdff08498:/# ip a

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state

UNKNOWN group default qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever

4: eth0@if5: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc

noqueue state UP group default

link/ether 02:42:ac:12:00:02 brd ff:ff:ff:ff:ff:ff link-

netnsid 0

inet 172.18.0.2/24 brd 172.18.0.255 scope global eth0

valid_lft forever preferred_lft forever

We can check the connectivity with external network using a simple ping
command:
root@565bdff08498:/# ping google.com

PING google.com (172.217.23.110) 56(84) bytes of data.

64 bytes from mil04s23-in-f110.1e100.net (172.217.23.110):

icmp_seq=1 ttl=117 time=5.03 ms

64 bytes from mil04s23-in-f110.1e100.net (172.217.23.110):

icmp_seq=2 ttl=117 time=5.07 ms

64 bytes from mil04s23-in-f110.1e100.net (172.217.23.110):

icmp_seq=3 ttl=117 time=5.11 ms

--- google.com ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 5ms

rtt min/avg/max/mdev = 5.029/5.068/5.106/0.031 ms

The output of the bridge network can be similar to the following:
$ docker network inspect bridge

[

{

“Name”: “bridge”,

“Id”: “27969551e2199a5837418f503adee5bc9ef3f8bb4

a6fd4d251b13792e99421f6”,

“Created”: “2021-05-09T16:24:55.808415421Z”,

“Scope”: “local”,

“Driver”: “bridge”,

“EnableIPv6”: false,

“IPAM”: {

“Driver”: “default”,

“Options”: null,

“Config”: [

{

“Subnet”: “172.18.0.1/24”,

“Gateway”: “172.18.0.1”

}

]

},

“Internal”: false,

“Attachable”: false,

“Ingress”: false,

“ConfigFrom”: {

“Network”: “”

},

“ConfigOnly”: false,

“Containers”: {},

“Options”: {

“com.docker.network.bridge.default_bridge”: “true”,

“com.docker.network.bridge.enable_icc”: “true”,

“com.docker.network.bridge.enable_ip_masquerade”: “true”,

“com.docker.network.bridge.host_binding_ipv4”: “0.0.0.0”,

“com.docker.network.bridge.name”: “docker0”,

“com.docker.network.driver.mtu”: “1500”

},

“Labels”: {}

}

]

In the preceding output, we can see that bridge mode is using docker0
interface and provides an internal host network in which the containers on the

same host can communicate. However, the IP addresses assigned for each
container are not accessible from outside the Docker host.
For instance, we can have two containers connected to the bridge docker0
interface. With the following commands we are generating two bridge-based
nginx servers with IP addresses 172.17.0.2 and 172.17.0.3:
$ docker run -d --name nginx-1 -p 10000:80 nginx

Unable to find image ‘nginx:latest’ locally

latest: Pulling from library/nginx

f7ec5a41d630: Pull complete

aa1efa14b3bf: Pull complete

b78b95af9b17: Pull complete

c7d6bca2b8dc: Pull complete

cf16cd8e71e0: Pull complete

0241c68333ef: Pull complete

Digest: sha256:75a55d33ecc73c2a242450a9f1cc858499d468f077ea

942867e662c247b5e412

Status: Downloaded newer image for nginx:latest

637c96acee4c2274d5d18cbb182c418abf7a28edbfa67f8ec2fec45287605c69

$ docker run -d --name nginx-2 -p 10001:80 nginx

08a4ecc6ecf1eb55a39cdce94e143032148a8d004ff0e0b09fa7104513c75363

$ docker ps

CONTAINER ID IMAGE

COMMAND CREATED

STATUS PORTS NAMES

08a4ecc6ecf1 nginx “/docker-entrypoint.…”

6 seconds ago Up 5 seconds 0.0.0.0:10001->80/tcp

nginx-2

637c96acee4c nginx “/docker-entrypoint.…”

17 seconds ago Up 16 seconds 0.0.0.0:10000->80/tcp

nginx-1

We can check the IP address for each container using the following
commands:
$ docker inspect <container_id> | grep -i addr

$ docker inspect 08a4ecc6ecf1 | grep -i addr

“LinkLocalIPv6Address”: “”,

“SecondaryIPAddresses”: null,

“SecondaryIPv6Addresses”: null,

“GlobalIPv6Address”: “”,

“IPAddress”: “172.18.0.3”,

“MacAddress”: “02:42:ac:12:00:03”,

“IPAddress”: “172.18.0.3”,

“GlobalIPv6Address”: “”,

“MacAddress”: “02:42:ac:12:00:03”,

$ docker inspect 637c96acee4c | grep -i addr

“LinkLocalIPv6Address”: “”,

“SecondaryIPAddresses”: null,

“SecondaryIPv6Addresses”: null,

“GlobalIPv6Address”: “”,

“IPAddress”: “172.18.0.2”,

“MacAddress”: “02:42:ac:12:00:02”,

“IPAddress”: “172.18.0.2”,

“GlobalIPv6Address”: “”,

“MacAddress”: “02:42:ac:12:00:02”,

We can see the IP address and the gateway IP address for each container
when executing Docker inspect. In the following output, we can see the
network configuration for the nginx-1 container:
$ docker inspect <container_id_nginx-1>

“Networks”: {

“bridge”: {

“IPAMConfig”: null,

“Links”: null,

“Aliases”: null,

“NetworkID”:

“56f80d202b941a17615f6b2a181e9c7bbea3a263c7c56dcd4277a25376d424fe”,

“EndpointID”:

“82a37df6284e4e2c67e934d935f7e5911e8013a7afd4ee1ad12225d21ec9df41”,

“Gateway”: “172.18.0.1”,

“IPAddress”: “172.18.0.2”,

“IPPrefixLen”: 24,

“IPv6Gateway”: “”,

“GlobalIPv6Address”: “”,

“GlobalIPv6PrefixLen”: 0,

“MacAddress”: “02:42:ac:12:00:02”,

“DriverOpts”: null

}

}

In the following output, we can see the network configuration for nginx-2
container:
$ docker inspect <container_id_nginx-2>

“Networks”: {

“bridge”: {

“IPAMConfig”: null,

“Links”: null,

“Aliases”: null,

“NetworkID”:

“56f80d202b941a17615f6b2a181e9c7bbea3a263c7c56dcd4277a25376d424fe”,

“EndpointID”:

“75d026150c40e241c64ccfc8a18985d31833c939e27b5667ddbf4a7cfb92056d”,

“Gateway”: “172.18.0.1”,

“IPAddress”: “172.18.0.3”,

“IPPrefixLen”: 24,

“IPv6Gateway”: “”,

“GlobalIPv6Address”: “”,

“GlobalIPv6PrefixLen”: 0,

“MacAddress”: “02:42:ac:12:00:03”,

“DriverOpts”: null

}

}

In the preceding output, we saw that both containers share the same gateway
IP address at 172.18.0.1. Here are some of the main advantages of this
mode:

Each container runs in its own private network namespace that is
separate from the Docker host
It allows containers to run on the same Docker host without port
conflicts

We have reviewed the bridge type Docker network, but sometimes we don’t
want to use the Docker network and directly use our host’s network. We can
do this using the --net = host argument when we deploy our container.

Host mode
In this type of network, all network interfaces defined on the Docker host will
be accessible to the container, and the container shares the host’s network
namespace. You must execute the container with the flag --net = host to
use the host network:
$ docker run -ti --net=host debian /bin/sh

Host mode allows us to share the namespace of the host network with the
container. The following output shows network connections inside the
container:
ip a

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state

UNKNOWN group default qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever

inet6 ::1/128 scope host

valid_lft forever preferred_lft forever

2: ens3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc

fq_codel state UP group default qlen 1000

link/ether 02:42:ac:11:00:2f brd ff:ff:ff:ff:ff:ff

inet 172.17.0.47/16 brd 172.17.255.255 scope global

noprefixroute ens3

valid_lft forever preferred_lft forever

inet6 fe80::4471:5722:a9c5:903a/64 scope link

valid_lft forever preferred_lft forever

3: docker0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc

noqueue state DOWN group default

link/ether 02:42:e3:eb:3f:80 brd ff:ff:ff:ff:ff:ff

inet 172.18.0.1/24 brd 172.18.0.255 scope global docker0

valid_lft forever preferred_lft foreve

Since a container is just a process that runs on a host, the simplest option
seems to connect it to the host’s network namespace. The container will
behave from the network point of view, just like any other process that runs
on the host. So, it will use the host’s IP address and the host’s TCP port
namespace to expose the service running inside the container.
For example, we can run an nginx container in host mode with the following
command:
$ docker run -d --name nginx-1 -p 8080:80 --net=host nginx

/bin/sh

This command executes an NGINX container web server that is listening on
port 80 on the Docket host. Imagine trying to run another web server on the
same host later. Unless otherwise indicated, our second container will
probably try to connect on the same port. But the second container cannot be
started since port 80 is now being used by our first container.
The main advantages of this mode are:

Easy configuration to use
It does not perform any operation on incoming traffic, so performance is
not affected

We also have some disadvantages when using host mode:

Without an additional dynamic port assignment mechanism, services

can collide at the port level
The dynamic port allocation must be managed by a container
orchestration platform like Kubernetes or Docker Swarm
Containers share the namespace of the host network, which may have
security implications. Containers that are in running state will be
exposed if our Docker host is exposed to some vulnerability

Network managing in Docker
As we saw in the previous section, Docker offers us three different types of
networks. The bridge is the network type loaded by default by all containers,
and it is a network that creates a bridge between the network interface of the
container and a virtual network interface created on our computer when we
install Docker.
The host mode copies the host network configuration, and we can see the
same network configuration in the Docker host if we execute a container with
this mode.

Docker networking
Docker uses an ethernet bridge to allow the Docker daemon to communicate
with the Docker host network device. A container that connects to another
container with an exposed port can communicate with the exposed port. You
can assign a container port to a port on the host to make a port accessible
outside the container. Now, it is important to know that you need to expose
and publish the port for it to be accessed from outside the Docker host
network.
For example, if you expose a port, the service in the container is only
accessible from inside other Docker containers. So, this feature provides
inter-container communication. The service in the container is accessible
from outside the internal network if you expose and publish a port.
Here are some of the network configurations that can be established when we
execute a container:

--dns: A DNS server is what resolves a domain to the IP address of the
server running the domain

--dns-search: Sets up DNS search servers
-h: This option establishes the hostname that will be added as an entry
in the /etc/hosts file
--link: Allows a container to communicate with other containers
without knowing their real IP addresses
--expose: Exposes the container port without publishing it to the
Docker host
--publish-all: Allows the publishing of all ports exposed to host
interfaces
--publish: Lets you publish the port of a container in the Docker host
using the following formats:

ip:hostPort:containerPort
ip::containerPort
hostPort:containerPort

--net: This option allows you to configure the network mode for the
container and can contain four values:

bridge: This creates a network stack for the container in bridge
mode
none: The container will be totally isolated and cannot
communicate with any other container
container <name|id>: Uses the network stack of another
container
host: Uses the host Docker network stack

Containers communication and port mapping
When we add a container to a network, all ports are open for machines that
are within the same network and closed for an external connection by default.
For example, we need not expose MySQL container ports as they are on the
same network as the application container and can connect through the port
without a problem. However, we won’t be able to access the MYSQL port
from outside the network unless we publish it.

Configuring port forwarding between containers
and Docker host
Port forwarding is the easiest way to expose the services that are running in
containers. There are two ways to start a container with this feature:

-P [--publish-all]: When starting a container with this option, all the
ports that were exposed using the EXPOSE statement will be published
in the Dockerfile. This option selects a random free port on the host
server where requests will be listened to.
-p [--publish]: This option allows you to explicitly indicate to
Docker which port should be linked to a port in a container. With this
option, we must manually specify a port where we want to listen. The
container will fail if that port is in use. There are three ways to use this
option:

$ docker run -p ip:host_port: container_port
$ docker run -p ip::container_port
$ docker run -p host_port:container_port

Adding an EXPOSE instruction inside a Dockerfile allows you to indicate that a
specific port must be exposed from the image it builds. A port exposed in a
running container image allows two things to happen:

Linked containers: Once you run the image, the exposed port will be
available to the other container as if it were available on the same local
system if you link the running container to another container.
Runtime exposure: Any port identified with an EXPOSE statement when
the image is built can easily be exposed from the same port number on
the localhost. You can use the -p option in docker run on the image to
assign any port exposed to it or to a different specific port on the
localhost. All ports exposed from the container are assigned to random
ports on the host system if you use the -P option in docker run. You
can then run the docker port command in the resulting container to see
how the ports are mapped.

From a container point of view, you can provide an IP-based web server to
other containers or applications. You can expose the port used by the web

server to do this. For example, an nginx server container can expose ports 80
and 443, as in the following Dockerfile:
FROM ubuntu:20.04

MAINTAINER Your Name <you@myapp.com>

RUN apt-get update && apt-get install -y nano htop git nginx

ADD nginx.conf /etc/nginx/nginx.conf

ADD api.myapp.conf /etc/nginx/sites-enabled/api.myapp.conf

ADD app.myapp.conf /etc/nginx/sites-enabled/app.myapp.conf

ADD Nginx-Startup.sh /etc/nginx/Nginx-Startup.sh

EXPOSE 80 443

CMD [“/bin/bash”,”/etc/nginx/Nginx-Startup.sh”]

For any practical implementation when dealing with ports, it is recommended
to use port publication using the -p parameter to publish these ports. For
example, the nginx container will be available on port 8080 in the Docker
host if you want it on port 80. You need to execute the following command:
$ docker run --name docker-nginx -p 8080:80 -d nginx

9e33650715b4992dd065939ce7993635319b76c5e8fe9d48df59e4f8271af583

$ docker ps

CONTAINER ID IMAGE

COMMAND CREATED

STATUS PORTS NAMES

9e33650715b4 nginx “/docker-entrypoint.…”

4 seconds ago Up 3 seconds 0.0.0.0:8080->80/tcp

docker-nginx

The -p 8080:80 option parameter indicates that port 8080 on the Docker host
points to port 80 inside the container. This way, we can access port 8080 of
the Docker host to display the server’s welcome page:
$ curl docker:8080

<!DOCTYPE html>

<html>

<head>

<title>Welcome to nginx!</title>

<style>

body {

width: 35em;

margin: 0 auto;

font-family: Tahoma, Verdana, Arial, sans-serif;

}

</style>

</head>

<body>

<h1>Welcome to nginx!</h1>

<p>If you see this page, the nginx web server is successfully

installed and

working. Further configuration is required.</p>

<p>For online documentation and support please refer to

nginx.org.

Commercial support is available at

nginx.com.</p>

<p>Thank you for using nginx.</p>

</body>

</html>

We used port exposure, which consists of reserving a port on the Docker
server to redirect requests to a specific port.
We can use the following command to verify the network configuration of
this container:
$ docker inspect docker-nginx

….

“NetworkSettings”: {

“Bridge”: “”,

“SandboxID”:

“f941e26014e0a24b63f695e1b4823c957caf1ebb850a2e9d0d50191e576f5123”,

“HairpinMode”: false,

“LinkLocalIPv6Address”: “”,

“LinkLocalIPv6PrefixLen”: 0,

“Ports”: {

“80/tcp”: [

{

“HostIp”: “0.0.0.0”,

“HostPort”: “8080”

}

]

},

…..

We have performed a manual mapping here. Docker provides the -P flag to
automatically assign a port to our application:
$ docker run --name docker-nginx -P -d nginx

$ docker ps

CONTAINER ID IMAGE

COMMAND CREATED

STATUS PORTS NAMES

073494b577dc nginx “/docker-entrypoint.…”

27 seconds ago Up 25 seconds 0.0.0.0:32768->80/tcp

docker-nginx

This way, we can see how the -P flag automatically assigns the port with the
mapping 32768:80. We can verify this port mapping configuration by
inspecting NetworkSettings:
$ docker inspect docker-nginx

….

“NetworkSettings”: {

“Bridge”: “”,

“SandboxID”:

“35f6de7fc9d60af2a5ea20a6c9d20204de8ebad6b8cf983a731da37cfdc9c594”,

“HairpinMode”: false,

“LinkLocalIPv6Address”: “”,

“LinkLocalIPv6PrefixLen”: 0,

“Ports”: {

“80/tcp”: [

{

“HostIp”: “0.0.0.0”,

“HostPort”: “32768”

}

]

},

…..

This simple port mapping is enough for the most common use cases in
Docker. We will now be able to install services or microservices as Docker
containers and expose their ports to enable communication.

Creating and managing Docker networks
Docker also lets you create your own network configuration to use in your
Docker containers. Docker allows us to create different virtual networks for
our needs or segment different containers. This way, we can separate
containers in different networks or by connecting their services to each other.

Docker network commands
A list of commands can be used with Docker networking:
$ docker network

Usage: docker network COMMAND

Manage networks

Options:

Commands:

connect Connect a container to a network

create Create a network

disconnect Disconnect a container from a network

inspect Display detailed information on one or more

networks

ls List networks

prune Remove all unused networks

rm Remove one or more networks

Run ‘docker network COMMAND --help’ for more information on a

command.

We can execute the following command when creating the network to see all
the options:
$ docker network create --help

Usage: docker network create [OPTIONS] NETWORK

Create a network

Options:

--attachable Enable manual container attachment

--aux-address map Auxiliary IPv4 or IPv6 addresses used

by Network driver (default map[])

--config-from string The network from which copying the

configuration

--config-only Create a configuration only

network

-d, --driver string Driver to manage the Network

(default

“bridge”)

--gateway strings IPv4 or IPv6 Gateway for the master

subnet

--ingress Create swarm routing-mesh network

--internal Restrict external access to the

network

--ip-range strings Allocate container ip from a sub-

range

--ipam-driver string IP Address Management Driver (default

“default”)

--ipam-opt map Set IPAM driver specific options

(default map[])

--ipv6 Enable IPv6 networking

--label list Set metadata on a network

-o, --opt map Set driver specific options

(default map[])

--scope string Control the network’s scope

--subnet strings Subnet in CIDR format that represents

a network segment

In the next section, we will look at how to create a network in detail.

Creating a network
A bridge network is Docker’s most frequent network type. We can create our
own network for the purpose we need; for example, having a subnet in a
Demilitarized Zone (DMZ). We will create a bridge docker network with
the following command:
Execute the following command to do this:
$ docker network create --subnet 10.10.1.0/24 dmz

62373bbbc2bb4f35ca04c0614f3737f1f5195e96545c8035a7a85d84e9d48a4f

$ docker network ls

NETWORK

ID NAME DRIVER SCOPE

8c8ec10f902b bridge bridge local

62373bbbc2bb dmz

bridge local

fa054a9af353 host host local

f50397115ef2 none null local

We can see the network configuration with the following command:
$ docker network inspect dmz

[

{

“Name”: “dmz”,

“Id”:

“62373bbbc2bb4f35ca04c0614f3737f1f5195e96545c8035a7a85d84e9d48a4f”,

“Created”: “2021-05-10T17:39:19.574964262Z”,

“Scope”: “local”,

“Driver”: “bridge”,

“EnableIPv6”: false,

“IPAM”: {

“Driver”: “default”,

“Options”: {},

“Config”: [

{

“Subnet”: “10.10.1.0/24”

}

]

},

“Internal”: false,

“Attachable”: false,

“Ingress”: false,

“ConfigFrom”: {

“Network”: “”

},

“ConfigOnly”: false,

“Containers”: {},

“Options”: {},

“Labels”: {}

}

]

We can see the subnet configuration here. Next, we will connect a container
to this network.

Connecting a container to a network
In order to connect a container to a network, we must use the --network
option to specify which network we want to connect it to, followed by the
name of the network to which we want to add it.
For example, we can use the following command to run an nginx container
and add it to the network we have just created:
$ docker container run -d --name docker-nginx --network dmz

nginx

After connecting a container to a network, we can see its configuration by
inspecting the configuration of the container with the following command:
$ docker network inspect dmz

………

“Containers”: {

“f8aeeedaa2f72a28c1cfa891e734d81001f5b6d6d477d1290d5500a254d5af3a”:

{

“Name”: “docker-nginx2”,

“EndpointID”:

“09922e28ace9417e9c41338414a70fb1d0514454a810673d14655234ac8ad405”,

“MacAddress”: “02:42:0a:0a:01:02”,

“IPv4Address”: “10.10.1.2/24”,

“IPv6Address”: “”

}

},

……..

The following command is another way to connect a container to a network:
$ docker network connect <network_id> <container_id>

At this point, we have reviewed how to create new networks in Docker and
connect new containers that can communicate with each other.

Linking containers
When a container node is created, it is necessary to note that these containers
can be connected to each other by IP address or hostname. But if a container
is restarted, new parameters are generated, such as the ID and the IP address
it uses.
To solve this problem, Docker offers the functionality of linking one or more
containers that allows each time one of the linked containers is restarted, the
assigned IP address does not change as it is assigned by the container name.
We’ll see how to establish links between containers using this linking system
where one container acts as a data source and the other acts as the receiver.
The link allows a container to communicate with another container without
knowing its IP address. The --link flag must be used when creating a
container to link containers.
When using the --link flag, Docker adds an entry in the /etc/hosts file of
the container, with the hostname, IP address, and the container identifier with
which you are linking.
We can create an nginx container with the following command:
$ docker run -d --name docker-nginx nginx

Next, we can create an Ubuntu container using the link tag to connect this
container with the docker-nginx we created earlier:
$ docker run -it --name ubuntu --link docker-nginx ubuntu:20.04

bash

After executing the preceding command, we can check how we have
connectivity between Ubuntu and docker-nginx containers. The following
output shows the content of the etc/hosts file inside the Ubuntu container:
root@08e201c2e992:/# cat /etc/hosts

127.0.0.1 localhost

::1 localhost ip6-localhost ip6-loopback

fe00::0 ip6-localnet

ff00::0 ip6-mcastprefix

ff02::1 ip6-allnodes

ff02::2 ip6-allrouters

172.18.0.2 docker-nginx 3ed36821081b

172.18.0.3 08e201c2e992

When we create a link, Docker is responsible for updating the /etc/hosts
file to access the container on which we establish the link. If we go to the
contents of the /etc/hosts file of the Ubuntu container, we can see the
reference to the docker-nginx container.
In addition to modifying the /etc/hosts file, Docker creates some
environment variables with the information of the other container (docker-
nginx) in the container where we establish the link (Ubuntu). The information
that Docker makes available using environment variables includes the IP
address of the linked container.
For example, we can see all variables related to docker-nginx if we look at
all the environment variables of the Ubuntu container:
root@08e201c2e992:/# set | grep -i nginx

DOCKER_NGINX_ENV_NGINX_VERSION=1.19.10

DOCKER_NGINX_ENV_NJS_VERSION=0.5.3

DOCKER_NGINX_ENV_PKG_RELEASE=1~buster

DOCKER_NGINX_NAME=/ubuntu/docker-nginx

DOCKER_NGINX_PORT=tcp://172.18.0.2:80

DOCKER_NGINX_PORT_80_TCP=tcp://172.18.0.2:80

DOCKER_NGINX_PORT_80_TCP_ADDR=172.18.0.2

DOCKER_NGINX_PORT_80_TCP_PORT=80

DOCKER_NGINX_PORT_80_TCP_PROTO=tcp

root@08e201c2e992:/#

As we see, all the information in the docker-nginx container is available in
the Ubuntu container, so we can access and discover the services of another
container using the environment variables.
In the following example, we are creating a container based on the image of
Redis and linking it with a container based on Debian Linux distribution.
First, we will create a redis container with the name myredis:
$ docker run -d --name myredis redis

fd71f0154881d63da31e72bc4448cfac30d486f7c4079615cc6f7a3cbf6597de

Next, we will link the redis and debian containers:
$ docker run --link myredis:redis debian env

Unable to find image ‘debian:latest’ locally

latest: Pulling from library/debian

bd8f6a7501cc: Pull complete

Digest:

sha256:ba4a437377a0c450ac9bb634c3754a17b1f814ce6fa3157c0dc9eef431b29d1f

Status: Downloaded newer image for debian:latest

PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

HOSTNAME=a7d271b2af8c

REDIS_PORT=tcp://172.18.0.3:6379

REDIS_PORT_6379_TCP=tcp://172.18.0.3:6379

REDIS_PORT_6379_TCP_ADDR=172.18.0.3

REDIS_PORT_6379_TCP_PORT=6379

REDIS_PORT_6379_TCP_PROTO=tcp

REDIS_NAME=/vigorous_montalcini/redis

REDIS_ENV_GOSU_VERSION=1.10

REDIS_ENV_REDIS_VERSION=4.0.8

REDIS_ENV_REDIS_DOWNLOAD_URL=http://download.redis.io/releases/redis-

4.0.8.tar.gz

REDIS_ENV_REDIS_DOWNLOAD_SHA=ff0c38b8c156319249fec61e5018cf5b5fe63a65b61690bec798f4c998c232ad

HOME=/root

In the preceding output, we can see that Docker has configured environment
variables with the prefix REDIS_PORT inside the Debian container, which
contains information on how to connect to the Redis container.
Docker has also imported environment variables from the linked container
with the prefix REDIS_ENV. While this functionality can be very useful, it is
important to keep in mind that using environment variables to store secrets
such as API tokens or database passwords can increase the risk of this data
being exposed in other containers.

Conclusion
In this chapter, we reviewed how networks are configured in Docker
containers that should not be disconnected from other systems, whether
physical, virtual, or in containers. You learned about the main types of
Docker networks and how to link containers to each other by creating your
own Docker network.
Thanks to the use of the Docker networks; we can create more complex
applications, where each container offers a service that works autonomously
and the containers can communicate with each other. This is why Docker
provides commands for managing Docker networks.
Regarding working with Docker secrets, you can manage the information that
is needed in the containers at runtime but that you do not want to store in the

Docker image or in the application source code repository.
In the next chapter, we will review open-source tools available for Docker
container monitoring, like cadvisor, dive, and sysdig Falco.

Points to remember
Docker provides three types of networks to manage communications,
both within and between containers: bridge, host, and none.
The bridge network is used to communicate independent applications
between containers, the host network is used to eliminate the network
isolation of the container and use the network of the Docker host, and
none allows you to disable all network functions in the container.
By default, containers are connected to the bridge network when they
are created, which means that each of them is assigned a virtual
interface and private IP address. So, the traffic that passes through the
main interface connects to the docker0 interface from the host.
We can also open a specific port inside the container to the outside
using the -p flag to expose networking through the container onto the
Docker host.
You can connect a container to an available Docker network with the
docker network connect <network_name> <container_id>

command.

Multiple choice questions
1. Which is the default Docker network mode that will allow connectivity

with the other interfaces of the host machine and between the
containers?

a. Bridge mode
b. Host mode
c. Container mode
d. Proxy mode

2. Which command allows you to connect a container to an available
network?

a. docker network connect <container_id> <network_name>
b. docker connect network <network_name> <container_id>
c. docker network connect <network_name> <container_id>
d. docker connect network <container_id> <network_name>

Answers
1. a
2. c

Questions
1. In which type of network will all network interfaces defined on the host

be accessible to the container and the container shares the host’s
network namespace?

2. Which flag allows you to explicitly indicate to Docker which port
should be linked to a port in a container?

3. Which Dockerfile instruction allows you to indicate that a specific port
must be exposed from the image it builds?

Key terms
You can use Docker secrets to centrally manage this data and transmit it
securely to only those containers that need access to it. A secret is only
accessible to the services to which explicit access has been granted and
only while those service tasks are running.
The type network none removes all the network configuration from our
container if we establish it. We only have available the loopback
address 127.0.0.1 with no external connection.
We can use the EXPOSE keyword in a Dockerfile to define a port that
will be exposed from the container to the Docker host.
For example, we can make the instance of an nginx server accessible
from outside the container. To do this, we need to add the -p (–

publish) flag when executing the container.

a. -p <hostport>: <container_port>
b. docker run -d -p 8080:8080 nginx

Docker provides some commands for creating and managing our own
network:

a. $ docker network inspect: This command lets you know the
resources used by a network as well as its configuration

b. $ docker network ls: It shows a list of the networks that Docker
has created

c. $ docker network create: It allows you to create your own
network: bridge or overlay. Containers can communicate within
their network but not through networks

W

CHAPTER 9
Docker Container Monitoring

hen you run Docker in production, one of the important things to
consider is how to measure the performance of the containers. It is

important to define a comprehensive strategy to monitor your Docker
infrastructure with a native collection source for events, statistics,
configurations, and records and provide views on the performance of the
CPU, memory, and network containers.
Monitoring is an important part of the maintenance of applications for getting
metrics about application behavior. This chapter introduces some of the open
source tools available for Docker container monitoring, such as cAdvisor,
Dive, and Falco.

Structure
We will discuss the following topics in this chapter:

Container statistics, metrics, and events
Monitoring with Docker stats
Performance monitoring with cAdvisor
Performance monitoring with Dive
Container monitoring with Falco

Objectives
After studying this chapter, you will learn about obtaining statistics, metrics,
and events from Docker containers. You will also understand cAdvisor and
Dive as performance monitoring tools and learn about Falco as a container
monitoring tool.

Container statistics, metrics, and events

There are several ways to control the execution of Docker containers. We can
visualize the logs and observe the events and container statistics at memory
usage and CPU levels. Let’s see what Docker offers for us to visualize the
logs that are recorded when we execute a container.

Log management
Most applications send logs to the standard output. You can see the log
directly in the console if the container is running in the foreground. However,
only the container identifier (ID) will be displayed on the console when
running a container in background mode.
Log management is one of the most important tasks in the world of security,
as it allows you to monitor what is happening inside containers. Different
containers can run simultaneously in the same Docker host, and each of them
can generate their own logs; so, centralized management of the logs is
necessary.
There are several commands for monitoring the logs in Docker containers:
$ docker logs <container_id | container_name>

$ docker service logs <service | task>

In this case, the Docker engine collects all the standard output of containers
in execution in a log file. We can visualize the execution log of a container
with the following command using the container ID or name:
$ docker logs -f <container_id | container_name>

The following output shows the logs command options:
$ docker logs --help

Usage: docker logs [OPTIONS] CONTAINER

Fetch the logs of a container

Options:

--details Show extra details provided to logs

-f, --follow Follow log output

--since string Show logs since timestamp (e.g. 2013-01-

02T13:23:37Z) or relative (e.g. 42m for 42 minutes)

-n, --tail string Number of lines to show from the end of

the logs (default “all”)

-t, --timestamps Show timestamps

--until string Show logs before a timestamp (e.g. 2013-01-

02T13:23:37Z) or relative (e.g. 42m for 42 minutes)

The way this works is that logs sent to the standard output or error output in
the container are captured by the Docker daemon process and transmitted to a
configurable backend, which is, by default, a JSON file for each container.
The following example shows the log output of an nginx container:
$ sudo docker logs docker-nginx

/docker-entrypoint.sh: /docker-entrypoint.d/ is not empty, will

attempt to perform configuration

/docker-entrypoint.sh: Looking for shell scripts in /docker-

entrypoint.d/

/docker-entrypoint.sh: Launching /docker-entrypoint.d/10-listen-

on-ipv6-by-default.sh

10-listen-on-ipv6-by-default.sh: info: Getting the checksum of

/etc/nginx/conf.d/default.conf

10-listen-on-ipv6-by-default.sh: info: Enabled listen on IPv6 in

/etc/nginx/conf.d/default.conf

/docker-entrypoint.sh: Launching /docker-entrypoint.d/20-

envsubst-on-templates.sh

/docker-entrypoint.sh: Launching /docker-entrypoint.d/30-tune-

worker-processes.sh

/docker-entrypoint.sh: Configuration complete; ready for start

up

The files that support container logs are located on the Docker host in the
/var /lib/docker/containers/<container_identifier> path. The
following screenshot shows the path where logs are located for each
container:

Figure 9.1: Path where logs are located for each container

By default, logs are stored in a JSON file located in the /var/lib/docker
path. This behavior can be changed since Docker uses the concept of registry
drivers. Using different controllers lets us choose another type of storage for
logging. The default driver is the JSON file, which accepts the following
configuration:
--log-opt max-size = [0-9 +] [k|m|g]

--log-opt max-file = [0-9 +]

The preceding command options can be used where the standard output
(STDOUT) is correctly configured. In some instances, the use of the above-
mentioned commands will not be adequate because the data is not available
in an appropriate format. The following steps need to be performed in such
cases:

In the case that a process is being used within a running container to
handle the logs, it would not be advisable to use the docker logs
command since the required information will not be displayed.
In the case that a non-interactive process such as a web server is being
executed within the container, the conventional outputs will not be
enabled as it can have a service that is sending logs to a file. One
solution is to make a redirection of conventional logs.

Here are the options to redirect and format the logs so that they can be used
in the best possible way. These are the different drivers that Docker supports:

Driver Description

none The docker logs command will not show any output.

json-file Default driver where messages are formatted in JSON format.

syslog Logs are formatted as syslog. The syslog daemon process will have to be
running.

journald Logs are formatted as journald. systemd-journald is a daemon process
responsible for event logging.

gelf We can send log entries to a GELF-based server such as Graylog.
https://www.graylog.org/, which is an open-source log management tool
that supports search, analysis, and log-level alerts of events and logs.

fluentd The main feature of fluentd is that it separates data sources by providing a
unified log layer. It is fast and has plugins that make it a very flexible
solution.

https://www.graylog.org/

awslogs This option writes the logs in Amazon CloudWatch service.

Logstash Logstash is a tool that is part of the ELK stack (Elasticsearch, LogStash,
Kibana) and allows us to process logs from different sources, including
communication with graylog and other event monitoring systems.

splunk Splunk provides the sending of log messages to a server that has Splunk
installed using Event Http Collector. Splunk can be used as an event log
analyzer in enterprise-level applications.

gcplogs This option allows sending log entries to Google Cloud registry.

Table 9.1: Options for sending logs

You must use the --log-driver option when executing the docker run

command to use any of these driver controllers. For example, we can execute
the following command to store log entries in the syslog of an nginx-based
container:
$ docker run --log-driver=syslog nginx

Observing logs is the most convenient way to monitor our application on the
Docker host. We can also see the properties of the running containers, such as
the mapped network port or the volume being mapped. Using the docker
inspect command to display this metadata information is more efficient.

Containers stats
The stats command allows you to obtain statistics for one or more
containers in execution in real-time. This command allows you to see the use
of CPU, memory, and I/O operations at the network level. The syntax for the
command is as follows:
$ docker stats [OPTIONS] [CONTAINER…]

The following output shows the stats command options:
$ docker stats --help

Usage: docker stats [OPTIONS] [CONTAINER…]

Display a live stream of container(s) resource usage statistics

Options:

-a, --all Show all containers (default shows just

running)

--format string Pretty-print images using a Go template

--no-stream Disable streaming stats and only pull

the first result

--no-trunc Do not truncate output

The preceding command works through the Docker daemon process that
obtains cgroups resource information and serves it through the APIs. By
default, the command will display statistics for all running containers if no
containers are specified.
$ docker stats

CONTAINER ID NAME CPU % MEM

USAGE / LIMIT MEM % NET I/O BLOCK

I/O PIDS

4f42a4880c0d docker-nginx 0.00%

2.047MiB / 737.6MiB 0.28% 43.5kB / 1.93kB 0B /

8.19kB 2

Statistics can be used to see the behavior of containers during execution. The
information can be useful to verify the use of resources like memory and
CPU. For example, we can use the following command to the stats if we have
two containers nginx and Debian running:
$ docker stats <container_id_nginx> <container_id_debian>

CONTAINER CPU% MEM USO / LIMIT MEM% NET I / O

<container_id> 0.00% 7.227 MiB / 987.9 MiB 0.73% 936 B / 468 B

The docker stats command provides information about the amount of CPU
a container is consuming, the amount of memory it has in use, and the limit
of what it can use. You can also see the percentage of memory used to make
it easier for the user to check how much free memory the container has
available.
We can access stats for all containers and obtain this information in JSON
format with the following command:
$ curl --unix-socket /var/run/docker.sock

http:/v1.40/containers/json

[{“Id”:”1366a6bfa068e87e890225c90f6905cb590513e3861a253e00c9fabcde131279”,”Names”:

[“/docker-

nginx”],”Image”:”nginx”,”ImageID”:”sha256:f0b8a9a541369db503ff3b9d4fa6de561b300f7363920c2bff4577c6c24c5cf6”,”Command”:”/docker-

entrypoint.sh nginx -g ‘daemon

off;’”,”Created”:1621709565,”Ports”:

[{“IP”:”0.0.0.0”,”PrivatePort”:80,”PublicPort”:8080,”Type”:”tcp”}],”Labels”:

{“maintainer”:”NGINX Docker Maintainers <docker-

maint@nginx.com>”},”State”:”running”,”Status”:”Up 2

hours”,”HostConfig”:{“NetworkMode”:”default”},”NetworkSettings”:

{“Networks”:{“bridge”:

{“IPAMConfig”:null,”Links”:null,”Aliases”:null,”NetworkID”:”496a087cd3c860e82a9e85f3e8899bbfa8c8d928a63ab481736c5122e8216bfd”,”EndpointID”:”c4e72fe27c0e37e5d01d40117087a443144a3850ff715b8a57e373060049881d”,”Gateway”:”172.17.0.1”,”IPAddress”:”172.17.0.2”,”IPPrefixLen”:16,”IPv6Gateway”:””,”GlobalIPv6Address”:””,”GlobalIPv6PrefixLen”:0,”MacAddress”:”02:42:ac:11:00:02”,”DriverOpts”:null}}},”Mounts”:

[]}]

The container/<container_id>/stats endpoint provides the statistics in a
more detailed way in JSON format. For example, can we access the stats
from nginx container:
$ docker ps

CONTAINER ID IMAGE COMMAND

CREATED

STATUS PORTS NAMES

1366a6bfa068 nginx “/docker-entrypoint.…” 3

hours ago Up 3 hours 0.0.0.0:8080->80/tcp

docker-nginx

The nginx container is running now, and we can access the endpoint/stats to
access this information using the container identifier:
Keep in mind that the endpoint is executed by container, so we cannot obtain
the statistics of all the containers of a single call using this endpoint.
$ curl --unix-socket /var/run/docker.sock http:/v1.40/

containers/1366a6bfa068/stats

{“read”:”2021-05-22T21:27:06.453288688Z”,”preread”:” 0001-01-

01T00:00:00Z”,”pids_stats”:{“current”:2},”blkio_stats”:

{“io_service_bytes_recursive”:

[{“major”:8,”minor”:0,”op”:”Read”,”value”:7225344},

{“major”:8,”minor”:0,”op”:”Write”,” value”:8192},

{“major”:8,”minor”:0,”op”:”Sync”,”value”:7229440},

{“major”:8,”minor”:0,”op”:”Async”,”value”:4096},

{“major”:8,”minor”:0,”op”: ”Discard”,”value”:0},

{“major”:8,”minor”:0,”op”:”Total”,”value”:7233536}],”io_serviced_recursive”:

[{“major”:8,”minor”:0,”op”:”Read”,”value”:632},

{“major”:8,”minor”:0,”op”:”Write”,”value”:2},

{“major”:8,”minor”:0,”op”: ”Sync”,”value”:633},

{“major”:8,”minor”:0,”op”:”Async”,”value”:1},

{“major”:8,”minor”:0,”op”:”Discard”,”value”:0},

{“major”:8,”minor”:0,”op”:”Total”,”value”:634}],”io_queue_recursive”:

[],”io_service_time_recursive”:[],”io_wait_time_recursive”:

[],”io_merged_recursive”:[],”io_time_recursive”:

[],”sectors_recursive”:[]},”num_procs”:0,”storage_stats”:

{},”cpu_stats”:{“cpu_usage”:

{“total_usage”:286473948,”percpu_usage”:

[27672597,189360316,47224535,22216500,0,0,0,0],”usage_in_kernelmode”:80000000,”usage_in_usermode”:210000000},”system_cpu_usage”:304850400000000,”online_cpus”:4,”throttling_data”:

{“periods”:0,”throttled_periods”:0,”throttled_time”:0}},”precpu_stats”:

{“cpu_usage”:

{“total_usage”:0,”usage_in_kernelmode”:0,”usage_in_usermode”:0},”throttling_data”:

{“periods”:0,”throttled_periods”:0,”throttled_time”:0}},”memory_stats”:

{“usage”:10969088,”max_usage”:11079680,”stats”:

{“active_anon”:1085440,”active_file”:5001216,”cache”:7028736,”dirty”:0,”hierarchical_memory_limit”:9223372036854771712,”hierarchical_memsw_limit”:0,”inactive_anon”:540672,”inactive_file”:1757184,”mapped_file”:1757184,”pgfault”:4191,”pgmajfault”:0,”pgpgin”:3630,”pgpgout”:1517,”rss”:1490944,”rss_huge”:0,”total_active_anon”:1085440,”total_active_file”:5001216,”total_cache”:7028736,”total_dirty”:0,”total_inactive_anon”:540672,”total_inactive_file”:1757184,”total_mapped_file”:1757184,”total_pgfault”:4191,”total_pgmajfault”:0,”total_pgpgin”:3630,”total_pgpgout”:1517,”total_rss”:1490944,”total_rss_huge”:0,”total_unevictable”:0,”total_writeback”:0,”unevictable”:0,”writeback”:0},”limit”:8205058048},”name”:”/docker-

nginx”,”id”:”1366a6bfa068e87e890225c90f6905cb590513e3861a253e00c9fabcde131279”,”networks”:

{“eth0”:

{“rx_bytes”:83925,”rx_packets”:443,”rx_errors”:0,”rx_dropped”:0,”tx_bytes”:2546,”tx_packets”:14,”tx_errors”:0,”tx_dropped”:0}}}

{“read”:”2021-05-22T21:27:07.4

Obtain metrics using docker inspect
Another way to obtain metrics is with the docker inspect command, where
the ps -q option allows you to get the identifiers of all the containers in
execution.
$ docker stats --no-stream $(docker ps -q) | sed -e “$(docker ps

--format “{{.ID}} {{.Names}}” | sed -e “s/\(.*\) \

(.*\)/s\/\1\/\2\t\/g;/”)”

CONTAINER ID NAME CPU % MEM USAGE

/ LIMIT MEM % NET I/O BLOCK

I/O PIDS

1366a6bfa068 docker-nginx 0.00%

2.977MiB / 7.642GiB 0.04% 256kB/2.55kB 7.23MB

/ 8.19kB 2

In this section, we reviewed the docker stats command to get the main
statistics inside a Docker container. In the next section, we will focus on
other commands to get the events generated inside a container.

Events in Docker containers
The Docker daemon process internally generates a flow of events around the
container’s life cycle. We can use the docker events command to see what
life cycle events are occurring in real-time inside the container.
The sequence of events is useful for monitoring scenarios and performing
additional actions, such as receiving an alert when a task ends. When running
many containers in the Docker Host, it will be useful if we can see container
events in real-time for monitoring and debugging purposes.
The following output shows the events command options:
$ docker events --help

Usage: docker events [OPTIONS]

Get real time events from the server

Options:

-f, --filter filter Filter output based on conditions

provided

--format string Format the output using the given Go

template

--since string Show all events created since timestamp

--until string Stream events until this timestamp

The event command contains the -f/ --filter parameter, which allows you
to filter the result if you are looking for events based in specific conditions.
All events will be reported if no filter is provided. The list of possible filters
includes the following:

container (container=<name or id>)
event (event=<event action>)
image (image=<tag or id>)
plugin (experimental) (plugin=<name or id>)
label (label=<key> or label=<key>=<value>)
type (type=<container or image or volume or network or

daemon>)
volume (volume=<name or id>)
network (network=<name or id>)
daemon (daemon=<name or id>)

We can use the --since or --until option with Docker events to filter the
results for a specific timestamp:
--since = “Date” Show all events created from a date

--until = “Date” Show all events created up to a date

For example, the following command shows events from the beginning of the
year 2021 until the beginning of 2022:
$ docker events --since ‘2021-01-01’ --until ‘2022-01-01’

We can also obtain the events of a specific container using its identifier:
$ docker events --filter container=<container_id>

The official documentation, available at
https://docs.docker.com/engine/reference/commandline/events/, mentions
the possibilities offered by the events command in detail.

https://docs.docker.com/engine/reference/commandline/events/

Other Docker container monitoring tools
We can find other monitoring tools such as ctop and LazyDocker in the
Docker ecosystem.
The ctop (https://ctop.sh/) tool is developed in Golang and provides an
overview of real-time metrics for multiple containers in a graphical way. The
source code is available in the GitHub repository at
https://github.com/bcicen/ctop.
You can install it by downloading the latest version and give execution
permissions with the following commands:
$ wget

https://github.com/bcicen/ctop/releases/download/v0.7.2/ctop-

0.7.2-linux-amd64 -O /usr/local/bin/ctop

$ chmod +x /usr/local/bin/ctop

This tool is also available as Docker image, and you can execute it with the
following command:
$ docker run --rm -ti \

--name=ctop \

--volume /var/run/docker.sock:/var/run/docker.sock:ro \

quay.io/vektorlab/ctop:latest

The following screenshot shows the output of the preceding command:

Figure 9.2: Execution of the ctop command

The preceding screenshot shows the containers in execution. Other menu
options for getting a single view and stopping and restarting a specific
container are also available:

https://ctop.sh/
https://github.com/bcicen/ctop

Figure 9.3: Get visualization options

We can also view logs inside the container with the log view option menu:

Figure 9.4: Get log details from nginx container

We can see the container details, usage of CPU, and memory if we select a
single view:

Figure 9.5: Show container details and usage of CPU

LazyDocker is a terminal user interface for both docker and docker-
compose, written in Go with the gocui library. You can find the source code
and installation instructions in the repository at
https://github.com/jesseduffield/lazydocker.
You can simplify the installation and execution of this tool using the docker-

https://github.com/jesseduffield/lazydocker

compose.yml file in the GitHub repository at the following URL:
https://github.com/jesseduffield/lazydocker/blob/master/docker-

compose.yml

version: ‘3’

services:

lazydocker:

build:

context: https://github.com/jesseduffield/lazydocker.git

args:

BASE_IMAGE_BUILDER: golang

GOARCH: amd64

GOARM:

image: lazyteam/lazydocker

container_name: lazydocker

stdin_open: true

tty: true

volumes:

- /var/run/docker.sock:/var/run/docker.sock

- ./config:/.config/jesseduffield/lazydocker

We can use docker-compose up -d command to execute the previous file.
The following screenshot shows the output of executing the preceding
docker-compose file:

Figure 9.6: Show container details with LazyDocker

When executing LazyDocker, you can see information related to containers
that are executing and the layers generated for each image.

Performance monitoring with cAdvisor
cAdvisor (https://github.com/google/cadvisor) is one of the most useful
tools that enable container-oriented performance monitoring. Among other
things, it allows monitoring the following:

Resource isolation parameters
Historical use of resources
Network statistics

The tool is also available as a public image in the Docker Hub repository at
https://hub.docker.com/r/google/cadvisor.
We must run the following command to execute cAdvisor as a Docker
container:
$ sudo docker run \

--volume=/:/rootfs:ro \

--volume=/var/run:/var/run:ro \

--volume=/sys:/sys:ro \

--volume=/var/lib/docker/:/var/lib/docker:ro \

--volume=/dev/disk/:/dev/disk:ro \

--publish=8080:8080 \

--detach=true \

--name=cadvisor \

google/cadvisor:latest

Unable to find image ‘google/cadvisor:latest’ locally

latest: Pulling from google/cadvisor

ff3a5c916c92: Already exists

44a45bb65cdf: Pull complete

0bbe1a2fe2a6: Pull complete

Digest:

sha256:815386ebbe9a3490f38785ab11bda34ec8dacf4634af77b8912832d4f85dca04

Status: Downloaded newer image for google/cadvisor:latest

352055d5c4f5e6b03811de0d6274d34aefda031bf39e8da2a09fe1323dee93fc

$ docker ps

CONTAINER

ID IMAGE COMMAND CREATED STATUS PORTS NAMES

352055d5c4f5 google/cadvisor:latest “/usr/bin/cadvisor

-…” About a minute ago Up About a minute 0.0.0.0:8080-

>8080/tcp cadvisor

We can access from the browser the URL http://localhost:8080/ after
starting the cadvisor container.

We can use authentication using the Dockerfile available in the repository at
https://github.com/tim545/docker-cadvisor-basicauth.
FROM google/cadvisor:latest

ARG USERNAME=admin

ARG PASSWORD=Password1

ARG PORT=8080

RUN apk add --update apache2-utils \

&& rm -rf /var/cache/apk/*

RUN htpasswd -c -i -b auth.htpasswd ${USERNAME} ${PASSWORD}

EXPOSE ${PORT}

ENTRYPOINT [“/usr/bin/cadvisor”, “--http_auth_file”,

“auth.htpasswd”, “--http_auth_realm”, “localhost”]

Now, we can build the Docker image. The following command builds the
cadvisor container using basic authentication:
$ docker build --build-arg USERNAME=admin --build-arg

PASSWORD=Password1 -t tim545/cadvisor-basicauth.

$ docker run \

--volume=/:/rootfs:ro \

--volume=/var/run:/var/run:rw \

--volume=/sys:/sys:ro \

--volume=/var/lib/docker/:/var/lib/docker:ro \

--publish=8080:8080 \

--detach=true \

--name=cadvisor-basicauth \

--restart=always \

tim545/cadvisor-basicauth:latest

This application allows graphical visualization of the use of CPU and
memory. The Docker Containers section shows the URLs of the containers
that are running on the Docker host. Clicking on any of them will show you
the resource usage information for the corresponding container.
The following screenshot depicts the cAdvisor dashboard:

https://github.com/tim545/docker-cadvisor-basicauth

Figure 9.7: Showing information about containers in execution

cAdvisor provides an endpoint in the form of a REST API, where you can
obtain all the information provided by the containers in JSON format:
$ curl http://localhost:8080/api/v1.3/containers

{

“name”: “/”,

“subcontainers”: [

{

“name”: “/docker”

},

{

“name”: “/system.slice”

},

{

“name”: “/user.slice”

}

],

….

The following screenshot shows processes that are running and the use of the
CPU and memory:

Figure 9.8: Showing information about processes

We can see a containers list in the subcontainers section, and we can click on
each one to get the information related to the use of total CPU usage and the
CPU usage per core:

Figure 9.9: Usage of CPU per core

We can also get detailed information related to the usage of CPU and
memory for each container:

Figure 9.10: Usage of CPU and memory per container

Details provided by this API should be enough for many of the monitoring
and CPU tasks over Docker containers.

Performance monitoring with Dive
Dive is a tool that allows you to explore the Docker images, the content of
each layer image, and the sizes and percentage of image efficiency. You can
find the GitHub repository at https://github.com/wagoodman/dive.
Here are some of the main features:

Show the contents of the Docker image layer by layer: When
selecting a specific layer, the content of that layer will be displayed in
combination with all the previous layers.
Indicator of changes in each layer: The file tree displays files that
have been changed, updated, inserted, or removed.
Get image efficiency: The lower left panel + displays the basic
information for each layer and metrics that tell you whether your image
is space-efficient. This can be due to file duplication across layers and

https://github.com/wagoodman/dive

file transfer to other layers. A percentage of punctuation and the total
wasted file space are provided.

We can download the following image from the Docker hub to execute this
tool:
$ docker pull quay.io/wagoodman/dive

We must use the Docker socket, along with the identifier of the image we
want to analyze, for executing the container.
The following command executes the Docker container image related with
this performance tool:
$ docker run --rm -it -v

/var/run/docker.sock:/var/run/docker.sock

quay.io/wagoodman/dive:latest --help

This tool provides a way to discover and explore the contents of

a docker image. Additionally the tool estimates

the amount of wasted space and identifies the offending files

from the image.

Usage:

dive [IMAGE] [flags]

dive [command]

Available Commands:

build Builds and analyzes a docker image from a

Dockerfile (this is a thin wrapper for the `docker build`

command).

help Help about any command

version print the version number and exit (also --version)

Flags:

--ci Skip the interactive TUI and validate

against CI rules (same as env var CI=true)

--ci-config string If CI=true in the environment, use the

given yaml to drive validation rules. (default “.dive-ci”)

--config string config file (default is

$HOME/.dive.yaml, ~/.config/dive/*.yaml, or

$XDG_CONFIG_HOME/dive.yaml)

-h, --help help for dive

--highestUserWastedPercent string (only valid with --ci

given) highest allowable percentage of bytes wasted (as a

ratio between 0-1), otherwise CI validation will fail.

(default “0.1”)

--highestWastedBytes string (only valid with --ci given)

highest allowable bytes wasted, otherwise CI validation will

fail. (default “disabled”)

-j, --json string Skip the interactive TUI and

write the layer analysis statistics to a given file.

--lowestEfficiency string (only valid with --ci given)

lowest allowable image efficiency (as a ratio between 0-1),

otherwise CI validation will fail. (default “0.9”)

--source string The container engine to fetch

the image from. Allowed values: docker, podman, docker-

archive (default “docker”)

-v, --version display version number

Use “dive [command] --help” for more information about a

command.

The next step is to execute the mentioned container with a specific image
identifier:
$ docker run --rm -it \

-v /var/run/docker.sock:/var/run/docker.sock \

quay.io/wagoodman/dive:latest <image_identifier>

We can obtain the metadata and layers from the image we are analyzing
when executing Dive container with a specific image identifier:

Figure 9.11: Layer details inside the image

We can see the layer details and the folder structure of a layer when selecting
a specific layer inside an image. We can also see information related to the
command that is generating that layer, image size, potentially wasted space,
and the image efficiency score.

Container monitoring with Falco
From the monitoring perspective, we can find other tools, like Falco
(https://falco.org/), that allow us to monitor all activities of containers,
applications, and networks just like we would do with a combination of Unix
tools like Snort, tcpdump, htop, iftop, lsof, and strace.
Falco focuses on the control at the level of behavior, which provides visibility
within the containers through the instrumentation of system calls. The call

https://falco.org/

instrumentation of the system is completely transparent to the containers in
execution, so we need not modify the code or images.
A security event, such as an alert, is emitted when any abnormal activity is
detected. The conditions that trigger the alert are defined by its falco policies,
which are a collection of rules whose syntax is easy and works just like calls
to tcpdump.
Falco policies are a collection of rules that act directly on the kernel system
calls. These are the behaviors that Falco can detect:

A shell that runs inside a container
A process that generates another process with unexpected behavior
Reading a confidential file in the operating system
A process is using a file that is not a normal device type, indicating a
possible rootkit activity

We can combine different conditions from various sources like events,
metadata, and process information:

System call events: evt.type = listen, evt.type = mkdir, evt.type
= setns

Docker metadata: container.image, container.privileged,
container.name

Process tree information: proc.pname, proc.cmdline

For example, we can create a Falco rule that detects any socket connection
outside our listening context when:

The image of the container is nginx
The listening process inside that container is nginx

The syntax for creating this rule can be as follows:
condition: evt.type in (accept,listen) and

(container.image!=myregistry/nginx or proc.name!=nginx)

Launching Falco container
Falco can be started as a container in the Docker host. We can use the
falcosecurity/falco image, which we can find in the public repository in

the Docker hub (https://hub.docker.com/r/falcosecurity/falco) for this:
$ docker pull falcosecurity/falco:latest

latest: Pulling from falcosecurity/falco

f307d194cb74: Pull complete

ea175dc1421e: Pull complete

17ff026eb88f: Pull complete

6434e0fcbbd8: Pull complete

299368ac2043: Pull complete

b1f544f718fd: Pull complete

e6be5e7b42d5: Pull complete

09ee772e7af1: Pull complete

bde713efa6d9: Pull complete

91faf45782ea: Pull complete

a538cdc36e74: Pull complete

cfe3889a8f7a: Pull complete

Digest:

sha256:49316a25c909b0a2a3b02f0c07548713a35bf4f08174774233119038f4f138fb

Status: Downloaded newer image for falcosecurity/falco:latest

docker.io/falcosecurity/falco:latest

Next, we can execute the following command to run the Falco container:
$ docker run --rm -i -t \

> --privileged \

> -v /var/run/docker.sock:/host/var/run/docker.sock \

> -v /dev:/host/dev \

> -v /proc:/host/proc:ro \

> -v /boot:/host/boot:ro \

> -v /lib/modules:/host/lib/modules:ro \

> -v /usr:/host/usr:ro \

> -v /etc:/host/etc:ro \

> falcosecurity/falco:latest

* Setting up /usr/src links from host

* Running falco-driver-loader for: falco version=0.28.2, driver

version=13ec67ebd23417273275296813066e07cb85bc91

* Running falco-driver-loader with: driver=module, compile=yes,

download=yes

* Unloading falco module, if present

* Trying to load a system falco module, if present

* Looking for a falco module locally (kernel 4.4.0-193-generic)

* Trying to download a prebuilt falco module from

https://download.falco.org/driver/13ec67ebd23417273275296813066e07cb85bc91/falco_ubuntu-

generic_4.4.0-193-generic_224.ko

* Download succeeded

* Success: falco module found and inserted

2021-05-27T19:42:19+0000: Falco version 0.28.2 (driver version

13ec67ebd23417273275296813066e07cb85bc91)

https://hub.docker.com/r/falcosecurity/falco

2021-05-27T19:42:19+0000: Falco initialized with configuration

file /etc/falco/falco.yaml

2021-05-27T19:42:19+0000: Loading rules from file

/etc/falco/falco_rules.yaml:

2021-05-27T19:42:19+0000: Loading rules from file

/etc/falco/falco_rules.local.yaml:

2021-05-27T19:42:19+0000: Loading rules from file

/etc/falco/k8s_audit_rules.yaml:

2021-05-27T19:42:20+0000: Starting internal webserver, listening

on port 8765

Once we have Falco running, it will capture and display information related
to system calls and events. This includes information like the name of the
process, the thread identification, and the type of event.
Falco provides file configuration where we can find preconfigured rules that
allow you to filter system-specific calls, similar to what we can do with the
tcpdump command. The following files are available in the falco container:

Figure 9.12: Checking files configuration inside the container

As you can see inside the container, falco.yaml configures the Falco service,
and falco_rules.yaml contains the threat detection patterns.
The following code shows the content of the falco.yaml configuration file:
falco.yaml

rules_file:

- /etc/falco/falco_rules.yaml

- /etc/falco/falco_rules.local.yaml

- /etc/falco/k8s_audit_rules.yaml

- /etc/falco/rules.d

If true, the times displayed in log messages and output

messages

will be in ISO 8601. By default, times are displayed in the

local

time zone, as governed by /etc/localtime.

time_format_iso_8601: true

Whether to output events in json or text

json_output: false

…

The following code shows the content of the falco_rules.yaml

configuration file:
falco_rules.yaml

This rule helps detect CVE-2021-3156:

A privilege escalation to root through heap-based buffer

overflow

- rule: Sudo Potential Privilege Escalation

desc: Privilege escalation vulnerability affecting sudo (<=

1.9.5p2). Executing sudo using sudoedit -s or sudoedit -i

command with command-line argument that ends with a single

backslash character from an unprivileged user it’s possible to

elevate the user privileges to root.

condition: spawned_process and user.uid!= 0 and

proc.name=sudoedit and (proc.args contains -s or proc.args

contains -i) and (proc.args contains “\ “ or proc.args endswith

\)

output: “Detect Sudo Privilege Escalation Exploit (CVE-2021-

3156) (user=%user.name parent=%proc.pname cmdline=%proc.cmdline

%container.info)”

priority: CRITICAL

tags: [filesystem, mitre_privilege_escalation]

- rule: Debugfs Launched in Privileged Container

desc: Detect file system debugger debugfs launched inside a

privileged container which might lead to container escape.

condition: >

spawned_process and container

and container.privileged=true

and proc.name=debugfs

output: Debugfs launched started in a privileged container

(user=%user.name user_loginuid=%user.loginuid

command=%proc.cmdline %container.info

image=%container.image.repository:%container.image.tag)

priority: WARNING

tags: [container, cis, mitre_lateral_movement]

- macro: mount_info

condition: (proc.args=”” or proc.args intersects (“-V”, “-l”, “-

h”))

- rule: Mount Launched in Privileged Container

desc: Detect file system mount happened inside a privilegd

container which might lead to container escape.

condition: >

spawned_process and container

and container.privileged=true

and proc.name=mount

and not mount_info

output: Mount was executed inside a privileged container

(user=%user.name user_loginuid=%user.loginuid

command=%proc.cmdline %container.info

image=%container.image.repository:%container.image.tag)

priority: WARNING

tags: [container, cis, mitre_lateral_movement]

Here, we can see the rules that allow us to detect a potential Privilege
Escalation in Docker containers.

Falco rules
Falco provides the falco_rules.yaml file with specific rules that detect
system calls inside the containers. For example, the following rules allow
checking whether a shell is running in a container:
- macro: container

condition: container.id != host

- macro: spawned_process

condition: evt.type = execve and evt.dir=<

- rule: run_shell_in_container

desc: a shell was spawned by a non-shell program in a

container. Container entrypoints are excluded.

condition: container and proc.name = bash and spawned_process

and proc.pname exists and not proc.pname in (bash, docker)

output: “Shell spawned in a container other than entrypoint

(user=%user.name container_id=%container.id

container_name=%container.name shell=%proc.name

parent=%proc.pname cmdline=%proc.cmdline)”

priority: WARNING

You can find more examples at https://falco.org/docs/examples/.
The full content of previous files are available in the following GitHub

https://falco.org/docs/examples/

repository:
https://github.com/falcosecurity/falco/blob/master/falco.yaml
https://github.com/falcosecurity/falco/blob/master/rules/falco_rules.yaml

Nginx container monitoring
The following example shows how to monitor an nginx container. We will
perform a basic exploration of containers and processes in containers, CPU
monitoring, network, and I/O files.
The first step is create an nginx container with the following command:
$ docker run -d -P --name docker-nginx nginx

Unable to find image ‘nginx:latest’ locally

latest: Pulling from library/nginx

69692152171a: Pull complete

30afc0b18f67: Pull complete

596b1d696923: Pull complete

febe5bd23e98: Pull complete

8283eee92e2f: Pull complete

351ad75a6cfa: Pull complete

Digest:

sha256:6d75c99af15565a301e48297fa2d121e15d80ad526f8369c526324f0f7ccb750

Status: Downloaded newer image for nginx:latest

6b0eaf6ac580124298052de26f91f5b3b1c0146

c56c56fd62efd962ddbcf78b0

Next, we can use the docker exec command to execute the nginx container:
$ docker ps

CONTAINER ID IMAGE

COMMAND CREATED

STATUS PORTS NAMES

6b0eaf6ac580 nginx “/docker-entrypoint.…”

4 minutes ago Up 4 minutes 0.0.0.0:32768->80/tcp

docker-nginx

$ docker exec -it docker-nginx bash

root@6b0eaf6ac580:/#

Next, we will review how Falco is capturing system calls made within the
Linux kernel. Falco can operate with both real-time data and previously
captured data, so you can check how applications work within containers.
We should be able to read if we tail the log file with
/var/log/falco_events.log:

https://github.com/falcosecurity/falco/blob/master/falco.yaml
https://github.com/falcosecurity/falco/blob/master/rules/falco_rules.yaml

2021-05-27T21:08:58.903066500+0000: Notice A shell was spawned

in a container with an attached terminal (user=root

user_loginuid=-1 docker-nginx (id=788b39827bb5) shell=bash

parent=runc cmdline=bash terminal=34816

container_id=788b39827bb5 image=nginx)

At the end of the log file, we can see a summary of the events detected and
the rules that have been triggered:
Events detected: 16

Rule counts by severity:

WARNING: 1

NOTICE: 15

Triggered rules by rule name:

Set Setuid or Setgid bit: 14

Delete or rename shell history: 1

Terminal shell in container: 1

Syscall event drop monitoring:

- event drop detected: 0 occurrences

- num times actions taken: 0

In this section, we reviewed the Falco tool that lets us monitor and detect
anomalies in containers, applications, hosts, and network activity.

Conclusion
In this chapter, we reviewed how the container gives a lot of information
about CPU, processes, threads, memory, and network information for each
container. In this chapter, you learned about some open source tools available
for Docker container monitoring and others that allow filtering using
information from different sources like system calls and events that occur in
the container.
The main advantages of these tools is that they offer a container monitoring
system that allows you to collect metrics to ensure that your application
works correctly.
Most of the applications targeting container monitoring are tools related to
Application Performance Monitoring (APM). We can also find others that
are aimed at monitoring activity to detect anomalous activity in containers,
like Falco.
In the next chapter, we will review open source tools available for Docker
container administration, such as rancher and portainer.io.

Points to remember
We can use the docker events command to observe the events that
arrive at the Docker engine in real-time. This command can be useful if
we want to know what happened during the runtime of the container.
Containers report a list of events, including the attach, commit,

copy, create, destroy, detach, die, exec_create,

exec_detach, exec_start commands.
We can find tools in the Docker ecosystem that allow us to graphically
visualize the use of CPU and memory by the containers in execution in
the Docker host. We can highlight cAdvisor and Dive among these.
There are other solutions for administration, such as the Dockstation
https://dockstation.io that provides a user interface for container
management in Docker. You can access the public repository in GitHub
https://github.com/DockStation/dockstation for more information
about installation and use.
These tools allow us to check the resource consumption of each
container as well as monitor the state of the containers in execution,
checking the usage of resources, CPU, memory, and network.

Multiple choice questions
1. Which is the path where logs are located on the Docker host by default?

a. /var/docker/containers/<container_id>
b. /var/lib/containers/<container_id>/docker/
c. /var/lib/docker/containers/<container_id>
d. /var/lib/docker/<container_id>

2. Which command allows you to see what life cycle events are occurring
in real-time inside the container?

a. docker compose
b. docker stats
c. docker logs
d. docker events

https://dockstation.io
https://github.com/DockStation/dockstation

Answers
1. c
2. d

Questions
1. Which command allows you to obtain statistics for one or more

containers in execution and get information like the use of CPU,
memory, and I/O operations at the network level?

2. Which is one of the most useful tools that enable container-oriented
performance monitoring and runs as a daemon process that collects
performance data in running containers?

3. Which tool allows you to monitor all activities of containers,
applications, and networks, as we would do with a combination of Unix
tools like Snort, tcpdump, htop, iftop, lsof, and strace?

Key terms
We can get real-time statistics of all the containers running in the
Docker Host with the docker stats commands. The docker stats
command accepts the following options:

a. --no-stream: This option disables real-time statistics and will only
show the first result

b. -a (--all): This option shows the statistics of all containers

The Docker stats provides the /stats endpoint for getting detailed
memory usage information as well as information about CPU usage.
Docker events command will show processes that are running in real-
time for tracking all actions and system calls captured.
Falco is a behavioral activity monitor designed to detect anomalous
activity in containers using a kernel module to intercept system calls. It
supports Docker and Kubernetes and provides a rich ruleset and the
ability to filter events for taking action auditing and monitoring tools,
where tools like AppArmor and Seccomp are enforcement tools.

C

CHAPTER 10
Docker Container Administration

ontainers constitute a complete execution environment, which includes an
application, its dependencies, libraries, binary files, and configuration

necessary for execution. This is called containerization and allows you to
add a level of abstraction at the platform, operating system, and underlying
infrastructure level.
However, appropriate management tools are required to move dockerized
applications to production containers and ensure security, automation,
orchestration, and administration. This chapter introduces some of the open
source tools available for Docker container administration, such as Portainer,
Rancher, and Openshift.

Structure
We will discuss the following topics in this chapter:

Introducing container administration
Container administration with Portainer
Container administration with Rancher
Container administration with Openshift

Objectives
This chapter will teach you about container administration with Portainer,
Rancher, and Openshift.

Introducing container administration
Organizations and developers should consider the challenges associated with
managing Docker environments and the need to implement business solutions
that support effective management while deploying Docker containers, which

must have technology that allows them to successfully manage the problems
of dispersion, compliance, and governance of the same containers. The three
stages of the container life cycle are as follows:

Development: In the first stage, developers create and deploy Docker
containers that include items like application codes and libraries. Then,
they test the applications, correct errors, add functions or improvements,
create new Docker images, and deploy them in new containers. This
process continues until the required standards are met.
Application release: In the second stage, managers coordinate the
automation of application environments, which include Docker
construction, testing, and deployment drivers.
IT operations: In the last stage, the containers are deployed in
production and remain operational and available until they are
dismantled. This is the stage at which the final challenges are critical:
orchestration and governance, security, and container monitoring.

To harness the potential of Docker’s benefits, developers and organizations
need solutions designed to address five major container management
challenges:

Lack of control: Developers need independence to quickly create,
implement, and test application containers. In contrast, the operations
team needs control and governance to avoid excessive consumption of
resources.
Cycle from rise to production: It is important to maintain quality and
safety as changes in development increase.
Complexity of scale containers: The virtualized or cloud infrastructure
does not disappear and will continue to coexist with the Docker
infrastructure. The implementation of complete applications covering
Docker and other infrastructures requires more advanced capabilities to
orchestrate applications and optimally manage running environments.
Vulnerability protection and compliance: Docker containers can
integrate vulnerabilities, such as Heartbleed and Ghost, because they
include parts of the operating systems. The protection of the
environment requires security in the host Docker layer, containers, and
images. The container update creates a new management paradigm that

can change the tasks of operations to development.
Monitoring Requirements: Docker environments require special
monitoring capabilities, such as API-level integration with Docker and
instrumentation, built into the Docker image.

To take full advantage of Docker’s benefits, organizations need the
appropriate management and administration tools that allow them to manage
the full life cycle of the Docker container and ensure the company’s
availability for both development and production environments.
In the next section, we will learn to use Portainer to manage our container
stacks in Docker.

Container administration with Portainer
Portainer (https://www.portainer.io) is an open source web tool that can
execute itself as a container and allow us to manage our Docker containers
easily and intuitively through a graphical interface. You can find the source
code in the GitHub repository at https://github.com/portainer/portainer.
We can find the official image for deploying this tool as Docker container in
the Docker Hub repository at
https://hub.docker.com/r/portainer/portainer.
In order to manage the local Docker server, you must include the -v
/var/run/docker.sock:/var/run/docker.sock option in the docker run

command. Then, we can proceed to download and start the container, as
follows:
$ docker run -d -p 9000:9000 --name portainer --restart always -

v /var/run/docker.sock:/var/run/docker.sock -v

portainer_data:/data portainer/portainer

The docker run command options are the usual ones, such as:

-d for running the container as a background process
--name portainer to give a name to the container
-p 9090:9000 to connect port 9090 on the Docker host with port 9000
exposed in the container
-v portainer-data:/data will create a persistent Docker volume that
will allow you to reinstall or update it without having to configure user

https://www.portainer.io
https://github.com/portainer/portainer
https://hub.docker.com/r/portainer/portainer

and password again
-v /var/run/docker.sock:/var/run/docker.sock mounts the Docker
sock in the container
portainer/portainer is the Docker Hub repository from where we
download the image

The preceding command executes the container and listens on port 9000, so
we can access http://localhost:9000 in our browser to access it.
Another way to execute it is using the following command from the file that
we can find at https://downloads.portainer.io/docker-compose.yml
$ docker-compose up -d

docker-compose.yml

version: ‘2’

services:

portainer:

image: portainer/portainer

ports:

- “9000:9000”

command: -H unix:///var/run/docker.sock

volumes:

- /var/run/docker.sock:/var/run/docker.sock

- portainer_data:/data

volumes:

portainer_data:

You can use the following command to inspect the volume created by
Portainer to see the directory where the files are located on the server:
$ docker volume ls

DRIVER VOLUME NAME

local portainer_data

$ docker volume inspect portainer_data

[

{

“CreatedAt”: “2021-06-06T08:16:57+02:00”,

“Driver”: “local”,

“Labels”: {},

“Mountpoint”:

“/var/lib/docker/volumes/portainer_data/_data”,

“Name”: “portainer_data”,

“Options”: {},

“Scope”: “local”

}

]

You will be asked to configure the administrator user and password when
accessing the application via the web interface for the first time. Once the
administrator user has been created, you will be asked to connect to the
Docker environment you want to manage. The following figure shows that
we have selected local installation to handle the containers:

Figure 10.1: Local installation for managing Portainer

The Portainer interface illustrated in figure 10.2 gives us the information of
its volumes, images, and containers.

Figure 10.2: Portainer interface

The Dashboard shown in figure 10.3 is the main page of our Portainer
instance that shows a summary of our Docker system: the total number of
containers, images, networks, and volumes. This section is useful to show us

the current status of Docker in our machine:

Figure 10.3: Portainer Dashboard

The containers menu will show us the list of all our containers, and we can
execute several instructions that we usually execute through the command
line, such as starting, stopping, or eliminating them. The following figure
shows the container list in Portainer interface:

Figure 10.4: Container list in Portainer interface

We can get more details by clicking on the container name. The container
details section allows us to perform some operations over the container, as
follows:

Executing common operations, such as stop, pause, kill, or delete the
container
See container information (docker inspect)
Create a new image from the same container and add it to a record
(docker commit)
See container logs (docker logs)
See container statistics (docker stats)
Enter the container, choosing the shell or the user (docker exec)
Connect/disconnect the container with a network (docker network

connect)

The following figure depicts the container details in Portainer interface:

Figure 10.5: Container details in Portainer interface

You will see the following icons from left to right if you look at the quick
actions:

Logs: It allows us to see the container logs in real time and export
previous logs
Inspect: It gives us all the information of the container
Stats: It shows the statistics of the container (memory usage, CPU,
network, and processes)
Console: It gives us access to the container console

The following figure shows the inspect section in Portainer interface:

Figure 10.6: Inspect details in Portainer interface

The Images section shown here would correspond to the docker images
command:

Figure 10.7: Images section in Portainer interface

We can see the networks that we have already created in the Network list
section. We can also remove them or add a new network through the
interface. The following figure shows the network list in the Portainer
interface:

Figure 10.8: Network list section in Portainer interface

We can see the volumes that we have already created in the Volumes list
section. We can also remove them or add a new volume through the web
interface. The following figure shows the details from a specific volume in
the Portainer interface:

Figure 10.9: Volume list section in Portainer interface

We can find a lot of templates available to download and install in the
Templates section shown here:

Figure 10.10: App Templates section in Portainer interface

We must assign a network, volumes, and the ports that we will expose once
the nginx template has been selected. In our case, port 80 is redirected to
9080 and 443 to 9443. The following figure shows the Port mapping
assignment in the Portainer interface:

Figure 10.11: Port mapping in Portainer interface

We can see that an nginx server instance has been deployed in the container
list shown here:

Figure 10.12: Container list with nginx deployed

The container related with nginx is running in the Containers list section
once deployed:

Figure 10.13: Nginx container in execution

The following figure provides container details, where we can see
information related to nginx image, port configuration, environment
variables, and labels:

Figure 10.14: Deploying nginx application template

Tip: Portainer demo
You can try a Portainer demo with http://demo.portainer.io
(username :admin, password:tryportainer).

Deploying Portainer in Docker Swarm Cluster
Portainer is compatible with the Docker engine and Docker Swarm. Katacoda
provides a scenario for deploying Portainer to Docker Swarm Cluster in
https://www.katacoda.com/portainer.
The first step is to create a docker swarm cluster with the docker swarm
init command. You can use the docker node ls command to view the
status of the Swarm cluster.
The following figure shows the interface for deploying Portainer to Docker
Swarm cluster:

http://demo.portainer.io
https://www.katacoda.com/portainer

Figure 10.15: Container list in Portainer interface

With the cluster configured, the next step is to deploy Portainer. By
deploying Portainer as a Docker Service, Swarm will ensure that the service
is always running on a manager, even if the host goes down.
The service exposes port 9000 and stores the internal Portainer data in the
/host/data directory. When Portainer starts, it connects using the
docker.sock file to the Docker Swarm Manager.
$ docker service create \

--name portainer \

--publish 9000:9000 \

--constraint ‘node.role == manager’ \

--mount type=bind,src=/host/data,dst=/data \

--mount

type=bind,src=/var/run/docker.sock,dst=/var/run/docker.sock \

portainer/portainer \

-H unix:///var/run/docker.sock

When executing the preceding command, you can see that portainer container
is executing on port 9000 with the docker ps command.
The following figure shows the Container list interface with the Portainer
container in execution:

Figure 10.16: Portainer container in execution

With Portainer running, we can now access the dashboard and manage the
cluster via the user interface.

Docker Swarm Administration with Portainer
Portainer provides us with a web GUI to manage a Docker Swarm cluster.
For example, you can configure your environment with two nodes: one
master and one worker. These two nodes are configured to serve requests
from my containers, as shown here.
With the Portainer interface, we can see this configuration in the Swarm
section:

Figure 10.17: Portainer swarm nodes in execution

So, the Portainer installation can be done by deploying it as another service
within our cluster with the following YML file:
$ curl -L https://downloads.portainer.io/portainer-agent-

stack.yml -o portainer-agent-stack.yml

If we look at the configuration file of the stack, we see that the agent is
deployed in global mode for the entire cluster, and the container containing
the administration services is deployed in replication mode. The content of
the portainer-agent-stack.yml file is shown here:
version: ‘3.2’

services:

agent:

image: portainer/agent

volumes:

- /var/run/docker.sock:/var/run/docker.sock

- /var/lib/docker/volumes:/var/lib/docker/volumes

networks:

- agent_network

deploy:

mode: global

placement:

constraints: [node.platform.os == linux]

portainer:

image: portainer/portainer

command: -H tcp://tasks.agent:9001 --tlsskipverify

ports:

- “9000:9000”

- “8000:8000”

volumes:

- portainer_data:/data

networks:

- agent_network

deploy:

mode: replicated

replicas: 1

placement:

constraints: [node.role == manager]

networks:

agent_network:

driver: overlay

attachable: true

volumes:

portainer_data:

We can use the following command to deploy portainer in the cluster using
the preceding file configuration:
$ docker stack deploy --compose-file=portainer-agent-stack.yml

portainer

The previous file configuration allows us to see how two services and one
network are deploying:
Creating network portainer_agent_network

Creating service portainer_agent

Creating service portainer_portainer

We can see how two services are deployed using the following command:
$ docker service ls

ID NAME

MODE REPLICAS IMAGE

PORTS

ngvbdywoej8o portainer_agent

global 2/2 portainer/agent:latest

uq7zsmd5badq portainer_portainer

replicated 1/1

As we can see, the agent has two replicas running, one instance running in
the swarm manager and the other in the worker. The data is balanced between
the swarm Manager and more than one Worker if the agent had more than
two replicas.
Once the deployment is done, we can see agent service as well as the Docker
Swarm cluster status in figure 10.18:

Figure 10.18: Agent service from docker swarm cluster

We can see the nodes that are part of the Swarm cluster and the services they
are running in the cluster visualizer section shown here:

Figure 10.19: Cluster visualizer from docker swarm cluster

In the next section, we will learn to use Rancher to orchestrate our container
stacks in Docker.

Container administration with Rancher
Rancher (https://rancher.com) is a platform that allows you to manage
containers and stacks of containers on remote servers. With Rancher, you can
initialize multiple clusters with one single central place to manage them. In
production, Rancher would typically be run in its own highly-available
kubernetes cluster.
You can find the installation requirements in your server at the following
link:

https://rancher.com/docs/rancher/v2.x/en/installation/requirements

You can install Rancher on your server in a Docker container with the
following command:
$ docker run -d --restart=unless-stopped -p 8080:8080

rancher/server:stable

The preceding command enables you to download the official image of
Rancher and starts Rancher Server. You can also access the panel interface
on port 8080. Use the following command to view the starting process:
$ docker logs rancher

…..

time=”2021-06-01T19:19:29Z” level=info msg=”Creating schema

https://rancher.com
https://rancher.com/docs/rancher/v2.x/en/installation/requirements

machine, roles [project member owner]” id=1ds31 service=gms

time=”2021-06-01T19:19:29Z” level=info msg=”Creating schema

host, roles [project member owner]” id=1ds32 service=gms

time=”2021-06-01T19:19:29Z” level=info msg=”Creating schema

machine, roles [admin user readAdmin]” id=1ds33 service=gms

time=”2021-06-01T19:19:29Z” level=info msg=”Creating schema

host, roles [admin user readAdmin]” id=1ds34 service=gms

time=”2021-06-01T19:19:30Z” level=info msg=”Creating schema

machine, roles [readonly]” id=1ds35 service=gms

time=”2021-06-01T19:19:30Z” level=info msg=”Creating schema

host, roles [readonly]” id=1ds36 service=gms

time=”2021-06-01 19:25:26” level=info msg=”Telemetry Client

v0.4.0”

time=”2021-06-01 19:25:26” level=info msg=”Listening on

0.0.0.0:8114”

Here are some of the main advantages that Rancher offers:

It allows you to create as many environments as you need and manage
users and roles for different environments
It allows you to select the container orchestrator from several options,
such as Cattle, Mesos, Kubernetes, and Docker Swarm
There is a public catalog called Rancher Community where the
community can contribute with its applications
It makes single-cluster and multi-cluster deployments easy
It facilitates cluster provisioning using the user interface
Simplified cluster operations and security policy enforcement

The application provides a simple interface, wherein the hosts can create
containers and start applications inside the containers on the one hand.
Rancher manages agents to establish communication between them and its
hosts, so we must install that agent. It is a simple process—add the hosts
from the Rancher console by following these steps:

1. We choose the Infrastructure> Hosts option in the menu.
2. We follow the steps marked by the wizard to install the agent on the

host.
3. We execute the command on the host that we want Rancher to manage.

The following figure shows the steps for adding a host with the command we
could execute for registering the host:

Figure 10.20: Adding host in Rancher interface

Execute the following command for adding a host:
$ sudo docker run --rm --privileged -v

/var/run/docker.sock:/var/run/docker.sock -v

/var/lib/rancher:/var/lib/rancher rancher/agent:v1.2.11

https://2886795279-8080-

frugo01.environments.katacoda.com/v1/scripts/D28EF1A78A369A4F6B46:1609372800000:pqDcPVPAzzVFHIE4YdRrvkg8Mo

INFO: Running Agent Registration Process,

CATTLE_URL=https://2886795279-8080-

frugo01.environments.katacoda.com/v1

INFO: Attempting to connect to: https://2886795279-8080-

frugo01.environments.katacoda.com/v1

INFO: https://2886795279-8080-

frugo01.environments.katacoda.com/v1 is accessible

INFO: Configured Host Registration URL info:

CATTLE_URL=https://2886795279-8080-

frugo01.environments.katacoda.com/v1 ENV_URL=https://2886795279-

8080-frugo01.environments.katacoda.com/v1

INFO: Inspecting host capabilities

INFO: Boot2Docker: false

INFO: Host writable: true

INFO: Token: xxxxxxxx

INFO: Running registration

INFO: Printing Environment

INFO: ENV: CATTLE_ACCESS_KEY=85918AE54E3B58E24CBD

INFO: ENV: CATTLE_HOME=/var/lib/cattle

INFO: ENV: CATTLE_REGISTRATION_ACCESS_KEY=registrationToken

INFO: ENV: CATTLE_REGISTRATION_SECRET_KEY=xxxxxxx

INFO: ENV: CATTLE_SECRET_KEY=xxxxxxx

INFO: ENV: CATTLE_URL=https://2886795279-8080-

frugo01.environments.katacoda.com/v1

INFO: ENV: DETECTED_CATTLE_AGENT_IP=144.76.8.205

INFO: ENV: RANCHER_AGENT_IMAGE=rancher/agent:v1.2.11

INFO: Launched Rancher Agent:

98a601a4f5d0e3d79a99e2cca0131689e8c75718d03a08faa2b37ced4e61018e

We can see the host in the Rancher interface after executing the preceding
command:

Figure 10.21: Information about host in Rancher interface

We can also configure and add different development environments using
some environment templates, depending upon the orchestration platform we
are using.
The following figure shows the environments offered by Rancher by default:

Figure 10.22: Environment templates in Rancher interface

The following figure shows the templates offered by Rancher by default:

Figure 10.23: Environment templates in Rancher interface

Another important aspect of Rancher is its catalog of applications. This
catalog is public; the open source community can contribute its applications
to all Rancher Community users. It also offers the possibility of having a
private application catalog. The following figure shows the applications
catalog available in Rancher interface.

Figure 10.24: Applications catalog in Rancher interface

Rancher provides a web interface to control containers. The dashboard in the
following figure shows starting, stopped, and running containers:

Figure 10.25: Container dashboard in Rancher interface

Clicking on Add Container will redirect you to a page where you can set the
container run parameters, as shown here:

Figure 10.26: Adding Container in Rancher interface

Additionally, we can configure the command when adding a container, as
shown here:

Figure 10.27: Container command options in Rancher interface

The containers section lists all your running containers. You can open a shell
into a container, stop, restart, and delete the container and other options
related to logs, and clone the container. The following figure depicts the
container details with information about CPU, memory, and network:

Figure 10.28: Container details in Rancher interface

In this section, we reviewed how you can deploy a container from the
container dashboard and see each container’s status from the Rancher
interface.

Deploying Kubernetes using Rancher

You can initialize multiple clusters with a central place to manage them with
Rancher. The Rancher control plane is deployed as a Docker Container. You
can execute the following commands to start Rancher and check boot
process:
$ docker run -d -p 80:80 -p 443:443 --name=rancher

rancher/rancher:stable

$ docker logs rancher

We can see the Rancher container in execution with the following command:
$ docker ps

CONTAINER ID IMAGE COMMAND

CREATED STATUS

PORTS NAMES

9f424719a637 rancher/rancher:stable “entrypoint.sh”

6 seconds ago Up 3 seconds 0.0.0.0:80->80/tcp,

0.0.0.0:443->443/tcp rancher

Once the container is started, the first step is to configure a password for the
admin user and select the option depending on whether we want to create or
manage multiple clusters. The following figure shows the default options for
managing the cluster:

Figure 10.29: Rancher welcome page

In the next step, you’ll create a cluster to configure Kubernetes, as shown
here:

Figure 10.30: Add cluster-Select Cluster type

We’ll deploy an on-premise solution in this scenario. Click on the Add
Cluster button and select the cluster type of Custom to begin the installation,
as shown here:

Figure 10.31: Add cluster-Custom

You can edit and customize the Kubernetes cluster options in the cluster
configuration shown in figure 10.32:

Figure 10.32: Cluster file configuration

The next step is to deploy Kubernetes. We’ll start by configuring a single
node instance of Kubernetes in this case.
A single node instance has etcd, the Kubernetes Control Plane, and a
Kubernetes node to all run on the same machine. This would be deployed
onto multiple nodes in production, but a single node is a great starting place
for testing and experimenting.
The command to initialize the cluster at the top will change by selecting the
etcd and control plane boxes. This command will deploy the correct
configuration for our node cluster, as shown here:

Figure 10.33: Cluster node configuration

You can run the command in the Terminal window when you’re okay with
the configuration. You can use the “ Copy to Clipboard” button to make
this process easier. The Rancher dashboard should report one new node being
registered in the cluster after running the command, as follows:

Figure 10.34: Registering Master Node in the cluster

Rancher is now starting all the components of Kubernetes, which will take a
couple of minutes. You will then have a fully functional Kubernetes cluster.
You can select the newly deployed Cluster within the user interface to view
the details and status. The following figure shows the cluster state in the
Rancher interface:

Figure 10.35: Cluster state in Rancher interface

We can click on the name of the cluster to access a dashboard that offers us
information, such as the configuration file, necessary to configure our kubectl
client and start using our Kubernetes cluster. This is shown as follows:

Figure 10.36: Cluster Dashboard in Rancher interface

We can see more details related to namespaces, nodes, deployments, and
services in the cluster explorer option shown in figure 10.37:

Figure 10.37: Cluster Explorer in Rancher interface

Tip: Deploying Kubernetes using Rancher
The following URL and figure 10.38 provide interactive learning scenarios
that provide you with a pre-configured Rancher instance accessible from
your browser without any downloads or configuration:
https://www.katacoda.com/andymelichar/scenarios/rancher-rodeo

https://www.katacoda.com/andymelichar/scenarios/rancher-rodeo

Figure 10.38: Rancher learning scenarios

In the next section, we will review Openshift as a container platform.

Container administration with OpenShift
Red Hat OpenShift container platform helps organizations develop, deploy,
and manage the existing and new applications in physical, virtual, and public
cloud infrastructures. OpenShift offers a common platform and a group of
tools for the development and operations teams in your organization.
Using the container orchestration system of the Kubernetes project,
OpenShift has a set of additional functionalities that makes it the ideal
platform for the integration of DevOps environments such as:

Provides a set of integrated middleware platforms for the development
and deployment of applications
Allows the construction of traditional applications and those oriented to
the cloud
Allows managing the life cycle of applications based on containers
Includes tools for converting source code into running applications,
thanks to the source-to-image process

DevOps tool offers organizations mechanisms to improve communication
between development and operations and eliminate integration barriers
between both departments with the help of the following features:

Self-provisioning: The main problem that development finds is the
waiting time since the application architect has developed the diagram
architecture until the developer team can start the development process.
At this point, OpenShift allows reducing this process to just a few
minutes with a simple command from the developer, and you can
provide the hardware, software, and network.
Multi-language: OpenShift allows the use of different languages,
platforms, and databases, allowing developers to use all the possibilities
Docker is offering. So, OpenShift will not limit users to develop in a
single platform, but it gives you the power to choose the programming
language.
Automation: OpenShift offers automated systems to manage the life
cycle of applications in the most effective way.
Collaboration: One of the functionalities is one that allows the
management of roles that will enable a set of operations within the same
project to a set of users. For example, you can allow a user of the
QA/Testing team to monitor the status of a development project and
promote it to the QA or production environments when the application
is running in that environment.
Application portability: Being built on Docker containers, this feature
allows your application to be migrated in any system that uses Docker
as a container platform.
Open source: Offers all the possibilities and advantages that free
software provides us.
Scalable: Allows applications to scale easily and automatically.

As we have seen, the additional features offered by the Red Hat OpenShift
Container platform, beyond the Docker containerization engine and the
Kubernetes orchestration, make this technology ideal for the integration and
promotion of DevOps environments.
Here are some of the many versions of OpenShift:

OpenShift Origin: This version allows you to have an OpenShift
cluster managed by Red Hat to deploy your applications.

https://github.com/openshift

https://github.com/openshift

OpenShift online. It allows you to create and execute applications in
the public cloud offered by Red Hat. You can test OpenShift online if
you log in with RedHat account credentials.

https://manage.openshift.com

OpenShift dedicated: It allows you to have an OpenShift cluster
managed by Red Hat to deploy your applications.

https://www.openshift.com/products/dedicated

OpenShift container platform: It allows you to have an OpenShift
cluster in your own infrastructure managed by Red Hat.

https://www.openshift.com/products/container-platform

OKD (https://www.okd.io) : This Kubernetes distribution is optimized
for continuous application development and multi-tenant deployment. It
also serves as the upstream codebase upon which Red Hat OpenShift
Online and Red Hat OpenShift container platforms are built. Check the
documentation at https://docs.okd.io/index.html for more information.

We have two options for deploying an OpenShift cluster instance in a local
environment:

Run OKD in a Container following documentation from docs.okd.io site
https://docs.okd.io/latest/welcome/index.html.
Try out a fully functioning OKD instance with an integrated container
registry and run it locally on your machine with minishift. This tool
allows you to build a cluster of single nodes on a virtual machine.
Check documentation at https://www.okd.io/minishift for all the
necessary details and the instructions to start it.

Tip: Learning scenarios
The following URL— https://learn.openshift.com and figure 10.39 have
interactive learning scenarios that provide you with a pre-configured
OpenShift instance accessible from your browser without any downloads or
configuration. Use it to experiment, learn OpenShift, and see how we can
help solve real-world problems. You can start learning the Openshift basics
at https://developers.redhat.com/learn/openshift.

https://manage.openshift.com
https://www.openshift.com/products/dedicated
https://www.openshift.com/products/container-platform
https://www.okd.io
https://docs.okd.io/index.html
https://docs.okd.io/latest/welcome/index.html
https://www.okd.io/minishift
https://learn.openshift.com
https://developers.redhat.com/learn/openshift

Figure 10.39: OpenShift learning scenarios

Conclusion
In this chapter, we have reviewed Portainer and Rancher open source tools
for managing your Docker containers, images, volumes, and networks. These
tools are compatible with other orchestration platforms like Docker Swarm
and Kubernetes.
From the Container Administration point of view, Rancher provides an open
source container management platform built for organizations that deploy
containers in production. Additionally, Portainer allows you to manage
containers, monitor logs, and containers in progress (CPU, memory, network
use, and processes, etc.), run a console to access them, and work with
volumes and other interesting features.
In the next chapter, we will introduce Kubernetes architecture and different
tools for working with Kubernetes, such as kubectl, explaining minikube as
the main tool for deploying a cluster.

Points to remember
Within the Docker ecosystem, we can find some interesting tools for
developers to safely manage the process of managing images and
containers. Rancher and Portainer are some of the main tools for
container administration.
Portainer (https://www.portainer.io) is a user interface that allows

https://www.portainer.io

you to manage different Docker environments (at the host level or at the
cluster level with Swarm). This tool consists of a single container that
can be run on any Docker engine, and it can be implemented as a Linux
container or a native Windows container.
Rancher (http://rancher.com) is an open source platform that runs on
Docker and allows applications to be deployed on a container solution.
The platform provides a section to manage the machines or instances of
different cloud providers, such as AWS (Amazon), Azure (Microsoft),
or Digitalocean.

Multiple choice questions
1. Which Rancher section allows you to deploy a container from the

container dashboard and see the state of each one container from the
Rancher interface?

a. Catalog>containers
b. Environment>containers
c. Infrastructure>containers
d. Stacks>containers

2. Which volumes do you need to mount in order for the Portainer to
manage the local Docker server with the docker run command?

a. /var/lib/docker.sock and portainer_data
b. /var/run/docker.sock and portainer_data:/data
c. /var/lib/docker.sock and /data
d. /var/lib/docker.sock and portainer:/data

Answers
1. c
2. b

Questions

http://rancher.com

1. Which tool consists of a single container that can be run on any Docker
engine and implemented as a Linux container or a native Windows
container?

2. Which platform has a Hosts section to visually manage the machines or
instances of different clouds, like AWS (Amazon), Azure (Microsoft),
and Digitalocean?

3. Which check button do we need to activate to show templates related to
container images like Docker registry or MySQL?

Key terms
Portainer: It provides a web interface where an administrator can have
an overview of containers that are running.
RedHat OpenShift: It proposes a complete platform of containers
integrating Docker and Kubernetes as native technologies of execution
and container orchestration with a series of special functions to manage
permissions, storage, application life cycle, and other functions of the
enterprise base in Red Hat Enterprise Linux.
OKD: It provides a complete open source container application
platform. OKD is built around a core of OCI container packaging and
Kubernetes container cluster management, and it is augmented by
application lifecycle management functionality and DevOps tooling.

I

CHAPTER 11
Kubernetes Architecture

n modern software development, K8s is a tool that becomes essential due to
the many advantages it offers. It enables DevOps in large architectures, that

is, it allows you to unify development and operations. It allows a team to be
the owner of the project from development to deployment across different
environments, including production.
This chapter introduces Kubernetes architecture, components, objects, and
networking model. We will also review different tools for working with
Kubernetes, explaining minikube as the main tool for deploying a cluster.

Structure
We will cover the following topics in this chapter:

Kubernetes architecture
Kubernetes objects
Kubernetes networking model
Tools for deploying Kubernetes

Objectives
After studying this chapter, you will understand Kubernetes architecture and
Kubernetes objects. You will also learn about the Kubernetes networking
model and tools for deploying Kubernetes.

Kubernetes architecture
Kubernetes is an orchestration tool that allows us to have our application
infrastructure as code. This way, we can take our software solution to any
platform as long as we have a Kubernetes cluster deployed.
The reality is that all major cloud computing providers are starting to offer

Kubernetes as a service, freeing up the work that goes into maintaining and
deploying the cluster. So, a software solution is achieved that avoids the
“Vendor lock-in”, being able to migrate the solution to any Cloud.
In addition, Kubernetes performs a container monitoring task. This way, it
always tries to ensure that the desired number of containers is up and
running, bringing us closer to high availability.
A Kubernetes cluster is made up of different nodes, which, in turn, are made
up of pods that offer services. A node corresponds to a real or virtual machine
that contains all the services necessary to run the pods that it contains. A pod
represents a process that is running within the cluster and can be made up of
one or more running containers.
The use of Kubernetes is not only oriented to the needs of large companies
but also for smaller-scale projects or for developers who want to create their
own content outside the market.
Here are some of the main features that Kubernetes offers:

Secret and configuration management: Secret objects in Kubernetes
allow you to store and handle confidential information like passwords
and authentication tokens securely. You can deploy and alter the
application settings without having to rebuild the container images or
exposing the stack configuration secrets.
Scaling: It allows you to scale vertically and generate containers within
minutes to meet the demand of our application.
Regeneration: It allows us to recover from an error or crash in the
server instantly by restarting or replicating the damaged containers.
Services and load balancing: We don’t need external tools to generate
services and load balancing. K8s takes care of everything automatically
and also assigns its own IP addresses and creates a DNS for the entire
node.
Automatic deployments: We can update our application or go back to
a previous version progressively, giving our users continuous
availability.
Secrets: It allows us to handle sensitive information such as SSH keys
or passwords, encoding the information and assigning it to a special
resource called secret.

Components of a Kubernetes cluster
The elements that make up the architecture of a Kubernetes cluster fall into
two categories: Master components and Node components.
The following diagram contains the different basic components of a
Kubernetes cluster, which will be explained later:

Figure 11.1: Kubernetes architecture

The Master nodes are in charge of deciding which node each container runs
on, maintaining the state of the cluster, ensuring that the desired number of
containers are running at all times, and updating applications in a coordinated
manner when new versions are deployed. The following points refers to the
processes running on the Master node:

kube-apiserver: The Kubernetes API server verifies and configures
data for API objects like pods, services, controllers, and other cluster-
related items. This component exposes the Kubernetes API and serves
as the Control Plane’s front-end. At this point, controlplane nodes run
the Kubernetes API server, scheduler, and controller manager. These
nodes take care of routine tasks to ensure that the cluster maintains the
configuration.
kube-controller-manager: It’s a process control loop that uses the
API to monitor the cluster’s shared state and makes modifications in
order to move the cluster from its present state to the desired state.
cloud-controller-manager: It’s a daemon process that runs on the

master node and is in charge of managing “the cloud controllers”.
Those controllers have dependencies on cloud providers like Amazon,
Google Cloud, or Azure.
kube-scheduler: This module is in charge of workload distribution as
well as maintaining the affinity between pods in order to boost cluster
performance.
etcd: Cluster data storage service is responsible for maintaining all the
status information of the cluster and its configuration. In large clusters,
it can be distributed among several nodes that do not necessarily have to
be master nodes of the cluster itself. You can find more information at
https://github.com/etcd-io/etcd.

kube-controller-manager consists of a single process that includes the
following controllers:

Node-Controller: Responsible for notifying and responding when a
node goes down
Replication-Controller: Responsible for maintaining the correct
number of Pods in the system
Endpoint-Controller: Brings Pods and Kubernetes services together
Token and Service Account Controller: Creates default accounts and
API access tokens for each namespace

The following diagram contains the different basic controllers of the kube-
controller-manage component and the connection with the API-Server:

Figure 11.2: Kubernetes controller-manager

https://github.com/etcd-io/etcd

The previous figure highlights the presence of the ETCD or Key-Value
Store component. Basically, this component is a Distributed Key-Value
Store for the Cluster.
These master components are in charge of making global cluster choices as
well as detecting and responding to various events. These components can
operate on any server in the cluster, but they are often started on the same
machine when deploying a Kubernetes cluster, and user containers are rarely
executed on that machine.
The following refers to the processes running on the worker node:

kubelet: It is the principal process that runs on each worker node, and
it is responsible for managing the node’s connectivity to the cluster as
well as keeping the cluster informed about the various pods and
workloads that are operating on its own node.
kube-proxy: The proxy module is in charge of managing and balancing
the various network flows by functioning as a network proxy. It keeps
track of a set of network rules that allow Pods to communicate with one
another from within or outside the cluster. In theory, it uses the
operating system’s packet filtering layer if it is available, but it redirects
the traffic itself if it isn’t.
Container runtime: Software responsible for running the containers.
Kubernetes supports different software for this purpose, such as Docker,
containerd (https://containerd.io), and cri-o (https://cri-o.io).

These node components run on all nodes that user containers run on, allowing
for Pod maintenance and providing a software container environment to
Kubernetes.
You can find the official documentation about Kubernetes components at
https://kubernetes.io/docs/concepts/overview/components.

Tip: Other Kubernetes elements
Apart from the previous elements, there is a set of add-ons that run on the
cluster. These add-ons are like containers and are optional. They usually run
in the kube-system namespace and offer traversal services. The best known
ones are:

Kubernetes Dashboard: https://github.com/kubernetes/dashboard

https://containerd.io
https://cri-o.io
https://kubernetes.io/docs/concepts/overview/components
https://github.com/kubernetes/dashboard

CoreDNS: https://coredns.io

You can find different add-ons, organized by categories, at
https://kubernetes.io/docs/concepts/cluster-administration/addons/.

Kubernetes objects
Kubernetes objects are persistent entities on the cluster system that are used
to display the cluster’s state, including:

What applications are running in containers and the node they are
running on
The resources available for those applications
The policies and rules associated with those applications

Kubernetes verifies that an object exists and functions properly when it is
formed in the cluster. The specification and the state of an object within the
cluster define it.
The specification describes the desired state, that is, the features and
configuration that you want to have in the object, while the state describes the
point where the object is at the current moment. These two factors are
supplied and updated by Kubernetes, which ensures that the current equal
state and the specified or desired state match at all times.
Due to the large amount of information that is usually associated with each
deployment, it is not convenient or practical to do it directly using
commands, except in certain situations. So, the best solution is to configure a
.yaml file. An example of a configuration file with an nginx deployment is
shown below:
apiVersion: apps/v1

kind: Deployment

metadata:

name: nginx-deployment

spec:

selector:

matchLabels:

app: nginx

replicas: 2 #controller instruction to execute 2 pods

template:

metadata:

https://coredns.io
https://kubernetes.io/docs/concepts/cluster-administration/addons/

labels:

app: nginx

spec:

containers:

- name: nginx

image: nginx:1.7.9

ports:

- containerPort: 80

Here, you can see an example of these YAML files with the description of a
deployment type object, in which it is specified that two replicas of an Nginx
web server are required, running inside two containers.
In the previous deployment file, we can highlight the apiVersion (with the
version of the Kubernetes API that you intend to use), kind (with the type of
object described), metadata, and spec fields as required.
Creating an object using a file similar to the previous one allows us to create
a multitude of variants and perform almost any function we want, thanks to
the versatility of the different objects. Not all of them need all the information
shown, so the only mandatory fields common to all are:

apiVersion: Specifies which version of the Kubernetes API to use to
create the object
kind: Specifies what type of object you want to create
metadata: A single piece of data that allows the object to be
differentiated by including a string of characters, such as name (name)
or user ID (UID) and optionally, also a namespace.

The main Kubernetes objects needed to understand how they work are listed
here:

Pods: It’s Kubernetes’ fundamental unit, the smallest and most basic
drop-down object in your model. A Pod contains a software container
(or more), storage resources, and network resources (unique IP address
and TCP/UDP ports).
Controllers: These objects create and manage multiple Pods, handling
replicas and providing automatic repair capability. For example, the
controller can automatically replace a scheduled Pod on the node with
an identical replacement on a different node if a node fails. There are
different types of controllers, such as deployments, statefulSets (for

stateful applications that save data related to their sessions), and
daemonSets (they ensure that all nodes have a replica of the Pod, useful
for monitoring or logging Pods, for example).
Service: It’s an abstract way of offering a network service for an
application operating on a number of Pods. Kubernetes can assign a set
of Pods on their own IP address and domain name and balance the load
between them using services. The presence of Services is motivated by
the fact that Pods in Kubernetes have a finite life cycle.
Kubernetes provides name resolution of the services within the cluster
in addition to the IP addresses assigned to them. We will be able to
communicate among PODs using the names of the previously
established Services in this way.
Ingress: An Ingress provides externally accessible URLs, load
balancing, TLS termination, and name-based virtual hosting to
Kubernetes Services by exposing HTTP and HTTPS routes from
outside the cluster to Kubernetes Services. It’s the most common
method for externally exposing HTTP or HTTPS ports.
Ingress Controller: Ingress controller deploys a container into a Pod in
the cluster. Several load balancing system providers, such as HAProxy
and Nginx, have developed their own ingress controller.

All objects in Kubernetes consist of metadata, a specification, and a state.
You must interact with the Kubernetes API by providing metadata and the
spec in JSON format within the request field to create an object.
The most typical method is to use a command line client like kubectl, to
which a file in the YAML format is supplied and then transformed into JSON
to make the API request. There are, however, a variety of clients for various
contexts and programming languages.

Pods
Pods (https://kubernetes.io/docs/concepts/workloads/pods) are the
smallest deployment unit in Kubernetes. You can also specify Pods with
many containers, which forces these containers to be deployed in the same
node at all times. This is useful if containers communicate over the
filesystem.

https://kubernetes.io/docs/concepts/workloads/pods

The following figure shows pod components:

Figure 11.3: Pods components

Containers inside a Pod have access to network and storage resources. In
terms of the network, each pod is assigned a unique IP address and each
container uses the same network, both IP and port.
Within the definition of the Pods, we can define the containers through a
multitude of options:

Name of the Pod: Name of the Pod to identify it within the cluster
Image of the container to be displayed: We define the name of the
container that we want to deploy using the image key
Environment variables: We can specify a list of variable names and
values that will be injected into the container as environment variables
using the ‘ env:’ key
Ports used by the container: A list of ports used by the container can
be included
PullPolicy: Container unloading policy; for example, we can indicate
that it always pulls the container image before deploying it
Reserve and resource limits: We can define reserves in the resources
(RAM and CPU) of the node in which the node will be deployed using
the resources’ key, and we can also define limits
Readiness and liveness: Thanks to ReadinessProbes and
LivenessProbes, the Kubernetes cluster can know when a container is
ready to serve traffic after it is started and if it is still ready for this task.
These tests can be REST calls to a certain endpoint or even commands

executed within the container itself.

We can describe the structure of a pod in a YAML format file, like the
nginx.yaml file, as follows:
apiVersion: v1

kind: Pod

metadata:

name: nginx

namespace: default

labels:

app: nginx

spec:

containers:

- image: nginx

name: nginx

Each existing pod contains the needed application, storage resources, IP
address, and other container-specific parameters. In Kubernetes, a pod
represents a single instance of an application, which might be one or more
containers sharing resources. Note that all the containers in a pod share the
same IP address and are accessible with localhost addresses.
A pod cannot recover by itself when it dies for some reason; the Kubernetes
controller decides whether to create a new one to meet the total number of
pods desired by the user.
For storage, each pod can specify a shared storage (called a volume) that all
existing containers can access and so, share the necessary data. The volumes
created can be persistent to save the necessary information, even if the pod
has to be restarted.
Pods are ephemeral, which means that all the information they contain is lost
when they are destroyed. We have to use volumes if we want to develop
persistent applications.

Volumes
The files on disk related to the containers that are running inside the various
pods are ephemeral, which presents two main problems. First is that a
container is restarted when it stops its execution, but it loses all the content it
might have since it starts with the initial configuration. Second is that it is
usually necessary for two containers running simultaneously in the same pod

to exchange information.
In Kubernetes, a volume can be thought of as a directory that the various
containers within a pod can access and save information in. Here are some of
the main types of volume:

emptyDir: A basic type of volume is created when a pod is first
allocated to a node. It starts out as an empty directory, and then the
containers fill it in with the necessary data. The volume will be active
for as long as the pod that contains it is active, and the data will be
finished once the pod is finished.
nfs: This volume type lets you mount an existing Network File
System (NFS) share on the pod. When a pod completes its execution,
the volume is dismounted rather than removed, allowing the
information it contains to be accessed by other pods at the same time.
persistentVolumeClaim: This is used to mount a persistent volume,
which is a way to use storage space in a durable way.
secret: This is used to pass confidential information, such as
passwords, access codes, or tokens, to the pods. They are stored in key-
value pair format using tmpfs, which uses volatile memory.

Deployment
Deployment
(https://kubernetes.io/docs/concepts/workloads/controllers/deployment/)
defines the ReplicaSet, which is in charge of controlling the number of Pods
and their allocation between the different nodes. We can mainly specify the
following features in the definition of deployment:

Name of the deployment: Name of the deployment to identify it within
the cluster
Deployment tags: We can define labels to be able to reference the
Deployment in other components of the cluster using the ‘ labels’ key
Number of replicas desired: The number of replicas of the POD that
we want to deploy
Upgrade strategies: We can choose between several strategies for
updating the Deployment

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

Version history: We can indicate how many previous versions are
saved with the ’ revisionHistoryLimit’ key in our Deployment
definition file; we can go back to a previous version of Deployment
quickly this way

ReplicaSet
ReplicaSet
(https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/) is
a Kubernetes feature, which ensures that a number of replicas of a given pod
is always executing in the cluster. This way, it ensures that our pods are
always available.
Kubernetes uses the kube-controller and kube scheduler services for
this. This way, if a deployment specifies that we need five replicas of a Pod,
the ReplicaSet will ensure that there are always five active and executing
replicas in the cluster.
In addition, the ReplicaSet is in charge of supporting the version history
functionality mentioned in the Deployment, depending on how many
versions we need to work, we can easily return to a previous version of the
ReplicaSet.
A new ReplicaSet is created to manage the new replicas with the new image
when a Deployment is updated with a new version of a container image.
Later on, we’ll go through how Kubernetes handles updates and version
control.
The following figure shows Kubernetes ReplicaSet configuration for an
application that provides front and backend services:

https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/

Figure 11.4: Kubernetes ReplicaSet configuration

Here, we can see a distribution that can withstand the collapse of any of the
nodes in our application.

Services
A service in Kubernetes is an abstraction layer used to route traffic to the
corresponding pods, so it is not necessary to find the IP address of each of
them supporting TCP and UDP. Labels are commonly used to identify which
pods should be routed, so the service simply needs that label to match,
regardless of how the pods were formed.
The following figure shows the most important Kubernetes services:

Figure 11.5: Kubernetes services

Here are some of the main types of services:

ClusterIP: It is the default service type and exposes the service with an
internal IP of the cluster, so it is accessible only by the objects inside it.
NodePort: It exposes the service on each node using the node’s own IP
address and a static port, automatically creating a ClusterIP service to
which the NodePort service is routed. The service can be accessed from
outside the cluster using the <NodeIP>: <NodePort> path by exposing
the node.
LoadBalancer: It exposes the service externally using a load balancer
provided by an external agent. The NodePort and ClusterIP services
are automatically created to follow the path between the pod and the
outside.

StatefulSets
ReplicaSets objects are intended for pods that have the same state and so
can be exposed on K8s under the same IP with a balancer between them,
while StatefulSets have a directly different approach.
What happens if one of the pods replicates the application deployed in it and
has a different status than the rest ?. In this case, we cannot go to any of them

under a single IP address with a balancer. Here, the idea is to manage the
applications where this casuistry occurs.
StatefulSets

(https://kubernetes.io/docs/concepts/workloads/controllers/state-fulset/)
are similar to deployment, with the exception that they are intended for Pods
that require unique network identifiers, persistent storage, ordered
deployments, or updates in a certain order.
In addition, the PODs maintain a unique identifier that persists even if they
are reassigned to other nodes, unlike the PODs controlled by the deployment.
The data volumes handled by these drivers must be of the PersistentVolume
type.

Kubernetes networking model
Decoupled microservices-based applications rely heavily on networks to
mimic the tight coupling that was once available in the monolithic era.
Networks, in general, are not the easiest to understand and implement.
Kubernetes is no exception as a Containerized Microservices Orchestrator
must address four distinct network challenges:

Container to container communication within Pods
Pod to Pod communication in the same node and in all cluster nodes
Pod-to-service communication within the same Namespace and between
cluster Namespaces
External communication to the service for clients to access applications
in a cluster

All of these networking challenges need to be addressed before implementing
a Kubernetes cluster. Next, we will review some of these models.

Container to container communication within Pods
A container environment creates an isolated network space for each container
that it starts with the help of the kernel features of the underlying host
operating system. On the Linux operating system, this isolated network space
is called a Network Namespace and is shared between containers or with the
host operating system.

https://kubernetes.io/docs/concepts/workloads/controllers/state-fulset/

A network namespace is created within the Pod when a Pod is started, and all
containers running within the Pod will share that network namespace so that
they can communicate with each other via localhost.

Pod to Pod communication through cluster nodes
Pods are assigned to nodes in a Kubernetes cluster in a random way, and they
should be able to connect with all other Pods in the cluster regardless of their
Host Node (host), all without the use of Network Address Translation
(NAT). This is a prerequisite for any Kubernetes-based network
implementation.
In this case, the Kubernetes network model aims to reduce complexity and
treats Pods as it does Virtual Machines (VMs) on a network, where each
VM receives an IP address; so, each Pod receives an IP address. This model
ensures Pod-to-Pod communication in the same way that virtual machines
can communicate with each other.

External communication from the Pod
Successfully deploying containerized applications running on Pods within a
Kubernetes cluster requires accessibility to and from the external network.
In this case, services are processes that encapsulate network rule specification
in the cluster nodes and are used by Kubernetes to provide connectivity in
this situation. The apps become accessible from outside the cluster using a
virtual IP after using the kube-proxy to expose the services to the external
network.

Tools for deploying Kubernetes
The Kubernetes concept was born to serve as a platform for any deployment
that is required, so any additional features needed in the implementation must
be configured based on specific integrations, contextualizing the project in
which they will work.

Cluster election
There are different technologies of Kubernetes depending on the tasks we

want to perform. Each of these solutions has their own characteristics and
advantages:

Minikube https://github.com/kubernetes/minikube : You can
execute this on Linux, Windows, and MacOS as it relies on
virtualization to deploy a cluster on a Linux virtual machine. It can be
run on a Linux operating system without the need for virtualization.
Kubeadm https://github.com/kubernetes/kubeadm : This is the
official CNCF tool for provisioning Kubernetes clusters in a variety of
ways (single node, multi node, HA, self-hosted, etc.). Its main benefit is
the ability to launch minimal viable Kubernetes pools anywhere.
Kops (Kubernetes Operations) https://github.com/kubernetes/kops :
It provides a set of tools for installing, operating, and removing
Kubernetes clusters on cloud platforms. AWS, Google Cloud Platform,
OpenStack, DigitalOCean are some of the platforms it supports.
Microk8s (https://microk8s.io) : It is similar to Minikube in aspects
like raising single node clusters and having its own set of add-ons that
act as configuration plugins. It has the added difficulty of only being
able to run on Linux.
K3s (https://k3s.io) : It runs on any Linux distribution without any
additional external dependencies. K3s replace Docker with containerd
as container runtime and uses sqlite3 as default database. It is light, with
a consumption of 512MB of RAM and 200MB of disk space.
Kind (Kubernetes-in-Docker) https://kind.sigs.k8s.io : It runs
Kubernetes clusters in Docker containers. It supports multi-node
clusters as well as HA Clusters (High-Availability). Kind can run on
Windows, Mac, and Linux operating systems because it runs on top of
Docker.
K3d https://k3d.io : It is a new project that aims to bring dockerized
K3s.

The final choice of where to run Kubernetes varies according to the needs of
each project, so there is no better or worse solution. That said, it is true that a
cloud solution facilitates the creation and maintenance since it is in charge of
the server where it is hosted, generally in the case of large companies.
Knowing the basic operation of Kubernetes, the next step is to create an

https://github.com/kubernetes/minikube
https://github.com/kubernetes/kubeadm
https://github.com/kubernetes/kops
https://microk8s.io
https://k3s.io
https://kind.sigs.k8s.io
https://k3d.io

environment that allows you to use the tool. This environment is called a
cluster, and the options to create it exist both locally and on the cloud.

Working with Kubernetes using Minikube
The simplest way to start interacting with a Kubernetes cluster is through the
Minikube. It is an official Kubernetes project that allows you to run a single
node cluster in a local environment. It is a multiplatform tool and can be used
on Windows, Linux, and macOS.
Minikube configures a single node cluster, so there are limitations that make
the tool useless if you need to orchestrate applications that need heavy
loading or in a production environment, but it is very useful for development
and testing of software products.
Running the tool will launch a virtual machine with Kubernetes installed on
which the cluster will work, unless otherwise specified with the vm-driver =
none parameter. This will make Minikube directly use the Docker host
installed on the computer.
This use is dangerous because the program is run as an administrator directly
on the computer, which makes it vulnerable to possible attacks. However, it
is necessary if you want to create the cluster in a virtual machine since
another degree of virtualization is not allowed. In other words, the virtual
machine on which you are working does not allow Minikube to create a
machine where you can run Kubernetes.
These are the steps to follow for installing MiniKube:
#Download the package:

curl -Lo minikube

$

https://storage.googleapis.com/minikube/releases/latest/minikube-

linux-amd64

#Execution permissions

$ chmod +x minikube

#Copy the file in the /bin/ PATH

$ sudo cp minikube /usr/local/bin && rm minikube

#check command version

$ minikube version

Once installed, we can check if the system recognizes the minikube keyword.
You only need the minikube start command to start the cluster. The

necessary image is downloaded and the indicated settings are made in the
startup process, and those that Minikube performs by default are considered
if none are indicated.
The following output shows the command execution for starting minikube:
$ minikube start --wait=false

* minikube v1.8.1 on Ubuntu 18.04

* Using the none driver based on user configuration

* Running on localhost (CPUs=2, Memory=2460MB, Disk=145651MB) …

* OS release is Ubuntu 18.04.4 LTS

* Preparing Kubernetes v1.17.3 on Docker 19.03.6 …

- kubelet.resolv-conf=/run/systemd/resolve/resolv.conf

* Launching Kubernetes …

* Enabling addons: default-storageclass, storage-provisioner

* Configuring local host environment …

* Done! kubectl is now configured to use “minikube”

This command starts minikube without any additional configuration, and
both the chosen virtual machine and the required hardware resources or the
cluster IP address are automatically configured according to the default
values.
Kubectl should configure itself automatically when starting Minikube. We
can use the following command that generates a dashboard to view the status
of the cluster to move from the command line to a graphical user interface:
$ minikube dashboard

* Enabling dashboard …

* Verifying dashboard health …

* Launching proxy …

* Verifying proxy health …

http://127.0.0.1:42407/api/v1/namespaces/kubernetes-

dashboard/services/http:kubernetes-dashboard:/proxy

At this point, we will be able to interact with our cluster using kubectl.

Interacting with the cluster using kubectl
The way for a user to interact with the cluster is through the Kubernetes API.
The kubectl command—a tool that translates commands entered by the
client through a command line interface to the Kubernetes engine—
facilitates this communication.
We can install kubectl with the following commands:

$ sudo apt-get update && sudo apt-get install -y apt-transport-

https

$ curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg

| sudo apt-key add -

$ echo “deb https://apt.kubernetes.io/ kubernetes-xenial main” |

sudo tee -a /etc/apt/sources.list.d/kubernetes.list

$ sudo apt-get update

$ sudo apt-get install -y kubectl

Once installed, we can execute it for checking the options:
$ kubectl [command] [TYPE] [NAME] [flags]

Here:

command specifies the operation to be performed over the cluster
TYPE specifies the type of resource (pod, service, namespace …)
NAME specifies the name of the resource; all resources of the indicated
type will be displayed if this is omitted
flags specify optional input parameters; you can see all the allowed
parameters with the kubectl options command

We can verify the Kubernetes configuration before we start running the
kubectl command. We have a file called kubeconfig for this task; it is used to
configure access to Kubernetes. By default, kubectl checks the
~/.kube/config path for a kubeconfig file, but you can use any directory you
want using the --kubeconfig flag.
For example, you can use the following command to change the default path
file configuration:
$ kubectl --kubeconfig /custom/path/kube.config get pods

The first thing we can do is obtain the nodes that are part of the cluster using
the following command:
$ kubectl get nodes

NAME STATUS ROLES AGE VERSION

minikube Ready master 12m v1.17.3

The output of the preceding command shows how we have a single node that
acts as master and worker.
The following command displays cluster status information:

$ kubectl cluster-info

Kubernetes master is running at https://172.17.0.57:8443

KubeDNS is running at

https://172.17.0.57:8443/api/v1/namespaces/kube-

system/services/kube-dns:dns/proxy

Another option is to create deployments through the terminal. To do this, the
contents must already be integrated into a Docker image stored in a
repository, as follows:
$ kubectl create deployment --image=<docker_image>

We can continue creating a deployment from a docker nginx image, as shown
here:
$ kubectl create deployment myapp --image=nginx:latest

deployment.apps/myapp created

$ kubectl get deployments

NAME READY UP-TO-DATE AVAILABLE AGE

myapp 0/1 1 0 11s

$ kubectl describe deployment myapp

Name: myapp

Namespace: default

CreationTimestamp: Sat, 19 Jun 2021 19:46:06 +0000

Labels: app=myapp

Annotations: deployment.kubernetes.io/revision: 1

Selector: app=myapp

Replicas: 1 desired | 1 updated | 1 total | 1

available | 0 unavailable

StrategyType: RollingUpdate

MinReadySeconds: 0

RollingUpdateStrategy: 25% max unavailable, 25% max surge

Pod Template:

Labels: app=myapp

Containers:

nginx:

Image: nginx:latest

Port: <none>

Host Port: <none>

Environment: <none>

Mounts: <none>

Volumes: <none>

Conditions:

Type Status Reason

---- ------ ------

Available True MinimumReplicasAvailable

Progressing True NewReplicaSetAvailable

OldReplicaSets: <none>

NewReplicaSet: myapp-7d88697bdc (1/1 replicas created)

Events:

Type Reason Age From Message

---- ------ ---- ---- -------

Normal ScalingReplicaSet 29s deployment-controller Scaled

up replica set myapp-7d88697bdc to 1

We can get information about the running pods with following command:
$ kubectl get pods --all-namespaces

NAMESPACE NAME

READY STATUS RESTARTS AGE

default myapp-7d88697bdc-

zqsg8 1/1 Running 0 22m

kube-system coredns-6955765f44-

f2nxg 1/1 Running 0 44m

kube-system coredns-6955765f44-

tnlc7 1/1 Running 0 44m

kube-system etcd-

minikube 1/1 Running

0 44m

kube-system kube-apiserver-

minikube 1/1 Running 0 44m

kube-system kube-controller-manager-

minikube 1/1 Running 0 44m

kube-system kube-proxy-

t7zdp 1/1 Running

0 44m

kube-system kube-scheduler-

minikube 1/1 Running 0 44m

kube-system storage-

provisioner 1/1 Running

1 44m

kubernetes-dashboard dashboard-metrics-scraper-7b64584c5c-

5h6lq 1/1 Running 0 32m

kubernetes-dashboard kubernetes-dashboard-79d9cd965-

jrvcf 1/1 Running 0 32m

We can also get information about the running services with the following
command:
$ kubectl get services

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)

AGE

kubernetes ClusterIP 10.96.0.1 <none> 443/TCP

55m

Once we have the pods running, we can increase the number of replicas for
that specific deployment with the following command:
$ kubectl scale deployment myapp --replicas=2

We can also execute the same action by editing the deployment file:
$ kubectl edit deployment myapp

We will continue explaining how to create Pods and Replications Controllers.
We can do it in two ways: with a file (YAML, JSON) or by command line.
We can use the following kubectl command, which is the one in charge of
interacting with the Kubernetes API, to do it through the command line:
$ kubectl run webserver-nginx --image=nginx --generator=run-

pod/v1

We can use the following command to see if the pod is running correctly:
$ kubectl get pods -o wide

NAME READY STATUS

RESTARTS AGE IP NODE NOMINATED NODE

READINESS GATES

webserver-nginx 1/1

Running 0 8m11s 172.18.0.6 minikube

<none> <none>

The previous output shows the pod status (Running), IP address (172.18.0.6)
of the pod within our cluster, and in which node it is deployed (minikube).
This service is only visible from the internal network of the cluster, so we can
use cURL to access the content that the pod is serving. It returns a message
from nginx server in this case:
$ curl http://172.18.0.11:80

<!DOCTYPE html>

<html>

<head>

<title>Welcome to nginx!</title>

<style>

body {

width: 35em;

margin: 0 auto;

font-family: Tahoma, Verdana, Arial, sans-serif;

}

</style>

We see that pods are all created with the same name and a unique identifier.
We can execute the following command to see the information of a pod:
$ kubectl describe pod <pod_identifier>

$ kubectl describe pod webserver-nginx

Name: webserver-nginx

Namespace: default

Priority: 0

Node: minikube/172.17.0.29

Start Time: Sat, 19 Jun 2021 21:24:36 +0000

Labels: run=webserver-nginx

Annotations: <none>

Status: Running

IP: 172.18.0.11

IPs:

IP: 172.18.0.11

Containers:

webserver-nginx:

Container ID:

docker://72ff36a52aa5a0f09415f922e3e33a42cf4523136879005ab47e8ef8c09b7edf

Image: nginx

Image ID: docker-

pullable://nginx@sha256:6d75c99af15565a301e48297fa2d121e15d80ad526f8369c526324f0f7ccb750

Port: <none>

Host Port: <none>

State: Running

The next step can be to create a deployment using the kubectl apply
command and associate a YAML file with it that contains all the necessary
parameters for it. The following file contains a deployment configuration for
the nginx server:
nginx-deployment.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

name: nginx-deployment

labels:

app: nginx

spec:

replicas: 3

selector:

matchLabels:

app: nginx

template:

metadata:

labels:

app: nginx

spec:

containers:

- name: nginx

image: nginx:latest

ports:

- containerPort: 80

You can see that the Deployment type contains this YAML. We are creating
three replicas, and we are using an nginx container image using the port 80.
We can launch this deployment with the following command:
$ kubectl apply -f nginx-deployment.yaml

If we obtain the pods now, there are three instances in running state
corresponding to the number of replicas that we have added in the
deployment file:
$ kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE

IP NODE NOMINATED NODE READINESS GATES

nginx-deployment-59c9f8dff-77f55 1/1

Running 0 16m 172.18.0.9 minikube

<none> <none>

nginx-deployment-59c9f8dff-dfcw8 1/1

Running 0 16m 172.18.0.8 minikube

<none> <none>

nginx-deployment-59c9f8dff-pbrtj 1/1

Running 0 16m 172.18.0.10 minikube

<none> <none>

At this point, the ideal thing to do would be to have a balancer that allows us
access to the deployment. To do this, a service will have to be created
through the kubectl expose command, which will be of ClusterIP type by
default, and the port through which we want to access must be specified as
follows:
$ kubectl expose deployment nginx-deployment --port=8000

service/nginx-deployment exposed

In this case, we are exposing the deployment through port 8000 of the
service. By doing this, we will see the following output if we visualize the
services:
$ kubectl get services

NAME TYPE CLUSTER-IP EXTERNAL-

IP PORT(S) AGE

kubernetes ClusterIP 10.96.0.1 <none>

443/TCP 43m

nginx-deployment ClusterIP 10.107.75.11 <none> 8000/TCP

26s

Tip
Play with Kubernetes clusters
The http://play-with-k8s.com site allows you to mount Kubernetes clusters
and launch replicated services quickly and easily. It is an environment
where we can test and play for four hours with several Docker instances on
which we can use kubeadm to install and configure Kubernetes, creating a
cluster in less than a minute.
Visit the Play with Kubernetes Classroom at https://training.play-with-
kubernetes.com if you want to learn more about Kubernetes. It provides
more direct learning using an integrated Play with Kubernetes command
line.

Kubectl commands
The https://kubernetes.io/docs/reference/generated/kubectl/kubectl-
commands site provides a complete reference of the commands to execute
on a Kubernetes cluster using the kubectl command. These commands help
users in writing K8s resources (YAML files).
For example, we can use kubectl api-resources to obtain a list of the
resources that we have available on the server and with the kubectl api-
versions command to get supported API versions on the server.

Conclusion
The use of Kubernetes is not only oriented to the needs of large companies
but also for smaller-scale projects or developers who want to create their own
content outside the market. Kubernetes provides the necessary software to
build, implement, and configure reliable and scalable distributed systems as it
contains the most important needs to run containerized applications, like the
following:

Deployment of containers

http://play-with-k8s.com
https://training.play-with-kubernetes.com
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands

Persistent storage
Container status monitoring
Resource management
Automatic scaling
Cluster robustness

In this chapter, we reviewed Kubernetes as an open source system originally
developed by Google and used to automate the deployment, scaling, and
management of containerized applications across multiple hosts. Like
containers, Kubernetes is designed to run anywhere from scratch, whether on
a local computer, the public cloud, or a hybrid.
In the next chapter, we will review Kubernetes security patterns and best
practices for securing components and pods, applying the principle of least
privilege in Kubernetes.

Points to remember
A Kubernetes Pod is a logical grouping of components. Pods contain at
least one container, and its components are deployed on the same host
sharing resources. These containers share network and storage.
Volumes allow you to assign persistent storage to pods. The data
contained in this storage is not lost when the pod is restarted, and it can
also be used as shared storage for containers within the pod itself.
A service is a collection of pods that work together to provide a specific
service. The service can be exposed internally to the Kubernetes cluster
with DNS or externally to be visible from clients outside the cluster.
kubelet is responsible for managing pods and their containers, their
images, their volumes, etc. Each node runs a kubelet, which is
responsible for registering each node and managing the pods running on
that node. Kubelets asks the API server for pods to be created and
deployed by the Scheduler and for pods to be deleted based on cluster
events. It also manages and communicates the use of resources, the
status of the nodes, and the pods running on it.
etcd is a highly available database (distributed in multiple nodes) that
stores key-values in which Kubernetes stores information (configuration

and metadata) about itself, pods, services, networks, etc. so that it can
be used by any node in the cluster. This functionality coordinates the
components in the event of changes in these values. Kubernetes uses
etcd to store cluster state as well.
Kube-scheduler is responsible for distributing the pods among the
nodes, and it assigns the pods to the nodes, reads the pod requirements,
analyzes the cluster, and selects the acceptable nodes. It communicates
with the API server in search of un-deployed pods to be deployed on the
node that best satisfies the requirements. It is also responsible for
monitoring the resource utilization of each host to ensure that pods do
not exceed the available resources.
The most widely used local solutions for working with kubernetes
include kubeadm, which allows several nodes to be included in the
cluster, meaning that it has a master and different workers. Minikube is
another local solution for working with kubernetes, and it is made up of
only one node and is the ideal solution for development and test
environments outside the business environment.
Whichever option is chosen, a point in common is the obligation of
having to communicate with the Kubernetes API to satisfy the requests.
This communication is done through kubectl.

Multiple choice questions
1. A Deployment is a Kubernetes object that provides updates to which of

the following?

a. Secrets and Pods
b. ConfigMaps and Secrets
c. ReplicaSets and ConfigMaps
d. Pods and ReplicaSets

2. Which of the following are Kubernetes objects?

a. Namespaces and ConfigMaps
b. Kubelets and Clusters
c. Namespaces and Clusters

d. ConfigMaps and Kubelets

Answers
1. d
2. a

Questions
1. Which kubectl command creates an object using the details in the

pod.json file?
2. Which Kubernetes object represents a single instance of processes

running in a container?
3. What does create do in this sample kubectl command: kubectl create -f

nginx.yaml?

Key terms
The official Kubernetes documentation describes Kubernetes as “a
portable, extensible, open source platform for managing containerized
workloads and services that facilitates both declarative configuration
and automation.
“etcd” is a highly available key value store that contains all the cluster
data. When you tell Kubernetes to deploy your application, that
deployment configuration is stored in etcd. So, etcd is the source of
truth for the state in a Kubernetes cluster, and the system works to bring
the cluster state
Kubernetes objects are persistent entities in Kubernetes. “Persistent”
means that when you create an object, Kubernetes continually works to
ensure that that object exists in the system, unless you modify or
remove that object. This way, Kubernetes objects define the state of
your cluster. Pods, namespaces, Deployments, ConfigMaps, and
volumes are a few examples of Kubernetes objects.
The Pod represents a single instance of an application within
Kubernetes that can consist of a single container or a small number of

containers that share resources.
kubectl provides a wide range of functionality for working with
Kubernetes clusters and managing the workloads that run in a cluster.
For example, you can simply run the “kubectl run nginx --image
nginx” command to create a Pod that runs a specific container, in this
case, “nginx”.
Another way to deploy an application is using a specific YAML file that
contains the object configuration, and it specifies that this object should
be created. This is an improvement over basic imperative commands
because the configuration template makes replicating the changes much
simpler. All the configuration is available in the file, so it’s easy to
perform this operation multiple times or in multiple environments.
The most supported solutions by the Kubernetes community for creating
a local cluster are as follows:

a. Minikube: Tool to create a single node cluster (being the same
master and slave node) ideal for development and testing.
Installation is automated and does not require a cloud provider.

b. Kubeadm: A multi-node (master and slave) cluster that only
requires the use of the Docker engine, that is, it only requires
Docker to be installed. For cloud services, the popularity belongs
to large companies like Google, Microsoft, IBM, or Amazon.

K

CHAPTER 12
Kubernetes Security

ubernetes has become a standard way of implementing applications in
containers at scale and helps us handle complex container deployments.

As Kubernetes grows and evolves, some of its excesses are likely to be
controlled from within. That said, some people are not expecting Kubernetes
to become easier to use and have released their own solutions to many
common problems with Kubernetes in production.
In this chapter, we will learn about Kubernetes security and best practices for
securing components and pods by applying the principle of least privilege in
Kubernetes.

Structure
We will cover the following topics in this chapter:

Introducing Kubernetes security
Kubernetes security best practices
Kubernetes security risks
Analyzing Kubernetes components security

Objectives
After studying this chapter, you will understand the principles and best
practices of Kubernetes security and learn about security risks in Kubernetes
and Kubernetes components security.

Introducing Kubernetes security
Kubernetes and Docker are revolutionizing the world of computing,
application development, and specifically, DevSecOps. Both technologies
combined offer us benefits like scaling and managing the implementation of

an application or a service by using containers, to the point of becoming a
true standard for orchestration. Like any other infrastructure, we must take
precautions while implementing them to try to make it as secure as possible
while offering the best final performance.
From the perspective of DevOps, Kubernetes has the following
characteristics:

Operating in the DevOps model: In the DevOps model, software
developers assume greater responsibility for building and deploying
applications.
Creation of common service sets: Applications request a service from
another application pointing to an IP address and port number. With
Kubernetes, we can build applications in containers that provide
services that are available for other containers to use.
Data-center pre-configuration: Kubernetes aims to create consistent
Application Programming Interfaces (APIs) that result in stable
environments for running applications in containers. Developers should
be able to create applications that work in any cloud provider that
supports those APIs. This reliable framework means developers can
identify the version of Kubernetes, along with the services they need,
and not have to worry about the specific configuration of the data
center.

Configuring Kubernetes
While Docker manages entities referred to as images and containers,
Kubernetes wraps those entities in what is referred to as pods. A pod can
contain one or more running containers and is the unit that manages
Kubernetes. Kubernetes brings several advantages to container management
as pods:

Multiple nodes: Instead of simply deploying a container on a single
host, Kubernetes can implement a set of pods on multiple nodes.
Essentially, a node provides the environment where a container is
executed.
Replication: Kubernetes can act as a replication controller for a pod.
This means you can set how many replicas of a specific pod should be

running at all times.
Services: The word “service” in the context of Kubernetes implies that
you can assign a service name (ID) to a specific IP address and port and
then assign a pod to provide that service. Kubernetes internally tracks
the location of that service and can redirect requests from another pod
of that service to the correct address and port.

You must understand the following concepts if you choose to configure
Kubernetes:

Kubernetes controller: A Kubernetes controller acts as a node from
which the pods, replication controllers, services, and other components
of a Kubernetes environment are implemented and managed. You must
configure and run the systemd, kube-api-server, kube-controller-
manager, and kube-scheduler services to create a Kubernetes
controller.
Kubernetes nodes: A Kubernetes node provides the environment in
which the containers run. To run a machine as a Kubernetes node, it
must be configured to run the Docker, kube-proxy, and kubelet
services. These services must be run on the Kubernetes cluster’s each
node.
kubectl command: Most Kubernetes administration is performed on
the master node using the kubectl command. With kubectl, we can
create, obtain, describe, or eliminate any of the resources that
Kubernetes manages (pods, replication controllers, services, and so on).
Resource files (YAML or JSON): The kubectl command expects the
information needed to create that resource to be in one of these two
types of formats when you create a pod, a replication controller, service,
or another resource in Kubernetes.

The classical way to see how Kubernetes works is to configure a Kubernetes
cluster that has a master controller node and has at least two nodes, each
operating on separate systems. The latest methods of setting up a highly
available Kubernetes cluster allow splitting up the master component onto
multiple nodes of Orchestrator/Control Plane and ETCD.
The Kubernetes API, managed by a kubelet, must be protected to ensure that
it is not accessed in an unauthorized way to perform malicious actions. If

unauthorized access was made to one of the containers running in a pod of a
Kubernetes environment, the API can be attacked by means of some simple
commands to be able to visualize the information about the entire
environment.
Security in Kubernetes should be focused on preventing image manipulation
and unauthorized access to the entire environment. Regarding runtime
protection, it is essential not to deploy pods with root permissions, checking
that pods have defined security policies and that Kubernetes is using secrets
for credential and password management.
For example, attackers can execute remote code execution attacks that can
give them access to the cluster anonymously if we have a misconfigured
kubelet. The kubelet maintains a set of pods within a Kubernetes cluster and
functions as a local agent that monitors the pod specifications through the
Kubernetes API server.

Tip: Kubernetes in practice
You can play with Kubernetes with an online service that allows you to
have 4-hour environments, totally free, where you can quickly create a
cluster with several nodes.
The following links provide some resources related to executing Kubernetes
online, and you can play with some scenarios that are configured in the
online environment:

https://labs.play-with-k8s.com
https://training.play-with-kubernetes.com

Kubernetes security best practices
It is advisable to follow some best practices at the security level due to the
impact that some implementations that can be carried out in an organization
can cause. In the following sections, we will comment on the main security
practices with Kubernetes.

Using secrets
If we want to start securing our Kubernetes projects, we can start with good

https://labs.play-with-k8s.com
https://training.play-with-kubernetes.com

practices like not storing objects with sensitive data like passwords, SSH
keys, or OAuth tokens in the clear. The use of secrets allows you to control
how sensitive data is used, and it significantly reduces the risk of exposure of
that sensitive data to unauthorized users.

Firewall ports
This security practice is frequently used since it is not advisable to expose a
port that does not need to be exposed. It is best to define the port’s exposure
to prevent this from happening.
The first thing you should do is check the existence of some interface or
define an IP to link the service; for example, the localhost interface
127.0.0.1. Some processes are opening so many ports on all interfaces that
they should rather have a public access firewall. Although they only allow
purely confidential information, they also allow you direct access to your set
of computers.

Restrict the Docker pull <image> command
Docker is a resource that can sometimes be uncontrolled by the ease of access
it has. That is, anyone with access to the Kubernetes API or Docker
connector can obtain the image they want, generating traffic from infected
images or serious security problems for Kubernetes. Many clusters have also
become a network of Bitcoin miners.
Although it is a problem that seems not to be solved, the Image Policy plugin
can significantly improve that situation, connecting directly with the Docker
API. This plugin imposes a series of strict security rules that reflect a black
and white list of images that can be extracted.
Another solution is to use the Image Policy Webhook through Admission
Controller, which intercepts all image extractions and takes care of security
just like the plugin mentioned earlier.

API authorization and anonymous authentication
You should know what authorization mode your system is using. This can be
done by verifying the parameters, where you can also check if authentication
is configured anonymously.

It is important to know that this configuration will not affect the kubelet
authorization mode since it exposes an API on its own that executes
commands that kubelet can completely ignore.
More specifically, a kubelet provides a command API used by kubi-
apiserver, in which arbitrary commands are executed on a specific node.
This configuration can be designed as --authorization-mode = Webhook
and --anonymous-auth = false.
When we talk about giving permissions in a Kubernetes cluster, we will have
to talk about Role Based Access Control or RBAC, which manages security
policies for users, groups or Pods. It is implemented in a stable way in the
latest versions of Kubernetes. You can use Roles and ClusterRoles to define
access profiles.
We are defining specific rules for accessing our pods in the following
example:
apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole

metadata:

name: cluster-role

rules:

- apiGroups: [“”]

resources: [“pods”]

verbs: [“get”, “list”]

You can use open source tools like rbac-manager

https://github.com/FairwindsOps/rbac-manager to help you simplify the
authorization process in Kubernetes using RBAC to facilitate RBAC
configuration.
This is an operator that supports declarative configuration for RBAC with
new custom resources. Instead of managing role bindings or service accounts
directly, you can specify a desired state and the RBAC manager will make
the necessary changes to achieve that state.

Management of resources and limits
It is important to manage the resources and limits that we are going to assign
to our applications when creating a container in a Kubernetes infrastructure,
especially in production. At the security level, it is important because a single
container can generate a denial of service when sharing a host with other

containers. In the generation of the Pod, we can easily control it through the
requests and limits sections in the deployment execution file.

Security features built into k8s
Kubernetes offers native security features to protect against some of the
threats described earlier or at least mitigate the potential impact of a breach.
The main safety features include:

Role-Based Access Control (RBAC): Kubernetes allows
administrators to define what are called Roles and ClusterRoles that
specify which users can access which resources within a namespace or
an entire cluster. This way, RBAC provides a way to regulate access to
resources.
Pod security policies and network policies: Administrators can
configure pod security policies and network policies, which place
restrictions on how containers and pods can behave. For example, pod
security policies can be used to prevent containers from running as root
users, and network policies can restrict communication between pods.
Network encryption: Kubernetes uses TLS encryption by default,
which provides additional protection for encryption of network traffic.

These built-in Kubernetes security features provide layers of defense against
certain types of attacks, but they do not cover all threats. Kubernetes does not
offer native protections against the following types of attacks:

Malicious code or incorrect settings inside containers or container
images: A third-party container scanning tool must be used to scan
them.
Security vulnerabilities in host operating systems: Again, these need
to be searched with other tools. Some Kubernetes distributions like
OpenShift integrate security solutions like SELinux at the kernel level
to provide more security at the host level, but this is not a feature of
Kubernetes itself.
Container runtime vulnerabilities: In this case, Kubernetes has no
way of alerting if a vulnerability exists within its runtime or if an
attacker is trying to exploit a vulnerability at the time of execution.

Kubernetes API abuse: Kubernetes does nothing to detect or respond
to API abuse beyond following any RBAC and security policy settings
that you define.
Management tools vulnerabilities or configuration errors:
Kubernetes cannot guarantee that management tools like Kubectl are
free from security issues.

Managing secrets
A secret is everything that nobody else in the cluster should know, neither the
rest of the applications nor users that access the cluster. For example, a
password from a certificate store, an API key so that an application can
consume third-party resources, and so on.
Let’s say that someone discharges those resources along with certain
permissions. From there, it is the application that requests those secrets from
K8s by presenting the information that authorizes them to consume those
resources.
Authorization management is done through what is known as Role-Based
Access Control (RBAC), that is, the application can access certain types of
resources only if it has a certain role. Additionally, it‘s important to configure
these roles and release the secret before the application is deployed.

Kubernetes secrets
Using secrets allows you to control how sensitive data is used and
significantly reduces the risk of exposure of sensitive data to unauthorized
users. This information is often placed in pod specifications or container
images. A secret can be generated both by a user and by the system itself.
When the system does this, secrets are automatically generated by service
accounts with API credentials. Kubernetes automatically creates secrets that
contain credentials to access the API and modifies your Pods to use this type
of secret.
The following image illustrates a basic diagram for storing secrets in the
cluster:

Figure 12.1: Storing secrets in the cluster

Other interesting facts about secrets:

Secrets are objects with namespaces, that is, they exist in the context of
a namespace
You can access them through a volume or environment variable from a
container running in a pod.

In the following example, we will create a secret with the username and
password for our postgres database. The first thing we will do is create two
files: one that contains the username, and another with the password to access

this database:
$ echo -n ‘user’ > ./user.txt

$ echo -n ‘password’ > ./password.txt

We can create the secret in the kubernetes cluster from these two files, as
follows:
$ kubectl create secret generic db-user-password --from-

file=./user.txt --from-file=./password.txt

secret/db-user-password created

We can obtain the secrets that we have stored with the following command:
$ kubectl get secrets

NAME TYPE

DATA AGE

db-user-password Opaque 2

15s

default-token-c4jc5 kubernetes.io/service-account-

token 3 15m

Once our secret is created, there are two ways to consume the secrets: on the
one hand we can mount them as a volume, and on the other hand, we can
access them from the pod as if it were another file or through environment
variables.
In this case, we will use them during the creation of the pod as environment
variables to define the username and password that we want to use to access
the database :
deployment-pod.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

name: postgres-deployment

labels:

app: postgres

spec:

replicas: 1

selector:

matchLabels:

app: postgres

template:

metadata:

labels:

app: postgres

spec:

containers:

- name: mypostgres

image: postgres

env:

- name: POSTGRES_USER

valueFrom:

secretKeyRef:

name: db-user-password

key: user.txt

- name: POSTGRES_PASSWORD

valueFrom:

secretKeyRef:

name: db-user-password

key: password.txt

volumeMounts:

- name: postgres-data

mountPath: /var/lib/postgresql/data

subPath: postgres

volumes:

- name: postgres-data

persistentVolumeClaim:

claimName: azure-managed-disk

In the preceding deployment file, we see how we are using the db-user-
password secret in the env section of the pod definition to specify both the
username and the password. We can see the keys that we have stored inside a
secret through the following command:
$ kubectl describe secret db-user-password

Name: db-user-password

Namespace: default

Labels: <none>

Annotations: <none>

Type: Opaque

Data

====

password.txt: 8 bytes

user.txt: 4 bytes

The following command executes the deployment file in the cluster:
$ kubectl apply -f deployment-pod.yaml

deployment.apps/postgres-deployment created

Finally, we can expose the deployment through the following command and
see the services that are deployed:

$ kubectl expose deployment/postgres-deployment --type

LoadBalancer --rt 5432 --protocol TCP

service/postgres-deployment exposed

$ kubectl get services

NAME TYPE CLUSTER-IP EXTERNAL-

IP PORT(S) AGE

kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 34m

postgres-deployment LoadBalancer 10.110.247.6

172.17.0.29 5432:31197/TCP 26s

The use of environment variables for storing secrets in memory can result in
their accidentally leaking. The recommended approach is to mount them as a
Volume. This is the content of the secret-pod.yaml configuration file:
apiVersion: v1

kind: Pod

metadata:

name: secret-vol-pod

spec:

volumes:

- name: secret-volume

secret:

secretName: test-secret

containers:

- name: test-container

image: alpine:latest

command: [“sleep”, “9999”]

volumeMounts:

- name: secret-volume

mountPath: /etc/secret-volume

From the previous file, we can create our new Pod using the following
command:
$ kubectl create -f secret-pod.yaml

pod/secret-vol-pod created

Once started you can interact with the mounted secrets. For example, you can
list all the secrets available as if they’re regular data. For example:
$ kubectl exec -it secret-vol-pod ls /etc/secret-volume

password username

Reading the files allows us to access the decoded secret value. To access
username and password we could use the following commands:
$ kubectl exec -it secret-vol-pod cat /etc/secret-

volume/username

admin

$ kubectl exec -it secret-vol-pod cat /etc/secret-

volume/password

a62fjbd37942dcs

Tip: Kubernetes secrets in practice
In this scenario, you’ll learn how to manage secrets using Kubernetes (refer
to figure 12.2). Kubernetes allows you to create secrets that are mounted to
a pod via environment variables or as a volume.
This allows secrets, such as SSL certificates or passwords, to only be
managed securely via an infrastructure team instead of having the
passwords stored within the application’s deployment artefacts.
https://www.katacoda.com/courses/kubernetes/managing-secrets

Figure 12.2: Kubernetes secrets in practice

Other projects for managing Kubernetes secrets
Within the Kubernetes ecosystem, we can find different projects that allow
the management of secrets securely. For example, the KubeSealed
https://github.com/bitnami-labs/sealed-secrets project is a tool that allows
you to encrypt secrets using a resource called SealedSecret.
The solution is based on a Public Key Infrastructure (PKI) and shares a
public key to encrypt and install a private key on the cluster. What this tool

https://www.katacoda.com/courses/kubernetes/managing-secrets
https://github.com/bitnami-labs/sealed-secrets

does is encrypt using a public key for the cluster, using the certificate of the
Kubernetes cluster where it is applied. Additionally, we must save the secrets
in a JSON file to work with the tool.
Another interesting project is Kubernetes external secrets
https://github.com/external-secrets/kubernetes-external-secrets, which
allows you to use an external secrets management system to add new secrets
to the cluster securely. The tool supports different providers in the cloud,
including:

AWS Secrets Manager
AWS System Manager
GCP Secret Manager
Azure Key Vault
Hashicorp Vault

With external secrets, you can store the secrets in different providers in the
cloud and use them within your Kubernetes cluster in such a way that you
can centrally manage the secrets that your applications, CICD, etc. need.
With this approach, you will avoid storing secrets in different places and
confidential data in your code repositories.

Handle security risks in Kubernetes
Here are the main strategies that we can follow to manage the risks of putting
your application with Kubernetes in production:

Integrate security from the early stages of development: With
Kubernetes, it is necessary to integrate security at each stage of the
software development process. It is a mistake to leave security settings
for the last step as it may be too late.
Consider a commercial platform of Kubernetes: When you
participate in a Kubernetes trading platform, the most important benefit
you get is the rapid structural responses from development to any threat
or problem. Kubernetes will be updated quickly to any vulnerability,
and you will always have the latest security updates for your company.
Do not trust your old tools and practices: The attackers update faster
than the software, so the same moves at any time may be obsolete. You

https://github.com/external-secrets/kubernetes-external-secrets

should not assume that your conventional security tools will protect
you. Many open source tools evaluate Kubernetes clusters or perform
penetration tests on clusters and nodes. Experts point out that it is
necessary to keep your software updated and patched, for example, and
new approaches and tools are also necessary.

Here is a summary of the key parts of a Kubernetes environment and the
most common security risks that affect them:

Containers: Containers can contain malicious code that was included in
your container images. They can also be subject to misconfigurations
that allow attackers to gain unauthorized access under certain
conditions.
Host operating systems: Vulnerabilities or malicious code within
operating systems installed on Kubernetes nodes can provide attackers
with a path to Kubernetes clusters.
Container runtimes: Kubernetes supports a variety of container
runtimes. All of them can contain vulnerabilities that allow attackers to
take control of individual containers, escalate attacks from container to
container, and even gain control of the Kubernetes environment.
Network layer: Kubernetes relies on internal networks to facilitate
communication between nodes, pods, and containers. It also often
exposes applications to public networks so that they can be accessed
over the Internet. Both network layers can allow attackers to gain access
to the cluster or escalate attacks from one part of the cluster to others.
Kubectl Dashboard and other management tools: They may be
subject to vulnerabilities that allow abuse in a Kubernetes cluster.

Analyzing Kubernetes components security
Pods are the main component of Kubernetes and represent one or more
containers that share network and storage configurations. So, their security is
very important and needs to be implemented from the first steps of its design,
using security policies.
The official documentation provides some examples of how to apply these
security policies in our implementation with Kubernetes. It is available at
https://kubernetes.io/docs/concepts/policy/pod-security-policy.

https://kubernetes.io/docs/concepts/policy/pod-security-policy

According to official documentation, a pod security policy is a cluster-level
resource that controls aspects of a pod’s security. These security policies are
defined through the PodSecurityPolicy object, through which we can define
the conditions which a pod must meet to be accepted in the system. It also
allows us to define the default values of fields that are not explicitly assigned.
A security policy is defined as practically everything in Kubernetes, through
a manifest file, usually in YAML format. Let’s consider an example:
apiVersion: policy/v1beta1

kind: PodSecurityPolicy

metadata:

name: permissive

spec:

privileged: true

hostNetwork: true

hostIPC: true

hostPID: true

seLinux:

rule: RunAsAny

supplementalGroups:

rule: RunAsAny

runAsUser:

rule: RunAsAny

fsGroup:

rule: RunAsAny

hostPorts:

- min: 0

max: 65535

volumes:

- ‘*’

In this example, you can see how the defined policy is very permissive. It
practically allows us to run a pod with all kinds of privileges. For example,
we can execute it in privileged mode (privileged: true) so that we can have
access to parts of the host; share the space of network names, processes, and
Inter-Process Communication (IPC) of the host; run the container or
containers as root; etc. Such configurations should be avoided unless there is
a good reason.

Pod security policies
Pod security policies allow administrators to control the following aspects:

Containers in privileged mode: This feature allows or does not allow
the execution of containers in privileged mode. The field that sets this
aspect is called privileged. The containers run in non-privileged mode
by default. Here are some of the main values that this feature can take:

Host namespace: There are four fields that allow us to define the
behavior of a container with respect to access to certain parts of the
host:

HostPID: This controls whether the pod containers share the
same process space (IDs) of the host.
HostIPC: This controls whether the containers in a pod share
the host’s IPC space.
HostNetwork: This controls whether a pod can use the same
host network space. It implies that the pod would have access
to the loopback device and the processes running on that host.
HostPorts: This defines the range of ports allowed in the host
network space. This range is given by the HostPortRange
field, and the min and max attributes that define the range of
ports are included in the range.

Volumes and filesystems: Here are some of the main values that this
feature can take:

Volumes: This provides a list of permitted volumes, and they
correspond to the source used to create the volume.
FSGroup: Allows you to indicate the groups where to apply
certain volumes.
AllowedHostPaths: Specifies a list of paths allowed to be used by
volumes. An empty list would imply that there are no restrictions.
This list is defined by two attributes: pathPrefix and readOnly.
ReadOnlyRootFilesystem: This requires that the containers run
with the root filesystem in read-only mode.

Users and groups: Some of the main values of this feature are:

RunAsUser: Specifies which user the containers run inside the
pod

RunAsGroup: Specifies with which group ID the containers run
within the pod

Privilege escalation: Basically, it controls the no_new_privs option of
the container process. This option prevents binaries with the setuid
option from changing the user’s effective ID and prevents enabling new
extra capabilities. Here are some of the main values that this feature can
take:

allowPrivilegeEscalation: Specifies whether or not to set the
security context of the container. By default,
allowPrivilegeEscalation = true to avoid problems with
binaries with setuid active.
DefaultAllowPrivilegeEscalation: This allows you to set the
default option of allowPrivilegeEscalation.

Capabilities: GNU/Linux capabilities are a series of superuser
privileges that can be enabled or disabled independently. The following
fields accept the capabilities as a list, without the CAP_ prefix (all
capabilities in GNU/Linux begin with that prefix):

AllowedCapabilities: List of capacities that can be added to a
container. All capacities are allowed by default. If this field is
specified empty, it implies that you cannot add capacities to a
container beyond those defined by default. The asterisk (*) can be
used to refer to all capabilities.
RequiredDropCapabilities: List of capacities that must be
removed from the container. These are removed from the default
capacity group. The capabilities included in this field should not be
included in AllowedCapabilities or DefaultAddCapabilities.
DefaultAddCapabilities: Capabilities added to a default
container by default.

Static analysis with kube-score
kube-score is a tool that performs static code analysis of your Kubernetes
object definitions. The output is a list of recommendations of what you can
improve to make your application more secure and resilient.

Check https://github.com/zegl/kube-score on GitHub for more information
about how to use kube-score. Use this website to easily test kube-score;
you can just paste your object definition YAML or JSON document. For
example, we can analyze the following nginx deployment file:
apiVersion: apps/v1

kind: Deployment

metadata:

name: nginx-deployment

spec:

selector:

matchLabels:

app: nginx

replicas:

template:

metadata:

labels:

app: nginx

spec:

containers:

- name: nginx

image: nginx:1.7.9

ports:

- containerPort: 80

This tool detects the following security issues in the preceding deployment
file:
apps/v1/Deployment nginx-deployment

[CRITICAL] Container Resources

· nginx -> CPU limit is not set

Resource limits are recommended to avoid resource DDOS. Set

resources.limits.cpu

· nginx -> Memory limit is not set

Resource limits are recommended to avoid resource DDOS. Set

resources.limits.memory

· nginx -> CPU request is not set

Resource requests are recommended to make sure that the

application can start and run without

crashing. Set resources.requests.cpu

· nginx -> Memory request is not set

Resource requests are recommended to make sure that the

application can start and run without

crashing. Set resources.requests.memory

[CRITICAL] Container Image Pull Policy

· nginx -> ImagePullPolicy is not set to Always

https://github.com/zegl/kube-score

It’s recommended to always set the ImagePullPolicy to

Always, to make sure that the

imagePullSecrets are always correct, and to always get the

image you want.

[CRITICAL] Pod NetworkPolicy

· The pod does not have a matching NetworkPolicy

Create a NetworkPolicy that targets this pod to control

who/what can communicate with this pod.

Note, this feature needs to be supported by the CNI

implementation used in the Kubernetes cluster

to have an effect.

[CRITICAL] Container Security Context

· nginx -> Container has no configured security context

Set securityContext to run the container in a more secure

context.

[WARNING] Deployment has host PodAntiAffinity

· Deployment does not have a host podAntiAffinity set

It’s recommended to set a podAntiAffinity that stops

multiple pods from a deployment from being

scheduled on the same node. This increases availability in

case the node becomes unavailable.

[CRITICAL] Deployment has PodDisruptionBudget

· No matching PodDisruptionBudget was found

It’s recommended to define a PodDisruptionBudget to avoid

unexpected downtime during Kubernetes

maintenance operations, such as when draining a node.

Auditing the state of the cluster
You may have to perform a small internal audit of the state of the cluster
when you work with Kubernetes clusters. We can use the Polaris tool
available in the GitHub repository at
https://github.com/FairwindsOps/polaris to do this.
This tool can be used in three ways:

In audit mode, where it shows us the state of the cluster and whether
there is any aspect that we can improve.
In validation mode, that allows us to validate what we are going to
execute complies with the standard.
In YAML file testing mode via command console, where it allows us to
check our developments locally.

We can deploy the tool in our Kubernetes cluster by executing the following

https://github.com/FairwindsOps/polaris

commands:
$ kubectl apply -f

https://github.com/FairwindsOps/polaris/releases/latest/download/dashboard.yaml

$ kubectl port-forward --namespace polaris svc/polaris-dashboard

8080:80

Tools like Kube Bench, https://github.com/aquasecurity/kube-bench that
allow us to quickly check our infrastructure at the security level.
There are several best practices to follow when running a Kubernetes cluster.
Here are some of the best security practices for your Kubernetes cluster:

Use the minimum privilege principle for your service accounts
Disable Kubernetes dashboard
Create a cluster network policy

The principle of minimum privilege helps reduce the impact of a potential
vulnerability or data that has been compromised. So, it will be more difficult
for a potential attacker to escalate privileges if a certain component is
compromised.
If you are using the Google Cloud Platform, each Kubernetes Engine node
has an associated service account. The first thing that should be done is
analyze the accesses that the account has by default and see the permissions
that are really necessary to run your Kubernetes cluster.
At this point, it is recommended to use a service account with the minimum
privileges to run the Kubernetes Engine Cluster instead of the default service
account. The following urls contain the documentation for logging and
monitoring in Google Cloud.

https://cloud.google.com/monitoring/access-control#overview
https://cloud.google.com/logging/docs/access-control#overview

The following commands will create a GCP service account for you with the
minimum permissions necessary to operate Kubernetes engine:
$ gcloud iam service-accounts create “${SA_NAME}” \

--display-name=”${SA_NAME}”

$ gcloud projects add-iam-policy-binding “${PROJECT_ID}” \

--member

“serviceAccount:${SA_NAME}@${PROJECT_ID}.iam.gserviceaccount.com”

\

https://github.com/aquasecurity/kube-bench

--role roles/logging.logWriter

$ gcloud projects add-iam-policy-binding “${PROJECT_ID}” \

--member

“serviceAccount:${SA_NAME}@${PROJECT_ID}.iam.gserviceaccount.com”

\

--role roles/monitoring.metricWriter

$ gcloud projects add-iam-policy-binding “${PROJECT_ID}” \

--member

“serviceAccount:${SA_NAME}@${PROJECT_ID}.iam.gserviceaccount.com”

\

--role roles/monitoring.viewer

If you need your Kubernetes engine cluster to have access to other Google
Cloud services, we recommend that you create an additional role and supply
it to workloads through the Kubernetes secrets. You can do it by following
the official documentation:
https://cloud.google.com/kubernetes-engine/docs/tutorials/authenticating-to-
cloud-platform.
Regarding the Kubernetes dashboard, it’s important to know how to disable
the Kubernetes web user interface when it runs on Kubernetes Engine. The
cloud console provides many of the same features, so you don’t need these
permissions if you are running the Kubernetes engine.
More information about this tool is available in the Kubernetes
documentation at https://kubernetes.io/docs/tasks/access-application-
cluster/web-ui-dashboard/.
The following command disables the Kubernetes web user interface:
$ gcloud container clusters update “${CLUSTER_NAME}” --update-

addons=KubernetesDashboard=DISABLED

Additionally, it is important to create network policies to control the
communication between the pods and services in your cluster. The
application of network policies makes it much more difficult for a potential
attacker to obtain high privileges within the cluster.
We can also use the Kubernetes network policy API
(https://cloud.google.com/kubernetes-engine/docs/how-to/network-
policy) to create firewall rules at the pod level in the Kubernetes engine.
These firewall rules will determine which pods and services can
communicate with each other within the cluster.

https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/

You can specify the ---enable-network-policy flag using gcloud

command to enable the application of network policies when creating a new
cluster:
$ gcloud container clusters create “${CLUSTER_NAME}” \

--project=”${PROJECT_ID}” \

--zone=”${ZONE}” \

--enable-network-policy

Using livenessProbe and readinessProbe
Health checks are very important in Kubernetes. Two types of controls are
provided at this point: livenessProbe and readinessProbe:

livenessProbe is used to check if the application is still running or has
stopped. Kubernetes does nothing if the application runs successfully,
but it will launch a new pod and run the application in it if your
application is stopped.
readinessProbe is used to verify that the application is ready to start
sending traffic. Kubernetes will stop sending traffic to the pod until this
health check fails.

Tip: Checking container health in practice
In this scenario, you’ll learn how Kubernetes checks container health using
Readiness and Liveness Probes:
Readiness Probes checks if an application is ready to start processing
traffic. This probe solves the problem of the container having started, but
the process is still warming up and configuring itself, meaning it’s not ready
to receive traffic.
Liveness Probes ensure that the application is healthy and capable of
processing requests. Kubernetes will destroy and recreate the failed
container if the Probe fails.
https://www.katacoda.com/courses/kubernetes/liveness-readiness-
healthchecks

https://www.katacoda.com/courses/kubernetes/liveness-readiness-healthchecks

Figure 12.3: Checking container health in practice

If these checks are not successful, pods can terminate or begin receiving user
requests even before they are ready. In the following configuration example,
when Kubernetes pings a route to the HTTP server and gets an HTTP
response, it will say that the application is ok:
apiVersion: v1

kind: Pod

metadata:

name: container10

spec:

containers:

- image: ubuntu

name: container10

livenessProbe:

httpGet:

path: /prodhealth

port: 8080

For example, you can check the status of the Pod with the following
command if Pod is an HTTP service that returns a 500 error, indicating that it
hasn’t started correctly:
$ kubectl get pods --selector=”name=bad-frontend”

NAME READY STATUS RESTARTS AGE

bad-frontend-klggv 0/1 Pending 0 7s

Kubectl will return the Pods deployed with our particular name selector. The
health check is failing, so it will say that zero containers are ready. It will also

indicate the number of restart attempts of the container. We can use the
following command to find more details of why it’s failing:
$ pod=$(kubectl get pods --selector=”name=bad-frontend” --

output=jsonpath={.items..metadata.name})

controlplane $ kubectl describe pod $pod

Name: bad-frontend-pvrbp

Namespace: default

Priority: 0

PriorityClassName: <none>

Node: controlplane/172.17.0.32

Start Time: Tue, 13 Jul 2021 20:34:48 +0000

Labels: name=bad-frontend

Annotations: <none>

Status: Running

IP: 10.32.0.6

Controlled By: ReplicationController/bad-frontend

Containers:

bad-frontend:

Container ID: docker://59a241eac6dfeb43119eb10322c3b325aed

72c4a0df9f85ec92e67c8ce042e4d

Image: katacoda/docker-http-server:unhealthy

Image ID: docker-pullable://katacoda/docker-http-

server@sha256

:bea95c69c299c690103c39ebb3159c39c5061fee1dad13aa1b0625e0c6b52f22

Port: <none>

Host Port: <none>

State: Waiting

Reason: CrashLoopBackOff

Last State: Terminated

Reason: Error

Exit Code: 2

Started: Tue, 13 Jul 2021 20:38:45 +0000

Finished: Tue, 13 Jul 2021 20:39:15 +0000

Ready: False

Restart Count: 6

Liveness: http-get http://:80/ delay=1s timeout=1s

period=10s #success=1 #failure=3

Readiness: http-get http://:80/ delay=1s timeout=1s

period=10s #success=1 #failure=3

Environment: <none>

Mounts:

/var/run/secrets/kubernetes.io/serviceaccount from default-

token-5gbbc (ro)

Conditions:

Type Status

Initialized True

Ready False

ContainersReady False

PodScheduled True

Volumes:

default-token-5gbbc:

Type: Secret (a volume populated by a Secret)

SecretName: default-token-5gbbc

Optional: false

QoS Class: BestEffort

Node-Selectors: <none>

Tolerations: node.kubernetes.io/not-ready:NoExecute for 300s

node.kubernetes.io/unreachable:NoExecute for 300s

Events:

Type Reason Age From

Message

---- ------ ---- ---- ---

Normal Scheduled 5m18s default-

scheduler Successfully assigned default/bad-frontend-pvrbp

to controlplane

Normal Pulling 5m16s kubelet,

controlplane Pulling image “katacoda/docker-http-

server:unhealthy”

Normal Pulled 5m11s kubelet,

controlplane Successfully pulled image “katacoda/docker-http-

server:unhealthy”

Normal Created 4m11s (x3 over 5m11s) kubelet,

controlplane Created container bad-frontend

Normal Started 4m11s (x3 over 5m11s) kubelet,

controlplane Started container bad-frontend

Warning Unhealthy 4m11s (x6 over 5m1s) kubelet,

controlplane Liveness probe failed: HTTP probe failed with

statuscode: 500

Normal Killing 4m11s (x2 over 4m41s) kubelet,

controlplane Container bad-frontend failed liveness probe,

will be restarted

Normal Pulled 4m11s (x2 over 4m41s) kubelet,

controlplane Container image “katacoda/docker-http-

server:unhealthy” already present on machine

Warning Unhealthy 4m4s (x7 over 5m4s) kubelet,

controlplane Readiness probe failed: HTTP probe failed with

statuscode: 500

Warning BackOff 11s (x10 over 2m41s) kubelet,

controlplane Back-off restarting failed container

Here, we are checking whether the pod has some error and could not be
started.

Setting limits and resource requests
The application will stop working when you are deploying a large application
on a resource-constrained production cluster where nodes run out of memory
or CPU. This application downtime can have a huge impact on your business,
but you can solve this by having requests and resource limits.
Requests and resource limits are the Kubernetes mechanisms for controlling
the use of resources like memory and CPU. If one pod consumes all CPU and
memory, the other pods will run out of resources and be unable to run the
application.
We can set requests and limits for each container in a pod to improve this
aspect. CPU is defined using millicores and memory using bytes (megabyte /
mebibyte). In the following example, we are setting a CPU limit of 500
millicores and 128 mebibytes, and we are setting a quota for CPU requests of
300 millicores and 64 mebibytes:
containers:

- name: prodcontainer1

image: ubuntu

resources:

requests:

memory: “64Mi”

cpu: “300m”

limits:

memory: “128Mi”

cpu: “500m”

Applying affinity rules between nodes and pods
One of the main mechanisms in Kubernetes for associating a pod with a node
within the cluster is to define the affinity for better performance. We can use
node affinity to define the criteria that a pod will follow to associate with a
certain node in a Kubernetes cluster:
apiVersion: v1

kind: Pod

metadata:

name: ubuntu

spec:

affinity:

nodeAffinity:

preferredDuringSchedulingIgnoredDuringExecution:

- weight: 2

preference:

matchExpressions:

- key: disktype

operator: In

values:

- ssd

containers:

- name: ubuntu

image: ubuntu

imagePullPolicy: IfNotPresent

We can use pod affinity to schedule multiple pods on the same node (to
improve latency) or decide to keep pods on separate nodes (for high
availability) to increase performance.
apiVersion: v1

kind: Pod

metadata:

name: ubuntu-pod

spec:

affinity:

podAffinity:

requiredDuringSchedulingIgnoredDuringExecution:

- labelSelector:

matchExpressions:

- key: security

operator: In

values:

- S1

topologyKey: failure-domain.beta.kubernetes.io/zone

containers:

- name: ubuntu-pod

image: ubuntu

After analyzing the cluster workload, we will have to decide on the best
affinity strategy to use.

Conclusion
With the objective that developers and DevOps get the best possible
performance and security in the Kubernetes infrastructure, we have analyzed
the state of Kubernetes security in this chapter, including best practices and
the main projects we can find in Kubernetes ecosystem for checking the

security of a Kubernetes cluster.
In the next chapter, we will review the state of Kubernetes security and some
tools to check whether Kubernetes is implemented in a secure way by
following some best practices documented in the CIS Kubernetes Benchmark
guide.

Points to remember
Security in Kubernetes must extend beyond images and workloads and
protect the entire environment, including the cluster infrastructure. Here
are some of the main actions that we can take to add different security
layers:

Update Kubernetes: It is important to update to the latest version
whenever possible, including security patches for recent
vulnerabilities. This way, our version will receive the patch as soon
as the fix is released if a critical vulnerability is discovered in the
Kubernetes core.
Securely configure the Kubernetes API server: It is important to
disable unauthenticated or anonymous access to the cluster and use
TLS encryption for connections between the kubelets and the API
server.
Kubelet security: As a head node agent running on every node, an
incorrect kubelet configuration can expose the cluster to an
application backdoor.

Multiple choice questions
1. Which command can you use for creating a secret from a file?

a. $ kubectl create generic mysecret --from-file=./file.txt
b. $ kubectl create secret --from-file=./file.txt mysecret
c. $ kubectl create secret generic mysecret --from-file=./file.txt
d. $ kubectl create secret --from-file=./file.txt

2. Which is the command Google cloud provides for disabling the
Kubernetes web user interface?

a. $ gcloud container clusters update “${CLUSTER_NAME}” --
Kubernetes Dashboard=FALSE

b. $ gcloud container clusters update “${CLUSTER_NAME}” --
Kubernetes Dashboard=DISABLED

c. $ gcloud container clusters update “${CLUSTER_NAME}” --
update-addons=KubernetesDashboard=FALSE

d. $ gcloud container clusters update “${CLUSTER_NAME}” --
update-addons=KubernetesDashboard=DISABLED

Answers
1. c
2. d

Questions
1. Which is the best configuration for API authorization mode and

anonymous authentication?
2. Which tools allow the checking and auditing of the state of the cluster?
3. What is the new mechanism that Kubernetes provides to assign

permissions and privileges to roles instead of specific users?

Key terms
kube-score is a Kubernetes tool object analysis with recommendations
for improved reliability and security.
Network policies represent a series of firewall rules for Kubernetes, so
it is good that you consult the network policies of Kubernetes to
configure them correctly from the beginning. Consider switching to a
network provider who supports network policies if your current one
does not.
A new feature called RBAC has been released from Kubernetes version
1.8. RBAC is a new mechanism that Kubernetes provides to assign
permissions and privileges to roles instead of specific users.

V

CHAPTER 13
Auditing and Analyzing Vulnerabilities

in Kubernetes
ulnerability detection is one of the most important parts of any container-
based application. At this point, it is important to identify the main

vulnerabilities in Kubernetes and the tools that we can use to identify them.
In this chapter, we will introduce Kubernetes security and Kubernetes bench
for security project to execute controls documented in CIS Kubernetes
Benchmark guide. We will also review main security projects for analyzing
security in Kubernetes components and more critical vulnerabilities
discovered in Kubernetes in the last few years.

Structure
We will cover the following topics in this chapter:

KubeBench Security
Kubernetes Security projects
Analyzing Kubernetes vulnerabilities and CVEs

Objectives
After studying this chapter, you will understand KubeBench security and the
main vulnerabilities discovered in Kubernetes. You will also learn about
Kubernetes security projects and plugins for testing the security of your
Kubernetes cluster.

KubeBench security
KubeBench (https://github.com/aquasecurity/kube-bench) is a Kubernetes
security scanner that allows us to eliminate about 95% of configuration

https://github.com/aquasecurity/kube-bench

defects, generating specific guidelines to ensure the configuration of your
computer network through the application of Kubernetes benchmark.

CIS benchmarks for Kubernetes with KubeBench
CIS benchmarks are security standards for different systems carried out by
the Center for Internet Security, which aim to harden our operating systems.
Compliance with these standards is common in environments that have to
meet PCI-DSS, GDPR, or are for government use. So, if we are concerned
about security, we will always be right if we meet CIS Benchmarks.
We can use KubeBench to verify the rules of CIS Benchmark.. It is a tool that
will automate the entire process of validating CIS Benchmark rules for
Kubernetes. We can install KubeBench through this dedicated container by
executing the following container:
https://hub.docker.com/r/aquasec/kube-bench
This tool supports tests for multiple versions of Kubernetes defined in the
CIS guides, and the easiest way to run this tool is to run it from a container
and launch the tests on the Kubernetes cluster with the following command:
$ docker run --rm -v `pwd`:/host aquasec/kube-bench:latest

install

Unable to find image ‘aquasec/kube-bench:latest’ locally

latest: Pulling from aquasec/kube-bench

540db60ca938: Pull complete

1a54aff31526: Pull complete

eaeda0957c43: Pull complete

f0f0bea18150: Pull complete

74607f20dee7: Pull complete

7705a0d556dc: Pull complete

d42def918d40: Pull complete

1c3af4762903: Pull complete

bd03f4ea544b: Pull complete

162fd9b40ec9: Pull complete

6021a5e04eb0: Pull complete

Digest:

sha256:e02aa2eb58c9a6bee9e2b060684051be14b266f0e9952cadd8f71

f32f578b5d7

Status: Downloaded newer image for aquasec/kube-bench:latest

===

kube-bench is now installed on your host

Run ./kube-bench to perform a security check

===

https://hub.docker.com/r/aquasec/kube-bench

This way, we can execute the command for analyzing the master node or a
:worker node. First, we will analyze the Master node as follows:
$./kube-bench master

We will get the following output:

Figure 13.1: Kube-bench master node execution

We can also analyze the worker node with the same command:
$./kube-bench node

We will get the following output:

Figure 13.2: Kube-bench worker node execution

The tests are configured with YAML and JSON files, making it easy to

update this tool as the test specifications evolve. When the script is executed,
it shows information about the security compliance of the cluster and
mentions the best practices and remediations for solving the security issues:
== Remediations master ==

1.1.9 Run the following command (based on the file location on your
system) on the master node.
For example,
chmod 644 <path/to/cni/files>

1.1.10 Run the following command (based on the file location on your
system) on the master node.
For example,
chown root:root <path/to/cni/files>

1.1.12 On the etcd server node, get the etcd data directory, passed as an
argument --data-dir,
from the following command:
ps -ef | grep etcd

Run the following command (based on the etcd data directory found
earlier).
For example, chown etcd:etcd /var/lib/etcd

1.2.1 Edit the API server pod specification file
/etc/kubernetes/manifests/kube-apiserver.yaml
on the master node and set the following parameter.
--anonymous-auth=false

1.2.6 Follow the Kubernetes documentation and set up the TLS
connection between
the apiserver and kubelets. Then, edit the API server pod specification
file
/etc/kubernetes/manifests/kube-apiserver.yaml on the master node

and set the

--kubelet-certificate-authority parameter to the path to the

cert file for the certificate authority.

--kubelet-certificate-authority=<ca-string>

1.2.10 Follow the Kubernetes documentation and set the desired limits in
a configuration file.
Then, edit the API server pod specification file
/etc/kubernetes/manifests/kube-apiserver.yaml
and set the following parameters:
--enable-admission-plugins=…,EventRateLimit,…

--admission-control-config-file=<path/to/configuration/file>

1.2.12 Edit the API server pod specification file
/etc/kubernetes/manifests/kube-apiserver.yaml
on the master node and set the --enable-admission-plugins parameter to
include
AlwaysPullImages.
--enable-admission-plugins=…,AlwaysPullImages,…

1.2.13 Edit the API server pod specification file
/etc/kubernetes/manifests/kube-apiserver.yaml
on the master node and set the --enable-admission-plugins parameter to
include
SecurityContextDeny, unless PodSecurityPolwwicy is already in

place.

--enable-admission-plugins=…,SecurityContextDeny,…

1.2.16 Follow the documentation and create Pod Security Policy objects as
per your environment.
Then, edit the API server pod specification file
/etc/kubernetes/manifests/kube-apiserver.yaml
on the master node and set the --enable-admission-plugins parameter to a
value that includes PodSecurityPolicy:
--enable-admission-plugins=…,PodSecurityPolicy,…

Then, restart the API Server.

1.2.21 Edit the API server pod specification file
/etc/kubernetes/manifests/kube-apiserver.yaml
on the master node and set the following parameter:

--profiling=false

1.2.22 Edit the API server pod specification file
/etc/kubernetes/manifests/kube-apiserver.yaml
on the master node and set the --audit-log-path parameter to a suitable path
and
file where you would like audit logs to be written, for example:
--audit-log-path=/var/log/apiserver/audit.log

1.2.23 Edit the API server pod specification file
/etc/kubernetes/manifests/kube-apiserver.yaml
on the master node and set the --audit-log-maxage parameter to 30 or as an
appropriate number of days:
--audit-log-maxage=30

1.2.24 Edit the API server pod specification file
/etc/kubernetes/manifests/kube-apiserver.yaml
on the master node and set the --audit-log-maxbackup parameter to 10 or to
an appropriate value.
--audit-log-maxbackup=10

1.2.25 Edit the API server pod specification file
/etc/kubernetes/manifests/kube-apiserver.yaml
on the master node and set the --audit-log-maxsize parameter to an
appropriate size in MB.
For example, to set it to 100 MB:
--audit-log-maxsize=100

1.2.26 Edit the API server pod specification file
/etc/kubernetes/manifests/kube-apiserver.yaml
and set the following parameter as appropriate and if needed.
For example,
--request-timeout=300s

1.2.33 Follow the Kubernetes documentation and configure an
EncryptionConfig file.

Then, edit the API server pod specification file
/etc/kubernetes/manifests/kube-apiserver.yaml
on the master node and set the --encryption-provider-config parameter to the
path of that file: --encryption-provider-config=
</path/to/EncryptionConfig/File>
1.2.34 Follow the Kubernetes documentation and configure an
EncryptionConfig file.
In this file, choose aes, cbc, kms, or secretbox as the encryption provider.
1.2.35 Edit the API server pod specification file
/etc/kubernetes/manifests/kube-apiserver.yaml
on the master node and set the following parameter:
--tls-cipher-
suites=TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_RSA_WITH_AES_128_GCM
_SHA256,TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305,TLS_ECDHE_RSA_WITH_AES_256_GCM
_SHA384,TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305,TLS_ECDHE_ECDSA_WITH_AES_256_GCM
_SHA384
1.3.1 Edit the Controller Manager pod specification file
/etc/kubernetes/manifests/kube-controller-manager.yaml
on the master node and set --terminated-pod-gc-threshold to an appropriate
threshold,
for example:
--terminated-pod-gc-threshold=10
1.3.2 Edit the Controller Manager pod specification file
/etc/kubernetes/manifests/kube-controller-manager.yaml
on the master node and set the following parameter:
--profiling=false

1.4.1 Edit the Scheduler pod specification file
/etc/kubernetes/manifests/kube-scheduler.yaml file
on the master node and set the following parameter:
--profiling=false

At the end of the report, it shows information about the script numbers that

have passed checking and other that have failed:
== Summary master ==

44 checks PASS

10 checks FAIL

11 checks WARN

0 checks INFO

== Summary total ==

44 checks PASS

10 checks FAIL

11 checks WARN

0 checks INFO

Another way to execute Kube-bench is through a YAML configuration file
that you can find in the GitHub repository:
https://github.com/aquasecurity/kube-bench/blob/main/job.yaml
$ kubectl apply -f job.yaml

job.batch/kube-bench created

$ kubectl get pods

NAME READY STATUS RESTARTS

AGE

kube-bench-j76s9 0/1 ContainerCreating 0 3s

Wait for a few seconds for the job to complete

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

kube-bench-j76s9 0/1 Completed 0 11s

The results are held in the pod’s logs

kubectl logs kube-bench-j76s9

[INFO] 1 Master Node Security Configuration

[INFO] 1.1 API Server

Kubernetes security projects
In this section, we will review different security projects that can help us,
both to secure our Kubernetes cluster and to offer the best possible
performance to our infrastructure.

Kube-hunter
Kubernetes clusters are mounted on a set of nodes or servers in which at least
one has to take the role of master. The rest are defined as workers and have
visibility with each other in order to communicate.

https://github.com/aquasecurity/kube-bench/blob/main/job.yaml

Kube-hunter (https://github.com/aquasecurity/kube-hunter) is a Python
script developed by Aqua Security that allows you to analyze the potential
vulnerabilities in a Kubernetes Cluster.
This tool relies on known attack vectors and information about the attack
surface of its environment and allows you to perform a security vulnerability
analysis in a Kubernetes installation.
It allows remote, internal, or CIDR scanning over a Kubernetes cluster and
incorporates an active option through which it tries to exploit the findings. It
can be run locally or through the deployment of a container that is already
prepared.
We can run this tool in several ways: locally from the source code, using a
container, or using a pod. In the case of the basic installation from source
code, we have to install a series of dependencies, clone the GitHub
repository, and run the kube-hunter script. The commands to execute in this
case are:
$ git clone https://github.com/aquasecurity/kube-hunter.git

$ cd ./kube-hunter && pip install -r requirements.txt

$./kube-hunter.py

We can use the following command in the case of using a Docker container:
$ docker run –rm aquasec/kube-hunter

We can use the –cidr parameter to specify a network to scan, as shown here:
$ docker run –rm aquasec/kube-hunter –cidr 192.168.0.0/24

Regarding the scan options, kube-hunter will open an interactive session,
where you can select one of the following scan options. For example, you can
specify remote machines using the -remote option, as follows:
$ kube-hunter.py -remote domain.com

To control the log, we can specify a log level using the -log option. Consider
this example:
$ kube-hunter.py -active -log WARNING

The following image shows an example of a report where we can see some
vulnerabilities related to information disclosure in our cluster:

https://github.com/aquasecurity/kube-hunter

Figure 13.3: Kube-hunter vulnerabilities report

Tip: Kube-Bench and KubeHunter in MiniKube
This interactive scenario aims to deploy a local development Kubernetes
cluster using minikube and run Kube-Bench and KubeHunter:
https://www.katacoda.com/kubesec/scenarios/kubebench

Kubesec
This tool (https://kubesec.io) allows you to analyze the security risk for
Kubernetes resources. Here are some of the main features:

Helps you quantify the risk for Kubernetes resources
Runs against your Kubernetes applications (deployments and pods)
Can be used as a standalone application or as kubectl plugin
https://github.com/controlplaneio/kubectl-kubesec

In the following URL, we can execute kubesec over a Kubernetes security
scenario: https://www.katacoda.com/controlplane/scenarios/kube-sec-
deploy

https://www.katacoda.com/kubesec/scenarios/kubebench
https://kubesec.io
https://github.com/controlplaneio/kubectl-kubesec
https://www.katacoda.com/controlplane/scenarios/kube-sec-deploy

Figure 13.4: Kubernetes security scenario for executing kubesec

In the next section, we will review different plugins that can help us secure
our Kubernetes cluster and offer the best possible performance to our
infrastructure.

Kubectl plugins for managing Kubernetes
There are many plugins for kubectl to interact with and perform all kinds of
operations against our cluster. We have seen that kubectl is the command-
line tool to interact directly with Kubernetes, and it also allows you to create
custom plugins, increasing your possibilities by adding ad-hoc commands to
the existing ones.
We can review some plugins that offer us different security and control
features to make our implementation with Kubernetes much safer. Some
plugins are focused, for example, on the security of the pods, and others in
RABC, and we will even see one that will allow us to sniff all the network
traffic generated to or from a pod.

kubectl-trace
kubectl-trace (https://github.com/iovisor/kubectl-trace) is a plugin that
allows using bpftrace in a Kubernetes cluster with the aim of creating
control points in the execution to manage its flow, or even stop it, detect
problems, and make an in-depth analysis of the infrastructure. You can find
the complete bpftrace manual at

https://github.com/iovisor/kubectl-trace

https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md.

Kubectl-debug
kubectl-debug (https://github.com/aylei/kubectl-debug) is a plugin that
complements perfectly with kubectl-trace for debugging tasks. This allows
you to execute a container within a pod that is running. It shares the
namespace of the processes (PID), network, user, and IPC of the container to
be analyzed, allowing us to debug them without having to install anything
beforehand.
You can see a demonstration of its use at https://github.com/aylei/kubectl-
debug/blob/master/docs/kube-debug.gif.

Ksniff
There is another plugin called ksniff https://github.com/eldadru/ksniff
that lets us analyze all the network traffic of a Kubernetes pod using tcpdump
and Wireshark.
Ksniff uses the data collected by tcpdump associated with a pod and then
sends it to Wireshark to perform the analysis. This plugin is essential if you
are working with microservices since it is tremendously useful for identifying
errors and problems between them as well as their dependencies.

kubectl-dig
Sometimes, getting the information from a Kubernetes cluster requires the
use of several commands, which, in turn, return all kinds of information.
Thanks to this plugin https://github.com/sysdiglabs/kubectl-dig; you can
install a user-friendly user interface to easily see all the information related to
the Kubernetes cluster.
The following screenshot shows the execution of this plugin for getting
information from a Kubernetes cluster:

https://github.com/iovisor/bpftrace/blob/master/docs/reference_guide.md
https://github.com/aylei/kubectl-debug
https://github.com/aylei/kubectl-debug/blob/master/docs/kube-debug.gif
https://github.com/eldadru/ksniff
https://github.com/sysdiglabs/kubectl-dig

Figure 13.5: kubectl-dig plugin execution

We only need to pass the node name as a parameter for the plugin execution,
and it will obtain all detailed and formatted information about it.

Rakkess
Access control to all the elements of a Kubernetes cluster is one of the main
tasks in securing it. From kubectl, we can obtain this information from a
resource, but we cannot get an overview. Rakkess plugin
(https://github.com/corneliusweig/rakkess) allows us to obtain a complete
list in a matrix form of the current situation of access permissions between
users and all server resources.
The following screenshot depicts the execution of this plugin:

https://github.com/corneliusweig/rakkess

Figure 13.6: Rakkess plugin execution

Here, we can see permissions for listing, creating, updating and deleting for
each resource.

Kubestriker
Kubestriker (https://github.com/vchinnipilli/kubestriker) is a platform-
agnostic tool designed to tackle Kubernetes cluster security issues due to
misconfigurations and helps strengthen the overall IT infrastructure of any
organization.
It performs numerous in-depth checks on a range of services and open ports
well across more than one platform, such as self-hosted Kubernetes, Amazon
EKS, Azure AKS, Google GKE, and so on, to identify any misconfigurations
that make organizations an easy target for attackers.
In addition, it helps safeguard against potential attacks on Kubernetes clusters
by continuously scanning for anomalies. Furthermore, it comprises the ability
to see some components of Kubernetes infrastructure and provides visualized
attack paths of how hackers can advance their attacks.
There are several ways to install and run this tool. For example, we can run a

https://github.com/vchinnipilli/kubestriker

Docker container with the following commands:
$ docker run -it --rm -v

/Users/<yourusername>/.kube/config:/root/.kube/config -v

“$(pwd)”:/kubestriker --name kubestriker

cloudsecguy/kubestriker:v1.0.0

$ python -m kubestriker

The following image shows this tool in execution:

Figure 13.7: Kubestriker execution

Another way to install it is using a Python environment and install
dependencies from source code:
Create python virtual environment

$ python3 -m venv env

Activate python virtual environment

$ source env/bin/activate

Clone this repository

$ git clone https://github.com/vchinnipilli/kubestriker.git

Go into the repository

$ cd kubestriker

Install dependencies

$ pip install -r requirements.txt

$ pip install prompt-toolkit==1.0.15

$ pip install -r requirements.txt

Gearing up Kubestriker

$ python -m kubestriker

The tool will perform different tests to verify the security of the cluster. To
do this, you get the Kubernetes running services in the first instance, as
shown in the following figure:

Figure 13.8: Kubestriker execution for Performing Service Discovery section

Here are some of the main configurations that it analyzes:

Scans for IAM Misconfigurations in the cluster, as shown in the
following figure:

Figure 13.9: Kubestriker execution for Scanning for IAM Misconfigurations section

It returns the identified IAM misconfigurations detected after process
scanning, as shown in the following figure:

Figure 13.10: Kubestriker execution for Identified IAM Misconfigurations section

Scans for misconfigured containers, as shown in the following figure:

Figure 13.11: Kubestriker execution for Identified Misconfigured containers section

Scans for Pod Security Policies, Misconfigured Pod Security
Policies, and Network Policies, as shown in the following figure:

Figure 13.12: Kubestriker execution scanning Policies sections

Other tools
Within the Kubernetes ecosystem, we have different tools that can help us,
depending on the security of our infrastructure. Here are some of them:

Checkov (https://www.checkov.io) is a tool that allows us to analyze
security at the infrastructure level as code. We can use it to avoid
incorrect configurations in the cloud if we are using solutions like
Terraform or Cloudformation. It is developed in Python and aims to
increase the adoption of security and compliance with best practices.
Managed Kubernetes Inspection Tool
(https://github.com/darkbitio/mkit) enables you to quickly identify
key security risks to Kubernetes clusters and their resources; for
example, evaluating misconfigurations in the cluster and workloads.
Kubei (https://github.com/Portshift/kubei) allows you to scan all
images used by the Kubernetes cluster, application pods, and system
pods. It comes with multiple options to customize the scan in terms of
the criticality level of the vulnerabilities.
Project Calico (https://docs.projectcalico.org/getting-
started/kubernetes) is a network policy engine for Kubernetes that can
be used as a code network and network security solution for containers,
virtual machines, and native host-based workloads.
Kubeaudit (https://github.com/Shopify/kubeaudit) is a command
line tool and a Go package to audit Kubernetes clusters for various
security concerns. It allows us to find security misconfigurations in
Kubernetes resources and gives tips on how to resolve these issues.
Audit2rbac (https://github.com/liggitt/audit2rbac) takes a
Kubernetes audit log and username as input and generates RBAC roles
and binding objects that cover all the API requests made by that user.

Here are some of the main advantages of using this type of tool:

Identifies misconfigurations and vulnerabilities in clusters, containers,
and pods
Provides solutions to correct misconfigurations and eliminate
vulnerabilities
Provides a real-time view of the status of the cluster

https://www.checkov.io
https://github.com/darkbitio/mkit
https://github.com/Portshift/kubei
https://docs.projectcalico.org/getting-started/kubernetes
https://github.com/Shopify/kubeaudit
https://github.com/liggitt/audit2rbac

Gives more confidence to the DevOps team to develop and deploy the
applications in a Kubernetes cluster

Analyzing Kubernetes vulnerabilities and CVEs
In this section, we will review vulnerabilities we can find in Kubernetes and
the solutions provided for solving these security issues. You can see the
vulnerabilities and CVEs related to Kubernetes, organized by categories, at
the following links:

https://www.cvedetails.com/vendor/15867/Kubernetes.html

The following image shows the number of vulnerabilities organized by
category in the last years:

Figure 13.13: Kubernetes vulnerabilities organized by categories

Kubernetes vulnerabilities
One of the most critical vulnerabilities detected in Kubernetes has been the
one we can find in the CVE database with the code CVE-2018-1002105
(http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-1002105).
The vulnerability has been identified in the Kubernetes API server and has
been categorized as critical with punctuation CVSS 9.8. The vulnerability
allows any authenticated Kubernetes user to obtain administrative access to

https://www.cvedetails.com/vendor/15867/Kubernetes.html
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-1002105

the cluster using standard security settings and allows the escalation of
Kubernetes privileges through a specially designed proxy request.
Note that all Kubernetes-based services and products, including Red Hat
products such as OpenShift container platform, are affected, so we can also
find the reference in the RedHat database.
We can see affected products by this vulnerability at
https://access.redhat.com/security/cve/cve-2018-1002105.
The following image shows the information related with these Red Hat
products:

Figure 13.14: Red Hat products affected

The vulnerability is due to a vulnerable TCP connection, through which a
remote attacker could send specially manipulated requests to one of the added
APIs of the Kubernetes API server and escalate privileges using that service’s
TLS credentials. The problem is that an unauthenticated user can access the
API to create new services that could be used to inject malicious code.
Any user can establish a connection through the Kubernetes API to a server
in the backend. Once the connection is established, an attacker can send
arbitrary requests directly to that service, and these requests are authenticated
with the Transport Layer Security (TLS) credentials of the Kubernetes
server.
The bug can be used in two ways: one related to users with execution
permissions over a group of containers that share storage and network
resources. You can realize privilege escalation at the cluster-admin level and

https://access.redhat.com/security/cve/cve-2018-1002105

execute any process in a container.
Ultimately, an attacker who manages privilege escalation through any of the
APIs could access a pod in execution, list the pods in a specific node, and
execute arbitrary commands or reveal sensitive information.
The vulnerability has already been solved by the Kubernetes development
team, and it is recommended to update it with patched versions. You can find
more information in the Kubernetes GitHub repository at
https://github.com/kubernetes/kubernetes/issues/71411.
Another critical vulnerability discovered in Kubernetes is the CVE-2020-
10749 (https://nvd.nist.gov/vuln/detail/CVE-2020-10749). This
vulnerability enables Man-In-The-Middle (MITM) attacks, where an
attacker can intercept network traffic to a pod in a Kubernetes cluster and
impersonate clients.
This vulnerability was found in all versions of the networking/plugins
container before version 0.8.6, which allows malicious containers in
Kubernetes clusters to perform MITM attacks. A malicious container can
exploit this flaw by sending rogue IPv6 router advertisements to the host or
other containers to redirect traffic to the malicious container.
Consider an IPv4-only cluster, where IPv6 addresses have never been routed.
If an attacker gains access to one of your pods with the CAP_NET_RAW
capability, it can send “malicious” IPv6 packets, indicating that the attacker’s
pod is an IPv6 router that knows how to resolve all IPv6 addresses.
This way, vulnerable container network deployments could send all traffic for
which DNS returns an IPv6 record to the attacker’s pod, allowing them to see
this traffic and spoofing client-server communication.
An attacker would have to control one of the pods in their cluster to exploit
this vulnerability. This can happen if they unintentionally install a malicious
pod or if an attacker uses other means to gain control of one of their pods.
The result is that any user could mount a directory of the host machine from
the container and access the filesystem, managing to escape from the
container.
This vulnerability could disable the CAP_NET_RAW capability on your
pods by default, enabling it only for pods that need it. From a certificate point
of view, it is important to use TLS with certificate validation in requests
made to the Kubernetes API.

https://github.com/kubernetes/kubernetes/issues/71411
https://nvd.nist.gov/vuln/detail/CVE-2020-10749

Another vulnerability that is considered critical is that of the CVE-2020-8559
code that allows the escalation of privileges of a compromised node within
the cluster.
This vulnerability is based on the fact that if an attacker can intercept certain
requests to the Kubelet process, they can also send a redirect response using
the original request’s credentials.
If multiple clusters share the same certificate authority and authentication
credentials trusted by the client, this vulnerability can allow an attacker to
redirect the client to another cluster over which requests would be spoofed
using the original credentials.
With this configuration, this vulnerability should be considered high severity
and requires an attacker to first compromise a node in the cluster. We can
find different proofs of concept that aim to exploit this vulnerability in the
following repositories:

https://github.com/tabbysable/POC-2020-8559
https://github.com/tdwyer/CVE-2020-8559

Vulnerability with PodSecurityPolicy
Another vulnerability is related to the HostPath type of PersistentVolumes
that allows you to bypass the PodSecurityPolicy directive.
In Kubernetes, PodSecurityPolicy is one of the resources that allows the
admission controller to decide whether a pod can be created by a service
account depending on its configuration. For example, if privileged mode pods
are not allowed in a PodSecurityPolicy, any pod that tries to create privileged
mode from that service account will fail.
This usually works, but some security audits have found cases in which the
mounting of hostPath volumes is done instead of using a persistent volume
even though the definition of the pod is restricted. This restriction is not taken
into account if you are working with a Persistent Volume Claim (PVC).
The result is that any user could mount a directory of the host machine from
the container and have access to the filesystem, managing to escape from the
container.
The solution to this vulnerability has been to document the
PodSecurityPolicy does not limit the types of persistent volumes, and these

https://github.com/tabbysable/POC-2020-8559
https://github.com/tdwyer/CVE-2020-8559

should only give allowed users access to cluster resources.

Vulnerability in the use of certificates
The different Kubernetes services use X.509 certificates to ensure the
authentication, authorization, and security of the data transported between
them. The API server acts as the certifying entity and signs and sends the
certificates to the rest of the services.
The problem occurs when one of the nodes is compromised (by an intrusion,
a suspicious use of resources, a strange behavior of a container, etc.). If it is
suspected that the certificate may have been compromised, one of the
certificates cannot be revoked individually. Instead, the entire chain of system
certificates must be revoked, regenerated, and sent again to the different
nodes and services.
The solution will go through having a list of revoked certificates. This would
imply having a certificate server in which you could individually revoke
whatever you wanted, and that would stamp the date and time of the
certificate before use to ensure that it is still valid.

Conclusion
With the objective of ensuring that developers and DevOps get the best
possible performance and security in the Kubernetes infrastructure, we have
analyzed the state of Kubernetes security in this chapter. This includes best
practices, the latest vulnerabilities discovered, and the main projects we can
find in the Kubernetes ecosystem for checking the security of a Kubernetes
cluster.
From the user’s point of view, it is important to keep track of the
vulnerabilities that arise, in addition to being well documented in order to
understand the internal structure of Kubernetes with the strengths and
weaknesses of its components, its attack surface, and the possible threats that
exist in a system where we have deployed applications that use Kubernetes
and container-based systems as a base.
In this chapter, we reviewed Kubernetes security principles and some tools,
like Kubernetes bench for security project as an application that checks
whether Kubernetes is implemented securely and other plugins for managing

the Kubernetes cluster securely.
In the next chapter, we will review tools related to observability and
monitoring in Kubernetes for getting metrics about applications deployed in
the cluster.

Points to remember
KubeBench is a tool that performs an in-depth analysis of your
Kubernetes environment. The tool integrates more than 100 security
tests and parameters, so you get a clear picture of how safe your
environment is at the end of the process.
Kube-hunter offers a list of tests that are run both actively and
passively and allow us to identify most of the vulnerabilities that we can
find in a Kubernetes cluster.

Multiple choice questions
1. Which tool is a platform-agnostic tool designed to tackle Kubernetes

cluster security issues due to misconfigurations and helps strengthen the
overall IT infrastructure of any organization?

a. Kubesec
b. Kubestriker
c. Kube-bench
d. Kube-hunter

2. Which is the command you can use for deploying jube-hunter as a
Docker container?

a. $ docker run –rm docker/kube-hunter
b. $ docker run –rm kube-hunter
c. $ docker run –rm kube-hunter/aquasec
d. $ docker run –rm aquasec/kube-hunter

Answers

1. b
2. d

Questions
1. Which tool checks if Kubernetes is implemented securely by executing

controls documented in CIS Kubernetes Benchmark?
2. Which tool is a Python script developed by Aqua Security that allows

you to analyze the potential vulnerabilities in a Kubernetes Cluster?
3. Which tool allows us to analyze security at the infrastructure level as

code and can be used to avoid incorrect configurations?

Key terms
KubeBench is an application developed in Golang that checks if
Kubernetes is implemented securely by executing controls documented
in CIS Kubernetes Benchmark.
Kubesec is an open source security risk analysis tool for Kubernetes
resources. Validate the configuration and manifest files used for
Kubernetes cluster operations and deployment, and you can install it on
your system using its container image, its binary package, or a kubectl
plugin.

O

CHAPTER 14
Observability and Monitoring in

Kubernetes
bservability and monitoring are important parts of the maintenance of
applications for getting metrics about application behavior.

This chapter reviews capabilities that are recommended to be implemented
when running Kubernetes in production. We will first analyze observability
and monitoring in the context of Kubernetes, and then we will review
Kubernetes dashboard for getting metrics in your cluster. Finally, we will
look at the Kubernetes stack for observability and monitoring with
Prometheus and Grafana.

Structure
We will cover the following topics in this chapter:

Introducing observability and monitoring
Observability in a Kubernetes cluster
Monitoring resources in a Kubernetes cluster
Kubernetes dashboard
Enhancing observability and monitoring with Prometheus and Grafana

Objectives
After studying this chapter, you will understand observability and monitoring
and learn about observability in a Kubernetes Cluster, Kubernetes dashboard,
and enhancing observability and monitoring with Prometheus and Grafana.

Introducing observability and monitoring
Monitoring is an essential part of the infrastructure. Thanks to it, we can

obtain information to take scaling measures, and it will help us understand
what is happening and how our cluster behaves.
By definition, monitoring is a real-time process that encompasses the
collection, processing, and analysis of quantifiable data from a system. It
involves many aspects, and it can contemplate everything from knowing the
status of infrastructure and services to having a complex, resilient system
capable of anticipating events, depending on the needs and ambitions of who
needs it.
Monitoring has ceased to be something purely technical and has become a
way of obtaining valuable information that supports decision making and
contributes to improving the conditions of our customers, reducing costs,
evolving our products, and even creating new ones. In this sense, a
monitoring system aims to be able to know our system and its behavior in the
face of interactions with our clients.
When facing the construction of a monitoring system, it is important to take
into account the objective we are pursuing and the users of the information.
Once these are identified, we can define the metrics and tools that help us
collect data in each part of our application architecture.
Currently, development or architecture based on microservices is one of the
strongest and most used paradigms. Similarly, different design patterns have
emerged to be able to implement these types of architectures based on
microservices and the cloud.
Microservices architectures can grow rapidly, so we need to know that
everything is working correctly. It is also important to determine if our
system is degrading or if, for example, we are not capable of complying with
Service Level Agreement (SLAs).
The monitoring of our system will be constantly providing metrics and values
to analyze the correct operation. In recent years, other patterns have emerged
to be able to know if all our development is working as it should. At this
point, observability can be considered as a new form of monitoring.
Observability details when and why an error occurs. Four fundamental
components are needed to achieve observability:

Open instrumentation: Open instrumentation collects vendor-specific
or open source telemetry data from a service, host, application,
container, or any other entity that produces data. This enables full-face

visibility of critical infrastructure and applications. It also prepares
teams for the future as you introduce new platforms and data types to
the system.
Correlation and context: The collected telemetry data must be
analyzed so that all data sources can be connected. You also need to
incorporate metadata to allow correlation between various parts of the
system and your data. Together, these actions create context and shape
meaning.
Programmability: Organizations need the flexibility to create their
own context with custom applications based on their goals. For
example, an application can help teams calculate and visualize the
impact of errors on the end user.
Artificial intelligence for IT operations (AIOps). Unlike traditional
incident management tools, AIOps solutions use machine learning
models to automate IT operations processes. We can automatically
correlate, add, and prioritize incident data with AIOps.

Observability in a Kubernetes cluster
The Kubernetes cluster itself exposes cluster metrics and Kubernetes has
Metrics-Server, an aggregator of data on the use of resources, since version
1.8. Thanks to Metrics-Server, Kubernetes can provide information on the
use of resources through the CLI kubectl.
For example, kube-state-metrics exposes the data obtained by the Kubernetes
API so that other tools like Prometheus or another data collector can consume
this data.
We can use the open source software Prometheus to collect metrics. It is a
monitoring system that communicates with the Kubernetes API to record the
metrics that the user requests, and it uses time series databases to store them.
It uses its own query language, PromQL, and exposes an HTTP API for
integration with other services that allow creating new requests, consulting
already registered metrics, configuring alerts, and so on. Grafana is one of the
services it is regularly integrated with.

Cluster monitoring

Monitoring of the containers allows us to know the status of each one
individually, but the problem of having multiple containers arises when
creating a cluster, so reviewing all of them can be a repetitive and tedious
task prone to errors.
Within a Kubernetes cluster, multiple objects can be running concurrently; a
single namespace with a service includes, at least, that there is a pod
executing a deployment with a container, therefore, with the presence of so
many objects, which can also vary over time (e.g. rescaled), find where an
error occurs when the cluster fails it becomes an impossible task.
In addition, due to the ephemeral nature of containers, the container may
disappear from the moment the failure occurs until the moment of debugging.
This makes log files a fundamental and indispensable tool.
Despite all this, Kubernetes has a great capacity to automatically recover
from failures, such as restarting a pod or balancing the load on the nodes.
However, sometimes it is not enough, and the process must be performed
manually; For these cases, it is necessary to monitor the execution of the
cluster using different tools, from Kubernetes own, such as the control panel,
to specialized external software.
Two main factors must be taken into account to monitor a process: what can
be monitored and how to do it. As for what to monitor, Kubernetes itself
offers the ability to know:

CPU usage: Monitoring reveals system and user CPU usage as well as
read and write waits. It is useful for finding bottlenecks in deployment.
Memory usage: Shows the amount of memory available and in use for
both free memory and cache.
Disk usage: Indicates disk space. The lack of disk space can cause a
failure in the execution of a program, so we must keep an eye on it.
Network bandwidth: Offers the bandwidth in use and the bandwidth
available. Although it seems impossible to consume the bandwidth now,
it is important to monitor it if suspicious behavior, such as a DDoS
attack, occurs.
Pods resources: You can access the different resources that a specific
Pod is using, this information being used by the scheduler and placing
the pods in nodes where there are available resources (auto-scaling).

Regarding how to do it, the easiest way for the above-mentioned metrics is to
use the Kubernetes control panel.
However, the monitoring metrics that we have by default are sometimes
insufficient and we need to expand the capabilities, which is why Kubernetes
allows the use of custom metrics. This is where the questions come up again:

What custom metrics can the cluster read?
How do you read them?

The available metrics are the ones written in such a way that Kubernetes API
can access them, and external programs must be used to access them. As
mentioned earlier, the one most used by the community is Prometheus
https://prometheus.io.

Kubernetes dashboard
In addition to the command line, Kubernetes provides a web user interface
where you can view and interact with the cluster. It can be used both to
deploy applications to a Kubernetes cluster and to troubleshoot or manage the
existing resources.
https://github.com/kubernetes/dashboard
The interface shows the current state of the cluster in real-time as well as all
the objects that compose it, being able to interact with them so a service can
be scaled or a pod can be restarted. Start it using the following command to
use it:
$ kubectl apply -f

https://raw.githubusercontent.com/kubernetes/dashboard/master/aio/deploy/recommended.yaml

In the preceding command, we can see we are using the YAML file from the
official Kubernetes website. Next, we can verify that it has been deployed
correctly. The containers that are part of this solution are:
$ docker ps

docker.io/kubernetesui/dashboard v2.0.0-

beta3 6feddba9df747 32MB

docker.io/kubernetesui/metrics-

scraper v1.0.1 709901356c115 16.1MB

This tool provides an interface with token authentication and a dashboard

https://prometheus.io
https://github.com/kubernetes/dashboard

where we have all the main elements of Kubernetes. Additionally, when we
select a node, it returns us a large amount of information about it:

Figure 14.1: Accessing Kubernetes Dashboard with authentication token

The preceding command will create a pod from the official Kubernetes
repository specs on GitHub. You can check the system pods through the
following command to verify that Kubernetes Dashboard has been deployed
correctly:
$ kubectl get pods --all-namespaces

NAMESPACE NAME

READY STATUS RESTARTS AGE

kube-system coredns-66bff467f8-47mbp

1/1 Running 0 55m

kube-system coredns-66bff467f8-wws72

1/1 Running 0 55m

kube-system dash-kubernetes-dashboard-6cc989d574-vp5t8

1/1 Running 0 55m

kube-system etcd-

controlplane 1/1 Running

0 55m

kube-system kube-apiserver-

controlplane 1/1 Running 0 55m

kube-system kube-controller-manager-controlplane

1/1 Running 0 55m

kube-system kube-flannel-ds-amd64-

6msg8 1/1 Running 0 55m

kube-system kube-flannel-ds-amd64-

hj2gx 1/1 Running 0 55m

kube-system kube-proxy-8zpvj

1/1 Running 0 55m

kube-system kube-proxy-ct5fk

1/1 Running 0 55m

kube-system kube-scheduler-

controlplane 1/1 Running 0 55m

We can also use the system namespace, which is kube-system, with the
following command to check these pods:
$ kubectl get pods --namespace kube-system

NAME READY

STATUS RESTARTS AGE

coredns-66bff467f8-h8n2h 1/1 Running

0 2m37s

coredns-66bff467f8-tzlcf 1/1 Running

0 2m37s

dash-kubernetes-dashboard-6cc989d574-nxsxt 1/1 Running

0 2m37s

etcd-controlplane 1/1 Running 0

2m47s

kube-apiserver-controlplane 1/1 Running 0

2m47s

kube-controller-manager-controlplane 1/1 Running 0

2m47s

kube-flannel-ds-amd64-96r74 1/1 Running

0 2m26s

kube-flannel-ds-amd64-tphcr 1/1 Running

0 2m37s

kube-proxy-476mg 1/1 Running

0 2m37s

kube-proxy-4dm82 1/1 Running

0 2m26s

kube-scheduler-controlplane 1/1 Running

0 2m47s

In both cases, you should see a pod named dash-kubernetes-dashboard-*
in the running state:

Figure 14.2: Pods in Kubernetes Dashboard

The interface allows multiple options to choose from, both pods and nodes,
volumes or namespaces. However, the part that interests us for the
monitoring is the visualization of the memory and CPU usage of the
deployments within the cluster.
We can check the nodes and their status with the following command:
$ kubectl get nodes

NAME STATUS ROLES AGE VERSION

controlplane Ready master 13m v1.18.0

node01 Ready <none> 12m v1.18.0

Similarly, we can use the interface to verify this aspect:

Figure 14.3: Nodes in Kubernetes Dashboard

We can see details about dash-kubernetes-dashboard deployment in the
Deployments section:

Figure 14.4: Deployments in Kubernetes Dashboard

Figure 14.5: Deployments in Kubernetes Dashboard

To test this tool, we can launch a couple of pods to be able to see the
operation of the dashboard and then deploy the dashboard to be able to
observe what happens in our infrastructure.
We can create the YAML file where we will define some pods with nginx
and deploy it through a ReplicationController:
$ cat nginx_rc.yaml

apiVersion: v1

kind: ReplicationController

metadata:

name: nginx

spec:

replicas: 2

selector:

app: nginx

template:

metadata:

name: nginx

labels:

app: nginx

spec:

containers:

- name: nginx

image: nginx

ports:

- containerPort: 80

We can also use the Kubernetes Dashboard interface to create the replica
controller:

Figure 14.6: Creating Replica Controller in Kubernetes Dashboard

The following commands are used to create the pods and verify that they
have been deployed successfully:
$ kubectl create -f nginx_rc.yaml

$ kubectl get rc

NAME DESIRED CURRENT READY AGE

nginx 2 2 2 4m25s

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

nginx-bbhsw 1/1 Running 0 4m44s

nginx-cksz6 1/1 Running 0 4m44s

In the Replication Controllers section, we can see details about nginx
deployment with two pods:

Figure 14.7: Nginx Replica Controller in Kubernetes Dashboard

We can see the two pods in execution if we go into the details:

Figure 14.8: Nginx Pods in Kubernetes Dashboard

An interesting operation that we can perform from the same interface is one
that allows us to scale to more nodes in order to increase availability within
the cluster.

We can execute one instance of the nginx container with the following
command:
$ kubectl create deployment nginx --image=nginx

deployment.apps/nginx created

Figure 14.9: Scale a resource in Kubernetes Dashboard

The preceding action is equivalent to the following command:
$ kubectl scale -n default deployment nginx --replicas=3

deployment.apps/nginx scaled

Within the detail of the cluster nodes we can obtain the resources that are
used at the memory and CPU level:

Figure 14.10: Nodes Allocation in Kubernetes Dashboard

This information would be the equivalent to what we can see when executing
the following command:

$ kubectl describe node node01

Name: node01

Roles: <none>

Labels: beta.kubernetes.io/arch=amd64

beta.kubernetes.io/os=linux

kubernetes.io/arch=amd64

kubernetes.io/hostname=node01

kubernetes.io/os=linux

Annotations: flannel.alpha.coreos.com/backend-data: null

flannel.alpha.coreos.com/backend-type: host-gw

flannel.alpha.coreos.com/kube-subnet-manager: true

flannel.alpha.coreos.com/public-ip: 172.17.0.29

kubeadm.alpha.kubernetes.io/cri-socket:

/var/run/dockershim.sock

node.alpha.kubernetes.io/ttl: 0

volumes.kubernetes.io/controller-managed-attach-detach:

true

Addresses:

InternalIP: 172.17.0.29

Hostname: node01

Capacity:

cpu: 2

ephemeral-storage: 199545168Ki

hugepages-1Gi: 0

hugepages-2Mi: 0

memory: 4039104Ki

pods: 110

Allocatable:

cpu: 2

ephemeral-storage: 183900826525

hugepages-1Gi: 0

hugepages-2Mi: 0

memory: 3936704Ki

pods: 110

System Info:

Machine ID: df10c9c4bf9f5645d7ec1ae361195adf

System UUID: df10c9c4bf9f5645d7ec1ae361195adf

Boot ID: b5c41011-96ac-49ba-bcfd-

dbfb7594a8b8

Kernel Version: 4.15.0-122-generic

OS Image: Ubuntu 18.04.5 LTS

Operating System: linux

Architecture: amd64

Container Runtime Version: docker://19.3.13

Kubelet Version: v1.18.0

Kube-Proxy Version: v1.18.0

PodCIDR: 10.244.1.0/24

PodCIDRs: 10.244.1.0/24

Non-terminated Pods: (11 in total)

Namespace

Name CPU Requests CPU

Limits Memory Requests Memory Limits AGE

--------- ---- -

----------- ---------- --------------- ------------- ---

default nginx-

57jlq 0 (0%) 0

(0%) 0 (0%) 0 (0%) 26m

default nginx-

6znxm 0 (0%) 0

(0%) 0 (0%) 0 (0%) 26m

default nginx-f89759699-

987rb 0 (0%) 0 (0%) 0

(0%) 0 (0%) 16m

default nginx-f89759699-

mkrq2 0 (0%) 0 (0%) 0

(0%) 0 (0%) 13m

default nginx-f89759699-

tbjlh 0 (0%) 0 (0%) 0

(0%) 0 (0%) 16m

default random-logger-7687d48b59-

dlmc8 0 (0%) 0 (0%) 0 (0%)

0 (0%) 17m

default random-logger-7687d48b59-

frgds 0 (0%) 0 (0%) 0 (0%)

0 (0%) 20m

default random-logger-7687d48b59-

s2lwd 0 (0%) 0 (0%) 0 (0%)

0 (0%) 17m

kube-system dash-kubernetes-dashboard-

6cc989d574-gdm64 100m (5%) 2 (100%) 200Mi (5%)

200Mi (5%) 37m

kube-system kube-flannel-ds-amd64-

zm7c2 100m (5%) 100m (5%) 50Mi

(1%) 50Mi (1%) 37m

kube-system kube-proxy-

hc2jh 0 (0%) 0 (0%) 0

(0%) 0 (0%) 37m

Allocated resources:

(Total limits may be over 100 percent, i.e., overcommitted.)

Resource Requests Limits

-------- -------- ------

cpu 200m (10%) 2100m (105%)

memory 250Mi (6%) 250Mi (6%)

ephemeral-storage 0 (0%) 0 (0%)

hugepages-1Gi 0 (0%) 0 (0%)

hugepages-2Mi 0 (0%) 0 (0%)

Events:

Type Reason

Age From Message

---- ------ ---- ---

- -------

Normal Starting 37m kubelet,

node01 Starting kubelet.

Normal NodeHasSufficientMemory 37m (x2 over 37m) kubelet,

node01 Node node01 status is now: NodeHasSufficientMemory

Normal NodeHasNoDiskPressure 37m (x2 over 37m) kubelet,

node01 Node node01 status is now: NodeHasNoDiskPressure

Normal NodeHasSufficientPID 37m (x2 over 37m) kubelet,

node01 Node node01 status is now: NodeHasSufficientPID

Normal NodeAllocatableEnforced 37m kubelet,

node01 Updated Node Allocatable limit across pods

Normal Starting 37m kube-

proxy, node01 Starting kube-proxy.

Normal NodeReady 37m kubelet,

node01 Node node01 status is now: NodeReady

Tip: Basic Kubernetes Observability
This interactive scenario aims to explore the basic techniques for observing
the state of Kubernetes using metrics.
https://www.katacoda.com/javajon/courses/kubernetes-observability/basics

Other Kubernetes Dashboards
Here are some of the other dashboards we can find in the Kubernetes
ecosystem:

Kube-ops-view https://codeberg.org/hjacobs/kube-ops-view : This
project presents us with a dashboard designed for large servers, where
we have a significant volume of pods that we need to review at a glance.
Kubeview https://github.com/benc-uk/kubeview : This project
focuses on representing relationships between objects in Kubernetes.
Weave Scope https://github.com/weaveworks/scope : It is intended to
be a tool that covers all possible elements in a deployment with docker
as runtime and weave as network manager.
Skooner https://github.com/skooner-k8s/skooner : It is a dashboard

https://www.katacoda.com/javajon/courses/kubernetes-observability/basics
https://codeberg.org/hjacobs/kube-ops-view
https://github.com/benc-uk/kubeview
https://github.com/weaveworks/scope
https://github.com/skooner-k8s/skooner

similar to the official one and offers the possibility of viewing all the
objects, along with the related events.
Ktop https://github.com/ynqa/ktop : Application that allows showing
the status of a Kubernetes cluster that works directly in the terminal.
Kubenav https://github.com/kubenav/kubenav : Application that
provides an overview of all the resources in a Kubernetes cluster,
including current status information for workloads. The details view for
resources provides additional information. We can view logs and events
or get a shell into a container. We can also edit and delete resources or
scale our workloads within the app.
K9s https://k9scli.io : K9s is a terminal-based UI to interact with our
Kubernetes clusters. This project aims to make it easier to navigate,
observe, and manage your deployed applications in the wild. K9s
continually watches Kubernetes for changes and offers subsequent
commands to interact with your observed resources.

Enhancing observability and monitoring with
Prometheus and Grafana
We need external tools to have panels with cluster information, as well as
alarms that give us precise information on the status of the cluster. The
Prometheus-Grafana combination is the most widely used today. These two
tools are open source and have a large community that is improving and
adapting them to the new needs of users.

Prometheus
Prometheus is an open source monitoring and alert toolkit. It was developed
in 2012 by the SoundCloud company, but later it would become an open
source project, joining the Cloud Native Computing Foundation in 2016 as
the second project hosted after Kubernetes.
Prometheus has the metrics constantly and actively, that is, it is in charge of
reading the required data at all times instead of waiting for a response that
may not match the waiting times estimated by the user. Furthermore, the
software can send alerts according to preconfigured rules to the manager
called alertmanager.

https://github.com/ynqa/ktop
https://github.com/kubenav/kubenav
https://k9scli.io

This manager is in charge of managing the alarms, grouping the received
ones, and sending them to another application in charge of transmitting the
message. It is also possible to use other software that allows you to view all
the data read, such as the Kubernetes user interface itself.

https://prometheus.io/docs/introduction/overview
https://github.com/prometheus/prometheus

Prometheus allows two types of possible rules to be configured and evaluated
at predefined time intervals:

Recording rules, which allows you to execute actions that are required
repeatedly or are computationally expensive and save the result as a
new one.
Alert rules, which allow defining conditions under which the program
sends a notification. These alerts have to be written in the Prometheus
language for Prometheus to understand and execute them.

The software contains a local database on disk to store the corresponding
data, but it can also be used on remote systems. There are several
functionalities that make up Prometheus, the most notable ones being:

Alertmanager manages the alerts sent by the applications or the
Prometheus server itself.
The Prometheus operator provides monitoring definitions to the
Kubernetes services and the Prometheus deployment, making the
configuration within the cluster native by managing the necessary
instances.

One of the outstanding advantages of Prometheus is its query language,
which is quite flexible. It also has a pull model for metric collectors and a
discovery service for the objectives that greatly facilitates integration with
tools such as Kubernetes, which has elements that are created and destroyed,
such as Pods.
Its architecture is designed to be highly scalable, which is ideal for
environments where the probability of scaling is high and for already scaled
environments that require efficient configurations.

https://prometheus.io/docs/introduction/overview
https://github.com/prometheus/prometheus

Prometheus architecture
Prometheus works well to record numerical time series, for example, those
based on time series data, both machine-centric monitoring and microservice-
based architectures monitoring. Here are some of the main features:

It provides a multidimensional data model and a powerful query
language (PromQL).
Collects information from more than 5000 metrics automatically, with
zero configuration, zero dependencies, and zero maintenance.
Prometheus libraries offer four types of metrics: counter, gauge,
histogram, and summary.

Prometheus is made up of multiple components, including:

Prometheus server: It is the main component in charge of collecting
and storing application metrics in a time series database.
Service discovery: Prometheus has connectors with the main service
discovery on the market and can auto-discover applications
automatically in real time. This is essential when working with
containers that are constantly changing their IP address.
Client libraries: These are the libraries in charge of exposing the
internal metrics of the application to be monitored in Prometheus format
(CPU, Memory, Threads, GC) so that they can be collected by the
Prometheus server.
Alert manager: It is the component in charge of managing the alerts
sent by the Prometheus server.

Prometheus installation
One of the ways to start a Prometheus server on Kubernetes is through the
Prometheus operator, which provides native Kubernetes deployment and
management, along with related monitoring components.
https://github.com/prometheus-operator/prometheus-operator
This project aims to simplify and automate the configuration of a
prometheus-based monitoring stack for Kubernetes clusters. The installation
of the operator can also be done through the following Helm chart developed

https://github.com/prometheus-operator/prometheus-operator

for it using the following YAML file.
https://github.com/helm/charts/blob/master/stable/prometheus-
operator/values.yaml
By default, this chart will display both the operator and the Prometheus itself,
with the corresponding alertManager and grafana, all configurable in the
values.yaml file discussed earlier.
You can find more information about the helm prometheus chart at
https://artifacthub.io/packages/helm/edu/prometheus.
These are the helm commands that we can use to install this operator. The
first step is to create the namespace where Prometheus will be deployed:
Create namespace

kubectl create namespace prometheus-system

We can use the following command using the values.yaml file to deploy it
in Kubernetes:
Install Prometheus operator using helm

helm install stable/prometheus-operator --name=prometheus-

operator --namespace=monitoring -f prometheus/values.yml

A specific namespace called monitoring has been created for this
deployment with the preceding command. Once it is finished, you will be
able to access the server using these two commands:
$ export POD_NAME=$(kubectl get pods --namespace monitoring -l

“app=prometheus,component=server” -o

jsonpath=”{.items[0].metadata.name}”)

$ kubectl --namespace monitoring port-forward $POD_NAME 9090

Another way to start Prometheus is through a Docker Container with a user
interface available on port 9090. Prometheus uses the following configuration
file to scrape the targets and collect and store the metrics before making them
available via API that allows dashboards, graphing, and alerting.
prometheus.yml

global:

scrape_interval: 15s

evaluation_interval: 15s

scrape_configs:

- job_name: ‘prometheus’

static_configs:

https://github.com/helm/charts/blob/master/stable/prometheus-operator/values.yaml
https://artifacthub.io/packages/helm/edu/prometheus

- targets: [‘127.0.0.1:9090’, ‘127.0.0.1:9100’]

labels:

group: ‘prometheus’

The following command launches the container with the prometheus
configuration. Any data created by prometheus will be stored on the host, in
the /prometheus/data directory. The data will be persisted when we update
the container.
$ docker run -d --net=host \

> -v /root/prometheus.yml:/etc/prometheus/prometheus.yml \

> --name prometheus-server \

> prom/prometheus

After executing the previous command, we have the Prometheus server
running:
docker ps

CONTAINER ID IMAGE

COMMAND CREATED

STATUS PORTS NAMES

94c3270d8855 prom/prometheus “/bin/prometheus --c…” 9

minutes ago Up 9

minutes prometheus-server

You should see the Prometheus interface if you access
http://localhost:9090:

Figure 14.11: Prometheus interface

We need to run a Prometheus node exporter to collect metrics related to a
node. Prometheus has many exporters that are designed to output metrics for
a particular system, such as Postgres or MySQL.
We are starting the Node Exporter container with the following command.

By mounting the host /proc and /sys directory, the container has access to
the necessary information to report on.
$ docker run -d \

> -v “/proc:/host/proc” \

> -v “/sys:/host/sys” \

> -v “/:/rootfs” \

> --net=”host” \

> --name=prometheus \

> quay.io/prometheus/node-exporter:v0.13.0 \

> -collector.procfs /host/proc \

> -collector.sysfs /host/sys \

> -collector.filesystem.ignored-mount-points

“^/(sys|proc|dev| host|etc)($|/)”

You can view the raw metrics with the following command:
$ curl localhost:9100/metrics

The following interface shows a text box where you can enter queries about
the metrics it is collecting:

Figure 14.12: Prometheus metrics

The interface offers the possibility of obtaining the different metrics through
auto completion:

Figure 14.13: Prometheus metrics searching

By selecting a metric, we can see the values it returns through the different
endpoints:

Figure 14.14: Prometheus details metrics

You can see examples of queries to the Prometheus API in the official
documentation at
https://prometheus.io/docs/prometheus/latest/querying/basics.
In the Graph tab, we can see the graphs that are generated for the different
metrics:

https://prometheus.io/docs/prometheus/latest/querying/basics

Figure 14.15: Prometheus details metrics

Tip: Getting started with Prometheus
The goal of this interactive scenario is to learn how to start collecting
system metrics with Prometheus.

https://www.katacoda.com/courses/prometheus/getting-started

Figure 14.16: Getting started with Prometheus

Collecting metrics

https://www.katacoda.com/courses/prometheus/getting-started

In this process, one of the main tasks is the identification of metrics. When
we talk about metrics, we refer to data that is obtained from the source and
has not been processed (number of requests, available disk space, number of
connections, etc.). In turn, metrics can be absolute or relative.
The absolute ones are those for which there is no previous reference value,
for example, the number of transactions carried out, number of connected
users, etc. On the other hand, the relative ones refer to those that are based on
a previous value and have a value at a given moment, for example, the
availability of 45% of memory.
The indicators, on the other hand, are the result of manipulating the metrics
(attention capacity = number of requests/connections) to obtain information
on behavior based on different variables. Both the metrics and the indicators
can give us information to make business decisions related to the
functionalities of the product or platform where it is located.
The performance metrics give us information about the operation of the
components of our system (infrastructure, devices, networks), for example,
the use of the CPU, the amount of memory consumed, the available disk
capacity, the number of active processes and devices, the number of failures
in the system, the number of available networks, the status of communication
between devices, and so on.
These values allow us to have a vision on the use of resources and support the
tasks of the operations team. It’s simple reading guides us in the management
of the capacity of the platform to obtain better results in cost or performance
at a certain moment.
With technological evolution, the amount of information begins to grow and
more data is obtained, therefore, it is necessary to measure other aspects
related to the application and interaction with the user: the services that are
available, the number of users who use it an application, the number of
requests we can support simultaneously, the response time, the number of
errors and their type, and the time it takes to recover and many others.
Information is acquired at different levels of the system architecture, at the
lowest layer through communication protocols and at the application level
through the registry and the application server information itself.
Although these metrics continue to provide low-level information, they help
understand the behavior of the system and its interaction. If we analyze this

data, we will have information that continues to support operational
management and involves development teams who begin to know when and
how the user is using their application.

Tip: Graphing Docker metrics with Prometheus
The goal of this interactive scenario is to collect and graph Docker Metrics
with Prometheus
https://www.katacoda.com/courses/prometheus/docker-metrics

Exploring metrics with Grafana
Grafana https://grafana.com is an open source tool that lets us display
graphs of data collected from Prometheus, ElasticSearch, and InfluxDB,
among others.
Metrics can help you set reasonable performance targets, while log analysis
can uncover issues affecting your workloads. Our deployment proposes two
types of metrics through our Grafana dashboards:

The system metrics include the utilization of CPU/memory/disk of both
the master of K8s and the workers.
The cluster metrics include data at the container level and K8s cAdvisor
endpoints.

These metrics, for example, can be exploited in a dashboard, which will help
us understand the performance and behavior of our infrastructure at a low
level. These metrics will help us determine if the system or performance is
degrading and can cause the system to fail. It is important to use low-level
data to help us prevent any failure before it occurs.
Grafana also makes it easy to obtain data from different data sources, which
can be mixed on the same dashboard. You can also define alert rules visually
for the most important metrics. Grafana evaluates these rules permanently
and continuously and sends notifications in different ways.
With your hostname, you can access the tool using admin as username and
the password that you just recovered. Click on Add data source to configure
Prometheus as a data source, and the first option that will appear is
Prometheus.

https://www.katacoda.com/courses/prometheus/docker-metrics
https://grafana.com

Figure 14.17: Add data source in Grafana interface

We can configure Prometheus as Grafana data sources. In this way, we can
configure Grafana to query the Prometheus database for metrics.

Figure 14.18: Grafana settings

Once we have connected Grafana with Prometheus, we can add a dashboard
with the metrics that hosts Prometheus and Grafana.

Figure 14.19: Grafana metrics

For example, we can show the CPU usage of a container or pod within
Kubernetes in real-time or the evolution of the values over time. We can
install Grafana from a Docker image
https://github.com/monitoringartist/grafana-xxl using the following
command:
$ docker run -d --name=grafana-xxl -p 3000:3000

monitoringartist/grafana-xxl:latest

Unable to find image ‘monitoringartist/grafana-xxl:latest’

locally

latest: Pulling from monitoringartist/grafana-xxl

c5e155d5a1d1: Pull complete

636812ca4cd8: Pull complete

89336075b74f: Pull complete

Digest: sha256:0ca7441bf76ae97473350078dca504974de65d7748927361fe00ae

1dcdec92c9

Status: Downloaded newer image for monitoringartist/grafana-

xxl:latest

WARNING: IPv4 forwarding is disabled. Networking will not work.

cc76fe06387535f8c0984238d5979b86ba9591ea2db0f39fc0fc05897291a6cf

Later, we can verify that we have the container running on port 3000:
$ docker ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

cc76fe063875 monitoringartist/grafana-xxl:latest “/run.sh” 3

minutes ago Up 3 minutes 0.0.0.0:3000->3000/tcp grafana-xxl

We can also install Grafana using a helm chart we can find at
https://github.com/helm/charts/blob/master/stable/grafana/values.yaml.

https://github.com/monitoringartist/grafana-xxl
https://github.com/helm/charts/blob/master/stable/grafana/values.yaml

To deploy the chart, we can use the same namespace where we locate the
Prometheus server:
helm install --namespace monitoring --name grafana

stable/grafana -f grafana/values.yml

Once you deploy it, you will need to recover the administrator password
through this command:
$ kubectl get secret grafana -n monitoring -o

jsonpath=”{.data.admin-password}” | base64 --decode ; echo

We can define different panels with different metrics. Within each panel, we
can add and edit different types of graphs, such as tables, heat maps, or
typical graphs. The following figure depicts a section of a typical panel:

Figure 14.20: Grafana metrics

In the preceding figure, see, for example, the total consumption of CPU,
RAM, and storage capacity. We can also see the CPU consumption of each
Pod individually. Similarly, the panel contains the memory usage of the Pods
as well as the network usage.

Figure 14.21: Grafana pods metrics

Behind Grafana, there is a very active community that shares different panels
and configurations, which allows you to take better advantage of the tool.
Each panel can be defined, exported, and imported in JSON format. This tool
is very well adapted to platforms like Docker and can be easily configured
and deployed.
It contains an initialization file to configure the different options. However,
all the options that exist in that initialization file can also be configured
through environment variables.
All the configuration can be transferred to code, but if we want it to persist in
case of server failures, we can take advantage of the functionalities that
Kubernetes offers and link it to an external volume. This way, we will never
lose the state of our Grafana dashboard.
With Grafana, we can define alarms about our metrics. Alarms are a very
useful resource when monitoring a system. We can send notifications to our
email, mobile, or internal chats to our organization with alarms. The alarms
that we can define are:

CPU usage per node: The use of the CPU is always important, a
notification that tells us that the cluster is close to the maximum
possible consumption of CPU can be interesting.
RAM memory usage per node: Although there are options that make
the nodes of a Kubernetes cluster not reach 100% RAM memory usage,
it is interesting to control when any node is close to its limit.
Use of the file system per node: File system usage is an important

metric. Saturation can cause workloads running on the node to fail.
With a simple alarm, we are aware of this metric.
PODs not available: It is always interesting to know when we have a
POD not available within our cluster and if it has been able to
regenerate.
Less desired PODs available per deployment: This metric is more
interesting than the previous one since we can have PODs not available
in cases of updates, but this does not mean that the desired number of
PODs are not in operation.

Figure 14.22: Grafana Kubernetes metrics

As we’ve seen, updates to Kubernetes generate additional PODs that boot
while the old ones serve traffic. With this metric, we ensure that the expected
number of replicas are up and running.

Tip: Monitoring with Prometheus and Grafana
The goal of this interactive scenario is to monitor an application based on a
local development Kubernetes cluster running Prometheus and Grafana:

https://www.katacoda.com/datastax/courses/cassandra-ops-
k8s/cassandra-ops-prometheus-grafana

https://www.katacoda.com/datastax/courses/cassandra-ops-k8s/cassandra-ops-prometheus-grafana

Other tools
Within the observability and monitoring ecosystem, we have different tools
that can help us, depending on the needs of our project and the infrastructure
configuration. We can highlight the following among them:

Datadog (https://www.datadoghq.com) is a monitoring and analytics
tool that can be used to obtain performance metrics in applications and
event monitoring for infrastructure and cloud services.
New Relic (https://newrelic.com) is a tool that allows you to measure
the performance of applications deployed in the cloud and allows you to
analyze and visualize different metrics in the software development
environment.
InfluxDB (https://www.influxdata.com) can be considered a database
that stores time series (TSDB). These databases allow you to store and
evaluate data from sensors or protocols with timestamps for a certain
period of time. The main advantage of these databases is that they are
much faster than relational databases when storing and processing data
with timestamps.
Splunk (https://www.splunk.com) is a big data software that can
capture, index, and correlate log data. It is also capable of manipulating
data in log files and generating charts, reports, alerts, and dashboards.

Conclusion
In this chapter, we reviewed tools like Kubernetes Dashboard, Prometheus,
and Grafana as open source tools for the analysis and visualization of metrics.
The monitoring and observability tools analyzed are beginning to be
fundamental pieces in the implementation of the infrastructure of the systems
and applications, offering a set of advantages:

Control over what is happening in real time
Agility in error prevention and detection processes
Systems efficiency improvement and cost reduction

As we have seen, these tools offer the ability to create generic dashboards
that can be quickly changed to display different statistics for a specific

https://www.datadoghq.com
https://newrelic.com
https://www.influxdata.com
https://www.splunk.com

cluster, server, or applications.

Points to remember
Prometheus exposes information related to its internal metrics and
performance and allows it to monitor itself.
Grafana is a tool that allows us to visualize time series data. We will
obtain a graphical overview of the situation of the data. We can see the
running application and the possibilities it offers at
https://play.grafana.org.

Multiple choice questions
1. What is the command we need to run to check if Kubernetes Dashboard

has been deployed correctly?

a. kubectl get pods --namespace kube-system
b. kubectl get --all-namespaces
c. kubectl get pods --namespace kubernetes-dashboard
d. kubectl get pods --namespace kube-dashboard

2. What command do we have to execute to create a namespace for
prometheus in the case of installing through the operator?

a. kubectl create namespace prometheus
b. kubectl create namespace prometheus-operator
c. kubectl create namespace prometheus-kubernetes-operator
d. kubectl create namespace prometheus-system

Answers
1. a
2. d

Questions

https://play.grafana.org

1. Describe the main elements of the Prometheus and Grafana
architectures.

2. Describe the main metrics that we can obtain for a pod within
Kubernetes.

3. Explain the types of possible rules to be configured and evaluated in
Prometheus.

Key terms
Monitoring our infrastructure plays a crucial role in determining thr
quality of the service we are providing. In addition, thanks to alarms
and automation, we can know what is happening at all times and to take
corrective measures.
The Kubernetes Dashboard is a Kubernetes web user interface panel.
The dashboard enables you, among other things, to distribute
containerized applications across a Kubernetes cluster, search for errors
in containerized applications, and manage the cluster.
Prometheus is an OpenSource tool with which we can collect and store
metrics. It has multiple integrations and is one of the most used tools by
the community for this purpose. It has an integrated database and its
own query system to extract the information. It uses a data exporter
called node exporter to collect information. This tool must be deployed
within the Kubernetes cluster.
Grafana is a multiplatform and extensible software through plugins in
which users can build their data visualization panel in a personalized
way and share it easily. Grafana is widely used in network service
monitoring systems such as Prometheus or Zabbix. Here are some of the
main features:

a. We will have different graphics for data visualization.
b. It makes dynamic and reusable panels available to us.
c. It is extensible, and we can use different panels and plugins

available in the official library.
d. We can authenticate through LDAP, Google Auth, Grafana.com,

and Github.

e. Visualization of multiple types of graphs (histograms, geographical
maps, heat maps …) with a multitude of options with which they
can be enriched and extended.

f. Creation of dynamic and reusable dashboards with the possibility
of sharing them.

g. Use of diverse and multiple data sources from which you can
obtain personalized metrics as well as filter data and make
annotations in real time.

h. Definition of alerts and notifications.

Index

A
alertmanager 410
Alpine image vulnerability (CVE-2019-5021) 199, 200
alpine Linux

reference link 82
used, for reducing image 82

Amazon Elastic Container Registry
reference link 110

Amazon Elastic Kubernetes Service
about 50
reference link 50

Anchore
used, for analyzing Docker images 170

Anchore Engine
about 23
deploying 172-179

Anchore Engine Analyzer 171
Anchore Engine API 171
Anchore Engine architecture, components

Anchore Engine Analyzer 171
Anchore Engine API 171
Anchore Engine CLI 171
Anchore Engine Database 171
Anchore Policy Engine 171

Anchore Engine CLI 171
Anchore Engine Database 171
Anchore Policy Engine 171
apiVersion 317
AppArmor profile

about 128
configuring 129
customizing 129
directories 129
disabling, to run container 132, 133
docker-default profile 130, 132
installing, on Ubuntu distributions 129
reference link 128

application
building, with NodeJS 78-80

Application Programming Interface (API) 34, 133, 342
application security pipelines 5
Audit2rbac

about 388

reference link 388
auditd.conf 126
audit process

considerations 196
features 195

audit.rules 126
audit system command

checks, performing 147-149
Azure Kubernetes Service

about 50
reference link 50

B
Bamboo

about 13
features 13
URL 13

Bandit tool 18
Berkeley Packet Filter (BPF) 133
black box testing 8
Blue Team 8
bridge mode

about 220, 221, 223-226
advantages 226

C
cAdvisor

performance monitoring 257-262
reference link 257

Change on Write (COW) 190
Checkov

about 387
URL 387

CI/CD tools 156
CircleCI

about 13
features 13
URL 13

CIS benchmarks
for Kubernetes, with KubeBench 372-378

Clair
used, for scanning Docker images 165-167

Clair security scanning 156
client-server architecture, components

CLI 34
Docker daemon 34
REST API 34

CloudFoundry

about 51
reference link 51

Cloud Native Computing Foundation (CNCF)
about 46
URL 46

cluster 49
cluster election

characteristics 325
cluster monitoring

about 398
CPU usage 398
disk usage 398
memory usage 398
network bandwidth 398
pods resources 398

ClusterRoles 347
Codeship

about 13, 14
features 14
URL 13

Command-Line Interface (CLI) 34
Common Vulnerabilities and Exposures (CVE)

about 154, 197
analyzing 388
in Docker images 201, 203
obtaining, with Vulners API 203-206

Common Vulnerability Scoring System (CVSS)
about 155, 164, 189
access complexity 190
access vector 190
authentication 190
confidentiality impact 190
integrity impact 190

Common Weakness Enumeration (CWE) 19
consul

reference link 55
container administration

about 278
with OpenShift 305
with Portainer 279-283
with Rancher 293-299

container attack surface
reducing 141

container communication 229
Containerd

about 38
characteristics 38
URL 38

container life cycle stages
application release 278

development 278
IT operations 278

container management
challenges 278, 279

container networking 217-220
container orchestration

about 44, 45
tasks 45

containers
about 30
monitoring, with Falco 265, 266
running, by disabling AppArmor profile 132, 133
running, by disabling Seccomp profile 136, 137
running, with Seccomp profile 133-135
versus virtual machines (VMs) 31

container secrets 210
Continuous Delivery (CD)

about 9, 10, 30
advantages 15, 16
versus Continuous Integration (CI) 16

continuous delivery pipeline
advantage 14
in software development 14

Continuous Integration (CI)
about 2, 9, 10, 30
capabilities 12
orchestrating 11
process, implementing 10, 11
tools, selecting 12
versus Continuous Delivery (CD) 16

continuous integration pipeline 11
continuous integration tools (CI tools) 11
continuous monitoring 25
CRI-O

about 51
URL 51

Cross-site scripting 18
CruiseControl

about 13
features 13
URL 13

ctop tool
reference link 254

CVE-2014-0160
about 202
reference link 202

CVE-2014-5279
about 202
reference link 202

CVE-2014-5280

about 202
reference link 202

CVE-2014-5282
about 202
reference link 202

CVE-2014-6271
about 202
reference link 202

CVE-2016-6515
about 202
reference link 202

D
Dagda

about 156-158
multiple Docker base Linux images 157

Datadog
about 424
reference link 424

default seccomp profile 140
Demilitarized Zone (DMZ) 236
Denial of Service (DoS) attack 26, 187
dependency analysis 21
deployment

about 321
reference link 321

DevOps
about 2
phases 2
principles 10
to DevSecOps 2

DevOps tool, features
application portability 306
automation 305
collaboration 305
multi-language 305
open source 306
scalable 306
self-provisioning 305

DevSecOps
about 2-4
advantages 4
best practices 3
need for 7

DevSecOps Labs 26
DevSecOps lifecycle

about 5
benefits 5
ShiftLeft security 6

DevSecOps methodology
about 6, 7
applying 7
security code review 9
security testing 8

DevSecOps methodology, components
change management 7
code analysis 7
compliance monitoring 7
threat research 7
vulnerability analysis 7

DevSecOps tools
about 17
alerts and monitoring 25
dependency analysis 21, 22
Dynamic Analysis Security Testing (DAST) 21
Infrastructure as Code security 23
secrets management 24
Static Analysis Security Testing (SAST) 18
vulnerability management 24, 25

Dirty Cow Exploit (CVE-2016-5195)
about 190-193
preventing, with apparmor 193, 194
reference link 191

Distributed Denial of Service (DDoS) attack 187
Distributed Key-Value Store 315
Distroless Docker images

about 83-85
from Google Container Tools project 84

Dive
about 263
features 263
performance monitoring 263, 265

Docker
about 30
network managing 228
running, in cloud 38
secret, managing 211-213
testing, in cloud 38

Docker architecture 33
Docker Bench

URL 25
Docker bench security

about 141, 142, 144-146
components 142
Docker daemon configuration 143
Docker daemon configuration files 143
executing 143
host configuration 143

docker build command

about 65, 66
options 65, 66
syntax 65

Docker cache
about 77, 78
features 78

Docker capabilities
about 98
adding 101, 102
adding, to manage network 105
dropping 101, 102
listing 99
ping command, disabling in container 103, 104
privileged containers, execution 105, 106

Docker client 33, 35
Docker commands

about 37
example 35, 36

Docker compose
defining 45, 46
reference link 45

Docker containers
about 30, 34
events 246, 253, 254
executing, in background mode 75, 76
inspecting 75
log management 246-249
managing 72
metrics 246
metrics, obtaining, with docker inspect 253
monitoring tools 254-257
statistics 246
stats 249-251
threats and attacks 186-189
Trivy, executing 165

Docker container system
Docker client 33

Docker container system, elements
Docker client 35
Docker containers 34
Docker engine 33, 35
Docker Image 33
Docker Registry 34

Docker Content Trust (DCT)
about 107
attack scenarios, preventing 107, 108

dockerd 124
Docker daemon

about 91
attack surface 91

reference link 91
Docker daemon security

about 124, 125
files and directories, auditing 125

docker-default profile 130
Docker engine 33-35
Docker engine technologies

AppArmor 90
Secure Computing Mode (Seccomp) 90
SELinux 90

Docker features
for container management 32

Dockerfile
about 64
best practices 70-72
images, building 65, 69, 70
instruction 66, 67

Dockerfile commands 64
docker history command 80
Docker host

auditing, with Lynis 146
Docker Hub

reference link 72
Docker Hub Registry

about 32
reference link 195

Docker Hub repository
about 154
URL 64

Docker images
about 33, 60, 61
analyzing, with Anchore 170
base image, selecting 64
commands 61
Common Vulnerabilities and Exposures (CVE) 201, 203
design consideration 63
executing 72-74
managing 60
minimalist images 64
obtaining, with microbadger service 62
optimizing 77
scanning, with Clair and Quay 165-167
searching 72-74
vulnerability, analyzing 195

docker info command 128
Docker inspect command 76
Docker layers

about 61
in Ubuntu images 62

Docker network

commands 235, 236
container, connecting to 238-242
container, linking to 239, 240
creating 234, 236-238
managing 234

Docker networking
about 228
network configurations 228, 229

Docker Notary
for managing images 109
reference link 109

Docker Registry
about 34, 109
creating 111-113

docker run command
options 279, 280

Docker secrets
with Docker swarm scenario 214-216

Docker security
best practices 90-92
containers, executing in read-only mode 94, 95
executing, with non-root user 92-94
images, verifying with Docker Content Trust 96
principles 90
resource limitation 97
Set Group ID (setgid) permissions, disabling 96
Set User ID (setuid) permissions, disabling 96

Docker security scanning
about 154
process 154, 155

Docker Swarm
about 52-54
elements 53
reference link 52

Docker Swarm Administration
with Portainer 289-292

Docker Swarm Cluster
Portainer, deploying 288, 289

Docker swarm scenario
using, in Docker secrets 214-216

Docker user guide
reference link 35

Docker virtualizing, advantages
performance 32
portability 32
self-management 32

Domain Name Server (DNS) 49
dynamic analysis 8
Dynamic Analysis Security Testing (DAST)

about 20, 21

open source tools 21

E
exploitable remotely 190

F
Falco

URL 265
used, for monitoring container 265, 266

Falco container
launching 266-269, 271

Falco rules 271
FBInfer

URL 22
FROM instruction 67
fuzz test 2

G
GitLab

URL 110
used, for security testing 9

GitLab CI
about 13
URL 13

Google Container Tools project
Distroless images 84

Google Kubernetes engine
about 50
reference link 50

Grafana
observability and monitoring, enhancing 410
URL 26
used, for exploring metrics 418-423

H
hakiri

URL 22
Harbor

URL 110
Harbor repository

about 116-119
reference link 116
testing 116

Heartbleed
about 198

URL 198
Helm charts

reference link 51
helm prometheus chart

reference link 412
high criticality vulnerabilities

about 198
ShellShock 198

host mode
about 226, 227
advantages 228
disadvantages 228

host namespace
about 356
HostIPC 357
HostNetwork 357
HostPID 356
HostPorts 357

I
IBM 51
IBM Cloud Kubernetes Service

about 51
reference link 51

image evaluation
policies 180-182

images
building, from Dockerfile 65, 69, 70

image size
reducing, with alpine Linux 82
reducing, with multistage 81

image tags 63
InfluxDB

about 424
reference link 424

Infrastructure as Code (IaC)
about 23
open source tools 23

Infrastructure as Code security 23
integrated code (IC) 15
Integrated Development Environment (IDE) 18
integrated scaling mechanism 46
intrusion testing 8

J
Jenkins 11
JFrog Xray 156
JSON document, policy bundle

image blacklist 180
image whitelist 180
mappings 180
policies 180
whitelisting 180

JSON file 50, 343

K
K3d

reference link 325
K3s

reference link 325
K9s

about 410
reference link 410

Kernel Linux security 127
Key-Value Store component 315
kind

about 317
reference link 325

Klar
URL 167

Kops
about 51
reference link 51

Ksniff 381
Ktop

about 409
reference link 409

Kubeadm
reference link 325

Kubeaudit
about 387
reference link 387

KubeBench
CIS benchmarks, for Kubernetes 372-378
reference link 372

KubeBench security 372
kubeconfig 328
kube-controller-manager

endpoint-controller 314
node-controller 314
replication-controller 314
token and service account controller 314

kubectl
used, for interacting with cluster 328-334

kubectl command
about 50, 343
reference link 335

kubectl-debug 381
kubectl-dig 382
Kubectl plugins

for managing Kubernetes 381
kubectl-trace 381
Kube-hunter

about 379
reference link 379

Kubei
about 387
reference link 387

Kubenav
about 410
reference link 410

Kube-ops-view
about 409
reference link 409

Kubernetes
about 46
architecture 46
characteristics 342
CIS benchmarks, with KubeBench 372-378
cloud provider solution 50
configuring 342
deploying, with Rancher 300-304
features 312, 313
installing 50
key terms 48
managing, with Kubectl plugins 381
testing 50
URL 46
usage 312
working 343
working, with Minikube 326, 327

Kubernetes, advantages
multiple nodes 49, 342
replication 49, 343
services 49, 343

Kubernetes alternatives 52
Kubernetes architecture 312
Kubernetes cluster

about 312
components 313
observability 397
reference link 335

Kubernetes components
reference link 315

Kubernetes components security
affinity rules, applying between nodes and pods 367-369
analyzing 355, 356

cluster state, auditing 360-362
limits and resource request, setting 367
livenessProbe, using 362-364, 366
pod security policies 356
readinessProbe, using 362-364, 366
static analysis, with kube-score 358, 359

Kubernetes concept
JSON file 343
kubectl command 343
Kubernetes controller 343
Kubernetes node 343
YAML file 343

Kubernetes controller 343
Kubernetes dashboard 399-406, 409
Kubernetes distribution (k0s)

about 51
reference link 51

Kubernetes driver 49
Kubernetes elements 315
Kubernetes learning scenarios 52
Kubernetes networking model

about 323, 324
container to container communication, within Pods 324
external communication, from pod 324
Pod to Pod communication, through cluster 324

Kubernetes network policy API
reference link 362

Kubernetes node 50, 343
Kubernetes node, components

kubelet 48
kube-proxy 48

Kubernetes objects
about 315-317
controller 317
ingress 318
ingress controller 318
pods 317, 318, 320
ReplicaSet 321, 322
service 317, 322
StatefulSets 323
volume 320

Kubernetes Operations (Kops)
reference link 325

Kubernetes resources
reference link 344

Kubernetes secrets
reference link 353

Kubernetes security
about 342, 344
attack types 347

projects 378
Kubernetes security, best practices

about 344
API authentication 345
API authorization 345
building, into k8s 346
Docker pull <image> command, restricting 345
firewall ports 345
Kubernetes secrets 348-352
projects, for managing Kubernetes secrets 353
resources and limits, managing 346
secrets, managing 347, 348
secrets, using 344

Kubernetes security, features
network encryption 347
Pod security policies and network policies 347
Role-Based Access Control (RBAC) 347

Kubernetes security risks
container runtimes 355
containers 354
handling 354
host operating systems 355
kubectl dashboard 355
management tools 355
network layer 355

Kubernetes tools
cluster election 325
cluster, interacting with kubectl 328-334
deploying 325

Kubernetes vulnerabilities
about 389-391
analyzing 388

kube-score 358
Kubesec

about 380
advantages 388
features 380
URL 380

Kubestriker 383-386
Kubeview

about 409
reference link 409

L
labels 49
LazyDocker 256
LGTM tool

about 19, 20
features 19

LibContainer module 31
linked containers 230
Linux audit daemon framework

about 126
features 125

Linux capabilities
about 91, 98
reference link 98

Linux Containers (LXC) 32
Linux kernel, functions

control groups (Cgroups) 90
namespaces 90

livenessProbe 363
low criticality vulnerabilities

about 198
Buffer Overflow 198

Lynis
used, for auditing Docker host 146

M
Managed Kubernetes Inspection Tool

about 387
reference link 387

management of security contexts 98
Mandatory Access Control (MAC) 127
master 46
Master components 313
master, elements

API server 47
controller manager 47
etcd 47
scheduler 47

Master node
about 313
cloud-controller-manager 314
etcd 314
kube-apiserver 313
kube-controller-manager 314
kube-scheduler 314

medium criticality vulnerabilities
about 198
Poodle 198

metadata 317
metrics

access complexity 169
authentication 169
collecting 417, 418
confidentiality impact 170
exploring, with Grafana 418-423

integrity impact 170
microbadger service

used, for obtaining Docker images 62
Microk8s

reference link 325
Minikube

reference link 325
used, for working with Kubernetes 326, 327

MITRE
URL 197

ModSecurity WAF
about 26
reference link 26

monitoring 413
multi-stage

about 78
used, for reducing image 81

multistage-build
reference link 81

N
Nagios

URL 26
Network Address Translation (NAT) 324
Network File System (NFS) 320
network managing

in Docker 228
Network Namespace 324
New Relic

about 424
reference link 424

nginx container
monitoring 272, 273

Node components 313
NodeJS

used, for building application 78-80
Nomad

reference link 54
Nomad, types of mode

client 54
server 54

non-primitive data type. See composite data type
npm check

URL 22

O
observability

enhancing, with Prometheus 410

in Kubernetes cluster 397
observability and monitoring ecosystem

about 396
tools 423, 424

observability, fundamental components
Artificial intelligence for IT operations (AIOps) 397
correlation and context 397
open instrumentation 397
programmability 397

OKD
URL 306

Open Container Initiative
about 39
URL 39

OpenShift
functionalities 305
using, in container administration 305

OpenShift cluster
options, deploying 306

OpenShift container platform 306
OpenShift dedicated 306
OpenShift learning scenarios 307
OpenShift online 306
OpenShift origin 306
OpenShift versions

OKD 306
OpenShift container platform 306
OpenShift dedicated 306
OpenShift online 306
OpenShift origin 306

open source tools
for vulnerability analysis 155

OpenVAS
URL 25

OWASP dependency check
about 159
URL 159

OWASP Zed Proxy Attack (ZAP) 21

P
penetration testing 8
Persistent Volume Claim (PVC) 391
pod affinity 368
Podman

about 39
characteristics 40
testing 44
URL 39

Podman commands

about 41-43
reference link 41

Podman design 40
Podman functions 40
Podman, fundamental differences

command line 39
daemon-less 39
pods 39
root-less 39

Podman security 40
pods

about 40, 49, 318, 320
multitude options 319
reference link 49

pod security policies
about 356
capabilities 357
containers, in privileged mode 356
privilege escalation 357
users and groups 357
volumes and filesystems 357

PodSecurityPolicy
vulnerability 391

Poodle 198
Portainer

deploying, in Docker Swarm Cluster 288, 289
inspect section 284
network list 285-287
URL 279
using, in container administration 279-283
using, in Docker Swarm Administration 289-292

port forwarding
configuring, between containers and Docker host 229-234

port mapping 229
powerful query language (PromQL) 411
privileged 356
Project Calico

about 387
reference link 387

Prometheus
about 410
alert manager 412
client libraries 412
installation 412-416
observability and monitoring, enhancing 410
service discovery 412
URL 26, 399

Prometheus architecture 411
Prometheus, components

Prometheus server 412

Prometheus, functions
alertmanager 411

Prometheus, types
alert rules 411
Prometheus operator 411
recording rules 411

public Docker registries 110
pull command 37
Pypodman

reference link 41
Python integration 41

Q
Quay

URL 110
used, for scanning Docker images 165-167

Quay.io image repository
about 113-116, 168, 169
reference link 113

Quay registry
reference link 168

R
Rakkess plugin 382
Rancher

about 55
advantages 293
URL 55, 292
used, for deploying Kubernetes 300-304
using, in container administration 292-299

Rancher Community 293
Rancher Kubernetes Engine (RKE)

URL 55
readinessProbe 363
Red Hat OpenShift

about 51
reference link 51

Red Team 8
registry 110
ReplicaSet

about 321, 322
reference link 321

replication controller 49
Representational State Transfer (REST) 34
Role-Based Access Control (RBAC) 127, 210, 346
Roles 347
RUN instruction 67, 68
runtime exposure 230

S
SealedSecret 353
Seccomp profile

about 128
disabling, to run container 136, 137
reference link 133
used, for running container 133-135
writing 137-139

secret
about 211
managing, in Docker 211-213

secrets management
about 24
open source tools 24

security code review 9
Security-Enhanced Linux (SELinux) 127
security in-depth 140
Security Shift Left 6
security testing

about 8
with GitLab 9

security vulnerability classification 197
service 49, 322
Service Level Agreement (SLAs) 396
service, types

clusterIP 323
LoadBalancer 323
NodePort 323

ShellShock 198
Skooner

about 409
reference link 409

software penetration testing 2
SonarQube 18
source code control 156
Splunk

about 424
reference link 424

SQL injection 18
StatefulSets

about 323
reference link 323

static analysis 8
Static Analysis Security Testing (SAST)

about 18, 20
open source tools 19

syscalls
denying 135, 136

Sysdig Falco

URL 158

T
TeamCity

about 14
features 14
URL 14

Transport Layer Security (TLS) 390
Travis CI

about 12
features 12
URL 12

Trivy
about 164
executing, from Docker container 165
URL 163

U
Ubuntu distributions

AppArmor profile, installing 129
Ubuntu image

reference link 62

V
Vault 217
virtual machines (VMs)

about 324
versus containers 31

volume 320
volume, types

emptyDir 320
nfs 320
persistentVolumeClaim 320
secret 320

vulnerability
analyzing, in Docker images 195
certificates, usage 392
discovering 25
with PodSecurityPolicy 391

vulnerability analysis, open source tools
about 155
clair security scanning 156
Dagda 156, 157
OWASP dependency check 159-162
Trivy 163, 164

vulnerability assessment 25
open source tools 25

vulnerability, by level criticality
Heartbleed 198
high criticality vulnerabilities 198
low criticality vulnerabilities 198
medium criticality vulnerabilities 198

vulnerability (CVE-2018-8115) 194, 195
vulnerability management

about 24, 25
open source tools 25

vulnerable applications 22
vulnerable containers

reference link 203
vulnerable packages 195
Vulners API

used, for obtaining CVE 203-206
Vulners database

reference link 203
Vulners Python API wrapper

reference link 207

W
Weave Scope

about 409
reference link 409

white box testing
about 8
advantage 8

white box testing tools 18
worker node, processes

container runtime 315
kubelet 315
kube-proxy 315

Y
YAML file 50, 343

Z
Zabbix

URL 26

	Cover Page
	Title Page
	Copyright Page
	Dedication Page
	About the Author
	About the Reviewers
	Acknowledgements
	Preface
	Errata
	Table of Contents
	1. Getting Started with DevSecOps
	Structure
	Objectives
	From DevOps to DevSecOps
	Getting started with DevSecOps
	Advantages of implementing DevSecOps

	DevSecOps lifecycle
	ShiftLeft security

	DevSecOps methodologies
	Applying the DevSecOps methodology
	Security testing
	Security code review

	Continuous integration and continuous delivery
	Continuous Integration (CI)
	Orchestrating CI
	Selection of continuous integration tools
	Continuous delivery (CD) - Pipelines in software development
	Advantages of continuous delivery
	Continuous Integration (CI) versus Continuous Delivery (CD)

	DevSecOps tools
	Static Analysis Security Testing (SAST)
	Dynamic Analysis Security Testing (DAST)
	Dependency analysis
	Infrastructure as Code security
	Secrets management
	Vulnerability management
	Vulnerability assessment
	Alerts and monitoring

	Conclusion
	Points to remember
	Multiple choice questions
	Answers

	Questions
	Key terms

	2. Container Platforms
	Structure
	Objective
	Docker containers
	What is Docker?
	Containers versus virtual machines
	Docker features for container management
	Docker architecture
	Docker engine
	Docker client
	Containerd

	Podman
	Podman design and main functions
	Podman commands

	Container orchestration
	Docker compose

	Kubernetes
	Kubernetes architecture
	Kubernetes key terms
	Kubernetes cloud provider solutions

	Kubernetes alternatives
	Docker Swarm
	Nomad
	Rancher - Kubernetes as a service

	Conclusion
	Points to remember
	Multiple choice questions
	Answers

	Questions
	Key terms

	3. Managing Containers and Docker Images
	Introduction
	Structure
	Objectives
	Managing Docker images
	Introducing Docker images
	Docker layers
	Image tags

	Design considerations for Docker Images

	Dockerfile commands
	What is a Dockerfile?
	Building images from Dockerfile
	Best practices writing DockerFiles

	Managing Docker containers
	Searching and executing a Docker image
	Executing a container in background mode
	Inspecting Docker containers

	Optimizing Docker images
	Docker’s cache
	Building an application with NodeJS
	Reducing image size with multistage
	Reducing image size with alpine Linux
	Distroless Docker images

	Conclusion
	Points to remember
	Multiple choice questions
	Answers

	Questions
	Key terms

	4. Getting Started with Docker Security
	Introduction
	Structure
	Objectives
	Docker security principles and best practices
	Docker daemon attack surface
	Security best practices
	Execution with non-root user
	Start containers in read-only mode
	Disable the setuid and setgid permissions
	Verifying images with Docker Content Trust
	Resource limitation

	Docker capabilities
	Listing all capabilities
	Add and drop capabilities
	Disabling ping command in a container
	Adding capability for managing network
	Execution of privileged containers

	Docker Content Trust
	Notary as a tool for managing images

	Docker Registry
	What is a registry?
	Public Docker registries
	Creating Docker registry
	Quay.io image repository
	Harbor repository

	Conclusion
	Points to remember
	Multiple choice questions
	Answers

	Questions
	Key terms

	5. Docker Host Security
	Structure
	Objectives
	Docker daemon security
	Auditing files and directories
	Kernel Linux security and SELinux

	Apparmor and Seccomp profiles
	Installing AppArmor on Ubuntu distributions
	AppArmor Docker-default profile
	Run container without AppArmor profile
	Run container with Seccomp profile
	Deny all syscalls
	Run a container with no seccomp profile
	Write a seccomp profile
	Security in-depth

	Reducing the container attack surface

	Docker bench security
	Docker bench security execution

	Auditing Docker host with Lynis
	Conclusion
	Points to remember
	Multiple choice questions
	Answers

	Questions
	Key terms

	6. Docker Images Security
	Structure
	Objectives
	Docker Hub repository and security scanning process
	Docker security scanning
	Docker security scanning process

	Open source tools for vulnerability analysis
	Clair security scanning
	Dagda
	OWASP dependency check
	Trivy

	Scanning Docker images with Clair and Quay
	Quay.io image repository

	Analyzing Docker images with Anchore
	Deploying Anchore engine
	Policies for image evaluation

	Conclusion
	Points to remember
	Multiple choice questions
	Answers

	Questions
	Key terms

	7. Auditing and Analyzing Vulnerabilities in Docker Containers
	Structure
	Objectives
	Docker containers threats and attacks
	Dirty Cow Exploit (CVE-2016-5195)
	Preventing DirtyCow exploit with apparmor
	Vulnerability jack in the box (CVE-2018-8115)
	Most vulnerable packages
	Analyzing vulnerabilities in Docker images
	Security vulnerability classification
	Alpine image vulnerability (CVE-2019-5021)

	CVE in Docker images
	Getting CVE details with Vulners API
	Conclusion
	Points to remember
	Multiple choice questions
	Answers

	Questions
	Key terms

	8. Managing Docker Secrets and Networking
	Structure
	Objectives
	Introducing container secrets
	What is a secret?

	Managing secrets in Docker
	Docker secrets with Docker swarm scenario

	Introducing container networking
	Bridge mode
	Host mode

	Network managing in Docker
	Docker networking

	Containers communication and port mapping
	Configuring port forwarding between containers and Docker host

	Creating and managing Docker networks
	Docker network commands
	Creating a network
	Connecting a container to a network
	Linking containers

	Conclusion
	Points to remember
	Multiple choice questions
	Answers

	Questions
	Key terms

	9. Docker Container Monitoring
	Structure
	Objectives
	Container statistics, metrics, and events
	Log management
	Containers stats
	Obtain metrics using docker inspect
	Events in Docker containers
	Other Docker container monitoring tools

	Performance monitoring with cAdvisor
	Performance monitoring with Dive
	Container monitoring with Falco
	Launching Falco container
	Falco rules
	Nginx container monitoring

	Conclusion
	Points to remember
	Multiple choice questions
	Answers

	Questions
	Key terms

	10. Docker Container Administration
	Structure
	Objectives
	Introducing container administration
	Container administration with Portainer
	Deploying Portainer in Docker Swarm Cluster
	Docker Swarm Administration with Portainer

	Container administration with Rancher
	Deploying Kubernetes using Rancher

	Container administration with OpenShift
	Conclusion
	Points to remember
	Multiple choice questions
	Answers

	Questions
	Key terms

	11. Kubernetes Architecture
	Structure
	Objectives
	Kubernetes architecture
	Components of a Kubernetes cluster

	Kubernetes objects
	Pods
	Volumes
	Deployment
	ReplicaSet
	Services
	StatefulSets

	Kubernetes networking model
	Container to container communication within Pods
	Pod to Pod communication through cluster nodes
	External communication from the Pod

	Tools for deploying Kubernetes
	Cluster election
	Working with Kubernetes using Minikube
	Interacting with the cluster using kubectl

	Conclusion
	Points to remember
	Multiple choice questions
	Answers

	Questions
	Key terms

	12. Kubernetes Security
	Structure
	Objectives
	Introducing Kubernetes security
	Configuring Kubernetes

	Kubernetes security best practices
	Using secrets
	Firewall ports
	Restrict the Docker pull <image> command
	API authorization and anonymous authentication
	Management of resources and limits
	Security features built into k8s
	Managing secrets
	Kubernetes secrets
	Other projects for managing Kubernetes secrets

	Handle security risks in Kubernetes
	Analyzing Kubernetes components security
	Pod security policies
	Static analysis with kube-score
	Auditing the state of the cluster
	Using livenessProbe and readinessProbe
	Setting limits and resource requests
	Applying affinity rules between nodes and pods

	Conclusion
	Points to remember
	Multiple choice questions
	Answers

	Questions
	Key terms

	13. Auditing and Analyzing Vulnerabilities in Kubernetes
	Structure
	Objectives
	KubeBench security
	CIS benchmarks for Kubernetes with KubeBench

	Kubernetes security projects
	Kube-hunter

	Kubesec
	Kubectl plugins for managing Kubernetes
	kubectl-trace
	Kubectl-debug
	Ksniff
	kubectl-dig
	Rakkess
	Kubestriker
	Other tools

	Analyzing Kubernetes vulnerabilities and CVEs
	Kubernetes vulnerabilities
	Vulnerability with PodSecurityPolicy
	Vulnerability in the use of certificates

	Conclusion
	Points to remember
	Multiple choice questions
	Answers

	Questions
	Key terms

	14. Observability and Monitoring in Kubernetes
	Structure
	Objectives
	Introducing observability and monitoring
	Observability in a Kubernetes cluster
	Cluster monitoring

	Kubernetes dashboard
	Other Kubernetes Dashboards

	Enhancing observability and monitoring with Prometheus and Grafana
	Prometheus
	Prometheus architecture
	Prometheus installation
	Collecting metrics
	Exploring metrics with Grafana
	Other tools

	Conclusion
	Points to remember
	Multiple choice questions
	Answers

	Questions
	Key terms

	Index

